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ABSTRACT

One of the many problems in architectural design is the
multivariate nature of the design problem. Typically
this problem has been resolved by ranking the various
design elements and working through a series of design
modifications considering each in turn. Unfortunately
architecture 1is concerned with complex situations in
which many variables are simultaneously related and the
"fragmentary" approach gives 1little insight into the
basic relationships obscured within the design data. To
achieve that insight the complex of variables must be

studied as a whcle.

This thesis describes a way of examining activity data
sheets or other Yriefing data wusing a number of
techniques based on multivariate statistical methods.
The various techniques have Dbeen incorporated into a
computer program called MAGIC - Multivariate Analysis by
Graphical 1Interactive Computing. The program output 1is
specially designed to produce diagrams to enable the
designer to manipulate and investigate the design data

easily and conveniently.

Xviii



The thesis reviews the problem of architectural design
and its place 1in design methods theory, and the
relationship of MAGIC to other layout planning programs.
The program structure is outlined and detailed
descriptions of the analytical techniques presented,
together with those graphical techniques developed to

present the results. Finally the application of MAGIC

is shown in two practical examples.
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CHAPTER 1

THE PROBLEM DESCRIPTICN

1.1 INTRODUCTION

One of the many problems in architectural design ic the
rmultivariate nature of the design problem. Typically
this problem has been resolved by ranking the various
design elements (adjacency, structural, servicing,
environmental, etc., requirements) and working through a
series of design modifications considering each in tuvrn
(figure 1.1). The design process thus appears as a
branching tree where the various options are explored at
each level and the "best" route through selected.
Unfortunately architecture 1is concerned with complex
situations in which many variables are simultaneously
related and the "fragmentary" approach gives little
insight into the basic relationships obscured within the
design data. To achieve that insight the complex cf

variables must be studied as a whole.
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Designers ranking of Representation of design Actlon at each stage
Importance in layout selection/modification

adjJacency requirements

design layout to optimise
of activities

adJacency requirements

modlfy first layout to take
account o7 structural
requirements select best
compromise

structural requirements

servicing requirements try various forms of
- : servicling to fit plan
devéloped so far.

Compromise again.

and so on ‘ finally check back acalnst
untll all different : : T cach set of requirements
aspects have been ) | l to make sure no major
considered element has bteen too bacdly

compromised by the
successive modifications

st g

Figure 1.1

Design Process Tree
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Since the architectural layout problem 1is +to arrange
activities within a building the activities could bé
called associated 1f their physical demands require
similar types of accommodation. To make clear the
individual needs of the activities it is possible to use
the Activity Data Method {(Poyner 1966). All the
activities to be accommodated may be 1listed, and then
documented on an activity data sheet {a typical example
is shown in figure 1.2). The lefthandside of the sheet
describes the spatial requirements of the activity and
the righthandside describes the characteristics required

by that space to house that activity, i.e. temperature,

light, service requirements, etc. The set of activity
data sheets thus provide a comprehensive list of
requirements to be met by the building. This thesis

describes a way of examining this (or any other) data
using a number of different technigues for analysing
spatial and functional requirements to produce bubble
diagrams and other design aids which may be of

assistance to the designer in developing a plan layout.
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Figure 1.2

Activity Data Sheet
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The various techniques have been incorporated into a
computer program called MAGIC - Multivariate Analysis by
Graphical Interactive Computing. The program can handle
a mixture of different types of data and the graphical
output and interaction facilities enable the designer to
manipulate and investigate the design data easily and
conveniently without usurping the designers own special

cxpertise in the development of the final layout.

This introductory chapter reviews the problem definition
and solution and its place in design methods theory.
Aléo, as the solution techniques are based on a number
of specialised statistical techniques the use and
application of these methods in relation to the more
commonly known and accepted theory of hypothesis-testing
statistics is briefly discussed. Chapter 2 discusses a
number of other léyout planning programs and their
relationship to MAGIC. Chapter 3 presents a summary of
MAGIC showing how the program is controlled and the
results displayed. The succeeding chapters then
describe each of the analytiéal techniques incorporated
in the program and the techniques developed to present
the resul+ts. Finally the application of MAGIC is shown

in two examples.
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1.2 DESIGN METHODS

The origins of the design methods movement 1lie in the
application of scientific techniques to a wide range of
novel problems during World War II. The formalisation
of these techniques formed the general subject area of
what is now known as Operations Research (O.R.). In the
1950's these OR techniques were increasingly applied to
management decision making and this formalisation of the
"art of management" was one model that attracted the
originators of architectural design methods. The early
work is reported in Gregory (1967) and Jones (1970) and,
although Alexander's "Notes on the Synthesis of Form"
(1964) was influential, the classic text to emerge from
this design science phase was "The Sciences of the
Artificial" (Simon 1969). A number of the leaders of
the movement later recanted, most notably Christopher

Alexander (1971) and Christopher Jones (1977).

Apart from the ethical objections raised by Jones it
became apparent that design- problems were not that
amenable to soluticn by scientific method. Rittel and
Webber (1973) characterised design problems as "wicked"

problems, as distinct from the "tamed problems of

science. Rittel (1973) further suggested that such
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design methods as existed were only the "first
generation” design methods, and went on to outline the
features of an emerging, more sophisticated "second
generation". Second generation methods were

characterised by Rittel as:

- assuming an equal distribution of knowledge about the
problem (i.e. designers, users and others all have

valid knowledge to contribute).

- embodying an argumentative process (i.e. influenced
by different points of view rather than following a

fixed method).

- casting the designer in a "midwife" role (i.e. there
only to enable the interested parties to produce their

own solution).

This generation of methods were prevalent during the
design participation experiments of the 1970's (see, for

example, Cross 1972).

The 1980's have already seen the emergence of a third
generation of design methods. Broadbent (1979) has

suggested that a common failing of the earlier
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generation methods wa s their prohibition of the
designer's intuition. The third generation view is that
designer 1inputs are a necessary part of any design
method and the processes of Popper's (1963, 1968)
"conjectures and refutations"” model are seen as
providing the mechanism for this. Hillier et al (1972)
were amongst the first to discuss this approach to
architectural design, and the method still enjoys scme
support (for example, Darke 1979). The method is not,
however, without its critics: March (1976) suggests
that its impact has been "pernicious", emphasising too
much the superficial similarities of science and design.
As a response to the continuing dzbate about scientific
method philosophers such as Feyerabend (1975) have
suggested that the only general methodological rule
which could have universal validity in science (or
design) is "anything goes”. The problem in this
approach to design methods hinges on the relationship of
design to science, and, if an epistemologically coherent
concept of science is still proving elusive then it
seems unlikely that such a concept of design will
develop satisfactorily. Theré now appears to be a
growing body of opinion calling for science to be lefct

to the scientists so that designers may get on with

designing.
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1.2.1 A Design Compromise

The central dilemma in the science and design problem
concerns the relationship Dbetween present and future

knowledge. March (1976) has summed it up as "Science

investigates extant forms. Design initiates novel
forms.". This dilemma may be side-stepped by
recognising an interesting paradox - design is part of
science whilst science 1is also part of design. A
scientific experiment must be designed; equally, to
engender any design, it must be initiated by the
application of science. The relationship may be

expressed diagrammatically (figure 1.3).

PREDICTION"‘“‘\1 (/4'GENERATION
A

SCIENTIFIC PROBLEMS SOLUTIONS

KNOWLEDGE

Figure 1.3

Relationship between science and design
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As science reveals new knowledge the perception of
problems 1is altered and the motivation for design
changes. Furthermore, the impact of design on the
corpus of knowledge is shown by the broken line linking

future knowledge to science as existing knowledge.

Cross et al (198l1) avoid the dilemma in a similar way,
presenting design as a technological activity, and
defining technology as "the application of scientific
and other organised knowledge to practical tasks by
social systems involving people and machines". This
definition allows designers use of a variety of kinds of
knowledge, from scientific knowledge of materials to
craft experience. A number of other authors have
developed the thesis that designing relies heavily on
modes of thought which are neither ‘“"scientific" or
"literary".. Balchin.(l972) coined the term "graphicacy"
(as distinct from numeracy and literacy) to summarise
those intellectual and practical skills concerned with
nonverbal forms of communication. This approach is
argued further by Archer (1979) in the context of
defining design as a neglected central area of
education. A related argument has been made by Ferguson

(1977) who emphasises the role of "nonverbal thought" in

technological development.
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1.2.2 The Place Of MAGIC

This thesis has been written as a part-time occupation
over a number of years. The initial impetus arose from
an interest in the first generation Activity Data Method
(Poyner 1966). This technigue was developed to produce
a detailed and comprehensive statement of the «clients
needs for the designer. It succeeded so well that the
designer was completely overwhelmed with information.
This caused the well-known break at the end of the
Analysis stage in the then popular "Analysis - Synthesis
—- Appraisal" model when the decigner, having purged his
soul, put away the analysis to get on with the design.
Believing that some useful information could emerge from
the analysis the original idea behind MAGIC was to
provide a means of interpreting or summarising in some
useful way the body of data which may be available.
MAGIC might now, alternatively, be considered a pioneer
fourth generation design aid, making the
numerate-literate subculture of the scientific-academic

world accessable to the graphicate designer.

More seriously, the real utility of any model of the
design process 1is not intrinsically bcund up in the

model itself. The value lies in the extent to which the
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model allows us to improve design teaching and practice.
Architecture is a multidimensional problem and +the
solution area of any particular project is ill-defined.
Furthermore'a detailed knowledge of facts outside the
universe of problem definition is needed to achieve a
solution. To go full circle in the methodology debate,
architecture 1is a classic example of an "ill-structured
problem" (Simon 1973). The current methodologies
recognise the need for interplay between two major

contributing aspects of design:
- creativity and imaginaticn (the "art" in design)

- recognising and satisfying formal constraints (the

"science" in design)

MAGIC attempts to provide information on formal spatizal
requirements in a form suitable for the designer to work

on creatively.

1.3 STATISTICAL METHODS

Architecture is concerned with complex situations 1in
which many variables are simultaneoucly related, thus
obscuring links and relationships. Furthermore, because

of the intercorrelations systemalic experiments
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comparing cause and effect in the relationships between
seperate pairs of variables are not really possible:
the complex of variables must be studied as a whole. 1In
any case 1in the layout problem we are attempting to
understand not just relationships between two variables
but among sets of variables. The answer is not to be
found in formal multivariate statistical techniques such
as factor analysis -~ or any other technique which places
too much reliance on numeric summaries of data based on
distributional characteristics. Instead one must
attempt to look at the overall pattern of the data. The
approach is "exploratory" rather than "confirmatory",
the underlying assumption of exploratcry data analysis
being +that the more one knows about the data the nore

effectively that data can be used.

Although "data analysis" means the breaking down of data
into its component parts, it is usually taken to mean
the analysis of data by means of classical statistics
alone 1i.e. by numerical summaries of the data to the
exclusion of other methods of analysis. This tends to
diminish the importance of the visual display of data
and leads to a belief that a "statistic" is somehow more
accurate or meaningful than a graphical representation.

However even widely used statistical techniques may
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contain unreasonable hidden assumptions about the
distributional nature of the data and the classical
summary measures of data may conceal or even
misrepresent the most informative aspects of certain

data sets.

Exploratory data analysis is a method of exgmining a set
of data from various angles and piecing together
information about the system being studiéd. Such
information may 1lead +to0 a subsequent analysis that is
refined and possibly more revealing, but Tukey (1977)
makes the point "... to concentrate on confirmation, to

the exclusion or submergence of exploration 3is an

obvious mistake. Where does new knowledge come from?".

MAGIC uses a number of exploratory data analysis
techniques, in particular a number of clustering
methods. As this is a relatively undeveloped field of
statistics, in the evaluation of the utility of these
techniques efforts have been made to relate back to

classical statistics wherever possible.
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CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

The layout problem must have consumed more computer time
than all other architectural applications put together.
It was the first area to attract attention and has
continued to exercise a fatal fascination ever since.
Good reviews (and extensive Dbibliographies) of the
progress 1in this field are to be found successively in
Mitchell (l970a>, Eastman (1972a) Mitchell (1975a) and
Henrion (1978) This chapter briefly charts some of the

main developments to set MAGIC in context.

2.2 FACILITIES PLANNING

The earliest layout programs were developed to allocate
facilities to a floor plan divided into suitable modular
areas. CRAFT and CORFLAP (Armour and BRuffa 1963, Lee
and Moore 1967) are typical programs from this era. A

floor plan layout 1s represented within CRAFT as a
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two-dimensional array of integers as in figure 2.1.

Figure 2.1

Integer array representation of floor plan
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Each integer represents a square module of space of some

defined dimension, and aggregations of such modules
represent "rooms" and "departments". Letting § = (i,,
iz,---.l,im) be the set of modules to be located and R =
(34, 32,----+ Im) the set of possible locations in the

array, CRAFT attempts to allocate $§ to R to maximise

some specified criterion. Vollmann and Buffa (1966)
produced an overview of the problem, and several
possible solution techniques were developed. The

solution techniques are now generally referred to as
"additive" (successively adding facilities +trying to
maximise the target criterion at each step) and
"permutaticnal" (allocating all the facilities and
permuting their positions to try énd achieve an
improvement in the criterion). Nugent et al (1968)
present a comparison of CRAFT with two earlier
techniques (Hillier 1963 Hillier and Connors 1966) and

a technigque of their own.

Architects soon took an interest in these formalised
planning techniques. particularly applied to the
analysis of circulation patterns (Mosely 1963; Whitehead
and Eldars 1964, 1965; Beaumont 1967) . Other
architectural layout programs were developed by Johnson

(1970) Willoughby (1970) Mitchell {197C), Portlock and
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Whitehead (1971) and Stewart and Lee (1972). Portlock

and Whitehead (1974) later extended their technique to
plan in three dimensions. Moore (1974) presents a
general survey of facilities planning work to that data.
Phillips (1969) compared a number of programs in an
architectural context. Lew and Brown (1970) modified
CRAFT for architectural use and Carter and Whitehead
(1975a) 1looked at the effect of the quality of data on
the plans produced. Gawad and Whiteﬁead (1976)
attempted to progress the technique by adding
communication paths to the diagrammatic "idealised"
layouts. Other sophistications enabling layout programs
to work with realistically large problems are reported

by Shaviv and Gali (1974).

Eastman (1972) presented a generalised formulation of
the space planning problem. The EDRA 3 conference
produced three papers outlining techniques which are
receiving increasing attention today. Liggett (1972)
discussed floor plan layout by implicit enumeration and
Mitchell and Dillon (1972) and Frew et al (1972)
introduced polyomino ‘"pattern-building" techniques to
the problem. Liggett, in particular, has continued to
work on this problem and her recent publications include

an efficient solution method for the quadratic
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assignment problem (Liggett 1280) and practical
applications of the technique in office planning
(Liggett and Mitchell 1981) Frew's work with
polyominoes 1is extended in Shapira and Frew (1974) and
related work reviewing the literature of polyominoes and
formalising an architectural application is found in
March and Matela (1974). Further approaches to
achieving an efficient computational procedure to solve
the facilities problem are contained in Juel and Love
(1976) and Loomis (1977). Jackson (1977) presents a

further architectural formulation.

2.3 GRAPH THEORETIC APPROACHES

The N-ominoes approach provides an interesting link with

graph-theoretic based layout methods. A floor plan may

be regarded as a planar graph, 1in which corners of
spaces are nodes and walls are edges. The dual of the
graph thus represents adjacencies. Procedures were

developed for constructing a floor plan given the
adjacency graph or matrix. Thus the adjacency graph
became used for the solution of a «class of layout
problems which were specified in terms of required
adjacency between spaces. Levin (1964) was the first to
discuss floor plan layouts using graphs. Other early

work based on graph representations 1is found in
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Krejcirik (1969), Seppanen and Moore (1969), Grason
(1969, 1970), Steadman (1970, 1973) Cousin (1970) and
Pereira et al (1973).' The formal graph-theoretic
aspects of polyominoes are defined by Matela and O'Hare
(1976). Foulds and Robinson (1976) present a graph
theoretic =solution to the plant layout problem, and a
number of the previous authors combine (Mitchell et al

1976) to describe a set of algorithms to produce a

limited set of plans.

Graphs have also been applied to the slightly different,
but closely related, field of problem structuring.
Alexander (1965) first proclaimed a city is not a tree
provoking the interesting (if Dbelated) response from
Harary and Rockey (1976) that it is not a semi-lattice
either. Other graph theoretic decomposition algorithms

are described by Shaviv et al (1977, 1978).

2.4 STATISTICAL APPROACHES

A number of authors have 1looked at a statistical
approach to problem stucturing. Rossi (1970) prepared a
survey of classification techniques for the Department
of Architecture at the University of Bristol, but

presents no information on inpplementation or
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architectural application. t1itchell (1970) describes a
clustering program, CLUMP3, similar in many respects to
Milne s (1971) better known CLUSTR. CLUSTR operates on
a binary interaction matrix to produce a semi-lattice
structuring of the problem. A direct 1link with
facilities planning is found in Carrie (1973) who uses a
modified MNearest Neighbour clustering to obtain plant

layouts from a single criterion "adjacency matrix"“.

Carter and Whitehead (1975D. 1976) describe an
analytical program to derive clusters from an
association matrix, plot a dendrogram and 1link to a
layout stage. They conclude that the clustering
approach produces better layouts than their previcus
"additive" or "permutational” facilities layout
programs. Frew (1976) in a broad review also suggests
clustering methods hold more promise than the heuristic

and enumerative techniques.

Tabor (1976) produced one of the most complete surveys,

covering not only the permutational and additive
techniques and graphs, but also hierarchical
classification methods, a “"clumping" nonhierarchical

method, and multidimensional scaling. This is all done
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in the context of the analysis of communication patterns
and so is derived only from the trip matrices, but is
the only paper to show some of the advantages of

bringing a number of different techniques to bear on the

same problem.

There 1is some history of the use of multivariate
statistics in architectural applicationsv in France
Maroy and Peneau (1973) summarise a number of techniques
and present a factor analysis mapping using a mixed data
matrix. Ullrich and Braunstein (1977) describe the use
of multidimensiocnal scaling and cluster analysis to help

clients structure their design requirements to prepare

architectural briefs. Fortin (19278) wuses a mapping
algorithm to produce relationship diagrams from
relationship matrices, and Roy (19792) uses classical

multidimensional scaling to the same ends.

2.5 SUMMARY

A wide range of solution techniques have been applied to
the layout problem and the associated
problem~structuring question. None have satisfactorily
solved the problem of the multivariate data. None have

provided more than ore solution technique operating o©n
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the same data set. None have provided any kind of user

interface for effective interactive use by designers.
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CHAPTER 3

GENERAL STRUCTURE OF MAGIC

3.1 INTRODUCTION

MAGIC (Multivariate Analysis by Graphical Interactive
Computing) is an interactive, graphical computer program
for space planning. The program is carefully desicgned
to allow the architect to investigate a planning
problem, and outpute information in diagrammatic form of
sufficient generality not to inhibit the designer,
whilst containing a distillation of information such
that the final architect-produced design will closely
meet the requirements of the organisaticn. Although of
use 1in any layout analysis the program is illustrated
here by a simple theoretical example. Examples of the
practical use of the program are presented in chapter

12.

MAGIC is designed to operate during the early design

stage analys:is. That is, given almcst any planning
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data, the program will analyse that data and present the
results as relational diagrams for the designer to then
use in the preparation of the final layout. As several
types of data may be collected a computational problem
may arise if incompatible data types are used together.
To avoid this most analysis programs only allow the use
of one variable - thus forcing all relationships to be
expressed 1in terms of adjacency requirements or cost.
This program deals with the problem in an entirely
different manner which allows the use of different data
types in such a way that the veracity of the computed
output is maintained across a range of variables. Thus,
in addition to the typical inventories of equipment and
furniture, available cffice space, work station
requirements, etc., it is possible to compilie
information on the required physical environments of the
various activities and use this data in the analysis.
Details of each df the computational techniques are
presented in the chapters following this general

description.

3.2 A BRIEF DESCRIPTION OF THE PROGRAM

MAGIC is designed for interactive use on a direct view
storage tube terminal. The type of analysis per formed

and the manipulation and comparison of bubble diagrams
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is controlled through a series of menus. Any (or all)
of the analyses can be performed from the same data, and
previously computed solutions may be retrieved for
further manipulation or comparison with new solutions.

This thesis elaborates each of the analyses in turn and

then describes the manipulative facilities. The
description 1is necessarily "linear" but it should be
understood that one of the main advantages of a

computerised analysis 1is the ability to quickly and
easily move "backwards and forwards" through different
analyses and modifications thus gaining the
understanding of the structure of the data which will
enable the final 1layout to be designed. Figure 3.1

defines the basic program structure.

Hierarchical Nonlinear Mapping

Cluster Analysis Analysis

1

Nonhierarchical 1] Configuration stored
. Raw Data . e . L.
cluster analysis ‘ modifications solutions

L

Reordering of Principal
Data Matrix Coordinates iProcrustes anaysis
Analysis lof 2-D soluticns
Figure 3.1

Diagrammatic structure of MAGIC
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Four main types of analysis are used -  Thierarchic and
nonhierarchic (Euclidean) cluster analysis, a nonlinear
mapping ordination and principal coordinates analysis.
A fifth type of analysis enables the reordering of the
data matrix to cluster highly associated activities.
The output from the hierarchic cluster analysis is
displayed in the form of a tree-diagram or dendrogram,
whilst the nonhierarchical clustering, principal
coordinates analysis and nonlinear mapping are all

arranged to produce bubble diagrams.

3.3 COMPUTATIONAL ACCURACY

Computational accuracy is an important topic which is
often ignored - it should be sclfevident that a
computational algorithm should not distort the data.
Although +the o0ld chestnut "garbage in, garbage out" is
well known, what is less often realised 1is that good
data may be transformed into garbage by an inefficient
or unstable algorithm. When multivariate analysis is
being used to explore data sets, as in MAGIC, it 1is
obviously essential that any patterns emerging from the
data should be a reflection of the structure of the data
rather than the result of badly designed computational

methods.
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Many computing procedures still in common use were
developed for hand calculation or desk calculators.
These tend to emphasise ease of computational procedure
over accuracy and often require the user to round
intermediate results in an intelligent manner. The same
algorithm when coded for a digital computer may well
produce wildly inaccurate results. Longley {1967).
Wampler (1970), and Youngs and Cramer (1971) discuss
this point in relation to computer programs for multiple
regression analysis (which provides a good example,
requiring many summations and inversions of matrices)
and their results show that even widely used "packages"

do not always employ rcliable algorithms.

Pennington (1970) and Dorn and McCracken (1%72) develop
the numerical analysis problems further. They define

thiree main types of error, arising from inaccuracy in

data preparation, errors of machine representation of
floating point numbers, and arithmetical errors. These
could be generalised as physical, computational and

mathematical errors.

Errors in data preparation are almost inevitable and

careful checks are made in MAGIC on all input data.
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Errors of representation and arithmetic are rather more
serious as they cannot be observed. Particular
attention has therefore been paid to the machine
implementation of the various analytical techniques and
the performance of constituent parts carefully checked,
both by hand and by reference to standard test problems
from Gregory and Karney (1969), Malcolm (1972) and

George (1975).

3.4 THE PROGRAM

All data to be used in the analysis should be prepared
in advance and stored 1in a diskfile. The data files

should be constructed as follows:

1. Number of rows and columns of data (R, NC).
Maximum NR*NC is about 10000 but depends on the analysis
selected. Online data checks ensure program limits are

not exceeded.

2. The type of data - distance matrix (1) or otherwise
(0).
3. The numbers of different variables of each type, 1in
the order continuous, multistate (if any), binary (if
any) .

4. Job title - maximum of 60 characters. This 1is
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printed as a heading on all graphical output.

5. The area requirements associated with each activity.
If no areas are available, or are not appropriate to the

analysis being undertaken write 0 (zero).

6. The names of the activities. If no names or

descriptors are required write NONE.

7. The form of the association or activity data matrix.
] if Ffull matrix
2 if upper triangular matrix (including diagonal)

3 if lower triangular matrix (including diagonal)

8. The data in the form specified in 7.

If the data is an ordinary discsimilarity matrix the
interpoint distances should be entered. That is small
numbers imply a reguirement to be close together. If
the analysis is to be carried out on observed data (say
number of trips between rooms) where a large number
implies a requirement to Dbe close together then this
data should be modified in soﬁe suitable way (say (nmax

+ 1) - n) for entry into the data file.
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If mixed data is being used it should be ordered by
variable type as follows:

1 continuous (quantitative variables)

2 multistate variables (if any)

3 binary variables (if any)

Figure 3.2 shows examples of data files

FF TOATA
23,9 3,9
9 1
1.4.9 9,0,0
POISON TEST DATR FILE
a8 19.
NOME 20 .
1 39.
e,1,7,1,3 44.

16,1.,5.,2.2 °3.
43,1.:6.:1,3 68 .
(.4; 1’6) 1;3 ?g.
25,1,2.1.3 £9.
35,1.:5.1,5 SO. -
48,2,5,2,3 R |
36:(‘.’)4)513 ti},;;:fﬁ
52}2)2) 1;3 l‘%%‘;
24,2,1,1,3 ‘h‘*‘ls’;\v-.::
26,2,1, 1,3 N_:JES
22,2,6,1,3 """3}‘:‘:
37,2,3.:2,5 tt.i::..;?
z29,2:,6,1,3 ?\1;:‘:.:,8

- g@:%;;)g'f ggJJ‘EB

1.2,7,2,

34,1,3,1,3 0,1.2,1,1.414,2.236,2.2.236.2.323
23,2,3,2,2 0,1,1.414,1,1.414,2 2325,2,2 . 23€
25)21\J;3;3 8 d 2u6:1 414 1 2 ‘f: 8}2236;2
45,1,6,1.3 8,1,2,1,1.414,2.236
22,1,5,3,2 6'1;1.41431;1.414
3.2,7.1.,3 8,2.236,1.414,1
69,2,6,1,3 8,1.2
39,1,1.3.3 3,1
5,1,4,1,3 o

Figure 3.2

Data Files. File FF (on the left) 1is used in the following

examples. Unlike TDATA it does not contain details of

areas or activity names.
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The program is run interactively. The first display is
a title page. To continue press the return key. A menu
showing +the available analysis routines is then
displayed. The menu consists of 8 items as follows:

INPUT

EDIT

CLUS

HCLUS

NIMAP

PCOORD

ROWCOL

FINISH

INPUT cnables the specification of the prepared data
file, and shcould be selected Dbefore anv analysis is

attempted.

EDIT enables selections to be made from the input data
file for seperate analysis, and also enables rows and

columns to be interchanged.
CLUS enters the Euclidean cluster analysis section.

HCLUS enters the hierarchical cluster analysis section.

NLMAP enters the nonlinear mapping secticn.
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PCOORD enters the principal coordinates mapping section.

ROWCOL enters the row/column clustering by reordering

section.

FINISH provides for an orderly exit from the program.

RAGIC

A program for architectural analysis using
Hu?tivariate Analysis with Graphical Intsraction by Computer

ABACUS PROGRAM, UERSION 1.2, MAY 1989
Copyright Alan Bridges, University of Strathciyde

HAGIC

o INPUT
¥ r
INPUT FILE HAME > F enrT
CLUS
HCLUS
NLMAP
PCOORD
ROWCOL
FINISH

Figure 3.3

Title page and master menu
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3.4.1 CLUS (Euclidean Cluster Analysis)

On entering this section the wuser 1is requested to
specify an initial and terminal number of clusters
required. The screen is then automatically erased and
the first bubble diagram display is drawn. This either
shows the data segregated into the requested number of
clusters, or into a smaller number of clusters which
represent the maximum number of discrete clusters
identifiable 1in the data. Cluster membership is shown
in tabular form and the bubble diagram is derived from a
nonlinear mapping of the matrix of cluster centre to
centre distances. The size of each bubble 1s scaled
according to the average point to centre distance of

that particular cluster.

Pressing the return key restarts the program and the
next display shows the clustering with (n-1) clusters (n
being the number of clusters shown in the previous
display) . The number of clusters is successively
reduced until the requested terminal number of clusters
is reached. After display of this configuration
pressing the return key exits this section of the

program and returns to the master menu.
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Page 3-35
FOTS0H
RELATIOHSHIP WITH T GROUPS
CLMETERS MERGED wT THIS ITERATION: 1 aHb Er

CLIRTER MEMEERS
4 3510 11 13
23
8 12 i3 15 24
6 17 22
2 14 16 18 21
9 25
1 3 7 20

NOAWUWDHGIN -

Figure 3.4
Euclidean Cluster Analysis. Output showing clustering

into seven groups.
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3.4.2 HCLUS (Hierarchical Cluster Analysis)

On entering this section a table of available clustering
strategies is displayed as follows:

1. NEAREST NEIGHBOUR

2. FURTHEST NEIGHBOUR

3. GROUP AVERAGE

4. CENTROID

5. MEDIAN

6. INCREMENTAL SUM OF SQUARES

7. SIMPLE AVERAGE

8. FLEXIBLE STRATEGY
Typing the appropriate number then selects the reguired

clustering strategy. If the Flexible Strategy 1is

requested then a "Beta coefficient” must be input.
Using this coefficient the characteristics of the
clustering strategy can Dbe made to range from
space-dilating (B = -1) to space-contracting (B = 1).

The page 1is then erased and the pairing sequence
displayed. The accuracy of fit measure shown is an

adaptation of the cophenetic correlation coefficient.
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Pressing the return key erases the page and a dendrogram

representation of the pairing sequence is drawn. To

continue press the return key again. If a further
analysis is requested the range of strategies 1is
displayed again. If no alternative clusterings are

required the program returns to the master menu.

HIERARCHICAL CLUSTER AHALYSIS

o 5 S

WHICH CLUSTERING STRATEGY DO YOU WMISH TO LIGE?

RLT

1 - NEPAREST NZIGHBOUR

2 - FURTHEST NEIGHBRQUR

3 -- GROUP RULRAGE

4 — CENTROID

S - MEDIAH

& — THCREMENTAL SUM OF SQUIARES

? - SIMPLE AUERALE

8 - FLEXIBLE STRATEGY

TVFE 1,2.3:4.5,6.7 0R 8 > 3
Figure 3.5

Hierarchical Cluster Analysis options
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GROVF RUERGCE CLUSTERIHG STRQTEGY

PRIRING SEGIERCE
ITEM SOTHS 1TEM AT DISTRMHCE

1 3 1. OAG
S 16 1.722
S 11 1.266
2 13 2. f4r
14 1€ Z.64¢€
4 13 2. 646
1 rd 2. 725
14 21 3.2
1 =g 303245
ig4 i= 2.574
& g 3. 689
G 2S .74z
12 1S 4. 243
6 & 4. .41z
4 14 4 4az
(S 24 b 515
4 S 5.7
(N 1z S.7e5
& 22 €. 1z
3 =3 r.o11
2 4 7.519
i < 3.174
i & 14 . 631
1 2 2'1.46%

FIT 1S 67.% ACCURATE

Figure 3.6

Hierarchical Cluster Analysis - Pairing Sequence
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Figure 3.7

Hierarchical Cluster Analysis - Dendrogram
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3.4.3 NIMAP (Nonlinear Mapping Analysis)

This section is controlled by its own menu as follows:
DRAW
MOVE
LRFLIP
TBFLIP
ROTATE
AS5CALE
COMPAR
NAMES
SAVE
UNSAVE
INICON
/DRAW
EXIT
BDRAW draws the bubble diagram representation. Bubble
size is relative to area (if specified in the datae

file).

