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Abstract 

Structural health monitoring (SHM) is a process aimed at providing accurate and real-

time information concerning structural condition and performance. SHM is a very 

important discipline in the areas of civil, aerospace, and marine engineering because 

the utilization of SHM allows us to increase both human and environmental safety in 

conjunction with reduction in direct economic losses. A key component of the SHM 

process is real-time reconstruction of a structure’s three-dimensional displacement and 

stress fields using a network of in situ strain sensors and measured strains, which is 

commonly referred to as “shape and stress sensing”. The inverse finite element method 

(iFEM) is a revolutionary shape- and stress-sensing methodology shown to be fast, 

accurate, and robust for usage as a part of SHM systems. In the present thesis, the 

general framework of iFEM, i.e., least-squares variational principle, is adopted to 

develop unconventional and more effective shape- and stress-sensing techniques, with 

focus on general engineering structures and marine structures in particular. Firstly, the 

original iFEM formulation for plate and shell structures, developed on the basis of 

first-order shear deformation theory, is summarized. Then, this formulation is utilized 

to develop a new four-node quadrilateral inverse-shell element, iQS4, which further 

extends the practical utility of iFEM for shape sensing of large-scale structures 

including marine structures. Various numerical examples are presented and it is 

demonstrated that the iQS4 formulation is robust with respect to the membrane- and 

shear-locking phenomena. Moreover, the iFEM/iQS4 methodology is applied to 

various types of marine structures including a stiffened plate, a chemical tanker, and a 

container ship. To simulate experimentally measured strains and to establish reference 

displacements, a coupled hydrodynamic and high-fidelity finite element analyses are 

performed. Utilizing the simulated strain-sensor strains, iFEM analysis of each marine 

structure is performed. As a result, the optimum locations of the on-board strain 

sensors are determined for each marine structure. Furthermore, a novel isogeometric 

Kirchhoff–Love inverse-shell element (iKLS) for more accurate shape-sensing 

analysis of curved/complex shell structures is presented. The new formulation employs 

the iFEM as a general framework and the non-uniform rational B-splines (NURBS) as 

the discretization technology for both structural geometry and displacement domain. 

Therefore, this new formulation couples the concept of isogeometric analysis with 
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iFEM methodology and creates an innovative “isogeometric iFEM formulation”. The 

superior shape-sensing capability of the isogeometric iFEM formulation (i.e., iKLS) is 

demonstrated for curved shell structures when using low-fidelity discretizations with 

few strain sensors. Finally, an improved iFEM formulation for dealing with shape and 

stress sensing of multilayered composite and sandwich plate/shell structures is 

described. The present iFEM formulation is based upon the minimization of a 

weighted-least-squares functional that uses the complete set of strain measures of 

refined zigzag theory (RZT). A new three-node inverse-shell element, i3-RZT, is 

developed based on the enhanced iFEM formulation. Various validation and 

demonstration problems are solved to examine the precision of the iFEM/i3-RZT 

methodology. The numerical results demonstrate the superior accuracy and robustness 

of the i3-RZT element for performing accurate shape and stress sensing of complex 

composite structures. In conclusion, all proposed iFEM frameworks are 

computationally efficient, accurate, and powerful, hence they can be helpful for shape 

sensing and SHM of general engineering structures, especially of marine structures. 
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Chapter 1  
 

General Introduction 

 

1.1 Introduction  

The main aim of this chapter is to describe the background, motivation, and objectives 

of the research contained in this PhD thesis. The remainder of the chapter is divided 

into four sections. In the first part (Section 1.2), some basic information about 

structural health monitoring (SHM) is given. Then, the need of SHM systems for 

marine structures is discussed in detail. Next, the available methods that can be used 

as part of SHM systems are briefly described, the limitations of these techniques are 

highlighted, and the need for further research on SHM systems is explained. Finally, 

the inverse finite element method (iFEM), which was originally introduced by Tessler 

and Spangler (2003, 2005) at the National Aeronautics and Space Administration 

(NASA) Langley Research Center, is described, with the main benefits of using the 

iFEM methodology emphasized regarding the motivation of the research. In the second 

part (Section 1.3), the main objectives of this PhD research study are highlighted, while 

in the third part (Section 1.4), the structure of the thesis is presented. In the last part 

(Section 1.5), concluding remarks on the information contained in this chapter are 

given. 
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1.2 Background and Motivation 

Structural health monitoring (SHM) is an interdisciplinary procedure that (1) 

integrates sensing systems into a structure, (2) processes the data collected from the 

sensing systems in real time, and (3) provides decisive real-time information from the 

structure about its global and/or local structural state. The main objective of SHM is 

to detect unusual structural behaviors to pinpoint failures or an unhealthy structural 

condition. The exercise of SHM serves to increase human and environmental safety as 

well as reduce maintenance costs. As a consequence, the installation of an SHM 

system to an engineering structure is essential for detailed structural management of a 

structure, including inspection, maintenance, and repair plans (Glisic and Inaudi, 

2007). 

A catastrophic failure or sinking of ships can result in crucial financial losses, human 

life losses, and pollution of marine environment. A harsh marine environment together 

with strong weather conditions is very likely to cause structural damages on ship 

structures because ships are exposed to long-term cyclic loadings from continuous sea 

waves as well as short-term extreme loadings such as rogue waves, rainstorms, strong 

gales, and seaquakes. Moreover, contact between sea water and the material of ships 

(high-strength steel, in most cases) causes fast corrosion, erosion, and hence thickness 

reduction. This phenomenon triggers the initiation of damage growth and increases the 

size of existing damage. Hence, a catastrophic failure of ships might be unavoidable 

without an appropriate on-site assessment of structural integrity. Furthermore, the 

number of new vessels is increasing day to day such that new structural designs, 

construction techniques, and materials are progressively being used in the shipbuilding 

industry. As a result, it is necessary to increase knowledge about the on-site structural 

performance not only of traditionally designed ships but also newly designed ships. 

SHM systems can be a potential solution to prevent the aforementioned serious 

damage cases; achieve detailed structural management, including inspection and 

maintenance plans; and allow the marine industry to increase both human and 

environmental safety as well as reduce maintenance costs. 

A key technology of the SHM process is real-time reconstruction of a structure’s three-

dimensional displacement and stress fields using a network of in situ strain sensors 
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and measured strains, which is commonly referred to as “shape and stress sensing” or 

“displacement and stress monitoring”. A well-suited algorithm for performing shape 

and stress sensing of a structure should have the following characteristics: (1) it should 

be general enough to take complex structural topologies and boundary conditions into 

account; (2) robust, stable, and accurate under a wide range of loading conditions, 

material systems, and inherent errors in the strain measurements; and finally, (3) 

sufficiently fast for real-time applications (Gherlone et al., 2012).  

Tikhonov and Arsenin (1977) introduced a regularization term that guarantees a 

confident smoothness degree to solve this inverse problem (shape sensing), and most 

inverse methods use some type of Tikhonov regularization. For instance, Maniatty et 

al. (1989) and Maniatty and Zabaras (1989) utilized regularization techniques to solve 

inverse elastic and elastoviscoplastic problems, respectively. Moreover, Schnur and 

Zabaras (1990) calculated surface tractions on a body from internal displacements 

measured at discrete sensor locations. To solve this inverse problem, they minimized 

the difference between the calculated and measured displacements by employing 

spatial regularization, which stabilizes the minimization process. Maniatty and 

Zabaras (1994) also applied the spatial regularization technique in collaboration with 

a statistical approach discussed by Tarantola (1987). The authors utilized Tarantola’s 

statistical theory to estimate the errors in the solution of an inverse problem. However, 

this methodology requires iterations and may therefore lead to convergence difficulties 

and high computational costs, especially for complex three-dimensional structures. 

Apart from the inverse methods that use some type of Tikhonov regularization, a 

variety of shape-sensing algorithms have been proposed to solve real-time 

reconstruction of displacements in beam and/or plate structures subjected to bending 

loads (e.g., Pisoni et al., 1995; Liu and Lin, 1996; Davis et al., 1996; Jones et al., 1998; 

Bogert et al., 2003; Kim and Cho, 2004; Ko et al., 2009; Nishio et al., 2010; 

Chierichetti, 2014). Besides, plenty of researchers have considered hull structural 

monitoring as an important case study and have thus proposed different types of SHM 

systems for marine structures (e.g., Kageyama et al., 1998; Wang et al., 2001; 

Torkildsen et al., 2005; Van der Cammen, 2008; Murawski et al., 2012; Phelps and 

Morris, 2013). For more information, see Chapter 2. 
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Most of the inverse methods or SHM systems (i.e., used for marine structures) 

mentioned in the previous paragraph do not take the complexity of boundary 

conditions and structural topology into account. They also require satisfactorily precise 

loading information that is difficult to obtain in real-time conditions outside the 

laboratory environment. Moreover, some of these methods require material 

information about the structure. Furthermore, many of these methods are restricted to 

static loads and linear displacements and cannot be adapted to dynamic loads and 

nonlinear displacements, as a consequence of their inherent assumptions. Finally, most 

of these inverse methods are not fast enough for real-time applications of a viable SHM 

system due to their time-consuming analysis. Hence, they are not generally suited for 

use in on-board SHM algorithms.  

In addition, none of the existing hull structural monitoring systems recommended by 

class societies and researchers (vid. Chapter 2) can be used to monitor three-

dimensional full-field displacements and stresses of a marine vessel. In fact, these 

current SHM systems only monitor several points on the structure such as two points 

on the weather deck amidships. The questions which remain unanswered are how 

much reliable information these SHM systems provide to the master/operator of the 

ship, in terms of the ships’ global structural health, and if any alternative solutions 

exist. These questions can be answered as follows: (1) as a result of the complex 

structural topology of marine structures and the dynamic loads of waves and winds, 

due to the complexity and statistical features of oceanographic phenomena, global 

structural health monitoring of a marine structure may be far more challenging than 

the monitoring offered by the existing hull structural monitoring systems, and (2) the 

possible solution to this challenge may be achieved by an SHM algorithm that can 

provide real-time monitoring of the three-dimensional full-field displacements and 

stresses of a marine structure.  

The inverse finite element method (iFEM) is a state-of-the-art methodology originally 

introduced by Tessler and Spangler (2003, 2005) for real-time reconstruction of three-

dimensional full-field structural displacements, strains, and stresses of structures that 

are instrumented by strain sensors. The general mathematical concept of the iFEM 

methodology uses a least-squares variational principle that minimizes the sum of 

squared errors between the analytical and experimental values of strain measures. It is 
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worth noting that this variational formulation allows the entire structural geometry to 

be discretized by suitable inverse finite elements (e.g., beam, frame, plate, shell and 

solid elements) in which measured strains can be adapted to element strains in the 

least-squares sense. 

Tessler and Spangler (2003, 2005) developed the mathematical concept mentioned 

above for shape sensing of plate and shell structures. The formulation was based on 

minimization of a least-squares functional that uses the complete set of strain measures 

of first-order shear deformation theory (FSDT), including the membrane strain 

measures, bending curvatures, and transverse-shear strain measures. Remarkably, the 

minimization process results in a system of linear algebraic equations which can be 

solved to determine unknown displacements at any real time. Once the structural 

deformed shape is reconstructed, the full-field strains can be calculated by utilizing the 

displacements. Then, the three-dimensional stress state of the structure can be 

evaluated from the structure’s full-field strains and material properties. Finally, the 

three-dimensional stresses can be adapted to an equivalent stress by means of an 

appropriate failure criterion (e.g., von Mises yield criterion), which can enable real-

time damage predictions. 

Unlike the other inverse methods, the iFEM methodology possesses the 

aforementioned characteristics (i.e., described in the third paragraph) required for a 

powerful SHM algorithm. For example, the main advantage of the iFEM algorithm is 

that the static and dynamic behavior of any structure can be obtained without prior 

knowledge of its loading or material, since only the strain-displacement relationship is 

used in the formulation (Gherlone et al., 2012). Moreover, the iFEM methodology has 

general applicability to any type of structural topology and boundary condition 

because using inverse beam, frame, plate, shell, and solid finite elements can enable 

an effective discretization of the physical domain. Furthermore, Gherlone et al. (2014) 

demonstrated that the iFEM framework is precise, powerful, and sufficiently fast for 

real-time applications. Recently, a U.S. patent (US 8,515,675 B2) was obtained for a 

system that performs shape sensing of a downhole structure using the iFEM 

methodology (Stoesz, 2013). All of these beneficial aspects of the iFEM methodology 

motivate this research study, with the aim to broaden the horizons of the iFEM 
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technology for SHM of general engineering structures and marine structures in 

particular.  

1.3 Objectives of the Research 

The research described in this thesis has four main objectives: 

1. Development of a novel four-node quadrilateral inverse-shell element (iQS4) 

based on iFEM methodology that uses a weighted-least-squares functional. This 

new element is developed using the kinematic assumptions of FSDT; thus, its 

application ranges from thin to moderately thick shell structures. Moreover, the 

iQS4 element possesses six degrees of freedom (DOF) at each node, including a 

hierarchical drilling rotation DOF such that shape-sensing analysis of large-scale 

structures (i.e., marine structures) can be performed simply based on the 

iFEM/iQS4 methodology. To the best of the author’s knowledge, there is currently 

no study available in the literature concerning a four-node inverse-shell element 

that provides a detailed investigation and description of the mathematical 

formulation. This goal is achieved in Kefal, Oterkus, et al. (2016) as part of the 

research described in this thesis (Chapter 3). 

2. Creation of iQS4 models to investigate displacement and stress monitoring of 

marine structures based on iFEM methodology. As explained in the previous 

objective, the iQS4 element is practically useful for large-scale structures; 

therefore, this framework is used as starting point for the application of iFEM to 

marine structures described in Chapter 4. To the best of the author’s knowledge, 

this is the first attempt to apply iFEM methodology to shape and stress sensing of 

marine structures. The results of this study have been published in Kefal and 

Oterkus (2015, 2016a, 2016b).  

3. Development of an isogeometric Kirchhoff–Love inverse-shell element (iKLS) for 

shape-sensing analysis of curved/complex shell structures (Chapter 5). The iKLS 

element formulation is based on a weighted-least-squares functional that is 

discretized using high-order continuous ( , 0)pC p   non-uniform rational B-

splines (NURBS); thus, the formulation couples the concept of isogeometric 

analysis (Hughes et al., 2005) with iFEM methodology and creates an innovative 

“isogeometric iFEM formulation”. The overall strategy presented in Chapter 5 is 
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an extended and improved version of the study published in Kefal and Oterkus 

(2017), and to the best of the author’s knowledge, this is the first time that an 

isogeometric iFEM formulation has become available in the literature. 

4. Development of (1) an enhanced iFEM formulation and (2) a three-node inverse-

shell element dealing with shape and stress sensing of multilayered composite and 

sandwich plate/shell structures possessing a high degree of anisotropy and 

heterogeneity (Chapter 6). The improved iFEM formulation is based upon a 

weighted-least-squares functional that uses a complete set of strain measures of 

refined zigzag theory or RZT (Tessler et al., 2009, 2010). These strain measures 

includes membrane, bending, zigzag, and full transverse-shear strain measures. To 

the best of the author’s knowledge, no iFEM formulation takes into account all 

strain measures of the RZT and implements an inverse-shell element (i.e., i3-RZT) 

for shape and stress sensing of composite shell structures. These goals are 

accomplished in Kefal, Tessler, et al. (2016) as part of the research described in 

this thesis (Chapter 6). 

In conclusion, the ultimate goal of this research is to produce unconventional and more 

effective iFEM frameworks that can be helpful in SHM of general engineering 

structures and marine structures in particular. 

1.4 Structure of the Thesis 

This thesis is constituted by the following seven chapters: 

 Chapter 1. This chapter provides basic information about SHM, its impact on 

marine structures, the current approaches (e.g., inverse methods, hull structural 

monitoring systems) used by researchers to perform shape sensing analysis as a 

part of SHM systems, and the limitations of the approaches which justify the need 

for further research in this field. In this manner, the benefits of iFEM methodology 

(i.e., the state-of-the-art methodology used in this thesis) are highlighted, and then 

the objectives of research and the organization of this thesis are described. 

 Chapter 2. This chapter provides a historical overview and the advantages and 

limitations of the most popular numerical techniques used up to now to solve the 

shape-sensing problem of beam and plate structures. Moreover, detailed 

background information (including class societies’ recommendations) about the 
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current hull structural monitoring systems used on-board ship structures are 

investigated in this chapter. Furthermore, the limitations of these techniques are 

used to justify the iFEM methodology. Finally, numerical and experimental studies 

performed using the iFEM methodology are discussed in detail and the current 

research is put into perspective. 

 Chapter 3. This chapter presents the novel iQS4/iFEM methodology, which is an 

inverse-shell element formulation suitable for shape and stress sensing of thin and 

moderately thick plate/shell structures. As a final remark in this chapter, the 

practical applicability of the iQS4/iFEM methodology for more complex structures 

is demonstrated by performing various case studies, including a study in which the 

strain measurements involve up to ten percent random noise. 

 Chapter 4. This chapter describes the feasibility and applicability of the iFEM 

methodology for displacement and stress monitoring of marine structures by 

performing various iFEM analyses of typical marine structures that are modelled 

with the iQS4 element (presented in Chapter 3). As a result of the iFEM analysis 

of these structures, the optimum locations of the on-board strain sensors are 

determined and clearly demonstrated using various iQS4 models.  

 Chapter 5. This chapter presents a novel isogeometric iFEM methodology which 

couples the NURBS-based isogeometric analysis with the iFEM methodology. For 

this purpose, the mathematical formulation of the iKLS element, which is a 

rotation-free inverse-shell element suitable for shape sensing of complex/curved 

thin shell structures, is developed and presented in this chapter. As a final remark 

in this chapter, the superior capabilities of the iKLS element are demonstrated by 

various curved shell problems, including a Scordelis–Lo roof, a pinched 

hemisphere, and a partly clamped hyperbolic paraboloid.  

 Chapter 6. This chapter describes an improved RZT-based iFEM formulation for 

performing accurate shape and stress sensing analysis of multilayered composite 

and sandwich plates or flat shells. Additionally, this chapter presents the 

mathematical formulation of the new i3-RZT element, which is applicable to thin 

and moderately thick composite/sandwich shell structures and developed based on 

the presented iFEM methodology. As a concluding remark of this chapter, the 

theoretical foundation of the current formulation is quantitatively assessed, and the 



9 
 

predictive capabilities of the i3-RZT element are demonstrated by analyzing two 

benchmark problems: (1) laminates with different laminate stacking sequences 

(i.e., uniaxial, cross-ply, and angle-ply) and (2) a wedge structure with a hole near 

one of the clamped ends. 

 Chapter 7. This chapter reviews the research objectives, summarizes the major 

findings, highlights the novelty and contribution of this research study to the field, 

discusses the gaps and the recommended future work, and closes with final 

remarks. 

1.5 Conclusion  

Vessels are operated under challenging conditions because the marine environment 

can cause structural failure due to extreme or cyclic loadings, corrosion, and erosion. 

Structural failure may lead to major accidents that may result in crew or passenger life 

loses, pollution of the marine environment, and very expensive maintenance/repair 

costs. Structural health monitoring (SHM) is a multidisciplinary technology area that 

addresses these problems through providing reliable real-time information from a 

structure about its global or local structural condition by integrating sensing systems 

into the structure. A fundamental technology for the SHM procedure is dynamic 

tracking of a structure’s three-dimensional displacement and stress fields utilizing a 

network of in situ strain sensors and measured strains, generally known as shape and 

stress sensing. Many different inverse algorithms have been proposed for shape and 

stress sensing, and researchers and industry have developed various types of hull 

structural monitoring systems. However, SHM of marine structures is more 

complicated than the capabilities proposed by those inverse algorithms and monitoring 

systems can account for, as a result of their inherent limitations; further research in 

this field is therefore needed. The inverse finite element method (iFEM) is a 

revolutionary technology that possesses all necessary features required for a robust 

shape and stress sensing algorithm and can be utilized as a part of SHM systems. In 

this research study, the iFEM methodology is therefore used to overcome the major 

shortcomings of the currently available approaches and systems. This thesis is 

constituted of seven chapters. The four objectives of this research study are (1) the 

development of a robust four-node inverse-shell element for shape sensing of large-
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scale structures, (2) application of the iFEM methodology to SHM of marine 

structures, (3) creation of a novel isogeometric inverse-shell element for shape sensing 

of complex/curved shell structures, and (4) development of an RZT-based inverse-

shell element for shape sensing of multilayered composite and sandwich plates/shells. 

The ultimate goal is to produce original and superior iFEM frameworks that can be 

used as guidelines for SHM of general engineering structures and marine structures in 

particular. 
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Chapter 2 
 

Literature Review 
 

2.1 Introduction  

The scope of this chapter is to summarize the literature review undertaken to realize 

this work. As mentioned earlier in Chapter 1, the main focus of this research study is 

to introduce novel iFEM frameworks that can be useful for SHM of marine structures. 

The main motivations of this work are threefold: (1) the limitations of the currently 

available numerical methods used for shape sensing, (2) the shortcomings of the 

available SHM systems for marine structures, and (3) the beneficial aspects of the 

iFEM methodology, which make the iFEM a robust shape-sensing algorithm. 

Therefore, in the remainder of this chapter, (1) an extensive historical overview of the 

most popular numerical methods (inverse algorithms) proposed for shape sensing is 

provided in Section 2.2, (2) the literature concerning SHM systems of marine 

structures is reviewed in Section 2.3, and (3) all of the numerical and experimental 

studies developed based on the iFEM methodology are historically investigated in 

Section 2.4. In particular, the advantages and disadvantages of each study being 

reviewed are highlighted. Moreover, the historical connections among these studies 

are established and emphasized in the following sections. Finally, the concluding 

remarks of this chapter are provided in Section 2.5. 
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2.2 Numerical Methods for Shape Sensing 

Shape and stress sensing is the fundamental technology of the SHM process. Many 

shape-sensing studies have been performed to solve the bending problem of a beam. 

To begin, Pisoni et al. (1995) developed a modal approach for the real-time 

reconstruction of the structurally deformed shape of a vibrating body. They used 

vibration mode shapes of the body and experimental strain measurements (e.g., strain 

gauge readings) to construct the displacement-strain relationship. In other words, the 

displacement field was expressed in terms of displacement and strain mode shapes as 

well as experimental strain signals. They verified the effectiveness of the proposed 

modal methodology for a clamped end beam using just two strain gauges. Similar 

modal-based approaches were employed for shape sensing of beam structures in a 

series of works conducted by Li and Ulsoy (1999), Kang et al. (2007), and Kim et al. 

(2011).  

In particular, Li and Ulsoy (1999) analytically calculated the mode shapes of a 

cantilever beam and subsequently used them together with strain gauge measurements 

to obtain high-precision vibration measurements of the beam. Besides, Kang et al. 

(2007) reconstructed the response of a clamped end beam, which was subjected to 

dynamic excitation, from strain signals obtained from FBG strain sensors. Similarly, 

Kim et al. (2011) presented shape estimation of rotating beam structures, e.g., 

helicopter rotors and wind turbines, using the modal approach and FBG sensors. Both 

Kang et al. (2007) and Kim et al. (2011) performed a priori FEM analysis to establish 

the displacement and strain mode shapes for constructing a displacement-strain 

transformation matrix. The main disadvantage of using these modal approaches is that 

the number of estimated mode shapes is only restricted to the number of strain sensors 

placed on the beam, requiring more sensors to estimate the vibration or deformed 

shapes at higher frequency excitation (Kang et al., 2007). 

In addition, Liu and Lin (1996) reconstructed the flexural rigidity of a beam by 

minimizing the error norm of equilibrium equations derived from a finite element 

formulation of the beam. They expressed the equilibrium equations in terms of the 

longitudinal strains of the beam elements; consequently, the element strains measured 

in the structural tests simply identified the element properties. However, their approach 
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requires cumbersome modifications in the final equations to avoid singular solutions, 

showing that the complex boundary conditions may create an ill-posed problem. 

Moreover, Davis et al. (1996) regenerated a simple static-beam response from a set of 

discrete strain data obtained from a fiber Bragg grating (FBG) strain sensor. For this 

purpose, they used optimized trial functions that satisfy the essential boundary 

conditions of the beam, i.e., zero rotation and displacement at the clamped end. 

Moreover, they employed weighting factors for each of the trial strain functions, which 

permit a linear combination of weighted trial functions to match the measured strain. 

However, their approach requires many trial functions and strain sensors when more 

complicated deformations are predicted.  

Besides, Todd and Vohra (1999) fitted experimentally measured strains into an a priori 

set of global and piece-wise continuous basis functions and proper weights. Then, they 

evaluated the displacement field of the beam by utilizing strain-displacement 

relationships. In contrast to Davis et al. (1996), who used classical beam theory, they 

showed how shear effects can be incorporated with the reconstruction of transverse 

displacements without requiring an independent measure of the shear strain.  

Furthermore, based on classical beam theory, Kim and Cho (2004) and Ko et al. (2009) 

integrated discretely measured strains to calculate the continuous beam deflection. 

Kim and Cho (2004) performed regression analysis on experimental strain data to 

obtain a continuous strain curvature function that leads to an evaluation of a beam’s 

deformed shape. Ko et al. (2009) computed the deflection and cross-section twist of 

an aircraft wing using a load-independent method that approximates the beam 

curvature with piece-wise polynomials. Kim and Cho (2004) used FBG strain sensors 

to collect the experimental/actual strain data, whereas Ko et al. (2009) performed high-

fidelity FEM analysis of the wing to simulate strain sensors. Then, Derkevorkian et al. 

(2013) experimentally investigated the accuracy of the shape-estimation methodology 

proposed by Ko et al. (2009) through an experimental setup with an aluminum wing-

like swept-plate model. The authors also presented a comparison study between Ko et 

al.’s methodology and the classical modal-based estimation approach that uses the 

structure’s mode shapes structure to transform the measured strains into 
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displacements. The advantages and disadvantages of each method were discussed well 

in this comparison study. 

Recently, Glaser et al. (2012) performed shape sensing of a beam using a method based 

upon a spline technique in which spline coefficients are estimated using continuity 

conditions, boundary conditions, and measured curvature estimates. They defined the 

kinematics of the beam model based on Euler–Bernoulli beam hypotheses and 

estimated the measured curvatures from strain readings of strain gauges. However, the 

applicability of their method was only shown for a simply supported beam setup. 

More recently, Chierichetti (2014) developed an iterative approach named the load 

confluence algorithm (LCA) to reconstruct the load and response of a complete 

structure based on modal decomposition of the structure’s finite element model. For 

this purpose, the algorithm is capable of utilizing different types of experimental 

measurements such as strains, displacements, velocities, and accelerations in the 

formulation. Based on the LCA algorithm, the author reconstructed the dynamic 

response of two beams connected with a nonlinear spring using the experimental 

measurements obtained from several locations. However, the LCA method requires a 

numerical estimation of a loading case that corresponds to equivalent external loads 

applied to the system before the regeneration of the displacement field. 

In addition to the studies concerning the shape sensing of beam-type structures, several 

authors have considered the real-time monitoring of plate structures. For instance, 

apart from Pisoni et al. (1995), Foss and Haugse (1995) also studied a modal method 

which employs the deformation and strain mode shapes of a plate together with the 

measured surface strains to regenerate the deformed shape of the plate. Foss and 

Haugse (1995) experimentally calculated the mode shapes of the plate using strain 

gauges and accelerometers. Although this computation may be time consuming, it has 

the advantage of not requiring any knowledge of material properties. Moreover, Bogert 

et al. (2003) and Rapp et al. (2009) adopted a modal-based inverse algorithm for shape 

sensing of a cantilever plate. Bogert et al. (2003) used strain rosettes to obtain the 

measured surface strains, whereas Rapp et al. (2009) used a plate specimen 

instrumented with FBG sensors. Both authors generated vibration mode shapes of the 

plate through high-fidelity FEM analysis. Although the numerically and 
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experimentally obtained results of their plate specimens agree well, this approach 

requires the use of a large number of natural vibration modes. Therefore, a 

computationally expensive eigenvalue analysis must be performed, especially if the 

method is implemented using a high-fidelity mesh.  

Additionally, Jones et al. (1998) used a least-squares formulation to solve the shape-

sensing problem of a cantilever honeycomb plate under arbitrary loading conditions. 

According to Kirchhoff plate hypotheses, the FBG-measured strains were fitted with 

a cubic polynomial and integrated with the use of approximate boundary conditions at 

the clamped end. They compared the least-squares estimates of displacement 

magnitudes with those of FEM analysis. Additionally, they experimentally verified the 

accuracy of the proposed formulation in single-point loading tests. However, their 

formulation is not general enough for complex geometries due to the inherent 

assumptions made for a simple cantilever plate.  

Also, Shkarayev et al. (2001, 2002) proposed a two-step solution procedure for shape 

sensing of aerospace structures. The first step involves finite element analysis of the 

structure to calculate strains for possible load cases. Then, an inverse interpolation 

algorithm is applied that constructs a parametric approximation (i.e., using spatial 

distribution functions) of the loading through least-squares minimization of calculated 

and measured strains. Once the load approximation is accurately defined, the 

methodology leads to the solution of the displacements. The main drawback of the 

proposed formulation is that it requires the recovery of the applied loading, which may 

have a non-trivial physical topology in real environment.  

Furthermore, Nishio et al. (2010) proposed a shape-reconstruction algorithm using an 

FEM model of a target structure. The algorithm enforces the compatibility between 

the analytical and measured bending curvatures of the Kirchhoff plate theory in a 

weighted-least-squares sense. Using the proposed algorithm, the authors reconstructed 

the deflection of a composite cantilever plate specimen in which Brillouin-scattering-

based optical fiber sensors were embedded. However, it is difficult to generalize their 

approach, since the weighting coefficients in the least-square terms are computed to 

resolve inherent errors in the strain-sensor data by considering the given data-

acquisition tool, the load condition, and the test specimen. Besides, their method can 
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only be applied to thin plates, since it uses classical bending assumptions to define the 

strain-displacement relationships. 

2.3 SHM Systems for Marine Structures  

Different monitoring schemes have been used on different types of marine vessels for 

many years. In 1994, the International Maritime Organization (IMO) originally 

recommended the utilization of hull stress monitoring systems to facilitate the safe 

operation of ships. The requirements for a typical hull structural monitoring system 

are regulated by class societies including the American Bureau of Shipping (1995, 

2015), Det Norske Veritas (1997, 2011), and Lloyds Register (2004). These 

regulations provide a general guide that discusses the need for fitting of hull condition 

monitoring systems (e.g., motion monitoring, stress monitoring, and voyage data 

recording) on all types and sizes of merchant vessels. Moreover, they clearly specify 

the critical elements of these monitoring systems, i.e., the configuration and types of 

sensors to be used as well as measurement accuracy, data storage, and data analysis. 

However, these guidelines only provide a global outline on how data processing should 

take place, and there has been little change in this basic configuration ever since the 

IMO originally introduced its requirements in 1994.  

 

Figure 2.1 Typical hull structure monitoring system configuration for bulk carrier or 

tanker (Lloyds Register, 2004). 

To monitor global longitudinal stresses amidships, Det Norske Veritas (1997, 2011) 

requires that the hull condition monitoring system of any merchant ship consist of at 
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least two strain gauges amidships (one port, one starboard on deck), a data processor, 

and a graphical user interface on the bridge. For bulk carriers or tankers, Lloyds 

Register (2004) proposed a more typical configuration with four long-base strain 

gauges as depicted in Figure 2.1. These long-base strain gauges are installed on top of 

the main deck amidships (port and starboard) and at the quarter lengths of vessels to 

monitor hull girder stress (one side only). The American Bureau of Shipping (1995, 

2015) also recommended a hull structural monitoring system similar to this 

configuration for tankers, bulk carriers, and general cargo ships. Assuming that the 

hull girder is a simple beam and using Hooke’s Law, these strain measurements can 

be converted to vertical and horizontal bending and torsional stresses of the hull girder 

for a given sea state. Then, this information can be utilized to infer the fatigue life of 

the ship.  

Apart from the regulations of class societies and the IMO, many researchers consider 

hull structural monitoring an important area of study. Kageyama et al. (1998) 

developed a fiber-optic laser-Doppler velocimeter (LDV) as a displacement sensor to 

measure the global deformations of marine structures. They conducted two laboratory 

tests to demonstrate that the LDV sensor has potential advantages, such as unlimited 

gage length, applicability to dynamic measurement, and lessened effects of 

temperature. To estimate the fatigue life and residual strength of the ship’s structure, 

they proposed installing the LDV sensor together with an optical time-domain 

reflectometer in primary members or highly stressed regions of the structure. 

