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Abstract

Designing processes for pharmaceutical product manufacturing is a complex and
resource-intensive task. With increasing research costs and quality standards, the
pharmaceutical industry seeks innovative technologies to enhance productivity and
maintain competitiveness. While a variety of tools exist in the process design domain for
optimizing conditions or selecting materials, options for guiding the selection of

manufacturing operations remain limited.

In this context, deep generative models (DGMs) emerge as a promising approach.
DGMs, known for learning the probability distribution of data, have gained popularity for
their ability to generate realistic examples, commonly applied in text and image
generation. In drug discovery, DGMs have successfully generated new active substances
with desirable properties. However, their application in the manufacturing space remains
unexplored. These models have the potential to assist in operation selection and

experimental targeting, thereby reducing development time.

This thesis aims to investigate the applicability of DGMs in pharmaceutical manufacturing
process design, developing DGMs capable of generating plausible sequences of
operations for product manufacturing, taking input information about the target product.
A significant challenge in developing DGMs is the requirement for large datasets. To
address this, two datasets were constructed using natural language processing (NLP)
applied to primary and secondary manufacturing data extracted from patents. The
primary processing dataset comprises over 385K manufacturing processes, while the
secondary processing dataset includes approximately 9K procedures for various dosage

forms and active ingredients.

The study involved training and comparing several architectures based on generative
adversarial networks (GAN) and variational autoencoder (VAE) using different metrics.
Real and generated sequences were contrasted manually to evaluate how closely the
model outputs resemble typical manufacturing sequences. This research contributes to
the exploration of DGMsdé application in
into their potential for operation selection and product development. In the end, DGMs
were successfully trained and their potential for the generation of plausible sequences

was demonstrated. A survey assessed by a panel of experts yielded that the models
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generated sequences at least as good as the actual procedures in 38% of occasions for
the primary domain. While this shows the potential of generative modelling in this field, it

also remarks there is room for improvement to make it applicable in real-world scenarios.
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Chapter 1. Introduction



1.1 Introduction

In recent years, the pharmaceutical industry has embarked in a transformation process
aiming to meet patientodos needs and regul atory
changes in health market *. Historically, the industry has been distinguished by having a
business model strongly centred on the discovery of new chemical entities that are
patented and commercialized throughout patent expiry time 22, This focus has made the
largest pharmaceutical companies invest most of their efforts and resources in the design
and development of novel active pharmaceutical ingredients (API) 4. However, the
innovation in other processes of value chain, such as manufacturing, seems not to
maintain the same rate as in research and development (R&D) for new API, which has

resulted in inefficacious processes with many opportunities for improvement °,

Nonetheless, the investment in R&D has not stopped increasing. Between 2001 and
2020, on average, leading companies have expanded their spending in this area annually
by 6% ©. This has been translated into more than 200 new molecules approved for
commercialisation within the mentioned period 7. However, profits have been reported
to exhibit a declining trend since 2013 8. Aligned with this, analyses point out that less
than half of the new approved substances are profitable, thereby highlighting the risks
and the challenges in productivity that the industry must face ©. It has been argued that
constantly rising research costs is the main contributing factor to this trend 4% In turn,
tendencies of cost have been associated with increasing regulatory requirements and
development times &1°. As a result, new APIs are not enough to cover the losses caused
by patents expiry and cost reduces new products profit, which increases the need of
implementing strategies that enhance productivity and make companies more
sustainable %11 Thus, the industry has sought for solutions to tackle inefficacies in
different steps in the value chain, and particularly there has been a special interest in

manufacturing 412,

Aspects to improve in pharmaceutical manufacturing include flexibility in scale-up/down,
production speed, process control and reliability, and inventory management 3513115
Thus, initiatives such as Quality by Design (QbD), continuous manufacturing (CM), and
process analytical technologies (PAT) have been proposed and implemented throughout

the last decades. The impact of the implementation of QbD for process optimization has



been estimated to reduce costs between 10 and 25% 2. In the same line, large companies
such as Jansen have estimated that the implementation of CM could reduce costs up to
a 50% 2. These examples show the conveniency in financial terms of a change towards
a paradigm oriented in process optimization and increasing in manufacturing productivity.
In addition, the employment of these initiatives is not only reflected in more profit and a
cost reduction, but it also has a result more affordable prices for patients, easier

accessibility to medicines, ensuring acceptable standards of quality and safety.

Despite the advantages that QbD or CM offer, the transition to these approaches in
manufacturing have been slow »°. Reviews published in 2020 and 2022 pointed out that
although there have been advancements in the acceptance of QbD for the design and
development of products and processes, it is not yet a standard practice in the
pharmaceutical industry 617, It has been claimed that some challenges to progress
towards a widespread adoption include the extensive requirement of data, experiments,
documentation, and specialised tools ®. From a regulatory perspective for complex
products, the lack of data and the complexity of the results to be analysed are additional
concerns '®.Nonetheless, the publication of research papers and guidance for the
implementation of QbD in several types of products, as well as the increasing
implementation of techniques such as multivariate data analysis and different

approaches for the design of experiments are expected to help QbD usage 517,

In this context, one of the concerns for the adoption of frameworks, such as QbD, is that
a large number of experiments may be required for a deep understanding of a process
or product ®. In addition, this may generate a substantial amount of data that, when
combined with other sources such as process control observations, needs the use of
tools to facilitate their understanding and usage in process optimisation 1315,
Consequently, techniques that aid data analysis and guide decisions at various stages of
research, including experiment selection, have emerged and become popular in the
pharmaceutical sector. In this regard, artificial intelligence (Al) has gained special

relevance in addressing the aforementioned challenges *°.

Al refers to the application of a series of mathematical models and computational
capabilities to assist and guide human decision making °. There exist numerous reported
applications of Al in pharmaceutical manufacturing. To mention some examples, deep

learning (DL) has been employed to automate visual inspection of drug products, conduct



automated risk analysis to predict equipment maintenance, and forecast dissolution
profiles, among others 81°, Nonetheless, within Al, a group of algorithms have become
increasingly popular due to offering a different perspective compared to traditional

predictive tools which are Deep Generative Models (DGMSs).

DGMs are neural networks with varied architectures that aim to estimate or approximate
the probability distribution of high dimensional data 2°. Upon knowing the probability
distribution of the data, it is possible to draw samples from that distribution. The drawn
samples are expected to have similar characteristics to the original data. In the medical
domain, they have been found helpful in tumour classification and COVID-19 diagnosis
with good accuracy ?*. In the pharmaceutical context, DGMs have been employed mainly
on drug discovery to find out potential drug-like molecules showing promising results 2.
However, to the best of our knowledge, the application of DGM have not been explored
deeply in pharmaceutical manufacturing.

DGMs can potentially be used to generate plausible sequences of unit operations to
manufacture a product. Resuming pharmaceutical industry challenges in terms of
process optimization, this ability to generate sequences might help to explore different
combinations of operations that suits with user needs. In addition, these models could
assist in targeting the process towards a reduced group of combinations by conditioning
the selection based on the properties of input materials or target product. In this manner,
the application of DGMs might reduce time and costs in experimentation, complementing
other workflows. Nevertheless, for deep generative modelling in a specific domain, a

large and reliable dataset is required.

Currently, although a vast amount of information on primary and secondary processing
is available in documents such as scientific papers and patents, to the best of our
knowledge, there is not a database covering both domains in an appropriate format for
their usage in modelling. Due to the substantial efforts that this task requires, automated
solutions are needed to obtain as much information as possible. Subsequently, once a
suitable dataset is available, an architecture for DGM can be defined and trained. Thus,
this thesis aims to develop deep generative models for the design of pharmaceutical
manufacturing processes taking molecular descriptors as inputs and outputting a
plausible chain of unit operations. To achieve this, a database on pharmaceutical

manufacturing domain will be built through the utilisation of natural language processing



(NLP). To finally proceed with the design, training, and validation of the generative
models. To contextualise more in several subjects covered thus far, this chapter will dive
into traditional approaches in manufacturing development in both primary and secondary
producti on, current state of applicatio

and applications.

1.2 Pharmaceutical Manufacturing Development

Manufacturing involves all the processes carried out to transform inputs (raw materials)
into outputs (API/drug product) in order to have a continuous supply. Depending on the
outcome, pharmaceutical manufacturing can be primary or secondary °. Primary
manufacturing comprises the obtention of API which can be achieved by synthesis or
extraction from a natural source and further purification steps °. On the other hand,
secondary manufacturing encompasses the conversion of one or several APIs to a
dosage form that can be administrated to a patient °. This distinction is convenient
regarding development since the considerations in synthesis vary significantly compared
to a dosage form production.

Another convenient distinction is the mode of manufacturing. In this regard, the product
fabrication can be done in continuous (CM) or as a batch process (BP). Traditionally, BP
has been extensively used in both primary and secondary manufacturing 2324, This mode
is characterized by generating a fixed amount of product and usually, the process can be
divided into a chain of sequential steps also known as unit operations. In each step,
intermediate products are generated such that feed the next stage. In contrast, in CM,
the amount of generated product depends on the time a process is run and some or all
the unit operations are integrated in such a way that the transformation process occurs
partially or completely in the same equipment 2. For this work purposes, there will be a
focus on batch operations since this mode of manufacturing is the most commonly

applied for the different types of products.

1.2.1 Primary manufacturing

In primary manufacturing process design, API origin is determinant to select the process

conditions and unit operations. APIs can be classified depending on its origin as small

ns

of



molecules and biologics 3. Small molecules can be obtained usually by synthesis,

whereas biologics are produced by extraction from natural sources or biotechnology 3.

The following workflow for the development of an API synthesis process is based on
Siegfried Labs study case and includes route selection, initial optimization, purification
steps, process refining and scale-up and commercial production 2°. The three first steps
can be defined at laboratory scale and usually are explored at a scale of hundreds of g
to kg 8. In route selection, synthesis steps are chosen considering aspects such as
reduction of the number of steps, avoidance of hazardous transformations, materials
cost, and consecutive or parallel reactions. Afterwards, the selected route is fine-tuned
by checking every step and select the most appropriate reactants in terms of cost, quality
and safety. Additionally, reaction conditions are optimized such as temperature,
stoichiometry and concentration to get the best yield.

Table 1-1. Typical unit operations in synthesis. Taken from Am Ende et al work 3

Unit operation Considerations
Reaction/ Quench Chemi cal kinetics,
transfer, addition,
Distillation Ma s s transtfreans fleaa
removal, ti me, stab
Extracti on Mas s transfer, hea
removal, ti me, stab
Crystallization Chemical kinetics,
transfer, additior
crystallization kin
Filtration Addi ti on, removal,
Drying Ma s s transfer, hea
removal, ti me, stab

Next, purification steps are defined. At this stage, intermediates and product should be
analysed to evaluate whether purification is needed since excessive purification steps will
affect yield. For instance, intermediates may have a purity that is good enough for the
succeeding process step and so purification is not needed. Other factors to consider are
shown in Table 1-1. Once all the synthetic and purification steps are determined, scale-

up is performed.

Scale-up can go from kilograms to industrial-scale of produced material. In this phase,

the feasibility of the process developed at laboratory scale is assessed in terms of



availability of equipment, conditions, compliance of good manufacturing practice (GMP),
safety and risk management. As a result of this assessment, changes in the originally
proposed procedure can be done, for instance, new critical parameters can be identified
to adjust and control, or some operations have to be reconsidered as might not be
feasible for safety issues, scale-up effects or costs. Once the process has been
standardised for the intended batch size, validation is performed to report to regulatory

bodies to manufacture for commercial purposes.

Other aspects to consider throughout the development process are control strategies and
API critical attributes. In solid products, certain the type of salt or polymorph can have a
strong influence on API therapeutical efficacy or toxicity as well as its manufacturability
as a drug product. In these cases, if a particular type of salt is required, additional reaction
steps might be needed; or if a specific polymorph is sought, further purification steps such
as crystallization become more critical in the development. Similarly, all the process steps
must be controlled appropriately by which certain parameters should be monitored in-
process such as temperature, pressure or mixture composition. Finally, in certain steps,

API critical attributes like assay, particle size distribution, and impurities should be tested.

1.2.2 Secondary manufacturing

Secondary manufacturing aims to transform an APl into a dosage form to be
administrated to a patient. A dosage form is a vehicle that facilitates the delivery of an
API to the end-user, and contributes to ensuring product stability (physical, chemical and
microbiological), efficacy and safety 2’. To accomplish these objectives, a drug product is
primarily composed of API, excipients and packaging system #’. Excipients are defined
as materials without biological activity that are added to a product to improve aspects
such as manufacturability, stability, patient acceptability and/or product performance 2.
In the same line, container closure systems protect a dosage form from environmental

and mechanical risks 28.

In Figure 1-1, usual pharmaceutical development steps are displayed. During the first
stage of development a characterization of the APl physical, chemical and
biopharmaceutical properties take place. However, the development must also be guided
by pre-set objectives such as the type of dosage form that will be manufactured and

special conditions that the route of administration can have 2°. In this way, in the



formulation stage, appropriate excipients and closure system are chosen based on the
dosage form and API stability and biopharmaceutical performance. In this step, the
selection of manufacturing process will be established based on API physicochemical
properties and dosage forms requirements. To exemplify the importance of this, the
product profile indicates that the product is an injectable solution that is administrated
through a parenteral route. This product profile points out that the solution requires to be
sterile, so the ideal is to work in aseptic conditions during the manufacturing process. In
addition, upon being a liquid, the type of unit operations will be limited to those typical for
the preparation of this type of dosage forms . In addition, excipients can be added to
improve manufacturability for a certain process. In this manner is possible to notice the

interdependency among process, excipient, and dosage form, revolving around API.