MOVE enables bubbles to be moved interactively using the
Crosswire cCursor. After selecting MOVE the cursor 1is
displayed. To mcve a bubble first pcint to the Dbubble
and press any key, then to the location of the new

bubble centre and press any key.

LRFLIP flips the display from left to right
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TBFLIP flips the display from top to bottom

ROTATE requests an angle of rotation, erases the display

and redraws at the required orientation.
ASCALE alters the scale of the display.

COMPAR enables the comparison of the current bubble
diagram with & previously stored diagram (or the

comparison of two stored diagrams).

NAMES displays bubble names.

SAVE writes the current bubble configuration to file for

future reference.
UNSAVE retrieves a previously stored configuration.

INICON performs a nonlinear mapping with the currently
displayed configuration as the initial configuration of
the calculation. In conjunction with BMOVE this command
can check against solutions being found in local rather

than global minima.

/DRAW erases and redraws the current display. Used for

tidying up after BMOVE.

EXIT returns to the master menu.
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Figure 3.8

Nonlinear Mapping Analysis
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CORFIGURATION FITTINA ' o :
MATRIN @ @ILL _LZ FITVED 7O HRATRIX B . i

INEUT FILE FOR BATREX B > T8

Figure 3.9

Procrustes Comparison
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3.4.4 PCOORD (Principal Coordinates Mapping Analysis)

This analysis allows output of the results in two- or

three-dimensional mappings. The two dimensional display

is comparable with the nonlinear mapping. The three

dimensional display is presented in the form of a plan

and two elevations.

Figure 3.10

2-D Principal Coordinates Mapping
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3-D Principal Coordinates Mapping
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3.4.5 ROWCOL (Reordering Of Rows And Columns)

Reorders rows and columns of the data matrix to

large numbers around the main diagonal.

ORIGINSL. mTa

SECTION
S | V4

1 48 &0 1 64 I

Vo4 16 G0 1.6a 5

K 1 43 .64 1. G0 (2

4 24 o 1.0 &

o 25 33 1 .80 z

(Y 36 .4@ 1 Ga S

I 45 o0 oA S

S 26 . B3 2.6 4.

G OV % 7% ERN G 5 2.

1¢ 24 .3a 2.2 1.
1% 26 . 2 a0 1.
12 Koz I 5 <. 0 G
13 27 €3 2. 0a 2.
14 26 . oo 2 .89 G .
1S 40 .08 z .00 i
i6 21 .aa 2.o4 V.
17 24 &5 1.0a 2
18 26 .4 2. 683 2
19 25 G 2 .6a S
2a 45 .G 1.068 S
2% e 3 1.64a 5.
o8 35 B 2. ’.
232 o £ 2. &
24 39 a4 1.20 1
S S5 .60 1.60 4.

Figure 3.12

Original Data Matrix
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CHAPTER 4

CLASSIFICATION

4.1 INTRODUCTION

Classification 1is essentially the identification of
groups of similar activities from the set of activities
being studied. Two approaches to classification are
possible - the identification of groupings, termed
classification proper, and the allocation of activities
to existing groups, termed discrimination. As MAGIC is
used almost exclusively in an exploratcry data analysis
form discrimination techniques are not of relevance

here.

Classification may be further subdivided into different

classificatory procedures, which may include the
simplification of data by ordination. Clustering
methods tend to emphasise discontinuities, whereas

ordination methods display the continuity of the data.

Prior to ordination the activities being considered are
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assigned to positions in a multidimensional space
defined by their properties or some measure of their
discimilarity. Efforts are then made to express the
relationships between the activities in fewer dimensions
than those originally considered. Ordination is,
however, here considered seperately from classification

and dealt with in detail in chapter 7.

4.2 TYPES OF CLASSIFICATION

Many classification methods exist, and a "classification
of classifications" is shown in figure 4.1.

Classificatory Procedure

l
[ |

Exclusive Nonexclusive
— -
| 1
Extrinsic Intrinsic
|
Hierarchical Nonhierarchical
I I
Divisive Agglomerative
l
l |
Monothetic Polythetic
[ I
Serial optimisation Nonserial cptimisation
of group structure of group structure

Figure 4.1

Relationship between classificatory procedures
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The first differentiating feature is whether the method
is exclusive or nonexclusive in its treatment of
individual activities. In an exclusive (or
nonoverlapping) classification a given element can occur
in cne and only one subset; in the nonexclusive (or
overlapping) case the same element may occur in more
than one subset. Nonexclusive classification methods
are of use in 1library catalogues and information
retrieval systems (a book may appear under several
different subject headings) or medical statistics (a
single patient may suffer from more than one disease),
but in attempting to simplify architectural data the
exclusive methods are preferred. The purpose of the
classification sections in MAGIC 1is o0 seperate the
activities. The ordination technigues 1look at the -
continuities and overlaps in the data, and so
nonexclusive classifications will not be considered

further.

The exclusive classifications may themselves be
technically divided into extrinsic and intrinsic
methods. Formally, intrinsic classifications are used
to derive groups solely from their attributes.
Extrinsic methods attempt to form clusterings on (n-1)

attributes to "explain" the nth attribute. MAGIC only
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considers intrinsic classifications.

Intrinsic classifications may be hierarchical or
nonhierarchical. In a nonhierarchical classification
groups are selected such that each is individually as
homogeneous as possible. In the hierarchical case
groups are considered in pairs, as possible candidates
for fusion; and the criterion for fusion is that the

decrease in homogeneity on fusion shall be as small as

possible. This is usually formally expressed by saying
the nonhierarchical classification optimises the
internal properties of subsets; a hierarchical

classification optimises a route between individuals and
the complete population. No such route between groups
and their constituent individuals (enabling examination
of the group infrastructure), or between groups and the
complete population 1is provided by nonhierarchical
clustering. However, there are several applications in
which homogencity of groups is of prime importance, and

the nonhierarchical strateqgy, as well as the more

developed (computationally) hierarchical techniques, is
included in MAGIC. Hierarchical, nonoverlapping
classification produces groups, ©or clusters, whose

relationships +to one another are readily expressed in

two-dimensions, generally in the form of a dendrogram.
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The clusters arise as a consequence or the methodology
adopted to establish the hierarchy and do not
necessarily exhibit the same homogeneity. In contrast
nonhierarchical methods can produce clusters of dcfined
heterogeneity but do not 1link them together in any
systematic framework. The nonhierarchical techniques
are relatively undeveloped and MAGIC introduces a major
advance in, firstly, c¢ycling through a number of
iterations with successively fewer clusters, and
secondly, mapping the cluster relationships into a
two--dimensional display. Both of these techniques
introduce some method of interpreting relationcships in a

systematic framework.

Hierarchical methods may be further divided into
agglomerative or divisive techniques. In an
agglomerative classification the individuals are

progressively fused 1into subsets of increasing size
until the entire population is in a single set; in a
divisive classification the whole population of elements
is progressively subdivided until an acceptable degree
of subdivision 1is attained. Agglomerative techniques
are computationally much the more efficient and the
hierarchical strategies used in MAGIC are all

agglomerative.
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Finally, hierarchical techniques may be monothetic or
polythetic. In a monothetic classification clustering
is effected Dby reference to a single attribute of
maximal information-content. In the polythetic case all
attributes are of equal importance. Agglomerative

strategies are always polythetic.

4.3 TYPES OF DATA

The standard data structure wused in MAGIC assumes a
number of activities (in statistical terminology
"operational taxonomic units") on each of which a number
of variables (prpperties or characteristics) is
measured. The variables may, in principle, take values
in any space, but in practice there are three types of
variables of relevance to architectural data, and these
may be classified according to the nature of their

underlying scale:

(i) Binary - the taking of one of two contrasting
states, such as the presence or absence of a particular

charactexristic.

(i1) Mulitistate - determined by an ordered
classification in a hierarchy of contrasting forms which

encompass the total variation in the range of entities
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under study. An example of this "ordinal" scale would
be the grouping of activities according to whether they

required full, partial or no blackout facilities.

(iii) Continuous - measures on a continuous scale, as

with attributes such as temperature, distance, etc.

A given set of data may be mixed (contain variables of
different types), it may be heterogeneous (variables of
the same. type but of different scales, such as
temperature and distance), or it may be homogenecus
(variables measured on the same scale, such as a simple
distance matrix). There are a number of techniques for
transforming variables of one type to anothe:, or
converting all variables to a standard scale, but all
these methods rely on measures of similarity or
distance, for, in order +to cluster variables it is
necessary to have some numerical similarity measurements
to characterise the relationships among the variables.
The conventional approach to this requirement 1is to
compute a measure of association for every pairwise
combination of variables; in a problem with n variables
this results in n/2(n-1) different pairs. The next
section considers the range of different measures of

association among variables.
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4.4 MEASURES OF SIMILARITY AND DIFFERENCE

Similarity and difference are mutually dependent
concepts and, in much of the classical statistical
literature, the former term applies to both. The
majority of clustering techniques begin with the
calculation of a matrix of similarities or differences
between activities, and, therefore, considergtion is

necded of the possikle way of defining these

)]

guantities.

A wide variety of interentity similarity measures have
been proposed but relatively few are in current use.
The restriction in number has resulted from several
causes. Many of the neglected indices are mere variants
of others and have similar properties; others are highly
specialised; and others display unfavourable

mathematical qualities.

Some of the measures discussed below estimate
dissimilarity rather than similarity, but since the two
are complimentary concepts this need not cause any
confusion. The reason for stressing dissimilarity in

certain situations is that such measures are readily
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envisaged as "distances apart".

4.4.1 Coefficients Of Similarity

Similarity coefficients have a long history and, in the
older 1literature, were usually known as association or
correlation coefficients. A similarity coefficient
measures the relationship between two entities, given
the values of a set of variates common to both. With
most of the coefficients values range from zero (no

similarity) to unity.(complete similarity).

A great number of similarity coeificients are known, and
the most common have been listed and defined by Goodman
and Kruskal (1954,1959), Sokal and Sneath (1963), and
Snecath and Sokal (1972). Many of the coefficients were
developed to accommodate particular forms of data, as
for example, those restricted to binary data. Others
allow for particular distributions of the properties
measured, or minimise the influence of large or small
values in the data. In some instances each of these
considerations may influence the choice of index, but it
is emphasised that each stress a particular property of
the data and that all indices are not interchangeable.

Indeed *hey do not all necessarily yield similar results
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when the entities whose similarities they measure are
clustered. The various main measures applying to each

data type are briefly discussed below.

4.4.2 Similarity Measures Applying To Binary Data

To facilitate the comparison of the ccefficients for
binary data a standard nomenclature will be adopted.
Consider a single binary attribute with outcomes of 1 or
0. There are only four outcomes possible when comparing
two activities. These are that both activities record
the attribute in the first state (1,1) or the
alternative state (0,0), or that one activity records

one state and the other records the alternative, i.e.

(0,1), (1,0). For a number of activities the summated
values of each of the four possibilities may be
calculated. The valucs may be summarised in a two-way

association table (figure 4.2).
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Activity j

1 0

1] (1,1) ] (1,0)
a b a+b

01| (o,1) | (0,0)
Activity i c d c+d

atc b+d n (n=a+bt+c+d)

Figure 4.2

Association table for binary data

Here the ietters a,b,c,d refer to the summated number of
attributes. That 1is, a represents the numnber of
attributes in one state (1,1) shared by both activities;
b 1is the number of attributes for which the joint score
is (1,0), the number possessed by the first activity hut
not the second; ¢ the number possessed by the second but
not the first (0,1); and d the number possessed by both
activities in the alternative state (0,0). The sum, n =
at+b+c+d , is the total number of attributes for which

the entities have been compared.

The status of d in figure 4.2 1is ambiguous. In most
circumstances it would seem ridiculous to regard two

activities as similar largely on the basis of them both
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lacking something. In certain other circumsiances it
would seem improper to neglect conjoint absences when
estimating similarity. In order to resolve these
difficulties similarity coefficients with and without
the inclusion of 4 have been designed and each group is
considered below. In the similarity measure finally"
included in MAGIC it is possible to include or discount
d, although the default built into the program discounts

it.

Table 4.3 provides a summary of the various measures
along with names traditionally associated with them.
Every mechanically derived combination is included in
the table even though five possibilities appear to be
worthless. The fourteen measures are discussed
individually Dbelow. Except where noted otherwise the

range assumed by each measure is (0 to 1).
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(a) Equal weighting cf matches, mismatches

0-0 matches in numerator
0-0 matches

in denominator Excluded Included
Included 1 Russell and Rao 2 Simple matching
a - a a+d — a+4d
a+b+c+d n atb+c+d n
Excluded 3 Jaccard 4 Nonsense
a at+d
a+b+c atb+ic

(b) Double weight for matched pairs

: 0-0 matches in numerator
0--0 matches —

in denominator Excluded Included
Included 5 Not recommended 6 Sokal and Sneath
2a 2(a+d)
2 (a+d)+b+c 2(a+d)+b+c
Excluded 7 Dice 8 Nonsense
2a 2{a+d)
2a+b+c 2a+b+c

Figure 4.3 (i)

Matching coefficients
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(c) Double weight for unmatched pairs

0-0 matches in numrerator
0-0 matches

in denominator Excluded Included
Included 9 Not recommended 10 Rogers-Tanimoto
a a+d
a+d+2 (b+c) a+d+2 (btc)
Excluded 11 Sokal and Sneath 12 Nonsense
a __a+td
a+2 (btc) a+2 (b+c)

(d) Matched pairs excluded from denominator

0-0 niatches in numerator

Excluded Included
13 Kulczynski 14 Unnamed

2 atd

bt+c b+c

Figure 4.3 (ii)

Matching coefficients (continued)

Coefficient 1. The value of this measure 1is the
probability that a randomly chosen data unit will score
1 on both variables. It excludes O0-0 matches as
irrelevant in counting the number of times the two
variables maich (the numerator) but does count 0-0
matches in determining the number of possibilities for a

match (the denominator).
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Coefficient 2. The value of this measure is the
probability of a randomly chosen dataza unit achieving the

same score on both varisbles. The 0-0 matches are given

full weight.

Coefficient 3. The value of this measure 1is the
conditional probability that a randomly chosen data unit
will score 1 on both variables, given that data units
with O0-0 matches are discarded first. The 0-0 matches

are treated as being totally irrelevant.

Coefficients 4, 8 and 12. These measures treat the 0-0
matches as relevant in the numerator but exclude such
matches in the denominator. Since the numerator usually
can be viewed as the number of relevant possibilities

fulfilled, it is nonsense to include 1in the numerator

that which is specifically excluded from the
denominator.
Coefficients 5 and 9. These two measures are analogous

to coefficient 1 since they exclude 0-0 measures in the
numerator whilst including them in the denominator.
They have not appeared in the statistical literature and
no obvious interpretation of them appcars possible.
However they do not have such obvious faults as

coefficients 4,8, and 12 which might prompt their
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rejection.

Coefficient 6. Sokal and Sneath (1963) include this
measure in their 1list without attribution. It may be
viewed as an extension of coefficient 2 such that
matched pairs are given double weight. The double
weighting seems to preclude any possibility for a

probabilistic interpretation.

Coefficient 7. This measure excludes 0-0 matches
entirely whilst double weighting 1-1 matches. It may be
viewed as an extension of coefficient 3, though the
probabilistic interpretation 1is lost. Hall (1969, p
322) offers an alternative interpretation:
However, for 0,1 mismatches the zero is Jjust as
trivial as in the 0,0 case. Mismatches should
then lie about midway along the scale of
significance between the 0,0 and 1,1 cases
respectively. The number of mismatches in the
coefficient should by this reasoning be multivlied
by 0.5.

Clearing the 0.5 fraction then results in double weight

for the 1-1 matches.

Coefficient 10. In the context of association among
variables, this coefficient 1is best viewed as an
extensicn of measure number 2 based on double weighting

of unmatched pairs.
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Coefficient 13. This measure is the ratio of matches to

mismatches with 0-0 matches excluded. The range of this

coefficient is 0 tooo.

Coefficient 14. This measure is the ratio of matches to

nismatches including 0-0 matches.

Coefficients 3, 7 and 11 are all monotonic to each
other. To illustrate this suppose there are two tables

denoted by 1 and 2 and that measure 7 gives the result

23, S 2a,
2a. +b| "I"C. = 2az+bz+Cz

Since the table entries are all nonnegative, the
fractions may be cleared to give

4a, a,+2a, (by+c,) 24a,a,+2a, (b, +cy)
Subtracting 2a,a, from both sides and dividing by 2
gives

a,a,+a, (by+c,y) 2 a, a,+a, (b, +c,)
which implies

a, - a?..
a,+b, +c, ¥ a,+by+c;

or monotonicity with coefficient 3. Coefficients 2, 6
and 10 may similarly be shown to be monotonic to each
other. This result is important because when using
monotonically invariant clustering techniques (such as

nearest neighbour) measures 3, 7 and 11 are equivalent
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to each other; measures 2, 6, aund 10 are likewise

equivalent.

Among the matching measures, numbers 1, 2 and 3 possess
reasonably useful probabilistic interpretations. There

are several additional measures with probabilistic

foundations.

The quantity a/(a+b) is the conditional probability that
a randomly chosen data unit scores 1 on variable B given
that it scored 1 on variable A. Likewise the quantity
a/(a+c) is the conditional probability of scoring a 1 on
variable A given that a 1 was scored on variable B.
Assuming variable A 1is estimated half the time and

variable B the other half, the symmetric measure:

.l.(.ﬁ... _a_
2 \a+b atc
is obtained. This is the conditional probability of
scoring & 1 on one variable given a score of 1 on the
other. Sokal and Sneath (1963, pl30) attribute this

measure to Kulczynski.
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The final 2x2 measure is

(a+d) - (b+c)
a+b+c+d

which is the probability that a randomly chosen data
unit will score the same on both variables minus the
probability it will score differently on the two

variables. Since b+c = n-(a+d) this measure may also be

written as

2(a+d)
a+bt+c+d

which is related monotonically to measures 2, 6 and 10
0of the matching coefficients. Sokal and Sneath (1963)
attribute this measure to Hamann. Its range is -1 +o

+1.

4.4.3 Similarity Measures Applying To Multistate Variables

Multistate variables may be effectively transformed into
a series of binary variables (see section 4.4.2). The
techniques applicable to binary data then all apply to
multistate data. A further range of measures based on

probability theory are also possible.

7t is possible to draw up a contingency table for

multistate data (figure 4.4)
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Activity j
Class
1 2 3 . . g Totals
Activity i1 n,, n,, Nys « « N 2n,,.
2 g, n,, Nay « + N n,,.
3 Y Nay Naz « « DNy 2n,,
p ny, N, Negy «  + Ny %D oy
Totals 2Ny, 2N., 204, .+ 20

Figure 4.4
General form of contingency table for

Multistate data

An n;:

i entry in the table is the number c¢f activities

falling in the ith «class of activity i, and the jth
class of activity j. If all entries and marginal totals
are divided by the total number of data units the table
entries become frequencies (f;; ). It is then possible
to apply the chi-square statistic, comparing the

observed value in cell ij (O;j) with the expected value

under an hypothesis of independence €jj T DjxNxj-
n:c‘.c
3
x* =;E.Z(°U"QUL/6U
=l y=t

This is a traditional measure of association, but is of

dubious value. The range of X increases without bound
as the number of data units increases. A partial remedy

is found 1in

¢1 = Xl/nxx
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which is known as the mean-square contingency. However
this quantity is itself dependent on the size of the
table. In an attempt to norm $* to the conventional

range of O to 1 a number of measures have Dbeen

suggested.

Sokal and Sneath (1963) give one example using the

geometric mean of (p-1) and (g-1) as a norming factor to
give the measure

T [[ (f.{(;xn] '/z] .

and a further possibility is the wuse of the maximum

value of §* as a norming factor to give

s [mi?\Q[Z(/Pn—xi))c,(cylrJ_] -

Pearson (1926) suggested another measure based on p*

This measure is known as the coefficient of contingency.

None of these measures are really of ucse as measures of
similarity. Goodman and Kruskal (1954, p740) pinpoint
the major prcblem:

One difficulty with the use of traditional
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mcasures, or any of the measures that are
not given operational interpretation is
that it is difficult to compare meaningfully
their values for two cross classifications.
In cluster analysis meaningful comparisons among all

pairwise combinations of variables are essential.

4.4.,4 Similarity Measures Applying To Continuous Variables

The traditional measure of similarity most commonly used
for continucus data is the product-moment correlation
coefficient (r). A simple symbolic expression of this

coefficient is:

f o S(x-%) (y-%)
(S(x-%)% (y-3)% %

where n is the number of activities, ¥, Y. the mean
values of the attributes in the activities, and x and y
are the individual measurements of a given pair of

attributes.

Despite the relatively widespread use of 1 as a
similarity measure (cf Sokal and Michener 1967, Boyce
1969, Strauss et al 1973) a number of problems cast some
doubt on its true value. In statistics the correlation
coefficient is used to give a measure of the linear
relationship between a pair o&f variables. However

classification studies are carried out on a set of
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objects described by various variables or on a set of
variables describing various obljects. If the
correlation coefficient 1is used to compare two objects
it seems difficult in general to give any interpretation
to a term 1like X which involves summing over the
variables describing a single object. Furthermore it is
not obvious whether two objects approximately satisfying
such a linear relationship should necessarily be
regarded as very similar to one another. TLades (1965)
provides statistical evidence of its indeterminancy as

well as its theoretical problems.

The better measure is the use of Euclidean distance as a
dissimilarity measure. In essence this is the distance
between two activities whose positions are determined
with respect to their ccordinates, these being defined
by reference to a set of Cartesian axes. It 1is a

dissimilarity measure which can be applied to both

binary and continuous data. With respect to any given
attribute the Euclidean distance (D) Dbetween two
activities is |x,-x,| where x, 1is the score for one

activity and x, that for the other. For n attributes
D = (S(x,-x,)?)"%
where x, and x, are successively the scores for the n

attributes.
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To ensure that attribute scores are additive it is
common practice to use D2 rather than D as the measure
of dissimilarity. In certain cases however D2 on binary
data is not fully metric in that it may fail to satisfy
the "triangal inequality" (metrics are discussed further

in 4.5.1). A further point to be observed involves the

scale of the axes of x; and x, in figure 4.5.

k
Xy 7 CB

T 17T Ir— 17 1711171

X2

Figure 4.5

Fuclidean distance coefficient - effect of scale
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The scale will obviously affect the distance between
pointe, and, since scales of measurement are quite often
arbitary some standardisation process is often adopted.
The convention most commonly used is to give each
variable equal weight by transforming observed values so
that each variable has zero mean and unit variance:
zi; = (x5 -%j)/sj

where Zjj is the standard score, equivalent of Xiy the
Observed score of activity i on variable j, Xj 1s the
mean value of observations on variable 3j, and sj the

standard deviation of variable j.

4.5 STRATEGIES FOR MIXED VARIABLE DATA SETS

It is rare in real-life situations to have attributes
all of the same type; it is therefore imperative that
some means of combining data with different attributes
be available. Indeed, one of the major criticisms of
much work in the field of early stage design analysis is
the reliance on a single measure of cost or distance as

the sole criterion of planning efficiency. The previous

discussion includes no provision for measuring
association between variables of different types, much
less the more difficult problem of obtaining a

consistent measure across all pairwise combinations of

variables in a mixed data sct. A variety of
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difficulties surround this problem, but there are a
number of workable strategies for dealing with mixed

variable types.

4.5.1 Partitioning Of Variables

Perhaps the most obvious approach is to partition the
variables into types and confine the analysis to the
dominant type. The question of which type is "dominant"
is a matter of judgement and may depend on such factors
as the number of variables of each type, the variables
considered most important to the analysis, relevant
theory, and so on. In one way or another many
statistical analyses are restricted to avoid the
problems of heterogeneous data sets. Often the problem
is formulated at the outset in terms of only one
variable type. Up until the publication of Sokal and
Sneath's classic text in 1963 +the majority of
classificatory strategies were designed to operate on a

single type of data, usually binary.

A logical extension of this approach is to partition the
variables into types and perform seperate independent
analyses for each type. Gower (1971) has dcveloped a

technique applicable to binary, multistate and
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continuous scales, and this is discussed in some detail

in section 4.5.3.

4.5.2 Conversion Of Variables

Another possible solution is to transform a set of mixed
variables into a new set of variables, all of a single
type: Dbut which variable type should be chosen? From a
practical point of view, this choice may be determined
by which variable type is most numerous in the data scect
and the relative effort required for each kind of
conversion. However, the conversion of all data to

binary variables is the most generally useful.

Conversion to binary variables permits use of a wide
array of association measures, many of which have
probabilistic interpretations. Also, the use of binary
variables may enable substantial compression of storage
and increased computational efficiency. The problem is
how to dichotomise all the variables that are not
already in binary form. For multistate variables the
problem 1is a special <case of interval to nominal
conversion. For continuous variables it 1s a problem of

fixing a division point.
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For example, consider a multistate variable with four
categories; A, B, C, and D. If the analysis is to be
carried out in terms of binary variables, there are
seven alternative dichotomies:

1. (a) (B,C,D)

2. (B) (a,c,D)

3. (c) (aA,B,D)

4. (p) (A,B,C)

5. (a,B) (C,D)

6. (Aa,Cc) (B,D)

7. (a,Dp) (B,C)
In effect, a single variable is given a multidimensional
representation. This, of course, causes considerable

growth in the size of the problem.

The conversion of continuous data to binary form is even
less satisfactory. Any distribution may be arbitrarily
divided into two sections, thereby being converted to a
binary attribute. The disadvantage of this conversion
may be seen by considering a normally distributed
variable with the mean taken as the dividing line. 1In
this case two entities differing only slightly from one
another but placed on either side of the mean become
equally dissimilar to a pair drawn from the extremes of

the range. Considered another way, all entities on
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either side of the mean acquire identical binary scores.

An alternative strategy for dealing with mixed variable
data sets 1is to wuse a set of measures which are
compatible with each other and collectively cover every

pairwise combination of variables. This is extremely

restrictive in practice.

4.5.3 Gower's General Coefficient Of Similarity

The problems of handling mixed data have been
particularly studied by Goodall (1966), Lance and
Williams (1967), Gower (1967), and Burr (1968). Gower's
work, developed in later publications (Gower 1971) is of
particular interest and is the method adopted in MAGIC

for dealing with mixed data.

To obtain his coefficient of similarity Gower defines
similarity between two activities i and j as the average
score taken over all the possible comparisons:

Sij = Zsijx dijk / 2dijk
Where sijx 1is the score on variable k for activities i
and j, and 4k equals 1 when variable k can be compared

for i and j, and 0 otherwise. When all compariscns can
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be made 2djjk = n, the total number of variables. The

scores, Sijk » are assigned as follows:

For binary variables the presence of that measure is
denoted by + and its absence by -. Four different
combinations may occur for two activities and the score

and validity assigned +to each combination is shown in

figure 4.6.

Values of variable k
activity i + + - -
activity j + - + -

Sijk 1 0 0 0
dijk 1 1 1 0
Figure 4.6

Scores and validity of binary variable comparisons

For multistate variables sjji is set to 1 if the two
activities i and j agree in the kth variate and sjjk = 0

if they differ.

For continuous variables with values x, X,
' X, oOn variate k for the total sample of n activities
we set

sijk = 1-|xi-xj| /Ry
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where Ry is the range of the variate k and may be the
total range in the population or the range in the
sample. When x; = X j then Sijk = 1, and when x; and X
are at opposite ends of their range, Sijk 1is a minimum

(0 when R, is determined from the sample). With

intermediate values Sijk 1s a positive fraction.

Thus S ranges between 0 and 1; a value of 1 meaning the
two activities differ in no variables, whereas a value

0of O means they differ maximally over all the measures.

A further important characteristic of this similarity
measure is in the representation of the data as a set of
points in space. With n activities the n X n matrix, S,
can be formed whose element, sjj;, is the similarity (as
defined above) between activities i and j. A convenient
representation of the n activities in Euclidean space
can be obtained by taking the distance between the ith
and Jth activities as proportional to (2(1—SLJ))%W The
coordinates of points with these distances are the
elements of the latent vectors of S scaled so that their
sums of squares equal the latent roots. Thus to obtain

a real Euclidean representation it is sufficient for S
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to be positive semi-definite. Gower (1971) presents a
proof that S is always positive semi-definite. This
important characteristic is crucial to the operation of

the ordination techniques discussed in Chapter 7.

4.6 MEASURES OF ASSOCIATION BETWEEN ACTIVITIES

In a simple problem with only two variables it is

possible to plot the activities in two dimensions (as in

figure 4.7).

Figure 4.7

Two-dimensional clustering

The distances between points can be assessed visually

and clusters identified by inspection. Visual
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assessment of distances 1is, however, impossible 1in
spaces of more than three dimensions and must give way

to computational methods.

4.6.1 Metric Measures For Continuous Variables

The most mathematically sophisticated of the distance

functions are those called metrics. This class of
function 1is of general mathematical interest and
consequently has received considerable study. This

discussion will present only those results most directly

applicable in cluster analysis.

Let E be a symbolic representation {or a measurement
space and let X, Y, and Z be any three points in F.
Then a distance function D is a metric if and only if it
satisfies the following conditions:

D(X,Y) = 0 if and only if X=Y

D(X,Y) 2 0 for all X and Y in E

D(X,Y) = D(Y,X) for all X and Y in E

D(X,Y) £ D(X,2)+D(Y,2) for all X,Y, and Z in E.
The first property implies that X is zero distance from
ijtself and that any two points zero distance apart must
be identical. The second property prohibits negative

distances. The third property imposes symmetry by
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requiring the distance from X to Y to be the same as the
distance from Y to X. The fourth property is known as
the triangle inequality and it requires that the length
of one side of a triangle be no longer than the sum of
the lengths of the other two sides. These properties
are 1in accordance with intuitive notions because the
popular concepticn of distance is the Euclidean distance

of elementary geometry, itself a metric.

It may be verified quite easily that the sum of two
metrics 1is also a metric. However, the product of two
metrics (in particular the square of a metric) does not

necessarily satisfy the triangle inequality and so may

not be a metric. Any positive multiple of a metric is a
metric. If D is a metric and w is any positive number,
then
D'= _D_
w+D

is also a metric. A function which satisfies the first
three conditions of a metric but not the triangle
inequality is known as a semimetric. A metric which

additionally satisfies
D(X,Y)  max(D(X,2),D(Y,2)) for all X,Y,Z in E

is called an ultrametric (Johnson, 1967). This latter
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property 1is considerably stronger than the triangle

inequality.