Torkildsen et al. (2005) provided an outline of a ship hull health monitoring system 

installed on the Royal Norwegian Navy (i.e., a navy vessel). Its existing SHM system 

consists of a network of fiber-optic sensors to measure strain and temperature, X-band 

wave radar to estimate wave height and direction measurements, and a microwave 

altimeter mounted to the bow to measure oncoming wave profiles. The authors utilized 

FEM analysis of the ship hull to identify optimum locations for the fiber-optic sensors. 

Once their SHM system is installed on-board, it provides real-time information on both 

the global wave load on the hull and the local load at a number of selected critical 

areas.  

Wang et al. (2001) used FBG sensors to increase the precision of obtained strain data 

during the SHM process of marine structures. They utilized beneficial features of FBG 
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sensors for ship hull monitoring, e.g., their small size and weight, extended stability, 

reliability, high resistance to corrosion, and insensitivity to the outside environment 

such as to electromagnetic fields and noise interference. Moreover, Murawski et al. 

(2012) performed a damage-detection experiment an on offshore platform leg model 

using FBG sensors and investigated the mechanical strain changes due to dynamic 

loadings. In this study, the scheme of a SHM system with five FBG sensors was also 

demonstrated on sailing ships. Dynamic characterizations of the mast were 

investigated for different states of sailing conditions by utilizing the measurements 

obtained from FBG sensors. Similarly, Majewska et al. (2014) presented an 

experimental approach for SHM of sailing ships by using FBG sensors. They installed 

an FBG sensor grid to the foremast of a sailing ship to determine the strain/stress level 

of the foremast during different ship operations.  

Andersson et al. (2011) proposed a hull condition monitoring system for damage 

monitoring of ships made of fiber-reinforced plastics. Their technique uses acoustic 

vibrations that exist in the hull structure and on-board sensor data as input. When a 

sensor is close to a damaged part of the hull, specific indications will be detected by 

the damage indication algorithm. In addition, Sielski (2012) experimentally monitored 

fatigue crack initiation and the propagation of aluminum ship structures using a ship 

structural reliability program that included a SHM tool. Their global method requires 

modal analysis, and the local method is dependent on the relation between lamb wave 

propagation and sensor diagnostics. In this study, the authors proposed that SHM could 

be improved by (1) developing more accurate fatigue and fracture models, (2) 

improving the model in terms of corrosion detection, and (3) installing sensors to 

continuously detect damage. 

Van der Cammen (2008) developed a model to calculate the fatigue life of structural 

members in the side-shell, deck, and bottom of a floating production storage and 

offloading unit (FPSO). The proposed model derives load accumulation data from 

specified locations of the structure using recorded sensor data and data processing 

techniques, i.e., time-domain methods, wave spectrum methods, and statistical 

response evaluation. The model was validated against full-scale experimental 

measurements and can assist practical SHM systems in assessing motions and extreme 

events such as slamming stress and fatigue. Similarly, Hageman et al. (2013) 
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developed a hull fatigue monitoring system for FPSO vessels. They developed their 

fatigue prediction technique based on Bayesian statistics. Their system predicts the 

fatigue consumption from environmental conditions and experimentally measured 

strains, and then compares the predicted fatigue consumption with the design fatigue 

consumption to make conclusions on the hull structure’s performance. On the other 

hand, Zhu and Frangopol (2013) used SHM data obtained from sensors to improve the 

accuracy and redundancy of reliability assessments of a ship’s cross-sections. Prior 

load effects are updated according to SHM data related to the wave-induced load using 

the Bayesian updating method. The authors concluded that integration of SHM data 

can considerably decrease the uncertainty in a distribution parameter, and hence, 

updated performance indicators come closer to the correct values.  

Phelps and Morris (2013) provided an extensive review of the technical and 

commercial aspects of available hull structural monitoring systems along with 

consideration of the differences between installations on navy ships as compared to on 

merchant ships. Moreover, Van der Horst et al. (2013) proposed a recent technique 

based on wireless monitoring as an application of SHM for marine structures. Van der 

Horst and co-workers indicated that implementing networks of wireless sensors can 

effectively enable the detection of fatigue cracks in a structure, although it has some 

disadvantages, such as a lack of robust connectivity and inadequate data rates. They 

concluded that the conventional methods for detecting cracks and recent techniques 

for monitoring crack propagation can be combined together to increase the sensitivity 

and efficiency of the SHM process. Furthermore, Nichols et al. (2014) described the 

structured decision making (SDM) process for using available information (loading 

data, model output, etc.) and producing a plan of action for maintaining the structure. 

Their example shows that SDM minimizes both transit time and the probability of 

failure through a user-defined cost function. However, developing this approach 

requires models that describe the loading data, predict the structural response to the 

load, and forecast the accumulated damage. 
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2.4 Historical Overview of Inverse Finite Element 

Method  

Unlike the other inverse methods, the iFEM methodology possesses the following 

beneficial features that justify the iFEM as a superior shape-sensing algorithm:  

 The iFEM methodology does not require any loading and/or material information 

to reconstruct the three-dimensional displacement field of the structure.  

 The iFEM formulation does not require the entire structure to be installed with 

strain sensors to monitor the entire structural displacements. Only few locations 

need to be instrumented with any type of strain sensors such as strain rosettes, 

strain gauges, fiber optic cables.  

 The iFEM methodology is free from complex structural geometry and/or boundary 

conditions. 

 The iFEM algorithm can provide robust, stable, and accurate displacement results 

even with the strain measurements have inherent errors (e.g., noise). 

 The iFEM framework is sufficiently fast for real-time monitoring applications. 

Since the first publication of the iFEM algorithm (Tessler and Spangler, 2003, 2005), 

many different numerical and experimental studies have been devoted to expanding 

the horizons of the iFEM methodology in the literature. Tessler and Spangler (2004) 

developed a three-node inverse shell element (iMIN3) utilizing lowest-order 

anisoparametric C0 continuous shape functions and adopting the kinematic 

assumptions of FSDT plate theory. Tessler and Spangler (2004) initially assessed the 

predictive capability of the iMIN3 element on numerically generated strain data. Then, 

Quach et al. (2005) and Vazquez et al. (2005) demonstrated the robustness of the 

iMIN3 element by conducting laboratory tests using experimentally measured real-

time strain data. Apart from iMIN3, to the best of the author’s knowledge, no inverse-

shell element currently exists for the shape sensing of plate and shell structures. The 

first four-node quadrilateral inverse-shell element, iQS4, was published by Kefal, 

Oterkus, et al. (2016) as part of the research described in this thesis (vid. Chapter 3). 

Moreover, Paczkowski and Riggs (2007) utilized iFEM methodology to deal with 

large displacements and nonlinear strains. They used a similar least-squares error 
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functional as the one used in the original iFEM formulation by Tessler and Spangler 

(2003, 2005) but replaced linear strains with Green–Lagrange strains and adopted a 

“total Lagrangian” formulation. Based on the proposed nonlinear iFEM formulation, 

two inverse elements were developed: (1) a two-node inverse-beam element using 

exact shape functions of Euler–Bernoulli beam theory and (2) a six-node inverse-plane 

element using isoparametric shape functions. The performance of these elements was 

tested for a cantilever beam subjected to large displacement, and the results indicated 

that the inverse-plane element was more encouraging than the inverse-beam element 

for practical applications.  

Furthermore, Cerracchio et al. (2010) and Gherlone et al. (2012) formulated a robust 

inverse-frame element that uses the kinematic assumptions of Timoshenko beam 

theory, including stretching, bending, transverse-shear, and torsion-deformation 

modes. Their iFEM applications are tailored toward one-dimensional structures such 

as trusses, beams, and frames. In a series of works presented by Gherlone et al. (2011a, 

2011b, 2012, 2014), the superior capability of the authors’ inverse-frame element was 

validated using both numerically generated and experimentally measured strain data, 

with several shape-sensing analyses performed of three-dimensional frame structures 

undergoing static and/or damped harmonic excitations. 

In addition, Tessler et al. (2011, 2012) revised the least-squares functional of the 

original iFEM formulation by introducing weighting coefficients for individual section 

strains of the iMIN3 element. These weighting constants enable an iMIN3 

discretization to have very sparse measured strain data, such that only few structural 

components need to be instrumented with FBG sensors providing either single-core 

(axial) or rosette (tri-axial) strain measurements. In particular, Tessler et al. (2012) 

performed linear and nonlinear shape- and stress-sensing analyses of an aluminum 

stiffened flap with two rectangular cut-outs using an iMIN3 discretization with 

different networks of strain sensors. To predict the nonlinear deformations in real time, 

the iMIN3 mesh was updated using the deformations calculated at each small strain 

increment. This study demonstrated the superior capability and practical usefulness of 

the iMIN3 element for shape and stress sensing of plate and shell structures undergoing 

small and/or large displacements.  
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De Mooij et al. (2016) utilized the mathematical concepts of the iFEM methodology 

to formulate a new inverse algorithm for shape sensing of structures that are 

instrumented with strain and/or displacement sensors. Their formulations incorporate 

the Tikhonov regularization terms to obtain smoother results. The proposed inverse 

algorithm was tested and validated using two cantilever plate problems that were 

analyzed earlier by Kefal, Oterkus, et al. (2016). The numerical results of these 

examples demonstrated that their inverse algorithm was capable of predicting accurate 

displacements even when using fewer displacement/strain sensors. 

In a series of works (Tessle, 2007; Tessler et al., 2011, 2012), the possible applications 

of the iFEM methodology were discussed for SHM of future aerospace vehicles. 

Likewise, Cerracchio et al. (2015a) presented another application of the iFEM 

algorithm in aerospace structures by performing real-time displacement monitoring of 

a typical stiffened composite panel subjected to mechanical and thermal loads. 

However, none of the aforementioned iFEM frameworks have been applied to shape 

and stress sensing of marine structures. Kefal and Oterkus (2015, 2016a, 2016b) 

achieved this goal for the first time in the literature, as part of the research described 

in this thesis (vid. Chapter 4). 

To numerically solve a number of engineering problems, Hughes et al. (2005) 

introduced isogeometric analysis (IGA), which employs the same functions, i.e., non-

uniform rational B-splines (NURBS), used to describe the geometry of the 

computational domain in the analysis framework. Since then, IGA has received a great 

deal of attention from both academia and industry as a result of its beneficial features: 

(1) exact representation of computational geometry, (2) simplified mesh refinement, 

(3) smooth (high order continuity) basis functions, and finally (4) integration of design 

and analysis in only one computational geometry. To the best of the author’s 

knowledge, none of the iFEM formulations offer these kinds of beneficial aspects, 

which can be very important for shape-sensing analysis of engineering structures, 

especially for curved shell structures. In order to utilize the aforementioned features of 

IGA in shape-sensing analysis, Kefal and Oterkus (2017) coupled the concept of IGA 

with iFEM methodology to introduce the first isogeometric iFEM formulation, which 

is the fundamental part of the research described in Chapter 5. 
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For structural analysis of composite and sandwich structures, Tessler et al. (2009, 

2010) developed the refined zigzag theory (RZT) that allows more accurate predictions 

of displacement, strain, and stress variations at anywhere in the structure, especially 

through-the-thickness direction of the structure. Recently, Cerracchio et al. (2013, 

2015b) improved the original iFEM formulation (Tessler and Spangler, 2003, 2005) 

by including the zigzag kinematics of the RZT. This recent formulation was intended 

for SHM applications dealing with multilayered composite and sandwich structures 

possessing a high degree of anisotropy and heterogeneity. However, their formulation 

lacks precise definition of transverse-shear strain measures in the variational principle. 

Moreover, to the best of the author’s knowledge, no inverse-shell element has been 

implemented based on the RZT. To overcome these limitations, Kefal, Tessler, et al. 

(2016) improved the RZT-based iFEM formulation and then developed the first three-

node triangular inverse-shell element, i3-RZT, based on RZT, which are the main parts 

of the study described in Chapter 6. 

2.5 Conclusion  

In this chapter, a detailed literature review, which enables historical interpretation of 

the subjects undertaken in this PhD research study, was provided. Firstly, the 

advantages and limitations of the most popular numerical techniques used up to now 

to investigate the shape sensing of beams and plates were examined. After that, the 

details of the SHM monitoring systems proposed for marine structures were studied. 

The use of the current approach (i.e., iFEM methodology) was justified in light of its 

superior capabilities concerning shape-sensing analysis. In order to put the current 

research into perspective, finally, a historical outline of the shape-sensing algorithms 

that utilize the iFEM methodology was provided. The following list summarizes the 

findings that are most relevant to this research. To the best of the author’s knowledge, 

(1) none of the iFEM formulations has been implemented using a four-node inverse-

shell element with drilling degrees of freedom (DOF), (2) none of the iFEM 

formulations have been applied to marine structures, (3) none of the iFEM 

formulations have served the beneficial features of IGA for shape-sensing analysis, 

and (4) no inverse-shell element has been implemented based on an iFEM formulation 

that utilizes the complete set of strain measures consistent with RZT.  
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Chapter 3  
 

Quadrilateral Inverse-Shell Element 

with Drilling DOF 
 

3.1 Introduction  

As explained earlier in Section 2.3, various types of iFEM formulations and inverse 

elements have been developed on the basis of different beam, plate, and shell theories. 

The main and novel aim of this chapter is to introduce the reader to the iFEM 

formulation for plate and flat shell structures, and develop a new four-node 

quadrilateral inverse-shell element, iQS4, which expands the library of existing iFEM-

based inverse elements. This new element includes hierarchical drilling rotation DOF 

and further extends the practical usefulness of iFEM methodology for shape and stress 

sensing analysis of large-scale structures, e.g., marine structures. In this chapter, the 

iFEM/iQS4 formulation is derived from a weighted-least-squares functional that uses 

FSDT as its kinematic framework. Therefore, iFEM/iQS4 methodology is applicable 

for the analysis of thin and moderately thick plate and shell structures. This chapter is 

organized as follows: the iFEM formulation for plate and flat shell structures are given 

in Section 3.2. Mathematical structure of the iQS4 element is described in Section 3.3. 

In Section 3.4, two validation problems are solved and discussed in detail. In addition, 

the practical applicability of the iQS4 element to more complex structures is examined 
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by performing various case studies including a study where strain measurements 

involve up to ten percent random noise. Finally, concluding remarks of this chapter 

can be found in Section 3.5. The overall study described in this chapter can be found 

in Kefal, Oterkus, et al. (2016), and to the best of the authors’ knowledge, this is first 

time that the iFEM formulation is implemented using a four-node inverse-shell 

element. As previously mentioned, the practical capability of the iQS4 element is very 

promising, therefore the iQS4/iFEM framework presented in this chapter is used as a 

foundation for shape and stress sensing analysis of large-scale marine structures that 

are described in the next chapter. 

3.2 The iFEM Formulation for Plate and Flat Shell 

Structures  

Reissner (1945) and Mindlin (1951) developed the first-order shear deformation 

theory, which introduces an additional kinematic variable (i.e., the bending rotation) 

to account for transverse-shear deformation in an average sense while retaining the 

non-deformable normal assumption. The main benefits of the FSDT are that (1) it is 

applicable for the analysis of thin and moderately thick plate and shell structures, and 

(2) its kinematics have variational index of 1, thus require only C0-continuous 

displacement interpolations that can be readily established with conventional Lagrange 

shape functions. As a result of these beneficial aspects, the FSDT have been widely 

used in structural analysis of homogeneous and composite plate- and shell-type 

structures. In fact, the original iFEM formulation (Tessler and Spangler, 2003, 2005) 

also used the kinematics of the FSDT, which is adopted to develop the iQS4 element 

and revisited in the remainder of this section. Firstly, the inverse problem of the plate 

is described in Section 3.2.1. Secondly, the kinematics relations of FSDT are briefly 

reviewed and the strain field is properly rewritten in order to define the strain measures 

to be used in the iFEM formulation (Section 3.2.2). Thirdly, the computation of the 

experimental section strains is extensively studied in Section 3.2.3. Finally, the 

weighted-least-squares functional of the iFEM formulation is discussed in Section 

3.2.4.  

 



26 

 

3.2.1 The inverse problem 

Consider an arbitrary plate of uniform thickness 2h  as depicted in Figure 3.1. The 

material points of the plate are located by the orthogonal Cartesian coordinates 

1 2( , , )x x z . The symbol [ , ]z h h    defines the thickness coordinate of the plate, the 

plane located at 0z   referred to as the mid-plane of the plate, and the in-plane 

coordinates are identified by 1 2( , )x x A  where A  represents the area of the mid-

plane. The plate is restrained against rigid body motion and also subjected to external 

forces that may include the in-plane and out-of-plane components, T  and q , as shown 

in Figure 3.1. 

 
Figure 3.1 Notation for the plate or flat shell body. 

Strain sensors are mounted on the surface of plate as depicted in Figure 3.1, which 

provides real-time information about the state of strain in the plate. The inverse 

problem herein is the reconstruction of the three-dimensional deformations of the plate 

using only the experimentally measured discrete surface strains and boundary 

constraints. The precise solution of this inverse problem will be established using 

iFEM methodology.  

3.2.2 Kinematic relations 

The orthogonal components of the displacement vector, corresponding to any material 

point within the plate shown in Figure 3.1, can be described in accordance with the 

FSDT as 
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1 1 2 1 2 1 1 2( , , ) ( , ) ( , )u x x z u x x z x x   (3.1) 

2 1 2 1 2 2 1 2( , , ) ( , ) ( , )u x x z v x x z x x   (3.2) 

1 2 1 2( , , ) ( , )zu x x z w x x  (3.3) 

where 1 2( , , ) ( 1, 2)u u x x z     are the in-plane displacements and 1 2( , , )z zu u x x z  

is the transverse displacement (deflection) across the uniform shell thickness. In 

Equations (3.1-2), the functions 1 2( , )u u x x  and 1 2( , )v v x x  represent the mid-plane 

displacements (translations) along 1x  and 2x  directions, respectively. Moreover, the 

functions 1 1 1 2( , )x x   and 2 2 1 2( , )x x   represent average bending rotations of the 

transverse normal around the positive 2x  and negative 1x  directions, respectively. 

Furthermore, the function 1 2( , )w w x x  is the transverse deflection in Equation (3.3). 

These functions, i.e., kinematic variables of the FSDT, can be written in a compact 

vector form as 

 1 2

T
u v w  u  (3.4) 

Calculating the relevant partial derivatives of Equations (3.1-2), the linear strain-

displacement relations give rise to the in-plane strains 

11 1,1 1 4u e z     (3.5) 

22 2,2 2 5u e z     (3.6) 

12 1,2 2,1 3 6u u e z      (3.7) 

where, henceforward, ( )
,( ) x


   denotes a partial derivative with respect to in-plane 

coordinate ( 1, 2)x   . In Equations (3.5-7), the symbols ( 1, 2,3)e    and 

( 4,5,6)    denote the membrane strain measures and bending curvatures, 

respectively. The explicit forms of these terms can be defined in terms of the compact 

form of kinematic variables u  as 

1 ,1

2 ,2

3 ,2 ,1

( )

e u

e v

e u v

  
       
      

e u  (3.8) 
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4 1,1

5 2,2

6 1,2 2,1

( )

 
 
  

  
       
      

κ u  (3.9) 

Taking the corresponding partial derivatives of Equations (3.1-3) in accordance with 

linear strain-displacement relations, the transverse shear strain measures can also be 

defined as 

1, ,1 ,1 17

2, ,2 ,2 28

( ) z z

z z

u u w

u u w




     
             

γ u  (3.10) 

where ( )
,( ) z z


   denotes a partial derivative with respect to thickness coordinate z . It 

is worth to note that the plane-stress assumption 0zz   within the theory implies that 

the transverse-normal strain zz  does not contribute to the strain energy.  

3.2.3 Computation of experimental section strains  

Discrete in situ surface strain measurements (readings) that are obtained from on-board 

sensors are crucial according to the iFEM formulation. With today’s technology, 

conventional strain rosettes or embedded fibre-optic sensor networks (e.g., FBG 

sensors) can be used to collect a large amount of on-board strain data. Using these 

discrete strain readings, experimental section strains can be computed at n discrete 

locations, 1 2( , )  ( 1 )i ix x i n  x  located in the mid-plane of the plate. As depicted in 

Figure 3.2, at least two different strain rosettes ( , )i i
 ε ε  must be placed along the 

thickness direction of each particular location ix . For the sake of clarity, the exact 

locations of these sensors and their strain readings can be identified as 

11 22 12( , ) [ ]i i i iz h        ε x  (3.11) 

11 22 2( , ) [ ]i i i iz h      
  ε x  (3.12) 

where the in situ surface strain measures with the superscripts ‘+’ and ‘–’ pertain to 

the strain rosettes located on the top and bottom surfaces of the plate, respectively. In 

Equations (3.11-12), the subscripts (11) and (22) denote the normal strain 
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measurement along the directions 1x  and 2x , whereas the front subscript (12) denotes 

the shear strain measurement in the 1 2x x  plane. 

 

Figure 3.2 Surface strains measured by strain rosettes at discrete locations ( , )i hx . 

Evaluating Equations (3.5-7) at the discrete locations ( , ) ( 1 )i h i n  x , where the 

strain sensors are located, experimental membrane strain measures iE  and bending 

curvatures iK  can be computed at the same point ix  as (Tessler and Spangler, 2003, 

2005) 

1 11 11

2 22 22

3 12 12

1
( 1 )

2i

i i

i n

 
 
 

 

 

 

   
          

       

Ε  (3.13) 

4 11 11

5 22 22

6 12 12

1
( 1 )

2i

i i

i n
h

 
 
 

 

 

 

   
          

       

Κ  (3.14) 

where in situ section strains, iE  and iK , correspond to their analytic counterparts, 

( )e u  and ( )κ u , given by Equations (3.8-9), respectively. In addition, the in situ 

transverse-shear strain measures that correspond to their analytic counterparts, ( )γ u , 

given by Equation (3.10), can be symbolically identified by  

 7 8 ( 1 )
T

i i
i n    G  (3.15) 

In Equations (3.13) through (3.15), the uppercase Greek letters are used to indicate the 

existence of experimental error in the strain measurements. Although the in situ 

surface strains are simply used to compute the iE  and iK  as given in Equations (3.13-
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14), they cannot be directly used to calculate the iG . It is noted, however, that in the 

deformation of thin shells, the contributions of iG  are much smaller than that of the 

bending curvatures. Therefore, the iG  contributions can be safely omitted from the 

iFEM formulation for practical engineering applications modelled by using thin shells. 

On the other hand, in deformation of thick shells, a significant amount of the deflection 

is caused by transverse-shear stresses. As a consequence, it is necessary to compute 

the iG  in order to perform an accurate iFEM analysis of thick shell structures. 

Experimental strain data can be processed analytically by using curve fitting or 

smoothing techniques (Lancaster and Salkauskas, 1986). In this manner, the six section 

strain measures, iE  and iK , can be represented as continuous functions that are 

defined everywhere in the mid-plane of the plate. The vectors containing the smoothed 

experimental strain measures will henceforth be denoted as E  and K , where the ‘i’ 

subscript is removed to differentiate these continuous quantities from the discrete ones. 

A smoothing procedure, developed by Tessler et al. (1998, 1999), called Smoothing 

Element Analysis (SEA), can be used to obtain E  and K  that are represented by 

piecewise, nearly C1-continuous polynomial functions with C0-continuous first-order 

derivatives. As a result of the SEA analysis, the first-order derivatives of K  can be 

accurately computed and subsequently used to obtain the G  or iG  through the 

equilibrium equations of the FSDT. This calculation will be crucial for shape sensing 

of thick plate and shell structures. Hence, the mathematical details of obtaining the iG  

via FSDT equilibrium equations is established for an isotropic material of the plate, 

which has an elastic modulus of E  and Poisson’s ratio of  . Using the smoothed 

experimental strain measures, the constitutive relations can be defined based on the 

plane-stress assumption ( 0)zz   as  

 

11 1 4

22 2 52

12 3 6

1 0

1 0
1

0 0 1 2

E
z

 
 


 

         
                                  

 (3.16) 

 
71

82

1 0

0 12 1
z

z

E
 

    
          

 (3.17) 
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where 11 22 12( , , )    and 1 2( , )z z   are in-plane and transverse-shear stress components, 

respectively. The equilibrium equations of the FSDT defines shear resultants in terms 

of first-order derivatives of moment resultants as 

1 11,1 12,2zQ M M   (3.18) 

2 12,1 22,2zQ M M   (3.19) 

where 11 22 12( , , )M M M  and 1 2( , )z zQ Q  represent the moment and shear resultants, 

respectively. These resultants can be explicitly expressed using the Equations (3.16-

17) as 

3

11 11 4 52

2
( )

3(1 )

h

h

Eh
M z dz 







    
  (3.20) 

3

22 22 4 52

2
( )

3(1 )

h

h

Eh
M z dz 







   
  (3.21) 

3

12 12 63(1 )

h

h

Eh
M z dz







  
  (3.22) 

1 1 71

h

z z

h

Eh
Q dz

 






  
  (3.23) 

2 2 81

h

z z

h

Eh
Q dz

 






  
  (3.24) 

where   is shear correction factor that is commonly taken as 5 6   for plate and 

shells. In addition, FSDT has three membrane stress resultants given by  

11 11 1 22

2
( )

1

h

h

Eh
N dz 







    
  (3.25) 

22 22 1 22

2
( )

1

h

h

Eh
N dz 







   
  (3.26) 

12 12 31

h

h

Eh
N dz







  
  (3.27) 
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Inserting the Equations (3.20-24) into (3.18-19) and subsequently cancelling the 

synonyms, the in situ transverse-shear strain measures can be explicitly expressed as 

2
4,1 5,1 6,27

4,2 5,2 6,18

2

3 1

h 
 

         
                  

G  (3.28) 

where ( 7,8)    are defined everywhere in the mid-plane of the plate, thus they 

can be sampled at any particular location ix  to obtain iG . Note that the overall 

outcome of this computational procedure will also provide the continuous form of all 

experimental section strains, e.g.,  ε Ε Κ G . 

3.2.4 The weighted-least-squares functional 

Following the original iFEM methodology (Tessler and Spangler, 2003, 2005) as a 

general framework, utilizing the weighting coefficients introduced in (Tessler et al., 

2011), and accounting for the membrane, bending, and transverse-shear deformations 

of the FSDT, a weighted-least-squares functional, ( ) u , can be expressed as 

8

1

( ) w 





 u  (3.29) 

where  ( 1 8)w     are positive valued weighting coefficients associated with the 

individual section strains and the functional ( 1 8)     is the least-squares 

functional of experimental section strains (ε  or iε ) and kinematic variables u . If the 

discrete experimental strain measures are directly used in iFEM analysis, the least-

squares functional becomes ( , )  ( 1 8)i     u ε  and can be defined in the form 

of the normalized Euclidean norms given as 

 2

1

1
( )  ( 1, 2,3)

n

i i
i

e
n   



   u  (3.30) 

 
2

2

1

(2 )
( )  ( 4,5,6)

n

i i
i

h

n    


   u  (3.31) 

 2

1

1
( )  ( 7,8)

n

i i
in    


   u  (3.32) 
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If the raw strain data are smoothed a priori (i.e., using SEA analysis as described in 

section 3.2.3) such that the continuous experimental strain measures become available 

for iFEM analysis, the least-squares functional becomes ( , )  ( 1 8)     u ε  and 

can be defined in terms of the dimensionless L2 squared norms given as 

 21
( )  ( 1, 2,3)

A

e dA
A      u  (3.33) 

 
2

2(2 )
( )  ( 4,5,6)

A

h
dA

A       u  (3.34) 

 21
( )  ( 7,8)

A

dA
A       u  (3.35) 

The weighting constants  ( 1 8)w     in Equation (3.29) control the complete 

coherence between the analytic section strains and their experimentally measured 

values. Their proper usage is especially critical for those problems involving relatively 

few locations of strain gages. When every analytic section strain has a corresponding 

measured in situ value (ε  or iε ), the weighting constants are set as  = 1 ( 1 8)w     

for Equations (3.30-32) or (3.33-35). In the case of a missing in situ strain component, 

the corresponding weighting constant is set as a small number, e.g., 510  , and 

Equations (3.30-32) or (3.33-35) take on the reduced form defined by the L2 squared 

norms 

 21
( )    (w ),  ( 1, 2,3)

A

e dA
A       u  (3.36) 

 
2

2(2 )
( )    (w ),  ( 4,5,6)

A

h
dA

A        u  (3.37) 

 21
( )    (w ),  ( 7,8)

A

dA
A        u  (3.38) 

Furthermore, the iFEM methodology also permits the use of “strain-less” inverse 

elements – the type of elements that do not have any in situ section strain 

measurements. For these strain-less elements, all squared norms in Equations (3.36-

38) are multiplied by the small weighting constants 5 =  = 10  ( 1 8)w     . 
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Therefore, an iFEM discretization can have very sparse measured strain data, and yet 

the necessary interpolation connectivity can still be maintained between the elements 

that have strain-sensor data. 

3.3 The Four-Node Quadrilateral Inverse-Shell 

Element Formulation 

The four-node quadrilateral inverse-shell element, labelled iQS4, is developed on the 

basis of the weighted-least-squares iFEM formulation, and has six displacement DOF 

per node (refer to Figure 3.3). The beneficial aspects of this new element are such that, 

due to the inclusion of drilling rotations, singular solutions can be simply avoided 

when modelling complex shell structures and, moreover, for membrane problems, 

iQS4 has less tendency toward shear locking. The generic way to obtain the element 

formulation, writing local membrane and bending matrices for a flat geometry and 

adding them together, is followed because it is a satisfactory approach in terms of 

iFEM methodology.  

 
Figure 3.3 (a) Four-node quadrilateral inverse-shell element, iQS4, depicted within 

global (X, Y, Z) and local (x, y, z) frames of reference; (b) Nodal DOF corresponding 

to local (element) coordinates (x, y, z). 

The first step is to define a set of convenient coordinate frames of reference to 

guarantee the geometric uniqueness of the assembled shell structure. A local 

coordinate system ( , , )x y z  serves as the element frame of reference, with its origin 

(0,0,0)  located at the centroid of the mid-plane quadrilateral. In the following 
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derivations, these local coordinates ( , , )x y z  are associated with the orthogonal 

Cartesian coordinates 1 2( , , )x x z  used to define the kinematic relations of FSDT in 

Section 3.2.2. Hence, the coordinates 1 2( , ) ( , )x y x x  are the in-plane coordinates and 

[ , ]z h h    defines the thickness coordinate. To assemble element matrices into a 

global system of equations, suitable transformation matrices, eT , defining the local to 

global transformations can be simply established in accordance with procedures 

described in the following paragraph. 

The coordinates of element nodes referred to the global coordinate system, ( , , )X Y Z

, are given as 

  ( 1 4)
T

i i i iX Y Z i  X  (3.39) 

Each edge length id  of the mid-plane quadrilateral and global coordinates of each edge 

mid-point ic  can be calculated as 

( 1,2,3,4; 2,3,4,1)

2

i j i

j i
i

d

i j

 
  

 


X X

X X
c

 (3.40) 

Using Equation (3.40), global coordinates of mid-plane quadrilateral centroid can be 

defined as 

4

1
4

1

k k
k

k
k

d

d










c
C  (3.41) 

Unit normal vector to the mid-plane quadrilateral, n , and unit vectors along local y- 

and x- axis, p and l , can respectively be computed as 





A B

n
A B

 (3.42) 





A B

p
A B

 (3.43) 

 l p n  (3.44) 
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where 

3 1 A X X  (3.45) 

4 2 B X X  (3.46) 

are diagonal vectors, with A  pointing out from node-1 to node-3, whereas B  pointing 

out from node-2 to node-4. Using Equations (3.39), (3.41), and (3.43-44), local 

coordinates of the iQS4 element nodes can be determined as 

 
 

 1 4
i i

i i

x
i

y

     
   

X C l

X C p
 (3.47) 

With the unit vectors n , p , and l , given in Equations (3.42-44), the transformation 

matrix, eT , can be defined as 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

e

 
 
 
 
 
   
 
 
 
 
  

T

T

T

T
T

T

T

T

T

 (3.48) 

with 

TT T T   T l p n  (3.49) 

where T  is the stress transformation matrix from the local to the global coordinate 

system. 

The ( , )x y  reference plane of the iQS4 quadrilateral element can be uniquely defined 

in terms of bilinear isoparametric shape functions ( , ) ( 1 4)iN s t i    and the element 

local nodal coordinates ( , ) ( 1 4)i ix y i   , where s  and t  are dimensionless 

isoparametric coordinates (refer to Figure 3.4). These mapping functions can be 

expressed as 
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4

1

( , ) i i
i

x s t x N x


   (3.50) 

4

1

( , ) i i
i

y s t y N y


   (3.51) 

with 

1
(1 ) (1 ) ( 1 4)

4i i iN s s t t i      (3.52) 

where ( , ) [ 1, 1]i is t     are isoparametric coordinates of the element nodes as presented 

in Figure 3.4. 

