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Abstract

In this thesis optimal analytical controls derived using the framework of geometric con-

trol theory are used to plan motions for real engineering systems, and their performance

assessed.

Beginning with the nonholonomic wheeled robot on the 3-D Special Euclidean group,

the co-ordinate free Maximum Principle of optimal control is used to create a kine-

matic motion planner via parametric optimisation. The reachable sets of the planner

are investigated, and an obstacle avoidance framework is created and demonstrated.

The practical applicability of this motion planner is assessed in both the unit speed

and arbitrary speed cases.

Subsequently, the natural motions of an axisymmetric and asymmetric rigid body are

derived in convenient quaternion form, which is particularly suitable for practical imple-

mentation. The initial angular velocities of the rigid body are parametrically optimised

to produce attitude reference tracks for a small spacecraft. It is shown through compar-

ison with a standard proportional-derivative controller that the natural motions require

lower accumulated torque to track. Additional testing of the axisymmetric references,

which are comprised of simple trigonometric functions, found that the references can

be utilised in a “bang-off-bang” manner in low disturbance environments to save on

computation and control effort.

Next, the general solution to the optimal control problem of a rigid body constrained to

spin at a constant rate is derived. This takes the form of a Weierstrass elliptic function

which is impractical for motion planning. However, a particular case is identified that

is comprised of trigonometric functions and utilised to plan efficient motions for a spin-

iii



ning solar sail and compared in simulation to a pure spin benchmark. The geometric

references are found to limit the spacecraft body rates, while tracking requires lower

accumulated torque in most cases. Finally, an actuator study is carried out to identify

the technology requirements for reference tracking for a spinning solar sail.
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Chapter 1

Introduction

The Motion Planning Problem (M.P.P) for an autonomous system can be generalised

as the task of finding a feasible motion that carries the body under consideration from

configuration to configuration. Motion planning is a crucial part of many robotics

tasks, such as computing collision free paths for robot arms in assembly lines [1, 2] and

planning trajectories for simple car-like robots [3, 4]. Additionally, motion planning

is also becoming increasingly important in a number of other diverse areas including

guiding needles in neurosurgery [5], the design of artificial intelligence in computer

games [6] and for autonomous systems such as planning trajectories for Unmanned Air

Vehicles [7] and generating attitude control manoeuvres for spacecraft [8].

As a result of the breadth of applications, each with inherent system specific restrictions,

many differing approaches have been taken to solve the motion planning problem. For

example some systems may have poor sensing capabilities and so will have to operate

under large uncertainties [9, 10], while other systems may have limited actuation and

so are constrained to move along certain paths [11, 12].

However, there are three major challenges in motion planning for most autonomous rigid

body systems: planning with respect to nonholonomic (velocity) constraints; creating

optimal or near optimal paths and; computing paths which avoid forbidden zones in

the configuration space. While many motion planning methods focus on only one of

these topics, the complexity of planning for constrained, multiple degree of freedom
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rigid body systems means that few methods exist which can satisfy all of these criteria

without excessive computation.

These challenges are discussed in turn in Sections 1.1-1.3 below, together with a review

of the work undertaken on each topic.

1.1 Nonholonomic Constraints

As discussed previously, a system may be subject to constraints which arise due to

limitations or inaccuracies in the system hardware. However, there are two broad

classes of constraints which occur in motion planning problems at a fundamental level:

holonomic and nonholonomic constraints. A holonomic system has constraints only

on the configuration variables: that is, it’s position and orientation [13]. Consider the

simple rigid 2D pendulum, shown below in Figure 1.1.

Figure 1.1: Simple 2D pendulum.

The positions and orientations through which the pendulum can move are limited by

the length of the pendulum. Therefore this is an example of a holonomic system [13].

A nonholonomic system, however, also has constraints on the velocities of the system.

A wheeled robot with wheels constrained to roll in the direction they are pointing (i.e.
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without slipping), such as that shown in Figure 1.2, is an example of a nonholonomic

system [14]. Additionally, this no-slip condition is imposed by the kinematics of the

system and so is referred to as a kinematic nonholonomic constraint. A constraint

imposed by system dynamics, such as the conservation of angular momentum of a

rotating rigid spacecraft with no disturbances, shown in Figure 1.3, is referred to as a

dynamic nonholonomic constraint [13]. Both types of nonholonomic constraint will be

considered in this thesis.

Figure 1.2: A simple wheeled robot model. Robot is constrained to move in the direc-
tion of the front wheels (Image Credit: yourduino.com).

While planning for holonomic systems is relatively straightforward, nonholonomic path

planning is more complicated as the velocity constraints render certain paths infeasi-

ble. In addition, the nonholonomic constraint cannot simply be integrated to obtain

a holonomic constraint. In this sense nonholonomic constraints are non-integrable [13]

and nonlinear control theory does not provide an explicit procedure for constructing

controls for nonholonomic systems.

Due to this complexity, linearisation has been employed to simplify the nonholonomic

path planning problem. However, Laumond [15] in the case of the simple wheeled

robot, and Leonard, for drift-free, left-invariant systems [16], show that linearisation

can render the system uncontrollable. Moreover, these methods are generally not opti-

mal or adaptable to obstacle avoidance.

While the use of linearisation to reduce the complexity of nonholonomic motion plan-
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ning has limitations, when the configuration space of the nonholonomic system can

be represented by a matrix Lie group the integrals of motion of the system can be

exploited to simplify the path planning problem [17]. A considerable body of work

exists on planning for nonholonomic systems using the Lie group approach. Bloch [13]

describes the formulation of controls for a variety of nonholonomic mechanical systems

while Selig [18], and Murray and Sastry [19] focus on nonholonomic problems in the

context of robotics. The general idea is to use control functions to generate motions

in the directions of iterated Lie brackets: that is, the system directions that are not

directly controlled. Murray and Sastry [20] extended the work of Brockett [21] on

steering drift free nonholonomic systems, and showed that for certain classes of system

the controls for generating Lie bracket motions take the form of sinusoids. A particu-

lar benefit of this method is the ability to satisfy orientation constraints by exploiting

the periodicity of the controls. However, to date the method has not been adapted to

include obstacle avoidance and is not optimal. Leonard [16, 22] also utilises periodic

controls in an averaging method for the unicycle robot and spacecraft attitude control

problem. Nonetheless, the method is not optimal and relies on local coordinate repre-

sentations, meaning that only small reorientations can be performed without excessive

computation.

Figure 1.3: A small Cubesat spacecraft in orbit (Image Credit: Clyde Space Ltd).

Meanwhile, numerical path planning techniques such as pseudospectral optimal control
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[23] and shooting methods [24] can also be adapted to include nonholonomic con-

straints. The constraints are specified as differential equations and numerical iteration

techniques employed until a solution is found which satisfies the boundary conditions

while respecting the nonholonomic constraints. However, the iterative nature of these

methods means that they can require significantly more computation than the simple

analytical methods produced by the Lie group approach.

Sampling based motion planning methods, such as the rapidly exploring dense trees

(RDTs) commonly used in robot motion planning, can be adapted to include nonholo-

nomic constraints through the use of motion primitives constructed using nonholonomic

path planning [14]. Meanwhile, approximation methods, such as those proposed by Lau-

mond [15, 25], first generate a holonomic path to the goal, ignoring the nonholonomic

constraints. A complete feasible path is then generated by discretising the holonomic

path into sub-goals, and joining these sub-goals via nonholonomic paths. However,

these methods can again be computationally intensive.

As a result of the need for a tradeoff between the simplicity of the Lie group approaches

and the optimality of numerical techniques, geometric control theory [17, 26] was in-

troduced as a new approach to the problem of planning for nonholonomic systems.

Geometric control theory was developed to address both the problems of controlla-

bility, through the use of Lie groups, and optimality, through the incorporation of

the Maximum Principle of optimal control. This approach has been used to generate

optimal controls for an aeroplane constrained to move forward at constant velocity

[27] and an autonomous underwater vehicle which cannot move laterally [28], where

helical trajectories were obtained for ascent/descent manoeuvres. However, the kine-

matic solutions were derived with respect to an ideal environment and the suitability

of the motions for practical implementation was not tested in practice in the face of

the limitations imposed by actuators, on-board computational capacity and a realistic

environment. In the case of the repointing of a nonholonomic spinning spacecraft [29],

where the references generated using geometric control theory were tested in simula-

tion, the analysis was limited to showing simple motion tracking and the method was

not rigorously compared to other attitude control methods. Thus the practical appli-
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cability of references generated using geometric control theory has not been thoroughly

investigated to date.

1.2 Optimal Control

While the nonholonomic motion planning methods discussed in Section 1.1 are effective

in finding a path between the start and end configurations, there are often multiple so-

lutions to these problems. Therefore it is often desirable when planning motions to not

merely satisfy conditions on state variables, but also to find the path which minimises

or maximises a certain performance metric. For example for a robotic arm operat-

ing under time constraints, an effective motion planning algorithm would compute the

shortest time path for the robot arm to reach it’s goal [30]. In contrast for a flexi-

ble structure such as the spin stabilised solar sail IKAROS [31], shown in Figure 1.4,

slow and smooth manoeuvres are necessary to limit oscillation of the sail membrane

[31, 32, 33].

Figure 1.4: IKAROS spin stabilised solar sail (Image Credit: JAXA).

The difficulty of constructing optimal paths for a system scales with the number of con-

straints placed on the system, and on it’s degrees of freedom. For example for a freely

manoeuvrable point mass in an obstacle free planar environment, a simple straight line
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path is optimal in terms of control effort and time. However, if the configuration space

contains obstacles or there are constraints on the orientation of the system then this

algorithm may no longer be optimal.

Consequently, this difficulty in constructing exact, optimal paths, has led to a large

number of non-linear numerical optimisation techniques being employed to generate

optimal trajectories. These methods generally reformulate the motion planning prob-

lem as a nonlinear programming problem, via discretisation of the optimal control

problem and approximation of the equations of the system. A numerical optimisation

method is then applied to minimise or maximise a specified cost function. These nu-

merical optimisation methods broadly fall into two categories: direct search methods,

such as the simplex based Nelder-Mead algorithm [34, 35], when derivative informa-

tion is not available and ; gradient based methods, such as Newton’s method, when

derivative information is known [35]. However, these methods do not always find the

absolute maxima or minima of the cost function and so more complex global methods

have been developed.

Figure 1.5: The International Space Station in orbit (Image Credit: NASA).

In recent years, considerable attention has focussed on globally optimal pseudospectral

optimal control methods [36]. In these methods the state of the system is approximated

at carefully selected discrete points, known as quadrature nodes, using time-dependent

global interpolating polynomials. These polynomials are then differentiated to give
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the approximate time derivative of the state, and used in conjunction with nonlinear

programming methods to find optimal solutions. The advantage of these methods is

that the careful choice of node points offers a faster rate of convergence than other

methods [37]. Pseudospectral methods have been used to plan motions for a range of

systems, from the attitude control of the International Space Station shown in Figure

1.5, to planning collisions free paths for nonholonomic wheeled robots [37]. However,

while these numerical methods are optimal with respect to the specified cost, they can

be computationally intensive in comparison to simple analytical Lie group methods.

Additionally, convergence can be difficult to achieve unless an accurate initial guess is

supplied.

As a result of numerical methods requiring an initial guess, they are often viewed as

being complimentary to other motion planning methods, such as Rapidly Exploring

Random Trees (RRTs). The RRT method, which incrementally builds a “tree” of

paths in the search space, is used to generate an initial guess [14]. The optimisation

method is then applied to improve the solution generated by the motion planner. For

example Kuwata [38] utilises a Rapidly Exploring Random Tree (RRT) method to gen-

erate the initial trajectory for a car-like vehicle in a real world environment, before an

optimisation algorithm is applied to smooth the trajectory. Additionally, optimisation

methods can be used in conjunction with RRT methods to bias the growth region to-

wards an area which minimises a specified cost function [39]. Other examples of this

include trajectory shortcutting [40], in which the initial trajectory is assigned a number

of nodes along it’s length, and algorithms check to see if these nodes can be connected

at any point in order to decrease the total distance travelled. However, these methods

are heavily reliant on heuristics - the application of human experience - to the problem,

which means that finding a suitable solution is not guaranteed.

While optimisation is often viewed as being supplementary to local path planners,

geometric control theory has shown potential in combining optimal control with non-

holonomic motion planning methods via incorporation of the Maximum Principle of

optimal control [41]. This enables controls to be derived which inherently respect the

necessary conditions for optimality. These controls can then be used to plan motions, or
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as an initial guess in a global numerical optimiser. However, in order to derive analyt-

ical controls using the geometric control theory framework a quadratic cost function is

employed. This cost function, although meaningful, may not always be the most prac-

tical, appropriate choice for the system under consideration. Nevertheless, the method

enables the reduction of a functional optimisation problem to a much simpler paramet-

ric optimisation problem. In this simpler context additional practical cost functions

can be assigned to the resulting subset of motions.

1.3 Obstacle Avoidance

The task of planning motions for nonholonomic systems, while difficult due to the

inherent velocity constraints, is further complicated in real-world environments by the

presence of regions which the system cannot pass through. For example a feasible

path for a wheeled robot must not cause a collision with an obstacle [14, 42], while a

spacecraft with delicate optical equipment, such as the Hubble Space telescope shown

in Figure 1.6, must manoeuvre while avoiding the Sun [43].

Figure 1.6: The Hubble Space Telescope (Image Credit: NASA).

The problem of motion planning in the presence of obstacles was considered by Nilsson
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[44] in 1969, when he introduced the concept of a visibility graph to find collision-free

paths for a robot amongst polygonal obstacles. The robot and goal configurations are

represented by points, and together with the polygonal obstacles they are assigned

vertices. An algorithm is then run to determine which vertices can be connected in

order to create a collision free path between the robot and the goal. A further planning

algorithm, such as the A∗ method proposed by Nilsson [44], is then utilised to find the

shortest collision-free path from the robot to the goal. Lozano-Perez and Wesley [45]

extended this work to create a complete path planner for polyhedral robots moving

amongst polygonal/polyhedral obstacles, while Laumond generalised the method for

nonpolygonal obstacles consisting of line sections and circular arcs [46].

Building on his visibility graph based complete path planner for

polygonal/polyhedral robots moving amongst polygonal/polyhedral obstacles, Lozano-

Perez introduced the concept of the configuration space [9] to robot motion planning.

Defining the configuration space of a system such as a wheeled robot or spacecraft as

the set of possible transformations (rotations or translations) that could be applied to

the system [9], obstacles or other undesirable states in the workspace map as forbidden

regions in the configuration space [14, 42]. Motion planning while avoiding these forbid-

den regions then reduces to finding feasible paths through the “free space”: that is, the

region of the configuration space free of forbidden regions. While many different meth-

ods of obstacle avoidance exist, most follow this simple notation as it enables problems

involving different systems to be solved using the same motion planning methodologies

[14].

Complete path planners, such as that proposed by Lozano-Perez, have the advantage

that the system is described without compromise. This means that if a solution exists,

the planner will find it, otherwise it will report that no feasible solutions exist [14].

Examples of complete motion planners include the work of Schwartz and Sharir on the

classical ‘Piano mover’s problem’, who consider a number of cases including a polygonal

body [47] and circular bodies [48] moving between polygonal walls. However, complete

path planners are complex and difficult to implement in practice [2, 14]. This led to

the development of simpler, heuristic planners such as the potential field method.
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Potential field methods assign an attractive potential to the goal configuration and a

repulsive potential to the undesirable areas of the configuration space [49]. They have

been used in applications such as path planning for robot arms, where a repulsive po-

tential is assigned to any obstacles in the configuration space [50], and the attitude

control of spacecraft, where the target attitude is assigned an attractive potential and

undesirable attitudes a repulsive potential [51]. The potential field methods can suffer

from problems of local minima, which can cause the planner to become “stuck” at

an undesirable point [49]. However, this can be overcome by adding a random-walk

element to the motion planning to escape the local minima [14, 49]. Additionally, the

potential field methods can demand excessive control effort [52, 53] making them far

from optimal if care is not taken to constrain the rate of the control. Furthermore, while

the potential field methods have proven effective, the reliance on heuristics means that

parameters have to be manually tuned for each application, leading to the development

of other sampling based methods for obstacle avoidance.

Sampling based methods, such as Probabilistic Roadmap Methods (PRMs), repeat-

edly sample configurations in the configuration space and exclude those which intersect

an obstacle [2, 42]. This results in a topological graph in the free space which maps

to the workspace, enabling collision-free paths to be planned. The construction of the

roadmap is performed during a pre-processing phase, before a local planner is employed

to generate feasible paths. These methods have the advantage of being able to plan

trajectories between multiple initial and final configurations using the same roadmap.

However, the lengthy pre-processing stage means these methods may be unsuitable

for fast implementation. As a result, less comprehensive but faster methods such as

rapidly exploring dense trees (RDTs) have been utilised. These methods attempt to

connect the initial configuration to any final configuration by incrementally construct-

ing a “tree” of paths, rather than mapping the free space in a pre-processing stage.

When the presence of an obstacle is detected, the edge stops at the boundary of the

obstacle and path generation is continued in a different direction. A further algorithm

is then run to choose the most suitable obstacle free path by joining the edges [14].

Additionally, the pseudospectral methods described previously can be adapted to in-
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clude simple obstacle avoidance by including the forbidden region as an additional path

constraint [37]. However, obstacle avoidance algorithms typically require feasible solu-

tions to be swiftly evaluated on-board, which may mean that these intensive numerical

methods are difficult to implement in practice. Moreover, in robot motion planning

these numerical algorithms must have their feasibility evaluated at each time-step, fur-

ther increasing the computational load [14].

Finally, despite showing promise in generating optimal analytical controls for nonholo-

nomic systems, the references derived using geometric control theory have to date not

been implemented in an obstacle avoidance algorithm.

1.4 Objectives of the Research

As a result of the need to find a compromise between the effectiveness of numerical

optimisation techniques and the simplicity of Lie group based motion planning for

nonholonomic systems, this work aims to extend the research carried out to date on

geometric control theory to assess if it can be applicable to practical problems and

improve, in some way, current motion planning problems. The aims of this work can

then be summarised as follows:

• To derive optimal, global motion planners for systems with dynamic and kine-

matic nonholonomic constraints using the mechanisms of geometric control the-

ory.

• To link the fields of geometric control, which to this point has been primarily

theoretical, and real engineering applications.

• To assess the practicality of geometric motion planning on Lie groups for space-

craft motion planning through numerical simulation and rigorous comparison with

other methods.

• To create a simple framework for obstacle avoidance within the geometric motion

planners.

14



1.5 Contributions of the Thesis and Relevant Publications

The following contributions have been made.

• The work first carried out by Biggs [54] on the use of geometric control theory

for nonholonomic robot path planning for a robot which moves at arbitrary speed

is extended. The properties of elliptic functions are explored to derive particu-

lar cases of the general solution, and the geometric meaning of the solutions is

investigated. The reachable sets of the method are defined and a simple obsta-

cle avoidance framework is detailed. Additionally, a motion planning algorithm

for the nonholonomic unit speed wheeled robot with drift is derived, and the

time-limited reachable sets investigated. Relevant publications:

– Maclean, C. and Biggs, J. D., “Path Planning for Simple Wheeled Robots:

sub-Riemannian and Elastic Curves on SE(2),” Robotica, Vol. 31, No. 8,

pp. 1285-1297, 2013.

• Novel analytical expressions for the time evolution of the quaternions of an ax-

isymmetric and asymmetric rigid body are derived via application of the mecha-

nisms of geometric control theory. The expressions are included in global motions

planners. These planners are assessed through rigorous numerical simulation in

a realistic environment and considering actuator constraints. The references are

compared to a conventional quaternion feedback controller in terms of accumu-

lated torque and computational efficiency, and an obstacle avoidance framework

is detailed. Relevant publications:

– Maclean, C., Pagnozzi, D. and Biggs, J. D., “Computationally Light At-

titude Controls for Resource Limited Nano-spacecraft”, In: Proceedings of

the 2011 International Astronautical Congress, Cape Town, South Africa,

2011.

– Pagnozzi, D., Maclean, C. and Biggs, J. D., “A New Approach to the So-

lution of Free Rigid Body Motion for Attitude Maneuvers”, In: European

Control Conference, Zurich, Switzerland, 2013.
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– Maclean, C., Pagnozzi, D. and Biggs, J. D., “Planning Natural Repointing

Manoeuvres for Nano-Spacecraft,” IEEE Transactions on Aerospace and

Electronic Systems, Accepted January 2014, In Press.

• The geometric motion planning method for a spin stabilised spacecraft proposed

by Biggs [29] is extended. The general form of the solution is derived, and the

case of Biggs shown to be a particular case of this. The references generated

by Biggs are rigorously tested in simulation for the first time via application

to a spinning solar sail. A comparison with pure spin benchmark references is

made to assess the performance of the geometric method in terms of accumulated

torque, and constrained repointing is investigated. The references are further

applied in simulation to the repointing of a nano-spacecraft, and compared to the

novel natural motion method derived in this thesis and a standard proportional

derivative controller. The axisymmetric natural motions are found to be a subset

of the geometric spin repointing method. An actuator study is carried out to

determine the technology requirements for tracking references for a spinning solar

sail. Relevant publications:

– Maclean, C. and Biggs, J. D., “Attitude Motion Planning for a Spin Sta-

bilised Disk Sail,” In: Proceedings of the 2012 International Astronautical

Congress, Naples, Italy, 2012.

1.6 Outline of the Thesis

This thesis is organised as follows. In Chapter 2 the theory behind motion planning

on matrix Lie groups is introduced, together with the framework of geometric control

theory which will be used in subsequent sections to derive optimal controls. Following

this, in Chapter 3, this framework is applied to the nonholonomic wheeled robot and

used to derive a simple kinematic motion planner. An obstacle avoidance framework

which exploits the reachable sets of the planner is described and an example given for

a circular obstacle in a known environment. The complexity of the motion planning
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is then increased in Chapter 4 by considering the repointing of a spacecraft subject

to a dynamic nonholonomic constraint due to the conservation of angular momentum.

The derived references exploit the natural motion of the spacecraft and are applied in

simulation, taking into account actuator constraints and environmental disturbances,

and are compared to a proportional-derivative controller benchmark. In Chapter 5

the previously derived references for the repointing of a spacecraft subject to a kine-

matic nonholonomic constraint on the spin rate are applied in simulation to a solar sail

spacecraft, and are compared to benchmark pure spin references. The method is addi-

tionally applied to the nano-spacecraft of Chapter 4 to provide a comparison with the

natural motion method. An actuator study is carried out to determine the feasibility

of tracking the reference motions using currently available solar sail actuators. Finally,

the outcomes of the thesis and areas of future research are detailed in Chapter 6.
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Chapter 2

Motion Planning on 3D-Lie

groups

In Chapter 1 it was stated that the configuration space of rigid body systems can be

represented by a Lie group. In this chapter the background theory on optimal kine-

matic motion planning for systems defined on matrix Lie groups is described. This will

be applied in the following chapters to develop motion planning algorithms which will

then have their practical applicability assessed. Kinematic systems defined on matrix

Lie groups, when lifted to their Hamiltonian form through the Maximum Principle of

optimal control, exhibit integrals of motion. These integrals enable the complexity of

the problem to be reduced, thus simplifying the process of deriving analytical optimal

controls.

Some preliminary definitions regarding group theory are stated before the concepts of

matrix Lie groups and their accompanying Lie algebra are introduced. Following this,

the matrix Lie groups which are of particular relevance to this thesis are presented:

the Special Euclidean group of the plane, SE(2) ; the Special Unitary group of com-

plex orthogonal 2 × 2 matrices, SU(2) and ; the Special Orthogonal group of 3 × 3

rotational matrices, SO(3). Subsequently, it is shown how matrix Lie groups and their

Lie algebras can be used to represent the kinematics of many practical engineering

systems. The planar wheeled robot and the rotating rigid body are given as examples.
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A quadratic cost function which minimises the control effort of the manoeuvres is de-

fined next, together with a description of how the Lie bracket can be used to determine

controllability. The Maximum Principle of optimal control is then stated and applied

to generate an optimal Hamiltonian based on the kinematics and cost function of the

system. Finally, the problem is lifted to the dual of the Lie algebra via the Poisson

bracket, yielding the Hamiltonian vector fields which in certain cases can be solved to

give the analytical optimal controls.

2.1 3D-Matrix Lie Groups

As stated in Chapter 1, the matrix Lie group setting lends itself naturally to non-

holonomic optimal control problems as the conserved quantities of the system can be

exploited to simplify the derivation of the controls. In order to understand the mathe-

matical theories utilised in the derivation of the kinematic optimal controls, some fun-

damental definitions from group theory and manifold theory are stated, before moving

on to discuss the particular cases of matrix Lie groups and Lie algebras.

Firstly, it is necessary to state the general definition of a group [13]:

Definition 1. A group is a set G, together with a map G×G into G (denoted g ◦ h)

which has the following properties:

1. Associativity:

g ◦ (h ◦ k) = (g ◦ h) ◦ k ∀ g, h, k ∈ G (2.1)

2. An identity element:

g ◦ e = e ◦ g ∀ g ∈ G (2.2)

where e is the identity element.

3. An inverse element:

g ◦ h = h ◦ g ∀ g ∈ G, h ∈ G (2.3)

The mapping G × G into G is referred to as the product operation of the group.
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Essentially this means that the product of two elements of the group is itself an element

of the group, and the group is said to be closed under this product operation. Thus

in order to identify a group it is necessary for elements of the group to have closure,

associativity, an identity element and a unique inverse.

A simple example of a group is the group of integers Z which for a, b, c ∈ Z are closed

under addition (a + b ∈ Z), satisfy associativity (a + (b + c) = (a + b) + c), has the

identity zero (a + 0 = 0 + a = a) and has a unique inverse (a + b = b + a = 0, where

b = −a).

It follows that a subgroup can be defined as:

Definition 2. A subgroup of a group G is a subset H of G for which:

1. The identity is an element of H

2. If h ∈ H, then h−1 ∈ H.

3. If h1, h2 ∈ H, then h1 ◦ h2 ∈ H.

Therefore H is itself a group. Subsequently, the semi-direct product which enables new

groups to be formed via the product of existing groups can be defined as:

Definition 3. Let G and H be groups. The semi-direct product of G and H, denoted

GsH, is the set of ordered pairs (g, h) with g ∈ G, h ∈ H, where the product of two

elements is given by

(g1, h1)(g2, h2) = (g1 ◦ g2, h1 + g1h2) (2.4)

An example of this is the Special Euclidean group of rotations and translations on a

plane, SE(2), which is the semi-direct product of the Euclidean plane, R2, and the Spe-

cial Orthogonal group of 2× 2 rotation matrices, SO(2). Additionally, mappings exist

between certain groups which enable elements of one group to be mapped to another.

This is useful as computations may be more easily performed on a particular group. For

example Klein [55] found that for a symmetric rigid body in a constant gravitational

field utilising the Special Unitary group SU(2), the set of 2× 2 complex unitary matri-

ces with determinant one, rather than the Special Orthogonal group SO(3), the set of
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3 × 3 orthogonal matrices with determinant one, as the configuration space simplified

the derivation process. These mappings are defined as:

Definition 4. Let G and H be groups. A map Φ : G→ H is called a homomorphism

if Φ(gh) = Φ(g)Φ(h) ∀g, h ∈ G. If the mapping is bijective (one-to-one and onto),

then Φ is called an isomorphism.

G and H are said to be isomorphic, denoted G ∼= H, if an isomorphism exists between

them. An example of this is SU(2) and the unit quaternions H. If the mapping Φ(gh)

is two-to-one, such that each element of G corresponds to two elements of H, then the

mapping is known as a double cover. This definition will be key to the discussion of

the relationship between the Special Unitary group SU(2), the unit quaternions H and

the Special Orthogonal group SO(3) in Section 2.2.4.

These definitions detail the basic theory behind groups as applicable to the work in this

thesis. Before proceeding to discuss matrix Lie groups, it is necessary to additionally

define a smooth manifold.

Definition 5. An n-dimensional smooth manifold M is a set of points together with

a finite or countably infinite set of subsets Uα ⊂ M and one-to-one smooth mappings

φα : Uα → Rn such that:

1. ∪αUα = M . Therefore the entire manifold can be covered by the co-ordinate

charts Uα.

2. For each nonempty intersection Uα∩Uβ, φi(Uα∩Uβ) is an open subset of Rn, and

the bijective mapping φα ◦φ−1
β : φ3(Uα∩Uβ)→ φα(Uα∩Uβ) is a smooth function.

3. The family {Uα, φα} is maximal with respect to conditions 1 and 2. Therefore the

definition of a manifold is independent of a choice of atlas.

The Lie groups which are the subject of this thesis are both groups and smooth mani-

folds, meaning that group operations are performed on a smooth structure. With these

preliminary definitions stated, some general definitions of matrix Lie groups, the Lie

algebra and it’s dual from Bloch [13] can now be introduced:
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Definition 6. A matrix Lie group, G, is a set of invertible n × n matrices that are

closed under matrix multiplication and that are a submanifold of Rn×n.

Following this, the Lie algebra, which are associated with the tangent space at the

identity of the Lie groups, can be defined:

Definition 7. A Lie algebra g, of a matrix Lie group G, is a set of n×n matrices that is

a vector space with respect to the usual operations of matrix addition and multiplication

by real numbers (scalars) and that is closed under the matrix Lie bracket operation [·, ·]

such that if X,Y ∈ g then

[X,Y ] = XY − Y X (2.5)

As Lie algebras are linear spaces they are often easier to perform computations on,

while they also contain information about their corresponding matrix Lie group. Thus

it is possible to ask questions of the Lie algebra, rather than the matrix Lie groups,

and the solution process is much simplified. The Lie group and the Lie algebra can be

related using the matrix exponential. One such method is the Wei-Norman approach

[56]:

Definition 8. Consider the Lie algebra g of a Lie group G with a basis A1..., A3. For

left invariant systems on 3D-Lie groups of the form

dg

dt
= g(t)

n∑
i=1

Ai (2.6)

where n ≤ 3 and g is an element of G, the Wei-Norman representation states that there

exists a neighbourhood of t = 0 in which the solution to (2.6) can be represented in the

form

g(t) = es1(t)A1es2(t)A2es3(t)A3 (2.7)

where s1(t), s2(t) and s3(t) are scalar functions of t.

The matrix exponential serves as the mechanism by which information is passed from

the Lie algebra, which is simpler to perform calculations on, and the matrix Lie group.
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Furthermore, as Poisson calculus will be utilised to derive the optimal kinematic con-

trols, it is necessary to introduce Poisson structures and the dual space of the Lie

algebra:

Definition 9. Let P be a manifold and Γ(P ) the set of smooth, real-valued functions

on P . The pair (P, {, }) is called a Poisson manifold if {, } satisfies:

1. Bilinearity. {f, g} is bilinear in f and g.

2. Anticommutavity:

{f, g} = −{g, f} (2.8)

3. Jacobi’s identity:

{{f, g}, h}+ {{h, g}, g}+ {{g, h}, f} = 0 (2.9)

4. Leibniz’s rule:

{fg, h} = f{g, h}+ g{f, h} (2.10)

These conditions make (Γ(P ), {, }) a Lie algebra. For left-invariant systems on 3D-Lie

groups, p̂ defines the mapping from the Lie algebra g to the dual of the Lie algebra g∗.

The dual space g∗ is a Poisson manifold and the Poisson bracket can be expressed in

terms of the Lie bracket as

{p̂(·), p̂(·)} = −p̂([·, ·]) (2.11)

where (·) ∈ g. This relation will be utilised in order to derive the Hamiltonian vector

fields which define the optimal extremal solutions. Moreover, it is appropriate to also

state a particular class of Lie groups which will be utilised in this thesis, in semisimple

Lie groups:

Definition 10. A Lie group G is said to be semisimple if it’s Lie algebra g is semisim-

ple. That is, if the Lie algebra is a direct sum of simple Lie algebras.

The integration procedure on semisimple Lie groups is reduced to solving a Lax pair

[17, 57] and hence is much simplified. This will be discussed in Section 2.5.3. The
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Special Unitary SU(2) and Special Orthogonal SO(3) Lie groups are semisimple, while

the Special Euclidean group of the plane SE(2) is not.

With the mathematical preliminaries defined, the structure of the matrix Lie groups

SE(2), SU(2) and SO(3) and their accompanying algebra are first discussed. These

3D-Lie groups will be utilised in the proceeding chapters in the derivation of motion

planning algorithms. In particular the mappings between SU(2) and SO(3) and the

unit quaternions, which are commonly used to represent the kinematics of spacecraft in

practical engineering problems, are discussed. Thereafter, the general kinematic repre-

sentation using the matrix Lie group approach is introduced. Finally, these concepts

are related to the specific matrix Lie groups SE(2), SU(2) and SO(3), and linked to the

real world engineering applications considered in this thesis in the form of the planar

wheeled robot and the free rigid body.

2.2 Examples of 3D-Matrix Lie Groups

In this section the matrix Lie groups which will be studied in this thesis are detailed,

and identified with the configuration space of real world engineering problems.

2.2.1 The Special Euclidean Group SE(2)

The Special Euclidean group SE(2), whose elements represent the configuration de-

scribed by an orthonormal frame attached to a Euclidean plane, can be used to rep-

resent the rigid body motion of planar systems such as the wheeled robot shown in

Figure 1.2.

Formally, SE(2) is the semi-direct product of Euclidean plane R2 and the Special Or-

thogonal group SO(2) of 2× 2 orthonormal rotation matrices. Thus, it is the set of all

3× 3 matrices of the form  Q(t) γ̄

0 1

 (2.12)
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where Q(t) ∈ SO(2) represents the rotational component of the motion, and γ̄ ∈ R2 the

translational component. The basis elements of the Lie algebra, se(2), of the matrix

Lie group SE(2) are given by

A1 =


0 0 1

0 0 0

0 0 0

, A2 =


0 0 0

0 0 1

0 0 0

, A3 =


0 −1 0

1 0 0

0 0 0

 (2.13)

Under the action of the Lie bracket, defined by [X,Y ] = Y X −XY with X,Y ∈ se(2),

the basis satisfy the commutative table shown in Table 2.1.