4.6.2 The Minkovski Metric And Special Cases

Let xij; be the score achieved by the jth activity on the
ith wvariable and 1let the vector of scores for the jth
activity be Xj =(x1;, . . -an)° Then the Minkovski
metric between activities j and k is

Dp(Xj.Xi) = [Z]xij -xik|?) 7P
where p2 1. By choosing various values of p many
different metric distance functions can be obtained.
The so-called "city block" or L, metric is obtained by
taking p=1;

D, (Xj,Xy) = 2|xjj —xikl
The familiar Euclidean distance or L, metric is obtained
by taking p=2:

Dy (X5, Xy) = |3 (xij -xix )
The Chebychev metric is obtained as the 1limit of

Dp(X;,X,) as p increases without bound and so sometimes

is called the L (L-infinity) metric:

Doo( X, X)) = maxlxu —x”4
Of all possible metrics most attention is given to the

Euclidean or L, metric. The L, metric occasionally is

encountered and metrics based on other values of p



CLASSIFICATION Page 4-83

hardly ever are of more than theoretical interest.

4.7 SUMMARY

The main types of classification have been formally
identified. Most cluster analysis methods require a
measure of similarity to be defined for every pairwise
combination of the activities to be clustered. The
types of data encountered in architectural data analysis
and the appropriate measures of similarity have becn
defined. The problems arising from mixed data types
have been discussed and methods of coping with the
problem proposed. The software implementation in MAGIC
allows for mixed data sets by utilising Gower's General
Coefficient of Similarity; it is also possible to
operate with simple adjacency matrices which are
interpreted as distance matrices. The various ways of
measuring distance in n-dimensional space were defined.
All the techniques incorporated in MAGIC use the

Minkovski L, metric (Euclidean distance) .



CHAPTER 5

HIERARCHICAL CLUSTER ANALYSIS

5.1 INTRODUCTION

The measures of association discussed in chapter 4 may
be used to construct a similarity matrix describing all
pairwise relationships among the entities in +the data
set. The methods of cluster analysis operate on this
similarity matrix to produce the clusters of activities.
In the implementation of these methods in MAGIC the
similarity measure used in all cases 1is Euclidean
distance, obtained either directly from a- simple

distance matrix or by a transformation of Gower's S.

There are two main approaches to cluster analysis: a
hierarchical «classification or a partitioning method.
This chapter discusses hierarchical methods. These may
be broadly categorised as seeking the optimal partition
into g groups for all values of g between 2 and n (the

number of individual activities). If for every 9,7 9,
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satisfying 2¢9,<9g,«n, each group in the g,-partition
is wholly contained within a single group in the
g, ~partition, the set of partitions is said to be
hierarchically nested. A hierarchically nested set of
partitions can be represented by a tree diagram, or
dendrocgram, such as the one shown in figure 5.8. Each
of the n branch ends represents a single activity. Each
position up the tree at which branches join has an
associated numerical value, 4, dij being the 1level at
which the ith and jth branches Jjoin, and is the lowest
level at which the ith and jth activities belong to the
same group. The smaller the value of d, the more
similar the ith and Jjth activities are regarded as
being, and the higher up the tree they are seen to join.
Sectioning a dendrogram at any level yields a partition

of the data set.

The general strategy underlying agglomerative polythetic
clustering on a data matrix may be represented as

follows.

(1) Consider each of the n activities as a cluster
consisting of Jjust one entity. Let these clusters be

numbered 1 to n.
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(2) Search the similarity matrix for the most similar

pair of clusters. Let these be labelled p and qg.

(3) Merge p and q and calculate their associated

similarity Spg - Label the product of the merger q.

(4) Reduce the number of clusters by one (because of the
merger in (3)), and update the similarity matrix to show
the revised similarities between cluster g and all other
existing clusters. Delete the row and column of S

pertaining to cluster P -

(5) Repeat steps 2,3, and 4 (n-1) times.

The different methods vary in the procedure for defining
the most similar pair at step (2), and the measurements

used in updating the similarity matrix at step (4).

This general strategy 1is easily conceptualised as a

geometric model. Consider each of the n activities as a
point in space; combine the closest pair, p and g, 1into
a single group. The distances of all other points to

this group replace their distances to p and a

individually. Repeat the process until ‘all points have
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been incorporated into a single group. As the majority
of strategies have readily conceived geometrical
interpretations there are advantages if the measures

used are metrics, although this is not essential.

There are eight main clustering strategies available,
some of which have been known for several vears and
acquired a series of alternative names. The. strategies
implemented in MAGIC are Nearest Neighbour, Furthest
Neighbour, Group Average, Centroid, Median, Incremental
Sum of Squares, Simple Average, and Flexible Strategy.

These are each discussed in turn below.

Each strategy exhibits particular properties which
affect the relationships between the clusters formed.
Lance and Williams (1967) describe the main
characteristic as ‘“space distortion". Considering the
geometric model of points 1in multidimensional space
certain strategies leave the properties of this space
unaltered, but in others the clusters alter the space
near to them. Certain strategies operate in effect by
erecting boundaries between groups of points, but do not
change the relative positions of the points in the

original space. Such strategies are said to be space
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cbnserving. In other strategies the space around a
grovp appears to stretch as the group grows, so that the
group appears to recede from the other points as it
grows. Such strategies are said to be space dilating;
they cluster intensely, and the groups appear to be more
distinct than is really the case. In other strategies
the space appears to contract around a group as it grows
(space-contracting strategies); inherent clustering is
reduced and there may be much "chaining" - the

successive addition of single points.

In pragmatic terms the space-contracting strategies
(exemplified by the Nearest Neighbour method) are weakly
clustering, give chains of activities and are not always
of any great conceptual value in exploratory data
analysis. The space-dilating strategies, for exenple
Incremental Sum of Squares, are strongly clustering and
of considerable conceptual value. Intermediate to these
are the space-conserving strategies such as the Group
Average method. The Flexible Strategy is unique in that
it can be altered from space-contracting to
space-dilating; in its usual operation it has Dbecome

space-dilating.
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Another property of certain strategies is
nonmonotonicity. For the complete clustering prccess to
be visually represented.the activities can be arranged
in a convenient order along an abscissa and the
successive clusterings shown as a dendrogram. To enable
the dendrogram to be drawn the string of dissimilarities
associated with the successive clusterings should rise
monotonically. In certain cases the Median and Centroid
methods become nonmonotonic (when, in the combinatorial

equation (see below) oc-,+ocj+ﬁ <l).

Finally, if, given the initial interactivity
dissimilarity matrix, all subsequent individual/group
and group/group measures can be calculated from this
alone by a recursive process, the system is said to be
combinatorial. Lance and Williams (1967) have shown
that all (i,j) measures in common use can be encompassed
within a single linear combinatorial model. Given two
groups (i) and (j) with n; and nj elements respectively
and intergroup dissimilarity dj; . if we assume that djj
is the smallest measure remaining in the system, then
(i) and (j) fuse to form a new group (x) with nk=(ni+nj)
elements. Consider a third group (h) with n, elenments.

Before the fusion the values of dhi' dhj' dlj’ n. ni.,
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and nj are all known (see figure 5.1).

Attribute 2

Group j

nj elements

Group h hi Group i

Ny, elements n. elements

Attribute 1
Figure 5.1

Elements of Lance and Williams combinatorial equation

We may then set

dhi =oxjdp; tocjdy; +8d; +>1dha’dhﬂ
where the parameters oc¢;, oc¢j, # and Y determine the
nature of the strategy. In a few cases these parameters
may be actual numbers; in most, however, they are simple
algebraic functions of some or all of n;, nj, n,, and
n,. The actual values or expressions are given below in

connection with the detailed discussion of the
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individual strategies and summarised in figure 5.2.

Nomenclature is a problem as the various strategies are

given different names by different authors. Synonyms

are therefore given and the name adopted here is

generally the most widely accepted.

Examples of each of the clustering strategies are given
using standard data from Sneath and Sokal (1973),

summarised in figure 5.3.
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Strategy

oo o S,

N.N. 0;5 0.5 0

F.N. 0.5 0.5 0

G.A. n;/ny n;/ny 0
C. n;/nkv n;/n -0} X
M. 0.5 0.5 -0.25

I.S.8S. (np+n;) (np+ny) ~Nx
(np+n,) (ny+n,) (n,+ny)

-S.A. 0.5 0.5 0
F.(i) 0.625 0.625 -0.25

(i) Flexible Strategy
convention to set B =-0.25

Combinatorial equation dy

Figure 5.2

n;
n;

I

0

Page 5-92
Mono- Spatial
tonic Effect
yes contract
yes dilate
yes conserve
no conserve
no conserve
ves dilate
yes dilate
yes dilate

o<idp; + “jdhj +Bdij + Y{dn; "dh‘j )

no. of elements
no. of elements

NE= n;¥n;

in group i
in group j

Values of various strategies in combinatorial egquation
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The coordinates of 16 activities in a two-space defined

by axes X, and X, are given in the first two rows of the

table.

activities are shown in the lower triangular matrix,

their squares in the upper triangular matrix.

a b
X, 0 0
X, 4 3
a X 1
b- 1.000 X
c- 1.414 2.236
d 2.000 2.236
e - 3.162 3.000
f. 2.828 2.236.
g. 3.606 2.828
h 4.123 3.162
1 5.099 5.385
3 6.083 6.325
k 7.280 7.616
1. 5.099 5.000
m 7.071 7.000
n 6.325 6.083
o) 6.708 6.325
p- 8.544 8.246

Figure 5.3a (i)

Test data from Sneath and Sokal

OO DOUTA GO D WNH

.414
. 823
.162
<123
.000
. 000
. 000
. 083
472
. 325
.831
.403
. 062

O AUTWULDS WHWND -

N Ut D BN

]

. 000
.000
.123
162
.123
. 385
162
. 099
472
. 000
.708

wWwbHDoLLwN W -
O
(@)
O

(1973)

SOnMLhbUTwWwoOoO O

N O U NN

»

.236
. 243
. 000
.403
162
.0%¢
. 000
.123
.083

oUW LuOo -~

Euclidean distances between the pairs of

D N Ge U2 B2 BE0 o LN B @)}

O =~

17
10
25
17
13

.403
.071
. 485
. 000
.708
. 385
. 099
.071
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The coordinates of 16 activities in a two-space defined
by axes X, and ¥, are given in the first two rows of the
table. Euclidean distances between the pairs of
activities are shown in the lower triangular matrix,

their squares in the upper triangular matrix.

1 I k 1 m n o p
X, 5 7 7 5 7 6 6 8
X4 5 5 6 3 3 2 1 1
a 26 37 53 26 50 40 45 73
b 29 40 58 25 49 37 40 68
c 16 25 37 20 40 34 41 65
d 10 17 29 10 26 20 25 45
e 8 13 25 4 16 10 13 29
f 18 25 41 10 26 16 17 37
g 25 32 50 13 29 17 16 36
h 41 50 72 25 45 29 26 50
i X 1 5 4 8 10 17 25
j- 1.000 X 2 5 5 ) 16 20
k 2.236 1.414 X 13 S 17 26 26
1. 2.000 2.236 3.606 X 4 2 5 13
m. 2.828 2.236 3.000 2.000 X 2 5 5
n. 3.162 3.000 4.123 1.414 1.414 X 1 5
o 4.123 4.000 5.099 2.236 2.236 1.000 X 4
P 5.000 4.472 5.099 3.606 2.236 2.236 2.000 X

Figure 5.3a (ii)

Test data from Sneath and Sokal (1973)
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16,2 No.

1 Type of data

2,0,0 No. of each variable type
SNEATH & SOKAL DATA Heading

No areas
Names (refer to 5.3a)

of activities, variables

Full matrix data
Data (from 5.3a)

mmmqmqmmwwmwwwoomeZZbNQHmommcowwo

N WWOAUTNORENDWROUWDS

Figure 5.3b

MAGIC data file for Sneath and Sokal data
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For)

b
5.2 NEAREST NEIGHBOUR CLUSTERING STRATEGY

This technique, introduced by Florek et al (1951) and
Sneath (1957), is also known as the Single Linkage
Method (Sneath and Sokal 1973) and the Minimum Method
(Johnson 1967), and is the oldest of the conventional
strategies. The distance between two groups is defined
as the distance between those two individuals {one in
each group) which are the nearest. The parameters are
o<y = o<3=0.5; A= 0; Y= -0.5, giving

dpe= 0.5dy; +O.5dh)' _O'S!dhi kdhjl

0.5(dp; +dpj -~ |Gp; —dy))

It is a monotonic, intensely space-contracting strategy,
with a number of theoretical mathematical and
computational advantages (Rohlf 1973, Jardine and Sibson

1968, 1971, Sibson 1973).

The technique does not delineate poorly seperated
clusters, tending to produce long serpentine clusters.
This property, termed "chaining", is often criticised

because elements at opposite ends of a chained group may
be markedly dissimilar. In a comparison of strategies
Pritchard and Anderson (1971) described this as the
least useful technique because of the tendency to chain.

In most utilitarian aspects, therefore, this strategy
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may be regarded as obsolete, but it has received support
on mathematical grounds from Jardine and Sibson (1968).
As the cluster updating process involves choosing only
the minimum (or, in the case of Furthest Neighbour, the
maximum), single-link clustering is invariant to any
transformation which leaves the ordering of similarities
unchanged, that is, any monotonic transformation.
Jardine and Sibson develop further criteria they believe
should apply to classificatory strategies which
virtually confine one to the use of Nearest Neighbour
(discussed briefly in section 5.9.3). A controversy
arose between a "Cambridge School" and an "Australian
School" over this and related issues (Williams et al
1971, Sibson 1971, Jardine and Sibson 1971), but, in the
end the criterion of the wvalidity of application of
particular methods must come down to "how well does it

work?".

5.2.1 Example Of Nearest Neighbour Clustering

We first find the mutually most similar pairs, which
turn out to be (1,2), (6,7), (9,10) and (14,15), all at
a distance of 1.0 from each other (see the pairing
sequence, figure 5.4, and figure 5.3). The geometric
result of this is shown in figure 5.5 where these pairs

are connected with solid lines. New candidates for
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fusion (either between themselves or to established
groups) are now examined. At this next 1level of
grouping (1.414) several activities join cluster 1. The
pairs are (1,3), (1,4),. (1,5), (1,6), (1,8), (9,11),

(12,14), and (12,13). Finally (9,12), (9,16) and (1,9)

are Jjoined. Note how in the geometric representation
the clusters are strung out in what is the
characteristic single linkage fusion fashion. In

figures 5.6 and 5.7 the links existing prior to that

stage are shown in light line and the new links in bold

line.

Referring to the dendrogram (figure 5.8) we can see that
Nearest Neighbour clustering has revealed three levels
of clustering. The most closely related activities are
(1,2),. (6,7),. (9,10), and (14,15), with 3,4,5,8,11,12
and 13 remaining unattached at that level. The next
highest level is represented by (1,2,3,4,5,6,7,8),
(9,10,11), (12,13,14,15), and 16; whilst at the £final
level all the activities come together as a single
entity. The representation of clusters by dendrograms

is discussed further in Chapter 10.
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NEAREST NEIGHDOUR CLUSTERING STRATEGY

PRIRING SEQUERCE
1TEM JOINS ITEM @l OISTANCE

1 2 1. Ex’r{iﬁ
6 7 1.626
9 16 1.6890
i4 iS5 1.0u6
1 3 1.414
1 4 1.414
b S 1.414
S 11 1.414
12 14 1.414
12 13 1.414
S 8 1.414
1 S 1.414
9 12 2.6E8
9 16 2.862
1 9 2.0064

FIT IS 99.% RLCURATE

i
Figure 5.4

Nearest Neighbour strategy - pairing sequence

&

fa o)

Figure 5.5

Nearest Neighbour strategy - first step
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Figure 5.6

Nearest Neighbour strategy - second step

Figure 5.7

Nearest Neighbour strategy - third step
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Figure 5.8

Nearest Neighbour

Page 5-101
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5.3 FURTHEST NEIGHBOUR CLUSTERING STRATEGY

This technigue was originated by Sorensen (1948), and is
also known as the Complete Linkage Method (Sokal and
Sneath 1973), and the Maximum Method (Johnson 1967).

Its current name was established by Lance and Williams

(1967).

The distance Dbetween two groups is defined as the
distance Dbetween their two most remote individuals, and
linkages made on the basis of the <closest of these
distances. It is a mdnotonic, intensely space-dilating
strategy which has been largely superceded by the
Flexible Strategy. The parameters are

oLi=oX;= 0.5, =0, Y= 0.5
giving

dpy = 0-5dp; + 0.5dy 5+ 0.5]d; - dy ]

0.5 ( dy; + dhj+ ldhi - dhjl)

5.3.1 Example Of Furthest Neighbour Clustering

The method commences in the same manner as the Nearest
Neighbour technique (figure 5.10). For an activity to
now join an existing cluster the distance criterion 1is,

in this strategy, now taken, not to the nearest element
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of that cluster, but to the furthest. When two clusters
join the similarity is that existing between the
farthest member pair, one from each cluster. This
method thus 1leads to a number of tight, discrete
clusters that join each other only with difficulty and

at relatively low similarity levels.

Inspection of the clusters generated (see particularly
figure. 5.13) shows their induced compactness in
comparison with the loose, strung-out clusters of the
Nearest Neighbour strategy (figure 5.6). The data is
more structured, showing more clusters and more levels

than the Nearest Neighbour strategy.

While the most highly connected activities are (1,2),
(6,7), (9,10) and  (14,15) as before, the next levels
produce (3,4), then (5,12) so that even at the fourth
level there are five distinct groups - (1,2,3,4),
(5,12), (6,7,8), (9,10,11) and (13,14,15,16). These
five reduce to four in the next step and then three and
two. The final fusion is then at a very much lower
level. The dendrogram showing this structure is drawn

in figure 5.17.
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FIRTHEST REIGBOUR CLUSTERING STRATEGY

PRIRING SEGRNCE
ITENM JOINS ITEM AT DISTANCE

1 2 i.G59
é rd 1.659
p ig i.6060
14 i5 1.662
3 4 i.414
3 12 2,529
i 3 2.226
G 8 g .236
& ii 2.236
13 14 2.235
i3 i6 2.235
i & 5 6550
9 g 5.289
S i3 5 .3255
i 3 8.544

FIT IS 56.% RCCURAKTE

Figure 5.9

Furthest Neighbour strategy - pairing sequence.

@
©, O ®
®
® ®)
0 - 3
@
®

Furthest Neighbour strategy - first step

Figure 5.10
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®
&

Figure 5.11

Furthest Neighbour strategy - second step

Figure 5.12

Furthest Neichbour strategy - third steD
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Figure 5.13

¥urthest Neighbour strategy - fourth step

(11
@w@/.

Figure 5.14

Furthest Meighbour strategy - fifth step
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Figure 5.15

Furthest Neighbour strategy - sixth step

Figure 5.16

Furthest Neighbour strategy - seventh step
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=

Figure 5.17

Furthest Neighbour strategy = dendrogram
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5.4 GROUP AVERAGE CLUSTERING STRATEGY

This technique is also described =zas the Unweighted
Pairgroup Method Using Arithmetic Averages (Sokal and

Michener 1958). fThe Group Average name was established

by Lance and Williams (1967).

If there are m; individuals in one group and m, in
another, the distance between them is defined as the
arithmetic mean of all m,m, interindividual distances.
Fusion is between the two groups with the shortest mean

distance. The parameters are

ni/ny; >j= nj/n.; B=Y=0

oK o=
dpk= (njdy; + njdn;)/ny
where n;= number in group i
n;= number in group j
ng= ni+ nj
It is monotonic and substantially space conserving.

This method is less rigorously space conserving than the
Centroid method, but, having no marked tendencies to
contraction or dilation may be regarded as a conserving
strateqgy. Group Average clustering 1is a generally
satisfactory technique giving moderately distinct
clusters, with the advantages of being monotonic, little

prone to misclassification, and with little group size
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dependence. It may therefore be usefully employed bhoth
as a general "work-horse" technique and also to check
for misclassifications resulting from the application of

more intensely clustering strategies.

5.4.1 Example Of Group Average Clustering

The strategy computes the average similarity of a point
relative to an extant cluster, weighting each element in
that cluster equally. Fusion 1is then made with the
cluster giving the shortest mean distance. To show this
point the first steps of the clustering of the exampile

data are worked manually.

The initial clustering step 1is the same as 1in the
previous cases: (1,2), (6,7), (9,10), (14,15). The new
distance between (1,2) and 3 can be computed by simply
averaging d,, and d;;, i.e.

d(izyz =0.5(1.414+2.236)

.=1.825

Distances involving two new clusters, such as dszeﬂ
are computed as

0.25(d,, +d,; +d,,+d,;)
=0.25(2.828+3.605+42.236+2.828)

i.e. d(‘z)(w)
=2.875
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Distances between elements that did not join any cluster

are transcribed unchanged from the original matrix; for

example d,,=1.414.

The complete distance matrix after the first clustering

is shown in figure 5.18.

(1,2) 3 4 5 (6,7) 8
AB C D E FG H
(1,2) AB X
3 C. 1.825 X
4 D 2.118 1.414 X
5 ¥. 3.081 2.828 1.414 X
(6,7) FG 2.875 3.643 2.500 1.825 X
8 H 3.643 5.000 4.123 3.605 1.825 X
(9,10) 1J 5.723 4.500 3.643 3.217 4.975 6.737
11 K 7.448 6.083 5.385 5.000 6.737 8.485
12 L 5.050 4.472 3.162 2.000 3.384 5.000
13 M 7.036 6.325 5.099 4.000 5.242 6.708
(14,15) NO . 6.360 6.117 4.736 3.384 4.062 5.242
16 P . 8.395 8.062 6.708 5.385 6.041 7.071
(9,10) 11 12 13 (14,15) 16
1J K L M NO P
(9,10) IJ X
11 K 1.825 X
12 L. 2.118 3.606 X
13 M 2.532 3.000 2.000 X
(14,15) NO 3.571 4.611 1.825% 1.825 X
16 P 4.736 5.099 3.606 2.236 2.118 X

Figure 5.18

Distance Matrix After First Level of Clustering
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This matrix is then examined for the most similar (least

dissimilar) pairs in the same manner as the original

matrix. This results in a fusion between 3 and 4.
Elements 4 and 5 are also at the same distance, but
cannot jcin because of the prior clustering of 4 with 3.
The next fusions are, successively, 5 and (6,7), (9,10)
and 11, 12 and (14,15). Here the "unweighted" aspect of
this method first comes into play, for, so far the
earlier clusters would have been the same in the
weighted method. Thus, for example,
d 5 (12,14,15) =0-33(dg, +ds 1y +d 5 i5)
=0.33(2.0+3.162+3.605)
=2.923
This is the noncombinatorial approach using the original
data from figure 5.3, and is described here as it
follows more closely the conceptual geometric method.
To obtain the same result using Lance and Williams
combinatorial equation {(i.e. the method used in MAGIC)
the formula

d = (n.d, . + njd ) / n

hk 1%hi hi k

applied to d5(12,14,15) becomes

d5(12,14,15) = ((nyp X dgeqgy) *+ (ngqy 15)% dgeqy 15)))

Mo * 1y 1s)

— 1 ‘ 3
= Iif((l x 2) + (2 x 3.3839))

= 2.923

which i1s as before, but here the distances are derived



HIERARCHICAL CLUSTER ANALYSIS _ Page 5-113

from figure 5.18. Continuing through the successive
iterations we eventually obtain the dendrogram shown in

figure 5.27.
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GROUP AVERAGE CLUSTERING STRATEGY

PRIRING SEQUENCE
ITEM JOINS ITEM AT DISTAMCE

1 2 1.606
6 4 1.e29
S 16 1.096
14 15 1.68632
3 4 1.414
6 8 1.793
12 14 1.796
3 11 1.863
i2 13 1.857 .
3 o 2.829
1 3 2.482
12 16 2.484
1 6 3.126
9 12 3.673
1 9 9.239
RCCURATE

FIT IS £€8.%
Figure 5.19

Group Average strategy - pairing sequence

®
®
5

®

Group Average strategy - first step

Figure 5.20
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Figure 5.21

Group Average strategy - second and third steps

o
(©)
©

Figure 5.22 :

11

@0

@

Group Average strategfyv - courth and fifth cteps
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Figure 5.23

Group Average strategy - sixth and seventh steps

Figure 5.24

Group Average ctrategy - cigth. and ninth steps
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Figure 5.25

Group Average strategy - tenth and eleventh steps -

Figure 5.26

Group Average strategy - twelvth step
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Figure 5.27

Group Average strategy - dendrogram
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5.5 CENTROID CLUSTERING STRATEGY

Again the name was established by Lance and Williams
(1967). The technique was previously known as the

Unweighted Pairgroup Centroid Method (Sokal and Michener

1958, and King 1966,1967).

In a Euclidean model, the distance between two groups is
defined as the distance between their centroids. 1t is
combinatorial only when d% is used. The parameters are

oq:n;/nk;og:nj/nk;ﬁzhoqongzo

dpe = nidp + njdp; - nin;dij
N Ny e
= _%I_K(n(dhi + njdy - n'.x;idaj)
It is strictly space-conserving, but nonmonotonic, and
reversals are frequent, thus rendering the strategy
almost obsolete. It is conceptually attractive in that
it computes cluster centroids, distances then being
calculated between centroids, but disadvantages of

nonmonotonicity outweigh this consideration.

Reversal can be seen in 13 joining (12,14,15) in the
dendrogram (figure 5.37). Reversals occur vhen an

element (or cluster) joins an existing cluster, but at a
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higher level of similarity than that at which the

cluster had formed. As this is conceptual nonsense the

technique has dropped into disuse.

A .
%)
X
®
D
B .
2-8 units C
Figure 5.28
Invercion in Centroid clustering
An 1illustration of the manner 1in which Centroid

clustering may lead to inversions when three almost
equally dissimilar entities are clustered 1is shown in
figure 5.28. A, B and C are the entities and D the
product of the first fusion. The distance AD 1is now

less than the length of any triangle side.
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CENTROID CLUSTERIMG STRATEGY

PAIRING SERUENCE
ITEM JOIHS ITEM AT CISTANCE

| 2 i.629
6 4 1.009
2 ie 1.6090
14 £3 1.e89
3 4 i.414
6 e 1.771
12 14 1.773
12 13 1.655
3 it 1.781
1 3 1.945
i 5] 2.135
12 16 2.322
1 6 2.831
S i2 3.435
1 9 4.778

FIT IS ¢&2.7% aCCURATE

Figure 5.29

Centroid strategy - pairing sequence

©
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®

Figure 5.30

Centroid strategy - first step
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Figure 5.31

Centroid strategy - second and third steps

Figure 5.32

Centroid strategy - fourth step
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Figure 5.33

€entroid strategy - fifth, sixth and seventh steps °

(&)

Figure 5.34

Centroid strategy - eigth and ninth steps
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Figure 5.35

Gentroid strategy - tenth and eleventh steps

Figure 5.36

Centroid strategy - twelvth step



HIERARCHICAL CLUSTER ANALYSIS

)
ol
N

W ATy ok

Lar:

2t

Figure 5.37

Page 5-125

14

15

13

Centroid strategy - dendrogram
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5.6 MEDIAN CLUSTERING STRATEGY

This method was proposed by Gower (1966), and previously
known as the Weighted Pairgroup Centroid strategy (Sokal

and Sneath 1967), the current name being established by

Lance and Williams (1967).

A disadvantage of the Centroid strategy is that if n;
and nj are very disparate, the centroid of (k) will lie
close to that of the largest group, and remain within
that group; the characteristic properties of the smaller
group are thus lost. The strategy can be made
independent of group size by arbitrarily setting n;=nj;
the apparent position of (k) will thus always 1lie
between (i) and (j). The parameters are

Xj=0¢=0.5; 8=-0.25; =0

dp=0.5(dy; +d,;)=-0.25d;;
The strategy is space-conserving but may be

nonmonotonic.
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MEDIRN CLUSTERIMNG STRATEGY

PRIRING SEGUENCE
ITEM JOIHS ITEM AT DISTANCE

i 2 1 969
6 7 i.000
9 16 1.0069

14 15 1.60a
3 4 1.414
1 3 1.803
5 6 1.802
3 11 1.893

12 14 1.6032

12 13 1.677

12 16 2.388
i g 2.475
1 2 2. 187
9 12 3.750
1 9 S.762

FIT I3 63.% ACCURATE

Figure 5.38

Median strategy - pairing sequence
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5.7 INCREMENTAL SUM OF SQUARES CLUSTERING STRATEGY

This technique has been known under a number of names:

Error Sum of Squares (Ward 1963), Sum of Squares (Orloci

1967). The current name, which seems the most

descriptive was proposed by Burr (1968, 1970).

In a Euclidean model, the intergroup distance is defined
as the increase in the total within-group sum of squares
(of distances from the respective centroids) on fusion.
The parameters are:

Xi=(npin;)/(ny+n,)

Oﬁ:=(nh+nj)/(nh+nk)
B =-ny/(ny+ny)

Y =0
(n,+n,)
It 1is monotonic and space-dilating. Squares of

Euclidean distance (D?*) are used as distance measures
and after uniting the pair of elements whose D% is a
minimum, subsequent entities are fused such that the sum
of D2 within a cluster increases by the smallest amount.
As the total sum of squares is constant, if the sum of
D% within a cluster increases minimally, then it follows

that D% between clusters is increased maximally.
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INCREMENTAL S8t OF SQUARES CLUSTERING STRATEGY

PAIRING SEQUENCE
ITEM  JOINS  ITEM AT DISTANCE

1 2 1.e90
6 7 1.652
S - 18 1.6
14 15 {.609
3 4 1.414
S 12 2.660
i3 14 Z.054
2 1 2.093
6 8 2.693
13 16 2.610
1 3 2.645
S 13 4 %531
1 6 6,652
5 9 5. 448
i 5 13.488

FIT IS $5.% GCCURATE

Figure 5.39

I.S.S5. strategy - pairing sequence
' . 14 16 12

1 5, 3 4 & 5 5 16 o

L

T

e PRA Al

Figure 5.40

1.S5.8. strategy - dendrogram
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5.8 SIMPLE AVERAGE CLUSTERING STRATEGY

Also known as the Weighted Pairgroup Method Using
Arithmetic Averages (Sokal and Sneath 1967), this
strategy has a similar relationship to the Group Average
method as the Median has to the Centroid. The two
groups are given equal weight with n; set equal to nj.

