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Abstract

Recent advances in computer science, artificial intelligence and en-

gineering has pioneered the field of robotics, bringing guarantees of

higher levels of accuracy and lowered complications in a wide array

of environments such as the automotive, manufacturing and health-

care industries. These environments we interact with on a daily basis

are becoming increasingly connected, leaving many of these robotic

systems vulnerable to a new set of threats and attacks from both a

physical and cyber standpoint. Upon review of the robotics security

landscape, the focus of the thesis is split into two parts.

The first part of this thesis looks at the capabilities of a passive at-

tacker in both the cyber and physical domain. Existing literature

focuses on active attackers with little attention paid to passive at-

tackers. If an attacker is able to passively gather information about

robot behaviours, such as how it moves, they could use this infor-

mation to reconstruct entire operational workflows. For example, in

surgical settings, if movement information was captured, then entire

surgical procedures could be reconstructed. Combined with other in-

formation sources, such as patient admission and exit times, patient

privacy could be compromised. Upon review of teleoperated robot ar-

chitectures, three side channel attacks are investigated. The first side

channel is traffic analysis in the cyber domain, wherein an attacker

eavesdrops on the encrypted communication link between a robot and

its controller, using traffic features to fingerprint robot movements and

workflows. The second side channel leverages unintentional acoustic

emanations in the physical domain as a robot moves and acoustic char-
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acteristics are exploited for fingerprinting. The third and final side

channel explored is radio frequency, where unintentional emissions of

radio frequencies from microprocessors and motors are captured and

analysed to fingerprint movements and workflows. Upon evaluation

of all three side channels, radio frequency is the most successful with

at least 96% accuracy. The acoustic and traffic analysis side channel,

while also useful to an attacker, show lowered accuracy in comparison.

The second part of this thesis pertains to securing calibration for

robotic systems. The calibration ecosystem intends to shift to a digital

environment to keep up with technological advances. However, exist-

ing processes require immediate change in order to scale and remain

robust to an evolved threat landscape. Specifically, little attention has

been paid to the security of robot calibration and several inadequa-

cies need to be addressed, including: efficiency, availability, integrity

and tamper-resistance, confidentiality and managing conflicts between

interacting parties in the calibration ecosystem. To address these chal-

lenges, two solutions are explored. First, blockchains adequately meet

these required system properties and significantly outperform the cur-

rent state-of-the-art in calibration traceability. While these proper-

ties are met by the proposed blockchain solution, the enforcement of

some of these security properties – namely integrity, confidentiality

and managing conflicts of interest – come with a set of information

flows that present an interesting access control challenge. Specifically,

it is important to verify that an individual verifying the calibration of

a device, or even calibrating a device, has the appropriate rights to do

so. The second solution explored demonstrates that existing models

cannot adequately manage the unique information flows, ultimately

requiring a novel unification of three existing models that outperforms
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traditional models and can scale well with robots and IoT.

Ultimately, this thesis provides a review on the robotics threat land-

scape and identifies open challenges, to which several passive attacks

and solutions are explored in both the cyber and physical domains.

Further, this thesis also provides the first insights into a completely

novel aspect of robotics security that needs careful consideration –

securing the calibration of robots.
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1 — Introduction

The field of robotics was envisioned many years ago, with ancient

Greek engineers pioneering this space with the likes of water clocks

with automatons. The term robot was later coined and used by writ-

ers such as Capek [1] and Lang [2]. However, it was not until the

early 1940’s where Asimov introduced the term robotics in his book

”Runaround” [3] which introduces the laws of robotics to ensure they

can operate safely with humans. It was around this period where the

use of robotics was truly thought about with regard to an idealised

world of automation and intelligence, bringing promises of benefits to

society and industry. With a steady progression and increased interest

in robotics, many early systems were developed ranging from a variety

of robotic arms [4–6], to mobile robotic systems [7, 8]. However, with

advancements in computer science, engineering and manufacturing,

the advent of modern robotics came to fruition.

Modern robotic systems have seen an increase in adoption in a wide

array of application areas, including industrial, surgical and automo-

tive, among many others [9]. The adoption of such systems stems from

the peremptory need for higher accuracy, precision and efficiency. For

example, in surgical environments, higher accuracy and precision for

even a simple scalpel incision could mean the difference between life

and death of a patient [10]. In the case of industrial settings such as

manufacturing, aside from accuracy the aim is to also promote higher

levels of efficiency to increase the output of production lines within

supply chains.

With regard to concerns surrounding error and resulting liabilities,
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these were most prominent for early robots in the physical domain as

many were not connected systems. Simply, the most common attack

on these robots was physical compromise. This includes tampering

with sensors or actuators to cause operational workflows to halt or

deteriorate operational ability to hinder any benefits they would oth-

erwise bring. A robotic workflow in this thesis corresponds to a single

operation (e.g. picking up from a conveyor belt and placing it down

on another) made up one or a series of individual robot movements

making use of at least one degree-of-freedom. With advancements

in engineering and computer science, we now see the use of sensing

equipment and artificial intelligence to mitigate or prevent physical

compromise in the form of safety mechanisms. For example, sensors

may be used to detect when humans or objects in the robot’s oper-

ating environment are too close in physical proximity and may result

in triggering the stopping mechanism or avoidance of the obstacle

where possible. However, as new defence strategies are employed,

new attacks arise, such as the use of jammers or lasers to disrupt

sensing equipment [11, 12], or manipulating training data in machine

learning models resulting in incorrect behaviours [13, 14]. Aside from

just the physical domain, becoming Internet-connected significantly

expands the threat landscape and exposes robotic systems to attack

and compromise in the cyber domain, resulting in safety becoming an

increasing concern from a cybersecurity viewpoint.

Existing work in the area of robotics security primarily focuses on

attacks in the cyber domain involving an active adversary. These

attacks range from modifying control messages to the robot and feed-

back sent to controllers (integrity compromise) [15], to eavesdropping

on [16,17] and disrupting robot networks (denial-of-service) hindering
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normal operation (availability compromise) [18–20]. Unfortunately,

however, little attention has been paid to the capability of a passive

adversary where reconnaisance can lead to consequences that are just

as devastating. While various techniques can be used to eavesdrop

on a robot, the focus in this thesis is on passive side channel attacks

and the impact information leakage from mounting such attacks can

have in a robotics environment. Specifically, three side channels are

explored which aim to exploit information leakages to compromise

robotic workflows. If an attacker is able to learn about what move-

ments a robot is carrying out, entire workflows can be revealed. For

example, in surgical settings, movement patterns may correlate with

known surgical procedures and in combination with other metadata,

such as patient admission and exit times, this could result in a com-

promise of patient privacy. From an industrial perspective, the leakage

of industrial workflows could be used in a malicious manner (e.g. sell-

ing on to competing companies) and can result in the compromise of

operational confidentiality of targeted organisations [21,22].

The first side channel explored is traffic analysis, which aims to eaves-

drop on the communication link between the robot and controller.

By monitoring traffic patterns and using a shallow neural network

architecture, an attacker can fingerprint (classify) robot movements

with at least 60% accuracy even when traffic is encrypted under TLS,

with more fine grained information leakage (e.g. speed and distance

of movement) fingerprinted with similar accuracy. Furthermore, us-

ing this architecture and capturing traffic patterns corresponding to

entire warehousing workflows in an industrial setting, this accuracy

increases to at least 85%.

The second passive side channel attack explored is the acoustic side
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channel. Naturally, objects produce sound when they vibrate [23,24].

In the case of a robot, vibrations are present while motors are activated

and the robot moves. Due to these fundamental acoustic emanations

during robot operation, the aim is to determine whether movements

and workflows can be fingerprinted, as with the other passive side

channels explored in this thesis, solely from sound. Using a smart-

phone to advocate for a passive insider attacker, robot movements

and warehousing workflows were recorded and acoustic characteristics

were extracted into a feature set for fingerprinting. Upon evaluation,

robot movements were fingerprinted with at least 75% accuracy as

a baseline and entire warehousing workflows could be reconstructed

with 64% accuracy. It is clear that a passive insider adversary has the

potential not only to reveal what a robot is doing but take the result-

ing liabilities of such an attack to an extreme that impacts even the

organisations that employ them. As well as this, in certain robotics en-

vironments, such as in surgical settings, procedures may be streamed

and/or recorded for viewing, education or research [25–27]. Therefore,

it is important to question how VoIP impacts the audio samples for

movements and workflows and, ultimately, the success of the attack.

Using the Opus codec – a common choice for most modern VoIP ap-

plications – fingerprinting accuracy was 90% for baseline speed and

distance, which is nearly 15% more accurate than the baseline without

the Opus codec employed. This presents new research questions re-

garding side channel attacks via VoIP communication networks which

target robotic systems.

The third and final side channel explored in the first part of this the-

sis is radio frequency. Many robotic systems make use of stepper

motors and microprocessors which have been shown to generate un-
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intentional radio frequencies [28]. Using a novel fingerprinting attack

strategy which converts signals, corresponding to robot movements

and warehousing workflows, into a feature set that can be fingerprinted

efficiently, movement fingerprints can be classified with at least 96%

accuracy. This increases to near perfect accuracy when reconstructing

entire warehousing workflows.

Aside from attacks in the physical and cyber domains, there exists an

ecosystem which, at the heart of robotic systems, underpins opera-

tional accuracy and safety – calibration. All devices are calibrated to

ensure that they operate and/or measure at the highest possible level

of accuracy and precision, with the lowest margins of error (measure-

ment uncertainty). To ensure this, devices that are calibrated must

have measurements that can be verifiably traced to national standards

(SI units) [29,30]. While existing calibration processes are coping well,

the ubiquitous nature and scale of IoT leaves less time before there will

be a need for an immediate move to a digitised ecosystem to allow for

smarter behaviour, increased efficiency and automation, among other

ideal properties. Unfortunately, while discussions and some progress

has been made with regard to digitisation [31,32], little attention has

been paid to the security of the ecosystem in digital environments.

Upon review of the calibration ecosystem, there are several inadequa-

cies and concerns that need to be addressed in order to scale in digital

environments. First, the calibration process is entirely manual and

paper-based, meaning any related processes are time-consuming and

inefficient. Second, there is no standardisation for calibration records

across vendors meaning there is an inherent lack of collaboration which

is required. Third, calibration records are usually held in centralised

storage at the organisation where the respective devices are calibrated
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and must be requested requiring access rights and potentially financial

incursion. Fourth, because of this lack of collaboration and centralised

storage, there is no complete, auditable record of calibration (e.g. who

performed and recorded the calibration of a device and when this was

carried out). Finally, there are varying security requirements of in-

tegrity and confidentiality among interacting parties, some of whom

may additionally share an adversarial relationship (in conflict).

Upon discussion with key stakeholders in the domain of calibration, a

new solution to help this progression to a digitised ecosystem should

have the following properties. First, it should be highly available, dis-

tributed and tamper-resistant, to maintain the integrity of calibration

records but also mitigate the potential for denial-of-service threats to

calibration infrastructure. Second, it should allow for forensics such

that parties who performed calibration, for example, can be identi-

fied in the event of failures. Third, the new solution should enforce

calibration hygiene by being smart and automated. Fourth, it should

be both cross-platform and cross-vendor in an efficient and timely

manner, to allow for more fluid collaboration among interacting par-

ties. Finally, the security of calibration (integrity, confidentiality and

conflicts of interest) should be enforced. From these properties, a

novel solution to this problem is proposed which makes use of the

Ethereum public blockchain and is shown to adequately meet these

properties and significantly outperform the current state-of-the-art in

calibration traceability. While these properties are achieved by the

blockchain solution, the enforcement of the calibration security prop-

erties – namely integrity, confidentiality and managing conflicts of

interest between providers of calibration services – come with a set of

information flows that presents an interesting access control challenge.
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Specifically, it is important to verify that an individual verifying the

calibration of a device, or even calibrating a device, has the appropri-

ate rights to do so. With respect to integrity, it is important to manage

who can write calibration records (during calibration of a device). If

an attacker manages to write fake records for an illegitimate device,

then information flowing in a chain of calibration to/from this device

could be leaked. For example, an attacker would be able to observe

who is verifying traceability of their devices which would involve this

fake record in its traceability chain. With respect to confidentiality,

it is important to protect what-is-being-calibrated and how-often-it-

is-calibrated which could be leaked through continuous monitoring of

calibration verification checks. As well as this, managing conflicts of

interest between vendors of calibration is vital, as sensitive informa-

tion flowing to competitors is a less than ideal scenario. Ultimately,

existing access control models were not enough to manage the unique

information flow constraints present with calibration traceability and

requires a novel unification of three existing models: BIBA [33] (in-

tegrity), BLP [34] (confidentiality) and Chinese Walls [35] (conflicts of

interest). Upon evaluation, the proposed unified model significantly

outperforms a simple conjunction of existing models and is able to

authorise calibration traceability verification checks efficiently. The

latter part of this thesis provides the initial insights into the need to

secure calibration and sets up an open challenge space pertaining to

calibration and the importance of this consideration to the security of

robotic systems.
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1.1 Contributions

This thesis provides an in-depth look into the security of robotics

workflows from two novel standpoints. First, the need for exploration

on the impact of passive insider attacks on robotics systems is key.

Given that passive attacks aim to uncover information from regular

system behaviours and the fact they are hard to detect in nature, it is

important to understand what threats can target robotic systems in

this domain and ensure preventative measures can be understood and

put in place before they occur in the real-world. Second, given that

traceable calibration underpins the accuracy, precision and error of

measurements from most devices, this also includes robotic systems.

Moving to a digitised, connected infrastructure, a simple transition

is not as straight-forward as one would hope, coming with the need

for a completely revamped threat landscape. This thesis sets out the

security requirements for which traceable calibration must conform

to, as well as two solutions pertaining to secure record keeping and

access control as the first steps in achieving this.

In summary, the thesis presents a series of works that address the

following research questions:

Research Question 1. Can an attacker leverage and mount passive

information leakage attacks which target robotic systems? To what

extent (granularity) can an attacker observe information leakages that

can lead to the compromise of operational confidentiality of robotic

workflows?

Research Question 2. Assuming a robot is secure, there exists

another ecosystem which ultimately underpins the accuracy, precision

and error of measurements output from most devices (e.g. sensors).
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With the need to move to a digitised ecosystem, how does this impact

the security of robotic workflows?

1.2 Organisation

This thesis is organised as follows. Background information leading

into a reviewed threat landscape for robotics systems is described in

Chapter 2, which identifies novel problem spaces in passive side chan-

nel attacks, as well as a new attack vector pertaining to calibration.

The thesis is then divided into two parts. The first relates to chapters

on passive side channels used to mount information leakage attacks

targeting operational confidentiality. Specifically, three side channel

attacks are considered, namely: traffic analysis, acoustic and radio

frequency, which can be found in Chapters 3, 4, and 5 respectively.

The traffic analysis chapter looks into mounting a passive information

leakage attack in the cyber domain, while the acoustic and radio fre-

quency side channels show that the same attack goal can be achieved

in the physical domain. The second part of this thesis focuses on se-

cure calibration pertaining to robotic systems and respective chapters

can be found in Chapters 6, 7 and 8. Finally, the thesis concludes in

Chapter 9.
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2 — Background

In the past, robotic installations and integrations within existing en-

vironments was too expensive and considered a higher risk implemen-

tation that may not have seen any benefit. In the past, robots were

not as commonplace, as integrating them into safety-critical environ-

ments such as surgical theatres was expensive and usage benefits did

not outweigh potential risk. Fortunately, with advances in engineer-

ing and computer science, the integration of robotics systems is now

highly adaptable, flexible and scalable to many industries. This now

provides a significant change in economic outcomes, whilst enabling

higher levels of accuracy, precision and efficiency compared to histor-

ical operations (i.e. via humans).

The use of robotic systems has been embedded into a wide array

of application areas, including: autonomous and unmanned vehicles

such as passenger vehicles and submarine vehicles; medical robots

such as those used for surgery; and industrial robots such as those

used in warehouses and manufacturing. As these are important in the

context of this thesis, each of these application areas are outlined in

more detail below.

2.1 Autonomous and Unmanned

Vehicles

Research into Connected and Autonomous Vehicles (CAVs) has shown

rapid progression, with the market for autonomous vehicles expected

to reach a value of $40 billion (USD) by 2025 [36]. While many of these
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devices are teleoperated, particularly submarinal and aerial vehicles,

a subset of them are fully autonomous with the consumer population

in some domains willing to pay premiums for full autonomy. The use

of CAVs is fairly widespread, with their usage seen in both public

and private transport, surveying and mapping, submarinal and aerial

applications.
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Figure 2.1: Overview of CAV Architecture

Although the architectures of CAVs differ among the classes (au-

tonomous cars, aircraft, UAVs, USVs), the majority of them utilise

common components, such as cameras, sensing devices, GPS, etc.

which are heavily relied on to aid with actions such as path plan-

ning and real-time manoeuvering. An overview of CAV architecture

can be viewed in Figure 2.1. Within this architecture, data flows

through the various functional components where the outputs of sens-

ing components (external) influence decision and control, linked with

the electrical control units (internal), with both internal and exter-

nal components interacting with the world model [37]. Most sensors

in autonomous vehicles are usually fixed, however with added mobil-

ity, coordination and cognition that comes with full autonomy, it is

common that physical motion and configuration changes (such as to

field of view, zoom of lens, etc.) may be needed. Further, calibration

33



changes to the sensing equipment may be needed at runtime (such

as due to changing exposures during the day and re-calibration if,

for example, physical damage is suspected). Further, keeping with

the overview architecture, these functional components are managed

by electrical control units (ECUs) inter-connected by the Controller

Area Network (CAN) protocol [38]. Initially designed in the 1980s, it

is still the most widely used in-vehicle bus to date, mainly due to cost

efficiency [39,40] and its support for multiple subsystem architectures.

2.2 Surgical Robotics

Early surgical robots were typically configured based on pre-planned

operations, such as bone-milling robots [41]. Prior to their introduc-

tion, there was an innate need to address problems of accuracy and

precision in surgical settings, such as optimal sizing and fitting of im-

plants. As a result, these pre-operative planning robotic systems were

introduced. These robots typically consist of a planning workstation

and the robot itself (i.e. a robot arm) equipped with an interchange-

able instrument (end effector) [42]. As a result of these robots being

installed, good feasibility was demonstrated coupled with higher suc-

cess rates and a clear reduction in post-surgical complications.

As technological advances progressed, surgery did too with the in-

troduction of teleoperation. In the surgical domain, these include

the Zeus surgical system [43], da Vinci surgical suite [44] and the

RAVEN II surgical robot [45]. Commonly, these surgical robots are

arm robots that are operated at some distance (wired or wirelessly)

via a human surgeon through a surgeon’s console (controller). The

role of the controller is to translate human movements, via mediums
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such as finger controllers and foot pedals, into instructions the robot

can translate to local space and execute. Furthermore, it may also

provide feedback to the surgeon, such as a 3D view of the surgical site

and force-feedback through movement mediums. This shared com-

mon architecture among these systems is depicted in Figure 2.2. A

key safety-critical component of this is the link between the controller

and the robot’s main electronic control system, where feedback from

and inputs to the robot traverse.

2.3 Industrial Robotics

The addition of robotic systems in industrial settings accompany a

large portion of robot installations, and range in expertise from collec-

tion and packing of products in warehouses [46–48] to the automotive

industry [49,50]. In this sector, as with medical surgery, robotic arms

are most prominent – either teleoperated or autonomous. In either

case, the system involves the robot paired with a teach pendant (con-

troller) which allows teleoperation or pre-programmed operations to

35



be executed autonomously. The main electronic control system links

together the controller, robot and other inter-connected components,

and the network in which the robot operates.

Interestingly, an experimental analysis of industrial robots [51] showed

that most industrial robot architectures are extremely similar to surgi-

cal robot architectures in terms of the key critical components. There-

fore, teleoperated architectures can be generalised in terms of these

components, as shown in Figure 2.3. Given this, and the fact that

teleoperated robots contribute to a large portion of the robotics mar-

ket [52], the primary focus of this thesis will be on the security of

teleoperated robots and the workflows in which they operate.
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2.4 Security Challenges in Robotics

While the ubiquitous nature of safety-critical robotics systems leads to

varying applications in which they operate, many share similar critical

components and thus provoke common security challenges. Due to the

cyber-physical nature of these systems, the security challanges can be

classified into both the cyber and physical domain, where attacks or

compromise originate from either the Internet or other networks, or

from the physical environment respectively.

2.4.1 Cyber Domain Challenges

Attacks in the cyber domain become present when a device is con-

nected (i.e. to the Internet). By observing how information flows

through teleoperated robotic systems, several security challenges can

be identified.

First, one challenge associated with this information is integrity

compromise. Control or feedback messages could be tampered with

in order to manipulate the system. Bonaci et al. [15] identified that

this type of attack can be classified in two key categories: intention

modification and intention manipulation. The first involves impact-

ing the intended actions of the operator, such as modifying messages

in-flight after the controller has transmitted them and the operator

has no control over this. The second involves the modification of feed-

back from the robot to the controller, where in this case messages are

assumed to be authentic and valid and consequently causes the oper-

ator’s subsequent actions to end up causing harm. Further, this harm

may even be extreme enough to result in liabilities in the physical do-

main, such as damage to the environment or nearby humans. Notably,
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this is also a challenge relating to authenticity, which corresponds to

a third classification of attack on operators described by Bonaci – hi-

jacking. While feedback authenticity is a problem, a hijacking attack

can lead to messages from the controller to the robot to be completely

ignored and instead perform other actions (e.g. from messages sent by

an adversary). The result of this challenge may not be revealed until

after any malicious actions, either intentional or unintentional, have

been executed. For example, in the context of drones on a battlefield,

not verifying the authenticity of messages could allow an (enemy) ad-

versary to not only collect information on the drone’s location but

perhaps even hijack the drone for their own reconnaisance purposes.

Aside from just message authentication, it is also important to give

consideration to authentication in relation to access control. McClean

et al. [16] describe an assessment of the security of the Robot Operat-

ing System (ROS) [53] and discovered a large number of ROS masters

open to the public Internet via the default master port. In total, they

uncovered 15 instances with a number being legitimate robots capable

of being remotely accessed and teleoperated. This demonstrates that

it is possible for an adversary to, without any authentication, eaves-

drop on data flowing between interacting robot components and even

send messages to them which could allow remote operation. McClean

et al. [17] also found that it was possible to analyse the traffic flowing

through these systems and gather ROS message headers to spoof and

replay messages.

As well as integrity and authenticity challenges, those pertaining to

confidentiality are also important. McClean et al. [17] found that ROS

communication is done in plaintext and no encryption is carried out.

This leaves any passive eavesdropping adversary readily able to un-
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derstand what information is being sent in the robot system, as well

as other systems which communicate with the robot in its network.

Furthermore, while single messages may not necessarily leak much in-

formation, such as a message to change the position of an actuator,

the use of continuous monitoring in this case could be used to string

messages together which could lead to the compromise of operational

confidentiality. For example, consider a surgical robot operating on a

patient. If an adversary was able to uncover individual surgical oper-

ations, they could piece them together to reconstruct known surgical

procedures. In combination with other meta-data, such as patient ad-

mission and exit times, this could lead to the compromise of patient

privacy, and ultimately violating HIPAA legislation [54]. While rela-

tively trivial in modern times, it is vital to ensure the use of strong

channel security measures to protect the confidentiality of transmitted

information.

2.4.2 Physical Domain Challenges

While there are several challenges which compromise various security

properties in the cyber domain, it is also important to give consid-

eration to the potential threats and attacks present in the physical

domain.

First, one must consider physical compromise of a robotic system.

Similar to the integrity of information flowing through the system and

networks, maintaining the integrity of the physical components of the

system is vital. For this, there are two main possibilities: system

trauma (indirect) and direct tampering. Pertaining to trauma, the

impact of physical shocks in the environment can disrupt the proper

functioning of the device [55, 56]. This may be temporary or cause a
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permanent shift in placement, both of which could result in incorrect

data capture or movement outputs [57]. Merely shifting devices or

small shocks could be enough to disturb the systems physical integrity.

In terms of direct tampering, this involves actions such as intentionally

swapping out devices (e.g. by malicious technicians or operators), or

replacing damaged equipment with newer ones that also have faults

(e.g. incorrectly calibrated) [58].

Second, it is possible that an adversary may employ a jamming at-

tack. A jamming attack is one that aims at directly interfering with

one or more components to disrupt regular operation. For example,

radio interference can be passively directed to disrupt wireless net-

works by increasing signal noise at the receiver [59, 60]. This can

result in a denial-of-service (DoS) attack and halt communication en-

tirely. As well as this, a more active adversary could direct a laser at

sensing equipment to induce perturbations to input data [61]. This

may lead to misclassification of objects in the robot’s perceived envi-

ronment [62].

Third, risks such as collisions or jerky movements can occur at any

time during a robot’s operation, and it is important to mitigate and

prevent this from happening. Some robots may make use of sensing

equipment as a form of safety mechanism, such as to halt operation if

an obstacle is present, however these can be expensive. While cheaper,

off-the-shelf components can be used as a cheaper option, component

lifespan and accuracy may not be guaranteed [63]. Thus, physical

safety mechanisms such as an emergency stop trigger can be used to

provoke an immediate halt response. From an attacker’s perspective,

there are two possible mechanisms for emergency stops: a physical

switch or a software-based mechanism [64]. While a physical switch
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may be present, triggering this maliciously is noticeable, but in the

case of software-based emergency stop mechanisms, a trigger may be

a result of system compromise.

Overall, while there are many potential threats to consider in the

physical domain, many are active attacks and mostly pose a threat to

the availability of robotic systems.

2.4.3 Secure Calibration

While many threats in the cyber and physical domains may impact

system safety by targeting the accuracy of the system, there is one

key factor which ultimately encapsulates the accuracy and precision

of system components – calibration. The calibration of any equip-

ment, such as sensor devices, is carried out to ensure that any outputs

(measurements) from devices remain accurate and have low margin of

error (measurement uncertainty). Interestingly, even the cables and

resistors used within these devices are also calibrated. To put it sim-

ply, calibration involves a set of processes that underpin operational

safety.

After its manufacturing lifecycle, a component would typically un-

dergo some form of calibration in-house and after a specified amount

of time (typically a year) it would be recalibrated to reassess its ac-

curacy and uncertainty and adjusted if necessary. Interestingly, a

distributed calibration infrastructure can be observed. A root of trust

is established at the national level by National Measurement Insti-

tutes (NMIs) who maintain the gold standard, such as NPL in the UK

or NIST in the USA. These organisations then provide calibration for

reference devices at some intermediary level organisation, who then

perform calibration for manufacturers or system-level organisations.
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When a device is calibrated, a traceable chain of these reference cali-

brations is established to the root-of-trust, so that when the accuracy

and uncertainty of device outputs need to be validated, the calibration

status can be derived and verified at each step.

The importance of securing the calibration process and calibration sta-

tus of all robots and their components is vital. For example, Quarta

et al. [51] point out that calibration parameters, which are used for de-

termining precise positioning of actuators or white-balancing sensors,

are an essential construct. By manipulating these parameters through

a means of integrity compromise, they were able to impact the servo

motor in a robot resulting in highly erratic movements. While erratic

movements in a laboratory setting may not seem disastrous, consider

a surgical context. Even an offset of just a few millimeters could result

in the difference between life and death. While this was explored in

the form of disruption, it could be thought of as a form of denial-of-

service attack which is hindering the ability to provide a continually

accurate operation. Furthermore, while calibration parameters may

be stored at the system-level to allow for quick verification, for exam-

ple during a secure boot (startup), what would happen if the integrity

of calibration was compromised during the traceable chain of calibra-

tion at any level up to the root-of-trust? Could the calibration status

of robots dependent on these upper levels be trusted? Furthermore,

many of these parties – particularly at the intermediary level – may

share an adversarial relationship (conflict of interest). Therefore, any

potential for the leakage of confidential information between potential

competitors should be prevented.
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2.4.4 An Overview of Security Challenges in

Robotic Workflows

Overall, a number of challenges can be established which arise in re-

lation to the security of robotic workflows, ranging from cyber and

physical domain challenges, to further refined challenges with respect

to the calibration of interconnected components within robotic sys-

tems.

Integrity, Authenticity and Confidentiality of Teleoperated

Data Transmission

The first challenge pertains to end-to-end integrity of teleoperated

data, such as the input captured by sensors or the commands sent

between the controller and the robot itself. If the integrity was com-

promised, the validity of such data would be questionable. Can we

trust that the input is sanitised and will not result in the robot causing

harm to itself, people or environment? A simple solution one could

consider is the use of Message Authentication Codes (MAC) or hash

to ensure data integrity [65, 66]. In either case, a key is shared be-

tween the communicating parties which is used along with a message

into a cryptographic function. The message is sent by one party along

with the hash or MAC, which is then re-computed at the receiver end

and verified that the result matches the one that was sent with the

message. If this matches exactly, the message was not tampered with

in-transit. While such techniques can ensure data integrity in-transit,

there are two key issues. First, how can the receiver ensure that the

data being sent can be trusted (or ensure that the sender itself can

be trusted)? Second, while the data is protected from tampering in-

transit, how can one trust that the data is not being captured whilst
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in-transit? These two challenges pertain to the authenticity of the

data and data source, and the confidentiality of the data in-transit,

respectively.

With respect to the authenticity, a trusted mechanism here is the

use of a digital signature scheme (DSS) [67–69]. In a DSS, the sender

of a message will have a public and private keypair. The sender will

sign a message using their private key and the receiver will verify the

message using the sender’s public key. This gives the receiver high

confidence that the sender is indeed who they say they are, whilst

also providing data integrity as tampering the message would invali-

date the digital signature. While this covers the authenticity of data

transmission, it is entirely possible that a malicious component could

be communicating false data, with a legitimate identity, to the rest

of the system. In this case, authentication schemes to prove compo-

nent identity could be achieved through a challenge-response protocol,

such as one involving Physical Unclonable Functions (PUFs) [58, 70].

In this case, a challenge issued from a device is inherently unique to

only that device. For example sending a signal through a PUF circuit

generates a signature that is unique to the device, given the unique

timing properties intrinsic to slight manufacturing variations within

the circuits. Thus, a list of challenge-response pairs can be maintained

such that if the device was to be swapped out for a malicious device,

this would be detected on startup and thus communication with that

device can be flagged and blocked temporarily.

Third, while the authenticity and integrity of the data and data source

can be maintained, it is entirely possible that network traffic can be

monitored to allow an adversary to eavesdrop on potentially confiden-

tial communication. For example, if control commands to be sent to
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the robot were captured in-transit, continous monitoring and traffic

analysis techniques could reveal entire robotic workflows and poten-

tially compromise the operational confidentiality of the organisa-

tion of which the robot operates. This information could be used to

bribe the company or used by competitors to gain a competitive ad-

vantage. While it is relatively trivial to prevent the use of plain text

data transmission, in some robotics environments (i.e. industrial set-

tings) there is no mandate or standard for ensuring data confidential-

ity. Interestingly, in medical contexts the Medical Device Regulation

(UK) [71,72] and HIPAA (USA) [54] mandate the use of TLS for legal

compliance. Specifically, as of August 2019, they require the use of

TLS1.2 with FIPS-based cipher suites, with support for TLS 1.3 by

January 2024 [73]. In any case, the use of appropriate channel-security

technology such as TLS can help ensure that data is encrypted and

communicating parties establish a secure, authenticated connection

between one another. One question remains, however. Is it possible,

even with the use of channel-security and end-to-end encryption, to

still breach operational confidentiality?

Physical Plane Security

While a robot may be secured in the cyber domain, once it is ready to

be used how can we ensure it is physically secure? It is vital to guar-

antee that robots can maintain relatively normal operation, perhaps

within some tolerance, even while under adversarial threat or attack.

If a jamming or signal saturation attack [11] is used to disrupt com-

munications of a robotic system, the impact of these attacks must be

mitigated as best as possible to ensure it can continue operating in its

usual fashion with minimal or no disruption. On top of this, all inter-
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connected components of the system should be confirmed as authentic

and not physically tampered with. Further, components installed at

the time of manufacturing, or legitimately installed otherwise, should

be recorded securely such that events resulting in liability (e.g. injury

to operators) can involve an audit of the robotic system. This will not

only prevent the potential for faulty components to be used, but also

prevent adversaries from modifying and/or installing components to

act maliciously. As well as this, another difficult challenge pertains

to the locality of many teleoperated robots. Given that they may be

in a remote location, such as teleoperation being conducted from a

different room or facility, secure maintenance may be difficult to per-

form – particularly on a live robot. A part of maintenance is also

establishing that there may be a problem that warrants maintenance

during operation. Therefore, is it possible to monitor the robot in

the physical domain for abnormalities or erroneous behaviour? This

is explored in Chapters 4 and 5.