 
Figure 3.4 (a) Mid-plane (x, y)-reference surface and nodal coordinates of iQS4 

element; (b) Parent element in isoparametric coordinates. 

The nodal DOF, consisting of positive x translations iu , positive y translations iv , and 

positive counter clockwise drilling rotations zi , define the u  and v  membrane 

displacements (kinematic variables) as 

4

1

( )i i i zi
i

u N u L 


   (3.53) 

4

1

( )i i i zi
i

v N v M 


   (3.54) 

Moreover, transverse displacement and two bending rotations w , x , and y  

(kinematic variables) are defined by the nodal DOF of positive z translation iw  and 

positive counter clockwise rotations around the x- and y- axes, xi  and yi , as 
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1

( )i i i xi i yi
i

w N w L M 


    (3.55) 

4

1
1

i yi
i

N 


  (3.56) 

4

2
1

i xi
i

N 


   (3.57) 

In Equations (3.53-57), the functions iL  and iM  are the anisoparametric shape 

functions that were originally developed by Tessler and Hughes (1983) for a four-node 

quadrilateral plate element, MIN4 (Mindlin-type, four-nodes). These shape functions 

were also used by Cook (1994) to define the interaction between the hierarchical 

drilling rotation DOF and the membrane displacements. The explicit forms of these 

anisoparametric interpolation functions are given as 

4 4

4 4

( 1, 2,3, 4; 4,1, 2,3)
i j j i i

i j j i i

M a N a N
i j

L b N b N

 

 

      
 (3.58) 

where ( , ) ( 1 4)i ia b i    can be expressed in terms of local coordinates of iQS4 element 

as 

( 1, 2,3, 4; 2,3, 4,1)i i k

i k i

a x x
i k

b y y

  
   

 (3.59) 

and the quadratic shape functions, ( 5 8)iN i   , are defined as 

2

4

(1 ) (1 )
( 1,3)

16
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s t t
N i

 
   (3.60) 

2

4

(1 ) (1 )
( 2, 4)

16
i

i

s s t
N i

 
   (3.61) 

Introducing Equations (3.53-57) into (3.8-10) results in explicit definitions of analytic 

section strains in terms of the element nodal displacement vector, eu , as 

1 2 3( )
Te e e e   e u B u B u B u  (3.62) 

4 5 6( )
Te e e e   κ u B u B u B u  (3.63) 
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7 8( )
Te e e   γ u B u B u  (3.64) 

with 

1 2 3 4

Te e e e e   u u u u u  (3.65) 

( 1 4)
Te

i i i i xi yi ziu v w i      u  (3.66) 

where the matrices  ( 1 8)   B  contain derivatives of the shape functions and can 

be respectively defined as 

1 2 3 4 ( 1 8)         B B B B B  (3.67) 
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where, ( )
,( ) x x


   and ( )

,( ) y y

   denote the partial derivative with respect to in-plane 

coordinates x  and y , respectively. Since the membrane strain measures, ( )ee u , are 

associated with the stretching of the middle surface, the ( 1 3)   B  matrix contains 

the derivatives of the shape functions that are associated with the membrane behavior. 

Moreover, the bending curvatures and transverse-shear strain measures, ( )eκ u  and 

( )eγ u , are associated with bending deformations, thus the ( 4 8)   B  matrices 

accordingly contain the corresponding derivatives of the shape functions that define 

the element bending response. 
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The iFEM methodology reconstructs the deformed shape of a discretized structure by 

minimizing a weighted-least-squares functional with respect to the nodal DOF of the 

entire discretization. Assuming that only discrete experimental strain measures iε  

become available, and then substituting Equation (3.62-64) into the weighted-least-

squares functional, given by Equations (3.29-32), reveals this functional, ( )e
e u , for 

an individual iQS4 element given as 

8

1

( ) ( , )e e
e iw 






 u u ε  (3.71) 

By virtue of these assumptions, all strain compatibility relations are explicitly satisfied 

so that Equation (3.71) can be minimized with respect to the nodal displacement DOF, 

eu , giving rise to 

( )
0

e
e e ee

e


  


u

Γ u ε
u

 (3.72) 

or simply 

e e eΓ u ε  (3.73) 

where eΓ  is the element left-hand-side matrix; eε  is the element right-hand-side 

vector, which is a function of the measured strain values; and eu  is the nodal 

displacement vector of the element.  

The eΓ  matrix combines the contribution of every analytic section strain component 

and its corresponding weighting constant  ( 1 8)w     and is given by 

8

1

e ew 


Γ k  (3.74) 

where  ( 1 8)e
   k  matrices denote the contribution of each analytic section strain 

component and can be explicitly written in terms of the  ( 1 8)   B  matrices as 

 
1

1
( ) ( ) ( 1 3,7,8)

n
Te

i i
in   


    k B x B x  (3.75) 

 
2

1

(2 )
( ) ( ) ( 4 6) 

n
Te

i i
i

h

n   


    k B x B x  (3.76) 
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The eε  vector is a function of the measured section-strain values (computed using 

strain sensors readings), and is given by 

8

1

e ew 


ε f  (3.77) 

where  ( 1 8)e
   f  vectors denote the contribution of each experimental section 

strain component and can be explicitly written in terms of experimental section strains 

as 

 
1

1
( ) ( 1 3)

n
Te

i i
in   


     f B x  (3.78) 
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 
1

1
( ) ( 7,8)

n
Te

i i
in   


    f B x  (3.80) 

Note that, in Equations (3.75-76) and (3.78-80), the ( , ) ( 1, )i ix y i n x  represents the 

locations at the mid-plane of iQS4 element, where the experimental section strains are 

computed. Once the element (local) matrix equations are established, the element 

contributions to the global linear equation system of the discretized structure can be 

performed as 

AU Q  (3.81) 

with 

1
( )

nel
e T e e

e
    Α T Γ T  (3.82) 

1
( )

nel
e T e

e
    U T u  (3.83) 

1
( )

nel
e T e

e
    Q T ε  (3.84) 

where eT  is the transformation matrix of the nodal DOF of an element from the local 

to the global coordinate system, A  is the global left-hand-side matrix, which is a 

symmetric matrix and independent of the measured strain values, U  is the global nodal 
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displacement vector, and Q  is the global right-hand-side vector, which is a function 

of the measured strain values. In Equations (3.82-84), the parameter nel  stands for the 

total number of inverse finite elements and the symbol 
1

nel

e
  represents assembly of the 

element matrices/vectors into global matrices/vectors. 

The global left-hand-side matrix A  includes the rigid body mode of the discretized 

structure. Therefore, it is a singular matrix. By prescribing problem-specific 

displacement boundary conditions, the resulting system of equations can be reduced 

from Equation (3.81) as 

R R RΑ U Q  (3.85) 

where RΑ  is a positive definite matrix that is always non-singular and invertible. The 

solution of Equation (3.85) is very fast because the matrix RΑ  remains unchanged for 

a given distribution of strain sensors, and its inverse should be calculated only once 

during the real-time monitoring process. However, the right-hand-side vector RQ  is 

dependent on the discrete surface strain data obtained from in situ strain sensors. 

Hence, it needs to be updated at each strain-data acquisition increment. Finally, the 

matrix–vector multiplication 1
R R
A Q  gives rise to the unknown DOF vector RU , 

which provides the deformed structural shape at any real time. To assess the global 

displacement and rotation response, it is convenient to compute the total displacement, 

TU , as 

2 2 2
TU U V W    (3.86) 

and the total rotation, T , as 

     2 2 2

T X Y Z       (3.87) 

where U , V , and W  are the translations along the global X-, Y-, and Z-axes, 

respectively, and X , Y , and Z  are the rotations around the global X-, Y-, and Z-

axes, respectively (refer to Figure 3.3). Moreover, the continuous strain field 

throughout the structure can be obtained using the evaluated displacement values. 

Furthermore, the constitutive relationship between stress and strain will allow 
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determination of stress distribution. For instance, according to the local coordinate 

system ( , , )x y z  of the iQS4 element, the constitutive relationship defined by 

Equations (3.16-17) can be rewritten in terms of evaluated displacement values, eu , 

as  

 
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Once the stress components at any point inside the iQS4 element domain are calculated 

using Equations (3.88-89), transformation of the stress components from the local to 

the global coordinate system can be performed as 

 T eσ T σ T  (3.90) 

where local and global stress tensors are represented respectively as 
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σ  (3.92) 

and T  is the stress transformation matrix that is defined by Equation (3.49). Then, 

three-dimensional global stresses can be converted to an equivalent stress using the 

von Mises failure criterion (i.e., a suitable failure criterion for ductile materials such 

as metals) as 

       2 2 2 2 2 21
6

2
VM XX YY XX ZZ YY ZZ XY XZ YZ                   (3.93) 

Finally, the von Mises stress can be checked against the yield strength of the material 

for damage detection as part of the SHM process.  
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3.4 Numerical Examples  

In this section, two validation problems, (1) a cantilevered plate under static transverse 

force near free tip, and (2) a short cantilever beam under shear loading, are solved and 

discussed in detail. Following the validation cases, the applicability of the iQS4 

element to more complex structures is demonstrated by the analysis of a thin-walled 

cylinder. For this problem, the effects of noisy strain measurements on the accuracy of 

the iFEM solution are examined using strain measurements that involve five and ten 

percent random noise, respectively. Finally, the effect of sensor locations, number of 

sensors, the discretization of the geometry, and the influence of noise on the strain 

measurements are assessed with respect to the solution accuracy. 

3.4.1 A cantilever plate under static transverse force near 

free tip  

A rectangular cantilever plate subjected to a static transverse force applied near the 

free tip has a length of 0.254 m, a height of 0.0762 m, and a uniform thickness of 3.175 

mm (refer to Figure 3.5). The plate is made of aluminum having an elastic modulus of 

73.084 GPa and a Poisson’s ratio of 0.33. The concentrated force of F = 25.728 N is 

applied in the negative Z direction near the tip. This plate was originally analyzed and 

then tested in a mechanics laboratory by Bogert et al. (2003). Subsequently, Tessler 

and Spangler (2004) analyzed this plate configuration using the iFEM methodology. 

Using a relatively coarse iMIN3 discretization that has a single strain rosette within 

each element, the authors obtained a highly accurate reconstruction of the full-field 

displacement response. 

 

Figure 3.5 Cantilever plate under transverse force applied near free tip.  
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In this first example, the above stated problem is analyzed once again using the 

iFEM/iQS4 methodology to validate the present element bending capability. There is 

no need to model the part of the plate to the right of the applied force because it is free 

of stress. Therefore, the following iFEM and direct FEM models are defined over the 

domain [0, ]X a  and [0, ]Y b  (refer to Figures 3.5-6). To establish an accurate 

reference solution, a convergence study was performed using direct FEM analyses 

utilizing an in-house FEM code. The most refined mesh consisted of 432 uniformly 

distributed square elements, possessing 2886 DOF. The FEM deflections and rotations 

are used to compute the simulated strain-sensor strains. 

 

Figure 3.6 Plate discretization using 28 iQS4 elements and exact locations [mm] of 

strain rosettes. 

To remain consistent with the work by Tessler and Spangler (2004), in the present 

iFEM analysis the same strain rosette locations are used. As depicted in Figure 3.6, the 

iQS4 model has 28 rectangular-shaped elements each having a single strain rosette. 

Except for eight of the strain rosettes (i.e., the first four which are near to the clamped 

edge and the second four which are near to the loading edge), the strain rosettes are 

placed at the centroids of each iQS4 element. Since the material properties of the plate 

are symmetric with respect to the mid-plane and the resulting deformations are due to 

bending only, the strain distribution is anti-symmetric with respect to the mid-plane 

and hence the strain rosettes need only be positioned on one of the bounding surfaces 

(in this case, the top surface) of the iQS4 elements. 
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Figure 3.7 Contour plots of W displacement: (a) iFEM analysis using 28 iQS4 

elements and a single strain rosette per element; (b) Direct FEM analysis. 

 

Figure 3.8 Contour plots of Y  rotation: (a) iFEM analysis using 28 iQS4 elements 

and a single strain rosette per element; (b) Direct FEM analysis. 

In Figures 3.7-9, contour plots for the transverse displacement and two bending 

rotations are compared between the iFEM and high-fidelity FEM analyses. The percent 

difference between the iFEM and FEM predictions for the maximum deflection is only 

0.4%; this result is in close agreement with the predictions of Tessler and Spangler 

(2004). Similar accuracy is evidenced for the maximum bending rotations, with the 

percent difference of 0.3% for the Y-rotation, and 1.5% for the X-rotation. Both the 

iFEM and direct FEM contours are graphically indistinguishable in the figures. These 
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results also confirm the superior bending predictions of iQS4, especially considering 

the low-fidelity mesh used in the iFEM analysis. 

 

Figure 3.9 Contour plots of X  rotation: (a) iFEM analysis using 28 iQS4 elements 

and a single strain rosette per element; (b) Direct FEM analysis. 

3.4.2 A short cantilever beam under shear loading 

The shear-loaded short cantilever beam has been used by many authors, e.g., Allman 

(1988), Ibrahimbegovic et al. (1990), to validate the membrane response of new 

elements. Herein, this problem is revisited to assess the membrane capability of iQS4. 

The length L , the dimensions 2a h  of the constant rectangular cross section, the 

elastic modulus E , and the Poisson’s ratio v  of the beam are given in Figure 3.10. 

The right edge of the beam is subjected to a shear loading P , whereas the left edge of 

the beam is fully clamped.  

 

Figure 3.10 Short cantilever beam under shear loading at free edge.  
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According to Timoshenko and Goodier (1951), the elasticity solution of the vertical 

displacement of the tip, V , is  

3

3
9.02

2 (4 )
mm

4
5

5PL v PL
V

Eha Eah


    (3.94) 

for the properties are described in Figure 3.10. To establish an accurate reference 

solution, a convergence study was performed using direct FEM analysis. The highest 

fidelity mesh has 1,024 uniformly distributed square elements and 2,210 DOF. The 

maximum V displacement obtained from the direct FEM analysis is 9.042 mm which 

agrees well with the analytical solution. These FEM deflections are used to calculate 

the simulated in situ strains.  

Two different iFEM beam analyses are performed using varying number of strain 

rosettes. Since the material properties and the resulting membrane deformations of the 

beam are symmetric with respect to the mid-plane, the strain rosettes can be placed on 

one of the bounding surfaces (in this case, the top surface). In the first example, the 

iQS4 model of the beam has 64 square-shaped elements each having a single rosette 

as depicted in Figure 3.11. To investigate the effect of drilling rotation, the iFEM beam 

analyses are performed by both including and excluding the drilling rotation. In Figure 

3.12, contour plots for the V displacements are compared between these two cases. The 

iFEM and direct FEM analyses produce the maximum V displacement that differs only 

by 0.5% when the drilling rotation is included; it is 6.2% when the drilling rotation is 

excluded. 

In the second example, the same problem is analyzed once again using a coarser iQS4 

discretization that has only 16 square-shaped elements, each having a single-strain 

rosette as illustrated in Figure 3.13. To demonstrate the effect of drilling rotation on 

the membrane response, contour plots of the V displacement are shown in Figure 3.14, 

where the results correspond to the cases of including and excluding the drilling 

rotation. The iFEM and direct FEM predictions for the maximum deflection are 

identical when the drilling rotation is included in the iQS4 element formulation. By 

excluding the drilling rotation, the maximum V displacement is underestimated by 

19.2%. These results demonstrate that iQS4 has a superior membrane-response 
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capability when implemented with the hierarchical drilling rotation. The formulation 

also decreases the tendency toward membrane locking.  

 
Figure 3.11 Short cantilever beam discretized using 64 iQS4 elements and exact 

locations [mm] of strain rosettes.  

 
Figure 3.12 Contour plots of V displacement for short cantilever beam corresponding 

to iFEM analysis of 64 iQS4 element model: (a) Drilling rotation included; (b) 

Drilling rotation excluded. 

 
Figure 3.13 Short cantilever beam discretized using 16 iQS4 elements and exact 

locations [mm] of strain rosettes.  
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Figure 3.14 Contour plots of V displacement for short cantilever beam corresponding 

to iFEM analysis of 16 iQS4 element model: (a) Drilling rotation included; (b) 

Drilling rotation excluded. 

3.4.3 A thin-walled cylinder 

In the previous examples described in Sections 3.4.1-2, bending and membrane 

capabilities of the iQS4 element have been assessed by way of simple plate and beam 

problems. In many practical engineering applications, however, more complicated 

structural topologies are common. Herein, a thin-walled cylinder having radius of 1 m, 

length of 5 m and uniform thickness of 20 mm is analyzed to demonstrate the 

robustness of the iFEM/iQS4 methodology for modelling realistic shell structures. The 

cylinder is made of steel having an elastic modulus of 210 GPa and the Poisson’s ratio 

of 0.3. Both ends of the cylinder are fixed in terms of translations and rotations and a 

concentrated force F = 100 kN is applied at twelve different locations as illustrated in 

Figure 3.15. 

The prescribed boundary conditions and geometry are suitable to take advantage of the 

symmetry planes. As shown in Figure 3.16, only one-eighth of the cylinder needs to 

be modelled while applying the appropriate symmetry boundary conditions. The 

translations along the normal axis and the rotations around the in-plane axes are 

constrained for each symmetry plane. For instance, the XY plane symmetry conditions 

are imposed constraining the translation along the Z-direction and the rotations around 

the X- and Y-directions.  
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Figure 3.15 Thin-walled cylinder under concentrated forces. 

 
Figure 3.16 One-eighth of thin-walled cylinder with symmetric boundary conditions. 

To establish an accurate reference solution for this problem, an FEM convergence 

study was carried out. The highest fidelity mesh has 2400 uniformly distributed 

rectangular elements and 15006 DOF. The FEM deflections and rotations are used to 

calculate the simulated strain-sensor strains. Then, three different iFEM analyses of 

the cylinder were performed using three different strain-rosette networks. Although 

the material properties of the cylinder are symmetric with respect to the mid-plane, the 

resulting deformations exhibit both stretching and bending response due to the 

complexity of the structural topology. Hence, the strain rosettes have to be placed on 

both the top and bottom surfaces of the cylinder. In the first case study, the iQS4 

discretization is identical to the highest-fidelity mesh used in the direct FEM analysis. 

As presented in Figure 3.17, the iQS4 model has 2400 uniformly distributed 

rectangular elements each having two strain rosettes, one on the centroid of the top 

surface and the other one on the centroid of the bottom surface. In Figures 3.18-19, the 
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iFEM and FEM contour plots for TU  and T  are presented, showing the results that 

are graphically indistinguishable. The percent difference between the iFEM and FEM 

solutions for the maximum values of TU  and T  are respectively 1% and 0.06%. 

 
Figure 3.17 Discretization of one-eighth of thin-walled cylinder using 2400 iQS4 

elements with top- and bottom-surface strain rosettes per each element. 

 

Figure 3.18 Contour plots of TU  displacement for thin-walled cylinder modelled in 

Figure 3.17: (a) iFEM/ iQS4 analysis; (b) Direct FEM analysis.  

 

Figure 3.19 Contour plots of T  rotation for thin-walled cylinder modelled in Figure 

3.17: (a) iFEM/ iQS4 analysis; (b) Direct FEM analysis. 
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Figure 3.20 Discretization of one-eighth of thin-walled cylinder using 2400 iQS4 

elements with top- and bottom-surface strain rosettes located within 240 selected 

elements. 

 

Figure 3.21 Contour plots of TU  displacement for thin-walled cylinder modelled in 

Figure 3.20: (a) iFEM/ iQS4 analysis; (b) Direct FEM analysis.  

 

Figure 3.22. Contour plots of T  rotation for thin-walled cylinder modelled in Figure 

3.20: (a) iFEM/ iQS4 analysis; (b) Direct FEM analysis. 

Although the results of first case study are satisfactory, the number of strain rosettes 

used may be considered too high for a practical application. In the second case study 
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shown in Figure 3.20, the top- and bottom-surface strain rosettes are removed from 

2160 iQS4 elements, with the resulting iQS4 mesh having only 240 2  strain rosettes. 

For an iQS4 element which has no in situ strain components, the corresponding 

weighting coefficients are set to 10-4. In Figures 3.21-22, the contour plots for the TU  

displacement and T  rotation are depicted for both the iFEM and high-fidelity FEM 

analyses. The percent difference between the iFEM and FEM predictions for the 

maximum TU  displacement is 3%, whereas it is only 0.5% for maximum total rotation. 

Remarkably, the iFEM contours are almost identical to those of FEM. The iFEM 

predictions remain sufficiently accurate even with the missing strain-rosette data in 

many elements. 

 
Figure 3.23 Discretization of one-eighth of thin-walled cylinder using 160 iQS4 

elements with top- and bottom-surface strain rosettes located within each element. 

 

Figure 3.24 Contour plots of TU  displacement for thin-walled cylinder modelled in 

Figure 3.23: (a) iFEM/ iQS4 analysis; (b) Direct FEM analysis. 
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Figure 3.25 Contour plots of T  rotation for thin-walled cylinder modelled in Figure 

3.23: (a) iFEM/ iQS4 analysis; (b) Direct FEM analysis. 

In the third case study, the iQS4 model of the cylinder has 160 uniformly distributed 

rectangular elements each having top- and bottom-surface strain rosettes located as 

shown in Figure 3.23. The iFEM analysis is performed using the strain data obtained 

from 160 2  strain rosettes only. In Figures 3.24-25, the contour plots for the TU  

displacement and T  rotation are presented for both the iFEM and high-fidelity FEM 

analyses. According to the contour plots in Figure 3.24, the percent difference between 

the iFEM and FEM predictions for the maximum TU  displacements is less than 1%. 

These results demonstrate the superior accuracy of the iFEM/iQS4 capability even 

when very coarse discretizations are used. Even though the percent difference between 

the iFEM and FEM predictions for the maximum T  rotation is approximately 29%, 

the iFEM and FEM contour plots are generally in good agreement (refer to Figure 

3.25). 

3.4.4 The effects of noisy strain measurements on the 

accuracy of the iFEM solution 

The iFEM/iQS4 methodology is ultimately aimed at real engineering structures where 

the measured strains may be relatively noisy. Therefore, to examine iFEM/iQS4 

predictive capabilities in the presence of noisy strain data, the thin-walled cylinder 

considered in the previous study (vid. Section 3.4.3) is revisited herein. The iFEM 

analyses of the cylinder are performed once again using strain data which have 5% and 

10% of noise, respectively.  
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Signal-to-noise ratio (SNR) characterizes the relative strength of a desired signal and 

background noise. The SNR describes the ratio of the amplitude of the signal to the 

amplitude of the noise. Since SNR is a dimensionless quantity and many signals can 

have a wide dynamic range, SNR can be expressed on the logarithmic decibel (dB) 

scale as  

1010 log signal
dB

noise

P
SNR

P

 
  

 
 (3.95) 

where signalP  and noiseP  are respectively the average power of the signal and noise. 

Equation (3.95) indicates that a larger SNR typically results in a less noisy 

measurement, whereas a smaller SNR results in a more noisy measurement.  

 

Figure 3.26 Top surface strain measurements 11( )i   with 0% and 5% noise. 

Using Equation (3.95), SNR values corresponding to 5% noise and 10% noise can be 

calculated as 13.01 dB and 10 dB, respectively. The white Gaussian noise is added to 

the surface strain measurements for each of the specified SNR values using the built-

in function awgn() in the Matlab/Octave toolbox. To give an example, in Figures 3.26-
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27, the top surface strain measurements 11( )i   with 0% noise are compared to those 

with 5% and 10% noise. These comparisons show that the added noise levels generate 

significant differences in the strain measurements for each sensor. 

 

Figure 3.27 Top surface strain measurements 11( )i   with 0% and 10% noise. 

Once the iFEM analyses of the thin-walled cylinder are performed using strain data 

that include 5% and 10% noise levels, percent difference between iFEM and direct 

FEM predictions for TU  displacement can be calculated for each node i  as 

  , ,

,max

100%
iFEM FEM
T i T i

T i FEM
T

U U
PD U PD

U


    (3.96) 

where ,
iFEM
T iU  is iFEM prediction for the TU  displacement at node i , ,

FEM
T iU  is direct 

FEM prediction for the TU  displacement at node i , and ,max
FEM
TU  is direct FEM 

prediction of the maximum TU  displacement. In Figure 3.28, contour plots of 

 TPD U , corresponding to the model in Figure 3.17, are shown for the strain data 
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with the noise levels of 0%, 5%, and 10%. The results clearly demonstrate the superior 

accuracy of the iFEM solutions even when the in situ strain measurements include 

noise up to 10%. 

 

Figure 3.28 Contour plots of  TPD U  for thin-walled cylinder modelled in Figure 

3.17, with the percent noise in strain measurements: (a) 0%, (b) 5%, and (c) 10%. 

Moreover, the mean-percent difference, MPD , and the root-mean-square difference, 

RMSD , comparing iFEM and FEM predictions for the TU  displacement, are 

calculated as 

1

1 nN

i
in

MPD PD
N 

   (3.97) 

and 

 2

, ,
1

nN
iFEM FEM
T i T i

i

n

U U
RMSD

N






 (3.98) 

where nN  is the total number of nodes.  
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Table 3.1 MPD for TU  displacement corresponding to iFEM/iQS4 models with 

noisy strain measurements. 

iFEM/iQS4 

Model 

MPD 

0% noise 5% noise 10% noise 

1 0.0667 0.2628 0.2978 

2 2.0050 2.2960 2.6680 

3 0.7230 0.8771 0.9138 

 

Table 3.2 RMSD for TU  displacement corresponding to iFEM/iQS4 models with 

noisy strain measurements. 

iFEM/iQS4 

Model 

RMSD 

0% noise 5% noise 10% noise 

1 0.0040 0.0139 0.0155 

2 0.0954 0.1143 0.1336 

3 0.0379 0.0426 0.0493 

 

As shown in Table 3.1-2, MPD  and RMSD  for the TU  displacement for each 

iFEM/iQS4 model are compared for the cases of 0%, 5%, and 10% noise levels for the 

strain measurements, respectively. The results indicate that noisy strain measurements 

have only insignificant effect on the accuracy of the iFEM solution.  

3.5 Conclusion  

In this chapter, a new four-node quadrilateral inverse-shell element (iQS4) has been 

developed for shape-sensing analysis of plate and shell structures which have 

randomly distributed strain sensors. The element formulation is based on a weighted-

least-squares variational principle originally developed by Tessler and Spangler (2003, 

2005). The element kinematic field accommodates quadratic interpolation functions 

that permit a robust drilling DOF implementation that has the advantage of avoiding 

singular solutions when modelling complex shell structures. The formulation is also 

robust with respect to the membrane and shear locking phenomena. Several numerical 

studies have been performed and demonstrated the computational efficiency, high 
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accuracy and robustness of iQS4 discretizations with respect to the membrane, 

bending, and membrane-bending coupled structural response. The practical utility of 

the iFEM/iQS4 technology for application to engineering structures has been assessed 

using relatively low- and high-fidelity discretization strategies. The effects of sensor 

locations, number of sensors, and inherent errors in the measured strain data have also 

been explored. It has been demonstrated that even in the presence of the relatively 

sparse strain data that are subject to experimental noise, sufficiently accurate 

reconstruction of the deformed structural shapes can be achieved. Finally, the 

iFEM/iQS4 technology is readily implemented in any general-purpose finite element 

code and represents a viable computational tool for real-time structural health 

monitoring of general plate and shell structures. 
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Chapter 4  
 

Displacement and Stress Monitoring of 

Marine Structures  
 

4.1 Introduction  

In Chapter 3, iQS4/iFEM formulation is developed and its application to general 

engineering structures is demonstrated. In fact, iQS4 element is a simple, efficient, and 

practically very useful to model large and complex structures such as aerospace and 

marine vehicles. The main focus of this chapter is to perform displacement and stress 

monitoring of typical marine structures based on iQS4/iFEM methodology. Hence, the 

feasibility and applicability of the iFEM methodology will be assessed for real-time 

monitoring of large scale structures, in particular marine structures. In the remainder 

of this chapter, three different marine structures, (1) a longitudinally and transversely 

stiffened plate in Section 4.2, (2) a long barge having typical chemical tanker cross-

section in Section 4.3, and (3) parallel mid-body of a Panamax containership in Section 

4.4, are analyzed and discussed in detail. In the iFEM analysis of these structures, 

experimentally measured strains are simulated by strains obtained from high-fidelity 

FEM solutions. Besides, utilizing an in-house hydrodynamic software, hydrodynamic 

loads of the long barge and Panamax containership are calculated for various 

frequencies of head and beam sea waves, respectively. Then, these forces are applied 
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to FEM models of the barge and containership to compute their realistic structural 

responses in the sea environment. Moreover, several types of iQS4/iFEM 

discretization strategies including models that involve relatively few locations of strain 

gauges are examined. Furthermore, displacement and stress solutions of the iFEM 

analyses are compared to those of FEM analysis in order to determine the optimum 

locations of the on-board sensors. Finally, concluding remarks of this chapter is given 

in Section 4.5. The overall study described in this chapter has been originally published 

in series of works conducted by Kefal and Oterkus (2015, 2016a, 2016b), and to the 

best of the authors’ knowledge, this is first time that the iFEM formulation is applied 

to different types of marine structures. 

4.2 Longitudinally and Transversely Stiffened Plate  

Performing shape sensing of a longitudinally and transversely stiffened plate is crucial 

since ship structures are generally consisted of various stiffened plates. As depicted in 

Figure 4.1, a square plate that represents the portion of the side of a typical 

longitudinally and transversely framed tanker is considered to be solved based on 

iQS4/iFEM formulation described in Chapter 3. 

 

Figure 4.1 Longitudinally and transversely stiffened plate and its applied boundary 

conditions. 
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The plate has edge length of 3 m, each stiffener of the plate has a height of 150 mm, 

and the plate and its stiffeners have the same uniform thickness of 15 mm. The 

stiffened plate is made of a steel having elastic modulus of 210 GPa and Poisson’s 

ratio of 0.3. Right, left, upper, and bottom edges of the plate including each stiffener’s 

end edges are clamped and a static uniform transverse pressure of 40 kPa is applied to 

the bottom surface of the plate (refer to Figure 4.1).  

To establish an accurate reference solution, a convergence study of the stiffened plate 

was carried out using direct FEM analysis. As presented in Figure 4.2, the highest 

fidelity mesh has 5400 uniformly distributed square elements and 36966 DOF. The 

displacements and rotations obtained from this convergence study are considered as a 

reference source to generate the experimental strain measurements (in situ strain data) 

used in following iFEM analyses. 

 

Figure 4.2 High fidelity FEM mesh of the stiffened plate. 

Two different iFEM analysis of the stiffened plate are performed using varying number 

of strain rosettes. Although the material properties of the plate and stiffeners are 

symmetric with respect to the reference mid-plane, the resulting deformations exhibits 
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both stretching and bending actions due to the complexity of the structure. Hence, the 

strain rosettes have to be placed on both top and bottom surfaces of structure. 

In the first example, the iQS4 model of the stiffened plate consisted of 96 uniformly 

distributed rectangular elements each having two strain rosettes, thus total number of 

strain rosettes used in this case study is 96 2 . As presented in Figure 4.3, strain 

rosettes are positioned at the center of each iQS4 element belongs to the plate, whereas 

each iQS4 element on each stiffener has strain rosettes placed near to reverse side of 

the plate. 

 

Figure 4.3 Discretization of stiffened plate using 96 iQS4 elements with top and 

bottom surface strain rosettes located per each element. 

As depicted in Figures 4.4-5, the contour plots for TU  total displacement and T  total 

rotation are compared between iFEM and high-fidelity FEM analyses, respectively. 

According to the comparisons, the percent difference between iFEM and FEM 

predictions for the maximum displacement is 6.8% and the results are graphically 

agreed quite well. Even though iFEM and FEM contours for the total rotations seem 

slightly dissimilar from each other, the locations of maximum and minimum rotations 

found in iFEM and FEM analyses are in good agreement. Besides, the maximum 
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rotation found in iFEM analysis differs only by 1.6% from those found in FEM 

analysis. 

 

Figure 4.4 Contour plots of TU  displacement for stiffened plate modeled in Figure 

4.3: iFEM/iQS4 analysis; direct FEM analysis. 

 

Figure 4.5 Contour plots of T  displacement for stiffened plate modeled in Figure 

4.3: iFEM/iQS4 analysis; direct FEM analysis. 

In the second example, the stiffened plate is analyzed once again using a finer iQS4 

discretization that has 504 uniformly distributed rectangular elements each having two 

strain rosettes, one on the top surface and the other one on the bottom surface. 