Table 2.1: Commutative table for basis on se(2)

A1 A2 A3

A1 0 0 −A2

A2 0 0 A1

A3 A2 −A1 0

Applying the Wie-Norman representation (2.7), it is found that

g(t) = eX(t)A1eY (t)A2eθ(t)A3 (2.14)

where g(t) is an element of SE(2). Therefore physically the basis represent the infinites-

imal motion of the planar rigid body in the translational (X,Y ∈ R2) and rotational

(θ ∈ SO(2)) directions.

2.2.2 The Special Unitary Group SU(2)

The special unitary group SU(2) is the set of all 2× 2 complex unitary matrices which

have determinant one. A complex matrix, R, is unitary if it satisfies the relation

R∗R = I where R∗ is the conjugate transpose of R and I is the identity matrix. The

25



elements of SU(2) are of the form

 z1 z2

−z̄2 z̄1

 (2.15)

with z1, z2 ∈ C and z̄1, z̄2 their complex conjugates such that |z1|2 + |z2|2 = 1.

The basis of the Lie algebra su(2) of the Lie group SU(2) are given by

A1 = 1
2

 i 0

0 −i

 , A2 = 1
2

 0 1

−1 0

 , A3 = 1
2

 0 i

i 0

 (2.16)

where i is the imaginary unit. Once again, under the action of the Lie bracket (2.5)

with X,Y ∈ su(2), the basis commute as shown in Table 2.2.

Table 2.2: Commutative table for basis on su(2)

A1 A2 A3

A1 0 A3 −A2

A2 −A3 0 A1

A3 A2 −A1 0

Physically the basis A1, A2, A3 describe the infinitesimal motion of the rigid body in

the roll, pitch and yaw directions respectively.

Note that the Special Unitary group SU(2) is isomorphic to the unit quaternions H.

The quaternions are the most commonly used kinematic representation of the attitude

of a spacecraft, as they are singularity free and only four differential equations must be

integrated, making them computationally light [32]. It follows that SU(2) can be used

to represent the attitude kinematics of a rigid body such as the nanospacecraft shown

in Figure 1.3, and mapped exactly to the quaternions as shown in Section 2.2.4. The

kinematics will be treated in Section 2.3.3.
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2.2.3 The Special Orthogonal Group SO(3)

The Special Orthogonal group SO(3) is made up of the set of 3×3 orthogonal matrices

with determinant one. Therefore the elements R ∈ SO(3) can be formalised as

SO(3) , {R ∈ R3×3 : RTR = I and det(R) = 1} (2.17)

where I is the 3× 3 identity matrix. The Special Orthogonal group SO(3) is a sub-

group of the Orthogonal group O(3), which contains all 3× 3 orthogonal matrices with

determinant equal to plus or minus one. While the elements of O(3) correspond to

combinations of rotations and reflections, elements of SO(3) correspond solely to rota-

tions. Consequently SO(3) can be thought of as the set of all 3× 3 rotation matrices.

The basis of the Lie algebra so(3) of the matrix Lie group SO(3) are given by

A1 =


0 0 −1

0 0 0

1 0 0

 , A2 =


0 0 0

0 0 1

0 −1 0

 , A3 =


0 1 0

−1 0 0

0 0 0

 (2.18)

The Lie algebra’s commutator is defined by (2.5) with X,Y ∈ so(3), satisfying the

relations in Table 2.3.

Table 2.3: Commutative table for basis on so(3)

A1 A2 A3

A1 0 A3 −A2

A2 −A3 0 A1

A3 A2 −A1 0

Using the Wei-Norman representation, (2.7), it follows that

g(t) = eϕ1(t)A1eϕ2(t)A2eϕ3(t)A3 (2.19)

where g(t) is an element of SO(3). Physically the basis represent the infinitesimal
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motion of the freely rotating rigid body around the ĵ body-axis by an angle ϕ1, the

ı̂ body-axis by an angle ϕ2 and the k̂ body-axis by an angle ϕ3. These angles are

conventionally referred to as pitch, roll and yaw respectively.

The pitch, roll and yaw rotation angles are part of a rotational set commonly known

as the euler angles. These consist of multiple different sets of three rotations which

rotate a body from an initial attitude to a desired attitude. The euler angles can also

be utilised to describe the configuration space of a rigid body. However, this kinematic

representation is inherently local and suffers from problems with singularities [32, 58].

The rotation matrix formed from (2.19) is equivalent to the ϕ3 ← ϕ1 ← ϕ2 euler angle

rotation sequence [58].

Rotation matrices on SO(3) can also be used to directly represent the kinematics of

practical engineering problems, such as the rigid body nanospacecraft shown in Figure

1.3, overcoming the singularities inherent in the euler angle representation. This will

be discussed in detail in Section 2.3.3. However SO(3) does not map exactly to the

most widely used attitude parameterisation, the unit quaternions H, as will now be

discussed in Section 2.2.4.

2.2.4 Mapping from SU(2) to SO(3)

It has been stated that the kinematics of a rigid body can be represented as quaternions

on H or equivalently using the Lie algebra of the matrix Lie group SU(2). This one-

to-one and onto mapping is known as an isomorphism. The matrix Lie group SU(2) is

isomorphic to the unit quaternions with F : SU(2)↔ H

F :

 z1 z2

−z̄2 z̄1

↔ z1 + z2 · j = q0e + q1î+ q2ĵ + q3k̂ (2.20)

defining the co-ordinate change. The complex numbers z1 = q0 + iq1, z2 = q2 + iq3 are

regarded in their quaternion form z1 = q0e + q1i, z2 = q2e + q3i. For more details of

this isomorphism see [17] pp. 169-171.

In most practical applications, the attitude kinematics of the spacecraft are parame-
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terised using the unit quaternions H as they are global, computationally efficient, and

singularity-free [32]. However as shown in Section 2.2.3 the rotational kinematics of a

rigid body can also be represented using SO(3), the set of rigid body rotation matri-

ces. On the Special Orthogonal group rotations are defined uniquely and globally [59],

whereas SU(2) is double cover of SO(3) [17, 60]. This means that there is a homo-

morphism F which maps SU(2) and SO(3) and which is two-to-one, rather than the

one-to-one and onto mapping between SU(2) and the unit quaternions H (2.20). This

also means that the Lie algebras of SU(2) and SO(3) are isomorphic via the relation:


0 −x3 x2

x3 0 −x1

x2 x1 0

↔ 2

 i
2x1

1
2(x2 + ix3)

−1
2(x2 − ix3) − i

2x1

 (2.21)

Therefore since there is a double cover of SU(2) on SO(3), and as SU(2) is isomorphic

to the unit quaternions, it follows that each unique rotation on SO(3) corresponds to

two sets of quaternions ±q̄. This ambiguity can present problems for some attitude

controllers when the attitude is parameterised in terms of quaternions, with a small

attitude error on SO(3) interpreted as a large error in H and resulting in excessive

control effort [61, 62].

In contrast, the use of rotation matrices on SO(3) enables the attitude kinematics to

be specified uniquely and globally. However, when SO(3) is used as the configuration

space a set of nine differential equations must be propagated [58]. For small spacecraft

with limited computational capacity, such as those considered in Chapter 4, this can

be prohibitively computationally intensive for on-board implementation. Consequently,

the four quaternion differential equations are generally preferred in practice [32, 58].

In addition to the computational simplicity of the quaternion representation, as stated

previously, Klein [55] discovered that for some systems simpler solutions can be ob-

tained when SU(2) rather than SO(3) is used as the configuration space. Therefore

as a result of the potential simplicity of utilising SU(2) to represent the configuration

space of the spacecraft, and the exact mapping to the computationally light quater-

nion representation, the motion planning methods utilised in this thesis use the matrix
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Lie group SU(2) to represent the kinematics of a rotating rigid body. This enables a

solution to be more easily derived on SU(2), then mapped exactly to H for practical

implementation.

2.3 Kinematic Representation Using Matrix Lie Groups

As discussed in Section 2.2, the position and orientation of many practical engineering

control problems can be expressed as nonholonomic systems on matrix Lie groups. This

enables the conserved quantities of the system to be utilised to simplify the process of

deriving optimal controls.

In this section, the general form of the kinematics on matrix Lie groups in terms

of the basis of the Lie algebra are first stated. Next, the specific examples of the

planar wheeled robot and the rigid body spacecraft are discussed, showing how their

configuration space can equivalently be expressed using matrix Lie groups.

2.3.1 General Kinematic Representation

From [13, 17, 28], the kinematics of driftless nonholonomic systems can be generally

expressed as

dg(t)

dt
= g(t)

n∑
i=1

ui(t)Xi (2.22)

where for the 3D-Lie groups considered in this thesis, i = 1, ..., n and n ≤ 3. The

curve g(t) ∈ G describes the motions of the system in the configuration manifold G,

while X1, ..., Xn are the arbitrary vector fields in the tangent space TG at g(t), denoted

Tg(t)G. The tangent space TG at the identity, I, is denoted TIG. When the kinematics

of systems are under consideration, the control functions, u1, ..., un, are generally the

translational or rotational velocities of the system. It follows that X1, ..., Xn ∈ Tg(t)G

are the controlled vector fields on the manifold G. Note that Equation (2.22) can be

modified for systems with drift by setting one of the controls u1, ..., un to be constant

apriori.

When G is a matrix Lie group and Xi are left invariant vector fields, the vector fields
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can be expressed in terms of the basis elements A1, ...An ∈ TIG of the Lie algebra g

to give X1 = g(t)A1, ..., Xn = g(t)An with An ∈ Tg(t)G. This results in the simplified

form of the kinematics:

dg(t)

dt
= g(t)

n∑
i=1

ui(t)Ai (2.23)

With the general kinematic representation using matrix Lie groups described, this

mathematical framework is now linked explicitly to the real world applications, in

the case of the planar wheeled robot and the freely rotating rigid spacecraft. This is

achieved by showing the equivalence between conventional kinematic representations

and the matrix Lie group approach. These kinematic representations on matrix Lie

groups will be utilised in subsequent chapters when deriving optimal controls for the

simple wheeled robot and rigid spacecraft using the mechanisms of geometric control

theory.

2.3.2 Wheeled Robot

The simple planar wheeled robot is chosen as the first example. This system will be

utilised in a kinematic motion planner, derived using the mechanisms of geometric

control theory, in Chapter 3. For now, the basic model of the system is stated together

with the matrix Lie group representation of the robot configuration space.

The wheeled robot model under consideration is shown in Figure 2.1. The distance

Figure 2.1: Wheeled robot model. Body axis is placed at centre of rear axle with x-axis
lying along centre line of robot.
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between the front and rear axles is given by L. The angle between the body fixed

x − y frame and the inertial X − Y frame is denoted by θ. A sliding constraint is

imposed by the assumption that in a small time interval dt the wheeled robot moves in

approximately the direction that the rear wheels are pointing [14]. This condition can

be written as the Pfaffian constraint

−Ẋ sin θ + Ẏ cos θ = 0 (2.24)

As in Choset [42] focus is placed on the position and orientation of the wheeled robot.

Therefore it is possible to eliminate the steering angle φ from the representation of the

configuration and treat it as part of the control. The control system is then described

by

Ẋ = u1 cos θ

Ẏ = u1 sin θ

θ̇ = u3;

(2.25)

where u1 and u3 are the controls in translation and rotation respectively.

The configuration space of the wheeled robot in Figure 2.1 can equivalently be described

by a curve g(t) ∈ SE(2) and expressed in matrix form using Equation (2.12) where the

rotation matrix Q(t) is given by

Q(t) =

 cos θ − sin θ

sin θ cos θ

 (2.26)

and γ̄ = [X Y ]T ∈ R2. From the general definition of the kinematics (2.23), it follows

that the kinematics of the simple wheeled robot can be expressed as a left invariant

control system on SE(2) as

dg(t)

dt
= g(t)(u1A1 + u3A3) (2.27)

where A1, ..., A3 ∈ se(2) are the basis elements of the Lie algebra se(2) (2.13 ) which

satisfy the relations in Table 2.1.
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Note that the lateral direction, represented by the basis A2, is not directly controlled

(u2 = 0) due to the sliding constraint expressed in (2.24). However the Lie bracket

enables motions to be generated in the A2 direction despite not having a control directly

associated with it.

By differentiating (2.12) and substituting into (2.27) the control system defined in (2.25)

is obtained. Note also that the driftless system in (2.27) can be augmented to include

systems with drift by setting one of the controls ui to a constant a priori without loss

of generality. This case is considered in Chapter 3, Section 3.1.2.

2.3.3 Rotating Rigid Body

Following the example of the simple wheeled robot the kinematics of a rotating rigid

body, which will form the basis of the two practically applied attitude motion planning

methods for spacecraft introduced in Chapters 4 and 5, are stated. As with the planar

wheeled robot case, it will be shown that the conventional kinematic representations

can be equivalently expressed on matrix Lie groups. Although in reality a spacecraft

will be subjected to disturbance torques, the motions are derived with the assumption

that the spacecraft is a rigid body operating under ideal conditions. The validity of

this assumption will then be tested in simulation in later chapters when the spacecraft

is operating in a more realistic environment.

The rigid body under consideration is shown in Figure 2.2. A body fixed reference

frame (BRF) with basis î, ĵ, k̂ is rigidly attached to the centre of mass of the body, and

the kinematics specified with respect to an inertial frame with basis vectors Î , Ĵ , K̂.

Quaternions and SU(2)

In Section 2.2.4 it was stated that the quaternions are the most widely used attitude

parameterisation as they are computationally efficient for on-board implementation

and because they do not suffer from the singularities inherent in the Euler angles

parameterisations [32, 58]. A brief definition of the quaternions will now be given,

followed by the quaternion kinematic differential equations.
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Figure 2.2: Rotating rigid body.

Consider the rigid body system shown in Figure 2.2. Euler’s theorem states that the

rigid body can be rotated from one attitude to any other attitude by an angle θ about

an axis, known as the eigenaxis, that is fixed to the body and stationary with respect

to the body and inertial frames. Denoting an eigenaxis vector by ē = [e1, e2, e3]T the

quaternions q̄ = [q0 q1 q2 q3]T are defined as [32, 58]:

q0 = cos (θ/2)

q1 = e1 sin (θ/2)

q2 = e2 sin (θ/2)

q3 = e3 sin (θ/2)

(2.28)

It follows that the attitude kinematics of the rotating rigid body can be parameterised

using quaternions as [32, 58]

dq̄

dt
=

1

2
Ωq̄ (2.29)
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where the skew symmetric matrix Ω is given by

Ω =



0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0


(2.30)

with ω̄ = [ω1 ω2 ω3]T the angular velocities of the body frame with respect to the

inertial frame, and q̄ the quaternions of the body frame with respect to the inertial

frame. Note that if the angular velocities of the body frame with respect to the orbital

frame, ω̄bo, are used then Equation (2.29) gives the time evolution of the quaternions of

the body frame with respect to an orbital frame, q̄bo. Both cases are used in subsequent

chapters. Furthermore the quaternions must satisfy the constraint q2
0 + q2

1 + q2
2 + q2

3 = 1

[63].

From Section 2.2.2, the configuration space of a rigid body can equivalently be expressed

on the Special Unitary group SU(2) as

dR(t)

dt
= R(t)(ω1A1 + ω2A2 + ω3A3) (2.31)

where R(t) ∈ SU(2) is given by Equation (2.15) and represents the orientation of the

spacecraft and A1, A2, A3 form a basis for the Lie algebra su(2) of the Lie group SU(2)

(2.16). Differentiating (2.15), substituting into (2.31) and utilising the isomorphism

(2.20) yields the quaternion differential equations (2.29).

Rotation Matrices and SO(3)

The kinematics of a rigid body can also be expressed as the time derivation of the

direction cosine matrix, S(t) ∈ SO(3), commonly used in spacecraft attitude control

[58]:

dS(t)

dt
= S(t)Ω (2.32)
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where S(t) ∈ SO(3) is a 3× 3 direction cosine matrix and Ω a skew symmetric matrix

of the spacecraft angular velocities, given by

Ω =


0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 (2.33)

This yields nine differential equations which must be numerically integrated. Equation

(2.32) is equivalent to the kinematics on the Special Orthogonal group SO(3), yielded

by substituting the basis of so(3) (2.18) into (2.31).

In Section 2.2.4, it was stated that the attitude of the spacecraft can be represented

uniquely and globally on SO(3). Despite this the quaternion representation is favoured

for on-board implementation due to less computation being required to integrate the

four quaternion equations as opposed to the nine equations in (2.32).

2.4 Optimal Kinematic Motion Planning

As stated in Section 1.2, not only is there a need to find a control which drives the

system between specified configurations in a set time, but there is also the need to

optimise the control with respect to a particular cost function. Therefore in this thesis

an optimal control problem is formulated, with the total energy of the system chosen

as a cost function. Spindler [8] utilised this cost to minimise the rotational speed of a

spacecraft, to enable sensors to update more efficiently. However, the main benefit of

utilising this form of cost function is that it enables analytical solutions to be derived.

Assessing the practicality of this cost function in real applications is an aim of this

thesis. An application of the Maximum Principle of optimal control then yields the

optimal kinematic controls, generally the system velocities, required to carry out the

manoeuvre.

Firstly, it is necessary to determine if the systems under consideration are controllable

and hence if the optimal control problem is well posed. A system is controllable if there

exists an admissible control which can drive the system between two specified states
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on a manifold in a set time [13]. For left invariant systems on matrix Lie groups, the

controllability of the system can be determined by use of the Lie bracket. If the Lie

algebra can be formed through Lie bracketing of the controlled vector fields Ai, ..., An

then the system is controllable. For example for the system in Equation (2.27), if the

system is controllable then A1 and A3 must generate g. From Table 2.1, [A3, A1] = A2

and therefore the optimal control problem is well posed. It follows that the rigid body

systems in Equations (2.31) and (2.32) are also controllable, as A1, A2 and A3 generate

g.

Subject to the kinematic nonholonomic constraint given by (2.23) and given that the

system is controllable, the problem is then to find a trajectory g(t) ∈ G from an initial

position and orientation g(0) ∈ G to a final position and orientation g(T ) ∈ G, where

T is some fixed final time, that minimises the functional

J =
1

2

∫ T

0

n∑
i=1

ciu
2
i dt (2.34)

where i = 1, ..., n with n ≤ 3 and ci are constant weights. In addition it enables the

problem to be formulated in the context of geometric optimal control and this enables

questions to be asked of the integrability of the system, and in some cases solve the sys-

tem in closed form. Furthermore, obtaining a closed form solution essentially reduces

the motion planning to a problem of optimising the available parameters to match the

prescribed boundary conditions.

2.5 Hamiltonian Systems and the Maximum Principle of

Optimal Control

The application of the coordinate free Maximum Principle to left-invariant optimal

control problems is well known, see Jurdjevic [17] and Sussman [64]. If a Hamiltonian

is left-invariant the cotangent bundle T ∗G can be realised as the direct product G× g∗

where g∗ is the dual of the Lie algebra g of G as stated in Section 2.1. Therefore, the
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original Hamiltonian defined on T ∗G can be expressed as a reduced Hamiltonian on the

dual of the Lie algebra g∗ as T ∗G/G ∼= g∗. Essentially this means that the symmetry

of the problem enables the Hamiltonian to be defined independently of configuration

co-ordinates on the dual of the Lie algebra. This means that the Hamiltonian is highly

simplified, and makes the process of solving for the optimal controls simpler.

In this section the application of the co-ordinate free Maximum Principle to left-

invariant systems on matrix Lie groups is described. Firstly, it is shown how the

kinematics and the cost function are combined to yield the time-dependent Hamilto-

nian. Following this, the Maximum Principle is stated. The consequence that solutions

obtained via application of this principle yield optimal extremal curves is highlighted.

Finally the method of utilising the Poisson bracket to obtain the optimal kinematic

controls is described.

2.5.1 The Maximum Principle

The Maximum Principle [41], developed by Pontryagin as an extension of a theory by

Weierstrass, gives necessary conditions for optimality for a Hamiltonian system when

the Hamiltonian is minimised over the set of permissable controls. When the base

manifold is a matrix Lie group, as in this thesis, the controlled Hamiltonian on the

cotangent bundle T ∗G can be expressed as a reduced Hamiltonian on the dual of the

Lie algebra g∗. The resultant Hamiltonian is co-ordinate free. As the systems studied

in this thesis are left-invariant (2.22), this enables a simplified form of the Maximum

Principle to be used.

Assume that a control function u(t) = (u1(t), ..., un(t)) generates an integral curve

g(t) in the interval [0, T ], with (g(t), u(t)) called a trajectory of (2.22). Additionally,

the total cost
∫ T

0 f0(g(t), u(t))dt in the interval [0, T ] is a smooth function f0 from

G× Rn → R. The initial and terminal sub manifolds S0 and S1 are constant elements

ofG, and in the simplest case consist of single elements g(0) and g(T ). Then a trajectory

(ḡ(t), ū(t)) is optimal relative to the boundary conditions if ḡ(0) ∈ S0 and ḡ(T ) ∈ S1

38



and ∫ T

0
f0(ḡ(t), ū(t))dt ≤

∫ T

0
f0(g(t), u(t))dt (2.35)

for any trajectory (g(t), u(t) in [0, T ] such that g(0) ∈ S0 and g(T ) ∈ S1.

A Hamiltonian function H on the cotangent bundle T ∗G of any manifold G, is associ-

ated a Hamiltonian vector field
−→
H via

dHζ(v) = ωζ(
−→
H (ζ), v) (2.36)

where ωζ is the canonical symplectic two form. This relation is valid for each point

ζ ∈ T ∗G and each tangent vector v ∈ Tζ(T
∗G). Furthermore, a vector field Xi on

manifold G produces a linear Hamiltonian function HXi on the cotangent bundle T ∗G

defined by:

HXi(ζ) = ζ(Xi(g(t))) ∀ ζ ∈ T ∗g(t)G (2.37)

The non-autonomous vector fields Xi(g(t), t) define time-varying functions. Then, the

control functions u(t) define a time-varying vector field on G which, together with the

kinematics (2.22) and cost functional (2.34), define a time-dependent Hamiltonian Hρ0 :

Hρ0(ζ, u(t)) =

n∑
i=1

ui(t)Hi(ζ)− ρ0f0(η(ζ), u(t)) (2.38)

where ρ0 is a parameter equal to 1 or 0, and where η is the canonical projection from

the cotangent bundle T ∗G onto the base manifold G. It then follows that the integral

curves of the Hamiltonian vector field
−→
H ρ0(ζ, u(t)) of (2.38), denoted ζ, are absolutely

continuous curves which satisfy

dζ

dt
(t) =

−→
H ρ0(ζ, u(t)) (2.39)

for almost all t in the interval [0, T ]. Using the canonical projection from T ∗G onto the

base manifold G, the projection (η(ζ), u(t)) is a trajectory of (2.22) for each trajectory

(ζ, u(t)) of (2.39).

With these preliminaries stated, the geometric Maximum Principle from [65] can be
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introduced. If (ḡ(t), ū(t)) is an optimal trajectory relative to the cost function (2.34)

and the boundary conditions are S0, S1 in terminal time, T , then (ḡ(t), ū(t)) is the

projection of the trajectory (ζ(t), u(t)) of (2.39) on the interval [0, T ] such that:

1. If ρ0 = 0 then ζ 6= 0 for any t ∈ [0, T ].

2. the time dependent Hamiltonian Hρ0(ζ(t), ū(t)) satisfies the maximality condi-

tion:

Hρ0(ζ(t), ū(t)) ≥ Hρ0(ζ(t), u(t)) (2.40)

for any u(t) and almost all t in [0, T ].

3. ζ(t) satisfies the transversality conditions ζ(0)(v) = 0 for all tangent vectors

v ∈ S0 at ḡ(0) and ζ(T )(v) = 0 for all tangent vectors v ∈ S1 at ḡ(T ).

The most important consequence of the Maximum Principle in relation to this thesis

is that the trajectories (ζ(t), ū(t)) that satisfy conditions 1 and 2 of the Maximum

Principle are known as extremal curves. It then follows that every optimal trajectory is

the projection of an extremal curve, a fact which will be used in the proceeding sections

to solve for the optimal controls ū(t). The extremals are called normal if ρ0 = 1, and

abnormal if ρ0 = 0. Jurdjevic [17] showed that abnormal extremals are a subset of

regular extremals. Therefore in this thesis the case when ρ0 = 1 is considered.

With the necessary conditions for optimality stated, the general form of the Hamiltonian

for the constraint (2.23) with respect to minimising the cost function (2.34) will now

be introduced.

2.5.2 Hamiltonian Formalism

Recall that for left invariant vector fields, the vector fields can be expressed in terms

of the basis A1, ...An ∈ TIG of the Lie algebra g to give X1 = g(t)A1, ..., Xn = g(t)An

with An ∈ Tg(t)G. Therefore the appropriate Hamiltonian for the constraint (2.23)
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with respect to minimising the cost function (2.34) is derived from (2.38):

H(p, u, g) =
n∑
i=1

uip(g(t)Ai)− ρ0
1

2

n∑
i=1

ciu
2
i (2.41)

where as before n ≤ 3, p ∈ T ∗G and ρ0 = 1 for regular extremals. As stated the

Hamiltonian (2.41) defined on T ∗G is expressed as a reduced Hamiltonian on the dual

of the Lie algebra g∗. It follows that p(g(t)Ai) = p̂(Ai) for any p = (g(t), p̂) and any

Ai ∈ g. Defining the extremal (linear) functions explicitly as λi = p̂(Ai), where p̂ ∈ g∗,

the Hamiltonian (2.41) can be expressed on g∗ as

H =
n∑
i=1

uiλi −
1

2

n∑
i=1

ciu
2
i (2.42)

With the general form of the Hamiltonian formulation defined, it will now be shown

how the optimal Hamiltonian is utilised together with the Poisson bracket to derive the

extremal curves necessary to produce the optimal controls.

2.5.3 Derivation of Optimal Hamiltonian

The control Hamiltonian (2.42) is a concave function of the control functions, ui, if

∂2H
∂ui2

< 0. It then follows from the Maximum Principle that by calculating ∂H
∂ui

= 0 the

optimal kinematic control inputs are

u∗i =
1

ci
λi, (2.43)

where i = 1, ..., n and λi are the extremal curves. Substituting (2.43) back into (2.42)

gives the optimal form of the appropriate left-invariant quadratic Hamiltonian:

H∗ =
1

2
(

n∑
i=1

λ2
i

ci
) (2.44)

As left-invariant systems are being considered, each vector field on G defines a G

invariant Hamiltonian function H on the dual of the Lie algebra g∗ which is co-ordinate
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free. The corresponding Hamiltonian vector fields
−→
H ∗(·) are then calculated by

−→
H∗(·) = {·, H∗} (2.45)

where {·, ·} denotes the Poisson bracket. The cotangent bundle T ∗G is a Poisson

manifold, with {m,h}(ζ) = ωζ(
−→m(ζ),

−→
h (ζ)) for all functions m and h. It then follows

that M is an integral motion for H∗ if and only if {M,H∗} = 0 and vice versa. These

integrals of motion can then be used to solve explicitly for the optimal controls.

For each quadratic Hamiltonian (2.44), the corresponding vector fields are calculated

using the Poisson bracket (2.11). Letting l denote an element in the dual of the Lie

algebra l ∈ g∗, the Hamiltonian vector fields are given by

dl

dt
= {l,H∗} (2.46)

For semisimple Lie groups such as SU(2) and SO(3), each element in the dual of the

Lie algebra can be identified with an element in the Lie algebra via the non-degenerate

trace form [17]. Thus, the expression (2.46) can be written in Lax pair form [17, 57] as

L̇ = [L,∇H∗] (2.47)

where L ∈ g and ∇H∗ is the gradient of the optimal Hamiltonian (2.44). This can

then be used to solve explicitly for the optimal controls on semisimple Lie groups. For

non-semisimple groups, such as SE(2), (2.43) is substituted into (2.22) to yield

dg(t)

dt
= g(t)∇H∗ (2.48)

where ∇H is the gradient of the Hamiltonian and g(t) ∈ G are the corresponding paths.

Finally, with the optimal paths derived it is necessary to solve for g(t) ∈ G such that

the boundary conditions g(0) ∈ G and g(T ) ∈ G in some final time T are matched. In

this thesis this is tackled using a parametric optimisation, which will be discussed in

subsequent chapters.
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Integrability

Note that integrals of motion are utilised in the derivation of the optimal controls.

Equations (2.46) and (2.48) are integrable with the three integrals of motion: (i) the

Hamiltonian H; (ii) the Casimir function M and ; (iii) the integral of motion ϕ3

corresponding to a right-invariant vector field. The Casimir function is a constant of

motion for a Hamiltonian system, and is defined as a function M ∈ Γ(P ) satisfying

{M,H} = 0. For the 3D-Lie groups considered in this thesis two integrals of motion

are necessary to reduce the system to a one-degree-of-freedom (1dof) system. This

1dof ordinary differential equation can then be solved analytically in certain cases and

utilised in a motion planning algorithm, as will be shown in the proceeding chapters.

In addition integrability is an intrinsic property of the system as it implies that all

motions will be regular.

2.6 Chapter Summary

In this section the pre-existing geometric tools necessary to derive optimal analytical

controls for left-invariant systems on 3D-matrix Lie groups have been formalised. The

theory of Lie groups and Lie algebras was briefly introduced, before the matrix Lie

groups considered in this thesis were described in detail. Following this, the matrix Lie

group description of the configuration space of two simple systems was linked to the

conventionally used approaches. Finally, the Maximum Principle of optimal control

was stated, and the procedure for solving the extremals to yield the optimal form of

the controls was described. These controls can then be applied in motion planning

algorithms, as shown in subsequent chapters, in order to assess their use in real world

systems.

The geometric approach enables complex systems to be reduced and solved analytically.

However, there are a number of drawbacks with this approach. Firstly, the boundary

conditions are not included in the cost function, and so the free parameters of the

analytical equations must be optimised to match the boundary conditions. Secondly,
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while the use of a quadratic cost ensures that motions will be smooth and regular,

this may not be the most practical cost function for the system. Finally, the curves

do not take into account the dynamics of the system, only the kinematics, so further

investigation is required to determine if these curves are feasible for practical motion

planning implementation.

In Chapter 3 the kinematic motion planning techniques stated in this chapter will be

applied to derive optimal controls for a simple planar wheeled robot. These optimal

paths will then be implemented in a kinematic motion planning algorithm, with a simple

obstacle avoidance framework. Following this, in Chapter 4, the theory presented in

this chapter will be applied to derive novel motion tracks for a rigid spacecraft in

a disturbance free environment. The practicality of the derived tracks will then be

assessed in simulation in the presence of disturbances. This will enable the potential

problems with the geometric approach, namely the assumption of an ideal environment

and the quadratic cost function, to be assessed via comparison with other methods.

Finally, in Chapter 5 the practicality of a motion planning method, derived using the

framework of geometric control theory, for a spacecraft constrained to spin around one

axis will be tested via extensive numerical simulation to again assess the strengths and

weaknesses of the geometric method.
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Chapter 3

Motion Planning for Simple

Wheeled Robots

In the previous chapter the use of matrix Lie groups and their accompanying algebras to

represent the kinematics of rigid body systems, together with a general framework for

solving related optimal kinematic control problems via Pontragyin’s Maximum Princi-

ple, was introduced. In this chapter, this framework will be applied to derive motion

primitives which form the basis of a kinematic motion planning method for a simple

nonholonomic wheeled robot. The task of computing a suitable trajectory from a given

initial condition to a desired final point is fundamental in robotics. However, as stated

in Chapter 1, for some robotic systems such as wheeled robots, motion planning is

challenging due to their inherent nonholonomic constraints.

The problem of motion planning for simple wheeled robots has been widely studied. In

early work on the subject Dubins [3] derived a method for generating trajectories for a

car like robot, termed Dubins’ car [14], which is constrained to move forwards at unit

speed. In this method the paths are constructed from straight line segments and arcs of

constant curvature, and are referred to as Dubins’ curves [14]. Dubins’ curves are the

shortest length curves in Euclidean space R2 which connect two arbitrary points [66]

and whose curvature is uniformly bounded for all points along the curve. It was shown

that Dubins’ car is capable of arriving at any state (assuming there are no obstacles in
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the configuration space) using a combination of no more than three motion primitives

- left turn, right turn or straight ahead. Reeds and Shepp [4] extended the work of

Dubins by defining the shortest paths for a car capable additionally of reversing at unit

speed. Dubins’ curves have been used extensively in motion planning for a range of

systems, including unmanned air vehicles [7] and underwater vehicles [67].

Scheuer and Fraichard [68] developed a motion planning method to overcome an in-

herent limitation of Dubins’ curves - that the wheeled robots are required to stop to

reorientate at each section of the path. This method, derived from Dubins’ curves,

generates continuous curvature curves which do not require the robot to stop and re-

orientate, and was extended to include obstacle avoidance [69, 70]. However, while

Dubin’s curves are the shortest length curves in space for a robot constrained to move

at unit speed, real systems are unlikely to be constrained in this manner and so Dubin’s

curves may not be optimal for robots which are able to move at arbitrary speed. More-

over, choosing a constant curvature curve which satisfies the orientation constraint at

the endpoint can be difficult [71] and heuristics are often employed [72]. Thus more ef-

ficient solutions which include orientation constraints in the boundary conditions have

been sought.

Murray and Sastry [20] showed that the periodicity of the derived trigonometric control

functions enabled both the position and orientation constraints for a simple nonholo-

nomic wheeled robot to be satisfied. However, the method is not optimal with respect

to any specified cost and no obstacle avoidance framework is proposed. Meanwhile

Brockett [73] showed that for a particular nonholonomic system the optimal controls

were elliptic functions. These elliptic functions generalise the sine and cosine functions,

and so give rise to a wider class of possible motion primitives.