‘ Technology transfer
and commercialization

wTransfer from development
to manufacturing, scaleip

Manufacturing
Development and process validation

wStudies for process

Formulation undertanding and
wCompatibity and excipients determination of critical
selection parameters and operations

Preformulation
Studies

wWAPI Physical and chemical
properties studies and
development of analytical
methods

Figure 1-1. Product formulation and manufacturing process development scheme. Taken and adapted from
Osakwe et al work 32

As a result of the pre-formulation and formulation stages, there is a set of excipients and
a series of unit operations that can be employed in the fabrication of the dosage form. It
is then an analysis is done where the available option of manufacturing, equipment and
conditions are taken into consideration to design the process and select unit operations
27 Subsequently, it is necessary to define process conditions and equipment settings. As
can be seenin Table 1-2, every unit operation has several parameters and considerations
that can be affected by additives or process conditions. Given the number of variables
that can affect process performance and therefore product quality, it is necessary to

define what variables or parameters are critical and a range of working values. This task



can be accomplished by employing tools such as risk analysis and design of experiments

(DoE) 2"?°, Thus, it is possible to have a complete understanding of process and unit

operations to establish the best working conditions.

Table 1-2. Typical unit operations for solid dosage forms manufacturing. Taken and adapted from Mittal B 6

work 32
Unit operatioExplanati on
Granul ati on Il ncrease part
i mprove powc
properties
Drying Remove moistul
powder
Particle sizeReduce particl
Bl ending Mi X componen
i mpact on dr
uni formity
Encapsul ati onPowder mixtur ¢
hard empty caj]
Compression Compaction o]
mi xXture to col
Coating Addi ti on of i
granul es or t

Considerati
Technique (
granul ati on]
particle si
flowability,
properties |
granul at e
Temperatur e
batch si ze,
contents, ai
Met hod (att
i mpact ), t
materi al, m
Bl ender typ
tumblingsihe
mi xer s), mi
speed, addi i
Filling
flowability,
Compression
press type
formul ati on
geometry, C
moi sture, fI
Product f
imoi stur e,
product geo
shape, ec
settings

Process understanding leads to the determination of optimal parameters as well as the

establishment of process robustness. In addition, with the identification of critical

parameters, control strategies can be implemented, prioritizing critical points ?’. Once the

robustness and reproducibility of the process have been verified, scale-up proceed. At

this stage, changes in equipment and process equipment due to scale change should be

incorporated into risk analysis, additional adjustments may be required to standardize the

process 33, Once the process has been defined, it can be validated.



1.3 AI/ML Role in Pharmaceutical Manufacturing

Driven by increasing dataset sizes and enhanced computing capabilities, Al has emerged
as a technology with a great potential to improve all the pharmaceutical supply chain
leading to more self-managing and autonomous processes 3. These benefits have been
recognised by regulatory bodies such as Food Drug Administration (FDA) and European
Medicines Agency (EMEA), which have promoted the adoption and development of
frameworks for a good and responsible use of Al 3¢, Although applications have been
reported in the entire lifecycle of pharmaceutical products, there has been a special
emphasis in early stages of research. An analysis of FDA submissions between 2016
and 2021 revealed that there is an increasing use of Al tools, showing a significant growth
in 2021 with more than 100 submissions using this technology®’. It has also been
highlighted that Al has been mostly utilised in clinical development and drug discovery 3’
. This is aligned with previous statements remarking that pharmaceutical industry

innovation is more present in R&D.

Although Al includes a wide range of fields, machine learning (ML) is perhaps that most
popular area. ML gathers algorithms and models that can learn to identify patterns on
data that allow them to perform a task 3. The set of data used during learning are usually
known as training set. Depending on the type of task, these algorithms can be classified
into supervised and unsupervised learning 3. In supervised learning, a ML method aims
to learn to map a set of input features ¢ onto a response or outcome space 6 %. In turn,
depending on the nature of the response 0, a task can also be catalogued as regression
(continuous) or classification (discrete). These groups may well correspond the most
numerous usages of Al in the pharmaceutical context. It can be found how supervised
approaches support the prediction toxicity, dose, and other relevant properties in clinical
development 373940 |n pharmaceutical manufacturing, models such as neural networks
have been integrated into PAT to monitor critical attributes like particle size distribution
or composition in both primary and secondary manufacturing 4. Aligned with the design
and development of processes, in the primary domain, supervised approaches have also
been used to predict synthesis routes and experimental procedures 4243, Route
prediction have been achieved using transformers models, that are neural architectures

used in novel large language models such as generative pre-trained transformers (GPT)
43
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On the other hand, the applications of unsupervised algorithms seem to be more limited
in manufacturing process design. Contrary to its supervised counterpart, these models
learn from unlabelled data whereby the final output is not clearly defined 8. Therefore,
they aim to extract underlying or latent information, thereby usually being associated with
knowledge discovery. There exists a wide diversity of tasks for which unsupervised
learning is relevant, and some include clustering analysis, dimensionality reduction, and
density estimation . Particularly, it is common to find multidimensional data in the
context of monitoring and control which may be complex to analyse directly. In this
scenario, techniques oriented to represent information in a few variables are useful for
further analysis. Due to this, methods like principal components (PCA) or autoencoders
(AE) have been employed to obtain representations that can be combined with other
approaches to perform a task of interest. Examples include again PAT, where PCA is a
popular techniqgue employed for visualisation as well as regression by combination with
supervised approaches using as inputs spectral data #4. In the same way, Cacciarelli et
al proposed the use of AE for simultaneous monitoring of multiple process parameters
and fault detection “°.

Another interesting application of unsupervised learning is feature extraction. Forbes et
al applied non-negative matrix factorisation (NMF) to create meaningful features from
mass spectra that enables the characterisation of polymorphs and different components
in mixed particles samples #6. At this point, most applications focus on the interpretation
of data and characterization of materials or processes that, although crucial for
manufacturing development, they do not directly provide information on the process itself.
Namely, most information must be interpreted by developers to define operations and
conditions of the process, contrary to some supervised examples mentioned above
whose output points out more explicitly this information. In that direction, generative
models, another type of unsupervised approaches capable of extracting features and

estimating probability distributions, have become a promising tool.

Generative models (GM) encompass a set of algorithms that aim to estimate the joint
probability distribution for a set of variables representing a group of examples %47, This
approach, contrary to traditional classification or discriminative models, such as support
vector machines or random forest, are limited to learn a decision boundary for a group of

classes. On the other hand, GM requires learning more complex correlations among the
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variables under consideration #’. This distinction has implications for training complexity,
as generative modelling can require more time to attain satisfactory results 4. Most
applications of GM are centred on synthesis of data samples that are difficult to
differentiate from real samples 2°47150 Several algorithms can be used for generative
tasks, such as gaussian mixture models (GMM) or Latent Dirichlet Allocation (LDA) .
The latter has interesting applications in text analytics which will be explored in the next
chapters. Nonetheless, one of the most remarkable group of GMs currently correspond
to Deep Generative Models (DGMs). DGMs have gained significant relevance in recent
years across many areas, particularly in drug discovery considering the pharmaceutical
context. Earlier in this chapter, the potential applications in manufacturing were briefly
mentioned. Thus, in the following section, more details about these models, their
applications, and variants will be explored.

1.4 Overview on Deep Generative Models

DGMs estimate the underlying probability distribution of a training data making use of a
variety of neural network architectures 2°47. Thus, during the training process, these
models learn a generator function able to synthesise examples with similar characteristics
to the original data. Compared to other generative modelling approaches, the use of
neural networks provides a greater flexibility that allows to handle different kinds of data
structures. In other models, when data does not correspond to humeric representations,
preprocessing steps are needed to make
networks can learn these representations and, simultaneously, tailor them to execute a
task, without needing the same level of processing. This versatility has led DGMs to be
deployed in a wide variety of fields including the generation of images, text, molecules,
among many others 5. Similarly, the versatility and flexibility of these models have led to

the development of multiple variants.

To compare different approaches, Goodfellow at al proposed a taxonomy considering
models whose method of parameter estimation is closely related to maximum likelihood
52, In this method, a model, represented as 1 ol , assigns a probability to a sample
wthat depends on model parameters . In this manner, the optimisation process aims to
find a set of values for that maximises I 1/C ol , which corresponds to the

likelihood of the model under the training data w The models can define ) in an
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explicit or implicit manner, depending on the tractability of the distribution. When the data
distribution has a high complexity, so that may not be computed, is considered as
intractable. In this scenario, for parameter estimation, the density function can be
assumed implicit, as in generative adversarial networks (GAN), or approximated to a
simpler distribution, as in the case of variational autoencoders (VAE). Finally, with
tractable cases, autoregressive models and normalising flows can be applied. However,
the tractability of data imposes strong constraints on the models, which limits the type of
data that can be used and demands a higher computational capability to be trained. Thus,
it is possible to notice that the complexity of data distribution influences the selection of

the model and affect its performance.

Among all the different variants, GAN and VAE -constitute perhaps the most
representative models. The availability of implementations and their ability to model data,
without major constraints, compared to approaches with an explicit density, might explain
their widespread diffusion. As has been reiterated, a considerable number of models for
drug discovery can be found, in particular, VAE and GAN-based #2°3%4, Typically, in these
models, molecules are represented as SMILES (simplified molecular-input line-entry
system) or molecular graphs. Then, models are trained to generate drug candidates in
the form of these representations. Upon learning molecules distribution, it is possible to
generate and explore a large diversity of chemical structures. It is also worth noting that
applications using autoregressive models, normalising flows, and energy-based models
such as denoising diffusion have also been reported, increasing the range of options in
this area ®'%’. An interesting characteristic of this application is the need of targeting the
search of candidates based on a particular group with desirable properties such as
partition coefficient (logP) or solubility. In this scenario, DGMs are particularly useful as
the architectures allows the incorporation of information on properties to condition the

outputs and guide the search.

All these benefits have also been extended to other domains. In material science, there
are usages for the discovery of new materials not only in terms of compositions and
chemical structures, but it is also used to find out new polymorphs. In this regard, Noh et
al developed a VAE to generate synthesisable compositions and polymorphs of
vanadium oxide %8. Another interesting application was proposed by Kim et al where a

conditional GAN was used to predict possible crystal structures for a given molecular
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composition in ternary systems of Mg i Mn i O *. In chemical synthesis design, DGMs,
again using VAEs or GANs, have been recently proposed as methods to search novel
synthetic pathways %%%1, Thus far, it is possible to see how generative models has been
employed in applications of pharmaceutical interest, where there is a special emphasis
on novel materials discovery. More recently, DGMs have been trained as a tool to explore
alternative chemical reactions, which can aid primary manufacturing design ©2.
Nonetheless, it is worth mentioning that, to the best of our knowledge, there are no
additional reports of other applications for manufacturing design, whereby this is an area
whose potential is yet to be researched more deeply. Similarly, different types of
architectures have been briefly mentioned; however, VAE and GAN may well be regarded
as the most popular approaches, possibly explained by the advantages these offer
compared to other models. The advantages and disadvantages of several approaches
are summarised in Table 1-3. Finally, the different variants will be discussed in the
methods section.

Table 1-3. Types of DGMs: advantages and disadvantages 4763,

Mo d el Density Advant age:Di sadvant
Generativilmplicit Hi gh qual iDi fficult
Adversar.i i generated Low di vel
Net wor ks | gener ated

Limitati ol
sequenti al
di screte
Mor e sens
hyperpar al
selection.
Sl ow convi
Vari ationiApproxi matFast and Generated

Aut oencod:« train. gualiggod.
( VAE) Explicit i mage gen
controll alsampl es t

space. bl urry.
Prone to
when trai
sequenti al

Enerbgaysed Archit-ect i Hi gh g Di mensi on;
model s dependent sampl es constrainit

or explicicontroll alRequire

space. training
sampling
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2.1 Aim

The main purpose of this work is to develop deep generative models (DGM) for the design
of pharmaceutical manufacturing processes with special focus on variational
autoencoders (VAE) and generative adversarial networks (GAN) since these represent
the approaches more widely employed. Specifically, the research aims to train models
capable of generating multiple plausible sequences of unit operations conditioned on
given final product molecular descriptors for both primary and secondary processing. By
leveraging the potential benefits of DGM, this study seeks to enable the exploration of
diverse manufacturing routes, facilitating more targeted experimentation and reducing
the time and resources required for research and development (R&D) efforts in the
pharmaceutical industry at early stages. Drawing upon insights from other domains where
DGM have shown promising results, such as drug discovery, this research endeavours

to demonstrate the implications for process design and innovation.

2.2 Objectives

In order to achieve the aforementioned aims, the following objectives will be pursued:

a. Build a dataset suitable for training deep generative models. The dataset
comprises information on chemical identity of the final product, unit operations,
dosage form (if applicable) for API synthesis and/or purification route (primary
manufacturing) and drug product fabrication (secondary manufacturing) obtained
from documents such as patents. Given models based on deep learning require
a substantial amount of data for them to be able to capture meaningful
information, a number of observations in the order of thousands will be collected.
The construction of the dataset implies the processing and analysis of the text to
verify the relevancy (Chapter 4).

b. Extract and structure data for model training using automated approaches such
as natural language processing (NLP). This will involve training and evaluation of
NLP models to effectively extract target information (Chapter 5). Subsequently,
the extracted data will undergo cleaning and curation to prepare structured

datasets for primary and secondary manufacturing applications.

17



c. Analyse datasets to identify trends, patterns, and biases. Employing statistical
analysis, and visualization techniques, the objective is to establish the type of data
available and limitations for the design of neural network architectures in both
domains, primary (Chapter 6) and secondary (Chapter 7). By gaining insights into
the characteristics and biases present in the datasets, adjustments to data
preprocessing, network structures or parameters can be made to enhance model

performance and robustness.

d. Design and train a generative network architecture that can generate a set of
plausible unit operations for the manufacturing of an API/drug product by
assessing different frameworks based on VAE and GAN models (Chapter 6 and
7). The assessment will encompass the effect of various data representations,
hyperparameters, and network arrangements on model performance. Given the
domain-dependent nature of generative modelling, relevant metrics from other
domains will be adapted for sequence generation tasks to evaluate model
performance effectively. The experimental setup will include comparisons of
different frameworks and configurations to identify optimal settings for generating

sequences of unit operations.

e. Validate models for process design. Given the lack of a reference or ground truth
due to the unsupervised nature of generative approaches, validation will focus on
qualitative assessment of the plausibility of generated sequences. This will involve
conducting a survey with domain experts, who will evaluate the generated
sequence of unit operations in terms of their suitability for execution in a lab
environment. In addition, performance metrics, calculated using a test set and
defined in the previous point, will complement the analysis. These metrics will
provide quantitative insights into the performance of the generative models for

each domain studied (Chapter 6 and 7).
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3.1 Data Collection

As a source of manufacturing information, Patents were employed. Patents from 1976 to
2021 were obtained from the United States Patent and Trademark Office (USPTO)
website. A list of relevant patents was built based on keywords searched on USPTO API
and Patent View website, and cooperative patent classification system (CPC). Although
the selection of patents was assisted by machine learning tools. The specific approaches
applied to gather documentation and build a corpus are discussed in more detail in
Chapter 4.