Therefore, the iQS4 model has 504 2  strain rosettes that are located as illustrated in 

Figure 4.6. In Figures 4.7-8, the iFEM and FEM contour plots for TU  and T  are 

presented, showing the results that are graphically indistinguishable. The percent 

difference between the iFEM and FEM solutions for the maximum values of TU  and 
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T  are respectively 5.5% and 1%. These results confirms the high precision of iFEM 

framework when a finer iQS4 mesh including more strain rosettes is used. Moreover, 

these results demonstrate the superior capability of iQS4/iFEM methodology for shape 

sensing of the stiffened plate, i.e., primary structure of the marine structures. 

 

Figure 4.6 Discretization of stiffened plate using 540 iQS4 elements with top and 

bottom surface strain rosettes located per each element. 

 

Figure 4.7 Contour plots of TU  displacement for stiffened plate modeled in Figure 

4.6: iFEM/iQS4 analysis; direct FEM analysis. 
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Figure 4.8 Contour plots of T  displacement for stiffened plate modeled in Figure 

4.6: iFEM/iQS4 analysis; direct FEM analysis. 

4.3 A Long Barge Floating in Head Sea Waves 

In the previous section, the application of the iQS4/iFEM methodology is performed 

for a simple marine structure. Moreover, most of the proposed iFEM formulations 

(e.g., Tessler and Spangler, 2005; Tessler et al., 2011, 2012; Gherlone et al., 2012, 

2014) as a numerical and experimental application on engineering structures have been 

limited to the SHM of aerospace vehicles (for more information, vid. Chapter 2). 

Hence, the main aim of this section is to apply iFEM methodology for shape and stress 

sensing of a chemical tanker, as a complex application to marine structures. In order 

to make the application more realistic and practical, a hydrodynamic analysis is 

performed to calculate the hydrodynamic forces. By using these forces as a loading 

condition, FEM analysis of the barge is performed to calculate the numerical strain 

data to be used as an input for the iFEM analysis. Finally, iFEM analysis of the 

chemical tanker is performed by utilizing the simulated strain data obtained from 

various locations of the structure. 

4.3.1 Chemical tanker model  

A typical chemical tanker cross-section as well as its structural components is 

presented in Figure 4.9 (Dokkum, 2003). A long barge that has a very similar cross-

section to this typical chemical tanker is designed and modelled with iQS4 elements. 

Detailed dimensions of the barge cross-section is depicted in Figures 4.10. 
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Figure 4.9 View of a tank inside a typical chemical tanker (Dokkum, 2003) 

The defined global Cartesian coordinate system ( , ,X Y Z ) has its origin ( 0,0,0 ) on the 

still water plane aligned vertically with the ship’s center of gravity. The XY-plane is 

coincident with calm water level where X-axis is along the main direction of the ship, 

the Y-axis points at the port side of the ship, and Z-axis is positive upwards. According 

to the defined Cartesian coordinate system, main particulars of the barge are listed in 

Table 4.1. 

Table 4.1 General particulars of barge 

General particular Value Unit 

Length (over all) 100 m 

Breadth (moulded) 20 m 

Depth (moulded) 10.5 m 

Design draft (moulded) 8.25 m 

Block coefficient (at design draft) 0.997 m3/m3 

Displacement (at design draft) 16861.5 tonnes 

Longitudinal center of gravity (from aft end) 50 m 

Vertical center of gravity (from baseline) 5.826 m 

Vertical center of buoyancy (from baseline) 4.14 m 

Radius of gyration around X-axis 7.458 m 

Radius of gyration around Y-axis 29.253 m 

Radius of gyration around Z-axis 29.433 m 

Radius of gyration for roll-yaw product of inertia 0 m 
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Figure 4.10 Detailed dimensions [mm] of half cross-section of the barge 

It has been assumed that total number of cargo holds is eight, frame spacing between 

the transverse frames is 1.25 m, and all the structural components including plates, 

stiffeners, and bulkheads have the uniform thickness of 12 mm. All structural 

components of the barge are made of steel having elastic modulus of 210 GPa and 

Poisson’s ratio of 0.3. Several isometric views of the barge structural model are 

illustrated in Figures 4.11 through 4.13 in order to show structural topology of the 

barge. Cargo tanks of the full barge model can be seen in Figure 4.11. Structural details 

of the quarter barge model and a detailed view of double side and bottom framing is 

presented in Figures 4.12 and 4.13, respectively. 



70 

 

 

Figure 4.11 Isometric view of cargo tanks  

 

Figure 4.12 Structural details in the quarter barge model 

 

Figure 4.13 Double side and bottom framing details 
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4.3.2 Hydrodynamic-FEM analysis of the barge 

The design of marine structures such as ships, offshore and coastal structures is 

significantly affected by wave-body dynamics. Therefore, hydrodynamic analysis of 

rigid bodies that are freely oscillating under the free water surface is extremely 

important. An in-house panel method code, which is a frequency-domain 

hydrodynamic software developed by Kefal et al. (2015), is utilized to predict the 

motions and wave loads of the barge. The barge is assumed to move with zero forward 

speed in deep water at angle β = 180° to regular sinusoidal waves which describes the 

waves coming from ahead, namely head seas condition. Six DOF motions of the barge 

are calculated for a wave amplitude of 1 m and wave frequencies starting from 0.2 

rad/s to 1.5 rad/s. Full hydrodynamic model of the barge is discretized by using 2508 

flat quadrilateral panels as shown in Figure 4.14. 

 

Figure 4.14 Full hydrodynamic model of the barge 

The discretized body, namely coordinates of nodes used to generate the panels and 

nodal connectivity of these panels, is the main input for the in-house frequency-domain 

hydrodynamic software. The software first calculates radiation and diffraction source 

strengths and then velocity potentials at the centroids of the hydrodynamic panels for 

requested heading and frequency based on three dimensional potential flow theory and 

zero speed Green’s function (Wehausen and Laitone, 1960; Noblesse, 1982; Newman, 

1985).  

Since the barge floats in head seas condition, the in-house panel method code takes 

into account the advantage of the lateral symmetry condition (XZ-plane symmetry) and 

generates the source strength results by using only 1254 panels. By utilizing the 
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velocity potentials of radiated and diffracted waves, the software solves a complex 

form of linear and harmonic oscillatory rigid body motion equation with respect to the 

barge center of gravity and generates the six DOF motion results of the barge. The 

numerical sway, roll and yaw motion amplitudes with respect to barge center of gravity 

are negligibly small and in fact these results are theoretically zero because the barge is 

affected by head sea waves only. The motion amplitudes with respect to the barge’s 

center of gravity for the remaining directions namely surge, heave, and pitch are 

illustrated in Figures 4.15. 

 

Figure 4.15 Barge’s motion amplitudes with respect to wave frequencies 

The change of the motion amplitudes in surge, heave and pitch directions is significant 

around the frequency value of 0.5 rad/s in terms of structural analysis because the 

oscillatory dynamic pressure calculated at this frequency causes the highest vertical 

bending moment distribution along the length of the barge. The hydrodynamic force 

variation along the barge underwater panels due to the oscillation at 0.5 rad/s is plotted 

in Figure 4.16. 
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Figure 4.16 Contour plot of total hydrodynamic force [N] acting on the barge for the 

wave frequency value of 0.5 rad/s 

For a floating structure, it is important to obtain equilibrium before performing a direct 

FEM analysis because an imbalanced model causes an unrealistic result. Therefore, 

computed hydrodynamic forces and their corresponding inertia loads are applied to the 

direct FEM model of the structure in order to find a realistic global structural response 

of the barge. Application of inertia loads is done by associating the acceleration vector 

to each finite element while hydrodynamic forces are applied to the nodes of each 

finite element below still water. Barge geometry and its constraint conditions as well 

as loading conditions are symmetric with respect to both XZ and YZ-plane. So, there is 

no need to perform direct FEM analysis of the entire structure. Hence, only one quarter 

of the barge is discretized by using 6908 nodes and 11065 elements (most of them are 

rectangular-shaped) as shown in Figure 4.17.  

 

Figure 4.17 Discretization of one quarter of the barge using 11065 elements. 
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For the application of constraint conditions, translation along normal direction of 

symmetry plane and rotations around the symmetry plane axial directions are fixed for 

each symmetry plane. Moreover, the structural model is fixed by an artificial support 

along Z-direction in order to disable the rigid body motion. After performing the FEM 

analysis, the reaction force calculated at this artificial support is checked to ensure that 

it doesn’t affect the actual equilibrium of hydrodynamic pressures and inertia loads. 

The loading conditions are also applied by considering the symmetry planes. As 

mentioned earlier, the resulting total deflection and rotation obtained from direct FEM 

analysis are used to produce the simulated sensor-strain data. 

4.3.3 Case studies for iFEM analysis of the barge 

Three different case studies of the barge are considered based on iFEM methodology 

by using different number of strain rosettes and their altered locations. An iFEM 

model, which is composed of iQS4 elements and geometrically identical to the quarter 

mesh model used in direct FEM analysis (Figure 4.17), is adopted in the following 

iFEM analysis. The strain rosettes have to be placed at the top and bottom surfaces of 

the iQS4 elements whose resulting deformations exhibits both stretching and bending 

actions due to the complexity of the barge structure. However, for the iQS4 elements 

whose mid-planes are superimposed on the XZ and YZ symmetry planes of the barge, 

the strain rosettes are only located at the top surface of these elements. Since the 

material properties are symmetric with respect to mid-planes of these iQS4 elements 

and their resulting deformations are due to stretching only, the strain distributions are 

symmetric with respect to their mid-planes. 

In the first case, all the iQS4 elements used in discretization of iFEM model are 

assumed to be installed with strain sensors in order to examine the results when one-

to-one mapping of the relevant strain data from direct FEM to iFEM analysis is made. 

Therefore, the total number of iQS4 elements that are installed with strain rosettes is 

11065 from which 688 and 236 of them belongs to the XZ and YZ symmetry planes of 

the barge, respectively. As mentioned earlier, the strain rosettes are placed at the 

centroids of the top surfaces of these 924 iQS4 elements, whereas the strain rosettes 

are positioned on the centroids of both the top and bottom surfaces of the remaining 

10141 iQS4 elements. Thus, the total number of the strain rosettes is 21206. Since the 
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barge structure is constructed with thin shells, the weighting constants associated with 

the transverse shear strains are set as 410 ( 7,8)w   , whereas the remaining 

weighting constants for membrane strains and bending curvatures are respectively set 

as 1 ( 1 6)w    . The total displacement results found in iFEM analysis are shown 

together with the reference FEM results in Figure 4.18.  

 

Figure 4.18 Contour plots of TU  displacement [m] for the barge: iFEM/iQS4 

analysis for one-to-one strain data; direct FEM analysis. 

According to the distributions, both maximum displacements are approximately 4.9 

mm confirming that iFEM methodology can capture very promisingly expected results 

when all the structural components in one quarter of the barge are installed with strain 

sensors.  

Once a full field deformed shape of the barge is obtained, the full field von Mises 

stresses on the top surfaces of the shells are calculated in iFEM analysis and compared 

with those found in direct FEM solution. Both von Mises stress distributions are 

plotted together in Figure 4.19 and contours of stress colors are identically matching 
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each other. Moreover, the difference between the maximum von Mises results is 2.23% 

proving the superior accuracy of iFEM algorithm. 

 

Figure 4.19 Contour plots of VM  von Mises stress [Pa] for the barge: iFEM/iQS4 

analysis for one-to-one strain data; direct FEM analysis. 

Secondly, iFEM analysis of the barge is performed when all strain rosettes used in the 

first case study are removed except the ones glued on the central deck stiffener, the 

central longitudinal bulkhead, and the central girder. This case study is done to assess 

the precision of iFEM methodology when there are missing in situ strain 

measurements. After removal of the strain rosettes, iFEM analysis of the barge is 

conducted by using the strain data collected from 688 iQS4 elements which are 

superimposed on the XZ symmetry plane of the barge. The strain rosettes are only 

positioned on the centroids of top surfaces of these 688 iQS4 elements. Therefore, total 

number of strain rosettes count as 688 for this case study. The exact locations of the 

strain rosettes are clearly illustrated in Figure 4.20. 
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Figure 4.20 Discretization of the one quarter of the barge using 11065 iQS4 elements 

with top surface strain rosette located within 688 selected elements. 

 

Figure 4.21 Contour plots of TU  displacement [m] for the barge modeled in Figure 

4.20: iFEM/iQS4 analysis; direct FEM analysis. 

For iQS4 elements on which the strain data is available, the membrane strain’s 

weighting constants and bending curvature’s weighting constants are both set as 
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1 ( 1 6)w    , while their transverse shear strain’s weighting constants are set as 

410 ( 7,8)w   . For iQS4 elements that do not have any sensors, namely strain-

less iQS4 elements, their weighting constants are set as 410 ( 1 8)w    . In both 

iFEM and direct FEM analysis, the von Mises stresses are evaluated according to the 

top surfaces of the shells. As depicted in Figure 4.21-22, the total displacements as 

well as the von Mises stresses obtained from iFEM analysis are respectively compared 

with direct FEM results.  

 

Figure 4.22 Contour plots of VM  von Mises stress [Pa] for the barge modelled in 

Figure 4.20: iFEM/iQS4 analysis; direct FEM analysis. 

The iFEM-reconstructed displacement and von Mises stress fields fairly agree with the 

reference displacement and von Mises stress results. The error between the maximum 

displacements is 1.41%, whereas the error is 3.74% for von Mises stress comparison. 
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Hence, this accuracy confirms the robustness of iFEM framework even if there are 

missing in situ strain measurements. 

Although the results obtained in the first two case studies are completely satisfactory, 

the proposed number of strain rosettes may be high for a practical application. 

Therefore, in the third case study, the iFEM analysis of the barge is performed based 

on the same mesh, but only using the strain data obtained from strain rosettes located 

at the central deck stiffener, the central girder and several critical locations on the 

central longitudinal bulkhead including the neutral axis of the barge, the edge near to 

deck, and the edges near to the transverse bulkhead. The aim of this case study is to 

ultimately assess the practical applicability of iFEM methodology and to examine the 

precision of iFEM formulation with respect to the effect of sensor locations and 

number of sensors. After eliminating majority of the strain sensors, the strain data 

collected from 196 iQS4 elements are used to perform shape- and stress-sensing of the 

barge. Similar to the second case study, each of these 196 iQS4 elements are installed 

with only one strain sensor on the centroid of the top surface because these inverse 

elements belong to XZ symmetry plane. Therefore, the total number of stain rosettes 

is decreased to 196 and the exact locations of these sensors are clearly presented in 

Figure 4.23.  

 

Figure 4.23 Discretization of one quarter of the barge using 11065 iQS4 elements 

with top surface strain rosette located within 196 selected elements. 
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As in the second case study, the weighting coefficients are set to 410 ( 1 8)w     

for each strain-less iQS4 elements, whereas they are set to 1 ( 1 6)w     and 

410 ( 7,8)w    for each iQS4 element on which the strain sensors are located. In 

Figure 4.24, the contour plots for total displacements are compared between iFEM and 

FEM analysis. Remarkably, the iFEM contours are almost identical to those of FEM.  

 

Figure 4.24 Contour plots of TU  displacement [m] for the barge modelled in Figure 

4.23: iFEM/iQS4 analysis; direct FEM analysis. 

The percent difference between iFEM and FEM predictions for the maximum 

displacement is 12.85%, confirming that a sufficiently accurate displacements can be 

reconstructed even if using few number of strain-sensors. In Figure 4.25, the iFEM 

and FEM contours for von Mises stresses computed at the top surfaces of the shells 

are presented, showing that the results are graphically in good agreement. The iFEM 

and FEM produce the maximum von Mises stress that differs by 15.56%. This 

numerical results verify that it is still possible to reconstruct adequately precise von 

Mises stress even with the missing strain-rosette data in many elements. According to 
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results of three case studies, it can be concluded that iFEM methodology is a promising 

and practical technology for accomplishing accurate displacement and stress 

monitoring of complex marine structures. 

 

Figure 4.26 Contour plots of VM  von Mises stress [Pa] for the barge modelled in 

Figure 4.23: iFEM/iQS4 analysis; direct FEM analysis. 

4.4 A Panamax Containership Floating in Beam Sea 

Waves 

In the previous section, a sophisticated application of iFEM to marine structures, i.e., 

displacement and stress monitoring of a chemical tanker, is performed for sea state of 

head sea waves because this phenomenon of ship advancing in waves can be very 

crucial for closed-decked ships such as chemical tanker. However, for open-decked 

ships such as containerships, head sea wave loads may be less important than beam 
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sea wave loads due to torsional and warping stresses induced by torsional moments. 

Therefore, the main focus of this section is to demonstrate the application of the iFEM 

methodology for monitoring multi-axial deformations and stresses of a containership 

floating in beam sea waves. For this purpose, the “smart methodology” proposed by 

Kefal et al. (2015) is followed and optimum sensor locations are determined for a 

parallel mid-body of a Panamax containership. Firstly, hydrodynamic analysis of the 

containership is performed for beam sea waves. Secondly, several direct FEM analyses 

of the parallel mid-body are performed using the hydrodynamic wave bending and 

torsion moments. Thirdly, experimentally measured strains are simulated by strains 

obtained from high-fidelity FEM solutions. Finally, three different iFEM analyses of 

the parallel mid-body are performed for three different cases; (1) pure vertical bending 

case, (2) pure horizontal bending case and (3) pure torsion case.  

4.4.1 Panamax containership model  

The body plan of S175 containership, given by Wu and Hermundstad (2002), is used 

as a “parent ship hull form” in order to design a Panamax containership. First of all, 

the hull form of the Panamax containership is obtained performing several hull form 

transformations of the S175 containership. These transformations are (1) linearly 

scaling based upon the characteristic breadth, and (2) linearly lengthening the parallel 

mid-body. Once the design of the hull form is completed, a typical mid-ship section is 

also designed for the Panamax containership. 

 

Figure 4.27 Isometric view of the hull surface below draft waterline. 
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Figure 4.28. Mid-ship section of Panamax containership. 

Isometric view of the hull surface below the draft waterline and mid-ship section 

drawings are depicted in Figures 4.27-4.28, respectively. For clarity, only one global 

Cartesian coordinate system ( , , )X Y Z  serves as containership frame of reference, with 

its origin (0,0,0)  located at the still waterline and aligned vertically with the center of 

gravity of the ship. The X-, Y-, and Z-axes point out the bow, portside, and opposite 

direction of the gravity, respectively. According to the global coordinate system, when 
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the containership is loaded at its design draft, the containership has the general 

particulars as listed in Table 4.2.  

Table 4.2 General particulars of Panamax containership. 

General particular Value Unit 

Length between perpendiculars 291 m 

Breadth (moulded) 32.3 m 

Depth (moulded) 19.9 m 

Design draft (moulded) 12.1 m 

Block coefficient (at design draft) 0.73 m3/m3 

Displacement (at design draft) 85190.5 tonnes 

Longitudinal center of gravity (from aft perpendicular) 141.2 m 

Vertical center of gravity (from baseline) 12.1 m 

Vertical center of buoyancy (from baseline) 6.4 m 

Radius of gyration around X-axis 10.834 m 

Radius of gyration around Y-axis 74.105 m 

Radius of gyration around Z-axis 74.105 m 

Radius of gyration for roll-yaw product of inertia 0 m 

 

Parallel mid-body of the containership is composed of three full and two half cargo 

holds and is defined over the domain [ 51.6 m, 51.6 m]X    . Each ends of the cargo 

hold are separated with watertight bulkheads and each cargo hold is equally subdivided 

into two cargo compartments with a non-watertight bulkhead. Each cargo 

compartment has longitudinal space of 12.48 m because they are designed for stowing 

2 20  foot long containers. During the design of the containership, longitudinal frame 

spacing methodology is adopted and each cargo compartment is supported with three 

transverse frames. Moreover, both watertight and non-watertight transverse bulkheads 

have length of 1.56 m and each bulkhead is supported with a transverse frame at both 

ends. For simplicity, all the structural components including plates, stiffeners, and 

transverse frames have been designed to have the uniform thickness of 30 mm and 

they are made of steel having elastic modulus of 210 GPa and Poisson’s ratio of 0.3. 

In order to represent the complexity of the structure more clearly, an isometric view of 

the parallel mid-body is illustrated in Figure 4.29. 
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Figure 4.29 Parallel mid-body of Panamax containership. 

4.4.2 Hydrodynamic-FEM analysis of the containership 

In this study, the total weight of the containership is distributed along the length 

between perpendiculars as depicted in Figure 4.30. At this loading condition, the 

containership is assumed to float with zero forward speed in beam sea waves. As 

presented in Figure 4.31, a full hydrodynamic model consisted of 4912 flat uniformly 

distributed (mostly rectangular-shaped) panels is used to perform the hydrodynamic 

analysis. 

 

Figure 4.30 Total weight distribution of Panamax containership. 
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Figure 4.31 Hydrodynamic model of Panamax containership. 

As a result of the hydrodynamic analysis, six DOF motions and hydrodynamic 

pressures of the containership are obtained for unit wave amplitude and wave 

frequencies ranging from 0.05 rad/s to 1.2 rad/s. The nonzero rigid body motion 

amplitudes, namely sway, heave, and roll motions, are plotted in Figures 4.32-33, 

respectively. 

 

Figure 4.32 Sway and heave motion amplitudes. 
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Figure 4.33 Roll motion amplitudes. 

At any section along the length, hydrodynamic section forces can be calculated using 

the six DOF motions, the hydrodynamic pressures, and the total weight distribution. 

In Figure 4.33, the roll motion amplitude significantly increases between wave 

frequencies of 0.2 and 0.4 rad/s. Therefore, vertical and horizontal wave bending 

moments, MY and MZ, and torsional wave moments, MX, at section X=0 m are 

compared between wave frequencies of 0.2 and 0.4 rad/s as shown in Figure 4.34. 

 

Figure 4.34 Wave vertical and horizontal bending and torsional moments. 
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In Figure 4.34, the most critical wave frequency is 0.31 rad/s for performing the 

structural analysis. Hence, the wave moments at 0.31 rad/s, MX = 18446 kNm/m,  

MY = 20686 kNm/m, and MZ = 23261 kNm/m, are chosen as load input for the 

following structural analysis. Three different FEM analyses of parallel mid-body are 

performed for three different loading cases; (1) pure vertical bending case, (2) pure 

horizontal bending case and (3) pure torsion case. The resultant deformations due to 

these three loading scenarios may be symmetric/antisymmetric with respect to XZ- 

and/or YZ-planes. Moreover, geometry of the parallel mid-body is symmetric with 

respect to both XZ- and YZ-planes. Therefore, only one-fourth of the mid-body is 

modelled to establish an accurate reference solution through high fidelity FEM 

analysis. As depicted in Figure 4.35, the most refined FEM mesh consists of 246,484 

shell elements (mostly rectangular-shaped) and 1,428,738 DOF. 

 

Figure 4.35 High fidelity FEM mesh of one-fourth of parallel mid-body. 

The translations along the normal axis and the rotations around the in-plane axes are 

constrained for symmetry boundary condition, while the rotation around the normal 

axis and the translations along the in-plane axes are constrained for anti-symmetry 

boundary condition. For each loading case, the boundary conditions (BC) imposed to 

XZ- and YZ-planes and suitable moments applied uniformly along the length of the 

parallel mid-body are listed in Table 4.3. 
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Table 4.3 Constraint and loading boundary conditions. 

Loading case XZ-plane BC YZ-plane BC Moment 

Pure vertical bending Symmetry Symmetry MY 

Pure horizontal bending Anti-symmetry Symmetry MZ 

Pure torsion Anti-symmetry Anti-symmetry MX 

 

Once the constraint and loading boundary conditions are applied to the high fidelity 

FEM model, an accurate reference solution is established. Finally, for each loading 

case, experimentally measured strains, 11 22 12( , , )i      and 11 22 12( , , )i     , are simulated 

by strains obtained from the FEM analyses. 

4.4.3 Case studies for iFEM analysis of the containership 

Three different iFEM analyses of the parallel mid-body are performed utilizing three 

different strain-rosette networks for pure vertical and horizontal bending, and torsion 

case, respectively. To remain consistent with the above stated boundary conditions, 

only one-fourth of parallel mid-body is modelled with a coarse iQS4 discretization 

consisted of only 15318 uniformly distributed (mostly rectangular-shaped) elements 

and 79596 DOF as shown in Figure 4.36. 

 

Figure 4.36 Coarse iQS4/iFEM mesh of one-fourth of parallel mid-body. 
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The resulting deformations of the mid-body exhibit both stretching and bending 

response due to the complexity of the structural topology. Hence, the strain rosettes 

have to be placed on both the top and bottom surfaces of the plates. Moreover, the hull 

structure is made up with thin shells so the weighting constants for transverse shear 

strains are set as 510 ( 7,8)w    in the following iFEM case studies. To 

investigate the accuracy of iFEM predictions for the TU  displacement, ( )TPD U  is 

computed using Equation (3.96) given in Section 3.4.4. Once the structural deformed 

shape is obtained, von Mises stresses, VM , are calculated on the top surfaces of the 

shells. Moreover, the accuracy of iFEM predictions for the VM  stress is examined by 

calculating the percent difference between iFEM and direct FEM predictions for VM  

stress at each node i  as 

, ,

,max

( ) 100%
iFEM FEM
VM i VM i

VM FEM
VM

PD
 





   (4.1) 

where ,
iFEM
VM i  is iFEM prediction for the VM  stress at node i , ,

FEM
VM i  is direct FEM 

prediction for the VM  stress at node i , and ,max
FEM
VM  is direct FEM prediction of the 

maximum VM  stress. To visualize a better deformed shape of the mid-body, contours 

of displacements and stresses are plotted over a visualization mesh corresponding to 

entire parallel mid-body. In all case studies, for an iQS4 element which has no in situ 

strain components, the corresponding weighting coefficients are set to 10-5. 

In the first case study, i.e. pure vertical bending case, the iQS4 model of the parallel 

mid-body has top- and bottom-surface strain rosettes located within 327 selected 

elements as shown in Figure 4.37. Contour plots of TU  and ( )TPD U  for the first iFEM 

analysis are depicted in Figure 4.38 where the deformed shape of the mid-body 

confirms the pure vertical bending of the structure. In Figure 4.38, the maximum 

( )TPD U  is 7.248% and located at the node where the maximum TU  is occurred. In 

Figure 4.39, contours of VM  and ( )VMPD   are presented, showing that the maximum 

( )VMPD   is 12.569% and its location is identical to the location of the node where the 

maximum VM  stress is occurred. Therefore, these results verify superior precision of 
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the iFEM solutions for complex marine structures. These results also confirm the 

strain-sensor locations depicted in Figure 4.37 are the optimum locations for 

performing an accurate shape and stress sensing of the Panamax containership 

subjected to vertical wave bending moment. 

 

(Isometric view I) 

 

(Isometric view II) 

Figure 4.37 The iQS4 model of one-fourth of parallel mid-body using top and bottom 

surface strain rosettes located within 327 selected elements. 
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Figure 4.38 Contour plots of TU  and ( )TPD U  for the iQS4 model in Figure 4.37. 
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Figure 4.39 Contour plots of VM  and ( )VMPD   for the iQS4 model in Figure 4.37. 

In the second case study, i.e. pure horizontal bending case, the iQS4 model of the 

parallel mid-body has top- and bottom-surface strain rosettes located within 413 

selected elements as shown in Figure 4.40. Contour plots of TU  and ( )TPD U  for the 
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second iFEM analysis is demonstrated in Figure 4.41. Remarkably, the deformed 

shape of the mid-body is identical to the pure horizontal bending of the structure. As 

presented in Figure 4.41, the value of ( )TPD U  is approximately equal to 5.5% at the 

location where the maximum TU  displacement is occurred. 

 

(Isometric view I) 

 

(Isometric view II) 

Figure 4.40 The iQS4 model of one-fourth of parallel mid-body using top and bottom 

surface strain rosettes located within 413 selected elements. 



95 

 

 

 

Figure 4.41 Contour plots of TU  and ( )TPD U  for iQS4 model in Figure 4.40. 

In Figure 4.42, the contour plots of VM  and ( )VMPD   is presented for the second 

case study. The value of ( )VMPD   is around 8% at the location where the maximum 

VM  stress is occurred (Figure 4.42). Consequently, these results clearly demonstrate 
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high precision of the iFEM solutions for shape and stress sensing. Furthermore, these 

results verify that the strain-sensor locations presented in Figure 4.41 are the optimum 

locations for performing a precise displacement and stress monitoring of the Panamax 

containership exposed to horizontal wave bending moment. 

 

 

Figure 4.42 Contour plots of VM  and ( )VMPD   for iQS4 model in Figure 4.40. 
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In the third case study, i.e. pure torsion case, the iQS4 model of the parallel mid-body 

has top- and bottom-surface strain rosettes located within 442 selected elements as 

shown in Figure 4.43. Contour plots of TU  and ( )TPD U  for the third iFEM analysis 

are depicted in Figure 4.44 where the deformed shape of the mid-body exhibits the 

pure torsion of the structure. 

 

(Isometric view I) 

 

(Isometric view II) 

Figure 4.43 The iQS4 model of one-fourth of parallel mid-body using top and bottom 

surface strain rosettes located within 442 selected elements. 
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Figure 4.44 Contour plots of TU  and ( )TPD U  for iQS4 model in Figure 4.43. 

In Figure 4.44, the value of ( )TPD U  is approximately equal to 7.1% at the location 

where the maximum TU  displacement is occurred. According to Figures 4.38, 4.41, 

and 4.44, the maximum TU  displacement induced due by torsional moment is much 

larger than the ones caused due to vertical and horizontal bending moments. This result 
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proofs the significance of hull girder torsion loading on containerships floating in beam 

sea waves. In Figure 4.45, the contour plots of VM  and ( )VMPD   for third iFEM 

analysis is presented. 

 

 

Figure 4.45 Contour plots of VM  and ( )VMPD   for iQS4 model in Figure 4.43. 
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As depicted in Figure 4.45, the value of ( )VMPD   is approximately 10.7% at the 

location where the maximum VM  stress is occurred. Hence, these result clearly 

indicates the significant precision of the iFEM solutions for displacement and stress 

monitoring. Moreover, these results validate that the strain-sensor locations 

demonstrated in Figure 4.43 are the optimum locations for performing a precise shape- 

and stress-sensing of the Panamax containership subjected to torsional wave moment. 

According to the results found in all three case studies, it can be concluded that iFEM 

is a superior, powerful, and innovative technology for the structural health monitoring 

of marine structures. 

4.5 Conclusion  

In this chapter, displacement and stress monitoring of three different marine structures 

is accomplished by using iFEM/iQS4 methodology developed in Chapter 3. These 

marine structures are (1) a longitudinally and transversely stiffened plate, (2) a long 

barge having typical chemical tanker cross-section, and (3) parallel mid-body of a 

Panamax containership. In order to represent floating structures (i.e., the barge and 

containership) in real sea environment, in-house hydrodynamic and FEM software are 

utilized for simulating the on-board strain-sensor strains. Then, iFEM analyses of the 

aforementioned marine structures are individually performed utilizing different 

networks of strain sensors located within the same low-fidelity iQS4 discretization of 

each structure. After that, the deformed shape and von Mises stresses of the stiffened 

plate, barge, and containership are reconstructed using in situ strain data obtained from 

each proposed network of strain sensors. According to the accuracy of the 

displacement and stress results, the optimum strain sensor locations are identified and 

clearly demonstrated for each iFEM case study of each marine structure. In general, 

the numerical results confirmed that relatively accurate deformed shapes and von 

Mises stresses can still be reconstructed by exploiting the weighting constants in the 

least-squares functional of iFEM, even though a large amount of in situ strain data is 

absent or only a relatively sparse strain data is collected. As a result, it can be 

concluded that iFEM algorithm is very promising system for performing a precise 

shape and stress sensing of marine structures. 



101 

 

 

 

 

Chapter 5  
 

Isogeometric iFEM Formulation  
 

5.1 Introduction  

This chapter presents a novel isogeometric iFEM formulation, which couples the 

NURBS-based IGA together with the iFEM methodology for shape sensing of 

complex/curved thin shell structures. The primary goal is to be geometrically exact 

regardless of the discretization size and to obtain a smoother shape sensing even if 

using less number of strain sensors. For this purpose, an isogeometric Kirchhoff–Love 

inverse-shell element (iKLS) is developed on the basis of a weighted-least-squares 

functional that uses membrane and bending strain measures consistent with the 

Kirchhoff–Love shell theory. The novel iKLS element employs NURBS not only as a 

geometry discretization technology, but also as a discretization tool for displacement 

domain. Therefore, this development serves the following beneficial aspects of the 

IGA for the shape-sensing analysis based on iFEM methodology: (1) exact 

representation of computational geometry, (2) simplified mesh refinement, (3) smooth 

(high order continuity) basis functions, and finally (4) integration of design and 

analysis in only one computational geometry. The overall strategy presented in chapter 

is an extended and enhanced version of the study described in Kefal and Oterkus 

(2017), and to the best of the author’s knowledge, this is the first time that an 

isogeometric iFEM formulation become available in the literature. This chapter is 
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organized as follows: First of all, Section 5.2 provides the background and motivation 

for this study. Moreover, Section 5.3 presents an iFEM formulation for thin and curved 

shells, which is developed utilizing the kinematics of Kirchhoff–Love shell theory in 

convected curvilinear coordinates. Besides, a brief summary of B-spline and NURBS 

basis functions is given in Section 5.4. Furthermore, the mathematical structure of the 

iKLS element, i.e., an example of the isogeometric iFEM formulation, is described in 

Section 5.5. Then, in Section 5.6, the superior capabilities of iKLS element for shape 

sensing of curved shells are demonstrated by various case studies including Scordelis–

Lo roof, pinched hemisphere, and partly clamped hyperbolic paraboloid. Finally, the 

conclusions of this chapter, which indicate the advantages of the iKLS element and 

isogeometric iFEM methodology, is provided in Section 5.7.  