Security of Robot Calibration

While there exist many security challenges in both the physical and cy-

ber domains that threaten the accuracy and error tolerances of robot

systems, even if the system is theoretically secure calibration ulti-

mately encompasses these properties. The question here is, how can

aspects of the calibration ecosystem that pertain to robotic systems

be secured before, during and after the robot is manufactured and in-

stalled. After a component is manufactured, it should be legitimately

calibrated to guarantee it operates accurately within a tolerated out-

put range. For example, a temperature sensor may be calibrated

to record temperatures between 1–100°C, with an error tolerance of
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±1°C. As well as this, a calibration report is produced detailing this

information, as well as information about the organisation(s) and ref-

erence (parent) device(s) involved in the calibration process. After

some period of time, typically annually, the component is calibrated

to make sure it conforms to the tolerances specified in the report(s)

from its previous calibration. Ultimately, the requirement is to se-

curely maintain these records and ensure that the calibration of com-

ponents is kept up-to-date and performed correctly and legitimately

recorded in accordance with professional standards. In a real-world

scenario, assuming a sensor was out-of-calibration, the robot may per-

form less efficiently or incorrectly classify sensed objects; and as such

the question of whether the robot should still be in operation is highly

questionable.

Summary

Previous events in the real-world involving robotic systems have shown

the extent to which threats to robotic systems, for example miscon-

figurations, have resulted in human deaths and only deemed to be a

result of malfunctions [10,21]. However, are these truly malfunctions?

Could these liabilities have risen from improper calibration of one or

more components in the robotic system? In a connected environment,

could these be the result of an attacker? Ultimately, it is clear that

there are many challenges in all domains pertaining to robotic sys-

tems, with many defences and countermeasures proposed to address

them.

Interestingly, however, little attention has been paid to the capabil-

ities of a passive adversary in both the cyber and physical domains.

While end-to-end encryption and channel security is introduced, pre-
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vious research has shown it is possible to have success in inferring

data from encrypted workflows, such as classifying types of Internet

traffic [74–76] and fingerprinting IoT devices [77–79]. Thus, we ques-

tion whether the legislative mandates of simplying using TLS or other

channel security technology is enough to protect the operational con-

fidentiality of organisations that employ robots. Specifically, can an

adversary use traffic analysis to infer information about robotic work-

flows and reveal information about an organisation and the operating

environment? With regard to the physical domain, again most at-

tacks are active and involve a form of physical compromise. However,

can an adversary also gain information about robotic workflows as a

cyber-approach could do, but in the physical environment? It has been

shown previously that physical side channels, such as electro-magnetic

fields, power and acoustics, can be captured and analysed to gather in-

formation about device operation. Thus, is it possible to compromise

operational confidentiality as a passive attacker, by exploiting side-

channel information leakage in the physical domain? Finally, while

there exists a calibration ecosystem, a progressive shift to a digitised

ecosystem and the increasing installation of safety-critical robotic sys-

tems present several key challenges to be addressed, particularly with

respect to calibration verification.
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3 — Passive Reconnaissance

of Robotic Workflows

via Encrypted Traffic

Analysis

The Internet-connected nature of modern robotic systems further ex-

pands the threat landscape, exposing them to new threats in the cyber

domain. Previous research has identified several of these challenges,

such as active targeted attacks tampering with control commands and

other transmitted data [64]. However, there has been little focus on re-

connaissance aspects, such as eavesdropping and fingerprinting. Even

though there is less focus on the capabilities of a passive adversary,

it is still highly important to investigate. If an adversary was to pas-

sively monitor communications between a robot and its controller, it

is entirely possible that they could reconstruct operational workflows.

These workflows could correspond with highly confidential operations

such as warehousing workflows in industrial settings, or surgical proce-

dures in medical settings, which could lead to a breach of operational

or patient confidentiality respectively. Simply put, the liabilities that

could arise as a result of passive reconnaissance techniques have the

potential to wreak havoc on organisations. In this case, it is a rel-

atively trivial assumption that organisations would employ strict se-

curity requirements that are to be conformed to, in order to mantain

confidentiality. For example, legislation such as HIPAA (USA) [54,73]
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and the Medical Device Regulation (UK) [72] mandate the use of TLS

(1.2) for connected medical devices, which includes robotic systems,

to protect private patient information that may flow between them.

However, there is an important question that needs to be addressed.

Prior art has shown that it is possible to perform identification and

classification of IoT devices [77,80,81], websites and users [82,83], by

simply performing passive reconnaissance to observe and analyse en-

crypted traffic. From the main research questions presented in Chap-

ter 1.1, this chapter aims to address research question 1 and whether

it is possible for an adversary to infer what operations a robot is cur-

rently carrying out, solely using the network traffic between the robot

and its controller, even if the communication is protected through the

use of TLS.

End-to-End 
Encryption

Robot

Attacker

Controller

[ X - XZ - ... - XYZ] 
[ Y - X - YZ - X ]

Feedback
Movement 
Commands

Figure 3.1: Robot and Traffic Analysis Setup

3.1 Threat Model

In this context, the adversary is a passive, stealthy attacker who is able

to eavesdrop on the communication channel between the key compo-

nent of modern teleoperated robotic systems, the controller, and the

robot itself (Figure 3.1). First, consider an insider adversary such

as the technical staff who can access the internal organisational or

robot network. By capturing the traffic between the robot and the
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controller, and combining this with other data sources, information

leakages about the operational environment exposes another degree

of detail. By identifying potentially confidential workflows, such as

warehousing operations, this information could be sold on to com-

petitors or be used as bribery in an attempt to discredit the operator

or organisation. Second, it is entirely possible that a passive outsider

adversary could gain access to the network through some attack vector

(e.g. application exploits). Competing organisations could use leaked

operational workflows to compare performance and improve their own

operations, or uncover problems that could be used to discredit the

company (i.e. to cause an audit to fail if an organisation was found

to be cooking-the-books).

3.2 System Design

The focus of this chapter is to investigate whether an adversary can

mount an information leakage attack using the traffic analysis side

channel to fingerprint robot movements, by monitoring encrypted traf-

fic flows between a robot and controller in a teleoperated architecture.

An overview of the setup for this attack can be seen in Figure 3.1.

In this work, the robot used is uFactory’s uARM Swift Pro [84] which

is operated by an Arduino Mega 2560 running MicroPython. The

robot is connected to a controller on a Windows 10 laptop via the

uARM Python (3.8.X) SDK [85]. To mimick a teleoperated com-

munications architecture, a client-server communication topology is

followed, in which an asynchronous TCP/IP socket is established for

communication between the robot and controller. The message struc-

ture is adapted from the work presented by Zeng et al. [86] and is
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HEADER PAYLOAD

0 m

Timestamp Type Length Status Position Reserved

Figure 3.2: Robot Message Structure

depicted in Figure 3.2. First, in the header, the timestamp is an

unsigned 32-bit integer representing the time at which the message

was generated before transmission. The type field is a 2-byte ASCII

code representing the type of the message being sent. For example,

this could represent whether it is a feedback or control message. The

length field is a two-byte representation of the length of the message,

excluding the header. Second, in the payload, the status field is a

byte field in which system status codes are present. The position is

an n-byte field where each byte represents the position of each of the

n axes to be positioned. Finally, the reserved field is a set of k bytes

which are held for extensions to the message. For example, sensor

controls or medical images (in the case of surgical robots) may use

this field. In the work presented by Zeng et al. [86], other fields such

as session management data is also a part of the message, however,

this is handled by TLS session establishment in this work.

To enable TLS-encrypted communications between the robot and con-

troller, the traffic is routed through a software-defined network (SDN)

using Mininet 2.3.0, running a TLSv1.2 client-server network to allow

for realistic simulation and evaluation of various network conditions.

This representation of teleoperated robot communications can be gen-

eralised due to similarities shared between them [51]. The key gen-

eralisation in packet structure refers to the movement data, where

additional input (i.e. system information and sensor data) do not
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directly contribute to this attack in terms of movement inference in

non-autonomous systems, beside any influence on human operators to

make decisions based on this additional input. Finally, Wireshark [87]

was used to capture the encrypted traffic flows between the robot and

controller, imitating a passive adversary. Wireshark was set up as an-

other host in the network and eavesdrops on the communication link

between the robot and controller (Figure 3.1).

3.2.1 Emulation of Network Link Characteristics

For measuring the impacts of link characteristics such as packet loss

and delay/jitter, a suitable network emulation environment is re-

quired. Several options were considered, including: PlanetLab [88],

DETER [89,90], Emulab [91], NS3 [92] and Mininet [93,94]. Mininet

was chosen as it is best suited for modelling arrivals as a Poisson

process – a similar behaviour as seen with teleoperated robots [95].

The justification for not using other approaches is as follows. Planet-

Lab [88] is a global testbed for network systems research with nodes

spread across the earth. The main challenge associated with this is

that results are not reproducible as network conditions can vary over

time [96]. Other real-world emulation testbeds such as DETER [89,90]

and Emulab [91] face similar challenges, where resources are shared

among many researchers which can skew results. NS3 [92] on the

other-hand is designed as a discrete-event network simulator and thus,

is unsuitable for this work as the network layer will be simulated even

if the robot-edge runs live. While Mininet is not without limitations –

primarily scalability (due to single threaded components in the core) –

in this case with a small network containing a few nodes and switches,

these limitations do not manifest. Ultimately, it would be interesting
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to observe how other arrival models for delay and loss would impact

movement classification [97,98], and is a point for future work.

3.3 Challenges in Applying Traffic

Analysis Approaches

While there exist a number of context-dependent challenges when ap-

plying traffic analysis approaches, several challenges can be ident-

fied with respect to the compromise of operational confidentiality in

robotic workflows:

(C1) Can individual robot movements on each axis be fingerprinted?

(C2) Can permutations of robot movements be fingerprinted?

(C3) How is the identification of movements affected by the distance

and speed in which the robot moves?

(C4) How do realistic network conditions, such as network link delay

or packet loss, affect the identification of robot movements?

(C5) Is it possible to reconstruct operational workflows that corre-

spond to a set pattern of movements?

In order to understand the challenges and how to approach a solution,

it is important to conduct a preliminary analysis of the problem set-

ting. To recap, the focus of this attack is on industrial teleoperated

robots. In a typical warehouse that employs teleoperated robots, the

most common type is a single-arm robot with at least 3 degrees of

freedom (axes). Given that the majority of single-arm robots make

use of the same principal components as the one used in evaluating
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this attack, it is a suitable replication candidate for movement fin-

gerprinting. At the core, the key data for movement inference is the

transmission of control commands, which would affect timing patterns

of operations and the payload in control messages, for example. The

data from other components, such as the input from sensing devices,

would be indistinguishable from those provided by actuators and mo-

tors which are operated via control commands.

3.3.1 Robot Traffic Generation

The first step in the preliminary analysis stage is generating appro-

priate traffic traces. Here, an emulation-based approach is used to

generate various traffic behaviours to address each of the challenges.

For C1, the uARM robot was programmed to carry out movement

operations along the X, Y and Z axes. C2 involves generated traf-

fic traces of permutations of the movements along these axes (i.e. X

and Y simultaneously). For C3, movements were programmed with

varying distances and speeds of movement for more fine grained in-

ference. Specifically, distances range from 1–50mm and speeds range

from 12.5–100mm/s. For C4, the aim is to determine whether this

attack performs well under realistic network conditions. Here, the

controller was programmed to send control commands to the robot

under various network link delays, ranging from 10ms–1s, and un-

desirable packet losses of 10–50%. Finally, for C5, the robot was

programmed to carry out various operational workflows. The con-

text of this work surrounds warehousing workflows in which industrial

arm robots operate, and thus, the robot was specifically programmed

to carry out four common warehousing operations, including: push,

pull, pick-and-place and packing. The dataset used for evaluating
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this attack contains around 150, 000 samples, with traffic features in

the packets collected and represented in a tabular-like dataset. One

sample corresponds to a row in the dataset, where each column cor-

responds to the data contained within each feature of the collected

packet.

3.3.2 Analysing Traffic Features

The first step in the analysis stage was to determine how time-frequency

representations of traffic features may offer clues as to what movement

or operation the robot is carrying out. In Figure 3.3, it can be seen

that the robot traffic, among all movements, produces an average of

2 packets transmitted per second between the robot and controller.

The second interval between the robot and controller corresponds to

the programmed movement interval in order to effectively capture in-

dividual movement traffic. While there is an observable increase in

packets transmitted at the start of each operation, this is due to the

initialisation of the communication between the robot and controller

(i.e. TLS session initialisation) and thus discounted for further analy-

sis. Ultimately, it is clear that time-frequency representations do not

provide any useful information outside of the initialisation stage of

each data collection step.

The next logical step after this is to observe variations among move-

ments using information contained within the packets themselves.

Among all available features in the traffic, the most prominent were

the following: Packet Time, Frame Length, Frame Capture Length

(frame length stored in capture file), IP Length, TCP Length, Bytes in

Flight, Push Bytes Sent (bytes sent since last PSH flag), ACK Round-

Trip-Time (RTT), and the TLS Record Length. A box-plot analysis

57



0

2

4

6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Time (s)

# 
P

ac
ke

ts

Movement

x

y

z

xy

xz

yz

xyz

Figure 3.3: Packets per Second for Robot Movements
The flow of packets per second across movements show that time-series

analysis alone does not provide enough basis for fingerprinting movements

of the variation among these features can be seen in Figure 3.4, where

the x and y axes represent the movement and size of the traffic fea-

ture, respectively. Initially, apart from the ACK RTT and Packet

Time, a similar pattern can be observed, with the XYZ movement

showing a clearly identifiable variation in comparison. Both the X

and Z movements appear to be more similar, also seen with the XY

and YZ movements, however the median values in each case are at

the opposite ends of the inter-quartile range – the same for both sets

of movements, respectively. Interestingly, the ACK RTT and Packet

Time are relatively similar with little difference in the case of out-

lying values. Ultimately, upon observation, it is clear that simple

approaches such as eye-balling the dataset or basic frequency analysis

are not enough to answer the stated challenges.
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Figure 3.4: Traffic Features Across Movements
A closer look shows there are more subtle variations across movements

aside from only time variations
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Figure 3.5: Traffic Analysis Approach

3.3.3 Attack Methodology

For this attack, given the inadequacy of simpler approaches, the next

step is to take a machine-learning approach to recognise traffic fea-

ture patterns for fingerprinting robot movements and, ultimately, re-

construct workflows. The effectiveness of applying machine learning

techniques on encrypted traffic has shown success in various other ap-

plications, such as VoIP [99–101], mobile [102] and IoT [77, 81]. The

reconstruction approach involves several stages (Figure 3.5).

Dataset Pre-Processing

The first step after sample collection was to pre-process the dataset

to allow for a machine-learning approach. The goal of this step is

to reduce noise and redundancy in the dataset by removing fields

with constant values that have no impact on classification output,

such as TCP flags that had no variance among all samples, as well

as handling any null values. After this, the dataset was normalised

using the scikit-learn [103] MinMaxScaler, which normalises values in

each feature in the training set to a real number in the range (0, 1).

Furthermore, given that the range of distance of Y and YZ movements

is larger than the other axes, there is a larger sample size. To even the
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sample set among all movement classes, the dataset was also stratified

and weighted. Finally, the dataset was split randomly into training,

validation and testing sets, with 60% of samples used for training and

the remaining 40% split evenly among testing and validation.

Corrective Statement. During the viva, it was identified that

the normalisation in this chapter was done incorrectly. Specifically,

the normalisation should have been done after splitting the dataset

into training, testing and validation groups. This is important as the

normalisation is on the full dataset which can leak information about

the test or validation sets into the training set which is meant to

represent real-world data.

Neural Network Architecture

After pre-processing the samples into training, testing and validation

sets, the next stage was to construct the neural network to classify

(fingerprint) movements and, ultimately, answer the aforementioned

challenges. To create the neural network, a sequential model was

used which groups layers of neurons together in a linear (feed-forward)

fashion. This was achieved using the Keras [104] API library. The

model used for this attack is a shallow neural network with three

layers. The choice of the parameters of the neural network architecture

(e.g. number of layers, neurons, activation functions) were selected

using a 3-fold cross-validated grid search [105, 106]. The first layer,

the input layer, consisted of 16 neurons corresponding to each of the

16 traffic features in the dataset. The second layer was a hidden,

Dense layer with 108 neurons and makes use of the Rectified Linear

Unit (ReLU) activation function [107]. A dense layer is a deeply

connected layer wherein each neuron is connected to each of the input
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and output neurons (to the next layer), and the output is a result of

matrix multiplication with an activation function and weights matrix.

The choice for the number of neurons for this layer is calculated using

the following formula [108], to keep it below some value N to prevent

over-fitting in most cases:

Nh =
Ns

(α ∗ (Ni + No))

where:

Ni = Number of input neurons

No = Number of output neurons

Ns = Number of samples in training dataset

α = Arbitrary scaling factor

The alpha (α) value is the effective branching factor (number of non-

zero) weights for each neuron, which was given a value of 2. The

value of Ns is 4968, the number of samples in the training set for

the baseline samples, such that an effective comparison can be made

against the other experimental parameters (i.e. movement distance).

As a result, the optimal number of neurons, Nh is 108. While this

formula provides an estimated optimal number of neurons, the cross-

validated grid search explained earlier found this was most optimal.

Finally, the output layer uses the SoftMax activation function [109] to

have the output in the range of [0, 1] for use as predicted probabilities,

with categorical cross-entropy [110] as the loss function. The optimiser

used is Adam [111] with a learning rate of 0.00001. This learning

rate was chosen as others, such as those with higher learning rates,

resulted in lowered accuracy scores. Given the use of SoftMax and

categorical cross-entropy, the output layer has 7 neurons, with each

neuron corresponding to one of the 7 movement classes.
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Choice of Activation and Optimisation Functions

The ReLU activation function was chosen over other activation func-

tions, as the reduced likelihood of vanishing gradient allows for a con-

stant gradient resulting in faster learning. Further, the sparsity of

representations are shown to be more beneficial than dense repre-

sentations, as seen in other activations such as sigmoids [112–114].

The softmax activation function, combined with categorical cross-

entropy [110] for the loss function, was chosen due to the fact that

this is a multi-class classification problem. Simply, a sample can be-

long to one of the 7 classes, with each class corresponding to one of

the robot movements. For optimisation, Adam was an ideal candi-

date. It is an extension to the Stochastic Gradient Descent (SGD)

method, based on adaptive estimation of first- and second-order mo-

ments [111]. Specifically, it allows for the updating of network weights

iteratively based on the training data, and fits best with the weighted

sample sets in opposition to other tried methods such as standard

SGD, RMSProp and SGD + Nesterov Momentum.

3.4 Attack Evaluation

3.4.1 Baseline

In accordance with the challenges set out in Section 3.3, the first two

(C1 and C2) aim to determine whether it is possible to infer individ-

ual robot movements on each of the axes, as well as permutations of

these movements. Each movement corresponds to the robot arm mov-

ing from some reference point to a destination in a specified direction

and speed of movement. The first set of experiments are hereafter
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Movement Precision Recall

X 70% 85%
Y 69% 54%
Z 80% 63%

XY 21% 60%
XZ 68% 92%
YZ 81% 31%

XYZ 72% 97%

Table 3.1: Baseline Classification Results
The baseline samples contain only samples with a single distance unit and

lowest movement speed, with no other varying parameters

referred to as the baseline, to enable comparisons against other pa-

rameters, such as evaluating how the distance of movement impacts

fingerprinting accuracy. In the baseline, the robot is programmed to

move with minimum distance (1mm) and speed (12mm/s), with no

network parameters in effect.

The results of running the neural network on the baseline samples

can be viewed in Table 3.1. The precision metric is the ratio of cor-

rectly predicted positive movements to the total predicted positive

movements. In the case of the baseline, relatively good precision for

most classes can be observed, averaging around 65%, with the excep-

tion of the XY movement. Interestingly, the confusion matrix (Ap-

pendix A.1) shows that some movements are being incorrectly classed

as XY or YZ movements, with Y-based movements showing the low-

est accuracy compared to others. Notably, the Z and YZ movements

show the highest precision of around 80%, yet the recall of the Y-based

movements are very poor in comparison to outstanding recall for the

X, XZ and XYZ movements. From Figure 3.4, it is clear that this is

likely due to the similarities in traffic features across these movements.

In the context of this attack, good or perfect recall is desirable but not

the most important if certain movements may be missed. The recall
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across most movements is good and thus, the combination of certain

movements – even with some missing – can still lead to the identifi-

cation of entire workflows through the likes of continous monitoring

and regular pattern matching.

3.4.2 Impact of Experimental Parameters on

Movement Classification

In the next set of experiments, the goal is to determine the impact

of robot parameters (distance and speed – C3) and network param-

eters (jitter and packet loss – C4) on the classification accuracy. In

real-world networks the channel between the controller and robot may

experience jitter and packet loss. Jitter and packet loss in real-world

networks are known to follow a Poisson distribution [115–119], par-

ticularly in the case of single-link communication (such as the case of

teleoperated robots) whose interaction can be abstracted to the likes

of an M/M/1 queue for example [120, 121]. To realistically emulate

link characteristics, varying link parameters in the SDN were used

for delay and packet loss between the robot and controller. Notably,

Mininet follows a Poisson process for packet arrival in a single link

system, which meets the expectations for real-world network emula-

tion. Further, in the Mininet SDN, a link speed of 100Mb/s is used

where it has been previously shown that emulating link properties of

delay and packet loss at this rate can be done realistically [122].

Movement Distance

The first parameter evaluated was the distance the robot arm moved

in a particular direction. The results of this experiment can be seen

in Table 3.2. At 2 distance units (mm), a decrease in precision among

65



D = Distance (mm), P = Precision, R = Recall

D=2 D=5 D=10 D=25 D=50
P R P R P R P R P R

X 60% 59% 62% 84% 38% 63% 36% 57% 52% 38%
Y 76% 49% 69% 45% 75% 45% 54% 37% 67% 8%
Z 72% 78% 74% 100% 30% 62% 31% 82% 41% 86%
XY 28% 58% 38% 74% 68% 94% 67% 14% 26% 55%
XZ 43% 74% 33% 35% 0% 0% 0% 0% 38% 65%
YZ 67% 48% 80% 47% 72% 28% 96% 71% 84% 62%
XYZ 78% 88% 61% 97% 36% 94% 54% 100% 53% 77%

Table 3.2: Classification Results With Distance Parameter
Examining movement distance results in more fine-grained movement

inference,with classification accuracy increasing with movement distance

in most cases compared to the baseline

the X, Z, XZ and YZ movements can be observed compared to the

baseline (Table 3.1). The X and Z movements and XZ samples seem

to be incorrectly classified as each other, with most of the XZ sam-

ples being predicted actually being Y samples. Interestingly, the low

precision of XY is due to incorrect classifications of either Y or YZ,

perhaps due to the similarities in packet features between them, which

is also present in the baseline evaluation. In most cases, there is an

increase in recall. For the baseline, Y-involved movements had lower

recall in comparison with other movements, but with this first in-

crease in distance there is an increase in their precision. At 5 distance

units, the results are fairly similar, with the XY movement precision

increasing but with some incorrect predictions of Y and YZ move-

ments as seen with 2 distance units. Notably, the Z movement has

perfect recall. With the XZ movement, the precision and recall de-

crease further again, with most samples here being incorrectly as X

or Z. At 10 distance units, there are decreases in precision and recall

across all movements aside from the Y and XY movements. At 25

units, results are similar to those seen at 10 units, with the exception

of YZ which has a precision of 96% and XYZ movements having per-

fect recall. Finally, at 50 distance units, the XZ movement is classified
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S = Speed (mm/s), P = Precision, R = Recall

S=25 S=50 S=75 S=100
P R P R P R P R

X 66% 89% 100% 100% 67% 88% 66% 85%
Y 62% 46% 61% 28% 65% 34% 56% 45%
Z 82% 60% 90% 98% 80% 62% 75% 65%
XY 24% 70% 26% 76% 20% 46% 23% 41%
XZ 61% 86% 37% 83% 34% 70% 42% 68%
YZ 79% 28% 69% 24% 74% 45% 66% 39%
XYZ 68% 95% 66% 97% 86% 97% 73% 97%

Table 3.3: Classification Results With Speed Parameter
Examining the speed of movement provides an attacker with a more

fine-grained movement fingerprintwith classification accuracy showing

similar increases across some iterations as with distance

correctly but not successfully, as seen at lower distance units. Overall,

not only does the distance of movement provide more granularity to

movement fingerprinting, but does also influence an adversary’s abil-

ity to fingerprint them. While an increase in distance does reduce the

accuracy of classifying some movements, changes in the payload (i.e.

larger integer for distance in plaintext) and round trip time better

showcase trends on the Y-axis as distance increases. Further, among

some movement classes, increasing the distance parameter does cor-

relate with incorrect predictions among similar classes (i.e. XZ with

both the X and Z movements).

Movement Speed

For the next experiment, the aim is to determine how the speed of the

movement affects the classification accuracy, with the results shown

in Table 3.3. The justification for the range of S is primarily due to

the scale and limitation of the robot used in this study. In terms of

generalisability, with regard to scale, the packet features would remain

the same however the speed field in the raw data would simply contain

a larger number in accordance with the packet structure used (see 3.2).

At S = 25, there is a slight decrease in precision for most movement
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classes, compared to the baseline (Table 3.1), aside from the Z and

XY movements which show a slight increase. Similar to the distance

parameter, most XY predictions are actually Y and YZ movement

samples, which may be due to close similarities in traffic features.

However, this is lower than the baseline leading to the slight increase

in precision. Similarly, there is an observable decrease in recall in the

same cases, aside from the X and XY movements. At S = 50, there

are further decreases in precision and recall for the Y, XZ, YZ and

XYZ movements. Notably, the X movement has perfect precision and

recall and the Z and XY movements show both improved precision and

recall compared to lower speed iterations. At S = 75, the precision

and recall for the X movement drop, compared to the movements at

S = 25. Similarly, among the Y, YZ and XYZ movements, there is an

increase in precision with others decreasing slightly compared to lower

speeds. The recall in most cases show a decrease, aside from the YZ

and XYZ movements which have the highest recall respectively among

all speeds. Finally, at S = 100, the results show to be similar to the

S = 50 results but with lowered recall. Overall, in this experiment,

it is clear that movement speed improves movement fingerprinting

compared to the baseline, specifically at S = 50. As well as this,

slightly better results for fingerprinting movements are found with

the speed parameter compared to distance.

Network Link Delay

Aside from features inherent to the robot itself, it is also important

to investigate the impact of network characteristics (C4), due to the

nature of network traffic in the real world. The first of two parame-

ters in this context is network link delay. In Mininet, this parameter
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L = Link Delay, P = Precision, R = Recall

L=10ms L=50ms L=100ms L=1s
P R P R P R P R

X 64% 89% 99% 100% 100% 100% 98% 100%
Y 100% 100% 100% 99% 100% 100% 100% 99%
Z 80% 63% 100% 100% 100% 100% 100% 100%
XY 99% 90% 100% 100% 100% 100% 100% 100%
XZ 89% 83% 76% 100% 100% 100% 100% 100%
YZ 100% 99% 100% 85% 100% 100% 100% 100%
XYZ 100% 99% 89% 100% 100% 100% 100% 100%

Table 3.4: Classification Results With Network Link Delay
There is a significant improvement when a low link delay is introduced,

with the precision, recall and accuracy reaching perfect as the delay

increases

corresponds to the packet delay time over the link – in this case be-

tween the robot and controller. While it is possible to emulate a series

of random delays throughout movement transmissions (as delays may

typically be unpredictable in terms of magnitude in a realistic setting),

the goal is to observe the impact of delays over a range of values that

may be considered reasonable for continued robot operation. The re-

sults for this experiment are found in Table 3.4. In comparison with

the baseline results shown in Table 3.1, there is a significant increase

in both precision and recall in all cases, with the majority of move-

ments having perfect precision and recall. The X movement initially

has the poorest precision and Z with the poorest recall. In this case,

a proportion of the X movements are incorrectly classified as Z and

vice-versa – a similar trend seen in previous experiments. However,

overall, as the delay increases there are significant improvements to

accuracy. In this set of experiments, it is clear that introducing a

low link delay significantly improves the precision and recall of all

movements. As the delay increases over the robot-controller link, the

results show that an adversary can infer robot movements with some

degree of link delay almost perfectly where there are acceptable delays,

and even better with larger delays. Notably, this significant increase
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L = Packet Loss, P = Precision, R = Recall

L=10% L=25% L=50%
P R P R P R

X 86% 100% 100% 100% 92% 100%
Y 100% 100% 100% 88% 100% 100%
Z 100% 100% 100% 100% 84% 100%
XY 100% 100% 100% 100% 100% 90%
XZ 91% 83% 73% 100% 89% 83%
YZ 99% 97% 100% 100% 100% 97%
XYZ 100% 99% 100% 100% 100% 100%

Table 3.5: Classification Results With Network Packet Loss
Near perfect accuracy is observed in most cases, with the precision and

recall increasing as the loss increases

may be due to differences in round-trip time and packet inter-arrival

times for each movement, increasing the variation among them collec-

tively, unlike distance and speed which seem to only affect the payload

of the collected traffic.

Network Packet Loss

The second of the network experiments looks at the effect of network

packet loss on movement fingerprinting. Realistically, failures or inef-

ficiencies of network components that carry the data, such as a faulty

router or weak wireless signal, can cause lost or dropped packets and

should be accounted for. In a TLS connection, TCP flow control de-

tects packet losses and attempts to retransmit these messages for reli-

able communication. This results in decreased throughput which may

have influence on the time-series data gathered from this attack. In

a realistic scenario, the question surrounding acceptable packet losses

are important. In many applications, quality of service (QoS) consid-

erations are given based on the type of data sent. For a safety-critical

IoT system, such as industrial robots, even the loss of a small amount

of packets could result in delays that could result in serious harm. It

has been noted that losses between 5% and 10% of the total packet
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stream seriously impacts the quality of service [123]. For complete-

ness, the starting point is a 10% loss and moves up to a 50% loss.

While this may be rare and potentially unavoidable if this is the case,

it is still useful to determine the feasibility of the attack. Even with

higher packet loss, movement data may still be present with (spuri-

ously) retransmitted packets if the network was deemed unfit for a

robot to continue reliably performing operations over. In Mininet,

the packet loss is the rate of packets lost (% of random packets per

second) over a given link. The results for this experiment can be seen

in Table 3.5. In comparison with the baseline in Table 3.1, results

for packet loss are similar to those for network link delay as shown

in Table 3.4 with a significant increase in precision and recall across

all movements. At 10% loss, there is near perfect accuracy with only

slight drops in precision, most notably for the X movement. This

is due to some X samples being mispredicted as XZ movements. At

25% packet loss, there is much more of an improvement, with most

classes having perfect precision and recall. The X movement here im-

proves, however, the Z movement precision decreases in comparison

to the precision at 10% loss, with Y movements incorrectly predicted

as XZ. Finally, at 50% loss, a similar trend can be observed. How-

ever, the precision for the X, Z and XZ movements decreases but still

significantly better than the baseline. As with link delay, introduc-

ing a percentage packet loss over the robot-controller link also results

in greater precision, recall and overall classification accuracy for all

robot’s movements. Given the use of TLS as the secure channel tech-

nology for the robot-controller link in the emulated network, drops in

packet arrivals will result in transmissions with increased interarrival

times. Notably, some work highlights a possible correlation between
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U = # Unknowns, P = Precision, R = Recall

U=2 U=3 U=4 U=5 U=6
P R P R P R P R P R

X 68% 84% 73% 86% 71% 87% 52% 99% 54% 99%
Y 68% 55% 71% 65% 62% 79% 61% 82%
Z 79% 63% 79% 71% 79% 65%
XY 23% 67% 25% 74%
XZ 67% 90%
Unknown 95% 54% 97% 62% 88% 74% 90% 65% 99% 92%

Table 3.6: Open-World Classification Results
These results show the impact on classification accuracy when decreasing

the number of known movements while increasing the number of

unknown movements. There is a correlation regarding accuracy, where it

decreases as the number of known movements increase

packet loss and higher link utilisation which can increase packet in-

terarrival times [124].

3.4.3 Open-World Evaluation

In the main set of experiments, closed-set testing was used where it

is assumed the attacker can detect a known, strict set of movements.

However, realistically, the attacker may only know a subset. Thus, this

naturally provokes the need to understand the impact on classification

when only some movements are known. In this case, a comprehensive

approach for the dataset is labelling each movement progressively and

leaving the rest of the movements unlabelled, to observe the impact

of increasing numbers of unlabelled classes. As shown in Table 3.6,

an open-set approach is taken, which involves labelling each class pro-

gressively, leaving the rest unlabelled. The aim of this is to observe

the impact of U -unknown classes. Within this set of experiments, 1

unknown class is discounted as this would be the same as the base-

line. First, for 2 unknown classes (U = 2), fairly similar outcomes are

oberved when compared to the baseline results shown in Table 3.1.