Patents were chosen as a primary source for mining due to ease of access and the
extensive literature available addressing the extraction of information from these
documents. In this regard, existing databases used for the development of machine
learning models contained a substantial number of records, in the order of thousands.
This makes manual extraction impractical by which methods to automate this process

were used.

3.2 Natural Language Processing for Information Extraction

Natural Language Processing (NLP) is a field related to artificial intelligence (Al) that
comprises a set of approaches that enables computing systems to interpret natural
language (i.e., text or speech) 2. In recent years, there has been significant progress and
an increase in its usage promoted by developments and improvements in other areas
such as big data, deep learning, and computing capabilities. As a result, NLP has become
extensively employed in several tasks. Some include neural translation, text generation,

and information extraction. For the purposes of this work, we will focus on this later usage.

Information extraction (IE) refers to the process of gathering data of interest from
unstructured sources and providing it with a structure to make it usable for machine
learning applications . Contrary to tabulated data, unstructured data does not possess
a pre-defined organization or format, for example, text. It has been suggested that most
available data is characterized by some lack of structure . This limits its usability in
different areas which has been a strong driver for the development of strategies to make

full use of it.
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There exist various approaches that allow the obtention of information from documents.
In this regard, ruled-based and machine learning (ML) approaches have been deployed
to extract and organize data. The former involves the utilization of linguistic rules based
on regular patterns found in texts. These can be based on word morphology, syntaxis, or
other features. ML, on the other hand, does not depend on preset rules. Instead, by using
data, it identifies or learns patterns that help to a task completion. In turn, ML techniques
can be grouped into supervised and unsupervised. Supervised approaches require
labelled data to indicate what information to identify, and thus, learn relevant patterns. In
NLP context, these are usually employed in text classification or named entity recognition.
In contrast, unsupervised techniques do not make use of label data to train models.
These can be used in areas such as topic modelling.

For the extraction of data in this thesis, it was necessary to deploy multiple techniques.
Text classification and topic modelling were applied to select patents and fragments of
text containing relevant information. This is explained thoroughly in Chapter 4. Named
entity recognition (NER) was crucial in the identification of keywords associated with
manufacturing processes. The details of how a NER system was trained are described
in Chapter 5. Finally, to organize the information, different sets of rules and clustering
techniques were used as explained in Chapters 6 and 7. Thus, theoretical aspects

considered during the application of all these approaches are discussed below.

3.2.1 Topic modelling

Topic modelling encompasses algorithms that aim to capture the prevalent subjects in a
set of documents "°. Typically, these algorithms represent a collection of documents in
terms of relevant words or keywords . These words are expected to be related to one
another in a meaningful and coherent manner. Consequently, the keywords can be
interpreted as a topic of the collection of documents. Among the most common
algorithms, non-negative matrix factorization (NMF), latent semantic analysis (LSA) and

Latent Dirichlet Allocation (LDA) can be found 77,

All these algorithms share the following characteristics. They are unsupervised
approaches that output a set of topics, and each topic has a distribution of words. The
relevancy of each word in a topic is defined by a weight assigned by the algorithm. In the

same manner, each document can be associated with each topic by another set of
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weights. These values enable the assessment of how related a topic is to a document by
ranking the topics and their set of words. Thus, each document can be labelled with a
respective topic. As documents can be naturally grouped into topics, this also can be

considered as a text clustering methodology.

Another important aspect to highlight is how words are input into these models. As with
any ML algorithm, a numerical representation is necessary to carry out all the required
calculations. For cases such as LSA, LDA, and NMF, the collection of documents can be
transformed into a frequency matrix. This matrix has as many columns as unique words
(V) and the number of rows is equal to the number of documents considered in the
analysis (D). In this manner, the frequency matrix will have O  w dimensions. The value
of each cell 0 , represents the frequency of a particular word “Gn a document 'QThere
exist two variants of this matrix: count-based and term frequency-inverse document
frequency (TF-IDF). In the former, also known as bag-of-words (BOW), frequency is
calculated as the count of each word in each document. TF-IDF, on the other hand, uses
the relative frequency for the words by dividing the counts into the number of words in
the document (0 Qand multiplying by a correction factor related to the number of
documents that contain the word (‘QQ."@Ga&or reduces the effect of words with a high
frequency that may not have a significant contribution to the meaning of a document, for
instance, articles. Equations 1-3 illustrate the calculation of TF-IDF.
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The main purpose of using topic modelling in this work was to cluster documents and
extract their keywords to identify whether the content was relevant for further analysis.
Throughout this thesis, NMF and LDA were utilized in different scenarios. Next, these two

techniques are described.

3.2.1.1 Non-negative matrix factorization

NMF is a dimensionality reduction method that uses as inputs non-negative matrices 8.

In NLP context, NMF has been used to extract meaningful topics from a collection of
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documents. In the same manner, this allows to group documents based on topics and,
for a given topic, it is possible to rank how related a document is to a determined topic
using output weights. As an input, TF-IDF matrix is frequently used. NMF decomposes
the input matrix = ~ 5 into two positive matrices 5 N A and € N A , as

shown in Equation 4, respectively, where K corresponds to the number of topics.

L _
= A T

As a result of the decomposition, &= can be reconstructed by multiplying F and 5.
Consequently, the weights of both, 3¢ and 5, represent the contributions of the words to
the topics and the topics to the documents, respectively. Thus, a document Qs usually
assigned with the topic k whose weight is the highest based on their contribution from 5; .
For topic interpretation, the top 10 words with the highest weights in each topic derived

from 3¢ were used.

Regarding the choice of K, this is a hyperparameter that must be specified before training
the model. It has been suggested that NMF performs best with values lower than 20 7.
It has also been recommended that manual revision is important to ensure the quality of
the topics since there seems not to be a consensus about metrics for automatic
evaluation of topic quality ”*. This thesis uses NMF as a text clustering approach whereby
the selection of the optimal number of clusters is based on typical clustering metrics, such
as Davies-Bouldin score °. However, a revision of the keywords was done to ensure

coherence and interpret each topic. The settings used to train this model are specified in
Chapter 4.

3.2.1.2 Latent Dirichlet Allocation

LDA is a generative probabilistic model that assumes a document is a mixture of topics
7680 Each topic, in turn, follows a characteristic distribution of words. In this approach,
documents are represented using a Bag-of-words (BOW) representation. As a result of
these assumptions, a document can be generated by a probabilistic process ">76. Similar
to NMF, LDA requires the specification of the number of topics (K). Nonetheless, it has
two additional hyperparameters, » and 4. Taking into consideration these assumptions
and hyperparameters, a document can be generated through a generative process as
described in Algorithm 3-1. When the LDA model is fitted, it yields two main outputs: the

probability distribution of documents over topics and the distribution of topics over words.
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Algorithm 3-1. Generative Process LDA. Taken and adapted from Ng. A. et al®
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Since its publication in 2001, LDA has been widely used in topic modelling applications
and numerous variants have been proposed . It has also been combined with other
algorithms such as K-means #!, as was done in this thesis. The topic probability
distribution of each document served as a numeric representation for clustering
documents 8. Other important considerations include the selection of hyperparameters
and text preprocessing. It has been advised to use LDA where more than 20 topics are

expected for the collection *’. In our case, default values for| andf from gensim library
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were used. The optimization of hyperparameters and text preprocessing is discussed in

detail in Chapter 5.

3.2.2 Text classification

Text classification consists of the assignment of a label to a block of text through
supervised techniques. This task has been applied widely in different domains. For
instance, it has been used to automatically detect misuse/abuse of medication 2. In the
biomedical domain, there are proposals to apply NLP techniques to associate clinical
records with classes of diseases 3. Another example includes the automatic classification
of patents into CPC classes 848, The input can be found in different forms, going from

sentences to full documents.

Traditionally, these algorithms employ a combination of techniques to transform words
into numerical representations, which are then used with traditional ML techniques. The
process to develop a model for this task involves the following steps: text preprocessing,
vectorization, and training a ML model 8. Text preprocessing usually involves
tokenization (splitting text into tokens), removal of irrelevant tokens, and vocabulary
nor mali sati on. I n this context, the term Atoke
marks. Different approaches for processing text applied in this work are described more
deeply in Chapters 4 and 5. It is important to note that the extent of preprocessing varies
depending on the task. For instance, there are some scenarios where words such as
Anot o or Anei t dered drrelevemty whiteein others) such as sentiment
analysis, these words are crucial for the task. Following preprocessing, the resulting
tokens are vectorised, i.e., they are converted to numerical representations suitable for

ML training.

Various approaches have emerged to properly represent words for ML. Historically,
frequency-based techniques were widely employed. In this category, it is worth
mentioning Bag-of-words (BOW) and TF-IDF matrices, which were mentioned in topic
modelling section 8#7, More recently, in 2013, the development of word embeddings was
a breakthrough for NLP 8. By means of neural networks, continuous representations that
capture semantic similarity could be created. Over time, advancements in neural network
architectures and learning methods have led to the development of new representations,

resulting in the creation of word embeddings with performance improvements. These
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advancements have not only benefited text classification but also favoured NLP tasks in
general ®. Different word embeddings used in this work as well as drawbacks and

advantages are reviewed in Chapter 4.

Once numerical representations are generated, conventional ML algorithms can be
applied. Classification techniques such as logistic regression, support vector machines,
and Naive Bayes are commonly trained for text classification 8. Nonetheless, deep
learning (DL) has emerged as the state-of-the-art approach for this task due to its
tendency to outperform more traditional models . More complex DL models involving
convolution neural networks (CNN), recurrent neural networks (RNN) or Transformers
networks are typically employed &°. Further details about DL models will be explored in
posterior sections.

However, ML models are often characterised by their need for large datasets to
effectively learn complex patterns and attain acceptable performances. Considering the
supervised nature of text classification, this implies that a significant number of labelled
examples are required for model development. To address this limitation, there exist label
databases for predefined purposes. For instance, in patent cases, websites, such as
PatentView, offer datasets with records of CPC classes for documents from 1976 up to
current date. When there is no available dataset for the specific task, it is necessary to
generate the data. This can be achieved by manual labelling or using semi-supervised
approaches where techniques such as topic modelling can be used to generate labelled
data to subsequently train a classification model. In the context of this thesis, text
classification was used for patent classification. A significant portion of the collected
documents did not report CPC class, whereby the relevance of many could not be
verified. In this manner, a DL model was trained to classify unlabelled patents. This

application is covered in Chapter 4.

3.2.3 Named entity recognition (NER)

Previously, several NLP tasks, such as text classification and topic modelling, have been
explored. These tools have helped distinguish irrelevant from relevant data when
extracting information on manufacturing. In the same manner, these methodologies have
allowed, to some extent, the summarisation of the data by identifying keywords which

enable a more in-depth analysis of the initial collection of documents. However, up to this
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point, no specific information has been extr:
primary objective. To tackle this particular issue, named entity recognition (NER) has

played a crucial role.

NER is an NLP task that classifies individual words or tokens into predefined categories.
These categories are determined based on specific information targeted for extraction,
and this set of terms is known as named entities. An example of a NER output can be
observed in Figure 3-1. Concerning the availability of models, generic NER models have
been designed to identify places, and names, among other types of information .
Additionally, a wide variety of domain-specific NER systems exists, focused on extracting
data on chemical substances, diseases, symptoms, etc °°2, In order to develop these
models, multiple methods can be employed.

An etoricoxib AP tablet posAGE FORM , which comprises the following components
in percentage by mass: 24.58 % composiTioN of etoricoxib api , 3524 %
composiTion of microcrystalline cellulose excipient ., 28.57 % composiTiIoN of
anhydrous calcium hydrophosphate excipient . 1.9 % composiTion  of
disintegrant exciPlENT TYPE , 0.95% composiTioN of lubricant EXCIPIENT TYPE

and 876 % composiTioN of coating material INTERMEDIATES

Figure 3-1 Example NER output for a secondary manufacturing paragraph.

As in several NLP tasks, rule-based and ML techniques can be applied in the
identification of entities °°. However, the application of one approach does not exclude
the other. ML models combined with rules for refinement have also been reported %.
Nonetheless, for NER, DL has also provided outstanding results compared to other

approaches in several fields 03,

When employing DL, currently, the most widely adopted architectures centred around
bidirectional long short-term memory (BiLSTM) networks and transformers . Both are
sequence-to-sequence models designed to capture the dependency between words. For
a sequence of words, these networks are interconnected in a manner that allows
information on preceding or subsequent words or steps to be processed at every time
step. In this manner, these networks can learn word representations that incorporate

meaning and context, to a certain extent.
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BILSTM networks have been used for a longer time compared to transformers. Typically,
BiLSTMs are combined with a conditional random field (CRF) model that acts as a
decoder to convert word representation into class °°. However, more recently transformer
architecture has emerged as the most representative model for this task in several
domains. Apart from offering a higher performance when pretrained in large datasets,
transformers are generally faster as they allow parallelisation . Nonetheless, the
selection of a model tends to be case-specific. It has been shown that BiLSTM can still
outperform pretrained transformers such as SciBERT or BioBERT in domain-specific

NER such as material science %.

For this thesis, a DL model for NER was trained on pharmaceutical manufacturing data.
The primary requirement was labelled tokens containing the relevant information. This
study aimed to collect data on operations, materials, and conditions for both primary and
secondary manufacturing. While there are datasets and models trained on primary
processing %%, to the best of our knowledge, there was no available dataset with labelled
data on both domains was not available, nor was there an existing NER system for
extracting the specific terms required. In this manner, a dataset with labelled data was
first created to proceed with model training. The process of elaboration of the dataset and
the NER system is detailed in Chapter 5.