5.2 Background and Motivation  

Computer aided design (CAD) is applied early in the life-cycle of product 

manufacturing. The CAD models are moved downstream to serve as the basis for 

engineering and manufacturing, and even after product delivery for maintenance and 

support. Non-Uniform rational B-spline (NURBS) is used as a predominant 

technology to describe complex geometries in present CAD. This method for 

describing shapes is often called “isogeometry”, which easily allows a vast variety of 

geometries to be represented exactly same as they are in nature (refer to Figure 5.1).  

 

Figure 5.1 CAD model of a propeller (Taus, 2015) 
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There is a large collection of literature focused on NURBS basis functions and B-

splines. For instance, the standard reference for NURBS is published by Piegl and 

Tiller (1997), and a popular introductory book is written by Rogers (2001). As a 

consequence of several decades of research, many efficient computer algorithms exist 

for fast evaluation and refinement of NURBS in today’s CAD industry. 

The process of generating a polygonal or polyhedral mesh that approximates a 

geometric domain is referred to as “mesh generation” and typically used for physical 

simulations such as FEM analysis, computational fluid dynamics. For example, to 

perform FEM analysis of a rim, the mesh of the rim is created from its CAD model as 

depicted in Figure 5.2. Hughes et al. (2005) claimed that this process (i.e., mesh 

generation from a CAD model) is a typical situation in major engineering industries 

and suggests a totally different geometric description for the analysis or the one that is 

only approximate. The authors raised the issue of mesh generation by the following 

statement that can be found at page 4136 in (Hughes et al., 2005): “It is estimated that 

about 80% of overall analysis time is devoted to mesh generation in the automotive, 

aerospace, and ship building industries.” Therefore, generation of a mesh may be 

costly, time consuming, and create inaccuracies.  

 

Figure 5.2 Mesh of a rim and its CAD model (Frei, 2013)  

In order to bridge the gap between CAD and engineering analysis, Hughes et al. (2005) 

introduced isogeometric analysis (IGA) that employs NURBS to describe the 

geometry of the computational domain in the analysis framework. The IGA serves an 

exact representation of computational geometry no matter how coarse the 

discretization. Moreover, it simplifies the mesh refinement by eliminating the need for 
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communication with the CAD geometry once the initial isogeometric model is 

constructed. Furthermore, it provides high order continuity basis functions, and finally 

knits the mesh generation process within CAD systems. As a result of these beneficial 

aspects, the IGA has received a great deal of attention in the recent years in many 

different fields of computational mechanics, in particular structural and fluid 

mechanics. To give an example, Cottrell et al. (2009) provided the definitive 

explanation of the IGA and its future directions. Moreover, IGA has shown advantages 

over traditional approaches in the context of fluid-structure interaction problems 

(Bazilevs et al., 2008), shell and plate problems (Benson et al., 2010), contact 

formulations (Temizer et al., 2011), and optimization problems (Wall et al., 2008).  

Exact representation of actual structural geometry is crucial for an accurate iFEM 

analysis of any structure, and especially curved structures. The iFEM analysis of a 

smoother geometry requires more refined mesh generation for the existing flat inverse-

shell elements, e.g., iQS4 (vid. Chapter 3), iMIN3 (Tessler and Spangler, 2004). A 

high fidelity discretization of an iFEM model may require a large number of strain 

sensors installed on-board structure. Therefore, performing shape sensing and SHM of 

a complex/curved geometry would be costly using the existing flat inverse-shell 

elements. Moreover, the shape functions of these flat shell elements are standard 

polynomial-based functions and limited to only C0-continuity for the displacement 

field. However, a smoother shape sensing can be obtained, if the shape functions 

ensure a higher continuity ( , 0)pC p   throughout the element interior and edge 

interface. In order to overcome the problems mentioned above and expand the horizon 

of the iFEM methodology further, the concept of IGA can be utilized to develop novel 

isogeometric inverse elements. Hence, an isogeometric iFEM formulation (i.e., iKLS 

element), the first of its kind, is developed in remainder of this chapter.  

5.3 The iFEM Formulation for Thin Shells in 

Convected Curvilinear Coordinates  

Kirchhoff (1850) derived the first mathematically correct theory on the structural 

behavior of plates which states that normals to the mid-surface in the undeformed 

configuration remain normal and unstretched in the deformed configuration. Based on 
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the work of Kirchhoff for plate problems, Love (1888) derived a general theory for 

both curved and plane surfaces. Therefore, the term “Kirchhoff–Love” is associated 

with the normality hypothesis of shell structures. Kirchhoff–Love shell model is well 

suited for thin shell analysis because (1) it disregards both transverse shear 

deformations and extensibility in thickness direction and (2) the deformation behavior 

of elastic and homogeneous thin shells is physically dominated by membrane and 

bending actions. In fact, Kirchhoff–Love model is more advantageous to use in 

comparison to the other shell models because no shear locking occurs if the transverse 

shear is neglected. In the remainder of this section, the description of the inverse 

problem is highlighted. Then, the kinematics of 3-parameter Kirchhoff–Love shell 

model developed by Echter et al. (2013) are briefly revised and the strain measures to 

be used in the iFEM formulation are accurately defined. Lastly, the computation of the 

experimental section strains and weighted-least-squares functional of the iFEM 

formulation are briefly discussed.  

5.3.1 The inverse problem 

In this chapter, unless otherwise specified, Greek indices take the values of 1 and 2 

while the Latin indices range from 1 to 3. Consider an arbitrary shell body, e.g., a 

curved shell as depicted in Figure 5.3, with a uniform thickness 2h  that is at least one 

order of magnitude smaller than the characteristic dimension of the body such as the 

span or diameter. General convected curvilinear coordinates i  are used to identify a 

particle (material point) of the curved shell body (refer to Figure 5.3). 

 

Figure 5.3 Notation for the curved shell body 
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The coordinate 3 [ , ]h h     identifies the thickness direction of the shell and material 

points located at the mid-surface of the shell are described as 3 0  . Moreover, the 

in-plane coordinates are represented by A   where A  denotes the area of the mid-

surface. Furthermore, an orientation in three-dimensional Euclidean space 3  is 

introduced by a fixed orthogonal Cartesian coordinate system that has orthonormal 

basis ˆ
ie  pointing the direction of the coordinate axes as shown in Figure 5.3. In this 

regard, linear combination of the basis vectors ˆ ie  and the Cartesian coordinates iP  can 

uniquely establish a position vector Ρ  of any arbitrary material point in the shell body 

as (refer to Figure 5.3) 

3
1 2 3 1 2 3

1

ˆ( , , ) ( , , )i i
i

P     


 P P e  (5.1) 

where iP  is written as a function of convective coordinates i , thus defining the 

transformations between Cartesian and convective coordinates. It is assumed that 

external forces involving the in-plane and out-of-plane components, T  and q , are 

applied to the shell body. Moreover, rigid body motion of the body is fully constrained. 

Furthermore, as depicted in Figure 5.3, strain sensors are attached at discrete locations 

on the surface of shell, providing real-time strain measurements. The inverse problem 

at hand is dynamic tracking of the three-dimensional displacements of the shell body 

utilizing only the in situ discrete surface strains and boundary restraints. The precise 

solution of this inverse problem will be derived based on an isogeometric iFEM 

methodology, which is the state of the art developed in this chapter.  

5.3.2 Differential geometry and shell kinematics 

The arbitrary material points in undeformed (reference) and deformed (current) 

configurations of the shell body can be described by position vectors X  and x , 

respectively (refer to Figure 5.4). The position vector X  can be defined by linear 

function of thickness coordinate 3  as 

1 2 3 1 2 3 1 2
3( , , ) ( , ) ( , )        X F A  (5.2) 
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where F  represents a position vector to a material point on the mid-surface in reference 

configuration and 3A  denotes a unit-magnitude vector field (the director vector) that 

is perpendicular to the tangent plane of any point belongs to mid-surface in reference 

configuration (refer to Figure 5.4). As given in Equation (5.2), both F  and 3A  are only 

functions of the in-plane coordinates  . 

 

Figure 5.4 Undeformed and deformed configurations of the shell body 

Taking partial derivative of F  with respect to   provides the covariant base vectors 

A  of the mid-surface in reference configuration as 

, A F  (5.3) 

where, hereafter, ( )
,( )  




   represents a partial derivative with respect to in-plane 

coordinate  . The director vector 3A  can be defined by normalized cross product of 

these covariant base vectors A  as 

1 2
3

1 2





A A

A
A A

 (5.4) 

Analogous to the Equation (5.2), the position vector x  can also be defined by linear 

functions of thickness coordinate 3  as 

1 2 3 1 2 3 1 2
3( , , ) ( , ) ( , )        x f a  (5.5) 
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where f  is a position vector to a material point on the mid-surface and 3a  is the 

director vector in current configuration (refer to Figure 5.4). According to the 3-

parameter Kirchhoff–Love shell model (Echter et al., 2013), the director vector 3a  can 

be defined by linearized rotation of the director vector 3A  as 

3 3 3  a A θ A  (5.6) 

where θ  is the rotation vector and 3θ A  represents the difference between the 

directors of the reference and current configurations of the shell body as presented in 

Figure 5.5.  

 

Figure 5.5 The difference vector 3θ A  between the directors of the reference and 

current configurations 

The displacement vector U  of any arbitrary point in the shell body can be defined by 

subtracting the position vector of undeformed configuration from the position vector 

of deformed configuration as 

3 3
3 3 3( ) ( )         U x X f F a A u θ A  (5.7) 

where u  is mid-surface displacement vector representing the translational 

displacements of the mid-surface of shell body from reference to current configuration 

as depicted in Figure 5.4. The orthogonal components of this vector can be defined as 

a function of in-plane coordinates  ; that is, 
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1 2 1 2 1 2[ ( , ) ( , ) ( , )]Tu v w     u  (5.8) 

where the functions 1 2( , )u u   , 1 2( , )v v   , and 1 2( , )w w    represent 

translations along the covariant Cartesian base vector ˆ ie , respectively. In Equations 

(5.6-7), the rotation vector θ  can be described in terms of in-plane covariant base 

vectors A  and related rotation angles   as (Echter et al., 2013) 

1 1 2 2  θ A A  (5.9) 

with 

,2 32 2 3
1

1 2 1 2

( )
 

 
 

u Aa A A

A A A A
 (5.10) 

,1 31 1 3
2

1 2 1 2

( )
 

   
 

u Aa A A

A A A A
 (5.11) 

where ,u  denoting the partial derivatives of u  with respect to   are utilized to define 

rotation angles  . Therefore, the rotation vector θ  is a function of ,u  so that the 

orthogonal components of u , namely ( , , )u v w , are the only unknowns, i.e., kinematic 

variables, to predict the displacement vector U  in the analysis.  

The partial derivatives of the displacement field U  with respect to curvilinear 

convective coordinates i  can be evaluated as 

3
, , , 3 3,( )       U u θ A θ A  (5.12) 

,3 3 U θ A  (5.13) 

where, hereafter, 3

( )
,3( )





   represents a partial derivative with respect to thickness 

coordinate 3 . Moreover, the covariant base vectors ig  of the shell body can be 

calculated as 

3
, 3,     g X A A  (5.14) 

3 ,3 3 g X A  (5.15) 
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Using Equations (5.12) and (5.14), the linearized Green-Lagrange strain tensor defined 

in convected curvilinear coordinates gives rise to in-plane strains 

11 ,1 1 1 4
3 3

22 ,2 2 2 5

12 ,1 2 ,2 1 3 6

( ) ( )

e

e

e

 
   
 

      
                   
               

U g

U g e u κ u

U g U g

 (5.16) 

where the vectors e(u)  and ( )κ u  represent membrane strain measures and bending 

curvatures, respectively, and their components can be explicitly expressed as  

1 ,1 1e  u A  (5.17) 

2 ,2 2e  u A  (5.18) 

3 ,1 2 ,2 1e    u A u A  (5.19) 

4 ,1 3,1 3 1 ,1 3,1 1

0

( ) ( )


       u A A A θ θ A A  (5.20) 

5 ,2 3,2 3 2 ,2 3,2 2

0

( ) ( )


       u A A A θ θ A A  (5.21) 

6 ,1 3,2 ,2 3,1 3 2 ,1 3 1 ,2

3,1 2 3,2 1

0 0

( ) ( )

( ) ( )



 

         

     

u A u A A A θ A A θ

θ A A θ A A 
 (5.22) 

where all strain contributions of 3,( )  θ A A  vanish identically because the vectorial 

quantities obtained from the cross products of θ  and 3,A  are normal to the mid-

surface of the shell body so that scalar multiplication of these vectorial quantities and 

A  provides the final results as 3,( ) 0   θ A A . 

In addition to the in-plane strains, the linearized Green-Lagrange strain tensor defines 

the transverse-shear strains utilizing Equations (5.12-15) as  

3 , 3 ,3 , 3 3

0

3
, 3 3 3, 3 3 3,

0 0

( )

[( ) ( ) ( ) ] 0

    

  






 

        

         

U g U g u A θ A A

θ A A θ A A θ A A



 
 (5.23) 
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Thus, Kirchhoff–Love shell model exhibits zero transverse-shear strains, 3 0  . This 

indicates that the deformations of the shell body will be physically dictated by only 

membrane and bending actions. 

5.3.3 Computation of experimental section strains  

In Section 3.2.3, computation of in situ section strains that correspond to original iFEM 

plate formulation (Tessler and Spangler, 2003, 2005) is discussed in detail. In fact, it 

may be convenient to use the same relations to calculate experimental membrane and 

bending section strains of the presented Kirchhoff–Love shell model. Therefore, these 

relations are briefly revisited for consistency of the formulation. To compute the 

experimental section strains, the strain rosettes are located on top and bottom surface 

of the curved shell as depicted in Figure 5.6. 

 

Figure 5.6 Discrete surface strains measured at ( , ) ( 1 )i h i n  x . 

As presented in Figure 5.6, the top- and bottom-surface strains 11 22 12( , , )i      and 

11 22 12( , , )i      are measured at n  discrete locations ( , ) ( 1 )i h i n  x  where 

1 2( , )i i x . Using these surface strain measurements, the in situ membrane strain 

measures and bending curvatures, iE  and iK , that correspond to their analytic 

counterparts ( )e u  and ( )κ u , given by Equation (5.16), can be determined at the 

location ix  on the mid-surface of the shell as follows:  

1 11 11

2 22 22

3 12 12

1
( 1 )

2i

i i

i n

 
 
 

 

 

 

   
          

       

Ε  (5.24) 
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4 11 11

5 22 22

6 12 12

1
( 1 )

2i

i i

i n
h

 
 
 

 

 

 

   
          

       

Κ  (5.25) 

5.3.4 The weighted-least-squares functional  

Utilizing the iFEM formulation presented in (Tessler et al., 2011) as a general 

structure, a weighted-least-squares functional, ( ) u , that takes in account the 

membrane and bending deformations of the current Kirchhoff–Love shell model can 

be established as 

6

1

( ) w 





 u  (5.26) 

where ( 1 3)w     and ( 4 6)w     are positive valued weighting constants of 

the membrane strain measures and bending curvatures, respectively. The importance 

of their usage for an iFEM discretization with very sparse measured strain data was 

described earlier (vid. Section 3.2.4). Moreover, in Equation (5.26), the functional 

( 1 6)     is the least-squares functional associated with the individual section 

strains. Considering that the discrete experimental strain measures, iE  and iK , 

become available in the iFEM analysis, the least-squares functional can be expressed 

as the normalized Euclidean norms as  

 2

1

1
( )  ( 1, 2,3)

n

i i
i

e
n   



   u  (5.27) 

 
2

2

1

(2 )
( )  ( 4,5,6)

n

i i
i

h

n    


   u  (5.28) 

On the other hand, they can be defined in terms of the dimensionless L2 squared norms 

as given in Equations (5.29-30), if raw strain data is smoothed through a priori SEA 

analysis (vid. Section 3.2.3) and the continuous section strains, E  and K , are obtained 

for the iFEM analysis.  

 21
( )  ( 1, 2,3)

A

e dA
A      u  (5.29) 
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 
2

2(2 )
( )  ( 4,5,6)

A

h
dA

A       u  (5.30) 

Furthermore, if an experimentally measured strain component is not available in any 

case, the Equations (5.27-28) or (5.29-30) will be reduced to L2 squared norms of only 

analytical section strains as 

 21
( )    (w ),  ( 1, 2,3)

A

e dA
A       u  (5.31) 

 
2

2(2 )
( )    (w ),  ( 4,5,6)

A

h
dA

A        u  (5.32) 

where the corresponding weighting coefficient is set to be small, e.g., 510  .  

5.4 Summary of B-spline and NURBS Basis 

Functions 

Since a large group of literature have already focused on the NURBS basis functions 

(e.g., Piegl and Tiller, 1997; Rogers, 2001), only a very brief summary is provided 

here to establish the notation used in the remainder of this chapter. Three independent 

parameters  ,  , and   that unify a parameter space ( , , )    are utilized to describe 

the B-spline and NURBS basis functions. A B-spline curve can be constructed using a 

knot vector in one dimension and a vector of control points. A knot vector contains a 

non-decreasing set of coordinates in the parameter space ( , , )   . For instance, a 

knot vector in one dimension can be defined as 1 2 1{ , ,..., }m p    Ξ  where i    

is the thi  knot, i  is the knot index, m  is the number of basis functions, and p  is the 

polynomial order (degree). If a knot vector whose first and last knots have multiplicity 

1p   for a B-spline of polynomial degree p , this knot vector is called as open knot 

vector. Each repetition of any knot in the interior of a knot vector locally decreases the 

degree of continuity by one. The boundaries of the elements in the parametric space 

are defined based on the locations of the knots. According to the Cox–De Boor 

recursion formula (Cox, 1972; De Boor, 1972), the set of B-spline basis functions can 

be defined through a recursive relation starting with piecewise constants ( 0)p   
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1
,0

1 if  ,

0 otherwise,        
i i

iN
    

 


 (5.33) 

For 1,2,3, ,p    they are defined by 

1
, , 1 1, 1

1 1

( ) ( ) ( )i pi
i p i p i p

i p i i p i

N N N
    

   
 

  
   


 

 
 (5.34) 

where the fractions of 0/0 are defined as zero. To avoid confusion of the comma sign 

used in the subscripts of functions to identify the partial derivative, the degree p , 

henceforward, will be omitted from the subscript of any B-spline basis function. The 

B-spline basis functions are generally not interpolatory except at the boundaries. Also, 

they satisfy the partition of unity condition as 

( ) 1i
i

N    (5.35) 

Moreover, they are positive valued everywhere and a basis function of degree p  can 

span up to 1p   elements. Associating the control point is  with the basis function 

( )iN  , a B-spline curve ( )S  can be defined as 

1

( ) ( ) ( )
cpN

i i i i
i i

N N  


  S s s  (5.36) 

where cpN  denotes the number of control points and hereafter will be omitted for 

conciseness of the summations including basis functions. Except the control points on 

the both ends of the curve, the control points are not necessarily located on the curve 

that they define. The Cartesian product of one-dimensional B-spline curves defines a 

B-spline surface as 

,

( , ) ( ) ( )i j ij
i j

N M   S s  (5.37) 

where ijs  is the control net. A NURBS curve ( )S  can be defined as 

( ) ( )i i
i

R S s  (5.38) 

where ( )iR   is one-dimensional NURBS basis function and expressed as 
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( )
( )

( )
i i

i
k k

k

N w
R

N w







 (5.39) 

and iw  is positive-valued constant and referred to as weight of thi  control point. 

Similarly, the NURBS surface ( , ) S  can be defined as 

,

( , ) ( , )ij ij
i j

R   S s  (5.40) 

where ( , )ijR    is the two-dimensional NURBS basis functions and expressed as 

,

( ) ( )
( , )

( ) ( )
i j ij

ij
k l kl

k l

N M w
R

N M w

 
 

 



 (5.41) 

For simplicity, the subscript ij , henceforward, is replaced by a single subscript i . 

Therefore, Equation (5.40) can concisely be rewritten as 

( , ) ( , )i i
i

R   S s  (5.42) 

It is important to note that, NURBS curves and surfaces have the same properties as 

B-spline curves and surfaces. 

5.5 Isogeometric iFEM formulation for thin shells: 

isogeometric Kirchhoff–Love inverse-shell element 

An isogeometric Kirchhoff–Love inverse-shell element, named “iKLS”, is developed 

on the basis of iFEM weighted-least-squares formulation. This development couples 

the NURBS-based IGA together with the iFEM methodology for shape-sensing 

analysis, thus leads a novel “isogeometric iFEM formulation”. In the following 

derivations, the parametric coordinates ( , , )    used to define the NURBS basis 

functions in previous section are associated with general convected curvilinear 

coordinates i . Hence, the coordinates 1   and 2   represent the in-plane 

coordinates and the coordinate 3   indicates the thickness direction of the iKLS 

element. The necessary position vectors iA  and F  used to develop the iKLS 
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formulation, displacement DOF ( , , )i i iu v w  of thi  control point, and kinematic 

variables ( , , )u v w  are illustrated in Figure 5.7. 

 

Figure 5.7 The iKLS element and displacement DOF of thi  control point. 

To develop the iKLS element formulation, first of all, the position vector F  to a 

material point on the mid-surface, which is used to define the Equation (5.2), can be 

described by the finite sum of two-dimensional NURBS basis functions ( , )iR    as 

( , )i i i i
i i

R R   F P P  (5.43) 

where iP  are the coordinates of the control points that defines the physical geometry 

of the iKLS element. Secondly, taking the partial derivatives of F  with respect to 

parametric coordinates   and  , the covariant base vectors A  of the mid-surface 

given by Equation (5.3) can be obtained as 

, ,i i
i

R   A F P  (5.44) 

where the first-order derivatives of the NURBS shape function are denoted as  

,1 , ( , )i i iR R R        (5.45) 

,2 , ( , )i i iR R R        (5.46) 

The ( , , )u v w  kinematic variables, i.e., orthogonal components of the mid-surface 

displacement vector u  given by Equation (5.8), can be interpolated using translation 
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DOF ( , , )i i iu v w  of control points and the same NURBS basis functions ( , )iR    used 

for the physical geometry discretization. These interpolations are explicitly given as 

( , )
i

e
i i i i

i i

i

u u

v R v R

w w

 
   
        
   
   

 u u   (5.47) 

Substituting Equations (5.47) into Equations (5.17-22), membrane strain measures and 

bending curvatures given in Equation (5.16) can be expressed in terms of displacement 

vector eu  of an iKLS element as  

1 2 3( )
Te e e e   e u B u B u B u  (5.48) 

4 5 6( )
Te e e e   κ u B u B u B u  (5.49) 

with 

1 2 cp

T
e e e e

N
   u u u u  (5.50) 

  ( 1 )
Te

i i i i cpu v w i N  u  (5.51) 

where the displacement vector eu  contains translational DOF of all the control points, 

and the matrices ( , ) ( 1 6)      B B  are functions of in-plane coordinates ( , )   

and contain the derivatives of the NURBS basis functions. The explicit form of these 

matrices can be defined as 

1 2 ... ( 1 6)cpN

        B B B B  (5.52) 

with 

1 2 3
1 11 11 11

1 2 3
2 22 22 22

1 2 3
3 12 12 12

( 1 )

2 2 2

j j j j

j j j j
cp

j j j j

m m m

m m m j N

m m m

        


   

B

B

B

 (5.53) 

and 
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1 2 3
4 11 11 11

1 2 3
5 22 22 22

1 2 3
6 12 12 12

( 1 )

2 2 2

j j j j

j j j j
cp

j j j j

b b b

b b b j N

b b b

        


   

B

B

B

 (5.54) 

In Equation (5.53), terms associated with membrane strain measures can be defined as 

, ,

1
ˆ ˆ( ) ( ) ( 1 )

2
ij

i j i j cpm R R j N           A e A e  (5.55) 

In addition, terms related to bending curvatures, given in Equation (5.54), can be 

expressed as 

3, , 3, ,

3 3

1
ˆ ˆ( ) ( )

2 ( 1 )
1

( ) ( )
2

ij
i j i j

cp
ij ij

b R R
j N

    

   

        
       

A e A e

A A Θ A A Θ

  (5.56) 

where the terms ij
Θ  contains second-order derivatives of the NURBS basis functions 

and can be explicitly defined as 

3 1 , 2 2 ,1

3 1, ,2 2, ,1

3, 1 ,2 2 ,1

ˆ( ) ( )

ˆ( ) ( ) ( 1 )

ˆ( ) ( )

ij
i j j

i j j cp

i j j

R R

R R j N

R R

  

 



  


    
   

Θ A e χ χ

A e χ χ

A e χ χ

 (5.57) 

In Equation (5.57), the second-order derivatives of the NURBS shape function are 

represented as  

2 2
,11 , ( , )i i iR R R        (5.58) 

2 2
,22 , ( , )i i iR R R        (5.59) 

2
,12 , ( , )i i iR R R          (5.60) 

The terms χ  used in Equation (5.57) and their first-order partial derivatives with 

respect to parametric coordinates   and   can be calculated as 

1 2


  

A
χ

A A
 (5.61) 

and 
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, 1, 2 3 2, 3 1

,
1 2

( ) ( )    
 

       


A χ A A A A A A
χ

A A
 (5.62) 

Moreover, the first-order derivatives 3,A  used to define Equations (5.56) and (5.57) 

can be computed as 

1, 2 1 2, 3 1, 2 3 2, 3 1

3,
1 2

( ) ( )   


          


A A A A A A A A A A A
A

A A
 (5.63) 

Once the discrete experimental and analytical section strains are calculated using 

Equations (5.24-25) and (5.48-49), respectively, they can be inserted into Equations 

(5.26-28). As a result, the weighted-least-squares functional, ( )e
e u , accounting for 

membrane and bending deformations can be expressed for an individual iKLS element 

as follows: 

3 6
2 2 2

1 1 4

1
( ) [ ( ) ] (2 ) [ ( ) ]

n
e e e

e i i i i
i

w e h w
n      

 


  

      
 

  u u u  (5.64) 

All strain compatibility relations are explicitly satisfied based on these assumptions, 

therefore Equation (5.64) can be minimized with respect to displacement vector eu  of 

an iKLS element as 

2 23 6
2

1 1 4

( ) [ ( ) ] [ ( ) ]1
(2 ) 0

e e en
e i i i i

e e e
i

e
w h w

n
   

 
 


  

     
      
  u u u

u u u
 (5.65) 

where the terms associated with derivatives of section strains can be respectively 

expressed as 

2[ ( ) ]
2[ ( ) ] ( ) ( 1 3)

e
e Ti i

i i ie

e 
    

   


u
B x u B x

u
 (5.66) 

2[ ( ) ]
2[ ( ) ] ( ) ( 4 6)

e
e Ti i

i i ie
 

  
  

   


u
B x u B x

u
 (5.67) 

Inserting the expressions given by Equations (5.66-67) into (5.65) gives rise to 
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 (5.68) 

or simply 
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e e eΓ u ε  (5.69) 

where eΓ  is the element left-hand-side matrix; eε  is the element right-hand-side 

vector, which is a function of the measured strain values; and eu  is the nodal 

displacement vector of the element.  

The eΓ  matrix can be explicitly written in terms of the  ( 1 6)   B  matrices and 

their corresponding weighting constants  ( 1 6)w     as 
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The eε  vector is a function of experimental section strains, and is given by 
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It is important to note that the matrices  ( 1 6)   B  in Equations (5.70-71) are 

calculated at the discrete locations ( , ) ( 1, )i i i n  x  on the mid-surface of the iKLS 

element, where the corresponding top- and bottom-surface strain rosettes are located. 

Using the local matrix equations (i.e., Equations 5.69-71), the steps described in 

Section 3.3 can be revisited to obtain global linear equation system of the discretized 

structure: refer to Equations (3.78-81) by omitting eT  from these equations. Finally, 

the resulting system of equations (refer to Equation 3.82) can be obtained by applying 

problem-specific constraint boundary conditions, and then subsequently solved to 

acquire real-time deformed shape of the shell body. 

5.6 Numerical Examples  

In the following section, shape-sensing capability of the iKLS element is assessed and 

validated solving three different shell problems. First of all, Scordelis–Lo roof and the 

pinched hemisphere problems are solved as benchmark problems for validating the 

membrane and bending capability of the iKLS element, respectively. In fact, these 

problems are the first two test cases of a very well-known shell obstacle course 

proposed and studied by Belytschko et al. (1985) and MacNeal and Harder (1985). 

Moreover, hyperbolic paraboloid proposed by Bathe et al. (2000) has been widely used 
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in the literature for evaluating the shell elements’ performance because the shell 

structure is subjected to stress states of varying complexity. Therefore, after validating 

the membrane and bending capability of the iKLS element, the partly clamped 

hyperbolic paraboloid problem is solved to better assess the ability of the iKLS 

element against the locking phenomenon.  

5.6.1 Scordelis–Lo Roof  

A portion of a cylindrical shell whose two end sections are fixed by rigid diaphragms 

has a radius of r = 25 m, length of L = 50 m, and thickness of 2h = 0.25 m as depicted 

in Figure 5.8. The constraint boundary conditions pertaining to rigid diaphragms can 

be specified as 0V W  . The cylindrical shell made of an isotropic material having 

an elastic modulus of E = 432 MPa, a zero Poisson’s ratio v = 0, and a density of  

ρ = 4 kg/m3. A distributed loading represented as a gravitational load g = 90 m/s2 is 

applied in negative Z direction (refer to Figure 5.8). This problem was originally 

solved in Scordelis and Lo (1969), then it has been extensively studied by many 

researchers (e.g., Mac Neal and Harder, 1985) and is so-called Scordelis–Lo roof.  

 

   (a)      (b) 

Figure 5.8 (a) Scordelis–Lo roof; (b) One-fourth of Scordelis–Lo roof with 

symmetric boundary conditions. 

In this section, Scodelis-Lo roof is analyzed once again using the isogeometric iFEM 

methodology to validate membrane capability of the iKLS element because a 

substantial part of the strain energy is exhibited by membrane strain energy during the 
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deformation of the roof. There is no need to model whole roof because the applied 

boundary conditions and geometry of the roof is suitable to take the advantage of 

symmetry conditions. Therefore, the following iFEM and direct FEM models are 

defined over one fourth of the geometry and relevant symmetry constraint boundary 

conditions are applied (refer to Figures 5.8).  

To establish an accurate reference solution, a convergence study was performed using 

direct FEM analyses utilizing an in-house FEM code. The most refined mesh consisted 

of 8100 uniformly distributed rectangular elements, possessing 49686 DOF. The 

vertical displacement along Z-direction at the midpoint of the lateral side (i.e., point A 

as depicted in Figure 5.8) is denoted by the symbol AW . As a result of high-fidelity 

FEM analysis performed, the value of this vertical displacement is obtained as 

0.3017 mAW    which aggress very well with the reference solution predicted in 

MacNeal and Harder (1985) as 0.3024 mAW   . Thus, the FEM deflections and 

rotations can be safely used to compute the simulated strain-sensor strains in the 

following iFEM analysis.  

     

  (ne = 2)     (ne = 4) 

Figure 5.9 Discretization of one-fourth of Scordelis–Lo roof using iKLS elements 

with top- and bottom-surface strain rosettes per each element. 

In the present iFEM analysis, the Scordelis–Lo roof is analyzed using seven different 

iKLS discretization where the edges of the roof are divided by the same number of 

element subdivisions (ne = 2,…,8). For each iKLS model, the polynomial degrees of 

the NURBS shape functions are fixed to 8p q   and C1-continuity is attained across 

an interior element boundary. Every single iKLS element is instrumented with two 
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strain rosettes, one on the centroid of the top surface and the other one on the centroid 

of the bottom surface. In Figure 5.9, examples of strain rosette configurations are 

shown for iKLS discretization (ne = 2) and (ne = 4).  