In this chapter a simple analytical motion planning method is derived via the frame-

work of geometric control theory that seeks to define a general class of optimal motion

primitives for the nonholonomic wheeled robot in two cases (i) the most general case,

where translational and rotational speeds are arbitrary, first derived in [54], and (ii)

where the robot is constrained to move forwards at unit speed but with arbitrary ro-

tational speed. Application of the framework of geometric control theory described in
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Chapter 2 yields the optimal controls for each case with respect to a cost function that

minimises control effort. The resulting curves in the arbitrary speed and unit speed

cases are analogous to the definition of sub-Riemannian and elastic curves on SE(2)

respectively. A method of parametrically optimising the analytical equations describ-

ing the motion to match prescribed boundary conditions and produce low control effort

reference tracks is described, and an extension to obstacle avoidance is detailed. This

parametric optimisation and obstacle avoidance framework, derived for the simple kine-

matic wheeled robot motion planner, forms the basis of the spacecraft attitude motion

planners in subsequent chapters.

Original Contributions

The original contributions in this chapter are outlined as follows:

• Special cases of the equations for the wheeled robot capable of translating and

rotating at arbitrary speed are derived by considering the properties of the elliptic

functions. The geometric intersection of the integrals is studied to graphically

show integrability. Reachable sets are exactly defined for the general case and

the specific cases.

• The optimal angular velocity for the wheeled robot constrained to move forward

at unit speed is solved in terms of an elliptic function, and a truncated expression

derived for the evolution of the real component of the position of the robot.

Time-limited reachable sets are considered.

• A kinematic motion planning algorithm is constructed, based on the analytical

expressions for the arbitrary and unit speed cases, which enables position and

orientation constraints to be specified and produces reference motions via para-

metric optimisation.

• A simple obstacle avoidance method for static circular obstacles, which probes

the reachable sets to find alternative trajectories to the target position, is derived

and implemented for the arbitrary speed case.
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This chapter is structured as follows. In Section 3.1, the framework of geometric control

theory described in Chapter 2 is applied to derive the optimal controls for the simple

nonholonomic wheeled robot in the arbitrary speed and unit speed cases. Following

this, in Section 3.2, the reachable sets of the motion planners are considered, before

the simple parametric optimisation and obstacle avoidance frameworks are described

in Section 3.3. This framework forms the basis of the more complicated spacecraft

attitude motion planners in later chapters. Examples of kinematic motion planning are

then given for each case in Section 3.4, together with a discussion of the limitations of

the planner. Finally, the results of the chapter are summarised in Section 3.5.

3.1 Analytic Derivation of Reference Motions for Wheeled

Robot

In this section the optimal Hamiltonians, with respect to minimising control effort,

are derived for the arbitrary speed and unit speed cases using the theory of geometric

control on matrix Lie groups outlined in the previous chapter. Application of the

Maximum Principle yields the optimal Hamiltonians in each case, which are then solved

explicitly to give the optimal controls.

3.1.1 Arbitrary Translational and Rotational Speed

The case of a simple wheeled robot which is capable of moving at arbitrary rotational

and translational speed is considered in this section. Initial work on this case was

carried out by Biggs [54]. In this thesis this work is extended to consider the properties

of the elliptic functions, which define a general class of curve, and to derive the exact

reachable sets. Additionally, the equations are utilised in a kinematic motion planning

algorithm with a simple obstacle avoidance framework, which will be extended to the

spacecraft attitude motion planning problem in subsequent chapters.

It is assumed that the wheeled robot can move backward or forwards at a velocity vr,

and can rotate at an angular velocity ωr = θ̇, as shown in Figure 3.1.
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Figure 3.1: Wheeled robot model for the case where robot can move at arbitrary
translational vr and rotational ωr velocity. Body axis is placed at centre of rear axle
with x-axis lying along centre line of robot.

As this is a kinematic motion planning method, it is assumed that both of these veloc-

ities can be directly controlled. However, in practice control torques must be applied

to achieve the desired speeds, and the impact of this assumption should be assessed via

practical implementation.

In order to apply the mechanisms stated in Chapter 2 to this problem and so solve for

the optimal form of these controls, the kinematics must be expressed on the matrix Lie

group SE(2). First, note that the sliding constraint (2.24) can be expressed as

dγ̄

dt
= Q(t)

 vr

0

 (3.1)

where γ̄ = [X Y ]T and Q(t) ∈ SO(2) and is given by Equation (2.26). Differentiating

equation (2.12) yields

dg(t)

dt
=


− sin(θ)θ̇ − cos(θ)θ̇ Ẋ

cos(θ)θ̇ − sin(θ)θ̇ Ẏ

0 0 0

 (3.2)
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while taking the inverse of (2.12) gives

g(t)−1 =


cos(θ) sin(θ) − cos(θ)X − sin(θ)Y

− sin(θ) − cos(θ) sin(θ)X − cos(θ)Y

0 0 1

 (3.3)

Combining (3.2) and (3.3), and taking into the account the constraint (3.1) yields the

left-invariant differential equation which describes the nonholonomic kinematic con-

straint:

g(t)−1dg(t)

dt
=


0 −ωr vr

ωr 0 0

0 0 0

 (3.4)

It follows from the definition of the Lie algebra on SE(2) that Equation (3.4) can be

expressed in the form

g(t)−1dg(t)

dt
= vrA1 + ωrA3 (3.5)

where the basis of the Lie algebra are given by (2.13). Relative to the general form of

the kinematics (2.23) u1 = vr, u2 = 0 and u3 = ωr. Again note that while the direction

A2 is not directly controlled, the Lie bracket enables motions to be generated in this

direction.

Considering the general form of the cost function (2.34), a quadratic cost function is

defined as:

J =
1

2

1∫
0

vr
2 + cωr

2dt (3.6)

where c is a constant weight. The time t is scaled such that in real time τ with final

fixed time T is t = τ/T . In relation to the general form (2.34) c1 = 1, c2 = 0 and

c3 = c. This cost function minimises steering effort and forward velocity. Therefore

the motions generated with respect to this cost function will bring the wheeled robot

to the target in a set time using minimum control effort. As the cost function is multi-

objective, the degree of minimisation of the forward speed is weighted against that of

the rotational speed using the parameter c. If no weighting is required, the parameter
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c can be set equal to unity or included as a free parameter in the resulting parameter

optimisation. However, if minimisation of steering effort should be given priority over

minimisation of forward velocity, or vice versa, then the weight c can be pre-selected

accordingly.

Together, the kinematic constraints (3.5) and the cost (3.6) are analogous to a sub-

Riemannian curve on SE(2) [74]. That is, while in this case the motion planning

problem is constrained to a fixed time T , a curve would be constrained by a fixed

length.

From (2.42), the appropriate Hamiltonian considering the constraint (3.5) that min-

imises the cost function (3.6) is

H = vrλ1 + ωrλ3 −
1

2
(vr

2 + cωr
2) (3.7)

It follows from the statement of Pontryagin’s Maximum Principle in Section 2.5.1, that

if

∂H

∂vr
= 0,

∂H

∂ωr
= 0,

∂2H

∂vr2
< 0,

∂2H

∂ωr2
< 0, (3.8)

then the functions vr and ωr are optimal. These conditions are satisfied if

vr = λ1, ωr = λ3
c

(3.9)

Substituting these values into (3.7) yields the optimal Hamiltonian H∗ for the wheeled

robot capable of rotating and translating at arbitrary speed:

H∗ =
1

2

(
λ2

1 +
λ2

3

c

)
(3.10)

The corresponding Hamiltonian vector fields which implicitly define the extremal solu-

tions are given by the Poisson bracket dλi
dt = {λi, H∗} where i = 1, ..., 3. For example

λ̇1 = ∂H∗

∂λ1
{λ1, λ1}+ ∂H∗

∂λ2
{λ1, λ2}+ ∂H∗

∂λ3
{λ1, λ3} with the Poisson bracket relations given
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by (2.11). This yields the differential equations:

λ̇1 = λ2λ3
c

λ̇2 = −λ1λ3
c

λ̇3 = −λ1λ2

(3.11)

In addition observe that the Casimir function

M = λ2
1 + λ2

2 (3.12)

is constant along the Hamiltonian flow i.e. {M,H∗} = 0.

The integrability of the system can now be confirmed geometrically by plotting the

intersection of the integrals of the system, the Hamiltonian (3.10) and the Casimir

function (3.12), as shown in Figure 3.2.

Figure 3.2: Plot of intersection between the Hamiltonian function (green) and Casimir
(orange) in arbitrary speed case. In this case m = M/2H∗ < 1.

It is known that the intersection of two quadratic surfaces define elliptic curves which

in turn are parameterised by elliptic functions, see Husemoller [75]. Therefore the

extremal curves can be solved via elliptic functions as shown in the following Lemma:

Lemma 1. The optimal velocity vr in the surge direction and angular velocity ωr that
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minimise the cost function (3.6) subject to the kinematic constraint (3.5) are Jacobi

elliptic functions sn(·, ·), dn(·, ·) of the form

vr =
√
M sn Φ

ωr =
√

2H∗

c dn Φ
(3.13)

where H∗ and M are constants defined by (3.10) and (3.12) respectively and c is the

constant weight in the cost function (3.6). The corresponding path is given by

X = −
√

2H∗c
M dn Φ +

√
2H∗c
M

Y = 2H∗t√
M
−
√

2H∗cE(am Φ, M
2H∗ )

(3.14)

where E(·, ·) is the elliptic integral of the second kind and am(·) is the Jacobi amplitude.

The rotation of the body along the path is

R(t) =

 cn Φ − sn Φ

sn Φ cn Φ

 (3.15)

with Φ =

(√
2H∗

c t, M
2H∗

)
, and

θ = am(Φ). (3.16)

Proof.

The conserved quantity (3.12) can be parameterised by the Jacobi elliptic functions

λ1 = r sn (αt,m) , λ2 = r cn (αt,m) (3.17)

Substituting (3.17) into (3.12) and using the relation sn2 + cn2 = 1 [76, 77] yields

r =
√
M . Equation (3.10) can then be parameterised by defining:

λ3 = a dn (αt,m) (3.18)

Substituting (3.17) and (3.18) into (3.10) it follows from the relation m sn2 + dn2 = 1
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that a =
√

2H∗c and m = M/2H∗. Thus

λ1 = r sn
(
αt, M

2H∗

)

λ2 = r cn
(
αt, M

2H∗

)

λ3 =
√

2H∗c dn
(
αt, M

2H∗

)
(3.19)

Finally to obtain α substitute (3.19) into (3.11), giving α =
√

2H∗/c and enabling the

complete expressions for the extremal functions to be written as

λ1 =
√
M sn

(√
2H∗

c t, M
2H∗

)

λ2 =
√
M cn

(√
2H∗

c t, M
2H∗

)

λ3 =
√

2H∗cdn

(√
2H∗

c t, M
2H∗

)
(3.20)

The relationship between the optimal velocities and the extremals (3.9) then yields

(3.13). Note that only the positive roots of the terms in Equation (3.20) are considered.

The solution for the negative half of the geometric intersection between the Hamiltonian

and Casimir function in Figure 3.2 is found in a similar manner by considering the

negative roots of the terms in Equation (3.20). As ωr = θ̇ it follows from (3.13) that

θ = am(Φ) + C1 (3.21)

where C1 is a constant of integration. For simplicity C1 = 0 such that the rotation

matrix R(t) emanates from the origin. This yields (3.16). Substituting (3.15) and

(3.13) into equation (3.1) results in the differential equations

dγ

dt
=

 √M sn Φ cn Φ
√
M sn2 Φ

 (3.22)
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These can be integrated analytically to give the expressions for the evolution of the

robot’s path (3.14). �

Remark 1. It is interesting to note the change in behaviour of the elliptic functions as

the parameter m = M/2H∗ changes. For 0 < m < 1 the optimal controls are described

by (3.13), and the Casimir and Hamiltonian intersect as in Figure 3.2.

As m = M/2H∗ → 0 in (3.13), the velocity in translation tends to a sinusoid and the

velocity in rotation tends to a constant, viz

vr =
√
M sin(

√
2H∗

c t)

ωr =
√

2H∗

c

(3.23)

Note also that the elliptic functions in the expression (3.14) tend to sine and cosine,

resulting in

X = −1
4

√
Mc
2H∗ cos(2

√
2H∗

c t) + 1
4

√
Mc
2H∗

Y = −1
8

√
M(4t−

√
2c
H∗ sin(2

√
2H∗

c t))

θ =
√

2H∗

c t

(3.24)

As sine and cosine are special cases of the elliptic functions described above, this sug-

gests that it may be possible to derive a more general form of the control using sinusoids

described by Murray and Sastry [20].

As m = M/2H∗ → 1, the equations (3.13) tend to the hyperbolic functions

vr =
√
M tanh(

√
2H∗

c t)

ωr =
√

2H∗

c sech(
√

2H∗

c t)
(3.25)

Furthermore the elliptic functions in the expression (3.14) tend to hyperbolic functions,

giving the following expressions for the evolution of the translational and rotational

displacements of the wheeled robot:

X = −
√

Mc
2H∗ sech(

√
2H∗

c t) +
√

Mc
2H∗

Y =
√
M(t−

√
c

2H∗ tanh(
√

2H∗

c t))

θ = 2 arctan(tanh
√

H∗

2c t)

(3.26)
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This case is shown in Figure 3.3a).

Figure 3.3: Plot of intersection between the Hamiltonian function (green) and Casimir
(orange) in arbitrary speed case defining the extremal curves for a) m = M/2H∗ = 1
and b) m = M/2H∗ > 1.

Finally when m = M/2H∗ > 1, the equations (3.13) are transformed using the Jacobi

real transformations[76, 77]

sn(u,m) =
√
µ sn(v, µ)

cn(u,m) = dn(v, µ)

dn(u,m) = cn(v, µ)

(3.27)

where µ = 1/m and v = u
√
m. Applying these transformations to (3.13) results in

equations of the form

vr =
√

2H∗ sn

(√
M
c t,

2H∗

M

)
ωr =

√
2H∗

c cn

(√
M
c t,

2H∗

M

) (3.28)

The elliptic functions for the rotational and translational position of the wheeled robot
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are also transformed via (3.27), yielding:

X = −
√

2H∗c
M cn(

√
M
c t,

2H∗

M ) +
√

2H∗c
M

Y =
√
Mt−

√
cE(am(

√
M
c t,

2H∗

M ), 2H∗

M )

θ =
√

2H∗

M am(
√

M
c t,

2H∗

M )

(3.29)

This case is shown in Figure 3.3b). The behaviour of the elliptic functions can be further

explained by analogy with the simple pendulum [78]. Plotting the curves in Figures 3.2

and 3.3 in 2D Figure 3.4 is obtained.

Figure 3.4: 2D plot of intersection between the Hamiltonian function and Casimir
(orange) in arbitrary speed case for different values of m.

The case where m = M/2H∗ > 1 can be thought of as corresponding to oscillatory

solutions in the phase plane of the pendulum where it is swinging back and forth, while

m = 1 defines a heteroclinic connection and m < 1 the case where the pendulum has

high energy.

Note that while the general solution takes the form of a Jacobi elliptic function, these

functions are not widely used in practice. Therefore if the Jacobi elliptic function

cannot be utilised, the simplified trigonometric and hyperbolic equations for the optimal

rotational and translational velocities of the robot may alternatively be used.
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3.1.2 Unit Speed

In the previous section, the optimal controls for a wheeled robot capable of moving

at arbitrary translational and rotational speeds were derived, and the properties of

the resultant elliptic functions studied. In this section a wheeled robot constrained to

move forwards at unit speed is considered. While this is similar to the case studied by

Dubins [3], the key difference is that Dubins constrained the robot to move along arcs

of constant curvature whereas in this thesis the wheeled robot is capable of turning at

arbitrary rotational speed.

As stated above, the wheeled robot is constrained to move forward at fixed unit speed

(vr = 1) as shown in Figure 3.5.

Figure 3.5: Wheeled robot model for the case where robot moves at unit speed vr = 1
and arbitrary rotational ωr velocity. Body axis is placed at centre of rear axle with
x-axis lying along centre line of robot.

This corresponds to the case where the system has drift. Considering the general case

in Equation (3.1), the velocity constraint can be expressed as

dγ̄

dt
= Q(t)

 1

0

 (3.30)
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Furthermore, the robot can rotate at an angular velocity ωr = θ̇ which is again assumed

to be controllable. Setting vr = 1 in (3.4), the nonholonomic kinematic constraint for

the unit speed case can be expressed as the left-invariant differential equation:

g(t)−1dg(t)

dt
=


0 −ωr 1

ωr 0 0

0 0 0

 (3.31)

Equation (3.31) can then be written in terms of the basis of the Lie algebra of SE(2)

as

g(t)−1dg(t)

dt
= A1 + ωrA3 (3.32)

where relative to the general form of the kinematics (2.23) u1 = 1, u2 = 0 and u3 = ωr.

The basis of the Lie algebra are given by (2.13). As the forward speed vr is not

controlled, the cost function is expressed as

J =
1

2

1∫
0

ωr
2dt (3.33)

The time t is again scaled such that in real time τ with final fixed time T is t = τ/T .

Together, the kinematic constraint (3.32) and the cost function (3.33) are analogous to

the definition of an elastic curve on SE(2), where ωr is analogous to curvature. Jurdjevic

[79] reduced the extremals of this problem to quadratures. However, this thesis extends

this by explicitly solving the optimal steering control in terms of an elliptic function.

The Hamiltonian function corresponding to the constraint (3.32) that minimises the

cost function (3.33) is

H = λ1 + ωrλ3 −
1

2
(ωr

2) (3.34)

From the discussion of Pontryagin’s Maximum Principle in Section 2.5, if the following

conditions are satisfied

∂H

∂ωr
= 0,

∂2H

∂ωr2
< 0 (3.35)
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then the function ωr is optimal. These conditions are satisfied when

ωr = λ3 (3.36)

Substituting these values into (3.34) yields the optimal Hamiltonian H∗:

H∗ =
1

2
(λ2

3) + λ1 (3.37)

The corresponding Hamiltonian vector fields which implicitly define the extremal so-

lutions are given by the Poisson bracket dλi
dt = {λi, H∗}. This yields the differential

equations:

λ̇1 = λ2λ3,

λ̇2 = −λ1λ3,

λ̇3 = −λ2

(3.38)

In addition the Casimir function (3.12) is again constant along the Hamiltonian flow.

Note that setting λ1, λ2 = 0 in (3.38) yields λ̇3 = 0 and λ3 =
√

2H∗. Therefore this

corresponds to the curves of constant curvature commonly used in motion planning

with ωr =
√

2H∗ and θ =
√

2H∗t. In addition, setting λ1, λ2, λ3 = 0 yields straight line

segments. Therefore (3.38) can be manipulated to obtain the motion primitives which

comprise Dubins’ curves.

As for the arbitrary speed case, the integrability of the unit speed system can be

confirmed geometrically by plotting the intersection of the integrals of the system,

the Hamiltonian (3.37) and the Casimir function (3.12). This is shown in Figure 3.6.

The two quadratic surfaces intersect and define elliptic curves which can again be

parameterised by elliptic functions [75]. Therefore the system is integrable, and the

extremal curves can be solved analytically via the use of Jacobi elliptic functions and

Taylor expansions as stated in the following Lemma:

Lemma 2. The optimal angular velocity ωr that minimises the cost function (3.33)
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Figure 3.6: Plot of the Hamiltonian function (green) and Casimir (orange) in unit speed
case.

subject to the kinematic constraint (3.32) is a Jacobi elliptic function of the form

ωr =
√
s1 sn(

√
αs2t+K,

s1

s2
) (3.39)

where the constant K is defined by

K = sn−1(
λ3(0)
√
s1
,
s1

s2
) (3.40)

with

s1 =
−β+
√
β2−4αχ

2α

s2 =
−β−
√
β2−4αχ

2α

(3.41)

and

α = −1
4

β = H∗

χ = M −H∗2

(3.42)

Proof. By combining the conserved quantities (3.37) and (3.12) it follows that:

λ2
2 = M − (H∗ − 1

2
λ2

3)2 (3.43)
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Then, squaring the expression for λ̇3 in (3.38) and combining with (3.43) gives:

λ̇2
3 = −1

4
λ4

3 +H∗λ2
3 + (M −H∗2) (3.44)

This expression can be written in the form

λ̇2
3 = α(s1 − λ2

3)(s2 − λ2
3) (3.45)

and then rewritten as the integral

t∫
0

dt =

λ3(t)∫
λ3(0)

1√
α(s1 − λ2

3)(s2 − λ2
3)
dλ3 (3.46)

In order to simplify the integration, the substitution

λ3 =
√
s1 sn(u,m) (3.47)

is introduced where m = s1
s2

. Differentiating (3.47) with respect to u gives:

dλ3 =
√
s1 cn(u,m) dn(u,m)du (3.48)

Substituting (3.47) and (3.48) into (3.46) leads to an equation of the form:

t∫
0

dt =

u2∫
u1

√
s1 cn(u,m) dn(u,m)

√
α
√
s1s2 − s2

1 sn2(u,m)− s1s2 sn2(u,m) + s2
1 sn4(u,m)

du (3.49)

where

u1 = sn−1(λ3(0)√
s1
,m)

u2 = sn−1(λ3(t)√
s1
,m)

(3.50)

With some manipulation Equation (3.49) reduces to

t∫
0

dt =

u2∫
u1

1
√
αs2

du (3.51)
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Integrating and rearranging leads to an equation for λ3(t):

λ3(t) =
√
s1 sn(

√
αs2t+K,m) (3.52)

where the constant K is given in (3.40). Remembering that ωr = λ3(t) yields the

expression for the rotational angular velocity (3.39).� The orientation of the wheeled

robot is given by θ =
∫
ωrdt, therefore

θ = −2i log(−
√
m cn(K +

1

2

√
−s2t,m) + dn(K +

1

2

√
−s2t,m)) + C1 (3.53)

where i is the imaginary unit and

C1 = 2i log(−
√
m cn(K,m) + dn(K,m)) (3.54)

Substituting (3.53) into Equation (3.30) yields

dγ

dt
=

 cos(θ)

sin(θ)

 (3.55)

These expressions cannot be integrated analytically for X and Y . Additionally, the

derived expressions (3.39, 3.53 and 3.55) have a complex component, regardless of the

choice of parameters. Therefore these complete expressions derived using the geometric

control theory framework are not suitable for practical motion planning. However, by

Taylor expanding (3.55) in t about t = 0 s and integrating, approximate analytical

expressions for the real parts of X and Y can be found. Figures 3.7 and 3.8 show a

comparison between the solution of the numerical integration of the real component

of Equation (3.55) and the solution obtained by Taylor expansion in t around t = 0 s

followed by analytical integration.

As a result of the Taylor expansion these expressions will only be convergent for t in

[0, 1)s, requiring the references to be scaled to the desired time. Additionally, the series

expansion is most accurate in the parameter range H∗,M, λ3(0) ∈ [−1.5, 1.5]. Beyond
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Figure 3.7: Comparison between 5th order Taylor expansion of real component of
X position (blue) and numerical solution (green dashed) for T = 2 s, H∗ = 3.7 ×
10−16,M = 0.75, λ3(0) = 1.13.

Figure 3.8: Comparison between 5th order Taylor expansion of real component of
Y position (blue) and numerical solution (green dashed) for T = 2 s, H∗ = 3.7 ×
10−16,M = 0.75, λ3(0) = 1.13.
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these values, the error between the expansion and the numerical solution increases.

Therefore the parameters are constrained to H∗,M, λ3(0) ∈ [−1.5, 1.5] for the unit

speed case in the proceeding sections. Note that a 5th order Taylor expansion was

utilised as the 4th order expansion was not convergent for t in [0, 1)s, and higher

order expansions greatly increased computation time while providing little increase in

accuracy.

Weierstrass Solution

As the equations derived in Section 3.1.2 contain imaginary parts and are therefore not

suitable for practical motion planning in their complete form, an alternative solution

to the extremals was sought.

Squaring the expression for λ̇1 in (3.38), and rearranging the conserved quantities (3.12)

and (3.37) to give expressions for λ2
2 and λ2

3 respectively it follows that

λ̇2
1 = λ2

2λ
2
3 (3.56)

where

λ2
2 = M − λ2

1

λ2
3 = 2(H∗ − λ1)

(3.57)

Expanding Equation (3.56) results in an expression of the form:

λ̇2
1 = 2λ3

1 − 2H∗λ2
1 − 2Mλ1 + 2H∗M (3.58)

Equation (3.58) can then be solved using a Weierstrass elliptic function, ℘(z; g2, g3)

[77]. The canonical equation for the Weierstrass ℘-function satisfies

℘̇2 = 4℘3 − g2℘− g3 (3.59)
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where g2 and g3 are elliptic invariants to be determined. In order to solve for λ1 in

terms of a Weierstrass function, let

λ1 = c1℘+ c2 (3.60)

where c1 and c2 are constants to be determined. Differentiating (3.60) and squaring

yields

λ̇2
1 = c2

1℘̇
2 (3.61)

Substituting (3.60) and (3.61) into (3.58) and grouping terms results in the equation:

℘̇2 = ℘3(2c1) + ℘2(6c2 − 2H∗) + ℘(
6c2

2 − 4H∗c2 − 2M

c1
)

+(
2MH∗ − 2Mc2 − 2H∗c2

2 + 2c3
2

c2
1

)

(3.62)

Comparing coefficients of ℘ in (3.62) with those in (3.59) yields expressions for the

constants:

c1 = 2

c2 = H∗

3

g2 = M + H∗

3

g3 = H∗3−9MH∗

27

(3.63)

It follows from (3.60) and (3.63) that the extremal λ1 can be written in Weierstrass

form as

λ1 = 2℘(z; g2, g3) +
H∗

3
(3.64)

Finally from the expression for λ2
3 in (3.57) the solution for λ3 can be written as

λ3 =

√
2(H∗ − (2℘(z; g2, g3) +

H∗

3
)) (3.65)

Thus as ωr = λ3 the solution for the optimal angular velocity of the unit speed wheeled

robot has been derived. However, the expression (3.65) cannot be analytically inte-

grated for θ, and so the Jacobi elliptic function solution, despite the imaginary compo-

nent, remains the most useful in practice.
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3.2 Reachable Sets of Motion Planners

In this thesis reachable sets are defined as the states in the wheeled robot’s configuration

space which are achievable via a single trajectory from the starting point at the origin.

The robot’s environment is assumed to be obstacle free when defining reachable sets.

3.2.1 Arbitrary Translational and Rotational Speed

Since the magnitudes of the forward and rotational speeds are unconstrained, the reach-

able sets in the X − Y plane which can be reached via a single manoeuvre are limited

only by the parameter space and the physical constraints of the robot (e.g. turning

radius). All other X −Y positions are reachable in time t in the interval (0,∞). Rear-

ranging (3.16) leads to an expression for the orientation θf which is reached after some

final time T :

T =
F(θf ,m)

α
(3.66)

where F(·, ·) is an elliptic integral of the first kind [77], withm = M/2H∗ and α =
√

2H∗

c

as in Section 3.1.1. Therefore for some final orientation θf and some values of the

free parameters H∗,M and c, the time required to reach this orientation is given by

Equation (3.66). In addition, the final position γ̄f = [Xf Yf ]T can be found from

(3.14) at t = T . Then for θf ∈ [0, 2π] and H∗,M, c ∈ (0,∞] the complete reachable

sets for the arbitrary speed case are defined.

For the special cases of the Jacobi elliptic functions it follows that by using the same

approach as above that

T = θf

√
c

2H∗
(3.67)

for the case where m→ 0. For the case where m→ 1 it follows by solving for T that

T =

√
2c

H∗
arctanh(tan(

θf
2

)) (3.68)
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Finally, for the case where m > 1

T =

√
c

M
F(θf

√
M

2H∗
,
2H∗

M
) (3.69)

Thus the reachable sets for the general case and special cases of the arbitrary speed

wheeled robot have been specified completely.

3.2.2 Unit Speed

In Section 3.1.2, it was found that the expressions derived for the unit speed case have

imaginary parts, and so are not suitable for practical motion planning. Additionally,

the expression for θ (3.53) in the unit speed case cannot be solved explicitly for t and

so the reachable sets are difficult to analytically define. Therefore in this case it is

only possible to numerically evaluate the time-limited reachable sets for the real part

of the curves. By constraining the free parameters H∗,M, λ3(0) ∈ [0, 1], the manoeuvre

time to T = 1 s and running random Monte Carlo simulations within these bounds the

time-limited reachable sets for the real part of the curves can be evaluated. The results

are shown in Figure 3.9.

Under these assumptions, the reachable sets for the wheeled robot constrained to move

at unit speed but with arbitrary rotational velocity are similar to the time-limited

reachable sets for Dubins’ car, which is constrained to move at unit speed on arcs of

fixed curvature [14]. This is to be expected as the paths which mark the upper and

lower bounds of the graph are those in which the steering angle and hence curvature

are at the maximum allowable value, and so the bounds are similar to those of Dubins’

car.

Note that due to the Taylor expansion used to approximate the real part of the solution

in (3.55), the curves in Figure 3.9 are of slightly different lengths and are not optimal,

leading to the intersection of paths.
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Figure 3.9: Time limited subset of reachable sets determined numerically for T = 1 s,
H∗,M, λ3(0) ∈ [0, 1]. 1000 trajectories plotted.

3.3 Motion Planning and Obstacle Avoidance for a Wheeled

Robot

In this section a method of matching prescribed boundary conditions on the final po-

sition and orientation is introduced. This is achieved by parametrically optimising the

free parameters of the equations derived in Section 3.1. This is necessary to overcome

the fact that the boundary conditions are not included in the cost function, which is an

inherent limitation of the geometric method. Furthermore, it is shown how the para-

metric optimisation can be adapted to create a simple obstacle avoidance algorithm for

static obstacles in a known environment. This section establishes a parametric optimi-

sation and obstacle avoidance framework for the simple wheeled robot, which will be

extended to more complex systems in later chapters.
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3.3.1 Parametric Optimisation

As the analytical expressions for the angular and translational displacements of the

wheeled robot are functions of several free parameters, a parametric optimisation can

be utilised in order to drive the robot to the desired target (provided the target is

within the reachable sets of the planner.) However, as noted by LaValle [14], no natural

performance metric exists on SE(2) as the rotational and translational components do

not have matching units. Therefore difficulties can occur when targeting both final

position ([Xf Yf ]T ) and orientation (θf ) using the standard Euclidean metric:

L2 = (X −Xf )2 + (Y − Yf )2 + (θ − θf )2 (3.70)

where L2 denotes the Euclidean metric [14] and the subscript f denotes the desired

value of the parameter at the end of the manoeuvre. However, by using the complex

representation of the angular displacement θ = a+ ib, where a = cos(θ) and b = sin(θ),

greater accuracy can be achieved [14]. Therefore a cost function of the form

min
H∗,M,Υ

{(X −Xf )2 + (Y − Yf )2 + (a− af )2 + (b− bf )2} (3.71)

was used where H∗,M and Υ are the free parameters to be optimised. H∗ is the

optimal Hamiltonian, M the Casimir function and Υ = c is a weight in the arbitrary

speed case and Υ = λ3(0) is the initial angular velocity in the unit speed case. A para-

metric optimisation can then be carried out to minimise the error between the current

and target position in SE(2) by changing the values of the free parameters. Formally,

this involves finding the curve g(t) ∈ SE(2) that matches the boundary conditions

g(0) ∈ SE(2) and g(T ) ∈ SE(2) in some final time T .

The optimal values of the free parameters obtained as a result of the parametric opti-

misation are then input into the analytical expressions for the angular and translational

displacements of the wheeled robot to give position and orientation reference tracks for

the robot’s path. This is demonstrated in Section 3.4.

A stochastic functional minimisation method was used for the parametric optimisation
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as it proved the most effective at minimising the final error in comparison to the other

available solvers such as genetic algorithm and direct search “simplex” methods [35].

This method was chosen in order to assess the form of the motion primitives. A deeper

investigation would be required to determine if these solution methods were suitable

for onboard implementation.

3.3.2 Obstacle Avoidance Algorithm

While the definition of the reachable sets in Section 3.2 and the parametric optimisation

approach described in Section 3.3.1 assumed that the robot is operating in free space,

in reality the configuration space may contain obstacles. In this case the set of all

curves which match the boundary conditions on X and Y can be probed to determine

if a suitable single curve exists which avoids the obstacle.

In the simplest case, where the obstacle is considered to be a point, the curves must

not violate the condition

√
(X −Xo)2 + (Y − Yo)2 = χ (3.72)

where γ̄o = [Xo Yo]
T is the position of the obstacle and χ 6= 0 for obstacle avoidance.

However, real world obstacles have thickness, so the states which the wheeled robot

cannot inhabit create a forbidden “zone” in the configuration space. Therefore in

practice a range of states must be avoided during the manoeuvre. In this preliminary

work, the obstacle is considered to be stationary and represented by a circle of radius

χo in the X−Y configuration space. The condition for obstacle avoidance is then given

by (3.72) where χ > χo. Given the proposed method outlined in Section 3.3.1 for the

analytical expressions defined in Sections 3.1.1 and 3.1.2, the parametric optimisation

will return the optimal values of the free parameters H∗,M∗,Υ∗ which satisfy the

target position. As in Section 3.3.1, Υ = c is a weight in the arbitrary speed case

and Υ = λ3(0) is the initial angular velocity in the unit speed case. In the case that

this manoeuvre violates χ > χo∀t, a simple algorithm can be devised to overcome this.
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Defining the forbidden region as a circle in the plane on SE(2) with radius χo and

centre [Xo Yo]
T , provided χ > χo∀t the trajectory will avoid the forbidden region. If

χ < χo for H∗,M∗,Υ∗ for any t in the interval (0, T ) then the parameters p1, p2, p3 are

further optimised such that p2
1 > η, p2

2 > η, , p2
3 > η, where η > 0 is a small parameter.

This leads to a new set of free parameters H∗∗ = H∗+p1,M
∗∗ = M∗+p2,Υ

∗∗ = Υ∗+p3

being obtained, with the objective function

min
p1,p2,p3

{(X −Xf )2 + (Y − Yf )2} (3.73)

such that χ > χo∀t. Note that η can be tuned until χ > χo∀t is satisfied. This simple

obstacle avoidance algorithm will be demonstrated in Section 3.4, and the framework

revisited to plan constrained slews for spacecraft in Chapters 4 and 5.