The method is space-dilating and monotonic. Parameters

care:

o< =0(=0.5 andp=Y=0
dhk =0-5(dh‘ +d h_j )
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SIMPLE AVCRACE CLUSTERING STRATEGY | '

PRIRIMNG SECUENCE
ITEM JOIHS  ITHE

-91

AT DISTANCE
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FIT IS 63.% GCCURATE

Figure 5.41

Simple Average strate;y - pairing se?%ence 14

1 2 4 G ; in 12 i3 13

16

Figure 5.42

Simple Average strategy - dendrogram
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5.9 FLEXIBLE STRATEGY CLUSTERING

This is applicable to any dissimilarity measure and is

defined by the quadruple constraint:

It is monotonic and its space distorting properties
depend entirely upon 8. If 8=0 the <trategy is
space-conserving; as /A becomes positive the strategy
becomes increasingly space-contracting; as S becomes
~negative the strategy becomes increasingly
space—-dilating. In practice a value of B =-0.25 is
commonly used, giving dhk=0°625(dhi+dhj)“o°25dL) and
thus Dbearing some resemblance to the Median strategy.
Given any value of @ the other parameters follow

automatically from the constraints.
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FLEXIBLE CLUSTERING STRARTECY

FLEXIBLE STRATEGY COEFFICIENTS:
ALPHA(J) = AALPRA(K) =
-8.2593

BETR

PRIXING SEQUINCE

ITeM

Y

ot pb
e Dt (A LI WORUIWDHON

FIT IS
FPigure 5.43

0.625

JOINS ITEM AT DISTANCE
2 1.0609
I'4 1.669
10 1.659
15 i.00e
4 1.414
i2 2.023
g 2.831
i1 2.0631
14 2.631
3 2.332
16 2.335
5 4.438
o 35.628
i3 $.747
2 2.879

S58.% aLORATE

’9.25) npairinggsc

F%eﬁible_§trateg¥ (B =

i

' 4

1
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1

12

|
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Figure 5.4uL
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Flexible strategy (8 = -0.25) - dendrogram

Page 5-133
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FLEXIBLE CLUSTERING STRATEGY '
FLEXIELE STRATEGY COSFFICIENTS:
RLPHACJ) = SLPHACKY = 8,998
BETA = -8.985
PAIRING SERENCE
ITEM  JSINS  ITEM AT DISTANCE
1 2 1.060
6 7 i.008
3 16 i 6o
14 15 1.600
3 4 1. 41
5 12 2 g¢9
132 16 2 276
6 8 2 439
9 11 2.439
13 14 2.973
3 2 3. 432
s 6 7,138
1 5 11.634
3 12 12.875
i 9 23729
FIT IS 58.% ACCURATE
Figure 5.45 o
Flexible strategy (8 = -0.98) - pairing sequence iy
1 5, 3 4 9 » & , 8 4 18 ,, 13 . 15
Lt L___l tJ l L ' L“r_j L _J

Figure 5.46
Flexible strategy (8 = -0.98) - dendrogram



HIERARCHICAL CLUSTER ANALYSTS

16

- Page 5-135
FLEXIBLE CLUSTERING STRATEGY
FLEXIBLE STRATEGY COEFFICIENTS:
ALPHA J) = ALPHKKY = Q.739
BETA = -95.553
PRIRING SEQUENCE
ITEM JOINS ITEM AT GCISTANCE
£ 2 1.850
6 7 1.863
9 19 1.60a
14 15 1.609
3 4 1.414
S ) ¥4 2.009
6 8 2.179
S 11 2.179
13 14 2.179
13 i6 2.462
i 3 2.693 |
5 6 5.200
i S 6.228
9 13 7.548
i S 15.714
FIT IS 358.% alORATE
Figure 5.47
Flexible strategy (8 = -0.5) - pairing sequence 15
12345121785[1'6“1[1&_]
—

Figure 5.Uu8
Flgxible strategy (B = -0.5) - dendrogram
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FLEXIBLE CLUSTERING STRATEGY
FLEXIBLE STRATEGY COEFFICIENTS:

ARLPHA( D) = RLPHA(K) = B6.500
BETQ] = 6.688

PRIRING SECUZNCE

ITEH JOINS ITEH AT DISTRHCE

Page 5-136

14

19

13

1 2 1.009
& 7 1.89@
9 18 1.000
14 15 1.0669
3 4 1.414
9 6 1.871
9 11 1 871
12 14 1.871
12 13 1.9
1 3 2.989
12 16 2.622
i 5 2.872
i 8 3.571
9 12 4.161
1 9 6.4%4
FIT IS 63.% ACCURATE
Pigure 5.489 o |
Flexible strategy (B =0.0) - pairing sequence
2 * 4 3 ¢ 7 g 9 4911 45
Figure 5.50

Flexible strategy (8 = 0.0) - dendrogram

16

|
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FLEXIBLE CLUSTERING STRATEGY

FLEXIBLE STRATEGY COEFFICIENTS:
ALPHA(J) = ALPHA(K) = 8.258
BETA = 6.509

PAIRING SEQUENCE
ITEM  JOINS  ITEM AT DISTAMCE

. 839
589
. 800
. 683
413
413
413
413
. 450
. 439
.&59
.669
.60
914
218

ot
oo
SN
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[Grerey
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M

FIT IS8 26.% RCCURATE
Figure 5.51 ‘
Flexible strategy (8 ='Q:5} - pairing sequence

s 3 4 5 o 7 g 18 12 ., 15 4 16

L

Figure 5.52 |
Flexible strategy (8 = 0.5) - dendrogram
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FLEXIBLE CLUSTERING STRATECY
FLEXIBLE STRATEGY COSFFICIENTS:

PLPHA ) = MPHAK) =  §.619
BETR =  6.982

PRIRING SEQUENCE

Page 5-138

ITBH  JOIHS  ITEM AT DISTANCE

1 2 1.003
6 ? i.ee9
9 19 1.859
14 15 1.663
1 6 1.891
1 14 1.892
1 9 1.002
1 11 1.062
1 13 1.841
1 12 1.95%
1 5 1.859
i 4 i.074
i 3 1.978
1 8 i.184
1 16 1.375
FIT IS 25.% ACCURATE
Figure 5.53 | ._" o -
Flexible strategy (£ = 0.98) - pairing sequen%: 5
2 & 7 14 45 9 g W 4 12 4 3 ﬁ 16
?
o
l:
g
!
| ) L = o : X S J....m.a
- w{_

Figure 5.54

Flexible strategy (8 = 0.98) - dendrogram
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'5.10 . COMPARISON OF HIERARCHICAL TECHNIQUES

The different hierarchical techniques may be compared in
a number of ways. A simple geometric model serves to
illustrate the different criteria used in forming
clusters in the Nearest Neighbour, Furthest Neighbour,
. and averaging methods (Group Average, Centroid, Median,
Simple Average). Figure. 5.55 shows a cluster of four
elements collectively labelled J, and a cluster labelled
K containing a single element, all about to be joined by
another single element cluster labelled L. J and K are
assumed to have joined at the last clustering step and
it is now desired to compute the dissimilarity of L with
the newly formed cluster (J,K), which, for convenience
may be termed M. The dissimilarities obtained by the
various cluétering methéds, expressed -as Euclidean

distance are laid out along the abscissa.

Figure 5.55
The effects of different clustering strategies on the criterion

of admitting L (consisting of a single element) to a clustef

formed of the four elements in J plus one in K.
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. It may be seen that Nearest Neighbour shows the
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least

value of d ., since it is the distance between L and the
closest member of M (in fact the nearest element of J).
By contrast d,, for the Furthest Neighbour equals the
greatest dissimilarity between L and any member of M,
namely 4 .. The two centroid based methods (Centrdid

and Median) measure the distance between L and the

centroid of clusters J and K. The weighted method
(Median) is the median of line JK, shown M, . In the
unweighted (Centroid) method the four elements of

cluster J count 4/5 while the single element of K only

counts 1/5. The centroid for the five unweighted
elements, M,, therefore lies closer to J (i.e. . 0.2 of
the distance from J to -K). In terms of clustering

criteria therefore, the distance LM, is less than IM, .

No similar geometric representation of the Group Average
and Simple Average is possible, but the dissimilarities
obtained by these strategies are marked off along the
abscissa. These distances represent the weighted or
unweighted'average of the lengths of the vectors from L
to each of the five elements of M. It may be seen that
in each case the dissimilarities are slightly greater

than in the corresponding centroid method.
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This becomes obvious by the examination of the

[

respective coefficients in the combinatorial equation.

Both centroid methods have 8<0 while in the

averaging
methods £ =0. ESince the o coefficients are the same the
centroid methods necessarily result in smaller
distances.
5.10.1 Comparison Of Cluster Results Obtained
Objective comparison of the results of different

strategies necessitates somé measure of the "goodness of
fit" of the hierarchical structure generated by the
procedure to the original data. One approach involves
the comparison of the coefficients of similarity dﬁj
derived from the hierarchical structure and the
similarity coefficients d;; measured on the original
data. Clearly, if D¥* (=d%;) and D (=d;; ) closely
resemble one another then the structure of the data is
closely modelled by the hierarchical representation.

The elements of D¥ can be derived from the linkage order

of the dendrogram.

The most widely used measure of resemblance for
comparing the matrices D and D* is the product-moment

correlation coefficient, known in this context as the
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Cophenetic Correlation Coefficient (Sokal and Rohlf
1962). It is calculated in exactly the same way as a
normal correlation coefficient with the elements of the

strict lowei triangles -of D and D¥* considered as

forming linear arrays when read row-wise.

This measure is used in MAGIC and the results on the
example data set are summarised in figure 5.56 It may be
seen that in this case the space-conserving strategies
perform the Dbest, followed by the space-dilating and

then the space-contracting, performing worst.

Strategy % Fit No. of levels
Nearest Neighbour 50 3
Furthest Neighbour 55 7
Group Average 60 12
Centroid 62 12
Median 63 9
Inc. Sum of Squares 59 12
Simple Average 63 10
Flexible 8=-0.25 58 10
-0.98 51 11
-0.5 53 10
0 61 10
0.5 26 9
0.98 17 9

Figure 5.56

Fit of different clustering strategies

The properties of the cophenetic correlation coefficient

have Dbeen investigated by a number of authors, for
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example Sneath (1966), Farris (1969), Rohlf (1970), and
Sokal and Rohlf (1970). Holgersson (1978) presents a
probabilistic study of the statistic which suggests that
it may be misleading as an indicator.of presence of
clusters. Highly seperated clustérs are well identified
but the measure shows some degree of variability for low
seperation clusters. Holgersson used Monte Carlo
studies of the characteristics of the coefficient for
all the combinatorial strategies. An alternative
approach was adopted by Gower and Banfield (1975) who
used the Nearest Neighbour method to analyse data drawn
from a single multivariate normal distribution and
examined the behaviour of various measures of

distortion.

A wide range of such measures have been proposed, and
selected measures of distortion are summarised in figure
5.57. Sokal and Rohlf's (1962) measure is the
correlation between the sets (s;;) and (§;;), and hence
gives an indication of the linear relationship between
these two variables. It has also been used to compare

the similarities defined by two different dendrograms,

(gijl ) and (/s\i_jl)‘
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= (sij- 5i3)(5;;,- §..
Dl . 7=0(5i= Si) 0 soxal and Rohlf (1962)
[2(&)—50) 2(5%5j-51)*]" Kruskal and Carroll (1969)
Zd"a"
D2 PR v 7 Guttman (1968)
[Zo‘q_j ZdUJ
D3 E (o}~ &) Gower (1966,1970)
D4 (23 |si - 8| * )P < -
2Z]si; - 85| )F, o<p<l Jardine et al (1967)
mox |sij - 5ij)
D5 Z”VU(SLJ" §U)2 Hartigan (1967)
D6 = wij(dij~ aij)? Anderson (1971)
D7 As D6 with wij=k Shepard(1962)
Thompson and Woodbury (1970)
D8 As D6 with wiJ‘:l/d'.J'Ed'.j Sammon (1969)
D9 =[di - f(cij) /= ay Kruskal (1964)

Kruskal and Carroll (1969)
where f(dij) is some "regression" function
D10 Kruskal and Carroll (1969)
N3 Loty /&g 12 [N S (G e 16/ ow)
[NTS () & o e
with a=0.5, b=1 or a=b=0.5

Figure 5.57

Some measures of distortion

Hartigan (1977,1978) discusses a range of different
statistics, indicating the difficulty of obtaining
distributional results in many cases. Other approaches

have been described by Beale (1969), Calinski and
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Harabasz (1974) and Mojena (1977).

It seems unlikely that any criteria will fing widespread
acceptance in a strict hypothesis—-testing sense, because
of the difficulty of anticipating the behaviour of
relevant statistics under the diversity of different
structures which may be present in the data. However,
if used with discretion, such tests are of use in the

investigation of a data set.

5.11 PROPERTIES OF CLUSTERING PROCEDURES

Some of the measures just described were concerned with
providing some protection against finding groups in the
data when, in fact, none were present. If this can Dbe
regarded as analogous to seeking to control the error of
the first kind in hypothesis-testing, it 1is also
relevant to investigate something corresponding to an

error of the second kind: if a particular type of

structure is present in the data, it should be detected.

One approach to this problem has been by simulation
studies: investigators have examined the manner in

which various clustering criteris have analysed cdata
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sets whose structure was known.

Thus, for example, Cunningham and Ogilvie (1972)
investigated the performance of seven of the clustering
algorithms in recovering the structure in six artificial
data sets, each of which contained twenty objects. The
data were: (i) random; four groups.of five objects, the
configuration within each group being identical, and the
groups being either (ii) well-seperated, or (iii) close
together; data whose dissimilarities were specified by
dendrograms which (iv) depicted distict groups, oxr (v)
indicated chaining; (vi) dissimilarities were obtained
by distorting slightly the dissimilarities obtained 1in
the fifth data set. Cunningham and Ogilvie (1972)
reported that the Group Average method was usually at
least as efficient as the other methods in recovering

the underlying structure.

Kuiper and Fisher (1975) examined the performance of six
of the same algorithms in ~analysing bivariate and
multivariate normal samples, concluding that the Nearest
Neighbour performed poorly and the Incremental Sum of
Squares methods performed well if there were an equal

number of objects from each population, but less well
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for unequal samples. Other studies were reported by

Sneath (1966) and Baker and Hubert (1975).

Simulation studies of this kind can be of assistance in

indicating the properties of different clustering
criteria, and possibly in identifying unreliable
criteria. However, it is unlikely that they will be of
more than limited usefulness. No single clustering

criterion can Dbe guaranteed *o detect correctly all
types of structure 1in data, and even 1if the most
appropriate procedure were known for every conceivable
type of structure, the problem remains that in general
the precise form of data 1is not known prior to the
analysis: it is precisely in order to establish this

that the investigation is undertaken.

5.11.1 A Theoretical Comparison Against Required Criteria

The follcwing discussion assumes a degree of information
about the data, or the required prcperties of the
classification. In the context of taxonomy Jardine and
Sibson (1971) regarded classification as the mapping

from a data set A to a target set Z:
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D :A921Z

The mapping from a set of dissimilarities (d;j) into a

set of transformed dissimilarities (33)) corresponding

t0 a dendrogram can be represented by the transformation

Pa)
where (d;;) satisfy the ultrametric inequality, i.e.

aS

iks;max(d;j,abk) for all objects i, Jj,k

Q)

Jardine and Sibson (1971) presented a more general
axiomatic formulation specifying various properties
which one might require of the function D and the data

set and target set. For example:

(i) The method must not depend on any prior labelling of

the objects.

(i.i) The method must not depend on any scale factor oc;

D(xd) =xD(d)

(iii) Prescrvation of clusters: if deA, then there

exists d'e 2 such that d'€d[D(d)<d]. The rationale being
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that a maximal linked set at level h in 4 may have other

objects added to it at the same level in D(d), but it

must not be broken up.

(iv) In order to be able to investigate the effect of
small changes in the input dissimilarity matrix, the
mapping should be continuous: small changes in the

dissimilarities should not give rise to large changes in

the classification.

A fuller list of conditions, with discussion, was given
by Jardine and Sibson (1971, Chapter 9). These authors
showed that if the mapping is specified 1in the above
way, from a set of dissimilarity coefficients to a set
of ultrametric dissimilarities, then the Nearest
Neighbour method is the only classification method that
satisfies their list of axioms. Other authors have
investigated Jardine and Sibsons axiocms, and few have
regarded them as sufficiently important as to sO
restrict the acceptable classification methods. In
particular, it has been queried whether continuity
(axiom iv above) should be required as a global property
of a clustering method ({(Cormack 1971). Hierarchical
clustering methods other than Nearest Neighbour are

subject to discontinuities when analysing certain data
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sets, but this should not necessarily rule out thir use.

Axiomatic characterisations of other clustering methods
would Dbe a valuable development, but these would appear
to be a very difficult to obtain. Wright (1973) gave a
list of properties which are satisfied by a sum of
squares criterion, but did not prove that these

properties give a unique characterisation of the method.

In the absence of complete axiomatisations of each
clustering method, such 1listings of the properties of
each method can provide wuseful information. Relevant
related work is the admissability approach of Fisher and
Van Ness (1971) and Van Ness (1973). Drawing the
concept of admissability from decision theory, these
authors gave various properties which one might expect
"reasonable" clustering procedures, or the groups
obtained from applying these procedures, to possess. If
A denotes some property to be satisfied, then any
procedure which satisfies A is called A-admissable.
Some of the properties introduced by Fisher and Van Ness

(1971) are listed below:
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(1) Convex admissibility: a partiticn into clusters C,.
Cy, . » Cq is said to be convex admissible if the
convex hulls of C,, C,, -++Cqg Go not intersect (this
condition requires that the original form of the data be

such that each object can be represented by a point in

some Euclidean space).

(2) Point proportion admissibility: a procedurc is said
to Dbe point proportion admissible if duplicating one or
more objects any number of times and reapplying the
procedure to the modified data set does not alter the

boundaries of the clusters obtained.

(3) Cluster omission admissibility: suppose that a
clustering procedure produces a partition into g
clusters, C.,CZ,...,CS, and all objects in any one of
these clusters, say C;, are removed from the data set,

then the reduced data set is re-analysed to obtain the
optimal (g-1) clusters using the same procedure. If the
(g-1) clusters obtained are always (C;(i=1l,...,g9:i%j)),

the procedure is said to be cluster omission admissible.

(4) Monotone admissibility: a procedure 1s monotone
admissible if applying a monotone transformation to each
element of the dissimilarity (or similarity) matrix does

not change the resulting clustering.
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(5) Well-structured (g-group) admiesibility: data are
defined to be well-structured (g-group) if there exists
a partition into g groups for which all within-group
dissimilarities are smaller than all between-group
dissimilarities. A clustering procedure is
well-structured g-group admissible if it produces the

correct partition into g groups whenever it is applied

to data which are well-structured (g-group).

The rationale of Fisher and Van Ness's admissibility
approach is that it is not usually possible to specify a
single "best" clustering procedure, but using their data

one may select a procedure with known characteristics.

Clustering Admissibility condition
Procedure 1 2 3 4 5
N.N. No Yes Yes Yes Yes
F.N. No Yes Yes Yes Yes
G.A. No No Yes No Yes
Centroid No No Yes No No
I.S5.8S. Yes No Yes No No

Figure 5.58

Admissibility table of some clustering strategies
(see text for details of conditions)

Figure 5.58, adapted from Fisher and Van Ness (1971) and
Van Ness (1973), summarises admissibility properties of

five clustering strategies. Such tables may be used as
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follows: - if one wanted to use a clustering procedure

which was peoint proportion admissible and monotone
admissible, one should not use either the Incremental
Sum of Squares or the Group Average procedures. If
restricting attention to the criteria described in
figure 5.58 one would analyse the data either by the

Nearest Neighbour or Furthest Neighbour method, or

preferably both.

The admissiblity approach assumes one has some
information on the form of data to allow one to reduce
the number of clustering criteria which have to be
considered. This information often need only be of a
very vague nature, but sometimes even such limited
information 1is not available and other approaches to

classification are required.

5.12 COMPARATIVE STUDIES

The previous statistical investigations have possibly
over-emphasised the extent to which clustering criteria
impose their own structure on data. As Cormack (1971)
remarks, "if clusters are really distinct, it would be

hoped that any strategy worthy of use would find them".
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The converse to this argument has been suggested by a
number of authors: if the results of several different
classification procedures agree.closely, then one has
more confidence in the reality of any group structure
which is indicated; it is less likely to be purely an
artifact of the classification criteria used. A wide

range of comparitive studies have been carried out.

Various authors have been concerned:

(i) to examine the effects of using different measures
of dissimilarity possibly based on different
standardisations of data, or on different subsets of the

variables;

(ii) to compare the results of applying different
clustering and/or geometrical procedures to the same
data set, or to compare the results suggested by
numerical classification procedures with classifications

obtained by traditional, non-numerical methods.
Typical of these studies are Sokal and Michener (1967),

Moss (1968), and Boyce (1969).

Such comparitive studies can provide useful information

about the properties of different clustering methods and
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measures of dissimilarity in much the same way as the

simulation studies described previously. However, when

the aim is to obtain an assessment of the structure in
the data revealed by different clustering methods, most
measures of resemblance between partitions, or between
dendrograms, do not explicitly specify where the
similarities of the classifications lie; these

similarities have tended to be assessed by eye. More

formal methods of comparison have been proposed by Adams

(1972).

Probably the most fruitful comparative studies to date
have been those which have combined clustering with
geometrical methods of analysis. This 1is undoubtedly
because the relative strengths and weaknesses of the two
approaches are largely complimentary. Thus, geometrical
methods do not force a group structure on the data,
allowing the observer to assess whether the points fall
naturally into distinct clusters. On the other hand,
the assessment by eye of two- or three-dimensional
representations can be subjective, and it is profitable
to examine whether partitioning the data using some
clustering criterion indicates the same groups as appear

to be present in the geometrical representation.
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Many clustering and geometrical classification methods
appear to Dbe complimentary in another way, in that
studies indicate that clustering methods tend to be more
reliable in depicting 1lower level differences between
objects, whereas geometrical representations generally
portray the group relationships more reliably. As will

be illustrated later a combination of the two approaches

can prove helpful in uncovering the structure in

multivariate data.

Classification can be a means of reducing large amounts
of data to manageable summary form. As the volume and
compexity of data increase, the human brain becomes less
able to hold in balance all the different factors which
are relevant to the assessment of the data. MAGIC
performs this balancing act, and hence helps the
designer to gain insights into the structure of his

data.
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CHAPTER ©

EUCLIDEAN CLUSTER ANALYSIS

6.1 NONHIERARCHICAL CLUSTER ANALYSIS

For a data set of m entities the hierarchical methods of
chapter 5 give m nested classifications ranging from m
clusters of one member each to one cluster of m members.
This chapter describes clustering techniques which
produce a single classification of k clusters, where Xk
is either specified a priori or is determined as part of

the clustering method.

The concept in the majority of these methods 1is to
choose some initial partition of the activity data and
then alter cluster membership so as to obtain a Dbetter
partition. The various aléorithms wnich have Dbeen
proposed in the literature differ as to what constitutes
a “better" partition and what methods may be used for
effecting the improvements, but the broad concept for

all methods is very similar to that underlying the
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steepest descent algorithms used for unconstrained
optimisation in nonlinear programming. Such algorithms

begin with an initial point and then generate a sequence
of moves from one point to another, each giving an
improved value of the objective function, until a 1local
optimum is found. In terms of the exploratory data
analysis approach adopted by MAGIC +the techniques may
also Dbe compared to the plotting of scatter diagrams.
The plotting of these diagrams is a traditional approach
to finding patterns in data, but it is essentially a
two-dimensional technique (which may be extended to
three dimensions with some difficulty). As used in
MAGIC nonhierarchical cluster analysis may be regarded
as an exploratory technique for doing in n dimensions
some of the things that scatter diagrams do so well in

two dimensions.

Compared with the hierarchical techniques,
nonhierarchical clustering methods optimise intra-group
homogeneity, as distinct from optimising a hierarchical
route from individual elements to population. The
methods of nonhierarchical cluster analysis possess the
theoretical advantage that they admit the relocation of
elements, which thus allows a poor initial partition to

be corrected at a later stage. All Thierarchical
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strategies suffer from what has become known as the
“migration problem": 1links which were correctly made in
the early stages of the process may later prove
unprofitable 1in so far as they eventually lead to the

possible misclassification cf elements further down the

tree.

A nonhierarchical clustering system will, in principle,

consist of four distinct processes, as follows:
(i) a method of initiating clusters;

(ii) a method of allocating new elements toO existing

clusters, and/or of fusing existing clusters;

(iii) a method of determining when further allocation
may be regarded as unprofitable, soO that certain

elements remain unallocated as single-element clusters;

(iv) a method of reallocating some Or all of the
elements to existing clusters when the main
classificatory process is completed, thus redressing any
misclassification produced Dby the "migration" process

referred to above.
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All systems necessarily involve (i) and (ii): but in anv
particular system either (iii) or (iv), or both, may be
lacking. The differences between methods lie primarily
in the method of initiation employed, and the criteria
used for reallocation. The following general discussion

of specific strategies 1is thus organised from the

standpoint of (i) and (iv) above.

6.2 INITIAL CONFIGURATIONS

All of the methods discussed here begin with an initial
partition of the elements into groups, or with a set of
seed points around which clusters may be formed. The
majority of techniques begin by establishing a set of k
seed points in the p-dimensicnal space, which act as
initial estimates of cluster centres around which the
set of m elements can be grouped. The proﬁlem of
deciding an appropriate value of k for any set of data
is discussed in section 6.5. The following methods are
representative examples of how such seed points may Dbe

generated.

(i) the simplest procedure is to choose the first k

elements in the data set (MacQueen 1967)
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(ii) a wariation is to subjectively choose any k

elements from the data set.

(iii) a further variation is to label the data elements

from 1 to m and choose those labelled m/k, 2m/k,

e o s,

(k-1)m/k, and m.

(iv) 1abel the data elements from 1 to m and choose

those corresponding to k different random numbers in the

range 1 to m (McRae 1971).

(v) take any partition of the data elements into k
mutually exclusive groups and compute the group
ventroids as seed points (Forgey 1965). Methods of

generating such partitions are discussed in section 6.3.

(vi) Beale (1969) sets wup «cluster centres regularly
spaced at intervals of one standard deviation on each
variable. MAGIC adopts a variation of this method by
randomly choosing cluster centres within the range
between the maximum and minimum observed values on each
variable. TFull details of the complete clustering

algorithm used in MAGIC are given in section 6.6.
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This list of methods is not exhaustive, but does provide
the basis to enable a number of observations to be made.
The methods in which every seed point is itself a data

unit ensure that each cluster will have at least one

member - other techniques need to include checks for
"empty" clusters. Randomness is another important
§0pic: all the methods described have elements of
randomness, either through an implicit assumption of

random ordering of data elements within the data set, or
through explicit random selection. in terms of
exploratory data analysis it is not randomness per se
that 1is of interest but indifference; that is, the goal
is an initial configqguration free of overt bias.
Ultimately indifference is probably best effected
through random selection, but the selection of the set
of possibilities from which the random selections are
made can also affect the problem. In MAGIC the method
adopted makes a deliberate attempt to span the data set
with seed points as such methods are 1less prone to
distorted or badly balanced configurations than methods
involving totally random selection. The adopted method
is firther refined by the application of a "pseudo
F-test", which is discussed in detail in sections 6.5

and 6.6.
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6.3 INITIAL PARTITIONS

In some clustering methods the emphasis is 1laid on
generating an initial partition of the data elements
into k mutually exclusive clusters rather than finding a
set of seed points, although in many cases a set of sced
points 1is wused in that process. Some methods of
generating such partitions are considered here together
with ways of allocating elements to clusters given an

initial set of seed points.

(i) For a given set of seed points, assign each element
to the «cluster built around the nearest seed point
(Forgey 1965). The seed points remain stationary
throughout the assignment of the full data set;
consequently the resulting set of clusters is
independent of the sequence in which the elements are

assigned.

(ii) Given a set of seed points, let each seed point
iAitially be a cluster of one member; then assign
elements one at a time to the cluster with the nearest
centroid: after an element 1is assigned to a cluster
update the centroid so that it is the true mean vector
for all the data elements currently in that cluster

(MacQueen 1967).
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(iii) A hierarchical clustering method may be used to
obtain an initial partition. Wolfe (1970) uses the
Incremental Sum of Squares method and Lance and Williams
(1967) suggest using hierarchical methods on a subset of

the data to obtain the nuclei for assignment of the

remaining clusters.

(iv) Random partitions may be devised - for example,
assign a data element to one of k clusters by generating
a random number between one and k. Random allocation to
groups 1s not a particularly useful method as the
resulting groups have no properties of internal

homogeneity and, indeed, are not clusters at all.

(v) A further option may be to allow the program user to
define an initial partition. Friedman and Rubin (1967)
provide such an option, but although this may be of
interest to the specialist user it could equally confuse

the naive or occasional user.

The distance measure used in all cases is the Euclidean

metric.
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6.4 RELOCATION TECHNIQUES

Once an initial classification has been found a search
is made for elements which may be reallocated to another
cluster, in an attempt to optimise some clustering
criterion. In general relocation proceeds by
considering each element in turn for reassignment to
another cluster, reassignment taking place if it causes
an increase (or decrease in the case of minimisation) in
the criterion value. The procedure continues until no
further move of a single element causes any improvement.
It is possible to reach local optima, and, in general
there is no way of knowing if absolute maxima or minima

have been achieved. A number of clustering criteria

have been developed, based around the matrix equation
T =B + W

The scatter of two variables is the inner product of
their centred score ﬁectors. The total scatter matrix T
is a square array in which the typical entry tjj; is the
scatter of variables i and j computed over all elements
in the data set. In a partition of the data set into Xk
clusters, the within group scatter matrix for cluster kK,

W has the typical entry wijk. which is the scatter of

kl

variables i and J computed over all data elements in

cluster k; the within group cscatter matrix for the
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partition is

W= S
T o K

The between group scatter matrix B has as its typical

element bjj=2mX;cX;k where X;x is the mean (centred
about the grand mean in the data set) of +the ith
variable in the kth cluster, and m, is the number of
data elements in the kth cluster. It can be shown that
the three matrices satisfy the relation T = B + W, and a
particularly important element in the definition of the
various clustering criteria is the determinantal
equation |B - AW| = 0; the A solutions to this equation

being the eigenvectors of the matrix W'B.

Various authors (Friedman and Rubin 1967, MacRae 1971,
Scott and Symons 1971, Marriott 1971) have proposed
criteria for evaluating whether movements of individual
data elements result in an overall improvement of a
partition. Four principal criteria have emerged from

these studies:

(i) Minimise trace W. The trace of a matrix is the sum
of its diagonal elements. It may be shown that this
criterion is the same as minimising the total within

group sum of squares of the partition, since the
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minimisation of tr(W) is equivalent to the maximisation

of tr(B), as the fundamental matrix equation leads to
trace (T) = trace (B) + trace (W)
(ii) Minimise the ratio of the determinants |wl/|T}.

This criterion is widely XkXnown as Wilks' 1lambda

statistic (Wilks 1938). Since the matrix T is the same

for all partitions, this criterion is equivalent to
minimisig |W]. Another equivalent criterion is to
maximise |T|/|W| which may be shown to be equivalent to

n
maximising lI+W”Bi or maximising JT(1+%4).

(iii) Maximise the 1largest eigenvalue of W™B. This

criterion is known as the largest root criterion.

(iv) Maximise the trace of W'B. This criterion is known
as Hotelling's trace criterion and is equivalent to

[a)
maximising ZX¢.
t=|

The technigue adopted in MAGIC follows the first method
as there are at least two serious problems associated
with criteria (ii), (iii) and (iv). The first problem
is that they involve the computation of eigenvalues at

each stage which overshadows the rest of the method 1in
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terms of computational effort, and secondly, there are

no clear statistical advantages in their use anyway.