To assess the accuracy of the displacement predictions, it would be convenient to use 

maximum values of displacements obtained from the high-fidelity FEM solutions 

(reference) as normalization factors. These normalizations are given as 

FEM
maxχ χ / χ (χ , , )U V W   (5.72) 

where maximum values of the reference displacements are FEM
max 0.0125 mU   , 

FEM
max 0.1588 mV   , and FEM

max 0.3017 mW   . The legend “iFEM” represents the 

isogeometric iFEM solutions, whereas the legend “Reference” represents the high-

fidelity FEM solutions (henceforward, refer to all graphs). In Figures 5.10-13, 

maximum values of the iFEM and FEM predictions for the U , V , W  normalized 

displacements given in Equation (5.72) are plotted versus the number of element 

subdivisions (ne) of the Scordelis–Lo roof, respectively.  

 

Figure 5.10 Displacement U  versus number of element subdivisions ne for 

Scordelis–Lo roof. 
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Figure 5.11 Displacement V  versus number of element subdivisions ne for 

Scordelis–Lo roof. 

 

Figure 5.12 Displacement W  versus number of element subdivisions ne for 

Scordelis–Lo roof.  

These graphs show that the iFEM predictions for the V  and W  displacements 

convergence to the reference solution much quicker than the iFEM predictions for the 
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U  displacement. In fact, the deformed shape (total deformation) of the roof is mainly 

caused by the maximum reference displacement FEM
maxV  and FEM

maxW  because these 

reference displacements are at least ten times greater than the displacement FEM
maxU ; 

hence, convergence of iFEM predictions for displacement U  will not play 

distinguished role for the real-time reconstruction of the total deformation. As a result, 

the results depicted in Figures 5.10-13 confirm that the isogeometric iFEM formulation 

of the iKLS element predicts displacements that are as accurate as those of the 

reference solutions. 

Moreover, in Figures 5.13-15, the iFEM and FEM contour plots for U , V , and W  are 

presented, showing the results that are graphically indistinguishable. In these figures, 

the displacement results pertaining to iFEM analysis are obtained using the iKLS 

discretization (ne = 4) with 16 2  strain rosettes in total. The percent difference 

between the iFEM and FEM solutions for the maximum values of U , V , and W  are 

respectively 15.9%, 0.8%, and 2.8%. Even though the percent difference for 

displacement U  is relatively high, as explained in above paragraph, this displacement 

doesn’t contribute much to the deformed shape. Therefore, these percent differences 

and contour plots clearly demonstrate the superior accuracy of the iKLS element for 

membrane structural responses, especially considering the low-fidelity discretization 

(ne = 4) with few sensors used in iFEM analysis of a complex/curved geometry. 

     

Figure 5.13 Contour plots of U  displacement for Scordelis–Lo roof: Comparison 

between high-fidelity FEM and iFEM (ne = 4) analyses. 
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Figure 5.14 Contour plots of V  displacement for Scordelis–Lo roof: Comparison 

between high-fidelity FEM and iFEM (ne = 4) analyses. 

     

Figure 5.15 Contour plots of W  displacement for Scordelis–Lo roof: Comparison 

between high-fidelity FEM and iFEM (ne = 4) analyses. 

As a summary, using iKLS element allow us to improve the accuracy of shape-sensing 

analysis even if a very coarse mesh (with a low number of strain sensors) is used for 

the analysis. This is because the polynomial degree ( , )p q  of the NURBS can be 

elevated without changing the location of knots, hence the number of elements (i.e., 

number of sensors) will remain unchanged. This feature of the isogeometric iFEM 

formulation is the notable technology that is used in this case study to obtain accurate 

displacements even with a low-fidelity iKLS discretization. 

5.6.2 The pinched hemisphere  

A hemispheric shell subjected to four different concentrated loads (with magnitude of 

F = 2 N) has a radius of r = 10 m and thickness of 2h = 40 mm as shown in Figure 

5.16. The prescribed boundary conditions are the minimum required to prevent rigid 

body motions. In other words, the apex of the hemisphere along Z-direction needs to 

be fixed in order to eliminate the rigid body motion. The hemisphere is made of an 
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isotropic material properties with an elastic modulus of E = 68.25 MPa and a Poisson’s 

ratio of v = 0.3. Morley and Morris (1978) originally solved this problem, and after 

that Mac Neal and Harder (1985) and Belytschko et al. (1985) studied this hemisphere 

problem in detail.  

 

  (a)           (b) 

Figure 5.16 (a) Pinched hemisphere; (b) One-fourth of the hemisphere with 

symmetric boundary conditions. 

In contrast to the Scordelis–Lo roof problem solved in the previous section, this 

hemisphere problem is challenging in terms of demonstrating bending capability of 

the iKLS element because it exhibits almost none of membrane strains. Moreover, 

doubly curved geometry and concentrated loads make this problem highly sensitive to 

locking phenomena. Therefore, in this section, the pinched hemisphere is analyzed 

once again based on the presented isogeometric iFEM formulation. Similar to the 

Scordelis–Lo roof problem, it is also possible to take the advantage symmetry for this 

problem. Thus, the following iFEM and direct FEM models are defined over one 

quarter of the hemisphere and suitable symmetry constraint and loading boundary 

conditions are applied as shown in Figure 5.16.  

First, an accurate reference solution is established through a convergence study that is 

performed using direct FEM analysis. The most refined mesh consisted of 7500 

uniformly distributed rectangular elements, possessing 45906 DOF. To examine the 

accuracy of this high-fidelity FEM analysis, the quantity of interest is the displacement 

along the direction of the loading F at point A (refer to Figure 5.16), which is 
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represented by the symbol AU . The value of this displacement is found as 

0.0921 mAU   from the high-fidelity FEM analysis, which is in a fairly well 

agreement with the reference solution, 0.0940 mAU  , found by MacNeal and Harder 

(1985). Thus, the FEM deflections and rotations can be securely used to compute the 

simulated in situ surface strains in the following iFEM analysis. 

     

        (ne = 2)         (ne = 4) 

Figure 5.17 Discretization of one-fourth of the hemisphere using iKLS elements with 

top- and bottom-surface strain rosettes per each element. 

In the current iFEM analysis, five different iKLS discretization are generated by 

uniformly dividing edges of one quarter of the hemisphere into 2, 4, 6, 8, and 10 

segments (i.e., number of element subdivisions, ne), respectively. Similar to iKLS 

discretization used for Scordelis–Lo roof, the polynomial degrees of the NURBS shape 

functions are fixed to 8p q   and C1-continuity across an interior element boundary 

is ensured for each iKLS model. Moreover, two strain rosettes are located per each 

element of each iKLS model, one on the centroid of the top surface and the other one 

on the centroid of the bottom surface. According to this arrangement of in situ strain 

rosettes, examples of strain rosette configurations are illustrated for iKLS 

discretization (ne = 2) and (ne = 4) in Figure 5.17. For clear assessment of the accuracy 

of the displacement predictions, the normalized displacements (U , V , W ) given by 

Equation (5.72) are used herein with the normalization factors, FEM
max 0.0921 mU  , 
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FEM
max 0.0921 mV   , and FEM

max 0.0457 mW  , that are maximum values of the 

displacements obtained from the high-fidelity FEM analysis of the hemisphere. 

 

Figure 5.18 Displacement U  versus number of element subdivisions ne for 

hemisphere. 

 

Figure 5.19 Displacement V  versus number of element subdivisions ne for 

hemisphere. 
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Figure 5.20 Displacement W  versus number of element subdivisions ne for 

hemisphere. 

In Figures 5.18-20, the maximum values of displacements (U , V , W ) are compared 

between iFEM and reference FEM analysis for varying number of element 

subdivisions (ne) of the hemisphere, respectively. These plots demonstrates the 

following two observations: (1) once the element subdivision become ne = 4, the 

percent differences between iFEM and FEM solutions for all three displacements are 

approximately 6%, and (2) the convergence rate of the iFEM predictions to reference 

solutions follows a similar path for all three displacements. These observations 

confirm the superior bending capability of the iKLS element, even if a low-fidelity 

discretization (ne = 4) with few number of sensors (i.e., 16 2 32   strain rosettes in 

total) is used in the shape-sensing analysis.  

In addition, the contour plots for the U , V , and W  displacements are depicted in 

Figures 5.21-23 where contour plots for iFEM analysis are graphically almost identical 

to those of FEM analysis. Note that, in these figures, the displacement results for the 

iFEM analysis are predicted using the iKLS discretization (ne = 6) with 36 2  strain 

rosettes in total. As presented in Figures 5.21-23, the percent difference between the 

iFEM and FEM estimates for the maximum values of U , V , and W  are about 2.1%, 
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2.1%, and 2.5%, respectively. Remarkably, these predictions demonstrate the high 

quality precision of isogeometric iFEM solutions for shape-sensing analysis of a 

complex/curved geometry.  

     

Figure 5.21 Contour plots of U  displacement for hemisphere: Comparison between 

high-fidelity FEM and iFEM (ne = 6) analyses. 

     

Figure 5.22 Contour plots of V  displacement for hemisphere: Comparison between 

high-fidelity FEM and iFEM (ne = 6) analyses. 

     

Figure 5.23 Contour plots of W  displacement for hemisphere: Comparison between 

high-fidelity FEM and iFEM (ne = 6) analyses. 
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5.6.3 Partly clamped hyperbolic paraboloid  

A partly clamped hyperbolic paraboloid subjected to its self-weight has length of  

L = 1 m and uniform thickness of 2h = 1 mm as depicted in Figure 5.24. The mid-

surface of the hyperbolic paraboloid is defined as 

2 2Z X Y   (5.73) 

where the domain of the surface is defined over ( , ) [ / 2; / 2]X Y L L   (refer to Figure 

5.24). It is worth note herein that this surface can be readily constructed using second 

order B-splines. The hyperbolic paraboloid is made of an isotropic material having an 

elastic modulus of E = 200 GPa, a Poisson’s ratio v = 0.3, and a density of ρ = 8000 

kg/m3. As presented in Figure 5.24, the mid-surface is clamped from the edge located 

at 2X L   and a unit gravitational load of g = 1 m/s2 is applied to the mid-surface.  

 

   (a)      (b) 

Figure 5.24 (a) Hyperbolic paraboloid; (b) One half of the hyperbolic paraboloid 

with symmetric boundary conditions. 

This problem was originally solved in Chapelle and Bathe (1998) where it was 

suggested as a good test for locking behavior. Then, Bathe et al. (2000) also performed 

FEM analysis of this problem and confirmed that it is an excellent test for locking in 

bending-dominated situations. Therefore, in this section, shape-sensing analysis of the 

presented hyperbolic paraboloid is performed based on the isogeometric iFEM 

methodology in order to better assess the capability of the iKLS element against the 

locking phenomenon. The prescribed boundary conditions and geometry are suitable 

to take advantage of the symmetry plane. Therefore, as shown in Figure 5.24, only half 

of the hyperbolic paraboloid can be modelled while applying the appropriate symmetry 
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boundary conditions. Utilizing an in-house FEM code, an FEM convergence study was 

carried out to establish an accurate reference solution for this problem. The highest 

fidelity mesh has 22500 uniformly distributed rectangular elements and 136806 DOF. 

To assess the accuracy of the FEM convergence study, the quantity of reference is 

denoted by the symbol AW  representing the vertical displacement along Z-direction at 

point A, i.e., the midpoint of the edge located at 2X L   (refer to Figure 5.24). The 

reference solution was found as 6.3941 mmAW    in Bathe et al. (2000), whereas the 

high-fidelity FEM analysis predicts this vertical displacement as 6.4061 mAW    

which agrees well with its associated reference solution. Hence, the FEM deflections 

and rotations are directly used to compute the simulated in situ strains. 

     

         (ne = 4)           (ne = 6) 

Figure 5.25 Discretization of half of the hyperbolic paraboloid using iKLS 

elements with top- and bottom-surface strain rosettes per each element. 

In the following iFEM analysis, the hyperbolic paraboloid is analyzed using five 

different iKLS mesh where edges of the geometry are uniformly divided into same 

number of element subdivisions (ne = 2, 4, 6, 8, 10), respectively. Similar to the 

previous case studies, the polynomial order is defined as 8p q   for the NURBS 

shape functions. However, as opposed to the previous case studies, C2-continuous 

NURBS basis functions are attained across an interior element boundary by arranging 

multiplicity of the corresponding knot value. Therefore, this arrangement allow the 

exact surface given by Equation (5.73) to be encapsulated in the iKLS model. Two 

strain rosettes are located in each iKLS element at the following positions: (1) on the 

centroid of the top surface, and (2) on the centroid of the bottom surface. To give an 
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example of strain rosette configurations, the iKLS models (ne = 4) and (ne = 6) are 

presented in Figure 5.25.  

 

Figure 5.26 Displacement U  versus number of element subdivisions ne for 

hyperbolic paraboloid. 

 

Figure 5.27 Displacement V  versus number of element subdivisions ne for 

hyperbolic paraboloid. 
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Figure 5.28 Displacement W  versus number of element subdivisions ne for 

hyperbolic paraboloid. 

Similar to the previous case studies, the normalized displacements (U , V , W ) given 

by Equation (5.72) are also calculated for the hyperbolic paraboloid in order to clearly 

examine the precision of the displacement estimates. The following maximum values 

of the displacements are obtained in the high-fidelity FEM analysis of the hyperbolic 

paraboloid: FEM
max 3.612 mmU  , FEM

max 1.927 mmV  , and FEM
max 7.372 mmW   which are 

used as the normalization factors in the Equation (5.72). As depicted in Figures 5.26-

28, the maximum values of U , V , and W  are compared between iFEM and reference 

FEM analysis for varying number of element subdivisions (ne), respectively. These 

results demonstrated that the iFEM predictions for the U , V , and W  displacements 

convergence to their reference solutions by following a similar pathway. In addition, 

as can be from these figures, the percent differences between iFEM and FEM estimates 

for all three displacements are approximately 30% when iKLS discretization (ne = 2) 

is used, whereas these percent differences are dramatically reduced to 10% for the case 

(ne = 4). Finally, iKLS discretization (ne = 10) predicts displacements that are as 

perfectly accurate as those of the reference solutions. 
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Figure 5.29 Contour plots of U  displacement for hyperbolic paraboloid: Comparison 

between high-fidelity FEM and iFEM (ne = 6) analyses. 

     

Figure 5.30 Contour plots of V  displacement for hyperbolic paraboloid: Comparison 

between high-fidelity FEM and iFEM (ne = 6) analyses. 

     

Figure 5.31 Contour plots of W  displacement for hyperbolic paraboloid: Comparison 

between high-fidelity FEM and iFEM (ne = 6) analyses. 

Besides, in Figures 5.29-31, contour plots of the U , V , and W  displacements are 

compared between the iFEM and high-fidelity FEM analyses. In these figures, the 

iFEM contours correspond to the iFEM analysis that uses the iKLS model (ne = 6) with 
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36 2  strain rosettes in total. The percent difference between the iFEM and FEM for 

the maximum values of the U  displacement is only 3.9%. Similar accuracy is 

evidenced for the maximum values of others displacement, with the percent difference 

of 3.6% for the V  displacement, and 4.1% for the W  displacement. Both the iFEM 

and direct FEM contours are graphically indistinguishable in the figures. These results 

demonstrate the superior bending predictions of iKLS element, especially considering 

the low-fidelity mesh used in the iFEM analysis. 

5.7 Conclusion  

This chapter presented an isogeometric Kirchhoff–Love inverse-shell element, iKLS, 

which couples the NURBS-based IGA with the iFEM, for shape-sensing analyses of 

complex (curved) thin plate and shell structures that are instrumented with randomly 

distributed sensors. The membrane and bending capability of the iKLS element was 

demonstrated by carrying out several numerical simulations including Scordelis–Lo 

roof, pinched hemisphere, and partly clamped hyperbolic paraboloid. In the analysis 

of these problems, experimentally measured strains are represented by strain results 

obtained from a high-fidelity solution using an in-house finite element code. Several 

types of discretization strategies are examined and comparisons of iFEM and direct 

FEM displacement solutions are provided. As a result, the membrane robustness and 

the bending efficiency of iKLS element has been justified even using the low-fidelity 

discretization with few strain sensors. The effects of sensor locations, number of 

sensors, and the iFEM discretization of the geometry on solution accuracy are 

pondered. It has been demonstrated that the iKLS element has the advantage of simply 

modelling the curved shell structures as a results of its NURBS-based nature. 

Moreover, it has been confirmed that even if a very coarse mesh (with a low number 

of strain sensors) is used in the iFEM analysis, the iKLS element provides superior 

displacement solutions. This is because the polynomial degree of the NURBS basis 

function can be increased without changing the location of knots. This feature can be 

exploited to obtain more accurate shape-sensing results for different type of elements 

that will be developed based on the proposed isogeometric iFEM methodology in the 

future.  
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Chapter 6  
 

An Improved iFEM Formulation 

based on RZT 
 

6.1 Introduction  

The aim of this chapter is to describe an enhanced iFEM formulation for performing 

accurate shape and stress sensing of multilayered composite/sandwich plates and flat 

shells. The improved iFEM formulation is developed based on a weighted-least-

squares functional that uses the complete set of strain measures consistent with RZT. 

These strain measures involve membrane strain measures, bending curvatures, zigzag 

strain measures, and full (first and second) transverse-shear strain measures of the 

RZT. A robust and computationally efficient three-node triangular inverse-shell 

element, i3-RZT, is developed on the basis of the present iFEM methodology. The 

main benefit of this new element is that it is applicable for the analysis of thin, 

moderately thick, and complex shell structures manufactured using composite 

materials. In the remainder of this chapter, the theoretical foundation of the current 

formulation and its quantitative assessment are detailed. First of all, the background 

and motivation of the formulation is well-established in Section 6.2. Secondly, in 

Section 6.3, the mathematical foundation of the current iFEM methodology is 

introduced to the reader. Thirdly, the i3-RZT element formulation is described in 



139 

 

Section 6.4, while the predictive capabilities of the i3-RZT element are validated 

solving various benchmark problems that involves laminates with different laminate 

stacking sequences, i.e., uniaxial, cross-ply, and angle-ply (Section 6.5). Additionally, 

in Section 6.5, the practical applicability of present iFEM methodology to more 

complex composite/sandwich structures is demonstrated by analyzing a wedge 

structure with a hole near one of the clamped ends. Finally, several conclusions 

emphasizing the benefits of the RZT-based improved iFEM methodology are 

highlighted in Section 6.6. The research study presented in this chapter is given in 

Kefal, Tessler, et al. (2016) which contributes the following novelties to the literature 

for the first time: (1) an enhanced iFEM methodology based on RZT, and (2) a three-

node triangular inverse-shell element based on RZT.  

6.2 Background and Motivation 

Over the last several decades, composite and sandwich material systems have been 

substantially used as primary structures in many different engineering applications, 

such as civil and military aircrafts, launch vehicles, wind turbine blades, and marine 

structures (Herrmann et al., 2005; Berggree et al., 2007; Lolive et al., 2005). Such 

composite materials are appealing because they have superior tensile strength and 

resistance to compression (as a result of its fibrous nature), lighter weight, higher 

operating temperatures, greater stiffness, and higher reliability. Although composite 

structures offer numerous advantages, their load carrying capabilities can diminish due 

to various types of failures, such as delamination (Zou et al., 2000), fibre/matrix 

cracking (McCartney, 1987), and face/core debonding (Vaddakke and Carlsson, 

2004), leading to severe reduction in the strength and integrity of the composite 

structures. Detecting these kinds of damages is not easy during the inspection process 

of the composite structures (Bray and McBride, 1992). Therefore, it is necessary to 

monitor the on-site structural performance of composite and sandwich structures 

utilizing an SHM system. Moreover, shape sensing is a vital technology for the design 

of composite smart structures such as a morphing wing (Yin et al., 2009) because these 

smart structures require real-time reconstruction of the deformations to provide 

feedback for their actuation and control systems. Hence, a powerful shape sensing 

algorithm is necessary for the development of novel smart structures made of 
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composite materials. Furthermore, since most of the composite and sandwich 

structures are built up layer by layer, their nature is very suitable to embed optical-

fiber networks (e.g., FBG sensors) within the structure during their manufacturing 

process. In this manner, a large amount of strain data can be easily collected in 

operational conditions of the composite structures. As an example, Lee et al. (2003) 

embedded FBG sensors inside a subscale composite wing to measure dynamic strains 

of the wing during real-time wind tunnel testing. Then, Dawood et al. (2007) achieved 

significant technological improvements to embed FBG sensors within composite and 

sandwich structures during their manufacturing process.  

Most of iFEM-based shape sensing algorithms adopted the FSDT to describe 

kinematics relations of plate/shell structure (vid. Section 2.3). Although generally 

regarded as an accurate theory, FSDT may lead to somewhat inadequate predictions 

when applied to relatively thick composite and sandwich structures. For such 

structures, an accurate and robust formulation is required that can take into account the 

discrete nature of fiber- and resin-rich layers of individual plies as well as the variation 

of stiffness and strength properties of the core. Tessler et al. (2009, 2010) developed 

such a formulation and called it the “refined zigzag theory (RZT)”. Recently, 

Cerracchio et al. (2013, 2015b) improved the original iFEM formulation (Tessler and 

Spangler, 2003, 2005) by adding the kinematic assumptions of the RZT. This recent 

formulation was proposed for shape and stress sensing of composite and sandwich 

structures possessing a high degree of anisotropy and heterogeneity. Although their 

formulation performed well for sandwich plates, the proposed variational statement 

does not involve contributions of average (first) transverse-shear strain measures and 

accommodates only the second transverse-shear strain measures of RZT in addition to 

the membrane, bending, and zigzag contributions. Moreover, they have only 

developed a three-node inverse-plate element, called iRZT3, which limits the 

application of the RZT-based iFEM methodology to plate structures. Furthermore, the 

authors utilized a least-squares functional without the weighting coefficients, thus 

iRZT3 element cannot take into account the problems that involve relatively few strain 

gauges (i.e., sparse in situ strain data). In what follows, an enhanced iFEM formulation 

is introduced to address the aforementioned shortcomings of the RZT-based iFEM 

formulation (Cerracchio et al., 2013, 2015b). Also, the i3-RZT inverse-shell element 
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is developed based on the improved iFEM formulation, which ultimately aims to 

perform accurate shape and stress sensing of multilayered composite and sandwich 

shell structures.  

6.3 The Enhanced iFEM Formulation for Composite 

Plate and Shell Structures 

This section aims to present an enhanced iFEM formulation that uses a weighted-least-

squares functional and takes into account a complete set of strain measures fully 

consistent with RZT. First of all, the description of the inverse problem is given in 

Section 6.3.1. Then, in Section 6.3.2, the kinematic relations of the RZT are briefly 

studied and the strain field is appropriately rewritten in order to define the strain 

measures to be used in the weighted-least-squares functional. After that, in Section 

6.3.3, the computation of in situ section strains is described by introducing a 

computational tool that can be used to obtain the continuous form of the in situ section 

strains and to calculate experimental transverse-shear strain measures. Finally, the 

variational statement of the present iFEM methodology is established for both discrete 

and continuous forms of the in situ section strains in Section 6.3.4. 

6.3.1 The inverse problem 

Consider a plate (or laminate) with thickness of 2h  that is consisted of N  perfectly 

bonded orthotropic layers (or laminae) as depicted in Figure 6.1. The laminate is 

oriented with respect to an orthogonal Cartesian coordinate system 1 2( , , )x x z  where 

the symbol [ , ]z h h    identifies the through-the-thickness coordinate with 0z   

referring to as the reference plane (or mid-plane) of the plate. In addition, the symbols

1 2( , )x x A  represent the in-plane coordinates, where A  denotes the area of the mid-

plane (refer to Figure 6.1). In this chapter, if not otherwise specified, the superscript 

(k) is used to indicate the k-th lamina, whereas the subscript (k) defines the interface 

between the k-th and (k+1)-th laminae. As shown in Figure 6.1 (b), the k-th lamina 

thickness is therefore defined in the range ( 1) ( )[ , ] ( 1 )k kz z z k N   . The laminate is 

constrained against the rigid body motion and subjected to external loads including the 

planar and through-the-thickness direction components ( q  and T ).  
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   (a)     (b) 

Figure 6.1 (a) RZT-based iFEM plate notation; (b) Layer notation for a three-layer 

laminate. 

As depicted in Figure 6.1, the strain sensors are mounted at discrete locations on top 

and bottom surfaces of the laminate and also embedded inside the laminate (e.g, j-th 

interface located at ( )jz ), supplying real-time strain measurements. Herein the inverse 

problem is shape and stress sensing of the presented laminate, which will be solved by 

an enhanced iFEM methodology that incorporates the kinematics of RZT and utilizes 

only the in-situ discrete surface strains and boundary restraints for the solution. 

6.3.2 Kinematic relations 

According to RZT (Tessler et al., 2010), the orthogonal components of the 

displacement vector, corresponding to material points of the laminate (refer to Figure 

6.1), can be expressed as 

( ) ( )
1 1 2 1 2 1 1 2 1 1 1 2( , , ) ( , ) ( , ) ( ) ( , )k ku x x z u x x z x x z x x      (6.1) 

( ) ( )
2 1 2 1 2 2 1 2 2 2 1 2( , , ) ( , ) ( , ) ( ) ( , )k ku x x z v x x z x x z x x      (6.2) 

1 2 1 2( , , ) ( , )zu x x z w x x  (6.3) 

where the in-plane displacement components ( ) ( )
1 2( , , ) ( 1, 2)k ku u x x z     contain 

constant, linear, and zigzag variations through-the-thickness coordinate. The zigzag 

variations are C0-continuous functions with discontinuous thickness-direction 

derivatives along the lamina interfaces. In Equation (6.3), the transverse displacement 
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1 2( , , )z zu u x x z  is assumed to be constant through the thickness and is independent of 

constitutive properties of the k-th lamina; hence, the superscript (k) does not appear in 

its definition and the function 1 2( , )w w x x  represents the transverse deflection of the 

laminate.  

In Equations (6.1-2), the mid-plane translations along 1x  and 2x  directions are denoted 

by the functions 1 2( , )u u x x  and 1 2( , )v v x x , respectively. Moreover, bending 

rotations around the positive 2x  and negative 1x  directions are represented as 

1 1 1 2( , )x x   and 2 2 1 2( , )x x  , respectively. Furthermore, the functions 

( ) ( )
1 1 ( )k k z   and ( ) ( )

2 2 ( )k k z   denote through-the-thickness piecewise-linear zigzag 

functions associated with heterogeneous plates. Finally, the functions 1 1 1 2( , )x x   

and 2 2 1 2( , )x x   represent the spatial amplitudes of the zigzag displacements, and 

they are the unknowns in the analysis together with the other five kinematic variables. 

These kinematic variables can be expressed by a compact vector form as 

 1 2 1 2

T
u v w    u  (6.4) 

Following the approach in proposed in (Tessler et al., 2010), the zigzag functions 

( ) ( 1, 2)k
    can be defined as 

( ) ( ) ( )
1 ( 1) ( )

1 1
(1 ) (1 )

2 2
k k k

k ku u       (6.5) 

( ) ( ) ( )
2 ( 1) ( )

1 1
(1 ) (1 )

2 2
k k k

k kv v       (6.6) 

with 

( 1)( )
( )

1 [ 1, 1] ( 1 )kk
k

z z
k N

h
  

       
 

 (6.7) 

where the first lamina beginning at (0)z h  , the last (N-th) lamina ending at 

( )Nz h  , and the k-th lamina ending at ( )
( ) ( 1) 2 k
k kz z h   where ( )2 kh  denotes the 

thickness of the k-th lamina. Evaluating Equations (6.5-6) at the lamina interfaces 

gives rise to the definitions of the interfacial displacements 
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( ) ( ) ( ) ( )
( 1) 1 ( ) 1

( ) ( ) ( ) ( )
( 1) 2 ( ) 2

( 1), ( 1)

( 1), ( 1) ( 1 )

k k k k
k k

k k k k
k k

u u

v v k N

   

   




     

       
 (6.8) 

where the interfacial displacements at the bottom and top plate surfaces vanish 

identically; that is, 

(0) ( ) (0) ( ) 0N Nu u v v     (6.9) 

According to Tessler et al. (2010), the ( )ku  and ( )kv  interfacial values of the zigzag 

functions are expressed in terms of piecewise constant slope functions 

( ) ( 1, 2; 1 )k k N      as 

( )
( ) ( 1)( ) 1

( )
( ) ( 1)2

2 ( 1 )
k

k kk

k
k k

u u
h k N

v v







    
        

    
 (6.10) 

where the ( ) ( 1, 2)k
    slope of the zigzag functions, namely derivatives of zigzag 

functions with respect to the through-the-thickness coordinate z , can be explicitly 

defined for the k-th layer as 

( ) ( )
1 1 11
( ) ( )
2 2 22

1
( 1 )

1

k k

k k

G Q
k N

G Q



   

     
   

 (6.11) 

with 

1( )

( )
1 111

1( )2

( )
1 22

1

1

iN

i
i

iN

i
i

h

h QG

G h

h Q









  
  
       

    
  
  




 (6.12) 

where 1G  and 2G  are the weighted-average transverse shear stiffness coefficients of 

their respective lamina-level coefficients, ( )
11

kQ  and ( )
22

kQ  ( 1 )k N  . 

According to the strain-displacement relationship of the linear elasticity theory, the in-

plane strain components can be defined as 

( ) ( ) ( )
11 1,1 1 4 7

k k ku e z       (6.13) 

( ) ( ) ( )
22 2,2 2 5 8

k k ku e z       (6.14) 
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( ) ( ) ( ) ( )
12 1,2 2,1 3 6 9

k k k ku u e z        (6.15) 

where, henceforth, ( )
,( ) x


   denotes a partial derivative with respect to in-plane 

coordinate ( 1, 2)x   . In Equations (6.13-15), the symbols ( 1 3)e    , 

( 4 6)    , and ( ) ( 7 9)k
     denote the membrane strain measures, bending 

curvatures, and zigzag strain measures. The explicit forms of these terms can be 

defined in terms of the compact form of kinematic variables u  as 

1 ,1

2 ,2

3 ,2 ,1

( )

e u

e v

e u v

  
       
      

e u  (6.16) 

4 1,1

5 2,2

6 1,2 2,1

( )

 
 
  

  
       
      

κ u  (6.17) 

( ) ( )
7 1 7

( ) ( ) ( )
8 2 8
( ) ( ) ( )
9 1 9 2 10

( )

k k

k k k

k k k

  
  
    

   
       
      

μ u  (6.18) 

with 

 7 8 9 10 1,1 2,2 1,2 2,1            (6.19) 

where ( 7 10)     represents the zigzag curvatures. In order to define the zigzag 

strain measures ( ) ( )kμ u , the zigzag functions ( ) ( 1, 2)k
    and the zigzag curvatures 

( 7 10)     are coupled in Equation (6.19). 

The transverse-shear strain components can be defined as 

( ) ( ) ( ) ( )
1 1, ,1 1 10 1 12(1 )k k k k

z z zu u          (6.20) 

( ) ( ) ( ) ( )
2 2, ,2 2 11 2 13(1 )k k k k

z z zu u          (6.21) 

where ( )
,( ) z z


   denotes a partial derivative with respect to through-the-thickness 

coordinate z . In Equations (6.20-21), the symbols ( 10,11)    and ( 12,13)    

denote the average (first) and second transverse-shear strain measures of the RZT, 
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respectively. The explicit form of these terms can be described in terms of the 

kinematic variables u  as 

,1 110

,2 211

( )
w

w




  
       

γ u  (6.22) 

12 10 1

13 11 2

( )
  
  

   
      

η u  (6.23) 

Integrating Equations (6.20-21) across the laminate thickness and normalizing the 

result by the total laminate thickness reveal that 

( )
10 1

( )
11 2

1

2

h k
z
k
zh

dz
h

 
 

  
   

   
  (6.24) 

Thus, the first transverse-shear strain measures ( 10,11)    of the RZT coincides 

with the shear angles of FSDT. This indicates that the zigzag rotations ( 1, 2)    

has no contribution to the average transverse-shear strains. 

6.3.3 Computation of experimental section strains 

The computation of the in situ section strains is vital for performing an accurate RZT-

based iFEM analysis. Conventional strain rosettes and embedded FBG sensors can be 

used to collect a large amount of on-board strain data. To compute in situ section 

strains, as depicted in Figure 6.2, at least three different in situ strain rosettes 

( , , )j
i i i
 ε ε ε  must be placed along the thickness direction of each particular location 

( , ) ( 1 )i z i n x  where 1 2( , )i ix xx  and [- , ]z h h   are located within the laminate. 