For 3 unknowns, there are improvements in precision and recall for all
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remaining movements. At 4 unknowns, there is only a slight improve-

ment for the Z movement and the recall of the X and Y movements,

but a reduction in precision for X and Y compared to 3 unknowns.

For 5 unknowns, precision and recall for the Y movement stay rela-

tively consistent, but the precision for X drops greatly with the recall

increasing. A greater percentage of X movements are incorrectly pre-

dicted where they should fall into the unknown class. Finally at 6

unknowns, the results are similar to those of 5 unknown classes but

the recall is near perfect for the X movement. Overall, the precision

and recall for unknown movements increases and this was expected.

Furthermore, the increase in recall in most cases for movements still

known is also expected given that the subtle feature differences are

more present given a larger variance in feature values for the unknown

set.

3.4.4 Workflow Reconstruction

Finally, for the last set of experiments in the evaluation of this attack,

the goal was to investigate whether it is possible for an adversary to

use the inferred movements to reconstruct operational workflows cor-

responding to a set pattern of movements (C5). For this experiment,

the focus was on a subset of common warehousing workflows that

involve robotic arms. This includes: pick-and-place, push, pull and

packing operations (Figure 3.6). These were chosen, as they represent

those that are unique and common operations to a realistic warehouse

which makes use of these robots [125–128]. Quantifying the accuracy

of recovering these workflows demonstrates that an adversary could

reveal daily operating environments within logistics supply chains that

could later be used for ransom, or to gain an operational advantage,

73



among other motives.

For these workflows, inspiration was taken from existing industrial

robot datasets, such as the Forward Dynamics Dataset Using KUKA

LWR and Baxter [129] for pick and place and the Inverse Dynamics

Dataset Using KUKA [130] for push/pull. At the heart of these work-

flows is the actual dynamic movements themselves which may be aided

by additional input (i.e. from sensors). Ultimately, given that move-

ment patterns are the primary factor which establishes these work-

flows, it is reasonable to conduct this experiment on reconstructing

workflows from traffic patterns solely using position data. In total,

there are over 100 sets of test samples for each workflow with varying

speeds of movement, distances and directions to evaluate the effec-

tiveness of the attack in this context.

Push Pull

Pick and Place Packing

Figure 3.6: Warehousing Workflows

As shown in Table 3.7, it can be observed that, on average, the man-

ufacturing workflows can be recovered much better than individual

movements, averaging around 90% accuracy. This is an important re-

sult as it demonstrates that continuous monitoring of movement pat-

terns can reveal potentially confidential workflows and could be given

to competing facilities. Further, this information can even combined
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Operation Recovery Rate Pos Changes

Push 97% 2–3
Pull 97% 2–3

Pick-and-Place 84% 7–9
Packing 88% 6–9

Table 3.7: Workflow Reconstruction Results
Warehousing workflows can be recovered at a much higher rate compared

to individual movement fingerprints and a pattern-matching approach

with other side channels, such as the acoustic side channel, which may

help increase the accuracy of the attack.

3.5 Discussion

In this chapter, it was investigated whether an adversary can indeed

still fingerprint robot movements even when the traffic is protected by

some mandatory channel-security technology such as TLS, ultimately

compromising operational confidentiality.

From a preliminary analysis, it can be seen that simply observing

variations in traffic features, such as via eye-balling or basic frequency

analysis, an adversary could potentially identify some movements but

with difficulty. Furthermore, given variations on a smaller scale among

combinations of movements, it is much harder to identify and finger-

print them in this manner (Figure 3.4). This motivated the need

for a machine learning approach to identify the robot operations in

encrypted traffic.

Upon evaluation, it is clear that a passive adversary can reconstruct

workflows even when the traffic is encrypted, with high accuracy. In

the baseline, most movements can be fingerprinted with at least 65%

accuracy and precision. In realistic settings, however, this may be less

than ideal. For example, let’s consider MIT and Boston Dynamic’s
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Dr. Spot [131, 132], which makes use of a teleoperated quadruped

robot for measuring patient vital signs. This work demonstrates that

parameters such as distance, where this correlates with how far Dr.

Spot is away from the patient, could lead to leakage of what vitals are

being measured. In combination with other sources of information,

such as GPS devices, this may lead to further unintentional informa-

tion leakages, such as what triage zones were visited and why. Based

on examples such as this, the evaluation was taken further to explore

higher levels of granularity pertaining to information leakage – the

distance and speed of robot movements. Exploring this shows that

these parameters are in fact very meaningful to an attacker, where

accuracy and precision increased by at least 10%. Furthermore, in re-

alistic cases, such as Dr. Spot, teleoperation would be conducted over

a wireless network where factors such as packet loss and delay/latency

come into play. Upon evaluation, it is clear that realistic network

conditions provide an attacker with much better accuracy for finger-

printing robot movements, with almost perfect precision and recall in

all cases. Finally, the attack was taken a step further, investigating

whether the attacker can reconstruct entire workflows. Specifically,

the investigation in this context related to manufacturing workflows.

It was found that an adversary could reconstruct such workflows with

at least 85% accuracy. From here, it could be possible to compromise

operational confidentiality by combining the workflow fingerprints in-

ferred from this side channel attack with other sources of information,

such as delivery times, package metadata and even information from

other side channels.
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3.5.1 Implications

While this work explores the efficacy of the attack in a warehousing

context regarding teleoperated industrial robots, it is important to

recognise that teleoperated robots are also prominent in other appli-

cation areas. Notably, a rise in these systems are found in surgical

settings, such as the Zeus and da Vinci surgical systems [43,133,134].

Given the similarities of such systems in comparison with surgical

robots, for example, it is important to explore how this attack may

indeed impact the parties involved in these contexts. Specifically,

given that end-to-end encryption is not enough to mitigate attacks on

confidentiality, it is key to understand the implications the attack has

on legislative and professional standards.

Legislative Standards

Legislative standards are those which are set by governing bodies (i.e.

national governments) to establish technical detail, such as the safety

of a system, which should be conformed to in order to achieve long-

term objectives. Given the similarities in architecture for both indus-

trial and surgical robots, both will be discussed to not only cover the

context used for demonstrating the efficacy of the attack, but other

robotic systems as well.

In industrial contexts, there are two legislative standards that are in

effect. First, the IEC 62443-4-2:2019 – Security for Industrial Automa-

tion and Control Systems - Part 4-2: Technical Security Requirements

for IACS Components [135]. This international standard states that

data confidentiality is one of the foundational requirements for con-

trol systems and the current advice is to maintain data confidential-

ity. Second, the CAPSS2021 Security Characteristic 1.1 [136] states in
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Dev.406 that appropriate cryptographic algorithms such as TLS/IPsec

must be used to protect information in transit over untrusted links to

counter interception.

In surgical contexts, there are two key legislative standards from both

the USA and UK. First, the Health Insurance Portability and Ac-

countability Act (HIPAA) states that end-to-end encryption measures

such as TLS should be used to prevent unintentional disclosure of Pa-

tient Health Information (PHI), and ensure any transformation of

data results in a low probability of assigning meaning [54]. Further-

more, HIPAA privacy rules state that medical devices which trans-

mit, receive or record PHI should be HIPAA compliant. In this case,

one could argue that given surgical robots, such as da Vinci, make

use of PHI and therefore should also comply with HIPAA. Second,

according to the UK Medical Devices Regulation (MDR) 2017 [71],

surgical robotics are medical devices and classified as class III (high-

est level of control) [72]. The MDR does not explicitly describe what

should measures to take to protect PHI but only indicates that pro-

tection is required. The EU Guidance on Cybersecurity for Medical

Devices [137] does mention encryption [138] but nothing more sub-

stantial. Ultimately, this attack showcases that employing TLS is not

enough to mitigate or prevent information leakage relating to robot

operations. Furthermore, the evaluation also shows that workflows

can be reconstructed and in combination with other information, such

as admission and exit times in a surgical context, could lead to confi-

dentiality breaches (e.g. PHI). Simply put, this leaves robotic systems

to be non-compliant with legislative standards that mandate TLS.

Overall, it is clear that legislative standards require investigation to

protect against unintentional information leakages from side channels,
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and update existing mitigation and defence requirements.

Professional Standards

Professional standards refer to practices and behaviours which enti-

ties must adhere to. In the context of this attack, the likes of hos-

pitals and warehouses are examples of professional entities to which

these standards apply. Taking the surgical context as an example,

the NHS (UK) the code of practice, which governs information secu-

rity management [139], describes standards that must be adhered to

in order to maintain the protection of PHI, among other confidential

records. This information is detailed as the lifeblood of the health ser-

vice (2.13) and is covered under the Data Protection Act 1998 [140].

Further, other policies such as the Clinical Commissioning Policy for

Robot-Assisted Surgery (NHS England) [141] also define professional

standards for surgical robots. Unfortunately, in both cases data confi-

dentiality is ignored and only touch upon this matter within an access

control and authentication context.

3.5.2 Limitations

The attack shows significant accuracy in terms of workflow reconstruc-

tion, yet there are some limitations. Specifically, two key limitations

arise regarding both a deviation from robot path and procedure car-

ried out, and ageing effects.

Disconnect Between Tool Motion and Workflow

The first limitation corresponds between the path of the arm and/or

tool, and the workflow being carried out. When tools are deployed,

such as scalpels or pumps/grippers, they may have the same traffic
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pattern for many operations. For instance, during a scalpel incision

operation, the thickness may result in different cuts for the same po-

sition or direction. Furthermore, the starting position of the workflow

can have a significant impact on planning, as the tools used must ac-

count for environmental characteristics in which the workflow is tak-

ing place (i.e. physical height). Another example includes the rate of

workflows, such as the cutting rate in the case of incisions or opening

of packages, which are unlikely to be recovered from a traffic analysis

approach. Therefore, appropriate compensation techniques, such as

information from other side channels, may provide useful mitigation

to these effects but ultimately, these parameters are not derivable from

a traffic analysis approach alone.

Ageing Effects

In the evaluation of this attack, a single robot is used. One question

which arises in this case, is that if the classifier is to be trained on

samples from a new, fresh robot, would it be possible to determine

whether there may be a deterioration in accuracy over time as the

robot ages? In the case of this traffic analysis attack, this should be

mostly unaffected with the payload information carrying key inference

properties which stay consistent throughout a robot’s lifecycle. How-

ever, network component ageing would result in wear-and-tear that

can physically affect device function [142] and ultimately result in an

impact, to some degree, on factors such as link delays. To address the

concept of component ageing in a robotic system, the exploration of

other side channels, such as acoustics or power analysis, could be done

to observe potential impacts. The reason for this is due to the fact

that side channels based on physical processes are subject to ageing,
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such as with belt-driven robots developing slack over time which could

induce drift in physical characteristics such as noise. As well as this,

the impact of device calibration over time could results in variations of

robot movements. For example, improperly calibrated motors could

result in jerky movements.

3.6 Countermeasures

While the attack shows success for fingerprinting robot movements

while traffic is encrypted with TLS, as well as reconstructing of op-

erational workflows, it is important to investigate potential defences

an organisation can employ to mitigate or entirely protect against the

impact of the attack.

3.6.1 The Onion Router (Tor)

One first potential countermeasure is The Onion Router (Tor). Tor

is a low-latency, circuit-based overlay network, which enables anony-

mous communication by allowing different streams to overlap each

other. This enables traffic volumes to remain hidden, achieving per-

fect forward secrecy (assurance of non-compromisable session keys

even for long-term secrets). Specifically, after a Tor circuit has been

demolished (route from start to end point nodes), traffic is unread-

able. Given that Tor has been successful in other applications as a

defence, such as website fingerprinting [82], and the fact it is applica-

tion transparent, it is important to establish how Tor can perform as

a countermeasure to this attack against robotic systems.
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Movement Precision Recall

X 38 % 57 %
Y 53 % 88 %
Z 76 % 8 %

XY 35 % 45 %
XZ 86 % 49 %
YZ 44 % 27 %

XYZ 60 % 80 %

Table 3.8: Tor Classification Results
The Tor samples make use of samples with the same traffic characteristics

as the baseline, showing a classification accuracy of ˜49% – a decrease by

at least a factor of 2 in comparison

Tor Setup

In order to evaluate Tor as a defence, the first step was to establish

a Tor hidden service which receives the control commands sent by

the controller over HTTPS to the hidden service. Tor hidden services

provide two-way anonmyity so it is not possible to distinguish the

IP addresses of inter-communicating components. While HTTPS is

typically not used within a robot system, the focus is on the message

protocol being the main carrier, with the payload of the HTTP mes-

sage left to encapsulate the protocol with minimal overhead. Using

Wireshark, incoming traffic to the hidden service machine (the control

commands) was monitored and common flows corresponding to the

robot traffic were captured. The traffic in this experiment was routed

through multiple autonomous systems (AS) over around 20 circuits.

This allowed for a more realistic approximation of the results.

Findings

From the results in Table 3.8, in comparison with the baseline results

shown in Table 3.1, the precision across most movements decreases

slightly (averaging around a 20% decrease), with the exception of the
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Operation Recovery Rate Pos Changes

Push 45% 2–3
Pull 47% 2–3

Pick-and-Place 51% 7–9
Packing 48% 6–9

Table 3.9: Tor Workflow Reconstruction Results
The results show that workflow reconstruction accuracy is hindered when

Tor is employed, in comparison with those shown in Table 3.7

XY and XZ movements which show an increase in precision of 14%

and 18% respectively. In the case of recall, more decreases across

the movements are seen, with an increase of 34% only present for the

Y movement. Notably, there is a substantial drop in recall for the

Z and XZ movements with a decrease of 55% and 43% respectively.

Further, looking into performance impact of Tor, the latency does not

(overall) present as a big problem for many cases with packet times

fairly sporadic but under 1s. However, in critical cases this wait time

for control commands to be received may be less than desirable.

The next step was to investigate the success of workflow reconstruction

when Tor is employed as a countermeasure. The results are found in

Table 3.9. In comparison with the reconstruction results in Table 3.7,

the use of Tor as a countermeasure reduces the recovery rate by at

least a factor of 2, which is a significant drop. However, this accu-

racy in comparison with baseline invidual movements (non-patterns)

is relatively similar.

While Tor does show some strength as a countermeasure, it is un-

clear as to why this is the case by simply observing the result output

alone. To this, SHAP analysis [143] was employed to analyse the most

prominent features in both the TLS and Tor datasets. SHAP values

allow for the evaluation of the impact of features in the dataset, on
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the predictions made by the neural network model. The SHAP values

can be seen in Figure 3.7. From these values, it is clear that without

Tor employed, packet time remains the most important feature, with

the TCP packet features (i.e. application data and payload) consid-

ered highly important as well. However, under Tor, it is interesting

to observe that neither of these features are of much importance for

classification. Instead, features such as window size and bytes-in-flight

are better. In the case of TLS packet-size related features, Tor con-

nections make use of padding cells sent in both directions at varying

transmission intervals depending on consensus parameters. This leads

to the payload of TCP packets to be tranmitted in fixed-size cells of

514 bytes, or if the payload is smaller then the cell is zero-padded.

While there may be some similarities between movement patterns,

with regard to existing TCP features, a lack of variability leads to

lowered reliance by the neural network. Interestingly, Tor does not af-

fect the bytes in flight or the window size. The BytesInFlight feature

is defined by Wireshark as an indicator for the amount of unacknowl-

edged data that the robot controller has transmitted. The shorter

the distance for receiving ACKs (faster time) results in lower bytes

in-flight, and ultimately a lowered window size needed for optimal

performance. The window size is an advertisement from the receiving

robot of how many bytes of data it can receive at some point in time

to control data flow, which may be dependent on the movement(s) be-

ing carried out. In Tor, the data is in equal-sized cells which leave the

window size to be constant as multiple Tor circuits are multiplexed

through the same TCP connection [144–146]. In the evaluation of Tor,

different circuits were used for each movement over multiple runs to

minimise this. However, even with this additional step, window size
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(a) SHAP – TLS

(b) SHAP – Tor

Figure 3.7: SHAP Values for TLS/Tor Datasets

seems to remain an important feature.

Overall, while Tor does reduce the accuracy of classification in most

cases, some of these reductions are only slight. Further, there is also

a presence of increase in some movements as well. Therefore, it still

may be possible for an attacker to successfully fingerprint movements

over longer monitoring periods. In terms of workflow reconstruction,

however, the rate of reconstruction is greatly reduced and leaves little

success left for an attacker to feasibly carry out the attack.
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3.6.2 Other Countermeasures

While Tor may be useful as a protection measure against workflow

reconstruction, it is still not infeasible for an adversary to carry out

the attack entirely. Therefore, it is important to realise the potential

for other countermeasures which may perform better alone, or be used

in conjunction with Tor. As a part of future work, two other potential

countermeasures can be considered, including: padding robot traffic,

and mixing robot traffic with other background traffic.

Padding

While there exists a number of padding techniques, padding an en-

crypted message fundamentally aims to make traffic analysis harder by

obscuring the true size of messages (i.e. payload). The choice of this

length may be randomised or constant-rate. Constant-rate padding

techniques, such as those based on the perfect secrecy theory proposed

by Shannon [147] (i.e. inserting dummy traces to created padded traf-

fic) have been shown to not prove as effective against statistical tech-

niques. To this, Fu et al. [148] propose a variable rate traffic padding

countermeasure which can defend against attacks by leveraging sample

variance and entropy to exploit correlations between traffic rate and

packet inter-arrival times of padded traffic. Other approaches such

as BuFLO [149] which removes side channel information by sending

packets of fixed-length at fixed intervals also show promise for areas

such as HTTP traffic analysis. However, in the case of many safety-

critical robotics systems which are time-critical, this may be less than

ideal. In any case, it would be interesting to determine the impact of

a countermeasure that pads traffic using variable inter-arrival times,

which have shown to be effective regardless of sample statistics col-

86



lected by an adversary when sample distributions of the inter-arrival

times for the robot traffic are analysed, to produce a design guideline

for a VIT-based approach [148,150].

Mixing

The second potential countermeasure is mixing, which involves mixing

in background traffic with the robot traffic. Existing approaches show

that regularising traffic (e.g. constant-rate padding) may induce a

higher overhead, or induce delays in general traffic, which question the

suitability of this as a defence for robotic systems. Instead, a more

lightweight approach which does not require additional infrastructure

would be ideal. Thus, approaches to mixing in background traffic,

such as GLUE [83] which adds dummy traces to have DNS traffic

appear as a longer consecutive trace, could be modified and applied to

robot communication protocols. This would make it harder to identify

end points with much lower overhead. This is shown to be more

successful than existing defenses in the area of website fingerprinting,

as many existing attacks rely on single traces.

3.7 Related Work

In this work, the goal was to determine whether robot movements

could be fingerprinted from traffic characteristics, when the chan-

nel is protected by TLS. The problem of detection and prediction

of applications using encrypted traffic traces has been investigated

from a variety of different angles. Early approaches to identification

and prediction focused on identifying application traffic such as for

firewalls, websites and quality of service mechanisms and identifying
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actions (such as device user actions) [75, 151]. Many of these early

approaches focus on payload- and signature-based detection, which

do not work as well when traffic is encrypted [152]. Further, such ap-

proaches took either a graphical approach – through understanding of

social networks and motifs to understand patterns of communication

and relationships between features – or a simple statistical approach

through probability density functions of traffic features and port-based

classification [75,153]. From these limitations, the advent of machine

learning approaches have shown to be advantageous in relieving such

limitations by combining statistical and graphical approaches to build

patterns which can associate traffic with application protocols [154].

However, machine learning approaches mainly apply to labeled data

and require to be “taught” when results are incorrect, to which deep

neural networks do not require human intervention to learn from mis-

takes (machine learning approaches almost always require structured

data).

With the ubiquitous nature of network traffic, the prominence of deep

learning techniques increased significantly in areas such as: traffic clas-

sification for website fingerprinting [155]; device/user [156,157] finger-

printing; and distinguishing between VPN and non-VPN traffic [99],

among others [76, 158, 159]. While many of these techniques have

shown success, there has been little on identification of safety-critical

IoT systems such as robotics which is the focus of this work. Oh et

al. [155] describe the use of deep neural networks for website finger-

printing and show that in comparison to other state-of-the-art finger-

printing techniques, the deep learning approach demonstrated a signif-

icant increase in classification accuracy. Furthermore, the promise of

deep learning approaches is backed up by similar successes in identifi-
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cation over TLS-encrypted traffic [76,158,159]. Further, these similar

approaches describe that the additional features supplied to traffic

with the adoption of TLS can bring higher accuracy compared to

standard packet features used in earlier approaches, such as packet

size and timing features.

3.8 Summary

In summary, it is clear that it is possible for a passive adversary

to still identify robot movements, even when the traffic between a

robot and controller in a teleoperated architecture is encrypted un-

der TLS. Further, the attack evaluation showcases that even more

fine-grained movements (identifying movements of specific speeds and

distances) and entire workflows can also be inferred in an effort to

compromise the operational confidentiality of organisations. While

the attack is successful, there are countermeasures which hinder its

feasibility. Therefore, this provokes a natural response for an adver-

sary to explore other attack vectors in the domain of side channels to

achieve better success in passive reconnaisance.
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4 — Passive Reconnaissance

of Robotic Workflows

via Acoustic

Side Channel

In the previous chapter, the focus was on mounting an information

leakage attack to compromise the operational confidentiality of robotic

workflows via traffic analysis in the cyber domain. However, while in

general there is little focus on passive attacks, in the physical domain

this is less so. With a similar goal to the traffic analysis attack, one

can question whether there are other side channels that can be used to

mount the same information leakage attack with the aim of achieving

better success.

In the physical domain, side channels on similar computer systems

have been studied [160–162]. For example, 3D printers have been

shown to leak senstive data relating to intellectual property that could

be reconstructed from unintentional information leakage in the power

side channel [163]. While older robots could be compared to CNC

machines like 3D printers, modern robotic systems are much more

dynamic and unpredictable compared to more static behaviours seen

in other systems, leaving movement inference a much more difficult

task for an attacker to achieve.

From the main research questions presented in Chapter 1.1, this chap-

ter focuses on an extension to question 1, examining whether the same
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information leakage attack presented in Chapter 3 can be mounted to

compromise operational confidentiality via the acoustic side channel

in the physical domain. This attempts to investigate whether fin-

gerprinting accuracy and workflow reconstruction are more successful

than traffic analysis in the cyber domain.

4.1 Background

Robot movements which involve electromechanical components pro-

duce vibrations [24, 164]. Higher vibration amplitudes lead to the

production of sound waves. Further, if these resonate at a frequency

within the human hearing range, audible sounds will emanate. In the

design of modern robotic systems, aspects such as design and motion

are key considerations, but aspects belonging to noise and vibration

are also important given that noise is inherently generated as they

move. Trovato et al. [165] describe that sounds generated as a con-

sequence of the vibrations of robot components can convey meaning.

While this is described as a means of communication, such as tonal

sounds (e.g. high energy continuous beeps at a pure tone) being used

to indicate alarms, using this notion one may question whether such

meaning can indicate behaviours even when this sound is uninten-

tional. Specifically, given that stepper motors and other components

will emit sound during operation, could this sound be used to mount

an information leakage attack which targets the operational confiden-

tiality of organisations?

91



4.1.1 Threat Model

Many previous attacks focus on an active attacker, which can involve

the tampering of messages [15] or replaying attacks between the robot

or controller [17]. In this chapter the primary attacker is a passive in-

sider, such as a malicious technician or operator near. Being an insider

near the robot would allow them to record the acoustic emanations

during the robot’s normal operations using a smartphone, which they

may have on them and use covertly [166]. As well as this, it is also

possible than an insider attacker is able to covertly plant a micro-

phone which could transmit recorded audio to the attacker remotely

or be retrieved at a later time. In either case, if an attacker is able to

mount an information leakage attack to fingerprint robot movement

patterns from acoustic emanations, this could lead to the revelation of

sensitive workflows (i.e. in a warehouse) and ultimately compromise

the operational confidentiality of the organisation. For example, this

information could be given to competitors to gain an advantage or use

it maliciously.

A second possible threat comes from a telemonitoring perspective.

While telemonitoring is less common in industrial settings, in surgical

settings the use of medical recording devices, such as medical data

recorders or intraoperative video recorders, are used for post-surgical

review or teaching (alongside patient consent) to learn from subop-

timal scenarios and improve performance [167–169]. While privacy

laws and medicolegal requirements govern the use of such devices,

data from them is not typically required as evidence in court so long

as patient confidentiality is maintained [170]. However, acoustic em-

anations captured by such recordings could reveal the operations the

robot is carrying out, and ultimately piece together surgical proce-
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dures. Combined with other metadata (e.g. patient admission and

exit times), patient confidentiality could be breached. In any case,

for telemonitoring, VoIP technologies may be employed [25, 26] and

thus looking at the same side channel attack but leveraging VoIP call

audio is a novel threat that also requires investigation. Furthermore,

it is also entirely possible that someone on the factory floor can make

use of VoIP to carry out the attack from an insider’s perspective, ei-

ther intentionally or unintentionally. In the case of intentional attack,

someone can make a VoIP call to a remote attacker or computer sys-

tem running the VoIP receiver. In the unintentional cases, an insider

could be making a legitimate call but unintentionally also record the

robot operating and leak information through this call. Further, it

is also possible for such an insider to have malware on their mobile

device and this malware could record the robot movements and/or

transmit them.

Ultimately, reviewing the nature of acoustic emanations in robotic

systems, as well as the proposed threat model, the aim of this chapter

pertains to the investigation of whether an advesary can record the

acoustic emanations from a robot during its normal operation. and

make use of distinct characteristics of the recorded audio to finger-

print robot movements and workflows. Several hypothetical factors

will come into play which could influence the potential success of this

attack. First, the type of operations being carried out by the robot

can vary in terms of speed and distance of movement, and so the at-

tack should be robust enough to fingerprint between these parameters.

Second, the distance at which the microphone is situated away from

the robot will also have an impact on the success of the attack, for

example examining the inverse square law [171] where sound intensity
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decreases with distance away from source, and should be investigated.

Finally, given that in some cases VoIP technology will be employed,

such as for recording purposes or to livestream medical procedures

with surgical robots, the impact of VoIP audio on the attack should

be evaluated. Ultimately, the following research questions are pro-

posed:

(R1) Can an attacker fingerprint individual robot movements on each

axes, as well as permutations of them?

(R2) How is movement fingerprinting affected by:

(i) The speed and distance of movements?

(ii) The distance the recording device (i.e. smartphone) is away

from the robot?

(R3) Can entire robot workflows be reconstructed from acoustic em-

anations?

(R4) How do VoIP codecs influence the success of the attack?

4.2 Attack Methodology

Now that the goals of the study have been set out, the next step is to

set up the robot environment, parameters of the study and the feature

extraction process for movement and workflow fingerprinting.

4.2.1 Robot Environment

The context of this study surrounds teleoperated robots used in ware-

houses, whose typical architecture can be viewed (at a high level) as

a pairing between the robotic system itself and its controller (teach
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Figure 4.1: Robot Environment for Acoustic Side Channel

pendant). For this work, uFactory’s uARM Swift Pro is used which

runs on an Arduino Mega 2560 with MicroPython installed. The con-

troller is run on a Windows 10 laptop using the uARM Python (3.8.X)

SDK to enable controller instructions to be written in Python which

are then translated into instructions understood by the robot. An

overview of the robot environment used in this study is depicted in

Figure 4.1. For capturing the acoustic emanations which arise when

the robot operates, the robot is positioned on a rectangular table with

the smartphone placed in varying distances away from the robot. The

recordings were made while the robot carried out its various opera-

tions within a moderately sized computer lab that can suitably hold

around 15 people.

4.2.2 Experiment Parameters

With the robot setup for evaluating the acoustic side-channel attack,

the parameters of the study can now be outlined.

Speed and Distance

In addition to capturing the acoustic emanations which arise during

operation along the X, Y and Z axes and permutations of them (R1),

it is important to evaluate more fine-grained movements. To this end,
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the robot is programmed to do movements with varying distances (in

millimetres) as well as varying speeds of movement (mm/s) (R2(i)).

This is because in realistic cases, a surgical robot for example would

not move in each direction with constant distance and speed. There-

fore, it is vital to understand whether an adversary can also finger-

print this meta-information as well as just the movements themselves

to provide more granularity to movement inference from an attacker’s

perspective.

Recording Distance

As well as speed and distance of robot movements, the distance at

which the smartphone or recording device is placed away from the

robot will play a key role in attack success (R2(ii)). The effect of the

inverse-square law [171, 172] leads to sounds softening with distance

and, trivially, the further the microphone is away from the robot, the

lower the amplitude of the captured sound. It can be hypothesised

that as the distance of recording decreases, the accuracy of the at-

tack will also decrease, but it is important to evaluate to distinguish

whether this may be the case, and how much of an impact it has

with regard to the scale of the robot. The microphone is initially set

to record robot movements at 30cm away, but for completeness dis-

tances of 50cm (0.5m) and 100cm (1m) away from the robot will also

be evaluated with respect to the scale of the robot.

VoIP

The final parameter for this study is to evaluate the impact VoIP has

on the success of the attack (R4). For this study, the codec employed

by the majority of VoIP applications is Opus [173,174]. The first step
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is to observe how the codec performs, but also how packet loss will

also affect audio quality and the success of the attack.

4.2.3 Acoustic Characteristics

The first step to determining an appropriate attack strategy is to

understand the different characteristics of acoustic emanations and

what may be most useful from an attack perspective.

Root Mean Square Energy

Root Mean Square (RMS) energy [175] is a measure of the amplitude

based on all samples in a frame of audio and can be thought of as

an indicator of loudness of the audio signal [176]. This may be useful

in the context of this attack given that combinations of movements

(i.e. simultaneous movements along two or more axes) may produce

a louder sound given the use of multiple stepper motors, for example.

As well as this, as the robot components cross over the microphone,

the sound may be louder and thus this feature may help provide fur-

ther information to the discrimination between movements in different

positions.

Zero-Crossing Rate

Zero-Crossing Rate (ZCR) is a measure of the number of times a signal

crosses the horizontal time axis and can help identify pitch variations

in monophonic tones (sound emitted from one location) [176]. Given

the robot is stationary in this case, the ZCR may be a useful feature

candidate.
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Spectral Centroid

The spectral centroid provides information corresponding to frequency

bands that contain most of the energy, where lower centroid (energy)

values are linked with duller sounds and higher centroid values for

brighter sounds [177]. In a robotic system, smaller movement distances

and speeds will naturally require less energy and appear more dull

sounding to the human ear, whereas faster and longer movements have

better tonality, and may ultimately provide useful for distinguishing

between different movements of the same source.

Spectral Bandwidth

Spectral bandwidth is defined as the full width of band of light (wave-

length interval) at half the peak maximum [178,179]. Acoustic signals

oscillate about a point and the bandwidth for each time interval in

a signal is the sum of the maximum deviation on both sides of this

point. The point of the centroid of the signal may vary for different

robot movements and may be an important feature for fingerprinting.

Spectral Rolloff

Spectral rolloff is the fraction of frequency bins under a cutoff point

where the total energy of the spectrum is contained and can help

distinguish between noisy sounds and more harmonic sounds (below

the roll-off point) [180]. This feature may provide useful to this attack

as it can roll off frequencies that may fall outside of the useful range of

frequencies where the energy of the sound of movements is contained.
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Spectral Contrast

Spectral contrast is the measure of energy of frequencies in windows

of time [181] and can help identify strong spectral peaks to reflect

the distribution between harmonic and non-harmonic components of

the acoustic emanations. As a robot moves, the frequency contents

may have energy that changes with time and capturing the spectral

contrast can help measure this energy variation.

Chroma Feature

Chroma feature, sometimes referred to as a chromagram, profiles a

sound into 12 pitch class profiles [182]. In music analysis, the at-

tempt is to capture the harmonic and melodic characteristics of a song

where pitches can be categorised to one of the scales in the equally-

tempered set {C,C#, D,D#, E, F, F#, G,G#, A,A#, B} [183, 184].

While recorded robot movements are not akin to songs that are anal-

ysed in this fashion, the pitch of sound may correlate with the speed

and distance of movement and may provide useful as a mid-level fea-

ture for fingerprinting movements.

Mel-Cepstrum Frequency Coefficients

The Mel scale is a scale of pitches that is felt to be equal in dis-

tance from one another. For example, in audible acoustics listened

by a human, differences in frequency content can be observed if the

source of acoustic emanations are in the same distance and atmo-

sphere [185, 186]. The short-term power spectrum of acoustic em-

anations can be represented by the Mel frequency cepstral (MFC)

and a combination of coefficients (MFCCs) make up the MFC. The

MFC equally distributes frequency bands to approximate human au-
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ditory response. While observing the robot operate in person, it was

clear that there are some variations present among the sounds (e.g.

pitch change) while listing to the robot in the lab, which provoked the

thought of including this as a feature. If variations in robot move-

ments can be inferred from audible sound, then looking at MFCC

coefficients (the list of amplitudes of the spectrum in the mel scale)

will provide useful information to the attack.