3.4 Examples of Kinematic Motion Planning for a Wheeled

Robot

In this section, the motion planning method described in Section 3.3 is used to plan

motions for the arbitrary and unit speed wheeled robots. The behaviour of the curves

produced by the motion planners is investigated, and the suggested obstacle avoidance

method is tested.

3.4.1 Motion Planning and Obstacle Avoidance for Arbitrary Trans-

lational and Rotational Speed

In the absence of obstacles, any motion which meets the prescribed boundary conditions

is sufficient. Figure 3.10 shows position and velocity curves for the wheeled robot,

generated using the equations derived in Section 3.1.1, from the origin to the randomly

selected points [Xf , Yf , θf ] = [0.18, 2.5, π2 ], [0.4, 2, π2 ] and [1, 3, π3 ] in a manoeuvre time

of T = 1 s.
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Figure 3.10: a) Smooth paths b) translational velocities and c) rotational velocities
of wheeled robot for manoeuvres to [Xf , Yf , θf ] = [0.18, 2.5, π2 ] (red), [0.4, 2, π2 ] (blue),
[1, 3, π3 ] (green).

The values of the free parameters which produced these curves were [H∗,M, c] =

[37056.3, 25.3, 374.4], [2.89, 5.78, 0.16] and [6.55, 13.3, 0.46] respectively. The paths are

smooth, and it is clear that the elliptic functions lead to a variety of different curves

being produced as the free parameters are varied. Additionally, the ability of the car

to move forwards and backwards at arbitrary speed is shown in the case of the ma-

noeuvre to [Xf , Yf , θf ] = [0.18, 2.5, π2 ], where the angular velocity is constant and the

translational velocity is periodic. The behaviour of the different types of curve will now

be studied in more detail.

In Section 3.1.1, the optimal equations for the robot constrained to move at arbitrary

rotational and translational speed were found to have special cases comprising simple

trigonometric and hyperbolic functions. These functions are more familiar and widely

used in standard computational software in comparison to the Jacobi elliptic functions,
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and so they may be easier to implement in practice. Examples of motion planning using

the trigonometric (3.23, 3.24) and hyperbolic (3.25, 3.26) particular cases are shown in

Figure 3.11.

Figure 3.11: Smooth paths of wheeled robot for manoeuvres to (from left to right)
[Xf Yf ]T = [0.18 2.5]T , [0.4 2]T and [1 3]Tm - using trigonometric (red dashed)
and hyperbolic (blue) special cases of elliptic functions.

With examples of the kinematic motion planner in free space given, the obstacle avoid-

ance framework of Section 3.3.2 will now be tested. In the case that the configuration

space contains an obstacle, the reachable sets of the planner must be probed to de-
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termine if a suitable curve exists which avoids the obstacle. Figure 3.12 shows the

existence of a subset of the curves produced by the kinematic motion planner which

match a target position of [Xf Yf ]T = [1 3]Tm in a time of T = 1 s.

Figure 3.12: Illustration of a subset of curves which match [Xf Yf ]T = [1 3]Tm
boundary conditions.

It is obvious that there are multiple curves which satisfy the position constraint, and

therefore it may be possible to utilise this subset of curves in an obstacle avoidance

algorithm.

For example for a manoeuvre from the origin to [Xf Yf ]T = [1 3]Tm with a static

obstacle centred at [Xo Yo]
T = [0.66 1.52]Tm and with radius χf = 0.3 m, the fol-

lowing approach could be employed. First, generate a manoeuvre using the motion
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planning method described in Section 3.3.1 above. Then, check to see if the condition

χ > χo∀t is violated at any time step. For instance, for the T = 1 s repointing ma-

noeuvre to [1, 3, Π
3 ] shown in Figure 3.10 the wheeled robot collides with the obstacle

at t = 0.56 s. Figure 3.13 illustrates this.

Figure 3.13: Error between current position and centre of forbidden zone of radius χo
for original path (blue) and path generated using obstacle avoidance algorithm (green).
Dashed red line marks radius of obstacle.

Now, a new trajectory can be generated by introducing the parameters pi (where i =

1, ..., 3) to produce a new set of free parameters which drive the wheeled robot to the

target via (3.73). This process is repeated, tuning the value of the parameter η until an

appropriate solution is found which does not violate the constraint and still meets the

desired final position to high precision. One such solution for a constrained manoeuvre

from the origin to [Xf Yf ]T = [1 3]Tm is shown in Figures 3.13 and 3.14.
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Figure 3.14: Alternative smooth trajectory for manoeuvre to [Xf Yf ]T = [1 3]Tm
(green). Also shown is the original path (blue dashed line) intersecting with the obstacle
(red circle).

It is evident that for the new path the constraint χ > χo∀t is respected and so the

wheeled robot does not collide with the specified obstacle. Therefore the optimal con-

trols derived using geometric control theory have been implemented in a kinematic

motion planner which has been shown to be capable of obstacle avoidance. However,

further work is required to assess the effectiveness of the obstacle avoidance algorithm

in comparison to other methods such as artificial potential functions.

Note that while the obstacle avoidance algorithm was implemented for static obstacles
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in a known environment, the analytical curves can be generated swiftly and efficiently

and so an extension to dynamic obstacles in uncertain environments may be feasible

in future. However, the method of generating the obstacle avoidance curves relies on

heuristics at present and so a more automated algorithm would be necessary for the

extension to uncertain environments.

3.4.2 Motion Planning for Unit Speed Case

With the arbitrary speed case shown to produce a wide range of curves and to be

adaptable to simple obstacle avoidance, in this subsection the planning of motions for

the wheeled robot constrained to move at unit speed is demonstrated. Note again that

the solution for the unit speed case is complex and only the real part is used for motion

planning. Therefore the full optimal solution derived in Section 3.1.2 is not utilised for

motion planning, and so it is important to determine if there is any benefit to using

the real part of the solution.

Due to the Taylor expansion, and the necessary constraints on the parameter space to

H∗,M, λ3(0) ∈ [−1.5, 1.5] to ensure the accuracy of this expansion, the curves generated

by the unit speed motion planner do not exhibit the same variety as that of the arbitrary

speed motion planner. This is illustrated in Figure 3.15.

The constraints on the parameter space, in addition to limiting the range of curves

available, also limit the reachable sets of the planner. Therefore the obstacle avoidance

framework detailed in Section 3.3.2 is in practice not applicable to the unit speed

method in it’s current form.

As a result of the unit speed case not being capable of obstacle avoidance, and due to

the constraints on the reachable sets of the planner due to the Taylor expansion, the

unit speed case would appear to be of limited use in practical motion planning.
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Figure 3.15: Smooth paths of unit speed wheeled robot for manoeuvres to [Xf , Yf , θf ]
= [0.58,−0.62,−1.76], [0.95, 0.27, 0.42], [0.95,−0.27,−0.42] and [0.98, 0.105, 0.42] for
H∗,M, λ3(0) ∈ [−1.5, 1.5].

3.4.3 Limitations of Kinematic Motion Planning Method for a Wheeled

Robot

The main limitation of the obstacle avoidance method detailed above is that while

alternative trajectories can be generated to a specified position in the X − Y plane,

it is not always possible to generate an alternative curve which does not collide with

the obstacle and which satisfies both a position ([Xf Yf ]T ) and an orientation (θf )

constraint. For example in Figure 3.14 the position constraint [Xf Yf ]T = [1 3]Tm

is respected, but the final orientation differs from that of the original curve.

In the case where an alternative curve has been generated in the presence of an obstacle

and a desired final orientation is not achievable via a single curve, or indeed if a desired

final state cannot be reached due to sliding and turning constraints, a more complex

motion planning algorithm is required. For example while a single curve generated

via the motion planner described in this chapter may not be sufficient in all cases, a

combination of curves generated by the motion planner and straight line segments may
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enable the desired final state to be reached. The motion planning methodology can

then be summarised in the following stages:

1. Use the motion planning method described in Section 3.3.1 to minimise the error

between the actual and desired final state (Xf , Yf , θf ) by changing the values of

the free parameters in the analytical expressions derived in Sections 3.1.1 and

3.1.2. If the accuracy of the solution is sufficiently high, and it does not intersect

with any obstacles in the configuration space, the trajectory is suitable.

2. In the case where the trajectory intersects with a static, known obstacle, and

where final orientation is not of paramount importance, further optimise the

parameters pi as described above to generate an alternative trajectory which

does not collide with the obstacle and which sufficiently satisfies the desired final

position constraint [Xf Yf ]T .

3. If no single suitable trajectory is found use a combination of curves, generated by

motion planner, and straight lines to achieve the desired final state.

The difficulty in piecing together motions lies in ensuring that the transition between

segments is smooth (as in the work of Scheuer and Fraichard [68]) and that there are

no infeasible increases in translational and rotational speeds between sections. Several

methods for achieving this have been proposed [80, 81, 82, 83]. These methods consider

the free configuration space of the robot, and then query the reachable sets to create

feasible paths for the robot by concatenation of different motion primitives. However, as

the aim was simply to derive general classes of motion primitive rather than construct

a complete motion planner, this process is outwith the scope of this thesis.

3.5 Chapter Summary

In this chapter a motion planning method for simple wheeled robots with a sliding

constraint was derived using optimal control theory for systems defined on Lie groups.

Two cases were considered: (i) the case where translational and rotational speeds are
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arbitrary and; (ii) the case where the robot is constrained to move forwards at unit

speed.

In the arbitrary speed case the optimal controls take the form of elliptic functions. This

class of function degenerates to simple trigonometric and hyperbolic functions under

certain conditions, and so a wide range of curve types are available for motion planning.

In the unit speed case the rotational velocity was described in terms of elliptic functions

and the expression for the position reduced to quadratures. A truncated approxima-

tion for the real component of the optimal expressions was then used to describe the

position analytically. However, in order to ensure that the expansion was accurate it

was necessary to limit the parameter space to H∗,M, λ3(0) ∈ [−1.5, 1.5].

Reachable sets were defined exactly and analytically in the arbitrary speed case by

expressing the final manoeuvre time as an elliptic integral of the first kind, and were

illustrated numerically in the unit speed case where the time-limited reachable sets

resembled those of Dubins’ car over short time spans. It was shown that the analytical

expressions for position and orientation can be exploited to efficiently generate smooth

and feasible paths for the wheeled robots via parametric optimisation. Finally, an al-

gorithm for introducing obstacle avoidance into the parametric optimisation procedure

was presented for static obstacles in a known environment. In this procedure a further

parametric optimisation probes the reachable sets to find a curve which avoids the

static obstacle while satisfying a position constraint. While an example was given for

the arbitrary speed case, obstacle avoidance was not feasible for the unit speed case

due to the Taylor expansion limiting the reachable sets of the planner. Therefore the

unit speed case would not appear to be useful for practical motion planning.

While in this chapter only the kinematics of the wheeled robot were considered, in the

following chapter the complexity of the motion planning problem is increased by con-

sidering the kinematics together with the dynamics and environment of an autonomous

rigid spacecraft performing attitude reorientation manoeuvres. This will enable an as-

sessment to be made of the feasibility and practicality of utilising a kinematic motion

planner, derived using geometric control, in a non-ideal environment and in the presence

of hardware constraints.
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Chapter 4

Spacecraft Attitude Motion

Planning and Control

In the previous chapter two kinematic motion planning methods were presented for a

wheeled robot subject to kinematic nonholonomic constraints. In this chapter, a motion

planning method is derived with respect to a dynamic nonholonomic constraint, the

conservation of angular momentum, and then utilised to plan attitude manoeuvres for

a small spacecraft. Small spacecraft, such as UKube-1, are limited both in the size of

their actuators and in their on-board computational capacity. As a result a low torque,

computationally efficient means of repointing these nano-spacecraft is required.

As in Chapter 3 the framework of a kinematic system on a matrix Lie group is used, and

the integrals of motion of the system are exploited to analytically solve the problem.

However, in contrast to the purely kinematic motion planning of Chapter 3, external

disturbances and hardware constraints are considered, enabling the validity of using

analytically defined natural motions to plan manoeuvres in a more complex, non-ideal

environment to be assessed. Thus in this chapter an analytical motion planning al-

gorithm for axisymmetric and asymmetric rigid spacecraft, based around the natural

motion of a free rigid body, is derived in the framework of geometric mechanics detailed

in Chapter 2 and applied to the reorientation of nano-spacecraft in order to assess its

effectiveness and the feasibility of future on-board implementation. While the attitude
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control of a rigid body has been widely studied, on-board attitude motion planning has

received considerably less attention and a motivation of this work is to determine the

effectiveness of motion planning methods in comparison to widely used conventional

control.

Initial attitude control approaches focussed on a series of discrete single axis slews.

However, these methods were costly in terms of time and fuel and so new methods

were sought. Open loop controls [84, 85] were proposed as simple, low-cost solutions

for spacecraft, but these methods are highly sensitive to uncertainties and disturbances.

Despite this, open loop controls may be suitable for spacecraft attitude control in low

disturbance environments with coarse pointing requirements [86]. Meanwhile, Sidi [58]

proposed augmenting single-axis open loop “bang-off-bang” controls with linear feed-

back near the origin, thus maintaining relatively low control effort while improving

stability. Shortest angular path eigenaxis slews have been proposed as simple, near

time-optimal solutions [87, 88, 89], but they are in general not fuel-optimal. Other

time-efficient retargeting methods have been proposed by Wie [90] and Verbin [91],

which additionally consider actuator and pointing constraints.

Nonlinear optimal control methods that use the calculus of variations and dynamic pro-

gramming have also been applied to the spacecraft attitude control problem. However,

while these methods, such as those that require the numerical solution of the Hamilton-

Jacobi-Bellman (HJB) equation, give globally optimal and theoretically superior solu-

tions they are difficult to implement on-board a spacecraft as they are computationally

intensive [92]. As a result, simple proportional-derivative (PD) controllers such as the

quaternion feedback controllers [93, 94] continue to dominate the practical control of

spacecraft due to the ease of gain tuning and low implementation risk. Recent inverse

optimal control methods negate the need to solve the HJB equation by finding a con-

trol Lyapunov function which is itself a solution of the HJB, and designing the control

around this [95]. This approach has been combined with the minimisation of control

norms to form low energy attitude manoeuvres [96, 97].

Other guidance methods include the tracking of references generated by computation-

ally efficient artificial potential functions (APFs) to reorientate spacecraft [51]. Mengali
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[43] extended this work by utilising artificial potential functions in the manoeuvring

of spacecraft with sensitive optical equipment, such as star trackers, which must reach

the target attitude while avoiding luminous objects such as the Sun and Earth’s Moon.

However, as previously stated, APFs can demand excessive control effort [52, 53].

This work is motivated by the need to find a compromise between the computational

simplicity of proportional-derivative control and the optimality of non-linear controllers.

In free space and choosing appropriate initial conditions, the spacecraft will naturally

drift towards a certain orientation in a set period of time. Therefore these “natural

motions” are an intuitive basis around which to design spacecraft attitude manoeuvres.

In this chapter the dynamics of a rigid body are exploited to derive analytical expres-

sions for the time evolution of the attitude of the spacecraft in quaternion form. De-

spite suffering from the problem of ambiguity, due to the two-to-one mapping between

the unit quaternions and SO(3) detailed in Section 2.3.3, quaternions are singularity

free and computationally efficient, and so are the most widely used form of attitude

representation on-board spacecraft [32]. Boundary conditions on the attitude of the

spacecraft are matched through parametric optimisation of the initial spacecraft an-

gular velocities, building on the framework introduced in Chapter 3, and the resulting

references are tracked using a simple proportional-derivative controller. The effective-

ness of the motion planning method is assessed via comparison with the conventionally

used quaternion feedback control, and it is shown that the references require low ac-

cumulated torque to track. In addition, in a similar manner to the kinematic wheeled

robot motion planner of the previous chapter, the set of curves which match the bound-

ary conditions on the final pointing direction can be probed to create a simple obstacle

avoidance algorithm.

Original Contributions

The original contributions in this chapter are outlined as follows:

• While the classical global solution is on the attitude dynamics, in this thesis the

kinematics for both axisymmetric and asymmetric spacecraft are derived analyt-
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ically for global motion planning implementation in convenient quaternion form.

This is accomplished using the machinery of geometric control theory which was

detailed in Chapter 2 and used to construct a simple kinematic motion planner in

Chapter 3. The classical solutions, to the authors’ knowledge, can only be found

expressed locally in terms of Euler angles [98, 99, 100].

• The analytical equations are implemented in a simple motion planning algorithm

to produce easily trackable reference motions for a spacecraft, and it is shown that

the motion planning algorithm is additionally capable of providing constrained

slews.

• The strengths and weaknesses of the proposed method are evaluated through ex-

tensive numerical simulations in which environmental disturbances and actuator

constraints are taken into account. It is shown that the natural motions pro-

vide substantial savings in accumulated torque over a conventional quaternion

feedback benchmark. An obstacle avoidance manoeuvre is demonstrated.

The chapter is structured as follows. In Section 4.1, the spacecraft model is introduced,

together with the realistic environmental model which will be utilised to test the robust-

ness of the motion tracking. In Section 4.2, the general motion planning framework is

first described, before the specific cases of the axisymmetric and asymmetric spacecraft

are derived. The practical implementation of the motion planning method is discussed

in Section 4.3, including the extension to obstacle avoidance. Simulation results are

presented in Section 4.4 where the novel natural motion planning method is compared

to conventional quaternion feedback control. The suitability of the method for on-board

implementation is discussed in Section 4.5. Finally, the chapter concludes with Section

4.6 and a summary of results.

4.1 Spacecraft Attitude and Orbit Models

While in reality spacecraft have flexible modes, in this thesis the assumption is made

that the spacecraft can be treated as a rigid body. This assumption is feasible for small
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Cubesat spacecraft as they contain few moving parts and generally do not carry liquid

propellant. The general equations describing the attitude control problem are then

that of a rigid body with external torques describing the effect of the disturbances.

4.1.1 Reference Frame Definitions

The spacecraft under consideration is in orbit around the Earth. The centre of the

Earth is chosen as the origin of a Geocentric Equatorial co-ordinate system with basis

vectors Î , Ĵ , K̂. As in [101], the X-axis lies in the equatorial plane towards the vernal

equinox direction, the Z-axis points in the direction of the North pole and the Y-axis lies

in the equatorial plane and completes the orthonormal reference frame. The co-ordinate

system is shown in Figure 4.1.

Figure 4.1: Geocentric Equatorial and RTN co-ordinate systems.

Also shown in Figure 1 is the Radial-Transverse-Normal (RTN) reference frame used to

describe the orbit of the spacecraft. In this reference frame R̂ is parallel with the radial

vector, N̂ is parallel with the orbit normal and T̂ completes the orthonormal frame.

A body fixed reference frame (BRF) with basis î, ĵ, k̂ is rigidly attached to the centre

of mass of the spacecraft, as shown in Figure 4.2.
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Figure 4.2: Body and RTN co-ordinate systems.

4.1.2 Kinematic Model

The attitude kinematics of the spacecraft can be parameterised using quaternions (2.29)

and equivalently on the matrix Lie group SU(2) (2.31), as stated in Section 2.3.3 of

Chapter 2. In this chapter the quaternions are inertially referenced, with the inertial

quaternions simply denoted q̄ = [q0 q1 q2 q3]T .

4.1.3 Dynamic Model

Euler’s rotational equations of motion for a rigid spacecraft are defined as:

J · ˙̄ω + ω̄ × J · ω̄ = N̄e + N̄w (4.1)

where J denotes the moment of inertia matrix of the spacecraft, ω̄ and ˙̄ω the angu-

lar velocity and angular acceleration vectors of the spacecraft body frame with re-

spect to the inertial frame, N̄e = [N1e N2e N3e]
T the external torques and N̄w =

[N1w N2w N3w]T the reaction wheel torques. Assuming that the body frame orig-

inates from the spacecraft centre of mass and is coincident with the principal axes of
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the spacecraft, Euler’s equations reduce to

ω̇1 = N1e+N1w+(J2−J3)ω2ω3

J1

ω̇2 = N2e+N2w+(J3−J1)ω3ω1

J2

ω̇3 = N3e+N3w+(J1−J2)ω1ω2

J3

(4.2)

where J1, J2 and J3 are the principal moments of inertia of the spacecraft.

4.1.4 Spacecraft Model

Two spacecraft based on the UKube-1 are primarily considered; one of which is ax-

isymmetric and the other slightly asymmetric. The properties of these spacecraft are

listed in Table 4.1.

Table 4.1: Physical properties of spacecraft

Principal inertias of axisymmetric spacecraft A J1 = 0.0109 kgm2

J2 = J3 = Js = 0.05 kgm2

Principal inertias of asymmetric spacecraft B J1 = 0.0109 kgm2

J2 = 0.0504 kgm2

J3 = 0.0506 kgm2

Drag coefficient Cd = 3
Reflectivity κ = 0.6

Residual dipole in k̂ body axis M3res = 10× 10−3 Am2

CoP/CoM offset || r̄m/p ||= 0.02 m

It is assumed that the spacecraft is equipped with simple reaction wheels. The wheel

data is based on the Sinclair Interplanetary picosatellite reaction wheels [102], and the

wheel properties are shown in Table 4.2.
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Table 4.2: Sinclair Interplanetary reaction wheel data

Wheel inertias Jw = 1.499× 10−5 kgm2

Maximum wheel torque 1× 10−3 Nm
Rate limit 1× 10−2 Nm/s
Nominal wheel momentum 7× 10−3 Nms@4460 rpm

The wheels apply a control torque given by

N̄w = − ˙̄hw − ω̄ × h̄w (4.3)

This simplified model can be easily integrated to yield the wheel angular momenta

h̄w = [h1w h2w h3w]T and wheel velocities ω̄w = [ω1w ω2w ω3w]T .

4.1.5 Orbit Model

A Cartesian orbit model was implemented in which the two-body problem equations

[101] were numerically integrated to give the position and velocity at each time-step:

¨̄r = − µ

(|| r̄ ||)3
r̂ + āext (4.4)

The symbol r̄ denotes the orbit radius vector and || r̄ || the magnitude of the orbit

radius vector, µ = 3.986 01× 1014 m3s−2 is the gravitational parameter, in this case of

the Earth, and āext the accelerations caused by external environmental forces. These

environmental effects will be discussed in the proceeding section.

4.1.6 Environmental Model

As a spacecraft orbits the Earth it is subjected to a number of environmental distur-

bances. Therefore in order to test the robustness of the motion planning method it is

necessary to model these environmental disturbances, and assess the effect they have

on the tracking of the motions which are derived for a free rigid body. The attitude
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disturbances caused by the gravity gradients, residual magnetic dipoles, air drag and

solar radiation pressure were modelled, together with the orbital perturbations due to

air drag, solar radiation pressure and the Earth’s oblateness.

Gravity Gradient Torque

The gravity gradient torque arises from the fact that the spacecraft is not a point

mass, and so the gravitational field is not uniform over the spacecraft. Therefore each

point on the spacecraft experiences a different gravitational attraction depending on its

distance from the earth. The gravity gradient torque acting on the spacecraft is given

by [32]

N̄gg =
3µ

(|| r̄ ||)5
r̄ × J · r̄ (4.5)

where N̄gg is the gravity gradient torque.

Magnetic Dipole Torque

The onboard electronics of the spacecraft generate a magnetic disturbance torque as a

result of the Lorentz force. This disturbance torque is given by

N̄md = M̄res × B̄ (4.6)

where N̄md = [N1md N2md N3md]
T is the magnetic disturbance torque vector, M̄res =

[M1res M2res M3res]
T is the residual dipole due to the spacecraft electronics and

B̄ = [B1 B2 B3]T is the Earth’s magnetic field in the body reference frame.

The Earth’s magnetic field was modelled as a simple dipole [103]:

B̄grf = − µm

|| r̄ ||3


3 sinλm cosλm cos ηm

3 sinλm cosλm sin ηm

3 sin2 λm − 1

 (4.7)
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where B̄grf = [B1grf B2grf B3grf ]T is the magnetic field vector in the geomag-

netic reference frame, µm = 7.96× 1015 Wbm represents the Earth’s magnetic dipole

strength, λm is the latitude with respect to the geomagnetic equatorial plane and ηm is

the longitude along the magnetic equator. The magnetic field in the body frame B̄ can

then be found by rotating from the geomagnetic reference frame to the body frame.

The value of M̄res detailed in Table 4.1 was based on a NASA guideline for estimation

of magnetic disturbance torques for a small spacecraft [104]. In this document, a con-

stant magnetic moment per unit mass is given for various types of spacecraft, leading

to the calculation of the value above. However, it should be noted that in reality the

magnetic dipole of the spacecraft will be time varying as components are switched on

and off.

Air Drag Torque and Force

The air drag torque acting on a spacecraft is difficult to model accurately as a result

of the chaotic nature of the Earth’s atmosphere. In this thesis a simple approximation

of the air drag torque is adopted, with the air density at a specific altitude assumed

constant and the atmosphere assumed to rotate at the same speed as the Earth. Then,

the air drag torque can be calculated by considering the forces acting on each face of the

spacecraft. The offset between the centre of mass and centre of gravity was assumed

to be || r̄m/p ||= 0.2 m where r̄m/p is the vector from the centre of mass to the centre

of pressure. The air drag torque acting on the spacecraft can then be calculated from

the expression [105]

N̄ad =
1

2
ρv2CDAs(n̂ · v̂)r̄m/p × (v̂) (4.8)

where N̄ad = [N1ad N2ad N3ad]
T is the air drag torque, ρ the atmospheric density, v

the velocity of the air hitting the spacecraft in the body reference frame, CD the drag

coefficient, As the area of the spacecraft face(s) and n̂ the unit vector of the spacecraft

face in the body reference frame.
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Solar Radiation Pressure Torque and Force

The solar radiation pressure torque is calculated in a similar manner to the air drag

torque. The radial vector from the Sun to the spacecraft in the inertial frame, r̄sun, is

calculated and this vector is used in the expression [105] below to calculate the solar

radiation pressure torque:

N̄SRP =
S0As(1 + κ)

cl
(n̂ · r̂sun(b))r̄m/p × (r̂sun(b)) (4.9)

where N̄SRP = [N1SRP N2SRP N3SRP ]T is the solar radiation torque, S0 is the solar

constant (1367 W/m2), κ the reflectance factor (0.6), cl the speed of light in a vacuum

and r̂sun(b) the unit vector from the Sun to the spacecraft in the body reference frame.

Earth Oblateness

The Earth oblateness effects, which arise due to the non-spherical shape of the Earth,

were modelled by considering the perturbing accelerations acting on the spacecraft’s

orbit in Cartesian co-ordinates. For more detail on these accelerations, see [106] pp.

553.

4.2 Analytic Derivation of the Natural Motion References

In this section analytical equations for the torque-free attitude motion of axisymmetric

and asymmetric spacecraft are derived using Lax pair integration in global quaternion

form. The general framework used to derive the equations is the same as that utilised in

Chapter 3 in the kinematic motion planning for a simple wheeled robot. Once again the

kinematics of the system are expressed on a matrix Lie group, in this case the Special

Unitary group SU(2), and the conserved quantities of the system are utilised to solve

the Hamiltonian vector fields to yield the analytical optimal controls. The specific

cases of the axisymmetric and asymmetric spacecraft are considered. The analytical

equations will form the basis of the natural motion planning algorithm for spacecraft
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attitude manoeuvres.

4.2.1 General Framework

In order to explicitly show the link between the optimal kinematic motion planning of

Chapter 3 and the dynamic motion planning problem of this chapter, the rigid body

equations of motion are derived in the context of an optimal control problem on a

matrix Lie group. In this case the integrand of the cost function is the Lagrangian and

the Lie group is the Special Unitary group SU(2). This problem is analogous to the

principle of least action in mechanics and the resulting extremal curves are shown to be

the components of angular momentum. The Hamiltonian vector fields describing the

necessary conditions are then the Euler equations. In this framework the Hamiltonian

and Casimir functions are identified as in Chapter 3 and exploited in a similar fashion

to integrate and solve the problem analytically.

The kinematics of the rigid body are described using the matrix Lie group SU(2) (2.31),

and a cost function of the form

J =
1

2

1∫
0

J1ω1
2 + J2ω2

2 + J3ω3
2dt (4.10)

is utilised. Relative to the general form of the cost function (2.34), the weights ci = Ji

where Ji are the principal inertias of the rigid body and the controls ui = ωi with

i = 1, ..., 3. As with the wheeled robot, torques will in reality be required to produce the

desired angular velocities. The impact of this assumption will be assessed in simulation.

The Hamiltonian function can be derived using the procedure detailed in Section 2.5.2:

H = ω1λ1 + ω2λ2 + ω3λ3 −
1

2
(J1ω1

2 + J2ω2
2 + J3ω3

2) (4.11)

The cost function (4.10) minimises the rotational kinetic energy of the rigid body, and

so tracking manoeuvres generated with respect to this cost should require low control

effort. The validity of this cost function will also be tested in simulation in later sections.

From the Maximum Principle of optimal control detailed in Section 2.5, if the following
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conditions are satisfied

∂H

∂ωi
= 0,

∂2H

∂ωi2
< 0 (4.12)

where again i = 1, ..., 3, then the controls ωi are optimal. This yields:

ωi =
λi
Ji

(4.13)

Substituting (4.13) into (4.11) leads to the optimal Hamiltonian H∗ relative to the

kinematics (2.31) and cost function (4.10):

H∗ =
1

2
(
λ2

1

J1
+
λ2

2

J2
+
λ2

3

J3
) (4.14)

Additionally, the Casimir function

M2 = λ2
1 + λ2

2 + λ2
3 (4.15)

is constant along the Hamiltonian flow {M2, H∗} = 0. The corresponding Hamiltonian

vector fields which implicitly define the extremal solutions are given by the Poisson

bracket dλi
dt = {λi, H∗} where i = 1, ..., 3. The Poisson bracket relations are given by

(2.11) relative to the commutative table for the Lie algebra of SU(2), Table 2.2. This

yields the differential equations:

λ̇1 = λ2λ3( 1
J3
− 1

J2
)

λ̇2 = λ1λ3( 1
J1
− 1

J3
)

λ̇3 = λ1λ2( 1
J2
− 1

J1
)

(4.16)

Equations (4.16) define the general extremal differentials for the specific case where

ci = Ji. Note that by substituting λi = ωiJi from (4.13) into (4.16), the equations

become the Euler equations defining the natural motion of a rigid body in the absence

of perturbations. Additionally, substituting λi = ωiJi into the optimal Hamiltonian
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(4.14) and Casimir (4.15) results in expressions of the form:

H∗ = 1
2

(
J1ω

2
1 + J2ω

2
2 + J3ω

2
3

)
M2 = (J1ω1)2 + (J2ω2)2 + (J3ω3)2

(4.17)

Therefore in the specific case where the weights are equal to the principal inertias

of the rigid body, the Hamiltonian corresponds to the total rotational kinetic energy

of the body, and the Casimir function corresponds to the magnitude of the angular

momentum. In the following sections these conserved quantities will be utilised to

show that the optimal angular velocities are the free angular velocities of the rigid

body, and to derive the time evolution of the attitude of the spacecraft in quaternion

form.

Firstly, in order to derive the global solution in terms of quaternions, the local solution

in terms of euler angles is utilised.

Lemma 3. The euler angles representing the local orientation of the spacecraft can be

written as functions of the angular velocities [98, 99, 100]:

ϕ1 =
∫ M(2H−J1ω1

2)
M2−(J1ω1)2

dt

ϕ2 = arccos(J1ω1
M )

ϕ3 = arctan(J2ω2
J3ω3

)

(4.18)

where 0 ≤ ϕ2 ≤ π and −π/2 < ϕ3 < π/2.

Proof. The Euler equations (4.2), in the case when N̄e = N̄w = [0 0 0]T , can be

written in Lax pair form on the semisimple Lie group SU(2) as [57, 107]:

dL(t)

dt
= [L(t), ω] (4.19)
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where

L(t) = J1ω1A1 + J2ω2A2 + J3ω3A3

ω = ω1A1 + ω2A2 + ω3A3

(4.20)

It is well known that the Lax pair equation and the kinematic equations are connected

through the relation

L(t) = R(t)−1L(0)R(t) (4.21)

It is this relation that is used to solve for the corresponding rotations. Here L(0) is

the matrix L(t) at t = 0 and is therefore a matrix with constant entries. Writing

the dynamics and kinematics in the language of classical mechanics and making use

of Lax pair integration provides a natural and elegant means of deriving analytically

the expressions for the time evolution of the quaternions. Equivalently, it is possible to

write

R(t)L(t)R(t)−1 = L(0) (4.22)

where R(t)L(t)R(t)−1 describes the conjugacy class of L(t). Thus for simplicity and to

obtain more explicit solutions it suffices to integrate the particular solution

R(t)L(t)R(t)−1 = MA1 (4.23)

where M is the conserved Casimir function from (4.17). Rearranging yields:

L(t) = MR(t)−1A1R(t) (4.24)

As exp(−ϕ1A1)A1 exp(ϕ1A1) = A1, exp(ϕ1A1) is known as the stabilizer of A1 [17]. It

is therefore convenient to introduce the coordinate form

R(t) = exp(ϕ1A1) exp(ϕ2A2) exp(ϕ3A1) (4.25)
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Substituting (4.25) into (4.24) yields:

L(t) =
iM

2

 cosϕ2 e−iϕ3 sinϕ2

eiϕ3 sinϕ2 − cosϕ2

 (4.26)

Equating (4.26) with L(t) in (4.20) results in the following system of equations:

J1ω1 = M cosϕ2

J2ω2 + iJ3ω3 = Me−iϕ3 sinϕ2

−J2ω2 + iJ3ω3 = Meiϕ3 sinϕ2

(4.27)

which can be immediately solved to provide the expression for ϕ2 in (4.18). Now,

adding the bottom two equations in (4.27) yields:

2iJ3ω3 = M sinϕ2(e−iϕ3 + eiϕ3) (4.28)

Subtracting the bottom two equations in (4.27) gives:

2J2ω2 = −M sinϕ2(−e−iϕ3 + eiϕ3) (4.29)

Equations (4.28) and (4.29) can be simplified by making use of the identities

cos(θ) = eiθ+e−iθ

2

sin(θ) = eiθ−e−iθ
2i

(4.30)

which results in the following:

iJ3ω3 = M sin(ϕ2) cos(ϕ3)

J2ω2
i = −M sin(ϕ2) sin(ϕ3)

(4.31)

Dividing these two equations gives:

tan(ϕ3) =
J2ω2

J3ω3
(4.32)
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Solving provides the expression for ϕ3 in (4.18). To obtain an expression for ϕ1, rear-

range (2.31) to yield:

R(t)−1dR(t)

dt
= ω1A1 + ω2A2 + ω3A3 (4.33)

Then, substituting the expressions for ϕ2 and ϕ3 into (4.25), and subsequently into

(4.33), with some computation it follows that

ϕ̇1 =
Mω1(M2 − (J1ω1)2)−MJ2J3(ω3ω̇2 − ω2ω̇3)

J1ω1(M2 − (J1ω1)2)
(4.34)

Using the expressions for ω̇2 and ω̇3 in (4.2) for the free body (i.e. N̄e = N̄w = 0), the

constants (4.17) and simplifying results in the expression for ϕ1 in (4.18)�.

