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ABSTRACT 

One of the many problems in architectural design is the 
I 

/ multivariate nature of the design problem. Typically 

this problem has been resolved by ranking the var10US 
I 

/ design elements and working through a series of design 

modifications considering each in turn. Unfort.unately 

architecture 1S concerned with ccmplex situations in 

which many variables are simultaneously ~elated and the 

"fragmentary" approach glves little insight into the 

basic relationships obscured within the design data. To 

achieve that insight the complex of variables must be 

studied as a whcle. 

This t.hesis describes a way of examining activity d3ta 

sheets or other briefing data uS1ng a number of 

techniques based on multivariate statistical methods. 

The various techniques have been incorporated into a 

computer program called MAGIC - Multivariate A~alysis by 

Graphical Interactive Computing. The progratTI output 1S 

specially designed to produce diagrams to enable the 

designer to manipulate and investigate the design data 

easily and conveniently. 

xviii 



The thesis reviews the problem of architectural design 

and its place in design methods theory, and the 

relationship of MAGIC to other layout planning programs. 

The program structure is outlined and detailed 

descriptions of the analytical techniques presented, 

together with those graphical techniques developed to 

present the results. Finally the application of MAGIC 

is shown in two practical examples. 

/ 

. 
XlX 



THE PROBLEM DESCRIPTION 

1. 1 INTRODUCTION 

One of the many problems in architectural design is the 

multivariate nature of the design problem. Typically 

this problem has been resolved by ranking the varlOUS 

design elements (adjacency, structural, . . servlclng, 

environmental, etc., requirements) and working t.hrough a 

series of design modifications considering each in tern 

(figure 1.1). The design process thus appears as a 

branching tree where the various options are explored at 

each level and the "best" rout.e through selected. 

Unfortunately architecture is concerned with complex 

situations in which many variables are simultaneously 

related and the "fragmentary" approach gives little 

j.nfJight into the basic relationships obscured wi thin the 

design data. To achieve that insight th2 complex of 

variables must. be studied as a whole. 
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------"----------------~~---------------- --------. 
Designers ranking of 
Importance in layout 

I 
adjacency requl rements 
of activities 

structural requirements 

servicing requirements 

and so on 
until all different 
aspects have been 
considered 

Figure 1.1 

Design Process Tree 

Representation of design 
selection/modification 

o t---T 

0" 

Action at each stage 

design layout to optimise 
adjacency requirements 

IOOdlfy first layout to t<lke 
account of struct~ral I 
requirements select best 
compromise 

try various forms of 
servicing to fit plan 
developed so far. 
Compromise again. 

\ 
finally check back asalnst I 
each set of requirements I 

k 
0 to rna e sure no major I 

ele'llcnt hc:s been too bac!IYJ 
compromised by the 
successive modifications 
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Since the architectural layout problem . 1S to arrange 

activities within a building the activities could be 

called associated if their physical demands require 

similar types of accommodation. To make clear the 

individual needs of the activities it 1S possible to use 

the Activity Data Method (Poyner 1966). All the 

activities to be accommodated may be listed, and then 

documented on an activity data sheet (a typical exmople 

is shown in figure 1.2). The lefthandside of the sheet 

describes the spatial requirements of the activity and 

the righthandside describes the characteristics required 

by that space to house that activity, i.e. temperature, 

light, serV1ce requirements, etc. The set of activity 

data sheets thus provide a comprehensive list of 

requirements to be met by the building. This thesis 

de sc r i be s a wa y 0 f e x am in ing t.h is (or any othe r ) da ta 

using a number of different techniques for analysing 

spatial and functional requirements to produce bubble 

diagrams and other design aids which may be of 

assistance to the designer in developing a plan layout. 
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" -
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Figure 1.2 

Activity Data Sheet 
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The various techniques have been incorporated into a 

computer program called MAGIC - Multivariate Analysis by 

Graphical Interactive Computing. The program can handle 

a mixture of different types of data and the graphical 

output and interaction facilities enable the designer to 

manipulate and investigate the de~ign data easily and 

conveniently without usurping the designers own special 

expertise in the development of the final layout. 

This introductory chapter reviews the problem definition 

and solution and its place in design methods theory. 

Also, as the solution techniques are based on a nwnber 

of specialised statistical techniques the use and 

application of these methods in relation to the more 

common1y known and accepted theory of hypothesis--testir..g 

statistics is briefly discussed. Chapter 2 discusses a 

number of other layout planning programs and their 

relationship to MAGIC. 

MAGIC showing how the 

Chapter 3 presen·ts a slunmary of 

program is controlled and the 

results displayed. The succeeding chapters then 

describe each of the analytical techniques incorporated 

in the pTogra~ and the techniques developed to present 

the results. Finally the application of MAGIC is shown 

in t\,IO exampl es. 
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1.2 DESIGN METHODS 

The origins of the design methods movement lie ln the 

application of scientific techniques to a wide range of 

novel problems during World War IIc The formaliscLtion 

of these techniques formed the general subject area of 

what is now known as Operations Research (0. R. ). 111 t-he 

1950's these OR techniques were increasingly applied to 

management decision making and this formalisation of the 

"art of management" was one model that att.racted the 

originators of architectural design methods. The early 

work is reported in Gregory (1967) and Jones (1970) and, 

although Alexander's "Notes on the Synthesis of Form II 

(1964) was influential, the classic text to emerge from 

this design science phase was "The Sciences of the 

Art.i ficial" (Simon 1969). A number of the leaders of 

t_he movement later recanted, most notably Christopher 

Alexander (1971) and Christopher Jones (1977). 

Apart from the ethical objections raised by Jones it 

became apparent that design· problems were not that 

amenable to solution by scientific method. Rittel and 

Webber (1973) characterised design problems as "wicked" 

problems, 

science. 

as distinct from the 

Rittel (1973) further 

"tamed" problems of 

suggested that such 
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design methods as existed were only the "first 

generation" design methods, and went on to outline the 

features of an emerging, more sophisticated "second 

generation". Second generation methods ",ere 

characterised by Rittel as: 

- assuming an equal distribution of kno\'lledge about the 

problem (i.e. designers, users and others all have 

valid knowledge to contribute). 

- embodying an argumentative process (i.e. influenced 

by different points of view rather than following a 

fixed method). 

- casting -the designer in a "midwi fe" role (i. e v there 

only to enable the interested parties to produce their 

own solution). 

This generation of methods were prevalent during the 

design participation experiments of the 1970's (see, for 

example, Cross 1972). 

The 1980's have already seen the emergence of a third 

generation of design methods. Broadbent (1979) has 

suggested that a common failing of the earlier 
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generation methods was their prohibition of the 

designer's intuition. The third generation view is that 

designer inputs are a necessary part of any design 

method and the processes of Popper's (1963, 1968) 

"conjectures and refutations" model are seen oS 

providing the mechanism for this. Hillier et al (1972) 

were amongst the first to discuss this approach to 

architectural design. and the method still serne 

support (for example, Darke 1979). 'fhe m9thoc1 is not, 

however, without its critics: March (1976) suggests 

that its impact has been "pernicious ll
, emphasising too 

much the superficial similarities of science and design. 

As a response to the continuing o?bate about scientific 

method philosophers such as Feyerabend (1975) have 

suggested that the only general methodological rule 

which could have universal validity in SC1ence (or 

design) is II any thing goes". 'Jlhe problem in this 

approach to design methods hinges on t.he relationship of 

design to science, and, if an epistemologically coherent 

concept of science 1S still proving elusive then it 

seems J . 1. I un .J.l-..e y that 

develop satisfactorily. 

such a concept of design \ViII 

There now appears to be a 

grow1ng body of opinion calling for science to be left 

to the scientists so that designers may get on with 

designing. 
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1.2.1 A Design Compromise 

The central dilemma in the science and design problem 

concerns the relationship between present and future 

}:nowledge. March (1976) has summed it up as "Science 

investigates extant forms. Design initiates novel 

forms.". This dilemma may be side-stepped by 

recognising an interesting paradox - design is part of 

science whilst science is also part of design. A 

scientific experiment must be designed: equally, t~o 

engender any design, it must be initiated by the 

application of . SClence. The relationship may be 

expressed diagrammatically (figure 1.3). 

r PREDICTION l r GENERATION l 
SCIENTIFIC PROBLEMS SOLUTIONS 

I 
KNOWLEDGE I 

t I 
I I 
I I 
I I 
\ J 

- - - - - - NEW KNOWLEDGE - - - - ---" 

Figure 1.3 

Relationship between science and design 
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As science reveals new knowledge the perception of 

problems is altered and the motivation for design 

changes. Furthermore, the impact of design on the 

corpus of knowledge is shown by the broken line linking 

future knowledge to science as existing knowledge. 

Cross et al (1981) avoid the dilemma in a similar "lay I 

presenting design as a technological activity, and 

defining technology as lithe application of scientific 

and other organised knowledge to practical tasks by 

social systems involving people and machines ll . This 

definition allows designers use of a variety of kinds of 

knowledge, from scientific kno\vledge of materials to 

craft experience. A number of other authors have 

developed the thesis that designing relies heavily on 

modes of thought which are neit.her "scientific" or 

IIliteraryll. Balchin (1972) coined the term "graphicacy" 

(as distinct from numeracy and literacy) to summarise 

those intellectual and practical skills concerned with 

nonverbal forms of communication. This approach is 

argued further by Archer (1979) in the context of 

defining design as a neglected central area of 

education. A related argument has been made by Ferguson 

(1977) who emphasises the role of IInonverbal thought" in 

technological development. 



THE PROBLEH DESCRIVi'ION PagE' 1-11 

1.2.2 The Place Of MAGIC 

This thesis has been written as a part-time occupation 

over a number of years. The initial impetus arose from 

an interest in the first generation Activity Data Method 

(Poyner 1966). This technique was developed to produce 

a detailed and comprehensive stC.tement of the cl:i_en·ts 

needs for th9 designer. It succeeded so well that the 

designer vias completely overwhelmed wi th informat.ion. 

This caused the well-known break at the end of the 

Analysis stage in the then popular "Analysis - Synthesis 

Appraisal ll model when the designer, having purged his 

soul, put away the analysis to get on with the design. 

Believj n9 that some useful informat.ion could emerge from 

the analysis the original idea behind HAGlC was to 

provide a means of interpreting or summarising 1n some 

useful way the body of data which may be available. 

MAGIC might now, alternatively, be considered a pioneer 

fourth generation design aid, making the 

numerate-literate subculture of the scientific-academic 

world accessable to the graphicate designer. 

More seriously, the real utility of any model of the 

design process is not intrinsically bound up in the 

model itself. The value lies in the extent to which the 
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model allows us to improve design teaching and pr2ctice. 

Architecture is a multidimensional problem and the 

solution area of any particular project is ill-defined. 

Furthermore a detailed knowledge of facts outside the 

universe of problem definition is needed to achieve a 

solution. To go full circle in the methodology debate, 

architecture is a classic example of an "ill-structured 

problem" (Simon 1973). The current methodologies 

recognise the need for interplay between tviO maj or 

contributing aspects of design: 

- creativity and imagination (the "art" in design) 

- recognising and satisfying formal constraints 

"science" in design) 

(the 

MAGIC 2ttempts to provide info~Eation on forrual spatial 

requirements in a form suitable for the designer to work 

on creatively. 

1.3 STATISTICAL METHODS 

Architecture is concerned with complex situations in 

which many variables are simulotaneously related, thus 

obscuring links and relationships. Furthermore, because 

of the inter correlations systema. tic experiments 
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comparing cause and effect in the relationships between 

seperate . paJ_rs of variables are not really possible: 

the complex of variables must be studied as a whole. In 

any case in the layout problem we are attempting to 

understand not just relationships between two variables 

but among sets of variables. The answer is not to be 

found in formal multivariate statistical techniques such 

as factor analysis - or any other technique which places 

too much reliance on numeric summaries of data based on 

distributional characteristics. Instead one must 

attempt to look at the overall pat-tern of the data. The 

approach . 
18 "exploratory" rather than "confirmatory", 

the underlying assumption of exploratory data analysis 

being that the more one knows about the data the more 

effectively that data cQn be used. 

Although "data analysis" means the breaking down of data 

into its component parts, it is usually taken to mean 

the analysis of data by means of classical statistics 

alone i.e. by numerical summaries of the data to the 

exclusion of other methods of analysis. This tends to 

diminish the importance of the visual display of data 

and leads to a belief that a "statistic" is somehow more 

accurate or meaningful thaD a graphical representation. 

However even widely used statistical techniques may 
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contain unreasonable hidden aSsllInptions about the 

distributional nature of the data and the classical 

summary mea.sures of data may conceal or even 

misrepresent the most informative aspects of certain 

data sets. 

Explorator:r data analysis is a method of exa.mining a set 

of data from various angles and piecing together 
• 

information about the system being studied. Such 

information may lead to a subsequent analysis that is 

refined and possibly more revealing, but Tukey (1977) 

make s the point II ••• to concentrate on confinnation, to 

the exclusion or submergence of exploration is an 

obvious mistake. Where does new knowledge come from?lI. 

t-1AGIC uses a nu.lTIber of exploratory data analysis 

.':. ,. techniques, in particular a nlunber of clustering 

methods. As this is a relatively undeveloped field of 

statistics, in the evaluation of the utility of these 

techniques efforts have been made to relate back to 

classical statistics wherever possible. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

The layout problem must have consumed more computer t.ime 

than all other architectural applicaLions put together. 

It was the first area to attract attention and has 

continued to . exerClse a fatal fascination ever since. 

Good reVlews (and extensive bibliographies) of the 

progress In this field are to be found successively in 

Mitchell (1970a), Eastman (1972a) Mitchell (1975a) and 

Henrion (1978) This chapter briefly charts some of the 

main developments to set MAGIC in context. 

2.2 FACILITIES PLANNING 

The earliest layout programs were developed to allocate 

facilities to a floor plan divided into suitable modular 

areas. CRAFT and CORFLAP (Armour and Buffa 1963, Lee 

and Moore 1967) are typical programs from this era. A 

floor p13n layout lS represented within CRAFT a3 a 
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two-dimensional array of integers as in figure 2.1· 

1 1 1 2 3 3 

1 1 1 2 3 3 

1 1 1 2 3 3 

4 4 4 2 3 3 

4 4 4 2 3 3 

4 4 4 2 3 3 

5 5 5 5 5 5 

5 5 5 5 5 5 

5 5 5 5 5 5 

Figure 2.1 

Integer array representation of floor p1a,n 
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Each integer represents a square module of space of some 

defined dimension, and aggregations of such modules 

represent "rooms" and "departmentsll. Letting S - (i" 

i 21 •••• "., i m ) be the set of modules to be located and R = 

,. . . . , jm) the set of possible locations ln the 

array, CRAFT attempts to allocate S to R to maximise 

some specified criterion. Vollmann and Buffa (1966) 

produced an overVlew of the problem, and several 

possible solution techniques were developed. The 

solution techniques are now generally referred to as 

lIadditive ll (successively adding facilities trying to 

maximise the target criterion at each step) and 

"permutational" (allocating all the facilities and 

permuting their positions to try and achieve an 

improvement in the criterion). Nugent et al (1968) 

present a comparlson of CRAFT with two earlier 

techniques (Hillier 1963 Hillier and Connors 1966) and 

a technique of their own'. 

Architects soon took an interest ln these formalised 

planning techniques. particularly applied to the 

analysis of circulation patterns (Mosely 1963; vmitehead 

and Eldars 1964, 1965; Beaumont 1967). Other 

architectural layout programs were developed by Johnson 

(1970) Willoughby (1970) Mitchell (1970), Portlock and 
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Whitehead (1971) and Stewart and Lee (1972). Portlock 

and Whitehead (1974) later extended their technique to 

plan in three dimensions. Moore (1974) presents a 

general survey of facilities planning work to that data. 

Phillips (1969) compared a number of programs ln an 

architectural context. Lew and Brown (1970) modified 

CRAFT for architectural use and Carter and Whitehead 

(1975a) looked at the effect of the quality of data on 

the plans produced. Gawad and Whitehead (1976) 

attempted to progress the technique by adding 

communication paths to the diagrammatic "idealised" 

layouts. Other sophistications enabling layout programs 

to work with realistically large problems are reported 

by Shaviv and Gali (1974). 

Eastman (1972) presented a generalised formulation of 

the space planning problem. The EDRA 3 conference 

produced three papers outlining techniques which are 

recelvlng increasing attention today. Liggett (1972) 

discussed floor plan layout by implicit enumeration and 

Mitchell and Dillon (1972) and Frew et al (1972) 

introduced pOlyomino "pattern-building" techniques to 

the problem. Liggett, in particular, has continued to 

work on this problem and her recent publications include 

an efficient solution method for the quadratic 
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assignment problem (Liggett 1980) and practical 

applications of the technique in office planning 

(Liggett and Mitchell 1981) Frew's work with 

polyominoes is extended in Shapira and Frew (1974) and 

related work reviewing the literature of polyominoes and 

formalising an architectural application is found in 

March and Matela (1974). Further approaches to 

achieving an efficient computational procedure to solve 

the facilities problem are contained in Juel and Love 

(1976) and Loomis (1977). Jackson (1977) presents a 

further architectural formulation. 

2.3 GRAPH THEORETIC APPROACHES 

The N-ominoes approach provides an interesting link with 

graph-theoretic based layout methods. A floor plan may 

be regarded as a planar graph, 1.n which corners of 

spaces are nodes and walls are edges. 

graph thus represents adjacencies. 

The dual of the 

Procedures were 

developed for constructing a floor plan given the 

adjacency graph or matrix. Thus the adjacency graph 

became used for the solution of a class of layout 

problems which were specified 1n terms of required 

adjacency between spaces. Levin (1964) was the first to 

discuss floor plan layouts uSlng graphs. Other early 

work based on graph representations' 1.S found 111 
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Krejcirik (1969), Seppanen and Moore (1969), Grason 

(1969, 1970) , Steadman (1970, 1973) Cousin (1970) and 

Pereira et al (1973). The formdl graph-theoretic 

aspects of polyominoes are defined by Matela and O'Hare 

(1976). Foulds and Robinson (1976) present a graph 

theoretic solution to the plant layout problem, and a 

number of the previous authors combine (Mitchell et al 

1976) to describe a set of algorithms to produce a 

limited set of plans. 

Graphs have also been applied to the slightly different, 

but closely related, field of problem structuring. 

Alexander (1965) first proclaimed a city is not a tree 

provoking the interesting (if belated) response from 

Harary and Rockey (1976) that it is not a semi-lattice 

either. Other graph theoretic decomposition algorithms 

are described by Shaviv et al (1977, 1978). 

2.4 STATISTICAL APPROACHES 

A number of authors have looked at a statistical 

approach to problem stucturing. Rossi (1970) prepared a 

survey of classification techniques for the Department ... 

of Architecture at the University of Bristol, but 

presents no information on inlpl einenta tioD or 
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architectural application. Mitchell (1970) describes a 

clustering program, CLUMP3, similar in many respects to 

Milne's (1971) better known CLUSTR. CLUSTR operates on 

a binary interaction matrix to produce a semi-lattice 

structuring of the problem. A direct link with 

facilities planning is found in Carrie (1973) who uses a. 

modified Nearest Neighbour clustering to obtain plant 

layouts from a single crit.erion "adjacency matrixH. 

Carter and Whitehead (l975b .. 1976) describe an 

analytical program to derive clusters from an 

association matrix, plot a dendroaram and link to a 

layout stage. They conclude that the clustering 

approach produces better layouts thnn their prevlous 

"additive" or "permutational" facilities layout 

programs. Frew (l976) in a broad review also suggests 

clustering methods hold more promise than the heuristic 

and enlli~erative techniques. 

Tabor (l976) produced one of the most complete surveys, 

coverlng not only the permutational and additive 

techniques and graphs, but also hierarchical 

classification methods, a "clumping" nonhier2rchical 

method, and multidimensional scaling. This is all done 
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in the context of the analysis of comr.1unication patterns 

and so 1S derived only from the trip matrices, but . 
1S 

the only paper to show some of the advantages of 

bringing a number of different techniques to bear on the 

same problem . 

There . 
1S some history of the use of multivariate 

statistics in architectural applicatio~s in France 

Maroy and Peneau (1973) summarise a number of techniques 

and present a factor analysis mapping using a mixed data 

matrix. Ullrich and Braunstein (1977) describe the use 

of multidimensional scaling and cluster analysis to help 

clients structure their design requirements to prepare 

architectural briefs. Fortin (1978) uses a rnapplng 

algorithm to produce relationship diagrams from 

relationship matrices, and Roy (1979) uses classical 

multidimensional scaling to the same ends. 

2. 5 SUMr.llARY 

A wide range of solution techniques have been appJ.ied to 

the layout problem and the associated 

problem-structuring question. None have satisfactorily 

solved the problem of the multivariate data. None have 

provided more than one solution technique operating on 
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the same data set. None have provided any kind of user 

interface" for effective interactive use by designers. 
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CHAPTER 3 

GENERAL STRUCTURE OF HAGIC 

3.1 INTRODUCTION 

MAGIC (Multivariate Analysis by Graphical Interactjvc-' 

Computing) is an interactive, graphical computer program 

for space planning. The program is carefully des:i_gnec1 

to allow the archi tect to inves·tigate a planning 

problem, and outputs information in diagrammatic form of 

sufficient generality not to inhibit the designer, 

whilst containing a distillation of infonnation such 

that the final architect-produced design will closely 

meet the requirements of the organisation. Although of 

use in any layout analysis the program is illustrated 

here by a simple theoretical example. Examples of the 

practical use of the program are presented in chapter 

12. 

MAGIC is designed 'co operate during the early design 

stage analysi.s. That lS, given almost any planning 
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data, the program will analyse that data and present the 

results as relational diagrams for the designer to then 

use in the preparation of the final layout. As several 

types of data may be collected a computational problem 

may arise if incompatible data types are used together. 

To avoid this most analysis programs only allow the use 

of one variable - thus forcing all relationships to be 

expressed in terms of adjacency requirements or cost. 

This program deals with the problem in an entirely 

different manner which allows the use of different data 

types in such a way that the veracity of the computed 

output is maintained across a range of variables. Thus, 

in addi"i:.ion to the typical inventories of equipment and 

furniture, available office space, work station 

requirements, etc., it is possible to compile 

information on the required physical environments of the 

various activities and use this data in the analysis. 

Details of each 

presented in the 

description. 

of the computational techniques are 

chapters follo\ving this general 

3.2 A BRIEF DESCRIPTION OF THE PROGRAM 

MAGIC is designed for interactive use on a direct view 

storage tube terminal. The type of analysis performed 

and the manipulation and comparison of bubble diagrams 
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is controlled through a series of menus. Any (or all) 

of the analyses can be performed from the same data, and 

previously computed solutions may be retrieved for 

further manipulation or comparison with new solutions. 

This thesis elaborates each of the analyses in turn and 

then describes the manipulative facilities. The 

description is necessarily "linear" but it should be 

unde:c stood that one of the . maln advantages of a 

computerised analysis is the ability to quickly and 

easily move "backwards a.nd forwards" through different 

analyses and modifications thus gaining the 

understanding of the structure of the data which will 

enable the final layout to be designed. Figure 3.1 

defines the basic program structure. 

Hierarchical Non 1 i near t1app j ng 

Cluster Analysis 
--

[Nun;, i 
clust 

erarchical 

cr analysis --
Reordering 

~ Raw 

of 

Data ~1a t r j x 

Figure 3.1 

Data 

An{Jlysis 

Can f j 9 u r Cl t ion 

modific{Jtions 
r--- I 

Pr i nc i pa 1 

Coordinates 

Analysis 

Diagrammatic st.ructure of MAGIC 

stored 

so I uti 

I 
iprocru 

lof 2-D 

J 
j 

stcs anaysisl 

so 1 u t i cns_J 
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Four main types of analysis are used hierarchic and 

nonhierarchic (Euclidean) cluster analysis, a nonlinear 

mapping ordination and principal coordinates analysis. 

A fifth type of analysis enables the reordering of the 

data matrix to cluster highly associated activities. 

The output from the hierarchic clust:er analysis is 

displayed in t.he fann of a tree-diagram or dendrogram, 

whilst the nonhierarchical clustering, principal 

coordinates analysis and nonlinear mapplng are all 

arranged to produce bubble diagrams. 

3.3 COMPUThTIONAL ACCURACY 

computational accuracy ]_5 an importRnt topic which is 

often ignored it should be sclfcvident that. a 

computationul algo~ithm should not di3tort the data. 

Although t:he old chestnut II garbage in, garbage out" if; 

well known, what is less often realised is that good 

data may be transformed into garbage by an inefficient 

or unstable algoritl@. """!flen IOul tivario.te analysis 
. 
1S 

being used to explore data sets, as in MAGIC, it 
. 
lS 

obviously essential that any pat~erns emergjng from the 

data should be a reflection of the structure of the data 

rather than the result of badly designed computational 

methods. 
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Many computing procedures still 
. 
J.n common use were 

developed for hand calculati.on or desk calculators. 

These tend to emphasise ease of computational procedure 

over accuracy and often require the user to round 

intermediate results in an intelligent manner. The same 

algorithm when coded for a digital computer may well 

produce wildly inaccurate results. Lo ng 1 ey ( 196 7 ) f 

Wampler (1970) , and Youngs and Cramer (1971) discuss 

this point in relation to computer programs fo}:- multiple 

regression analysis (which provides a good example, 

requiring many summations and inversions of matrices) 

and their results show that even widely used "packages" 

do not always employ reliable algo!""ithms. 

Pennington (1970) and Dorn and McCracken (1972) develop 

the numerical analysis problems further. They define 

tl!I'"\:'e main types of error, arising from inaccuracy 
. 1n 

data preparation, errors of machine rep~esentation of 

floel·Ling point numbers, and arithmetical errors. These 

could be generalised as physical, computational and 

mathematical errors. 

Errors in da~a preparation are almost inevitable and 

ar f 1 C~lecks are made 1n MAGIC on all input data. c. e u. I 
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Errors of representation and ari thrnetic are rather more 

serious as they cannot be observed. Particular 

attention has therefore been paid to the machine 

implementation of the various analytical techniques and 

the performance of constituent parts carefully checked, 

both by hand and by reference to standard test problems 

from Gregory and Karney (1969), Malcolm (1912) and 

George (1975). 

3.4 THE PROGRAM 

All data to be used in the analysis should be prepaL"ed 

in advance and stored in a diskfile. The data files 

should be constructed as follows: 

1. Number of rows and columns of data (NR, NC). 

Maximum NR*NC is about 10000 but depends on the analysjs 

selected. Online data checks ensure program limits are 

not exceeded. 

2. The type of data - distance matrix (1) or otherwise 

( 0) • 

3. The numbers of different variables of each type, in 

the order continuous, multistate (if any), binary (if 

any) . 

4. Job title - maximum of 60 characters. Thi S lS 



GENERAL srrRUCTURE OF HAGle Page 3-30 

printed ~s a heading on all graphical output. 

5. The area requirements associated with each activity. 

If no areas are available, or are not appropriate to the 

analysis being undertaken write 0 (zero). 

6. The nmnes of the activities. If no names or 

descriptors are required write NONE. 

7. The form of the association or activity d2.ta matrix. 

1 if full matrix 

2 if upper triangular matrix (including diagonal) 

3 if lower triangular mat.rix (including diagonal) 

8. The data in the form specified in 7. 

If the data . 
lS a.n ordinary dissimilarity matrix the 

interpoint dis1:ances should be entered. That is small 

numbers imply a requirement to be close together. If 

the analysis is to be carried out on observed data (say 

number of trips bet\vee:1 rooms) where a large number 

implies a requirement to be close together then this 

data should be modified in some suitable way (say (nm~x 

+ 1) - n) for entry into the data file. 
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If mixed data is being used it should be ordered by 

variable type as follows: 

1 continuous (quantitative variables) 

2 multistate variables (if any) 

3 binary variables (if any) 

Figure 3.2 shows examples of data files 

Figure 3.2 

mATA 
9,,9 
1 
9,e,,0 
TEST DATA FILE 
10. 
20. 
33. 
40. 
53. 
60. 
?e. 
83. 
99. 

Data Files. File FF (on the left) is used in the following 

examples. Unlike TDATA it does not contain details of 

areas or activity names. 
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The program is run interactively. The first display is 

a title page. To continue press the return key. A menu 

showing the available analysis routines is then 

displayed. The menu consists of 8 items as follows: 

INPUT 

EDIT 

CLUS 

HCLUS 

NLMAP 

PCOORD 

ROWCOL 

FINISH 

INPUT enables the specification of the prepared data 

file, and should be selected before any analysis is 

attempted. 

EDIT enables selections to be made from the input data 

file for seperate analysis, and also enables rows and 

columns to be interchanged. 

CLUS enters the Euclidean cluster analysis section. 

HCLUS enters the hierarchical cluster analysis section. 

NLMAP enters the nonlinear mapping section. 
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PCOORD enters the principal coordinates mapping section. 

ROWCOL enters the row/column clustering by reordering 

section. 

FINISH provides for an orderly exit from the program. 

MAGIC 

A prograa for architact~ral anat~giS u5ing 
Multivariate Ana\ysi~ wlth Graphlcat Interaction by Computer 

ABACUS PROGRAM. VERSION 1.2, MAV 1980 

,Copyright Alan Bridges, University of Strathctyde 

INPUT FILE NA~E > FF 

Figul'e 3. 3 

Title page and master menu 

P1AGIC 

INPU-r 
EDIT 
CLUS 
Hel.L'S 
NLr:AP 
PCOORD 
ROWCOL 
FINISH 
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3.4.1 CLUS (Euclidean Cl.uster Analysis) 

On entering this section the user is requested to 

specify an initial and terminal nwnber of clusters 

required. 'rhe screen is then automatically erased and 

the first bubble diagram display is drawn. 'I'his either 

shov.'s the da.t.a segregated into the requested number of 

clusters, or into a smaller number of clusters which 

represent the maximum number of discrete clusters 

identifiable in the data. Cluster membership is shown 

in tabular form and the bubble diagram is derived from a 

nonlinear mapping of the matrix of cluster centre to 

centre distances. The size of each bubble 1S scaled 

according to the average point to centre dist~nce of 

that particular cluster. 

Pref;sing the return key restarts the progr2Hl and the 

next display shows the clustering with (n-l) clusters (n 

being the number of clusters sho\\1J1 in the previous 

display) . The number of clusters is successively 

reduced until the requested terminal number of clusters 

. 
1S reached. After display of this configuraLion 

pressing the return key exits this section of the 

program and returns to the master menu. 



GENERAL STRUCTURE OF HAGlC Page 3-35 

POISON 
RELAT I i)tJ~~H J P U J TH (' GF:(lUF'S 

Cl J _~:,l ERS t'1(f:~C~O HT THI':; I TERAT I Ot·~ ; 1 At·~[t 6 
C"LII::;lEP ('1 C "i~'F~"~ L I ___ , __ 

1 4 S 10 1 1 13 
2 23 
3 8 12 13 t 1':.-,,,-' 24 
4 6 17 22 
5 2 14 16 18 21 
6 9 25 
7 1 3 7 20 

6) 0 

0 0 
0) 

0) 

0 

Figure 3.4 

Euclidean Cluster Analysis. Output showing clustering 

into seven groups. 
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3.4.2 HCLUS (Hierarchical Clunter Analysis) 

On entering this section a table of available clusterinq 

strategies is displayed as fo1lo\'1s: 

1. NEAREST NEIGHBOUR 

2. FURTHEST NEIGHBOUR 

3. GROUP AVERAGE 

4. CENTROID 

5. MEDI1\.N 

6. INCREMENTAL SUM OF SQUARES 

7. SIMPLE AVERAGE 

8. FLEXIBLE STRA'I'EGY 

Typing the appropriate number then selects the required 

clustering strategy. If the Flexible Strategy 18 

request.ed then a "Beta coefficient" must be inpu-t. 

Using this coefficient the characteristics of the 

clustering strategy can be made to range from 

space-dilating (~= -1) to space-contracting (~= 1). 

The page . 
lS then erased and the pairing sequence 

displayed. The accuracy of fit measure shown is an 

adaptation of the cophenetic correlation coefficient. 
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Pressing the return key erases the page and a dendrogram 

representation of the pairing sequence is drawn. To 

continue press the return key again. If a further 

analysis is requested the range of strategies is 

displayed again. If no alternative clusterings are 

required the program returns to the master menu. 

-, ..... ' ....... _ .. ,-:,. 

HIERARCHIC~L CLUSTER At~AL\4S1S 

WHICH CLUSTERING STRA1EGY [10 YOU ~nSH TO USE? 

1 - NEAREST NEIGHBOUR 
2 - FURTHEST NEIGHBOUR 
3 -- GROUP AVERAGE 
4 - CENTROID 
5 - ~1ED I At-{ 
6 !tiCREr'lENTAL SUM (IF SQUARE.S 
7 -- 5 I MPLE AVERAGE 
8 - FLEXIBLE SlRATEGY 

- Figure 3. 5 

Hierarchical Cluster Analysis options 
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GROllP AlJEF~~GE CLUSTEr.:H~ STF:ATEG)' 

t:k"'1 R I L.I'- \.':.- .-.' Ir- tJ-f'E r rot Pi'.:! ·A:::..t.:..:Ut:.. ..... 

I TEf'1 If'IH'-' ..... _I .::- ITEf1 f~T DISTAt·KE 
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7. 74C' .J ....... _1 
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~ 25 .., ""'4"" .' .... '. " .::. 

12 15 4 ~14 -ol1 

• ~ '-0
1 

6 ,', 4.41::: c· 
4 14 4 4q-::' 
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6 ,. ... 4 

t:- C", no"' 0 •• _ I 
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6 12 C" .., .:. c-

-.' ... L. ... ' 

6 -:-J';" -- ~ 1'-"~ _'. C,_, 

9 
.-..... 
~.,:.. ~ -::'11 ( .... 

...... 4 7,519 L 

1 Q .;a 1 74 -- .. '. .. .. 
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1 ? 21 .409 ~ 

FIT IC .J 67.% ACCURATE 

Figure 3.6 

Hierarchical Cluster Analysis - Pairing Sequence 
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3.11.3 NLMAP (Nonlinear Happing Analysis) 

This sr::ction is controlled by its own menu as follows: 

DRAW 

MOVE 

LRFLIP 

TBFLIP 

RorrArrE 

ASCALE 

COM PAR 

NAHES 

SAVE 

UNSP~VE 

INICON 

/DRAvl 

EXIT 

BDRAW draws the bubble diagram representation. Bubble 

size is relative to area (if specified In the data 

file). 

MOVE enables bubbles to be moved interactively using ~he 

crossv/ire Cu).-sor. After selecting MOVE the cursor lS 

displayed. To move a bubble first point to the bubble 

and press any key, then to the location of the new 

bubble centre and press any key. 

LRFLIP flips the display from left to right 
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TBFLIP flips the display from top to bottom 

ROTATE requests an angle of rotation, erases the display 

and redraws at the required orientation. 

ASCALE alters the scale of the display. 

COMPAR enables the 

diagram '\IIli th a 

comparison 

previously 

of the current bubble 

stored diagram (or the 

comparison of two stored diagrams). 

NAMES displays bubble names. 

SAVE writes the current bubble configuration to file for 

future reference. 

UNSAVE retrieves a previously stored configuration. 

INICON performs a nonlinear mapping with the currently 

displayed configuration as the initial configuration of 

the calculation. In conj unction wi th B~10VE this command 

can check against solutions being found in local rather 

than global minima. 

/DRAW erases and redraws the current display. Used for 

tidying up after BMOVE. 

EXIT returns to the naster menu. 
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Figure 3.8 

Nonlinear Mapping Analysis 
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Figure 3.9 

Procrustes Comparison 
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3.4.4 PCOORD (Principal Coordinates Mapping Analysis) 

This analysis allows output of the results in two- or 

three-dimensional mappings. The two dimensional display 

is comparable with the nonlinear mapping. The thrf.:!e 

dimensional display is presented in the form of a plan 

and two elevations. 

Figure 3.10 

2-D Principal Coordinates Mapping 
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3.4.5 ROWCOL (Reordering Of Rows And Columns) 

Reorders rows and columns of the data matrix to cluster 

large numbers around the main diagonal. 