4.2.4 Acoustic Dataset

After determining the appropriate acoustic features to extract from

the captured sounds, the next step was to create the dataset. Be-

fore the robot is programmed to move, the recording is started and

then the robot can execute the programmed movements. After this

is finished, the recording is then stopped. In this dataset, there are

2 subsets. Within both subsets, there are samples pertaining to both

individual and permutations of movements with varying speeds and

distances of movement, the microphone distance, and robotic ware-

housing workflows. These workflows are the same as those found in the

radio frequency side channel chapter (Chapter 5), and include work-

flows such as pick-and-place, packing, push and pull operations, which

were replicated from those found in existing industrial robot datasets

such as the Forward Dynamics Dataset Using KUKA LWR and Bax-

ter [129] and the Inverse Dynamics Dataset Using KUKA [130]. For

these workflows, movements were slightly perturbed to account for

a small degree of entropy that may be present in real-world opera-

tions (i.e. those that may arise due to drift in equipment calibration

or wear-and-tear). In contrast to the first subset, the second subset

contains the same samples but are passed through the Opus codec to
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evaluate the impact of VoIP on recorded audio in this attack. This was

achived using the Opus codec tool suite. Specifically, while all samples

are passed through the Opus codec, they are further split by packet

loss. Packet loss has been shown to negatively impact call quality

in VoIP communications [187, 188] as they cause impact in the form

of dropped calls or parts of speech, slow rate of speech (latency) or

noise/interference. Because of this, these further subsets are divided

by packet loss values of 1%, 5%, 10%, 25% and 50%. As a whole,

the first subset contains 27.2K samples for individual movements and

658 samples for warehousing workflows, with each subset using 60%

of the total samples for training, 20% for validation and another 20%

for testing. The second contains the same amount of samples for each

of the packet losses evaluated.

Pre-Processing

The features in the dataset, as listed above, are computed using the

librosa [189] Python library. For each feature, the mean value of each

feature across each signal sample is taken and computed from a Short-

Time Fourier Transform (STFT) with a Hann window and FFT length

of 8192. For the MFCCs, 14 coefficients are used. Typically, 8–13 are

used with the zeroth excluded given it only represents the average

log-energy of the input signal [190].

4.2.5 Neural Network

Before an evaluation can take place, the next step is to construct

an appropriate neural network architecture for fingerprinting move-

ments and ensuring a successful attack. To create the neural network,

a sequential model was used where neurons are grouped in a linear
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fashion. This was created using the Keras API [104]. The parame-

ters and structure for the layers in the neural network were evaluated

on the dataset using a cross-validated grid search [105, 106] to find

the most optimal number of neurons, layers, activation function and

dropouts if necessary. The input for the maximum number of neurons

to be tested was calculated using the formula proposed by Demuth et

al. [108], also used to construct the neural network in Chapter 3, with

an alpha branching factor of 2. Using the grid search with 3 cross vali-

dations, the most optimal neural network architecture for this feature

set consists of 6 layers. First, the input layer containing 21 neurons

for each of the input features. Next, there are 4 hidden layers. The

first is a Dense layer with 290 neurons and uses the ReLU activation

function [107]. The next hidden layer is a Dropout layer which is used

to randomly set input units to 0 at a rate of 0.05 at each step during

training to prevent overfitting. The next layer is another Dense layer

of 350 neurons with ReLU activation, followed by another Dropout

with a rate of 0.05 to prevent overfitting. The number of neurons,

while suggested by the formula by Demuth et al. [108], were selected

using a grid search with 3 cross validations. Finally, the last layer

is a Dense output layer of 7 neurons, one for each of the movement

classes, and uses the SoftMax activation function [109] to have the

output in the range of [0, 1] for use as predicted probabilities. Sparse

categorical cross-entropy is used as labels are integers and not one-

hot encoded, for which categorical cross-entropy would be used [110].

The optimiser used is Adam [111] with a learning rate of 0.001. This

learning rate was chosen as others, such as those with higher learning

rates, resulted in lowered accuracy scores. The choice for the activa-

tion and optimisation functions, while decided using a cross-validated
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grid search, are further detailed in Chapter 3.3.3. The model was

fitted with a batch size of 32 and was run for 1000 epochs.

4.3 Evaluation

After setting up the robot environment and capturing the acoustic

emanations during various stages of operations, the next step is to

evaluate the success of the attack. As per the research questions listed

in Section 4.1.1, the evaluation of this attack and related results will

be organised in this order.

4.3.1 Individual Movement Fingerprints

The first research question (R1) aims to investigate whether an at-

tacker can infer individual movements (on each axis) and permuta-

tions of these movements from the recorded audio. To compare this

against other parameters, this experiment is considered as a baseline

where the speed and distance of movement are the lowest possible

values (1mm and 12.5mm/s respectively), and no VoIP codec used.

As seen in Table 4.1, an average accuracy of around 75% can be ob-

served across all movements, with the YZ movement having the high-

est precision among the movements. In comparison with the traffic

analysis side channel, there is an increase in accuracy of around 10%.

Interestingly, Y-involved movements are better recovered than other

movements overall. This may be due to the Y-axis moving across the

microphone range. Looking at the Z-involved movements, these are

among the lowest. This may be due to the Z axis involving a verti-

cal movement only and not moving nearer the microphone for better

recording (Figure 4.1). Interestingly, looking at the confusion matrix
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Movement Precision Recall

X 76% 81%
Y 77% 78%
Z 61% 71%

XY 78% 80%
XZ 68% 65%
YZ 85% 78%

XYZ 72% 67%

Accuracy 75%

Table 4.1: Baseline Classification Results
As a whole, the baseline accuracy is 75% which is fairly good

fingerprinting accuracy for an attacker and outperforms the traffic

analysis side channel

seen in Appendix C.1, it is clear that the Z-involved movements are

incorrectly predicted as one another.

4.3.2 Impact of Movement Distance

For the next research question (R2), the evaluation will look into how

the distance and speed (R2(i)) of robot movements impact the success

of fingerprinting movements from the acoustic side channel. First, as

a robot moves, there is likely to be more sound that can be recov-

ered as the distance of movement increases. As seen in Table 4.2,

an increase by a single distance unit increases the model accuracy by

1%, improving Y-involved movement precision by around 10%. Fur-

thermore, the Z movement also gains a slight increase in precision.

Unfortunately, this results in lowered accuracy for the other move-

ments. This increase in distance results in the sound of movement

being held for longer and may either provide useful for distinguishing

variance between movements or even reduce this variance. To explore

this, larger distances of movements are explored. The confusion ma-

trices for distance experiments can be seen in Appendix C.2. At 5mm,
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there is a drop in accuracy of around 4%, with X-involved movements

having much higher accuracy. At 10mm, the accuracy of the model

overall decreases significantly to 57%. Y-involved movements in this

case are much poorly fingerprinted, yet X-involved movements have a

further increase in precision. For the Z movement at this stage, there

is unfortunately a further drop in precision but the recall remains rel-

atively similar. At 25mm, the accuracy starts to improve by 7% with

the X movement having similar precision and recall to 10mm, and

most other movements have an increase in both precision and recall.

Finally, at 50mm, the accuracy nears that of the baseline and 2mm,

however X-involved movement accuracy is significantly improved. No-

tably, one may question why distance stops at 50mm. This is simply

because the range of movement, specifically for the X and Z axes, are

limited and will result in only three or less movement variations above

this. While a large number of repetitions may provide better success

for these distances, this is an influence of bias as this will result in

an imbalanced dataset [191]. In other robots, such as larger scale in-

dustrial robots, larger distances can be explored and this is a point of

future work.

4.3.3 Impact of Movement Speed

After looking at movement distance, the next parameter for robot

movements is the speed at which the robot is moving along each of

the axes (R2(i)). As seen in Table 4.3, the speed parameter is less

accurately fingerprinted by the attack compared to the distance pa-

rameter by at least 10% on average. Interestingly, a similar pattern is

observed regarding X-involved movements, with accuracy increasing

with speed, except from the XYZ movement. While there are slight
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D = Distance (mm), P = Precision, R = Recall

D=1 D=2 D=5 D=10 D=25 D=50
P R P R P R P R P R P R

X 76% 81% 69% 71% 77% 87% 85% 58% 83% 70% 86% 84%
Y 77% 78% 88% 77% 77% 79% 80% 54% 66% 43% 90% 88%
Z 61% 71% 65% 83% 64% 79% 51% 81% 64% 71% 83% 66%
XY 78% 80% 68% 60% 67% 63% 63% 53% 57% 65% 79% 81%
XZ 68% 65% 62% 57% 83% 47% 67% 49% 60% 61% 64% 79%
YZ 85% 78% 94% 94% 66% 83% 37% 54% 55% 57% 56% 59%
XYZ 72% 67% 69% 81% 76% 68% 45% 52% 63% 84% 64% 58%

Accuracy 75% 76% 72% 57% 64% 74%

Table 4.2: Classification Results With Distance Parameter
At a slight increase in distance, the accuracy remains similar to the

baseline, but further increases in distances lead to a reduction in

fingerprinting accuracy. Notably, unlike the baseline, X-involved

movement are better fingerprinted at distance

S = Speed (mm/s), P = Precision, R = Recall

S=12.5 S=25 S=50 S=75 S=100
P R P R P R P R P R

X 76% 81% 57% 81% 54% 74% 78% 53% 72% 81%
Y 77% 78% 79% 76% 61% 42% 59% 45% 72% 69%
Z 61% 71% 50% 56% 52% 58% 62% 84% 77% 75%
XY 78% 80% 73% 72% 46% 40% 67% 57% 57% 70%
XZ 68% 65% 79% 57% 75% 79% 57% 60% 60% 56%
YZ 85% 78% 67% 59% 66% 45% 53% 65% 66% 69%
XYZ 72% 67% 65% 63% 51% 66% 54% 57% 62% 47%

Accuracy 75% 66% 58% 60% 66%

Table 4.3: Classification Results With Speed Parameter
The speed parameter performs worse than the distance parameter in the

acoustic side channel

drops in accuracy, the precision and recall across most movements re-

mains similar as speed increases. This is interesting, as the initial hy-

pothesis was that a higher speed would result in higher pitched acous-

tic emanations, however the results seem to contradict this. In any

case, perhaps the perceptual characteristics for human audio, while a

clear pitch change is present listening to the robot in the lab, used by

the feature algorithms regarding pitch (i.e. chroma feature) may not

pick up on this for robot sounds. The confusion matrices for speed

experiments can be seen in Appendix C.3.
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4.3.4 Microphone Distance

While observing more fine-grained information leakage is useful to an

attacker, one problem that may impact the success of the attack is

the distance the recording device is away from the robot (R2(ii)) –

in this case, the smartphone. Naturally, due to the inverse square

law [172,192], the intensity of sound decreases over distances and one

would hypothesise that, because of this, the accuracy may be signif-

icantly impacted as the distance of recording increases. Specifically,

the power contained within the audio sample is inversely proportional

to the square of the distance from the robot emitting the sound. Thus,

as the distance the microphone is away from an operational robot, the

intensity (i.e. loudness) of the sound is four times less. In this ex-

periment, two other microphone distances (50cm and 100cm) are also

tested in addition to the baseline recorded at 30cm. While these are

not large recording distances, given the small scale of the robot used

for the evaluation of the attack, these are relatively suitable candidates

to be tested. As seen in Table 4.4, as the distance the microphone is

away the robot is increased, the accuracy of the attack compared to

the baseline decreases by around 10% at each recording distance step.

Notably, this is much more significant for Z-based movements which

were previously described to have poorer fingerprinting accuracy due

to the limited range of motion that does not cross the recording device

(remains stationary and moves vertically). In this case, a point a fu-

ture work may be to evaluate the impact on position of the smartphone

around the robot, aside from facing in front. Collectively, recordings

from multiple angles may provide better fingerprinting accuracy in all

cases.
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MD = Microphone Distance (cm), P = Precision, R = Recall

MD=30 MD=50 MD=100
P R P R P R

X 76% 81% 57% 79% 75% 76%
Y 77% 78% 67% 74% 67% 68%
Z 61% 71% 48% 66% 45% 63%
XY 78% 80% 88% 91% 64% 68%
XZ 68% 65% 61% 52% 51% 40%
YZ 85% 78% 83% 54% 47% 35%
XYZ 72% 67% 52% 39% 33% 33%

Accuracy 75% 65% 54%

Table 4.4: Classification Results With Microphone Distance
As the microphone distance increases away from the robot being

recorded, on average the accuracy decreases around 10% at each step

compared to the baseline - more significantly for Z-based movements

4.3.5 Workflow Reconstruction

The next step in the evaluation looks at whether entire warehous-

ing workflows can be reconstructed through the acoustic side channel

(R3). While a pattern matching approach can be successful using in-

dividual movement fingerprints, the ability to reconstruct entire work-

flows may be useful from an auditing perspective, for example, where

offsets in normal movement signals can be flagged and investigated

further. As seen in Table 4.5, the explored warehousing workflows

can be recovered on average with around 62% accuracy. Notably,

the pick-and-place and packing workflows are recovered with much

higher success than the push and pull workflows. Simply, the former

have much more variation in the pattern of movements and thus the

variance helps with fingerprinting. In the case of push and pull move-

ments, both are highly similar and it can be hypothesised that only

the direction of movement away from the microphone (i.e. pull is a

reverse of push) provides at least some degree of accuracy between

the two. Looking into the confusion matrices found in Appendix C.6,

this appears to confirm this hypothesis.
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Workflow Precision Recall

Push 37% 16%
Pull 31% 59%

Pick-and-Place 100% 96%
Packing 97% 100%

Accuracy 64%

Table 4.5: Workflow Reconstruction Results
Common warehousing workflows can be reconstructed in their entirety

and are better recovered through the acoustic side channel if they are

more complex and varied. Push and pull operations are less accurate due

to the fact they are very similar movements

4.3.6 Impact of VoIP

In certain robotics environments, such as in surgical settings, pro-

cedures may be streamed and/or recorded for viewing, education or

research [25–27]. Therefore, it is important to question how VoIP im-

pacts the audio samples for movements and workflows and, ultimately,

the success of the attack (R4). In many modern VoIP applications, the

Opus codec is the preferred choice [173,174] given its standardisation

and rank of higher quality compared to other audio formats for a vari-

ety of bitrates. To explore this, the open-source nature of Opus allows

for easy implementation to encode and decode the audio samples and,

during decoding, investigate various packet losses. In VoIP applica-

tions, Packet Loss Concealment (PLC) is used as a decoder feature

for receiving data from an unreliable source, which masks the effects

of packet loss in VoIP communications. In realistic settings, packets

may arrive late, be dropped or be corrupted, which may result in not

only a lowered audio quality but in the worst case, dropped parts of

the audio or the entire audio sample entirely. Given that in VoIP ap-

plications, a 1% packet loss is considered an acceptable rate for VoIP

to minimise impact on call quality [193, 194], however in the event of
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network failures or availability attacks this may be higher. For com-

pleteness, 5 packet losses of 1%, 5%, 10%, 25% and 50% are evaluated.

Furthermore, as it was shown that constant bitrate quality does not

perform as well as variable bitrate quality [195], the audio samples are

encoded and decoded with variable bitrate. This experiment used the

same model as the previous experiments, but fitted with a batch size

of 256 and 100 epochs of training. As seen in Table 4.6, the results

for the baseline speed and distance of movement (12.5mm/s and 1mm

respectively) under various packet losses via the Opus codec can be

seen. Interestingly, at low packet loss, the classification accuracy is

around 90% and increases by around 15% compared to the baseline

without VoIP employed. Further, X movements are more accurately

fingerprinted across all packet losses compared to the baseline with-

out VoIP. As the packet loss reaches more undesirable amounts of

25% and 50%, the accuracy slightly decreases but the accuracy still

remains much higher than the baseline without VoIP. For reference,

the confusion matrices for the VoIP experiments can be found in Ap-

pendix C.5. The reason for these results may be due to the PLC

algorithm switching between CELT or SILK mode and variable bit

rate. Specifically, frames that are deemed important are re-encoded

at a lower bitrate and allows for partial recovery for important lost

packets. This may be targeting the movement audio within the sam-

ple thus leading to higher variance among classes. Another reason for

the higher accuracy may also be due to the dynamic jitter buffer. As

frames arrive after the length of the jitter buffer has been exceeded,

they are discarded [101]. The Opus codec adapts to lossy conditions

by not only switching between modes but also by embedding packet

information into subsequent packets for better reconstruction rates in
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L = Loss (%), P = Precision, R = Recall

L=1 L=5 L=10 L=25 L=50
P R P R P R P R P R

X 99% 99% 99% 100% 100% 100% 100% 100% 99% 100%
Y 90% 94% 87% 96% 90% 92% 82% 97% 86% 97%
Z 86% 72% 88% 68% 91% 73% 86% 72% 90% 74%
XY 88% 91% 91% 88% 88% 91% 94% 81% 90% 81%
XZ 89% 93% 82% 83% 82% 82% 80% 85% 80% 85%
YZ 86% 89% 87% 88% 85% 89% 91% 80% 91% 85%
XYZ 93% 98% 94% 97% 92% 96% 89% 97% 90% 97%

Accuracy 90% 90% 90% 88% 89%

Table 4.6: Classification Results (Baseline) With Opus Codec and
Packet Loss

Interestingly, the precision and recall remains relatively similar across

packet losses, with a slightly drop in accuracy for undesirable large packet

losses. Notably, there is an increase in accuracy of around 15% compared

to the baseline without the Opus codec employed

CELT mode compared to SILK. Even if some sample packets are lost,

the data sampling rate is low enough that there are still enough sam-

ples for fingerprint recovery. Looking at Figure 4.2, the spectrograms

clearly show that when the codec and loss are introduced, the sound

corresponding to the robot movement is more prominent and earlier

in the sound (prioritised) and there is clearly less noise impact on the

audio sample when the codec is employed. Again, this may be due to

the dynamic jitter buffer and the rate at which frames arrive within

the time series [101]. Further, as the loss increases, there is some more

noise present at the beginning of the sample, appearing at 25% loss

from 0 − 0.05s.

4.4 Discussion

The acoustic side channel attack showcases potential for another pas-

sive side channel attack which can compromise the operational confi-

dentiality of organisations, but in the physical domain.
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Figure 4.2: Spectrograms Demonstrating Impact of Packet Loss and
Codec

4.4.1 Influence of Noise

During the recording of acoustic samples for robot movements, there

is likely some degree of background noise that should be accounted

for. Given the recordings were made while the robot carried out its

various operations, within a moderately sized computer lab that can

suitably hold around 15 people, background noise effects may include

the likes of light chatter, keyboard tapping and rolling chairs, among

others. While relatively good accuracy is observed even with the back-

ground noise, it is important to also look into techniques to eliminate

such noise to determine whether this results in better fingerprinting

accuracy.

In the human auditory system, sound waves contain the relative signal

of the oscillations due to density and pressure of air in the ear. In

digital audio, sound waves are encoded in digital form as numerical

samples in a continuous sequence (time series). The recordings taken

in this attack are recorded at a sampling rate of 44.1KHz with 16-bit

depth and thus there are 65, 536 possible values the signal can take in

the sequence.
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Figure 4.3: FFT of Acoustic Signal
Peaks can be observed at 60Hz corresponding to electric hum, with other

peaks at 150Hz and 200Hz (among others) which may correlate with

robot movement

As shown in Figure 4.3, the amplitude of the frequency content of

the acoustic signal can be observed using the Fast Fourier Transform

(FFT). In this attack, the techniques are originally applied to human

acoustics, but given that the robot movements produce sound that is

audible to the human ear as well, they may also be applied. Looking at

the frequency content, notable amplitude was not found past 1KHz,

so the scope of frequency content is narrowed further to 250Hz as

signal oscillations appear more random past this point. There is a

notable spike around 60Hz, which is the frequency standard common

to alternating current and is an effect known as electric hum due

to electrical noise getting into an acoustic recording medium. The

next largest peaks can be observed at around 150Hz and 200Hz which

may correspond with the robot movements. Further investigation into
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Figure 4.4: FFT of Acoustic Signal (Filtered)
The amplitude at points correlating with electric hum or those outwidth

the human hearing range are set to 0 (filtered out)

duty cycles and PWM frequencies used may be useful to investigate

the likely frequency spectrum and location of frequency peaks. As

a first step to noise reduction/filtering, one technique is amplitude

filtering, where the amplitudes of FFT values to be filtered can be

set to 0Hz, to which the original signal can be recreated using an

inverse FFT. Doing this filters out frequencies where there is high

signal concentration related to noise. In this experiment, the electric

hum, as well as frequencies outwidth the human hearing range (>

20Hz and > 20KHz) are filtered by dropping the amplitude of these

ranges. The smartphone used in this study could not record past

the upper bound. A depiction of the amplitude drop can be seen in

Figure 4.4. Looking at Table 4.7, the accuracy of baseline movement

fingerprints can be observed with amplitude filtering in place. While

the accuracy overall decreases by 1% compared to the baseline without
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Movement Precision Recall

X 72% 81%
Y 75% 73%
Z 68% 72%

XY 86% 71%
XZ 69% 68%
YZ 76% 83%

XYZ 72% 70%

Accuracy 74%

Table 4.7: Amplitude Filtering Classification Results
While the accuracy is slightly reduced compared to the baseline with no

filtering, the precision for some movements increases further, with better

recall seen in most cases

amplitude filtering, the precision for Y and XY movements increase.

This may be due to unfortunate noise events present in these samples

that the filter has rectified. However, there is still a reduction in overall

accuracy, which may mean that electric hum and other peaks may not

be the best indicators of noise to remove when recording a robotics

system. In this case, as a point of future work other noise reduction

techniques that have shown to be successful in other areas, such as

stationary or non-stationary spectral gating [196, 197] which reduce

noise in time-domain signals by estimating noise thresholds for the

frequency bands in a signal to gate (mask) noise below the threshold,

are worth exploring in the hope that attack accuracy improves.

4.4.2 Other VoIP Codecs

Opus is the primary choice for many VoIP applications due to its roy-

alty free and open source nature, alongside the benefits of higher qual-

ity and low-bandwidth streaming, in comparison with other codecs

such as Speex [198] or SILK [199] (Opus’ predecessor). While it may

be interesting to evaluate other codecs, Opus is the main choice for
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the majority of modern applications, such as Zoom, Teams and Dis-

cord [200,201] and has taken over previously dominating codecs.

4.4.3 Defences

While the attack is successful, and even more so when the attack tar-

gets VoIP communiations, a natural question pertains to countermea-

sures and defences against the acoustic side channel attack. In this

work, acoustic emanations result in unintentional information leakages

about robot behaviours and can ultimately lead to the compromise of

operational confidentiality.

One defence that could be considered is to make use of vibration- or

sound-reduction mechanisms to hinder the effect of the attack. As seen

in Section 4.3.4, as the microphone distance increases the accuracy of

fingerprinting also decreases. While this is due to the inverse-square

law [171,172] that is naturally at play with regard to sound intensity

(i.e. loudness), a reduction in this from other means may result in

the same outcome of reduced success of fingerprinting. Techniques

in this space include the likes of using vibration isolation pads [202]

or damping to reduce vibration [203, 204] for the robot as a whole.

In the case of noise reduction for robot components such as stepper

motors, potential defences include using a clean damper [205] or higher

resolution stepper motors.

Another potential defence is to make use of a masking noise to interfere

with attack inference, by distorting the signal related to information

leakage in the acoustic side channel [206–208]. Adding a masking sig-

nal has shown success, but two challenges need to be addressed. First,

the mask must be similar to the signal requiring masking to ensure

difficult separation. Second, the masking noise should not cause any
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degrading effect on usability of the robotic system. For example, if

the masking noise is to cover up other sound such as those used for

emergencies or other operator feedback, then this will be much less

than ideal and potentially lead to catastrophic liabilities.

4.4.4 Limitations

One limitation of this work is the robot used. In terms of direct

replicability for a real-world industrial robot arm, this robot is much

smaller than one typically seen on the factory floor. While the attack

may not provide the same level of movement inference in this case as

with the robot used in this study, a larger robot may employ more

motors that require more power to operate and ultimately may vi-

brate more emanating more acoustic sound. Given that the attack is

successful here, perhaps larger vibrations (and ultimately louder and

clearer sounds) would lead to the attack simply requiring extra ex-

ploratory analysis in terms of tuning the parameters and FFT length

in feature extraction. As well as this, it would be interesting to see

how this attack compares for different robotic systems. The relates

to another limitation regarding noise itself. Some robotic systems

which do not require sound for alerts, etc. may make use of certain

materials to reduce the vibrations and noises emitted. This may be

particularly prominent in more safety-critical contexts such as nuclear

power plants. In either case, this would require an analysis of mul-

tiple different robotic systems which may or may not employ noise

reduction methods and is a point of future work.

A second limitation one can consider is a disconnect between the tool

equipped at the end-effector and the motion being carried out. The

robot arm used in this study is equipped with an integrated pump
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with a maximum pressure of 33kPa and maximum lifting weight of

1kg. The goal with the use of the tool was to determine whether an

attacker could identify the contents (by weight inference) of packages

being lifted. Unfortunately, there was no difference in sound from the

pump being on and lifting with no object, with the lifting of different

objects. However, given that the pressure of the pump required for

lifting may correlate with power consumption, this is a further side

channel that could be explored and is another open challenge in the

space of future work.

4.5 Related Work

While acoustic side channel attacks have not been explored for robotic

systems, enhancing the novelty of this work, there has been previous

research in the area of acoustic side channels. In a similar respect

to robotics, the exploration of information leakage in the acoustic

side channel has been explored for 3D printers [206] – some of which

making use of smartphones to carry out the attack [160, 209] – and

additive manufacturing systems [161]. However, these attacks focus

on IP theft. The acoustic side channel attack presented in this work

focus solely on the movement of the robot arm and the compromise of

operational confidentiality, which when looking at the bigger picture is

much more valuable to an attacker. Furthermore, the reconstruction

of G-code is an unnecessary extra step as movements which correspond

to these can be inferred from individual movement fingerprinting un-

der the assumption the robot is operated by an Arduino. Furthermore,

while the robot in this work is operated by an Arduino, the focus is

on reconstructing movements from the acoustic emanations, irrespec-
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tive of the microcontroller used and thus applies to robotic systems

in general and not those restricted to being operated by an Arduino.

4.6 Summary

In summary, it is clear that even acoustic emanations provide a high

level of accuracy for fingerprinting movements and showcases a pos-

sible passive side channel attack in the physical domain. Similarly,

the acoustic side channel can result in the same compromise of op-

erational confidentiality but with much higher accuracy than traffic

analysis (Chapter 3). However, the accuracy could be considered in-

feasible to some degree with consideration given to risk versus reward.

This provokes the need to look at other passive side channels in the

physical domain and see if the performance of the attack is much

better.

119



5 — Passive Reconnaissance

of Robotic Workflows

via Radio Frequency

Side Channel

In the previous chapter, the first passive side channel in the physical

domain was explored, exploiting unintentional emanations of acous-

tic sound while a robot moves and attempting to fingerprint robot

movements and workflows. While this attack was slightly better than

traffic analysis, with further increases in accuracy found in VoIP set-

tings (cyber domain), the accuracy may still not be considered feasible

from the perspective of risk vs. reward for an attacker. Because of

this, it is interesting to observe how other side channels in the physical

domain may compare. From the main research questions presented in

Chapter 1.1, this chapter focuses research question 1 and whether the

same information leakage attack presented in Chapters 3 and 4 can

be mounted to compromise operational confidentiality via the radio

frequency (RF) side channel in the physical domain.

5.1 Background

Radio Frequency (RF) is used in a wide array of applications, ranging

from TV and radio, to wireless and satellite communications. Specif-

ically, it is a measurement which represents the oscillation rate of
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electromagnetic waves, whose frequencies are within range of around

3kHz–300GHz. While the term radio frequency refers to the range of

3kHz–300GHz, this is actually the radio spectrum in which several fre-

quency bands are defined in which different transmission systems op-

erate. For example, AM radio operates within 600kHz–1.6MHz. Elec-

tronic circuits emit some degree of electromagnetic emissions while

they operate. While these emissions can theoretically span the en-

tire spectrum, the focus of this study is on emissions that fall within

the radio frequency spectrum. While there may be many significant

sources of unintentional RF emissions, most modern robotic systems

will make use of microprocessors and stepper motors. The former has

been shown to emit RF due to switching activities of transistors alter-

nating varying current flows [28]. Similarly, in the case of the stepper

motors, digital pulses and phase shifts in voltage may also contribute

to RF emissions.

In this chapter, a robotic arm is used (the same as Chapters 3 and 4).

This robot consists of three stepper motors for each of the three axes

(Figure 5.1). The base motor controls the Y axis while the left and

right control the X and Z axes. In some cases, the microprocessor

may be located in another physical component between the robot and

controller, however in others it may be situated in the robot itself. In

this robot, the microprocessor is located in the base structure along-

side the stepper motor. For the proposed attack, this robot is a suit-

able replication candidate as it compares to other single-arm robots

used in typical industrial settings such as warehouses, which have at

least 3 degrees-of-freedom, and also consists of the same principal

components for movement fingerprinting (microprocessor and stepper

motors). With regard to potential emanations of unintentional RF,
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Figure 5.1: Robot Components

the primary component of interest is the microprocessor in the base

of the arm robot. However, given that stepper motors may also con-

tribute to sources of RF, any unintentional emissions from them may

also be useful to an attacker.

5.1.1 Threat Model

The goal of this attack is to conduct a stealthy approach to fingerprint

the movements a teleoperated industrial robot via the radio-frequency

side channel. If successful, robot movement fingerprints can be used to

reconstruct operational workflows. The context in which this attack

is evaluated is a logistics warehouse, where products are packaged and

stored or moved around the warehouses (i.e. along conveyor belts) to

then progress to the next stage in a supply chain.
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The primary adversary considered in the scope of this attack is an

insider, such as technical staff who operate or maintain the robot

on the warehouse floor. To capture unintentional RF emissions, an

RF receiver is used. These have varying ranges for frequency cap-

ture but also can vary in physical size as well. A passive insider here

should be stealthy to avoid possible detection and thus the question

pertaining to this is, does there exist a small enough receiver to be

used to capture the RF emanations from the robot to minimise the

possibility of detection? Aside from the ability to conduct the attack,

another important consideration relates to the opportunities that arise

from the successful collection of movement fingerprints. By collect-

ing movement fingrprints, it would be possible to correlate a series

of movements with known patterns that correspond to warehousing

workflows, such as picking and placing products between two conveyor

belts. Furthermore, it may also be possible to reconstruct workflows

directly by capturing the unintentional RF emanations at the time of

these workflows and later performing direct workflow fingerprinting

(as opposed to workflow identification from a collection of movement

patterns). In either case, the information leakage of these operational

workflows can expose a degree of operational-level detail that may not

otherwise be available to an attacker. For example, operational confi-

dentiality in terms of claimed efficiency of warehousing procedures or

what operations are carried out in the warehouse could be collected

and be used as bribery, leaked to competitors, or be used to discredit

an operator or organisation at the expense of compromising opera-

tional confidentiality. To this threat model, the following research

questions arise:

(R1) Can an adversary identify teleoperated robot movements and
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permutations of these movements via unintentional RF emis-

sions?

(R2) Can these robot movements be fingerprinted with more gran-

ularity? Specifically, does the speed or distance of movement

impact the accuracy of fingerprinting?

(R3) Does the distance at which the antenna (RF receiver) is placed

away from the robot impact classification accuracy?

(R4) Can higher-level warehousing workflows be reconstructed from

unintentional RF emissions?

5.2 Attack Methodology

An overview of the methodology for this attack can be seen in Fig-

ure 5.2. First, a Butterworth bandpass filter is applied to eliminate

undesired frequency content. Next, the Short-Time Fourier Transform

(STFT) of the signal is computed to represent the frequency content

over time, which is then used to compute the Mean Frequency Pro-

file (MFP) to observe the width to frequency peaks and the cadence

of robot movements. Principal Component Analysis (PCA) is then

used as a technique for dimensionality reduction resulting in a smaller

feature set for each signal, which is then normalised before finger-

printing. Further detail to each of the steps in the methodology are

subsequently described below.
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Figure 5.2: Attack Methodology

5.2.1 Experimental Setup

Robot Environment

The first stage of the experimental setup is to establish a realistic and

replicable robot environment. In this environment, a robot (consist-

ing of sensors, actuators, etc.) is paired with a controller (i.e teach

pendant) that is used to send commands or execute pre-programmed

actions which the robot can interpret and execute on the factory floor.