The exact locations of these sensors and their surface strain measurements (readings) 

are defined as 

11 22 12( , ) [ ]i i i iz h        ε x  (6.25) 

11 22 2( , ) [ ]i i i iz h      
  ε x  (6.26) 

( ) 11 22 2( , ) [ ]j j j j
i i i j iz z    ε x  (6.27) 

where the surface strain readings with the superscripts ‘+’, ‘–’, and ‘j’ refer to as the 

strain rosettes located on the top surface, bottom surface and j-th interface of the 



147 

 

laminate, respectively. In Equations (6.25-27), normal strain measurements (along 1x  

and 2x  directions) and shear strain measurement (in 1 2x x  plane) are identified by 

subscripts (11), (22), and (12), respectively. 

 

Figure 6.2 Strain rosettes and experimental surface strain measurements. 

The zigzag contributions to the in-plane strains vanish at the top and bottom surfaces. 

Therefore, experimentally measured membrane strains and bending curvatures can be 

determined using the same relations of the original iFEM plate formulation (Tessler 

and Spangler, 2003, 2005). These in situ membrane strains iE  and bending curvatures 

iK  can be computed at a particular discrete location ix  as 

1 11 11

2 22 22

3 12 12

1
( 1 )

2i

i i

i n

 
 
 

 

 

 

   
          

       

Ε  (6.28) 

4 11 11

5 22 22

6 12 12

1
( 1 )

2i

i i

i n
h

 
 
 

 

 

 

   
          

       

Κ  (6.29) 

where in situ section strains, iE  and iK , correspond to their analytic counterparts, 

( )e u  and ( )κ u , given by Equations (6.16-17), respectively. Substituting j-th interface 

strain readings 11 22 12( , , )j j j
i    and in situ section strains iE  and iK  into Equations 

(6.13-15), the in situ zigzag strain measures j
iM  can be computed at a particular 

discrete location ( )( , )i i jz zx  as (Cerracchio et al., 2013, 2015b) 
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7 11 1 ( ) 4

8 22 2 ( ) 5

9 12 3 ( ) 6

( 1 )

j j
j

j j j
i j

j j
ji i

z

z i n

z





      
             
         

Μ  (6.30) 

The in situ section strains j
iM  are evaluated at the j-th interface only; therefore, their 

analytic counterpart ( ) ( )kμ u  given by Eq. (6.18) must also be computed at exactly the 

same locations ( )( , )i i jz zx . Moreover, the in situ transverse-shear strain measures 

can be represented by a compact vector form as 

 10 11 12 13 ( 1 )i i i n      G  (6.31) 

where ( 10,11)i    and ( 12,13)i    denote discrete first and second transverse-

shear strain measures that correspond to their analytic counterparts, ( )γ u  and ( )η u , 

given by Equations (6.22-23), respectively. In Equations (6.28-31), the uppercase 

Greek letters are used to indicate the existence of experimental error in the strain 

measurements. 

The surface strain readings obtained from the in situ strain rosettes ( , , )j
i i i
 ε ε ε  cannot 

be used straightaway to compute the iG . However, deformation of thin shells exhibits 

a much smaller transverse-shear strains than in-plane strains. Therefore, the iFEM 

analysis of thin shells can be safely performed by omitting the iG  contributions. 

Instead, in deformation of thick shells, a considerable amount of the transverse 

deflection is caused by transverse-shear stresses, hence it is necessary to compute the 

iG  for obtaining accurate deformed shapes of the shell.  

As explained earlier in Section 3.2.3, a priori SEA analysis (Tessler et al., 1998, 1999) 

can be utilized to smooth the discrete in situ strain measures iE , iK , and j
iM . In this 

regards, the nine independent section strain measures, E , K , and jM , can be obtained 

as C1-continuous polynomial functions (i.e., having C0-continuous first-order 

derivatives) that are defined everywhere in the mid-plane of the laminate. Note that, 

hereafter, the ‘i’ subscript is removed to differentiate these continuous quantities from 

the discrete ones. The main advantage of the SEA analysis is that it enables the first-

order derivatives of in situ membrane strains, bending curvatures, and zigzag 
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curvatures to be accurately computed and subsequently used to obtain the in situ 

transverse shear strain measures, G . The method involves accurate solution of four 

equilibrium equations which contain the transverse-shear stress resultants of the RZT. 

In order to solve these four equilibrium equations, the continuous form of the in situ 

zigzag curvatures, ( 7 10)    ,. That correspond to their analytic counterparts, 

( 7 10)    , given by Eq. (6.19), has to be well-defined. The continuous form of 

( 7,8)    can be simply obtained utilizing the continuous form of zigzag strain 

measures, ( 7,8)j
   , as 

  7 8
7 8 ( ) ( )

1 ( ) 2 ( )( ) ( )

j j

k k
j jz z 

  
    

  
 (6.32) 

where ( )
( )( ) ( 1, 2)k

jz    represents the zigzag function evaluated at the j-th interface, 

( )( )i jz z . On the other hand, as only three strain rosettes are located through the 

thickness of each discrete location, ix , neither the discrete form, ( 9,10)i   , nor 

the continuous form, ( 9,10)   , of the remaining zigzag curvatures can be 

directly computed from the experimentally measured surface strains. However, a 

highly accurate estimate of ( 9,10)i    can be made through a preliminary iFEM 

analysis using the continuous in situ strain measures ( E , K , jM ) and omitting the 

contributions of the transverse-shear strain measures, G . This preliminary iFEM 

analysis can provide promising solutions for bending and zigzag rotations even for 

thick laminates. This analysis, nevertheless, may not provide an accurate enough 

solution for the deflection. Therefore, the aim to perform a preliminary iFEM analysis 

is to compute only ( 9,10)i   . Then, these discrete quantities can be mapped on 

the smooth functions and the C1-continuous quantities; i.e., ( 9,10)   , can be 

obtained by performing an additional SEA analysis. The final step to obtain the 

transverse-shear strain measures, G , is to solve the four equilibrium equations by 

utilizing the first order derivatives of E , K , and ( 7 10)    . The overall 

outcome of this computational procedure will provide the continuous form of all 
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experimental section strains, e.g., j   ε Ε Κ Μ G . All the steps followed 

within the described computational tool are schematically detailed in Figure 6.3. 

 

Figure 6.3 The iFEM computational tool to calculate all in situ section strains. 

6.3.4 The weighted-least-squares functional 

Accounting for the membrane, bending, zigzag, and transverse-shear deformations of 

the RZT and adopting the iFEM methodology (Tessler et al., 2011) as general basis, a 

weighted-least-squares functional, ( ) u , can be defined as 
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13

1

( ) w 





 u  (6.33) 

where  ( 1 13)w     are positive valued weighting coefficients associated with the 

individual section strains. The significance of their usage for an iFEM discretization 

in which relatively few elements have in situ strain measurements was previously 

discussed (vid. Section 3.2.4). Besides, in Equation (6.33), the functional 

( 1 13)     is the least-squares functional of in situ section strains ( ε  or iε ) and 

kinematic variables u . For the direct input of discrete section strains, iε , the least-

squares functional becomes ( , )  ( 1 13)i     u ε  and can be defined by the 

normalized Euclidean norms given as 

 2

1

1
( )  ( 1, 2,3)

n

i i
i

e
n   



   u  (6.34) 

 
2

2

1

(2 )
( )  ( 4,5,6)

n

i i
i

h

n    


   u  (6.35) 

2( )

1

1
( )  ( 7,8,9)

n
k j

i i
in    


     u  (6.36) 

 2

1

1
( )  ( 10,11)

n

i i
in    


   u  (6.37) 

 2

1

1
( )  ( 12,13)

n

i i
in    


   u  (6.38) 

where 1 k N   and or ( 1)j k k  . Instead, if the computational tool (as described 

in previous section) is used to perform SEA analysis such that the continuous 

experimental strain measures, ε , become available for iFEM analysis, the least-

squares functional becomes ( , )  ( 1 13)     u ε  and can be expressed in terms 

of the dimensionless L2 squared norms given as 

 21
( )  ( 1, 2,3)

A

e dA
A      u  (6.39) 

 
2

2(2 )
( )  ( 4,5,6)

A

h
dA

A       u  (6.40) 
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2( )1
( )  ( 7,8,9)k j

A

dA
A         u  (6.41) 

 21
( )  ( 10,11)

A

dA
A       u  (6.42) 

 21
( )  ( 12,13)

A

dA
A       u  (6.43) 

Furthermore, in the case of a missing in situ strain component, Equations (6.34-38) or 

(6.39-43) take on the reduced form defined by the L2 squared norms 

 21
( )    (w ),  ( 1, 2,3)

A

e dA
A       u  (6.44) 

 
2

2(2 )
( )    (w ),  ( 4,5,6)

A

h
dA

A        u  (6.45) 

2( )1
( )  (w ),  ( 7,8,9)k

A

dA
A          u  (6.46) 

 21
( )    (w ),  ( 10,11)

A

dA
A        u  (6.47) 

 21
( )    (w ),  ( 12,13)

A

dA
A        u  (6.48) 

where the corresponding weighting constant is set as a small number, e.g., 510  .  

6.4 A Three-Node Triangular Inverse-Shell Element 

Formulation based on RZT 

A three-node triangular inverse-shell element, named “i3-RZT”, is developed on the 

basis of an improved iFEM algorithm. The inverse-element formulation is derived 

using the Tessler-Dong interdependent interpolation concept (Tessler and Dong, 1981; 

Tessler, 2000). The key concept originates from the RZT beam-frame formulation, 

from which constraint equations are devised and imposed to each edge of an 

unconstrained triangular element. The unconstrained element is a six-node triangular 

element with seven displacement DOF on the corner nodes and three displacement 
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DOF on the mid-side nodes. After the application of relevant constant shear edge 

constraint conditions, the displacement DOF on the mid-nodes are condensed out into 

the corner nodes. Finally, the i3-RZT inverse-element has nine displacement DOF per 

node (only corner nodes) including drilling rotations and artificial zigzag rotations, as 

shown in Figure 6.4. Due to the inclusion of drilling rotations, the i3-RZT element has 

two beneficial aspects: (1) Singular solutions can be simply avoided when modelling 

complex shell structures; and (2) the i3-RZT element has less tendency toward shear 

locking for membrane problems. Furthermore, it is much easier to implement the i3-

RZT element than the unconstrained element because each single node has the same 

number of displacement DOF.  

 

Figure 6.4 (a) Three-node triangular inverse-shell element, i3-RZT, depicted within 

global (X, Y, Z) and local (x, y, z) frames of reference; (b) Nodal degrees-of-freedom 

corresponding to local (element) coordinates (x, y, z). 

An orthogonal coordinate system ( , , )x y z  with its origin (0,0,0)  located at the 

centroid of the mid-plane triangle is defined as an element (local) coordinate system. 

In the following formulation, these local coordinates ( , , )x y z  are related with the 

laminate (plate) coordinates 1 2( , , )x x z  used to define the kinematic relations of RZT 

in Section 6.3.2. Thus, the coordinates 1 2( , ) ( , )x y x x  are the in-plane coordinates and 

[ , ]z h h    defines the thickness coordinate. With the element nodes referred to the 

global coordinates ( , , )X Y Z , suitable transformation matrices eT  defining the local-

to-global transformations are readily established in accordance with standard finite 
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element procedures to assemble element matrices into a global system of equations. 

For instance, the following Equations (6.49-58) defines the relevant transformations. 

The coordinates of element nodes referred to the global coordinate system ( , , )X Y Z  

are given as 

  ( 1 3)
T

i i i iX Y Z i  X  (6.49) 

Firstly, unit vector along local x-axis, l , can be defined as a unit vector pointing out 

from node-1 to node-2, that is 

2 1

2 1





X X

l
X X

 (6.50) 

Secondly, a unit vector pointing out from node-1 to node-3 can be defined as 

3 1

3 1





X X

a
X X

 (6.51) 

Then, the cross product of these vectors l  and A  can establish a unit normal vector to 

the mid-plane triangle, n , can be defined by  

 n l A  (6.52) 

Finally, the unit vector along local y-axis, p , can readily be computed from the cross 

product of the vectors n  and l  as 

 p n l  (6.53) 

Each edge length id  of the mid-plane triangle and global coordinates of each edge’s 

mid-point ic  can be calculated as 

( 1, 2,3; 2,3,1)

2

i j i

j i
i

d

i j

 
  

 


X X

X X
c

 (6.54) 

Then, global coordinates of centroid of the mid-plane triangle can be defined as 

1 1 2 2 3 3

1 2 3

d d d

d d d

 


 
c c c

C  (6.55) 
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Using Equations (6.49-50), (6.53), and (6.55), local coordinates of the i3-RZT element 

nodes can be determined as 

 
 

 1 3
i i

i i

x
i

y

     
   

X C l

X C p
 (6.56) 

With the unit vectors l , p , and n , the transformation matrix, eT , can be defined as 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

e

 
 
 
 
 
 
 
 
 
 
 
 
 
 

T

T

T

T

T T

T

T

T

T

 (6.57) 

with 

TT T T   T l p n  (6.58) 

where T  is the stress transformation matrix from the local to the global coordinate 

system. 

 

Figure 6.5 (a) Mid-plane (x, y)-reference surface and nodal coordinates of i3-RZT 

element; (b) Parent element in isoparametric coordinates. 

The ( , )x y  reference plane of the i3-RZT element can be uniquely defined in terms of 

bilinear mapping functions as 
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1 2 3( , ) (1 )x s t s t x s x t x      (6.59) 

1 2 3( , ) (1 )y s t s t y s y t y      (6.60) 

where s  and t  are dimensionless isoparametric coordinates and ( , ) ( 1 3)i ix y i    are 

the local nodal coordinates of the element, as illustrated in Figure 6.5. This definition 

is necessary for numerical Gauss integration of any functional on the surface of the 

element, eA . 

The nodal DOF, consisting of positive x  translations iu , positive y  translations iv , 

and positive counter clockwise drilling rotations zi , define the u  and v  mid-plane 

membrane displacements by 

3

1

( )i i i zi
i

u N u L 


   (6.61) 

3

1

( )i i i zi
i

v N v M 


   (6.62) 

where iN  is the linear area-parametric coordinates of the triangle and the interpolation 

functions iL  and iM  are the anisoparametric shape functions that define the interaction 

between the hierarchical drilling rotation DOF and the membrane displacements of the 

element.  

Besides, the transverse deflection w , two bending rotations  ( 1, 2)   , and two 

zigzag rotations  ( 1, 2)    are defined by the nodal DOF of positive z  translation 

iw  and positive counter clockwise rotations around the x - and y - axes, xi , xi  and 

yi , yi . These kinematic variables are interpolated as 

3

1

[ ( ) ( )]i i i xi xi i yi yi
i

w N w L M   


      (6.63) 

3

1
1

i yi
i

N 


  (6.64) 

3

2
1

i xi
i

N 


   (6.65) 
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3

1
1

i yi
i

N 


  (6.66) 

3

2
1

i xi
i

N 


   (6.67) 

where area-parametric coordinates, iN , interpolates bending and zigzag rotations and 

the anisoparametric shape functions, iL  and iM , combine z  translation, bending, and 

zigzag rotation DOF altogether in the interpolation of the transverse deflection, w . In 

fact, these shape functions were originally developed by Tessler and Hughes (1985) 

for a three-node plate element, MIN3 (Mindlin-type, three-nodes), and were used by 

many authors e.g., Versino et al. (2013), Cerracchio et al. (2013, 2015b). The explicit 

forms can be defined as 

2

( ) ( 1, 2,3;   2,3,1;   3,1, 2)
2

( )
2

i i i
i

e

i
i k j j k

i
i k j j k

b x a y c
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N
M a N a N i j k

N
L b N b N

   



    

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

  (6.68) 

with 

( 1, 2,3;   2,3,1;   3,1, 2)
i k j

i j k

i j k k j

a x x

b y y i j k

c x y x y

 
    
  

 (6.69) 

Taking the relevant partial derivatives of Equations (6.61-67), then substituting these 

derivatives into Equations (6.16-18) and (6.22-23), gives rise to explicit definitions of 

membrane strain measures, bending curvatures, zigzag strain measures, and first and 

second transverse-shear strain measures in terms of the element nodal displacement 

vector, eu , as 

1 2 3( )
Te e e e   e u B u B u B u  (6.70) 

4 5 6( )
Te e e e   κ u B u B u B u  (6.71) 
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( ) ( ) ( ) ( )
1 7 2 8 9( )

Tk e k e k e k e
    μ u B u B u H B u  (6.72) 

10 11( )
Te e e   γ u B u B u  (6.73) 

12 13( )
Te e e   η u B u B u  (6.74) 

with 

( ) ( ) ( )
1 2[ ]k k k T

  H  (6.75) 

1 2 3

Te e e e   u u u u  (6.76) 

  ( 1 3)
Te

i i i i xi yi zi xi yi ziu v w i         u  (6.77) 

and where the matrices  ( 1 13)   B  contain derivatives of the shape functions and 

are can be expressed as 

1 2 3 ( 1 13)        B B B B  (6.78) 

with 
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i x i x i i x i x i x

i
i y i y i i y i y i y

N L N M L M
i

N L N M L M

       
      

B

B
 (6.83) 

12 , , , , ,

13 , , , , ,

0 0 ( ) 0 ( ) 0
( 1 3)

0 0 ( ) 0 ( ) 0

i
i x i x i i x i x i x i

i
i y i y i i y i y i i y

N L N M L M N
i

N L N M L N M

        
       

B

B
 (6.84) 

where, ( )
,( ) x x


   and ( )

,( ) y y

   denote the partial derivative with respect to in-plane 

coordinates x  and y , respectively.  

Firstly, the continuous section strains ε  can be obtained using the computational tool 

described in Section 6.3.3. Secondly, the analytic section strains can be calculated as 

given by Equations (6.70-74). Thirdly, substituting these experimental and analytical 

section strains into the weighted-least-squares functional, given by Equations (6.33) 

and (6.39-43), give rise to 

13

1

( ) ( , )e e
e w 






 u u ε  (6.85) 

where the functional ( )e
e u  is defined for an individual i3-RZT element. Finally, 

minimizing this functional, ( )e
e u , with respect to the nodal displacement DOF, eu , 

reveals that 

( )
0

e
e e e e e ee

e


    


u

Γ u ε Γ u ε
u

 (6.86) 

where eΓ  is the element left-hand-side matrix; eε  is the element right-hand-side 

vector, which is a function of the measured strain values; and eu  is the nodal 

displacement vector of the element.  

The eΓ  matrix combines the contribution of every analytic section strain component 

and its corresponding weighting constant  ( 1 13)w     and is given by 

13

1

e ew 


 Γ k  (6.87) 

where  ( 1 13)e
   k  matrices denote the contribution of each analytic section strain 

component and can be explicitly written in terms of the  ( 1 13)   B  matrices as 
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1
 ( 1 3,10 13)

e

e T

e A

dx dy
A      k B B  (6.88) 

2(2 )
  ( 4 6) 
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9 9 9

1

e

Te T k

e A
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A   k B H H B  (6.92) 

The eε  vector is a function of the experimentally measured section-strain values, and 

is given by 

13
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e ew 
 

 ε f  (6.93) 

where  ( 1 13)e
   f  vectors denote the contribution of each experimental section 

strain component and can be explicitly written in terms of the continuous section 

strains ε  and the  ( 1 13)   B  matrices as 
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1
 ( 10,11)

e

e T

e A

dx dy
A     f B  (6.99) 

1
 ( 12,13)

e

e T

e A

dx dy
A     f B  (6.100) 

After the left-hand-side matrix, eΓ  is constructed using the Equations (6.87-92), the 

element equation, e e eΓ u ε , has the following form 

U U

z

    
    

    

UΓ 0 f

ψ0 0 0
 (6.101) 

with 

 1 2 3

T

z z z z  ψ  (6.102) 

An artificial contribution matrix Γ  that corresponds to the artificial zigzag 

amplitudes zψ  can be constructed as follows 

1
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0 0

0 0

0 0

z

z
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

 



 
   
  

Γ  (6.103) 

with 

min( , ) ( 1, 2,3)i i i
z x yk k k i      (6.104) 

where the constant   is a small number, e.g., 510  , and the coefficients 

, ( 1, 2,3)i i
x yk k i    are diagonal terms of the UΓ  matrix that correspond to the zigzag 

amplitudes DOF, ( , ) ( 1 3)xi yi i    . To avoid singular solutions, Γ  must be added 

to the eΓ  matrix, and the element equations defined in Equation (6.101) can be 

rewritten in the following final form as 

U U

z

     
     
   

Γ 0 U f

0 Γ ψ 0
 (6.105) 

Using the local matrix equations (i.e., Equation 6.105), the global linear equation 

system of the discretized structure can simply be constructed revisiting the steps 
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described in Section 3.3 (refer to Equations 3.81-84). Then, the resulting system of 

equations, given by Equation (3.85), can be obtained by applying problem-specific 

constraint boundary conditions, and then subsequently solved to acquire real-time 

deformed shape of the entire structure. By using the evaluated displacement values, 

strains and displacements throughout the structure can be obtained. Furthermore, the 

constitutive relationship between stress and strain (i.e., the generalized Hooke’s law 

for the k-th orthotropic lamina) will allow determination of stress distribution 

everywhere within the laminate. Finally, these stress distributions can be utilized with 

a suitable failure criterion for composite materials, allowing the damage detection as 

part of the SHM process. 

6.5 Numerical Examples 

A simply supported rectangular plate (laminate) with three different lamina stacking 

sequences (uniaxial, cross-ply and angle-ply) has been originally analyzed by Tessler 

et al. (2010) based on the analytical solution of the RZT plate theory. The authors 

obtained superior displacement and stress results in comparison to other solutions such 

as 3D elasticity theory (Pagano, 1969), FSDT, and the theory of Di Sciuva (1984). In 

Section 6.5.1, this problem is revisited to validate the accuracy of the RZT-based 

improved iFEM formulation. Following the validation case, the applicability of the 

present iFEM formulation to more complex composite/sandwich structures is 

demonstrated by analyzing a wedge structure with a hole near one of the clamped ends 

(refer to Section 6.5.2). The detailed distributions of the displacements and stresses are 

examined for both example problems. 

6.5.1 Simply supported rectangular laminates  

As depicted in Figure 6.6, the plate has a length of a = 1 m , height of b = 1 m , and 

uniform thickness 2h = 0.2 m . The plate is subjected to a sinusoidal varying 

transverse pressure, 0(X,Y) sin( X / a)sin( Y / b)q q   , where the pressure 

magnitude is 0 1 MPaq   . As presented in Figure 6, the kinematic variables are 

defined as follows: U, V, and W  represent the translations along the coordinate 

directions X, Y, and Z , respectively; X Yθ , θ  and X Yψ , ψ  represent bending and 

zigzag rotations around the positive X and Y  directions, respectively.  
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Figure 6.6 Simply supported plate subjected to sinusoidal varying pressure. 

The four edges of the plate are simply supported and the following kinematic boundary 

conditions satisfy the simply supported boundary condition of the plate: For cross-ply 

and uniaxial laminates, the kinematic boundary conditions along X 0  and X a  are 

X XV = W = θ  = ψ  = 0  (6.106) 

and along Y 0  and Y b  are 

Y YU = W = θ  = ψ  = 0  (6.107) 

For angle-ply laminates, the kinematic boundary conditions along X 0  and X a  

are 

X XU = W = θ  = ψ  = 0  (6.108) 

and along Y 0  and Y b  are 

Y YV = W = θ  = ψ  = 0  (6.109) 

Three different laminates (I, II, III) are considered for representing relatively thick 

laminated composite and sandwich plates with a span-to-thickness ratio of 

a 2h b 2h 5  . Laminate I is a two-layer, cross-ply carbon-epoxy laminate. 

Laminate II is a three-layer sandwich laminate with uniaxial carbon-epoxy face sheets 

and a thick, closed cell polyvinyl chloride (PVC) core, where PVC is represented as 

an isotropic material. Laminate III is a five-layer, angle-ply sandwich laminate with 
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carbon-epoxy face sheets and a thick PVC core. The mechanical material properties 

and the stacking sequences of the laminates are listed in Tables 6.1-2, respectively. 

Table 6.1 Mechanical properties of orthotropic and isotropic materials. 

Lamina material 
Young’s modulus 
[GPa] 

Poisson’s ratio 
Shear modulus 
[GPa] 

C 
Carbon-epoxy 
unidirectional 
composite 

( )
1

( )
2

( )
3

157.9

9.584

9.584

k

k

k

E

E

E







 

( )
12

( )
13

( )
23

0.32

0.32

0.49

k

k

k













 

( )
12

( )
13

( )
23

5.930

5.930

3.227

k

k

k

G

G

G







 

P PVC core ( ) 0.104kE   ( ) 0.3k   ( ) 0.04kG   

 

Table 6.2 Laminate stacking sequences (in the positive Z direction). 

Laminate 
Normalized lamina 

thickness, ( )h / hk  

Lamina 
materials 

Lamina 

orientation [  ] 

I Cross-ply composite (0.5/0.5) (C/C) (0/90) 

II Uniaxial sandwich (0.1/0.8/0.1) (C/P/C) (0/0/0) 

III Angle-ply sandwich (0.05/0.05/0.8/0.05/0.05) (C/C/P/C/C) (30/-45/0/45/-30) 

 

To establish an accurate reference solution, a convergence study was performed using 

direct RZT-based FEM analyses utilizing an in-house FEM code. The most refined 

mesh consisted of 10000 uniformly distributed triangular elements that possessed 

35707 DOF. For each laminate (I, II, III), comparisons of the normalized central 

deflection are listed in Table 6.3, where the normalization factor of 2 4
11 010 / aD q  is 

used with 11D  denoting the bending stiffness coefficient. These results demonstrate 

that the high-fidelity RZT-based FEM analyses predict plate displacements that are 

comparably accurate to those of the RZT analytical solutions (Tessler et al., 2010). 

Therefore, the high-fidelity FEM deflections and rotations are used to compute the 

simulated strain-sensor strains. For each laminate (I, II, III), maximum deflection 

FEM
maxW , von Mises stress FEM

v, max , bending rotations FEM
X, maxθ  and FEM

Y, maxθ , and zigzag 
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rotations FEM
X, maxψ   and FEM

Y, maxψ   obtained from the high-fidelity FEM solutions 

(reference) are listed in Tables 6.4-5, respectively. To assess the accuracy of the 

displacement, rotation, and stress responses, it would be convenient to use these 

reference values as normalization factors. 

Table 6.3 Normalized central deflection, 2 4
11 0w (10 / a ) W(0.5a,0.5b)D q . 

Laminate 
Normalization Factor 

( 2 4
11 010 / aD q ) 

RZT Analytic ( w ) 

(Tessler et al., 2010) 
FEM ( w ) 

I 5617.72 1.219 1.219 

II 5173.04 29.785 29.775 

III 2448.38 14.105 14.101 

 

Table 6.4: Maximum deflections and von Mises stresses of the plate. 

Laminate FEM
maxW  [m] FEM

v, max  [Pa] 

I 42.169 10   71.306 10  

II 35.756 10   61.397 10  

III 35.759 10   72.587 10  

 

Table 6.5 Maximum bending and zigzag rotations of the plate  

Laminate 
FEM
X, maxθ  [rad] FEM

Y, maxθ  [rad] FEM
X, maxψ  [rad] FEM

Y, maxψ  [rad] 

I 45.128 10  45.128 10  55.520 10  55.520 10  

II 34.009 10  31.913 10  21.415 10  21.607 10  

III 32.732 10  31.571 10  21.538 10  21.652 10   

 

In the present iFEM analysis, the strain rosettes are regularly distributed, and each 

strain rosette configuration pertains to a discretization with the same number of 
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element subdivisions along the plate edges, ne. Through the thickness coordinate, three 

strain rosettes are located at the centroid of each element; one on the top surface, one 

on the bottom surface, and one on the nearest interface to the bottom surface of the 

laminate. In Figure 6.7, an example of a strain rosette configuration for discretization, 

ne = 4, is demonstrated.  

 

Figure 6.7 Strain rosette configuration of the simply supported plate for 

discretization ne = 4 

Utilizing the computational tool described in Section 6.3.3, the continuous in situ strain 

measures ( E , K , jM , and G ) are calculated for each laminate. Therefore, the 

continuous form of section strains ε  is used in the following RZT-based iFEM 

analyses. The weighting constants associated with the membrane, bending, and zigzag 

strain measures are adjusted as  = 1 ( 1 9)w    , whereas the weighting constants 

corresponding to the transverse-shear strain measures are set to a small value as 

8 = 10 ( 10 13)w    . As a consequence of this adjustment, the minimization of the 

weighted-least-squares functional will enforce the match between the membrane, 

bending and zigzag strain measures, and their measured values much more than the 

condition of small-valued transverse-shear strain measures. The analytical expressions 

of both bending curvatures and transverse-shear strain measures involve quantities 

related to bending rotations. Also, the analytical expressions of both zigzag and 

transverse-shear strain measures involve quantities related to zigzag rotations. As a 
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result of the above stated adjustment of the weighting constants, the bending 

curvatures and zigzag strain measures will contribute to reconstruction of the bending 

and zigzag rotations much more than the small-valued transverse-shear strain 

measures will. Furthermore, the small weighting coefficient will not affect the 

accuracy of the deflection reconstruction because the only strain measure that involves 

the quantities related to the deflection is transverse-shear strain measures. Hence, the 

deflection will accurately be reconstructed based on the match between transverse-

shear strain measures and their experimental values.  

For each laminate (I, II, III), the deflections, bending and zigzag rotations, and von 

Mises stresses obtained from both iFEM and FEM analyses are normalized by absolute 

values of the FEM solutions listed in Tables 6.4-5. These normalized expressions are 

given as follows 

FEM
max X Y X Y vχ χ / χ (χ W,θ ,θ ,ψ ,ψ , )   (6.110) 

In Tables 6.6-9, the percent difference between iFEM and FEM predictions for the 

maximum values of the normalized expressions given in Equation (6.110) are listed 

versus the number of element subdivisions ne for each laminate (I, II, III), respectively.  

Table 6.6 Percent difference between the iFEM and FEM predictions for maximum 

values of the displacements of laminate I. 

ne 

Percent difference 

W  Xθ  Yθ  Xψ  Yψ  

2 1.7 2.1 2.1 2.1 2.1 

4 1.6 0.7 0.7 0.9 0.9 

6 0.4 0.2 0.2 0.6 0.6 

8 0.2 0.1 0.1 0.3 0.3 

10 0.0 0.0 0.0 0.3 0.3 
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Table 6.7 Percent difference between the iFEM and FEM predictions for maximum 

values of the displacements of laminate II. 

ne 

Percent difference 

W  Xθ  Yθ  Xψ  Yψ  

2 1.3 2.3 1.7 1.9 2.1 

4 0.8 0.8 0.5 0.7 0.7 

6 0.2 0.1 0.2 0.1 0.2 

8 0.2 0.1 0.0 0.1 0.1 

10 0.1 0.0 0.0 0.1 0.0 

 

Table 6.8 Percent difference between the iFEM and FEM predictions for maximum 

values of the displacements of laminate III. 

ne 

Percent difference 

W  Xθ  Yθ  Xψ  Yψ  

2 1.3 2.0 1.5 1.7 1.9 

4 0.7 0.8 0.5 0.7 0.7 

6 0.1 0.1 0.1 0.0 0.1 

8 0.1 0.1 0.1 0.1 0.1 

10 0.0 0.1 0.1 0.1 0.0 

 

These results shows that the iFEM predictions for all displacements convergence to 

the reference solution very quickly, even if only a few strain sensors are used for the 

shape sensing analysis of each simply supported laminate (I, II, III). For example, the 

total number of sensors used for strain rosette configuration, ne = 2, is only 48 and 

none of percent differences corresponding to this configuration exceeds the 2.3% for 
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all laminates (refer to Tables 6.6-9). Remarkably, these results demonstrate that the 

improved iFEM formulation predicts plate displacements and rotations that are as 

accurate as those of the reference solutions. 

In addition, for each simply supported square laminate (I, II, III), through-the-

thickness distributions of the in-plane displacements, normal and transverse-shear 

stresses are plotted in Figures 6.8-17, respectively, where the following normalization 

was used 

3 4
11 0U(0,0.5b, Z) (10 / a ) U(0,0.5b, Z)D q  (6.111) 

2 2
XX 0 XX(0.55a,0.6 b, Z) (4h / a ) (0.55a,0.6 b, Z)q   (6.112) 

2
XZ 0 XZ(0.11a,0.2 b, Z) (20h / a ) (0.11a,0.2 b, Z)q   (6.113) 

In these figures, the legend “iFEM” represents the normalized iFEM solutions, 

whereas the legend “Reference” represents the normalized high-fidelity FEM 

solutions. It is important to note, moreover, that the XZ  stress results are obtained 

using Cauchy's 3D equilibrium equations; therefore, the XZ  stress distributions are 

continuous through the thickness of the laminates (refer to Figures 6.8-17).  