6.5 STOPPING RULES

The problem of deciding the number of clusters present

in the data has already been mentioned. In hierarchical
techniques no «clear indicator exists, although the
examination of various dendrograms may provide an

accurate enough empirical technique in our application.
With the nonhierarchical methods several attempts to
devise reasonable indicators have been made. For

example, Beale (1969) gives an F- statistic

F(c,,c,) = R(c,)-R(c,) (N—c, c, \2/n
R(c,) N—cz>(c‘> - }

based on p(c,-c,) and p(N-c,) degrees of freedon. In
this formula R = (N-c)s¢ where sZ is the mean square
deviation from cluster centres 1in the sample. A

significant result indicates that a subdivision into c,
clusters is significantly better than a subdivision into
some smaller number of «clusters c;. This measure is

used in MAGIC and is discussed further in section 6.6.

Marriot (1971) has investigated the properties of the
IWw| criterion, as proposed by Friedman and Rubin (1967).

He proposes the use of g2|W|, where g is the number of
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groups, as the indicator of group structure, taking as

the correct number of groups the value of g for which

g?2|W| is a minimum.

The Wilks lambda criterion (above) forms a liklihood
ratio test. To test the hypothesis of say C, groups
against that of c, groups it is possible to use the
statistic -2logA where A is the ratio of likelihoods,
A= LCz/Lcn’ which Wilks (1938) showed, under certain
constraints, is asymptotically distributed as chi-square
with degrees of freedom equal to the difference in +the

number of parameters of the two hypotheses.

6.6 THE STRATEGY ADOPTED IN MAGIC

For any given number of clusters MAGIC generates
coordinates for the centre of each cluster and assigns
each element to one (and only one) cluster, attempting
to minimise the sum of squares of the deviations of the
elements from their respective cluster centres.
Statistically this is equivalent to maximum likelihood
if all clusters are assumed to be spherically normally
distributed with a common variance. The distance
measure used is the Euclidean metric, all observations

being represented as points in n-dimensional space.
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Given the grouping of observations into clusters, the

centres should ideally be chosen at the means of the
observations in each cluster. It is, however, difficult
to determine the best grouping. What the program does
is find a grouping tha£ cannot be improved by moving any

single observation into another cluster, even if the

cluster centres are repositioned after the

re-assignment.

Thus, if an observation in cluster j is at a distance
d j from its cluster centre, and at a distance dy, from
the centre of cluster k, then it is an improvement of
the grouping to reassign it to cluster k if di<(dj1.

But it may also be reassigned if

2 2
nkdk njdj
— <
nk+l n_-,-—l

where nj and n, are the current numbers of observations
in clusters j and k. This criterion allows an
improvement in many situations where the simpler

criterion would not.

Having found a solution with one number of clusters,
MAGIC will 1look for a solution with one fewer clusters

by finding the pair that can be amalgamated with the
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smallest 1increase in the sum of squares of deviations.

That is to say, it minimises

njnkdjs /(nj+n )

k
where djk denotes the distance between the centres of
clusters j and k whose amalgamation is being considered.
This is used as a first trial solution for the new

number of clusters; improved solutions are then found by

reassigning individual points to other clusters as

before.

The program may find local optimum clusterings rather
than global optima, particularly as it adopts a form of
random initial grouping. The amalgamation process
overcomes many of the objections associated with random
starting solutions and, by starting the process with
three or more clusters more than are required the
solutions for all relevant numbers of clusters should be

good ones.

Just what the "relevant number of clusters” 1is 1is a
difficult problem, already mentioned in passing. Since
the clusters are essentially descriptive statistics, and
not based on any specific distributional form for the

observations, the question cannot be answered precisely.
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It 1s, however, possible to get some guidance as to

whether any given set of data can reasonably be

interpreted as c¢ clusters.

Suppose we have N observations in n dimensions, and let
R(c) denote the residual sum of squares when the
observations are divided into ¢ clusters. One might
then try an F-test to decide whether a subdivision into
c, clusters was significantly better than a subdivision
into ¢, «clusters, where c¢,<c,, taking R(c,)-R(c,) as
having n(c;-c¢,) degrees of freedom. This test would be
appropriate if, for any given number of clusters, the
observations had been assigned to clusters a priori.
But the fact that the points can be assigned so as to
minimise R(c) means that this test always suggests that
the larger number of clusters is very significantly

better.

Nevertheless, this approach may Dbe modified to give
intuitively sensible results, by using a large sample
correction factor for the expected reduction of R(c) as
¢ increases in the absence of any definite clustering.
Returning to the concept of the observaticns as points

in n-dimensional space we may consider the observations
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as a sample from a population covering a volume V in
that space. The clusters will then divide this volume
into ¢ regions of approximately similar sizes such that
all observations in a region form a cluster. So, if o

denotes the mean square distance from any point to the

centre of its region, the value of o.* will decrease as c

increases according to
co” =K,
where ko, is some number that depends on V (and possibly
n) but not on c. This implies that o=k.”", where k=k2
i.e. another constraint independent of c. Hence,
E(R(c)) = k(N-c)d ¥n
The term (N-c) is of little practical importance, being
almost independent of c, but is logical as a "degrees of

freedom" effect, since the cluster centres within each

region are chosen as the sample means. Hence
R(c,;)-R(c2) N-c, | /c2\%A
E . =V
R(Cz) N_Cz C‘

enabling us to compute the statistic quoted above in

section 6.5, i.e.

F(c,,c,) = R(c,)-R(cy) (N-—c,) c, \ %A l
R(c,) 1 N—Cl c‘) -

and treat it as as F-ratic with n(c,-c;) and n(N-c;)

degrees of freedom. The statistic is computed for all

and if, for a given c,, it 1is significant

C,<C,&LC max’

for c,, we may say that the representation in terms of
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¢, 1is not entirely adequate. In practice the

significance 1level does not usually depend much on c,

for c,) ¢, +2.

6.7 THE IMPLEMENTATION OF THE ALGORITHM

(1) Allocate the points Xjj to the cluster having the
nearest centre. If this is the initial allocation the
centres are chosen randomly between the maximum and
minimum observed values on each variable. Distances are

P
calculated by dL3=£Z(qu—xjk)l/p.
’ =

(2) After assignment redefine the cluster centres as the
centroids of the cluslters by

Y = 1/nk§:x;j (3=1,2,..p; k=1,2,..,Cqax)
in which n, represents the number of elements assigned
to cluster Xk, and Yi; are the coordinates of the kth

cluster centre on the jth variable (axis).

(3) At this stage the elements are moved in turn to
other clusters to see if the total squared distance from
the points to the cluster centres is reduced, when, at
the same time, the cluster centres are themselves moved
to take account of the relocation of the points. That

is point i is moved from cluster j to cluster k if
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2

N3 (Xim =Y o) nj 2 (Xim=yjm)?

;-1

If this condition is satisfied the move is made
permanent and the wvalues of Yk recomputed as in step
(2). When no further moves produce any improvement that
configuration provides the solution for Crax Clusters.

X

(4) The number of clusters, ¢, is reduced by one unless
C=C,.in+ 1in which case this stage is omitted. The pair
of clusters to be merged is found by 1locating that
combination of two clusters which minimises the increase
in the sguared deviations of the observations from their

cluster centres, i.e.

ninj Ty -y;e)  (i=l,c-1; j=i+l,c)

n-‘+nJ-
This value is calculated for all (i,j) and the minimum
chosen. If the minimum is found when i = ml and j = m2

then clusters ml and m2 are amalgamated and the centroid

of the resulting cluster calculated as in step (2).

(5) At this stage all clusterings have been performed

for c Lc c and associated residual sums of squares

min N\ M max
calculated for each ¢ in the range, by
RSS(c) = 82 /p(n-c)

where S. is the root mean square deviation of points

from the cluster centre, 1i.e.
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{
SC = (Tl—C) de'k )./2

where ¢ is the current number of clusters and dﬁ< is the

squared distance of the ith point from the centre of

cluster k, to which it had been assigned, i.e.

2 2 .
dix = 2(Xij ~Yk;j) (i=1,n,_; k=1,c)
These values may then be used to compute +the F-ratio

test

F(nl,n2) = RSS(n2) - RSS(nl) [ n-n2 (nl)%p
RSS(nl) n-nl \n2; |

which has degrees of freedom of p(nl-n2) and p(n-nl).

6.8 EXAMPLE OF EUCLIDEAN CLUSTERING

The Euclidean clustering is illustrated by the output
from MAGIC using the Sneath and Sokal data set, as in
the hierarchical clustering. Ten clusters were
requested initially and figures 6.1 to 6.9 show the

resulting clustering into ten groups down to two groups.
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SHEATH & SOXAL DRTA
RELATIGNSHIP WITH18 GROUPS
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Figure 6.1

Euclidean clustering - 10 groups
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SHEATH & SOKAL DATA
RELATIONSHIP WITH ¢ GROUPS

CLUSTERS [ERGED AT THIS ITERATION: 1 AND S
CLUSTER MEMEERS
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Figure 6.2

Fuclidean clustering - 9 groups
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SNERTH & SOKAL DATA
RELATIONSHIP HITH @ GROUPS

CLUSTERS MERGED AT THIS ITERATION: 5 AND 9
CLUSTER MEMEERS
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Figure 6.3

Euclidean clustering - 8 groupg
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SNEATH & SOKAL DATA
RELATIONSHIP WITH 7 GROUPS

CLUSTERS MERGED AT THIS ITERATION: 3 fMD 8
CLUSTER ﬁ%ﬁgiﬂs
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Figure 6.4

Euclidean clustering - 7 groups
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SHEATH & SOKAlL DATA
RELATIONSHIP WITH tESFOUPS

CLUSTERS MERGED AT THIS ITERATION: 1 AND 6 (::)
CLUSTER MEMBERS
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Figure 6.5

Fuclidean clustering = 6 groups
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SHEATH & SOXKAL DATA
RELQTIOH%E?S WITH 5 GROUPS

CLUSTERS MERGED AT THIS ITERATION: 2 AND 3
CLUSTER MCIMGERS
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Figure 6.6

Euclidean clustering - 5 groups
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SNEATH & SOKARL DATA

RELATIONSHIP WITH 4 GRDU?:
CLUSTERS MERGED AT THIS ITERARTIOH: 1 AaND 3

CLUSTER FEIMZERS
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Figure 6.7

Fuclidean clustering - 4 groups
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SHEATH & SOKAL DATA
KELATIGNSHIP WITH 3 GROUPS

CLUSTERS MERGED AT THIS ITERATION: 1 AND 3
CLUSTER MEMEERS

1 1 2 3 4 5 6 7 8
2 12 13 14 15 16
3 216 11
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Figure 6.8

Fuclidean clustering - 3 groups
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SHEATH & SOKAL DATA
RELATIONSHIP WITH 2 GROUPS

CLUSTERS MERGED AT THIS ITERATION: 2 AND 3
CLUSTER MEMEERS

1 1 2 3 4 5 6 7 8
2 9 12 11 12 13 14 15 16

Figure 6.9

Euclidean clustering - 2 groups
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CHAPTER 7

ORDINATION TECHNIQUES

7.1 INTRODUCTION

The clustering methods described in the previous three
chapters have concentrated on investigating the

relationships within a set of objects by imposirng some

structure on the data - the dendrogram tree or a set of
partitions - thus implying that the activities on which
observaticns were recorded fall into one or more

classes, which may be arranged either hierarchically or
in the form of nonoverlapping clusters. This may be
misleading for no such structure may actually exist 1in
the data. It 1is therefore useful to make available
methods of analysis which do not present their results
in such a <c¢lear cut way. Ordination methods do not
require such assumptions, but instead attempt to
represent the distance (dissimilarity) relationships
among the activities in a space of reduced

dimensionality. Any groupings present in the data

should then be apparent from visual examination of
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scatter plots, provided that the distortion introduced
by the low dimensional representation is small and that
the number of activities is not excessive. As Cormack
(1971 p.340) remarks: "When the data have not been

forced into clusters, the observer can assess better

whether clusters exist".

This chapter describes several methods of analysing a
set of objects, in which the basic aim is to represent
each object by a point in some Euclidean space so that
thg objects which are similar to one another are
represented by points which are close together. The
configuration of ‘points is then investigated in an
attempt to detect any underlying structure in the data.
As the interpretation of high dimensional data is
extremely difficult two or three dimensional
representations are derived in such a way as to retain
as much of the high dimensional information as possible.
There are various ways of measuring information loss,
some of which are described 1later, but it should be
noted that these measures are not used in any formal
statistical manner as it is not appropriate to regard
the data as coming from an underlying population with

certain associated distributional properties.
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As is the case with clustering methods several different
techniques have been developed to achieve the same end
result of a configuration of points representing
activities. The techniques that transform the high
dimensional data into a two or three dimensional space

are generally known as mapping techniques, and fall into

two distinct types: iterative and noniterative. The
noniterative mapping is a unique representation
calculated by a precise mathematical formula. The
iterative techniques utilise search procedures to

determine the low dimensional representation through a

series of transformations.

This chapter discusses a number of technigues, examining
the advantages and disadvantages of each method. The
general problems involved in the representation and
interpretation of data in two dimensional space are also
discussed. Two particular ordination techniqués are
incorporated in MAGIC and are described in detail in

chapters 8 and 9.
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7.2 SIMPLE CRDINATICN

This method of reducing the dimensionality of data is
perhaps the simplest possible as it only involves
arithmetic operations on the data, and, as it introduces
a number of basic concepts is described in some detail
here. The basic idea is as follows. From the original
high dJdimensional space, chcose the two points that are
furthest apart. Let those two points be denoted by X,
and Xg. A straight line passing through the two points
is chosen as the first ordination axis. To determine
the second ordination axis, a straight line
perpendicular to the first and passing throcugh a third
point, denoted by X., that is furthest removed from the
first axis, is constructed. When the projections of the
points in the original space are plotted on these two
new axes, the resulting two dimensional display
represents a projection of the high dimensional data
into a space defined by the two ordination axes. The
projection of the points into a k-space (k »2) can be

similarly accomplished utilising k new ordination axes.
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7.2.1 Efficiency Of The Method

The reduction of dimensionality from the original space
to a 2-space 1is achieved at the expense of distance
relationships between the points. Since the distance
relationship cannot be exactly preserved, it 1is of
interest to determine the amount of distortion resulting
from this technique. The distortion due to projecting
the points onto the two ordination axes is maximum when
the first axis coincides with the direction of maximum
variation between the points and the second axis 1is so
positioned that it accounts for a maximum portion of the

variation of the points.

To determine the efficiency of the imple ordination
method it is ©possible to examine how each of the two
ordination axes accounts for the interpoint distances.
First, if h orthogonal axes Wwere constructed, the

distance relationship is preserved exactly. That is,

/\

d;j = d‘J
where

A

dij; =[x - |
and

aj; = |vi - ¥j

l

Bty - v 0"
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However only the first +two ordination axes are
constructed giving
N
ij ¥ dij
where

_ 2 21 Y
djj = [?.:,(Yik - Yjk) ] *

The efficiency of the kth axis (k = 1,2) in accounting

for the original interpoint distances can be defined by

the ratio

= d.. .
r., = 1<j 7ij,k 1=1,2, and k = 1,2
2 /\2
i<j Tij
where dibk = Yik T Yk which is the difference between

the projection of X; and that of Xj onto the kth axis.

The sum of the two ratios

expresses the overall efficiency of the two ordination

axes in accounting for the interpoint distances.

Another method for determining the efficiency of the
ordination axes is to define an error function E. This
function should measure how well the N vectors 1in the
2-space fit with the N vectors in the h-space on the

basis of the interpoint distances. One such error
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function is defined by
A
E = f(d,‘j - dij)
2~ 2
L2 Gy - dig)
~— A 1<} A
24 ; dij
1<y
A smaller value of E means a good fit and the

corresponding axes may be considered to be efficient.
Other error functions of this type may be similarly
defined. The measure above 1is the one used in the

Nonlinear Mapping described in chapter 8.

7.3 PRINCIPAL COMPONENTS

There 1is an obvious deficiency with the simple
ordination method. The mapping of the N points from the
h-space into the 2-space is determined by only three
reference points. Clearly, if some structural
relationship is to be preserved, the entire collection
of the N points, or a characteristic summary of these
points, should be wused. The method of principal

components is one solution to this problem.

Let a typical point X; in the h-space be represented by

Xi: (xi" Xizl""’ Xih)

Given a collection of N such points 1in the h-space,
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these N points can be represented by an h x N matrix X.

X X X
TR X NI
X2 X2 © XN2
X =
x x e @ o X
 Tth T 2h Nh |

Each column of the matrix represents a data point in the

h-space. Let the sample mean of the N points be X where

- N
X = 1/NZX;

is]

with the kth component in X calculated by

X 1/N§.
Xk— Jnl Xjk
Each point X;measured as a deviation from the sample

mean is denoted by

i 0

it T X

X2 — X2
X; - X =

| Xin T Xk

The N points as measured from X can be represented by a

matrix X

Xy X Xneo T %
X, =
T X T Fn
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The total scatter matrix (with respect to the centroid)

may be defined as

S = cht(:: = [S;J]

The element Sij in the matrix S is calculated by

N
sij = gl(xki - Xi)(xkj - xJ-)
N
= g_lxk'.xkj - N-}_{"ij i,j = l'oo-, h

To map a point in the h-space to a point in the d-space
(=2 for a two-dimensional display), an origin and d
orthogonal axes passing through the origin must be
selected. Assuming d axes are selected such that the
sum of squares of the projections from the points to the
axes 1s a minimum, it can Dbe shown the d axes pass

through the centre of gravity of the N points.

Furthermore, the sum of squares of the projections onto
the d axes defined by d orthogonal vectors Q,,..,Q4 is

h d 4

Zs - 20 SQ;

=t M [

n
-

Minimising this expression is equivalent to maximising
> 0;'sq; This maximum 1is obtained if the d axes are

chosen to satisfy

0 =P i=1,...,4

where P;, 1 =1, 2, ..., d, are the first d eigenvectors

of the scatter matrix S.
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The actual representation of the N points in the

d-dimensional space, defined by the d eigenvectors P,
-+ Pgq, 1is accomplished by computing the d coordinates

for each point X; and forming the vector Y; .

Yi = (P\X{, PyXq, ... ,BaX;) i =1, .., N
The N points in the d-space can be represented by a Y

matrix.

r -
P, X, PXz ... P/Xy
P,X, P,X, ... P,Xn
Y =
| Pg Xy PgXy .. P X |

To plot the N points in a two-dimensional space with the

centre of gravity as the origin, the first two
coordinates of N points are computed. This corresponds
to the first two rows of the Y matrix. Transferring the

origin to the centre of gravity

P X

l

P, X
the two coordinates of the N points in the 2-space are

obtained

P' (Xl —5() . e P| (XN—X)

P)_(Xl—i) e PZ(XN—X)
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7.3.1 A Brief Critique Of Principal Components

Although an improvement on simple ordination insofar as

all the data set 1is considered Principal Components

Analysis is still not without its problems. Scaling,
for example, affects the results, and, unless all the
variates in X are measured in the same units, different
results will be obtained for a change in scale.

Principal Components Analysis is not alone in this and
the effect of scale is discussed 1in section 7.7.2,
however it 1is worth noting now that the distance
measures used in 7.2.1 and 7.3 have nonsensical physical
dimensions when the variates are measured in different
scales. To evade this difficulty it is common practice
to normalise variates by dividing each by 1its sample
standard error. Bartlett (1951) discusses the effect of
normalisation. Other normalisers could equally well Dbe
used: Jolicoeur (1963), for instance, has shown that a
simple logarithmic transformation of all the variates
will also eliminate the effects of scaling. None of
these techniques, however, are entirely satisfactory
when we Xnow that the majority of our data is measured
on different scales. The solution adopted in MAGIC
makes use of Gower's General Coefficient of Similarity,
described in 4.5.3, and an extension of Principal

Components Analysis, known as Principal Coordinates
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Analysis, especially developed to operate on mixed data

sets.

7.3.2 Principal Coordinates Analysis

This technique was developed by Gower (1966). The
starting point is the matrix D of dissimilarity
coefficients (such as Euclidean distances) which is

transformed into the matrix E by the relatiénship

eiJ- = -—O.Sd?"j
Alternatively a matrix of similarity coefficients E can
be computed. | In MAGIC Gower's general similarity
coefficient is used. This has the advantages that (i)
it can handle quantitative, binary or qualitative
variables, and (ii) the resulting matrix E 1is always
symmetrical and positive semi-definite, that is, the n
objects can Dbe represented as a set of points 1in
Euclidean space {(Sneath and Sokal 1973, p. 136). The
coefficients e;j are computed seperately for the three
types of variable and afe then weighted Dby the

reciprocal of the number of variables involved and the

resulting values summed. That is,

AN
eij = eQU /p® + eai_j /p® + eM(j/p

where eQU, eBU and eMU are the values of the coefficient

for quantitative, binary and multistate variables
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respectively and p®, p®,and p™ are the numbers of such

variables.

E is then modified so that the mean of each row and
column is removed, since the mean is unimportant in the
determination of the distance between any two points.

The modified matrix F = (f;;) is obtained by

£i; = ejj —€i -ej + e
where e, éj and € are the means bfvthé ith column and
the 3Jjth ‘row, and the overall mean, respectively. A
specified number of the largest eigenvalues of F, and
the corresponding eigenvectors are then determined. The

magnitude of the kth eigenvalue gives the relative
importance of the kth dimension in the determination of
the wvariation in interpoint distances. Published
results (e g. Blackith and Reyment, 1971, p. 167}

indicate that much of this variation is contained in the

first two or three dimensions. The eigenvectors give
the coordinates of the n points. These coordinates may
then be plotted. A more extended discussion of this

method is contained in chapter 9.
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7.4 MULTIDIMENSIONAL SCALING

An alternative approach to ordination argues that
because of the problems in deriving dissimilarities,
their precise values are unreliable, and may contain
little wuseful information beyond their rank ordering.
This is the only information about the dissimilarities
used in the method of nonmmetric multidimensional scaling
developed by Shepard (1962a,b) and Kruskal (1964a,b).
As much use 1is made of this method in quantitative
psychology to reduce the dimensionality of problems and
a large literature has developed it is worth lookirng at
this often ill-understood and misapplied technique 1in
some detail. A Dbrief history of the early work in

multidimensional scaling is given by Shepard (1972).

The technique, in essence, follows the basic ordination
method of 7.2 with the use of an error function to
assess goodness of fit. There are a number of
alternative formulations, but the fellowing derivation

is based on Lingoes and Roskam (1973).
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7.4.1 The Underlying Assumptions

Shepard (1962a,b) argued that in obtéining a geometrical

representation, one wanted to ensure that the interpoint

distances (3;j) were monotonically related to the given

dissimilarities (a;)

-e

the relationship might not be
exactly monotone for distances based on a
low-dimensional configuration of points, but one wanted

to ensure that, on the whole, the larger the

dissimilarity, the larger the corresponding distance.

This monotonic model means that it is not assumed that
the set of dissimilarities contains any metric
information; all that is used is their rank ordering.
The method has thus been called a nonmetric
multidimensional scaling method, but as the result is a
geometrical configuratioh of points - which certainly
contains metric information - it may be more

appropriately described as an ordinal scaling method.

Shepard (1962a,b) presented a heuristic algorithm for
seeking a configuration approximately satisfying the
monotconicity requirement; his approach did not involve

an explicit minimisation of some function measuring the
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departure from perfect monotonicity between
dissimilarities and distances. These ideas were

formalised by Kruskal (1964a,b), who proposed the method
of least squares monotcne regression. This is a general
method of comparing two seguences of real numbers, and

it will Dbe convenient to introduce it in a general

context before discussing its application to comparing

sets of dissimilarities and distances.

Assume that a, b and c¢ are three sequences, each
containing m real numbers, (ai,....,am), (by,+c..,bm)
and (c¢,,....,Ccpn), respectively. In the following
description, a is a sequence in which only the ordering
is of interest: a and b will later be identified with
(dij) and (8;j), respectively; ¢ is a sequence which

will be used in the comparison of a and b.

Two possible definitions of monotonicity are:
(i) ¢ is primarily monotone increasing (PMI) over a if

a, <a, implies that c <c (1€£%k,1<m)
(ii) ¢ is secondarily monotone increasing (SMI) over a

if
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ak\<aL implies that Ck\< CL (1€k,1<m)
These two definitions of monotonicity differ only in
their treatment of ties in the sequence a. In the

secondary definition, these ties must be preserved in c:

if a, equals a,, then c, must equal c,. In the primary
definition of monotonicity, ties in a may be Dbroken in

either direction in c.

Having defined monotonicity, ¢ 1s required to be

monotone (either PMI or SMI) over a and, subject to this

constraint, to resemble b as closely as possible. An
example may clarify this idea. Assume that a =
(1,2,4,4,6,8,9,10,11,15) and b =
(1,4,5,6,7,8,12,13,13,14). The points  {{ay.by).

k=1,....,10} are plotted as crosses in figure 7.1.
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Figure 7.1

A plot of the artificial sequence

(ak,bk),k=l,...,10

described in the text, and the secondary least squares

monotone regression c¢ of b on a:

the p01qts (ak’bk)

and (ak,ck) are represented by crosses and open circles
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If the monotonicity requirement is PMI, the equality
between a, and 84 can be broken, and by choosing Cy =
bi(k=1,....10) perfect resemblance between c and b, with
c satisfying the primary monotonicity requirement is
obtained. If the monotonicity requirement is SMI it is
necessary for C3=C,4, and - because bj does not equal by,
- a perfect resemblance between ¢ and b is not possible.
To determine the optimal shared value for c3 and cg4 a
definition of what is meant by the requirement that c
should resemble b "as closely as possible" 1is necessary.
To measure the departure from a perfect fit Kruskal
(1964a) suggested that a sum of squares criterion should

be used:

m
* —
s¥(c) = Z(by - c)
This criterion will be minimised when c, and c, are both
chosen to be 5.5, the mean of b, and b,: in the general
solution, c will be split up into a set of Dblocks
containing elements with consecutive indices, e.g.
(cr*l,cr*z,....,cs), such that each element in the block
equals the mean of the corresponding set of values in b
- in this case

S

Ebk/(s - r)

K=r4t

and such that the common value increases from block to

block.
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For given sequences a and b, the sequence c¢ which
reduces S*¥(c) to its minimum value (S¥, say) subject to
being PMI (SMI) over a is called the primary (secondary)
least squares monotone regression of b on a; S* is
called the primary (secondary) raw stress. The
secondary least squares monotone regression c of b on a
for the artificial example is shown by the set of open
circles in figure 7.1. The form of the regression
"function" in between successive circles is only
required to Dbe monotone increasing; for illustrative

purposes, straight line sections have been drawn in

figure 7.1.

The description thus far has been in terms of computing

a pair of sequences, a and b, and the least squares
monotone regression method may be regarded as an
alternative +to other regression methods. However, the

theory may also Dbe applied +to comparing a set of
dissimilarities (d;j) and a set of distances (8;j).
Thus, the m(=10) elements of a could be the n(n-1)/2 (=
10 for n = 5) pairwise dissimilarities for a set of five
objects, and the elements of b could be the interpoint

distances for five points representing the same five

objects.
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This provides a method of measuring, in terms of raw
stress S*, the resemblance between given sets of

dissimilarities (dij) and distances (3ij)- The value of

s® is not invariant under uniform dilation of the
geometrical configuration; this undesirable property is
removed by dividing by a normalising factor, T* = 4.2

)
Then, the normalised stress is defined by

stress, s = (s%/1%=[5(@;;- c;5)]"

$a
thus ensuring that § is bounded by 0 and 1. In this
expression, (C;J) is the (primary/secondary) least
squares monotone regression of (6}j) on (dj;), i.e. the

set of values- which minimises S*(c) subject to being
(primarily/secondarily) monctone increasing over (dij):
the summation being taken over all (or some) of the
pairs of values (i,j). It is possible to formalise this

description into a general model.

7.4.2 A General Model
The following terms and matrices are used:

(1) P = a r-element array or vector of arbitrary indices
of similarity or dissimilarity between all pairs of n
objects or variables, having general element Pij. T =

0.5n(n-1) and the r pairs of subscipts are generated by
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taking for each first subscript i a second subscript j =
i+l, i+2,....,n(i =1,2,....,n-1). Thus the elements of
a n-square matrix of rélations on pairs of objects
(where p;j=pj;) are systematically ordered in an array.

Both the diagonal of this matrix and one half of the

off-diagonal elements are ignored.

(2) A= a r-element vector of real numbers with elements
6u== f(pij)' such that whenever Pij» Pkt (for similarity
data) or Pij < P, (for dissimilarities) then either:
(a) dﬁj'( Sy (semi-strong monotonicity when some P are
tied and strong monotonicity when there are no ties in
P) or (b) 5@j-$ &, (weak monotonicity for no ties in P
and semi-weak monotonicity when ties exist in P), for
all i,j,k, and 1, where i # jand k # 1, i.e. & =5 P
monotonically. The A vector represents a monotonic
transformation of the P vector having certain
statistical properties in addition to the mathematical
ones defined above, whose function is to weight the
jterations for moving the configuration towards its goal
and to form the Dbasis for evaluating progress at any

given iteration (see (6) below) .

(3) X = a nxm matrix of rectangular coordinates (the

configuration), where m is the number of dimensions.
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(4) D = a r-element vector of distances calculated from

X among the n points embedded in a Euclidean space

according to the standard distance formula:

(5) aij = (Etxia - xja)l)yz

Now, given P, some initial configuration X, a fixed m,
and the distances calculated from (5) above, the problem
of nonmetric multidimensional scaling can be formulated
in terms of the minimisation of a function of two sets
of unknowns, namely D and A. To obtain the D as close
as possible to the A (possibly with certain restrictions
on the A vis-a-vis the D) one obvious formulation is in
the form of a normalised least-squares function, in this

context termed the loss function. Its value is denoted

by L. The loss function is defined by:

(6) L = (2ay; - 8y )1/§Td-,;)'/7~

This function is formally equivalent to Kruskal's
(1964a) stress, but (6) does not assume any particular
definition of the A apart from (2). By its construction
(6) is also similar to a function defined by Guttman

(1968).
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7.4.3 Nonlinear Mapping

Nonlinear mapping, although developed independently by
Sammon (1969), is similar both in concept and execution
to multidimensional scaling methods in that n points in
a h-dimensional space are projected onto a d-dimensional
subspace (d<h) with a minimum of distortion. Sammon's
computational technique is somewhat simpler than that of
Kruskal (1964b). The output consists of the values of a
goodness of fit function, termed mapping error, and a
two or three dimensional representation of interpoint
relationships. Nonlinear mapping does not attempt to
ensure monotonicity between observed dissimilarities and
calculated distances; vrather, the goodness of fit
function measures the amount of distortion of interpoint

distances introduced by mapping onto a d- (as opposed to

a h-) dimensional space. The function minimised is:
N A a2
1 2 (di; - dij)
E = I t<J —
.E%dij d,J

where 8;) is an observed dissimilarity and djj a
distance measured in a d-dimensional space. The initial
d-space representation of the points, Y, is chosen

randomly.
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Given the matrix X, from which the interpoint distances
~ ~
D (=d;j) are computed, and D (=dij), the matrix of

dissimilarities, the method of steepest descent is used

to locate a minimum of E, by computing the d-space

coordinates Y at iteration (m+l) from:

Y pq (mtl) = Yem{m) - MF. @pq(m)
where MF is a parameter termed by Sammon the '"magic
factor" (a fixed step 1length which Sammon determined
empirically to perform best in the range 0.3 - 0.4), and
B pa, is the ratio of the first to the second-order

partial derivatives of E with respect to y;j,

Symim) [ |Sypm)®

These derivatives are defined as:

-~

57, CJ% 5 an (Ye- ;)
and
8E -2 3 1 (3m~dm3-0@-Yn1lﬁ_aa-dn
§Y2 ¢ =1 dpjap; Apj A
The algorithm terminates when a fixed number of

iterations have been carried out or whenever E has
converged to a suitably small value. A more detailed

discussion of this technique is contained in chapter 8.
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7.5 A COMPARISON OF ORDINATION TECHNIQUES

This section attempts briefly to indicate the
similarities and differences between the wvarious

techniques discussed in this chapter and to point out

some of their advantages and disadvantages.