Note that the expressions for the Euler angles (4.18) can also be expressed more gen-

erally in terms of the extremals as [109]

ϕ1 =
∫
M(

∂H∗
∂λ2

λ2+ ∂H∗
∂λ3

λ3

λ22+λ23
)dt

ϕ2 = arccos(λ1M )

ϕ3 = arctan(λ2λ3 )

(4.35)

These more general expressions will be utilised in Chapter 5 in the derivation of the

optimal analytical controls for a spinning spacecraft.

Substituting (4.18) into (4.25) and pulling the solution back to the identity via

R(t) = RintR(0)−1R(t) (4.36)

provides the solution on the Special Unitary group SU(2). In this expression Rint is

the initial orientation and R(0)−1 is the inverse of R(t) at t = 0. Finally, using the

isomorphism (2.20) and comparing the real and imaginary parts yields the globally

defined analytical quaternion equations for the free motion of a rigid body.

The equations above will now be used to derive the globally defined analytic equations
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for the free motion of the spacecraft in the axisymmetric and asymmetric cases.

4.2.2 Axisymmetric Spacecraft

In this subsection the equations for the free motion of an axisymmetric spacecraft,

derived using the procedure in Section 4.2.1, are stated.

Lemma 4. The time evolution of the quaternions (q̄ = [q0 q1 q2 q3]T ) related to

the free motion of an axisymmetric body can be written in the form:

q0 = cos(x(t)) cos(ϕ1

2 )− y(t) sin(x(t)) sin(ϕ1

2 )

q1 = sin(x(t)) cos(ϕ1

2 ) + y(t) cos(x(t)) sin(ϕ1

2 )

q2 = sgn(ω3(0))
√

1− y(t)2 sin(ϕ1

2 ) sin(z(t))

q3 = sgn(ω3(0))
√

1− y(t)2 sin(ϕ1

2 ) cos(z(t))

(4.37)

where

x(t) = c(Js−J1)
2Js

t

y(t) = J1c
M

z(t) = x(t) + tan−1(ω2(0)
ω3(0))

ϕ1 = (M(2H − J1c
2)/(M2 − (J1c)

2)t

(4.38)

subject to the given boundary conditions q̄(0) = [1 0 0 0]T and q̄(T ).

Proof. For an axisymmetric spacecraft with J2 = J3 = Js, the general extremal differ-
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ential equations (4.16) reduce to

λ̇1 = 0

λ̇2 = λ1λ3( 1
J1
− 1

Js
)

λ̇3 = λ1λ2( 1
Js
− 1

J1
)

(4.39)

Therefore λ1 is constant. The Hamiltonian function (4.14) can then be rearranged to

give:

(2H∗ − λ2
1

J1
)Js = λ2

2 + λ2
3 (4.40)

Equation (4.40) can be solved using the polar co-ordinates

λ2 = r sin(θ), λ3 = r cos(θ) (4.41)

where θ = (At+B). From the left hand side of (4.40), it follows that r =

√
(2H∗ − λ21

J1
)Js.

In order to solve for θ, divide the expressions in (4.41) to yield:

λ2

λ3
= tan(θ) (4.42)

Differentiating 4.42 gives:

λ̇2λ3 − λ̇3λ2

λ2
3

= sec2(θ)θ̇ (4.43)

Substituting the expressions (4.41) and (4.39) into (4.43) and simplifying results in an

expression for θ̇:

θ̇ = λ1(
1

J1
− 1

Js
) (4.44)

Differentiating (4.44) yields:

θ = λ1(
1

J1
− 1

Js
)t+B (4.45)

where A = λ1( 1
J1
− 1

Js
). In order to solve for B, set t = 0 in (4.41) and rearrange to

give:

sin(B) =
λ2(0)

r
, cos(B) =

λ3(0)

r
(4.46)
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where B = θ(0) and θ(0), λ2(0) and λ3(0) are the values of θ, λ2 and λ3 at t = 0. It

follows from simple trigonometry that B = arctan(λ2(0)
λ3(0)). The complete expressions for

λ2 and λ3 can now be written as

λ2 =

√
(2H∗ − λ21

J1
)Js sin(λ1( 1

J1
− 1

Js
)t+ arctan(λ2(0)

λ3(0)))

λ3 =

√
(2H∗ − λ21

J1
)Js cos(λ1( 1

J1
− 1

Js
)t+ arctan(λ2(0)

λ3(0)))
(4.47)

It follows via (4.13) that the optimal analytical expressions for the angular velocities

of an axisymmetric spacecraft, where J2 = J3 = Js, are given by:

ω1 = c

ω2 = sgn[ω3(0)]σ1 sin(σ2t+ tan−1
(
ω2(0)
ω3(0)

)
)

ω3 = sgn[ω3(0)]σ1 cos(σ2t+ tan−1
(
ω2(0)
ω3(0)

)
)

(4.48)

where c is a constant angular velocity and where

σ2
1 = 2H−J1c2

Js

σ2 = cJs−J1Js

(4.49)

The expressions in (4.48) are the well-known equations for the free motion of an ax-

isymmetric rigid body [32]. Substituting these expressions into (4.18) and then into

(4.25), and pulling the solution back to the identity via (4.36) yields the solution on

SU(2). Using the isomorphism (2.20) gives the expressions for the evolution of the

quaternions in the axisymmetric case � See [108].

Remark 2. The sign function sgn(ω3(0)) in (4.37) and (4.48) is added to ensure that

the initial first derivatives of these equations match the initial first derivatives of their

numerical counterparts. That is, to ensure that the first derivatives of (4.37) and (4.48)

at time t = 0 match the first derivatives of (2.29) and (4.1), with zero external torques,

at t = 0.

101



4.2.3 Asymmetric Spacecraft

In this subsection the equations for the free motion of an asymmetric spacecraft, derived

using the procedure in Section 4.2.1, are stated.

Lemma 5. The time evolution of the quaternions (q̄ = [q0 q1 q2 q3]T ) related to

the free motion of an asymmetric body can be written in the form:

q0 = F1 (cos(ϕ1

2 ) F3 − sin(ϕ1

2 ) F4)

q1 = F1 (sin(ϕ1

2 ) F3 + cos(ϕ1

2 ) F4)

q2 = F2 (cos(ϕ1

2 ) F3 + sin(ϕ1

2 ) F4)

q3 = F2 (sin(ϕ1

2 ) F3 − cos(ϕ1

2 ) F4)

(4.50)

where

ϕ1 = M
J1
t+ κΠ(n; ϑ|m) +D,

F1 = S1

√
1+x(t)

2 ,

F2 = S2

√
1−x(t)

2 ,

F3 = S3
1√

1+y?(t)2
,

F4 = S4
y?(t)√

1+y?(t)2
,

Si = ±1, for i = 1, 2, 3, 4,

y?(t) = y(t)

1+
√

1+y(t)2
,

x(t) = J1ω1
M ,

y(t) = J2ω2
J3ω3

.

(4.51)

102



where Π(n; ϑ|m) is the incomplete elliptic integral of the third kind with

n = s1/M
2

f(t) = ±√s2α t+ C11

m = s1/s2

ϑ = am(f(t),m)

κ = ±
(
2HJ1 −M2

)
/
(
MJ1

√
s2α
)

(4.52)

when | s1/s2 |≤ 1. When | s1/s2 |> 1 the Jacobi real transform is applied [77], giving:

n = s2/M
2

f(t) = ±√s1α t+
√

s1
s2
C11

m = s2/s1

ϑ = am(f(t),m)

κ = ±
(
2HJ1 −M2

)
/
(
MJ1

√
s1α
)

(4.53)

where D is a constant of integration and ω1, ω2, ω3 are the free rigid body angular ve-

locities.

The analytical expressions for the quaternions are subject to the given boundary condi-

tions q̄(0) = [1 0 0 0]T and q̄(T ).

Proof. For an asymmetric spacecraft with principal inertias J1, J2 and J3, the general

extremal differential equations are given by (4.16). In this section the derivation is

given for λ1. The derivations for λ2 and λ3 follow a similar procedure, and the general

case will subsequently be detailed.

Squaring the expression for λ̇1 in (4.16) yields:

λ̇2
1 = λ2

2λ
2
3(

1

J3
− 1

J2
)2 (4.54)

Rearranging the expressions for the Hamiltonian (4.14) and Casimir (4.15) results in
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the following equations:

λ2
2 =

J2(2J3H∗−M2+λ21−
J3λ

2
1

J1
)

J3−J2

λ2
3 =

J3(2J2H∗−M2+λ21−
J2λ

2
1

J1
)

J2−J3

(4.55)

Substituting (4.55) into (4.54) and simplifying yields:

λ̇2
1 = αλ4

1 + βλ2
1 + χ (4.56)

where

α = − (J1−J2)(J1−J3)
J2
1J2J3

β = 4J2J3H∗−2J1(J2+J3)H∗+2J1M2−(J2+J3)M2

J1J2J3

χ = −(2J2H∗−M2)(2J3H∗−M2)
J2J3

(4.57)

Equation (4.57) can be rewritten as

λ̇2
1 = α(s1 − λ2

1)(s2 − λ2
1) (4.58)

where

s1 =
−β +

√
β2 − 4αχ

2α
s2 =

−β −
√
β2 − 4αχ

2α
(4.59)

Rearranging (4.58) results in the integral

t∫
0

dt =

λ1(t)∫
λ1(0)

dλ1√
α(s1 − λ2

1)(s2 − λ2
1)

(4.60)

In a similar manner to the unit speed wheeled robot case, a change in variable is

introduced via the expression

λ1 =
√
s1 sn(u,m) (4.61)

where m = s1
s2

. Differentiating (4.61) with respect to u gives:

dλ1 =
√
s1 cn(u,m) dn(u,m)du (4.62)
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Then, substituting (4.61) and (4.62) into (4.60) yields:

t∫
0

dt =

u2∫
u1

√
s1 cn(u,m) dn(u,m)

√
α
√
s1s2 − s2

1 sn2(u,m)− s1s2 sn2(u,m) + s2
1 sn4(u,m)

du (4.63)

where

u1 = sn−1(λ1(0)√
s1
,m)

u2 = sn−1(λ1(t)√
s1
,m)

(4.64)

With some manipulation equation (4.63) reduces to

t∫
0

dt =

u2∫
u1

1
√
αs2

du (4.65)

Integrating and rearranging leads to an equation for λ1:

λ1 =
√
s1 sn(

√
αs2t+ C1,m) (4.66)

where the constant of integration C1 is given by:

C1 = sn−1

(
J1ω1(0)
√
s1

,
s1

s2

)
(4.67)

It then follows from (4.13), where ω1 = λ1/J1, that the free rigid body angular velocities

ωi can be generally expressed in the analytic form:

ωi =

√
si
Ji

sn

(
±√αsjt+ Ci,

si
sj

)
(4.68)

when

| si
sj
|≤ 1

or

ωi =

√
sj

Ji
sn

(
±
√
αsit+

√
si
sj
Ci,

sj
si

)
(4.69)

otherwise by application of the Jacobi real transformation. The constants Ci are defined
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by

Ci = sn−1

(
Jiωi(0)
√
si

,
si
sj

)
(4.70)

with

si =
−β +

√
β2 − 4αχ

2α
sj =

−β −
√
β2 − 4αχ

2α
(4.71)

and

α = − (Ji−Jj)(Ji−Jk)

J2
i JjJk

β =
4JjJkH−2Ji(Jj+Jk)H+2JiM

2−(Jj+Jk)M2

JiJjJk

χ = −(2JjH−M2)(2JkH−M2)
JjJk

(4.72)

where the indexes do not represent a sum; i, j and k follow a “cyclic permutation”,

which means they appear in a consecutive recursion (e.g. i=1, j=2, k=3 or i=2, j=3,

k=1 etc. ...) See [109]. These expressions (4.68) are the equations for the free motion

of an asymmetric body [109, 110]. Substituting these expressions into (4.18) and then

into (4.25), and pulling the solution back to the identity via (4.36) yields the solution

on SU(2). Using the isomorphism (2.20) gives the expressions for the evolution of the

quaternions in the asymmetric case. See [111].

Remark 3. The sign ± in (4.68) is dependent on the initial conditions. For imple-

mentation the sign has to be chosen so that the sign of the first derivative of (4.68) at

the initial time t = 0:

ω̇i(0) = ±√αsj
√
si
Ji

cn

(
Ci,

si
sj

)
dn

(
Ci,

si
sj

)
(4.73)

is matched to the sign of the Euler equations (4.2), with zero external torques, at t = 0.

Remark 4. The Si functions are sign functions. To implement the equations it is

enough to consider only S1 or S2 and S3 or S4 respectively. The sign functions can be

set by comparison with the known initial first derivative of the quaternions (2.29).
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4.3 Practical Implementation of the Motion Planning

Method

With the analytical equations for the free motion of an axisymmetric and an asymmetric

rigid body derived in quaternion form, a method to utilise these solutions in a motion

planning algorithm is now described. This requires the specification of an appropriate

cost function and the implementation of some means of optimising the free parameters

of the analytical solutions to match the set boundary conditions, as in Chapter 3. Fol-

lowing this, the extension of the method to include any arbitrary initial condition is

described before the obstacle avoidance method detailed in Chapter 3 is adapted and

applied to the natural motion planning method to yield simple constrained manoeuvres.

4.3.1 Parametric Optimisation

In order to utilise the analytical expressions for the angular velocities and the globally

defined quaternions for motion planning, the equations were entered into a computa-

tional software programme. A cost function of the form

min
ω̄(0)
{|| (q̄ − q̄(T )) ||} (4.74)

was constructed, where ω̄(0) are the initial angular velocities, q̄ is the current quater-

nion value, q̄(T ) is the target quaternion at time t = T and T is the manoeuvre time.

This cost function minimises the norm of the error between the current quaternion

and the target quaternion by changing the initial angular velocities. It follows that

a parametric optimisation can be carried out to find the values of the initial angular

velocities ω̄(0) required to bring the spacecraft to the target q̄(T ) in a fixed time.

A stochastic functional minimisation method was used for the parametric optimisation

as it proved the most effective at minimising the final pointing error in comparison

to the other available solvers such as genetic algorithm and direct search “simplex”

methods. This method was chosen in order to assess the suitability of using the nat-

107



ural motions of the rigid body as the basis for designing attitude motions. A deeper

investigation would be required to identify the most suitable method of determining

the required initial angular velocities if the references were to be generated on-board a

nano-spacecraft. However, this is outwith the scope of this thesis.

The optimal values of the initial angular velocities, ω̄∗(0), resulting from the optimi-

sation can then be input into the analytical equations for the angular velocities and

quaternions to generate the reference tracks for a natural motion manoeuvre.

4.3.2 Specifying Initial Conditions

The analytical quaternions stated in Section 4.2 are valid only for manoeuvres starting

from q̄(0) = [1 0 0 0]T . In order to generate manoeuvres from any arbitrary initial

condition, the following procedure is implemented at the motion planning stage.

Denote the fixed initial quaternions of the analytical expressions as q̄mpi = [1 0 0 0]T .

Then, rewriting (2.15) as

R(t) =

 q0 + iq1 q2 + iq3

−q2 + iq3 q0 − iq1

 (4.75)

the actual initial quaternions, q̄ai, and the actual final quaternions, q̄af , are substituted

into (4.75) to generate two rotation matrices Rm2a and Raf on SU(2). These rotation

matrices can be manipulated to yield the following rotation matrix on SU(2):

Rmpf = R−1
m2aRaf (4.76)

Using the isomorphism (2.20) for Rmpf yields the final motion planner quaternions

q̄mpf . These boundary conditions are then input into the parametric optimisation as

described in Section 4.3.1 to generate a manoeuvre from q̄mpi to q̄mpf . The quaternion

reference tracks resulting from the optimisation are substituted into (4.75) to yield the

rotation matrix Rmpq and then rotated back to the actual desired quaternion reference
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tracks via

Raq = Rm2aRmpq (4.77)

The isomorphism (2.20) is used to map Raq to the desired quaternion reference tracks

from q̄ai to q̄af .

4.3.3 Extension to Constrained Repointing

Often a spacecraft is required to perform a constrained slew: that is, to repoint while

avoiding or tracking certain objects. For example camera lenses can be damaged if

they are pointed directly at a bright object such as the Sun or the Earth’s Moon,

while in contrast for power generation purposes it may be necessary to maintain a

certain minimum angle between a solar array and the Sun throughout a manoeuvre.

To achieve such constrained slews, the obstacle avoidance method detailed in Section

3.3.2 is adapted to the rigid body spacecraft of this chapter. Therefore by probing the

set of the natural motions which satisfy the boundary conditions on the final orientation

of the spacecraft, q̄(T ), the parametric optimisation method of Section 4.3.1 is extended

to achieve such constrained slews.

Assuming that a camera is mounted along the spacecraft body x-axis, a bright object

such as the Sun creates a “cone” which the x-axis unit vector must not intercept during

a repointing manoeuvre. This constraint can be formalised as [43]

δp , arccos(n̂p · n̂c) > δc (4.78)

That is, the angle δp between the unit vectors of the spacecraft body x-axis, n̂p, and the

centreline of the cone, n̂c, must be greater than the half-angle of the cone δc throughout

the manoeuvre.

Given the proposed method outlined above in Section 4.3.1, without a constraint on the

pointing direction the parametric optimisation will return the optimal initial angular

velocities ω1
∗(0), ω2

∗(0), ω3
∗(0). In the case that this returns a motion that intersects

a forbidden region (δp ≤ δc for any t ∈ [0, T ] ) the parameters p1, p2, p3 are introduced
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as increments to the angular velocities ω1
∗(0), ω2

∗(0), ω3
∗(0), where −ε < p1, p2, p3 < ε

and ε is a parameter which can be tuned. Then the objective function

min
p1,p2,p3

{|| (q̄ − q̄(T )) ||} (4.79)

is optimised to find an alternative natural motion manoeuvre from q̄ to q̄(T ). The

parameter ε is then incremented iteratively to obtain a solution such that δp > δc∀t.

This leads to a new set of initial angular velocities ω1
∗∗(0) = ω1

∗(0) + p1, ω2
∗∗(0) =

ω2
∗(0) + p2, ω3

∗∗(0) = ω3
∗(0) + p3 being obtained, which bring the spacecraft from q̄

to q̄(T ) with δp > δc∀t. These angular velocities can then be input into the analytical

expressions for the angular velocities and quaternions to generate reference tracks for

the constrained natural motion manoeuvre.

4.4 Natural Motion Planning Simulations

The natural motion planning method described above was tested in simulation to as-

sess the strengths and limitations of the method. As proportional-derivative (PD)

controllers are the most commonly used means of carrying out repointing manoeuvres

due to their simplicity and ease of gain tuning, a PD controller [93, 96] was chosen as

a benchmark:

ū = −Kωω̄e −Kq q̄e (4.80)

In this expression ū is the desired control signal and Kω = kωJ and Kq = kqJ are

constant gain matrices. The gains are multiplied by the inertia matrix so that the

gains are proportionally higher on the axes with higher moments of inertia, simplifying

the gain tuning process such that only two parameters need to be tuned. The angular
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velocity error is given by ω̄e = ω̄ − ω̄d, and the quaternion error by

q̄e =



q0d q1d q2d q3d

−q1d q0d q3d −q2d

−q2d −q3d q0d q1d

−q3d q2d −q1d q0d


q̄ (4.81)

where ω̄d and q̄d are the desired angular velocities and quaternions at time t. Only

the vector part of the error quaternion q̄e (i.e. q1e, q2e, q3e) is used in tracking. Note

that a gyroscopic term is often added to the proportional-derivative controller of Equa-

tion (4.80). However, for axisymmetric and slightly asymmetric spacecraft, and long,

slow manoeuvres, this term has negligible effect and so is omitted here [88, 97]. Given

the control signal (4.80), the reaction wheels supply a torque N̄w = sat
Nw(max)

{ū}, where

Nw(max) is the maximum available torque in each axis.

As the natural motion references are not inherently rest-to-rest, the manoeuvre is

planned such that the references bring the spacecraft to the target in time (T − τ),

where τ is a small period of time. At time (T − τ) until the end of the manoeuvre at

time T , a stabilising control is applied to bring the spacecraft to rest at the target. The

manoeuvre can be summarised as:

For t = [0, T − τ) ω̄d = ω̄ref

q̄d = q̄ref

For t = [T − τ, T ] ω̄d = 0

q̄d = q̄(T )

(4.82)

where the subscript “ref” refers to the natural motion reference tracks generated using

parametric optimisation, and τ is the length of time the stabilising control is applied.

In the following simulations, a value of τ = 20 s is utilised as this was found to be the

shortest time required to bring the spacecraft to rest at the target attitude. When

quaternion feedback is being considered, q̄d does not vary and is the final desired at-

titude i.e. q̄d = q̄(T )∀t. Equation (4.80) then describes a conventional quaternion
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feedback controller.

The performance of the natural motion tracking is assessed in comparison to the bench-

mark quaternion feedback controller in terms of the accumulated torque [96] of the

reaction wheels. That is, the integral of the norm of the control torque vector, given

the symbol IN . The accumulated torque is used as an indication of the control effort

required to carry out the manoeuvre, with lower control effort especially important for

small spacecraft due to their limited power and actuation.

For the quaternion feedback and natural motion manoeuvres the gains were adjusted

until the final pointing and velocity constraints were satisfied, to 4 decimal places, with

the lowest accumulated torque. In the case of the natural motions the gains were tuned

using an iterative process. The gains for quaternion feedback were initially tuned using

an iterative process and then, to ensure the fairest comparison between the natural

motions and quaternion feedback, the quaternion feedback gains were further tuned by

using a genetic algorithm method. A cost function consisting of the angular velocity

and quaternion errors at time T and the total accumulated torque of the manoeuvre

was constructed. The optimisation process was repeated until the gains which yielded

the lowest accumulated torque while matching the desired boundary conditions were

found.

A 600 km altitude circular orbit beginning at the vernal equinox position is utilised in

all simulations unless it is stated otherwise.

4.4.1 Axisymmetric Case: Example Manoeuvres

The performance of the axisymmetric natural motions was assessed via comparison

with a quaternion feedback benchmark for a spacecraft with principal inertias J1 =

0.0109 kgm2 and J2 = J3 = 0.05 kgm2. A manoeuvre was carried out from q̄(0) =

[1 0 0 0]T to q̄(T ) = [0.5 0.5 0.5 0.5]T in a time of T = 120 s. The gains used

in the simulation were kω = 0.2095 and kq = 0.0222 for quaternion feedback, and

kω = 1.81 and kq = 0.83 for the natural motions. The results are shown in Figures 4.3,
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4.4 and 4.5 for quaternion feedback and Figures 4.6, 4.7 and 4.8 for the natural motion

tracking.

Figure 4.3: Angular velocities during quaternion feedback manoeuvre for axisymmetric
spacecraft for Manoeuvre NM-A.

Figure 4.4: Quaternions during quaternion feedback for axisymmetric spacecraft for
Manoeuvre NM-A.
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Figure 4.5: Control torques during quaternion feedback manoeuvre for axisymmetric
spacecraft for Manoeuvre NM-A.

Figure 4.6: Angular velocities during natural motion manoeuvre for axisymmetric
spacecraft for Manoeuvre NM-A.
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Figure 4.7: Quaternions during natural motion manoeuvre for axisymmetric spacecraft
for Manoeuvre NM-A.
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Figure 4.8: Control torques during natural motion manoeuvre for axisymmetric space-
craft for Manoeuvre NM-A.

It is clear that the natural motion tracking approach is essentially “bang-off-bang” in

nature. Initial torques bring the spacecraft angular velocities to those required to per-

form a natural motion. This is then followed by a “coasting phase” of zero or near zero
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torque (a small torque is often applied to compensate for disturbances) as the space-

craft moves toward the target attitude. When the target attitude is achieved at time

(T − τ), the angular velocity references are then switched to stabilise the spacecraft at

the target. This results in a final torquing phase to bring the spacecraft to rest at the

target, the start of which is indicated by a dotted vertical line in the figures. In contrast

note that the quaternion feedback controller, which tracks a constant rather than time

varying reference, results in the quaternions following broadly sigmoidal paths during

the manoeuvre.

Tables 4.3 and 4.4 summarise the results of this and several other manoeuvres. The su-

perscripts “Q.F.” and “N.M(Axi)” refer to quaternion feedback and the axisymmetric

natural motion manoeuvres respectively.

Table 4.3: Labelling of attitude manoeuvres for axisymmetric nanospacecraft

Manoeuvre Initial quaternion Final quaternion

NM-A q̄(0) = [1 0 0 0]T q̄(T ) = [0.5 0.5 0.5 0.5]T

NM-B q̄(0) = [−0.124 0.705 0.698 0.039]T q̄(T ) = [−0.768 0.557 − 0.0815 − 0.307]T

NM-C q̄(0) = [−0.563 0.018 0.446 0.695]T q̄(T ) = [−0.596 0.65 0.371 0.29]T

NM-D q̄(0) = [−0.202 − 0.811 − 0.151 0.528]T q̄(T ) = [−0.059 − 0.349 − 0.767 − 0.535]T

NM-E q̄(0) = [0.588 0.749 0.098 − 0.289]T q̄(T ) = [0.484 0.522 − 0.561 − 0.423]T

Table 4.4: Comparison between quaternion feedback and natural motions for axisym-
metric spacecraft. T = 120 s.

Manoeuvre IN
Q.F. (Nms) IN

N.M(Axi) (Nms)

NM-A 0.0068 0.0025
NM-B 0.0103 0.0014
NM-C 0.0086 0.0013
NM-D 0.0146 0.003
NM-E 0.0046 0.0018

The natural motion tracking offers significant savings in accumulated torque over the

more computationally efficient quaternion feedback for a range of manoeuvres. How-

ever, the peak torques of the natural motion method are generally slightly higher than

those for quaternion feedback. This is a limitation of the natural motion method, as
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the maximum torques cannot be specified in the quadratic cost function used to derive

the analytical references.

4.4.2 Asymmetric Case: Example Manoeuvres

The motion planner for asymmetric spacecraft was then tested in simulation for a space-

craft with principal inertias J1 = 0.0109 kgm2, J2 = 0.0504 kgm2 and J3 = 0.0506 kgm2.

A manoeuvre from q̄(0) = [0.208 0.622 0.431 0.620]T to q̄(T ) = [1 0 0 0]T in a

time of T = 120 s is illustrated. The gains used were kω = 0.194 and kq = 0.01972 for

quaternion feedback, and kω = 1.8 and kq = 0.86 for the natural motions. The results

are shown in Figures 4.9, 4.10 and 4.11 for quaternion feedback and Figures 4.12, 4.13

and 4.14 for the natural motion tracking.

Figure 4.9: Angular velocities during quaternion feedback manoeuvre for asymmetric
spacecraft for Manoeuvre NM-F.
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Figure 4.10: Quaternions during quaternion feedback manoeuvre for asymmetric space-
craft for Manoeuvre NM-F.
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Figure 4.11: Control torques during quaternion feedback manoeuvre for asymmetric
spacecraft for Manoeuvre NM-F.
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Figure 4.12: Angular velocities during natural motion manoeuvre for asymmetric space-
craft for Manoeuvre NM-F.

Figure 4.13: Quaternions during natural motion manoeuvre for asymmetric spacecraft
for Manoeuvre NM-F.
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Figure 4.14: Control torques during natural motion manoeuvre for asymmetric space-
craft for Manoeuvre NM-F.

Tables 4.5 and 4.6 summarises the results of this and several other manoeuvres. The

superscript “N.M(Asy)” refers to the asymmetric natural motion manoeuvre.

Table 4.5: Labelling of attitude manoeuvres for asymmetric nanospacecraft

Manoeuvre Initial quaternion Final quaternion

NM-F q̄(0) = [0.208 0.622 0.431 0.620]T q̄(T ) = [1 0 0 0]T

NM-G q̄(0) = [0.049 − 0.77 − 0.547 0.32]T q̄(T ) = [0.64 − 0.68 − 0.34 − 0.13]T

NM-H q̄(0) = [−0.12 0.76 − 0.63 0.068]T q̄(T ) = [0.44 − 0.15 − 0.83 0.32]T

NM-I q̄(0) = [−0.32 0.92 − 0.18 − 0.096]T q̄(T ) = [0.39 0.62 − 0.62 0.27]T

NM-J q̄(0) = [0.45 0.26 − 0.38 0.76]T q̄(T ) = [−0.65 − 0.4 − 0.43 − 0.49]T

Table 4.6: Comparison between quaternion feedback and natural motions for slightly
asymmetric spacecraft. T = 120 s.

Manoeuvre IN
Q.F. (Nms) IN

N.M(Asy) (Nms)

NM-F 0.008 0.0024
NM-G 0.0083 0.0016
NM-H 0.0076 0.0033
NM-I 0.0115 0.0022
NM-J 0.0119 0.0043
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It is clear that the natural motion tracking in the asymmetric case once again offers

significant savings in accumulated torque over quaternion feedback alone.

4.4.3 Effect of Inertia

While ideally the asymmetric motion planner would be used to plan motions for asym-

metric spacecraft, the elliptic functions present in this motion planner result in increased

computation times in comparison with the axisymmetric motion planner. This will be

discussed in detail in Section 4.5. However, as most Cubesat spacecraft are only slightly

asymmetric, it may be possible to use the axisymmetric motion planner in these cases.

In this section an assessment is made to determine whether the axisymmetric motion

planning method can still offer savings in accumulated torque even as the inertias vary

from those of the axisymmetric spacecraft. This also serves as a study of how sensitive

the method is to the inertia fluctuations which could arise during a mission (e.g. due

to the deployment of solar panels or the jettison of a payload).

The references generated in Section 4.4.1 for the T = 120 s manoeuvre NM-A for the

axisymmetric spacecraft were applied to several asymmetric spacecraft with inertias

ranging from ±0− 100% difference over the inertias of the axisymmetric spacecraft. In

order to determine the effect of the inertia error on the axisymmetric natural motions,

references were also generated for each spacecraft configuration using the asymmetric

motion planner, and a quaternion feedback benchmark again included for comparison.

The results are shown in Table 4.7.

Table 4.7: Effect of varying spacecraft inertia on tracking of axisymmetric references
for Manoeuvre NM-A in T = 120 s.

Principal Inertias (kgm2) IN
N.M(Axi)

(Nms)
IN

N.M(Asy)

(Nms)
IN

Q.F.

(Nms)

J1 = 0.0109, J2 = 0.0504, J3 = 0.0506 0.0023 0.0022 0.0069
J1 = 0.0164, J2 = 0.075, J3 = 0.025 0.0033 0.0018 0.0106
J1 = 0.0218, J2 = 0.1, J3 = 0.05 0.0047 0.003 0.0123
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It is obvious that the accumulated torque required to track the axisymmetric references

increases as the inertia uncertainty increases. This is to be expected as for an asym-

metric spacecraft the axisymmetric references do not represent a natural motion, and

so torque extra control effort is required to track the references. However, for a slightly

asymmetric spacecraft the axisymmetric references require only slightly more torque to

track. Therefore in these cases the less computationally intensive axisymmetric motion

planner would be the more practical choice. It should also be noted that the natural

motion references for the axisymmetric spacecraft outperform quaternion feedback in

terms of accumulated torque, even in the presence of considerable inertia error.

4.4.4 Effect of Manoeuvre Time

In this section the effect of manoeuvre time on the natural motion method is investi-

gated. For a manoeuvre from q̄(0) = [1 0 0 0]T to q̄(T ) = [0.5 0.5 0.5 0.5]T ,

the time is varied from the shortest time quaternion feedback slew which could be per-

formed without momentum saturation of the reaction wheels, 50 s, up to a manoeuvre

time of 420 s. The results are shown in Table 4.8.

Table 4.8: Comparison between quaternion feedback and natural motions with varying
manoeuvre time for axisymmetric spacecraft manoeuvre for Manoeuvre NM-A.

T (s) IN
Q.F. (Nms) IN

N.M(Axi) (Nms) % Saving

50 0.0148 0.0083 44
120 0.0068 0.0022 68
220 0.0061 0.0011 82
420 0.0043 0.00057 87

The % saving is defined as (IN
Q.F. − INN.M(Axi))/IN

Q.F. × 100. It can be seen that

the natural motion method is still advantageous throughout, though the savings in

accumulated torque are greater for greater time periods. For shorter time periods the

stabilising control discussed in Section 4.4 takes up a greater proportion of the total

manoeuvre time. In other words, as manoeuvre time decreases the length of time
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which the natural motion references are tracked decreases and the manoeuvres become

increasingly similar to conventional quaternion feedback manoeuvres. This accounts

for the decrease in % saving for shorter time periods.