ORIGINAl [lATA 
SECTION 1 

/ t 2 3 4 r:. 
1 48.00 1 . (1(1 ~ 00 1 .0(1 '3.00 I 

2 16 00 1.00 : •. 013 2.00 2.00 
3 48.00 1.00 6 . ~3(1 1 . (u3 3. (fl~ 
4 24.00 1 . (n) ,6.00 1 ('1(1 3. O~1 
5 2S 0'3 1 .eo 2.0(1 1 . (1(1 .... (-':". '1I-j 
6 36.00 1 .0(1 5. (1(1 1 . (10 5.l)0 
7 48.00 2.(1(1 5 (if1 "7 ')0 3.00 ,-' . e 36. ('"'3 2.(10 4.0(1 5. (n) 3.00 
9 B'~. (Y"1 2.(1(1 2.(10 1 . ~30 3.00 .... 14.. __ 

10 24.130 2.00 1 .00 1 . (1(1 3.af) 
11 26.00 .:. 

.:... 00 1 .0(1 1 .0€1 3.00 
12 39.00 2.00 6.00 1 . (to .3.0(f 
13 37.(~ 2.00 3.0(1 2. (18 5.'10 
14 20. (it' 2 . (:10 6.(1) 1 . (10 3.00 
15 40.00 2.(H) 7.130 5.00 3.0(1 
16 21 . (10 2.0(1 .., 

.00 2 .(u~ 1 . t1(1 I 

17 '74 £4n ..... . . - 1 . (11-) 3.00 1 .00 3.00 
18 20.0(1 2. (1~) 3.00 2.00 2. (-1(1 
19 25.0C:.l -:. (,Cl 

~. - 5.(n) 3.00 3.(1(1 
28 45.0{:i 1 .0(1 6. £1(1 1 .00 3.00 
21 ",:,'-:0 .... ,_. (lA.j 1 . (1(1 5.00 ::.. (1(1 2 . (1(1 
,-.,... .. 
~.::' 33 l:~;J 2.0f1 7.00 1.00 3.00 
?~ .... ~ 60 ~1 2. (uj 6. ~tO 1 .00 3.00 
24 39.01S1 1 .00 1 .00 3.00 3 . (1~j 
'-·r 
C • .J 55. ~j~, 1.00 4.00 1 .0(1 3. (1'3 

.' 

Figul"e 3.12 

Original Data Matrix 
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POISON 
MATRIX AFTER REORDERING SECTION 1 

2 5 1 "'1 ot '.' 
2 1 .00 2.(~ 1 ~ (it:, 5. (it) 2. (10 J. _ 

14 2.00 3. (1!;\ 20. (u3 G.00 1.00 
21 1 .00 2.00 22. (1(1 I:" eo::, 3. €1(1 ... f. . ,,_ 

4 1.00 3.00 24. (Uj 6.00 1.00 
19 2.00 3. (10 25.0(1 5.00 3.00 
22 Z.00 3.(10 7- -:1 7. t10 1 '30 'J~' • l.1t e 2.00 3.00 36.'3(1 4 ~r- 5.0('; . ti.1 
24 1.00 3.(1(1 39.(10 1.£10 3.08 
15 2.00 3.00 40.00 7.ea3 5.(u3 

7 . 2.00 3.00 43 . lj0 5.00 3.013 
9 2.013 3.00 52.30 2. (113 1 . (](t 

23 2.(,0 - 0-~" ~j 6~1. 00 6.00 1 . 0~j 
2S 1.00 3.00 55.00 4.00 1.00 

1 1.0e :3 .€10 48.00 7. '36 1 .00 
3 1.00 3.{)0 48.00 6. ~30 1 .00 

20 1 .00 3.00 4S.00 6 . ('~1 1 .0(1 
12 2.00 3.09 39. (1(1 6.00 1 .00 
13 2.00 5.00 37.00 3.0(1 2.l30 

6 1 . 00 5.00 36.00 5 .0(1 1 .00 
ll' 1 . (to 3. (il) 34.00 3.00 1.00 
11 2.00 3.00 26.0(1 1 . O~j 1 .0(1 
5 1.00 3.00 25.0(1 -::' RVi ..... - - 1 . 00 

10 2.lK1 3.(10 24.00 1.00 1 . ("3 
16 2.130 1 . (-10 21 . fU~1 .., e ~ 

i . H.:,1 2.(10 
18 ::.0!3 2.(10 20.00 3 . (1~t 2.(1(1 

Figure 3.13 

Reordered Data Matrix 



4.1 INTRODUCTION 

CHAPTER 4 

CLASSIFICATION 

48 

Classification is essentially the identification of 

groups of similar activities from the set of activities 

being studied. Two approaches to classification are 

possible the identification of groupings, termed 

classification proper, and the allocation of activities 

to existing groups, termed discrimination. As MAGIC is 

used almost exclusively in an exploratory data analysis 

form discrimination techniques are not of relevance 

here. 

Classification may be further subdivided into different 

classificatory procedures, which may include the 

simplification of data by ordination. Clustering 

methods tend to emphasise discontinuities, whereas 

ordj.nation methods display the continuity of the data. 

Prior to ordination the activities being considered are 
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assigned to positions in a multidimensional space 

defined by their properties or some measure of their 

dissimilarity. Efforts are then made to express the 

relationships between the activities in fewer dimensions 

than those originally considered. Ordination . 
lS, 

however, here considered seperately from classification 

and dealt with in detail in chapter 7. 

4.2 TYPES OF CLASSIFICATION 

Many classificat.ion methods exist, and a "classification 

of classifications" is shown in figure 4.1. 

Classificatory P£ocedure 

Exclusive 
,--_._ _---<-I_ 
I 

I 
I 

Nonexclusive 

Extrjnsic Intrinsic 
I. 

I 
Hiera.rchica.l Nonhierarchica1 

I 

Divisive Agglomerative 

I 
Monot.hetic Polythetic 

Serial optimisation 
of group structure 

Figure 4.1 

Nonserial optimisation 
of group structure 

Relationship between classificatory procedures 
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The first differentiating feature is whether the method 

is exclusive or nonexclusive in its treatment of 

individual activities. In an exclusive (or 

nonoverlapping) classification a given element can occur 

in one and only one subset; in the nonexclusive (or 

overlapping) case the same element may occur in more 

than one subset. 

are of use in 

retrieval" systems 

Nonexclusive classification methods 

library 

(a book 

catalogues 

may 

and information 

different subject headings) or 

appear under several 

medical statistics (a 

single patient may suffer from more than one disease), 

but in attempting to simplify architectural data the 

exclusive methods &re preferred. The purpose of the 

classi fic3.tion sections in M..AGIC l[; i.:o sepe:La"te the 

activities. 

continuities 

The ordination techniques look at the 

and overlaps in the data, and so 

nonexclusive classifications will not be consider.ed 

further. 

The exclusive classifications may t.hemselves be 

technically divided into extrinsic and intrinsic 

methods. Formally I in-trinsic classifications are used 

to derive groups solely from their attributes. 

Extrinsic methods attempt to form cluEterings on (n-l) 

attributes to "explain" the nth attribute. H]\GIC only 
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considers intrinsic clabsifications. 

Intrinsic classifications may be hierarchical or 

nonhierarchical. In a nonhierarchical classification 

groups are selected such that each is individually as 

homogeneous as possible. In the hierarchical case 

groups are considered in pairs, as possible candidates 

for fusion; and the criterion for fusion is that the 

decrease in homogeneity on fusion shall be as small as 

possible. ~lis is usually formally expressed by saying 

the l10nhierarchical classification optimises the 

internal properties of subsets: a hierarchical 

classification optimises a route between individuals and 

the complete population. No such route between groups 

and their constituent individuals (enabling examination 

of the group infrastructure), or between groups and the 

complete population is provided by nonhierarchical 

clustering. However, there are several applications in 

which homogenci"ty of groups is of prime importance, a.nd 

the nonhierarchicaJ. ~trategy, as well as the more 

developed (computationally) hierarchical techniques, is 

included in MAGIC. Hierarchical, nonoverlapping 

classification produces groups, or clusters, whose 

relationships to one another are readily expressed in 

two-dimensions, generally in the form of a dendrogram. 



CLA.SSIFICATION 

The clusters arise as a consequence of the methodology 

adopted to establish the hierarchy and do not 

necessarily exhibit the same homogeneity. In contrast 

nonhierarchical methods can produce clusters of dGfincd 

heterogeneity but do not link them together in any 

systematic framework. ~~e nonhierarchical techniques 

are relatively undeveloped and MAGIC introduces a Major 

advance in, firstly, cycling through a number of 

i ·tera tions with successively fewer clusters, and 

secondly, mapping the cluster relationships into a 

two--dimensional display. Both of these techniques 

introduce some method of interpreting relationships in a 

systematic framework. 

Hierarchical methods may be further divided 

agglomerative 

agglomera.tive 

or divisive 

classification 

techniques. In 

the individuals 

into 

an 

are 

progressively fused into subsets of increasing Slze 

until the entire population is in a single set; in a 

divisive classification the whole population of element.s 

is progressively subdivided until an acceptable degree 

of subdivision 1S attained. Agglomerative techniques 

are computationally much the more efficient and the 

hierarchical 

agglomerative. 

strategies used in ~1AGIC are all 
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Finally, hierarchical techniques may be monothetic or 

polythetic. In a rnonothetic classification clustering 

is effected by reference to a single attribute of 

maximal information-content. In the polythetic case all 

attributes are of equal importance. 

strategies are always polythetic. 

4.3 TYPES OF DATA 

Agglomerat.ive 

The standard data structure used in lvlAGIC assumes a 

number of activities (in statistical terminology 

1\ operational taxonomic units 1\) on each of which a numbel-

of variables (properties or characteristics) 18 

measured. The variables may, in principle, take values 

in any space, but in practice there are three types of 

variables of relevance to architectural data, and these 

may be classified according to the nature of their 

underlying scale: 

(i) Binary - the taking of one of two contrasting 

stat.es, such as the presence or absence of a particular 

characteristic. 

(ii) fv1 u 1 tis tat e determined by an ordered 

cl~ssification in a hierarchy of contrasting for~s \~ich 

encompass the total variation in the range of entities 
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under study. An example of this "ordinal" scale would 

be the grouping of activities according to whether they 

required full, partial or no blackout facilities. 

(iii) Continuous - measures on a continuous scale, as 

with attributes such as temperature, distance, etc. 

A given set of data may be mixed (contain variables of 

different types), it may be heterogeneous (variables of 

the same type but of different scales, such as 

temperature and distance), or it may be homogeneous 

(variables measured on the same scale, such as a simple 

d ista.nce ma·trix). There are a number of techniques for 

transforming variables of one type to anothe}, or 

converting all variables to a standard scale, but all 

these methods rely on measures of similarity or 

distance, for, in order to cluster variables it 1S 

necessary to have some numerical similarity measurements 

to characterise the relationships among the variables. 

The conventional approach to this requirement is to 

compute a measure of association for every pairwise 

combination of variables; in a problem with n variables 

this results 1n n/2(n-l) different . pa1rs. The next 

section considers the range of different measures of 

association among variables. 
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4.4 MEASURES OF SIMILARITY Al~D DIFFERENCE 

Similarity and difference are mu-tually dependent 

concepts and, in much of the classical statistical 

literature, the former term applies to both. The 

majority of clustering techniques begin with the 

calculation of a matrix of similarities or differences 

between activities, and, 

needed of the possible 

quantities. 

therefore I 

ways of 

consideration is 

defining these 

A wide variety of interentity similarity measures have 

been proposed but relatively few are in current use. 

The restriction in number has resulted from several 

causes. Many of the neglected indices are mere variants 

of others and have similar properties; others are highly 

specialised; and others display unfavourable 

mathematical qualities. 

Some of the measures discussed below estimate 

dissimilarity rather than similarity, but since the two 

are complimentary concepts this need not cause any 

confusion. The reason for st.ressi~jg dissimilari ty in 

certain situations is that such measures are readily 
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envisaged as IIdistances apart". 

4.4.1 Coefficients Of Similarity 

Similarity coefficients have a long history and, in the 

older literature, were usually known as association or 

correlation coefficients. A similarity coefficient 

measures the relationship between two entities, given 

the values of a set of variates common to both. With 

most of the coefficients values range from zero (no 

similarity) to unity (complete similarity). 

A great number of similarity coefficients are known, and 

the most common have been listed and defined by Goodman 

and Kruskal (1954,1959), Sokal and Sneath (1963), and 

Sneath and Sokal (1973). Many of the coefficients were 

developed to accommodate particular forms of data, as 

for example, those 

allow for particular 

restricted to binary data. Others 

distributions of the properties 

measured, or minimise the influence of large or small 

values in the data. In some instances each of these 

considerations may influence the choice of index, but it 

is emphasised that each stress a particular property of 

the data and that all indices are not interchangeable. 

Ind~ed they do not all necessarily yield similar results 
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when the entities whose similarities they measure are 

clustered. The various main measures applying to each 

data type are briefly discussed below. 

4.4.2 Similarity Measures Applying To Binary Data 

To facilitate the comparison of the coefficients for 

binary data a standard nomenclature will be adopted. 

Consider a single binary attribute with outcomes of 1 or 

O. rrhere are only four outcomes possible when comparing 

two activities. These are that both activities record 

the attribute in the first state (1,1) or the 

alternative state (0,0), or that one activity records 

one state and the other records the alternative j i.e. 

(0 I 1), (1, 0) . For a number of activities the summa-ted 

values of each of the four possibilities may be 

calculated. The values may be summarised in a two-way 

association table (figure 4.2). 
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Activity j 

1 0 

1 (1/ 1 ) (1, 0) 
a b a+b 

0 (0, 1 ) (0,0) 
Activity i c d c+d 

a+c b+d n (n=a+b+c+d) 

Figure 4.2 

Association table for binary data 

Here t_he letters a, b, c, d refer to the summated number of 

attributes. That . 
lS, a represents the number of 

attributes in one state (1,1) shared by both activities; 

b is the number of o_ttributes for which the joint score 

is (1,0), the number possessed by the first activity b~t 

not the second; c the number possessed by the second but 

not the first (0,1); and d the number possessed by both 

activities in the alternative state (0,0). The SUfi, n = 

a+b+c+d , is the total number of attributes for which 

the entities have been compared. 

The staLus of d in figure 4.2 lS ambiguous. In most 

circumstances it would seem ridiculous to r-egard two 

activities as similar largely on the basis of them both 
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lacking something. In certain other circumS"l_anCes it 

would seem improper to neglect conjoint absences when 

est.imating similarity. In order to resolve these 

difficulties similarity coefficients with and without 

the inclusion of d have been designed and each group is 

considered below. In the similarity measure finally' 

included in HAGlC it is possible to include or discount 

d, although the default built into the program discounts 

it. 

Table 4.3 provides a summary of the various measures 

along wi th names traditionally associated vli th them. 

Every mechanically derived combination 18 included ln 

the table even though five possibilities appear to be 

worthless. The fourteen measures are discussed 

individually below. Except w~'1ere noted other v:i se the 

range assumed by each measure is (0 to 1). 
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(a) Equal weighting of matches l mismatches 

0-0 matches in numerator 
0-0 matches ---
in denominator Excluded Included 

Included 1 Russell and Rao 2 Simple matching 

a a a+d - -a+b+c+d n a+b+c+d 

Excluded 3 Jaccard 4 Nonsense 

a a+d --a+b+c a+b+c 

(b) Double weight for matched pairs 

0-0 matches in numerator 
0--0 matches 
·in denominator 

Included 

Excluded 

Figure 4.3 (i) 

5 

7 

Excluded 

Not recommended 

2a 
2 (a+d)+b+c 

Dice 

2a 
2a+b+c 

Matching coefficients 

Included 

6 Sokal and 

2 (a+QL_ 
2(a+d)+b+c 

8 Nonsense 

2(a+d) 
2a+b+c 

a+d 
n 

.--

Sneath 
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(c) Double weight for unmatched pairs 

0-0 matches in numer2tor 
0-0 matches 
in denominator Excluded Included 

Included 9 Not recommended 10 Rogers-Tanimoto 

Excluded 

a 
a+d+2(b+c) 

a+d 
a+d+2(b+c) 

11 Sokal and Sneath 12 Nonsense 

a a+d 
a+2(b+c) a+2(b+c) 

(d) Matched pairs excluded from denominator 
._-------

Figure 4.3 (ii) 

0-0 matches lD numerat..or 

Excluded 

13 Kulczynski 

a 
b+c 

Included 

14 Unnamed 

a+d 
b+c 

t-1atching coefficients (continued) 

Coefficient 1. The value of this measure 
. 
lS the 

probability that a randomly chosen data unit will score 

1 on both variables. It excludes 0-0 matches as 

irrelevant in counting the number of times the two 

variables mat..ch (the numerator) but does count 0-0 

matches in determining the number of possibilities for a 

match (the denominator). 
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Coefficient 2. The value of this measure . 
1S the 

probability of a randomly chosen dat2 unit achieving the 

same score on both variables. The 0-0 matches are given 

full weight. 

Coefficient 3. The value of this measure is the 

conditional probability that a randomly chosen data unit 

will score 1 on both variables, given that data units 

with 0-0 matches are discarded first. The 0-0 matches 

are treated as being totally irrelevant. 

Coefficients 4, 8 and 12. These measures treat the 0-0 

matches as relevant in the numerator but exclude such 

matches in the denominator. Since the numerator usually 

can be viewed as the number of relevant possibilities 

fulfilled, it . 
18 nonsense to include 1n t.he numerator 

that which . 
1S specifically excluded from the 

denorninator. 

Coeffjcients 5 and 9. These two measures are analogous 

to coefficient 1 since they exclude 0-0 measures in the 

numerator whilst including them in the denominator. 

They have not appeared in the statistical literature and 

no obvious interpretation of them appears possible. 

However they do not have such obvious faults as 

coefficients 4,8, and 12 which might prompt their 
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rejection. 

Coefficient 6. Sokal and Sneath (1963) include this 

measure 1n their list without attribution. It may be 

viewed as an extension of coefficient 2 such that 

matched pairs are given double weight. The double 

weighting seems to preclude any possibility for a 

probabilistic interpretation. 

Coefficient 7. This measure excludes 0-0 matches 

entirely whilst double weighting 1-1 matches. It may be 

viewed as an extension of coefficient 3, though the 

probabilistic interpretation is lost. Hall (1969, p 

322) offers an alternative interpretation: 

However, for 0,1 mismatches the zero is just as 
trivial as in the 0,0 case. Hismatches should 
then lie about midway along the scale of 
significance between the 0,0 and 1,1 cases 
respectively. 'rlle number of mismatches in the 
coefficient should by this reasoning be multiplied 
by O. 5. 

Clearing the 0.5 fraction then results in double weight 

for the 1-1 matches. 

Coefficient 10. In the context of association among 

variables, this coefficient is best viewed as an 

extension of mea~ure number 2 ba~ed on double weighting 

of unmatched pairs. 
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Coefficient 13. This measure is the ratio of matches to 

mismatches with 0-0 matches excluded. The range of this 

coefficient is a to 00. 

Coefficient 14. This measure is the r:atio of matches to 

mismatches including 0-0 matches. 

Coefficients 3, 7 and 11 are all monotonic to each 

other. To illustrate this suppose there are two tables 

denoted by I and 2 and that measure 7 gives the res\~l t 

Since the table entries are all nonnegative, the 

frac~ions may be cleared to give 

Subtracting 2a,a2 from both sides and dividing by 2 

gives 

which implies 

or monotonicity with coefficient 3. Coefficients 2, 6 

und 10 may similarly be shown to be monotonic to each 

other. This result 
. 
18 important because when uSlng 

monotoriically invariant clustering techniques (such as 

nearest neiahbour) measures 3, 7 and 11 are equivalent 
-' 
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to each other; measures 2, al1d 10 ore like\\'ise 

equivalent. 

Among the matching measures, numbers 1, 2 and 3 possess 

reasonably useful probabilistic interpretations. The~e 

are several additional measures with probabi.listic 

foundations. 

The quantity a/(a+b) is the c:onditional probG.bility that 

a randomly chosen data unit scores 1 on variable B given 

that it scored 1 on variable A. Likewise the quantity 

a/(a+c) is the conditional probability of scoring a I on 

variable A given that a I was scored on variable B. 

Assuming variable A . 
1S estimated half the time and 

variable B the other half, the symmetric measure: 

is obtained. This is the conditional probability of 

scoring a 1 on one variable given a score of 1 on the 

other. Sakal and Sneath (1963, p130) attribute this 

measure to Kulczynski. 
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The final 2x2 measure is 

( a + d) - ( b+ c ) 
a+b+c+d 

Paoe 4-(,6 
..J 

which is the probability that a randomly chosen data 

unit will score the same on both variables minus the 

probability it will score differently on the two 

variables. Since b+c = n-(a+d) this measure may also be 

written as 

2(a+d) 
a+b+c+d - 1 

~~ich is related monotonically to measures 2, 6 and 10 

of the matching coefficients. Sokal and Sneath (1963) 

attribute this measure to Hamann. Its range is -1 to 

+1. 

4.4.3 Similarity Measures Applying To Multistate Vari&b1es 

Multistate variables may be effectively transformed into 

a serles of binary variables (see section 4.4.2). The 

techniques applicable to binary data then all apply to 

multistate data. A further range of measures based on 

probability theory are also possible. 

It is possible to draw up a contingency table for 

multistate data (figure 4.4) 
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Activity 1 1 
2 
3 
• 
• 

p 

Totals 

Figure 4.4 

Activity 

Class 
1 2 

nil n, 2-

D;t.1 n 2.2 

n 31 n 32-

n f'2 

j 

3 

nl3 
n ;L~ • 
n 33 • 

np.} 

General form of contingency table for 
111ul tistate data 

q Totals 

nlet- ~nb ... 
n 2" In Lx 

n 3q, ~n 3x. 

• 
• 

n R ~n px. 

. lnxq, 

An n·· entry in the table . the number of activities fJ 1S 

fa.lling in the ith class of activity 1, and the jth 

class of activity j . If all entries and marginal totals 

~re divided by the total number of data units the table 

entries become frequencies (f ij ) . It is then possibJe 

to apply the chi-square statistic, comparing -(:'he 

observed value in cell ij (Oij ) with the expected value 

under an hypothesis of independence eij -- n i;c.nxl . 

nx.x. 

This is a traditional measure of association, but is of 

dubious value. The range of -x.: increases without bound 

as the number of data units increases. A partial remedy 

lS found in 
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which is knov.TI as the mean-square contingency. However 

this quantity . 
1S itself dependent on the size of the 

table. I ~~ n an attempt to norm ~ to the conventional 

range of 0 to 1 a number of measures have been 

suggested. 

Sokal and Sneath (1963) give one example . uSlng the 

geometric mean of (p-l) and (q-l) as a norming factor to 

give the measure 

T = [ x.2.. / n xx. I J Y2. 
[ ( P - I) (9- - lIT V2. . 

and a further possibility is the use of the maximum 

value of ¢7. as a norming factor to glve 

Pearson (1926) suggested another measure based on ~7. 

p 

This measure is known as the coefficient of contingency. 

None of these measures are really of use as measures of 

si.milarity. Goodman and Kruskal (1954, p740) pinpoint 

the major problem: 

One difficulty with the use of trad~tiona]. 
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measures, or any of the measures that are 
not given operational interpretation is 
that it is difficult to compare meaningfully 
their values for two cross classifications. 

In cluster analysis meaningful comparisons among all 

pairwise combinations of variables are essential. 

4.4.4 Similarity Measures Applying To Continuous Variables 

The traditional measure of similarity most commonly used 

for continuous data is the product-moment correlation 

coefficient (r). A simple symbolic expression of this 

coefficient is: 

r = ~(x-x) (y-'y)~~ 
(L:( x- x):2.. 1:.( y-y) 2. ) y~ 

where n is the number of activities, X, y, the mean 

values of the attributes in the activities, and x and y 

are the individual measurements of a given pair of 

attributes. 

Despite the relatively widespread use of r as a 

similarity measure (cf Sokal and Michener 1967, Boyce 

1969, Strauss et al 1973) a number of problems cast some 

doubt on its true value. In statistics the correlation 

coefficient is used to give a measure of the linear 

However relationship between a pair of variables. 

classification studies are carried out on a set of 
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objects described by various variables or on a set of 

variables describing various objects. If the 

correlation coefficient is used to compare two object.s 

it seems difficult in general to give any interpretation 

to a term like x which involves summing over the 

variables describing a single object. Furthermore it is 

not obvious whether two objects approximately satisfying 

such a linear relationship should necessarily be 

regarded as very similar to one another. Eades (1965) 

provides statistical evidence of its indeterminancy as 

well as its theoretical problems. 

The better measure is the use of EuclidEan distance as a 

dissimilarity measure. In essence this is the distance 

between two activities whose positions are determined 

with respect to their coordinates, these being defined 

by reference to a set of Cartesian axes. It is a 

dissimilarity measure which can be applied to both 

binary and continuous data. With respect to any given 

attribute the Euclidean distance (D) between two 

activities is Ixt-xzl where XI is the score for one 

activity and X2 that for the other. For n attributes 

D == (zJ x I - X 2. ):2.) Ji 

where Xl and xl. are successively the scores for the n 

attributes. 
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To ensure that attribute scores are additive it . 
15 

common practice to use D2. rather than D as the measure 

of dissimilarity. In certain cases however D2 on binary 

data is not fully metric in that it may fail to satisfy 

the "triangal inequality" (metrics are discussed further 

in 4.5.1). A further point to be observed involves the 

scale of the axes of x, and x~ in figure 4.5. 

k . 
J 

. 
1 

k 
. 
] 

X, 

Figure 4.5 

Euc 1 ;_dean dis tancc coef ficiC::I: t - cff ect of sC21e 
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The scale will obviously affect the distance between 

points, and, since scales of measurement are quite often 

arbitary some standardisation process is often adopted. 

The convention most commonly used is to give each 

variable equal weight by transforming observed values so 

that each variable has zero mean and unit variance: 

Z ij::: (x ij - x j ) / s j 

where z ij is the standard score , equivalent of x ij' the 

observed score of activity i on variable j, Xj 15 the 

mean value of observations on variable j, 

standard deviation of variable j. 

4.5 STRATEGIES FOR MIXED VARIABLE DATA SETS 

and Sj the 

It is rare in real-life situations to have attributes 

all of the same type; it is therefore imperative that 

some means of combining data with different attributes 

be available. Indeed, one of the major criticisms of 

much work in the field of early stage design analysis is 

the reliance on a single measure of cost or distance as 

the sole criterion of planning efficiency. The previous 

discussion includes no provision for measurlng 

association between variables of different types j much 

less the more difficult problem of obtaining a 

consistent measure across all pairwise combinations of 

variables in a mixed dat.a set. A variety of 
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difficulties surround this problem, b t th u . ere are a 

number of workable strategl.'es f d ~, '1' - or ea~l.ng Wl.tl mlxed 

variable types. 

4.5.1 Partitioning Of Variables 

Perhaps the most obvious approach is to partition the 

variables into types and confine the analysis to the 

dominant type. The question of which type is II dominant II 

is a matter of judgement and may depend on such factors 

as the number of variables of each type, the variables 

considered most important to the analysis, relevant 

and so on. In one way or another many 

statistical analyses are restricted to avoid the 

problems of heterogeneous data sets. Often the problem 

is formulated at the outset in terms of only one 

variable type. Up until the publication of Sokal and 

Sneath's classic text 
, 
l.n 1963 the majority of 

classificatory strategies were designed to operate on a 

single type of data, usually binary. 

A logical extension of this approach is to partition the 

variables into types and perform seperate independent 

analyses for each type. Gower (1971) has developed a 

techtlique applicable to binary, mu1tistate ond 
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continuous scales, and this is discussed in some detail 

in section 4.5.3. 

4.5.2 Conversion Of Variables 

Another possible solution is to transform a set of mixed 

variables into a new set of variables, all of a single 

type: but which variable type should be chosen? From a 

practical point of view, this choice may be determined 

by which variable type is most numerous in the data set 

and the relative effort required for each kind of 

conversion. However, the conversion of all data to 

binary variables is the most general.ly useful. 

Conversion to binary variables permits use of a wide 

array of association measures, many of \"rhich have 

probabilistic interpretations. Also, the use of binary 

variables may enable substantial compression of storage 

and increased computational efficiency. The problem 18 

how to dichotomise all the variables that are not 

already in binary form. For multistate variables the 

problem . 
1S a special case of interval to nominal 

conversion. For continuous variables it is a problem of 

fix in gad i v i ~; ion po i n t . 
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For example, consider a multistate variable with four 

categories; A, B, C, and D. If the analysis is to be 

carried out in terms of binary variables, 

seven alternative dichotomies: 

1. (A) (B,C,D) 

2. (B) (A,C,D) 

3 • (C) (A/B,D) 

4. (D) (A,B,C) 

5 . (A,B) (C,D) 

6. (A, C) (B,D) 

7 • (A, D) (B,C) 

there are 

In effect, a single variable is given a multidimensional 

representation. This, of course, 

growth in the size of the problem. 

causes considerable 

The conversion of continuous data to binary form is even 

less satisfactory. Any distribution may be arbitrarily 

divided into two sections, thereby being converted to a 

binary attribute. The disadvantage of this conversion 

may be seen by considering a normally distri'buted 

variable with the mean taken as the dividing line. In 

this case t'iJ10 entities differing only slightly from one 

another but placed on either side of the mean become 

equally dissimilar to a pair dra\Vl1 from the extremes of 

the range. Considered another way, all entities on 
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either side of the mean acquire identical binary scores. 

An alternative strategy for dealing with mixed variable 

data sets is to use a set of measures which are 

compatible with each other and collectively cover every 

pairwise combination of variables. This is extremely 

restrictive in practice. 

4.5.3 Gower's General Coefficient Of Similarity 

The problems of handling mixed data have been 

particularly studied by Goodall (1966), Lance and 

Williams (1967), Gower (1967), and Burr (1968). Gower's 

work, d~veloped in later publications (Gower 1971) is of 

particular interest and is the method adopted in HAGle 

for dealing with mixed data. 

To obtain his coefficient of similarity Gower defines 

similarity between two activities i and j as the average 

score taken over all the possible comparisons: 

lVhere S ijk is the score on variable k for activities i 

and j, and d ijk equals 1 when variable k can be compa.red 

for i and j, and 0 otherwise. When all comnariscns can 
.A-
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be made Ld ijk = n I the total number of variables. The 

scores, sijk' are assigned as follows: 

For binary variables the presence of that measure is 

denoted by -:- and its absence by Four different 

combinations may occur for two activities and the score 

and validity assigned to each combination is shovm in 

figure 4.6. 

Values of variable k 

activity . 
+ + 1 - -

activity j + - + -

S ijk 1 0 0 0 

j d ijk 1 1 1 0 

Figure 4.6 

Scores and validity of binary variable comparisons 

For multistate variables Sijk is set to 1 if the t_wo 

activities i and j agree in the kth variate and Sijk = 0 

if they differ. 

For continuous variables with values xI' x 2 ' 

on variate k for the total sample of n activities 

we set. 
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where Rk is the range of the variate k and may be the 

total range in the population or the range in the 

sample. vfuen xi == x j then S ij k - I, and when x i and X' J 

are at opposite ends of their range, Sijk is a minimum 

(0 when Rk is determined from the sample). ,,'lith 

intermediate values Sjjk is a positive fraction. 

Thus SG ranges between 0 and 1; a value of 1 meaning the 

two activities differ in no variables, whereas a value 

of 0 means they differ maximally over all the measures. 

A further important characteristic of this similarity 

measure is in the representation of the data as a set of 

points in space. With n activities the n x n matrix, S, 

can be formed \'lhose element, s ij' is the similari ty (as 

defined above) between activities i and j. A convenient 

representation of the n activities in Euclidean space 

can be obtained by taking the distance between the ith 

and jth activities as proportional to (2(1-Sij ) )y~. The 

coordinates of points with these distances are the 

elements of the latent vectors of S scaled so that their 

sums of squares equal the latent roots. Thus to obtain 

a real Euclidean representation it is sufficient for S 
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to be positive semi-definite. Gower (1971) presents a 

proof that S is always positive semi-definite. This 

important characteristic is crucial to the operation of 

the ordination techniques discussed in Chapter 7. 

4.6 MEASURES OF ASSOCIATION BETWEEN ACTIVITIES 

In a simple problem with only two variables it is 

possible to plot the activities in two dimensions (as in 

figure 4.7). 

• 

. . 

• . . 
• 

Figure 4.7 

Two-dimensional clustering 

The distances between points can be assessed visually 

and clusters identified by inspection. Visual 
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assessment of distances . 
1S, however, impossible in 

spaces of more than three dimensions Rnd must give way 

to computational methods. 

4.6.1 Metric Measures For Continuous Variables 

The most mathematically sophisticated of the distance 

functions are those called metrics. This class of 

function is of general mathematical interest and 

consequently has received considerable study. This 

discussion will present only those results most directly 

applicable in cluster analysis. 

Let E be a symbolic representation for a measurement 

space and let X, Y, and Z be any three points in E. 

Then a distance function D is a metric if and only if it 

satisfies the following conditions: 

D(X,Y) - 0 if and only if X-Y 

D(X,Y) ~ 0 for all X and Y in E 

D(X,Y) D(Y,X) for all X and Y in E 

D(X,Y) ~ D(X,Z)+D(Y,Z) for all X,Y, and Z in E. 

The first property implies that X is zero distance from 

itself Lind that any two points zero distance apart must 

be identical. The second property prohibits negative 

distances. The third property imposes symmetry by 
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requiring the distance from X to Y to be the same as the 

distance from Y to x. 1~e fourth property is known as 

the triangle inequality and it requires that the length 

of one side of a triangle be no longer than the sum of 

the lengths of the other two sides. These properties 

are in accordance with intuitive notions because the 

popular conception of distance is the Euclidean distance 

of elementary geometry, itself a metric. 

It may be verified quite easily that the sum of two 

metrics is also a metric. However, the product of two 

metrics (in particular the square of a metric) does not 

necessarily satisfy the triangle inequality and so may 

not be a metric. Any positive multiple of a metric is a 

metric. If D is a metric and w is any positive number, 

then 

D' = D 
w+D 

is also a metric. A function which satisfies the first 

three conditions of a metric but not the triangle 

inequality is known as a semimetric. A metric which 

additionally satisfies 

D(X,Y) ~ max(D(X,Z),D(Y,Z») for all X,Y,Z in E 

is called an ultrametric (Johnson, 1967). 'rhis latter 
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property . 
15 considerably stronger than the triangle 

inequality. 

4.6.2 The Minkovski Metric And Special Cases 

Let Xij be the score achieved by the jth activity on the 

ith variable d I h an et t e vector of scores for the jth 

activity be Xj =(xlj , • . x oj ). Then the r·1inkovski 

metric between activities j and k 1S 

where p ~ 1. By choosing . 
var10US values of p many 

different metric distance functions can be obtained. 

The so-called "city block" or L, metric is obtained by 

taking p=l: 

The familiar Euclidean distance or L2 metric is obtained 

by taking p=2: 

D2.(Xj,X k ) = (2:.(xij -Xik)2.)Yl. 

The Chebychev metric is obtained as the limit of 

Dp(Xj,X
k

) as p increases without bound and so sometimes 

is called the Loa (L-infinity) metric: 

DoO ( X j I X k) = rna x I x i j - x i k 1 

Of all possible mctrics most attention is given to the 

Euclidean or L2 metric. The L, metric occasionally 1S 

enco~ntered and metrics based on other values of p 
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hardly ever are of more than theoretical interest. 

4.7 SUMMARY 

The main types of classification have been formally 

identified. Most cluster analysis methods require a 

measure of similarity to be defined for every pairwise 

combination of the activities to be clustered. The 

types of data encountered in architectural data analysis 

and the appropriate measures of similarity have been 

defined. The problems arising from mixed data types 

have been discussed and methods of coping with the 

problem proposed. The software implementation in MAGIC 

allows for mixed data sets by utilising Gower's General 

Coefficient of Similarity; it . 
1S also possible to 

operate with simple adjacency matrices which are 

interpreted as distance matrices. The various ways of 

measur1ng distance in n-dimensional space were defined. 

All the techniques incorporat~ed in ~..AGIC use the 

Minkovski L2 metric (Euclidean distance). 