3.2.4 Dataset Cleaning and Curation

With the NER model, relevant keywords are identified and categorised. The categories
enable to organise terms into groups, which in turn help identify the type of information
to process. Consequently, materials, conditions, operations, and other types of entities
can be separated and analysed. Concerning operations, assuming they occur in the order
mentioned in a section allows depicting a procedure as a sequence of actions. In this
manner, inputs (materials) and outputs (sequences) are available to train a model;
however, some aspects must be addressed to prepare the dataset. Firstly, there are
multiple ways to denominate the same term, whereby entities must be normalised to
reduce noise and facilitate the identification of relevant subsequences. Secondly, ideally,
conditions and materials should be associated with an operation. This aids in setting rules
to standardise actions with ambiguous terms and provides a more comprehensive view

of the manufacturing process.
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To achieve this, a hybrid approach combining ML and ruled-based tools was applied.

Initially, the association between materials and conditions with the respective operations

was established through dependency trees to set rules. A dependency tree represents

the semantic relationships between pairs of words *¢. These relationships are organised

in a hierarchical structure, comprising a head and a dependent °. In turn, each type of

relation can be defined based on grammatical functions °. This is illustrated in Figure

3-2. I n the example provided, there are 2 actio
chemical substance (AHCI O0) and a condition ( A:
AHCI 6 can be associated directly wnitrhutieasdad oy \
descending to a lower level in the tree. Thus, this example highlights the subordination

between materials/conditions and operations. Using this concept, it is possible to

establish logical instructions to find out the association among entities. To automate this

process, along with the developed NER model, Spacy library was used to build the

dependency trees for each sentence .

nsubjpass nsubjpass

m

HCl was added and the mixture was stirred for 30 minutes.

PROPN AUX VERB CCONIJ NOUN AUX VERB ADP NOUN

Figure 3-2 Example dependency tree for a sentence. nsubjpass: passive nominal subject; auxpass: auxiliar
passive; cc: coordinating conjunction; conj: conjunction; prep: preposition; pobj: object of a preposition

From the extracted data, two distinct datasets were created for primary and secondary
manufacturing. The normalisation of terminology was conducted separately for materials,
conditions, and operations in each dataset. For materials, dictionaries from several
sources were utilised such as Pubchem, Drugbank, ChEMBL, and Pipeline Pilot software
9%i100  The list of obtained materials was cross-referenced with these dictionaries and
their corresponding InChl (international chemical identifier) was extracted . In cases
where the retrieval of InChl was not feasible, alternative identifiers were used for
normalisation such as UNII (unique ingredient identifier). UNII corresponds to an
alphanumeric code used to identify a substance considering its properties, based on

ISO11238 guidelines 2. This approach was particularly valuable in secondary
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processing for substances, such as excipients, that may not be pure but rather a mixture
of various materials. To facilitate this task, removing some subtokens from material terms
was necessary as, in some cases, these hindered the search. On the other hand,
terminology related to generic entities of intermediary subproducts encompassing terms

such as Asolutiono, Asuspensi ono, and fAimi xtur e

For intermediates, operations, and conditions, words were grouped based on semantic
similarity. To measure this, word embeddings trained for NER were used to represent
terms. Principal components analysis (PCA) was applied to representations and the
components explaining at least 80% variance were used for clustering analysis. K-means
models were then fitted to create clusters. To determine the most appropriate number of
groups, Davie-Bouldin score was determined. Thus, the number of groups with the lowest
score value was chosen for each type of entity. Then, the top 10 closest and farthest
words to the centroid were revised to assign a label to each group. For instance, if a
cluster contained terms |ike fi30 ACo, asi25 dec
labelled as temperature. In this manner, it was possible to identify types of conditions,
operations, and materials and discard terms that might not be relevant. In the case of
intermediate materials, the assigned labels served as the standardised form for the terms
within the respective clusters.

In the case of conditions, additional steps were undertaken to standardise units and
magnitudes, especially for conditions related to temperature, pressure, repetitions, pH,
and atmosphere. These were selected since they were the most frequently reported and
were important later for model development. Moving on to operations, they were manually
revised thoroughly to define a standard way of expressing manufacturing actions. The
definition of action categories was adapted from the works of Vaucher et al and Wang et
al ®>1%3_ Among the clusters, it was found categories that were ambiguous. For instance,
the term Aincreased was found very often but,
information for a better understanding of a process. Consequently, conditions and
materials associated with these terms were also assessed to reassign these entities into

a more specific class. The list of the standardised terminology for operations can be found
in Appendix A.

Other types of process-related entities such as yield, amount, and concentration were

also revised. They were only checked for consistency in units and magnitude. However,
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they were not considered for modelling. Finally, a random sample of 100 procedures from
the final version of the datasets was drawn. Each sample was compared to the source to
validate the extraction accuracy of materials, conditions, and operations. Additional
considerations were taken into account depending on the dataset. Details about the

cleaning and curation process for the dataset are provided in Chapters 6 and 7.

3.3 Sequence Generation with Deep Learning

DL is a subfield of machine learning that belongs to a family of methods known as
representation learning (RL) ®. DL enables the generation of meaningful features for
either supervised or unsupervised learning. This is achieved by performing a series of
nonlinear transformations on data. With each transformation, different features are
extracted, capturing different levels of detail. This is illustrated in Figure 3-3. As can be
seen, in the initial transformations (low-level), the model learns generic information
related to colours, eyes, and so forth. As the transformations progress deeper (high-
level), the extracted features reveal more complex details, such as shapes and figures.
These capabilities make DL a powerful tool for various applications in tasks related to
classification, regression, or unsupervised learning. DL excels in fields such as computer
vision and NLP, where it finds applications in image detection, captioning, text generation,

among many others.

Low-level

Figure 3-3 Visualisation of representations generated by a convolutional neural network for different layers
trained on images. Taken from Zeiler et al work 104
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A MLP graphical representation is shown in Figure 3-4. This can be expressed as a series
of nested functions, as indicated in Equation 5 1%, ¢ is the input data, ? 1 Fj )
represents the parameters, ,, is a non-linear function also known as activation, and
"QoIP is the output. During training, the parameters P are learnt by minimizing a loss
function a through backpropagation, often using optimisation algorithms such as gradient
descent 1%, The MLP in the example consists of two hidden layers, indicating the network
depth. The layers have 4 and 2 units, respectively. Within each unit, input data is
multiplied by a set of weights, the products are summed. This sum adjusted with a bias
term before undergoing activation. Thus, each layer produces as many outputs as units,
which feed into the next layer.

"QérP ” ﬁ ” ﬁ 6 U

Input Layer Output Layer
Hidden Layer

Figure 3-4 Multilayer Perceptron (MLP).

It is important to highlight that MLP, like any neural network, can be configured in various
ways. The number of hidden layers, the number of units per layer, the type of unit, the
activation function, and the connections between layers, among others are factors that
affect the performance of a model for a particular task and define its architecture. In
addition, several other variables can impact the model during training. Some to remark
include the use of regularisation like normalisation or dropout, as well as the chosen
training strategy. The training strategy involves the selection of an optimisation technique

and critical parameters such as learning rate. Regarding the optimisers, stochastic
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gradient descent (SGD) and adaptative momentum estimation (Adam) are very popular
in deep learning community 1, It is worth noting that many of these factors cannot be
learnt and must be chosen carefully to achieve a good performance. This set of factors

are known as hyperparameters.

Resuming the concept of architecture, neural network flexibility in terms of how structural
hyperparameters can be arranged has led to the design of different models suitable for
various specific kinds of data. For instance, convolutional neural networks (CNN) have
had a big impact on image-related analysis. However, for this thesis, there will be a

special emphasis on sequential data, specifically, sequences of discrete variables.

This type of data refers to sets of variables with a temporal relationship. More exactly,
there is an ordinal arrangement among them. Examples of such data can be found in
several domains. in NLP, language can be seen as a sequence of words organised in an
specific order which gives cohesion and coherence. In the field of chemistry, DNA and
proteins can be expressed as an ordered chain of nitrogenous bases and amino acids,
respectively. Manufacturing processes also fall into this category, comprising a sequence
of unit operations where each step depends on the outcome of the previous one. This
class of dependency has allowed the usage of specific architectures designed to tackle
temporal relationships. Particularly, architectures such as recurrent neural networks
(RNNSs) and transformers have shown remarkable results. These will be explored in the

next sections.

Finally, the modelling of sequential data has led to the definition of different architectural
designs tailored to different input/output scenarios as depicted in Figure 3-5. In the first
class, exemplified by a typical MLP, a single input produces a single output. The
dimensionality of this output varies depending on model design and task requirements.
Then, the subsequent types address various applications with sequential data. In the
one-to-many model, a single input generates a sequence, a common scenario in image
captioning. Here, the input image, represented by a vector, is transformed into a
sequence of words. Conversely, the many-to-one reverses this process with a sequence
producing a single output, typically applied in text classification. Lastly, many-to-many
architectures, also known as sequence-to-sequence models, generate new sequences
based on another one. This approach is commonly seen in language translation or NER.

This work places particular emphasis on the generation of sequences. Thus, in
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subsequent chapters, one-to-many and many-to-many models will be explored for

manufacturing procedures generation.

one to one one to many many to one many to many many to many
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Figure 3-5 Architecture classes based on input-output data %7,
3.3.1 Recurrent Neural Networks

The architecture of a RNN is displayed in Figure 3-6. At each time step ¢, the input 6 is
fed into a cell. This cell comprises a certain number of units and receives inputs 6 and
information from the previous step 0 p. This information is operated to generate a
hidden state for the timestep 0 (i ). The hidden state is then passed through the next
cell, generating the hidden state for the succeeding step, and can also be processed for
an output layer 1 to produce features for 6 that, to a certain extent, consider information
from previous time steps. In this manner, the generated features take into account the
context of the inputs. This process is repeated until “Ynumber of steps have been

completed.

e
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Figure 3-6 Architecture recurrent neural network.
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A key factor influencing the efficiency of an RNN in processing data is the type of cell.
Figure 3-7illustrates common cell architectures used in DL. The mathematical expression
for a Simple RNN, or Elman network, can be seen in Equation 6. This architecture,
proposed by Elman in 1990, marked a significant milestone in RNN development 1%,
However, the practical applications of this cell are limited due to its susceptibility to
vanishing and exploding gradient problems. Vanishing gradient happens when gradients
have small values during training. As a results, these values become much smaller during
back-propagation, which hinders neural networks from learning effectively. On the other
hand, gradient explosion exhibits the opposite behaviour; gradients with large values tend

to grow rapidly. This instability in gradients can prevent model from converging.

i Q

Figure 3-7 Diagram of the most common types of cells used in RNN. From left to right, Simple RNN, Long-
short term memory (LSTM), and gated recurrent unit (GRU) 107,

To mitigate Elman network weaknesses, long short-term memory (LSTM) and gated
recurrent unit (GRU) cells were proposed. LSTM was designed in 1997 with various
improvements 1%°. The mathematical formulation is described in Equations 7-12. In
summary, LSTM consists of 3 gates: an input gate i , a forget-gate "H and an output gate
1 . These three components receive inputs including the hidden state from the previous
cell and the current input, computed independently. Each gate is activated with a sigmoid
function to scale values between 0 and 1. These calculate the memory state "H, which
determines how much information from the previous and new memory states is retained
or forgotten for use in the next cell. Finally, the new hidden state i is calculated, serving
as output along with "H. While bothi and "Hare propagated towards the next steps, i

values can also be used to feed further layers. As a remark, s operator represents

element-wise multiplication, also known as Hadamard product.
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LSTMs have outperformed simple RNNSs in various applications. However, it requires a
larger number of parameters to be learnt. In consequence, LSTMs are more
computationally expensive, especially when dealing with long sequences. Aiming to
address both the limitations of Elman networks and LSTM computational cost, GRUs
were introduced by Cho et al in 2014 *1°. The calculations for GRU are illustrated in
Equations 13-16. This cell makes use of an update gate U and a reset gate "I . The first
gate defines how much information is updated, while the reset gate establishes how much

information to omit or forget. Unlike LSTMs, GRU cell generates a single new hidden

state i
0 ANgO Nni po
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Overall, Both LSTM and GRU have demonstrated a superior performance compared to
simple RNN 1% Nonetheless, there is no consensus regarding which cell offers a better
performance. Therefore, the choice tends to be case-specific in this regard 11111, On the
other hand, from a computational cost perspective, using GRU cells can be trained faster
than LSTM in large datasets or complex architectures, which in many cases can guide

the decision 1.

3.3.2 Transformers

Although RNNs have been a significant advancement in the modelling of sequential data
with neural networks, they still possess some aspects to improve. The sequential nature
of RNNs, where the calculation of step 0 depends on the previous step 0 p, imposes
substantial computational demands when training on large datasets. In response to this

limitation, Transformers architecture was developed. Unlike RNNs, Transformers do not
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require processing a sequence step by step; instead, it can process the entire sequence
at once. This is achieved by introducing two types of layers: positional embeddings (PE)
and attention mechanism to replace recurrent cells. PE capture information on a step
position in a sequence, while attention estimates the dependencies of the steps within

and between sequences.
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Figure 3-8 Transformer Architecture. Taken from Vaswani et al 112, On the left, the encoder module can be
seen which includes two sublayers self-attention, and a feed-forward network. On the right, the decoder is
similar to the first sublayers, but instead of feed-forward, a cross-attention sublayer is introduced. This
sublayer is fed with information on the encoder output and self-attention of the sequence. Then, the results
are input into another feed-forward network that produces a representation used for a particular task.