4.4.5 Effect of Orbital Altitude, Position and Inclination

Next, the effect of the spacecraft’s orbit on the natural motion method was investigated.

Disturbance torques such as air drag, solar radiation pressure and gravity gradient are

dependent on orbit altitude, while the residual dipole torques are more significant at

the poles due to the increased magnetic field strength. As the natural motion method

is based around the motion of a rigid body in a disturbance free environment, the

method may not be suitable for manoeuvres in a high disturbance environment and so

it is important to test the method in these cases.

For an axisymmetric spacecraft on a 300 km altitude orbit beginning at the vernal

equinox, a manoeuvre from q̄(0) = [1 0 0 0]T to q̄(T ) = [0.5 0.5 0.5 0.5]T

results in accumulated torques of IN = 0.0024 Nms for the natural motions. This

is slightly higher than the IN = 0.0022 Nms obtained for the manoeuvre at 600 km.

Therefore in this case the natural motion method is not significantly influenced by

the increased air drag and gravity gradient disturbance torques. Testing at a 900 km

altitude yielded the same results as for a 600 km altitude, suggesting that the decrease

in air drag and gravity gradient torques and the increase in solar radiation pressure

torques at higher altitudes has little effect on the manoeuvres. Additionally, beginning

the manoeuvre at the poles on a 600 km altitude orbit rather than at the vernal equinox

results in a small increase in accumulated torque due to the increased residual dipole

disturbance torque, with IN = 0.0023 Nms for the natural motions.

These results show that the variation in disturbance torques caused by varying the

orbital parameters has little effect on the accumulated torque of the natural motion

method. Therefore it may be possible to effectively switch the control off during the

“coasting phase”: that is, the section of the manoeuvre between the two main torquing

phases. For altitudes less than 600 km this proves infeasible as the increased air drag
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torque results in a significant drift from the reference tracks if no control is applied.

However, for the 600 km altitude manoeuvre beginning at the vernal equinox described

above the control torques during the “coasting phase” can be switched off once the

norm of the error between the actual and desired values of angular velocities is less

than 1× 10−4 rad/s, and back on when the error is greater than this value, with no

impact on the accumulated torque required or the accuracy of the manoeuvre. In

contrast for the manoeuvre near the poles - a slightly higher disturbance environment

- applying the same method of switching the control off when || ω̄e ||< 1× 10−4 rad/s,

the accuracy of the manoeuvre suffers slightly when the control is switched off during

the coasting phase, with a final attitude of q̄(T ) = [0.4999 0.5001 0.5001 0.4998]T

achieved. This is as a result of the increased magnetic dipole torque, which means

that the drift from the reference tracks is too great to compensate for when the control

is switched back on. However, this strategy may still be feasible if a high pointing

accuracy is not required.

Therefore, as expected, the natural motions require slightly more accumulated torque

to track in lower Earth orbits due to the increased disturbance torques. In contrast

in low disturbance environments the control can be switched off during the “coasting

phase”, resulting in potential savings in computation and power. In these cases the 3-

axes natural attitude motions are roughly analogous to the single-axis “bang-off-bang”

controls augmented by linear feedback proposed by Sidi [58], in that the control is

only switched on near the boundaries of the motion to first achieve the desired angular

velocities and then to stabilise the spacecraft at the target attitude.

4.4.6 Constrained Repointing

In this section the method of probing the set of natural motions which satisfy the

boundary conditions on the target attitude to generate a constrained repointing ma-

noeuvre is demonstrated.

Consider a 120 s manoeuvre from an initial quaternion q̄(0) = [1 0 0 0]T to fi-

nal quaternion q̄(T ) = [−0.45 − 0.23 0.57 0.65]T for the axisymmetric space-
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craft from Section 4.4.1. A star tracker is mounted in the direction of the body x-

axis unit vector, [1 0 0]T . The centre of the forbidden cone is specified as nc =

[−0.495 0.81 0.317]T and the cone half angle as δc = 58◦. This corresponds to the

Moon cone as defined by Mengali [43]. An initial optimisation to minimise the cost

function (4.74) yields a solution which violates this constraint, as shown in Figure 4.15.
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Figure 4.15: Angle between body x-axis and cone centreline unit vectors for manoeuvre
from q̄(0) = [1 0 0 0]T to q̄(T ) = [−0.449 −0.23 0.566 0.65]T . Original and
alternate manoeuvres are shown.

Now, incrementing the angular velocities ω1
∗(0), ω2

∗(0) and ω3
∗(0) by p1, p2 and p3

respectively and performing a further parametric optimisation to minimise the cost

function (4.79) leads to an alternate manoeuvre which does not violate the constraint,

as shown in Figure 4.15. It is evident that the constraint δp > δc∀t is respected by the

new natural motion and the camera would not pass through the forbidden zone during

the manoeuvre. Therefore the natural motion method has been adapted to generate a

constrained slew.
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4.5 Computational Suitability of the Motion Planning Al-

gorithm

In order for a control or guidance method to be suitable for implementation on-board

a nano-spacecraft, the method must be both low torque and computationally efficient.

As the natural motion planning method has proven to require significantly less accu-

mulated torque than a quaternion feedback benchmark for a wide range of manoeuvres,

the suitability of the method for on-board implementation will now be discussed.

The references were generated in a computational software programme using a 2 GHz,

dual-core PC. While this is considerably more powerful than the 30 MHz processor on-

board UKube-1, the difference is less marked for other 3U Cubesats such as OPS-SAT

which has an 800 MHz dual-core processor. Using a stochastic functional minimisa-

tion method to find the globally optimal solution, the axisymmetric references take,

on average, 0.17 s to generate. The asymmetric references, however, take between 15

and 20 min to generate using the same software. This is due to the presence of the

incomplete Jacobi elliptic integral of the third kind in the analytic expressions for the

quaternions (4.50). While mathematically elegant, current computer software finds this

Jacobi elliptic integral computationally heavy. As a result, the asymmetric references,

despite offering significant fuel savings, are not necessarily any more efficient than us-

ing a pseudospectral optimisation method such as PSOpt [112] or a multiple shooting

method to produce reference motions. Therefore the asymmetric motion planner is not

presently suitable for on-board implementation.

In contrast the generation of the axisymmetric references requires significantly less com-

putation and as shown in Section 4.4.3 these references can be applied to axisymmetric

and near axisymmetric spacecraft. However, the method of finding the globally optimal

angular velocities via a parametric optimisation means that the axisymmetric natural

motions are less computationally efficient than quaternion feedback, where only the

final quaternion is tracked. As noted previously, the references are essentially “bang-

off-bang” in nature and so provide significant savings in control effort. Furthermore,

in low disturbance environments the control can be switched off during the region of
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low or zero torque named the “coasting phase”, potentially providing savings in power

and computation. As a consequence, the reduction in control effort offered by the ax-

isymmetric natural motion method on small spacecraft has to be weighed against the

computation required to initially generate the references. While quantifying this trade-

off will be the subject of future research, the following section contains a discussion of

the relative strengths and weaknesses of another guidance method in artificial potential

functions (APFs).

4.5.1 Trade-off Between Computation and Control Effort

While the reliance on quaternion feedback and eigenaxis controllers for attitude ma-

noeuvres makes the generation of time-dependent references for attitude control rela-

tively rare, the use of artificial potential functions [51] has been proposed as a non-

optimal guidance method. Artificial potential functions require less computation than

the natural motion method as they do not require parametric optimisation; rather

they make use of Lyapunov functions to assign an attractive potential to the target

orientation, and generate the desired references using inverse methods [51]. Artificial

potential functions also provide a simple and effective means of obstacle avoidance.

However, in contrast to the natural motion method, the APF method is not inherently

low torque and can demand excessive control effort if care is not taken to constrain

slew rates and maximum applied torques [52, 53]. In addition, as the manoeuvres are

not based around the natural motion of the free rigid body, the references must be

tracked throughout and so the artificial potential function method cannot be utilised

in a quasi-open loop manner to save on power and computation. Thus the artificial

potential functions, in contrast to the natural motion method, require less computation

at the expense of a likely increase in control effort. A thorough comparison with the

natural motion planning method will be the subject of future work in order to assess

this trade-off between computational intensity and control effort.
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4.5.2 On-board Implementation

The analytical approach presented in this chapter offers the potential to reduce the

torque requirement with respect to using quaternion feedback alone, at the expense of

an increase in computation. However, although the motion planning problem is reduced

to one of parametric optimisation, further work will be required to assess the most ap-

propriate parametric optimisation method for on-board implementation. Therefore a

brief discussion of steps which could be taken to make the natural motion method easier

to implement on-board a nano-spacecraft is now undertaken.

As described above, the references were generated on a 2 GHz, dual-core computer

using a global parametric optimisation method. However, it may not be feasible to

implement a global parametric optimisation method on-board a nano-spacecraft with

a processor in the 30 to 800 MHz range. In this case, it may be possible to implement

a simple gradient based search method [35] instead. In these methods the search is

proportional to the negative of the gradient of the cost function, with the aim of find-

ing a local rather than a global minimum. These methods are computationally more

efficient than the stochastic functional minimisation methods used in this chapter, at

the expense of only finding a local minimum.

A comparison of a local gradient based method with a global stochastic functional min-

imisation method for 50 randomly generated manoeuvres found that the performance

of the gradient based method was highly dependent on the given initial guess. For ex-

ample when the solver was given an initial guess of ω̄(0) = [0.1 0.1 0.1]T×10−3rad/s,

the gradient based method gave the same results as the more computationally intensive

global method in approximately 60% of cases. In the remaining 40% of cases, manual

tuning of the initial guess resulted in the solvers achieving the same results. Therefore

while the gradient based method may require less computation, it is heavily reliant on

heuristics in the form of a good initial guess in order to function effectively.

The natural motion references only require the optimal initial angular velocities as

inputs. Therefore it may be possible to store the analytical equations for the natural

motions on-board the spacecraft, but to perform the necessary parametric optimisation
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at the ground station. This would eliminate the need to perform the parametric optimi-

sation on-board the spacecraft and would only necessitate the uploading of the optimal

initial angular velocity vector. A problem with this approach is that if manoeuvres

could be generated on a powerful computer at a ground station, more computationally

intensive methods such as PSOpt could be used instead to generate potentially torque

optimal references. However, in these cases it would be necessary to upload the time

history of the entire manoeuvre rather than just a simple vector, which would require

significantly more bandwith.

It is clear that while planning attitude manoeuvres around the natural motions of a

rigid body is beneficial in terms of control effort in comparison to a quaternion feed-

back benchmark, the reliance on global parametric optimisation methods at present

means that more work is required to assess the performance of the method when faced

with constraints on processing power, and to determine the most practical reference

generation method for on-board implementation.

4.6 Chapter Summary

In this chapter analytical equations of motion for axisymmetric and asymmetric space-

craft were derived using the geometric control framework and utilised to produce natural

attitude motions by parametric optimisation. It was shown that the natural motion

planning method offers significant savings in accumulated torque over a quaternion

feedback benchmark, and the manoeuvres are essentially “bang-off-bang” in nature.

The axisymmetric method is robust to errors in inertia and to the effects of distur-

bances. Indeed, in low disturbance environments the control can be switched off during

a “coasting phase” to save on computation, giving rise to quasi open-loop 3-axis “bang-

off-bang” manoeuvres. The set of natural motions which match the final attitude can

also be probed to produce constrained slews.

Despite the potential savings in accumulated torque, the generation of references in

the asymmetric case does not offer an advantage over numerical optimisation for on-
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board use due to the difficulty in evaluating the Jacobi elliptic integral, which makes

the method computationally heavy. The axisymmetric references, however, require less

computation to generate and may be applicable to axisymmetric and near axisymmetric

spacecraft such as UKube-1 and OPS-SAT. Nevertheless, the natural motion method

requires a parametric optimisation to generate the references, and so further work is

required to determine the most suitable method of implementing the method on-board

a resource limited nano-spacecraft.

While in this chapter the motions were derived with respect to a dynamic nonholo-

nomic constraint - the conservation of angular momentum - in the proceeding chapter

the complexity of the problem is further increased. A large solar sail spacecraft is con-

sidered which is subject to a kinematic nonholonomic constraint, where it is constrained

to spin at a constant rate around one axis, in addition to the dynamic nonholonomic

constraint, environmental effects and hardware constraints considered in this chapter.

Analytical equations, derived using the framework of geometric control theory utilised

in this and previous chapters, are implemented in a motion planning algorithm and

tested in the face of perturbations due to the environment and hardware constraints.

The method is additionally applied to the small spacecraft considered in this chapter,

to provide a comparison between the motion planning methods.
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Chapter 5

Motion Planning and Control of

Spin Stabilised Spacecraft

In the previous chapter a natural attitude motion planning method for a rigid space-

craft, subject to a dynamic nonholonomic constraint due to the conservation of angular

momentum, was presented and applied in simulation to the repointing of a small space-

craft. In this chapter, the practicality and effectiveness of a geometric motion planning

method derived with respect to a kinematic nonholonomic constraint on the spin rate

of the spacecraft is assessed via extensive simulation. The motion planning method is

primarily applied to a spinning solar sail. While the attitude control of these spacecraft

has been studied, motion planning for solar sails has received little attention prior to

this study. Solar sails can potentially provide propellantless propulsion and thus en-

able a wide range of interplanetary missions. However, solar sails are large and flexible

which means that their attitude control is non-trivial. As a result a low torque geomet-

ric repointing method is applied which limits the angular velocities of the spacecraft

and hence limits excitation of the sail structure.

The equations which form the basis of the motion planning method outlined in this

chapter were originally derived, using the framework of a kinematic system on the ma-

trix Lie group SU(2) and the integrals of motion of the system, in Biggs and Horri [29].

However, the method was not rigorously tested in simulation, with only basic tracking
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of the references illustrated for a micro-spacecraft and no comparison made to other

methods. Thus the practicality of the method has not been determined. Furthermore,

derivation of the optimal motions in this chapter generalise that in Biggs and Horri

and describe a larger class of optimal motions that can be used as a basis for a geo-

metric motion planner. Following this, the analytical motion planning algorithm for a

spacecraft constrained to spin at a fixed rate around one axis is used to plan attitude

manoeuvres for a spinning solar sail. The effectiveness of the references is assessed, to-

gether with the feasibility of tracking the references using current solar sail actuators.

While solar sailing as a concept has existed since the early part of the 20th century, it is

only recently that advances in materials research has enabled practical solar sails to be

designed and built. Solar sailing has gathered considerable interest as it has the ability

to provide continuous, low thrust propulsion without the need for propellant, enabling

mission lifetimes to be extended and the creation of previously unattainable orbits.

Examples of missions enabled by solar sailing include the GeoSail mission [113, 114],

the Solar-Polar Orbiter [115] and the Interstellar Heliopause Mission [116]. However, in

the literature on the orbital dynamics of solar sails the attitude control required is often

simplified by the assumption that the sail can slew instantaneously or at a certain fixed

deg/day rate [32, 33, 115]. Nevertheless, there are a number of challenges associated

with solar sails which means that the attitude control required of these missions may

be difficult to carry out in practice.

In order to maximise the thrust produced via solar radiation pressure, solar sails are

required to have a low mass per unit area [33]. Therefore all solar sail designs generally

involve a large area of thin reflective film being held in tension by a light supporting

structure [33]. Consequently, solar sails are relatively flexible, with the sail membrane

billowing and the sail structure flexing under the influence of solar radiation pressure

and control torques. This results in a decrease in performance and controllability.

Additionally solar sails have large moments of inertia (typically of the order 103 to

105 kgm2), which means that the control torques required to manoeuvre the spacecraft

are higher and actuators will subsequently be larger [32], adding to the mass of the

spacecraft. Any method of controlling the attitude of the solar sail must be able to
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effectively overcome these limitations.

In order to combat the flexibility of the solar sail, reorientation manoeuvres must firstly

be slow and smooth to reduce the oscillation of the sail film, with typical manoeuvre

times ranging from hours to days [32, 33, 117]. Furthermore, the sail membrane may

be stiffened by spinning around the sail normal which results in the membrane be-

ing kept taut by the centrifugal effect and a reduction in billowing. However, despite

IKAROS, the first solar sail demonstration mission, being of spin type, little research

to date has focussed on the practical attitude control of spin stabilised spacecraft. This

is perhaps due to the increased control effort required to repoint the spin type solar

sails, as the large angular momentum vector generated by the spinning solar sails must

be overcome [31]. IKAROS firstly utilises the centrifugal effect during the deployment

phase to achieve the desired geometric shape, before maintaining a spin rate of around

1 rpm during normal operations [31]. Mimasu [118] detailed a methodology utilised on

IKAROS which alters the spin-rate of the solar sail using cold gas thrusters, enabling

the drift of the solar sail attitude to be controlled and so aiding in orbit steering. Wie

[32] presented a linearised dynamic model for a spin stabilised spacecraft with a centre

of mass, centre of pressure offset, while making clear that further research with a higher

fidelity model was necessary. Meanwhile, Gong [119] derived the coupled orbit and at-

titude stability criterion for a spin stabilised cone-shaped solar sail in a heliocentric

orbit.

Nevertheless, despite the advantageous stiffening and resistance to disturbances offered

by spin stabilisation, the increase in angular momentum means that control torques for

a spin-type sail must be larger than those for a non-spinning sail of equivalent inertia

in order to effect a change in attitude. This gyroscopic stiffness, in addition to the large

disturbance torques due to solar radiation pressure and gravity gradient [32] which so-

lar sails are subjected to, means that the choice of actuation for spin stabilised solar

sails is further complicated. For a non-spinning solar sail in a geocentric orbit, Wie [32]

found that maintaining a desired attitude in the face of disturbance torques resulted

in momentum saturation of 2 kg reaction wheels. While this problem may be counter-

acted for non-spinning solar sails in Earth orbits using magnetorquers [32, 120], this
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method has not been tested on a spinning solar sail. In heliocentric or interplanetary

trajectories magnetorquers cannot be utilised, and another form of desaturation such

as thrusters may be necessary if momentum exchange devices such as reaction wheels

were to be used as actuators. The impulsive nature of thrusters means that they are

less suited for application to solar sails as they may excite the structure of the solar

sail, while their mounting location may cause bending of the sail spars [32]. Despite

this, cold gas thrusters were the primary form of actuation on-board the first ever solar

sail mission to Venus, IKAROS [121, 122], where they were used to control the spin

rate of the sail.

Due to these issues with conventional actuation, alternative, propellantless methods for

solar sail actuation have been proposed. These include sliding masses [117, 123], elec-

trochromic devices [31] and control vanes [32, 33, 124], the primary form of actuation

on-board the upcoming NASA Sunjammer mission [125]. These methods control the

offset between the centre of mass and centre of pressure of the spacecraft. The SRP

force then acts on the solar sail to produce continuous torques. However, these meth-

ods have primarily focussed on non-spin type solar sails; only electrochromic devices

have been tested on the spin stabilised IKAROS where they were used to correct a

0.5◦ degree drift in the Sun angle. The increased control torques required by spinning

sails, together with the fact that these methods do not provide full independent 3-axis

control, means that they may not be suitable for spinning sails.

This work is motivated both by the need to test the practicality of references derived

using geometric control and the need for further research into the attitude control of

spin stabilised solar sails, via an extension of the motion planning method derived in

[29]. The method is derived through the mechanisms of geometric control theory [17],

resulting in globally defined, analytical expressions for the optimal angular velocities

and the time evolution of the spinning spacecraft’s attitude in quaternion form. These

analytical expressions, which minimise both the body rates during the manoeuvre and

the control effort required, can then be parametrically optimised, as in Chapters 3 and

4, to meet boundary conditions imposed on the final attitude. The references can then

be tracked using a simple proportional-derivative (PD) controller. As stated in Chapter
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4, the PD controller is the preferred method of attitude control onboard real spacecraft

due to it’s simplicity and reliability, and is favoured over more efficient but computa-

tionally intensive nonlinear optimisation methods [96, 97]. Therefore by utilising the

PD controller alongside the analytical reference motions, a compromise is reached be-

tween reliability, optimality and ease of on-board implementation.

Original Contributions

The original contributions in this chapter are outlined as follows:

• The extremals in the general case of the quadratic cost function are derived and

found to take the form of Weierstrass elliptic functions. The solution [29] is

shown, via phase plane analysis, to be a particular solution of the general case.

• The analytical equations for time evolution of the attitude of a spinning space-

craft in quaternion form derived by Biggs and Horri are implemented in a motion

planning algorithm for a spin stabilised solar sail to produce slow, smooth refer-

ence tracks via parametric optimisation. Additionally, the method of producing

constrained slews for a spacecraft demonstrated in Chapter 4 is adapted to the

geometric method of this chapter.

• The resulting reference motions are applied to the repointing of spin stabilised

solar sails in heliocentric and geocentric orbits. The strengths and weaknesses of

the motion planning method are evaluated in comparison to the tracking of pure

spin reference motions, and the method found to produce smaller angular veloci-

ties and require lower accumulated torque to track than the pure spin references

in the majority of cases. However, in certain cases the pure spin references are

able to repoint the solar sail in less than 1250 sec without violating the maximum

torque constraints, whereas the geometric spin repointing references cannot. Ad-

ditionally, for two of the simulated manoeuvres, the pure spin references required

lower accumulated torque.

• Based on the results of the simulations, an actuator study is carried out to assess
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the feasibility of different actuators for use with the solar sail motion planning

method.

• A comparison is made with the natural motion references of Chapter 4 for a small

spacecraft.

The chapter is structured as follows. In Section 4.1, the solar sail models utilised in

simulation are introduced, detailing the two solar sails under consideration. In Section

4.2, the particular case of the solutions derived by Biggs and Horri [29] is linked to the

general solution derived in this thesis via a phase plane analysis. The practical imple-

mentation of the particular case of the motion planning method is discussed in Section

4.3, including the extension to constrained slews. Simulation results are presented in

Section 4.4 where the geometric spin repointing reference motions are compared to

pure spin reference motions tracked using a simple PD controller. An application of

the method to the small spacecraft of Chapter 4 is carried out to provide a compari-

son between the geometric spin repointing and natural motion methods. Finally, the

suitability of different actuation methods for tracking the references are considered in

Section 5.6, together with a discussion of the feasibility of applying the motion planning

method under consideration to the attitude manoeuvring of a spinning solar sail.

5.1 Solar Sail Attitude and Orbit Models

While the solar sail is a flexible structure, in the initial study in this thesis the sim-

plifying assumption is made that the spacecraft can be treated as a rigid body. This

assumption is feasible as the spinning sail structure will be stiffened via the centrifugal

effect, and the body rates will be minimised to avoid excitation of the flexible structure.

The general equations describing the attitude control problem are then that of a rigid

body with external forces describing the effect of the actuators and perturbations.

136



5.1.1 Reference Frame Definitions

Solar sails in orbit around the Earth and the Sun are considered. The reference frames

for a spacecraft in a geocentric orbit are defined in Chapter 4, Section 4.1.1. When

a heliocentric orbit is considered, the centre of the Sun is chosen as the origin of a

Heliocentric Ecliptic reference system [101] with basis vectors Î , Ĵ , K̂. The X and Y

axes lie in the ecliptic plane towards the vernal equinox and winter solstice positions

of the Earth respectively, with the Z-axis completing the orthonormal reference frame.

This co-ordinate system is shown in Figure 5.1.

Figure 5.1: Heliocentric Ecliptic and RTN co-ordinate systems for Sun centred sail.

The RTN and BRF frames described in Chapter 4 are again used for the heliocentric

sail.

5.1.2 Kinematic Model and Dynamic Models

The attitude kinematics of the spacecraft are parameterised using quaternions, as in

Chapter 4. In the case of the solar sail attitude manoeuvres are generally performed

in order to repoint the thrust vector of the sail. Therefore the attitude of the body

frame of the spacecraft is more practically described with respect to the RTN orbit

frame, rather than the inertial frame as in the previous chapter. To accomplish this,
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the quaternion equations (2.29) are rewritten in terms of the angular velocity of the

body frame with respect to the orbit frame, ωbo, using the relation

ω̄bo = ω̄ − ω̄oi(b) (5.1)

where ω̄ is the absolute angular velocity of the spacecraft in the inertial frame and ω̄oi(b)

is the angular velocity of the orbital frame with respect to the inertial frame, expressed

in body frame components. This component can be computed via

ω̄oi(b) = Robω̄oi (5.2)

where Rob is the quaternion rotation matrix from the orbit frame to the body frame in

quaternion components with elements [32, 58]

Rob =


1− 2(q2

2bo + q2
3bo) 2(q1boq2bo + q3boq0bo) 2(q1boq3bo − q2boq0bo)

2(q1boq2bo − q3boq0bo) 1− 2(q2
1bo + q2

3bo) 2(q3boq2bo + q1boq0bo)

2(q1boq3bo + q2boq0bo) 2(q2boq3bo − q1boq0bo) 1− 2(q2
1bo + q2

2bo)

 (5.3)

where q̄bo = [q0bo q1bo q2bo q3bo]
T denote the quaternions of the body frame with

respect to the orbital frame.

5.1.3 Solar Sail Models

In order to test the motion planning method for realistic solar sails, the parameters

suggested by Wie for ATK’s scalable sailcraft [32] were used as the basis of the 40 m

square and 140 m disk solar sail models. Table 5.1 lists some of the properties of the

solar sails under consideration.

As one of the aims of the chapter is to assess the feasibility of different actuation meth-

ods for a spinning solar sail, simple models of a number of actuators are included. As

an initial study, it is assumed that the geocentric spacecraft is equipped with simple

reaction wheels. The wheel data is based on the Honeywell Constellation Series HR12
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Table 5.1: Properties of solar sails

Parameter Sail A Sail B

Sail shape Square Disk
Sail width (m) 40 140
Sail area (m2) 1200 15394
Sail characteristic acceleration (m/s2) 0.11× 10−3 5× 10−4

Principal Inertias (kgm2)
Jx 4340 188650
Jx 2171 94325
Jx 2171 94325

Total spacecraft (kg) 85 280.377
Sail mass (kg) 6 76.97
Centre of mass/centre of pressure offset (m) [0 0.0707 0.0707]T [0 0.2475 0.2475]T

reaction wheels [126], and the wheel properties are shown in Table 5.2. The wheels

apply a control torque as in Equation (4.3).

Table 5.2: Honeywell HR12 reaction wheel data

Parameter Sail A

Wheel inertias Jw = 0.075 kgm2

Maximum wheel torque 0.1 Nm
Rate limit 1× 10−2 Nm/s
Nominal wheel momentum 12 Nms@6000 rpm

In addition, it is assumed that the geocentric solar sail is equipped with magnetorquers

with a peak magnetic dipole of 100 Am2 on each axis, and continuous actuators of to-

be-determined size for desaturation. The magnetorquers apply a control torque given

by

N̄mtq = M̄mtq × B̄ (5.4)

where N̄mtq is the magnetorquer control torque, M̄mtq the magnetorquer magnetic

dipole and B̄ the magnetic field vector in the body frame.

The heliocentric solar sail is assumed to have simple continuous actuators with a rate

limit of 1 Nm/s. The most feasible method of actuation for the implementation of the
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motion planning method is an outcome of this study, as discussed in Section 5.6.

5.1.4 Environmental Model

In Section 4.1.6, the environmental disturbances caused by gravity gradients, residual

magnetic dipoles, air drag and solar radiation pressure were detailed for a spacecraft in

a geocentric orbit. For the geocentric solar sail, these disturbances were again modelled,

together with the orbital perturbations due to air drag, solar radiation pressure and

Earth oblateness, in order to test the robustness of the motion planning method in a

non-ideal environment.

For the solar sail in a heliocentric orbit, assuming that the Sun is the source of all

disturbance torques (i.e. that the planetary bodies exert negligible gravitational pull),

the sail primarily experiences disturbances due to solar radiation pressure with a smaller

disturbance due to gravity gradients. The gravity gradient torques are modelled as in

Section 4.1.6, with µ = 1.327× 1020 m3s−2 the gravitational parameter of the Sun for

the heliocentric orbit. However, in this chapter an alternative solar radiation pressure

model is utilised. The model (4.9) is suitable for calculating the solar radiation pressure

acting on the cuboidal nano-spacecraft structure as it is a general representation which

could be easily adapted to find the projected area of each spacecraft face. Meanwhile,

the model used in this chapter was derived specifically for use in modelling solar sails,

and is described below.

Solar Radiation Pressure Torque and Force

The sails under consideration are assumed to be perfectly reflecting. From [33] the

acceleration due to solar radiation pressure, āSRP , for an ideal sail is given by

āSRP = F0(r̂sun · n̂sail)2n̂sail (5.5)
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where r̄sun is the radial vector from the Sun to the spacecraft, and r̂sun the unit vector.

The sail normal unit vector, n̂sail, corresponds to [1 0 0]T in the body frame, and

F0 = (
rau

|| r̄sun ||
)2ac (5.6)

with rau the mean distance from the Earth to the Sun (1 au) and ac the sail character-

istic acceleration. The characteristic acceleration of an ideal sail is expressed as

ac =
2P

σs + σa
(5.7)

where P = 4.563× 10−6 N/m2 is the nominal solar radiation pressure constant at 1 au

from the Sun. The sail and attached mass assembly loadings are given as σs = ms
Ar

and

σa = ma
Ar

respectively, where ms and ma are the masses of the sail and attached mass

and Ar is the reflective area.

It follows that F̄SRP = [F1SRP F2SRP F3SRP ]T , the force due to solar radiation

pressure, is simply the mass of the entire spacecraft, ms/c = ms + ma, times the

acceleration due to solar radiation pressure in Equation 5.5. The torque due to solar

radiation pressure, N̄SRP is then calculated using the equation

N̄SRP = r̄m/p × F̄SRP (5.8)

where r̄m/p is again the offset between the centre of mass and the centre of pressure.

5.2 Analytic Derivation of the Geometric Spin Repointing

Reference Motions

In this section, the general framework utilised in Chapters 3 and 4 is applied to the case

of the spacecraft constrained to spin at a constant rate around one axis. As in Chapter

4 the kinematics of the system are expressed on the matrix Lie group SU(2), and the

conserved quantities of the system utilised to solve the Hamiltonian vector fields and

thus yield the analytical optimal controls. This framework is first applied to a general
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form of quadratic cost, and an attempt made to solve for the most general form of

the solution. Then, the particular case of the analytic reference motions which form

the basis of the motion planning algorithm used in this chapter, as derived by Biggs

and Horri [29], are linked to this general case. Additionally, the pure spin references

considered for comparison purposes are detailed.

These analytical reference motions will then be tested in simulation to assess the per-

formance of references derived using geometric control theory in motion planning for

real engineering systems.

5.2.1 General Framework

The kinematics of the rigid body, constrained to rotate at a constant speed around one

axis, are described using the matrix Lie group SU(2) (2.31) in the case where ω1 = v:

dR(t)

dt
= R(t)(vA1 + ω2A2 + ω3A3) (5.9)

Additionally, a cost function of the form

J =
1

2

1∫
0

cω2
2 + ω2

3dt (5.10)

is utilised. Relative to the general form of the cost function (2.34), the constant angular

velocity v is not controllable and so it is omitted. Therefore c1 = 0, c2 = c and c3 = 1.

Additionally, the controls ui = ωi with i = 1, ..., 3. This initial cost function is chosen

as it (i) ensures smooth motions (ii) minimises the integral of angular velocities on the

unconstrained axes which avoids the system accumulating more angular velocity than

needed (iii) avoids dangerously fast slew rates which could excite the sail membrane and

(iv) allows the construction of the optimal motions in closed form using the framework

of geometric control theory.

The Hamiltonian function corresponding to the left-invariant kinematic constraint (5.9)

that minimises the function (5.10) is derived, using the procedure detailed in Section
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2.5.2, as

H(p, u) = vλ1 + ω2λ2 + ω3λ3 −
1

2
(cω2

2 + ω2
3) (5.11)

From the Maximum Principle of optimal control detailed in Section 2.5, if the following

conditions are satisfied:

∂H

∂ωi
= 0,

∂2H

∂ωi2
< 0 (5.12)

where again i = 1, ..., 3, then the controls ωi are optimal. This yields:

ω2 =
λ2

c
, ω3 = λ3 (5.13)

Substituting (5.13) into (5.11) leads to the optimal Hamiltonian H∗ relative to the

kinematics (5.9) and cost function (5.10):

H∗ = vλ1 +
1

2
(
λ2

2

c
+ λ2

3) (5.14)

Additionally, the Casimir function (4.15) is again constant along the Hamiltonian flow.

As in Chapter 4, the Hamiltonian vector fields which implicitly define the extremal

solutions are given by the Poisson bracket. This yields the differential equations:

λ̇1 = λ2λ3(1− 1
c )

λ̇2 = λ3(v − λ1)

λ̇3 = λ2(λ1c − v)

(5.15)

These equations (5.15) define the general extremal differentials for the rigid body con-

strained to spin at a constant rate v around one axis. In subsequent sections these

extremal differentials will be used to show that the most general solution to the prob-

lem is not practical, while the particular case when c = 1 results in simple trigonometric

functions.

In order to derive the global solution in terms of quaternions, the local solution in terms

of the euler angles (4.35) derived in Section 4.2.1 is again utilised together with Lax

pair integration to yield the solution on the semisimple 3D Lie group SU(2). Following
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this, the isomorphism from the Special Unitary group to the unit quaternions (2.20) is

used to enable the solution to be expressed in convenient quaternion form.

5.2.2 General Case

Following the derivation of the general Hamiltonian functions and extremal differentials

in Section 5.2.1, the most general solution to the extremals will be derived in this

section.