CHAPTER 5 

HIERARCHICAL CLUSTER ANALYSIS 

5.1 INTRODUCTION 

The measures of association discussed in chapter 4 may 

be used to construct a similarity matrix describing all 

pairwise relationships among the entities in the data 

set. The methods of cluster analysis operate on this 

similarity matrix to produce the clusters of activities. 

In the implementation of these methods in MAGIC the 

similarity measure used in all cases is Euclidean 

distance, obtained either directly from a- simple 

distance matrix or by a transformation of Gower's S. 

There are two main approaches to cluster analysis: a 

hierarchical classification or a partitioning method. 

This chapter discusses hierarchical methods. These may 

be broadly categorised as seeking the optimal partition 

into g groups for all values of g between 2 and n (the 

number of individual activities). If for every 9 1 , 9 2 
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satisfying 2<g, <g,~<n, each group in the gz-partition 

is wholly contained within a single group in the 

g, -partition, the set of partitions is said to be 

hierarchically nested. A hierarchically nested set of 

partitions can be represented by a tree diagram, or 

dendrogram, such as the one shown in figure 5.8. Each 

of the n branch ends represents a single activity. Each 

position up the tree at which branches join has an 

associated numerical value, d, djj being the level at 

which the ith and jth branches join, and is the lowest 

level at which the ith and jth activit-ies belong to the 

same group. The smaller the value of d, the more 

similar the ith and jth activities are regarded as 

being, and the higher up the tree they are seen to join. 

Sectioning a dendrogram at any level yields a partition 

of the data set. 

The general strategy underlying agglomerative polythetic 

clustering on a data matrix may be represented as 

follows. 

(1) Consider each of the n activities as a cluster 

c0n~isting of just one entity. Let these clusters be 

numbered 1 to n. 
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(2) Search the similarity matrix for the most similar 

pair of clusters. Le"t these be labelled p and q. 

(3) Merge p and q and calculate their associated 

similarity sp~. Label the product of the merger q. 

(4) Reduce the number of clusters by one (because of the 

merger in (3)), and update the similarity matrix to show 

the revised similarities between cluster q ~nd all other 

existing clusters. Delete the row and column of S 

pertaining to cluster PI • 

(5) Repeat steps 2,3, and 4 (n-l) times. 

The different methods vary in the procedure for defining 

the most similar pair at step (2), and the measurements 

used in updating the similarity matrix at step (4). 

This general strategy . 
1S easily conceptualised as a 

geometric model. Consider each of the n activities as a 

point in space; combine the closest pair, p and q, into 

a single group. The distances of all other points to 

this group replace their distances to p and a 

individually. Repeat the process until 'all points have 
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been incorporated into a single group. As the majority 

of strategies have readily conceived geometrical 

interpretations there are advantages if the measures 

used are metrics, although this is not essential. 

There are eight main clustering strategies available, 

some of which have been known for several years and 

acquired a series of alternative names. The strategies 

implemented in MAGIC are Nearest Neighbour, Furthest 

Neighbour, Group Averag~, Centroid, Median, Incremental 

Sum of Squares, Simple Average, and Flexible Strategy. 

These are each discussed in turn below. 

Each 

affect 

Lance 

strategy exhibits 

the relationships 

particular properties which 

between the clusters formed. 

and Williams (1967) describe the maln 

characteristic as "space distortion". Considering the 

geometric model of points in multidimensional space 

certain strategies leave the properties of this space 

unaltered, but in others the clusters alter the space 

near to them. Certain strategies operate in effect by 

erecting boundaries between groups of points, but do not 

change the relative positions of the points in the 

original space. Such strategies are said to be space 
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conserving. In other str2tegies the space around a 

group appears to stretch as the group gro".·ls, so that the 

group appears to recede from the other points as it 

grows. Such strategies are said to be space dilating; 

they cluster intensely, and the groups appear to be more 

distinct than is really the case. In other strategies 

the space appears to contract around a group as it grows 

(space-contracting strategies): inherent clustering is 

reduced and there may be much "chaining" the 

successive addition of single points. 

In pragmatic terms the space-contracting strategies 

(exemplified by the Nearest Neighbour method) are weakly 

clustering, give chains of activities and are not always 

of any great conceptual value 1n exploratory data 

analysis. The space-dilating strategies, for example 

Incremental Sum of Squares, are strongly clustering and 

of considerable conceptual value. Intermediate to these 

are the space-conservlng strategies such as the Group 

Average method. The Flexible Strategy is unique 1n that 

it can be altered from space-contracting to 

space-dilating: in its usual operation it has become 

space-dilating. 
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Another property of certain strategies . 
J.S 

nonmonotonicity. For the complete clustering process to 

be visually represented the activities can be arranged 

in a convenient order along an abscissa and the 

successive clusterings shown as a dendrogram. To enable 

the dendrogram to be drawn the string of dissimilarities 

associated with the successive clusterings should rise 

monotonically. In certain cases the Median and Centroid 

methods become nonmonotonic (when, in the combinatorial 

equation (see below) OCi+~+~ < 1.) • 

Finally, if, given the initial interactivity 

dissimilarity matrix, all subsequent individual/group 

and group/group measures can be calculated from this 

alone by a recursive process, the system is said to be 

combinatorial. Lance and Williams (1967) have shown 

that all (i,j) measures in common use can be encompassed 

within a single linear combinatorial model. Given two 

groups (i) and (j) with ni and nj elements respectively 

and intergroup dissimilarity d ij' if we assume that d ij 

is the smallest measure remaining in the system, then 

(i) and (j) fuse to form a new group (k) with nk=(n,+nj) 

elements. Consider a third group (h) \vi th nh elements. 

Before the fusion the values of d hi' d hj' d ij , 
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and nj are all known (see figure 5.1). 

Attribute 2 

Group h 
n h elements 

Figure 5.1 

Group j 

n. elements 
] 

d .. 
lJ 

Group i 
ni elements 

Attribute 1 

Elements of Lance and Williams combinatorial equation 

We may then set 

where the parameters oci' OGj I f3 and Y determine the 

nature of the strategy. In a few cases these parameters 

may be actual numbers; in most, however, they are simple 

algebraic functions of some or all of nj, nj, nk' and 

n
h

• The actual values or expresslons are given below in 

connection with the detailed discussion of the 
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individual strategies and summarised in figure 5.2. 

Nomenclature is a problem as the various strategies are 

given different names by different authors. Synonyms 

are therefore given and the name adopted here 1S 

generally the most widely accepted. 

Examples of each of the clustering- strategies are given 

using standard data from Sneath and Sakal (1973), 

summarised in figure 5.3. 
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Strategy 

N.N. 

F.N. 

G.A. 

c. 

I.S.S. 

-8.A. 

F. (i) 

0<:I 

0.5 

0.5 

0.5 

(nb+ni) 
(nh+nk) 

0.5 

0.625 

ex' J 

0.5 

0.5 

(n,,+nJ) 
(nh+nkJ 

0.5 

0.625 

y 

o -0.5 

o 0.5 

o 0 

-0.25 0 

o 0 

-0.25 0 

Mono
tonic 

yes 

yes 

yes 

no 

no 

yes 

yes 

yes 

Spatial 
Effect 

contract 

dilate 

conserve 

conserve 

conserv(~ 

dilate 

dilate 

di10.te 

(i) Flexible Strategy 
convention to set ~ =-0.25 

Combinatorial equation d hk = DCjdhi + OCjd nj +t3c1ij + Y(dhi ·-d hj ) 

Figure 5.2 

ni=- no. of elements ln group i 
nj= no. of elements in group J 
nk= n' +nJ' , 

Values of various strategies in combinatorial equation 
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Irhe coordina.tes of 16 activi ties in a two-space defined 

by axes X J and Xl are given in the first two rows of the 

table. Euclidean distances between the pairs of 

activities are shown in the lower triangular matrix, 

their squares in the upper triangular matrix. 

a b c d e f 9 h 

XI 0 0 1 2 3 2 2 1 
X2. 4 3 5 4 3 2 1 0 

a x 1 2 4 10 8 13 17 
b- 1.000 x 5 5 9 5 8 10 
c ' 1.414 2.236 x 2 8 10 17 25 
d 2.000 2.236 1.414 x 2 4 9 17 
e 3.162 3.000 2.828 1.414 x 2 5 13 
f. 2.828 2.236. 3.162 2.000 1.414· x 1 5 
g. 3.606 2.828 4.123 3.000 2.236 1.000 x 2 
11 4.123 3.162 5.000 4.123 3.606 2.236 1.414 x 
l 5.099 5.385 4.000 3.162 2.828 4.243 5.000 6.403 
j 6.083 6.325 5.000 4.123 3.606 5.000 5.657 7.071 
k 7.280 7.616 6.083 5.385 5.000 6.403 .; . 071 8.485 
1. 5.099 5.000 4.472 3.162 2.000 3.162 3.606 5.000 
rn 7.071 7.000 6.325 5.099 4.000 5.099 5.385 6.708 
n 6.325 6.083 5.831 4.472 3.162 4.000 4.123 5.385 
0 6.708 6.325 6.403 5.000 3.606 4.123 4.000 :i.099 
p. 8.544 8.246 8.062 6.708 5.385 6.083 6.000 7.071 

Figure S.3a (i) 

Test data from Sneath and Sakal (1973) 
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The coordinates of 16 activities in a two-space defined 

by axes X, and X2. are given in the first two rows of the 

table. Euclidean distances between the pairs of 

activities are shown in the lower triangular matrix, 

their squares in the upper triangu1a~ matrix. 

i j k 1 m n 0 p 

XI 5 7 7 5 7 6 6 8 
X2, 5 5 6 3 3 2 1 1 

a 26 37 53 26 50 40 45 73 
b 29 40 58 25 49 37 40 68 
c 16 25 37 20 40 34 41 65 
d 10 17 29 10 26 20 25 45 
e 8 13 25 4 16 10 13 29 
f 18 25 41 10 26 16 17 37 

9 25 32 50 13 29 17 16 36 

h 41 50 72 25 45 29 26 50 
i x 1 5 4 8 10 17 25 
j . 1.000 x 2 5 5 9 16 20 
k 2.236 1.414 x 13 9 17 26 26 
1 . 2.000 2.236 3.606 x 4 2 5 13 
m . 2.828 2.236 3.000 2.000 x 2 S 5 

n· 3.162 3.000 4.123 1.414 1.414 x 1 5 

a 4.123 4.000 5.099 2.236 2.236 1.000 x 4 

P 5.000 4.472 5.099 3.606 2.236 2.236 2.000 x 

Figure S.3a (ii) 

Test data from Sne~th and Sokal (1973) 
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16,2 
1 
2,0,0 
SNEATH & SOKAL DATA 
o 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
o 
P 
1 
0,4 
0,3 
1,5 
2,4 
3,3 
2,2 
2,1 
1,0 
5,5 
6,5 
7,6 
5,3 
7,3 
6,2 
6,1 
8,1 

Figure 5.3b 

No. of activities, variables 
Type of data 
No. of each variable type 
Heading 
No areas 
Names (refer to 5.3a) 

Full matrix data 
Data (from 5.3a) 

MAGIC data file for Sneath and Sokal data 
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5.2 NEARES1' NEIGHBOUR CLUSTERI1~G STRATEGY 

This technique, introduced by Florek et al (1951) and 

Sneath (1957), is also kno~1 as the Single Linkage 

Method (Sneath and Sakal 1973) and the r-linimurn Method 

(Johnson 1967), and is the oldest of the conventional 

strategies. The distance between two groups is defined 

as the distance between those two individuals (one in 

each group) which are the nearest. The parameters are 

(X, = O<..j=O. 5 ; ;B = 0 ; Y:;:-O.5, giving 

d hk = O. 5d h i +0. 5d hj -0. SfJhi -d h) 

- O.S(dhi +dhj-Id hi -dhjP 

It is a monotonic, intensely space-contracting strategy, 

with a number of theoretical mathematical and 

computational advantages (Rohlf 1973, Jardine und Sibson 

1968, 1971, Sibson 1973). 

The technique does not delineate poorly seperated 

clusters, tending to produce long serpentine clusters. 

This property, termed "chaining", is often criticised 

because elements at opposite ends of a chained group may 

be markedly dissimilar. In a comparison of strategies 

Pritchard and Anderson (1971) described this as the 

least useful technique because of the ~endency to chain. 

In most utilitarian aspects, therefore, this strategy 
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may be regarded as obsolete, but it has received support 

on mathematical grounds from Jardine and Sibson (1968). 

As the cluster updating process involves choosing only 

the minimum (or, in the case of Furthest Neighbour, the 

maximum), single-link clustering is invariant to any 

transformation which leaves the ordering of similarities 

unchanged, that . 
lS, any monotonic transformation. 

Jardine and Sibson develop further criteria they believe 

should apply to classificatory strategies which 

virtually confine one to the use of Nearest Neighbour 

(discussed briefly in section 5.9.3). A controversy 

arose between a IICambridge School" and an "Australian 

School ll over this and related issues (Williams et al 

1971, Sibson 1971, Jardine and Sibson 1971), but, in the 

end the criterion of the validity of application of 

particular methods must come down to "how well does it 

work? II . 

5.2.1 Example Of Nearest Neighbour Clustering 

We first find the mutually most similar pairs, which 

turn out to be (1,2), (6,7), (9,10) and (14,15), all at 

a distance of 1.0 from each other (see the pairing 

sequence, figure 5.4, and figure 5.3). The geometric 

result of this is shown in figure 5.5 where these 

are connected with solid lines. New candidates for 
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fusion (either between themselves or to established 

groups) are now examined. At this next level of 

grouping (1.414) several activities join cluster 1. The 

pairs are (1,3), (1,4)" (1,5), (1,6), (1,8), 

(12,14), and (12,13). Finally (9,12), (9,16) and 

(9,11), 

(1,9) 

are joined. Note how in the georne~ric representation 

the clusters are strung out in what is the 

characteristic single linkage fusion fashion. In 

figures 5.6 and 5. 7 the links existing pr iC1r to that 

stage are shown in light line and the new links in hold 

line. 

Referring to the dendrogram (figure 5.8) v,Ye can see that 

Nearest Neighbour clustering has revealed three levels 

of clustering. The most closely related activities are 

( 1 , 2 ) " ( 6, 7 ) I· (9 , 10) , and (14, 15 ), wi th 3 I 4, 5, 8, 11, 12 

and 13 remaining unattached at that level. The next 

highest level is represented by (1,2,3,4,5,6,7,8), 

(9,10,11), (12,13,14,15), and 16: whilst at the final 

level all the activities come together as a single 

enti ty. 'l'he representation of clusters by dendrogram:; 

is discussed further in Chapter 10. 
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.. 
HEAP..EST NEIGHroJR CLUSTERING S1'"RATEGV • 

PAIRIHG ~(JJENCE 

lTEl1 JOINS ITB1 AT 01ST~'"'E 
. , 

1 2 1. 6~)3 I • . . 
6 7 1.eee 
9 Ie 1.eeo 

14 15 1.000 
1 3 1.414 
1 4 1.414 
5 6 1.414 
9 11 1.414 

12 14 1.414 
12 13 1.414 
5 8 1.414 
1 5 1.414 
9 12 2.0e-O 
9 16 2.000 
1 9 2.000 

FIT IS sa . ~ Ai" ... -CtJRATE 

Figure 5.4 
. . 

Nearest Neighbour strategy - palrlng sequence 

@ 

® 

® 
Figure 5.5 

Nearest Neighbour strategy - first step 
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I 
I 

..... 

; . 

.' 

. . ~ 

Figure 5.6 

Nearest Neighbour strategy - second step • 

Figure 5.7 

Nearest Neighhour strategy - third ster 
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1 '7 ~ "' :~ 11 14 i3 '", .... 
4 

.~. . ( 
f- 10 1'~ 15 16 c.. 1.;. .) t.:. 

i 1 
I 
I . 
! 
I 

l,-----, 

Figure 5.8 

Nearest Neighbour strategy - dendrogram 
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5'.3 FURTHEST NEIGHBOUR CLUSTERING STRATEGY 

This technique was originated by Sorensen (1948), and is 

also known as the Complete Linkage Method (Sokal and 

Sneath 1973), and the Maximum Method (Johnson 1967). 

Its current name was established by Lance and Williams 

(1967). 

The distance, between two groups is defined as the 

distance between their two most remote individuals, and 

linkages made on the basis of the closest of these 

distances. It is a monotonic, intensely space-dilating 

strategy which has been largely superceded by the 

Flexible Strategy. The parameters a.re 

CXi=O<.j= 0.5, f3 = 0, y= 0.5 

giving 

5.3.1 Example Of Furthest Neighbour Clustering 

The method commences in the same manner as the Nearest 

Neighbour technique (figure 5.10). For an activity to 

now join an existing cluster the distance criterion 1S, 

in this strategy, now taken, not to the nearest element 
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of that cluster, but to the furthest. When two clusters 

join the similarity is that existing between the 

farthest member pair, one from each cluster. This 

method thus leads to a number of tight, discrete 

clusters that join each other only with difficulty and 

at relatively low similarity levels. 

Inspection of the clusters generated (see particularly 

figure. 5.13) shows their induced compactness . In 

comparison with the loose, strung-out clusters of the 

Nearest Neighbour strategy (figure 5.6). The data is 

more structured, showing more clusters and more levels 

than the Nearest Neighbour strategy. 

While the most highly connected activities are (1,2), 

(6,7), (9,10) and (14,15) as before, the next levels 

produce (3,4), then (5,12) so that even at the fourth 

level there are five distinct groups (1,2,3,4), 

(5,12), (6,7,8), (9,10,11) and (13,14,15,16). These 

five reduce to four in the next step and then three and 

two. The final fusion is then at a very much lower 

level. The dendrogram showing this structure is drawn 

in figure 5.17. 
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FUR11£ST tEIGHeOUR ClUSTERING STRATEGY 

lTa1 

1 
6 
9 

JOINS ITEM AT DISTANCE 

, .. 
Figure 5.9 

14 
:3 
5 
1 
6 
9 

13 
13 

1 
5 
5 
1 

2 
7 

10 
15 
4 

12 
3 
e 

11 
14 
16 
6 
9 

13 
5 

FIT IS 56.% ~ctJRATE 

1 CI~~~ · .-
1.000 
1 . (i~J0 
1.000 
1.414 
2 ---3 v,;.,; · ........ 
2.236 
2.236 
2.236 
2 2 ... ·-· ,~o 

2.236 
I:':' r,,~~ 
;;J •• ;J::,.IQ 

5 -. I'" 
· oi;;:~J 

c .... t'"'I~ 
;.' . ~y~ 
8.544 

. . 
Furthest Neighbour strategy - palrlng sequence. 

@ 

@ 

Figure 5.10 

Furthest Neighbour strategy - first step 

~ . 
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_ .... ® 
®-@ 

'. .. 

® ® ® 
. .. 

Figure 5.11 

Furthest Neighbour strategy - second step 

® 

'@ 

Figure 5.12 

Furthest Eci;-,hbour strategy - third ste~) 
'-
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. . 

.. 
. .. 

. . -' 

® ---J@ 

Figure 5.13 

~urthest Neighbour strategy - fourth step 

.~ 

@-@ 

t __ 

O .-@ 

Figure 5.14 

FU1'thcst nei~hbour strategy - fif-th step 
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Figure 5.15 

Fllrthest Neighbour str'ategy - sixth step 

.. 

Figure 5.16 

Furthest Neighbour strategy - seventh step 
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1 3 4 6 7 8 5 12 10 11 13 14 l' 16 

__J 
......... _-------

Figure 5.17 

Furthest Neighbour strategy - dendrogram 



HIERARCHICAL CLUSTER ANALYSIS Page 5-109 

5.4 GROUP AVERAGE CLUSTERING STRATEGY 

This technique is also described as the Unweighted 

Pairgroup Method Using Aritlunetic P~verages (Sokal and 

Michener 1958). The Group Average name was established 

by Lance and Williams (1967). 

If there are m l individuals in one group and m
2 

in 

another, the distance between them is defined as the 

arithmetic mean of all m1m2 interindividual distances. 

Fusion is between the two groups with the shortest mean 

distance. The parameters are 

ex i = n i / n k..i CXj = n j / n k; f3:= y 0 

d hk = ( n i d hi + n j d hj ) / n k. 
where nj= number in group i 

nj= number in group j 
nk,= nj + nj 

It is monotonic and substantially space conserving. 

This method is less rigorously space conserving than the 

Centroid method, but, having no marked tendencies to 

contraction or dilation may be regarded as a conserving 

strategy. Group Average clustering is a generally 

satisfactory technique giving moderately distinct 

clusters, with the advantages of being monotonic, little 

prone to misclassification, and with little group size 
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dependence. It may therefore be usefully employed both 

as a general "wor}~-horse" technique and also to check 

for misclassifications resulting from the application of 

more intensely clustering strategies. 

5.4.1 Example Of Group Average Clustering 

The strategy computes the average similarity of a point 

relative to an extant cluster, weighting each element in 

that cluster equally. Fusion is then made with the 

cluster giving the shortest mean distance. To show tIlis 

point the first steps of the clustering of the example 

data are worked manually. 

The initial clustering step is the same as ln the 

previous cases: ( 1 , 2 ), ( 6 , 7 ), ( 9 I 1 0 ), ( 1 4, 1 5 ) . Th e n ew 

distance between (1,2) and 3 can be computed by simply 

averaging d 13 and d 23 , i. e. 

d(,2)3 =0.5 (1.414+2.236) 

.==1.825 

Distances involving two new clusters, such as d(12.)(67) 

are computed as 

0.25 (d ((, +d 17 +d 2~ +d 2.7 ) 

i.e. d,) ==0.25 (2.828+3 .605-1-2.236+2.828) 
12 (67) 

==2.875 
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Distances between elements that did not join any cluster 

are transcribed unchanged from the original matrix: for 

example d 34 =1.414. 

The complete distance matrix after the first clustering 

is shown in figure 5.18. 

(1 , 2 ) 3 4 5 (6,7) 8 
AB C D E FG H 

(1,2) AB x 
3 C 1.825 x 
4 D 2.118 1.414 x 
5 E· 3.081 2.828 1.414 x 

(6,7) FG 2.875 3.643 2.500 1.825 x 
8 H 3.643 5.000 4.123 3.605 1.825 x 

, (9,10) IJ 5.723 4.500 3.643 3.217 4.975 6.737 
11 K 7.448 6.083 5.38S 5.000 6.737 8.485 

12 L 5.050 4.472 3.162 2.000 3.384 5.000 

13 M 7.036 6.325 5.099 4.000 5.242 6.708 

(14,15) NO 6.360 6.117 4.736 3.384- 4.062 5.242 

16 p . 8.395 8.062 6.708 5.385 6.041 7.071 

(9,10) 11 12 13 (14,15) 16 

IJ K L M NO p 

(9,10) IJ x 
11 K 1.825 x 
12 L· 2.118 3.606 x 
13 M 2.532 3.000 2.000 x 

(14,15) NO 3.571 4.611 1.825 1.825 x 

16 P 4.736 5.099 3.606 2.236 2.118 x 

Figure 5.18 

Distance Matrix After First Level of Clustering 
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This matrix is then examined for the most similar (least 

dissimilar) pairs in the same manner as the original 

matrix. This results in a fusion between 3 and 4. 

Elements 4 and 5 are also at the same dista.'lce, but 

cannot join because of the prior clustering of 4 with 3. 

The next fusions are, successively, 5 and (6,7), (9,10) 

and 11, 12 and (14,15). Here the "unweighted" aspect of 

this method first comes into play, for, so far the 

earlier clusters would have been the same in the 

weighted method. Thus, for example, 

d 5 (12, \4, 'S) =0 . 33 (d 5,12 +d 5,14 +d 5,15 ) 

- =0.33(2 .. 0+3.162+3.605) 

=2.923 

This is the noncombinatorial approach using the original 

data from figure 5.3, and is described here as it 

follows more closely the conceptual geometric method. 

To obtain the same result using Lance and Williams 

combinatorial equation (i. e. the method used in tl"lA.GIC) 

the formula 

dhk = Cnidhi + njdhj ) / nk 

applied to d S C12,14,lS) becomes 

d SC12 ,14,lS) = CCn 12 x d S(12 )) + Cn C14 ,lS)x d SC14 ,lS))) 

n 12 + n C14 ,lS) 

- --l-CCI x 2) + C2 x 3.3839)) 
1+2 

= 2.923 

which is as before, but here the distances are df.:':rivcd 
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from figure 5.18. Continuing through the successive 

iterations we eventually obtain the dendrogram shown in 

figure 5.27. 
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GROUP AI..'ERAGE CLUSTERING SrRATEGY 

PAIRING SEQUENCE 

ITEM JOINS ITEM AT DISTANCE 
1 2 l.sea 
6 7 1.000 
9 10 i.aee 

14 15 1.0e0 
3 4 1.414 
6 8 1.793 

12 14 1.796 
9 11 1.803 

j" 12 13 1.857 . 
3 5 2.020 
1 3 2.482 

12 16 2.484 
1 6 3.126 
9 12 3.673 
1 9 5.299 

FIT IS 60.% ~TE 
-- .- -- .. ---

Figure 5.19 

Group Average strategy - pairing sequence 

® 

o 

@ 

Figure 5.20 

Group Average strntegy - first step 
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@ 

® @ 

Figure 5.21 

Group Average strategy - second and third steps 

o 

® 

Figure 5.22 

{;;\ 
V 

G A straterv - fourth and fifth steps roup l\ver"'a~-',e c.'_ 

@ 

@ 



HIERARCHICAL CLUSTER ANALYSIS . Page 5-116 

Figure 5.23 

Group Average strategy - sixth and seventh steps 

Figure 5.24 

Group Average strategy - cigthand ninth steps 
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" 

, . 

, . 

Figure 5.25 

GrDup Average stX'ategy - tenth and eleventh steps '. 

Figure 5.26 

Group Average strategy - twe1vth step 
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1 2 3 
10 

7 4 6 a 

I 

11 12 14 
15 13 

I 
16 

i 

............. 

t ... ~,~_.~_~."~Y,_"~~ __ ~""'""....,.,..".. 

Figure 5.27 

Group Average strategy - dendrogram 
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5.5 CENTROID CLUSTERING STRATEGY 

Again the name was established by Lance and vlilliams 

(1967). The technique was previously known as the 

Unweighted Pairgroup Centroid Method (Sokal and Michener 

1958, and King 1966,1967). 

In a Euclidean model, the distance between two groups is 

defined as the distance between their centroids. It is 

combinatorial only when d 2 is used. The parameters are 

d hk = nj dhi 
nk 

- nj njdjj 
n ~ 

k 

It is strictly space-conservlng, but nomnonotonic, and 

reversals are frequent, thus rendering the strategy 

almost obsolete. It is conceptually attractive in that 

it computes cluster centroids, distances then being 

calculated between centroids, but disadvantages of 

nonmonotonicity outweigh this consideration. 

Reversal can be seen in 13 joining (12,14,15) ln the 

dendrogram (figure 5.37). Reversals occur Yihen an 

element (or cluster) joins an existing cluster, but at a 
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higher level of similarity than that at which the 

cluster had formed. As this is conceptual nonsense the 

technique has dropped into disuse. 

A 

B 
2-<5 units c 

Figure 5.28 

Inversion in Centroid clustering 

An illustration of the manner 1n which Centroid 

clustering may lead to inversions when three almost 

equally dissimilar entities are clustered . 
1S shown . 1n 

figure 5.28. A, Band C are the entities and D the 

product of the first fusion. The distance AD is now 

less than the length of any triangle side. 
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CENTROID ClJJSTERIHt; STRflTEGY 

IlEM 

1 
6 
9 

~INS ITEM AT DISTANCE 

Figure 5.29 

14 
3 
6 

12 
12 

9 
1 
1 

12 
1 
9 
1 

2 
7 

19 
15 
4 
8 

14 
13 
11 
3 
5 

16 
6 

12 
9 

FIT IS 62. '= ACCURATE 

Gentroid strategy - pairing sequence 

@ 

Figure 5.30 

Centroid strategy - first step 

i.Gee 
1.000 
1.eOO 
1.f;Oe 
1.414 
1.771 
1.773 
1,655 
1.781 
1.915 
.~ 1 ,~r: c.. ... ;;;;.J 

2.322 
2.831 
3.435 
4.7'78 

'. 

® 
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Figure 5.31 

~ 
\:.V 

.. -' -

@ 

Centroid strategy second and third steps 

Figure 5.32 

R\ 
\:.V 

Centroid strategy - fourth step 

®-@ 

Page 5-1'22 

@ 

@ 

@ 

@ 
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'. 00 . ~:. 

\:::.) 

@ 

Figure 5.33 

eentroid strategy - fifth, sixth and seventh steps 

Figure 5.34 

Centroid strategy - eigth and ninth steps 
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.... ' ' 

.. 

"' . 

, , 

Figure 5.35 

Gentroid strategy - tenth and eleventh steps 

Figure 5.36 

Centroid strategy - twelvth step 
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-- ,,' 
1 -..) 

4 
5 2 

.... 9 11 14 13 ~ 

t; • a 10 12 15 16 

I 

'----....,,--..... ~-. 

Figure 5.37 

Centroid strategy - dendrogram 
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5.6 MEDIAN CLUSTERING STRATEGY 

This method was proposed by Gower (1966), and previously 

known as the Weighted Pairgroup Centroid strategy (Sokal 

and Sneath 1967), the current name bejng established by 

Lance and Williams (1967). 

A disadvantage of the Centroid strategy is that if n· I 

and nj are very disparate, the centroid of (k) will lie 

close to that of the largest group, and remain within 

that group: the characteristic properties of the smaller 

group are thus lost. The strategy can be made 

independent of group size by arbitrarily setting nj=nj; 

the appar€nt position of (k) will thus always lie 

between (i) and (j). The parameters are 

The 

<Xj ==~=O • 5: ~ =- 0 . 25: Y =0 

d hk~·O. 5 (d hi +d hj ) -0. 25dij 

st.rat.egy 
. 
18 space-conserving 

nonmonot.onic. 

but may be 
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PAIRI~ SEQUENCE 

ITaI JOIHS ITEM 

1 2 
6 7 
9 10 

14 15 
3 4 
1 3 
5 6 
9 11 

12 14 
12 13 
12 16 

1 5 
1 e 
9 12 
1 9 

FIT IS 63.~ ACCURATE 

Figure 5.38 

AT DISTANCE 

1.00a 
1.0~e 
1.G0e 
1.000 
1.414 
1.803 
1.803 
1.803 
1.803 
1.677 
2.388 
2.475 
3.187 
3.7ge 
S.768 

Median strategy - pairing sequence 

Page 5-127 



HIERARCHICAL CLU8,!'ER ANALYSIS Page 5-·128 

5. 7 INCREMENT~~L SUl'-1 OF SQUARES CLUSTERING STRATEGY 

This technique has been known under a number of names: 

Error Sum of Squares (Ward 1963), Sum of Squares (Or1oci 

1967) . The current name, which seems the most 

descriptive was proposed by Burr (1968, 1970). 

In a Euclidean raodel, the intergroup distance is defined 

as the increase in the total within-group sum of squares 

(of distances from the respective cent.roids) on fusiol1. 

The parameters are: 

OGi=(nh-lnj )/(nh+n,J 
C~~(nh+nj)/(nh+nk) 
f3 :-:.-nh/ (nh+nk) 
Y==-O 

d hk :::: _-.l__ ( n h + n i ) d hi + ( n h + n j ) d hj - n h d i j ) 
(nh+n k ) 

It is monotonic and space-dilating. Squares of 

Euclidean distance (D~) are used as distance measures 

and after uniting the pair of elements whose D2 is a 

minimum, subsequent entities are fused such that the sum 

of D2 within a cluster increases by the smallest amount. 

As t.he total sum of squares is constant., if the sum of 

DL within a cluster increases minimally, then it follows 

that D2 between clusters is increased maximally. 
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I~~ Sttt Of SQUA,9£S CLUSTERIHG STRATt:.G·t 

PAIRIt{G SEG~CE 

ITa1 JOINS ITEM 

1 2 
6 7 
9 10 

14 15 
3 4 
5 12 

13 14 
9 11 
6 e 

13 16 
1 3 
5 13 
1 6 
5 9 
1 5 

FIT IS 59. % ACClRATE 

Figure 5.39 
. . 

I.S.S. st~ategy - pa~~~ng se~lence 

AT DIST~NCE 

1.eOa 
1.0B0 
1 . (;:~{.1 
1.e00 
1.414 
2.000 
2.e64 
2.09i3 
2.e93 
2.410 
2.646 
4.581 
6.e62 
6.448 

13.486 

1 2 3 . 4 '. 6 7 8 5 12 13 14 15 16 

Y 

'--____ ---_-- ,'-"_8 ...-.. -=-- ....... 

Figure 5.40 

I.S.S. strategy - dendrogram 

9 19 11 

--.-1 I 
~ ........ ~ 
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5.8 SIMPLE AVERAGE CLUS'rERll~G STRATEGY 

Also known as the Weighted Pairgroup Method Using 

Arithmetic Averages (Sokal and Sneath 1967), this 

strategy has a similar relationship to the Group Average 

method as the Median has to the Centroid. The two 

groups are given equal weight with ni set equal to nj. 

The method is space-dilating and monotonic. Parameters 

. are: 

(Xi = CXj=O • 5 and,6=Y=O 
d hk =0. 5 (d hi +d hj ) 



1 
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.. 

SIMPLE ~"!'~~ CLUSTERING STRATEGY 

PAIRING 5EQtkrcE 

ITErd XJINS ITB1 

1 2 
(; 7 
9 10 

14 15 
3 4 
5 6 
9 11 

12 14 
12 13 

1 3 
12 16 

1 5 
1 8 
9 12 
1 9 

FIT IS 63.% ACClJRATE 

Figure 5.41 

Simp13 Averags sTra~e1Y 246 

l-l 

AT DIS'rANeE 

i .008 
1 . eOI3 
1.eee 
1.000 
1.414 
1.871 
t.871 
1.871 
1 Q~~ . -- '-"~.", 

2. {j8!3 
2.622 
2.8'72 
3.571 
4.161 
6.494 

I 
I 

14 13 

-I-~ ! tr_J"".' E __ 

~~ ..... ~~--

r _~_ .. ~ ____ ~ __ ,--
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5.9 FLEXIBLE STRATEGY CLUSTERING 

This is applicable to any dissimilarity measure and . 
1S 

defined by the quadruple constraint: 

0<. i + CXj + f3 c \ 

ex', = exj 
f3 < \ 
Y:::Q 

It is monotonic and its space distorting properties 

depend entirely upon {3 • If ~ =0 the strategy lS 

space-conservlng; as f3 becomes positive the strategy 

becomes increasingly space-contracting; as p becomes 

negative the strategy becomes increasingly 

space-dilating. In practice a value of p =-0.25 is 

commonly used, giving dhk=0.625(d hi +d hj)-0.25dij and 

thus bearing some resemblance to the Median strategy. 