In this work, this is replicated on a smaller scale. For the robot, uFac-

tory’s uARM Swift Pro was used, operated by an Arduino Mega 2560

running MicroPython. The controller is run on a Windows 10 laptop

running the uARM Python (3.8.X) SDK. To capture RF emissions, a

Mini-Whip Medium-Shortwave Active Antenna was used, which was

placed near the base of the robot arm. The antenna amplifies the

unintentional RF signal (emitted during robot operations) and trans-

mits this to an RSPdx RTL-SDR receiver to capture raw IQ data of

the RF signals via a shielded coaxial cable. This antenna is suitable

for the scale of the robot in this study, with an operating frequency of

10kHz–30MHz and a small physical size of 113 ∗ 32 ∗ 7mm. The small

physical size aims to demonstrate that this attack can be conducted

stealthily, byhiding near the robot, as well as economically given its

cost. The RF emissions were captured as IQ files using SDRuno at a

sampling rate of 2MHz. An overview of the robot and antenna setup
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can be seen in Figure 5.3, including the robot, RSPdx SDR, antenna

and pointer towards the location of the controller.

Figure 5.3: Robot Environment
The attack environment consists of the robot, MiniWhip antenna, RSPdx

SDR and path to controller

Movement Dataset

The next stage of the experimental setup was to create the movement

dataset. In this dataset, sets of samples exist that correlate with the

objectives of the attack described above (R1−−4) and is split into two

subsets. The first subset contains samples pertaining to all permuta-

tions of X, Y, and Z with varying speeds of movement (12.5–100mm/s)

and distances (1–50mm) (R1−R2). The robot is programmed to per-

form these movements at 2s intervals and the RF signal is captured

spanning multiple iterations over the range of movement on the axes.

The signal is then sliced at this interval correlating with the duration

of the movement, which is then pre-processed as described below.
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The second contains samples of warehousing workflows such as pick-

and-place, push and pull operations which were replicated from those

found in existing industrial robot datasets such as the Forward Dy-

namics Dataset Using KUKA LWR and Baxter [129] for pick and place

and the Inverse Dynamics Dataset Using KUKA [130] for push/pull.

Each workflow sample includes the whole duration of the workflow,

as opposed to a sequence of samples. A depiction of these workflows

can be seen in Figure 5.4. The core information which details these

workflows are the dynamic movements being carried out, which are

potentially influenced by additional input (i.e. from sensors). Fur-

ther, also within this second subset, existing data was perturbated

(e.g. adding minor jerks to workflows) to form additional samples to

account for a small degree of entropy that may be present in real-

world operations (e.g. those that may arise due to drift in equipment

calibration or wear-and-tear) (R3 − R4). As a whole, the first subset

contains around 7.8K samples for individual movements and the sec-

ond containing around 400 samples for warehousing workflows, with

each using 20% of total samples for testing.

5.2.2 Feature Extraction and Movement

Fingerprinting

After establishing the movement dataset, the next step in the attack

methodology was to extract features from each of the signal samples

which would later be used for fingerprinting. The goal here is to ensure

that each signal sample for a movement can be easily distinguished

from other movements.

First, the goal was to observe whether peaks are present in the cap-

tured RF emissions corresponding to robot movements. To do this,
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Figure 5.4: Depiction of Common Warehousing Workflows
The dataset contains common warehousing workflows such as pushing,

pulling, packing and moving objects

the Short-Time Fourier Transform (STFT) of a set of signal samples

is taken and the log-spectra (spectrogram) was computed using a seg-

ment length of 8192 and a Hann window as a default, first observation.

The STFT allows for the observation of information which concerns

variations in frequency content of the signal over time. For this, the

robot was programmed to perform an X movement at 2s intervals

over a period of 10 seconds. As illustrated in Figure 5.5, peaks can

be observed at 2s intervals, which correspond with the robot moving

as programmed. However, it is clear that variations present within

and between movements are not easily distinguishable through a vi-

sual approach such as those used in audio classification via spectro-

grams [210,211]. From this, feature extraction is carried out for each

sample which will be used as input for movement fingerprinting. The

techniques applied for feature extraction are a variation of those pre-

sented in the work by Zabalza et al. [212] which demonstrates good
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classification accuracy for identifying moving targets via higher fre-

quencies captured by radar systems.

Figure 5.5: Observing Frequency Peaks for X, Y and Z Movements
Observing log-spectra for movements shows movement peaks and

demonstrates a visual approach may not be suitable for distinguishing

variance within and between movements. The white bars show the spikes

which indicate the start of a movement

First, as shown in Figure 5.5, frequencies seem to drop off after around

500kHz. To confirm this, looking at the power spectral density shows

that they indeed drop off at around 500kHz and also fall outside a

lower limit of 10kHz. To limit the focus to just the information within

these upper and lower bounds, the choice was to use a Butterworth

band-pass filter (Figure 5.6) to filter frequencies out of this range.

Interestingly, the filter closely resembles one of decimation due to an

observable “flat top” where bins are not scaled relative to one another

as would be observed in Gaussian approaches. The Butterworth filter

is chosen over other filters given that there is a quicker roll-off at

the cut-off frequencies with no rippling and thus robustly preserving

frequency content compared to other linear filters.

After applying the band-pass filter, the STFT is computed to ob-

tain the frequency content of the signal samples over time. The next

step is to compute the Mean Frequency Profile (MFP) – the mean of

the absolute value of each frequency over time – from the STFT. By

computing this, one can observe both the location of frequency peaks

(variation in amplitude across movements), as well as the width to
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Figure 5.6: Butterworth Band-Pass Filter Amplitude Response
The butterworth bandpass filter is used to eliminate frequencies that fall

outside of the range of important frequency content (10–500kHz)

the frequency peak (different movements may have different velocities

for each moving component). The MFP is computed as follows:

MFP (v) =
1

M

M∑
m=1

|STFT (v,m)| MFP (v) ∈ RL (5.1)

where M is the number of time instants of STFT and L is the number

of discrete points in the Fourier transform. In the case of fingerprint-

ing individual movements, it is clear to assume a constant cadence

between target robot movements over windows of time, as they are

programmed to be sampled at 2s intervals. By averaging the frequency

bins over time, it is possible that some resolution is lost regarding

movements of specific components of the robot arm. However, given

that the aim is to discriminate between robot movements themselves,

rather than parts of the arm, this information is acceptable to discard

in this context.
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Figure 5.7: Cumulative Explained Variance for Movements
The cumulative explained variance shows that 14 components is enough

to represent 99.999% of the overall variation among movements

Even by extracting the MFP from the STFT, the resulting feature

vector for each movement sample is still fairly large and would induce

a large amount of strain on computing power for fingerprinting. To

this, Principle Component Analysis (PCA) is used as a dimensionality

reduction technique [213] to decorrelate components of the MFP to a

smaller subset that still retains a high level of discrimination among

features in the feature vector. This allows most of the information to

be represented and analysed to produce the same results with a much

smaller feature vector, increasing the efficiency of computing move-

ment fingerprints. In Figure 5.7, the cumulative explained variance

among feature vectors for all movements can be observed – an accu-

mulation of variance for each principal component. Overall, it was

found that 14 components was enough to represent at least 99.999%

of the overall variation among features.
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For the last step in the feature extraction stage, normalisation is ap-

plied to the resulting feature vectors in the form of zero mean and

standard unit variance to produce a scaled feature set to optimise the

performance in the classification/fingerprinting stage.

Once a collection of the resulting feature vectors for the movements are

put together in the dataset, movement classification (fingerprinting)

is done using a C-Support Vector SVM [214, 215] classifier. An SVM

was used for this attack, as other approaches such as deep neural

networks require a larger sample set and one of the goals of this attack

is to conduct it stealthily and efficiently with a small sample set, given

potentially limited windows of opportunity for an attacker to make use

of the physical RF receiver. Furthermore, the use of an SVM allows for

more efficient computation of the movement fingerprints and are easier

to train given small datasets. The hyperparameters for the SVM were

selected using Grid Search Cross-Validation, which prompted the use

of a linear kernel with most optimal kernel parameters of γ = 1.0e−3

and C = 1.0e3. In the case of larger sample sizes, other approaches

such as SVM trained with Stochastic Gradient Descent (SGD) may

be more desirable in terms of computational efficiency [216].

Blackman Hamming Hann
8192 16384 32768 8192 16384 32768 8192 16384 32768

Accuracy 93% 93% 94% 92% 95% 89% 94% 96% 95%

Time (ms) 507 581 740 506 563 646 524 565 655

Table 5.1: Comparison of STFT Parameters
The Hann window with FFT length of 16384 is the most optimal in terms

of accuracy but also efficiency in computing the movement fingerprint

Choice of STFT Parameters

Before evaluating the attack, the first step is to evaluate a choice of the

parameters used for the STFT step in feature extraction. Specifically,
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the FFT length and STFT windowing function were looked at. Given

that the RF movement samples are recorded at 2MHz sampling rate,

the signals are recorded at 2,000,000 samples per second. According

to the Nyquist-Shannon Sampling Theorem [217], this means the sig-

nals can contain frequency content up to 1MHz. Given that the STFT

provides time-localised frequency content, there is to be a trade-off be-

tween temporal and frequency resolution. Simply, a narrow window

results in better temporal resolution but poorer frequency resolution,

and vice-versa. Given that a discrimination between both what move-

ments are being carried out, as well as full operational workflows is

required, it is important to ensure a balance between both tempo-

ral and frequency resolutions to allow for success in both cases. Aside

from the accuracy as a choice of this first parameter, another consider-

ation is the time taken to compute it. As with most signal processing

applications, a relatively fast computation time is desirable, and in-

herently a longer FFT takes more time to compute. Finally, the last

determining factor for the choice of STFT is the windowing function.

The use of the (sliding) window function allows for the overlapping of

disjointed parts of the input signal. This aims to decrease the amount

of spectral leakage and minimise effects such as rippling, by determin-

ing the amplitude of side lobes to distribute spectral leakage. A typical

window suitable to many applications is the Hann window, which is

a form of generalised cosine window, with other popular choices in-

cluding Hamming and Blackman windows [218]. For a choice of suit-

able windowing functions, the choice included the Hann, Hamming

and Blackman windows – three generalised cosine windows – due to

demonstrable success in pulse shaping/filtering [219] and many other

applications. Interestingly, given a pre-computed window (as is pos-
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sible with the relatively constant cadence across movement samples),

the window function should not have any impact on computation time,

but this is evaluated for completeness.

In Table 5.1, the accuracy of a baseline set of results (distance of 1 and

lowest speed of 12.5mm/s) can be with varying window functions, FFT

lengths and the time taken to compute the STFT averaged over 100

runs. With respect to the overall accuracy corresponding to window

choice, it is clear the Hann and Hamming windows both outperformed

the Blackman window, with the Hann window having slightly higher

accuracy overall. Notably, the accuracy increases as the FFT length

increases due to higher spectral resolution. Unfortunately, however,

this trades off with a longer computation time. Because of this, a

key consideration is the computation time for movement fingerprints.

With respect to the computation time, the most reasonable window

and FFT length combination was a Hann window with an FFT length

of 16384. While the window function has no measurable impact on

computation time assuming a pre-computed window, as was the case

for this attack, erroneous times are accounted for due to measurement

noise. In this case, more bespoke devices such as a GPU or FPGA

will speed up processing, which given more data may end up providing

higher accuracy for robot movement fingerprints. In either case, with

regard to FFT length, a longer window requires a more expensive

FFT and ultimately results in a non-linear increase of computation

time with length. For this attack, a Hann window with FFT length

of 16384 is the best choice, as a compromise of 2ms computation time

is reasonable for the accuracy increase in comparison with the same

FFT length and a Hamming window.
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5.3 Evaluation

As per the research questions listed above, the evaluation of this attack

and related results will be set out in that order.

5.3.1 Individual Movement Fingerprints

As per the first research question (R1), the first step was to deter-

mine whether the proposed insider attacker could fingerprint individ-

ual robot movements via unintentional RF emissions. Simply, this will

formulate a baseline set of results, consisting of a baseline (smallest)

distance of 1mm and speed of 12.5mm/s and RF antenna situated at

the base of the robot, to which other parameters such as movement

distance can be compared against. As shown in Table 5.2, an average

accuracy of 96% can be observed for the baseline (D = 1). While

most movements show relatively consistent accuracy of at least 90%,

the XYZ movement was the lowest among them with 89% accuracy

where a small set of samples are mistaken for YZ (Appendix B.1). In-

terestingly, the Y and Z movements show the most success in terms of

fingerprinting accuracy. Overall, it is clear that Y-involved movements

show good precision and recall, unlike the traffic analysis side chan-

nel where Y-involved movements were among the worst fingerprinted.

Notably, the movement permutations (i.e. YZ, XYZ) have the lowest

precision and recalls. This may be due to the use of multiple motors

resulting in a mixing of similar frequencies that are unintentionally

emitted and thus, may be interfering with one another causing a lack

in varation among discriminating features in the signal.
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D = Distance (mm), P = Precision, R = Recall

D=1 D=2 D=5 D=10 D=25 D=50
P R P R P R P R P R P R

X 91% 97% 90% 100% 100% 90% 100% 100% 100% 100% 100% 100%
Y 100% 100% 100% 92% 90% 90% 94% 83% 100% 85% 94% 85%
Z 100% 100% 91% 100% 100% 100% 100% 100% 100% 100% 100% 100%
XY 96% 100% 92% 100% 68% 100% 92% 100% 94% 100% 88% 96%
XZ 100% 96% 94% 94% 93% 87% 100% 100% 100% 83% 100% 94%
YZ 94% 91% 65% 88% 69% 55% 87% 91% 86% 100% 92% 96%
XYZ 89% 84% 100% 38% 56% 56% 90% 90% 100% 100% 96% 100%

Accuracy 96% 88% 81% 94% 96% 95%

Table 5.2: Impact of Movement Distance on Classification Accuracy
Movement distance provides more fine-grained information leakage and

can be fingerprinted with similar accuracy to the baseline. Slightly

increased distances from the baseline show reduced accuracy, while larger

distances show similar accuracy to the baseline

5.3.2 Impact of Movement Distance on

Fingerprinting

The second question (R2) concerns a higher level of granularity for

movement fingerprints. Specifically, can an adversary infer how far

or how fast a movement is being carried out? The first of these two

parameters that is evaluated is the distance of movement and how it

impacts classification accuracy. The results of this parameter can be

seen in Table 5.2. An overview of these results suggest that finger-

printing decreases as the distance increases by only a few millimetres,

but remains at a similar level as the baseline for larger distances.

At 2 distance units, there is a decrease in precision for most move-

ments, with the exception of Z movement. The accuracy compared

to the baseline drops by around 8%. Most notably, the YZ movement

has a significant drop in precision, due to some XYZ samples incor-

rectly predicted as YZ movements (Appendix B.2). Ultimately, the

lowered accuracy may be due to lowered variation among principle

components between 1 and 2 distance units. At 5 distance units, the

accuracy drops by a similar amount as that between 1 and 2 distance
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S = Speed (mm/s), P = Precision, R = Recall

S=12.5 S=25 S=50 S=75 S=100
P R P R P R P R P R

X 91% 97% 100% 100% 90% 100% 96% 100% 100% 100%
Y 100% 100% 79% 90% 70% 75% 67% 65% 65% 35%
Z 100% 100% 94% 100% 92% 100% 93% 96% 87% 96%
XY 96% 100% 65% 68% 64% 64% 65% 68% 46% 46%
XZ 100% 96% 97% 100% 100% 94% 100% 100% 97% 100%
YZ 94% 91% 73% 75% 86% 61% 55% 59% 40% 45%
XYZ 89% 84% 83% 59% 69% 76% 55% 46% 45% 56%

Accuracy 96% 87% 82% 76% 68%

Table 5.3: Impact of Movement Speed on Classification Accuracy
Movement speed provides lowered accuracy as the speed increases for

movement fingerprints, particularly among Y-based movements, which

may be linked to the physical infrastructure

units, with permutations of axis movements showing further reduc-

tions in precision and recall, aside from the XZ movement which de-

creases only slightly compared to 2 distance units. The YZ movement

in this case is incorrectly predicted as other Y-involved movements,

with most being the YZ and XYZ movements. At 10 distance units,

perfect precision is observed for X, Z and XZ movements. The Y mov-

ment has lowered precision but perfect recall, and other movements

show improved accuracy compared to 5 distance units. At 25 dis-

tance units, there is perfect precision and recall for most movements,

however, both precision and recall is lower for Y-involved movements.

Finally, at 50 distance units, the precision increases back to 100% for

XZ with recall also improving by around 10%. The precision and re-

call for Y-involved movements improves compared to 25 units, with

the exception of the XY movements with slightly lowered precision.

5.3.3 Impact of Movement Speed on

Fingerprinting

As well as movement distance, the speed at which the movement is

being carried out may also provide a higher level of granularity to
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movement fingerprints. The results for the speed parameter can be

seen in Table 5.3. Overall, it is clear that as the speed of movement

increases, the variation in the RF feature set reduces resulting in low-

ered classification accuracy. Better fingerprinting accuracy is observed

for the X and XZ movement in the speed parameter compared to the

distance parameter, with the Z movement remaining above 90% accu-

racy but with lowered precision and recall compared to the baseline

(S = 12.5) as speed increases. Taking all movements into account,

the precision for the Y-involved movements are among the poorest as

the speed increases, with many incorrectly predicted as either Y or YZ

movements (Appendix B.3) perhaps due to a lack in variation between

them. This may be due to the design of the uARM robot in which

Y movements making primary use of the base motor (with the X and

Z axes primarily using the right and left motors as their respective

primary motors). The distance parameter is more accurately finger-

printable than the speed parameter, and thus would be more useful

to track. While speed may be a useful candidate still, keeping track

of the distance is a more reliable metric in most cases. For example,

the speed at which an operator performs an operation can vary de-

pending on the context or object being moved, but the distance may

be relatively consistent for these specific avenues. In an industrial

setting, for fingerprinting alone speed may not be as useful, however

in the case of an audit in which one might wish to determine whether

the robot was behaving in an erratic fashion, speed data might prove

useful through continuous monitoring.
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A = Antenna Distance (cm), P = Precision, R = Recall

A=0 A=25 A=50 A=100
P R P R P R P R

X 91% 97% 93% 100% 77% 71% 76% 51%
Y 100% 100% 98% 98% 70% 76% 42% 36%
Z 100% 100% 98% 93% 91% 94% 38% 39%
XY 96% 100% 84% 97% 71% 76% 47% 53%
XZ 100% 96% 95% 72% 55% 72% 43% 52%
YZ 94% 91% 71% 83% 50% 38% 45% 50%
XYZ 89% 84% 79% 59% 64% 58% 31% 33%

Accuracy 96% 88% 69% 45%

Table 5.4: Impact of Antenna Distance on Classification Accuracy
The further the antenna is situated away from the robot, the lower the

classification accuracy. This suggests that useful frequency content

captured by the antenna drops as distance increases, related to the

inverse-square law which states that as distance doubles, the power of the

RF signal is four times less. This is likely due to the scale of the robot

5.3.4 Impact of Antenna Distance on

Fingerprinting

The next experiment in this evaluation looks at whether the distance

the RF receiver antenna is placed away from the robot under attack

has an impact on fingerprinting accuracy. Naturally, as defined by

the inverse-square law [172,192], the power (intensity) of RF waves is

inversely proportional to the square of the distance from an emitting

source. Simply, as the distance increases, the intensity of uninten-

tional RF emanations will also decrease. If the distance doubles, the

intensity is four times less. In this experiment, given the scale of the

robot, the initial distances tested range from the base of the robot

(0cm) to 100cm away from the robot. The reason for these distances

is simple – if the intensity of unintentional RF emanations significantly

reduces the accuracy of fingerprinting robot movements at the worst

case distance, then it demonstrates that this is due to the scale of the

robot used in this evaluation. The results for this experiment can be

seen in Table 5.4. First, increasing the antenna distance by around
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25cm leads to a slight increase in precision and recall for th X move-

ment, but a reduction in precision and recall for all other movements

by around 8% on average. At 50cm away, the intensity of the signal

is weaker and results in further drops to precision and recall across all

movements by around 20%. Interestingly, the Z movement drops only

slightly with this increase in antenna distance. Finally, at 1 meter

away, the overall accuracy drops by around a factor of 2 compared to

the baseline. Ultimately, this demonstrates that due to the scale of

the robot, any unintentional radio frequencies that are emitted dur-

ing its operation are not strong enough to be captured at a distance.

While other antennas were considered, many antennas were unable to

capture such low frequencies, as well as financial limitations being an-

other aspect. A spectrum analyser could be used but an attacker may

not see this as an ideal stealthy candidate. As a point of future work,

however, looking into larger scale robots such as large robotic arms

used in manufacturing may result in a more intense signal that can

be captured further away. The confusion matrices for this experiment

can be seen in Appendix B.4.

Recovery Rate
Operation 1 2 3

Push 100% 100% 100%
Pull 100% 100% 100%
Pick-and-Place 100% 100% 100%
Packing 100% 57% 57%

Accuracy 100% 88% 88%

Table 5.5: Workflow Reconstruction Results
Common warehousing workflows can be reconstructed in their entirety

with much higher accuracy, compared to an approach which involves

pattern-matching using individual movement fingerprints
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5.3.5 Workflow Reconstruction

Aside from exploring the efficacy of the attack on individual and com-

binations of movements, which can be used in pattern-based recon-

struction, it is also interesting to determine whether higher-level ware-

housing workflows can be reconstructed via the RF side channel. For

this experiment, the second dataset containing warehousing workflow

samples was used, which is detailed in 5.2.1. The results for the ex-

periment on reconstructing warehousing workflows can be seen in Ta-

ble 5.5. In this experiment, three different sets of each workflow were

captured and analysed using the same attack strategy as individual

movements. Interestingly, looking at the cumulative explained vari-

ance of the principal components for workflows, a very similar amount

of variance as with individual movements can also be captured for en-

tire workflows with the same number of principal components, and

thus the attack parameters remain the same. Using the same SVM

parameters, the first set of workflows achieves perfect reconstruction

accuracy. While this is a notable result, the second and third sets of

these workflows achieves similar results, with the packing operation

being the exception with 57% accuracy in both cases. In the case of

the second set, some of the pull operations are incorrectly predicted

as packing, and for the third set, some samples of pick and place

are incorrectly predicted as packing (Appendix B.5). This may be

due to the fact that the packing operation may have similarities to

these movements in the sets explored resulting in the lowered accuracy.

Overall, it is clear that using this attack approach, an adversary can

very successfully reconstruct entire operational workflows. Through

the use of continuous monitoring, entire daily operations and their

performance (i.e. by also capturing timing information) can be leaked
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to competitors for a potentially malicious advantage.

5.4 Discussion

The proposed side channel attack using radio frequency (RF) demon-

strates a feasible approach for a insider attacker, such as a malicious

technician/operator, to place an easily disguised and economical an-

tenna on the factory floor. By doing so, they can fingerprint robot

movements and reconstruct entire warehousing workflows with very

high accuracy. Furthermore, the evaluation shows that such an at-

tacker can also infer more fine-grained information such as the speed

or distance in which a movement is being carried out.

5.4.1 Defences

Given that the radio frequencies that are captured in this attack are

emitted from an unintentional radiator source, in this case the robot,

the radiated fields require a form of mitigation (suppression) to pre-

vent information leakage. To recap, the robot used in this study is

likely to emit unintentional RF from its microprocessor and stepper

motors, with the majority from the microprocessor. A best defence

here comes in the form of physical layer security measures such as

shielding critical portions of the microprocessor layout or robot en-

closure. Shielding against electromagnetic fields (EMF) such as RF

makes use of a barrier made of conductive or magnetic materials to

isolate minimise interference but also act as a sort of Faraday cage.

The materials typically used include copper, silver or brass, with cop-

per being the most common for RF shielding. In the case of the

robot used, the enclosure is made of aluminium. While this is not
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as conductive as copper (60%), it is usually a second choice due to

other properties such as electrical conductivity, strength-to-weight ra-

tio, cost and malleability. With respect to the enclosure, a suitable

defence strategy to explore is to evaluate whether a thicker aluminium

casing would provide better protection against the proposed RF side

channel attack. Furthermore, it would also be interesting to observe

whether other casing materials such as copper or brass might perform

as well or better with their innate contrasts in protective properties

(i.e. conductance).

5.4.2 Impact

While the impact of this attack is demonstrable from a business per-

spective, in the form of operational compromise of robotic work-

flows that could leak sensitive business information it is important

to look at the impact of the attack in other areas, including govern-

ment/international specification, regulations and international stan-

dards.

The first impact to review is government specification. In the United

States of America, the government and NATO specification TEM-

PEST is used to cover methods for eavesdropping on and protecting

(shielding) against information leakages from unintentional emana-

tions such as RF or acoustic [220,221]. While many specifics of TEM-

PEST are classified, in the public domain three levels of protection

requirements are set out: NATO SDIP-27 LEVEL A, B and C. Level

A is the strictest standard which assumes the attacker has almost im-

mediate access to the environment or devices. Level B assumes the

attacker cannot be within 20 metres and is more relaxed, and Level C

assumes a distance of 100 metres. Unfortunately, TEMPEST mainly
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addresses nation-state level equipment and facilities. The guidance

states that in general, devices such as these robots are typically not

qualified under TEMPEST as most of these devices, including com-

mercial off-the-shelf components of robots which are assumed to con-

form to Level C without any modification. Further, it is not clear

on specific key requirements of shielding against unintentional ema-

nations. Given the impact on businesses in any respect, their confi-

dentiality is key – particularly against those which they are in conflict

(competition) with – and thus, the potential of insider threat should

ultimately be a cause to improve the standards of robot protection in

non-military settings.

The next impact of this attack pertains to regulation and regulatory

compliance. Guidance from regulators, such as Ofcom [222] in the

UK, issue rules for compliance for all uses of RF, whether emana-

tions occur under normal conditions or from unintentional radiators

such as the context of this work. However, such guidance does not

cover robotics systems but only a subset of typical components (i.e.

power input or cables). In the case of Ofcom, the regulation only de-

tails where an EMF record is not required but does not include where

robotics systems or unintentional RF emanations apply. Clearly some

modifications and additions to existing regulation is needed to cover

attacks like this on robotic systems. As well as existing regulation,

one key question that may arise is how can one audit a robot? While

continuous monitoring and audits of software and hardware compo-

nents can provide some guarantees, the risk of malware or invalid

device calibration that disrupts operational accuracy also needs at-

tention. Interestingly, this is observed from the high recovery rates of

industrial warehousing workflows as detailed in the evaluation. From
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this, the use of the RF side channel could potentially act as a defence

that can provide information to auditing procedures. By monitoring

typically correct robot workflows over time, any drift in accuracy from

either a malicious or unintentional attack vector could be recognised

by the system, for example through the use of LSTM networks and RF

time-series information. This is a point of future work to be explored.

The final considerations pertain to international standards. The key

international standard that applies to the impact of this attack is

CISPR 11 [223] for governing EMF emissions from industrial, scientific

or medical (ISM) equipment, among others, which can use the ISM

license free bands like 2.4 GHz. The ISM bands are defined by interna-

tional telecommunication union (ITU) radio regulations, which have

a variety of allocated ranges within the band of 6.76MHz–256GHz.

In the context of this attack, the smaller robot used falls outside of

ISM bands where such standards and regulation typically apply. How-

ever, for larger industrial robots, an evaluation of this attack would

be worth observing to truly understand the impact in this case. Inter-

estingly, an investigation into the RF emissions related the size and

general load/power requirements of different robotic systems may also

reveal that some may also fall out of the ISM bands and may in future

provoke a discussion on updating existing standards.

5.4.3 Limitations

One limitation of this work is the robot used. In terms of direct

replicability for a real-world industrial robot arm, this robot is much

smaller than one typically seen on the factory floor. While the attack

may not provide the same level of movement inference in this case as

with the robot used in this study, a larger robot may employ more
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motors that require more power to operate. Given that the motors

and integrated circuits still emit unintentional RF from the nature of

their operation [28], the attack would simply require extra exploratory

analysis in terms of the frequency range of the RF emissions to tune

the parameters. As well as this, it would be interesting to perform

an exploratory analysis of unintentional RF emissions from a range

of different robotic systems involved in various different workflows.

Interestingly, while this antenna is noticeable if placed behind the

smaller robot used in this study, if the same antenna could be used

to mount the same attack on a larger robot then it would result in a

much more stealthy attack.

In addition to the first limitation, a second limitation is that only one

robot was used in this study. While this work showcases that a single

arm robot can indeed be fingerprinted via the RF side channel, in

industrial settings, for example, there may be more than one robot

employed in the same workspace. Thus, any unintentional RF emis-

sions that arise from other robots may act as a form of noise mask,

potentially hindering an attack on a single robot. As well as this noise

from other robots, some may also question whether other sources of

radio frequency may also be picked up by the RF antenna, such as

Wi-Fi or unintentional RF from other computing devices. While this

has been thought of, Wi-Fi in particular falls out of the range of fre-

quencies captured in this attack, and other devices do not spike at

the same intensity or frequencies as the robot. The feature extraction

process allows for the identification of significance in peaks and move-

ment characteristics (i.e. cadence) which is successful even without

noise reduction techniques. In any case, a point of future work exam-

ining noise reduction techniques would be interesting to see potential
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improvements in the attack – which would particularly useful in the

context of multiple robots operating in the same space. In addition

to this, not only would evaluating this attack on various types (i.e.

brands or style) of robots be of use to demonstrate wider application,

but also the impact of mulitple robots in the same space.

A third limitation one can consider is a disconnect between the tool

equipped at the end-effector and the motion being carried out. The

robot arm used in this study is equipped with an integrated pump

with a maximum pressure of 33kPa and maximum lifting weight of

1kg. The goal with the use of the tool was to determine whether an

attacker could identify the contents (by weight inference) of packages

being lifted. Unfortunately, there was no measurable unintentional RF

emissions between weights being lifted, nor to distinguish whether the

pump was on or off. For a larger robot however, a pump end-effector

with a larger lifting weight that requires more power may change this

result. As well as this, it would be interesting to see the impact of

additional power requirements for lifting weights with different tools

(i.e. grippers) has on RF emissions.

5.5 Related Work

While there have not been any side channel literature pertaining di-

rectly to robotics systems, the use of side channels have shown success

relating to components of robotics systems, as well as similar archi-

tectures such as 3D printers. There are many devices which emanate

unintentional RF, including microprocessors and motors, among oth-

ers. Graham et al. [224] demonstrate that RF emanations can be

identified by correlating RF emissions with bit flips that produce de-
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tectable electrical pulses. This is analogous to the switching activities

in transistors as pointed out by Cobb et al. [28]. In similar work,

deep learning approaches have shown success operating on raw wave-

forms [225,226], such as using convolutional neural networks operating

on time series data [227,228] or residual neural networks [229], to fin-

gerprint IoT devices and processes running on them. However, while

these approaches are successful, this attack requires a much smaller

sample set to show similar accuracy – a benefit of many SVM-based

approaches.

Aside from the radio-frequency side channel, other side channels such

as power and acoustics also show some success. For example, Sami

et al. [162] describe an attack via the acoustic side channel that can

extract sound traces from the vibrations reflected to lidar sensors. Sev-

eral authors [161,230] propose an acoustic side channel attack on 3D

printers wherein acoustic emanations are used to reconstruct G-code

used by 3D printers which may correspond to potentially confidential

(patented) designs. Related to this, Song et al. [160] also describe

a similar end goal but enhancing the acoustic side channel using the

magnetic side channel by exploiting the conductivity of a stepper mo-

tor. Compared to this attack, the extraction of G-code corresponds

to Arduino-based 3D printers. Given that this robot is also oper-

ated by an Arduino, this attack focuses solely on the movement of

the robot arm and thus reconstruction of G-code to then compromise

operational confidentiality is an unnecessary extra step. While earlier

approaches make use of regression models, more recent work make use

of neural networks that require a large labelled sample set to which

this approach provides better opportunities to an passive, insider ad-

versary. As well as this, given that individual movements can also be
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reconstructed, pattern matching individual or permutations of these

movements could also lead to the leakage of confidential intellectual

property.

5.6 Summary

In summary, it is clear that it is possible for a passive adversary to

make use of other side channels for robotic systems, aside from those

present in the cyber domain. This attack showcases that even in the

physical domain, compromise of operational confidentiality can still be

compromised in a stealthy (hard to notice) manner with much higher

success than both the traffic analysis and acoustic side channels, as

described in Chapters 3 and 4 respectively. With the success of the at-

tack, as well as a discussion into the inadequacies of current regulation

and specifications, the implications of the presented results showcase

the need for a full review of existing standards. Unfortunately, while

the same level of granularity of movement inference can be gathered

from this attack (i.e. speed and distance), the contents (weights) of

objects moved could not be inferred from the RF side channel. While

this thesis showcases three passive side channels, for physical domain

side channels there is now a clear set of open challenges in the space

of defences pertaining to these attacks, which remain as a point for

future work.