Squaring λ̇1 in (5.15) results in an equation of the form:

λ̇2
1 = (λ2λ3)2(

1

c2
− 2

c
+ 1) (5.16)

Solving for λ3
2 and then for λ2

2 using (5.14) and the Casimir (4.15) yields:

λ3
2 = 2(H∗ − vλ1)− λ2

2

c

λ2
2 = M2−λ12−2(H∗−vλ1)

1− 1
c

(5.17)

Substituting these expressions into (5.16) results in an expression of the form:

λ̇2
1 = a1λ1

4 + a2λ1
3 + a3λ1

2 + a4λ1 + a5 (5.18)

where

a1 = −1
c

a2 = 2(1+c)v
c

a3 = −2(H+cH−M2+2cv2)
c

a4 = 8Hv − 2(1+c)M2v
c

a5 = − (2H−M)(2cH−M2)
c

(5.19)

Solving for the roots ei with i = 1, ..., 4 enables (5.18) to be expressed in the form:

λ̇2
1 = a1(λ1 − e1)(λ1 − e2)(λ1 − e3)(λ1 − e4) (5.20)

144



where

e1 = v −
√
−2H +M2 + v2

e2 = v +
√
−2H +M2 + v2

e3 = cv −
√
−2cH +M2 + (cv)2

e4 = cv +
√
−2cH +M2 + (cv)2

(5.21)

This can then be solved to yield λ1 in terms of a Weierstrass elliptic function.

Equation (5.20) can be expressed as a third order polynomial by using the transforma-

tions

Λ1 = 1
(λ1−e1)

Λ2 = λ̇1
(λ1−e1)

(5.22)

This yields an equation of the form:

Λ2
2 = b1Λ1

3 + b2Λ1
2 + b3Λ1 + a1 (5.23)

where

b1 = a1(e1 − e2)(e1 − e3)(e1 − e4)

b2 = a1(3e2
1 + e3e4 + e2(e3 + e4)− 2e1(e2 + e3 + e4))

b3 = a1(3e1 − e2 − e3 − e4)

(5.24)

Equation (5.23) can be solved using a Weierstrass elliptic function in a similar manner to

the unit speed wheeled robot of Chapter 3. The canonical equation for the Weierstrass

℘-function is given by Equation (3.59). Then, let

Λ1 = c1℘+ c2

Λ2 = ℘̇
(5.25)

where c1 and c2 are constants to be determined. The cubic function (5.23) can then be

written in the form (5.25). Substituting (5.25) into (5.23) and comparing coefficients
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of ℘ with those in (3.59), it follows that:

c1 = ( 4
b1

)

c2 = − b2
3b1

g2 =
b22−3b21

12

g3 = 1
432(9b21b2 − 2b32 − 27a1b

3
1)

(5.26)

Substituting (5.26) into (5.25) yields:

Λ1 = (
4

b1
)1/3℘− b2

3b1
(5.27)

where ℘(z; g2; g3) defines the Weierstrass elliptic function, with z a complex variable.

Using the relations (5.22) results in an expression for λ1:

λ1 =
1

Λ1
+ e1 (5.28)

Expressions for λ2 and λ3 follow from (5.17).

Note that the Weierstrass elliptic function can be equivalently expressed as a Jacobi

elliptic function. Defining the roots of the cubic Equation (3.59) as Rj where j = 1...3

it follows from [98] that:

℘(z) = R3 +
R1 −R3

sn2(z
√
R1−R3,

√
R2−R3
R1−R3)

(5.29)

Performing this substitution enables a complete expression for λ1 in terms of the Jacobi

elliptic sn function to be written:

λ1 =
1

α(R3 + R1−R3

sn2(t
√
R1−R3,

√
R2−R3
R1−R3

)
) + β

+ e1 (5.30)

This form is easier to integrate than the Weierstrass function, which computing software

finds difficult to handle.
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From (4.35), it follows that ϕ̇1 can be expressed as:

ϕ̇1 = M(
2(H∗ − vλ1)

M2 − λ2
1

) (5.31)

While this integral can be evaluated in the symbolic software tool, the presence of

the Weierstrass or Jacobi elliptic functions mean that the general solution is long and

complex and so it is not realistically viable for implementation in practical systems.

Therefore the general solution is not used as the basis of a motion planner in this thesis.

Despite the general solution being impractical for motion planning, as with the arbitrary

speed wheeled robot case discussed in Chapter 3 there may exist a choice of parameter

which results in a subset of more computationally efficient trigonometric or hyperbolic

solutions being obtained. To this end, a phase plane analysis was carried out. Rewriting

(5.18) to give an expression for λ̇1 in terms of λ1, parametric plots were produced by

varying the parameters c,H∗,M and v over a range of values for λ1. It was discovered

that by fixing the values of H∗,M and v and varying the parameter c, that a special

case occurs at c = 1. This is illustrated in Figure 5.2.

At c = 1, the roots (5.21) of equation (5.18) reduce to form two repeated roots and

λ̇ = 0 in (5.15). Thus it has been shown that the solution of Biggs [29] is a special case

of the impractical general solution presented in this section. In the proceeding section

the particular solution when c = 1 will be derived as in [29] before being utilised to

plan attitude motions for a spinning spacecraft in order to determine if the solutions

obtained using geometric control theory are of use in practical motion planning.
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Figure 5.2: Phase plane plot for varying 0.1 ≤ c ≤ 1.9, with H∗ = 1,M = 7 and
v = 2. Blue curves denote values of 0.1 ≤ c < 1 while green curves denote values of
1 < c ≤ 1.9

5.2.3 Particular Case: c=1

In this section the equations first derived in [29] for the particular case c = 1 are derived

in full, before their use in the motion planning algorithm which forms the basis of this

chapter.

Lemma 6. The class of reference motions that minimise the cost function (5.10) subject
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to the kinematics (5.9) for the particular case when c = 1 are defined by

ω2 = ζ sin((v + ψ)t+ β)

ω3 = ζ cos((v + ψ)t+ β)
(5.32)

q0 = cos(1
2 t(ψ + v)) cos(Mt

2 ) + ψ
M sin(1

2 t(ψ + v)) sin(Mt
2 )

q1 = sin(1
2 t(ψ + v)) cos(Mt

2 )− ψ
M cos(1

2 t(ψ + v)) sin(Mt
2 )

q2 = ζ
M sin

(
ψ+v

2 t+ β
)

sin
(
M
2 t
)

q3 = ζ
M cos

(
ψ+v

2 t+ β
)

sin
(
M
2 t
)

(5.33)

where ω1 = v, ω2 and ω3 are the optimal angular velocities and q0, q1, q2, q3 the corre-

sponding quaternion components subject to the given boundary conditions q̄(0) = q̄i =

[1 0 0 0]T and q̄(T ) = q̄f and where ζ, ψ, β are parameters available for optimisa-

tion, v is the given spinning angular velocity and M =
√
ψ2 + ζ2 is equal to the root

of the Casimir function (4.15).

Proof [29]. By setting c = 1 in the equations for the optimal form of the controls (5.13),

it follows that ω2 = λ2 and ω3 = λ3. In a similar manner, the extremal differential

equations (5.15) simplify to:

λ̇1 = 0

λ̇2 = λ3(v − λ1)

λ̇3 = −λ2(v − λ1)

(5.34)

Denoting λ1 = −ψ as a constant, inspection of Equation (5.14) enables a constant

reduced Hamiltonian Hr = 2(H∗ + ψv) to be defined as in Chapter 4, Section 4.2.2:

Hr = 2(H∗ + ψv) = λ2
2 + λ2

3 (5.35)
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Following a similar process to that outlined in Section 4.2.2, the extremals can then

be parameterised using polar co-ordinates and solved to yield the expressions for the

optimal angular velocities (5.32).

The euler angles given in Equation (4.35) of Chapter 4 are also applicable to this

particular case. Performing the necessary partial derivatives of the optimal Hamiltonian

(5.14) in the expression for φ1 it follows that:

ϕ1 =

∫
Mdt (5.36)

Carrying out the integration and letting ϕ(0) = γ results in ϕ1 = Mt+ γ. The quater-

nions are once again obtained by substituting the optimal angular velocities (5.32) into

the expressions for the euler angles and then into (4.25). The solution is pulled back to

the identity via (4.36) to yield the solution on SU(2). Finally the isomorphism (2.20)

is used to give the expressions for the time evolution of the quaternions of a rigid body

constrained to spin at a constant rate v, for the particular case when c = 1.

This defines analytically a subset of admissible smooth motions expressed in terms of

several free parameters v, ζ, ψ, β, which as in Chapter 4 will be used as the basis of

a motion planning algorithm for a spacecraft simulated under realistic environmental

conditions.

In order to assess the strengths and weaknesses of the method derived using geometric

control theory, it must be compared to another method. To this end in the following

section reference motions for a spacecraft in a state of pure spin are derived to provide

a means of comparison.

5.2.4 Pure Spin Repointing

The previous subsection stated the analytical reference tracks for a rigid body con-

strained to spin at a constant rate v around one-axis, while minimising the body rates

in the other two-axes. In this section, the time-evolution of the quaternions for a rigid

body constrained to spin at constant rates around each axis are stated. This is achieved

by using the Rodrigues expansion for an element of SU(2), and then making use of the
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isomorphism (2.20) to yield the quaternions as stated in the following lemma:

Lemma 7. The quaternions for the case when the angular velocities ω1, ω2 and ω3 of

a rigid body are constant are defined by:

q0 = cos(Λt), q1 =
ω1

2Λ
sin(Λt), q2 =

ω2

2Λ
sin(Λt), q3 =

ω3

2Λ
sin(Λt) (5.37)

where q0, q1, q2, q3 are quaternion components and where

Λ =
√

1
4(| ω1 |2 + | ω2 |2 + | ω3 |2) is a constant.

Proof. For the case where ω1, ω2 and ω3 are constant, the kinematics can be expressed

as:

dR(t)

dt
= R(t)V (5.38)

where V ∈ su(2) is given by

V =

 α β

−β̄ ᾱ

 (5.39)

The Rodrigues formula [17] for the exponential of a matrix A is given by

exp(At) =

+∞∑
k=0

tkAk

k
(5.40)

Denoting that V 2 = −Λ2 ∗ I where I is the identity element in SU(2), substituting

into (5.40) and using the Taylor series expansions of sine and cosine, it follows that the

closed form solutions of (5.38) are given by

R(t) = R(0)

 cos(Λt) + α
Λ sin(Λt) β

Λ sin(Λt)

−β̄
Λ sin(Λt) cos(Λt) + ᾱ

Λ sin(Λt)

 (5.41)

where α+ ᾱ = 0. Equation (5.41) together with the isomorphism (2.20) from SU(2) to

H yields the quaternions for constant angular velocities (5.37). Furthermore, comparing

the RHS of (4.33) with that of (5.38) it is found that α = 1
2 iω1 and β = 1

2(ω2 + iω3).

Thus Λ =
√

1
4(| ω1 |2 + | ω2 |2 + | ω3 |2) �

The quaternions (5.37) are utilised in the special case where ω1 = v and ω2 = ω3 = 0 to
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both stabilise the solutions (5.33) at the target quaternion q̄(T ), and also to provide a

benchmark against which to compare the proposed motion planning method as detailed

in the following section.

5.3 Practical Implementation of the Motion Planning Method

With the analytical equations for the motion of a spinning rigid body stated in quater-

nion form, a method is now described to utilise these solutions in a motion planning

algorithm. Firstly, an appropriate cost function is selected that meets the desired ac-

curacy on the final pointing direction while minimising the required torque, before the

parametric optimisation methods utilised in Chapters 3 and 4 are adapted and ap-

plied to yield reference tracks which match the set boundary conditions. Finally, the

extension to simple obstacle avoidance is detailed.

5.3.1 Parametric Optimisation

As in Chapter 4, the analytical expressions for the angular velocities and the globally

defined quaternions were entered into a computational software programme in order to

construct a motion planner. A cost function of the form

F1 = || (q̄ − q̄(T )) || (5.42)

is again used to minimise the norm of the error between the current quaternion and

the target quaternion.

Additionally, as in Biggs [29], a second term is included in order to minimise the torque

required during the manoeuvre. By substituting (5.32) and ω1 = v into (4.1), the

theoretical control torque input N̄tc = [N1tc, N2tc, N3tc]
T required to carry out the

manoeuvre is obtained. A cost function of the form

F2 =

T∫
0

〈
N̄tc, N̄tc

〉2
dt (5.43)
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can then be constructed, which minimises the integral of the theoretical control torques.

For motion planning implementation, this integral can be evaluated analytically and

equates to finding the minimum of the analytic function [29]

F2 =
ζ2

32α


ζ2 (4Tα+ sin (4β))− sin (4(Tα+ β)) J2

1 δ
2
1

+8 (2Tα− sin (2β) + sin (2(Tα+ β)) J2
2 (α− vδ2)2

+8 (2Tα+ sin (2β)− sin (2(Tα+ β)) J2
3 (α+ vδ3)2

 (5.44)

where α = v + ψ. Therefore, to obtain the optimal parameters for the reference

motions (5.32, 5.33) which meet the required accuracy constraints while minimising

the accumulated torque, the following multi-objective function is utilised:

min
ζ,ψ,β

(F1 + kF2) (5.45)

where ζ, ψ, β are the free parameters to be optimised, F1 and F2 are defined in (5.42)

and (5.44) respectively and k is a weighting parameter which must be manually tuned.

As the cost function is multi-objective, the tuning of this parameter is dependent on

the relative weighting assigned to the final pointing accuracy and control effort of the

manoeuvre. If minimising control effort is not required, then setting k = 0 negates the

need for manual tuning. However, in this work it is desirable to plan high accuracy, low

control effort manoeuvres as higher required torques would mean that the actuators

would necessarily be larger, undesirably increasing the mass of the sail. Thus, given

the moments of inertia J1, J2, and J3, spinning angular velocity v and terminal time T

a parametric optimisation can be carried out to find a reference motion which meets

the desired final pointing accuracy to four decimal places while minimising the accu-

mulated torque of the manoeuvre. Note that the terminal time T can also be included

in the parametric optimisation as a free parameter, and thus if the manoeuvre time is

unconstrained the motion planner can be used to determine the manoeuvre time which

results in the lowest accumulated torque.

A genetic algorithm method was used for the parametric optimisation as it proved

the most adept at finding the values of the free parameters which minimised the cost
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function, in comparison to the other available solvers such as stochastic functional min-

imisation and direct search “simplex” methods. That is, the genetic algorithm method

often found solutions to certain manoeuvres when the other solvers could not. This

method was chosen in order to assess the suitability of using the reference motions

to plan motions for a solar sail. Again, a deeper investigation would be required to

identify the most suitable method of determining the required initial angular velocities

if the references were to be generated on-board a spacecraft. However, this is outwith

the scope of this thesis.

The optimal values of the free parameters, ζ∗, ψ∗, β∗, resulting from the optimisation

can then be input into the analytical equations for the angular velocities and quater-

nions to generate the reference tracks for the repointing manoeuvre.

5.3.2 Extension To Constrained Repointing

The method of producing constrained slews detailed in Chapter 4 Section 4.3.3 for the

natural motions is again applicable here. In contrast to the nano-spacecraft, a solar sail

is more likely to have to maintain a certain minimum angle between the sail normal and

the Sun throughout a manoeuvre for either power generation purposes or to maximise

thrust. Therefore by probing the set of the curves which satisfy the boundary conditions

on the final orientation of the spacecraft, q̄(T ), constrained slews can be generated.

Recall that a bright object such as the Sun creates a “cone” in the configuration space.

If the body x-axis unit vector must not deviate significantly from the Sun, then the

unit vector must not lie outwith the cone during the manoeuvre, viz

δp , arccos(n̂p · n̂c) ≤ δc (5.46)

With these constraints defined, the method for finding curves which do not violate the

appropriate constraint is briefly described in the context of the motion planner of this

chapter.

Without a constraint on the pointing direction the parametric optimisation of Section

5.3.1 will return the optimal values of the free parameters ζ∗, ψ∗, β∗. In the case that
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this returns a motion that violates the chosen constraint the parameters p1, p2, p3 are

added as increments to the parameters ζ∗, ψ∗, β∗, where −ε < p1, p2, p3 < ε and ε is a

parameter which can be tuned. In this case the multi-objective function

min
p1,p2,p3

(F1 + kF2) (5.47)

is optimised to find an alternative geometric spin repointing manoeuvre from q̄ to q̄(T ).

The parameter ε is incremented iteratively to obtain a solution that satisfies the chosen

constraint, leading to a new set of parameters ζ∗∗ = ζ∗+p1, ψ
∗∗ = ψ∗+p2, β

∗∗ = β∗+p3

being obtained. Inputting these parameters into the analytical equations then generates

reference tracks which bring the spacecraft from q̄ to q̄(T ) with δp ≤ δc∀t.

Note that the parameter k of the multi-objective cost-function (4.79) introduces an

added heuristic into the process of finding a suitable curve which respects the orientation

constraint. This process can be simplified by setting k = 0 at the possible expense of

added control effort.

5.4 Solar Sail Motion Planning Simulations

The motion planning method described in Section 5.3 was tested in simulation to assess

the strengths and limitations of the method. The PD controller described in Equation

(4.80) of Chapter 4 was again chosen to track the references due to it’s simplicity and

ease of gain tuning. Once again the gyroscopic term was omitted from the controller

as solar sail manoeuvres are generally long and slow.

As in Chapter 4, the manoeuvre is planned such that the references bring the spacecraft

to the target in time (T − τ), where τ is a small period of time. However, whereas in

Chapter 4 simple quaternion feedback references were used to stabilise the spacecraft,

in this chapter at time (T − τ) until the end of the manoeuvre at time T , the pure spin

references are tracked to bring the spacecraft to a state of pure spin at the target.
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The geometric spin repointing manoeuvres can be summarised as:

For t = [0, T − τ) ω̄d = ω̄ref

q̄d = q̄ref

For t = [T − τ, T ] ω̄d = ω̄ps

q̄d = q̄ps

(5.48)

where the subscripts ”ref” and ”ps” refer to the reference tracks generated using

parametric optimisation and the pure spin references respectively, and τ is the length

of time the stabilising control is applied.

The reference tracking in comparison to the pure spin benchmark references is assessed

in terms of the accumulated torque IN of the actuators, together with other factors

such as momentum accumulation of the reaction wheels for the geocentric sail, and the

peak angular velocities throughout the manoeuvre. The gains were adjusted iteratively

until the final pointing and velocity constraints were satisfied, to 4 decimal places, with

the lowest accumulated torque.

Note that solar sail attitude is often expressed in terms of cone and clock angles [32]. As

the analytical references are expressed in quaternion form, a conversion from cone and

clock to quaternions is necessary. This can be achieved using the simple quaternionic

multiplication rules to rotate the initial quaternion in the body frame q̄i first by an

angle −δ and then by −α, viz

q̄f =



q0r −q1r −q2r −q3r

q1r q0r q3r −q2r

q2r −q3r q0r q1r

q3r q2r −q1r q0r


q̄i (5.49)

where q̄r = [q0r q1r q2r q3r]
T are the quaternions specifying the rotation, q̄i the

quaternions before the rotation is applied and q̄f the quaternions resulting from the

rotation. For example for α = 30◦ and δ = 0◦, it follows from (5.49) that q̄f =
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[cos(7π
72 ) 0 − sin(7π

72 ) 0]T . This conversion is utilised to generate realistic manoeu-

vres for the heliocentric solar sail in Section 5.4.2 from cone and clock angles given in

the solar sail literature.

In Section 5.1.2, it was stated that in this chapter the references are tracked with re-

spect to the orbital, rather than the inertial frame. This is due to solar sails generally

performing attitude manoeuvres to repoint the thrust vector for orbital manoeuvres. In

order to track the references, derived with respect to an inertial frame, in the rotating

orbital frame, the orbital component of the angular velocity is added to the angular

velocity reference tracks.

As the sail is axisymmetric, only the final attitude of the sail normal (the body x-axis)

is of concern. Therefore when the sail is in a state of pure spin at the target there will

be a plane of quaternions which match the desired pointing constraints, and targeting

a static reference as in Chapter 4 is not feasible. Thus a target quaternion is specified

which lies on this plane, and the first column of the quaternion matrix (5.3) is utilised

to check that the spacecraft has reached the target attitude on SO(3). Note that the

quaternions from the body to the orbit frame are input into (5.3), and so the first col-

umn of the rotation matrix represents the co-ordinates of the body x-axis with respect

to the orbit frame in SO(3). The orbital quaternions in (5.3) are replaced with the

inertial quaternions q̄ if the references are being tracked with respect to the inertial

frame.

In the following sections the motion planning algorithm for a spinning spacecraft is

tested in simulation to assess the performance of the method, derived using geometric

control theory, when applied to a spinning solar sail.

5.4.1 Geocentric Spinning Square Solar Sail

In this section the motion planning method is applied to the attitude control of the

40 m square solar sail, detailed in Table 5.1. The sail is in an 800 km altitude Earth

centred circular orbit. It is assumed that the geocentric solar sail is equipped with

reaction wheels as actuators, with the data given in Table 5.2.
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The references were tracked with respect to the RTN orbital reference frame. A ma-

noeuvre from q̄bo(0) = [0.5 0.5 0.5 0.5]T to q̄bo(T ) = [0.63 0.33 0.33 −0.63]T=

in a time of T = 3000 s and with a spin rate of v = 0.0209 rad/s was simulated. The

gains used in the simulation were kω = 2.1 and kq = 0.036 for pure spin repointing, and

kω = 0.8 and kq = 0.1 for the spin stabilised motions. The results are shown in Figures

5.3 to 5.6 for pure-spin reference tracking and Figures 5.7 to 5.10 for the geometric

spin repointing reference tracking. Note that the dashed horizontal lines in the control

torque and wheel momentum graphs represent the torque and momentum saturation

limits respectively, while the vertical dashed lines indicate the switch to the stabilising

control.
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Figure 5.3: Inertially referenced angular velocities during pure spin manoeuvre for
geocentric solar sail for Manoeuvre SR-B with a spin rate of
v = 0.0209 rad/s.
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Figure 5.4: Orbit-referenced quaternions during pure spin manoeuvre for geocentric
solar sail for Manoeuvre SR-B with a spin rate of v = 0.0209 rad/s.
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Figure 5.5: Control torques during pure spin manoeuvre for geocentric solar sail for
Manoeuvre SR-B with a spin rate of v = 0.0209 rad/s.
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Figure 5.6: Wheel angular momentum during pure spin manoeuvre for geocentric solar
sail for Manoeuvre SR-B with a spin rate of v = 0.0209 rad/s.
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Figure 5.7: Inertially referenced angular velocities during spin repointing manoeuvre
for geocentric solar sail for Manoeuvre SR-B with a spin rate of v = 0.0209 rad/s.
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Figure 5.8: Orbit-referenced quaternions during spin repointing manoeuvre for geocen-
tric solar sail for Manoeuvre SR-B with a spin rate of v = 0.0209rad/s.
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Figure 5.9: Control torques during spin repointing manoeuvre for geocentric solar sail
for Manoeuvre SR-B with a spin rate of v = 0.0209 rad/s.
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Figure 5.10: Wheel angular momentum during spin repointing manoeuvre for geocentric
solar sail for Manoeuvre SR-B with a spin rate of v = 0.0209 rad/s.

Tables 5.3 and 5.4 summarise the results of this and several other manoeuvres. The

superscripts “P.S.” and “S.R.” refer to pure spin and geometric spin repointing motion

planning manoeuvres respectively.

Table 5.3: Labelling of attitude manoeuvres for geocentric solar sail

Manoeuvre Initial quaternion Final quaternion

SR-A q̄bo(0) = [0.32 − 0.47 − 0.47 − 0.67]T q̄bo(T ) = [0.71 0 0 − 0.71]T

SR-B q̄bo(0) = [0.5 0.5 0.5 0.5]T q̄bo(T ) = [0.63 0.33 0.33 − 0.63]T

SR-C q̄bo(0) = [0.71 0 0 − 0.71]T q̄bo(T ) = [0.5 0.5 0.5 − 0.5]T

Table 5.4: Comparison between pure spin references and geometric spin repointing
references for geocentric solar sail

Manoeuvre v (rad/s) Time (s) IN
P.S. (Nms) IN

S.R. (Nms)

SR-A 0.0209 6100 254 349
0.00785 2000 94 72

SR-B 0.0209 3000 330 211
0.00785 1200 98.5 NA

SR-C 0.0209 2500 286.2 263
0.00785 1250 128 NA
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It was found that the gain tuning in the pure spin case was non-trivial, and as a result

it was difficult to achieve the desired final pointing accuracy for long manoeuvres.

As a result, the pure spin simulations were carried out first and the final manoeuvre

time which was input into the geometric spin repointing motion planner was selected

based on these results. The tuning of the gains for the geometric spin repointing was

considerably easier, and the references can be easily generated to meet any required

final manoeuvre time. However, the geometric spin repointing method was not able

to perform all of the manoeuvres that the pure spin method could while respecting

the final manoeuvre time and actuator constraints. For Manoeuvres SR-B and SR-C

with v = 0.007 85 rad/s, the geometric spin repointing method required a peak torque

of larger than 0.1 Nm to track the references, and hence these manoeuvres are marked

“NA” in Table 5.4 as no suitable manoeuvre could be generated by the motion planner

in these cases. Additionally, while the geometric spin repointing motion tracking offers

savings in accumulated torque over the tracking of simple pure spin references in some

cases, in others, such as Manoeuvre SR-A for v = 0.0209 rad/s, the pure spin references

required lower accumulated torque. This case is illustrated in Figures 5.11 to 5.14 for

pure-spin reference tracking and Figures 5.15 to 5.18 for the geometric spin repointing

reference tracking.

For the illustrated manoeuvres, it is clear that the spin repointing references have lower

peak angular velocities and demand peak torques for a lower proportion of the total

manoeuvre time. This was the case with all manoeuvres tested. However, in Manoeuvre

SR-A with v = 0.0209 rad/s, the pure spin method decays swiftly to a smaller periodic

torque and thus results in lower accumulated torque overall. This is perhaps because

tracking in the orbital frame requires the components of the orbital velocity to be

added to the angular velocity reference tracks. As a result added control effort may be

required to track the geometric spin repointing references with respect to the orbital

frame.

Therefore in the case of the solar sail in a geocentric orbit, tracking of geometric spin

repointing references with respect to the orbital frame offers no clear advantage over
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Figure 5.11: Inertially referenced angular velocities during pure spin manoeuvre for
geocentric solar sail for Manoeuvre SR-A with a spin rate of v = 0.0209 rad/s.
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Figure 5.12: Orbit-referenced quaternions during pure spin manoeuvre for geocentric
solar sail for Manoeuvre SR-A with a spin rate of v = 0.0209 rad/s.
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Figure 5.13: Control torques during pure spin manoeuvre for geocentric solar sail for
Manoeuvre SR-A with a spin rate of v = 0.0209 rad/s.
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Figure 5.14: Wheel angular momentum during pure spin manoeuvre for geocentric solar
sail for Manoeuvre SR-A with a spin rate of v = 0.0209 rad/s.
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Figure 5.15: Inertially referenced angular velocities during spin repointing manoeuvre
for geocentric solar sail for Manoeuvre SR-A with a spin rate of v = 0.0209 rad/s.
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Figure 5.16: Orbit-referenced quaternions during spin repointing manoeuvre for geo-
centric solar sail for Manoeuvre SR-A with a spin rate of v = 0.0209 rad/s.

166



0 1000 2000 3000 4000 5000 6000
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (seconds)

C
on

tr
ol

 T
or

qu
es

 N
c (

N
m

)

 

 
N

1c

N
2c

N
3c

Figure 5.17: Control torques during spin repointing manoeuvre for geocentric solar sail
for Manoeuvre SR-A with a spin rate of v = 0.0209 rad/s.
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Figure 5.18: Wheel angular momentum during spin repointing manoeuvre for geocentric
solar sail for Manoeuvre SR-A with a spin rate of v = 0.0209 rad/s.
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pure spin references. It should also be noted that both methods are infeasible with

reaction wheels alone as actuators, as they quickly result in momentum saturation.

Methods of tackling the momentum accumulation will be discussed in Section 5.6.

In this section a geocentric solar sail has been considered. However, Earth centred

solar sails have primarily been considered as technology demonstration missions and

the rapid attitude slews required to sustain an Earth orbit using solar sail propulsion

alone has proven to be infeasible. Therefore in the following subsection a spacecraft in

a heliocentric orbit is considered, where the continuous low-thrust propulsion can be

more feasibly exploited.

5.4.2 Heliocentric Spinning Disk Solar Sail

In this subsection the reference motions are applied to the 70 m radius spinning disk

sail, detailed in Table 5.1. The sail is assumed to be orbiting the Sun in a circular orbit

at an altitude of 0.24 au. For the purposes of this study the sail is assumed to have

minimal supporting structure, such as the “hoop” structure proposed by McInnes [33],

to enable thrusters and other actuators under consideration to be mounted.

Figures 5.19 to 5.21 and 5.22 to 5.24 illustrate an 8000 s manoeuvre from q̄bo(0) =

[1 0 0 0]T to q̄bo(T ) = [0.5 0.5 0.5 0.5]T , with a spin rate v = 0.0209 rad/s, for

the pure spin and geometric spin repointing methods respectively.
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Figure 5.19: Inertially referenced angular velocities during pure spin manoeuvre for
heliocentric solar sail for Manoeuvre SR-E with a spin rate of v = 0.0209 rad/s.
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Figure 5.20: Orbit-referenced quaternions during pure spin manoeuvre for heliocentric
solar sail for Manoeuvre SR-E with a spin rate of v = 0.0209 rad/s.
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Figure 5.21: Control torques during pure spin manoeuvre for heliocentric solar sail for
Manoeuvre SR-E with a spin rate of v = 0.0209 rad/s.
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Figure 5.22: Inertially referenced angular velocities during spin repointing manoeuvre
for heliocentric solar sail for Manoeuvre SR-E with a spin rate of v = 0.0209 rad/s.
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Figure 5.23: Orbit-referenced quaternions during spin repointing manoeuvre for helio-
centric solar sail for Manoeuvre SR-E with a spin rate of v = 0.0209 rad/s.
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Figure 5.24: Control torques during spin repointing manoeuvre for heliocentric solar
sail for Manoeuvre SR-E with a spin rate of v = 0.0209 rad/s.

Tables 5.5 and 5.6 summarise the manoeuvres performed and their results.
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Table 5.5: Labelling of attitude manoeuvres for heliocentric solar sail

Manoeuvre Initial quaternion Final quaternion

SR-D q̄bo(0) = [1 0 0 0]T q̄bo(T ) = [0 1 0 0]T

SR-E q̄bo(0) = [1 0 0 0]T q̄bo(T ) = [0.5 0.5 0.5 0.5]T

SR-F q̄bo(0) = [1 0 0 0]T q̄bo(T ) = [cos( 7π
72

) 0 − sin( 7π
72

) 0]T

SR-G q̄bo(0) = [cos( 7π
72

) 0 − sin( 7π
72

) 0]T q̄bo(T ) = [0 − cos( 7π
72

) 0 sin( 7π
72

)]T

SR-H q̄bo(0) = [−0.32 − 0.12 − 0.9 0.27]T q̄bo(T ) = [0.46 − 0.74 − 0.03 − 0.5]T

Table 5.6: Comparison between pure spin references and geometric spin repointing
references for heliocentric solar sail

Manoeuvre v (rad/s) Time (s) IN
P.S. (Nms) IN

S.R. (Nms)

SR-D 0.0209 4000 3× 104 1.28× 104

0.00785 4500 1.23× 104 4.8× 103

SR-E 0.0209 8000 2.7× 104 6.57× 103

0.00785 2500 5.4× 103 2.72× 103

SR-F 0.0209 2000 4.72× 103 4.24× 103

0.00785 1000 1.55× 103 NA
SR-G 0.0209 8000 3.81× 104 6.8× 103

0.00785 4000 4.9× 103 7.43× 103

SR-H 0.0209 5000 2× 104 1.05× 104

0.00785 4000 1.29× 104 5.07× 103

By inspection of Table 5.6, it is clear that the tracking of geometric spin repointing ref-

erences offers savings in accumulated torque in the majority of manoeuvres, with lower

peak angular velocities and fewer instances of torque saturation in all manoeuvres.

However, once again in certain cases the motion planner for geometric spin repointing

is not capable of producing a motion which is trackable for the given torque constraints,

and for Manoeuvre SR-G for v = 0.007 85 rad/s the pure spin references required lower

overall accumulated torque to track.

Note that the geometric spin repointing reference tracking performed better in compar-

ison to the pure spin references for the heliocentric sail than it did for the geocentric

sail. This is again possibly due to the references being tracked with respect to the

orbital frame rather than the inertial frame. For a heliocentric orbit at 0.24 au the

orbital angular velocity term is of the order 10−6 rad/s in comparison to 10−3 rad/s in

an 800 km altitude geocentric orbit. Therefore the orbital term has almost negligible
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effect on the tracking of the references for the heliocentric sail, but significantly alters

the angular velocity reference tracks for the geocentric sail. However, as solar sail at-

titude manoeuvres are primarily performed in order to reorientate the thrust vector

for orbital manoeuvres, the performance of the geometric spin repointing method when

tracking with respect to the orbital frame is of most relevance.

5.4.3 Constrained Repointing

In this section the set of motions which satisfy the boundary conditions on the target

attitude are probed to generate a constrained repointing manoeuvre for the heliocentric

solar sail. In contrast to the obstacle avoidance manoeuvre of Chapter 4, in this section

the body x-axis unit vector is constrained to lie within the cone generated by the Sun.

A 1200 s slew from q̄bo(0) = [1 0 0 0]T to q̄bo(T ) = [−0.49 0.67 0.51 0.22]T for

the heliocentric sail from Section 5.4.2 was considered, with the body x-axis unit vector

given by [1 0 0]T . The centre of the cone is specified as nc = [0.71 0.071 0.71]T

and the cone half angle as δc = 68◦. The initial optimisation to minimise the cost

function (5.47) yields a solution which violates this constraint, as shown in Figure 5.25.
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Figure 5.25: Angle between body x-axis and cone centreline unit vectors for manoeuvre
from q̄bo(0) = [1 0 0 0]T to q̄bo(T ) = [−0.49 0.67 0.51 0.22]T . Original and
alternate manoeuvres are shown.
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Incrementing the free parameters by p1, p2 and p3 respectively and performing a further

parametric optimisation to minimise the cost function (5.47) leads to an alternate ma-

noeuvre which does not violate the constraint. Therefore the geometric spin repointing

method has been used to generate a constrained slew.