Given any value of ~ the other parameters follow 

automatically from the constraints. 
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R..EXIBlE a..usTERI~ STRATEGY 

FLEXIBLE STRATEGY COEfFICIEHTS: 
ALPHA< J) == AlPHA( K) ~ 0 . 625 
BETA = ...g. 250 

PAIRinG SEQUEla 

1181 JOINS ITEM AT DISTANCE 
1 2 1.eoa 
6 7 1.e00 
9 19 1.000 

14 13 1.0013 
3 4 1.414 
5 12 2.eee 
6 s 2.e31 
9 11 2.031 

13 14 2.031 
1 3 2.332 

13 16 2.3.'35 
5 6 4.438 
1 !5 5.028 
9 13 5.747 
1 9 9.870 

FIT IS 5S.~ ~TE 

FiguI'e 5.43 
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Figure 

FLEXIBlE a..USTERIHG STRATEGY 

FLEXIEt.E STRATEGY COEFFICIEN"TS' 
ALPttA<J) =: ~t<) :;: 0.~0 
BETA· -9.980 
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Flexible strategy (8 - -0.98) - dendrogram 
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A..EXIBLE STRATEGY COEFFICIENTS' 
~ .J) :: Al...PHA( K) :: 0. -rr.J0 
BETA III: -9.503 

PAIRING SEQt.Et£E 

I Tel ~IHS ITEM AT DISTANCE 
1 2 1.060 
6 7 1 ~Oe0 
9 19 1.000 

14 15 1.000 
3 4 1.414 
5 12 2.000 
6 8 2.179 
9 11 2.179 

13 14 2.179 
13 16 2.462 

1 3 2.693 
5 6 5.300 
1 5 6.8~'9 
9 13 7.548 
1 9 15.714 

FIT IS 59.% ACCURATE 
Figul!e 5.4· 7 
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Figure 5.48 
Flexible strategy (/1 = -0.5) - dendrogram 
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FLEXIBlE CLUSTERING STRATEGY 

FLEXIBlE STRATEGY COEf-FICIEHTS: 
AlPHA( J) = AlPHA( K) :: 0. 500 
(£TA :.% 0.000 

1TEl1 
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Figure 5.49 
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FLEXIBLE ClUSTERING STRATEGY 

FLEXIBLE STRATEG"( COEFF I C I ENTS : 
ALPHA<.J") :: ALPHA( K) == 0.250 
BETA = 0.500 

PAIRING SEQUENCE 

ITEM JOINS IlEM AT DISTAHCE 

1 2 
6 7 
9 10 

14 15 
1 3 
5 6 
9 11 

12 14 
1 4 
1 5 

12 13 
9 12 
1 9 
1 16 
1 8 

FIT IS 26.% ACCURATE 
Figure 5.51 
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Flexible strategy <P = 0.5) - pairing sequence 
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Figure 5.52 I 
Flexible strategy <P - 0.5) - dendrogram 
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FLEXIBlE a...tJSTERIH~ STRATEGY 

FLEXIBLE STRATEGY COEFFICIENTS: 
ALPHA<J) = At..PHH<t() • 0.e10 
BETA = 8.980 

PAIRING SEQUEt-Q: 

I1B1 JOlt6 -ITEM ~T DISTANCE 
1 2 1.000 
6 ? 1.000 
9 10 1.000 

14 15 1.600 
1 6 1.001 
1 14 1.002 
1 9 1.002 
1 11 1.002 
1 13 1.041 
1 12 1.055 
1 5 1.0:59 
1 4 1.074 
1 3 1.978 
1 8 1.184 
1 16 1.375 

FIT IS 25 . % ACCURATE 

Figure 5.53 -
Flexible strategy (~' == '0.98) - pairing sequence 
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. 5.10 . COMPARISON OF HIERARCHICAL TECHNIQUES 

The different hierarchical techniques may be compared in 

a number of ways. A simple geometric model serves to 

illustrate the different criteria used in forming 

clusters in the Nearest Neighbour, Furthest Neighbour, 

and averaging methods (Group Average, Centroid, Median, 

Simple Average). Figure. 5.55 shows a cluster of four 

elements collectively labelled J, and a cluster labelled 

K containing a single element, all about to be joined by 

another single element cluster labelled L. J and K are 

assumed to have joined at the last clustering step and 

it is now desired to compute the dissimilarity of L with 

the newly formed cluster (J,K), which, for convenience 

may be termed M. The dissimilarities obtained by the 

various clustering methods, expressed -as Euclidean 

distance are laid out along the abscissa. 

o 0 

K 

, 
I 
I 
I 
I 

L 'dLK 
~-------------------r~--+-T----r~~--------~ 

FN 

Figure 5.55 

The effects of different clustering strategies on the criterion 

of admitting L (consisting of a single element) to a cluster 

formed of the four elements in J plus one in K. 
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.It may be seen that Nearest Neighbour shows the least 

value of d LM, since it is the distance between L and the 

closest member of M (in fact the nearest element of J). 

By contrast d LM for the Furthest Neighbour equals the 

greatest dissimilarity between L and any member of M, 

namely d LK • The two centroid based methods (Centroid 

and Median) measure the distance between L and the 
.er ~: 

centroid of clusters J and K. The weighted method 

(Median) is the median of line JK, shown M •• In the 

unweighted (Centroid) method the four elements of 

cluster J count 4/5 while the single element of K only 

counts 1/5. The centroid for the five unweighted 

elements, MZ' therefore lies closer to J (i.e .. 0.2 of 

con~! 
the distance from J to -K). In terms of clustering 

nea '[. 
criteria therefore, the distance LM2. is less than LM •. 

S ~l 

No similar geometric representation of the Group Average 

and Simple Average is possible, but the dissimilarities 

obtained by these strategies are marked off along the 

7 abscissa. These distances represent the weighted or 

unweighted average of the lengths of the vectors from L 

to each of the five elements of M. It may be seen that 

in each case the dissimilarities arc slightly greater 

than in the corresponding centroid method. 
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This becomes obvious by the examination of the 

respective coefficients in the combinatorial equation. 

Both centroid methods have /3 < 0 while in the averaging 

methods /J ==0. Since the ~ coefficients are the same the 

centroid methods necessarily result . 
1n smaller 

distances. 

5.10.1 Compa.rison Of Cluster Results Obtained 

Objective comparlson of the results of different 

strategies necessitates some measure of the "goodness of 

fit" of the hierarchical structure generated by the 

procedure to the original data. One approach involves 

the comparison of the coefficients of similari toY d*.· 
IJ 

derived from the hierarchical structure and the 

similarity coefficients dij measured on the original 

data.. Clearly, if D-K- (=d*ij) and D (=dij ) closely 

resemble one another then the structure of the data 1S 

closely modelled by the hierarchical representation. 

The elements of D* can be derived from the linkage order 

of the dendrogram. 

The most widely used measure of resemblance for 

comparing the r.latrices D and D~ is the product-moment 

correlation coefficient, known in this context as the 
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Cophenetic Correlation Coefficient (Sokal and Rohlf 

1962). It is calculated in exactly the same way as a 

normal correlation coefficient with the elements of the 

strict lower triangles -of D and D* considered as 

forming linear arrays when read row-wise. 

This measure is used in MAGIC and the results on the 

example data set are summarised in figure 5.56 It may be 

seen that in this case the space-conserving strategies 

perform the best, followed by the space-dilating and 

then the space-contracting, performing worst. 

Strategy % Fit No. of levels 

Nearest Neighbour 50 3 
Furthest Neighbour 55 7 
Group Average 60 12 
Centroid 62 12 
Median 63 9 
Inc. Sum of Squares 59 12 
Simple Average 63 10 
Flexible fJ =-0.25 58 10 

-0.98 51 11 
-0.5 53 10 

0 61 10 
0.5 26 9 
0.98 17 9 

Figure 5.56 

Fit of different clustering strategies 

The properties of the cophenetic correlation coefficient 

have been investigated by a number of authors, for 
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example Sneath (1966), Farris (1969), Rohlf (1970), and 

Sokal and Rohlf (1970). Holgersson (1978) presents a 

probabilistic study of the statistic which suggests that 

it may be misleading as an indicator of presence of 

clusters. Highly seperated clusters are well identified 

but the measure shows some degree of variability for low 

seperation clusters. Holgersson used Monte Carlo 

studies of the characteristics of the coefficient for 

all the combinatorial strategies. An alternative 

approach was adopted by Gower and Banfield (1975) who 

used the Nearest Neighbour method to analyse data drawn 

from a single multivariate normal distribution and 

examined -the 

distortion. 

behaviour of various measures of 

A wide range of such measures have been proposed, and 

selected measures of distortion are summarised in figure 

5.57. Sokal 

correlation 

and Rohlf's (1962) measure is the 

between the sets (sij) and (Sjj)' and hence 

gives an indication of the linear relationship between 

these two variables. It has' also been used to compare 

the similarities defined by two different dendrograms, 

( $' i j') and ( S' i j.2 ) • 
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Dl 

D2 

D3 

D4 

D5 

D6 

D7 

D8 

D9 

DlO 

2.: Wij ( 5ij - S ij )2 

~ Wij (d.ij - ciij)2. 

As D6 with Wij = k 

Sakal and Rohlf (1.962) 
Kruska1 and Carroll (1969) 

Guttman (1968) 

Gower (1966,1970) 

Jardine et al (1967) 

Har"tigan (1967) 

Anderson (1971) 

Shepard(1962) 
Thompson and Woodbury (1970) 

Sammon (1969) 

Kruskal (1964) 
Kruskal and Carroll (1969) 

where f(djj) is some IIregression" function 
Kruskal and Carroll (1969) 

N~I z.[d.ij/~ij]2o. [N-' ~ (dij)2(o..-b)]b/(o.-b) 

[N- ' ~ (d.ij)2<.o..-b)]o../(o--b\ 

with a=O.S, b=l or a=b=0.5 

Figure 5.57 

Some measures of distortion 

Hartigan (1977,1978) discusses a range of different 

statistics, indicating the difficulty of obtaining 

distributional results In many cases. Other approaches 

have been described by Beale (1969), Calinski and 



HIERARCHICAL CLUSTER ANALYSIS Page 5-145 

Harabasz (1974) and Mojena (1977). 

It seems unlikely that any criteria will find widespread 

acceptance in a strict hypothesis-testing sense, because 

of the difficulty of anticipating the behaviour of 

relevant statistics under the diversity of different 

structures which may be present in the data. However, 

if used with discretion, such tests are of use in the 

investigation of a data set. 

5.11 PROPERTIES OF CLUSTERING PROCEDURES 

Some of the measures just described were concerned with 

providing some, protection against finding groups In the 

data when, in fac-t, none were present. If t.his can be 

regarded as analogous to seeking to control the error of 

the first kind 1n hypothesis-testing, it 1S also 

relevant to investigate something corresponding to an 

error of the second kind: if a particular type of 

structure is present in the data, it should be detected. 

One approach to this problem has been by simulation 

studies: investigators have examined the manner ln 

which various clustering criteri~ have analysed data 
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sets whose structure was known. 

Thus, for example, Cunningham and Ogilvie (1972) 

investigated the performance of seven of the clustering 

algorithms in recovering the structure in SlX artificial 

data sets, each of which contained twenty objects. The 

data were: (i) random: four groups of five objects, the 

configuration within each group being identical, and the 

groups being either (ii) well-seperated, or (iii) close 

together: data whose dissimilarities were specified by 

dendrograms which (iv) depicted distict groups, or (v) 

indicated chaining: (vi) dissimilarities were obtained 

by distorting slightly the dissimilarities obtained In 

the fifth data set. Cunningham and Ogilvie (1972) 

reported that the Group Average method was usually at 

least as efficient as the other methods in recovering 

the underlying structure. 

Kuiper and Fisher (1975) examined the performance of six 

of the sarne algori thms in' analysing bivariate and 

multivariate normal samples, concluding that the Nearest 

Neighbour performed poorly and the Incremental Sum of 

Squares methods performed well if there were an equal 

number of objects from each population, but less well 
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for unequal samples. Other studies were reported by 

Sneath (1966) and Baker and Hubert (1975). 

Simulation studies of this kind can be of assistance . 
J.n 

indicating the properties of different clustering 

cri-teria, and possibly in identifying unreliable 

criteria. However, it is unlikely that they will be of 

more than limited usefulness. No single clustering 

criterion can be guaranteed ~o detect correctly all 

types of structure in data, and even if the most 

appropriate procedure were known for every conceivable 

type of structure, the problem remains that in general 

the precise form of data is not known prior to the 

analysis: it is precisely in order to establish thjs 

that the investigation is undertaken. 

5.11.1 A Theoretical Comparison Against Required Criteria 

The following discussion assumes a degree of information 

about the data, or the required properties of the 

classification. In the context of taxonomy Jardine and 

Sibson (1971) regarded classification as the mapping 

from a data set A to a target set Z: 
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D :A-+Z 

The mapping from a set of dissimilarities (dij) into a 

set of transformed dissimilarities (gij) corresponding 

to a dendrogram can be represented by the transformation 

..... 
D :d~ d 

A 

where (dU) satisfy the ultrametric inequality, i.e. 

A A A 
dik~max(dij,djk) for all objects i,j,k 

Jardine and Sibson (1971) presented a more general 

axiomatic formulation specifying various properties 

which one might require of the function D and the data 

set and target set. For example: 

(i) The method must not depend on any prior labelling of 

the objects. 

(ii) The method must not depend on any scale factoroc: 

D(cxd) = ceDed) 

(iii) Preservation of clusters: if dE. A, then there 

exists d'E Z such that d'~d[D{d)~d]. The rationale being 
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that a maximal linked set at level h in d may have other 

objects added to it at the same level in D(d), but it 

must not be broken up. 

(iv) In order to be able to investigate the effect of 

small changes in the input dissimilarity matrix, the 

mapping should be continuous: small changes in the 

dissimilarities should not give rise to large changes in 

the classification. 

A fuller list of conditions, with discussion, was given 

by Jardine and Sibson (1971, Chapter 9). These authors 

showed that if the mapping is specified in the above 

way, from a set of dissimilarity coefficients to a set 

of ultrametric dissimilarities, then the Nearest 

Neighbour method is the only classification method that 

satisfies their list of axioms. Other authors have 

investigated Jardine and Sibsons axioms, and few have 

regarded them as sufficiently important as to so 

restrict the acceptable classification methods. In 

particular, it has been qu"eried \·.rhether continuity 

(axiom iv above) should be required as a global property 

of a clustering method (Cormack J.97l). 

clustering methods other than Nearest 

subject to discontinuities when analysing 

Hierarchical 

Neighbour are 

certain data 
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sets, but this should not necessarily rule out thir use. 

Axiomatic characterisations of other clustering methods 

would be a valuable development, but these would appear 

to be a very difficult to obtain. Wright (1973) gave a 

list of properties which are satisfied by a sum of 

squares criterion; but did not prove that these 

properties give a unique characterisation of the method. 

In the absence of complete axiomatisations of each 

clustering method, such listings of the properties of 

each method can provide useful information. Relevant_ 

related work is the admissability approach of Fisher and 

Van Ness (1971) and Van Ness (1973). Drawing the 

concept of admissability from decision theory, these 

authors gave various properties which one might expect 

"reasonable" clustering procedures, or the groups 

obtained from applying these procedures, to possess. If 

A denotes some property to be satisfied, then any 

procedure which s2tisfies A . 
15 called A-admissable . 

Some of the properties introduced by Fisher and Van Ness 

(1971) are listed below: 
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(1) Convex admissibility: a partition into clusters C'I 

• I C9 is said to be convex admissible if the 

convex hulls of C II C 2 , "/C g do not intersect (this 

condition requires that the original form of the data be 

such that each object can be represented by a point in 

some Euclidean space). 

(2) Point proportion admissibility: a procedure is said 

to be point proportion admissible if duplicating one or 

more objects any number of times and redpplying the 

procedure to the modified data set does not alter the 

boundaries of the clusters obtained. 

(3) Cluster omlSSlon admissibility: suppose that a 

c 1 us·t e ring procedure produces a partition into g 

clusters, C 1 IC 2 " •• ,Cg , and all objects in anyone of 

these clusters, say Cjt are removed from the data set/ 

then the reduced data set is re-analysed to obtain the 

optimal (g-l) clusters using tlle same procedure. If the 

(g--l) clusters obtained are always (Cj (i==l, .. "gii~j)), 

the procedure is scid to be cluster omission admissible. 

(4) Monotone admissibility: a procedure is monotone 

admissible if applying a monotone transformation to each 

element of the dissimilarity (or similarity) matrix does 

not change the resulting clustering. 
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(5) Well-structured (g-group) admissibility: data are 

defined to be well-structured (g-group) if there exists 

a partition into 9 groups for which all within-group 

dissimilarities are smaller than all between-group 

dissimilarities. A clustering procedure 1S 

well-structured g-group admissible if it produces the 

correct partition into g groups whenever it . 
1S applien 

to data \vhich are well-structured (g-group). 

The rationale of Fisher and Van Ness's admissibility 

approach is that it is not usually possible to specify a 

single "best" clustering procedure, but using their data 

one may select a procedure with known characteristics. 

Clustering Admissibility condition 
Procedure I 2 3 4 5 

N.N. No Yes Yes Yes Yes 
F.N. No Yes Yes Yes Yes 
G.A. No No Yes No Yes 
Centroid No No YI?S No No 
I.S.S. Yes No Yes No No 

Figure 5.58 

Admissibility table of some clustering strategies 
(see text for details of conditions) 

Figure 5.S8, adapted from Fisher and Van Ness (1971) and 

Van Ness (1973), summarises admissibility properties of 

five clustering strategies. Such tables may be used as 
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follows: if one wanted to use a clustering procedure 

which was point proportion admissible and monotone 

admissible, one should not use either the Incremental 

Sum of Squares or the Group Average procedures. If 

restricting attention to the criteria described i~ 

figure 5.58 one would analyse the data either by the 

Nearest Neighbour or Furthest Neighbour method, or 

preferably both. 

The admissiblity approach assumes one has some 

information on the form of data to allow one to reduce 

the number of clustering criteria which have to be 

considered. This information orten need only be of a 

very vague nature, but sometimes even such limited 

information is not available and other approaches to 

classification are required. 

5.12 COMPARATIVE STUDIES 

The previous statistical investigations have possibly 

over-emphasised the extent to which clustering criteria 

impose their own st.ructure on da ta. As Cormack (1971 ) 

remarks, lIif clusters are really distinct, it would be 

hoped tha·t any strategy worthy of use would find them". 
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'l'he converse to thi s argument has been suggested by a 

number of authors: . -1f the results of several different 

classification procedures agree closely, then one has 

more confidence in the reality of any group structure 

which is indicated; it is less likely to be purely an 

artifact of the classification criteria used. A wj.de 

range of comparitive st.udies have been carried out. 

Various authors have been concerned: 

(i) to examine the effects of using different measures 

of dissimilarity possibly based on different 

standardisations of data, or on different subsets of the 

variables; 

(ii) to compare the results of applying different 

clustering and/or geometrical procedures to the same 

data set, or to compare the results suggested by 

numerical classification procedures with classifications 

obtained by traditional, non--nlunerical methods. 

Typical of these studies are Sokal and Michener (1967), 

Moss (1968), and Boyce (1969).° 

Such compari t.ive studies can provide useful information 

about the properties of different clustering methods and 
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measures of dissimilarity in much the same way as the 

simulation studies described previously. However, when 

the aim is to obtain an assessment of the structure in 

the data revealed by different clustering methods, most 

measures of resemblance between partitions, or between 

dendrograms, 

similarities 

do 

of 

not explici.tly specify where the 

the classifications lie: these 

similarities have tended to be assessed by eye. More 

formal methods of comparison have been proposed by Adams 

(1972). 

Probably t.he most fruitful comparative studies to date 

have been those which have combined clustering with 

geometrical methods of analysis. This is undoubtedly 

because the relative strengths and weaknesses of the two 

approaches are largely complimentary. Thus, geometrical 

methods do not force a group structure on the data, 

allowing the observer to assess whether the points fall 

naturally into distinct clusters. On the other hand, 

the assessment by eye of two- or three-dimensional 

representations can be subjec~ive, and it is profitable 

to examine whether partitioning the data using some 

clustering criterion indicates the same groups as appear 

to be present in the geometrical representation. 
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Many clustering and geometrical classification methods 

appear to be complimentary in another way, in that 

studies indicate that clustering methods tend to be more 

reliable in depicting lOvler level differences bet\tleen 

objects, whereas geometrical representations generally 

portray the group relationships more reliably. As will 

be illustrated later a combination of the two approaches 

can prove helpful ln uncovering the structure ln 

multivariate data. 

Classification can be a means of reducing large amounts 

of data to manageable summary form. As the volume and 

compexity of data increase, the human brain becomes less 

able to hold in balance all the different factors which 

are relevant to the assessment of the data. HAGlC 

performs this balancing act, and hence helps the 

designer to gain insights into the structure of ~is 

data. 
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6.1 NONHIERARCHICAL CLUSTER ANALYSIS 

For a data set of m entities the hierarchical methods of 

chapter 5 give m nested classifications ranging from m 

clusters of one member each to one cluster of m members. 

This chapter describes clustering techniques which 

produce a single classification of k clusters, where k 

is either specified a priori or is determined as part of 

the clustering method. 

The concept in the majority of these methods is to 

choose some initial partition of the activity data and 

then alter cluster membership so as to obtain a better 

partition. The various algorithms which have been 

proposed in the literature differ as to what constitutes 

a "better" partition and what methods may be used for 

effecting the improvements, but the broad concept for 

all methods is very similar to that underlying the 



EUCLIDEAN CLUSTER ANALYSIS Page 6-158 

steepest descent algorithms used for unconstrained 

optimisation in nonlinear programming. Such algori thIns 

begin with an initial point and then generate a sequence 

of moves from one point to another, each giving an 

improved value of the objec~ive function, until a local 

optimum . 
1S found. In terms of the exploratory data 

analysis approach adopted by MAGIC the techniques may 

also be compared to the plotting of scatter diagrams. 

The plotting of these diagrams is a traditional approach 

to finding patterns in data, but it is essentially a 

two-dimensional technique (which may be extended to 

three dimensions with some difficulty). As used in 

MAGIC nonhierarchical cluster analysis may be regarded 

as an exploratory technique for doing in n dimensions 

some of the things that scatter diagrams do so well 1n 

two dimensions. 

Compared with the hierarchical techniques, 

nonhierarchical clustering methods optimise intra-group 

homogeneity, as distinct from optimising a hie~archical 

route from individual elements to population. The 

methods of nonhierarchical cluster analysis possess the 

theoretical advantage that they admit the relocation of 

elements, which thus allows a poor initial partition to 

be corrected at a later stage. All hierarchical 
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strategies suffer from what has become known as the 

" migration problem": links vlhich were correctly made in 

the early stages of the process may later prove 

unprofitable . ln so far as they eventually lead to the 

possible rnisclassification of elements further down the 

tree. 

/ 
A nonhierarchical clustering system will, principle, 

consist of four distinct processes, as follows: 

(i) a method of initiating clusters; 

(ii) a method of allocating new elements to existing 

clusters, and/or of fusing existing clusters: 

(iii) a method of determining when further allocation 

may be regarded as unprofitable, so that certain 

elements relnain unallocated as single-element clusters; 

(iv) a method of reallocating some or all of the 

elements to existing clusters when the maln 

classificatory process lS completed, thus redressing any 

misclassification produced by the "migration" process 

referred to above. 
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All systems necessarily involve (i) and (ii): but in anv 
~ 

particular system either (iii) or (~v), or both, may be 

lacking. The differences between methods lie primarily 

in the method of initiation employed, and the criteria 

used for reallocation. The following general discussion 

of specific strategies 1S thus organised from the 

standpoint of (i) and (iv) above. 

6.2 INITIAL CONFIGURATIONS 

All of the methods discussed here begin with an • initial ' 

partition of the elements into groups, or with a set of 

seed points around which clusters may be formed. The 

majority of techniques begin by establishing a set of k 

seed points in the p-dimensional space, which act as 

initial estimates of cluster centres around which the 

set of m elements can be grouped. The problem of 

deciding an appropriate value of k for any set of data 

is discussed in section 6.5. The following methods are 

representative examples of how such seed points may be 

generated. 

(i) the simplest procedure is to choose the first k 

elements in the data set (MacQueen 1967) 
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(ii) ca vi:lIiation is to subjectively choose any k 

-el'ementB from ,t.he data set. 

{ili) a £urther variation is to label the data elements 

IInm l to ~ and choose those labelled m/k, 2m/k, "., 

\Ck-~ lm/k , and m. 

:(iv) label the data elements from 1 to m and choose 

those corresFonding to k different random numbers in the 

range l to m (McRae 1971). 

,(w) 'take :any .parti tion of the data elements into k 

lTllltuaTly exclusive groups and 

~entroids as seed points (Forgey 

compute the group 

1965). Methods of 

generating such partitions are discussed in section 6.3. 

(vl) Beale (1969) sets up cluster centres regularly 

spaced at intervals of one standard deviation on each 

variable. MAGIC adopts a variation of this method by 

randomly choosing cluster centres within the ~ange 

between the maXlmum and minimum observed values on each 

variable. Full details of the complete clustering 

ulgorithm used in MAGIC are given in section 6.6. 

, 
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This list of methods is not exhaustive, but does provide 

the basis to enable a number of observations to be made. 

The methods in which every seed point is itself a data 

unit ensure that each cluster will have at least one 

member - other techniques need to include checks for 

II empty II clusters. Randomness is another important 

topic: all the methods described have elements of 

randomness, either through an implicit assumption of 

random ordering of data elements within the data set, or 

through explicit random selection. In terms of 

exploratory data analysis it is not randomness per se 

that is of interest but indifference: that is, the goal 

is an initial configuration free of overt bias. 

Ultimately indifference is probably best effected 

through random selection, but the selection of the set 

of possibilities from which the random selections are 

made can also affect the problem. In MAGIC the method 

adopted makes a deliberate attempt to span the data set 

with seed points as such methods are less prone to 

distorted o~ badly balanced configurations than methods 

involving totally random selection. The adopted method 

is firther refined by the application of a "pseudo 

F-test", which is discussed in detail in sections 6.5 

and 6.6. 

,. 
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6.3 INITIAL PARTITIONS 

In some clustering methods the emphasis is laid on 

generating an initial partition of the data elements 

into k mutually exclusive clusters rather than finding a 

set of seed points, although in many cases a set of seed 

points is used in that process. Some methods of 

generating such partitions are considered here together 

with ways of allocating elements to clusters given an 

initial set of seed points. 

(i) For a given set of seed points, assign each element 

to the cluster built around the nearest seed point 

(Forgey 1965). The seed points remain stationary 

throughout the assignment of the full data set; 

consequently the resulting set of clusters lS 

independent of the sequence in which the elements are 

assigned. 

(ii) Given a set of seed points, let each seed point 

initially be a cluster of one member; then ass1gn 

elements one at a time to the cluster with the nearest 

centroid; after an element 1S assigned to a cluster 

update the centroid so that '"'-1L. is the true mean vector 

for all the data elements currently in that cluster 

(MacQueen 1967). 
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(iii) A hierarchical clustering rnethod may be used to 

obtain an initial partition. Wolfe (1970) uses the 

Incremental Sum of Squares method and Lance and Williams 

(1967) suggest using hierarchical methods on a subset of 

the data to obtain the nuclei for assignment of the 

remaining clusters. 

(iv) Random partitions may be devised for example, 

assign a data element to one of k clusters by generating 

a random number between one and k. Random allocation to 

groups is not a particularly useful method as the 

resulting groups have no properties of internal 

homogeneity and, indeed, are not clusters at all. 

(v) A further option may be to allow the program user to 

define an initial partition. Friedman and Rubin (1967) 

provide such an option, but although this may be of 

interest to the specialist user it could equally confuse 

the naive or occasional user. 

The distance measure used in all cases is the Euclidean 

metric. 
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6.4 RELOCATION TECHNIQUES 

Once an initial classification has been found a search 

is made for elements which may be reallocated to another 

cluster, in an attempt to optimise some clustering 

criterion. In general relocation proceeds by 

considering each element in turn for reassignment to 

another cluster, reassignment taking place if it causes 

an increase (or decrease in the case of minimisation) in 

the criterion value. The procedure continues until no 

further move of a single element causes any improvement. 

It is possible to reach local optima, and, in general 

there is no way of knowing if absolute maxima or minima 

have been achieved. A number of clustering criteria 

have been developed, based around the matrix equation 

T B + W 

The scatter of two variables is the inner product of 

their centred score vectors. The total scatter matrix T 

1S a square array in which the typical entry tij 
. 
1S the 

scatter of variables i and j computed over all elements 

in the data set. In a partition of the data set into k 

clusters, the within group scatter matrix for cluster k, 

of W
k

, has the typical entry Wijk' which is the scatter 

variables 1 and J computed over all data elements In 

cluster k: the within group scatter matrix for the 
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partition is 

The between group scatter matrix B has as its typical 

element blj = zmk,xik Xjk where Xik is the mean (centred 

about the grand mean in the data set) of the ith 

variable in the kth cluster, and mk is the number of 

data elements in the kth cluster. It can be shown that 

the three matrices satisfy the relation T = B + W, and a 

particularly important element in the definition of the 

various clustering criteria is the determinanta1 

equation fB - AWl = 0: the Ai solutions to this equation 

being the eigenvectors of the matrix W~B. 

Various authors (Friedman and Rubin 1967, MacRae 1971, 

Scott and Symons 1971, Marriott 1971) have proposed 

criteria for evaluating whether movements of individual 

data elements result in an overall improvement of a 

partition. Four principal criteria have emerged from 

these studies: 

(i) Minimise trace W. The trace of a matrix is the sum 

of its diagonal elements. It may be sho\"Tn that this 

criterion is the same as minimising the total within 

group sum of squares of the partition, since the 
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minimisation of tr(W) is equivalent to the maximisation 

of tr(B), as the fundamental matrix equation leads to 

trace (T) - trace (B) + trace (W) 

(ii) Minimise the ratio of the determinants \W\/IT\. 

This criterion is widely known as Wilks' lambda 

/ statistic (Wilks 1938). Since the matrix T is the same 

for all partitions, this criterion is equivalent to 

minimisig t wi· Another equivalent criterion . 
1S to 

maximise IT1/lwl \'Jhich may be shown t_o be equivalent to 
n 

maximising lI+\·r'B! or maximising .1T (1+ Ai.) • 
l· t 

(iii) f1aximise the largest eigenvalue of W-'B. This 

criterion is known as the largest root criterion. 

(iv) Maximise the trace of W-'B. This criterion is known 

as Hotelling's trace criterion and is equivalent to 

" maximising .L: Ai.. 
I"' I 

The technique adopted in MAGIC' follows the first method 

as there are at least two serious problems associated 

with criteria (ii), (iii) and (iv). The first problem 

1S that they involve the computation of eigenvalues at 

each stage which overshadows the rest of the method ln 
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terms of computational effort, and secondly, there are 

no clear statistical advantages in their use anyway. 

6.5 STOPPING RULES 

The problem of deciding the number of clusters present 

in the data has already been mentioned. In hierarchical 

techniques no clear indicator exists, although the 

examination of various dendrograms may provide an 

accurate enough empirical technique in our application. 

With the nonhierarchical methods several attempts to 

devise reasonable indicators have been made. For 

example, Beale (1969) gives an F- statistic 

F (c2' C I) = R (c I) -R (c 2.) / f(N-C I ) (~ )l/n I} 
R(c2) /\ N-cz c, 

based on p(c 2 -c,) and p(N-C 2 ) degrees of freedom. In 

this formula Rc = (N-C)S~ where S~ is the mean square 

deviation from cluster centres in the sample. A 

significant result indicates that a subdivision into c 2 

clusters is significantly better than a subdivision into 

some smaller number of clusters c l • This measure is 

used in MAGIC and is discussed further in section 6.6. 

Marriot (1971) has investigated the properties of the 

IWI criterion, as proposed by Friedman and Rubin (1967). 

He proposes the use of g.2IW I, where g is the number of 
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groups, as the indicator of group structure, taking as 

the correct number of groups the value of 

g2)W\ is a minimum. 

g for which 

The Wilks lambda criterion (above) forms a liklihood 

ratio test. To test the hypothesis of say c2 groups 

/ against that of c, groups it is possible to use the 

statistic -21ogA where A is the ratio of likelihoods, 

A = Lc /Lc ' which Wilks (1938) 
2 I showed, under certain 

constraints, is asymptotically distributed as chi-square 

with degrees of freedom equal to the difference in the 

number of parameters of the two hypotheses. 

6.6 THE STRATEGY ADOPTED IN MAGIC 

For any given number of clusters MAGIC generates 

coordinates for the centre of each cluster and assigns 

each element to one (and only one) cluster, attempting 

to minimise the sum of squares of the deviations of the 

elements from their respective cluster centres. 

Statistically this is equivalent to maximum likelihood 

if all clusters are assumed to be spherically normally 

distributed with a common variance. The distance 

measure used is the Euclidean metric, all observations 

being represented as points in n-dimensional space. 
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Given the grouping of observations into clusters, the 

centres should ideally be chosen at the means of the 

observations in each cluster. It is, however, difficult 

to determine the best grouping. What the progra.m does 

is find a grouping that cannot be improved by moving any 

single observation into another cluster, even if the 

cluster centres are repositioned after the 

re-assignment. 

Thus, if an observation in cluster J is at a distance 

d' J from its cluster centre, and at a distance d k from 

the centre of cluster k, then it is an improvement of 

the group1ng to it to cluster k if d~<d/·. 

But it may also be reassigned if 

< 
where nj and n k are the current numbers of observations 

. 1n clusters j and k . This criterion allows an 

improvement 1n many situations where the simpler 

criterion would not. 

Having found a solution with one number of clusters, 

MAGIC will look for a solution with one fewer clusters 

by finding the pair that can be amalgamated with the 
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. smallest 1ncrease . 
1n the sum of squares of deviations. 

That is to say, it minimises 

n j nkd j: / (n j +n k) 

where djk denotes the distance between the centres of 

clusters j and k whose amalgamation is being considered. 

This is used as a first trial solution for the new 

number of clusters; improved solutions are then found by 

reassigning individual points to other clusters as 

before. 

The program may find local optimum clusterings rather 

than global optima, particularly as it adopts a form of 

random initial group1ng. The amalgamation process 

overcomes many of the objections associated with random 

starting solutions and, by starting the process with 

three or more clusters more than are required the 

solutions for all relevant numbers of clusters should be 

good ones. 

Just what the "relevant number of clusters" 
. . 
1S 1S a 

difficult problem, already mentioned in passlng. Since 

the clusters are essentially descriptive statistics, und 

not based on any specific distributional form for the 

observations, the question cannot be answered precisely. 
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It . 
lS, however, possible to get some guidance as to 

whether . any glven set of data can reasonably be 

interpreted as c clusters. 

Suppose we have N observations in n dimensions, and let 

R(c) denote the residual sum of squares when the 

observations are divided into c clusters. One might 

then try an F-test to decide whether a subdivision into 

Cz clusters was significantly better than a subdivision 

having n(c2-c,) degrees of freedom. This test would be 

appropriate if, for any given number of clusters, the 

observations had been assigned to clusters a priori. 

But the fact that the points can be assigned so as to 

minimise R(c) means that this test always suggests that 

the larger number of clusters is very significantly 

better. 

Nevertheless, this approach may be modified to glve 

intuitively sensible results, by using a large sample 

correction factor for the expected reduction of R(c) as 

c increases in the absence of any definite clustering. 

Returning to the concept of the observations as points 

in n-dimensional space we may consider the observations 
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as a sample from a population covering a volume V 1n 

that space. The clusters will then divide this volume 

into c regions of approximately similar sizes such that 

all observations in a region form a cluster. So, if 0:2-c 

denotes the mean square distance from any point to the 

centre of its region, the value of ~2. will decrease as c 

increases according to 

where ko is some number that depends on V (and possibly 

n) but not on c. This implies that o-:=k~2,I", where k=ko2./n, 

i.e. another constraint independent of c. Hence, 

The term (N-c) is of little practical importance, being 

almost independent of c, but is logical as a Iidegrees of 

freedom II effect, since the cluster centres within each 

reg10n are chosen as the sample means. Hence 

E 

enabling us to compute the statistic quoted above 
. 1n 

section 6.5, i.e. 

R(c, )-R(C2.)/((~-C')(C2. \%-I} 
R(cz) \ N-c2. c\} 

and treat it as as F-ratio with n(c2- c l) and n(N-c 2 ) 

degrees of freedom. The statistic is computed for all 

C I < c 2 ~c rno.x ~ and if, for a g i v e n c I ' it 1S significant 

for c
Z

' we may say that the representation in terms of 



EUCLIDEAN CLUSTER ANALYSIS Page 6--1 74 

is not entirely adequate. In practice the 

significance level does not usually depend much on C2 

for c 2 > c,+2. 

6.7 THE IMPLEMENTArJ'ION OF THE ALGORITHM 

(l) Allocate the points Xij to the clus~er having the 

nearest centre. If this is the initial allocation the 

centres are chosen randomly between the maximum and 

minimum observed values on each variable. Distances are 
p 2-

calculated by d ij = L (x ik -x jk) /p. 
K&-I 

(2) After assignment redefine the cluster centres as the 

centroids of the clusters by 

( j = 1 , 2, . . P i k = 1 , 2, . . , C mC)..)(. ) 

in which n k represents the number of elements assigned 

to clust.er k, and are the coordinates of the kth 

cluster centre on the jth variable (axis). 