The first point to make is that the first two ‘“serious"
techniques discussed, namely principal components and
principal coordinates, are both latent root and vector
methods, while multidimensional scaling and nonlinear

mapping both operate by minimising a particular function

using some iterative algorithm. The former methods
have, therefore, obvious computational advantages. Of
these, principal coordinates is perhaps the most

power ful for obtaining a low-dimensional representation
of data since it 1is not as restrictive as principal
components analysis. In particular it is not necessary
to consider only data sets for which Euclidean distance
is considered appropriate. The only advantage of this
particular distance measure 1is that it allows the
principal coordinates to be related 1linearly to the
original variable values. Principal coordinates
analysis also has the advantage of Dbeing directly

applicable to data given in the form of a distance or



ORDINATION TECHNIQUES Page 7-212

similarity matrix.

In many respects the mathematical formulations of
non-metric multidimensional scaling and nonlinear
mapping are similar. However, +the mapping criteria,
"stress" and ‘'mapping error", are quite different. A
major distinction is that multidimensional scaling
employs only the ordinal properties of the similarities
or distances being used. Gower (1966) discusses the
relationship between principal coordinates analysis and
nonmetric multidimensional scaling. He concludes that
where the former gives an adequate fit in two
dimensions, then the solution will be similar to the one
that would be found employing the latter methoa. Gower
points out, however, that multidimensional scaling may
be able to find a good fit in a low number cf dimensions
when principal coordinates may not; Dbecause of the
differing computational complexities of the two methods
Gower finally recommends the initial wuse of principal
coordinates analysis, and, where this does not lead to a
solution of sufficiently low dimensionality, he suggests
using the coordinates found as a starting point for the
iterative algorithm of nonmetric multidimensional

scaling. sammon (1969) gives some interesting examples

when nonlinear mapping recovers the structure 1n scme
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specially constructed sets of multivariate data, whilst
principal component plots of +the same data fail to
reveal this correctly. Sibson et al (1981) discussed

several possible mocdels for obtaining a set of

dissimilarities from an wunderlying configuration, and

described a simulation study which compared the
abilities of several scaling methods, 1including
principal coordinates analysis and nonmetric
multidimensional scaling. They concluded that, provided

the iterations started from a reasonable configuration,

nonmetric multidimensional scaling was never
significantly worse, and under some models for the
dissimilarities was considerably Dbetter, than the
methods which used the numerical values of the
dissimilarities.

Studies have also been carried out to investigate the
nature of the differences Dbetween the configurations
produced when different geometrical methods are used to
analyse the same data. For example, Rohlf (1972) noted
that nonmetric multidimensional scaling tended to depict
differences between similaxr objects more accurately than

principal coordinates analysis, but did not necessarilly
represent the distances corresponding to smaller and

: L : _ g -
larger dissimilarities 1n the same scale. Further
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comparisons are reported by Gower (1972), Fasham (1977)

and Prentice (1977).

If the background to the problem indicates that one
method of analysis 1is particularly appropriate, it
should be used, but in order to simplify the wuse of
MAGIC the <choice 1s 1limited to one technique of each
type, and, for reasons of computational efficiency,
those are principal coordinates analysis and nonlinear
mapping. Nonmetric multidimensional scaling, involving
the minimisation of a function of nt variables for each
value of the number of dimensions, t, makes heavy
demands on computing resourcecs compared to Dboth
principal coordinates analysis, in which the main work
to be carried out involves the eigenanalysis of an (nxn)
matrix, and nonlinear mapping. Given this fact, it
would seem preferable to use principal cocrdinates

analysis and nonlinear mapping.

7.6 RELATION BRETWEEN ORDINATION AND CLUSTERING

Ordination and clustering techniques are both methods of
analysing data, but rather than being in competition
with each other, are essentially complimentary. They

can be used together in several ways and these joint
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uses are usually desirable. The basic relationship may
be seen in terms of the data sets used, and is

summarised in figure 7.2.

MULTIVARIATE DATA

Xij * i corresponds to an activity
j corresponds to a variable

.
Ordination uses Distances
distance data Gower's S
as multivariate etc.

SIMILARITY OR DISTANCE DPATA

di; + 1 and J are activities

clustering
algorithms

CLUSTER DATA b

Figure 7.2

Relationship between ordination and clustering

Two main types of data are used - the multivariate data
and proximity data. Clustering algorithms may operate
directly on proximity data, but if we start with mixed
multivariate data, in order to determine clusters we
must first convert the multivariate data to proximity
data. Strictly speaking therefore, cluster algorithms
operate only on the second stage, the first stage Dbeing
a necessary preliminary. We may, therefore, consider

clustering as a procedure which starts w;th one type of
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data and converts it to some other type. The conversion
of multivariate data to proximity data used in MAGIC

utilises Gower's similarity and Euclidean distance

(dissimilarity).

Ordination may be thought of as a transformation in the
other direction, converting proximity data to

multivariate data in the form of a configuration of

points in low-dimensional space.

Another dimension is the application. The main purpose
is simply, in exploratory data analysis, "to see whats
there". A second purpose is to comprehend the data mcre
clearly, and a third is to provide information to aid

subsequent design work.

Another aspect 1s the distinction Dbetween '"natural
clusters" which may exist in the data and "artificial"
clusters which may arise as a result of the clustering

method used.
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The key difference between ordination and clustering is
that ordination provides a spatial representation of the
proximity data, whilst clustering provides a tree
representation. In hierarchical clustering small
clusters tend to be well identified and are often
meaningful, but large clusters higher up the tree tend
not to fit so well. On the other hand ordination deals
much more with the overall relationships. Small changes
in the data may cause changes 1n local position and
arrangement, but it is the general position of the
points within the configuration which is important. For
example, the fact that certain points near the middle of
the configuration will not change, even though the

arrangement at the middle may vary.

Since ordination and clustering are sensitive to
complimentary aspects of the data (the large
dissimilarities or overall picture in ordination, and
the small dissimilarities or local structure in
clustering) it is appropriate to use them Dboth on the
same data set. It is in fact possible to combine the
results into a single diagram using a two-dimensional
ordination (figure 7.3). The position of the points are
obtained from the ordination, whilst the loops show the

groupings obtained from the clustering. The figure uses
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7.7 TWO-DIMENSIONAL DISPLAYS
A number of difficulties may arise mapping

higher-dimensional vectors into a two-dimensional space
for visualisation. Particular problems are the
iterative nature of the mapping algorithms and the
interpretation of the clusters in the two-dimensional

space.

7.7.1 The Problem Of Local Minima

In principle the iterative steps of mapping algorithms
to determine the final configuration are not difficult
to implement. There is, however, a potential difficulty
in the «criterion of termination. A configuration of N
vectors from which no small movement of vectors is an
improvement corresponds by definition to a local minimum
of the error function E. The difficulty with a 1local
minimum is that it may or may not be the global minimum
whose corresponding configuration 1is really being
sought. When searching for the minimum o¢f E using
steepest descent or other techniques, there is no sure
way to prevent finding a local minimum. Figure 7.4
shows an error function of one variable with several
local minima. Only one of them (point B) is the true

global minimum.
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Figure 7.4

An error function with several local minima (A, B, C, D)
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This local/global minimum difficulty is of course not
unigue in mapping algorithms. It 1is a widely known
problem in all search and minimisation problems. 1In the
implementation in MAGIC if the display is drawn the
minimisation has reached a preset level of accuracy. If
this 1level 1is not reached after the default number of
iterations the current solution is displayed. This may
either be compared with one of the other analyses and
accepted if it appears reasonable, or else points may be
interactively moved to "jump" the configuration out of

the possible loal minimum, and the calculation restarted

from the new positijion.

7.7.2 The Effect Of Scaling

In an architectural problem the measurements in the data
are often composed of a variety of units. Using them in
their original form in the vector representation of the
data has serious complications. first, the units of the
measurements define an implicit weighting of the vector
components. Second, when different units are combined
to achieve a single measure of distance, the meaning of

that distance measure is nonsensical.
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The following figures illustratce the effects of units of

measurement upon the graphical analysis of four elements

represented by two-~dimensional vectors. Let
X,= (1, 0)
X,= (1, €.5)

x,= (4, 0)

X,= (4, 0.5)
where the first variable is distance (say metres) and
the second mass (say kilograms). The four vectors are
plotted in figure 7.5 in which two different scales are
used for plotting. Visually identified clusters
indicate two possible configurations due to different
scalings used 1in the plots. Various normalisation
techniques have Dbeen developed, but all involve a

distortion of the data. MAGIC again overcomes the

problem by the use of Gower's general coefficient.
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Effect of scaling upon graphical analysis of data.

Visually identified clusters are circled.’
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7.7.3 Sample Size

Another problem occurs when the ratid of the number of
activity vectors to the number of variables is small,
and deceptive results may be obtained. Foley (1972)
showed how misleading mappings may arise, depending on
the sample size, n, and the number of variables
measured, h. Foley derived expressions of the estimated
probability of error as a function of n and h, for a

number of underlying probability distributions. Figure

7.6 shows a typical plot of the estimated probability of

error as a function of the ratio n/h.

True probability of error
o P y

— G Gmmm e wmen e G ctn Gtem G Gy ememn s men S e e s e e

—y T Y T T Aj v T ] ’ M '

o
o S {

Ratio of sample size to feature dimensionality

Figure 7.6
Foley plot - typical curve of average probibility of

error as a function of the ratio n/h
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As the ratio increases, the estimated probability of
error calculated from the set of given vectors
approaches the true probability of error. For ratios
less than three, the difference between the estimated
and the true performance is noticeably large. However
the error curve appears to level off for ratios greater
than three. This indicates that a critical value of the
ratio n/h exists. 1In typical architectural applications
this critical ratio is not usually of importance as

activities usually outnumber variables measured.

7.8 SUMMARY

In this chapter several techniques which are useful for
producing a low-dimensional representation of
multivariate data have Dbeen discussed. The main
interest has Dbeen explicitly in the two-dimensional
solution given by the methods, since the main aim has
been to be able to examine the data visually. It should
be mentioned, however, that for some data sets it would
be unrealistic to expect a two-dimensional
representation to give anything but a very approximate
indication of the inherent structure present. 1In other
words, two dimensions may Just not be sufficient to
accommodate the full compexity of the relations in the

given data set. Unfortunately no real test exists for
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the value o©0f the number of dimensions necessary to
provide an adequate fit, apart from the informal
goodness of fit «criteria mentioned in connection with
particular methods. However, Gnanadesikan and Wilk
(1969) make the following important point which perhaps
suggests that a formal test of the number of dimensions
is not important:

Interpretability and simplicity are important

in data analysis and any rigid inference of

optimal dimensionality, in the light of the

observed values of a numerical index of

goodness of fit, may not be productive.
Two dimensional solutions certainly have the virtue of
simplicity; they are also readily understood by the
program user and may, in many cases, provide the Dbasis
for the understanding of the overall relationships in

the data set:; consequently they are 1likely to be the

solutions of the most practical value.

\

Finally, it should be mentioned again that the
techniques described in this chapter should in no way be

regarded as methods to be used to the exclusions of the

other +types of analysis; indeed they will, in general,
be most useful when used in conjunction with other forms

of analysis.
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CHAPTER 8

NONLINEAR MAPPING

8.1 INTRODUCTION

Mapping algorithms all have the basic characteristics of
an iterative search for an optimal solution to a given
problem. Iterative search techniques usually start off
with an arbitary guess of the solution. which is then
improved upon repeatedly through a systematic mechanism
until a satisfactory final solution is obtained This
transition from initial guess to final solution

implicitly defines the mapping algorithm for a given set

of data.

The mappings defined in this manner differ from
noniterative mappings 1in three respects. First no
specific a priori knowledge, such as the statistical

characterisation of the data 1is used in defining the

mapping. Second all iterative algorithms must be

provided with a suitable termination criterion which
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determines when a satisfactory solution has been
achieved Third the mapping.  which has Dbeen
iteratively obtained for a set of data. can only apply
to that data set When new data is introduced a new

mapping must be computed

8.2 NONLINEAR MAPPING ALGORITHMS

The objective of these algorithms is to reduce the
dimensionality of the data in the h-space to the d-space
so that some inherent "structure" of the data may be
displayed and detected Here the word structure refers
to the geometrical relationships that may exist among
the subsets of data and in particular those
relationships that reveal clusters The display space
may conveniently be in two or three dimensional space

but is here discussed in terms of two-dimensional space.

Given a data base of N activities, each described by h
variables the data base may then be represented by a

set of N h-vectors
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Chapter 7 presented a number of methods of interpreting
this high dimensional data. This section concentrates
on one particular approach nonlinear mapping (NLM).

The mapping may be defined as

NIM: X »> Y

where Y is a collection of N two-dimensional vectors in

the d-space.

Y = (Y;) i=1 2, ..., N
where
Yii
Y'l= ,
. Yial . .
A nonlinear mapping involves the reduction of
dimensionality of the activity data in X from h

dimensions to two dimensions by means other than linear
transformations whilst attempting to preserve as much
of the inherent.structure as possible This structure
preservation is achieved by fitting N h-dimensional
vectors in the d-space such that their intervector
distances or dissimilarities approximate the
corresponding intervector distances of dissimilarity in
the h-space Let the distance or dissimilarity between

the vectors X; and X in the h-space be denoted by

8ij = dis(X;, Xj)

and the distance or dissimilarity between Y; and Y in

the d-space be
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dij = dis(Y;, YJ)

Then the structure of the data is strictly preserved

under the mapping NIM: X 2> Y if for all i

Fa

dij = dij' Obviously for all but the most trivial cases

and j,

this strict preservation is impossible to achieve. It
is possible, however, to achieve various kinds of
approximate preservation without much difficulty, for

example, to preserve certain parts of the structure that

exists among the data base by requiring

~ A

d;j = dij or d[jav dij
for those'X] and Xj such that §}J<19 where ©6 1s some
threshold value and not seeking such faithful
preservation for those X; and XJ with §}j > ©. The
consequence of this kind of approximate preservation is

the introduction of an error eij where

for some or perhaps all values of i and j.

All NLM algorithms must deal with the problem of how
approximate preservation of the data structure may be
best achieved. There are two interrelated questions to

be considered:
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(1) What distance or dissimilarity measure should be
used in order to describe the geometric relationship

between the N vectors in the h-space and in the d-space

(2) The choice of an error function

E = fle;;) = £(&

= fleyj) = £(dj — d5j)

such that the value of this function will reflect the
degree of structure preservation. strict or approximate,

in a monotonic fashion, i.e. the smaller the value of

E, the better the preservation.

Clearly the way these two consideratioﬁs are dealt with
affects directly how well a particular NIM algorithm
works in mapping the data to the two-dimensional space
for wvisualisation Such considerations also in part

characterise the various NLM algorithms.

All the NIM algorithms discussed here employ an
iterative technique. The basic elements of these

iterative algorithms consist of a three-step procedure:

(1) Determine an initial set of Y vectors. This set 1s

referred to as the initial configuration of the d-space
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It can be selected by random selection.

(2) Adjust the Y's of the current configuration

starting with the initial configuration, in such a way
that the next configuration (the set of adjusted Y's)
will have a smaller value of the error function. The
transition from the current configuration to the next

configuration is an iteration.

(3) Repeat (2) until one of the termination criteria is

met:

a -~ the error function E has reached a prespecified
value.

b - a prespecified number of iterations have been
performed.

The various algorithms described below differ primarily

in one or more of the following aspects:
”~
1. The selection of the distance measures d;j and d;j

2. The selection of an error function E.
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3. The method of termination.

8.3 SAMMON'S NLM ALGORITHM

This method was developed by Sammon (1969) and is the
method implemented in MAGIC. Let the distance or
dissimilarity measure between the vectors X; and Xj in

the h-space be the Euclidean metric

A h 2\ /2
di; =(K%-l(xik - Xjk) )
Similarly 1let the distance or dissimilarity measure

between Y; and Yj in the d-space be the Euclidean metric

A 2 1/2
dj; '“‘(k%(yak - Y k) )
The error function E, which represents how well the
present configuration of the N vectors in the d-space
fits the N vectors in the h-space, is defined as

E=f(<,fi\;J'~--d;J')A N
= A = _(dij— dij)

N
E%dij dij
where :ﬁ. denotes the sum over all i and J such that
a<J‘
1< 3. Sammon's algorithm then works as follows
Generate a random set of Y;'s in the d-space. This set

of vectors is the initial configuration of the d-space
Next compute all the d-space intervector distances d;j
which are then used to determine the value of the error

function E. Then adjust the N vectors in the d-space so
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as to decrease the error function and continue to make
these adjustments until the minimum value of E 1is
reached or until a prespecified small value has been
obtained. The set of Y;'s at the termination of the

adjusting process is the final configuration.

It should be noted that the error function E 1is a
function of 2N independent variables yij’ i=1,2,

N and j = 1, 2. In Sammon's algorithm these 2N variables
must be adjusted simultaneously to yield a new
configuration This 1s achieved by carrying out a
steepest descent procedure to search for the minimum of
the error function If the curfent configuration, that
is, the set of Y;'s being adjusted, is denoted by

yll y2! yN|

Yl= , Y2= e e, YN=

Yy, Y2 Yy
The method of steepest descent consists of successively

computing the new vectors

. 'l t 21 ' le

Y, = , Y,= f e Y=l
y22 le

governed by the following recursive relation

8°E
3

_ = .... N
Yp = YP-C(6E p 1,2,
oY,

where ¢ is a correction factor and E 1is the error
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corresponding to the present configuration. The
notation c@/&YP denotes taking the first partial
derivatives with respect to each component of Yp and
arranging the partial derivatives in a column vector

The set of N vectors Y,, p =1, ..., N, becomes the new
or the next configuration in the d-space. Such a

transition from the current to the next configuration

defines an iteration of Sammon'’s NLM algorithm.

At each iteration it is necessary to calculate the first
and second partial derivatives of the error function

with respect to Y,. For the first derivative,

N A
where ¢ = 2>d;; is a constant.
i<J' J

Sammon (1969) shows that this reduces to

SE =___2_ g‘ é\PJ - dpJ_ (YP - YJ)
8¥p < =il dpjdp
p=1 2, ..., N

and, similarly for the second derivative

A 2 < . .
52E :“%ﬁ 1 l:(dpj— dPJ) - (Yp - Yj) (Hdw - dm)}

5Y% 5 dpjdp; dpj dpj

p=1, 2, ..., N
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An example of the results from Sammon's algerithm is

shown in figure 8.1. This shows the two-space
representation of the artificial data set shown in

figure 8.2. The initial configuration was random, but

all of the embedded clusters are easily identifiable in

the final display.

-

®
' ®
&

Figure 8.1

Nonlinear mapping plot
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Data set used for figure 8.1
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8.4 COMPUTATIONAL ASPECTS

It is of interest to consider the computational aspects
of Sammon's algorithm as it is here that most variations
have been proposed. First, the algorithm requires the
compuﬁation and storage of the intervector distances 3;j
for all i< j. There are N(N-1)/2 such distances. These
of course need not be computed for each iteration of the
algorithm, it being possible to compute them once and
store them for use at each iteration At each
iteration, however, all the N(N-1)/2 distances d;ij,
i<, along with the error derivatives, must bDe
computed Thus the overall computational requirement is
proportional to N(N-1)/2. As the number of vectors
increases, the computational requirement (time and

storage) grows quadratically

As a means of reducing the computational requirements a
variation of Sammon s algorithm was developed by White
(1972). Rather than the Euclidean metric, the Hamming
metric 1is used as a distance measure between vectors.
In the h-space the Hamming metric between X; and Xj is
defined as

A h
dij = Z[¥ik 7 ¥k

Similarly, the Hamming distance between Y; and Y in the
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d-space 1is
J
dij = & Wik 7 Y
The Hamming metric provides savings in the computational
requirements in two ways. First, the Hamming metrc is
much simpler to compute than the Euclidean metric.
Second the error derivatives as required in each

iteration are also simpler to compute However, the use

of the Hamming metric as a distance measure has its

flaws. If the data in the h-space is known to have a
Euclidean structure (i.e the vectors satisfy the
conditions of a Euclidean metric), some distortion of

the Y; vectors in the d-space will inevitably occur.

Another problem with the use of the Hamming metric lies
in the fact that interpretation of the resulting d-space
configuration may be more difficult. With the Hamming
metric the usual notion of the Fuclidean distance in two
dimensions no longer exists. Instead of measuring the
length of a 1line segment Jjoining two vectors, a
complicated sum of absolute values would have to Dbe
"visualised". The conclusion must therefore be that

this "improvement" is of little use in MAGIC.
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A different approach has been proposed by Chang and Lee
(1973). Like Sammon's algorithm the Chang-Lee
relaxation method also seeks to preserve the inherent
structure that may exist in the data. The term
“relaxation" is borrowed from the relaxation method for
solving linear equations. Unlike Sammon's algorithm the
minimisation of the error function 1is carried out by

minimising one term of the function at a time.

The basic procedure of the relaxation method as
developed by Chang and Lee is very similar to that of
Sammon's method but there are two significant
differences. First, in the relaxation method the
squared Euclidean metric is wused as the distance
measure, and secondly, the method of adjusting the
current Y;'s is different. 1In Sammon's method all the
Y;'s are adjusted simultaneously along the direction of
steepest descent so as to reduce the value of the error
function E. The idea of the relaxation method is to

adjust the Y;'s on a pairwise basis.

Insofar as the computational requirements are conccrned,

since there are O0.5N(N-1) pairs of vectors to Dbe

adjusted in each sequence, each iteration will take N(N-1)
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4+ adjustments. Compared with the N adjustments required
in Sammon's algorithm this is a considerable overhead,
especially when N is large. However, the computation of
the error function is much simpler and does not require
the summation of O0.5N(N-1) terms as does Sammon's

method.

Several further variations of the relaxation method have
been developed to improve the computational
requirements. One variation involves the use of
heuristics in performing the pairwise adjustments when N
is large. This heuristic method is known as the frame
algorithm (Chang and Lee 1973). The frame algorithm
does not preserve the structure relationship as
faithfully as the relaxation method; Chang and Lee give

details of experiments comparing the two approaches.

8.5 RELATIONSHIP OF NLM TO OTHER ORDINATICNS

The relationship of nonlinear mapping to nonmetric
multidimensional scaling was mentioned 1in chapter 7.
The multidimensional scaling algorithm developed by
Shepard (1962) and later improved by Kruskal (1964a,b)
seeks to find a configuration of points 1in a d-space

such that the resultant interpoint distances preserve a
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monotonic relationship to a given set of interelement

dissimilarities. Specifically, they wish to analyse a
set of interelement dissimilarities given by Sij.» i =1,

+e., N, 3=1, ..., N. Suppose these dissimilarities are

ordered in increasing magnitude, such that

Spiql < Spaq2 $ .. ... < Spn%

The Kruskal Shepard algorithm seeks to find a set of N
d-dimensional vectors y; , i =1, ..., N, such that the
order of +the interpoint distances dij=disly; ,yj]

deviates as 1little as possible from the monotonic
ordering of the corresponding dissimilarities. Despite
the mathematical formulation of nonlinear mapping being
similar, the underlying criteria are quite different.
although Kruskal (1971) has shown how his M-D-SCAL

program may be modified to produce Sammon's nonlinear

mapping.

The nonlinear mapping is preferred here as:

(1) The routine does not depend upon any control
parameters that would require a priori knowledge about
the data. The only requirements are that the limiting
number of iterations and the convergence constant must

be set. Both of these values are defavlted in MAGIC.
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(2) Nonlinear mapping is highly efficient in identifying

complex data structures. Sammon (1968) gives examples.
(3) The resulting mappings are casily evaluated.

(4) The algorithm is simple and efficient.
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CHAPTER 9

PRINCIPAL CO-ORDINATES ANALYSIS

9.1 INTRODUCTION

The techniques of classical scaling and principal

components analysis were introduced in chapter 7. The
limitations of these techniques were noted and
particular reference made to the implied distance

measures involved in the low dimensional representations
and their nonsensical physical dimensions when different
variates were measured on different scales. More
formally, if the activity data is regarded as defining a
set of N points in the high dimensional h-space, these N

points can be represented by an h x N matrix X

- h
X“ X:-' . . . XN'
xlz Xu « e . XNQ_
X == - -
. . v X
| Xy, X, Nn |

and each column thus represents a data point x; Wwith
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coordinates (x;,, Xio 1 +++s X)) referred to rectancular
axes. Thus the implied distance d;j; between x; and X;

is given by

and the spatial configuration of the 1low dimensional
display 1is of interest only if d;j satisfactorily
measures the similarity between x; and xj. This
usefulness has the obviocus defect of depending in a
complex manner on the scales of measurement of the
different variates. As a solution to this problem Gower
(1966) propcsed the method of Principal Co ordinates
Analysis, where the assumptions are similar, but
dissimilarities take the place of distances, and the
dissimilarities may be derived from any of the types of

variable as described in chapter 4.

9.2 PRINCIPAL CO-ORDINATES ANALYSIS

Let A be a symmetric (nxn) matrix with latent roots Ao
Nay ool A, and associated (nxl) latent vectors ¢,;, Ca:

.., c, as shown in figure 9.1.

nh
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Root
Ay Az An
Q)| cy Cya Cin
Point Q, C g Cay Can
Qn | cp Cn2 -+ Cnp
(elements of cjare cy; , Cyi,-+., Cq )

Figure 9 1

Latent roots and vectors of symmetric matrix A

Suppose now the elements of the ith row of figure 9.1
are taken as the coordinates of a point Q; 1in
n-dimensional space. The Euclidean distance, qu,

between points Q; and Qj in this space is given by

n 2
ATJ = r‘=2l (C "r d CJr )
n n 2 n
= ZXch + Zci, — 2ZcCiC:

rs J( > Jr

If the latent vectors are normalised so that the sums of
squares of their elements are equal to their

corresponding latent roots, i.e. so that
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then
A = cc + c,c+ L.+ CnCa
and therefore

n
and a:: = S.C‘ .
) = G Cir

and, substituting these results in the distance equation

Afu = a; *+ aj; ~ 2alj
Suppose now that the matrix A had elements ajj = -O.Sdﬁj
and ay; = 0, where dlj is some measure of inter-element
distance. From the above equation it may be seen that

éltj is now simply equal to dijr and consequent}y the
above procedure gives a method of finding coordinates
for a set of points given their interpoint distances
dLj. In particular if dLj was Euclidean distance the
method is directly analogous to principal components
analysis. However, the advantage of this method is that
it may be used to find a set of coordinates for

observations where the dU s are not considered to Dbe

EFuclidean.

If A was a similarity matrix so that elements aj; were

unity then

A= 200 = agy)

and principal coordinates analysis would lead to a
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spatial representation of the similarities in which A
functions as Euclidean distance, .although not all

similarity measures would be suitable.

It has now Dbeen established that given a symmetric
matrix A with elements aij, @ set of coordinates may be
found in the n-dimensional space such that the Euclidean
distance between the points in this space is given by

A and that this procedure may be used to find the

ij"
coordinates of a set of observations given their
interpoint distances (not necessarily Euclidean), or
their similarities. Gower shows further that it is
legitimate to use principal components on these
coordinates to find the best fit in fewer dimensions.
The whole process therefore involves two stages, each
stage requiring the determination of the latent roots
and vectors of an nxn matrix. That is, at stage one the
matrix A, and at stage two the nxn matrix of
n-dimensional coordinates resulting from the first

stage. Gower shows that these two stages may be

collapsed into one as follows:

(1) Calculate the matrix A. In the case  of
similarities, A is simply the inter-element similarity

matrix; with distance measures, A may be formed by
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s e = ] -— 2
taking a;;= 0 and aj;= -0.58%; . Gower (1966) also
shows that a convenient representation of the n
activities 1in Euclidean space can be obtained from

transforming distances using ajj = (2(1‘dij))%- This is

the transformation used in MAGIC.

(2) Transform this to a matrix o« , the elements of which

are given by

ocij = ajij -a; -a_ +a_,

} °J
where
- 1]
a;, = l/nﬁaau
-— _ 1/ (1)
a,j = I‘Ig‘aij
a..= 1/n* Zn'. En. ai;
t=] =1\
(3) Find the latent roots and vectors of o , scaling

each vector so that the sum of squares of its elements

is equal to its corresponding latent root.

The elements of the k-th latent vector now give the

coordinates of the n points on the k-th principal axis.

The first two coordinates may now be used to obtain a

visual representation of the original distance or

similarity matrix. A measure of the adequacy of fit of,

say, the first p principal coordinates is given by
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Pr
T = Z‘ Y;/trace ()
)
where the Y} are the 1latent roots of the matrix

arranged in descending order of magnitude.

Gower shows that this method may be used only with
similearity measures which give rise to an @& matrix with
no negative latent roots; i.e. o¢ must be positive
semi- definite. Gower (1971a) also shows that this
condition holds for a wide class of measures, but in

particular that Gower's general coefficient of

similarity is always positive semi-definite.

Principal coordinates analysis may thus be seen to have
a considerable advantage over principal components
analysis when seeking a visual representation of data.
It operates directly on similarity and distance matrices

and 1is not restricted to Euclidean distances.

9.3 EXAMPLE OF PRINCIPAL COORDINATES ANALYSIS

Figures 9.2 and 9.3 show the two dimensional and three

dimensional ordinations of the test data set.
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Figure 9.2

Two-dimensional Principal Co-ordinates plot
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Figure 9.3

Three-dimensional Principal Co-ordinates plot
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CHAPTER 10

DISPLAY OF RESULTS

10.1 INTRODUCTION

MAGIC has been designed to operate interactively and to

present all results graphically as an aid to
interpretation of the data. A  number of important
techniques have beén devloped to enable this - an
efficient dendrogram plotting routine, a unique

presentation method to display the results of the
Euclidean cluster analysis, a number of options for the
manipulation of two-dimensional ordinations, and a
graphical method of comparing results of different
ordinations. This chapter describes these techniques in
the same order as the analytical results they are

designed to display have been presented.
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10.2 DENDROGRAM PLOTS

The results of hierarchical cluster analysis are usually
displayed 1in the form of dendrograms (Sneath and Sokal,
1973, give a general account), but, surprisingly, no
efficient algorithm for the automatic display of these

diagrams had been developed.