5.5 Application to a Nano-Spacecraft

In this section the geometric spin repointing references are applied to the nano-spacecraft

of Chapter 4 and compared to the axisymmetric natural motion references and quater-

nion feedback, in addition to the pure spin references. The application to a spinning

solar sail showed that in a high disturbance environment, the geometric spin repointing

and pure spin references result in significant momentum accumulation. Additionally,

the geometric spin repointing references did not always produce the lowest control

effort manoeuvres. Thus the purpose of this section is two-fold - to assess the per-

formance of the geometric spin repointing references when applied to a spacecraft in

a low-disturbance environment and to compare the results with the natural motion

method.

Initially the geometric spin repointing method was stabilised to a state of pure spin as in

the solar sail simulations (5.48), and compared to the pure spin references. Thereafter,

the simulations were repeated and the nano-spacecraft brought to rest at the target, as

for the natural motion references (4.82). In order to enable a comparison to be made

with the axisymmetric natural motion method, the manoeuvres of Section 4.4.1 were

repeated using the geometric spin repointing method and the tracking completed with

respect to the inertial frame.

5.5.1 Comparison to Pure Spin References

A manoeuvre from q̄(0) = [1 0 0 0]T to q̄(T ) = [0.5 0.5 0.5 0.5]T in a time of

T = 120 s, with a spin rate of v = 5.236× 10−3 rad/s, was simulated. The gains used

in the simulation were kω = 1.7 and kq = 0.29 for the pure spin references and kω = 1.7
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and kq = 0.83 for the geometric spin repointing references. The results are shown in

Figures 5.26 to 5.28 for the pure spin reference tracking, and Figures 5.29 to 5.31 for

the geometric spin repointing.
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Figure 5.26: Angular velocities during pure spin manoeuvre for axisymmetric spacecraft
for Manoeuvre NM-A with a spin rate of v = 5.236× 10−3 rad/s.
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Figure 5.27: Quaternions during pure spin manoeuvre for axisymmetric spacecraft for
Manoeuvre NM-A with a spin rate of v = 5.236× 10−3 rad/s.
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Figure 5.28: Control torques during pure spin manoeuvre for axisymmetric spacecraft
for Manoeuvre NM-A with a spin rate of v = 5.236× 10−3 rad/s.
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Figure 5.29: Angular velocities during spin repointing manoeuvre for axisymmetric
spacecraft for Manoeuvre NM-A with a spin rate of v = 5.236× 10−3 rad/s.
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Figure 5.30: Quaternions during spin repointing manoeuvre for axisymmetric
spacecraft for Manoeuvre NM-A with a spin rate of v = 5.236× 10−3 rad/s.
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Figure 5.31: Control torques during spin repointing manoeuvre for axisymmetric
spacecraft for Manoeuvre NM-A with a spin rate of v = 5.236× 10−3 rad/s.

The results of this and several other manoeuvres are shown in Table 5.7.
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Table 5.7: Spin repointing and pure spin reference tracking for axisymmetric spacecraft.
T = 120 s.

Manoeuvre IN
P.S (Nms) IN

S.R (Nms)

NM-A 0.0119 0.0057
NM-B 0.0111 0.0077
NM-C 0.0105 0.0062
NM-D 0.0159 0.0077
NM-E 0.0098 0.0024

It is clear that in comparison to the pure spin references, the geometric spin repointing

references offer significant savings in accumulated torque for the nano-spacecraft spin-

ning at v = 5.236× 10−3 rad/s. Additionally, the body rates are smaller during the

geometric spin repointing manoeuvres.

These results again suggest that the geometric spin repointing method is more effective

when tracking with respect to an inertial or near-inertial reference frame. Addition-

ally, the nano-spacecraft is subjected to significantly smaller disturbance torques than

a large solar sail, and thus the geometric method may be more suited to spacecraft in

a low disturbance environment.

5.5.2 Comparison to Natural Motion References

The geometric spin repointing references were then compared with the natural motion

references and quaternion feedback manoeuvres of Section 4.4.1. To this end, the

spacecraft was brought to rest at the target as in the natural motion simulations,

rather than to a state of pure spin. Figures 5.32 to 5.34 show the results of the rest-to-

rest tracking of geometric spin repointing references for manoeuvre NM-C from Table

4.3, with v = 5.236× 10−3 rad/s.
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Figure 5.32: Angular velocities during rest-to-rest spin repointing manoeuvre
for axisymmetric spacecraft for Manoeuvre NM-A with a spin rate of v =
5.236× 10−3 rad/s.
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Figure 5.33: Quaternions during rest-to-rest spin repointing manoeuvre for axisymmet-
ric spacecraft for Manoeuvre NM-A with a spin rate of v = 5.236× 10−3 rad/s.
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Figure 5.34: Control torques during rest-to-rest spin repointing manoeuvre for axisym-
metric spacecraft for Manoeuvre NM-A with a spin rate of v = 5.236× 10−3 rad/s.

The results of the geometric spin repointing manoeuvres are shown in Table 5.8.

Table 5.8: Quaternion feedback, natural motion reference tracking and geometric spin
repointing reference tracking for axisymmetric spacecraft. T = 120 s.

Manoeuvre IN
Q.F. (Nms) IN

N.M(Axi) (Nms) IN
S.R (Nms)

NM-A 0.0068 0.0025 0.0057
NM-B 0.0103 0.0014 0.0077
NM-C 0.0086 0.0013 0.0062
NM-D 0.0146 0.003 0.0077
NM-E 0.0046 0.0018 0.0024

The geometric spin repointing references offer savings in accumulated torque over the

quaternion feedback benchmark, but require more accumulated torque than the natu-

ral motions. Note also that in contrast to the natural motion references the geometric

spin repointing references require a small torque throughout the manoeuvre to track

the references. Therefore they cannot be utilised in a “bang-off-bang” manner.

It is interesting to note, however, that if the spin rate v is entered into the parametric

optimisation of Section 5.3.1 as a free parameter, then the optimal spin rate is found
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to be the natural motion spin rate, and the geometric spin repointing motion planner

returns a natural motion. Therefore the axisymmetric natural motions are a subset

of the geometric spin repointing motion planner, and offer the largest savings in accu-

mulated torque. As a result, the geometric spin repointing manoeuvres which require

larger accumulated torque than the pure spin benchmark may be those which are far

from the natural motion for the manoeuvre.

5.6 Solar Sail Actuator Study

It is clear from the results of the simulations in Section 5.4, that the actuation of

spinning solar sails is non-trivial as conventional actuators such as reaction wheels

quickly saturate due to the solar radiation pressure disturbance torques caused by the

centre of mass/centre of pressure offset. For the 40 m geocentric sail considered in this

thesis, with no spin rate constraint, Wie showed that the reaction wheels could be

desaturated using 100 Am2 magnetorquers and the simple control law [32]

ūdes = −Kdesat(h̄w − h̄wd) (5.50)

where ūdes is the desaturation control signal, Kdesat is a scalar gain, h̄w is the reaction

wheel angular momentum vector from Equation (4.3) and h̄wd is the desired wheel

momentum vector. When using magnetorquers for desaturation, the requested dipole of

the magnetorquer is then M̄mtq = sat
Mmax

{ūdes}, where Mmax is the maximum requested

dipole in each axis. The control torques are subsequently obtained from Equation (5.4).

At the spin rates considered in this chapter, desaturation using magnetorquers is not

feasible for the spin-type solar sails. This is illustrated in Figures 5.35 to 5.37 for

Manoeuvre SR-C from Table 5.3, in 3600 s for a spin rate of v = 0.007 85 rad/s.
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Figure 5.35: Angular momentum of reaction wheels without desaturation for Manoeu-
vre SR-C in 3600 s for v = 0.007 85 rad/s.
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Figure 5.36: Angular momentum of reaction wheels using magnetorquers for desatura-
tion for Manoeuvre SR-C in 3600 s for v = 0.007 85 rad/s.
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Figure 5.37: Requested dipole of magnetorquers during momentum unloading of reac-
tion wheels for Manoeuvre SR-C in 3600 s for v = 0.007 85 rad/s.

While the magnetorquers decrease the momentum of the reaction wheels slightly they

do not bring the wheel momenta to within acceptable limits, despite the 100 Am2

magnetorquers supplying the maximum possible torque. Therefore it is clear that

the 100 Am2 magnetorquers suggested by Bong Wie are not suitable for momentum

unloading of the reaction wheels when applied to a spinning sail. As a result, another

form of desaturation, such as thrusters, would be required in the case of a spinning sail.

Repeating the simulations with continuous actuators in place of the magnetorquers,

an initial sizing of the thrusters necessary for momentum unloading of the geocentric

solar sail reaction wheels can be carried out. The desaturation control torque vector is

denoted N̄des = [N̄des N̄des N̄des]
T . For continuous actuators N̄des = sat

Ndes(max)
{ūdes}

where Ndes(max) is the maximum available desaturation control torque in each axis, the

value of which is to be determined. The results are shown in Figures 5.38 and 5.39.
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Figure 5.38: Momentum of reaction wheels using continuous actuators for desaturation
for Manoeuvre SR-C in 3600 s for v = 0.007 85 rad/s.
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Figure 5.39: Desaturation control torques during momentum unloading of reaction
wheels for Manoeuvre SR-C in 3600 s for v = 0.007 85 rad/s.

Therefore for Manoeuvre SR-C, a maximum torque of 0.022 Nm is necessary to de-

saturate the reaction wheels using continuous actuators. Repeating the simulations

in Table 5.3 using continuous actuators for desaturation, it was found that for the

v = 0.0209 rad/s spin rate the reaction wheels cannot be desaturated using continu-

184



ous actuators. In these cases, the control torques required to desaturate the reaction

wheels are of the same order as the control torques supplied by the reaction wheels,

and reference tracking is not possible. For the v = 0.007 85 rad/s spin rate, the con-

tinuous actuators must be capable of providing a thrust between 0.022 − 0.029Nm in

order to keep the wheel momenta within the ±12 Nms limits. Therefore, if thrusters

mounted at the tips of the 40 m square sail were used for desaturation, they would have

a moment arm of 28.3 m and thus would need to be capable of producing a thrust of

1.025× 10−3 N in order to supply the required desaturation control torques. However,

despite their inclusion on IKAROS and their ability to function either as primary or a

secondary actuators, thrusters are impulsive and so can cause the sail film to oscillate

undesirably, while the propellant can contaminate the sail film resulting in a loss of

performance. Therefore it may not be feasible to implement thrusters for desaturation.

For heliocentric spinning solar sails, in addition to swift momentum accumulation, con-

ventional reaction wheels are not feasible due to the large required peak torques of

between 3− 7Nm for the 70 m radius sail. Reaction wheels currently in production are

only capable of producing peak torques of up to 2 Nm [58]. However control moment

gyros (CMGs), gimballed spinning wheels which produce control torques by changing

the direction of the angular momentum vector, are capable of producing larger torques

[32]. For example the four gimbal arrangement on-board the Pleiades High-Resolution

imaging spacecraft could produce an average maximum torque of 20 Nm [32], while

on manned spacecraft control moment gyros have produced torques of up to 200 Nm

[58]. Nevertheless control moment gyros are generally heavier than reaction wheels for

a given momentum storage, and thus have not been suggested as feasible actuators for

a solar sail presumably due to the attendant increase in mass.

These difficulties with conventional actuators have resulted in several new methods of

actuating solar sails being proposed. These alternative methods were described in the

introduction to this chapter, and include control booms, sliding masses, reflectivity

controlled devices (RCDs) and control vanes. These methods seek to control the off-

set between the centre of mass and centre of pressure of the sail. The action of the

SRP force on the sail then generates continuous control torques, without the need for
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propellant. The advantages and disadvantages of these methods, together with the

conventional actuators, are summarised in Table 5.9.

Table 5.9: Advantages and disadvantages of different solar sail actuators.

Actuator Advantages Disadvantages
Reaction Wheels Strong flight heritage, continuous Momentum saturation, heavy,

independent 3-axis control torques lower torque capability than CMGs
CMGs 3-axis control torques, large torques Heavier than RWs, gimbal-lock
Thrusters Strong flight heritage, independent 3-axis Impulsive, mission lifetime

control torques, large torques limited due to propellant consumption
Control Booms Propellantless, continuous control torques Weak flight heritage, boom poses

engineering challenge, cross-coupling
between torques, time-varying inertia

Sliding Masses Propellantless, continuous control torques, Weak flight heritage, actuation
less complex than booms of masses required, cross-coupling

between torques, time-varying inertia
RCDs Propellantless, continuous control torques, Small torques, only small

few mechanical parts, some flight heritage reorientations demonstrated
Control Vanes Propellantless, continuous control Weak flight heritage, actuation of vanes

torques, relatively few mechanical parts required, cross-coupling between torques

In the remainder of this section, the possibility of implementing sliding masses and con-

trol vanes as actuators on a spinning sail will be discussed, together with the feasibility

of using these actuators to track the reference motions detailed in this chapter.

5.6.1 Sliding Masses

The sliding mass method for solar sail actuation changes the distance between the centre

of mass and centre of pressure of the spacecraft by moving controllable masses to a

specific point on the surface of the solar sail. Several configurations have been proposed,

from a simple two-mass system which moves along the sail supporting structure [32], to

a configuration where the entire payload is moved [123]. In this section, the feasibility

of implementing the two-mass method is investigated.

Assuming that there is no offset in the î body axis i.e. r̄m/p = [0 r2m/p r3m/p]
T , the

available torques N̄sm = [N1sm N2sm N3sm]T due to an offset between the centre of

mass and centre of pressure can be found from [32, 123]:

N̄sm = (r2m/pF3SRP − r3m/pF2SRP )̂i+ (r3m/pF1SRP )ĵ − (r2m/pF1SRP )k̂ (5.51)
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From Equation (5.51), the torques in the ĵ and k̂ body axes directions are dependent

solely on the F1SRP component of the SRP force. For the axisymmetric solar sail,

these directions require the largest control torques. Therefore it suffices to find the

maximum value of F1SRP . For the geocentric sail in an 800 km altitude orbit, the

maximum value of F1SRP = 9.351× 10−3 N. Similarly for the heliocentric sail in a

0.24 au altitude orbit, the maximum value of F1SRP = 2.43 N. From Section 5.4, the

geocentric sail requires a maximum torque of 0.1 Nm and the heliocentric sail requires a

maximum torque of 7 Nm. It follows from the maximum solar radiation pressure forces

for the geocentric and heliocentric sails that the centre of mass/centre of pressure offsets

needed to produce these torques are 10.7 m and 2.88 m respectively. Clearly, a much

larger offset is required in the geocentric case as a result of the much weaker solar

radiation pressure force at approximately 1 au in comparison to the heliocentric sail at

0.24 au. The distances and masses required to produce the necessary offset can then be

calculated using the expression

r̄m/p =
msm

ms/c
(0̂i+ yĵ + zk̂) (5.52)

where msm is the mass of the translating mass(es), ms/c is the total mass of the space-

craft (including the translating masses) and y and z are the distances the mass(es) are

required to move along the ĵ and k̂ body axes respectively. From Equation (5.52) it is

clear that in order to produce the required offset, there is a trade-off between the mass

of the translating masses and the distance moved. For the geocentric sail, assuming

that the masses can move along the full length of the sail (±28 m [32]) then a single

mass of 32.5 kg is required to produce an offset of 10.7 m in either the ĵ or k̂ body axes.

This mass is approximately equal to one half of the mass of the spacecraft excluding

the solar sail, and so would likely be infeasible for practical implementation for tracking

of the geometric spin repointing method. Moving a mass of 32.5 kg to the extremities

of the sail would cause a large variation in the inertia of the spacecraft, affecting the

performance of the references. Additionally, the mechanical effort required to move a

mass of that size would pose a considerable engineering challenge. In the case of the
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heliocentric sail the masses involved are more feasible, with a mass of 11.54 kg required

at a distance of ±70 m to produce the necessary 2.88 m offset. However, the sliding

mass method would be difficult to implement on current spinning disk prototypes due

to their lack of spars.

The maximum solar radiation disturbance torques acting on the solar sails were

6.64× 10−4 Nm and 0.61 Nm for the geocentric and heliocentric sails respectively. If the

sliding masses were needed simply to cancel out these disturbance torques, the masses

and distances involved in the method would be greatly reduced. For example for the

geocentric sail the disturbance torques could be cancelled out by a mass of 1 kg at a

distance of 6 m, while the heliocentric disturbances could be negated by a mass of 5 kg

at a distance of 14 m. This is considerably more feasible, and suggests that the sliding

masses could be used as a secondary actuator on a spinning solar sail in order to limit

the effect of the solar disturbance torques. This would decrease the rate of momentum

accumulation for reaction wheels or control moment gyros, and the rate of propellant

consumption for thrusters, making the implementation of these methods more feasible.

5.6.2 Control Vanes

Control vanes are pieces of reflective material mounted at the extremities of the solar

sail structure, which can be articulated to produce control torques due to solar radiation

pressure.

The control torque produced by a single control vane of area Av, situated at a distance

l̄v from the centre of mass, is given by the expression [32]

N̄v = l̄v × ηP (
rau

|| r̄sun ||
)2Av(r̂sun · n̂v)2n̂v (5.53)

where η is the overall thrust coefficient, assumed to be 2 for a perfectly reflecting sail,

P = 4.563× 10−6 N/m2 is again the nominal solar radiation pressure constant at 1 au

from the Sun and n̂v the unit vector of the control vane normal. Assuming that the

sail is equipped with a single control vane at a distance l̄v = [0 0 lv]
T and that the

Sun and vane normal unit vectors are coincident, the torque produced by the vane is
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equal to (2lvP ( rau
||r̄sun||)

2Av)ĵ. Therefore from this the area of control vane necessary to

produce the maximum torques required for the spinning solar sails studied in Section

5.4 can be calculated.

The moment arms lv are assumed to be lv = 28.3 m for the geocentric sail, and lv = 70 m

for the heliocentric sail. In reality these moment arms would be slightly larger as the

control vane centre of pressure would lie beyond the edge of the solar sail. However,

these can be taken as worst case scenario moment arms. This leads to Av = 391.35 m2

for the geocentric sail, and Av = 631.2 m2 for the heliocentric sail. In order to provide

reasonable control authority, a four control vane configuration is generally used [32, 33].

Therefore for the geocentric spinning solar sail, the total control vane area necessary

to produce the maximum required torque would be larger than the proposed total

area of the solar sail given in Table 5.1. This is obviously infeasible and thus this

study suggests that control vanes are not suitable as the primary actuation on-board

a geocentric spinning solar sail. However, for the larger heliocentric sail the control

vane area is 16.4% of the total solar sail area. While this is high in comparison to other

studies into the use of control vanes, such as that carried out by Mettler [124] where the

total control vane area was 4% of the sail area, the necessary control vane area for the

heliocentric case is not likely to be prohibitively high. Nevertheless, the cross-coupling

of the control torques means that control vanes are unlikely to be feasible for reference

tracking for a heliocentric spinning solar sail, even if the maximum torques could be

supplied.

Despite control vanes likely being unsuitable as primary actuators for motion tracking

for a spinning solar sail, they may possibly be used as secondary actuators to alleviate

the effect of the solar disturbance torques. The maximum solar radiation disturbance

torques acting on the solar sails were 6.64× 10−4 Nm and 0.61 Nm for the geocentric

and heliocentric sails respectively. Thus, the vane areas required to counteract these

torques are Av = 2.6 m2 for the geocentric sail, and Av = 55 m2 for the heliocentric

sail. These vane areas are considerably more feasible, and therefore the control vanes

may be of some use as secondary actuators onboard a spinning solar sail to counteract

the disturbance torques and so decrease the load on the primary actuators.
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5.6.3 Discussion of Most Suitable Actuation for Reference Tracking

The preliminary sizing of sliding masses and control vanes for the spinning solar sails

considered in this chapter suggests that these methods cannot be implemented as pri-

mary actuators onboard a geocentric spinning sail. Additionally, while the study sug-

gests that the necessary maximum torques could be feasibly produced for a heliocentric

solar sail at 0.24 au, the cross-coupling between the control torques means independent

3-axis control is not possible with these actuators, which means that reference tracking

may not be possible. Finally, the sliding masses or control vanes may not be able to

move quickly enough to generate the required torques within an appropriate time-scale.

However, while conventional actuators are capable of tracking the references, the dis-

turbance torques due to the centre of mass/centre of pressure offset results in swift

momentum accumulation for momentum exchange devices, and would likely result in

thrusters exhausting their propellant supply more quickly and so limiting the mission

lifetime. While further testing is necessary to determine the most feasible method to

actuate the solar sails in order to track the references described in this chapter, the

results suggest that the most feasible solution would be to supplement a momentum

exchange device such as a control moment gyro with propellantless actuators such as

sliding masses or control vanes. In this way the secondary actuation system could act

to minimise the momentum saturation by limiting the effect of the disturbance torques,

while the primary 3-axis attitude control method could provide the necessary control

authority to reorientate the spinning spacecraft while maintaining centrifugal stiffening.

5.7 Chapter Summary

In this chapter a motion planning method for a spinning spacecraft subject to both

dynamic and kinematic nonholonomic constraints was utilised to plan repointing ma-

noeuvres for a spinning solar sail and nano-spacecraft. The solution of Biggs and Horri

was shown to be a particular solution of the general case, which takes the form of a

Weierstrass elliptic function. However, this function is not suitable for practical motion
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planning, and so the particular case was the focus of a motion planner which produced

reference motions via parametric optimisation. It was shown that the geometric spin

repointing method resulted in low body rates throughout the manoeuvre, and offered

savings over a pure spin benchmark in the majority of cases. However, in some cases

the pure spin references could repoint the spinning sail in a shorter time period, while in

other cases it required lower accumulated torque. In particular tracking of the geomet-

ric spin repointing references with respect to the orbital frame for the geocentric solar

sail did not have any significant benefits over tracking of the pure spin references. This

suggests that the geometric spin repointing references are more suited to tracking with

respect to inertial or near inertial frames. The motion planning method was shown to

be capable of producing constrained slews, with a manoeuvre which lay entirely within

a 68◦ degree cone demonstrated. Additionally, the method was linked to the natural

motion method of Chapter 4 and it was found that the axisymmetric natural motions

are a particular case of the geometric spin repointing motions. Finally, an actuator

study was carried out and sliding masses and control vanes sized for future study into

the most feasible method to actuate a spinning solar sail.
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Chapter 6

Conclusions

The previous chapters focussed on the practical implementation of motion planning

methods which consist of analytical reference motions derived using geometric control

theory. This chapter summarises the contributions of this thesis, and presents sugges-

tions for future areas of research.

6.1 Research Outcomes

This thesis was motivated by the need to determine if motion planning methods based

on geometric control theory were useful for application to real autonomous systems.

To this end, motion planning methods were required which could take into account

nonholonomic constraints, have an inherent optimality and be adaptable to obstacle

avoidance. The Lie group setting of geometric control theory had previously been

shown to be capable of deriving analytical optimal controls for nonholonomic systems.

However, the primary limitation of the method was that it had not previously been

practically applied, and thus the suitability of the controls derived using this mathe-

matical framework when applied to real engineering systems had not been determined.

The main aim of this thesis was to address these limitations by implementing the ana-

lytical equations derived using geometric control theory in rigid body motion planning

in realistic environments.
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This work has furthered this field in a number of ways. Firstly, new optimal controls

were derived in the case of the unit speed wheeled robot, the axisymmetric and asym-

metric small spacecraft and the nonholonomic spinning spacecraft. However, in the case

of the unit speed wheeled robot and nonholonomic spinning spacecraft, these controls

took the form of Jacobi and Weierstrass elliptic functions which were not suitable for

practical implementation.

Despite these controls proving unsuitable for practical motion planning, study of the

optimal controls for a robot capable of rotating and translating at arbitrary speed found

that the Jacobi elliptic functions produce a wide range of motions and have particular

cases including trigonometric and hyperbolic functions. The analytical solution enabled

the reachable sets of the kinematic motion planner for the arbitrary speed robot to be

exactly defined. Following this, a simple obstacle avoidance framework was derived for

the nonholonomic wheeled robot for static circular obstacles in a known environment.

The reachable sets of the arbitrary speed wheeled robot were probed by incrementing

the optimal values of the free parameters output from an initial parametric optimisa-

tion. This produced a range of curves which satisfied the boundary conditions on the

final position of the robot. A curve could then be chosen which avoided the specified

obstacle, as shown in Figure 6.1. The parametric optimisation and obstacle avoid-

ance framework derived for the simple wheeled robot formed the basis of the motion

planning methods for the more complex natural motions and geometric spin repointing

references.

193



Figure 6.1: Alternative smooth trajectories to [Xf Yf ]T = [1 3]m. Several paths
intersect the obstacle (shaded circle), while several avoid it.

The key contribution to knowledge of this thesis was that the natural motion and

geometric spin repointing references, derived in the framework of geometric control

theory, were rigorously tested in simulation. This was the first such rigorous testing

of references generated via geometric control theory, and so provided a link with real

engineering applications. The work included considering actuators limitations and non-

ideal environments which are not part of the geometric control theory framework, and

so had the potential to reduce the effectiveness of the methods. Both methods were

compared to standard benchmark control methods to assess their effectiveness in re-
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pointing rigid body spacecraft.

The natural motion method, novelly derived in this thesis, offered significant savings in

accumulated torque over a quaternion feedback benchmark in all cases tested. These

results are summarised in Table 6.1.

Table 6.1: Summary of main results of natural motion simulations for 120 s manoeuvres.

Manoeuvre IN
Q.F. (Nms) IN

N.M (Nms) % Saving

Axisymmetric Spacecraft

NM-A 0.0068 0.0025 63.2
NM-B 0.0103 0.0014 86.4
NM-C 0.0086 0.0013 84.9
NM-D 0.0146 0.003 79.5
NM-E 0.0046 0.0018 60.9

Asymmetric Spacecraft

NM-F 0.008 0.0024 70
NM-G 0.0083 0.0016 80.7
NM-H 0.0076 0.0033 56.6
NM-I 0.0115 0.0022 80.9
NM-J 0.0119 0.0043 63.9

However, only the axisymmetric references have potential for practical use at this time,

as the asymmetric references include an incomplete elliptic integral of the third kind

which requires a prohibitively long time to compute. In contrast, the axisymmetric

references were more computationally efficient and could be used in a quasi open-loop,

“bang-off-bang” manner in low disturbance environments, to save on computation and

control effort. In addition, a study into the effect of inertia variations on the perfor-

mance of the axisymmetric references found that a saving in accumulated torque could

be achieved over quaternion feedback control even when the axisymmetric natural mo-

tion references were applied to an asymmetric spacecraft. The method of probing the

reachable sets to create constrained slews, first derived for the nonholonomic wheeled

robot, was adapted and applied to enable constrained repointing manoeuvres to be

generated with respect to forbidden cones in the configuration space. This was applied

to the natural motion method to generate a manoeuvre which avoided the forbidden
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cone generated by the Moon. Therefore the axisymmetric natural motion references,

derived in the framework of geometric control theory, have shown some promise for use

in practical motion planning.

The geometric spin repointing references, which had been derived prior to this work but

had not been fully tested in simulation, were less successful when practically applied to

a spinning solar sail. In this case the benchmark method of tracking pure spin references

was more favourable in a small number of cases, where it was capable of repointing the

solar sail in a shorter time and with lower accumulated torque. However, the geometric

spin repointing method did offer savings in accumulated torque and lower body rates in

a majority of cases simulated. Tracking for a heliocentric solar sail proved more success-

ful than for a geocentric sail, suggesting that the geometric spin repointing method is

less suitable for tracking references in the rotating orbital frame when the orbital com-

ponent of the angular velocity is significant. These results are summarised in Table 6.2.

Table 6.2: Summary of main results of geometric spin repointing simulations. Tracking
with respect to orbital frame.

Geocentric Sail

Manoeuvre v (rad/s) Time (s) IN
P.S. (Nms) IN

S.R. (Nms) % Saving

SR-A 0.0209 6100 254 349 -27.2
0.00785 2000 94 72 23.4

SR-B 0.0209 3000 330 211 36.1
0.00785 1200 98.5 NA -100

SR-C 0.0209 2500 286.2 263 8.1
0.00785 1250 128 NA -100

Heliocentric Sail

SR-D 0.0209 4000 3× 104 1.28× 104 57.3
0.00785 4500 1.23× 104 4.8× 103 61

SR-E 0.0209 8000 2.7× 104 6.57× 103 75.7
0.00785 2500 5.4× 103 2.72× 103 49.6

SR-F 0.0209 2000 4.72× 103 4.24× 103 10.2
0.00785 1000 1.55× 103 NA -100

SR-G 0.0209 8000 3.81× 104 6.8× 103 82.2
0.00785 4000 4.9× 103 7.43× 103 -34.1

SR-H 0.0209 5000 2× 104 1.05× 104 47.5
0.00785 4000 1.29× 104 5.07× 103 60.7
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The % saving is defined as (IN
P.S. − IN

S.R)/IN
P.S. × 100 for the cases when the

geometric spin repointing method requires lower accumulated torque, and (IN
S.R. −

IN
P.S)/IN

S.R. × 100 otherwise. The cases where the pure spin references require lower

accumulated torque are marked as a negative saving.

Additionally, the geometric spin repointing motion planner was shown to be capable

of producing constrained slews. A manoeuvre which lay entirely within a cone in the

configuration space generated by the Sun was demonstrated. Tracking of the geometric

spin repointing references for the nano-spacecraft of Chapter 4 found that the geometric

spin repointing method offered savings in accumulated torque over the pure spin and

quaternion feedback control benchmarks in all cases simulated. Comparison with the

natural motion references found that the axisymmetric natural motion references are a

subset of the geometric spin repointing references. Thus the geometric spin repointing

references which require larger accumulated torque are likely to be far from the natural

motion for the manoeuvre. Conversely, the lowest accumulated torque manoeuvres are

achieved when the manoeuvre is close to the natural motion of the spacecraft.

6.2 Limitations and Future Work

Based on the outcomes of the thesis presented above, in this section some suggestions

are made for extensions of the work in this thesis.

The kinematic motion planner for the simple wheeled robots described in Chapter 3

was utilised as a means of illustrating the mechanisms of geometric control theory, and

formulating the parametric optimisation and obstacle avoidance frameworks for the

proceeding chapters. As a result, the robot motion planner was not practically applied.

Therefore future work could involve the implementation of a concatenation method to

feasibly piece together the curves of the robotic motion planner to give a more complete

motion planning algorithm. This would involve amending the motion planning method

to have non-zero initial speeds, and developing an algorithm to choose the paths most

suited to being pieced together. This would lead to the possibility of extending the

simple obstacle avoidance algorithm to dynamic and unknown environments. If these
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goals could be achieved, the motion planning algorithm could be implemented on-board

a small wheeled robot and used to plan motions. This would enable the practicality of

the cost function to be assessed, together with the feasibility of tracking the motions

generated by the planner using real actuators.

In the natural motion motion planning method, detailed in Chapter 4, the spacecraft

sensors and the internal dynamics of the actuators were not modelled. In reality the

reaction wheels are subject to friction which affects their operating efficiency, while

sensor readings are subject to noise and other errors. These factors could influence

the effectiveness of the natural motion method. Additionally, the processor used to

generate the references was much faster than that of a spacecraft and so the feasibility

of implementing the natural motion planning method on-board a realistic spacecraft

processor has not been determined. To address these issues, the method could be tested

on an attitude control testbed, such as that which is currently under construction at

the University of Strathclyde. This is shown in Figure 6.2.

Figure 6.2: Exterior of Cubesat component of testbed (Image Credit: Clyde Space
Ltd).

The testbed consists of a 1U-Cubesat spacecraft attached to an air bearing which en-

ables the spacecraft to rotate freely within (to be determined) bounds, providing a close
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approximation of the natural environment of the spacecraft. The natural motion plan-

ning method would be implemented on a 30 MHz processor, with an exact replica of the

software flown on UKube-1, which would enable the performance of the method in the

face of reduced computation, errors due to inaccurate sensing and actuator constraints

to be assessed. Allied to this would be finding a means to improve the computational

efficiency of the asymmetric method, as at present the savings in accumulated torque

are greatly outweighed by the time taken to generate the references due to the presence

of an incomplete elliptic integral of the third kind.

Additionally, as the quaternion feedback controller causes the quaternions to evolve in

broadly sigmoidal curves, the possibility of generating and tracking sigmoidal, rather

than constant, quaternion references between the initial and final attitudes could be

investigated to determine if this results in a saving in control effort when compared

to the natural motion method. Finally, in order to rank the natural motion method

alongside other attitude control and guidance methods, the method could be compared

to other non-optimal guidance methods such as the artificial potential function method

or pseudospectral optimal control methods. The aim of these comparisons would be

to determine whether the savings in accumulated torque offered by the natural motion

method justify the increased computation required to generate the references. Addi-

tionally, the comparison to artificial potential functions and pseudospectral methods

would enable more rigorous testing of the derived algorithm for generating constrained

slews to be carried out. At present the method relies heavily on heuristics and as such

is not suitable for fast generation of constrained attitude slew reference tracks.

The assumption that the solar sail is a rigid body which was made in Chapter 5 is

commonly found in solar sail attitude control, but nevertheless requires further testing

to determine the validity of making such as assumption. One such means may be to

utilise the model recently developed by JAXA [127] for their spinning solar sail, and

compare the results with the simple rigid body model utilised in this thesis. Further-

more, detailed actuator modelling is necessary to determine the most suitable method,

if any exists, for implementing the motion planning method on a spinning solar sail.

In a similar manner to the motion planning method utilised in Chapter 4, the compu-
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tational efficiency of the method could be assessed via implementation on the attitude

control testbed under development at the University of Strathclyde. A preliminary

study into the feasibility of applying the natural motion and geometric spin repointing

references to motion planning on the testbed found that current nano-spacecraft actua-

tor technology using magnetic torquers was not sufficient to track references. Therefore

the development of nano-spacecraft reaction wheels would enable the real benefits of

the geometric motion planning planning methods studied in this thesis to be assessed

on actual spacecraft hardware and software.
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