(3) At this stage the elements are moved in turn to 

other clusters to see if the total squared distance from 

the points to the cluster centres is reduced, when, at 

the same time, the cluster centres are themselves moved 

to take account of the relocation of the points. That 

is point i is moved from cluster j to cluster k if 
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If this condition is satisfied the move is made 

permanent and the values of Yjk recomputed as in step 

(2). vfuen no further moves produce any improvement that 

configuration provides the solution for CM~X clusters. 

(4) The number of clusters, c, is reduced by one unless 

c=c min ' in which case this stage is omitted. The pa1r 

of clusters to be merged 1S found by locating that 

combination of two clusters which minimises the increase 

in the squared deviations of the observations from their 

cluster centres, i.e. 

(i=l,c-li j=i+l,c) 

n, +nj 

This value is calculated for all (i,j) and the minimum 

chosen. If the minimum is found when i ml and j = m2 

then clusters ml and m2 are amalgamated and the centroid 

of the resulting cluster calculated as in step (2). 

(5) At this stage all clusterings have been performed 

for c . ~ c < c and associated residual sums of squares 
min ~ '" mo..x 

calculated for each c in the range, by 

RSS(c) = S~/p(n-c) 

where Sc is the root mean square deviation of points 

from the cluster centre, i.e. 
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where c is the current number of clusters and dik 18 the 

squared distance of the ith point from the centre of 

cluster k, to which it had been assigned, i.e. 

(i=l,n k ; k=l,c) 

These values may then be used to compute t.he F-ratio 

test 

F(nl,n2) ;;-; RSS(n2) - RSS(nl) I n-n2 .(nl ~2/p _ I 
RSS(nl) n-nl n2/ 

which has degrees of freedom of p(nl-n2) and p(n-nl). 

6.8 EXAMPLE OF EUCLIDEAN CLUSTERING 

The Euclidean clustering is illustrated by the output 

from MAGIC . uS1ng the Sneath and Sokal data set, as In 

the hierarchical clustering. Ten clusters were 

requested initially and figures 6.1 to 6.9 show the 

resulting clustering into ten groups down to two groups. 
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Figure 6.1 

Euclidean clustering - 10 groups 
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CLUSTERS t"iERGEO AT T'ri I S lTEP..ATION : lAND 
CLUSTER KfYEERS 
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Figure 6.2 

Euclidean clustering - 9 groups 
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CLlISTERS rws<GED AT THIS I TERATI ON t 5 A~~O 9 
(lJJSTER J£MEERS 

Figure 6.3 
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Euclidean clustering - 8 groups 

» 
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StEATH & SOY~ DATA 
RELAT I OHSH I P WITH 7 GROUPS 

CLUS1ERS MERGED AT THIS ITERATION I 3 AND 8 
CLUSTER tEHBERS 

Figure 6.4 
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Euclidean clustering - 7 groups 

» 
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Figure 6.5 

Euclidean clustering - 6 groups 
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1 AND 6 

» 
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stEATH & SOKAL DATA 
REl.ATI~ WITH 5 Gr<DUPS 

CLUSTERS ~tERGEO AT THIS ITERATION: 2 AND 3 
CLUSTER tEl'18ERS 
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Figure 6.6 

Euclidean clustering - 5 groups 
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St£A llt ~ SOKAL OA TA 
RELATIONSHIP WITH 4 GRO~ 

CLUSIERS I'iERGED AT THIS ~ATION: 1 AND 3 
CUJS I ER t'E:aBERS 
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Figure 6.7 

Euclidean clustering - 4 groups 
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SHEATH 8t SfYA DATA 
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1 1 2 3 4 5 678 
2 12 13 14 15 16 
3 9 10 11 

Figure 6.8 

Euclidean clustering - 3 groupS 
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1 AND 3 
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St£.ATH & SOKAL DATA 
RELATIONSHIP WITH 2 GROUPS 

CLUSTERS t1ERGED AT TH IS I TERAT ION: 
CLUSTER rtEMSERS 
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Figure 6.9 

Euclidean clustering - 2 groupS 
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2 AND 3 

» 
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CHAPTER 7 

ORDINATION TECHNIQUES 

7.1 INTRODUCTION 

The clustering methods described 1n the prevlous three 

chapters have concentrated on investigating the 

relationships within a set of objects by . . 1mpos1r.g some 

structure on the data the dendrogram tree or a set of 

partitions -- thus implying that the activities on which 

observations were recorded fall into one or more 

classes, which may be arranged either hierarchically or 

in the form of nonoverlapping clusters. This may be 

misleading for no such structure may actually exist in 

the data. It is therefore useful to make available 

methods of analysis which do not present their results 

1n such a clear cut way. Ordination methods do not 

require such assumptions, but instead attempt to 

represent the distance (dissimilarity) relationships 

among t.he activities a space of reduced 

dimensionulity. Any groupings present 1n the data 

should then be apparent from visual examinution of 
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scatter plots, provided that the distortion introduced 

by the low dimensional representatio~ is small and that 

the number of activities is not excessive. As Cormack 

(1971 p.340) remarks: 

forced into clusters, 

whether clusters exist ll
• 

"When the data have not been 

the observer can assess better 

This chapter describes several methods of analysing a 

set of objects, in which the basic aim is -to represent 

each object by a point in some Euclidean space so that 

the objects which are similar to one another are 

represented by points which are close together. The 

configuration of points is then investigated in an 

attempt to detect any underlying structure in the data. 

As the interpretation of high dimensional data 1S 

extremely difficult two or three dimensional 

representations are derived in such a way as to retaj.n 

as much of the high dimensional information as possible. 

There are various ways of measuring information loss, 

some of which are described later, but it should be 

noted that these measures are not used in any formal 

statistical manner as it is not appropriate to regard 

the data as com1ng from an underlying population with 

certain associated distributional properties. 
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As is the case with clustering methods several different 

techniques have been developed to achieve the same end 

result of a configuration of points representing 

activities. The techniques that transform the high 

dimensional data into a two or three dimensional space 

are generally known as mapping techniques, and fall into 

two distinct types: iterative and noniterative. The 

noniterative mapping is a unlque representation 

calculated by a precise mathematical formula. The 

iterative techniques utilise search procedures to 

determine the low dimensional representation through a 

series of transformations. 

This chapter discusses a number of techniques, 
. . examlnlng 

the advantages and disadvantages of each method. The 

general problems involved in the representation and 

interpretation of data in two dimensional space are also 

discussed. Two particular ordination techniques are 

incorporated in MAGIC and are described in detail in 

chapters 8 and 9. 
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7.2 SIHPLE ORI:'INATION 

This method of reducing the dimensionality of data 1S 

perhaps the simplest possible as it only involves 

arithmetic operations on the data, and, as it introduces 

a number of basic concepts is described in some detail 

here. TI1e basic idea is as follows. From the original 

high dimensional space, choose the two points that are 

furthest apart. Let those two points be denoted by X~ 

and X b • A straight line passing through the two points 

is chosen as the first ordination axis. To determine 

the second ordination aXls, a straight line 

perpendicular to the first and passlng through a third 

point, denoted by Xc' that 1S furthest removed from the 

first axis, is constructed. villen the projections of the 

points ln the original space are plotted on these two 

new axes, the resulting two dimensional display 

represents a projection of the high dimensional data 

into a space defined by the two ordination axes. The 

proj ection of the points into a k-space (k >,2) can be 

similarly accomplished utilising k new ordination axes. 
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7.2.1 Efficiency Of The Method 

The reduction of dimensionality from the original space 

to a 2-space is achieved at the expense of distance 

relationships between the points. Since the distance 

relationship cannot be exactly preserved, it is of 

interest t-o determine the amount of distortion resul ting 

from this technique. The distortion due to projecting 

the points onto the two ordination axes is maximum when 

the first axis coincides with the direction of maximum 

variation between the points and the second axis 
. 
lS so 

positioned that it accounts for a maximum portion of the 

variation of the points. 

To determine the efficiency of the simple ordination 

method it 1S possible to examine how each of the two 

ordination axes accounts for the interpoint distances. 

First, if h orthogonal axes were constructed, the 

distance relationship is preserved exactly. That is, 

A 

d ij d ij 

where 

and 
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However only the first two ordination axes are 

constructed giving 

where 

The efficiency of the kth axis (k = 1,2) in accounting 

for the original interpoint distances can be defined by 

the ratio 

.:E d .. k r k - i<j lJ, i - I, 2, and k - 1,2 
Z d.2

. 
i< j lJ 

where d·· k I) , = Yik - Yjk which is the difference between 

the projection of Xi and that of Xj onto the kth axis. 

The sum of the two ratios 

expresses the overall efficiency of the two ordination 

axes in accounting for the interpoint distances. 

Another method for determining the efficiency of the 

ordination axes is to define an error function E. This 

function should measure how well the N vectors in the 

2-space fit with the N vectors in the h-space on the 

basis of the interpoint distances. One such error 
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function 1S defined by 

E 
A 

f( d .. lJ 

1 
. A 

2d' . 
i<j IJ 

. . 
I<J 

A 
I d .. 
\ IJ 
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- d ij) 
2 

/\ 

dij 

A smaller value of E means a good fit and the 

corresponding axes may be considered to be efficient. 

Other error functions of this type may be similarly 

defined. The measure above is the one used in the 

Nonlinear Mapping described in chapter 8. 

7.3 PRINCIPAL COMPONENTS 

There is an obvious deficiency with the simple 

ordination method. The mapping of the N points from the 

h-space into the 2-space is determined by only three 

reference points. Clearly, if some structural 

relationship is to be preserved, the entire collection 

of the N points, or a characteristic summary of these 

points f should be used. The method of pr irlcipal 

components is one solution to this problem. 

Let a typical point Xi 1n the h-- space be represented by 

X i = (x iI' x i 1 , .•.• I x ih ) 

Given a collection of N such points In the h~space, 
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these N points can be represented by an h x N matrix X. 

x X 2.1 . . . x 
\I Nt 

x ,2 X 1.2 . . . X N2 

X -

x
1h 

x 
2.h 

x 
Nhj 

Each column of the matrix represents a data point in the 

h-space. Let the sample mean of the N points be X where 

N 

X - liN z: X i i-. 
with the kth component ln X calculated by 

_ N 

x k == 1 IN.::E XJ"k 
Jet 

Each point Xjmeasured as a deviation from the sample 

mean is denoted by 

-
Xj - X -

The N points as measured from X can be represented by a 

matrix Xc 

-- x I 

- X l. 
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The total scatter matrix (with respect to the centroid) 

may be defined as 

The element Su in the matrix S 1S calculated by 

N 

L. (x k' - ) (xkj x·) s· . X· -I) k=1 I I J 
N 

~xk,xk' Nx'x' . . 
I, ... I h - - 1,J -

k-I I J I J 

To map a point in the h-space to a point 1n the d-space 

(d=2 for a two-dimensional display), an origin and d 

orthogonal axes pass1ng through the or1g1n must be 

selected. Assuming d axes are selected such that the 

sum of squares of the projections from the points to the 

axes 1S a minimum, it can be shown the d axes pass 

through the centre of gravity of the N points. 

Furthermore, the sum of squares of the projections onto 

. 
the d axes defined by d orthogonal vectors Q". ·,Qd 1S 

h 
LS" 

i .. 1 Ii 

c:l 
~Q.t SQ' 
. I I 
1= , 

Minimising this expression is equivalent to maximising 

This maX1mum is obtained if the d axes are 

chosen to satisfy 

0i = Pi i = 1, ... , d 

where Pi ' i = 1, • • • I d, are the first d eigenvectors 

of the scatter matrix S. 
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'l'he actual representation of the N points . 
ln the 

d-dimensional space, defined by the d eigenvectors PI' 

... , Pdl is accomplished by computing the d coordinates 

for each point Xi and forming the vector Yj • 

The N points in the d-space can be represented by a Y 

matrix. 

PIX, P, X 2. 

P2. XI P2 X 2 

Y - . . . 
. . . 

PdX, Pd X 2 

To plot the N points in a two-dimensional space with the 

centre of gravity as the . . orlgln, the first t-wo 

coordinates of N points are computed. This corresponds 

to the first two rows of the Y matrix. Transferring the 

origin to the centre of gravity 

the two coordinates of the N points in the 2-space are 

obtained 
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7.3.1 A Brief Critique Of Principal Components 

Although an improvement on simple ordination insofar as 

all the data set . 
1S considered Principal Components 

Analysis is still not without its problems. Scaling, 

for example, affects the results, and, unless all the 

variates in X are measured in the same units, different 

results will be obtained for a change in scale. 

Principal Components Analysis is not alone in this and 

the effect of scale is discussed in section 7.7.2, 

however it is worth noting now that the distance 

measures used in 7.2.1 and 7.3 11ave nonsensical physical 

dimensions when the variates are measured in different 

scales. To evade this difficulty it is common practice 

to normalise variates by dividing each by its sample 

standard error. Bartlett (1951) discusses the effect of 

normalisation. Other normalisers could equally well be 

used: Jolicoeur (1963), for instance, has shown that a 

simple logarithmic transformation of all the variates 

will also eliminate the effects of scaling. None of 

these techniques, however, are entirely satisfactory 

when we know that the majority of our data is measured 

on different scales. The solution adopted in t11lGIC 

makes use of Gower's General Coefficient of Similarity, 

described In 4.5.3, and an extension of Principal 

Components Analysis, known as Principal Coordinates 
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Analysis, especially developed to operate on mixed data 

sets. 

7.3.2 Principal Coordinates Analysis 

This technique was developed by Gower (1966). The 

starting point . 
1S the matrix D of dissimilarity 

coefficients (such as Euclidean distances) which 1S 

transformed into the matrix E by the relationship 

e· . IJ 
:2.. 

- -O. 5d ij 

Alternatively a matrix of similarity coefficients E can 

be computed. In MAGIC Gower's general similarity 

coefficient is used. This has the advantages that (i) 

it can handle quantitative, binary or qualitative 

variables, and (ii) the resulting matrix E 1S always 

synunetrical and positive semi-definite, that i.s, the n 

objects can be represented as a set of points in 

Euclidean space (Sneath and Sokal 1973, p. 136). The 

coefficients e·· are computed seperately for the three 
Ij 

types of variable and are then weighted by the 

reciprocal of the number of variables involved and the 

resulting values summed. That is, 

Q I Q + e 8 ,.J. IpS + eMiJ· /pl\\ e ij = e ij P 

where eGij, eSij and eMjj are the values of the coefficient 

for quantitative, binary and multistate variarles 
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respectively and pQ, pB,and pM are the numbers of such 

variables. 

E is then modified so that the mean of each row and 

column is removed, since the mean is unimportant in the 

determination of the distance between any two points. 

The modified matrix F = (fij) is obtained by 

--eo + e 
J 

where ei' ej and e are the means of the ith column and 

the jth row, and the overall mean, respectively. A 

specified number of the largest eigenvalues of F, and 

the corresponding eigenvectors are then determined. The 

magnitude of the kth eigenvalue glves the relative 

importance of the kth dimension in the determination of 

the variation In interpoint distances. Published 

results (e g. Blackith and Reyment, 1971, p. 167) 

indicate that much of this variation is contained in the 

first. two or three dimensions. The eigenvectors glve 

the coordinates of the n points. These coordinates may 

then be plotted. A more extended discussion of this 

method is contained in chapter 9. 
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7.4 MULTIDIMENSIONAL SCALING 

An alternative approach to ordination argues that 

because of the problems in deriving dissimilarities, 

their precise values are unreliable, and may contain 

little useful information beyond their rank ordering. 

This is the only information about the dissimilarities 

used ln the method of nonmetric multidimensional scaling 

developed by Shepard (1962a,b) and Kruskal (1964a, b) . 

As much use is made of this method in quantitative 

psychology to reduce the dimensionality of problems and 

a large literature has developed it is worth lookir!g at 

this often ill-understood and misapplied technique ln 

some detail. A brief history of the early work ln 

multidimensional scaling is given by Shepard (1972). 

The technique, in essence, follows the basic ordination 

use of an error function to method of 7.2 with the 

assess goodness of fit. There are a number of 

alternative formulations, but the following derivation 

is based on Lingoes and Roskam (1973). 



ORDINATION TECHNIQUES Page 7-200 

7.4.1 The Underlying Assumptions 

Shepard (1962a,b) argued that in obtaining a geometrical 

representation, one wanted to ensure that the interpoint 

distances (a ij ) were monotonically related to the given 

dissimilarities ( d' . ) • 
I J ' the relationship might not be 

exactly monotone for distances based on a 

low-·dimensional configuration of points, but one wanted 

to ensure that, on the whole, the larger the 

dissimilarity, the larger the corresponding distance. 

This monotonic model means that it is not assumed that 

the set of dissimilarities contains any metric 

information: all that is used is their rank ordering. 

The method has thus been called a nonmetric 

multidimensional scaling method, but as the result j.s a 

geometrical configuration of points - which cert2inly 

contains metric information it may be more 

appropriately described as an ordinal scaling method. 

Shepard (1962a,b) presented a heuristic algorithm for 

seeking a configuration approximately satisfying the 

monotonicity requirement; his approach did not involve 

an explicit minimisation of some function me2suring the 
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departure from perfect monotonicity between 

dissimilarities and dist.ances. These ideas were 

formalised by Kruskal (l964a,b), who proposed the method 

of least squares monotone regression. This is a general 

method of comparing two sequences of real numbers, and 

it will be convenient to introduce it in a general 

context before discussing its application to compar1ng 

sets of dissimilarities and distances. 

Assume that a, band c are three sequences, each 

containing m real numbers, (ai' .... ,am ), (b l , •••. ,bm ) 

respectively. In the following 

description, a 1S a sequence in which only the ordering 

lS of interest: a and b will later be identified with 

(d ij ) and -(d ij) , respectively; c is a sequence which 

will be used in the comparison of a and b. 

Two possible definitions of monotonicity are: 

(i) c is primarily monotone increasing (PMI) over a if 

(l~k/l~m) 

(ii) c is secondarily monotone increasing (SMI) over a 

if 
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(l~k,l~m) 

These two definitions of monotonicity differ only , 
In 

their treatment of tl'es l'n the s equence a.. In the 

secondary definition, these ties must be preserved in c: 

if ak equals al' then ck must equal cl. In the primary 

definition of monotonicity, ties in a may be broken 
, 
In 

either direction in c. 

Having defined monotonicity, c is required to be 

monotone (either PHI or SMI) over a and, subject to this 

constraint, to resemble b as closely as possible. An 

example may clarify this idea. Assume that a -

(1,2,4,4,6,8,9,10,11,15) and b --

(1,4,5,6,7,8,12,13,13,14). The points {( a k' b k) , 

k=l, .... ,101 are plotted as crosses in figur-e 7 . 1 . 



10 
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10 

Figure 7.1 

A plot of the artificial sequence (ak ,bk ),k=1, .•• ,10 

described in the text, and the secondary least squares 

monotone regression c of b on a: the poi~ts (ak,bk ) 

and (ak,c
k

) are represented by crosses and open circles 

15 
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If the monotonicity requirement is PMI, t.he equality 

between a 3 and a4 can be broken, and by choosing ck = 

bk(k=l, .... 10) perfect resemblance between c and b, with 

c satisfying the primary monotonicity requirement 1S 

obtained. If the monotonicity requirement is 8MI it 1S 

necessary for c 3 =c4 , and - because b 3 does not equal b~ 

- a perfect resemblance between c and b is not possible. 

To determine the optimal shared value for c 3 and c 4 a 

definition of what is meant by the requirement that c 

should resemble b lias closely as possible" 15 necessary. 

To measure the departure from a perfect fit Kruskal 

(1964a) suggested that a sum of squares criterion should 

be used: 

rn 2-

s* ( C ) = ,,~( b k - c k) 

This criterion will be minimised when c 3 and c 4 are both 

chosen to be 5.5, the mean of b 3 and b~: in the general 

solution, c will be split up into a set of blocks 

containing elements with consecutive indices, e.g. 

( c c c) such that each element in the block 
r+I' r~2""" s I 

equals the mean of the corresponding set of values in b 

- in this case 

Ie:.. r-+, 

and such that the common value increases from block to 

block. 
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For given sequences a and b, the sequence c which 

reduces S*(c) to its minimum value (S*, say) subject to 

being PMI (8MI) over a is called the prlmary (secondary) 

least squares monotone regression of b on a; S~ is 

called the primary (secondary) raw stress. The 

secondary least squares monotone regression c of b on a 

for the artificial example . 
18 shown by the set of open 

circles in figure 7.1. The form of the regress10n 

"function" in between successive circles is only 

required to be monotone increasing; for illustrative 

purposes, straight line sections have been dravn in 

figure 7.1. 

The description thus far has been in terms of computing 

a pa1r of sequences, a and b, and the least squares 

monotone regression method may be regarded as an 

alternative to other regression methods. However, the 

theory may also be applied to compar1ng a set of 

dissimilarities (d i j ) 
"... 

and a set of distances (d ij). 

Thus, the m(=lO) elements of a could be the n(n-l)/2 (= 

10 for n = 5) pairwise dissimilarities for a set of five 

objects, and the elements of b could be the interpoint 

distances for five points representing the same five 

objects. 
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This provides a method of measuring, in terms of raw 

stress S* , the resemblance between given sets of 

dissimilarities (dij) and distances (dij). The value of 

S* is not invariant under uniform dilation of the 

geometrical configuration; this undesirable property 1S 

removed by dividing by a normalising factor, T* = A 

2. d.~ . 
IJ 

Then, the normalised stress is defined by 

Stress, S = {S* /T*).t [:L(dij~.'-C ij )2] Y2. 

Ld .. 
IJ 

thus ensuring that S is bounded by 0 and 1. In this 

. express10n, (c ij ) is the (primary/secondary) least 

"'" squares monotone regression of (d ij) on (dij)' i.e. the 

set of values which minimises S*(c) subject to being 

(primarily/secondarily) monotone increasing over (d~j); 

the summation being taken over all (or some) of the 

pairs of values (i,j). It 1S possible to formalise this 

description into a general model. 

7.4.2 A General Model 

The following terms and matrices are used: 

(1) P = a r-element array or vector of arbitrary indices 

of similarity or dissimilarity between all pa1rs of n 

r = Objects or variables, having general element p ij I 

O.5n(n-l) and the r pairs of subscipts are generated by 

" 
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taking for each first subscript i a second subscript j = 

i+l, i+2, .... ,n{i = 1,2, .... ,n-l}. Thus the elements of 

a n-square matrix of relations on pairs of objects 

(where Pij=Pji) are systematically ordered in an array. 

Both the diagonal of this matrix and one half of the 

off-diagonal elements are ignored. 

(2) A = a r-element vector of real numbers with elements 

6ij= f{Pij)' such that whenever Pij)PkL (for similarity 

data) or P ij < P kL (for dissimilarities) then ei ther: 

(a) 6ij < 0k.l{semi-strong monotonicity when some Pare 

tied and strong monotonicity when there are no ties 
. 1n 

p) or (b) ~ij ~ dkl (weak monotonicjty for no ties in P 

and semi-weak monotonicity when ties exist in p), for 

all i,j,k, and 1, where i :F j and k =J:. 1, i.e. 6 ~ P 

monotonically. The ~ vector represents a monotonic 

transformation of the P vector having certain 

statistical properties in addition to the mathematical 

ones defined above, whose function 1S to weight the 

iterations for moving the configuration towards its goal 

and to form the basis for evaluating progress at any 

given iteration (see (6) below). 

(3) X = a nxm matrix of rectangular coordinates (the 

configuration), where m is the number of dimensions. 
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(4) D = a r-element vector of distances calculated from 

X among the n points embedded . 
1n a Euclidean space 

according to the standard distance formula: 

(5) 

Now, given P, some initial configuration X, a fixed m, 

and the distances calculated from (5) above, the problem 

of nonmetric multidimensional scaling can be formulated 

1n terms of the minimisation of a function of two sets 

of unknowns, namely D andA. To obtain the D as close 

as possible to the ~ (possibly with certain restrictions 

on the .6. vis-oa-vis the D) one obvious formulation is 2-n 

the form of a normalised least-squares function, 

context termed the loss function. Its value 1S denoted 

by L. The loss function is defined by: 

(6 ) L = (:i(d" - <5 0
' )2. / 4do 02.)'17._ 

ij IJ I) IJ I) 

This function is formally equivalent to Kruskal1s 

(1964a) stress, but (6) does not assume any particular 

definition of the A apart from (2). By its construction 

(6) 1S also similar to a function defined by Guttman 

(1968). 
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7.4.3 Nonlinear Mapping 

Nonlinear mapping, although developed independently by 

Sammon (1969), is similar both in concept and execution 

to multidimensional scaling methods in that n points . 
1.11 

a h-dimensional space are projected onto ad-dimensional 

subspace (d < h) wi th a minimum of distortion. Sammon's 

computational technique is somewhat simpler than that of 

Kruskal (l964b). The output consists of the values of a 

goodness of fit function, termed mapping error, and a 

two or three dimensional representation of interpoint 

relationships. Nonlinear . mappIng does not attempt to 

ensure monotonicity between observed dissimilarities and 

calculated distances: rather, the goodness of fit 

function measures the amount of distortion of interpoint 

distances introduced by mapping onto a d- (as opposed to 

a h-) dimensional space. The function minimised is: 

where " d" IJ lS 

1 
N;"o. 

Ld" . . IJ 
I<J 

N "" 
L (d ij 

. i<.j 
)

2-
- d" 'J 
/"-. 

d' . IJ 

an observed dissimilarity and dij a 

distance measured in a d-dimensional space. The initial 

d-space representation of the points, Y, 1.S chosen 

randomly. 
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Given the mat...rix X, from which the interpoint distances 

D (=dij) are computed, - .,.... 
and D (.dij), the matrix of 

dissimilarities, the method of steepest descent is used 

to locate a minimum of E, by computing the d-space 

coordinates Y at iteration (m+l) from: 

where MF is a parameter termed by Sammon the "magic 

factor" (a fixed step length which Sammon determined 

empirically to perform best in the range 0.3 - 0.4), and 

¢p~ is the ratio of the first to the second-order 

partial derivatives of E with respect to Yij' 

that is - oE (m) I 
6y~m) 

These derivatives are defined as: 

and 

The algorithm terminates when a fixed number of 

iterations have been carried out or whenever E has 

converged to a suitably small value. A more detailed 

discussion of this technique is contained in chapter 8. 
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7.5 A COMPARISON OF ORDINATION TECHNIQUES 

This section 

similarities 

attempts briefly to indicate the 

and differences between the various 

techniques discussed in this chapter and to point out 

some of their advantages and disadvantages. 

The first point to make 18 that the first two "serious" 

techniques discussed, namely principal components and 

principal coordinates, are both latent root and vector 

methods, while multidimensional scaling and nonlinear 

mapping both operate by minimising a particular function 

uS1ng some iterative algorithm. The former methods 

have, therefore, obvious computational advantages. Of 

these, principal coordinates 1S perhaps the most 

powerful for obtaining a low-dimensional representation 

of data since it is not as restrictive as principal 

components analysis. In particular it is not necessary 

to consider only data sets for which Euclidean distance 

is considered appropriate. The only advantage of this 

particular distance measure 1S that it allows the 

principal coordinates to be related linearly to the 

original variable values. Principal coordinates 

analysis also has the advantage of being directly 

applicable to data given in the form of a distance or 
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similarity matrix. 

In many respects the mathematical formulations of 

non-metric multidimensional scaling and nonlinear 

mapping are similar. However, the mapping criteria, 

"stress" and "mapping error", are quite different. A 

major distinction is that multidimensional scaliDg 

employs only the ordinal properties of the similarities 

or distances being used. Gower (1966) discusses th~ 

relationship between principal coordinates analysis and 

norunetric multidimensional scaling. He concludes that 

where the former gives an adequate fit 1n two 

dimensions, then the solution will be similar to the one 

that would be found employing the latter method. Gower 

points out, however, that multidimensional scaling may 

be able to find a good fit in a low number of dimensions 

when principal coordinates may not~ because of the 

differing computational complexities of the two methods 

Gower finally recommends the initial use of principal 

coordinates analysis, and, where this does not lead to a 

solution of sufficiently low dimensionality, he suggests 

using the coordinates found as a starting point for the 

iterative algorithm of nonmetric multidimensio~al 

scaling. Sammon (1969) gives some interesting examples 

when nonlinear mapping recovers the structure in seme 
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specially constructed sets of multivariate data, whilst 

principal component plots of the same data fail to 

reveal this correctly. Sibson et al (1981) discussed 

several possible models for obtaining a set of 

dissimilarities from an 

described a simulation 

underlying configuration, and 

study which compared the 

abilities of several scaling methods, including 

principal coordinates analysis and no~~etric 

multidimensional scaling. They concluded that, provided 

the iterations started from a reasonable configuration, 

nonmetric multidimensional scaling was never 

significantly worse, and under some models for the 

dissimilarities was considerably better, than the 

methods which used the numerical values of the 

dissimilarities. 

Studies have also been carried out to investigate the 

nature of the differences between the configurations 

produced ~len different geometrical methods are used to 

analyse the same data. For example, Rohlf (1972) noted 

that nonmetric multidimensional scaling tended to depict 

differences between similar objects more accurately than 

principal coordinates analysis, but did not necessarily 

, ono'l'ng to smaller and represent the dlstances corresp 

larger dissimilarities J.n the same stale. Further 
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comparisons are reported by Gower (1972), Fasham (1977) 

and Prentice (1977). 

If the background to the problem indicates that one 

method of analysis is particularly appropriate, it 

should be used, but in order to simplify the use of 

MAGIC the choice . 
1.S limited to one technique of each 

type, and, for reasons of computational efficiency, 

those are principal coordinates analysis and nonlinear 

mapplng. Nonmetric multidimensional scaling, involving 

the minimisation of a function of nt variables for each 

value of the number of dimensions, t, makes heavy 

demands on computing resources compared to both 

principal coordinates analysis, in which the main work 

to be carried out involves the eigenanalysis of an (nxn) 

matrix, and nonlinear mapping. Given this fact, it 

would seem preferable to use principal coordinates 

analysis and nonlinear mapping. 

7.6 RELATION BETWEEN ORDINATION AND CLUSTERING 

Ordination and clustering techniques are both methods of 

analysing data, but rather than being in competition 

with each other, are essentially complimentary. They 

can be used together in several ways and these joint 
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uses are usually desirable. The basic relationship may 

be seen in terms of the data sets used, 

summarised in figure 7.2. 

MULTIVARIATE DATA 

x' . . i corresponds to an activity 'J . 
· J corresponds to a variable 

Ii' 

Ordination uses Distances 
distance data Gower's S 
as multivariate etc. 

, 
SIMILARITY OR DISTANCE DATA 

d·· · 1 and j are activities IJ · 
clustering 
algorithms 

'I 

CLUSTER DATA 

Figure 7.2 

Relationship between ordination and clustering 

and is 

Two main types of data are used - the multivariate data 

and proximity data. Clustering algorithms may operate 

directly on proximity data, but if we start with mixed 

multivariate data, ln order to determine clusters we 

must first convert the multivariate data to proximity 

data. Strictly speaking therefore, cluster algorithms 

operate only on the second stage, the first stage being 

a necessary preliminary. We may, therefore, consider 

clustering as a procedure which starts with one type of 
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data and converts it to some other type. The conversion 

of multivariate data to proximity data used In MAGIC 

utilises Gower's similarity and Euclidean distance 

(dissimilarity). 

Ordination may be thought of as a transfor~ation in the 

other direction, converting 

multivariate data in the form of 

points in low-dimensional space. 

proximity data 

a configuration 

to 

of 

Another dimension is the application. The maln purpose 

is simply, in exploratory data analysis, lito see \'ihats 

there". A second purpose is to comprehend the data more 

clearly, and a third is to provide information to aid 

subsequent design work. 

Another aspect is the distinction between "natural 

clusters" which may exist in the data and "artificial" 

clusters which may arise as a resul-'c of the clustering 

method used. 
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The key difference between ordination and clustering 
, 
J.s 

that ordination provides a spatial representation of the 

proximity data, whilst clustering provides a tree 

representation. In hierarchical clustering small 

clusters tend to be well ident1'f1'ed and r ft . a e 0 en 

meaningful, but large clusters higher up the tree tend 

not to fit so well. On the other hand ordination deals 

much more with the overall relationships. Small changes 

in the data may cause changes in local position and 

arrangement, but it 1S the general position of the 

points within the configuration which is important. For 

example, the fact that certain points near the middle of 

the configuration will not change, even though the 

arrangement at the middle may vary. 

Since ordination and clustering are sensitive to 

complimentary aspects of the data (the large 

dissimilarities or overall picture ln ordination, and 

the small dissimilarities or local structure in 

clustering) it is appropriate to use them both on the 

same data set. It is in fact possible to combine the 

results into a single diagram using a two-dimensional 

ordination (figure 7.3). The position of the points are 

obtained from the ordination, whilst the loops show the 

groupings obtained from the clustering. ~he fjgure uses 



ORDINATION TECHNIQUES Page 7-218 

the Sokal and Sneath data and the results of the group 

average clustering and a nonlinear mapping. 

Figure 7.3 

Ordination and clustering - combined plot 
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7.7 TWO-DIMENSIONAL DISPLAYS 

A number of difficulties may arise mapping 

higher-dimensional vectors into a two-dimensional space 

for visualisation. Particular problems are the 

iterative nature of the mapping algorithms and the 

interpretation of the clusters in the two-dimensional 

space. 

7.7.1 The Problem Of Local Minima 

In principle the iterative steps of mapping algori~hms 

to determine the final configuration are not difficult 

to implement. There is, however, a potential difficulty 

in the criterion of termination. A configuration of N 

vectors from which no small movement of vectors J.S an 

improvement corresponds by definition to a local minimum 

of the error function E. The difficulty with a local 

minimum is that it mayor may not be the global minimum 

whose corresponding configuration 1S really being 

sought. When searching for the minimum of E using 

steepest descent or other techniques, there is no sure 

way to prevent finding a local minimum. Figure 7.4 

shows an error function of one variable with several 

local minima. 

global minimum. 

Only one of'them (point B) is the true 
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Figure 7.4 
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y 
p 

An error function with several local rnlnlrna CA, B, C, D) 
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This local/global minimum difficulty is of course not 

unique in mapping algorithms. It is a widely known 

problem in all search and minimisation problems. In the 

implementation in MAGIC if the display is drawn the 

minimisation has reached a preset level of accuracy. If 

this level 1S not reached after the default number of 

iterations the current solution is displayed. This may 

either be compared with one of the other analyses and 

accepted if it appears reasonable, or else points may be 

interactively moved to "jump" the configuration out of 

the possible loal minimum, and the calculation restarted 

from the new position. 

7.7.2 The Effect Of Scaling 

In arl architectural problem the measurements in the data 

are often composed of a variety of units. Using them in 

their original form in the vector representation of the 

data has serious complications. first, the units of the 

measurements define an implicit weighting of the vector 

components. Second, Wf1en di fferent un its are combj_ned 

to achieve a single measure of distance, the meaning of 

that distance measure is nonsensical. 
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The following figures illustrate the effects of units of 

measurement upon the graphical analysis of four elements 

represented by two-dimensional vectors. Let 

x = I (I, 0) 

X = 2 (1 , 0.5) 

x= 
~ 

(4, 0) 

X = .. (4 I 0.5) 

where the first variable . distance 1S (say metres) and 

the second mass (say kilograms). The four vectors are 

plotted in figure 7.5 in which two different scales arc 

used for plotting. Visually identified clusters 

indicate two possible configurations due to different 

scalings used in the plots. Various normalisation 

techniques have been developed, but all involve a 

distortion of the data. MAGIC again overcomes the 

problem by the use of Gower's ge~eral coefficient. 
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kg 

-----r--~I m 

m 

Figure 7.5 

Effect of scaling upon graphical analysis of data. 