 

Figure 6.8 In-plane displacement U(0,0.5b, Z)  variation through the thickness of 

laminate I. 
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Figure 6.9 In-plane stress XX (0.55a,0.6 b, Z)  variation through the thickness of 

laminate I. 

 

Figure 6.10 Transverse-shear stress XZ (0.11a,0.2 b, Z)  variation through the 

thickness of laminate I. 
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Figure 6.11 In-plane displacement U(0,0.5b, Z)  variation through the thickness of 

laminate II. 

 

Figure 6.12 In-plane stress XX (0.55a,0.6 b, Z)  variation through the thickness of 

laminate II. 
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Figure 6.13 Transverse-shear stress XZ (0.11a,0.2 b, Z)  variation through the 

thickness of laminate II. 

 

Figure 6.14 In-plane displacement U(0,0.5b, Z)  variation through the thickness of 

laminate III. 
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Figure 6.15 In-plane stress XX (0.55a,0.6 b, Z)  variation through the thickness of 

laminate III. 

 

Figure 6.16 Transverse-shear stress XZ (0.11a,0.2 b, Z)  through the thickness of 

laminate III. 
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(a)      (b) 

Figure 6.17 Zoomed view of the Figure 31: (a) Thickness coordinate, 

Z / h [ 0.8, 1]   ; (b) Thickness coordinate, Z / h [0.8,1] . 

In these figures, the U , XX , and XZ  distributions obtained using improved iFEM 

formulation are virtually indistinguishable from their corresponding reference 

solutions. The accuracy of these results demonstrates the superior capability of iFEM 

formulation for shape and stress sensing of a wide range of lamina stacking sequences 

(i.e., uniaxial, cross-ply, and angle-ply). Furthermore, these results confirm that the 

present iFEM formulation is suitable for displacement and stress monitoring of 

relatively thick laminates ( a 2h b 2h 5  ) even using a very low number of strain 

rosettes. For instance, the total number of sensors used for the i3-RZT model, ne = 4, 

is only 64.  

Furthermore, in Figures 6.18-23, contour plots of the W , Xθ , Yθ , Xψ , Yψ , and v  

variables are compared between iFEM and high-fidelity FEM analyses of laminate III, 

respectively. Note that, only contour plots of the laminate III (i.e., the most complex 

laminate in comparison to others) is included herein for conciseness of this chapter. 

However, the contour plots pertaining to laminates I and II can be found in Kefal, 

Tessler, et al. (2016). The percent difference between iFEM and FEM predictions for 

the maximum W displacement is only 0.7% as depicted in Figure 6.18.  
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Figure 6.18 Contour plots of W  displacement for laminate III: Comparison between 

high-fidelity FEM and iFEM (ne = 4) analyses. 

     

Figure 6.19 Contour plots of Xθ  bending rotation for laminate III: Comparison 

between high-fidelity FEM and iFEM (ne = 4) analyses. 

     

Figure 6.20 Contour plots of Yθ  bending rotation for laminate III: Comparison 

between high-fidelity FEM and iFEM (ne = 4) analyses. 
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Figure 6.21 Contour plots of Xψ  zigzag rotation for laminate III: Comparison 

between high-fidelity FEM and iFEM (ne = 4) analyses. 

     

Figure 6.22 Contour plots of Yψ  zigzag rotation for laminate III: Comparison 

between high-fidelity FEM and iFEM (ne = 4) analyses. 

     

Figure 6.23 Contour plots of v  von Mises stress at thickness coordinate Z / h 1   

of laminate III: Comparison between high-fidelity FEM and iFEM (ne = 4) analyses. 
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Similar accuracy is obtained for the maximum bending and zigzag rotations, Xθ , Yθ  

and Xψ , Yψ , with a percent difference less than 0.8% and 0.7%, respectively (refer to 

Figures 6.19-22). Besides, as depicted in Figure 6.23, iFEM and FEM predictions 

differ from each other by only 0.2% for the maximum v  stress. As can be seen from 

all these figures, both iFEM and FEM contours are graphically indistinguishable. 

These results altogether confirm the superior bending predictions of the new i3-RZT 

element, especially considering the low number of strain sensors, ne = 4, used in iFEM 

analysis. 

6.5.2 A wedge structure with a hole 

A wedge structure with a hole near one of the clamped ends is analyzed to demonstrate 

the applicability of the improved iFEM formulation to more complex engineering 

structures. As depicted in Figure 6.24, the wedge structure has overall length of 

1L  = 6 m , width of 2L  = 2 m , and uniform thickness of 2h = 0.2 m . The wedge 

structure is composed of panels A and B, each of which has an element group 

coordinate system, i.e., (X , Y , Z ) ( =A, B)    .  

 

Figure 6.24 Isometric view of the wedge structure. 
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Figure 6.25 Panels A and B, group coordinate systems, and kinematic variables. 

As presented Figure 6.25, the kinematic variables (U , V , W ) ( A, B)      represent 

the translations along the positive coordinate (X , Y , Z ) ( =A, B)     directions, 

respectively, whereas the kinematic variables X Y(θ , θ ) ( A, B)     and 

X Y(ψ , ψ ) ( A, B)     denote bending and zigzag rotations around the positive 

(X , Y ) ( =A, B)    directions, respectively. Both ends of the wedge are clamped, and 

the clamped boundary conditions along A BX  = X  = 0 m  and A BX  = X  = 6 m  are 

specified as 

U = V = W = θ = ψ = 0 ( = A, B; = X, Y)        (6.114) 

A body force of 3g 100 kN/m  is applied to the wedge structure along the negative 

AZ  direction as shown in Figure 6.24. A five-layer, cross-ply sandwich laminate with 

carbon-epoxy face sheets and a thick PVC core is considered to represent moderately 
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thin sandwich plates with a span-to-thickness ratio of 1L /2h = 30 . The stacking 

sequences of the wedge laminate are listed in Table 6.9. 

Table 6.9 Laminate stacking sequence of the wedge structure (in the positive AZ  and 

BZ  directions). 

Wedge Laminate 
Normalized lamina 

thickness, ( )h / hk  

Lamina 
materials 

Lamina 

orientation [  ] 

Cross-ply sandwich (0.05/0.05/0.8/0.05/0.05) (C/C/P/C/C) (0/90/0/90/0) 

 

 

Figure 6.26 Discretization of the wedge structure using 18802 elements. 

An RZT-based FEM convergence study was performed to establish an accurate 

reference solution for this problem. As depicted in Figure 6.26, the highest fidelity 

FEM mesh consisted of 18802 randomly distributed triangular elements with an edge 

size of sizee  = 0.05 m  and 86535 DOF. The FEM deflections and rotations are used to 

compute the simulated strain-sensor strains. For panels A and B, the maximum 

displacements, von Mises stresses, bending and zigzag rotations obtained from FEM 

analysis are listed in Tables 6.10-11, respectively. To assess the accuracy of the 

displacement, rotation, and stress responses, it would be convenient to use these 

reference values as normalization factors. 
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Table 6.10 Maximum displacements and von Mises stresses of the wedge panels. 

  
FEM

, maxU  [m] FEM
, maxV  [m] FEM

, maxW  [m] FEM
v , max  [Pa] 

A 54.353 10   42.059 10   21.389 10   79.874 10  

B 41.101 10  48.601 10  21.031 10   79.238 10  

 

Table 6.11 Maximum bending and zigzag rotations of the wedge panels. 

  
FEM
X , maxθ   [rad] FEM

Y , maxθ   [rad] FEM
X , maxψ   [rad] FEM

Y , maxψ   [rad] 

A 36.119 10  31.243 10  31.350 10   37.128 10   

B 36.084 10  31.120 10  32.117 10   35.314 10  

 

Five different iFEM analyses of the wedge structure were performed using five 

different networks of strain rosettes. Each iFEM analysis refers to a case study number; 

e.g., the first analysis is called “iFEM (Case I)” and the third analysis is called “iFEM 

(Case III).” Through the thickness coordinate, three strain rosettes are located at the 

centroid of each element for all iFEM cases; one on the top surface, one on the bottom 

surface, and one on the nearest interface to the bottom surface of the laminate. In 

contrast to example presented in Section 6.5.1, the discrete strain measures were not 

smoothed a priori and they were directly used as input in iFEM (Cases I-V). Using the 

absolute values of the reference solutions listed in Tables 6.10-11, the displacements, 

bending and zigzag rotations, and von Mises stresses obtained from both iFEM and 

FEM analyses are normalized as 

FEM
, max X Y X Y vχ χ  / χ (χ U,V, W,θ ,θ ,ψ ,ψ , )      (6.115) 

where A   is for panel A and B   is for panel B. 

In iFEM (Case I), the i3-RZT discretization is identical to high-fidelity mesh used in 

the FEM analysis. As presented in Figure 6.27, the i3-RZT model has 18802 uniformly 

distributed triangular elements, each of which has three strain rosettes ( , , )j
i i i
 ε ε ε . In 
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iFEM (Case II), the top-surface, bottom-surface, and j-th interface strain rosettes are 

removed from 13678 i3-RZT elements, and the resulting i3-RZT mesh has only 5124

3 strain rosettes as shown in Figure 6.28. A coarser i3-RZT discretization is used in 

the last three case studies, iFEM (Cases III-V). As depicted in Figure 6.29, the coarser 

i3-RZT discretization consisted of 4644 randomly distributed triangular elements with 

an edge size of sizee  = 0.1 m  and 21861 DOF.  

 

Figure 6.27 The i3-RZT model used in iFEM (Case I). 

 

Figure 6.28 The i3-RZT model used in iFEM (Case II). 
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Figure 6.29 Discretization of the wedge structure using 4644 elements. 

 

Figure 6.30 The i3-RZT model used in iFEM (Case III). 

In iFEM (Case III), as presented in Figure 6.30, the i3-RZT model has 4644 inverse-

elements each of which has three strain rosettes ( , , )j
i i i
 ε ε ε . In iFEM (Case IV), the 

top-surface, bottom-surface, and j-th interface strain rosettes are removed from 2839 

i3-RZT elements, and the resulting i3-RZT mesh has only 1825 3  strain rosettes 

(refer to Figure 6.31). In iFEM (Case V), as shown in Figure 6.32, the i3-RZT model 

has only 1288 inverse-elements installed with three strain rosettes ( , , )j
i i i
 ε ε ε , and the 

remaining 3376 i3-RZT elements has no in situ strain components. For an i3-RZT 
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element that has no in situ strain components, the corresponding weighting coefficients 

are set to 10-5. Moreover, the weighting constants corresponding to the transverse-

shear strain measures are set to a small value as 8 = 10  ( 10,11)w    and 

6 = 10  ( 12,13)w    for iFEM (Cases I-V). 

 

Figure 6.31 The i3-RZT model used in iFEM (Case IV). 

 

 

Figure 6.32 The i3-RZT model used in iFEM (Case V). 

The percent difference between iFEM (Cases I-V) and FEM predictions for the 

maximum values of normalized expressions given in Equation (6.115) are listed for 
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panels A and B in Tables 6.12-13, respectively. As can be seen from these tables, iFEM 

(Case I) and FEM predictions are almost the same for all the variables. These results 

clearly demonstrate the superior accuracy of the iFEM/i3-RZT solutions when a high-

fidelity i3-RZT model in which all elements have in situ strain measurements is used. 

The percent differences between iFEM (Case II) and FEM estimates for all of the 

variables are less than 4% and 2% for panels A and B, respectively. These results 

confirm the superior membrane-bending coupled predictions of the i3-RZT element, 

especially considering a high-fidelity i3-RZT model in which relatively few elements 

have in situ strain measurements. The percent differences between iFEM (Case III) 

and FEM predictions for displacement and rotation variables are not more than 5.6% 

and 10.8% for panel A and 1.1% and 5.9% for panel B, respectively. These results 

demonstrate the high accuracy of the iFEM/i3-RZT capability for shape sensing even 

when relatively coarse discretization is used. Moreover, iFEM (Case III) solutions for 

von Mises stresses differ from the FEM solutions by approximately 14% for panel A 

and 15.5% for panel B. Even though these results might be acceptable for some 

practical applications, they clearly demonstrate that iFEM/i3-RZT formulation needs 

a higher fidelity mesh to compute high strain gradients to obtain improved stresses.  

Table 6.12 Percent difference between the iFEM (Cases I-V) and FEM predictions 

for maximum values of the variables (panel A). 

Case 
Percent difference 

AU  AV  AW  XAθ  YAθ  XAψ  YAψ  vA  

I 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 

II 0.1 0.0 0.0 1.1 3.7 2.8 0.0 0.2 

III 5.6 0.8 1.0 0.8 0.8 10.8 1.7 14.0 

IV 12.4 22.5 2.3 9.0 3.3 7.6 3.8 14.6 

V 18.1 52.2 3.8 19.4 7.7 3.2 4.7 14.5 

 

As can be seen from Table 6.10, the maximum deflections, FEM
, maxW  ( A, B)   , are 

much greater than the maximum in-plane displacements and/or rotations, thus the 
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deformed shape (total deformation) of the wedge structure is mainly caused by the 

deflections. Hence, the accuracy of monitoring the deflections AW  and BW  is crucial 

for monitoring total deformation. 

Table 6.13 Percent difference between the iFEM (Cases I-V) and FEM predictions 

for maximum values of the variables (panel B). 

Case 
Percent difference 

BU  BV  BW  XBθ  YBθ  XBψ  YBψ  vB  

I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 

II 0.2 0.3 0.0 1.1 0.1 1.7 0.0 0.2 

III 1.1 0.7 1.1 0.8 5.9 5.7 2.4 15.5 

IV 3.6 0.3 2.0 9.1 8.5 6.4 5.0 15.5 

V 5.1 2.5 4.9 19.5 21.5 8.5 5.8 15.5 

 

The percent differences between iFEM (Case IV) and FEM estimates for AW  and BW  

are only 2.3% and 2.0%, whereas iFEM (Case V) predictions for AW  and BW  differ 

from the FEM predictions by only 3.8% and 4.9%, respectively. These results 

demonstrate that iFEM predictions remain sufficiently accurate even considering a 

coarse i3-RZT model with the missing strain rosette data in many elements. Besides, 

these results remarkably prove the superior capability of the i3-RZT element for shape 

sensing, even though the percent differences between iFEM (Cases IV-V) for in-plane 

displacement and rotations are relatively higher. Furthermore, the percent differences 

between iFEM (Cases IV-V) and FEM predictions for von Mises stresses are not more 

than 14.6% and 15.5% for panels A and B, respectively. These percent differences are 

very similar to the corresponding percent differences obtained for iFEM (Case III). 

Hence, these results prove that an i3-RZT model in which few elements have strain 

rosettes can predict similar maximum stresses in comparison to an i3-RZT model in 

which all elements have strain rosettes. 

In addition to the percent difference results, contour plots for the normalized 

expressions given in Equation (6.115) are compared between iFEM (Case IV) and 
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high-fidelity FEM analyses in Figures 6.33-40. Note that, only contour plots of the 

iFEM (Case IV), i.e., one of the most challenging case study in comparison to others, 

is included herein for conciseness of this chapter. However, the contour plots 

pertaining to iFEM (Cases I-III and V) can be found in Kefal, Tessler, et al. (2016). In 

Figures 6.35-37 and 6.39-40, contour plots for iFEM (Case IV) are graphically almost 

identical to those of FEM. Moreover, the remaining contour plots for iFEM (Cases IV) 

are generally in good agreement with the contour plots of FEM (refer to Figures 6.33, 

6.34, and 6.38). The iFEM predictions remain sufficiently accurate even with the 

missing strain rosette data in many elements. Thus, these results demonstrates the 

superior predictive capability and practical applicability of the enhanced iFEM 

formulation for shape and stress sensing of complex composite/sandwich structures 

exhibiting complicated deformed shapes.  

     

Figure 6.33 Contour plots of A BU  and U  displacements of the wedge panels A and 

B: Comparison between high-fidelity FEM and iFEM (Case IV) analyses. 

     

Figure 6.34 Contour plots of A BV  and V  displacements of the wedge panels A and B: 

Comparison between high-fidelity FEM and iFEM (Case IV) analyses. 
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Figure 6.35 Contour plots of A BW  and W  displacements of the wedge panels A and 

B: Comparison between high-fidelity FEM and iFEM (Case IV) analyses. 

     

Figure 6.36 Contour plots of XA XBθ  and θ  bending rotations of the wedge panels A 

and B: Comparison between high-fidelity FEM and iFEM (Case IV) analyses. 

     

Figure 6.37 Contour plots of YA YBθ  and θ  bending rotations of the wedge panels A 

and B: Comparison between high-fidelity FEM and iFEM (Case IV) analyses. 
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Figure 6.38 Contour plots of XA XBψ  and ψ  zigzag rotations of the wedge panels A 

and B: Comparison between high-fidelity FEM and iFEM (Case IV) analyses.

     

Figure 6.39 Contour plots of YA YBψ  and ψ  zigzag rotations of the wedge panels A 

and B: Comparison between high-fidelity FEM and iFEM (Case IV) analyses. 

     

Figure 6.40 Contour plots of vA  and vB  von Mises stresses at thickness 

coordinates AZ  / h 1   and BZ  / h 1  of wedge panels A and B, respectively: 

Comparison between high-fidelity FEM and iFEM (Case IV) analyses. 
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Figure 6.41 The von Mises stress vA  variation along length 1L  of panel A: 

Comparison between high-fidelity FEM and iFEM (Case I) analyses. 

 

Figure 6.42 The von Mises stress vA  variation along length 1L  of panel A: 

Comparison between high-fidelity FEM and iFEM (Case III) analyses. 



190 

 

 

Figure 6.43 The von Mises stress vA  variation along length 1L  of panel A: 

Comparison between high-fidelity FEM and iFEM (Case V) analyses. 

 

Figure 6.44 The von Mises stress vA  variation along width 2L  of panel A: 

Comparison between high-fidelity FEM and iFEM (Case I) analyses. 



191 

 

 

Figure 6.45 The von Mises stress vA  variation along width 2L  of panel A: 

Comparison between high-fidelity FEM and iFEM (Case III) analyses. 

 

Figure 6.46 The von Mises stress vA  variation along width 2L  of panel A: 

Comparison between high-fidelity FEM and iFEM (Case V) analyses. 
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Furthermore, in Figures 6.41-46, variation of von Mises stress vA  along 1L  and 2L  

is compared between iFEM (Cases I, III, and V) and reference FEM solutions, 

respectively. These results prove the following three observations: (1) the improved 

iFEM formulation predicts von Mises stresses that are comparably accurate to those 

of the reference solutions, (2) the i3-RZT element formulation requires higher fidelity 

discretization to calculate high strain gradients to obtain improved stresses, and finally 

(3) an i3-RZT model with relatively very sparse measured strain data can predict von 

Mises stresses that are as accurate as those obtained using an i3-RZT model in which 

all elements have strain-sensor data. 

6.6 Conclusion  

An improved iFEM formulation is presented to solve the inverse problem of shape and 

stress sensing of multilayered composite and sandwich plates/shells that have 

randomly distributed strain sensors. The plate/shell kinematics are described using 

RZT plate theory. The formulation is based on minimization of a weighted-least-

squares functional that accounts for the complete set of strain measures consistent with 

RZT plate theory. Based on the present iFEM methodology, laminated composite and 

sandwich plate/shell structures that involve relatively few strain gauges can be 

analyzed by utilizing weighting constants. One advantage of the present iFEM 

methodology is that it can be used for the analysis of thin and moderately thick plate 

and shell structures because the variational principle accommodates for full transverse-

shear deformation of the RZT plate theory. Moreover, the formulation is suitable for 

C0-continuous discretization, enabling the development of robust inverse-shell 

elements for performing shape and stress sensing of complex engineering structures. 

A new three-node triangular inverse-shell element (i3-RZT) was developed based on 

the improved iFEM formulation. The i3-RZT element kinematic field accommodates 

quadratic interpolation functions that permit a robust drilling DOF implementation that 

has the advantage of avoiding singular solutions when modeling complex shell 

structures. The formulation is free from the membrane and shear-locking phenomena. 

Several numerical studies were performed and demonstrated the computational 

efficiency, high accuracy, and robustness of i3-RZT discretization with respect to the 

membrane, bending, and membrane-bending coupled structural responses. The 
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practical utility of iFEM/i3-RZT technology for application to engineering structures 

has been assessed using relatively low- and high-fidelity discretization strategies. The 

effects of sensor locations and number of sensors were also explored. It was 

demonstrated that even in the presence of relatively sparse strain data, sufficiently 

accurate reconstruction of deformed structural shapes and stresses can be achieved. 

Finally, the presented iFEM/i3-RZT technology can be readily implemented in any 

general-purpose finite element software (e.g., ABAQUS, ANSYS), serving a highly 

desirable and viable computational tool for real-time structural health monitoring of 

laminated-composite and sandwich structures, such as high-performance aerospace 

vehicles.  
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Chapter 7  
 

General Conclusion  
 

7.1 Achievements against the Objectives  

As is obvious in the Chapter 1, the ultimate goal of this PhD thesis was to produce 

non-conventional and superior iFEM frameworks that can be used as guidelines for 

SHM of general engineering structures and marine structures in particular. The list 

below summarizes the main achievements of this work, which are in line with the 

research objectives: 

1. A novel four-node quadrilateral inverse-shell element (iQS4) was developed on 

the basis of an iFEM weighted-least-square functional. The iQS4 element was 

intended to solve shape-sensing problems composed of thin and moderately thick 

plate or shell structures with randomly distributed strain sensors. The element 

kinematic field interpolated using quadratic shape functions permit robust drilling 

DOF implementation and serve the advantage of avoiding singular solutions when 

modelling complex shell structures. It was demonstrated that the formulation is 

also robust with respect to the membrane- and shear-locking phenomena. Finally, 

it was proven that even in the presence of the relatively sparse strain data subject 

to experimental noise, sufficiently accurate reconstructions of the deformed 

structural shapes can be achieved.  
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2. Displacement and stress monitoring of three different marine structures, i.e., (1) a 

longitudinally and transversely stiffened plate, (2) a long barge with a typical 

chemical tanker cross-section, and (3) the parallel mid-body of a Panamax 

container ship, was achieved by using iFEM/iQS4 methodology. In order to 

represent realistic structural responses by these marine structures, in-house 

hydrodynamic and FEM software was utilized to simulate the in situ strain-sensor 

strains. Using relatively low-fidelity iQS4 discretization, the optimum strain sensor 

locations were determined and demonstrated for each marine structure. Overall, 

the practical utility and robustness of the iFEM/iQS4 technology was confirmed 

for application to marine structures. 

3. An isogeometric Kirchhoff–Love inverse-shell element (iKLS) was developed by 

coupling the isogeometric analysis with the iFEM methodology, leading to the 

creation of a novel isogeometric iFEM formulation. The iKLS element was aimed 

at performing shape-sensing analysis of complex (curved) thin shell structures 

instrumented with several strain sensors. The element kinematic field was defined 

in convected curvilinear coordinates and interpolated by high-order continuous 

( , 0)pC p   NURBS basis functions which were also used to create the geometry. 

It was demonstrated that the iKLS element has the advantage of simply modelling 

the curved shell structures as a result of its NURBS-based nature. Finally, the 

superior membrane and bending capability of the iKLS element was justified even 

when using low-fidelity discretization with few strain rosettes.  

4. An improved iFEM formulation was developed based on a weighted-least-squares 

variational principle that uses the complete set of strain measures consistent with 

RZT. In addition, a robust and computationally efficient three-node inverse-shell 

element, i3-RZT, was implemented based upon the improved iFEM formulation. 

The i3-RZT element was intended to perform shape- and stress-sensing analysis of 

multilayered composite and sandwich plates/shells with randomly distributed 

strain sensors. It was demonstrated that the i3-RZT formulation is free from the 

membrane- and shear-locking phenomena and can predict very accurate through-

the-thickness distributions of in-plane displacements, normal stresses, and 

transverse-shear stresses. Overall, it was confirmed that even in the presence of 
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relatively sparse strain data, sufficiently accurate reconstructions of deformed 

structural shapes and stresses can be achieved by using i3-RZT models.  

7.2 Novelty and Contribution to the Field  

Shape- and stress-sensing capabilities are well-recognized as an enabling technology 

for SHM systems. Although many researchers have proposed various types of shape-

sensing algorithms (vid. Section 2.2), due to their inherent limitations, the algorithms 

were not general enough to perform displacement and stress monitoring of large-scale 

structures such as marine structures. Moreover, several class societies, the IMO, and 

many researchers have found hull structural monitoring was to be significant enough 

to study; thus, various SHM systems have been proposed for marine structures (vid. 

Section 2.3). However, none of these systems can monitor three-dimensional full-field 

displacements and stresses of a marine vessel. In fact, they only monitor several points 

on the weather deck amidships. The study described in Chapter 3 demonstrates that 

the iFEM/iQS4 methodology can overcome these limitations and is a general tool for 

the shape and stress sensing of large-scale structures. The literature was lacking such 

a framework, whose formulation can now be found in Kefal, Oterkus, et al. (2016), 

which further expands the library of existing iFEM-based inverse elements by 

implementing a four-node inverse-shell element for the first time in the literature. 

Although various types of iFEM formulations and inverse elements have been 

developed on the basis of different beam, plate, and shell theories, the numerical and 

experimental applications of these formulations on engineering structures have been 

limited to the SHM of aerospace vehicles (vid. Section 2.4). The study described in 

Chapter 4 demonstrates the application of the iFEM/iQS4 methodology to the shape 

and stress sensing of various types of marine structures. The literature was lacking 

such a novel application, which can now be found in the series of works conducted by 

Kefal and Oterkus (2015, 2016a, 2016b). 

The CAD industry nowadays offer many efficient computer software applications for 

fast evaluation and refinement of NURBS. Isogeometric analysis or IGA (Hughes et 

al., 2005) bridged the gap between CAD and engineering analysis by employing 

NURBS to describe the geometry of the computational domain in the analysis 

framework. IGA serves a number of beneficial aspects and has thus received a 
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considerable amount of attention in recent years in many fields of computational 

mechanics (vid. Section 5.2). For an accurate iFEM analysis of any structure, 

especially of curved structures, exact representation of the actual structural geometry 

is vital. Moreover, a smoother geometry requires more refined mesh generation with 

the existing flat inverse-shell elements, e.g., iQS4 (vid. Chapter 3) and iMIN3 (Tessler 

and Spangler, 2004). This may lead to a large number of strain sensors installed on-

board a structure, thus resulting in expensive shape-sensing analysis for a 

complex/curved geometry. Furthermore, the shape functions of these flat shell 

elements are generally limited to only C0-continuity for the displacement field. The 

study described in Chapter 5 demonstrates that an isogeometric iFEM formulation (i.e., 

iKLS element) can overcome the limitations mentioned above and further expand the 

horizons of the iFEM methodology to employ novel isogeometric inverse elements. 

The literature was lacking such a framework, whose formulation can now be found in 

Kefal and Oterkus (2017) and can be used for shape-sensing analysis of curved thin 

shells instrumented with several strain sensors.  

Over the last few decades, the usage of composite and sandwich material systems as 

primary structures has dramatically increased in various engineering applications. 

Hence, a powerful shape-sensing algorithm is necessary for ensuring the safety and 

structural integrity of these structures. In fact, Cerracchio et al. (2013, 2015b) 

developed a novel RZT-based iFEM methodology for such composite structures. 

Although their formulation performed well for sandwich plates, the proposed 

variational statement was lacking the precise contribution of full transverse-shear 

strain measures. Moreover, the application of their RZT-based iFEM methodology 

was only limited to composite plate structures, since they only presented an inverse-

plate element formulation (i.e., iRZT3). Furthermore, the authors did not introduce the 

weighting coefficients in the least-squares functional; thus, the iRZT3 element cannot 

take into account the problems involving sparse in situ strain data. The study described 

in Chapter 6 demonstrated that (1) an enhanced iFEM formulation and (2) the i3-RZT 

inverse-shell element can address the aforementioned shortcomings. The literature was 

lacking such a framework, whose formulation can now be found in Kefal, Tessler, et 

al. (2016); ultimately, the aim is to perform accurate shape and stress sensing of 

multilayered composite and sandwich plate and shell structures. 
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7.3 Gaps and Future Studies  

Despite the realistic performance of the novel iFEM frameworks developed in this 

work, experimentally measured strains are simulated using high-fidelity FEM analysis. 

Instead, real experimental measurements can be coupled with the presented iFEM 

frameworks to reproduce and investigate their performance further in a laboratory 

environment.  

Concerning the iFEM/iQS4 models developed for the marine structure applications in 

Chapter 4, the numerical framework could be extended by modelling other types of 

marine structures, such as bulk carriers, offshore platforms, and wind turbines. 

Concerning the isogeometric iFEM methodology presented in Chapter 5, further 

investigations can allow the development of other types of isogeometric inverse 

elements, such as isogeometric inverse-beam, -plate, -shell, and -solid elements. 

Concerning the improved RZT-based iFEM methodology demonstrated in Chapter 6, 

future studies can be developed by implementing the presented framework utilizing a 

four-node inverse-shell element.  

7.4 Research Outputs 

The following section provides all of the author’s research outputs, which are directly 

related to the iFEM research study presented in this thesis. These outputs include the 

journal papers, conference papers/presentations, technical reports, and research 

collaborations that have already been published or submitted and are still in 

preparation stage. 

7.4.1 Journal papers 

Kefal, A., and Oterkus, E. (2016). Displacement and stress monitoring of a chemical 

tanker based on inverse finite element method. Ocean Engineering, 112: 33-46. 

Kefal, A., and Oterkus, E. (2016). Displacement and stress monitoring of a Panamax 

containership using inverse finite element method. Ocean Engineering, 119: 16-

29. 
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Kefal, A., Oterkus, E., Tessler, A., and Spangler, J.L. (2016). A quadrilateral inverse-

shell element with drilling degrees of freedom for shape sensing and structural 

health monitoring. Engineering Science and Technology, an International 

Journal, 19: 1299-1313. 

Kefal, A., Tessler, A., and Oterkus, E. (2016). An enhanced inverse finite element 

method for displacement and stress monitoring of multilayered composite and 

sandwich structures. Submitted to Composite Structures. 

Kefal, A., and Oterkus, E. (2016). An isogeometric Kirchhoff-Love inverse-shell 

element for shape sensing of curved thin shells. In preparation for Computer 

Methods in Applied Mechanics and Engineering. 

Kefal, A., Bungamayang, J., and Oterkus, E. (2016). Shape sensing of a Capsize bulk 

carrier using fiber-optic cables and iFEM methodology. In preparation for Ocean 

Engineering. 

7.4.2 Conference papers/presentations 

Kefal, A., and Oterkus, E. (2015). Structural health monitoring of marine structures by 

using inverse finite element method. In C. Guedes Soares and R.A. Shenoi 

(Eds.), Analysis and Design of Marine Structures V, pp. 341-349, Taylor and 

Francis Group, London. 

Kefal, A., Hizir, O., and Oterkus, E. (2015). A smart system to determine sensor 

locations for structural health monitoring of ship structures. Proceedings of 9th 

International Workshop on Ship and Marine Hydrodynamics. Glasgow, 

Scotland. 

Kefal, A., and Oterkus, E. (2016). Shape- and stress-sensing of a container ship by 

using inverse finite element method. Proceedings of the Royal Institution of 

Naval Architects International Conference on Smart Ship Technology. London, 

England. 

Kefal, A., and Oterkus, E. (2017). Shape sensing of aerospace structures by coupling 

of isogeometric analysis and inverse finite element method. Proceedings of the 

58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 

Conference. Grapevine, TX. 
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Kefal, A., and Oterkus, E. (2017). Shape and stress sensing of offshore structures by 

using inverse finite element method. Submitted to the 6th International 

Conference on Marine Structures. Lisbon, Portugal. 

7.4.3 Reports 

Kefal, A., Tessler, A. and Oterkus, E. (2016). Development of an improved inverse 

finite element method for shape and stress sensing of laminated composite and 

sandwich plates and shells. Submitted as NASA Technical Paper. 

7.4.4 Research collaborations 

This research has contributed, and continues to contribute, to the research 

collaboration between the NASA Langley Research Center in Hampton, VA, USA and 

the University of Strathclyde, concerning the applications of the iFEM/i3-RZT 

methodology (vid. Chapter 6) in aerospace vehicles. 

7.5 Final Remarks  

The formulations developed and the results obtained in this study support the state-of-

the-art methodology, i.e., the inverse finite element method (iFEM), due to its 

revolutionary mathematical formulation, which enables the development of superior 

shape sensing tools. To sum up, the iFEM frameworks produced as part of this PhD 

thesis can therefore be helpful for shape sensing and SHM of general engineering 

structures, especially of marine structures. 
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