Figure 3-8 shows the architecture of the transformers model. This network has two main
layers an encoder and a decoder. Both layers receive the sum between token
embeddings and positional embeddings for a sequence and perform self-attention by
using a scaled-dot product as shown in Equation 17. In self-attention, the matrices Q, K,
and V correspond to the same input-embedded sequences *2. On the other hand, in the
decoder, cross-attention is performed. In this case, K and V correspond to the encoder
output, while Q is derived from the output of the self-attention in the first sublayers of the

decoder 2, As mentioned previously, attention mechanism learns dependencies
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between sequence steps, producing scores that fall into the range of 0 and 1. The
attention scores quantify the relationship among the steps of a sequence and allow the

model to decide what steps to focus on.
A A m et A £ B
!OOAIE&EﬂIOI/EOI—%:@n P X

All these changes have accelerated the training process, allowing the use of large
amounts of data. Consequently, transformers architecture has become the main driver in
the development of large language models (LLM). LLMs are transformers pre-trained on
extensive corpora usually, in a self-supervised fashion, to predict the next word or
sentence based on previous context 3. Then, LLM weights can be reuse by fine-tuning
the parameters for specific applications. These models are characterised by having a
vast number of parameters learnt. For instance, GPT-3, a LLM trained by OpenAl, has
approximately 135 billion parameters 13, In practice, training LLM from scratch demands
substantial technical resources in terms of data and hardware 3. However, this limitation
has been addressed using approaches such as model fine-tuning and transfer learning

for specific tasks, which has facilitated their widespread adoption.

3.4 Deep Generative Models

Deep generative models (DGM) comprise neural network architectures that aim to
estimate the probability distribution of a set of variables for a given set of examples 47,
Among the most frequently deployed models, autoregressive approaches (AR),
variational autoencoders (VAE) and generative adversarial networks (GAN) can be
pointed out. Overall, these models aim to obtain a generator function "Qsuch that "Q »

e, where e represents samples of interest that are independent and identically distributed
(i.i.d.), and »is a vector of latent variables that can map values from 6 through the

generator "Q whose probability distribution is approximately r, e 6,

Regarding the usage of DMGs for sequence generation, a range of models have been
reported. To the best of our knowledge, most of these have focused on text generation.
More related to the pharmaceutical domain, applications in the generation of drug
candidates represented as SMILES or molecular graphs can be found 4115, Although

not in the generative domain, Transformers have been used to predict synthesis
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procedures from reaction SMILES “3. As can be seen, given the nature of manufacturing
sequences, models applied for sequences of discrete variables, such as text or
sequential molecular representations, can be adapted for pharmaceutical procedure
generation. This work will primarily focus on investigating the use of VAE and GAN, as
they represent some of the most extensively studied approaches in this context. In
addition, there exists a gap in exploring how well these approaches perform in
manufacturing sequence generation. Below, different approaches will be discussed

further than GANs and VAEs, however, the present work will focus on these two models.

3.4.1 Generative Adversarial Networks

GANs were introduced by Goodfellow et al in 2014 ¢7, having shown remarkable success
in image generation. Unlike VAE, GANs do not require an explicit specification of a
probability distribution or rely on additional assumptions #’. The architecture consists of a
generative network "Q » and a discriminative network Q e , both of which are trained
concurrently . The first component "Q » creates samples in e-space, while the
discriminative network 'Q e distinguishes between real (1) or fake (0) samples. The
parameters of "Q » are adjusted to maximise the probability of the generated samples

be classified as real ®8. The adversarial training process is illustrated in Figure 3-9.
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Figure 3-9 GAN architecture for generator and discriminator networks during training. Taken and adapted
from Alom et al %°
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The objective function depends on both discriminative and generative network "Q"Q FQ

and is defined as shown in Equation 18 °’:
i ENT AmQRQ M4 1T e My ,1TTELQ Qo oy

The optimal value is reached at a saddle point where the discriminator is not able to
distinguish between real and generated samples . While the model performance is
generally good, training and tuning can be complex since the system can be unstable
and prone to collapse #’. To tackle training difficulties, various modifications have been
adopted into the loss function. In this regard, a widely used variant is Wasserstein GANs
with Gradient Penalty (WGAN-GP) °71, Wasserstein's loss is illustrated in Equation 19.
In WGAN, one of the main changes is that the discriminator network does not output
probabilities directly, instead, this network is trained to yield unbounded values that
represent the fdAqual i"tAg aresulf the dis@iminatorpnetivorksim mp | e
this context, is also known as critic and measures the distance between probability
distributions 2.

i A Mo« Q e M, Q Qo P W

For sequence generation, GANs poses additional challenges due to the discrete nature
of the outputs. Normally, sequence generation models include an output layer that
assigns probabilities to each possible token or operation, in our case, at every time step.
In this manner, the sequence can be constructed step by step by sampling the operation
with the highest probability. In adversarial networks, this output is then fed into a
discriminator for training the networks. However, this procedure of sampling is non-
differentiable, thereby hindering weights from being updated through backpropagation
118 To overcome this, various strategies to use adversarial training have been proposed.
These can be oriented to modify network architecture to produce a continuous and
differentiable output, while others adjust the loss function using reinforcement learning
(RL). Architectural-based approaches, for instance, may employ techniques such as
relaxing the sampling procedure by applying Gumbel distribution or incorporating

autoencoders (AE) 116117,

AEs are commonly used architectures in deep learning applications 8. These models

enable data compression into a continuous latent space through an encoder 8. In turn,
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this projection can be restored back into the original data by a decoder 18, This approach
allows sequences to be represented as a continuous vector that is differentiable and can
serve as an input into a discriminator network, facilitating adversarial training. In addition,
by knowing the distribution of the latent space, samples can be generated in this space
and, subsequently, transformed into sequences by the decoder. Building upon this
concept, architectures such as adversarial autoencoders (AAE) and adversarially

regularized autoencoders (ARAE) have been proposed 19'12%,

3.4.2 Variation Autoencoders

VAESs belong to the family of autoencoders that learn a latent space that follows a specific
probability distribution. In this framework, the encoder is known as recognition model,
and projects a sample e onto a latent space » 5. Next, the decoder, or generative
network, uses as input the latent projection and tries to reconstruct e . To point out, the
dimensionality of the latent space » dimensions is lower than input data e, by which this
technique can also be used as a dimensionality reduction approach. %6, During training,
VAE learns a joint distribution f} 6 and which can be decomposed intof) o6h
non oY, where the conditional distribution y 00 acts as a decoder model and
N 6 is a prior distribution that characterises the latent space % ¢ v The encoder
N 0L is afunction that approximates the posterior r} 0% since this distribution cannot
be estimated given its intractability €. Finally, the loss function is known as the evidence
lower bound (ELBO) and is defined as shown in Equation 20. °. The first term in the loss
function maximised the reconstruction accuracy, while the second term, corresponding
to Kullback-Leibler divergence, minimises the difference between the prior and the learnt

posterior distribution of ».

v M (Hb"ﬂC(@( O n acwwa ¢m
VAESs have also been used to generate sequences. Contrary to GANs, VAESs tend to be
easier to train and less prone to mode collapse. However, when training on sequential
data, VAE may suffer from a problem known as posterior collapse. This occurs when the
model disregards the information provided by the latent space, resulting in uninformative
sequence representation incapable of reconstructing the input data '?2. Consequently, it

tends to produce repetitive and limited data, failing to learn meaningful features for data

representation. To tackle posterior collapse, a balance between reconstruction and KL
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divergence in the loss function is essential 23124, VAEs with this variation in the loss
function is referred to as b-VAE, which was introduced by *?°. This approach has been

frequently applied in the generation of SMILES sequences in literature 4%:126:127,

3.4.3 Energy-based models

Energy-based approaches can be regarded as the first generative models using neural
networks. The first architectures dates to 1980s with Boltzman Machines (BM) and
Restricted Boltzman Machines (RBM) 4. In the original formulations, r) w depends
on an energy function O @ and a partition function ¢ which is also related to O @, as
shown in Equations 21 and 22 *%. (b acts as a scaling factor to ensure that the sum of alll
the probabilities equals 1. O @w can be estimated by using neural networks and its
analytical form depends on the architecture. Due to this, there are no constraints
regarding the type of data to model >*. However, a limitation is that ¢ may not be tractable
1 In contrast to other models, there is no generative function learnt, by which the
generative process may be challenging and require some approximation %, Difficulties in

G tractability and sampling restrict their usages in several domains.

o Q
n o cP
W Q Qw ¢ G
3.4.4 Autoregressive models
In AR models, 1 0 is explicitly defined by decomposing each observation 0 as a

sequence of variables o ho B ho . In this manner, the density function can be
determined calculating the product of a set of conditional probabilities as illustrated in
Equation 23. This approach allows likelihood estimation as the sum of the likelihoods of
each conditional probability. Nonetheless, it is evident that under the assumption which
allows variable decomposition, it should be possible to express data as an ordered set of
variables. Although this is more natural in some scenarios such as modelling of time
series or text, it is not a trivial problem in tabular data or images . In the same manner,
given that sequences are usually generated step by step, sampling can be slow °%.

Another limitation is related to dimensionality. Higher dimensions increase the number of
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terms to estimate, thereby leading to a more complex model . Finally, more common
architectures to estimate these probabilities include neural autoregressive density
estimator (NADE), masked autoregressive density estimator (MADE), recurrent neural

networks (RNN), transformers-based models 5163,

3.4.5 Flow-based models

Flow-based models or normalising flows (NF) is another approach that can estimate
exact density without approximations. NF also can be classified as a deep latent variable
model (DLVM) since it assumes a random variable & 1} ¢ can be obtained by
transforming a group of latent variables ¥ ==» through a generator. Considering a
smooth and invertible function"®g © s , »and e are related in the following manner
» Qe 5551 Asaresult, 1 e can be derived through the change of variable rule
using the density function  » as can be seen in Equation 24 5%, Thus, 1 @ corresponds
tor) & adjusted using the absolute value of the determinant of the Jacobian matrix of
"Q with respect to x with f being parameterised using a deep neural network.
Nevertheless, while it has been remarked that NF are powerful density estimators, the
invertibility of "Qonly permits the use of a reduced type of neural networks 8. In the same
way, another condition for their application is that e and » should have the same
dimensionality . This fact affects the scalability of NF in high dimensional data and
reduce the control over the latent space. Thus, although several modifications have been
introduced to make NF more flexible, their applicability in several domain is an area that

seems to require further development.
; Q q

3.4.6 Performance Metrics in Generative Models

Generative and discriminative models differ significantly in terms of evaluation due to the
absence of a reference or ground truth. Since DGMs goal is to produce realistic samples
that are not necessarily equal to the training set, they cannot be compared directly to the

reference set to estimate error as in classification/regression models. In the evaluation of
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generative models, domain-specific metrics are often employed, i.e., the choice of metrics
depends on the model and the type of data being generated. For autoencoders,
assessing reconstruction accuracy from the latent is a common practice. This helps to
determine how well the latent space is related to the data and how reliable a model is in
generating data. In sequential data, metrics like BLEU and Levenshtein distance can be

used to measure reconstruction 128129,

On the other hand, with only reconstruction, it is not possible to ensure the quality of
generated examples. Reconstruction is limited to see whether a decoder can restore an
example to its original form using example projection onto latent space. In this case, there
exists a reference, which does not occur when new samples are generated. Thus, in
several domains, specific metrics have been proposed to assess high-level properties
that indicate that the model generates examples that belong to a similar distribution to
the dataset of interest. A more concrete example of this is in drug discovery. Multiple
approaches have been used to formulate indicators of the validity of a newly generated
molecule. Along the same line, it is often sought that generated samples are novel and

relevant to the domain.

In this work, since autoencoders are used, BLEU and Levenshtein similarity are used to
measure reconstruction accuracy, both of which are explained in more detail below. On
the other side, other attributes of manufacturing sequences related to sequence validity
are explored based on logical rules that are discussed in Chapters 6 and 7, for primary

and secondary manufacturing, respectively.

3.4.6.1 Bilingual Evaluation Understudy (BLEU)

BLEU score is a metric widely used in machine translation and NLP 28, It is applied in
the evaluation of similarity between generated and reference sequences. This metric
computes n-grams precision, that is the ratio between the matching n-grams in generated
and reference sequences, and the total number of n-grams in the reference. A n-gram is
a subsequence of n consecutive steps drawn from a sequence. For instance, the
sequence [ AADDO, ASTI RO, i HE Agdrams in théfollBwing Yo ] c a
manner : [ AADDO, ASTI Ro] , [ ASTI RO, therfstndakdT 0 ] , ar
BLEU score, individual precisions are determined for up to 4-grams and the geometric
mean between the four ratios is calculated. Finally, this is multiplied by a factor that

considers the difference in length between candidate and reference. BLEU is a bounded
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metric between 0 and 1, where 1 means perfect matching between the reference and the

candidate.

3.4.6.2 Levenshtein Distance

Levenshtein or edit distance is a metric used to measure the difference between two
strings. However, it has also been used to compare sequences like DNA or
manufacturing actions 412, Lev counts the number of insertions, deletions or
substitutions needed to convert a sequence to the other. This score is usually normalised
by dividing the counts by the lengths of the largest sequence between reference and
candidate. In the same manner, lev can be expressed between 0 and 1. The similarity
can then be measured by subtraction between 1 i normalised distance. Lev distance
focuses mostly on comparing individual components in a sequence, whereas BLEU

considers subsequence thereby considering order and length.

3.5 Equipment and Software

The specifications of equipment and software used for data analysis and model

development are recorded in Table 3-1.

Table 3-1. Libraries and equipment used for data analysis.

Mo del Softwa Li brary Ref Equi pmen
Nomegati Python Scilkearn 1. '3 Processor:
matri X Xeon(R) 9
factori z 2667 v 3
( NMF) 3.20GHz 3
Latent DPython Gensim 4.1 '3 (12 cores)
Al l ocati Me mor y: 1
(LDA) RAM instal
FasText Python Genism 4.1 3t Graph carc«
embeddin Quadro

GPU Memor
GB
Na me d EPython Tensorflow !3*2 Processor:
Recognit neural netyv Core(TM) -
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Spacy 3.3 °97
processing)
Chemdat aext 133
(text proce
Dat aset Pyt hon Spacy 3.3. °7
cleaning Chemdat aext 133
curation Sci-lkearn 1. 1390
Pubchempy 99
Pipelirt
Deep Pyt hon Tensorfl ow 132
Gener at.
Model s
VisualizR 4.1

12900K
3.20GHz 3
(12 cores)
Me mor vy : €
RAM instal
Graph car «
GeForce R
GPU Memor
GB
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4.1 Introduction

Over time, information on the design and development of medicines has undergone an
intensive democratization process. During this process, a vast amount of data has been
made accessible by the private sector, regulatory agencies and academic institutions. As
a result, a large amount of information is available to be consulted in digital sources 34,
Information available covers the whole pharmaceutical product lifecycle, ranging from
design and development of new chemical entities to pharmacovigilance and safety
aspects 134136 Consequently, pharmaceutical information can be said to be varied and
abundant. However, another important feature is that much of this information is
unstructured 34136, This means that data are usually not found in a tabulated and
organized way such that it cannot be easily used for analysis and machine learning
development. This leads to the capture and selection of relevant information on a large
scale that cannot be done manually, instead, requires a certain degree of automation. It

is at this point that natural language processing (NLP) comes into play.