Visually identified clusters are 2ircled.' 
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7.7.3 Sample Size 

Another problem occurs when the ratio of the number of 

activity vectors to the number of variables is small, 

and deceptive results may be obtained. Foley (1972) 

showed how misleading mappings may arise, depending on 

the sample . slze, n, and the number of variables 

measured, h. Foley derived expressions of the estimated 

probability of error as a function of nand h, for a 

number of underlying probability distributions. Figure 

7.6 shows a typical plot of the estimated probability of 

error as a function of the ratio nih. 

o 

Figu:re 7.6 

/ T:rue p:robability of e:rror 
--------- - --------

5 
I 

to 

Ratio of sample Slze to feature dimensionality 

Foley plot - typical curve of average probJbility o~ 

error as a function of the ratio nih 
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As the ratio increases, the estimated probability of 

error calculated from the set of . glven vectors 

approaches the true probability of error. For rat.ios 

less than three, the difference between the estimated 

and the true performance 1S noticeably large. However 

the error curve appears to level off for ratios greater 

than three. This indicates that a critical value of the 

ratio nih exists. In typical architectural applications 

this critical ratio is not usually of importance as 

activities usually outnumber variables measured. 

7 • 8 SUMtvlARY 

In this chapter several techniques which are useful for 

producing a low-dimensional representatiop of 

multivariate data have been discussed. The 
. mB1D 

interest has been explicitly ln the two-dimensional 

solution glven by the methods, Slnce the main alm has 

been to be able to exam1ne the data visually. It should 

be mentioned, however, that for some data sets it would 

be unrealistic to expect a two-dimensional 

representation to give anything but a very approximate 

indication of the inherent structure present. In other 

words, two dimensions may just not be sufficient to 

accommodate the full compexity of the relations in the 

given data set. Unfortunately no real te~t exists for 
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the value of the number of dimensions necessary to 

provide an adequate fit, apart from the informal 

goodness of fit criteria mentioned in connection with 

particular methods. However, Gnanadesikan and Wilk 

(1969) make the following important point which perhaps 

suggests that a formal test of the number of dimensions 

is not important: 

Interpretability and simplicity are important 
in data analysis and any rigid inference of 
optimal dimensionality, in the light of the 
observed values of a numerical index of 
goodness of fit, may not be productive. 

Two dimensional solutions certainly have the virtue of 

simplicity; they are also readily understood by the 

program user and may, in many cases, provide the basis 

for the understanding of the overall relationships in 

the data set; consequently they are likely to be the 

solutions of the most practical value. 

Finally, it should be mentioned 
. agaln that the 

techniques described in this chapter should in no way be 

regarded as methods to be used to the exclusions of the 

other types of analysis; indeed they will, in general, 

be most useful when used in conjunction with other forms 

of analysis. 
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Mapping algorithms all have the basic characteristics of 

an iterative search for an optimal solution to a given 

problem. Iterative search techniques usually start off 

with an arbitary guess of the solution. which is then 

improved upon repeatedly through a systematic mechanism 

until a satisfactory final solution is obtained This 

transition from initial guess to final solution 

implicitly defines the mapping algorithm for a given set 

of data. 

The mapp1ngs defined in this mo.nner differ from 

noniterative mappings 1n three respects. First no 

specific a priori knowledge, such as the statistical 

characterisation of the data 1S used in defining the 

mapping. Second all iterative algorithms must be 

provided with a suitable termination criterion whjch 
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determines when a satisfactory solution has been 

achieved Third the mapping. which has been 

iteratively obtained for a set of data. can only apply 

to that data set When new data 1S introduced a new 
. must be computed mapp1ng 

8.2 NONLINEAR MAPPING ALGORITHMS 

The objective of these algorithms is to reduce the 

dimensionality of the data in the h-space to the d-space 

so that some inherent " s ·tructure" of the data may be 

displayed and detected Here the word structure refers 

to the geometrical relationships that may exist among 

the subsets of data and 1n particular those 

relationships that reveal clusters The display space 

may conveniently be in two or three dimensional space 

but is here discussed in terms of two-dimensional space. 

Given a data base of N activities, each described by h 

variables the data base may then be represented by a 

set of N h-vectors 

x (x i ) 1 11 2, .. 'f N 

where 

x i h ) , h > 2 
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Chapter 7 presented a number of methods of interpreting 

this high dimensional data. This section concentrates 

on one particular approach nonlinear mapping (NLM). 

The mapping may be defined as 

NLM: X ~ Y 

where Y is a collection of N two-dimensional vectors in 

the d-space. 

y (Y i ) i-I 2, "', N 

where 

. Yi=[::J 
nonl1near mapping A involves the reduction of 

dimensionality of the activity data 1n X from h 

dimensions to two dimensions by means other than linear 

transformations whilst attempting to preserve as much 

of the inherent structure as possible This structure 

preservation 1S achieved by fitting N h-dimensional 

vectors in the d-space such that their intervector 

distances or dissimilarities approximate the 

corresponding intervector distances of dissimilarity 1n 

the h-space Let the distance or dissimilarity between 

the vectors Xi and Xj in the h-space be denoted by 

"'" d ij = dis(Xj, Xj) 

and the distance or dissimilarity between Y j 0nd Yj ln 

the d-space be 
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d'j = dis(Yj, Yj) 

Then the structure of the data l'S str' tl d . lC Y preserve 

under the mapping NLM: X ~ Y if for all 1 and j, 
A. 

d ij = dij· Obviously for all but the most trivial cases 

this strict preservation is impossible to achieve. It 

is possible, however, to achieve various kinds of 

approximate preservation without much difficulty, for 

example r to preserve certain parts of the structure that 

exists among the data base by requiring 

or 
A 

for those X j and X j such that d ij < e where e 15 some 

threshold value and not seeking such faithful 

preservation for those X' J 

A 

and X j wi th d i j > e. The 

consequence of this kind of approximate preservation is 

the introduction of an error e·· where IJ 

......... 
e·· = IJ d ij - d; j 

for some or perhaps all values of 1 and j. 

All NLM algorithms must deal with the problem of how 

approximate preservation of the data structure may be 

best achieved. There are two interrelated questions to 

be considered: 
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(1) What distance or dissimilarity measure should be 

used in order to describe the geometric relationship 

between the N vectors in the h-space and in the d-space 

(2) The choice of an error function 

A 

E = f(eij) = f(d ij - dij) 

such that the value of this function will reflect the 

degree of structure preservation, strict or approximate, 

in a monotonic fashion, ie. the smaller the value of 

E, the better the preservation. 

Clearly the way these two considerations are dealt with 

affects directly how well a particular NLM algorithm 

works in mapping the data to the two-dimensional space 

for visualisation Such considerations also in part 

characterise the various NLM algorithms. 

All the NLM algorithms discussed here employ an 

iterative tecflnique. The basic elements of these 

iterative algorithms consist of a three-step procedure: 

(1) Determine an initial set of Y vectors. This set 1S 

referred to as the initial configuration of the d-space 
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It can be selected by random selection. 

(2) Adjust the y's of the current configuration 

starting with the initial configuration, in such a way 

that the next configuration (the set of adjusted Y's) 

will have a smaller value of the error function. The 

transition from the current configuration to the next 

configuration is an iteration. 

(3) Repeat (2) until one of the termination criteria 1S 

met: 

a - the error function E has reached a prespecified 

value. 

b - a prespecified number of iterations have been 

performed. 

The var10US algorithms described below differ primarily 

in one or more of the following aspects: 

" 1. The selection of the distance measures dij and dij 

2. The selection of an error function E. 
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3. The method of termination. 

8.3 SAMMON'S NLM ALGORITHM 

This method was developed by Sammon (1969) and 1S the 

method implemented in MAGIC. Let the distance or 

dissimilarity measure between the vectors Xi and 

the h-space be the Euclidean metric 

A. ( h 2) Y2 
d ; j = ~l ( X i k - x j k ) 

X' J 1n 

Similarly let the distance or dj_ssimilarity measure 

between Yj and Yj in the d-space be the Euclidean metric 

d' . IJ 

cA 

= ( L(Yik 
k.=\ 

The error function E, which represents how well the 

present configuration of the N vectors in the d-space 

fits the N vectors in the h-space, is defined as 

/\. 

E - f (d ij d .. ) 
'J A 2-

1 2. (dij- djj) 
""~ cr·· .. 
Ld .. 
" I) tJ I<J 

where ~- denotes the sum over all 1 and j such th2.t 
i<j 

i < j. Sammon's algorithm then works as follows 

Generate a random set of y. I S 
1 

In the d-space. This set 

of vectors is the initial configuration of the d-space 

Next compute all the d-space intervector distances dij 

which are then used to determine the value of the error 

function E. Then adjust the N vectors 1~ the d-space so 
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as to decrease the error function and continue to make 

these adjustments until the minimum value of E . 
15 

reached or until a prespecified small value has been 

obtained. The set of Yi 's at the termination of the 

adjusting process is the final configuration. 

It should be noted that the error function E 1S a 

function of 2N independent variables y .. , i - 1,2, 
IJ 

Nand j - 1,2. In Sammon's algorithm these 2N variables 

must be adjusted simultaneously to yield a new 

configuration This 1S achieved by carry1ng out a 

steepest descent procedure to search for the minimum of 

the error function If the current configuration, that 

is, the set of Yj 's being adjusted, is denoted by 

!YII] [Y21] [YNI] 
Y I = Y 12' Y 2 = Y l1. ' . • • ., Y N = Y N2 

The method of steepest descent consists of successively 

computing the new vectors 

governed by the following recursive relation 

y' 
p - Y -cx oE / o2E I 

P oY <3 v2. p Jp 

P - 1,2, . . .. N 

where OC 1S a correction factor and E 1S the error 
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corresponding to the present configuration. The 

notation 6/6 Y P denotes taking the first partial 

derivatives with respect to each component of Yp and 

arranging the partial derivatives in a column vector 

The set of N vectors Yp' P = 1, • • • I N, becomes the new 

or the next configuration in the d-space. Such a 

transition from the current to the next configuration 

defines an iteration of Sammon's NLM algorithm. 

At each iteration it is necessary to calculate the first 

and second partial derivatives of the error function 

with respect to Yp' For the first derivative, 

N ('" )2-bE _ l:.. ~~d pj~- dpj 
~y C j=1 oYp d pj 

where c N '" 
- ~d" . IJ I<j 

lS a constant. 

Sammon (1969) shows that this reduces to 

p ~ 1 2, ... , N 

and, similarly for the second derivative 

p-l, 2, ... , N 
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An exa.mple of the results from Sammon's algorithm is 

shown in figure 8.1. This shows the two-- space 

representation of the artificial data set shown in 

figure 8-2. The initial configuration was random, but 

all of the embedded clusters are easily identifiable 

the final display. 

Figure 8.1 

Nonlinear mapping plot 

o 
0) 

o 
0) 

. 
In 
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ORIGINHi. DATA 

t 2 3 4 5 
1 4B.{~ 1 00 .,. 00 1 · (1~1 '3 . L~H3 • 
2 16 00 1 . (H) :1. lJij 2.00 2.00 
3 48.00 1 00 6.00 1 · (11) 3.00 ! 

4 24 (tt) 1 .00 .- 00 t 00 3.00 1: •. 

5 2S 00 « 00 .-, 00 1 (1(1 -~ 00 J c- .:,. 
6 3€ ~,... 1 E-.(1 [;. 

0(1 1 1)0 5. Of) •. bJ.j ._1 
7 4':- (\0 .-:. eo 5 00 3.00 -. 00 <,J • # -. ...) . 
8 36. (--a) 2.00 ·L ~JO 5.00 ~ Of' .. -
9 52.00 #'.' (H) 2.00 1 · CH) ::: /.;.10 ,;.. 

10 24 . \3(~ 2. ~10 1 .00 1 .00 -;0 ':'0 "-' . 
11 ';'6 C1(1 'J 00 1 (1) 1 .00 3.1)0 ~ .- .... 
12 3::~ . 00 " 0(1 ~. 6.00 1 .00 ? ~-'.'. -1\.:1 
13 37 Ct6 .::. e~ 

~. - 3.00 '. f.1r1 Co • __ 5.00 
14 20. (to 2.00 6. (li) 1 (iO .3.00 
15 40.00 2. (H) 7.00 c- OO 3.00 '-' 
16 21 . (-\(1 ';'. r~!1 

'- • :..>- 7.08 ~, 

~ 00 1 . ft(1 
17 34.~1 1 .Ot' 3.00 1 .0(1 3.00 
1S 20. e(1 2.00 7- Cl~) 2.00 

.. , 00 ..... ~ 

19 25.00 2.00 5.00 ::::.00 :'.00 
20 45.00 1 . UI.) 6.00 1 .00 7 00 J. ...... 
21 ~.'j . O~3 1 .eo 5. 0::) "7 CiO 2. ~jO .;......:.... ..... 
22 ~- ~J13 2 . e~?- ? (i(1 1 .00 3.00 ~ --.-.:. 
23 6~) (v.) 1;- CO 6.CO 1 .00 2· O~3 - . 
24 39.0(1 1 .00 1 . c~o 7 00 3.00 ..... 
.-.c 55. U~l 1 .(.10 4.00 1 .00 "3. (;~j ~~ ~ 

Figure 8.2 

Data set used for figure 8.1 
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8.4 COMPUTATIONAL ASPECTS 

It is of interest to consider the computational aspects 

of Sammon's algorithm as it is here that most variations 

have been proposed. First, the algorithm requires the 

'" computation and storage of the intervector distances dij 

for all i < j . There are N (N-l ) /2 such distances. rrhese 

of course need not be computed for each iteration of the 

algorithm, it being possible to compute them once and 

store them for use at each iteration At each 

iteration, however, all the N(N-l)/2 distances dij' 

i < j, along with the error derivatives, must be 

computed Thus the overall computational requirement 
. lS 

proportional to N(N-I)/2. As the number of vectors 

. lncreases, the computational requirement (time and 

storage) grows quadratically 

As a means of reducing the computational requireIllents a 

variation of Sammon s algorithm was developed by ~~ite 

(1972). Rather than the Euclidean metric, the Hamming 

metric lS used as a distance measure between vectors. 

In the h--space t.he Hamming metric between X i and X j lS 

defined as 

/'to h I d" = Llxik - Xjk. 'J k,. ... , 

Similarly, the Hamming distance between Yj and Yj In the 
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d-space 1S 

~ 

d i j = k~ I y i k - Y j k I 
The Hamming metric provides savings in the computational 

requirements . 1n two ways. First, the Hamming metrc is 

much simpler to compute than the Euclidean metric. 

Second the error derivatives as required in each 

iteration are also simpler to compute However t the use 

of the Hamming metric as a distance measure has its 

flaws. If the data in the h-space is known to have a 

Euclidean structure (i.e the vectors satisfy the 

conditions of a Euclidean metric), some distortion of 

the Yi vectors in the d-space will inevitably occur. 

Another problem with the use of the Hamming metric lies 

in the fact that interpretation of the resulting d-space 

configuration may be more difficult. With the Hamming 

metric the usual notion of the Euclidean distance in two 

dimensions no longer exists. Instead of measur1ng the 

length of a line segment joining two vectors, a 

complicated sum of absolute values would have to be 

"visualised" . The conclus ion must therefore be t1lat 

this .. improvement" is of little use in f1AGIC. 
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A different approach has been proposed by Chang and Lee 

(1973). Like Sammon's algorithm the Chang-Lee 

relaxation method also seeks to preserve the inherent 

structure that may exist in the data. The term 

"relaxation" is borrowed from the relaxation method for 

solving linear equations. Unlike Sammon's algorithm the 

minimisation of the error function . 
15 carried out by 

minimising one term of the function at a time. 

The basic procedure of the relaxation method as 

developed by Chang and Lee is very similar to that of 

Sammon's method but there are two significant 

differences. First, in the relaxation method the 

squared Euclidean metric 1S used as the distance 

measure, and secondly, the method of adjusting the 

current Yj 's is different. In Sammon's method all the 

Y, 's are adjusted simultaneously along the direction of 

steepest descent so as to reduce the value of the error 

function E. The idea of the relaxation method is to 

adjust the Yi 's on a pairwise basis. 

Insofar as the computational requirements are concerned, 

since there are 0.5N(N-l) palrs of vectors to be 

adjusted in each sequence, each iteration will take N(N-I) 
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,'~ adjustments. Compared with the N adjustments required 

in Sammon's algorithm this is a considerable overhead, 

especially when N is large. However, the computation of 

the error function is much simpler and does not require 

the summation of O.SN(N-l) terms as does Sammon's 

method. 

Several further variations of the relaxation method have 

been developed to improve the computational 

requirements. One variation involves the use of 

heuristics In performing the pairwise adjustments when N 

is large. This heuristic method is known as the frame 

algorithm (Chang and Lee 1973). The frame algorithm 

does not preserve the structure relationship as 

faithfully as the relaxation method; Chang and Lee glve 

details of experiments comparing the two approaches. 

8.5 RELATIONSHIP OF NLM TO OTHER ORDINATIONS 

The relationship of nonlinear mapplng to nonmetric 

multidimensional scaling was mentioned In chapter 7. 

The multidimensional scaling algorithm developed by 

Shepard (1962) and l~ter improved by Kruskal (1964a,b) 

seeks to find a configuration of points in ad-space 

such that the resultant interpoint distances preserve a 
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monotonic relationship to a given set of interelement 

dissimilarities. Specifically, they wish to analyse a 

set of interelement dissimilarities given by Sij' i = 1, 

• • ,. I N, j=l, ... , N. Suppose these dissimilarities are 

ordered in increasing magnitude, such that 

Splq,l ~ Sp29,2. ~ ..... ~ SpnCV' 

The Kruskal Shepard algorithm seeks to find a set of N 

d-dimensional vectors Yj , 1 = 1, . . . , 
order of the interpoint distances 

N, such that the 

dij =dis[Yi 'Yjl 

deviates as little as possible from the monotonic 

ordering of the corresponding dissimilarities. Despite 

the mathematical formulation of nonlinear mapping being 

similar, the underlying criteria are quite different. 

although Kruskal (1971) has shown how his M-D-SCAL 

program may be modified to produce Sammon's nonlinear 

mapplng. 

The nonlinear mapplng 1S preferred here as~ 

(1) The routine does not depend upon any control 

parameters that would require a priori knowledge about 

the data. The only requirements are that the limiting 

number of iterations and the convergence constant must 

be set. Both of these values are defaul ted in t-1AGIC. 
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(2) Nonlinear mapping is highly efficient in identifying 

complex data structures. Sammon (1968) gives examples. 

(3) The resulting mappings are easily evaluated. 

(4) The algorithm is simple and efficient. 



CHAPTER 9 

PRINCIPAL CO-ORDINATES ANALYSIS 

9.1 INTRODUCTION 

The techniques of classical scaling and principal 

components analysis were introduced in chapter 7. The 

limitations of these techniques were noted and 

particular reference made to the implied distance 

measures involved in the low dimensional representations 

and their nonsensical physical dimensions when different. 

variates were measured on different scales. More 

formally, if the activity data is regarded as defining a 

set of N points in the high dimensional h-space, these N 

points can be represented by an h x N matrix X 

X .2.\ • X NI 

x
ll • X Hl. 

x -

, X
Nh 

and each column thus represents a data point x· I with 
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coordinat~s (x it' xi2' ... , Xi") referred to rectanoular 

axes. Thus the 

. given by lS 

2-d·, 
'J 

and the spatial 

display . 
1S of 

measures the 

implied distance d" IJ 

h 2-- 2. (x ir - x 'r ) r., J 

configuration of 

interest only if 

similarity between 

between x' I and x' J 

the low dimensional 

d" I) satisfactorily 

x· , and This 

usefulness has the obvious defect of depending in a 

complex manner on the scales of measurement of the 

different variates. As a solution to this problem Gower 

(1966) proposed the method of Principal Co ordinates 

Analysis, where the assumptions are similar, but 

dissimilarities take the place of distances, and the 

dissimilarities may be derived from any of the types of 

variable as described in chapter 4. 

9.2 PRINCIPAL CO-ORDINATES ANALYSIS 

Let A be a symmetric (nxn) matrix with latent roots AI' 

and associated (nxl) latent vectors c" 

'.', c
h 

as shown in figure 9.1. 
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Root 

A., A2 ~n 

0, cll c l2 . . . cln 

Point Q2- cZI c 2.2. c2n 

• . . . 

c "0 

( e 1 em e n t s 0 f c \ are c, \ ' c 2, , .. ., C f\ ~ ) 

Figure 9 1 

Latent roots and vectors of symmetric matrix A 

Suppose now the elements of the ith row of figure 9.1 

are taken as the coordinates of a point Qi ln 

n-dimensional space. The Euclidean di stance) ~ ij I 

between points Qj and OJ in this space is given by 

2 n ~ 

.6 iJ' .L (c ir - c J'r ) 
r= I 

n (\ 

- LC~ 
PI \C 

+ 2 L C \t'" cJ'r ,..\ 
If the latent vectors are normalised so that the sums of 

squares of their elements are equal to their 

corresponding latent roots, i.e. so that 
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then 

A = 

and therefore 

n :l-
a" == ~ c II ..c.. c-

r:; I I 

. .. + 

and a·' IJ 
r'\ 

L. C if" cJ"r 
("-\ 

and I substituting these resul ts in the distance equat:ion 

&ij = aij + ajj - 2aij 

Suppose now tha.t the matrix A had elements a ij = -0. 5d 2 ij 

and a· · It 

distance. 

. 

0, where d·· is some measure of inter-element IJ 

From the above equation it may be seen that 

~". 
IJ 1S now simply equal to dij' and consequently the 

above procedure gives a method of finding coordinates 

for a set of points given their interpoint distances 

In particular if d ij was Euclidean distance the 

method 1S directly analogous to principal components 

analysis. However, the advantage of this method is that 

it may be used to find a set of coordinates for 

observations where the d ij s are not considered to be 

Euclidean. 

If A was a similarity matrix so that elements ait were 

unity then 

.6.2 .. = 2 (1 - a ., ) 
I) IJ 

and principal coordinates analysis would lead to a 
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spatial representation of the similarities in which 6" 
IJ 

functions as Euclidean distance, .although not all 

similarity measures would be suitable. 

It has now been established that . glven a symmetric 

matrix A with elements aU! a set of coordinates may be 

found in the n-dimensional space such that the Euclidean 

distance between the points in this space is given by 

~ij' and that this procedure may be used to find the 

coordinates of a set of observations given their 

interpoint distances (not necessarily Euclidean), or 

their similarities. Gower shows further that it lS 

legitimate to use principal components on these 

coordinates to find the best fit in fewer dimensions. 

The whole process therefore involves two stages, each 

stage requiring the determination of the latent roots 

and vectors of an nxn matrix. That lS, at stage one the 

matrix A, and at stage two the nxn matrix of 

n-dimensional coordinates resulting from the first 

stage. Gower shows that these two stages may be 

collapsed into one as follows· 

(1) Calculate the matrix A. In the case of 

similarities, A is simply the inter-element similarity 

matrix; with distance measures, A may be formed by 
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taking a" = II 0 and a" = IJ 
-0.5d2. .. 

'J • Gower (1966) 

shows that a convenient representation of the 

activities in Euclidean space can be obtained 

transforming distances using a ij = (2 (l-d ij ) )J:f. 

the transformation used in MAGIC. 

This 

also 

n 

from 

. 
1S 

(2) Transform this to a matrix ~ , the elements of which 

are given by 

OC '. - +a - a" -ai - a . IJ IJ . .J 

where 

- n 
a' - l/n;Ea" J • J-I IJ 

- n 
a· - lin La" .J i-, IJ 

n (\ 

a .. - 1/ n2. .;:E 2- a·' .'. j" IJ 

(3) Find the latent roots and vectors of ~, scaling 

each vector so that the sum of squares of its elements 

is equal to its corresponding latent root. 

The elements of the k-th latent vector now give the 

coordinates of the n points on the k-th principal axis. 

The first two coordinates may now be used to obtain a 

visual representation of the original distance or 

A measure of the adequacy of fit of, 
similarity matrix. 

say, the first p principal coordinates is given by 
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p* 
T ::: .~ Yi/trace (cc) 

1- , 

where the Yi are the latent roots .of the matrix 

arranged in descending order of magnitude. 

Gower shows that this method may be used only with 

similarity measures which give rise to an CJ:, matrix \'lith 

no negative latent roots; . 
OC must be positive 1. e . 

semi-definite. Gower (197la) also shows that this 

condition holds for a wide class of measures, but 1n 

particular that Gower's general coefficient of 

similarity is always positive semi-definite. 

Principal coordinates analysis may thus be seen to have 

a considerable advantage over principal components 

analysis when seeking a visual representation of data. 

It operates directly on similarity and distance matrices 

and is not restricted to Euclidean distances. 

9.3 EXAMPLE OF PRINCIPAL COORDINATES ANALYSIS 

Figures 9.2 and 9.3 show the two dimensional and three 

dimensional ordinations of the test data set. 
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Figure 9.2 

Two-dimensional Principal Co-ordinates plot 



PRINCIPAL CO-uRDINATES AIJALYSIS 

'0 
o 
·0 

0& ~'<0 
.. 0) 

(0 
G 

® 
"·0 

,. ..... ¥ f"~,1.l ~ 

G 

" . @ 

80 
0 0) 

@) 

0 
G CG 

0 

Figure 9.3 

.. :' 

(0 
.0 

.. 

0) 

Page 9-252 

(0 
(0 
0 

0 
0) 

o C0 
0) 8 o! G 

f(ff 0 
e e e .® 0 

@ 
0 

Three-dimensional Principal Co-ordinates plot 



2.53 

CHAPTER 10 

DISPLAY OF RESULTS 

10.1 INTRODUCTION 

MAGIC has been designed to operate interactively and to 

present all results graphically as an aid to 

interpretation of the data. A number of important 

techniques have been 

efficient dendrogram 

presentation method 

devloped 

plotting 

to display 

to enable this - an 

routine, a unlque 

the results of the 

Euclidean cluster analysis, a number of options for the 

manipulation of 

graphical method 

two-dimensional 

of comparlng 

ordinations, and a 

results of different 

ordinations. This chapter describes these techniques in 

the same order as the analytical results they are 

designed to display have been presented. 
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10.2 DENDROGRAM PLOTS 

The results of hierarchical cluster analysis are usually 

displayed in the form of dendrograms (Sneath and Sokal, 

1973, give a general account), butt surprisingly, no 

efficient algorithm for the automatic display of these 

\ 
dlagrams had been developed. 

The general form of such diagrams is for the activity 

labels to be plotted across the top of the page, and 

vertical lines drawn down to the succeSS1ve clustering 

levels where a horizontal line joins those activities 

clustering at that level. These fusions at successive 

hierarchical levels are printed in MAGIC in a linkage 

order table. An example 1S shown in figure 10.1, and 

the resulting dendrogram ln figure 10.2. 
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'GROU? (-{~ ;[PDr::h' 
v '" -'''I..:T"_ CI U~'Tr--PlfJr _ ,,} ""', ,'J ~TRATEr:~( oJ I '. - J 

PAIRING SEQUENCE 

lTEI1 JOINS Iro'l (-iT DI .... ·TI\I..Ir"'E .';) rtl,l ... 

1 2 1.080 
6 7 1.003 
9 10 1.090 

14 15 1 . CGO 
3 4 1.414 
6 8 1 7q'7 • _ oj 

12 14 1.796 
9 11 1.803 

12 13 1 p.~-' • ~ ... I( . 

3 5 2. ~)28 
1 3 2.4G2· 

12 16 2.~84 
1 6 3. '26 
9 12 3.673 
1 9 5 ~'9° .a;,.. eI' 

FIT IS 60.% ~JV.ATE 

Figure 10.1 

Linkage order table 
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1 2 3 4 7 8 10 
11 

12 14 15 13 
16 

I I 

LJ 
H'~...,.J 

~-~~f--'" v" .. ~d 

r~.~.~_.,o,~~,_. , __ ~~-._~,.'.~. __ _ 

Figure 10.2 

Dendrogram of data in figure 10.1 
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This structure may be defined by two lists one 

containing the labels of the n obj~cts in the order in 

which they are to appear across the top of the 

dendrogram (an order which must be calculated to prevent 

crossing lines occuring in the dendrogram), and the 

other containing the n-l numbers showing the level at 

which the successive activities join together in the 

tree. This second list is conveniently accessed from a 

further 1I1inkage order" list, containing the first two 

columns of figure 10.1. 

The algorithm to draw the dendrogram is simple. Given 

the two lists as described above, LAB for the activity 

labels, LEV for the clustering levels, the linkage order 

lists, Ll and L2, such that Ll joins L2 at LEV, and 

assuming screen scaling 1S carried out elsewhere, there 

are four basic steps: 

(1) Plot a vertical line for each of the i=l, 2, .. ,' n 

activities from below each label (the coordinates of 

which may be defined as ( i, Y » to a level 
mo..x 

( i , 

{max LEV i ' Store the bottom coordinates of 

each line in two arrays XC and ye. 
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(2) From Ll and L2 find the first Llj (i - 1, 2, • • • I 

n-l) for which LEV LI', ) LEV LI' 
, -t , 

• 

(3) Plot a horizontal line from Ll (XCii YCj) to L2 

(XC i ' YC i ) . Plot a vertical line from the centre of 

this line down to max {LEVi , LEVi+11. Store the 

coordinates of the bottom of this line in XCi~1 and 

YC 'ot-'. This step represents two clusters being merged, 

so the ith entries in LEV, XC and YC may be deleted and 

the pointers revised. 

(4) Set n=n-l. If n > 1 go to step (2), else draw final 

tail and finish. 

10.3 DISPLAY OF EUCLIDEAN CLUSTER ANALYSIS 

Euclidean cluster analyses have never been presented 

graphically figure 10.3 shows the typical form of 

program output. This information is difficult to fully 

comprehend even for experts used to multivariate 

analysis. It is possible however to identify those 

elements which are of importance to the user of tvlAGIC. 

These are the cluster membership at each level of 

clustering, the cluster density (whether the cluster 1S 

a compact group of activities, or only loosely 
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connected), and the relative disposition of the clusters 

one to another. The cluster membership is easily 

displayed 1n tabular form, the cluster density may be 

obtained from the average point to centre distance of 

each cluster and the cluster disposition is contained ln 

the matrix of cluster centre to centre distances. As 

this matrix 1S a simple distance matrix it is possible 

to pass it through the nonlinear mapping analysis to 

obtain a convenient two-dimensional representation. If 

the bubbles of this display are then scaled according to 

the average point to centre distance applicable to each 

cluster all of the essential data may be displayed ln 

the form shown in figure 10.4. 
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RESULTS FOR CU~RE"T ITERATION YITH ~ CLUSTER CENTRES 

CLUSTER SIZE DIST FROft GRAND ~EAH CO-ORDlrtATES 

1 J ~.eee 

2 2 ?S.8e. 

3 I la8.Me 

of 3 e.eoe 

DISTAHCE ftATRIK FOR CLUSTER CENTRES 

2 165.000' 
3 218.0e0Q ~5.~~ 
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CLUSTER ~EAJERSHIP FOR IHnIUIDUALS 

CLUSTER NU"BER 1 
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26.60" 
34.908' 

ll.ee0e 
!g.ee0~ 

51.e~t::O 
59."30 

7 65.6658 B 8g.S~g8 $I 116.2411 

AV£RACE POINT TO CENTRE DISTANCE ~.4? 
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1 141.1899 
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S3.etH 54.SI)()C SS."" 

Figllre 10.3 - Typical Euclidean cluster analysis output 
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Fig~Jre 10.3 - Typical Euclidean cluster analysis output (continued) 
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Figure 10.3 - Typical Euclidean cluster analysis output (continued) 
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Figure 10.4 

MAGIC Euclidean cluster analysis output 
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TEST DATH FILE 
RELATIOi':~·np "H TH 3 GI~:(IUPS 

a..U;TERS r1EJ~1ID AT TH 1 S 1. TEP({ll UU : 
CLUSTER MEJ1fH.:S 

1 7 B ~ 
2 1 2 3 
3 4 5 6 

o 

Figure 10.4 
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h\ 
\:.J 3 

MAGIC Euclidean cluster analysis output (continued) 
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~ .' '.' 

./ 

TEST DAT~ FILE 
REl..J.i T I ONSH If' HI TH 2 GJ..:OUf"~ 

3 
(9 

Figure 10.4 

MAGIC Euclidean cluster analysis output (continu0o) 
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10.4 ORDINATION PLOTS 

These are the only displays . 
ln MAGIC which may be 

interactively modified by the program user. The 

facilities are provided for two reasons. Firstly they 

provide a convenient method of dealing with the problem 

of local minima. Secondly as these displays are not 

fixed clusters but an overall picture of relationships 

users may wish to rotate or otherwise ~odify the display 

to agree more closely with their own mental picture or 

tentative layout. Figure 10.5 shows a typical display 

and the controlling menu for the nonlinear mapplng 

analysis. Rather than simply describe the effect of 

each menu command the principles of "point displays" are 

dealt with jn a more general manner to develop the link 

between the analysis method and the display of results. 

The simple translations, rotations, reflections and 

scalings are discussed first and then their more complex 

combined use ln configuration comparison described ln 

section 10.5. 
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Figure 10.5 

BUBBLE menu and display 
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10.4.1 2D Transformations 

Points in the xy plane may be translated to new 

positions by adding translation amounts to the 

coordinates of the points. For each point P(x,y) which 

is to be moved by Dx units parallel to the x-axis and by 

Dy units parallel to the y-axls to the new point 

pI (Xl ,y'), we may write 

X' - x + Dx, yl - Y + Dy 

EB p' (6,9) 

EB P (1,2) 

"'-----r----,----,-- --r------,-- -,- ---r---~-~- r- ~--

Figure 10.6 

Translation of a point 
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This is illustrated in figure 10.6, in which the point 

( 1 , 2 ) is translated by (5,7) to.become pOl.'nt (6 9) , , 

Defining the following row vectors as 

p = (x y), p' = (x' yl), T == (Dx Dy) 

the translation equation may be rewritten 

(Xl y') = (x y) + (Ox Dy) 

and, even more concisely, 

pi = p + T 

Points ca~ be scaled (stretched) by Sx along the x-axis 

and by Sy along the y-axl.s into new points by the 

multiplications: 

x, - x·Sx, y' = y.Sy 

Defining S as [ ;x s:] we can write in matrix form 

( x' y ') - (x 
y) [:x s: ] 

or 

pi _ p.s 

In figure 10.7 the single point (6,6) is scaled by 1/2 

in x and 1/3 
, 
ln y. Scaling is about the origin, the 

point moving closer to the origin. If the scale factors 

were greater than one the point would move away from the 

origin. It is also possible for scaling to occur about 
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some point other than the origin. The example shows 

differential scaling, for which Sx#Sy, has been used. 

with a uniform scaling Sx=Sy. 

Points may be rotated through an angle of e about the 

origin, as illustrated 1n figure 10.8 for the point 

P(6,l) and angle e = 30°. The rotation is defined 

mathematically as: 

x' - x-cose y- sinS 

y' - x-sine + y·cos9 

In matrix form we have 

(Xl y') - (x [

COS e 

y) -sin e 

sln 8] 
cos e 

or 

pi = p. R 

where R represents the rotation matrix as defined above. 

As with scaling the rotation is about the origin, but 

rotation about an arbitary point is also possible. 
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Figure 10.7 

Scaling of a point 

G 
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P (6,6) 



DISPLAY Of' RESULTS 

Figure 10.8 

Rotation of a point 

Page 10-272 
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positive angles are measured counterclockwise from x 

towards y. For negative (clockwise) angles the 

identities cos(-e) = cos e and sine-e) = -sine can be 

used to modify the above equations. The derivation of 

the equations is easily seen by reference to figure 10.9 

111 l.lhich a rotation by e transforms p(x,y) into 

P (x I,y'). Because the rotation is about the origin, 

the distances from the origin to P and pi are equal and 

labelled r in the figure. 

note that 

x - rcos¢, y 

and 

Xl - rcos ( e + 9-5) 

y' - rsin ( e + }25) 

Then by substitution the 

derived. 

By simple trigonometry we 

- rsin¢ 

= rcos¢cos e - rsin¢sine 

- rcos¢sin9 + rsin¢cos8 

basic equations are easily 
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y 

p' (.x:I/~I) 

P (x. I Y) 

r c.os (e -t ¢ ) r cos)25 
x 

Figure 10.9 

Derivation of the rotation equation 
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10.4.2 Homogenous Coordinates 

The matrix equations for translation, 

rotation are, respectively, 

pI _ P + T 

p' - P · S 

pI _ P • R 

Page 10-275 

scaling, and 

Unfortunately, translation is treated differently (as an 

addition) to scaling and rotation (multiplications). It 

is advantageous to be able to treat all three In a 

consistent or homogenous way, so that all three basic 

transformations may be combined together. 