The general form of such diagrams is for the activity
labels to be plotted across the top of the page, and
vertical lines drawn down to the successive clustering
levels where a horizontal line joins those activities
clustering at that level. These fusions at successive
hierarchical 1levels are printed in MAGIC in a linkage
order table. An example is shown in figure 10.1, and

the resulting dendrogram in figure 10.2.



DISPLAY OF RESULTS Page 10-255

GRP AVERAREE CLUSTERING STRATEGY

POIRIRG SEQUENCE
ITER JOIRG ITEM /T DISTRNCE

1 2 1.604
G e 1.608r¢
p 16 1.689
14 15 1.0068
3 4 1.414
(2 8 1.793
i2 i4 1.72%6
9 i1 1.863
12 13 1.937 .
3 S 2680
1 3 2.402
12 i6 2. G684
i (28 3.126
e 12 2.673
1 9 5.292

FIT IS 65.% £COURRTE

Figure 10.1

Linkage order table
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Figure 10,2

Dendrogram of data in figure 10.1
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This structure may Dbe defined by +two 1lists - one
containing the 1labels of the n objects in the order in
which they are +to appear across the top of the
dendrogram (an order which must be calculated to prevent
crossing lines occuring in the dendrogram), and the
other containing the n-1 numbkers showing the level at
which the successive activities join together in the

tree. This second list is conveniently accessed from a

further "linkage order" list, containing the first two

columns of figure 10.1.

The algorithm to draw the dendrogram is simple. Given
the two 1lists as described above, LAB for the activity
labels, LEV for the clustering levels, the linkage order
lists, L1 and L2, such that L1 joins L2 at LEV, and

assuming screen scaling is carried out elsewhere, there

are four basic steps:

(1) Plot a vertical line for each of the i=l, 2, ..., n
activities from below each label (the coordinates of
which may be defined as (i, VYmax)) to a level (1,
{max LEV;, LEV;_} ). Store the bottom coordinates of

each line in two arrays XC and YC.
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(2) From L1 and L2 find the first Ll1; (i = 1, 2,
n-1) for which LEV, > LEV . .

141

(3) Plot a horizontal line from L1 (XC;, YC;) to L2
(XC;, YC;). Plot a vertical line from the centre of
this line down to max{LEV;, LEVi4+ . Store  the
coordinates of the Dbottom of this line in XC;,, and
YC{,, - This step represents two clusters being merged,

so the ith entries in LEV, XC and YC may be deleted and

the pointers revised.

(4) Set n=n-1. If n>»1 go to step (2), else draw final

tail and finish.

10.3 DISPLAY OF EUCLIDEAN CLUSTER ANALYSIS

Euclidean cluster analyses have never been presented
graphically - figure 10.3 shows the typical form of
program output. This information is difficult to fully
comprehend even for experts used to multivariate
analysis. It is possible however to identify those
elements which are of importance to the user of MAGIC.
These are the cluster membership at each level of
clustering, the cluster density (whether the cluster 1is

a compact group of activities, or only loosely
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connected), and the relative disposition of the clusters
one to another. The cluster membership 1is easily
displayed in tabular form, the cluster density may be
obtained from the average point to centre distance of
each cluster and the cluster disposition is contained in
the matrix of cluster centre to centre distances. As
this matrix 1is a simple distance matrix it is possible
to pass it through the nonlinear mapping analysis to
obtain a convenient two-dimensional representation. If

the bubbles of this display are then scaled according to

the average point to centre distance applicable to each

cluster all of the essential data may be displayed in

the form shown in figure 10.4.



INMPUT FILE NRME D> TDATA

INPUT PAXIMUM NUNBER OF CLUSTER CENTRES REQUIRED > 4
INPUT TERMIMAL NUMBER OF CLUSTERS REGUIRED > 2

RESULTS FOR CURRENT ITERATION UITH 4 CLUSTER CENTRES
CLUSTER S1ZE DIST FROM GRAND MEAN CO-ORDINATES

1 3 $0.600
81.6820 S2.e009
89.0820

2 e 75.080
26.6000 27.0909
34.2260

3 1 126,820
11.2¢02 12.0000
18.2¢89

4 3 ¢.000
51.£223  52.€6¢9
59.25%0

DISTANCE MATRIX FOR CLUSTER CENTRES
2 165.0009
3 21€.9250  45.0909
4 92.600 75.0000 120.0009
CLUSTER MEABERSHIP FOR INDIVIDUALS
CLUSTER MUMBER 1
? €5.6653 8 89.5¢88 9 116.2411
AVERACE POINT TO CENTRE DISTANCE  $9.47
CLUSTER NUNMBER 2
2 113.1991 3 86.6718
AUERAGE POINT TO CENTRE DISTANCE 99.93
CLUSTER NUMBER 3
1 141.10569
AVERAGE POINT TO CENTRE DISTANCE 141.1
CLUSTER NUMBER 4
4 63.2404 S «8.0833 € €9.1121
AVERAGE POINT YO CENTRE DISTANCE £3.51

RMS CEVIATION FROM CEMTRES = 122.3
CLUSTERS MERGED AT THIS ITERATION: 2 AND 3

83.0000

28.0000

13.0008

53.2€80

84.0229

29.6599

14.0920

£4.8000

£5.0909

30.2009

15.90029

55.06880

Figure 10.3 - Typical Euclidean cluster analysis output

86.6009

31.0820

16.0209

56.0000

87.0839

38.0099

17.0000

57.6009

88.6000

33.0800

18.8009

58.0¢09

SLTNASIY d0 AVIdISId

092-0T 23y



RESULTS FOR CURRENT ITERATION UITH 3 CLUSTER CENTRES

CLUSTER  S1IZE DIST FROM GRAND MEAN

1 3 99.200
2 3 99.06¢
3 3 8.030

DISTANCE MATRIX FOR CLUSTER CENTRES
€ 18%.GeQ0
3 So.ee29 90.6000
CLUSTER MEMBERSHIP FOR INDIVIDUALS
CLUSTER NMUMBER 1
? 65.6658 8 83.509% 9

CO-ORDINATES
£1.0000 £82.0000
29.900¢
21.0020 28.2060
29.0099
S1.e2¢0 b52.6e20
59.9000

116.2411

AVERAGE POINT TO CENTRE DISTANCE $0.47

CLUSTER NUMBER 2
1 141.1099 e 113.1901 3
AVERAGE POINT TO CENTRE DISTANCE 1
CLUSTER NUMEBER 3
4 63.3404 5 48.0833 €
AVERAGE PCINT TO CENTRE DISTANCE &

RS DEVIATION FROM CENTRES »

86.6718
13.7

49.1121
3.514

111.7
CLUSTERS RMERGED AT THIS 1TERATION: 2 AND 3

RESULTS FOR CURRENT ITERATION UITH
CLUSTER  S1ZE DIST FROM GRAND REAN
1 4 75.000

2 s 69.c00

DISTANCE RMATRIX FOR CLUSTER CENTRES
2 135.0000

@ CLUSTER CENTRES

CO-ORDINATES
76.€000 77.0000
84.00€90
31.8000 33.0729
38.0C¢0

83.0062

23.0009

63.0000

78.0000

33.0000

84.92090 35.0360

34.2¢00 25.2060

54.6200 §65.0089

79.0096 80.0000

34.0000 35.00080

86.0000

26.0030

56.8000

£81.0000

38.02C0

87.9060

27.%089

$7.8000

82.6000

37.0000

Figure 10.3 - Typical Euclidean cluster analysis output (continued)

£2.0900
28.0060

£8.0099

83.0004

38.0000

SLTNESIY 40 AVIdSIA

192~0T @8eg



CLUSTER MEMBERSHIP FOR INDIVIDUALS
CLUSTER NUMBER 1
6 49.1321 7 85.6668 8 89.5698 9
, AVERAGE POINT TO CENTRE DISTANCE  8e¢.13
CLUSTER NUMEER e
1 141.1¢99 4 113.1801 3 88.6718 4
AVERAGE POINT TO CENTRE DISTANCE S0.48
RMS DEVIATION FRON CENTRES - 102.4
sTOP
END OF EXECUTION

CPU TIME: 2.26 ELAPSED TIRE: 1:44.28
EXIT

Figure 10.3 - Typical Euclidean cluster analysis output (continued)

. 48.9833

SLINSId 40 AVIdSIA

Z29¢~-0T °3eg
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TeSy pata FnJ?\
FELATIONSHIP WIYH 4 GRUrs

Figure 10.u4

MAGIC Euclidean cluster analysis output
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TEST DATh FILE
RELATICHSHIF WITH 3 Glos's

CLUSTERS MERIED AT THIS 1TET Jihd: 2 3
CLU?{ER MEMRERS . |

¢ 8 3
2 1 2 32
3 4 S &£

Figure 10.4

MAGIC Fuclidean cluster analysis output (continued)
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TEST DATK FILE
RELATIGMSHIF MITH 2 GROWES

CLUSTERS PERGED aT THIS LTER:T T - a3 @
CLUSTER MEMEERS

1 &€& 7 8 9

z 1 2 2 4 5

Figure 10.4

MAGIC Euclidean cluster analysic output (continued)
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10.4 ORDINATION PLOTS

These are the only displays in MAGIC which may Dbe
interactively modified by the program user. The
facilities are provided for two reasons. Firstly they
provide a convenient method of dealing with the problem
of local minima. Secondly as these displays are not
fixed <clusters Dbut an overall picture of relationships
users may wish to rotate or otherwise modify the display
to agree more closely with their own mental picture or
tentative layout. Figure 10.5 shows a typical display
and the controlling menu for the nonlinear mapping
analysis. Rather than simply describe the effect of
each menu command the principles of "point displays" are
dealt with in a more general manner to develop the 1link
between the analysis method and the display of results.
The simple translations, rotations, reflections and
'scalings are discussed first and then their more ccmplex
combined use in configuration comparison described in

section 10.5.
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Figure 10.5

BUBBLE menu and display

Page 10-.67
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10.4.1 2D Transformations

Points in the xy plane may Dbe translated to néw
positions by adding translation amounts to the
coordinates of the points. For each point P(x,y) which
is to be moved by Dx units parallel to the x-axis and by
Dy units parallel to thel y—-axlis to the new point

P'(x',y'), we may write

x' = x + Dx, y' = y + Dy

i ‘ @ P' (6.9)

P (1,2)

I T T T

Figure 10.6

Translation of a point
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This is illustrated in figure 10.6, in which the point

(1,2) is +translategd by (5,7) to become point (6,9).

Defining the following row vectors as

P = (xvy), P' = (x' y'), T = (Dx Dy)
the translation equation may be rewritten

(x' y') = (x y) + (Dx Dy)
and, even more concisely,

P' =p +

Points cah be scaled (stretched) by Sx along the x-axis

and by Sy along the y-axis into new points by the

multiplications:
x! = x.8x, y' = y-.Sy
Defining S as Sx 0] we can write in matrix form
0 Sy
(x' y') = (x vy) |[sx 0

0 Sy
or
P =P-S
In figure 10.7 the single point (6,6) is scaled by 1/2
in x and 1/3 in y. Scaling is about the origin, the
point moving closer to the origin. If the scale factors
were greater than one the point would move away from the

origin. It is also possible for scaling to occur about
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some point other than the origin. The example shows
differential scaling, for which Sx#Sy, has been used.

With a uniform scaling Sx=Sy.

Points may be rotated through an angle of © about the
origin, as illustrated in figure 10.8 for the point

P(6,1) and angle © = 30°. The rotation 1is defined

mathematically as:

x' Xx-cos® - y-sin8
y' = X.sin® + y-cos®

In matrix form we have

cos & sin ©
(x' y') = (x y)|-sin® cos ©

or

where R represents the rotation matrix as defined above.
As with scaling the rotation is about the origin, but

rotation about an arbitary point is also possible.
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P (6,6)

P' (3,2)

Figure 10.7

Scaling of a point
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P' (4.7, 3.9)

30° P (6,1)

Figure 10.8

Rotation of a point
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Positive angles are measured counterclockwise from x

towards Y. For negative (clockwise) angles the

identities cos(-0) = cos® and sin(-86) = -sin@§ can be

used to modify the above equations. The derivation of

the equations is easily seen by reference to figure 10.9

in which a rotation by © transforms P(x,y) into
P (x',y'). Because the rotation is about the origin,

the distances from the origin to P and P' are equal and

labelled r in the figure. By simple trigonometry we
note that

X = rcosg, y = rsing
and

x' = rcos(© + &) = rcosgcosB - rsingsin®

y' = rsin(8 + &) rcosgsin® + rsingcos®
Then by substitution the Dbasic equations are easily

derived.
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Y
P' (x', y')
9 P (<, y)
-
X
reos (0+9) rcosg

Figure 10.89

Derivation of the rotation equation
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/

10.4.2 Homogenous Coordinates

The matrix equations for translation, scaling, and

rotation are, respectively,

P' = p 4+ 7
P'" =P . g
P' =P ¢« R

Unfortunately, translation is treated differently (as an
addition) to scaling and rotation {(multiplications). It
is advantageous to be able to treat all three 1in a

consistent or homogenous way, so that all three basic

transformations may be combined together.

If the points are expressed in homogenous coordinates

all three transformations ma& be treated as
multiplications. Homcgenous coordinates were developed
in geometry (Maxwell 1946,1951) and have subsequently
been adopted in computer graphics (Blinn 1977) . In
homogenous coordinates, point P(x,y) is represented as
P(Wex,W-y,W) for any scale factor W#0. Then, given a
homogenous coordinate representation for a point
P(X,Y,W), the two-dimensional cartesian coordinate
representation for the point 1is x=X/W and y=Y/W. In
MAGIC W is always 1, so the division is never reqguired.

Homogenous coordinates may be considered as embcdding
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the two-dimensionel plane, scaled by W, in the z=W (here

z=1) plane in three--space.

Points are now three-element row vectors, SO
transformation matrices, which multiply a point vector
to produce another point vector, must be 3x3. In the
3x3 matrix form for homogenous coordinates the

translation equation is represented as:

(x'* y* 1) = (x y 1)-/0 1 ©

or, expressed differently,
P' = P-T(Dx,Dy),
where

T(Dx,Dy) = [1 0 O

| Dx Dy 1
Similarly the scaling equations become

Sx 0 O

(x' y' 1) =(x y 1)-/0 sy O

|0 0 1]
Defining

s(sx,Sy) = [sx 0 O




DISPLAY OF RESULTS Page 10-277

we obtain
P' = P-S(sx,sy)
Finally, the rotation equations become

[ cos@ sin6 0

(x' y' 1) = (x Yy 1l)-|-sin® cos® 0

I 0 0 1 |
letting
[ cos® sin6 0]
R(0) = |-sin® cos® 0
0 0 1]
we have
P' = P-R(O)

10.5 PROCRUSTES ANALYSIS

Chapters 7, 8 and 9 have described a number of ways of
obtaining a two-dimensional representation of the data
set. The objective of Procrustes Analysis is to enable
a comparison of the configurations. The procedure is
referred to as Procrustes analysis after the
mythological Greek innkeeper Procrustes who ensured his
clients fitted his beds by either stretching them or
cutting off their 1imbs. This section describes a
method for the comparison of two geometrical

configurations; a generalisation to comparing rmore than
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two configurations is given by Gower (1975) and ten
Berge (1977). The 1idea of seeking to transform one
matrix into another was first proposed by Mosier (1939).
A solution with transformations restricted to orthogonal
rotations/reflections was given by Green (1252) and
later generalised Dby Schonemann (1966, 1968), Gruvaeus
(1970), and Schonemann and Carroll (1970). This

description is roughly based on Schonemann and Carroll's

solution where four basic geometric transformations are

included:

(i) translation of the origin

(ii) rotation of points

(iii) reflection of points

(iv) uniform dilation of points

It will be assumed that the configurations to Dbe

compared have coordinates given by the (nxp) matrices X

= (x;) and Y = (y,c) where the activities are specified
i

in the same order in the rows of the two matrices. The

measure of fit used to assess the resemblance of the two

configurations is the sum of the squared distances
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between corresponding points in the two configurations:

D (X,Y) = i%é\(xik - yik)z
= trace{(X - Y)' (X - v)}

This measure as it stands is not used directly as it 1is

usual for one of the configurations to be held fixed and

the other transformed to fit as «closely as possible.

The four geometric transformations used to map the

"to-be-fitted" matrix to the "target" matrix are

considered below.

10.5.1 Matching Under Translation

There are two ways of viewing the elementary geometric
transformations: (a) as an alteration of the coordinate
system leaving the space element undisturbed, or (b) as
a displacement of the space element itself while the
coordinates remain fixed. In both cases the end result
is the same. The aiternative approaches may be seen in

figure 10.10.
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+
X

(a) co-ordinates

(b) point
Figure 10.10

Translation of points and co-ordinates
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The distance measure above may be rewritten as

n

P
L(x,Y) = = 2{(X;k - Xy - (Yie - 9.k)}2 + né‘(i.k— y-k)z

(LN T3

where

1/ s
X = '
K n.u”}&‘k

and

i

Y. l/ni__ﬁly;k (K =1, ..., p)

Hence optimal matching under translation of origins is
attained wuniquely by ensuring that the centroids of the
two configurations coincide. By placing this common
centroid at the origin of coordinates this
standardisation will be undisturbed by subsequent
rotation, reflection and dilation. Thus it is possible
to assume throughout the following descriptions that all
configurations are centre-at-origin standardised, and

this shall be done to simplify the presentation without

altering its content.

10.5.2 Matching Under Rotation And Reflection

The geometric motions are shown in figures 10.11 and
10.12. After the centroid-at-origin standardisation has
been made, the matching problem reduces to finding an

. . . 2
orthogonal matrix R which minimises &(X,YR).
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(a) co-ordinates
+ Y
_ + X

(b) point

Figure 10.11

Rotation of points and co-ord:nates
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(a) co-ordinates
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- + X

(b) point

Figure 10.12

Reflection of points and co-ordinates
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Expanding this expression,

A% (X,YR)

trace{(X - YR)' (X - YR))}

trace(X'X) + trace(Y'Y) - 2trace(R'Y'X)
Sibson (1978) shows that given a square matrix, A, and

an orthogonal matrix R, of the same size, then

trace(R'A) & trace{(A'A)"%)
with equality if and only if R satisfies. R'A = (A'A)"2
(M% denotes the non-negative definite symmetric square
root of the non-negative definite symmetric matrix M).
This equation always has an orthogonal solution R, and
if A is non-singular the solution is uniquely

R = A(A'A)

Using this result, the following theorem is obtained by

substituting A = (Y'X) in the equation above.

Theorem

If X and Y are configurations which have been centred at

the origin, Lf(X,Y) is minimised by transforming Y to
YR, where R is an orthogonal solution of
R'Y'X = (X'YY‘X)&. If Y'X is non-singular,

R = Y'X(X'YY'XY*. The minimum value 1is
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A*(X,YR) = trace(X'X) + trace(Y'Y) - 2trace{(X'YY'X)%")

10.5.3 Matching Under Dilation

Finally the transformation of scale may be applied as
defined in figure 10.13. The transformation of uniform
dilation involves‘multiplying all the coordinate values
of Y by a positive constant oo. For a given value of o
the theorem defined above shows that the minimum value

of A (X,oYR) is

o*trace(Y'Y) - 2otrace{(X'YY'X)"} + trace(X'X)
For given X and Y, this quadratic expression in c* 1is

reduced to its minimum value of

trace(X'X) - [trace{(X'YY'X)”}]Z/trace(Y'Y)
by choosing
o = trace{(X'YY'X)"* /trace(Y'Y)
As the procedure is independent of any scaling factor o,
optimal fit is obtained within the class of
transformations considered by carrying them out in the

order described.
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Figure 10.13

Dilation of points and co-cordinates
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é? P, (o,1)
P (-2,0) Py (2,0
M 3 .0)
(o) - Y
69 P4 (O,"l)
é; Ql (O;l)
Qg4 (-1,0) Q, (1,0)
(b) AR /T

éa Q3 (O,—l)

Figure 10.14

Two geometrical representations of the same set of four
objects, the ith object (i=1l,...,4) being represented by
point P. in (a) and by point Qiin (b). The configurations

are defined by the following matrices:

(-2 0 [0 1
(a) X = 0 1 (b) Y = 1 0
2 0 o -1

L O _14 L_l O.J
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10.5.4 Computational Procedure

The theory presented in this section is illustrated by a
simple numerical example, summarised in figure 10.14,
which shows two different geometrical representations of
a set of four objects. The Y-configuration will be
transformed to fit the X-configuration as closely as
possible. Both configurations are already centred at
the origin, and so the next step is to find the optimal

rotation and/or reflection for the Y-configuration. For

these data,

A=Y'X=] 0 2
-4 0
which is non-singular
(a'a)%=1[16 0] =[1/4 0
o 4 o 1/2
Hence the optimal rotation/reflection is
R =A(A'A)Y2 =0 1
-1 O
a counterclockwise rotation through ninety degrees

Similarly, the dilation factor 1is

o = trace[4 OJ trace [2 O} = 6/4

0O 2 0 2
Thus, the optimal transformed Y-configuration 1is given

by
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Y* = oYR = 6/4| 0 1

The transformed points {0% (i = 1,

.. 4)} whose
coordinates are given by Y* are plotted in figure
10.15(a), together with the X-configuration, to which
they are the optimal approximation under the given set

of transformations. The sum of squared distances

between the two configurations is 1.

In order to demonstrate that fitting X to Y need not
give the inverse scaling to fitting Y to X, the results
.are summarised in figure 10.15(b) of the transformation
of {P;(i=1, ..., 4)} to {PF(i =1, ..., 4)} so as to
obtain an optimal approximation to the set of points
{o;(i =1, ..., 4)}; in this case, the sum of squared
distances between the corresponding points in the two
configurations takes the value 0.4. There 1is no
rotation and dilation which will exactly match the

configuration of eight points in figure 10.15.
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E; P, (0,1)
P (-2,0) P3 (2,0)
@ B D
QU (-1-5,0) Q% (1-5,0)

@ P+ (0,71
@) % (o-15)

P¥* (o,1-2)
g Q, (o,1)

Q4 (_,105 Q2 (\,0)
(b) -PHP PP

Ry (-0.6,0)| P¥ (0.6 0)

Q3 (O,— ')
A

Figure 10.15

Demonstration of the transformation of one of the

configurations defined in figure 10.14% in order to
fit the other configuration: (a) Y transformed toO

fit X; (b) X transformed to fit Y
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10.5.5 Example From MAGIC

Figures 10.16 and 10.17 show two test matrices roughly
based about a square in two-dimensional space. Figure
10.18 shows the tabulated output of the Procrustes
analysis with two statistical measures of goodness of
fit developed by Lingoes(1973) and Schonemann (1970).
Schonemann's symmetric coefficient (s) is procbably the
most understandable as it varies 0 s 1l with 0 being a
perfect fit. In the graphical implementation in MAGIC
(figure 10.19) neither measure 1is shown - it Dbeing

considered irrelevent to the conceptual rather than

theoretical fitting being carried out in this context.
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35, 65

10, 60
@ ’
50,50
G} .
@ 15,45
@ 10,40 @ 60,40

@ 20,30

@ 35,15

Figure 10.16

Test data matrix 1 - "Matrix A"
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@ 20,060

l514’5 20'45

GD ED EBfkm4s

5,35
d™

@ 50,25

GEySJo €£)50Ao

Figure 10.17

Test data matrix 2 - "Matrix B"
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g’@ur FILE FOR MATRIX A
IMPUT FILE FOR MATRIX B

Figure 10.18

B
MATRIX A

10.6329  60.0200

10.6228  49.0000

15,6270 45.6209

35.6062  65.8930

50.6268 50.0827

€9.6328  49.C772

35.€279  15.£990

20 6920  20.0008
MATRIX B

39.0220  60.0829

15.€279  45.60%

20.6280 456279

53.0229  45.62%3

586279  25.0503

53 6759 16.0039

15.0299 10.6599

15.6520  35.6059
MATRIX OF BEST FIT

23.1581  59.8975

14.5268  45.9283

21.5619  45.9978

S3.1025  45.5357

49.8609 24.45:2

45,6559 15.4153

14.5242 18.€126

14,7657 31.91€8 o
MOM-SYIETRIC FIT L = 0,8756505-03
SNZETRIC COEFFICIENT =  @.646111E-01

STOP

Tabulated output from Procrustes analysis
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CONFIGURATION FITTING
MATRIX A WILL BE FITTED TO MATRIX B

INPUT FILE FOR MATRIX ( 2 N
' ¢ 4
INPUT FILE FOR MATRIX B )

@ @

0.0

Figure 10.19

MAGIC Procrustes analysis output
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CHAPTER 11

DATA CLUSTERING

11.1 INTRODUCTION

This chapter presents a technique for identifying and
displaying natural groups and clusters that may occur in
complex data arrays. The method adopted is the
well-known technique of permuting the rows and columns
of the data matrix in such a way as to gfoup the larger
array elements together. This option is included in
MAGIC for two reasons. Firstly, although an established
formal design method, the task 1is very difficult to
accomplish manually. Secondly all the other clustering
and ordination techniques operate on modified data with
some inevitable loss of information. It 1is therefore
valuable to have available an option which operates on
the "raw" data matrix and represents it in a way which
enables clusters to be identified. The technique thus
provides a useful check when used in conjunction with
the other techniques, but also supplies additional

inférmation insofar as it is possible to identify from
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the rearranged matrix not only the clusters of

activities, but also those variables upon which the

clusters are based.

~

11.2 THE TECHNIQUE USED

The.problem may be formulated as a "travelling salesman
problem". This classical operations research problem
notionally concerns a salesman who wishes to find the
shortest route through a number of cities and back home
again. Stated more formally, given a finite set of N

cities and a distance matrix (d;j) (i,j €N), determine

where * runs over all cyclic permutations of N; *k(i) is
the kth city reached by the salesman from city i. If N

= (1,..... ,n), then an equivalent formulation is

. '\:'
mlnv( i%' dV(i]V(u‘+|)+ dVCF\]V(”)

where v runs over all permutations of N; here v(k) is

the kth city in a salesman's tour. If d;; = dji for all

(i,3) the problem is called symmetric, otherwise it is

assymetric. If d;, <4

it d;x for all (i,j.k) the

problem is Euclidean.
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Bellmore and Nemhauser (1968), Eilon et al (1971),

Bellmore and Malone (1971) and Christofides (1975) all
contain surveys of well-known solution techniques. The
solution technique adopted in MAGIC is a modification of

the suboptimal method which constructs a tour by

successively inserting cities.

11.3 PROBLEM FORMULATION

Suppose that a data array (aij) (ieR, jes) is given,
where ajj measures the strength of the relationship
between the elements i€ R and j€S. A clustering of the
array 1is obtained by permuting its rows and columns and
should identify subsets of R that are strongly related

to subsets of S.

To convert this problem into an optimisation problem
some criterion must be defined. By defining a "clumping
factor", CF, as a criterion to optimise, the problem may
be formulated in terms of the travelling salesman
problem. The CF used is the sum of all products of
horizontally or vertically adjacent elements in the
matrix. Figure 11.1 shows how this criterion relates to

various permutations of a 4 x 4 array.
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Figure 11.1

Clumping Factors for various permutations

of a 4 x 4 array.
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The problem is then to find the permutation of rows

and
columns of (a;j) which maximises CF.
Let R = (1, . , T)
and § = (1, . . ., s)
with the conventions
e(0) = p(r+l) = o(0) = o(s+l) = *
a,, = a%-j = 0 for ieR, jes
Then CF, corresponding to permutations P of R and o
of S, is given by
CF(P}G’) = 0.5 izﬂ%s af(i)O‘(J)(ap(i)c-(j—|)+ ap(130'<j+|)+

Apei-yo )+ Apcivi)o(j)
r
= E E e tiogn * Zofes TPWS Betiey)
= CF(o) + CF(p)

Thus CF(p,0) decomposes into two parts, and its
maximisation reduces to two seperate and similar
optimisations, one of CF(o) for the columns and the
other of CF(p) for the rows.
11 4 SOLUTION ALGORITHM
A sequential selection suboptimal algorithm is used to

determine

of CF.

1. Place one of the columns arbitrarily.

2. Try placing each of the

array orderings corresponding to local optima

The algorithm operates as follows

Set 1i=1.

remaining N-i columns in
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each of the possible positions (to the left and right of

the i columns already placed) and compute each columns

contribution to the CF. Place the column that gives the

largest incremental contribution to CF in its best

position. Increment i by 1 and repeat until i = N.

3. When all the columns have been placed, repeat the
procedure on the rows. This step is unnecessary if the

matrix is symmetrical as the row and column reorderings

will be identical.

This algorithm has several important characteristics.
It is quick and effective 1in operation. Storage
requirements are only linearly related to the size of
the data array. It is also applicable to matrices of
any size or shape, the only restriction on the array

elements being that they should not be negative.

11.5 EXAMPLE

Figures 11.1 and 11.2 show the original data matrix and

the transformed matrix.
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Reordered data matrix
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CHAPTER 12

EXAMPLES OF USE

12.1 INTRODUCTION

Two examples of the use of MAGIC are presented. The
first 1is in the context of replanning a traditional
cellular office organisation into a restructured open
plan layout within the existing but upgraded office
building The second shows a variety of applications in

the post-occupancy evaluation of another building.

The replanned office is the Central Accounting Office
(CAO) of the Eastern Electricity Becard, in Ipswich. The
post- occupancy evaluation was carried out on the MRC
Genetics Puilding at the Western General Hospital,
Edinburgh: the use of MAGIC in this context forms part

of a more complete evaluation reported by Markus and

Aylward (1980).
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12.2 REPLANNING OF EASTERN ELECTRICITY CAC

The Eastern Electricity Board is the largest of the

English area boards, and covers the area shown in figure

12.1. The range of services provided and the Boards

organisation is outlined in figure 12.2. This example
of MAGIC concerns the replanning of office facilities
within the Central Accounting Office, and is a

straightforward example of layout planning.

Figure 12.1

Eastern Electricity Board location map
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The area covers Cambridgeshire,
. Bedfordshire, Essex, Hertfordshire,

" Norfolk, Suffolk and parts of ==t
Buckinghamshire, Northamptonshire =7 N (SR ES

and Oxfordshire and all or parts of :rl ’7:'* .
the Greater London Boroughs '
of Barking, Barnet, Brent,
Enfield, Haringey, Harrow,
Havering, Redbridge an

Waltham Forest. '

Ee;stern Electricity’s A -1
organisation includes Wh@re we ﬂt 1)

1 HEADQUARTERS . i
2 CENTRAL SERVICE UNITS Electricity Counci
1 CENTRAL ACCOUNTING OFFICE T T
3 GROUP OFFICES 5 ; Eastern Electricity
19 DISTRICT OFFICES  benerating (one of 12
120 SHOPS | Board Area Boards)
. 1 I
Staff INDUSTRIAL 5500 [roleet} ™~ Grouos
NON-INDUSTRIAL 5400 |°rO°Ps| | . Resions P
TRAINEES & ] T
APPRENTICES 280
MANAGEMENT 10 Groups Districts
11250
\ _— | |
Power
The electricity supply network Stations Shops

comprises 76,000 km of overhead
lines and underground cables, . _
together with 50,000 transforming points

Figure 12.2

Eastern Electricity Becard organisation
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Layout planning may be divided into four basic stages

data collection; analysis of information; diagrammatic

representation of relationships; and the translation of

the diagrams into the final layout.