In the last decades, there have been many initiatives to use NLP to mine data from
unstructured documents and build usable databases for diverse fields. In particular, the
biomedical field can be highlighted to have numerous related datasets obtained through
text mining *”. For example, Roche Diagnostics constructed a disease marker dataset
by extracting information from 50 million abstracts . Other examples are the
development of drug-drug interactions data sets and methodologies to extract drug side
effects 3919 In turn, all these data sets have provided comprehensive access to
information and could enable the use of artificial intelligence (Al) to accelerate the
discovery of new molecules and improve therapies for patients 1. In pharmaceutical
manufacturing, most works building databases has focused on primary processing for the
extraction of chemical reactions and materials. Nonetheless, independently of the field,
to build any of these applications enabling data extraction, a fundamental starting material

is a corpus.

A corpus comprises a large collection of documents focused on a specific domain 4. As
a major input for the development of NLP applications, it is usually found that many
resources have been allocated on gathering and curating documents to have reliable

corpora to be used. Thus, similarly to the aforementioned datasets, annotated corpora
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have been made available to serve as gold standards and aid NLP tasks. Aligned with
this, examples in primary preprocessing can be found like a chemical reaction corpus
built by Cheminformatics Elsevier Melbourne University (ChEMU) in 2020 and chapati
corpus, which is a product of a collaboration between the European Patent Office (EPO)
and ChEBI (Chemical Entities of Biological Interest) organization %4142, The former uses
complete patents and includes annotations of materials, operations and conditions,
whereas the latter provides information on only chemical substances °4142, These corpora
have been used to develop named entity recognition tools which enable the automatic
extraction of information from multiple documents. Thus, it is possible to notice how

significant a corpus is as a starting point for NLP applications.

Regarding corpora development for pharmaceutical manufacturing, most efforts have
been concentrated in the primary manufacturing and biomedical domains. However, to
the best of our knowledge, there are no corpora available for secondary manufacturing.
As to primary processing, while there exists a gold standard developed by ChEMU team
% as previously discussed, this is limited to a few hundred patents and was developed
for a specific task. On the other hand, with the current available patents, a larger dataset
could potentially be built, nonetheless, it is necessary to establish a sampling frame of
documents which can be used to train generative models. Considering these gaps, the
present work collects pharmaceutical patents containing information related to either
primary or secondary manufacturing to be used in downstream NLP modelling and
dataset construction for training generative models. This task is accomplished as can
summarised in Figure 4-1 by web scraping documents from the available web application
programming interfaces (API) of the United States Patents and Trademark Office
(USPTO) and using model-based approaches to select the information of interest. Finally,
content relevance is validated by identifying main topics and keywords from the selected
files. The scope of this work is limited to patents obtained from USPTO due to ease of
accessibility and high availability of literature for information extraction in this type of

documents.
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Figure 4-1. Overview pharmaceutical corpus development.

4.2 Methods

4.2.1 Search strategy and documents retrieval

All the granted patents between January 1976 and September 2021 were downloaded
from United States Patent and Trademark Office website (https://www.uspto.gov/). These

patents were available in XML and TXT format. To select the patents that were
pharmaceutically relevant, search results were scraped from the following websites: Bulk
Search and Download API (uspto.gov) and PatentsView. The terms employed in the
searches included the official dosage forms established by the FDA and the synonyms
of drug substances obtained from DrugBank database 43144, Some terms were excluded
from the latter list. The criteria of exclusion for synonyms can be seen in Table 4-1. These
terms were discarded since they corresponded in most cases to acronyms that may have
several meanings depending on the field. In this manner, if these were included, irrelevant

results would have been obtained.
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Table 4-1 Criteria of exclusion for search terms.

Criteria Regular expression  Example of Excluded Terms

Numeric expressions "Nd+\\, ]2\ d+$" 33355

Alphanumeric expressions "‘[a-z[{1,3\-?\d+$" bb1111

with  fewer than 3

consonants

Terms with more than 10 N/A HAEMOPHILUS INFLUENZAE

words TYPE B CAPSULAR
POLYSACCHARIDE
MENINGOCOCCAL OUTER
MEMBRANE PROTEIN
CONJUGATE ANTIGEN

Term with fewer than 5 N/A E265

characters

After filtering, there were a total of 43,538 search terms. These were distributed in 157
and 43,381 corresponding to dosage forms and active ingredients synonyms,
respectively. The search was automatised for each term on both websites using Python
3.8. The search criterion in USPTO API was based on the appearance of search terms
in patent claims, while the presence in abstract was applied for PatentsView. The results
were stored and preprocessed. The preprocessing consisted of removing duplicates and
incomplete records. In the final list, patent number, and Cooperative Patent Classification
(CPC) - when available - were stored. The patent number was subsequently used to trace

back and extract abstracts, claims, and detailed descriptions from XML/TXT files.

CPC is a classification system that assigns a category to a patent depending on the
technical field. In this system, patents are divided into 9 sections (A-H and Y). In turn,
every main section is subdivided in classes, subclasses, groups, and subgroups. As a
result, an alphanumeric code is assigned. An example of this is illustrated in Figure 4-2.
A description of every main category is displayed in Table 4-2. It is worth noting that a
patent may fall into more than one category. Thus, CPC subclasses A61K Preparations
for Medical, Dental, or Toilet Purposes, A61P Specific Therapeutic Activity of Chemical
Compounds or Medicinal Preparations, and A61Q Specific Use of Cosmetics or Similar
Toilet Preparations were considered as relevant since they may contain information on

either primary or secondary manufacturing.

51



C 07 D 203/00 Main Group
or
Section 203/02 Subgroup

Class
Subclass

Group

Figure 4-2 Example CPC scheme for patent technical classification. Taken from USPTO 14°

Table 4-2 CPC Scheme sections. Taken and adapted from USPTO 145

Section Technical Field

Human necessities

Performing operations; transporting

Chemistry; metallurgy

Textiles; paper

Fixed constructions

mfm O O @ >

Mechanical engineering; lighting; heating; weapons; blasting engines or

pumps

Physics

T

Electricity

Y General tagging of new technological developments; general tagging of
cross-sectional technologies spanning over several sections of the IPC;
technical subjects covered by former USPC cross-reference art collections
[XRACs] and digests

With the search results, an exploratory analysis of abstracts was carried out to evaluate
how related the patents were to the intended content. Thus, keywords were extracted by
using term-frequency inverse document frequency (tf-idf) technique. The abstracts were
preprocessed as indicated in section 4.2.2.1. Words that were presented in fewer than
10 documents were discarded. This algorithm was run using scikit-learn library. The top
50 most important terms based on tf-idf scores were revised to define whether or not the

selected patents were pharmaceutically relevant.

4.2.2 Patents selection

Although relevant search results were selected by means of CPC, not all of them had a

category assigned. Therefore, a patent classifier was developed to select pharmaceutical
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documents from those whose CPC was not available using machine learning. As a
training set, all the patents retrieved with CPC were employed. As input in model
development, abstracts and claims were evaluated individually. 70% of the data was used
to train the model. The classifier performance was assessed using the remaining 30%.
Usually, text has to go through several preprocessing steps to be converted to a
numerical representation. Then, conventional machine learning models are applied to

achieve the task. In the following sections, these steps are described in detail.

4.2.2.1 Text Preprocessing

The preprocessing steps comprised converting text to lowercase, tokenization, removing

stop-words and punctuation, and normalising words %4147, In tokenization step, text is

split into a list of meaningful tokens, which are substrings that can be words and

punctuation 146148 Then, words that did not provide relevant meaning, also known as

stop-words 146, and punctuation were discarded. Examples of stop-words include articles

such as Atheodo and fAao, or common verbs such a:
words was obtained from spacy 3.0 library®”. Addi ti onally, the words

were included.

Words normalization consists of transforming words into their base form to reduce
redundance and ease analysis #¢147, In this manner, morphological changes of a word
or inflections done to express, for instance, tense or number, are removed 46, This task
is normally accomplished by the application of two approaches: stemming and
lemmatization. Stemming, through a set of rules, changes a word into a stem form,
without considering context 46, Depending on the rules employed, there exist several
stemmers, being Porter and Snowball some of the most popular #6148, To illustrate the
result, the strings Aformul ationo, fihkstemmul at ec
fi f o r, osing Porter stemmer. On the other hand, lemmatization is dependent on the
context. This technique considers word syntactic function (verb, noun or adjective) in a
sentence to convert a word to its base form, in this case known as lemma 4. To exemplify

this method, we will consider the following sentences:

9 AThe active i nipmelaed ascampositivasycontaining several
active ingredients in a single dose form and/or as kits containing individual
active ingredients in separate dose for ms.

9 AThe foll owi ng c¢ an fobnelationae ddl sads addi ti onal
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¢ AThe invention discloses a method for cont

formulatedpr oduct 0.

While the word Aformulationd is a noun, Afornm
| emmati zing, the | emma of Aformulationodo will b
Aformul at edo, t here wildl be, whemot ispoverts aridll e o ut
A f or muy Inthé ahetrocase. As can be seen above, both methods provide different

results. A major drawback seen with stemming is that stems may not always be actual
words 8, This makes legibility more difficult, for instance, in scenarios when keywords
are required like topic modelling 8. Nonetheless, lemmatization may be less robust as it
is sensitive to the method used to identify word functionality in a sentence 4, In the end,
abstracts and claims were lemmatized considering the advantage that lemmatization

offers in terms of interpretability.

4.2.2.2 Numerical representation

Numerical representations for textual data provide a notion of similarity between texts
and enable the use of textual data in machine learning modelling. There exist several
ways to extract features from this kind of data which include count-based representations
and document/word embeddings 4647, For the selection of the most convenient
representation for classification, term frequency 1 inverse document frequency (tf-idf)
matrix, fasttext and doc2vec representations were assessed. The parameters employed
to calculate every representation can be seen in the Table 3. The packages employed to
learn these representations are described in section 3.5. These techniques are discussed

in more detailed in the next subsections.

Table 4-3 Hyperparameters for assessed text representations training. Each representation was
determined for abstracts and claims, separately.

Representation Parameters
tf-idf min_df = 10
Doc2vec!49:150 dm=0, dbow words=1, vector_size=300, negative=10,

min_count=10, sample = 1e-5, workers=cores, window= 20

Fasttext!152 window = 20, min_count = 10, sample= 1e-5, ngram= (3, 6),
alpha= 0.05, epochs = 20
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4.2.2.2.1 Count-based representations

Count-based methods build a frequency matrix of all the words in a corpus. These
methods include bag-of-words (BoW) and term frequency i inverse document frequency
matrix (tf-idf) 146147, In BoW, a document is represented by a vector whose number of
elements equals the number of unique words in the corpus. In turn, each element
represents the number of times a specific term is found in a document. In the end, a
matrix containing as many columns as unique words and as many rows as documents is
formed. This approach has as a disadvantage that tend to overestimate the importance

of the most recurrent words in the corpus *’.

Nonetheless, this drawback can be mitigated by using tf-idf matrix 4’. In this method,
term frequency (0 )Cs first defined in relative terms as a function of the total number of
words in the document. Then, 0 ® multiplied by a correction factor which is inversely
proportional to the number of times that a word appears in all the corpus. In this manner,
when a term is present in many documents, it will have a low value for this factor. By
doing this, those terms that are very frequent and do not provide much information are

assigned a lower value. The calculation is detailed in the section 3.2.1%46,

Finally, for this work, tf-idf representation was selected for assessment over bag-of-words
since ponders terms more accurately 146147, However, although these approaches are
relatively easy to calculate, they are not able to represent words semantics and context
properly 7. Furthermore, these methods are limited by the vocabulary of the training set,
thereby ignoring information given by unseen words or out-of-vocabulary (OOV) in new
documents to classify. To tackle some of these limitations, word embeddings have shown

very promising results.

4.2.2.2.2 Text embeddings

In 2013, Mikolov et al developed word2vec . This is a self-supervised algorithm based
on fully connected neural networks where vectorial representations are generated for
each word in a corpus 8. There are two ways of training this algorithm: continuous bag-
of-words (CBOW) and skip-gram (SG) . The architecture for both approaches is
illustrated in Figure 4-3. In both methods, the weights generated in the hidden layer of
the model for each word provide a relative notion of meaning. This means words that

have a similar meaning are expected to have similar values for their respective vectors.
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This approach, to a certain extent, considers words semantics 46147, In addition, vectors
can be used as inputs in machine learning models such as neural networks, individually,
or calculating average to represent a sentence or a block of text in other techniques like
support vector machines or logistic regression. However, this method does not generate
a representation for unseen words. This may be an issue for new documents that contain

words not included in the training set or with spelling mistakes. Thus, in 2015, P.
Bojanowski et al proposed fasttext 152,
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Figure 4-3 word2vec architectures. On the left hand-side continuous bag-of-words (CBOW) and on the
right skip-gram (SG). For a sequence of words, CBOW mode will predict word t using as inputs the words t-
2, t-1, t+1 and t+2 and word. Whereas SG mode will output the context words t-2, t-1, t+1 and t+2 given the

word t. Taken and adapted from Mikolov et al 88

Instead of using words to generate representations, fasttext uses subwords. In this
approach, words are divided inton-grams 2, f or i nst ance, the word foc
into subwords in the following manner <oct, cta, tan, ano, nol> where n = 3. Then, fasttext
generates representations for each individual subword in such a way that a vectorial

representation for each word will be equivalent to the sum of the respective subwords
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vectors 2, Like word2vec, there are two modes of training CBOW and SG, whose inputs
and outputs are analogous °2. Moreover, the word vectors generated by fasttext can also
be used in the same way as word2vec '°2. Going back to octanol example, it is then
expected in the case of another alcohol not included in the training set, to give an
example, dodecanol, fasttext can still provide a representation for this word by summing
up its subwords vectors. Additionally, this vector maintains similar values compared to

resembling words.