If the points are expressed in homogenous coordinates 

all three transformations may be treated as 

multiplications. Homogenous coordinates were developed 

in geometry (Maxwell 1946,1951) and have subsequently 

been adopted In computer graphics (Blinn 1977). In 

homogenous coordinates, point p(x,y) is represented as 

P{W.x,W.y,W) for any scale factor wtO. Then, glven a 

homogenous coordinate representation for a point 

P(X,Y,w), the two-dimensional cartesian coordinate 

representation for the point is x=X/W and y=Y/W. In 

MAGIC W is always 1, so the division is never required. 

Homogenous coordinates may be considered as emQcdding 
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the t.wo-dirnensional plane, scaled by W, in the z=w (here 

z=l) plane in three-- space. 

Points are now three-- element row vectors, so 

transformation matrices, which multiply a point vector 

to produce another point vector, must be 3x3. In the 

3x3 matrix form for homogenous coordinates the 

translation equation is represented as: 

1 0 0 

(x' y' 1 ) - (x Y 1 ) · 0 1 0 

Dx Dy 1 

or, expressed differently, 

p' = p. T (D x I Dy) , 

where 

T(Dx,Dy) - 1 0 0 

0 1 0 

Dx Dy 1 

Similarly the scaling equations become 

Sx 0 0 

(x' y' 1 ) - (x Y 1 ) . 0 Sy 0 

0 0 1 

Defining 

S(Sx,Sy) - Sx 0 0 

0 Sy 0 

0 0 1 
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we obtain 

pI = p·S(Sx,Sy) 

Finally, the rotation equations become 

cose sinS 0 

(x' y' 1 ) - (x Y 1 ) - -sine cosS 0 

0 0 1 

letting 

cose sine 0 

R(e) - -sine cose 0 

o o 1 

we have 

pI _ p-R(9) 

10.5 PROCRUSTES ANALYSIS 

Chapters 7, 8 and 9 have described a number of ways of 

obtaining a two-dimensional representation of the data 

set. The objective of Procrustes Analysis is to enable 

a comparison of the configurations. The procedure is 

referred to as Procrustes analysis after the 

mythological Greek innkeeper 'Procrustes who ensured his 

clients fitted his beds by either stretching them or 

cutting off their limbs. This section describes a 

method for the cornparlson of two geometrical 

configurations; a generalisation to comparing ~ore than 
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two configurations is given by Gower (1975) and ten 

Berge (1977). The idea of seeking to transform one 

matrix into another was first proposed by Mosier (1939). 

A solution with transformations restricted to orthogonal 

rotations/reflections was given by Green (1952) and 

later generalised by Schonemann (1966, 1968), Gruvaeus 

(1970), and Schonemann and Carroll (1970) . This 

description is roughly based on Schonemann and Carroll's 

solution where four basic geometric transformations are 

included: 

(i) translation of the origin 

(ii) rotation of points 

(iii) reflection of points 

(iv) uniform dilation of points 

It will be assumed that the configurations to be 

compared have coordinates given by the (nxp) matrices X 

= (xik) and Y = (Yik) where the activities are specified 

The in the same order in the rows of the two matrices. 

measure of fit used to assess the resemblance of the two 

configurations 1S the sum of the squared distances 
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between corresponding points in the two configurations: 

Y ik ) 
2-

- trace {(x y)1 (X - y)} 

This measure as it stands is not used directly as it . 
1S 

usual for one of the configurations to be held fixed and 

the other transformed to fit as closely as possible. 

The four geometric t~ansformations used to map the 

"to-be-fitted ll matrix to the IItarget ll matrix are 

considered below. 

10.5.1 Matching Under Translation 

There are two ways of viewing the eJ.ementary geometric 

transformations: (a) as an alteration of the coordinate 

system leaving the space element undisturbed, or (b) as 

a displacement of the space element itself while the 

coordinates remain fixed. In both cases the end result 

is the same. The alternative approaches may be seen 1n 

figure 10.10. 
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+ y 

I 
--------r-------+-------------~+ X 

(a) co-ordinates 

+ y 

+ X 
----------------~----------------~ 

(b) point 

Figure 10.10 

Translation of points and co-ordin~tes 
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The distance measure above may be rewritten as 

n p p L:t(x, Y) - .2: 2.{( x ik - X.I~) - (y,'k 
~c., k"'l 

- }l - Y.k) + n ~ (x k _ Y ):1 
k.~ I' . k 

where 

and 

_ / n 
Y.k = 1 n~ Yik (K = I, ••• , p) 

Hence optimal matching under translation of origins . 
1S 

attained uniquely by ensuring that the centroids of the 

two configurations coincide. By placing this common 

centroid at the origin of coordinates this 

standardisation will be undisturbed by subsequent 

rotation, reflection and dilation. Thus it 1S possible 

to assume throughout the following descriptions that all 

configurations are centre-at-origin standardised, and 

this shall be done to simplify the presentation without 

altering its content. 

10.5.2 Matching Under Rotation And Reflection 

The geometric motions are shown in figures 10.11 and 

10.12. After the centroid-at-origin standardisation has 

been made, the matching problem reduces to finding an 

orthogonal matrix R which I:~i nimises ,6,2(X, YR) . 
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," 
" " " , , , , 

" " " , " / 

" " " " 

" 

)c 

" " .L-, 

",," EB 
+ X 

------------------~~------.----------

(a) co-ordinates 

(b) point 

Figure 10.11 

/ , / 

" 

" " 

+ Y 

" " " " 

RotLJ.tion of points ctnd co-ordinates 

+ X 
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+ y 

.~ "-". 

+ Xl 

+ X 

(a) co-ordinates 

+ Y 

+ X 

(b) point 

Figure 10.12 

{" pOl'nts and cn-ol~djTlates Reflection OJ . 
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Expanding this expression, 

~(X,YR) - trace~(X - YR)' (X - YR)} 

- trace(X'X) + trace(Y'Y) - 2trace(R' y'X) 

Sibson (1978) shows that given a square matrix, A, and 

an orthogonal matrix R, of the same size, then 

trace(R'A) ~ trace{(A'A)~\ 

with equality if and only if R satisfies_ RIA = (A'A)~ 

(M~ denotes the non-negative definite symmetric square 

root of the non-negative definite symmetric matrix ~n. 

This equation always has an orthogonal solution R, and 

if A 1S non-singular the solution . 1S uniquely 

Using this result, the following theorem is obtained by 

substituting A = (y'X) in the equation above. 

Theorem 

If X and Yare configurations which have been centred at 

the . . d(X,Y) 1S minimised by transforming y to or1g1n, 

YR, where R is an orthogonal solution of 

R'y'X - (X' yy I X)~ . If y'X 1S non-singular, 

R = Y I X (X ' yy I X r~ . The minimum value is 
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trace(X'X) + trace(Y'Y) - 2trace{(X'YY\X)~) 

10.5.3 Matching Under Dilation 

Finally the transformation of scale may be applied as 

defined in figure 10.13. The transformation of uniform 

dilation involves multiplying all the coordinate vaJ.ues 

of Y by a positive constant~. For a given value of ~ 

the theorem defined above shows that the minim1.4m value 

of ,62(X,crYR) is 

~~trace(yly) - 2otrace{(X'YY'X)~} + trace(X'X) 

For given X and Y, this quadra~ic expression 1n a~ 1S 

reduced to its minimum value of 

trace(X'X) - [trace{(X'YY'x)~3J2/trace(Y'Y) 

by choosing 

() = trace {(X I yy f X) '/.2 /trace (y I y) 

As the procedure is independent of any scaling factor ~, 

optimal fit is obtained within the class of 

transformations considered by carrying them out in the 

order described. 
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(a) co-ordinates 

(b) points 

Figure 10.13 

+ y 

Dilation of points and co-ordinates 
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P, (- 2,0) 

P4 (0,-1) 

Q4 (-1,0) Q:2, (1,0) 

(b ) 

Figure 10.14 

Two geometrical representations of the same set of four 

objects, the ith object (i=l~ ... ,4) being represented by 

point P. 
. 

(a) and by point Q.in (b) . The configurations In 
l l 

are defined by the following matrices: 

-2 0 0 1 

(a) 
0 1 (b) y 1 0 

X - -
- -

2 0 0 -1 

0 -1 -1 a 
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10.5.4 Computational Procedure 

The theory presented in this section is illustrated by a 

simple numerical example, summarised in figure 10.14, 

which shows two different geometrical representations of 

a set of four objects. The Y-configuration will be 

transformed to fit the X-configuration as closely as 

possible. Both configurations are already centred at 

the origin, and so the next step is to find the optimal 

rotation and/or reflection for the Y-configuration. For 

these data, 

A=Y'X=[ 02] 

-4 0 

which is non-singular 

Hence the optimal rotation/reflection is 

a counterclockwise rotation through ninety degrees 

Similarly, the dilation factor is 

6/4 

Thus, the optimal transformed Y-configuration is given 

by 
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y* - O"YR - 6/4 0 1 

1 -:j 0 

The transformed points {Q\ (i = 1, ... , 4)} whose 

coordinates are g iven by .J~ ~ are plotted 1n figure 

10.15(a), together with the X-configuration, to which 

they are the optimal approximation under the given set 

of transformations. The sum of squared distances 

between the two configurations is 1. 

In order to demonstrate that fitting X to Y need not 

give the inverse scaling to fitting Y to X, the results 

·are summarised 1n figure 10.15(b) of the transformation 

of {Pj(i = I, ... , 4)} to {pf (i - I, ... , 4)1 so a s to 

obtain an optimal approximation to the set of points 

{Qj(i = I, ... , 4)}; 1n this case, the sum of squared 

distances between the corresponding points 1n the two 

configurations takes the value 0.4. There 1S no 

rotation and dilation which will exactly match the 

configuration of eight points 1D figure 10.15. 
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PI (-1,0) 

(0. ) 

Q~ (-,. 5, 0) 

(b) 

Figure 10.15 

(0 I 1· 5) 

P4 (0,-1) 

Q~ (0, -I' 5) 

P,* (0, \'2.) 

Q. (0,1) 

Q3 (0,- I) 

P3 -I(- Co, - I . 2 ) 
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Demonstration of the transformation of one of the 

configurations defined in figure 10.14 in orde~ to 

fit the other configuration: (a) Y transformed TO 

fit X; (b) X transformed to fit Y 
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10.5.5 Example From MAGIC 

Figures 10.16 and 10.17 show two test matrices roughly 

based about a square in two-dimensional space. Figure 

10.18 shows the tabulated output of the Procrustes 

analysis with two statistical measures of goodness of 

fit developed by Lingoes(1973) and Schonemann (1970). 

Schonemann's symmetric coefficient (s) is probably the 

most understandable as it varies 0 (. s ~ 1 wi th 0 being a 

perfect fi t. In the graphical implementation ln BF.GIC 

(figure 10.19) neither measure 1S shown it being 

considered irrelevent to the conceptual rather than 

theoretical fitting being carried out in this context. 
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EB 35, bS 

EB (0, f,O 

EB 50,50 

EB 15,45 

EB 10,40 ED 60,40 

EB 20,30 

ED 35, IS 

Figure 10.16 

Test data matrix 1 - "Matrix A" 
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EB 30,00 

15,45 2.0,45 

EBEB ED 50,45 

EB 50,25 

ED 50,10 

Figure 10.17 

Test data matrix 2 - "Ma.trix B" 
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Figure 10.18 

INPUT FILE FOR t1ATRIX A 
A 
I~~ FILE FOR MATRIX B 
B 
MATRIX A 

10.0000 
19.Ce.e0 
15.(,273 
35. (:C63 
50.eOO0 
69.00f:e 
35 e'?~4n • ·-,~ ... _,u 
2e.eooa 

MATRIX B 
39 . reoo 68. eeoo 
15 ~0?Q 45 ~~~~ 

• t,..-_".,.,/,:;"J • ~~""""'U 

20. eeoo 45. f"S'3a 
53 . C2?3 4S . €8:]0 
59. e~.oo 25. 82.[:0 
I:'..n r:'?<~"r;, If) r..(>~"?l .J!<J. ".:...._.J..).~ u. t,. _ ·;..JtJ 

lS.Ceae 18.e000 
15. 0--,}-30 35 . 6[;88 

I1ATRIX OF BEST FIT 
29.1581 59.8975 
14.9269 45.9883 
21.9619 45.9878 
50.1025 45.5357 
49.8699 24 . 4~::;:'i2 
49.6999 10.41SB 
14.5242 le.812G 
14.7657 31.9180 

Page lO-291~ 

NOt·I-SYf· J ;ETR I C FIT L:: e . 8356S8~-{)3 
S'rt11ETRIC COEFFICIEtfr =: 0, 646111E-01 
STOP 

Tabulated output from Procrustes analysis 
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CONrIcuRAtl0N fITTING 
MATRIX A YIlt BE FITTED TO MATRIX B 

INPUT FILE FOR MATRIX A ~ 

INPUT FILE FOR MATRIX B~ 

Figure 10.19 

MAGIC Procrustes analysis output 



11.1 INTRODUCTION 

CHAPTER 11 

DATA CLUSTERING 

This chapter presents a technique for identifying and 

displaying natural groups and clusters that may occur in 

complex data arrays. The method adopted 1S the 

well-known technique of permuting the rows and columns 

of the data matrix in such a way as to group the larger 

array elements together. This option is included in 

MAGIC for two reasons. Firstly, although an established 

formal design method, the task 1S very difficult to 

accomplish manually. Secondly all the other clustering 

and ordination techniques operate on modified data with 

some inevitable loss of information. It 1S therefore 

valuable to have available an option which operates on 

the "raw" data matrix and represents it in a way which 

enables clusters to be identified. The technique thus 

provides a useful check when used ln conjunction y.;i th 

the other techniques, but also supplies additional 

information insofar as it is possible to identify from 
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the rearranged matrix not only the clusters of 

activities, but also those variables upon which the 

clusters are based. 

11.2 THE TECHNIQUE USED 

The problem may be formulated as a "travelling salesman 

problem II • This classical operations research problem 

notionally concerns a salesman who wishes to find the 

shortest route through a number of cities and back home 

again. Stated more formally, given a finite set of N 

cities and a distance matrix (d'lj) (i,j€.N), determine 

min* ,2. d j*(i) 
. I €n 

where * runs over all cyclic permutations of N; *k(i) . 
1S 

the kth city reached by the salesman from city i. If N 

= (1, .... "n), then an equivalent formulation is 

n- I 

min v ( i~\ dY(i)V(i+l) + dy(nJY(,Y 

where v runs over all permutations of N; here v(k) 1S 

the kth city in a salesman's tour. If d·' = d'j for all IJ J 

(i,j) the problem is called symmetric, otherwise it is 

assymetric. If d ik ~ d ij + d jk for all (i,j,k) the 

problem is Euclidean. 
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Bellmore and Nemhauser (1968) , Eilon et al (1971), 

Bellmore and Malone (1971) and Christofides (1975) all 

contain surveys of well-known solution techniques. The 

solution technique adopted in MAGIC is a modification of 

the suboptimal method which constructs a tour by 

successively inserting cities. 

11.3 PROBLEM FORMULATION 

Suppose that a data array (a ij) (i E. R, j E. S) . 1S glven, 

where a' . lJ measures the strength of the relationship 

between the elements i € Rand j E S. A clustering of the 

array is obtained by permuting its rows and columns and 

should identify subsets of R that are strongly related 

to subsets of S. 

To convert this problem into an optimisation problem 

some criterion must be defined. By defining a "clumping 

factor", CF, as a criterion to optimise, the problem may 

be formulated 1n terms of the travelling salesman 

problem. The CF used is the sum of all products of 

horizontally or vertically adjacent elements 1n the 

matrix. Figure 11.1 shows how this criterion relates to 

various permutations of a 4 x 4 array. 
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S, S2 S3 S.,. 

r, 1 0 1 0 
r

2 
0 1 0 1 

r3 1 0 1 0 
r+ 0 1 0 1 CF - 0 

S, S;l S3 s ... 

r, 1 0 1 0 
rs 0 1 0 1 
r, 0 1 0 1 
r1- 1 0 1 0 CF - 2 

S, S1 s~ s ... 

r, 1 0 1 0 
r 1 1 0 1 0 
rs 0 1 0 1 
r ... 0 1 0 1 CF - 4 

S, S;l S3 s ... 

r, 1 1 0 0 
r

2 0 0 1 1 
r. 0 0 1 1 
r't 1 1 0 0 CF - 6 

SI s2- S3 sA\-

r, 1 1 0 0 
rl. 1 1 0 0 
r~ 0 0 1 1 
r 0 0 1 1 CF 8 

'"t 

Figure 11.1 

Clumping Factors for various permutations 
of a 4 x 4 array. 

Page 11-299 
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The problem is then to find the permutation of rows 

columns of (aij) which maximises CF. 

Let R - (I, ., r) 

and S - (I, ., s) 

with the conventions 

f(O) = p(r+l) = cr(O) = ~(s+l) - * 

a 0 = a . = 0 for i E R, j E: S 1* *J 

Then CF, corresponding to permutations p of R and ~ 

of S, is given by 

0.5 L. L a co (.,(a . C O )+ 
i€.Rj€.S f de- J 1'(1)0- J-I 

a f(i- I) 0- (j) + a f (i + I) o-(jY 

- ~ ~ a· (0 a. ( . + of 2. a P( ). a C ) " 0 " 1 (5""" J) I CJ J -t I) ~ i J 1''' ... I J" J'" I~R i=o jfs 

= CF (0-) + CF ( p) 

Thus CF(p,~) decomposes into two parts, and 

and 

its 

maximisation reduces to two seperate and similar 

optimisations, one of CF(~) for the columns and the 

other of CF(~) for the rows. 

11 4 SOLUTION ALGORITHM 

A sequential selection suboptimal algorithm 1S used to 

determine array orderings corresponding to local optima 

of CF. The algorithm operates as follows 

1. Place one of the columns arbitrarily. Set i=l. 

2. Try placing each of the remaining N-i columns 1n 
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each of the possible positions (to the left and right of 

the i columns already placed) and compute each columns 

contribution to the CF. Place the column that gives the 

largest incremental contribution to CF in its best 

position. Increment i by I and repeat until i = N. 

3. When all the columns have been placed, repeat the 

procedure on the rows. This step is unnecessary if the 

matrix is symmetrical as the row and column reorderings 

will be identical. 

This algorithm has several important characteristics. 

It is quick and effective In operation. Storage 

requirements are only linearly related to the size of 

the data array. It is also applicabJe to matrices of 

any size or shape, the only restriction on the array 

elements being that they should not be negative. 

11.5 EXAMPLE 

Figures 11.1 and 11.2 show the original data matrix 

the transformed matrix. 

and 



DATA CLUSTERIHG 
Page 11-302 

.' 

ORTGl ~,!c~ - \" , ... '-. [';~yl' MMO ... 1 
~CTI(tN 1 

1 2 ., 
4 c-

'-' '-' 1 ·~t:. 00 1 · (u) ~ 00 1 ,00 '3,00 • 2 1-'; Of~ 1 .e~) C:"OO 2 .00 .-. ,=t(1 '-.. - (: 
3 ~:~: .. ~-~) 1 00 f. 0(1 1 (1\) 3.(Hj , 

I 4 2~ C~) 1 .00 6.00 1 ('\0 - (~0 , 
'-' 5 ...... - r - 1 · (10 2.00 1 . (1(1 ...... 

.00 ~~ t.\·;.J , , -6 3£., G~1 1 0(1 c.:- · (u) 1 OC1 ~5 . 0'21 ._1 

7 ~;:; . e~1 .r:. (1[1 C' O~J :::.00 :3 . 0(:1 0.- J 
S -. r c.- "2 . ~i':1 4 .OfJ : •. ~~(1 ~.O(1 ~.~., ,:A.:t 
9 1:"1" -r r.,. t)D 2.00 1 .00 3.00 t..:: h, t 

"- ~ - - ~ 

10 24 .00 2.00 1 · (H) 1 .00 :::.0(1 
1 1 ~.c. no .:- 00 1 0(1 1 .00 3.00 .a- •. _ ... ~ 

12 ~-=-; nf1 r, oe ,. 
00 1 .03 '3. (1l1 ... - .. - - ~ . t. 

13 --.--. 
[l~) '.:' n(:" ~ 

(10 2.00 5.80 . .' . ..... . ---.-- ,_I • 

14 ""0 nn -, .80 6.00 1 .00 3.00 c... . __ c.. 
1 c· .... n (l~ 2.00 '( .1~(1 c- OO 3.00 .;, ... _. I.l'. .J. 

16 "1 . e£) 2 .e~3 .., 
· ~~~8 '" O~j 1 .00 .::. • Co 

17 34 . e.o 1 OC1 3.80 1 ,0(1 3.00 · .. 
is 2B.eo --, n':-1 ~ nr1 2.0(j ~. (10 c.. , __ 

~ . - - ~ 

19 -:-1':' eo 2.00 ~l. O~J :3. (n) 
..... 

(il) • L.._' -' . 
2.'0 45.0(f 1 .00 f:' on 1 .013 -. 00 , J. _ ..... 
21 "':'": .. ~ (H~ 1 . 00 5 . 00 ::.. (10 ,,:. . l1LJ 6_"- .-,...-. --... - l'::;,'? --, 

· 0~j 7 .00 1 .00 ~:~ . (.1(1 £..L. "'-........ ~ 

2-7 6[1 O~1 r'. 0(1 .; . (JO 1 .00 ... 00 ~ " ..... ' ... . 
24 3~f . 0'::1 1 ,00 1 .00 3. (10 2.00 
... oc c t-=-; J:~~l 1 .00 4 .00 1 ,00 3.06 L..J .J_.'.J_ 

Figure 11.1 

Original data matrix 
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Figure 11.2 

Reordered data matrix 



CHAPTER 12 

EXAMPLES OF USE 

12.1 INTRODUCTION 

Two examples of the use of MAGIC are presented. The 

first 1S in the context of replanning a traditional 

cellular office organisation into a restructured op'en 

plan layout within the existing but upgraded office 

building The second shows a variety of applications ln 

the post-occupancy evaluation of another building. 

The replanned office 1S the Central Accounting Office 

(CAO) of the Eastern Electricity Board, in Ipswich. The 

post-occupancy evaluation was carried out on the MRC 

Genetics Building at the Western General Hospital, 

Edinburgh: the use of MAGIC in this context forms part 

of a more complete evaluation reported by Markus and 

Aylward (1980). 
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12.2 REPLANNING OF EASTERN ELECTRICITY CAO 

The Eastern Electricity Board is the largest of the 

English area boards, and covers the area shown in figure 

12.1. The range of services provided and the Boards 

organisation is outlined in figure 12.2. This example 

of MAGIC concerns the replanning of office facilities 

within the Central Accounting Office, and is a 

straightforward example of layout planning. 

Figure 12.1 

Eastern Electricity Board location map 
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Eastern Electricity's 
organisation includes Where ~1Je fit in 

1 HEADOUARTERS 
2 CENTRAL SERVICE UNITS 
1 CENTRAL ACCOUNTING OFFIC 
3 GROUP OFFiCES 

19 DISTRICT OFFICES 
120 SHOPS 

E 

I 

Staff INDUSTRIAL 5500 
Project 

NON-INDUSTRIAL 5400 
TRAINEES & 
APPRENTICES 280 
MANAGEMENT 70 

11250 

Groups 

k The electricity supply networ 
comprises 76,000 km of overhead 
lines and underground cables, 

. 

together with 50,000 transforming points 

Figure 12.2 

Eastern Electricity Board organisation 

Electricity Council 

I I 

Generating Eastern Electricity 
(one of 12 

Board Area B~J.Hd~) 

I I 

Regions Groups 

I I 
Groups Districts 

I I 
Power Shops 

Stations 
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Layout planning may be divided into four basic stages 

data collection; analysis of information; diagrammatic 

representation of relationships; and the translation of 

the diagrams into the final layout. 

Data collection usually entails some form of survey. 

The items covered include: 

(i) the main organisation and its departmental functions 

(ii) activities within departments 

(iii) group working 

(iv) each individuals (or groups) activities, including 

basic space allocation, equipment and furniture 

requirements, etc. 

(v) communications - personal, telephone, and paper flow 

patterns 

(vi) storage requirements 

file, archives. 

personal, group, central 

Because of very strict time constraints and important 

physical restrictions a number of a priori decisions 

were made. The "reanimated" office was to be open-plan 



EXA~1PLES OF USE Puge 12-308 

and the major departments were to be left as the main 

functional divisions. This last constraint is quite 

reasonable when the physical problems of reorganisation 

are considered. The Chief Accountant's Department 

handles the billing of 2.5 million consumers and so 

utilises much heavy mailing equipment. The Management 

and Computer Services Department is obviously affected 

by the position of the computer machine room, which 1S 

fixed. The other major decision was that the building 

design (survey of space, services, etc.) should be 

carried out at the same time, and in parallel to, the 

space data collection and planning. The flow chart of 

the space planning study is shown in figure 12.3. It 

was agreed that the use of MAGIC should be to determine 

optimum arrangements in the form of "Salisbury Plain ll 

diagrams and the detailed group and zone layouts would 

be carried out manually. The outline zone layouts of 

the building as existing are shown in figures 12.4 to 

12.9. 
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12.2.1 The Activity Survey 

The Chief Accounts Department and the Management and 

computer Services Department were each surveyed 

seperately. A matrix of interrelationships for each 

department was drawn up, and individual activity 

information on space requirements, storage, equipment, 

etc. , collected. This information is summarised here: 

full details are to be found in Bridges (1978). A 

master activity matrix was prepared for each department 

and activity data sheets compiled. Figure 12.10 shows 

the matrix for the Computer Services Department and 

figures 12.11 and 12.12 show typical data sheets. 
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12.2.2 Analysis Of Chief Accountant's Department 

The data matrix for the Chief Accountant1s Department 

was analysed by Hierarchical Cluster Analysis and 

Nonlinear Mapping. 

The "best fit" dendrogram was produced by the Group 

Average method and is shown here as a straightforward 

dendrogram plus a marked up version identifying the 

major administrative divisions (figures 12.15 and 

12.16). The activities are numbered 1 to 100. This 

refers to the data matrix and are all as on that matrix 

up to and including activity 81; activities 82 to 90 are 

all grouped together as 82 - Computer Room. Activities 

91 to 108 on the matrix are consequently renumbered 83 -

100. The matrix key is reproduced here, together with 

the grouping order list (figures 12.13 and 12.14). 

The bubble diagram is drawn once without area scaling 

(figure 12.17) for the 100 activities used in the 

clustering analysis and once with area scaling (figure 

12.18) for the complete 108 activities as shown on the 

data matrix. 
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Chief Accountant's Department, activity list (continued) 
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Figure 12.13 

Chief Accountant's Department, activity list (continued) 
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Figure 12.17 

Chief Accountant's Department, bubble diagram 
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Figure 12.18 

Chief Accountant's Department, bubble diagram (with areas) 
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12.2.3 Analysis Of Management And Computer Services Dept. 

There are four different analyses of the organisational 

structure. Although all four are calculated differently 

there is a large amount of agreement between them, thus 

indicating some underlying structure in the data. In 

each case (except for the analysis into seperate groups 

which is self-explanatory) a possible interpretation is 

marked up on the printout. These interpretations have 

been made solely on the computed data without reference 

to the job title list, and thus represent the aCLual 

relationships hidden in the data and not necessarily the 

ones which are believed to exist. 
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Figure 12.19 - Management and Computer Services Department, reordered matrix <continued) 
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Figure 12.19 - Management and Computer Services Department, reordered matrix <continued) 
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Figure 12.20 
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~,viAG EMENT A!-ii) tCJI.?lITER SF.R'1l CF-S 
rJA'fA ~,~TP.IX 

1 Ch\~ Officer 

2 Private Secretary 

,} Work Stucty S~ction Heed . 
4 Hork Study Senior r:nsineer 

5 l'rork S t'-" OJ' Tee.m 1 
, 

i';or~ b ~tudy TCli:lJ 2 

7 ,"-or;: Study :'eaa: 3 
b \';o::ak Sbdy Te::..rn 4-
9 l'/or};: Study Tc;ara 5 
10 O:.erat.ional ?esea!'ch !l'9C tion lI?an 

11 O?era. 'd onal Re!'e~rch S~n:'or Ene1.ne~r 

12 Op~ rll. t i on·3-1 H.eEee.ch Te!lrtl . • 
13 L'p'J ,:, t io~c.l Res';~l'ch Toa.lI 2 

11 .. erE-ani sa ticn .-\: iI."!thO:l3 S'!ction Head 

15 Ort;anl:';lltion ;1c l~e th-:;J 3 S'lnior A!:!'i3t~!lt --16 Ort:·!l:li Sil. ~ ion &: ll.f)thcds Te:1.::1 1 

17 Planr..i.ng ,l- Pro~rfl~;:1ing SoJct!on H~ad --18 Cb !.r:,!, Sy~te:::s AMlpt 

19 Fo!\sibili tjO 5tadi'!s TO~:t 

20 Syste:r..s Dc'{elop:.,-ent Tea;.., 

21 S:"s:~~!' l,~.'\ in te!'lnnce 7e".:tI 

22 Da b, ;:':;'S'3 Specialiot. 
-

2,> Chip.~ Pro.;rar.:.c.er 

7,4 31111n[. .j: :;!1(;in~~ring TeCl. 
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-0 
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j5 Conff:'t'')r:ce L1.r~e 6. -----
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33 S t"l t!.~:.er'J :~~M 
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P~IR1t~G SEaUE~C( 

!TEM JO !tjS ITEM f-lT DlST~I'{Ct: 

24 26 0.-'87 
6 7 0.513 
S 6 1.246 

1<4 15 1.267 
2~ en 1.273 
24 25 1.~6a 
1<4 16 1.533 
18 22 1.662 
20 21 1.678 
23 2-4 1.898 
18 19 2.100 

S 8 2.154 
3S 36 2.345 
31 32 2.368 
20 23 2."1-1-4 
~ S 2.482 

17 18 2.557 
12 13 2.565 
33 37 2.555 
20 28 2.S11 .. 1<4 2.8-44 
30 33 2.932 

2 29 2.974 
17 20 3.010 
10 12 3.2:;6 

1 35 3.311 
30 34 3.315 

3 ~ 3.543 
1 31 3.592 
3 10 3.63<4 
2 3 3.686 

11 30 3.835 
17 38 .d.020 
9 11 -<.373 
1 17 4.565 
2 9 ~.971 

1 2 6.03{) 

FIT IS 70.~ ACCURATE 

Figure 12.21 

Management and Computer Services Dept., paiiing sequence 



C:~0 1'IAtW'..[l'£t!T fY'lD COI'PUTER SERtJ ICES 

1 3S 36 31 32 17 18 22 19 2'.) 21 23 24 26 27 25 28 38 2 a9 3 ~ 5 6 7 8 14 15 16 12 13 10 9 11 3e 33 31 3'4 

I I 
L.....-

I.-~ 

,..-

L 
i 

r-

T 
I 

I 

I 
--------~------,---~ 

r;E:\u'e 12.22 

~<('~na.~ement and Co;::puter Services Department, tree diagram 

~ 
~ 
,...!>o. 
'lj 

~ 
M 
(f) 

o 
t-r,j 

C 
(f) 

M 

'\.-:1 
PJ 

O'Q 
CD 

I-I 
r,,) 

u) 
(.J 

(Fl 



~o:.:":.-~ I='~ c.-w - ~~c."":f..::..'~iT , ~ ~':4\fletg 

" .... : 

1 ~ ~ 31 32 17 IS ~ !~ ~ Cl CJ ~4 ~ e5 ~'? 2S 3b Q ~ 4 G ; ? S 14 1; is lCZ 13 3 IS 9 11 :ro 33 37 ~ 

j I 
I 

; 

• 

I I , ' I I 
t 

! 
I I ! ; , 
; -r-- ; - I 

, 

, 

T ,-• 
...,~ 

-r- ' 
--r-

i -~ ; J ; 
I 
1 

-~ 
, 

i 

, 
; . ~. , 

': 
. , " , 

t J \ 
, . 
~ t 

l . ...... .- .-... '-. , -, ... . ' - . " ..... ~ . 

l 

: -

I 'T 
. . , 

I 
I 
I 

i 

I I I 

l 
t 

~ 

F -irr~lY"l:> 
....... ~ ---- ! 

,') ')') 

"lnrl~e~·· ~.~ 2.:1': ":Or!!fHl L'.r Ser-v.:.ces I'-::::-pa"!:,·trnellL, allno La :_~'1 Lr'e'2 (~iag!"am 

'l:1 
Pl 

OQ 

<D 

/-..J 
r" ) 
I 

Cd 
W 
<J) 



EXAMPLES 01" USE 

(:AO : "AfiAGEfEtlT AND CQflPUTER SERVICES 
. REl.AT!Olf5HIP UITH 3 GRt)LFS 

CW'::TERS ~Ef1';(D 'IT THIS ITERATIOMI 1 AND 3 
CUJST£R I'iE"BER5 

1 1 1';' 18 19 20 21 aa 23 2-4 2S 26 21 ~8 31 3~ 3S 36 lS 
2 2 3 4 5 6 7 8 10 12 13 14 1S 16 29 
3 9 11 30 33 3~ 37 

o 

.. 8 

Figure 12.24 

Example of "seperate groups" output 

Page 12-337 

0) 



EXAMPLES OF USE 
Page 12-338 

Discrete Grouping~ 

Maximum of 13 groups isolated as follows 

Group No. 

1 

2 

3 
I} 

5 
6 

7 
8 

9 

10 

11 

12 

13 

members 

2, 4, 5, 6, 7, 8 

10 

38 

11 

3, 12, 13, 14, 15, 16, 29 

20, 21 

1, 31, 32, 

30, 33, 34, 

17, 18, 

9 
24, 25, 

22, 23 

28 

19 

26, 

35, 36 

37 

27 

Reducing the number of groups one by one we obtain the following. 

First groups 11 and 13 join together. Group 11 becomes 24, 25, 26, 27 ~nd 
28. Group 13 ceases to exist and all others remain unchanged. 

Next group 6 joins group 12, but items 22 and 23 are also reallocated to groups 
9 and 11 respectively. This leaves the following situation. 

Group No. members 

1 2, L., 5, 6, 7, 8 

2 10 

3 38 

4 11 

5 3, 12, 13, 14, 15., 16, 29 

6 20, 21 

7 1, 31, 32, 35, 36 

8 30, 33, 34, 37 

9 17, 18, 19, 22 

10 9 
11 23, 24, 25, 26, 27, 28 

Next groups 6 and II JOin, and item 20 moves from group 6 to group 9. 
2 and 5 then join so with 9 groups we have: 

F;~1tY'p l??S 

Summary of seperate groups output 

Groups 
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Group No. 

2 

3 
4 

5 
6 

7 
8 

9 

members 

2, 1;, 5, 6, 7, 8 

3, 10, 12, 13, 14, 15 16 29 , , 
38 

1 1 

21 , 23, 24, 25, 26, 

1,31,32,35, 36 

30, 33, 34, 37 

17, 18, 19, 20, 22 

9 

27, 28 

Page ~2-339 

Groups 4 and 7 join next (causing groups 8 and 9 to be renumbered 7 and 8). 
Groups 3 ~nd 5 then join to leave: 

Group No. members 

2, 4, 5, 6, 7, 8 

2 3, 1O, 12, 1 3, 14, 15, 16, 29 

3 21, 23~ 24, 25, 26, 27, 28, 38 

4 11 , 30, 33, 34, 37 

5 1,3 1 ,32,35,36 

6 17, 18, 19, 20, 22 

7 9 

Groups 4 and 7 join next, then groups 3 and 6. 
to cluster 5, so we have: 

Item 17 moves from cluster 3 

Group No. 

2 

3 

4 

5 

members 

2, 4, 5, 6, 7, 8 

3, 10, 12~ 13, 14, 15, 16, 29 

18,19,20,21,22,23,24,25,26,27,28,38 

9,11,30,33,34,37 

1,17,31,32,35,36 

Next groups 1 and 2 join and item 10 moves from group 1 to group 4. Groups 
2 and 4 then join and force item 10 back into group I. So the situ2tion is 

Group No. 