149



150



6 — Calibration and Robotic

Systems

Everything can be assigned a value. For example, an age old riddle by

John Marciano questions “What weighs more, a pound of feathers or

a pound of gold?”. Some may say gold because it is heavier, others say

they are both a pound and thus weigh the same. A pound of either

must be the same weight. Measurements like this are used in our day-

to-day lives and we inherently trust them. But, how do we know that

these values are in fact correct? Can we simply just take every scale,

thermometer or other measuring device at face value? Can we trust

that they will always give the same readings if they measure the same

respective quantity?

There are many activities which depend on having accurate and reli-

able measurements, with a tolerable margin of error (uncertainty). For

example, in industrial manufacturing plants the dimensions of com-

ponents must be specifically defined and manufactured to ensure that

outputs as a whole meet the strict specifications in which they are to

be used. In the pharmaceutical sector, manufactured medicines must

only contain a strictly specified quantity and quality of the substances

it is made up of. In these areas, any slight hindrance to the accuracy

and reliability of measurements can lead to disastrous consequences.

For example, there have been cases of poorly manufactured medicines

shipped out to consumers which have ultimately lead to healthcare

failures such as antibiotic resistant bacteria, disease spreading or even

death [231–233]. So how can these be disastrous consequences be
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prevented at the measurement level?

The science of measurement, Metrology, documents everything from

the design of measurements, to carrying out and analysing measure-

ments and calculating relative measurement uncertainties. This spans

a wide array of areas, from the organisation and development of mea-

surement standards and maintaining them at the highest level, to

ensuring the accuracy of measurements and the adequate function-

ing of measuring devices at a consumer level (i.e. in production or

testing).

In this thesis, the focus is on calibration, a part of metrology which

governs a set of operations whose purposes are to detect, report and

eliminate measurement errors for devices. The majority of devices are

ideally calibrated to ensure that it operates with the highest accuracy

and lowest margin of error, ranging from sensor devices (i.e. temper-

ature sensors) to even the cables and resistors embedded within these

devices. In the case of a robotic system, if the calibration was to be

incorrect or the device required reconfiguration to ensure it conforms

to its ideal calibrated state, what would happen? In surgical contexts,

for example, even a slight offset in accuracy during a scalpel incision

could result in the difference between life and death. Similarly, for in-

dustrial robots, if the measurements recorded were incorrect and used

by a safety mechanism to prevent injury to human operators nearby

(i.e. collision detection), the result may be just as catastrophic. Ul-

timately, before attacks in both the physical and cyber domains can

be considered, calibration is a key factor which underpins operational

safety of robotic systems.
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6.1 What is Calibration?

“I have been struck again and again by how important

measurement is to improving the human condition.”

– Bill Gates

Calibration is a set of operations which govern accurate and reliable

measurements. Simply put, in the context of IoT components in

robots, we can consider the process of calibration as a comparison

between output measurements from a component (e.g. an infrared

thermometer sensor) and another from a more accurate reference de-

vice.

The output of the calibration process for some Device Under Test

(DUT) is a calibration report. This report, mainly used to report

the results of the calibration process, details essential information,

including (but not limited to):

� date(s) of calibration,

� environmental conditions at the time of calibration,

� calibration standards adhered to,

� organisation-related information (i.e. contact information), and

� a traceability statement

Given that a device after calibration can (in-effect) be trusted for a

given time until its next calibration, a consumer would then simply

trust the (accredited) calibration provider that the process was car-

ried out to standard [234,235]. However, aside from accreditation and

other factors which related to consumer trust, how do we know that

the reference device used in a device’s calibration is more accurate?

To answer this, the (parent) reference device is itself calibrated by
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Figure 6.1: High-Level Traceability Hierarchy
Calibration moves from the SI units maintained at National Measurement

Institutes of highest accuracy and lowest error margins, to intermediate

units and ultimately robot components at the field level

some other more accurate reference, and so forth. The limit is set at

national standards where National Measurement Institutes (NMIs),

such as NPL in the United Kingdom and NIST in the United States,

hold a master-level device which is calibrated against the SI units.

Specifically, they coincide with governing bodies at an international

level, assuring that their calibrations compare with each other. Fi-

nally, these international-level institutes base their measurements on

realisations of the International System of Units (SI units) [236]. This

chain of calibration is referred to as a traceability chain [235] (Fig-

ure 6.1).

6.1.1 Measurement Uncertainty

Any results obtained by a measuring device should provide some de-

gree of confidence to its consumer(s). This confidence is quantified by

measurement uncertainties associated with the result. However, alone

these uncertainties are not enough to ensure the credibility and con-
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fidence one can have in measurement results. Instead, this credibility

is provided by the traceability of the measurement results, which also

requires an accompanying statement of its respective measurement

uncertainties. Through an expression of a result’s measurement un-

certainty, the reliability of the result can be reasonably confirmed and

maintained.

The ISO Guide to the expression of Uncertainty in Measurement

(GUM) [237] defines measurement uncertainty as variable relative to

a measurement result that characterises the dispersion of possible er-

ror sources which could be reasonably attributed to the measurement

result. Measurement uncertainties are present, as realistically mea-

surements are never made under perfect conditions. There can be

several sources of uncertainty present in calibration, which can come

from: the measuring instrument (i.e. due to drift, wear-and-tear,

noise, etc.); the item being measured; the environment; and the mea-

surement process itself, among others. These sources can be either

random (repetitions produce varying results) or systematic (the same

influence affects results for each repetition). In either case, a spread

of a set of uncertainty values take the form of a probability distribu-

tion. This is typically a normal (Gaussian) or uniform distribution,

but in rarer cases may take the form of others such as triangular or

M-shaped distributions.

While uncertainties are typically expressed to consumers in a state-

ment consisting of the result and uncertainty figure, such as “Temper-

ature measured was 60◦C ± 1◦C”, this is not enough in the context

of calibration (i.e. verifying correctness). Instead, a statement of the

type of uncertainty (such as standard uncertainty) and the level of con-

fidence – along with how the uncertainty was estimated – is required
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to fully express the information so that it is usable. Within calibra-

tion reports, this is typically summarised as an uncertainty budget.

Ultimately, this uncertainty budget depicts a structured approach for

calculating measurement uncertainty, which provides a formal record

of analysis whilst also satisfying ISO 17025 [235] requirements. Ex-

amples of uncertainty budgets can be seen in [238].

6.1.2 Metrological Traceability

Having metrological traceability (a complete, unbroken chain of cali-

bration) can allow one to verify the validity of calibration of a device.

This is due to the fact that measurement uncertainty (and ultimately,

measurement accuracy) is derived from the process of calibration for

each of its parents [239]. The higher a device is in the chain, its mea-

surement uncertainty is smaller and its accuracy, higher (and vice-

versa).

So, what is the importance of metrological traceability? First, without

verifiable traceability, a calibration provider can effectively claim any-

thing they want in a calibration report that may be taken at face value.

Further, consumers may fall victim to fraud in contexts where a cali-

bration provider does not include a device’s traceability. For example,

consider a hospital, which employs surgical robots, that makes use of

a third-party calibration provider to calibrate the robot’s components

(e.g. sensors). A lack of traceability for one or more measuring instru-

ments means that one cannot verify the measurement uncertainties,

nor trace the calibration back to the established primary standard.

This leaves any measurements suspect to unknown error and dras-

tically decreases the trust one can have in the robot. As a patient

under the knife, even slight inaccuracies of sensor measurements dur-
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ing the operation that are not uncovered could result in the difference

between life and death. As an organisation who employs such third-

party facilities and owns the robots used, the resulting liabilities could

be catastrophic.

Unfortunately, not all measurements are traceable. Typically, this is

due to some device in a traceability chain being missing, for example

if it needs to be recalibrated as part of an annual cycle or if it has been

decommissioned. If this point in the chain succumbs to such condi-

tions, all measurements produced by devices below that point have

no traceability and are suspect to unknown error (questionable accu-

racy). Ultimately, in order for a device’s measurement to be traceable,

it must satisfy all of the following conditions [235].

Documented Calibration

Every level in a traceability chain must be documented and no point

in the chain should be missing (complete and unbroken). As a min-

imum, this means documenting the results of a device’s calibration

in its calibration report. This allows one to audit whether a device’s

calibration was carried out correctly, adhering to standards (e.g. ISO

17025 [235]) and in accordance within the calibration provider’s qual-

ity specifications. In current practices, these reports are stored in-

ternally within the calibration provider’s storage infrastructure. For

verifying metrological traceability, these are requested by an autho-

rised person such as the device operator. Ideally, calibration reports

for a device (and any previous reports) should be held in some im-

mutable record. Finally, within a calibration report, a traceability

statement must be supplied that is typically trusted at face value. An

example statement may appear as follows:
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“This calibration is traceable to the International

System of Units (SI), through National Metrology

Institutes (NPL, NIST, etc.), ratiometric techniques,

or natural physical constants.”

Timely Calibration

Calibration of a device must be carried out at regular intervals. Re-

calibration is important as what may once have been accurate mea-

surements can drift over time (i.e. through wear-and-tear). In the

current state-of-the-art of calibration, this is typically an annual cy-

cle. Ultimately, when the calibration expires and is no longer valid, the

traceability chain can also be considered as expired. This is because

any child devices to which this device is a reference in its calibration,

can now not be guaranteed to produce reliable measurements and

ultimately do not satisfy calibration traceability requirements [235].

Subsequently, in all cases, a note of the validity period (date of calibra-

tion and expiry) should also be included within a device’s calibration

report.

Stated Measurement Uncertainty

It is vital that every level in a traceability chain has any measurment

uncertainties documented. The reason this is an important require-

ment is that one may end up calibrating an already accurate device

with a reference that is less accurate, or vice-versa. In another case, if

the calibration procedure being carried out results in large or varying

uncertainties, the calibration is poor and not traceable. Ultimately,

if there are no stated measurement uncertainties, one cannot claim a

measurement is traceable.
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Reference Indicator

It is important to also realise what reference is being used in a device’s

calibration. This is typically also detailed in the device’s calibration

report along with the reference’s traceability.

Calibration via Accreditation

Finally, it is important to ensure calibration was carried out by trained

and competent technicians, who are trusted to conduct calibration

processes by an accredited calibration provider. In some cases, such

as if calibration is carried out internally at a single facility, calibration-

related activities are not accredited and thus, cannot produce an ac-

credited calibration report. In most cases, it may not be reasonable

or necessary to obtain accreditation. Specifically, if internal activities

follow a quality system that adheres to a known quality standard,

such as the ISO 9001 quality standard [234]. However, in regulated

industries or where critical measurements are required, such as in au-

tomotive manufacturing or surgical robotics, it is important to ensure

calibration is carried out properly and to the highest quality. If cal-

ibration is carried out in-house, it is important to conduct regular

internal audits to ensure that the internal laboratory is traceable (i.e.

proper quality assurance system(s), documented traceability, correct

and valid uncertainty calculation, etc.). Ultimately, in such cases, it

may be better to make use of a trusted, accredited external calibration

provider.
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Figure 6.2: Calibration Ecosystem for a Single Robot Component

6.2 The Calibration Ecosystem

The calibration ecosystem involves a number of actors, including: sys-

tem and device operators at the field level; original equipment man-

ufacturers (OEMs); (third-party) calibration providers; system and

provider auditing organisations and NMIs. Each party plays a core

responsibility to ensuring the calibration lifecycle can continue. Fur-

thermore, a subset of these interacting parties may share an adversar-

ial relationship. For example, two third-party calibration providers

may compete against each other.

Taking a robotics context, for example a surgical robot, the actors

involved would include: the surgeons operating the robot and nurs-

ing staff in the field; system technicians that maintain the robot and

managerial staff within the hospital. At the calibration level related
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to the robot, there may exist one or more calibration technicians that

may maintain the calibration of the robot in-house. Given that a robot

consists of many components, whether that be sensing equipment (e.g.

infrared thermometer sensors) or even the cables used to connect vari-

ous components together, each of these components require calibration

and each will likely make use of different reference (parent) devices.

While it is unlikely that such a robot will be recalibrated to ensure its

optimal accuracy before every surgery, calibration parameters may be

retuned or tested to ensure that everything is within tolerance (e.g.

actuators are level and sensors are white-balanced) [51]. However,

there are factors which come into play that would require a recalibra-

tion of one or more components of the entire robotic system outwidth

a typical annual cycle of recalibration. To explain this, an overview of

a subset of the calibration ecosystem pertaining to a single robot com-

ponent – an infrared thermometer sensor – can be seen in Figure 6.2.

Such a tool would likely be used to ensure the correct temperature for

a tool used in electrocauterization of a wound. Ultimately, however,

while the lifecycle is described for a single robot component, a typical

robot may consist of hundreds of calibrated components and the scale

and complexity of a robot’s calibration lifecycle can be envisioned.

6.2.1 The Calibration Lifecycle

In order to calibrate an infrared thermometer sensor, a calibration

technician requires: a thermal radiation source, a transfer standard of

higher accuracy used for comparison in calibration, an ambient tem-

perature thermometer, and a distance measuring device [240]. In some

cases, for example where an aperture may be part of a device’s cali-

bration, additional equipment may also be required. To describe the
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calibration lifecycle, we will assume that the calibration of this mea-

surement device is conducted at some third-party calibration provider,

which is also responsible for the other reference and transfer standards

used in the sensor’s calibration. Upon review, we note there are three

key stages in the calibration lifecycle: initial calibration, traceability

verification and recalibration.

Initial Calibration

The initial calibration of a measuring device can be viewed as its in-

duction, or birth, into the calibration ecosystem and commences the

start of its calibration lifecycle. For all measuring devices, there is

always an initial calibration step. After a device has been manu-

factured at some OEM, there are three common ways in which the

initial calibration is carried out, which are: in-house calibration (i.e.

by the manufacturer before being shipped to consumers, or at the de-

ployment level); calibration at a third-party intermediary calibration

provider; or calibration at an NMI. Typically, the latter is only made

use of by third-party calibration providers who calibrate their own

internal master-level reference devices with NMIs, which can then be

used to calibrate consumer devices in-house. During calibration, the

calibration technician who is carrying out the process for the certify-

ing provider is responsible and entrusted with carrying it out correctly

and to standards [234,235]. Upon successful calibration, a calibration

report is produced and signed by the technician, which details the

uncertainty budget, organisation and device information, etc. related

to the calibration process. Further, the calibration report will specify

when the next calibration (recalibration) is required – typically after

a year has passed, but otherwise within the time period agreed upon
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between the provider and device owner.

Traceability Verification

During initial calibration and before recalibrations, the traceability of

a measurement produced by the device during the process needs to

be verified. Specifically, the technician will ensure the criteria stated

in Section 6.1.2 is adhered to.

Recalibration

The third key stage in a device’s calibration lifecycle is recalibration.

In some cases, recalibration is referred to as the process of adjustment,

where a device under test (before its specified recalibration period

has been reached) may be adjusted dependent on potential changes

in output to ensure outputs agree with values from the applied stan-

dard within a specified tolerance (accuracy) range. The process of

recalibration is required where one or more of the following criteria

are true:

� The recalibration period (calibration expiry) detailed on a de-

vice’s calibration report has been reached or exceeded;

� A critical measurement is taken;

� The device has been repaired or modified;

� The device has been moved (i.e. changes in ambient temperature

can potentially affect the output of a thermometer);

� The device has been exposed to a critical event, such as shock,

vibration or physical damage which is thought to may have an

impact on the integrity of its calibration;
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� The accuracy (or uncertainty) of device output has noticeably

degraded or drifted before the expiry period; or

� Any parent (reference) unit in the device’s traceability chain to

national standards is declared to have invalid calibration or has

been mmrecalibrated.

6.3 Calibration in the Digital Age

The metrological activity of realising the modern International System

of Units (SI), which was resolved in the 1960s and redefined in 2019,

was based on measuring devices that were not Internet-connected.

Global communication networks were only proposed at around the

same time. As technology and the Internet evolved, among other com-

puter networks, so did the calibration ecosystem. However, given the

nature of computing during this period, existing calibration processes

followed manual, paper-based approaches, with only some avenues

moving towards a digital approach more recently (such as calibration

report storage) to some degree.

Many modern IoT systems, such as industrial and surgical robots,

are employed to address requirements for automation, higher accu-

racy and precision. For example, the use of surgical robots like Ro-

bodoc [42] have shown to lead to a decrease in post-operative compli-

cations compared to traditional surgery. In the context of autonomous

vehicles, a large variety of sensing and measurement devices are re-

quired to provide assistance for making highly accurate, real-time de-

cisions. In most cases, safety is paramount (i.e. to provide minimal

risk to patients or passengers). However, with these systems now be-

ing connected to the Internet, safety now also becomes a concern for
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security.

While the security and privacy of IoT systems, which make use of

measuring devices, has received a lot of attention with a variety of so-

lutions proposed for different application areas [241–244], the security

of the calibration ecosystem which ultimately underpins reliable and

correct device operation has received little attention. Recently, there

have been incidents in which IoT systems have failed with regard to

operational safety, such as autonomous vehicles incorrectly classifying

hazards [245, 246], or surgical robots burning patients [10]. Existing

literature has shown that from an IoT security standpoint, cases such

as attacks on machine learning classifiers using this sensed information

or tampering with communications to and from these systems can be

detected and defended against [51, 64, 247], but what if catastrophic

failures resulting from these attacks, are indeed not a result of attacks

that target the system itself? In a case of law, will these be simply

be judged as a random mechanical or electrical failure that becomes

solely the responsibility of the manufacturer or consumer? Or could

the nature of device and system calibration perhaps play a pivotal

role in the cause of safety failures?

Often, calibration providers think that simply connecting measure-

ment systems to the Internet is key to solving challenges pertaining to

data management, such as increasing granularity, scale and frequency

of measurement, as well as ease-of-use. This typically stems from the

need to support consumer requirements of higher quality, actionable

data that is available to usable, efficient and timely processes. How-

ever, simply connecting existing measurement systems to the Internet

does not bring any evolution with regard to the fact that Internet-

connected devices come with a larger attack surface, and will require
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frequent monitoring and mitigation against potential threats/attacks.

The current calibration ecosystem assumes that all actors will behave

themselves and there is little to no consideration for security. Unfor-

tunately, in a rapidly growing Internet-connected world with modern

(IoT) systems, simply “digitising” a small subset of processes (such

as storage of calibration reports) within the calibration ecosystem is

not enough to meet evolving consumer requirements such as efficiency,

safety, high accuracy and availability, as well as remaining secure in

a constantly evolving threat landscape. It is with considerations and

requirements such as these, where several inadequacies with current

state-of-the-art calibration practices present themselves. These in-

adequacies would not only hinder the progression towards digitising

the calibration ecosystem, but also leave it vulnerable to threats and

attacks from a security standpoint which threatens existing safety

claims from correct calibration. Ultimately, the calibration ecosystem

will need to evolve, as there will likely be an increase in adversarial

pressure when exposed to the cyber domain. The first step towards

resilient evolution to a digitised ecosystem is a sound threat model.

6.4 Threat Model

A foundational challenge to high-assurance, safety-critical robotic sys-

tems is record-keeping. While the solution space for such a challenge

has been investigated [248–250], the challenges surrounding record-

keeping which encapsulates calibration activities has been paid little

attention. It can be observed that the calibration ecosystem is highly

data-centric. Calibration data is the primary and permanent asset

that determines what devices can measure, the accuracy and reliabil-
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ity of what is being measured and ultimately underpins the correctness

of IoT outputs. Calibration processes for different devices, adjust-

ment procedures to ensure devices adhere to correct measurements,

calibration-related business practices and even business relationships

and possible competitive behaviours between interacting parties in the

calibration ecosystem, are all inextricably tied to this data. The need

for digitalisation in a data-centric ecosystem comes with increasing re-

liance and trust with having correct calibration data in a new threat

landscape.

What new security concerns arise when a typical factory can be con-

sidered to eventually make use of hundreds of robotic system which all

employ thousands of sensing devices, and thousands of these factories

to share several hundred calibration providers? Will existing calibra-

tion processes be able to support the ubiquitous nature of IoT and

robotic systems at scale, and manage a large number of interacting

parties where some may share an adversarial relationship? A key part

of a good threat model is first understanding the inadequacies of the

current state-of-the-art and then uncover what threats may arise with

progression to a digital environment.

6.4.1 Inadequacies of Calibration in a Digitised

Environment

Integrity of Calibration Reports

Given that calibration reports are paper-based, the possibility of in-

tegrity compromise is of real concern. A relatively trivial assumption

for physical records is that they can be lost or damaged, which means

vital information is irretrievable or open to misinterpretation. In the
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case of reports that are stored in a digital format, the potential for

tampering with the records is also a concern. In the case of an outsider

adversary, it is possible that measurement uncertainties and parent

reference devices can be modified. As well as this, the potential for

forgery of paper-based reports is also of real concern. In either case,

this could lead to traceability chains that allow calibration informa-

tion to flow to the attacker, or cause IoT systems to blindly trust

potentially incorrect or unreliable measurements [251]. In the case

of an insider adversary, the complete control over calibration records

leaves room for providers to cook-the-books and modify details about

the calibration process for their own benefit, such as in the event of

an audit.

Freshness of Calibration Information

Another concern regarding the use of paper-based assets for calibra-

tion records is with freshness – how up-to-date the calibration records

are. Specifically, aside from integrity concerns which can impact the

freshness (i.e. an adversary modifying the date and time of calibra-

tion and expiry), maintaining the freshness of calibration records is

an entirely manual process that could be left unnoticed. It is up to

calibration providers to ensure that devices are recalibrated through

notifying system and device owners. Updates to calibration records,

and notifications for recalibration are infrequent – typically performed

annually based on the common recalibration cycle for a device – which

is not suitable for critical IoT environments. Consider a manufac-

turing line for integrated circuits. If the freshness of reports is not

maintained, any problems regarding calibration will not be uncovered

until the next point of verification (the annual cycle). By this point,
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incorrect measurements used in the manufacturing cycle will be left

unnoticed and potentially thousands of units will have been shipped

to consumers. In critical IoT environments, it is vital to have the most

up-to-date accurate and reliable calibration information available at

any time.

Revoking Invalid Calibration

In the current state-of-the-art in calibration, revocation of calibration

reports is practically non-existent. When some reference device has

reached the point where after years of service even adjustments to the

device cannot satisfy a valid recalibration result it is simply decom-

missioned without notification. Without notification, the rest of the

downstream devices calibrated from this point will blindly trust their

measurements as being accurate under the assumption this parent

reference device in the chain is still in the ecosystem. Furthermore,

outside of the scope of decommissioned devices, when a parent device

is deemed to have invalid calibration, its calibration report should be

revoked and downstream devices notified to state that the accuracy

and reliability of measurements are indeed questionable and devices

should be recalibrated. In the current state-of-the-art, this type of

notification does not always occur and paper-based reports cannot be

revoked remotely. The lack of revocation can ultimately compromise

the integrity of entire data supply chains.

Availability Compromise

The centralised nature of calibration record-keeping leaves the cali-

bration ecosystem susceptible to availability compromise due to sin-

gle points of failure at the responsibility of calibration providers. If a
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calibration provider’s storage infrastructure is the focus of a targeted

Denial-of-Service attack (DoS), this could prevent access to calibra-

tion reports used in traceability verification. If we consider the need

to verify the traceability of measurements produced by components

of a surgical robot prior to carrying out emergency surgery, the verifi-

cation of their traceability would fail as a requirement is a complete,

unbroken chain to national standards. This would mean that any

measurements produced are unreliable and further use of the robotic

system could result in serious harm to patients.

Lack of Transparency

Given that calibration information in the ecosystem flows through

multiple providers in different domains, there is an inherent lack of

transparency among them. This lack of transparency among providers

in traceability chains hinders the ability for consumers to challenge

and verify the calibration statuses of devices claimed by providers and

verify traceability chains are unbroken/complete and correct. Simply

put, a lack of transparency prevents a need for public verifiability at

any time, which is a vital requirement for safety-critical IoT systems.

Not only may this affect consumers but the lack of transparency may

also impact other interacting stakeholders in the calibration ecosystem

such as manufacturers, regulators and other calibration agencies, who

wish to collaborate efficiently. Notably, this lack of transparency may

also stem from the competitive nature between calibration providers.

For example, a calibration technician who calibrates devices for one

vendor, should not be allowed to do so for another in order to pre-

vent potential leakage of information about devices and organisation

processes.
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Inefficient Verification

Verifying the traceability of measurements is highly inefficient. These

paper-based records are requested from the calibration provider where

they are stored, by a subject (verifier) such as a system/device owner.

Once authorised this information is provided to the verifier, who must

then repeat this process for each of the parent reference devices listed

in the device’s report, up to national standards to verify a complete,

unbroken chain of traceable calibration. Furthermore, another step

in this verification is to also ensure measurement uncertainties are

indeed correct at each stage, to verify the calibration at each stage

was in fact carried out properly. Outside of a robotics contexts, a

wait of potentially hours to several days to retrieve this information

manually may be considered a reasonable wait. However, in robotics

contexts – especially in cases where time is critical – this is far from

reasonable. Specifically, consider this same time-inefficient process

needed to be used for tens to hundreds of calibrated components in

an entire system. The verification time would take too much time,

leaving one to question whether the system should simply be allowed

to continue carefully while waiting. Looking back at the context of

a surgical robot needing to carry out emergency surgery, simply an

assumption of extra-vigilant operation is not a guarantee, where even

slight offsets caused by incorrect calibration that cannot be verified

could mean the difference between life and death for even a simple

scalpel incision.

Confidentiality of Calibration

So far, the inadequacies described assume that all calibration infor-

mation can be viewed at any time without any conditions pertaining
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to the access of this information. In the real-world, this is simply not

true. Consider a system-level organisation who employs hundreds of

robotics systems which make use of calibrated measurement devices.

While these devices may be calibrated in-house, in some cases an

external third-party calibration provider may be employed who may

wish to remain confidential. As well as this, the organisation which

employs them may also not want to reveal the fact they outsource

their calibration responsibilities (i.e. to stakeholders) to protect busi-

ness relationships. In either case, confidentiality among participants

(who-calibrates-for-whom), would be compromised if this information

was revealed. In another case, allowing a calibration technician to

calibrate devices for a provider in conflict with one in competition

with the first, the potential for the collection and leakage of sensitive

business secrets is also of concern. Furthermore, while the confiden-

tiality of calibration information itself could be compromised, it may

be possible to compromise the operational confidentiality of IoT de-

ployments. Specifically, monitoring calibration processes such as fre-

quent traceability verification checks (which is required for IoT) and

collecting the information (what-is-being-calibrated and how-often-it-

is-calibrated), one could potentially reveal how these devices are used

and ultimately piece together what the system as a whole is doing.

6.4.2 Summary of Threats

Upon review of the inadequacies in the current state-of-the-art in cal-

ibration, at least five key threats can be identified.
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Insider Threat

The first threat to consider is an insider adversary. It is possible that

a calibration technician could fabricate idealised results for a device’s

calibration to cook-the-books. Calibration providers are typically au-

dited every two years to determine the quality and correctness of the

provider’s calibration processes. In this audit, the goal is to receive a

Calibration and Measurement Capability (CMC) certification, which

is determined by verifying: all instruments are traceable to standards;

calibration models and uncertainty calculations are correct; and that

there are procedures in place for maintaining the calibration facil-

ity [237]. The CMC ensures that the calibration provider can cali-

brate with the best achievable measurement uncertainty for an almost

ideal measuring device under normal operating conditions. While the

CMC would show consumers that a provider can properly calibrate

devices within the uncertainty values, verified by the CMC, it does

not prevent the provider from fabricating results and thus may go

unnoticed until the next audit. As well as fabricating results, it is

possible for a rogue or malicious technician to fabricate reports for

measuring devices further up in a traceability chain. As the calibra-

tion of downstream devices is dependent on upper levels, the integrity

of calibration would be compromised. It is also important to consider

that some consumers may calibrate their devices with a technician

and/or provider that may not be certified, for example to minimise

costs. In this case, a technician could fabricate calibration reports for

potentially non-existent devices, possibly establishing fake traceabil-

ity chains which a consumer would blindly trust. This would result in

invalid calibration due to having no true traceability, but also poten-

tially very inaccurate measurements which could result in catastrophic
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results during device operation.

Large-Scale Compromise

An intentional attack carried out by state actors, or state-sponsored

groups, could uncover systemic weaknesses that could lead to the com-

promise of large fractions of the calibration ecosystem. These vulner-

abilities could be exploited by a capable outsider adversary result-

ing in seeding significant confusion in the best case. In a worst-case

scenario, it is entirely possible that entire production cycles can be

compromised. For example, consider a supply chain for integrated

circuits (IC) used in robotic systems. Any compromise at the cali-

bration level could lead to incorrect measurements, resulting in faulty

ICs to be manufactured. By the time any inaccuracies in calibration

itself are uncovered, for example after the yearly recalibration cycle

in the current state-of-the-art in calibration, potentially thousands of

faulty units would have made it to consumers.

Behavioural Economics

While the current calibration ecosystem can be viewed as a set of

hierarchical trees of some degree, the considerations of the scale and

ubiquitous nature of IoT would substantially increase this with po-

tentially millions of participants. In this case, selfish or malicious

behaviours from calibration providers may manifest which can lead

cost optimisation at the expense of the rest of the calibration ecosys-

tem. A competing calibration provider, for example, could deploy

ransomware to the report storage of another provider, which prevents

any calibration records from being accessed until a fee has been paid.

Not only would this potentially allow the competitor to become a bet-
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ter option in the eyes of consumers requiring calibration (whilst also

destroying business relationships for the target), traceability verifica-

tion and other processes would be significantly delayed or fail, leading

to an inability to verify whether an IoT device or system can provide

correct measurements.

Flying Debris

In the event of attack, there may be a secondary impact that damages

the calibration infrastructure even if other targets were the intended

focus. For example, a DoS attack may result in failure to verify if

the network is shared with other systems. In the current state-of-

the-art in calibration, a centralised storage infrastructure is used. An

attack on the availability of the storage would result in significant de-

lays in traceability verification. This may leave robotic systems in an

unreliable state, potentially resulting in uncontrolled and/or inaccu-

rate movements and ultimately lead to a precautionary or immediate

shutdown of operations.

Inability to Repudiate

Finally, as well as constraining the behaviour of field devices, and

close-to-field devices, a discussion of mitigating potential compromise

is important. Specifically, ensuring that devices are held accountable

for the data they collect and transmit, such as measurements taken

from a sensor device. The data should be recorded such that incorrect

measurements in traceability verification, for example, can be traced

directly back to the device itself, aiding in isolation and mitigation

measures to take place in the event of compromise.
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7 — Securing Calibration Record

Keeping in Digital

Environments

Given the proposed threat model and discussion around protection

requirements in Section 6 – primarily those of integrity, availability,

non-repudiation and tamper-resistance – the key question is what a

suitable design would be for a solution that supports calibration trace-

ability and forensics in digital environments, where robots are em-

ployed. A summary of the protection requirements that correspond

to calibration record keeping are as follows:

(R1) Allow for the collaboration between interacting parties in the

calibration ecosystem, including but not limited to: device op-

erators, manufacturers, regulators and calibration agencies; via

storing calibration records in a tamper-evident and fully-decentralised

manner (calibration integrity);

(R2) Enable efficient and timely record-keeping (storage and retrieval),

that is also highly available in the event of attack/compromise;

(R3) Allow for the transparent verification and proving of calibration

status prior to device and system operation.

Solutions such as decentralised, cryptographic hash chains [252, 253],

where each hash could be associated with a calibration report, show

some success. Unfortunately, existing challenges such as ensuring

synchronicity across networks and selecting correct hashes remain a
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problem. However, using blockchains as a fully decentralised storage

mechanism satisfies these problems [254].

Naturally a candidate solution, blockchains provide an innate tamper-

proofing mechanism which can be used to track transactions, in this

case those that involve operations using calibration reports, which

is key to auditing and verifying calibration traceability. Specifically,

this can be achieved by applying a transaction-based state machine,

or smart contract, on top of the blockchain storage infrastructure that

allows to support application for traceability verification and foren-

sics in a non-repudiable manner. Furthermore, a blockchain is also

fully decentralised and highly available, which can support not only

the integrity and availability requirements (i.e. via replication), but

also requires no party to blindly trust others within calibration work-

flows [255,256].