Nonetheless, even though these two algorithms can generate good representations for
individual words, this might not be the case for blocks of text such as sentences or
paragraphs. A usual approach to represent text is to average word vectors **°, However,
the resulting vector may be biased towards the most frequent words and information may
be lost upon ignoring sequence order 4153, Due to these constraints, algorithms to obtain
embeddings for an entire text have been developed. An example of this is doc2vec %,
This technique follows a similar architecture to word2vec approach 3. However, in
addition to word embeddings, each document is allocated a vector which is concatenated
with word vectors to return the outputs 3. The architecture of doc2vec representation
can be observed in Figure 4-4. To conclude this section, to choose the best
representation doc2vec and fasttext algorithms were evaluated. Hyperparameters for the

training of these models in this work are detailed in Table 4-3.
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Figure 4-4 doc2vec architecture. Taken and adapted from Le Q et al 153,

4.2.2.3 Machine Learning Methods

In the current work, support vector machines, logistic regression, and recurrent neural

networks were assessed for patent selection. These models have been widely used for
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text classification 8. Although there are several alternatives, the main motivation to
choose these three models are related to their computational cost and previous reports
indicating the use of these for patent classification 8485151 Employed hyperparameters
are shown in Table 4-4 and models are described the next subsections. The packages

employed for model training are cited in section 3.5.

Table 4-4 Hyperparameters for assessed models. 2class weights were calculated using scikit learn
package for imbalance data. ® Separate models were trained for abstracts and claims. ¢ Recurrent neural
networks were trained using pre-trained fasttext and custom embeddings as word representations.

Model Hyperparameters
Logistic Regression (LR) class_weight?,
max_iter = 1000,
solver = "saga",
random_state = 42
Support Vector Machines (SVM) class_weight?,
random_state = 42,
max_iter = 1000
Recurrent Neural Networks (RNN) © spatial_dropout = 0.5,
dropout = 0.5,
optimizer = adam
learning_rate = 0.001
epochs = 20
batch_size = 256,
patience early_stopping = 3 epochs
class_weight?

4.2.2.3.1 Logistic Regression (LR)

Among the selected models, LR is the simplest and fastest model as it has fewer
parameters 84, LR can be used to model the conditional probability of a patent to belong
to a specific category (w p) given a text vectorial representation e and model
parameters P (0 @ pIP ). In this way, the model assigns a probability to a text i
abstract or claims i to belongto arelevant (w p orirrelevant group (& 1) #. However,
it does not return directly the class, by which it is necessary to set a threshold to define
the category. In Equation 1, the relationship between conditional probability and vectorial
representation is shown 8.

.

0 o L
pSelP N p
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4.2.2.3.2 Support Vector Machines (SVM)

SVM projects features onto a hyperplane in so that the separation between classes is
maximised 4. As a result, a boundary can be formed, enabling to set a decision region
to classify data depending on the position with respect to the hyperplane ***. SVM can be
linear and non-linear in accordance with a kernel 415, This kernel is an auxiliar function
which provides an additional dimension to determine the hyperplane ***. Linear SVM was
selected for this assessment as this approach is more appropriate to handle data of high
dimensionality like text representations **°. In this case, a document with a representation
vector e will be classified in the class 1 if P e 11, where Ple is the distance between x
and the hyperplane °°,

4.2.2.3.3 Recurrent Neural Network (RNN)

RNN comprise a deep neural network architecture capable of handling sequential inputs
like word sequences °¢. Contrary to LR and SVM, in the case of text classification, RNN
is not fed using a representation for an entire document, instead, vectors for each word
are input into different cells, which process word representations separately. In addition,
these cells are interconnected to one another in such a way that the sequence order of
the words is maintained. In this manner, not only is individual information of the words
processed by a cell, but this cell also receives the output of a previous or posterior cell;
therefore, the cell ponders information on surrounding states thereby considering word
context to generate a result. Figure 4-5 illustrates a general scheme for a RNN used for

classification.
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Figure 4-5 General scheme of a RNN architecture for binary classification. Text Vectorization layer assigns
an index to each word. This index is used by the embedding layer to locate the corresponding vectorial
representation for each word in a lookup table. Then, these embeddings are fed into the RNN. In this case,
there are two stacked RNN layers where each process the information in different directions (bidirectional).
The output of these layers is subsequently concatenated to be handled by a dense layer. This final layer
will outcome the probability of the input text belonging to the category @  p. Taken from Tensorflow
website 157

In the last decade, RNN have undergone a significant increase in popularity due to their
performance in natural language modelling . In particular, two kinds of cells have
contributed for this approach to outperform other models: long short terms memory
(LSTM) and gated recurrent unit (GRU) . These cells basically module how much
information from neighbour <cells shoul d
different approaches to accomplish the modulation task, whereby differences in
parameters are observed, where GRU has fewer parameters than LSTM 815, |n some
cases, this fact plays in favour of GRU as usually having fewer parameters is associated
with lower overfitting *°*. More details about the functioning of each cell are provided in
Chapter 3. Thus, GRU cells were chosen as model architecture in this work. An
analogous architecture to what is shown in Figure 4-5 was employed for the patent

classifier. The number of units of each layer is specified in Figure 4-6.
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X mput: | [(None, 1}]
mput_1: InputLayer
output: | [(None, 1}]
o o input: (None, 1)
text_vectorization: TextVectorization -
output: | (None, 116)
. . input: (None, 116)
embedding: Embedding
output; | (None, 116, 300)

. . input: | (None, 116, 300)
spatial_dropoutld: SpatialDropout| D -
output: [ (None, 116, 300)
. . nput: | (None, 116, 300)
bidirectional{gru): Bidirectional( GRU)
output: (None, 256)
input: | (None, 256)
dropout: Dropout -
output: | (None, 256)
input: None, 256
dense: Dense P ( )
output: | {(None, 1)

Figure 4-6 Patent Classifier architecture using abstracts. For claims, output_sequence_length is 1001
instead of 116, as in abstracts. Hyperparameters were based on Risch J. et al work 52,

4.2.2.4 Metrics

Precision (P), recall (R) and F1-score were used to assess model performance. In the
context of information retrieval, precision would measure how many of the retrieved
documents were relevant using a model, in relative terms °8. On the other hand, recall
measures how effective a method is at retrieving relevant documents °8, Fl-score
summarises these two metrics by returning the harmonic mean 8, The formal calculation
for these metrics is shown in Equations 2 to 4 %8, However, as indicated in previous
sections, the majority of models do not return directly a class, instead, they yield a
probability or a value which influences this decision. As a result, a threshold must be set

to categorise a document into a class and depending on this value, the aforementioned

metrics may vary.
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In this manner, these metrics are not appropriate to summarise the overall performance
of a model, but they are more useful to aid an optimal threshold selection. Thus, a
complementary metric was used which was area under the precision-recall curve (AUC-
PR). AUC-PR has been recommended as the first choice to evaluate performance in
binary classification for imbalanced data **°. This metric seems to be more sensitive to
changes in the minority class, allowing to appreciate more easily the effect of class size
differences *°°. Considering that a preliminary analysis suggested that the obtained data
were imbalanced, AUC-PR was also evaluated. In the end, the model with the highest
AUC-PR was chosen as the best. Then, P, R and F1-score were calculated over a range
of values to select the parameter that yields the largest F1-score.

4.2.3 Content analysis

Once the best model for patent classification was selected, this was used to retrieve the
pharmaceutically relevant patents from those whose CPC was not available. This led to
have a final corpus which contains patents with pharmaceutical information that can be
extracted. To evaluate the type of information, which is expected to be found in the
corpus, topic modelling was carried out. tf-idf matrix was calculated for preprocessed
abstracts. At this stage, terms that contained digits, with less than three characters or
included in Table 4-5 were excluded. Similarly, terms that appeared in less than 50
documents were discarded. In addition, bigrams were included, and sub-linear

transformation was applied to the values.

Table 4-5 Excluded terms in content analysis.

Term
Relate provide include
present useful describe
invention include e.g.
comprise [NUM] example
disclose have select
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Later, minibatch nonnegative matrix factorization (NMF) was used to group patents in

topics and extract keywords. NMF was trained with the following hyperparameters:

n_components=18, batch_size=16000, random_state=32, beta_loss="kullback-leibler",

I1 ratio=0.5, and max_no_improvement

10. Eventually, top 20 keywords were

extracted for each topic and revised to define the main relationship. Then, topics of each

document were identified, and distribution was analysed.

4.3 Results and discussion

4.3.1 Search results

36238, 764 patents

wer e

0 b t gpateneddstribution badedcon s e ar ¢ h

search terms can be seen in Table 4-6. The majority of the results were obtained by using

dosage form terms compared to active ingredients synonyms. Keywords for the results

obtained from abstracts can be seen in Figure 4-7. Based on that, the obtained patents

seem not to be pharmaceutically relevant. Thus, CPC classification was revised in more

detail to identify patents that contain information on pharma.

Table 4-6 Distribution of the search results by sources and search terms.

Database Terms Results
Patentsviews Active pharmaceutical 544267
ingredients drugbank (16.80%)
Dosage forms 1048039
(32.36%)
USPTO Bulk Search API Active pharmaceutical 244553
ingredients drugbank (7.55%)
Dosage forms 1401905
(43.29%)

18.2% of the results did not report CPC. Of the remaining patents, only 7.5%

corresponded to pharmaceutical patents A61K, A61P, and A61Q; this group will be

denominated as PH. As for the majority group (NP), 61% of patents corresponded to

sections B, G, and H. These categories enclosed inventions related to devices or pieces

of equipment related to, but not limited to, the generation of electricity, measurement of
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physical properties or execution of unit operations 4, which is consistent with the
keywords shown in Figure 4-7A and B. On the other hand, keywords observed in Figure
4-7C showed patents in group PH contained information about therapeutical substances

and formulations.
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Figure 4-7 Word clouds with top 50 most important words for all the search results (A), irrelevant results
(B), and pharmaceutical patents (C).

The main source of irrelevant information was terms related to dosage forms. This can
be seen in Table 4-7, where most non-pharmaceutical patents were obtained by using
dosage forms as search terms. This result was expected as several words employed to
describe dosage forms have several meanings in different fields and were not exclusive
to the pharmaceutical context, as in active ingredients case. In this case, it was necessary
to apply an additional filter to the dosage form to obtain information on secondary

manufacturing whereby CPC becomes useful to bound the results to pharmaceutical
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data. However, a limitation of using this classification was that all the results did not count
in this class. As stated previously, 18.2% of results do not have CPC class, which is
equivalent to 590.761 patents whose relevance was uncertain. Thus, a method to classify

patents into either group PH or NP was developed and applied.

Table 4-7 Distribution of the search results by relevant (PH) and irrelevant (NP) patents with CPC.

Database Terms Class Number of
patents

Patents View Active ingredients NP 406103 (12.5%)
PH 137027 (4.23%)

Dosage forms NP 1019339 (31.5%)

PH 27147 (0.83%)

USPTO API Active ingredients NP 74739 (2.31%)
PH 25120 (0.78%)

Dosage forms NP 950098 (29.3%)

PH 8430 (0.26%)

Total 3238764

4.3.2 Patent Classifier

Abstract and claims were retrieved for all the patents with an assigned CPC.
Approximately, 97.9% of the information could be extracted from files. Most patents
whose abstracts or claims were not available corresponded to years from 2002 to 2004.
This period coincided with the first years that XML format started being used by USPTO,
resulting in documents with varying syntaxis that hindered information extraction. Due to
this limitation, a small portion of the data from all the patent files could not be obtained.
In the end, with retrieved information, models for patent classification were trained and

the results are discussed below.

The performance of the trained models can be seen in Figure 4-8A. Overall, the best
result was achieved by RNN in both cases, using abstract and claims as inputs. This
model yielded an average AUC-PR of 0.926. This result was followed by LR and linear
SVM, with average AUC-PR of 0.871 and 0.869, respectively. The outcomes obtained
presented a certain agreement with the literature for similar tasks 848151 RNN are
usually the first choice for text classification. The reason behind that is RNN have been
reported to outperform other algorithms like the other models employed in this work.
Unlike LR and SVC, RNN not only considers individual words but also captures the

connection between words. In this way, RNN can identify more complex patterns.
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Figure 4-8 Classification performance for different models. A) comparison of AUC-PR for several model
trained for different inputs and text representations. B) Precision-recall curve for the best model i RNN +
Fasttext using abstract and claims as inputs

Upon comparing word representations, doc2vec showed the lowest performance in all
the models, being lower than TF-IDF method. This suggests that doc2vec trained under
the employed hyperparameters did not capture the differences between both groups and
is not the best representation for the classification of this kind of document. On the other,
fasttext had a higher performance compared to custom word embeddings trained along
with RNN with AUC-PR 0.929 and 0.923, respectively. This difference could be caused
by overfitting, although this different might not be large enough to conclude so further
testing is required to confirm.

The evolution of model performance across training is shown in Figure 4-9. For the model
with custom embeddings, AUC-PR values for the training set increased rapidly, whereas
the validation set decreased after epoch 2. In addition, the difference between losses of
training and validation set tended to increase rapidly. In opposition to this behaviour,
although training took longer when fasttext embeddings were used, the difference in

performance and loss between the test and training set was stable. The first behaviour

indicates that the model i s traifimgesample, ingtdachaj 0O

66

how



learning any latent information that yields good results in unseen samples, which may
indicate the model overfit 1%°. As a result, the generalization of this model is poorer than
using fasttext embeddings. In this manner, pre-trained embeddings provide more reliable

results as it is less prone to overfitting.
Custom Fasttext
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Figure 4-9 Comparison of Abstract + RNN performance using custom and pretrained embeddings (fasttext)
as a word representation during training time.