2 

3 

members 

2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 29 

1, 17, 18, 19, 20, 21,22, 23, 24,25, 26, 27, 28, 
31, 32, 35, 36, 38 

9, 11, 30, 33, 34, 37 

FInally groups I and 3 join together. 

Figure 12.25 

SUI:11~1,_-Lry of sepcrate groups output (cont::"nued) 
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FiguI'e 12.26 

(0 
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Management and Computer Services Department 

bUbble diarpa:n 
'-' 

Page 12-3 4 0 
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Figure 12.27 

Management and Computer Services Department 

annotated bubble diagram 
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The reordered matrix (figure 12.19) simply attempts to 

shuffle the list order of the elements to bring together 

the associated activities to push the zero elements (or 

unrelated By examining 

the matrix and isolating blocks of 1, 2, and 3 1 s groups 

activities) out to the corners. 

of related activities can be identified. One possible 

grouping is identified on one of the printouts. 

The hierarchical tree or grouping diagram (figure 12.22) 

shows a list of the 38 activities across the top of the 

page. Pairs of activities are then successively joined 

together; the nearer the top of the page the joining 

occurs the more the ac~ivities have in common. On one 

printout (figure 12.23) the more obvious groups ha7e 

been identified; these groups compare very well with the 

IIseperate groups II analysis showing 9 groups (figure 

12.25). One further important point 1S the very 

striking division into two seperate hierarchies (shown 

divided by the dashed line). This division is confirmed 

by the identical splitting of the activities into two 

groups by the seperate groups analysis. 

The bubble diagram (figure 12.26) 1S open to a numucr of 

interpretations. The one shown (figure 12.27) is b~scd 
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on comparisons with other analyses. Groups contained in 

larger groups are indicated by the .concentric circles. 

The other lines are there to suggest that activities 

(J.,3,lO) and (31,32,35,36) have links to both sets of 

groups outside the lines. Thus two groups are again 

identified but with mutual links to corr~on services anc 

chiefs of staff. 

Further uses of the data analyses include identifying 

the weak links for the splitting of activities in 

different offices or on different floors. The areal 

implications of the different groups in the sep€rate 

groups analysis could br calculated and compared with 

available floor areas. If the result is too large or 

small it is only necessary to look at what happens with 

more or fewer groups as required. In doing this 

exercise it is useful to keep referring to the 

hierarchical analysis to ensure that no important 

(high-up) link becomes accidentally seperated. 
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12.3 POE OF GENETICS BUILDING EDINBURGH 

The MRC facilities are spread over four sites at the 

Western General Hospital (figure 12.28). 

1. Animal House. The t1RC have a 2/5 share I wi th the 

University and the NHS taking the remainder. 

2. Radiotherapy (West Building). A variety of MRC work 

is carried on ln the radiotherapy wing of the maln 

hospital. 

3. 1964 Building (Centre Building). 

Studies Section is housed here. 

4. MRC/Hurnan Genetics (the 

The Experimental 

study building) . 

Cytogenetics and pattern recognition work is located 

here. 
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12.3.1 The Tasks And Aims Of The Unit 

The main work of the unit is the t d f s u Y 0 chromosome 

variation and its consequences In man. This work is 

organised under the supervision of a Director, into five 

main research sections as follows. 

12.3.1.1 Cytogenetics - The general alms of the section 

are: to 'establish the incidence and nature of "normal" 

chromosome variation and of constitutional anomalies ln 

human populations and (in collaboration with the 

Clinical Studies Section) to define the biological, 

clinical and social implications of these variations. 

In practice the work of the section lS loosely orgcnised 

into four groups~ 

- a group that is largely concerned with popula~ion 

cytogenetics, family studies including work on linkage 

and polymorphisms and studies on the development and 

application of new techniques for looking at 

chromosomes. 

- a group that is concerned with the clinical and 

psychological study of the chromosomally al'!-:.ormal 

children identified in the Unit's earlier newborn baby 

studies. 
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- a group that is concerned with cytogenetic aspects of 

reproductive biology. 

- a group that is largely concerned with the cytogenetic 

and allied effects of environmental mutagens. 

12.3.1.2 Director's Section - This is a small section 

which comprlses a number of service groups', includina 

the Unit Cytogenetics Registry, Photography, Electron 

Microscopy, and one research group the molecular 

cytogenetic group. The Cytogenetics Registry acts as 

the,repository for cytogenetic and clinical data for the 

unit. The Electron Microscopy group is involved In 

joint projects with the Cytogenetic section. 

12.3.1.3 Cinical Studies - This is also a small section 

and its general aims are: to identify and establish the 

prevalence of chromosome abnormalities 
, 
ln various 

populations, in collaboration with the cytogenetics 

Section: to undertake clinical correlations of 

chromosome abnormalities and the pathogenesis of 

associated diseases: and to provide a specialised 

service for " t' studl'es and for-family "follow-up gene lC 

the collection of blood and biopsy specimens for the 

rest of the Unit. 
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12.3.1.4 The Pattern Recognition Section - This 

sections concern is with research and development in the 

field of instrumentation for automatic 'o .... a ..... l·O - L. L n, 

identification and measurement of cells, chromosomes, 

and similar microscopic objects. The section also has a 

substantial service commitment to pattern measurement, 

statistics, computer programming and operation, anc. 

electronic and maintenance work. 

12.3.1.5 Experimental Studies - This section is mostly 

concerned with the malignant transformation of human 

cells, and ln particular lymphoid cells; genetic aspects 

of the immune response; and human somatic cell genetics. 

A small group have an active programme ln studying 

cell-cell interaction in vitro and in vivo, as well a~ 

investigating organo-genesls ln early embryos. The 

section also provides a general tissue culture service. 

12.3.2 Staffing 

The formal staff organisation is summarised in figure 

12.29. 
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Formal Staff Organisation 

Unit Director 
(overall supervision) 

Section Location S &: RO VS T 

Cytogenetics 4 . 14 *" 12(5Pt) 

Directors 2,3,4(a) 6 12 

Clinical Studies 3 8(4Pt) 8 
. Pattern Recog. 4 

. -

16(1 pt) 8(1 pt) 
Exp. Studies 3 12(2 Pt) 

Notes 

Director's Unit 
Activities carried out in study building -
Photographic Unit - 3T 

1 1 

Administration &. Maintenance staff in study building 
Admin - 7 AO (2Pt) 
Maintenance - 5 M 0 (1 Pt) 

Total MR C staff in study building: Director plus 30 S &. 
RO (l Pt); 1 VS; 23T (6Pt); 7 AO (2Pt); 5 MO (l Pt). Total 
67 people (lOPt). 

Key to abbreviations: 

S& RO 
VS 
T 
AO 
MO 
Pt 

Scientific and Research Officer 
Visi ting Scient ist 
Technician 
Administration Officer 
Maintenailce Officer 
Part-time 

Figure 12.29 

Staffing 
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12.3.3 Communications Interaction Analysis 

The previous section has defined the .. formal II t ff s a - . 

organisation of the unit. All of the following analyses 

attempt, in different ways, to discover the actual 

communication patterns and work groups operatinq in the 

building. The same analysis is also applied to the 

Brief information to compare actuality with what the 

architects may have been able to analyse during their 

sketch design. 

The first analysis is produced from survey returns on 

the form illustrated in figure 12.30. Here individual 

workers are asked to define those individuals they need 

to liaise with during their work. By an analysis of 

this information the formal organisati?n can be broken 

down into each individual's communication patterns, 

which are then expanded into task re12ted groups, and 

then shown aggregating into the complete research unit. 

These relationships are presented diagrammatically ln 

the following pages, and can be read as the formal 

inter- and intra-- departmental links actually existing 

(as opposed to the formal organisation supposed to 

exist) within the organisation. 



CO~MUNICAnONS IN!EltAcnON ANALYSIS 

I. .... " .. :I·Ctu. P •. n! i :. ... 1 turn • • nO dt"p."ft1en: In 
t .. .,. 1;' .. (., P'o.'';C.l 

Pica). COll~~et I~:)SO .I\OI-"Qu.lIS w.th ""hom you 
.... Otk ,nus. C!I)~e!'f .n~ ~hnllhe,( 'Iamos in Ino SpIC.' 
tn.,.ed co·,.:";~cr··. PJ~C. onl" 0". pfI'lon'. 
,um. In ... ell Ip.lC •. Tr .... InJu'l(hld~5 ~lIu;n you ellt 
nCt:1l n..J1 "'fo ." fi,e 1.ljl," Qep.lllmt!'ni 01 (A IhO 5JII'1d 

University of 
Strathclyde 

Department of Architecture and 
Bu:Iding Science 
'31 Rottenrow, Glasgow G4 ONG C41-5524400 

COIPella,S le'f't"1 In.ll "ou "te. T". only P'8ff'QUI S1IO 
I. IhJ! Ihey mlJsl ,Iso bo PlfhCIP3f1t'10 In 'he ~u'.,e-y . 
If Ihele 11 doubt. it is bIJsl 10 InClude them. 

An')wL" (>.)(.1'1 (.II tn\., ·o,le .... I"? (!UI1$ld.lhS ,~, ,.o\.:h 

0' IheSt' ,ud,,,,JuJ" Cllool. only o,,~ ."1a"'~r '''t ".cll 
qu("ltiol'l. Il1d,( J!e Y(lul cho.(" b~ c,.tl,,,,u I"p 
app,op"."t" '<!'Irr en Ir"le .lns,,,~" s"et."f, A-.ld,f,onaf 
I'IttSWl" ,h,... I~ """I! N!' ~U"PI,"~d " II' c·~.:'j, 

• • • .. , • • • • m pl • 

Do y'lU 'f: ... ", ",. an!Q,m ... on f,Oft'Ilf\i. ",div.dual wl\lch may I"antu.llw- DI .ppli.cI.O ,-0'" IHt, 0' 
,.",::,,.",D Mtl 
.. A ~,a: .... J" e Ol:~tt C No •• "o/j.hed p."",n 0 ~"'f1o", r Almost neVI( 

[lo '10\1 'n., ... I'\~ .. in'o,m.lltOll f,OII't this fnCf'v.d",al .h,c'" may Iventu.lI~ b. appliid 10 ,out "" 0' 
't'.:..J"\ :. .• ',' 

It .A " ... 11 .:., It J .. Ct"" C No "'Aa/,,h("d P~"tI'" 0 !"C1Gm ! Almosl nevll 

2 ~ ;,"" ,"'" ,r,C.1 C:t..A' !J"'~' "'. conClt..CI 0' ),Or..1 leul n. Ollu •• '';lIvll~? 
It. J,. ~)J,' ,:. J,. e C:l." C No ~J1Jr,I'J",·d p.l~'I!'n 0 S~,dO," ! Almo.' n.~" 

(. .. ~ ~ U·t "!.,;)IIT ~ .It\ '~c' .• fd f,om In., and,Hl ... 1 ptO~OIll you .. ,11'\ al".I,nlhvl approaches and/or 
L .1: • '., , Jut 1='1,1 .y· .. r I"'-'? 
Ito ;. t·. " J .~,' "t) ' .. " C No "S'~b'.lh.cI p.J'",n 0 S"'JI>'" ! Almos' n'4"" 

• 0.>.:", 10'." 1"'1. ,Il'G-'TI".,)" 'e.;'I .... O horn IPI., .nd.",d", .. , 1m '",h.,'e ''''",encI1 
~. "~'_' __ e ~I',n . C frio "UJ:" '."181 p~:'.'n 0 SN,j,Jm !. """moil nr!V.' 

0_.' 1"1. "".'''''J'.<)<'. , .. :.,'." D, th., ,nO.III'.o .... 1 O·.II,n. u". m('lnoo, 0' ,uoc.Clu'.' ...,h.eh .,ou '>.)11101"," 

.·c· ; .. ·~""I ") , ....... '.l~ .. ~ 
A J,. • .;..: .I .. ~.I e Cr','" C NJ hl .. !.'a/,,3 tJ",1n 0 S •. 'eJ,JIft l "",'molt nCIf"t 

\'.0' .. j .. .:~ I ... ' '" 0:1'1'1.01' hom .h.llnd'~l'Idu~: '''f'n IhOUGh ,I "'.1;' Ch.Auengl yOl.t. ceCIS'on ,.g.,d.ng a 
,~.= . : •. t ,~.:: .. 
" ... - : •. J" ,III' I .,)".,. C N.J ttl. t,/'1"f..1 p.lfc,n 0 Sdduff' f A'moSlIlf:II.' 

').) ....... (\ ... ,,~ "r.~ " ':,''', 0' CU£,(~ .. I", ",.,In II,,~ tM' \.17",.)1 •• I'l,(h r.1.'1I,." 10 you ... \oIf" Jet,I,I .. ·? 
~~~._, __ e C'·I''' ___ C_!~~.f'~I::~~'.:'.~.!..:'~''''' 0 S. rd.,,," £ A'In,JSI/J",.' 

C .. ,,)~,II' ~ •• ;. ... "C,,\."'( ~"''''I' 01 • 1#( \,111'01" ".,)Ir ,,, •• I" Jh,Gul' .. r'.l.h conc.", In. 101.1 v' <).In,l.',GnII 
J.·o :, ' 
... '" . :." .... a I C',.,. C ,: .... o:.~ ,,"~J p.Ult". 0 S.'/l1om f AI"·O·,t'".·If" 

• C ~ .: .. ,~ . 'f" • :f'l I' •. nOIl'IS ... " O!'t I.): .,:, f.;I_f,~~ I;, ta"" pJ' ,(l,I .. , IJ~' p',Of 10 t.)i.",.., .I".O'l on the",' 
A '" - •• _ ~.. 8;:',,, C ' .... r)1 1[. .s· r.1 ~ .• I·.·'n 0 ~"''''')It' f At."f, .... ' '''"111'.' -_._._----,-- ------

'1 '): ,.: .. \.;. I " ,.I'C ..:.11 .. ,1ft C~"'("I"I, ,1:0 '1''''',)n '. Io(r, ~I')' r" 10 P', s/h., .' •• of ''',p\ln'.l.I,t,.,? 
A~Y\ I •• .J., le.,.n C, • ..It:'J:-'I,.,·"~"'ltlD~I'I<J.Jm (AI"IO~IIl#~.' ------ ---------- --_._----_._-_. -----------

., (1 ....... J •• " 11. ( ..... ,.~ " H'l • 'l"..J •• C ... · , 11..11. ' •• ·,JI."O ICh. I," 

A ,.I - .0, .. "J.t !I (',~1 C I.:Je-l '!t','.f\~.J"'Jr',"1 0 S.,'dollll r AlmOJln .... , - ------. --~------.--.-------

.) t: ,_ .. .:. :. "'-'0# .• oJ ... CC \(f',,,,ftJ GO'(. , :"'1\ .... fl.(1 h~/.t •• tn,,\' ", .... 1 

_. __ ---=-~, ___ .!!. .:.:..~ ~._ ~~~'.J':.':J"~~~ ,~ •. ~~ ~ _~~'~~"' ____ !.. A~"~u..!'_"'~._' __ 
" t, ...... .;, ~ ~._ .... , "~I."'(.O·(-"'"I. ",~':"'r..I\""'fl,j(l",.I'I'f I. J .• ,~ ... ~I'''I"n.:''41't"",.,.~~.'''I" 

~~ , ~ " ___ ..• ~,~ .. ' . ___ ~_.!O.:.:! _______ ~_,....:~, . __ . _____ f_ L'J.'~I:~ __ _ 
,. r; .. '. ,""., o~ ,.J" .. .:"I"!' ••• jf'l Ir, .I·e .. a .. ll."'"n .. t r'o#H' J .. Ck.tl14I .... ~~I ,.,,1 

,,:. ' .. J. Ii S .... , .. '." •• C;~". ~ .. II ~"IIJ~I 0 S.· .. ·'~,"., ... ·J~.Jt f !:l ... ·' ... /'.n ••• p.' 
r·, ..• ·• 'I"J:~, ~. :', 11'.,.111'1 t_.Jf 

ALAN 6RI D6~S A~n~C\\)R.e 
n .. me Quplulmena 

F. L. WRIGHT" M. ROHE c.. WReN L.. SU t,l.,IVAN 
co~wo,l.e, CO·lfIIIu,,,.r CO-wgr ... ~r 

'~D COl! ABCDDf A(i;)CD! AIICDG) 

naml Clepettmenf 

co--wo,1&.,------ . co-wolke, co-wo, ... , CO·WOfJ.:",·, COo-wOf'" co-",,,,k., 

ABCDI! ABCDI! AIICD! A II C D I! ABCDI! ABCDI! 

ABC D I! A e C D I! ABC D I! A II C D I! A ., C D I!' ABC D I! -------
A II C D II A II C D I! A " C D 'I! A II C D II ABC D I! ABC D I! 

.A II C D I! AIICDf ABCDI! ------- --------- A 8 C D I! ABC D I! ------ A II C D E 

ABC D I A II C D I A • C D I! A II C D I! A II C II I! A II C D I! - -'---' 
ABC D I! A II C D I A II CD! A B C D II ABC D I! A II C D I! 

A leD I! AIICDI! AlleDI! A II C D I! A e C D I! ABC 0 I! ------ ------ ------ ----
A I C D I! A leD I! A I C D II A II C D I! A I C D I! A • C D I! -----
A e C D I! ABC D I! ~~~ A I CD! ~~_~..e ~_~-.! 

A I C D I A • C D I ABC D I! A II COli A ! C D I A. COl! 

A • CD! A • COl ~~ A I C D I! ~.~~ ~C~ 

A • C D I A • C D I A. BCD I! A ., COl! A 0 C D I! A ~ COl! -------
A II C ;; I! A II COl! ~~_~_~ ~2 _ _E.~_~ ~. __ C~_! ~_II_~_! 

A • c: D If II II COif A , COl! A • C 0 fA. COl! A II C 0 '-

Figure 12.30 Communicatio!1s interaction analysis· survey form 

tr:S 
:xc 
?i 
t-U 
~ 
M 
C/) 

o 
~ 

c: 
C/) 

M 

'"0 
$lJ 

OQ 
CD 

I-----J 

'" , 
w 
en 
I-----J 



EXAMPLES OF USE Page 12-352 

Due to the survey sample not all individuals 

represented, but typical individuals from each group 

defined by their job titles and room numbers. 

are 

are 

digrarns are generated by each individual describing 

those other individuals he or she considers to be part 

of their functional workgroup, or those individuals to 

whom they give (or from whom they receive) instructions 

relating to their work activity. The individual work 

groups are finally joined together to show the complete 

departmental structure. In the individual work-unit 

diagrams (figures 12.31 to 12.53) an arrow indicates the 

direction of information flow (a double-headed arrow 

thus signifying information passing both ways). In the 

departmental diagram arrow heads are omitted as 

virtually all links at this level are two-way. 
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The individual diagrams indicate a very fragmer~ d 
• l.L\..e 

organisation with little interactionhetween individuals 

working on different projects. The combined diagraD 

( figure 12 . 54 ) , showing the departmental organisation, 

indicates four major groupings centred around rooms 103 

and 112 as the stores and maintenance functions~ room 

329 as the cytogenetic section; and room 123 as the 

pattern recognition section: this compares very well 

with the formal organisational divisions. The only 

members of the Director's Unit in the study building 

(the photographic unit) also appear quite distinctly 

located (rooms 331 and 332). 

The final figures (12.55, 56, 57) in this section map 

these individual links onto plans of the study building. 

Lines indicate communications between linked rooms; not 

all rooms are included in these linkages due to the 

nonavailability of staff at the time of the surveys. 
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12.3.4 Communication Analysis 

The perceived formal links J'ust defined are ~ no,- I of 

course, the only interactions operating ln a building. 

To determine actual communication links a survey of 

written and person-to-person communications was 

undertaken. This survey information was gathered on the 

forms shown in figure 12.58 to obtain data on 

information flows and journeys undertaken within the 

department. The data were subjected to cOffiputer 

analysis to obtain quantitative measures of functional 

workgroups in the ,department, defined by their needs for 

communication. 

For comparison, the originally perceived needs of the 

organisation as evidenced in the room data sheets 

(forming part of the architects brief) were examined and 

notes made of the specific required adjacencies. 

Unfortunately the activity groups defined in the brief 

are not identical to the currently existing groups but 

the analyses are comparable in general terms. It lS 

thus possible to check the building plan against the 

brief and also, usi.ng the survey data, to see how the 

, fl'tS l'n the building and compares current organisatlon 

with its own perceived organisation as defined 1n 
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sections 12.3.1 and 12.3.2. 

12.3.5 Analysis Of The Brief Information 

Some 79 individual space titles were identified and then 

inter relationships specified 1n the briefing 

documentation (figure 12.59). In the course of the 

design a number of these activities were amalgamated, 

and, in terms of post-hoc analysis, a lot of the fine 

segregation 

appraising 

aggregate 

becomes irrelevant. For the purpose of 

the design as built it 1S possible to 

the briefing information into the following 

twelve functional units: 

1 Stores 

2 Workshop Technicians 

3 Maintenance Engineers 

4 Pattern Recognition Researchers 

5 Reception 

6 Second Floor Laboratory Researchers 

7 Canteen 

8 Administration 
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9 Senior Technician 

10 Third Floor Laboratory Researchers 

11 Laboratory Technicians 

12 Photographic Technicians 

The analysis of this data is shown here ln two ways. 

The first of these, figure 12.60, shows a nonlinear 

mapping analysis representation of the adjacency matrix 

in the form of a bubble diagram. Distance between 

bubbles is proportional to the need for association 

defined in the brief. Activities shown as close 

together in the diagram should be close together in the 

building plan derived from the brief. The second type 

of analysis, shown in figure 12.61, is a tree-diagrilln or 

dendrogram produced from a hierarchical cluster analysis 

performed on the data. This diagram is read from the 

top downwards - activities 2 and 4 are the most closely 

related, then activities 3 and 5, and then 6 and 10. 

Activity 7 then joins 3 and 5, and so on until all the 

activities join 

organisation. 

together to form the complete 
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Bubble diagram of brief data 
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Tvee diagram of brief data 
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These diagrams indicate a requirement ln the brief for a 

close connection between activiti~s 2 and 4 (workshop 

technician and pattern recognition research), activities 

6 and 10 (the laboratories) and activitl'es 8 9 11 d " an 

12 (administration, senior technician, laboratory 

technicians, photographic technicians). ~.ctivity 7 

which the bubble diagram shows as identical to 8, 9, 11, 

and 12 is the canteen. In terms of the job functions 

for the canteen staff this placing seems reason2ble. 

All of these grouplngs are mirrored in the current 

organisation and to a large extent successfully 

incorporated into the building design. 

12.3.6 Analysis Of Survey Data 

Three types of analysis were carried out on the survey 

data; nonlinear mapping and cluster analysis as before, 

with the addition of Euclidean cluster analysis to 

determine the discrete groupings in the organisation. A 

summary of the survey data is shown ln figure 12.62. 

This shows down the left-hand side the survey sample of 

d 11 l'ncoml'ng and outgoing 22 individuals who logge a 

communications during the survey period and, along the 

top, the locations (in the form of room numbers) 

which they communicated. In each square under these 

room numbers the top figure t the n "~.ber of reprcsen s ~I. 
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communications received from the occupant of that room, 

whilst the lower figure represents the n~~ber of 

cownunications issued to the occupant of that room. 

The following output from 

represents the organisation 

the computer analysis 

in a number of. different 

ways. 

give 

The bubble diagram (figure 12.63) attempts to 

an overall picture. Bubble slze 1S not 

significant, but the distance between bubbles represents 

strength of communications between activities: closely 

related individuals (i.e. activities with large numbers 

of communications) are shown as closely related bubbles. 

To represen~ such a complex web of communications 1n a 

two-dimensional diagram obviously requires some 

comprom1se. This diagram is the best fit to all of the 

communications shown in the survey data summary, but to 

obtain detailed information on the strength of links it 

1S necessary to refer to the next diagram (figure 

12.64). 
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For comparison with the perceived organisation the 
individuals in this analysis compare as follows: 

Activity Room No. 

1. Stores technician 103 
2. Workshop technician 106 
3. Mechanical engineer 112 
4. Technician . 115 
6. Scient if ic Officer (PR) 124 
7. Research Officer (PR) 126 
8. Receptionist 200 
9. Scientific Officer (PR) 208 

10. Canteen 210 
11. Research Officer (C) 216 
12. Admin. Of~icer 222 
13. Research Officer (C) 304 
14. Senior Technician 305 
15. Scient if ic Officer (C) 307 
16. Research Officer (C) 309 
17. Scientific Officer (C) 317 
18. Research Officer (C) 318 
19. Laboratory Technician 319 
20. Laboratory Technician 320 
21. Scientific Officer (C) 328 
22. Photographic Technician 331 

Figure 12.65 

Individuals activity and room number key 
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The hierarchical cluster analysis attempts to show 

strength of relations between individuals. In the tree 

diagram in figure 12.64 each individual is represented 

along the top of the tree by their key number (see 

figure 12.65 for key numbers of individuals). The 

diagram is then read downwards, the most closely related 

individuals being linked in the diagram nearest the top 

(the individual level). Finally all individuals become 

coalesced into groups which eventually merge at the 

bottom of the diagram (the complete organisation level). 

Looking more closely we see activities 10 and 20 (the 

canteen and laboratory technician) are the most closely 

associated. The next closest link is between activity 

15 (cytogenetics scientific officer) and the two 

activities just merged together (10 and 20). The table 

in the figure gives the pairing sequence in which the 

individual activities group together, and the whole 

picture represented diagramatically in the tree 

diagram which is drawn to scale. 

The third type of analysis, Euclidean cluster analysis, 

looks at the grouping of activities in a different ~~y 

( figure 12.66). The hierarchical cluster analysjs 

showed the way individuals join together to form groups, 

. t . - s a 
which then join together to form the organlSa lon G 
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whole. The Euclidean cluster analysis attempts to 

identify distinctly seperate groups within the 

organisation. The computer can find only SlX discrete 

groups in the 22 activities included in the survey. In 

other one were seeking to divide the 

organisation into subgroups then these SlX groups are 

words if 

the largest number of subgroups it is possible to divide 

the organisation into without destroying important 

communication links. In figure 12.66 the bubbles are 

very self contained with little interrelationshjp. 

Successive illustrations (figures 12.67, 68, 69, 70) 

then show the organisation divided into 5, 4, 3, and 

finally, just 2 subgroups. In this analysis the bubble 

size represents group cohesiveness. A large bubble thus 

represents a distinct group which lS only loosely 

interrelated internally, and a small bubble signifies 

tight intragroup relationships. The distance bet\;€:en 

bubbles represents relationships in the same way as ln 

the previous diagrams. The group membership lS shown J.n 

tabular form on each printout. Throughout all of the 

Euclidean cluster analysis output groups are tightly 

cohesive and independent of each other. 

Looking at each of the printouts ln turn, the 

. 'f the fl'rst output (wi th 6 groups) 1S: lnterpretatlon 0 
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Group 1 - activities 10, 11, 15, 18, 19, 20, 22. 

Roughly based around a cyto t' gene lCS section workgroup. 

Group 2 activities 3, 13, 16, 17, 21. Another 

cytogenetics workgroup. 

Group 3 - activities 2 and 6. Pattern recognition 

workshop. 

Group 4 - activities 8, 12, 14. Administration. 

Group 5 - activities 1 and 4. Stores and maintenance. 

Group 6 - activities 5, 7, 9. Pattern recognition 

workgroup. 

At the next iteration groups 5 and 6 merge, showing the 

strong connection between the stores (particularly) and 

the pattern recognition groups research. Next groups 1 

and 2 merge, showing the whole cytogenetics unit 

seperate from the rest of the organisation. Activity 5 

(PRSO) moves from one pattern recognition workgroup to 

the other. Then, with three groups a further 

redistribution occurs, showing the three main functional 

groups very distinctly as group 1 cytogenetics, group 2 

pattern recognition, and group 3 administration. In the 

final printout with just two groups the scientific staff 
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are shown as being 

administrative staff. 

quite distinct 

Page 12-379 

from the 
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o 
(E£TICS OOILOUG, EDlt-aRGi 

HAl'ES 

1 STORE 
2 W.TEC 
3 I1.Ei~ 
.. TECi 
:s so 
6 so 
7 1<0 
S R£CEP 
9 SO 

10 CA"IT 
11 RO 
12 AG11H 
13 RO 
14 ST 
15 so 
26 RO 
17 ~O 
13 RO 
19 lk3T 
c:a L~T 
Zl so 
ZZ PiECH 

Figure 12.66 
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o 

Seperate groups analysis of survey data - 6 groups 
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o 

o 

Figure 12.67 
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o 
GEHETI CS WI LO I1¥':, ED 1 t-DU~ 

~"£s 

i STOf\C: 
2 ~J.1EC 
3 M. E.t!G 
4 lEeH 
5 SO 
6 SO 
7 RO 
6 RECE? 
9 So') 

19 crJIT 
11 RO 
12 ~1It1 
13 f'O 
14 ST 
15 ro 
16 RO 
17 SD 
18 RO 
19 U'>9T 
ro Lf.BT 
21 SO 
22 PTECH 

Seperate groups analysis of survey data - 5 groups 
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GEl IaYCS BUILDlt-G, ED:~·\t21~ 

Nr."~S 

1 ST[2£ 
2 W.TEC 
3 M.Et:C 

(0 4 Tt:CH 
5 ~o 
6 SO 
7 FO 
8 f:fCE? 
9 £1) 

]0 C;~IT 
11 FJ) 
'2 ~·[;;m~ 
- -! 
J . .- W) 
14 5T 

0 0 15 SO 
16 ~/O 

17 ::"1 
18 c(I 
19 U3T 
~~J U.8f 
~1 so 
Z2 FTEOi 

Figure 12.68 

Seperate groups analysis of survey data - 4 groups 
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~~ ~T nus lltMTJ~a :I ~ 4 

'. 1 3 lG U U 15 11 11 II tl a 11 £:2 
2 I I • ., 9 
~ 1 4 8 12 14 

r;:xGT rcs WILDING, EDIHSIJ~GH 

IW.ES 

1 STORE 
2 W.TEC 
3 M.EJG 
4 TECH 
5 so 
6 so 
7 RO 
8 REC£P 
9 so 

19 C{.tIT 
11 ro 
12 f.l~'1IH 
13 RO 
14 ST 
15 so 
16 RO 
17 so 
18 RO 
19 U'.BT 
2"J UtBT 
~1 W 
Z2 PIECH 

Figure 12.69 

Seperate groups analysis of survey data - 3 groups 
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tw·£S 

t STORE 
2 "'.TEe 
3 M.EHG 
4 TECH 
5 so 
6 SO 
7 RO 
S Rr:.C£P 
9 Sf) 

20 U~H 
11 no 
12 r~lIN 
13 RO 
14 ST 
15 so 
16 FO 
17 so 
19 m 
19 Lf.BT 
20 l;:.3T 
21 so 
Z2 PTEOi 

Page 12-384 

Seperate groups analysis of survey data - 2 groups 
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Having worked through all these analyses it is 

constructive to reconsider them in conjunction. The two 

forms of cluster analysis particularly help In the 

interpretation of the initial bubble diagram. Looking 

again at the tree diagram (figure 12.71) the three maln 

groups are easily identifiable. The breakdown of the 

administration group into the storeman and technician 

and the more exclusively deskbound jobs of 

administration officer, reception and chief technician 

is clearly shown. The two groups in the pattern 

recognition group and the cytogenetics group are agaln 

easily seen, as is the final division into scientific 

and non-scientific staff. 

The bubble diagram emphasises the very segmented nature 

of the organisation with no easily discernable pattern. 

However, ln the light of the other analysis the 

. become more apparent and are shown in figure grouplngs 

12.72. 
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Tree diagram of survey data, with 
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Figure 12.72 
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As different data were used to obtain the diagrams of 

perceived interrelations, brief analysis interrelations, 

and actual interrelations as surveyed, cross comparisons 

are difficult to make. However the overwhelming opinion 

must be that the main functional units defined ln the 

brief have remained constant. Provided facilities are 

available for their own specialist work the individuals 

concerned show little need for interrelations with other 

groups or any further support from the building. 
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1 ~. 1 SUMfvlARY 

CHAPTER 13 

CONCLUSION 

The theoretical basis of a statistical approach to 

problem structuring has been established and its 

application shown in an architectural example.' The 

embodiment of the techniques into a computer program 

with a sophisticated user interface has demonstrated 

that these advanced techniques may be made available for 

use by "mathematically naive" users. The provision of a 

range of complimenta.ry techniques enables a number of 

insights to be gained into the data structure, defining 

its overall interrelationships (nonlinear mapping, 

principal co-ordinates analysis), its discrete 

components (Euclidean cluster analysis), and its 

hierarchical structure (hierarchical cluster analysis). 
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13.2 POSSIBLE EXTENSIONS OF THE WORK 

The number of techniques which may be brought to bear on 

this problem obviously include more methods than have 

been discussed here. The discussion has been 

deliberately constrained to keep the size of the thesis 

within reasonable bounds, but the modular nature of 

MAGIC will enable further techniques to be added as and 

when they are required. 

One of the more interesting developmEnts may be to 

extend the range of classification techniques to include 

non-exclusive (overlapping) techniques. MAGIC indicates 

"shades of classifications" by presenting different 

analyses which may be compared, thus enabling 

alternative possible structures to be identified. The 

mapping techniques, whilst presenting an overall 

picture, enable grouplngs to be identified by eye and 

possible overlapping clusters or alternative 

classifications to bE evaluated in conjunction with the 

clustering output. However, in some circumstances, it 

may be considered inappropriate to insist that an object 

should belong to only one group and the incorporation of 

a non-exclusive classification technique would then be 
t 

desirable· • 
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There is a growing body of theory on the subject of 

overlapping classifications. One of the major 

contributions is by Jardine and Sibson (1968). They 

describe a sequence of clustering methods which they 

call "beta dendrograms"; however, the algorithm they 

describe for obtaining the fi k clusters makes heavy 

demands on computing time, and, additionally, the 

results are very difficult to assimilate for larger data 

sets. At the mcment it seems that the most feasible 

interactive use of this technique would be the post-hoc 

analysis of a small data set extracted from the complete 

data set by, say, the Euclidean cluster analysis already 

in MAGIC. 

Another technique which attempts to incorporate objects 

whose group membership may be variable is fuzzy 

clustering. The concept behind this approach is 

relatively simple: a probability density function p(x) 

is assumed known, P(SmJx j ) then denotes the IIdegree of 

belongingness" of the vector X· to the class S'" • , 

However, as the approach seeks to optimise an 

, d crl'terl'on a number of statistical intuitively aerlve 
More problems arise in comparing alternative solutions. 

recently attempts have been made to incorporate a fuzzy 

clustering concept into the sum of squares clustering 



criterion, but until some fundamental mathematical 

problems have been solved any development for 

incorporation within ~~GIC must be viewed with caution. 

One further interesting extensl'on of the 1 ' c asslficatory 

procedures would be constrained classification. If one 

has predetermined requirements (or external information 

\'lhich makes the imposition of constraints appropriat-€) 

then it may be of use to be able to constrain the set of 

allowable classifications. 

13.3 FURTHER APPLICATIONS 

The examples of the application of MAGIC described here 

are in the context of layout planning and post-occupancy 

evaluation. The sophisticated multivariate clustering 

.. t,echniques incorporated in MAGIC are, however, capable 

of dealing with a much broader range of general 

analysis. For example, in the subject area of building 

costing, MAGIC has already been used to analyse historic 

cost data to find the major cost determinants, which are 

,then used to predict capital costs of similar new 

buildings. In a social science application MAGIC has . 
been used t~ analyse survey data collected over a wide 

range of incompatible measures (age, occupation, 

t -
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address, etc) and sensibly analysed wha-t nppeared, 

previously, to be quite intractable datu. It is hoped, 

therefore, that r.rJ\GIC will be of use in almost any 

situation where someone who knows a lot about the (lata, 

but little about statistics, wishes to subject 

multivariate data to exploratory data analysis. The 

emphasis on the use of visual displays to reveal the 

structure of the data helps the user insofar as he may 

concentrate on the interpretation of the picture in 

terms of his application, rather than on the 

interpretation of abstract statistics. To the extent 

that there is an isomorphism between the elements and 

interrelations of the data and the representation spaces 

via the intermediary of an appropriate set of 

transformations in data analysis then the task of 

interpretation is made that much easier. 
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