Meeting the protection requirements at the scale of the Internet is a

challenge, even more so with considerations given to safety-critical IoT

systems such as robots. Specifically, such systems require a highly dis-

tributed infrastructure that does not rely on centralised components

such as centralised authorities, where a single point of failure could

hinder the availability and integrity of a system. Instead, the use of

a blockchain allows for a peer-to-peer (P2P) transactional network of

nodes to independently maintain storage of calibration records, with

the use of strong cryptographic links for ensuring data integrity and

enforcing non-repudiation. Keeping a record of all transactions, such

as creating calibration reports (a result of calibrating devices) or veri-

fication checks, ensures that calibrated devices at all levels in the cal-

ibration ecosystem cannot deny any operations carried out and thus,

be held accountable for these actions.
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In a blockchain network, each node receives transactions in a different

order. All transactions that are received within a certain time period

are aggregated into a new block. To ensure that data in all blocks

remain consistent across all peer nodes in the network, a voting (min-

ing) scheme is employed. Instead of a centralised vote, a proof-of-work

(PoW) or proof-of-stake (PoS) model is used to determine which node

wins the vote to determine the next accepted block [257,258]. To pro-

vide an incentive for good behaviour, an incentive system is used such

that each node processes the transactions it receives into the next

block and a transaction fee is paid to the mining node of the block

including these transactions. Therefore, each node is incentivised to

solve as many blocks as possible. Ultimately, each transaction consists

of performing certain fixed operations defined by a smart contract, and

finally modifying the persistent data on the blockchain.

7.1 System Design

With regard to the design of an appropriate blockchain-based solution

for calibration record keeping, there are several points to consider.

First, what will be stored on the blockchain that is necessary for cal-

ibration traceability verification? Second, how can completeness be

achieved in traceability verification from an auditing/forensics stand-

point, such that no pertinent information is missing? Third, how can

this new solution provide efficient, yet secure, traceability verification

over the data stored on the blockchain platform?
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What is Stored on the Blockchain?

The first consideration to what will be stored on the blockchain relates

to both the data that will aid in verifying calibration traceability, but

also data which provides input to tracing measurements back to IoT

devices (i.e. robot components) at the field level. From the calibration

hierarchy (Figure 6.1), it is clear that all devices are associated with

a calibration report. This report outlines information about reference

(parent) calibration devices and operating ranges that were tested in

calibration with a measurement uncertainty, among others. Further,

the report also details the technician and organisation responsible for

the device’s calibration. An example calibration report can be seen

in Figure 7.1. Given that calibration reports in the current state-of-

the-art are paper-based, with a digital form taking form of a simple

PDF replication or scan, the concern is how to best design a digital

calibration report. While it is relatively simple to store PDF files

and maintain integrity and regulate access to them, it is much more

difficult to perform efficient operations on the data contained within

the reports. There has been work in this aspect, with the idea be-

ing to ensure digital calibration reports can be universally exchanged

and understood, for example using the eXtensible Markup Language

(XML) [31]. This serves as an approach for digitising reports and sug-

gesting measures for authentication, encryption and signed transmis-

sion of calibration reports. In the proposed digital calibration report,

there are 4 subjects within the data, corresponding to: administrative

data (i.e. parent references, organisational information, etc.); results

of calibration; comments and a human-readable document. Notably,

while the human-readable document may be useful, in a blockchain

implementation it may be more useful to make use of a smart con-
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Device ID: 11241
NPL

Device Type: Temperature Sensor

Report #9821-11241

Calibration Date: 12/12/12

Calibration Time: 4:16:37pm

Calibration Lab Org1 Org8

Parent ID 922 861

Manufacturer AeroHW Flyware Inc.

Next Calibration: 12/12/13

Parent ECDSA 
Private Key

Technician ECDSA 
Private Key

Figure 7.1: Example (Simplified) Calibration Report

Device ID: 11241
NPL

Device Type: Temperature Sensor

Certificate #9821-11241

Calibration Date: 12/12/12

Calibration Time: 4:16:37pm

Calibration Lab Org1 Org8

Unit ID 922 861

Manufacturer AeroHW Flyware Inc.

Calibrated By: _________________

Next Calibration: 12/12/13

Sign Sign

Technician

Organisation

Figure 7.2: Signing Calibration Certificates

tract to collect the necessary information and a different process to

present the data, ultimately reducing storage and economic costs. In

this work, as well as storing reports, information about the technicians

and organisations will also be stored on the blockchain. By storing

the reports, the information about reference devices can be used by

a smart contract to verify traceability by looking up the associated

parents and verifying their calibration, tracing upwards to the master

calibration devices maintained at the root (national) level.
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Using the Blockchain for Traceability Verification

The next step after deciding what is stored on the blockchain, is to

understand how traceability verification can be conducted. Popu-

lar blockchain implementations, such as Ethereum [259], make use

of smart contracts to execute code and interact directly with the

blockchain. They are typically used to automate the execution of

an agreement on a transaction such that any participants involved in

the transaction are immediately certain of the outcome without the

need for an intermediary party [260,261]. For traceability verification,

the smart contract can be used to automate the verification check and

verify whether there is a complete, unbroken chain of valid device cal-

ibration at each stage up to the root of trust (NMI). In a secure boot

for a robotic system, for example, the smart contract can be executed

such that the system can only be allowed to begin operation under

the assumption each of its components have valid calibration. An

overview of the smart contract interaction for a sensor component in

a robotic system can be seen in Figure 7.4. The contract will take

the input of a device ID and execute a function to verify the trace-

ability of a measurement from the sensor. The algorithm used for the

verification check can be found in Appendix D.1, which verifies all

calibration reports to the root of trust and checks if the root organ-

isation is an NMI. If, and only if, the chain of traceable calibration

is valid and unbroken, a verified result is returned. While this alone

allows for one to verify whether traceability is complete as part of a

calibration validity check, it does not prevent an adversary from inter-

fering with a device’s chain pretending to be a certified technician. To

this, the use of ECDSA (Elliptic-Curve Digital Signature Algorithm)

signatures are used to prevent the forgery or creation of fraudulent
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Sensor

Device ID

Smart 
Contract

Valid/Invalid 
Trace Blockchain

Trace Check

Figure 7.3

Figure 7.4: Sensor Traceability Verification using a Smart Contract
A sensor’s device ID is passed into the smart contract which is used to

verify its calibration traceability by checking against the appropriate

records in the blockchain

calibration reports in the blockchain [262,263]. Upon calibration, the

device’s public key will be signed by the certified technician, whose

own key is signed by the certifying organisation, and in turn finally

signed by the root of trust NMIs. As part of the traceability verifi-

cation check, the signatures are also verified by the smart contract,

which adds a further level of security in establishing a chain of trust.

7.2 Evaluation

The third and final consideration for adopting a new solution to this

problem, is to evaluate whether or not a real-world implementation

is practical – aside from being theoretically sound from a security

standpoint.

7.2.1 Blockchain Environment

For the blockchain implementation, the Ethereum [259] blockchain

is used. Ethereum is a Turing-complete, decentralised value-transfer

environment which facilitates the use of smart contracts to interact

with the underlying blockchain. Transactions in Ethereum are those

which modify the persistent memory of the state machine, and needs

to be run by all nodes to ensure synchronicity across the network.
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Smart Contracts

In Ethereum, smart contracts are written in a programming language

called Solidity [264], which is implemented as a set of 140 opcodes

which all nodes execute deterministically. The opcodes condense to

form a bytecode string which can be published on the network in the

form of a smart contract. During deployment, a transaction is created

by a user who deploys the contract and the contract is given its own

unique address. When the transaction is accepted, the smart contract

can persist. The smart contract can also have many functions and

can also allocate persistent memory on the network, and any user

that wishes to interact with it uses the address to call its functions.

Given that each transaction function requires computational resources

to be executed, every opcode is assigned a fixed cost that is charged

for executing the contract.

In this implementation, the purpose of the smart contract is to define

the functions set out in the system design. First, functions for estab-

lishing the calibration hierarchy were written, which includes creating

technicians, organisations and calibration reports. Next, a function

was written which enables a user to verify the traceability of a device.

The entire list of functions and descriptions can be viewed in Table 7.1.

The smart contract was deployed and tested on a private Ethereum

blockchain (Ganache) [265], as well as a public test network (Ropsten

Testnet [266]) with aid from the Truffle testing framework [267].

Ropsten Test Network

In order to understand how the new solution performs practically in

a real-world environment, it was deployed on the Ropsten test net-

work [266]. Also known as the Ethereum Testnet, Ropsten is the
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Function Description
createOrganisation Accepts an ID and a name,

and creates an organisation
on the blockchain

createTechnician Requests an Ethereum
address and an
organisation id, and will
create a technician on the
blockchain

createReport Accepts a number of
parameters, such as the
device id and technician id,
and creates a calibration
report object on the
blockchain

TraceCal READ Accepts a device ID and
returns a root
calibration-report if it has
one, else returns the
calibration-report of the
device itself.

getParentReport Accepts a device and
returns its direct parent’s
calibration report or
NULL.

getOrgName Accepts an organisation ID
and returns the name of
the organisation

getTechnicianOrganisation Returns the organisation
ID of the organisation who
certified the technician

Table 7.1: List of Smart Contract Functions
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largest Ethereum test network1 and runs the same PoW protocol

as Ethereum. Unlike classic Ethereum, Ropsten is designed specif-

ically for testing a smart contract before it is deployed on the main

Ethereum network. In terms of cost, Ropsten uses a form of Ether

called rEth which has no real-world cost. While this can also be pro-

duced from mining, it can also be received from faucets for testing

transactions without imposing a legitimate cost. In comparison with

other Ethereum testnets, such as Kovan [268] or Rinkeby [269], which

use a Proof-of-Authority (PoA) consensus protocol and have lower

block confirmation times, Ropsten best reproduces the current state

of Ethereum and is best for realistic testing of the new protection

mechanism.

Meeting the Protection Requirements

Before subsequent evaluation, it is important to discuss how the pro-

tection requirements pertinent to secure calibration record keeping are

met by the solution. Simply, a new solution should allow for the col-

laboration between interacting parties in the calibration ecosystem,

in a manner which protects the integrity of calibration in a tamper-

evident and fully-decentralised manner. The solution should be highly

available, and allow for efficient and transparent verification of device

calibration status at any level in the hierarchy. First, all parties can

interact with the proposed blockchain solution via the smart contract,

which provides the necessary functions required to verify device cal-

ibration (R1 and R3). Second, the solution provides a basis for au-

diting and calibration forensics via redundancy and replication across

Ethereum nodes (R1), with the chaining of transactions via crypto-

1At the time of writing
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graphic links also preventing tampering of the data. Furthermore, by

storing the technician and relative organisations involved in a device’s

calibration, there is more coverage available to aid with forensics and

auditing. Third, in the smart contract, ECDSA signatures are used

to prevent the forgery of calibration reports, which could lead to the

compromise of entire traceability chains (R3). The smart contract ver-

ifies that the report is signed by a legitimate technician, whose signing

key is signed by a legitimate calibration provider for whom they cal-

ibrate, ultimately verifying the chain of trust along the traceability

chain. Finally, given that the data is replicated across the blockchain

network, even if one or more nodes are to be taken down, the data will

still remain available to be read and written to the blockchain (R2).

7.2.2 Scalability Testing

The first step in the evaluation, after testing the functionality of the

implementation, is to determine how well the solution scales with

the ubiquitous nature and size of the calibration hierarchy (R2) and

ultimately, the Internet. The primary measure for scalability in this

setting is with regard to execution time of the smart contract, for

example how long it takes to verify traceability for a device. As well

as this, the additional security measures such as digital signatures

were also tested in terms of scalability. The following experiments for

evaluating scalable traceability verification have been run on a local

blockchain using Ganache as the provider and Remix IDE for running

the contract calls. Ganache is used to get the contract execution time,

as the contract is executed almost immediately, whereas on the main

Ethereum network other contracts may be executed in the same block

and measuring execution time would be difficult.
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Figure 7.5: Impact of # Devices on Execution Time
Verification times remain under 1s in the worst case of 1 million devices

with the use of digital signatures

Impact of # Devices on Execution Time

The first set of experiments investigated the impact of the number

of devices in the calibration hierarchy on the execution time of the

smart contract for traceability verification. To match more realistic

calibration hierarchies, varying numbers of devices at the field level,

N , was used as a baseline. From this, the number of levels in a

hierarchy was represented as log(N). If 100 field devices were present,

for example, this will result in two parent levels and the root NMI

level. Furthermore, the number of interacting organisations in the

hierarchy is represented by log2(N −1). Using the same example, 100

field devices maps to 4 organisations.

In this experiment, N falls in the range of 10 ≤ N ≤ 106. The

results for execution time of traceability verification can be seen in

Figure 7.5 (red). It is clear that as the number of field devices and
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levels increases, the time for verifying traceability also increases. No-

tably, the execution time, even in the worst case of 1, 000, 000 de-

vices, never exceeds 300ms. As well as the execution time without

additional overhead, the time was also measured with the addition

of signatures during traceability verification (blue). The addition of

signatures shows that execution time more than doubles. While this

may seem like a significant jump, even in the worst case of 1, 000, 000

devices, the execution time is still under 800ms, which is still a sig-

nificant improvement over the current state-of-the-art [31]. Further,

if calibration is performed during system prep (i.e. secure boot), this

can be considered a reasonable wait with regard to safety.

Impact of # Levels on Execution Time

While N in the previous experiment was the primary variable, in real-

istic settings there may potentially be more than log(N) levels. There-

fore, a natural next step is to investigate the impact of the number

of levels on contract execution time. As shown in Figure 7.6, the ex-

ecution time in all cases increases as the number of levels increases.

As the verification function requires reaching the root level, the time

spent will of course increase as the number of antecedent levels in a

device’s traceability chain also increases. Similar to the previous ex-

periment, the addition of signatures also increases the execution time.

At lower numbers of levels, there is only a little impact, but in the

worst case of 50 levels the impact increases over 6 fold (around 3.5s).
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Figure 7.6: Impact of # Levels on Execution Time
Verification times significantly outperform current state-of-the-art, with

the use of digital signatures adding only a few seconds to verification in

the worst case

7.3 Discussion

In robotic workflows, it is critical to ensure that operations a robot

can carry out are done so safely and robust to adversarial pressure. It

is clear that calibration ultimately underpins safe operation. The need

for digitisation brought rise to a number of problems when looking at

the current state-of-the-art, to which lead to the design of this new

blockchain-based solution to secure record-keeping in calibration, a

foundational step.
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7.3.1 System Characteristics

Latency

In the evaluation, it is seen in Figure 7.6 that in the worst case of

50 levels, verification can be carried out in under 4 seconds. In a

realistic context, take the example of a surgical robot. If a typical

surgical robot is assumed to have tens of sensors and other compo-

nents that require calibration, such as the Raven-II [45] which uses 9

sensors alone for force-feedback and orientation, the verification can

be assumed to take at most a few minutes (or less if it is done in

parallel), which is also roughly the time it takes to prime a patient

(i.e. IV insertion, anaesthesia preparation, etc.). As described by

Hackel et al. [31], NMIs at the root level will perform around 10,000

calibrations per year, intermediaries perform around 100,000 per year

and internal facilities situated in safety-critical environments to per-

form potentially millions of calibrations per year. Given the time

to complete a traceability check, a key component of calibration it-

self, and the increasing numbers of IoT systems being implemented,

the issues facing the current state-of-the-art will be evermore present.

The current state-of-the-art, being a collection of systems and pro-

cesses dealing with manual paper records [31], can take in the order

of several hours to days for completing a single calibration verification

check, in contrast to the proposed blockchain solution which signifi-

cantly outperforms this.

Scalability

The scaling factors in the evaluation include the number of field de-

vices, such as robot compnents, and the number of levels (interme-
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diaries) in the calibration hierarchy for a device. It is clear that

verification can be carried out within a reasonable wait time, such

as during the device prep cycle or secure boot, using the proposed

blockchain system. While it does meet the protection requirements

and does well in terms of scale, there are, however, some concerns

regarding scalability. Specifically, these scalability concerns are with

regard to the Ethereum blockchain. Ethereum uses a Proof-of-Work

(PoW) consensus and by definition is hard to solve and ultimately,

not scalable by design. This leaves its use rather suboptimal, aside

from certain cases such as cryptocurrency design. In Ethereum, the

amount of gas [259] each transaction spends determines how many can

fit into a block. If a transaction executes more operations, the more

gas it costs to execute it. Therefore, since it is possible that an entire

block’s gas limit can be spent in one transaction, the block mining

time for written calibration data to propagate through the network

can also increase. Ultimately, given that PoW is not truly scalable, it

puts out the question as to whether other consensus mechanisms may

be more valuable in a real-world environment. Because of the limi-

tations present with PoW consensus, Ethereum (2.0) [270] makes use

of a Proof-of-Stake (PoS) consensus protocol and sharding of chains

to overcome drawbacks of higher latency, low throughput and lack of

scalability. Instead of relying on physical miners and electricity, PoS

makes use of validators and deposits of Ethher, ultimately reducing

the environmental impact. The validators lock up stakes of Ether as

collateral into a deposit contract. A validator from a select pool pro-

poses a block depending on the stakes that are deposited, and one

with more stake will have a higher chance of proposing a new block

and earning a reward. In the event of a cheating validator, deposited

191



stakes can be destroyed. With regard to sharded chains, transactions

can be handled in parallel, speeding up the network and providing

better scaling. As a point of future work, it would be interesting to

evaluate improvements of scalability for traceability verification using

Ethereum 2.0, as well as other consensus mechanisms.

7.3.2 Security and Privacy

In this chapter, it is clear that a blockchain-based solution acts as a

good collaboration mechanism between different players in the calibra-

tion ecosystem. In particular, the use of a permissionless blockchain [271,

272] helps address concerns over privacy related to user profiling by

internal adversaries who may apply traffic analysis techniques (e.g.

Chapter 3) over calibration traffic. Combining blockchains with ap-

propriate certificate management schemes [67,69] also prevent malice

by internal and external adversaries to resist fake calibration reports,

technicians, etc. Furthermore, the ability to ensure that measure-

ments, such as those from sensor devices, can be verified for correct-

ness prior to operation lays a foundation for securing the operation

at a fundamental level. Additionally, the solution also enables trans-

parency in the calibration supply chain pertaining to robotic work-

flows that may also have positive secondary impacts. This include

aspects such as extending collaboration across calibration workflows

which in turn can support device provenance among robotics appli-

cations. With respect to the challenges associated with the context

of this chapter, a discussion on how the blockchain solution meets

various security properties follows.
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System Integrity

Tampering with calibration records in the new solution is prevented by

use of a consensus mechanism and cryptographic links between blocks

of transactions. Calibration integrity is met through traceability ver-

ification, for example that it has not beeen revoked or invalidated.

Further, the forgery of calibration reports is prevented by having the

certified calibration technician sign the reports for devices thy cali-

brate, and verified during traceability verification.

Anonymity

For a device’s traceability chain, it is important to prevent information

from leaking to parties that are not involved (directly) in the device’s

calibration, for example others in the chain. To do this, all read op-

erations in the permissionless blockchain are anonymous, as the data

is read from the verifier’s local machine and maintains unlinkability

between the verifier and device being traced. Unfortunately, however,

Ethereum does not protect operator anonymity. Specifically, the read-

ers and verifiers are not kept truly anonymous and write operations are

publicly recorded. While the pseudonymous electronic address used

to link transactions can preserve privacy, continous verification could

leak this relationship. Given that the security property of anonymity

is not entirely satisfied by the Ethereum solution, it is natural to

pursue an investigation into other potential solutions. First, other

types of blockchain could be used in place of this, however private

and consortium blockchains [271] require a known set of participants

and provide no anonymity, and so other forms or uses of a blockchain

might require a degree of change. It is possible that mixing services

on-chain [273, 274] (also called tumblers) could allow probabilistic
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anonymity, where transaction tokens are mixed with others and the

same values are sent from independent addresses. However, one prob-

lem with this approach is keeping transaction costs low enough to

advocate for frequent use. In robotic systems, calibration checks will

be done quite regularly and potentially be required on-the-fly. An ex-

ample of this is Hawk [275] which proposes a mix construction via ring

signatures. Finally, approaches which don’t make use of blockchains,

while they may require more components, could also be a competitor

to this solution and help solve the anonymity problem. It is possi-

ble to consider the use of another tamper-resistant data store (i.e.

tamper-resistant, forward-secure audit logs [276,277]) in combination

with an appropriate access control mechanism and a group signature

scheme for conditional linkability, as a solution to meet the protection

requirements away from a blockchain. This point about access control

is the focus of the next chapter, and group signatures for conditional

linkability is a point for future work.

Availability

Currently, the use of centralised data storage for calibration records

leaves the calibration ecosystem vulnerable to targeted attacks on and

compromise of the storage servers. Thus, the consideration over the

secure design of the storage infrastructure is important, with delays

or denials of verification potentially heavily impacting operational ef-

ficiency and accuracy. Simply, a decentralised storage infrastructure

can meet the requirement for high availability and scale, additional

mechanisms would need to be coordinated to meet the rest of the

protection requirements – which the blockchain solution fortunately

provides.
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System Forensics and Auditability

The system as a whole is required to be able to withstand hostile

scrutiny in a curt of law. Simply, if a robot was to misbehave or mal-

function, was it the operator who is to blame? Or are problems such

as jerky movements the result of invalid calibration. Several lawsuits,

such as those in surgical contexts [278, 279] are clear demonstrations

of the potential liabilities that can arise with robotic systems. Thus,

support for system forensics is required to ensure that the correctness

of calibration can be verified in all aspects, and to ensure appropriate

records of such are maintained which can be used at a later date. In

comparison with the current state-of-the-art, where forensics is carried

out over disconnected, centralised databases of calibration reports,

the blockchain-based system keeps a strong, tamper-resistant trail of

evidence that can be followed throughout entire traceability chains.

Furthermore, additional smart contracts could be written to support

generalised and feature-specific forensic and auditing applications.

7.4 Summary

As we start to rely on IoT cyberphysical systems to perform criti-

cal tasks such as surgeries or direct operational control of utilities,

the security of the calibration infrastructure itself will start gaining

importance and mechanisms will be required to deal with attackers

in the calibration ecosystem. In the presence of adversaries, it can

be argued that calibration correctness becomes a security require-

ment. In this chapter, a new security mechanism is proposed that

enables sensed data to be subject to verification via on-the-fly cali-

bration checks. This involves two requirements. First, end-to-end cal-
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ibration traceability, i.e. tracing measurements and calibration status

to their corresponding gold (national) standards by validating cali-

bration certificates on-the-fly. Second, calibration forensics; enabling

the operator, regulator(s), manufacturer(s), and calibration agencies

to work together to create a tamper-resistant trail of recorded activity

to aid system forensics, in a court of law when things go wrong. There

have been cases of lawsuits filed by patients, accusing hospitals of neg-

ligence over safety considerations when surgical robots have inflicted

accidental injuries [278, 279], and such are illustrative of the signifi-

cant liabilities and stakes involved when IoT cyberphysical systems

are involved in safety-critical tasks.

Ensuring system safety in the presence of adversaries is a significant

security challenge. Calibration security is one part of a larger frame-

work of security mechanisms required to secure IoT cyberphysical sys-

tems. While much attention has focused on the security vulnerabilities

of IoT devices, focusing on the misapplication (or non-application)

of secure channels, weak (or non-existent) authentication, and miss-

ing/invalid configurations [280,281], among others, the security of the

sensed data itself is a significant challenge. In this chapter, a concrete

mechanism is proposed for securing the integrity of calibration based

on smart-contracts leveraging the Ethereum blockchain. The mech-

anism was motivated by the need for a mechanism that is: highly

available, verifiable and tamper-resistant, and works in a zero trust

environment. The proposed mechanism can successfully and scalably

verify traceability chains, to ensure one can maintain valid calibration

and rapidly attend to adversarial faults, leveraging blockchains as a

highly-available tamper-resistant chain of evidence.
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7.4.1 Future Directions

Although the proposed blockchain-based solution shows to meet the

requirements, there are some future directions to this work. First,

in terms of scalability, an avenue for future work here would be to

explore other consensus mechanisms such as Proof-of-Stake, to de-

termine whether times will improve as we scale to larger calibration

hierarchies and the Internet. Second, the focus will turn to confiden-

tiality and anonymity. In terms of confidentiality, while NMIs are or-

ganically trusted for correctness they are not necessarily trusted with

leaking information about what system operations are being carried

out. This leaves a solution open to the possibility of permissioned

or consortium blockchains (such as Hyperledger Fabric [282]) as the

base for the protection mechanism as opposed to a public permission-

less blockchain (Ethereum). This work assumes there is no need for

a trusted party, however one could argue that the trust maintained

by a set of international NMIs could pave the way for set of trusted

points. One question which may arise is why a system making use

of traditional public-key infrastructure (PKI) is not considered. PKI

unfortunately demonstrates some key issues, for example: the com-

promise of private key(s); lack of public verifiability; impersonation

of certificate authorities (CAs); among others. Given that in this

approach the focus is on blockchains with an open, transparent and

secure foundation, the nature of public verifiability (reads) eliminates

relying on third-party CAs (trust). Further, the distributed nature

of data eliminates availability risks found with older PKI systems.

In the case of auditing, blockchains are time-stamped and records

and linked, protecting the integrity of data in a secure, distributed

manner which is better suited to IoT contexts. Next, with regard to
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anonymity, the use of zero-knowledge proofs for verification would aid

in preventing information leakage surrounding information contained

within calibration reports and metadata which arises from verifica-

tion checks along traceability chains. Potential avenues in this case

could surface from zero-knowledge smart contracts (i.e. zk-SNARKs

in ZCash smart contracts [283]) or even group signatures where each

device in some child level (i.e. field level) would be grouped together

with its calibrator (i.e. some intermediary facility), who can then

provide revoking responsibilities etc.
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8 — Access Control for

Robot Calibration

Traceability

During the traceability verification process, it is important to verify

that an individual making the request has the appropriate rights to

do so. For example, it is sensible to allow a verified system/device

owner to access the calibration reports for the components a robot

comprises of, but not necessarily access any information about the

parent reference devices that are used to calibrate the system. As

well as this, it is also important to give consideration to the ability

to write calibration reports for a device. Specifically, it should be an

authorised technician from a reputable organisations that has access

to write reports for specific devices, as opposed to anyone that could

claim they are a certified technician and forge their own calibration

reports to gather sensitive information about a system’s calibration.

Ultimately, the key question here is how can access control be managed

in a digitised calibration ecosystem to ensure the security of robotic

deployments and information flows within the calibration ecosystem.

8.1 Calibration Traceability and Access

Control

While there exists other challenges associated with digitising calibra-

tion processes, a key concern pertains to the accessing of calibration
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reports and the authorisation of people, systems and processes trying

to access them. In the calibration ecosystem, many of the interact-

ing parties cooperate in harmony. For example, this includes NMI

organisations at the top of the hierarchy who act as the root of trust.

Unfortunately, a subset of these organisations within a robot’s chain

of traceable calibrations may share an adversarial relationship – that

is, to be in direct competition, or conflict, with one another. Consider

the case of a robotic system where each of its components, such as

sensing devices, require frequent calibration to ensure that measured

data is accurate and reliable. While the calibration of many robotic

systems may ideally be done in-house, realistically calibration is usu-

ally performed by a third-party calibration service provider. This

may be some intermediary calibration facility, who may wish to keep

the relationship between themselves and the system-level organisa-

tion strictly confidential. This may be for a variety of reasons, but

can include the likes of system-level organisations showing responsi-

bility and capability to carry out their own calibrations, or to help

maintain business relationships with stakeholders. If this information

is to be leaked to competitors, this could compromise the confidential-

ity among participants (who-calibrates-for-whom). For example, these

competitors could be industrial robotics companies or hospitals which

employ surgical robots. In another example, allowing a technician

to calibrate a robotic system for an organisation in competition with

the one they already calibrate for could lead to the leakage of sensi-

tive business secrets. As well as protecting the confidentiality among

participants, there are two other considerations regarding operational

confidentiality of robotic deployments. The information regarding the

frequency of calibration and the components of a robotic system be-
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ing calibrated could lead to its compromise. For instance, monitoring

calibration processes and collecting other meta-data could reveal how

system components are being used. Therefore, it is also important

to protect what-is-being-calibrated and how-often-it-is-calibrated. The

last consideration which pertains to access control for robot calibra-

tion is efficiency. In the previous chapter, access to the reports were

assumed to be granted, however in a real-world environment this is

not as simple. In the current state-of-the-art, to carry out a veri-

fication of the calibration status of a robot’s component, a subject

(i.e. device owner) must first request the report for the device from

the responsible organisation. Once access is granted, for example if

some imposed economic cost is satisfied, the parent devices can be

identified and the process is repeated up to national standards [29].

While it is a relatively trivial process, even a conservative number of

devices could easily overwhelm efficiency standards for verifying the

calibration of a robotic system and all its components before it is due

to begin operating. In the current state-of-the-art, this could take

anywhere from a few hours to even days or weeks depending on the

organisation requirements [31].

Ultimately, five key requirements arise which a solution should satisfy:

(R1) How can the integrity of calibration, from a traceability verifi-

cation standpoint, be maintained to mitigate damage to other

levels in a traceability chain?;

(R2) How can the confidentiality of business relationships (who-calibrates-

for-whom) be protected, whilst providing transparency for cali-

bration traceability?;

(R3) How can operational confidentiality for robotic workflows be
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maintained, by protecting what-is-being-calibrated and how-often-

it-is-calibrated?;

(R4) How can conflicts between subsets of interacting parties be man-

aged, such that unintended disclosure of information can be

avoided?;

(R5) Can access control in calibration traceability be carried carried

out efficiently (on-the-fly) whilst satisfying R1–R4?

8.2 A Unified Access Control Model for

Calibration Traceability

The potential compromise of calibration integrity and confidential-

ity, coupled with adversarial relationships among subsets of interact-

ing parties, presents a unique access control challenge, where meta-

information flows (e.g. what-is-being-calibrated, etc.) need to be man-

aged. Specifically, the key failures are exacerbated by varying access

control requirements within a multi-level hierarchy.

8.2.1 Information Flow Constraints

The first step in designing an appropriate solution is to first define

the information flow constraints that should be enforced. For sub-

sequent discussion, references will be made to the information flow

model depicted in Figure 8.2.

Multi-Level Integrity

The first requirement (R1) is to maintain the integrity of calibration.

By maintaining the integrity of calibration reports at the NMI level,
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Figure 8.1: Information Flow Model

Figure 8.2: Information Flow Model
Information flows from a high integrity and low confidentiality source

(root level) to a low integrity and high confidentiality destination (field

level), with conflicts of interest compartmentalised to prevent

unauthorised information flows between them
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the damage that is inflicted to intermediary levels below the NMI can

be reduced. If compromise occurs at the root level, the validity of

calibration at all subsequent levels is questionable. By maintaining

the integrity of reports at each level, the damage can be limited to

its immediate locality, as opposed to inflicting widespread damage.

Ultimately, information flows from a high integrity source, the root

calibration units at NMIs, to a low integrity destination, the compo-

nents which make up robotic systems.

Multi-Level Confidentiality

The next requirements, R2&3, relate to maintaining confidentiality

among participants (business relationships between providers, stake-

holders, OEMs, etc.), as well as the operational confidentiality of field-

level robot deployments. An interesting observation while looking at

calibration information flows is that it is relatively trivial to map

components in traceability chains to real actors. For example, a robot

component’s calibration report contains information that can reveal

the provider of its calibration, and information that describes that

provider’s internal calibration processes. In the context of NMIs at the

root level, the mapping of components does not succumb to confiden-

tiality concerns given calibration at this level acts as the root-of-trust

and is globally available. However, intermediary providers may not

wish to reveal this information to other (competing) providers, and

thus this mapping is of real concern. As well as this, the timing of

verification checks could potentially compromise the operational confi-

dentiality of robotic deployments. For example, the timing of surgical

procedures could be leaked as a result of continuous monitoring of

calibration verification checks for a surgical robot. Furthermore, it is

204



also key to ensure that verification does not reveal information about

robotic deployments to intermediaries in a calibration chain between

the robot at the field level and NMIs at the root level. The reason

for this is simple: calibration traffic can leak information to parties

further down a chain. For example, a robot manufacturer may em-

ploy the services of a third-party calibration provider to calibrate the

sensors of the robot, but may not wish to reveal this third-party rela-

tionship (e.g. to protect stakeholder relationships). Overall, the field

level where robotic systems are deployed must retain the highest level

of confidentiality, whilst calibration at the root level have the lowest

confidentiality requirements.

Conflicts of Interest

The last constraint pertaining to calibration information flows is to

prevent the unintended disclosure of information to competing parties

– in particular that relating to a natural conflict present between a

subset of calibration providers that provide services to robotic sys-

tems. For example, a hospital that employs several surgical robots

may wish to hide the identity of calibration providers who are used

to calibrate the robots. A (potentially malicious) technician from this

company should not be allowed to calibrate robots for other hospitals,

that may be in competition with the first, to prevent the leakage of

sensitive business secrets. Ultimately, it is key to protect this informa-

tion and those in competition should be compartmentalised to ensure

that information cannot flow between them.
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8.2.2 Existing Access Control Models and

Calibration Traceability

Given the set of information flow constraints that cpme with calibra-

tion traceability, a natural course of action to pursue is to examine

existing access control models and design an appropriate mechanism

to enforce the constraints.