Data collection usually entails some form of survey.

The items covered include:

(i) the main organisation and its departmental functions
(ii) activities within departments
(iii) group working

(iv) each individuals (or groups) activities, including
basic space allocation, equipment and furniture

requirements, etc.

(v) communications - personal, telephone, and paper flow
patterns
(vi) storage requirements - personal, dgroup, central

file, archives.

Because of very strict time constraints and important
physical restrictions a number of a priori decisions

. . en-plan
were made. The "reanimated" office was to be op p



EXAMPLES OF USE Page 12-300

and the major departments were to be left as the main
functional divisions. This last constraint 1is quite
reasonable when the physical problems of reorganisation
are considered. The Chief Accountant's Department
handles the billing of 2.5 million consumers and so
utilises much heavy mailing equipment. The Management
and Computer Services Department is obviously affected
by the position of the computer machine room, which is
fixed. The other major decision was that the building
design (survey of space, services, etc.) should be
carried out at the same time, and in parallel to, the
space data collection and planning. The flow chart of
the space planning study is shown in figure 12.3. It
was agreed that the use of MAGIC should be to determine
optimum arrangements in the form of "Salisbury Plain"
diagrams and the detailed group and zone layouts would
be carried out manually. The outline zone layouts of

the building as existing are shown in figures 12.4 to

12.9.
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12.2.1 The Activity Survey

The Chief Accounts Department and the Management and

Computer Services Department were each surveyed

seperately. A matrix of interrelationships for each

department was drawn up, and individual activity
information on space requirements, storage, equipment,
etc., collected. This information is suminarised here:
full details are to be found in Bridges (1978). A

master activity matrix was prepared for each department
and activity data sheets compiled. Figure 12.10 shows
the matrix for the Computer Services Department and

figures 12.11 and 12.12 show typical data sheets.
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12.2.2 Analysis Of Chief Accountant's Department

The data matrix for the Chief Accountant's Department

was analysed by Hierarchical Cluster Analysis and

Nonlinear Mapping.

The "best fit" dendrogram was produced by the Group
Average method and 1is shown here as a straightforward
dendrogram plus a marked up version identifying the
major administrative divisions (figures 12.15 and
12.16). The activities are numbered 1 to 100. This
refers to the data matrix and are all as on that matrix
up to and including activity 81; activities 82 to 90 are
all grouped together as 82 - Computer Room. Activities
91 to 108 on the matrix are consequently renumbered 83 -
100. The matrix key is reproduced here, together with

the grouping order list (figures 12.13 and 12.14).

The bubble diagram is drawn once without area scaling
(figure 12.17) for the 100 activities wused 1in the
clustering analysis and once with area scaling (figure

12.18) for the complete 108 activities as shown on the

data matrix.
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PAIRINKG SECUINRCE
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Figure 12.14

Chief Accountant's Department, pairing sequence
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Chief Accountant's Department, bubble diagram
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Figure 12.18
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Chief Accountant's Department, bubble diagram (with are
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12.2.3 Analysis Of Management And Computer Services Dept.

There are four different analyses of the organisational

structure. Although all four are calculated differently
there is é large amount of agreement between them, thus
indicating some underlying structure in the data. 1In
each case (except for the analysis into seperate groups
which is self-explanatory) a possible interpretation is
marked up on the printout. These interpretations have
been made solely on the computed data without reference
to the job title 1list, and thus represent the actual

relationships hidden in the data and not necessarily the

ones which are believed to exist.
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EXAMPLES OF USE

Figure 12.20

Management and Computer Services Dept.,

MANAGEMENT AND CCVPUTER SERVICES
DATA ¥ATRIX

Page 12-333

BE Chief Cffiecr
2 Private Secrefary
b) Work Study Section Heed -
L Work Ztudy Senior Engineer
5 work Study Teanm 14
6 Work Study Tean 2
7 foric Study Tesm 3
b Wiork Study Team 4
9 wWork Study Teanm §
10  Operational Pesearch Section Haad
11 Operational Resesrch Senior Engineer
12 Cpzrational Recearch Teanm ¢
13 UOperztional Rescarch Tean 2
1h  Crganisaticn & #ethods Soction Head
15 Organisation & Methsds Sanior Assistant
16 Crgznisation & MYethods Team 1
17 Planning & Prograznaing Secilon Haad
18 Chilef Systems Analyat
19 Feasibility Studies Tean
20  Systems Developrment Tean
21 Srsiens Maintenance Tean
22 Da ta 3=zse Specialist
23 Chiel Prograrcrer
24  Billing & Enginesring Team
25 Fayroll Tean
26 Coma2rcial % Suppliea Tean
27 goftware Tea2n
28  Expenditure Tean
29 Adminiatration
32 Centzal Tiling
‘131 TSping Pocl .
J2 LDuplicating
33  Photo;raphle / Draxing Office )
34 Printinz Unit i
35 Confernnce Lirge 6¢
3¢  Coafarence Small ée
37 lLibrary
33 Statisrery Ctam

activity list
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PAIRING SEQUENCE
ITEM JOINS ITENM #T  DISTHNCE

24 26 0.487
) 7 0.513
S 6 1.246

14 15 1.267

a4 e? 1.273

c4 a5 1.463

14 15 1.538

18 22 1.652

c0 21 1.678

23 24 1.898

18 19 2.100
S 8 2.154

35 36 2.345

21 32 2.368

s e3 c.444
4 S 2.482

1?7 18 2.557

ic 13 2.565

33 37 €.555

29 c8 c.811
4 14 2.544

30 33 2.922
c 29 2.974

17 2o 3.910

10 12 3.256
1 35 3.311

30 34 3.315
1 31 3.592
3 10 3.634
2 3 3.686

11 39 3.83S

j 17 38 4.ec

| 9 11 4.373

l 3 17 4.565
2 9 4.371
1 2 6.036

FIT IS 70.X ACCURATE

Figure 12.21

Management and Computer Sepvices Dept., pairing sequence
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CAO ¢ "ANAGEMENT AND COMPUTER SERUVICES
" RELATIONSHIP UITH 3 GROUPS

CLUSTERS KERSED AT THIS ITERATION: 1 AND 3
CLUSTER KEMBERS
1 117181920 21 22 23 24 25 26 27 28 31 32 35 36 38

2 2 3 4 5 6 7 B1012 13 14 15 16 29
3 9 11 30 33 34 7

Figure 12.24

Example of "seperate groups" output
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. Discrete Groupings

Page 12-23338

Maximum of 13 groups isolated as follows

Group No.

1

0 N O

9
10
1
12

13

Reducing the number of groups one by one we obtain the following.

First groups 11 and 13 join together.

members

2, 4,5,6,7, 8

10

38

1

3, 12, 13, 14, 15, 16, 29
20, 21

1, 31, 32, 35, 36
30, 33, 34, 37
17, 18, 19

9

24, 25, 26, 27
22, 23

28

28, Group 13 ceases to exist and all others remain unchanged.

Group 11 becomes 24, 25, 26, 27 and

Next group 6 joins group 12, but items 22 and 23 are also reallocated to grougs

9 and 11 respectively.

Group No.

- O 0 OO~ O 1 W N e

s s

Next groups 6 and 11 join, and item 20 moves from group 6 to group 3.

This leaves the following situation.

members

2, 4, 5,6,7,8

10

38

11

3, 12, 13, 14, 15, 16, 29
20, 21

1, 31, 32, 35, 36

30, 33, 34, 37

17, 18, 19, 22

9

23, 24, 25, 26, 27, 28

2 and 5 then join so with 9 groups we have:

Ficure 12.25

Summary of seperate groups output

Groups



EXAMPLES OF USE p - R
age 12-339

Group No. members

—

2, b, 5,6, 7,8
3, 10, 12, 13, 14, 15, 16, 29
38
By
21, 23, 24, 25, 26, 27, 28
1, 31, 32, 35, 36
30, 33, 34, 37
17, 18, 19, 20, 22
9

W 00O~ O 0 Bw N

Groups 4 and 7 join next (causing groups 8 and 9 to be renumbcred 7 and 8).
Groups 3 and 5 then join to leave:

Group No. members
l 2’15)516’7’8
2 3, 10, 12, 13, 14, 15, 16, 29
3 21, 23, 24, 25, 26, 27, 28, 38
4 11, 30, 33, 34, 37
5 1, 3%, 32, 35, 36
6 17, 18, 19, 20, 22
7 9
Groups 4 and 7 join next, then groups 3 and 6. ltem 17 moves from cluster 3

to cluster 5, so we have:
Group No. members

! 2, 4, 5,6,7,8

2 3, 10, 12, 13, 14, 15, 16, 29

3 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 38
4 9, 11, 30, 33, 34, 37

5 1, 17, 31, 32, 35, 36

Next groups 1 and 2 join and item 10 moves from group | to group 9. Groups
2 and 4 then join and force item 10 back into group 1.  So the situction is

Group No. members
] 2,3, 4,5,6, 7,8, 10,12, 13, 14,15, 16, 29
2 1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
31, 32, 35, 36, 38
3 9, 11, 30, 33, 34, 37

Finally groups 1 and 3 join together.

Figure 12.25

Summary of seperate groups output (continued)
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P

C40 3 BRUACEYINT exD COMPUTER SZRVICES

Figure 12.26

Management and Computer Services Department
bubble Jdiagvam
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CAQ : MANAGEIENT £ND COMPUTER SERVICES

Figure 12.27
Management and Computer Services Department

annotated bubble diagram
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The reordered matrix (figure 12.19) simply attempts to

shuffle the list order of the elements to bring together
the associated activities to push the zero elements (or

unrelated activities) out to the corners. By examining

the matrix and isolating blocks of 1, 2, and 3's groups

of related activities can be identified. One possible

grouping is identified on one of the printouts.

The hierarchical tree or grouping diagram (figure 12.22)
shows a list of the 38 activities across the top of the
page. Pairs of activities are then successively Joined
together; the nearer the top of the page the Jjoining
occurs the more the activities have in common. On one
printout (figure 12.23) the more obvious groups have
been identified; these groups compare very well with the
"seperate groups" analysis showing 9 groups (figure
12.25). One further important point 1is the very
striking division into two seperate hierarchies (shown
divided by the dashed line). This division is confirmed
by the identical splitting of the activities into two

groups by the seperate groups analysis.

The bubble diagram (figure 12.26) is open to a number of

interpretations. The one shown (figure 12.27) is bascd



EXAMPLES OF USE Page 12-343

on comparisons with other analyses. Groups contained in

larger groups are indicated by the concentric circles.
The other lines are there +to suggest that activities
(1,3,10) and (31,32,35,36) have links to both sets of
groups outside the lines. Thus two groups are again

identified Dbut with mutual links to commbn services and

chiefs of staff.

Further uses of the data analyses include identifying
the weak 1links for the splitting of activities in
different offices or on different floors. The areal
implications of the different groups in the seperate
groups analysis could br calculated and compared with
available floor areas. If the result is too large or

small it is cnly necessary to look at what happens with

more or fewer groups as required. In doing this
exercise it is wuseful to keep referring to the
hierarchical analysis to ensure that no important

(high-up) link becomes accidentally seperated.
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12.3 POE OF GENETICS BUILDING EDINBURGH

The MRC facilities are spread over four sites at the

Western General Hospital (figure 12.28).

1. Animal House. The MRC have a 2/5 share, with the

University and the NHS taking the remainder.

2. Radiotherapy (West Building). A variety of MRC work

is carried on in the radiotherapy wing of the main

hospital.

3. 1964 Building (Centre Building). The Experimental

Studies Section i1s housed here.

4. MRC/Human Genetics (the study building) .
Cytogenetics and pattern recognition work is located

here.
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12.3.1 The Tasks And Aims Of The Unit

The main work of the unit is the sﬁudy of chromosome

variation and its consequences in man. This work is

organised under the supervision of a Director, into five

main research sections as follows.

12.3.1.1 Cytogenetics - The general aims of the section
are: to ‘establish the incidence and nature of "normal"
chromosome variation and of constitutional anomalies in
human populations and (in collaboration with the
Clinical Studies Section) to define the Dbiological,
clinical and social implications of these variations.
In practice the work of the section is loosely orgenised

into four groups:

- a group that is largely concerned with population
cytogenetics, family studies including work on linkage
and polymorphisms and studies on the development and
application of new techniques for looking at

chromoscmes.

- a group that is concerned with the clinical and
psychological study of the chromosomally abrnormal

children identified in the Unit's earlier newborn baby

studies.
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- a group that is concerned with cytogenetic aspects of

reproductive biology.

- a group that is largely concerned with the cytogenetic

and allied effects of environmental mutagens.

12.3.1.2 Director's Section - This is a small section
which comprises a number of service groups, including
the Unit Cytogenetics Registry, Photography, Electron
Microscopy, and one research group - the molecular
cytogenetic group. The Cytogenetics Registry acts as
the repository for cytogenetic and clinical data for the
unit. The Electron Microscopy group is involved in

joint projects with the Cytogenetic section.

12.3.1.3 Cinical Studies - This is also a small section

and its general aims are: to identify and establish the
prevalence of chromoscme abnormalities in various
populations, 1in collaboration with the Cytogenetics
Section; to undertake clinical correlations of
chromosome abnormalities and the pathogenesis of
associated diseases; and to provide a specialised

service for family "follow-up" genetic studies and for

the collection of blood and biopsy specimens for the

rest of the Unit.
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12.3.1.4 The Pattern Recognition Section - This

sections concern is with research and development in the

field of instrumentation for automatic location

1 n,
identification and measurement of cells, chromosomes,
and similar microscopic objects. The section also has a

substantial service commitment to pattern measurement,
statistics, computer programming and operation, and

electronic and maintenance work.

12.3.1.5 Experimental Studies - This section is mostly
concerned with the malignant transformation of human
cells, and in particular lymphoid cells; genetic aspects
of the immune response; and human somatic cell genetics.
A small group have an active programme in studying
cell-cell interaction in vitro and in vivo, as well as
investigating organo-genesis 1in early embryos. The

section also provides a general tissue culture service.

12.3.2 sStaffing

The formal staff organisation is summarised in figure

12.29.
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Formal Staff Organisation
Unit Director
(overall supervision)
Section Location S& RO VS T
Cytogenetics 4 . 14 *  12(5Pt)
Directors 2,3,4(a) 6 - 12
Clinical Studies 3 8(4Pt) - 8
_Pattern Recog. - 4 6(lpt) - 8(ipt)
Exp. Studies 3 12(2Pt) - 11

Notes

Director's Unit
Activities carried out in study building -
Photographic Unit - 3T

Administration & Maintenance staff in study buxldmg
Admin -7 AO (2Pt)
Maintenance - 5 MO (1Pt)

Total MRC staff in study building: Director plus 30 S &
RO (1Pt); 1 VS; 23T (6Pt); 7 AO (2Pt); 5 MO (1Pt). Total
67 people (10Pt).

Key to abbreviations:

S & RO Scientific and Research Officer

VS Visiting Scientist

T Technician

AO Administration Oificer
MO Maintenance Officer
Pt Part-time

Figure 12.29

Staffing
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12.3.3 Communications Interaction Analysis

The previous section has defined £he "formal" staff

organisation of the unit. All of the following analyses
attempt, in different ways, to discover the actual
communication patterns and work groups operating in the
building. The same analysis is also applied to the
Brief information to compare actuality with what the

architects may have been able to analyse during their

sketch design.

The first analysis is produced from survey returns on
the form illustrated in figure 12.30. Here individual
workers are asked to define those individuals they need
to liaise with during their work. By an analysis of
this information the formal organisation can be broken
down into each individual's communication patterns,
which are then expanded into task related groups, and
then shown aggregating into the complete research unit.
These relationships are presented diagrammatically in
the following pages, and can be read as the formal
inter- and intra- departmental links actually existing

(as opposed to the formal organisation supposed to

exist) within the organisation.
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Due to the survey sample not all individuals are

represented, but typical individuals from each group are

defined by their Jjob titles and room numbers. The

digrams are generated by each individual describing
those other individuals he or she considers to be part
of their functional workgroup, or those individuals to
whom they give (or from whom they receive) instructions
relating to their work activity. The individual work
groups are finally joined together to show the complete
departmental étructure. In the individual work-unit
diagrams (figures 12.31 to 12.53) an arrow indicates the
direction of information flow (a double-headed arrow
thus signifying information passing both ways). 1In the

departmental diagram arrow heads are omitted as

virtually all links at this level are two-way.
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The individual diagrams indicate a very fragmented

organisation with little interaction hetween individuals

working on different projects. The combined diagram

(figure 12.54), showing the departmental organisation,
indicates four major groupings centred around rooms 103
and 112 as the stores and maintenance functions:; room

329 as the cytogenetic section; and room 123 as

the
pattern recognition section: this compares very well
with the formal organisational divisions. The only

members of the Director's Unit in the study building
(the photographic unit) also appear quite distinctly

located (rooms 331 and 332).

The final figures (12.55, 56, 57) in this section map
these individual links onto plans of the study building.
Lines indicate communications between linked rooms; not

all rooms are included in these linkages due to the

nonavailability of staff at the time of the surveys.
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Communications analysis: survey forms
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12.3.4 Communication Analysis

The perceived formal links just defined are not, of

course, the only interactions operating in a building.

To determine actual communication 1links a survey of

written and person-to-person communications was
undertaken. This survey information was gathered on the
forms shown in figure 12.58 +to obtain data on

information flows and Jjourneys undertaken within the
department. The data were subjected to computer
analysis to obtain quantitative measures of functional
workgroups in the department, defined by their needs for

communication.

For comparison, the originally perceived needs of the
organisation as evidenced in the room data sheets
(forming part of the architects brief) were examined and
notes made of the specific required adjacencies.
Unfortunately the activity groups defined in the Dbrief

are not identical to the currently existing groups but
the analyses are comparable in general terms. Tt 1is

thus possible to check the building plan against the

brief and also, using the survey data, to se€e€ how the

current organisation fits in the building and compares

. . ined 1n
with its own perceived organisation as define

-~
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sections 12.3.1 and 12.3.2.

12.3.5 Analysis Of The Brief Information

Some 79 individual space titles were identified and then

inter - relationships specified in the Dbriefing

documentation (figure 12.59). In the course of the

design a number of these activities were amalgamated,
and, in terms of post-hoc analysis, a lot of the fine
segregation becomes irrelevant. For the purpose of
appraising the design as built it 1is possible to
aggregate the Dbriefing information into the following

twelve functional units:

1l Stores

2 Workshop Technicians

3 Maintenance Engineers

4 Pattern Recognition Researchers

5 Reception

6 Second Floor Laboratory Researchers
7 Canteen

8 Administration
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9 Senior Technician

10 Third Floor Laboratory Researchers
11 Laboratory Technicians

12 Photographic Technicians

The analysis of this data is shown here in two ways.
The first of these, figure 12.60, shows a nonlinear
mapping analysis representation of the adjacency matrix
in the form of a bubble diagram. Distance between
bubbles is proportional to the need for association
defined in the brief. Activities shown as close
together in the diagram should be close together in the
building plan derived from the brief. The second type
of analysis, shown in figure 12.61, is a tree-diagram or
dendrogram produced from a hierarchical cluster analysis
performed on the data. This diagram is read from the
top downwards - activities 2 and 4 are the most closely
related, then activities 3 and 5, and then 6 and 10.
Activity 7 then joins 3 and 5, and soO on until all the

activities join together to form the complete

organisation.
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Specified inter~-relationships from MRC brief (continued)
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Bubble diagram of brief data
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These diagrams indicate a requirement in the brief for a
close connection between activities 2 and 4 (workshop
technician and pattern recognition research), activities
6 and 10 {the laboratories) and activities 8, 9, 11 and

12 (administration, senior technician, laboratory

technicians, photographic technicians). Activity 7
which the bubble diagram shows as identical to 8, 9, 11,
and 12 is the cantéen. In terms of the job functions
for the canteen staff this placing seems reasonable.
All of +these groupings are mirrored in the current
organisation and to a large extent successfully

incorporated into the building design.

12.3.6 Analysis Of Survey Data

Three types of analysis were carried out on the survey
data; nonlinear mapping and cluster analysis as before,
with the addition of Euclidean <cluster analysis to
determine the discrete groupings in the organisation. A
summary of the survey data is shown in figure 12.62.
This shows down the left-hand side the survey sample of
22 individuals who logged all incoming and outgoing
communications during the survey period and, along the
top, the locations (in the form of room numbers) with
which they communicated. In each square under these

room numbers the top figure represents the number Of
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communications received from the occupant of that room
4

whilst the lower figure represents the number of

communications issued to the occupant of that room.

The following output from the computer analysis
represents the organisation in a number of. different
ways. The bubble diagram (figure 12.63) attempts to
give an overall picture. Bubble size 1s not
significant, but the distance between bubbles represents
strength of communications between activities: closely
related individuals (i.e. activities with large numbers
of communications) are shown as closely related bubbles.
To represen: such a complex web of communications in a
two-dimensional diagram obviously requires some
compromise. This diagram is the best fit to all of the
communications shown in the survey data summary, but to
obtain detailed information on the strength of links it

is necessary to refer to the next diagram (figure

12.64).
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For comparison with the perceived organisation the
individuals in this analysis compare as follows:

Activity

Stores technician
Workshop technician
Mechanical engineer
Technician '
Scientiiic Officer (PR)
Research Officer (PR)
Receptionist
Scientific Officer (PR)
Canteen

Research Officer (C)
Admin. Officer
Research Officer (C)
Senior Technician
Scientific Officer (C)
Research Officer (C)
Scientific Officer (C)
Research Officer (C)
Laboratory Technician
Laboratory Technician
Scientific Officer (C)

Photographic Technician

Figure 12.65

Room No.

103
106
112
115
124
126
200
208
210 .
216
222
304
305
307
309
317
318
319
320
328
331

Individuals activity and room number key
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The hierarchical cluster analysis attempts to show

strength of relations between individuals. 1In the tree

diagram in figure 12.64 each individual is represented
along the top of the tree by their key number (sece
figure 12.65 for key numbers of individuals). The
diagram is then read downwards, the most closely related
individuals being linked in the diagram nearest the top
(the 1individual level). Finally all individuals become
coalesced into groups which eventually merge at the
bottom of the diagram (the complete organisation level).
Looking more closely we see activities 10 and 20 (the
canteen and laboratory technician) are the most closely
associated. The next closest link is Dbetween activity
15 (cytogenetics scientific officer) and the two
activities just merged together (10 and 20). The tabie
in the figure gives the pairing sequence in which the
individual activities group together, and the wnole

picture is represented diagramatically in the tree

diagram which is drawn to scale.

The third type of analysis, Fuclidean cluster analysis,
looks at the grouping of activities in a different way

(figure 12.66). The hierarchical cluster analysis

showed the way individuals join together to form group<,

which then join together to form the organisation s @
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whole. The Euclidean cluster analysis attempts to

identify distinctly seperate groups within the

organisation. The computer can find only six discrete
groups in the 22 activities included in the survey. In
other words if one were seeking to divide the

organisation into subgroups then these six groups are

the largest number of subgroups it is possible to divide

the organisation into without destroying important
communication 1links. In figure 12.€6 the bubbles are
very self contained with 1little interrelationship.

Successive 1illustrations (figures 12.67, 68, 69, 70)
then show the organisation divided into 5, 4, 3, and
finally, jﬁst 2 subgroups. In this analysis the bubble
size represents groupAcohesiveness. A large bubble thus
represents a distinct group which 1is only 1loosely
~interrelated internally, and a small Dbubble signifies
tight intragroup relationships. The distance betwcen
bubbles represents relationships in the same way as in
the previous diagrams. The group membership is shown in
tabular form on each printout. Throughout all of the
Euclidean cluster analysis output groups are tightly

cohesive and independent of each other.

Looking at each of the printouts in  turn, the

interpretation of the first output (with 6 groups) 1is:
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Group 1 - activities 10, 11, 15, 18, 19 20 0s

Roughly based around a cytogenetics section workgroup.

Group 2 - activities 3, 13, 16, 17, 21. Another

cytogenetics workgroup.

Group 3 - activities 2 and 6. Pattern recognition
workshop.

Group 4 - activities 8, 12, 14. Administration.

Group 5 - activities 1 and 4. Stores and maintenance.
Group 6 - activities 5, 7, 9. Pattern recognition
workgroup.

At the next iteration groups 5 and 6 merge, showing the
strong connection between the stores (particularly) and
the pattern recognition groups research. Next groups 1
and 2 merge, showing the whole cytogenetics wunit
seperate from the rest of the organisation. Activity 5
(PRSO) moves from one pattern recognition workgroup to
the other. Then, with three groups a further
redistribution cccurs, showing the three main functional

groups very distinctly as group 1 cytogenetics, group 2

pattern recognition, and group 3 admipnistration. In the

final printout with just two groups the scientific staff



EXAMPLES OF USE Page 12-379

are shown as being quite distinct from the

administrative staff.
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Seperate groups analysis of survey data - 6 groups



: Q
EXAMPLES OF USE Page 12-381

AN

A e iy
[KESOED AT T3 ITCRATION 6 a2 8

| Saiagee
4

P, o

®
®

GENETICS EUILDING, EDINBURGH
RAES

STURE

W.JEC ,
M.ELG y
TECH

€0

€0
RO
RECEP
1]

18 CANT

FO
12 25AIH
13 RS

VONANE W™

Figure 12.67

Seperate groups analysis of survey data - 5 groups
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Seperate groups analysis of survey data - 3 groups
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Having worked through all these analyses it is
constructive to reconsider them in conjunction. The two
forms of cluster analysis particularly help in the
interpretation of the initial bubble diagram. Looking

again at the tree diagram (figure 12.71) the three main
groups are easily identifiable. The breakdown cf the
administration group into the storeman and technician
and the more exclusively deskbound jobs of
administration officer, reception and chief technician
is clearly shown. The two groups 1in the pattern
recognition group and the cytogenetics group are again
easily seen, as is the final division into scientific

and non-scientific staff.

The bubble diagram emphasises the very segmented nature
of the organisation with no easily discernable pattern.
However, in the 1light of the other analysis the
groupings become more apparent and are shown in figure

12.72.
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As different data were used to obtain the diagrams of

perceived interrelations, brief analysis interrelations,

and actual interrelations as surveyed, cross comparisons

are difficult to make. However the overwhelming opinion

must be that the main functional units defined in the

brief have remained constant. Provided facilities are

available for their own specialist work the individuals

concerned show little need for interrelations with other

groups or any further support from the building.
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CHAPTER 13

CONCLUSION

13.1 SUMMARY

The thecretical basis of a statistical approach to
problem structuring has Dbeen established and its
application shown in an architectural example. * The
embodiment of the techniques into a computer program
with a sophisticated user interface has demonstrated
that these advanced techniques may be made available for
use by "mathematically naive" users. The provision of a
range of complimentary techniques enables a number of

insights to be gained into the data structure, defining

its overall interrelationships (nonlinear mapping,
principal co-ordinates analysis), its discrete
components (Euclidean cluster analysis), and its

hierarchical structure (hierarchical cluster analysis).
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13.2 POSSIBLE EXTENSIONS OF THE WORK

The number of technigues which may be brought to bear on

this problem obviously include more methods than have
been discussed here. The discussion has been
deliberately constrained to keep the size of the thesis
within reasonable bounds, bu£ the modular nature of

MACIC will enable further techniques to be added as and

when they are required.

One of the more interesting developments may be to
extend the range of classification technigues to include
non-exclusive (overlapping) techniques. MAGIC indicates
"shades of classifications" by presenting different
analyses which mnay be compared, thus enabling
alternative possible structures to be identified. The
mapping techniques, whilst presenting an overall
picture, enable groupings to be identified by eye and
possible overlapping clusters or alternative
classifications to be evaluated in conjunction with the
clustering output. However, in some circumstances, it
may be considered inappropriate to insist that an object

should belong to only one group and the incorporation of

a non-exclusive classification technigue would then be
)

desirable.



CONCLUSION Page 13-391

There is a growing body of theory on the subject of

overlapping classifications. One of the

~

major
contributions is by Jardine and Sibson (1968). They
describe a sequence of clustering methods which they
call "beta dendrograms"; however, the algorithm they
describe for obtaining the J, clusters makes heavy
demands on computing time, and, additionally, the
results are very difficult to assimilate for larger data
sets. At the mcment it seems that the most feasible
interactive use of this technique would be the post-hoc
analysis of a small data set extracted from the complete
data set by, say, the Euclidean cluster analysis already

in MAGIC.

Another technique which attempts to incorporate objects
whose group membership may be variable 1is fuzzy
clustering. The concept behind this approach is

relatively simple: a probability dénsity function P(x)

is assumed known, P(S,|x;) then denotes the "degree of
belongingness" of the vector Xx; to the <class Sp.
However, as the approach seeks to optimise an

intuitively derived criterion a number of statistical
problems arise in comparing alternative solutions. More

recently attempts have peen made to incorporate a fuzzy

clustering concept into the sum of squares clustering
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criterion, but until some fundamental mathematical

problems have been solved any development for

incorporation within MAGIC must be viewed with caution

One further interesting extension of the <classificatory

procedvres would be constrained classification. If one
has predetermined requirements (or external information
which makes the imposition of constraints appropriate)

then it may be of use to be able to constrain the set of

allowable classifications.

13.3 FURTHER APPLICATIONS

The examples of the application of MAGIC described here
are in the context of layout planning and post-occupancy
evaluation. The sophisticated multivariate clustering
.techniques incorporated in MAGIC are, however, capable
of dealing with a much broader range cf general
analysis. For example, in the subject area of building
costing, MAGIC has already been used to analyse historic
cost data to find the major cost determinants, which are
then used to predict capital «costs of similar new
buildings. In a social science applic§tion MAGIC has
been used to' analyse survey data collected over a wide

range of incompatible measures (age, occupation,
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address, etc) and sensibly analysed what appeared,

previously, to be quite intractable data. It is hoped,

therefore, that MAGIC will be of wuse in almost any

situation where someone who knows a lot about the data,

but 1little akout statistics, wishes to subject

multivariate data to exploratory data analysis. The
emphasis on the use of visual displays to reveal the
structure of the data helps the user insofar as he may
concentrate on the interpretation of the picture in
terms of his application, rather than on the
interpretation of abstract statistics. To the extent
that there 1is an isomorphism between the elements and
interrelations of the data and the representation spaces
via the intermediary of an eaeppropriate set of
transformations in data analysis then the task of

interpretation is made that much easier.
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