The Bell-LaPadula (BLP) model [34] meets the requirement for man-

aging information flows that are constrained by a multi-level hier-

archy of confidentiality requirements. While it is most prominent

in military or government applications, this existing model matches

the multi-level confidentiality constraint in which calibration infor-

mation should flow from a high confidentiality source (the robot) to a

low confidentiality destination (calibration providers or NMIs at the

root level). Unfortunately, BLP alone does not satisfy the other re-

quirements of integrity and conflicts of interest. Similar to the BLP

model, the existing BIBA model [33] prevents unauthorised modi-

fication wherein information flows from a low integrity source to a

high integrity destination are prevented. Again, however, while BIBA

satisfies the integrity requirement, it does not satisfy either of the

confidentiality or conflict of interest requirements. With regard to

managing conflicts of interest between calibration providers, the Chi-

nese Wall model mandates that access to data is constraint by what

data the subject already holds access to and not just by the attributes

of the data in question [35]. In contrast to this, BLP and BIBA place

no constraints on the interrelationships between objects and structure

is defined by the security attributes of the data.

Ultimately, while each of these models do satisfy individual require-

ments, neither of them alone will manage the undesirable information
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flows previously described. Thus, the unification of the BLP, BIBA

and Chinese Wall models is a natural next step.

8.2.3 Defining the Unified Model for Calibration

Traceability

For subsequent discussion of the novel unification of these models,

the related terminology is defined using notation based on the work

of Sandhu [284].

(Definition) Conflict of Interest Set

A Conflict of Interest (COI) set is defined as the set of conflict of

interest classes, that contains all calibration reports (objects) whose

providers are in direct competition with each other. Following stan-

dard notation, the set of n COI sets is denoted by {COI1, COI2, . . . , COIn},

where each set COIi = {P1, P2, . . . , Pk} and Pk is the group of cali-

bration reports which concern the same provider k.

(Definition) Set of Integrity Labels

The set of integrity labels is denoted as Ω = {ω1, ω2, . . . , ωq}, where

each label corresponds to a unique integrity level. In accordance with

the information flow constraints, each integrity label also constitutes

a unique confidentiality level.

(Definition) Security Label

A security label is defined as a set of two n-sized vectors {[i1, i2, . . . , in], [p1, p2, . . . , pn]},

where ij ∈ {COIj∪ ⊥ ∪T}, pj ∈ Ω and 1 ≤ j ≤ n.
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� Where ij =⊥, the calibration traceability chain does not contain

information from any provider in COIj.

� Where ij = T , the calibration traffic contains information from

at least two facilities who are in a conflict of interest set COIj.

� Where ij ∈ COIj, the calibration traffic contains information

from the corresponding calibration facility in COIj.

(Definition) Dominance Relations

The (transitive) dominance relations between security labels is defined

as follows, where the notation lj[ik] denotes the ithk element of the label

lj. A security label l1 dominates a label l2, denoted by l1 ≥ l2, where

l1 ≥ l2 ⇐⇒ ∀ik, pk = (1, 2, . . . , n)[((l1[ik] = l2[ik]) ∨ (l2[ik] =⊥

) ∨ (l1[ik] = T )) ∧ (l1[pk] ≤ l2[pk])].

� A label l1 dominates a label l2, provided that l1 and l2 agree

whenever l2 is not public or in conflict, and the integrity level

of l2 is higher than that of l1.

� The security label corresponding to an NMI at the root level,

{[⊥,⊥, . . . ,⊥], [ωq]}, is dominated by all other levels.

� The system high, denoted by {[T, T, . . . , T ], [ω1]}, dominates

all other levels.

� The dominance relation defines a lattice structure, where the

NMI label appears at the bottom and the level trusted appears

at the top. Incomparable levels are not connected in this lattice

structure.

In accordance with the proposed access control model for calibration

traceability, the rules for information flow as they apply are as follows:
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1. Simple Property: A calibration technician (S), may read a cali-

bration report (O), only if the label, L(S) ≥ L(O).

2. * (Star) Confinement Property: A calibration technician (S)

can only calibrate (write) a system component or unit (O), if

the label of the component dominates that of the technician,

i.e. if L(O) ≥ L(S). Specifically, a write operation corresponds

to the creation of a calibration report.

8.3 Evaluation

While the proposed unified model is theoretically sound, an impor-

tant factor is whether it is practical to enforce the constraints in a

real-world application. This is important, as if it is not efficient or

scalable enough in the real-world then it cannot suitably verify trace-

ability in appropriate time for safety-critical contexts, such as for sur-

gical robots. The evaluation follows a case example for which the

model can be applied and investigates the performance of the model

for authorising access to conduct traceability verification.

8.3.1 Case Example: Calibration Traceability

for a Robot’s Sensor

For subsequent discussion and keeping within the scope of this work,

the case example will follow the lifecycle for an infrared thermometer

sensor which is described in Section 6.2, and how the unified model

can be applied to it. Furthermore, the uncertainty calculations which

make up part of the traceability verification process are discounted.

This is due to the primary concern pertaining to the authorisation

209



time for enforcing the model contraints, as opposed to the overall

time to complete a traceability verification check.

In order to calibrate an infrared thermometer sensor, four things are

required: (1) a thermal radiation source; (2) a transfer standard (an

intermediate device used to compare measurements against those from

the device under test); (3) an ambient temperature thermometer; and

(4) a distance measuring device. As shown in Figure 8.3, an example

hierarchy of traceable calibration to national standards for the sensor

can be seen. In this example, the following is assumed:

� The calibration facilities O1–O3 are classed as intermediary cal-

ibration facilities, and O4 is a National Measurement Institute

(NMI)

� The infrared thermometer sensor is calibrated by technician T1

at calibration facility O1

� The transfer standard used in calibrating the sensor is itself,

calibrated by a technician T2 at organisation O2

� The facilities O2 and O3 are in direct competition with one

another

� The traceability chain information flows from the sensing device

to O1, to the transfer standard calibrated by a technician at O2,

towards the NMI (O4)
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Figure 8.3: Traceability Chain for Infrared Thermometer

Given the above assumptions and a description of the calibration

traceability lifecycle for an infrared thermometer sensor provided in

Section 6.2, a discussion on how the unified access control model can

be applied can now be described.

Initial Calibration

In accordance with the proposed unified access control model, and

taking the case example of the infrared thermometer sensor, its initial

calibration would be conducted by the technician T1 at the facility O1.

This process will output a calibration report for the sensor and will be

given the security label assigned to the technician: {[⊥,⊥,⊥], [ω1]}.

Similarly, the transfer standard is calibrated by the technician T2 at

the facility O2 and will have the security label: {[⊥, COI1,⊥], [ω2]},

where COI1 = {O2, O3} contains the group of calibration reports

which concern both the providers O2 and O3 that are in conflict. In

most cases, there will be no conflicts that arise as part of a device’s

initial calibration. However, some devices, such as those created for

military or other government organisations, may be classified in na-

ture. Thus, if the organisation previously used a calibration facility
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for calibrating a set of other devices, the new facility to be contracted

could be in competition/conflict with the other and thus the labels

would indicate a conflict in the chain.

Verifying Traceability

In accordance with the proposed access control model, the security

label of the device being traced to national standards must dominate

the label of the party carrying out the verification check. For example,

in the case of recalibration which first involves a traceability check,

the label for a device must dominate that of the verifier. As it is

required to read all the reports of all parents at each step in the

chain, up to national standards, the label of each parent should also

dominate that of the verifying party, such that for a traceability chain

C = {L(O1), L(O2), . . . , L(On)}, ∀c ∈ C, L(S) ≥ ci, where i, n ≥ 1

and L(S) is the label of the party carrying out the verification.

Recalibration

The technician performing calibration must first be allowed to carry

out the traceability check, such that the label of the component or

unit being calibrated dominates that of the technician, L(O) ≥ L(S).

Specifically, this dominance relation is satisfied when the technician

is not in conflict; i.e. if the technician is the same as the one who

performed the initial calibration or previous recalibration, then they

will be allowed to do so. Similarly, if not then the model would verify

that the new technician performing recalibration is not in conflict with

the previous, or others in the chain. That is, the traceability chain of

the equipment being recalibrated does not contain information from

both technicians in a conflict of interest set COIj.

212



8.3.2 Performance Evaluation

Now that a discussion on how the unified model can be applied to a

robot component in a realistic setting is clarified, the next step is to

determine its practical performance in the real world to support effi-

cient calibration verification on-the-fly and scale with large, complex

calibration hierarchies.

Experimental Setup

In this evaluation, an attribute-based authorisation framework follow-

ing the XACML standard [285] is used. An overview of the structure

of the framework used in this evaluation can be seen in Figure 8.5. The

framework provides a standard for access requests and policy specifi-

cation, where a client program, or Policy Enforcement Point (PEP),

brokers access requests between the subject and a server running a

Policy Decision Point (PDP). The experiments on the authorisation

framework were carried out on a virtual machine running Ubuntu

14.04 LTS with 64GB of RAM allocated to it.

Baseline Model

To provide a more in-depth comparison on how the proposed unified

model performs, the first step in the evaluation was looking at a simple

conjunction of the three aforementioned models (BLP, BIBA and Chi-

nese Walls) as a baseline to compare the unified model against. The

term RBIBA (Reverse BIBA) is used given that the information flow

constraints of BIBA are reversed to match those of BLP (Figure 8.2).

To create the baseline model, an XACML PolicySet was established

in which policies for each model are combined and enforced together

using a PolicyCombiningAlgorithm. As the policy set contains mul-
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Figure 8.4: XACML Authorisation Architecture

Figure 8.5: XACML Authorisation Architecture
A client (verifier) will issue a request for calibration (e.g. reading a

report) which is send to a Policy Enforcement Point. This will interact

with a Policy Decision Point which verifies whether the client has the

appropriate security label for successful action verification

tiple policies, with each returning different decisions based on their

individual constraints, the key question is what the combination algo-

rithm should return. In this case, the permit-unless-deny algoritm is

used which only allows a Permit or Deny response and will deny ac-

cess to calibration if any one of the combined policies returns a Deny

response. In comparison, the unified model is a single policy which

uses the deny overrides algorithm such that if any rule results in a

Deny response then this decision wins.

Authorising Traceability Verification

For the first part of the evaluation, the observations pertain authori-

sation time taken for access requests for calibration traceability verifi-

cation using the unified model. For comparison, this is also measured

against the baseline model.

Naturally, in the calibration hierarchy, there are several levels in a

traceability chain for a single robot component. A simple tempera-

ture sensor, for example, could be calibrated with a platinum resis-
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tance thermometer, which is in turn calibrated by a more accurate

thermometer, and finally by a helium gas thermometer (primary ref-

erence standard) [286]. In robotic systems, the number of levels could

be much greater, with some consideration given to more generic robots

which may use off-the-shelf components. For completeness, this ex-

periment measures the authorisation time for components that may

have up to 50 levels, with only a single parent (reference) device at

each level. As shown in Figure 8.6, the unified model is significantly

faster in authorising traceability requests compared to the baseline

simple conjunction in all cases, with authorisation times not exceed-

ing 11ms on average in the worst case, compared to roughly 30ms for

the baseline model.

Figure 8.6: Authorisation Time for Single Traceability Chain
The unified model outperforms a simple policy conjunction by at least

a factor of 2

In more realistic traceability chains, some devices are calibrated with

more than one reference (parent) device, such as the case example

215



described in Section 8.3.1. Each of these parent devices may also,

in turn, have more than one parent and so forth. This means that

instead of assuming a best case of a single parent hierarchy, there are

chains that may have several branches. Therefore, it is important to

measure the authorisation time for multiple branches. The second

experiment observes this impact for 2 and 4 branches per level. As

shown in Figure 8.7 and Figure 8.8, there is a similar pattern to a

single branch for a chain, with the unified model outperforming the

baseline model by at least 15ms in the worst case. Furthermore, there

is also an increase in the authorisation time as the number of branches

per level also increases. This is because the authorisations for each

parent device in respective branches also needs to take place up to the

root level.

Figure 8.7: Authorisation Time for 2 Branches Per Level
A similar result is seen at 2 branches per level compared to a single chain,

with authorisation times using the unified model improved by at least a

factor of 2 compared to a simple policy conjunction
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Figure 8.8: Authorisation Time for 4 Branches Per Level
More variation is seen among runs at each level, but authorisation times

still improved by a factor of 2 compared to the baseline simple policy con-

junction

In all cases, while the unified model does significantly outperform the

baseline simple conjunction, the authorisation time does increase with

respect to chain complexity. However, in the case of the unified model,

the increase of just a few milliseconds as the complexity of the chain

increases can be considered a reasonable wait on the device prep-cycle,

or if a critical measurement was to be taken [287].

Conflict Management

Pertaining to the conflict of interest set component of the security

label, it is the size of conflict sets, rather than the number of them,

which requires evaluation. This is because some sets may only contain

a small number of members, whilst others may contain more. Thus,

aside from measuring the authorisation time for chain complexity, the
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effect of the size of conflict sets on the authorisation time also needs

to be explored.

For the calibration traceability dataset, a set of synthetic calibration

reports were generated containing real calibration data. Each of these

reports were assigned a security label, where the integrity component

of the label corresponded with the level at which calibration was car-

ried out. The conflict component of the label was generated using a

G(n, p) variant of the Erdös-Rényi random graph model, where n is

the number of potential competitors and p is the probability of con-

flict. Further, the cliques of the random graph represented conflict

sets where each node ni was assigned a set of conflict of interest sets.

To evaluate the impact of the size of conflict sets, the number of poten-

tial competitors and probability of conflict, n and p respectively, were

increased resulting in a range of conflict set sizes from 1 to 50 mem-

bers. As shown in Figure 8.9, the time taken to authorise traceability

verification requests increases as the size of the conflict set increases.

This experiment shows the result for a single conflict set, but as it is

clear that there is an increase in verification time for a single set, it

is trivial to assume that the number of sets will also increase autho-

risation time. In either case, this increase results in a fairly minimal

impact and as with the previous experiments, this can be considered

a reasonable wait on the device prep-cycle.

8.4 Discussion

Within the calibration hierarchy, a unique set of information flows

present themselves with respect to accessing calibration traceability

verification, to which classical access control models fail to meet the
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Figure 8.9: Effect of Conflict Set Size on Authorisation Time
The time taken to authorise traceability verification increases slightly as

the size of the conflict set increases

desired requirements of multi-level integrity and confidentiality, and

compartmentalising conflicts of interest. To this, a novel unification of

three existing access control models: BLP, BIBA and Chinese Walls,

can effectively constraint the information flows with authorisation

times of at least 10ms lower than the baseline in all cases. With

respect to calibration in digital environments, this is a critical first

step to ensure the safety of devices and organisations who employ

these devices before they are exposed to their own respective threat

landscapes.

8.4.1 Limitations

While the proposed unified model is successful, there is a limitation

that should be considered. Specifically, the enforcement mechanism

used assumes that policies and calibration reports are stored in a cen-

tralised infrastructure at each calibration provider (i.e. a calibration

report is stored at the location at which it was calibrated). The first

consideration relating to this pertains to transparency. Specifically,
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third parties will have no information about how and when data is

requested. If a calibration report is invalidated at a higher level, then

a traceability check at a lower level will fail as the report for the device

at a higher level is invalid. The second consideration relates to the im-

pact of additional security mechanisms, such as TLS and PKI, on the

authorisation time. Trivially, additional security measures naturally

presents itself with overheads that would need to be weighted. For

example in certain cases, such as surgical settings where an increase

in authorisation time could delay the start of a critical procedure. In

both cases, while this chapter focuses on the access control aspect, in

particular the authorisation times, these issues are looked at in further

detail in Chapter 7.

8.5 Related Work

The security surrounding time- and safety-critical IoT systems is an

active research area [288], with the main focus pertaining to attacks

in the cyber domain (i.e. control system security [64, 243]) and the

physical domain (i.e. physical compromise of sensors [289, 290] and

physical safety of devices and surrounding environment [290, 291]).

However, with the calibration of such systems contributing highly to

system accuracy and precision, the compromise of its calibration can

ultimately impact the ability to operate safely. Quarta et al. describe

calibration parameters of robotics systems to be an essential construct

used to compensate for known measurement errors [51]. They demon-

strated that by manipulating calibration parameters, an adversary

could cause the robot to operate unsafely, such as affecting the servo

motor causing the robot to move erratically. Consider a tempera-
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ture sensor mounted on a needle driver in a surgical robot, which

is calibrated in a manner such that it provides accurate and reliable

readings for temperatures between 0–50◦C. If these calibration param-

eters are modified to state that it is accurate up to 100◦C, then the

system would accept this at face value, and any sensed data cannot

be trusted.

Existing access control literature for safety-critical IoT systems focus

on various aspects of the system itself, ranging from securing control

systems (i.e. access to actuators) to the validation/enforcement of se-

curity policies. Hasan and Mohan [243] propose a framework based on

the Simplex architecture, commonly used for time-critical cyberphys-

ical systems for fault-tolerance, which makes use of a rule-based in-

variant and access control mechanism to ensure the timing and safety

requirements of IoT cyberphysical systems (i.e. ensure some task can

only access a given actuator if the task has the required permission

given a set of invariant conditions). Frank et al. [292] describe a com-

bination of both logical and physical access control – explain each,

respectively. He describes that the most widely used multi-level se-

curity models are inadequate when logical resources obtain a physical

form, that makes use of both mandatory and discretionary access con-

trol. While not directly applicable to calibration traceability, one must

also consider the access constraints to the physical process of calibra-

tion which traceability verification is a key part of. Compared to this

work, this approach uses attribute-based access control (ABAC) due

to its flexibility, limited only by the computational language when im-

plementing policies to enforce access control models. Specifically, it

allows greater breadth for access relationships (subjects to access ob-

jects) without the need to specify the individual relationships between
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them. Compared to other traditional approaches such as rule-based

access control, this makes its use ideal for dynamic environments such

as SC-IoT [293].

In this work, the focus is on the calibration angle which has been paid

little attention to. Specifically, this focus pertains to the unification

of three classical access control models (namely BLP, BIBA and Chi-

nese Walls) which is required to solve the novel set of information

flows which arise from calibration traceability. Yang et al. [294] state

that while BLP is widely used to enforce multi-level confidentiality, it

lacks flexibility due to strict confidentiality rules. Furthermore, they

describe that BLP poorly controls integrity and that BLP is com-

monly combined with BIBA for increased integrity control [295–297].

In their work, they propose an improved BLP model to manage multi-

level security, where the security of each level is distinguished by the

security level of the accessed content itself (subjects are defined as

a multi-level entity and objects are defined as a single-level entity).

With regard to BIBA, Liu et al. [298] note that BIBA can possi-

bly deny non-malicious access requests made by subjects, ultimately

reducing the availability to a system. To this, they propose the in-

tegration of notions from Break The Glass (BTG) strategies – a set

of (efficient) strategies used to extend subject access rights in excep-

tional cases (i.e. irregular system states) – with the existing BIBA

model (BTG-BIBA). They show that with the proposed BTG-BIBA

model, it can now provide more fine-grained access control that is

context-aware for dynamic situations. In this work, traditional BIBA

and BLP models are taken into account for the case of unification,

however one can question the applicability of improvements made to

these models over recent years. While attribute-based access con-
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trol provides key advantages to earlier forms of access control, such

as ACLs and role-based access control, and having a well-maintained

policy declaration language and authorisation framework (XACML)

for practical solutions, other forms of access control have been pro-

posed which may also be suitable for enforcing the unified model. For

example, capability-based access control has been shown to perform

well in highly scalable and distributed environments, such as IoT.

Similarly, like attribute-based access control, capability-based mecha-

nisms can also be enforced in a fine-grained manner [299,300], where

tokens can be given to subjects on-the-fly containing the appropriate

security label, and also be verifiable and unlinkable to preserve pri-

vacy [301]. Ultimately, it would be interesting to observe the difference

in enforcement when using other approaches, such as capability-based

access control, and the impact on authorisation times and efficiency.

8.6 Summary

It is clear that the shift towards a digital calibration paradigm presents

itself with a novel access control challenge when there is consideration

given to the calibration of rapidly adopted safety-critical IoT sys-

tems. Upon discussion of the current state-of-the-art in calibration

traceability, the information flow through a systems calibration hi-

erarchy is unique and cannot be solved using any of the traditional

access control models alone. This results in the proposal of a novel

access control model which unifies the BLP, BIBA and Chinese Wall

models. Furthermore, by developing an authorisation framework to

evaluate the performance of our model for safety-critical IoT systems,

it is shown that authorisation times can suitably enforce restrictions
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that enable efficient, safe calibration traceability which can scale for

robotic systems and IoT.
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9 — Conclusion

In this thesis, it is clear that the area of robotics security is a con-

stantly evolving landscape due to the increase in installations across

a wide array of disciplines. As advances continue to be made in the

fields of computer science, AI and engineering, so will the complexity

of robotic systems and the associated security landscape.

Prior to this research, little focus had been given to the capabili-

ties of a passive adversary, particularly to the impact passive attacks

can have on people and organisations and not just the robots them-

selves. In seeking to address this knowledge gap, three novel passive

side channel attacks, in both the cyber and physical domains, were

proposed and carried out. In all cases, these attacks primarily tar-

get operational confidentiality. In the context of surgical robotics for

example, capturing this information could lead to the identification

of surgical procedures and in combination with other meta-data (e.g.

patient admission and exit times), this could lead to the compromise

of patient privacy. First, the traffic analysis side channel in the cyber

domain was explored, exploiting traffic characteristics captured by an

attacker eavesdropping on the communication between a robot and its

controller, with the aim of fingerprinting (classifying) a robot’s funda-

mental movements and workflows. Upon evaluation, the attack was

able to achieve this with around 60% accuracy. While Tor was pro-

posed as a defence to this attack, demonstrating a significant drop in

accuracy, in realistic settings the use of Tor may be less than desirable

due to potential timing-related overheads. Thus, as a point of future

work in this space, other defences that were proposed aside from Tor,
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such as traffic mixing or padding, should be evaluated and compared.

The second side channel explored was the acoustic side channel in the

physical domain, where sounds produced as a robot moves are pro-

cessed to extract meaningful features that are used to achieve the same

attack. Specifically, such sounds are captured by an insider attacker

using a smartphone, with the attack achieving at least 75% accuracy.

Furthermore, during the Covid-19 pandemic, discussions surrounding

telemedecine and remote medical education (i.e. remote viewing of

surgeries) led to a novel use case of VoIP applications being used to

enable this. Because of the use of VoIP in recent times, the same

attack was used on VoIP audio of robot movements, which showed

a much higher success rate (around 15% higher) and opens up new

research avenues pertaining to anonymous communication networks

in robotic systems. Finally, the third side channel attack explored in

this thesis is radio frequency. Using a small antenna situated near

a robot in operation, an attacker can successfully fingerprint robot

movements with at least 90% accuracy. It is clear that in this the-

sis, the physical domain attacks perform better than traffic analysis

in the cyber domain, which radio frequency performing the best. An

interesting point of future work in this space could be combining mul-

tiple side channel attacks together (i.e. both the acoustic and radio

frequency side channels) to investigate whether this greatly improves

fingerprinting accuracy. Ultimately, the results as a whole reported

in this first part of the thesis suggest that passive attacks can be just

as devastating as active attacks (if not more so) and require urgent

attention as well as further investigation.

In addition to the issue of passive attacks in both of the cyber and

physical domains, a novel perspective on robotics security is brought
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to light in this thesis; dealing with an issue which ultimately under-

pins the accuracy and safety of these systems – calibration. Upon

reviewing the limitations of current state-of-the-art calibration pro-

cesses, it became clear that cybersecurity is in need of important re-

view as progress is made towards modern digital environments that

are required to scale to the Internet and to the ubiquitous nature of

IoT and robotics. In this thesis, two solutions are proposed which

aim to tackle some immediate fundamental challenges when looking

at the progression to digital environments – record keeping and access

control. First, record keeping in calibration is highly inadequate and

manual, preventing successful scaling to the Internet. Using a public

blockchain tested on the Ethereum network, it is clear that using a

blockchain can more than adequately meet not only the security re-

quirements, but also match the requirements of scale and efficiency.

The second solution involves access control, which addresses an im-

portant aspect of allowing only those authorised to interact with rel-

atively appropriate calibration processes, such as writing and reading

calibration records. Existing access control models could not satisfy

the novel information flows related to calibration traceability, and re-

quires a new model which entails a novel unification of three existing

models. Upon evaluation, the unified model significantly outperforms

a simple conjunction of existing policies and demonstrably scales well

with large, complex calibration chains. The results presented in this

thesis around better management of the calibration of robotic systems

may be considered to be initial stepping stones towards a new field,

which will ultimately encompass IoT and a wide range of Internet-

connected robotic systems.
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9.1 Summary of Contributions

The summary of the contributions brought by the work presented in

this thesis will be discussed in terms of the primary research ques-

tions stated earlier in Chapter 1.1. For research question 1, the the-

sis provides three key examples of passive insider attack which show

that an attacker can mount an information leakage attack that can

compromise the operational confidentiality of industrial (warehous-

ing) robotic workflows. Further, all three attacks demonstrate that

a higher level of granularity can be achieved (speed and distance of

robotic movements) for workflow inference, with the radio frequency

side channel in the physical domain showing the most success. For

research question 2, the thesis examines and showcases the funda-

mental security requirements that calibration traceability mechanisms

should mandate when progressing to digitised environments, specific

to safety-critical IoT systems such as robotics systems. The latter two

chapters provide two mechanisms for secure record keeping and access

control, respectively, which show to meet these requirements and scale

to robotic systems and IoT in general. While there may exist other

aspects of the calibration ecosystem that require subsequent review in

the move to a digitised ecosystem and review of the newly proposed

threat landscape in this thesis, the work presented in this domain is

the first stepping stone in a new avenue of calibration security.
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A — Confusion Matrices for

Traffic Analysis Attack

273



A.1 Baseline

This matrix depicts the baseline classification results (TP/FP rates)

for the traffic analysis attack.

Figure A.1: Baseline Confusion Matrix
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A.2 Distance

These matrices depict the classification results for the distance pa-

rameter in the traffic analysis attack, where each iteration links with

an increase in robot movement distance.

Figure A.2: Distance (2mm) Confusion Matrix
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Figure A.3: Distance (5mm) Confusion Matrix

Figure A.4: Distance (10mm) Confusion Matrix
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Figure A.5: Distance (25mm) Confusion Matrix

Figure A.6: Distance (50mm) Confusion Matrix
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A.3 Speed

These matrices depict the classification results for the speed param-

eter in the traffic analysis attack, where each iteration links with an

increase in robot movement speed.

Figure A.7: Speed (25mm/s) Confusion Matrix
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Figure A.8: Speed (50mm/s) Confusion Matrix

Figure A.9: Speed (75mm/s) Confusion Matrix
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Figure A.10: Speed (100mm/s) Confusion Matrix
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A.4 Open-Set Evaluation

These matrices depict the classification results for an open-set evalua-

tion of the traffic analysis attack, where movements are subsequently

removed such that they become unknown to the classifier.

Figure A.11: Open-Set (1 Unknown) Confusion Matrix
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Figure A.12: Open-Set (2 Unknowns) Confusion Matrix

Figure A.13: Open-Set (3 Unknowns) Confusion Matrix
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Figure A.14: Open-Set (4 Unknowns) Confusion Matrix

Figure A.15: Open-Set (5 Unknowns) Confusion Matrix
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Figure A.16: Open-Set (6 Unknowns) Confusion Matrix
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A.5 Tor Defence

This matrix depicts the classification results for the baseline robot

movements with the Tor defence employed, used for comparing the

defence against the attack baseline.

Figure A.17: Tor Defence Confusion Matrix
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B — Confusion Matrices for

Radio Frequency Side

Channel
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B.1 Baseline

This matrix depicts the classification result for baseline robot move-

ment fingerprinting using the radio frequency (RF) side channel.
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Figure B.1: Baseline Confusion Matrix
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B.2 Distance

These matrices depict the classification results for the distance param-

eter in the RF side channel attack, where each iteration links with an

increase in robot movement distance.
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Figure B.2: Distance (2mm) Confusion Matrix
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Figure B.3: Distance (5mm) Confusion Matrix
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Figure B.4: Distance (10mm) Confusion Matrix
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Figure B.5: Distance (25mm) Confusion Matrix
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Figure B.6: Distance (50mm) Confusion Matrix
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B.3 Speed

These matrices depict the classification results for the speed parameter

in the RF side channel attack, where each iteration links with an

increase in robot movement distance.
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Figure B.7: Speed (25mm/s) Confusion Matrix
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Figure B.8: Speed (50mm/s) Confusion Matrix
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Figure B.9: Speed (75mm/s) Confusion Matrix
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Figure B.10: Speed (100mm/s) Confusion Matrix
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B.4 Antenna Distance

These matrices depict the classification results for the antenna dis-

tance parameter in the RF side channel attack, where each iteration

links with an increase in the distance the RF receiver antenna is away

from the robot under attack.
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Figure B.11: Antenna Distance (25cm) Confusion Matrix
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Figure B.12: Antenna Distance (50cm) Confusion Matrix
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Figure B.13: Antenna Distance (100cm) Confusion Matrix
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B.5 Workflow Reconstruction

These matrices depict the classification results for workflow recon-

struction using the RF side channel attack. Three different sets of each

of the workflows were examined to account for variations in workflows

as may be seen in realistic settings.
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Figure B.14: Workflow Reconstruction (1) Confusion Matrix
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Figure B.15: Workflow Reconstruction (2) Confusion Matrix
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Figure B.16: Workflow Reconstruction (3) Confusion Matrix
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C — Confusion Matrices for

Acoustic Side Channel
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C.1 Baseline

This matrix depicts the classification results (TP/FP rates) for the

baseline robot movements in the acoustic side channel.

Figure C.1: Baseline Confusion Matrix
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C.2 Distance

These matrices depict the classification results for the distance pa-

rameter in the acoustic side channel attack, where each iteration links

with an increase in robot movement distance.

Figure C.2: Distance (2mm) Confusion Matrix
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Figure C.3: Distance (5mm) Confusion Matrix

Figure C.4: Distance (10mm) Confusion Matrix
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Figure C.5: Distance (25mm) Confusion Matrix

Figure C.6: Distance (50mm) Confusion Matrix
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C.3 Speed

These matrices depict the classification results for the speed parameter

in the acoustic side channel attack, where each iteration links with an

increase in robot movement distance.

Figure C.7: Speed (25mm/s) Confusion Matrix
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Figure C.8: Speed (50mm/s) Confusion Matrix

Figure C.9: Speed (75mm/s) Confusion Matrix
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Figure C.10: Speed (100mm/s) Confusion Matrix
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C.4 Microphone Distance

These matrices depict the classification results for the microphone

distance parameter in the acoustic side channel attack, with each it-

eration relating to an increase in the distance the recording device is

away from the robot under attack.

Figure C.11: Microphone Distance (50cm) Confusion Matrix
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Figure C.12: Microphone Distance (100cm) Confusion Matrix
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C.5 Opus (VoIP) Codec and Packet

Loss

These matrices depict the classification results for the baseline robot

movements with VoIP and Opus codec employed. These are used

to evaluate the impact of VoIP on the accuracy of the acoustic side

channel in VoIP settings.

Figure C.13: Opus Packet Loss 1% Confusion Matrix
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Figure C.14: Opus Packet Loss 5% Confusion Matrix

Figure C.15: Opus Packet Loss 10% Confusion Matrix
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Figure C.16: Opus Packet Loss 25% Confusion Matrix

Figure C.17: Opus Packet Loss 50% Confusion Matrix
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C.6 Workflow Reconstruction

This matrix depicts the classification result for workflow reconstruc-

tion using the acoustic side channel attack.

Figure C.18: Workflow Reconstruction Confusion Matrix
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C.7 Noise Reduction

This matrix depicts the classification result for employing amplitude

filtering as a noise reduction technique, used to compare against the

baseline robot movements.

Figure C.19: Baseline (Amplitude Filtering) Confusion Matrix
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D — Calibration

This algorithm describes that used for carrying out traceability veri-

fication of a device’s calibration (e.g. robot sensor) within the smart

contract on the Ethereum blockchain.
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D.1 Traceability Verification Algorithms

Algorithm 1 Trace Verification
1: procedure TraceCal READ(device id)

2: device report = reports[device id]

3: parent cert = certificates[device report.parent id]

4: technician cert = certificates[device report.technician id]

5: if !(key verify(device report, parent cert)) then

6: return null

7: if !(key verify(device report, technician cert) then

8: return null

9: org cert = certificates[technician cert.org id]

10: if verify signature(technician cert, org cert) == false then

11: return null

12: if check chain of trust(org cert, ROOT CERT ) == false then

13: return null

14: root report id = device id

15: parent = reports[root report id].parent device

16: while bytes(parent).length > 0 do

17: if key verify(parent,

18: certificates[parent].parent device) then

19: if key verify(parent, technician cert) then

20: root report id = parent

21: parent = reports[root report id].parent device

22: else

23: return null

24: else

25: return null

26: return reports[root report id]
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