Regarding the effect of using abstracts or claims as an input for classification, the results
are compared for RNN-Fasttext models in Figure 4-8B. The AUC-PR of both models are
similar with values 0.927 and 0.930 for abstract and claims, respectively. Although, the
usage of claims to classify patents provided a slightly higher performance, when other
metric like F1-score was compared the results were the opposite. F1-score for RNN with
abstract was 85.7%, while a value of 85.6% was obtained for claims. By seeing closely,
the most visible difference between abstract and claims is the number of words. The
distributions of number of words in abstract/claims are shown in Figure 4-10. While 90%
of abstracts are described with 98 words or fewer, this figure increases to 1001 words for
claims. From the results, it is demonstrated that even though claims provide additional
information, this is not helpful to define whether or not a patent is related to
pharmaceutical manufacturing. Therefore, claims contain information that is redundant

and, to a certain extent, is already compressed in abstract for this particular task.
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Figure 4-10 Histogram (A) and cumulative frequency (B) of the number of words for abstracts and claims.

To conclude the best model selection, although the utilization of claims for classification
might not harm performance, this may lead to a greater computational cost. This could
be observed at the training stage, where the duration of an epoch using abstract and
claims was approximately 13 and 92 minutes, respectively. In this manner, since claims
did not improve performance significantly and could cause prediction or training to take
a longer time, Abstract + RNN + Fasttext was chosen as the best model for patent

classification.

4.3.3 Error analysis

The confusion matrix in Figure 4-11 describes the performance of the final model in more
detail. Performance in terms of precision and recall was 82.9% and 88.7%, respectively.
As can be seen, the data were imbalanced, where the group of interest (PH) represented
the minority group. 1.4% of the predictions corresponded to false positives (FP). This
meant that 17.1% of the retrieved patents were misclassified into PH class. In the
scenario of false negatives (FN), the model did not recognise 11.3% of the relevant

patents as such. Consequently, approximately 1 in 9 pharmaceutical patents are
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expected to not be identified as relevant, thereby not being considered for further

analyses.
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Figure 4-11 Confusion matrix for the best model. PH: pharmaceutically relevant patents and NP: non-
relevant patents.

Having considered the two types of errors that the model presents, FP are of particular
significance in this case. On the one hand, while FN cause a loss of data to be analysed,
these may not impact directly on conclusions as these patents are simply omitted and the
proportion is minor compared to FP. On the other hand, FP would be analysed with true
positives, which may mislead conclusions depending on their content. In consequence,
content profiling for misclassified patents was performed to assess what data FP and FN
are expected to provide.

The most common CPC classes derived from the profiling of FP and FN are displayed in
Figure 4-12A. 73.4% of FP patents belong to main class C, which groups inventions
related to chemical entities and metallurgy. In particular, classes C07D, CO7K, and C12N
stood out as they are the most frequent and comprise heterocyclic, peptides, and acyclic

compounds. Similarly, CO7 inventions, in general, cover organic compounds, while

enzymes and microorgani smsdéd compositions

possible to see the majority of FP led to retrieve patents about chemical substances that
can be regularly found in pharmaceutical context, and these may provide data about

synthesis and/or purification process.
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As for the remaining classes, A61L, GO1N and Y10S corresponded to 24.3%. The latter
is a generic category which involves new technological patents. Y10S belongs to a
recently implemented section (Y) that covers a wide range of inventions. Usually, the
patents that fall into this category have another assigned class, whereby Y10S class may
not specify clearly the invention field. Therefore, a more accurate definition of the
technical field is obtained from additional CPC. Regarding GO1N and A61L, these
comprise patents about methods to test or analyse materials and methods or apparatus
for sterilising materials. Even if these could still be of interest in other fields in pharma,
these types of inventions may not offer specific information on manufacturing.
Consequently, GO1N and A61L categories might be of concern for information extraction
of manufacturing data as these documents may introduce noise to the collected corpus.
However, their impact is not expected to be significant since these represent a minority
within all FP and can be discarded by analysing in more detail other sections such as
detailed description which will be the focus in further chapters.

Another aspect to highlight was that multiple classes in common could be observed
among the top 10 most frequent categories of FN and FP. For instance, CO7D, C12N and
CO7K were also found in FN. Nonetheless, even though these classes co-occurred with
relevant classes - A61K, A61P, and A61Q, patents were not recognized as relevant by

the algorithm.

Upon observing keywords for FN and FP in Figure 4-12B and C, terms related to
application area were the main difference. While FN keywords provided an idea of
patents were about compounds and chemical substances, these did not suggest what
the specific application of the compounds might be. In contrast, FP keywords mentioned
t er ms related to diseases or directly

Consequently, this points out that the algorithm requires the abstract to contain words
emphasizing that the invention has a therapeutical application, apart from indicating that
it is about a chemical substance or drug product. This fact shows that the algorithm is
consistent about the identification of patents of pharmaceutical interest as one of the most
important aspects to achieve this is the field of invention. In addition, this suggests that

the abstract might not provide all the necessary data to have a higher performance.

70

words



FN FP
As1K - I  Co7D-
As1P - I CO7K -
corD - C12N -
» Ae10- I Co7C -
@ C12N- I GO1N -
o co7k- N Y10S -
y10s- R AB1L -
coiN- c12Q-
ABIL - COTF -
corc- CO7H -

00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07

Relative Frequency

B

pharmaceutically substitute L] 10\,». ®preparation
S

produce saltpreparationmaterial amino .
compound composition
u e relate ‘ represent

. dlsease:arbmn disclose
dlsclosesubstltute I

roup composition g1 Q pfO mu

water V’ECEDEOV"

acnve inh mwr
relatefor'm L] Ce]_ ]_ cancer S a dlsurderu S e f u ]Erocess

aming
+

G g@uompound

o aC [dufprotels o8

hydrogemla_ derivative Q_ ety hydrogen inhibitor antibody =0
sermet thod a.LlKY

p alkyl ) e% me O gent provide

mixtureoil = 1ntermed1atesolven

activity ©

weight
repr esent
formula
reactmn

2 contains®

"
(o))

phenylcontain pharmaceutical Sequer\a acceptable

Figure 4-12 Distribution of CPC classes (A) and keywords for FN (B) and FP (C).

To conclude this section, most errors found could be considered reasonable and are not
expected to yield a substantial number of off-topic patents. FN could be caused by
limitations of the information provided by the abstract since this seems to not offer insight
into the invention field on all occasions. As shown in the previous section, claims did not
help to improve performance significantly, by which using detailed descriptions might help
to retrieve more data but with a much higher computational cost. On the other hand, an
important portion of FP turned out to be relevant. This idea is supported by the fact that
most frequent classes in FP were related to new organic chemical entities, usually found
in pharma, and keywords suggest these molecules may be used in the treatment of some
diseases. However, there still is a minority group that is unlikely to contain manufacturing
information such as patents of classes GO1N and A61L. Although it was shown these
represent a small proportion of all classified patents and might not have a big impact on
conclusions, it would be convenient to consider further filters to discard these patents

during the information extraction of manufacturing data.
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4.3.4 Pharmaceutical manufacturing corpus

Initially, 197,724 patents were identified as pharmaceutically relevant and there were
590,761 patents whose content was unknown. After applying the patent classifier in
unknown patents, 18,299 documents (3.1%) were found to potentially have content
related to pharmaceutical products. As expected, a significant portion of unknown patents
were unrelated to the field of interest in this study. This result is consistent with the
proportion of documents extracted in the search results, which was around 6.1%. In the
end, after discarding additional patents due to not including abstract, a total of 208.664
documents were gathered

The collection of documents accounted for information from January 1976 to September
2021. Using non-negative matrix factorization (NMF) over abstracts, patents were
categorized into 18 subtopics and their content was explored in more detail. As a note,
NMF is a soft-clustering technique, by which it does not assign a document to a unique
topic. Instead, it allocates weights to every topic in such a way that those weights
measure the relatedness of the documents to each topic. In addition, NMF provides the
most important terms to define every topic. The top 5 keywords for each group can be
observed in Figures Figure 4-13 and Figure 4-14. As can be seen, keywords confirmed
documents fitted well with subjects related to pharmaceutical manufacturing in most

cases and also showed aspects usually highlighted in the inventions.

72



Subtopic #0
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Figure 4-13 Top 5 keywords for subtopics 0 to 8 obtained using NMF.
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Subtopic #10 Subtopic #11 Subtopic #12

compound = _ release - peptide = -
treat - - drug = anti = -
method - - delivery = tumor = -
receptor - - active = activity - -
bind = - device - derivative = -

Subtopic #13 Subtopic #14 Subtopic #15

agent - _ water - infection = -
therapeutic - - acid - vaccine - -
method = - fatty - ingredient = -
derivative = - aqueous = immune = -

Subtopic #16 Subtopic #17 Subtopic #9
peptide = - inhibitor = process = _
protein = - cancer = preparation = _

treatment - [ kinase - orcess - N
method - . inhibit = prepare = -
vaccine - . protein = form - -

o 1 2 3 4 o 1 2 3 4 o 1 2 3 4
Weight
Figure 4-14 Top 5 keywords for subtopics 9 to 17 obtained using NMF.
Table 4-8 Assignation of subtopics to main topics.

Topic Subtopics
Pharmaceutical Composition 0,2,6,11, 14
Small Molecules 1
Biological Products 3,4,7,16
Therapeutical Application 5,8, 10, 12, 13, 15, 17
Manufacturing 9

Subsequently, through subtopics keywords, 5 major topics were identified: Biological
Products, Therapeutical Applications, Small Molecules, Pharmaceutical Compositions,
and Manufacturing. The assignation of subtopics to major topics is shown in Table 4-8.
To remark, 68.1% of patent abstracts mainly focused on the health benefits or
pharmaceutical products and the majority of patents correspond to the last decade as

observed in Figure 4-15A. This latter covers inventions involving novel delivery systems
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for conventional active pharmaceutical ingredients, natural products, and cosmetics,
whereby all of these may not be necessarily associated with the treatment of a disease.
As for the therapeutical applications, these may comprise well-known substances
repurposing or new chemical entities usages. Particularly in this topic, when the top 20
keywords were observed, some of the most common terms were related to pathologies,
namely HAcancer 0, fipai no, finfectionso,esor fAsKki

and pharmacological groups were having more attention during the assessed period.
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Figure 4-15 Overall distribution of main topic in the corpus (A), evolution of topics across time (B) and
evolution of the patents most related to small molecules or biological products (C). To note, data for 2021
only covers until September, which is why a sudden drop in the number of patents is seen this year.

Regarding new substances, biologics and new chemical entities (NCE) represented
27.2% of the total. However, it is worth noting that when the top 5 topics with the greatest
weights were considered, new substances came to account for 70.6% of all the
documents. This suggests that even though it was not the main point of the patent, all of
these were related to some substance. This result was expected considering a previous
study performed by Ouellette L. et al in 2010. This shows usually a substance is protected
by several patents, where each covers different aspects of the invention®. During that

study, an important outcome was that by 2005, a NCE could have between 3.5 and 5
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patents related on average 5. In addition, the authors showed that this number tended
to increase %1, This would explain the trend shown in Figure 4-15B, where most topics
have undergone a significant increase in the last decades, except for small molecules. In
addition, all the topics different to biological products and small molecules were more
frequent; thereby pointing out that currently more patents are being used to protect a new
substance. However, this would not explain the large difference observed between

patents related to small molecules and biological products.

Going into more details about patents evolution across time, the number of patents
related to either biological products or small molecules taking the top 5 most important
topics is shown in Figure 4-15C. It was observed that until 1992, small molecules were
the focus of the inventions. However, after that time, terms related to biological products

such as Aproteinso and fAantibodiesd started

onwards, the difference between these topics has kept increasing, to a greater or lesser
extent, until the most recent date. In this regard, this trend had been pointed out in 2012
by Jones et al %2, In their findings, the authors indicated that at least before the 2000s,
biologics had surpassed small molecules and, between 2005 and 2008, the gap between
these had been widen%2. Some of the factors that favoured biologics evolution were lack
of strong regulation in comparison to small molecules, finding new small molecules has
become harder as this field has been exploited for a longer time, and technological

development has eased biologics manufacturing 62163,

Interestingly, biologics dominance has not been translated into a greater market share.
Figure 4-16 reveals that, even though biologics approvals were raised, small molecules
kept being higher!®4, Similarly, it has been estimated that around 90% of the worldwide
market share corresponds to small molecules'®®. This has been explained by the fact that
the transition to a biologics-based market is a long-term process since the majority of
infrastructure has been developed to manufacture small molecules?®2. Similarly, the high
costs of biologics hinder the accessibility to all the population®3. Thus, the disparity
between marketed and patented products shows that many inventions are not
commercialised. This may be caused by market projections, technical feasibility or other
decisions that a company could make!®2. In terms of information retrieval, these facts
suggest that patents are a good source of novel information as it is expected to find many

more compounds compared to what is available in the market. However, the trade-off is
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that the information found in patents might not always be as complete as for marketed
products.
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Figure 4-16 Number of NCE and biologics approved by FDA between 1997 and 2021. Taken and adapted
from de la Torre et al 164

To conclude, a corpus about pharmaceutical manufacturing containing 208,664 patents
was built. This corpus covers a period of 46 years. Through exploratory analysis, the
content of the documents was validated. This information can be summarised, but not
limited, in 5 main topics: Biological Products, Therapeutical Applications, Small
Molecules, Pharmaceutical Compositions, and Manufacturing. Additionally, some trends
could be observed where most patents corresponded to recent years and related to
pharmaceutical compositions and therapeutical applications. The former trend might
generate some bias towards recent files. Regarding substances class, most documents
had content associated with biological products followed by small molecules. Finally, from
this corpus, pharmaceutical manufacturing information is expected to be extracted. For
instance, information on secondary manufacturing is likely to be found in patents
belonging to Pharmaceutical Compaositions; also, primary manufacturing data such as

synthesis or purification method is to be in topics related to small molecules or biologics.
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4.4 Summary

Although several corpora related to biomedical topics can be found, that is not the case
for pharmaceutical manufacturing. Using patents as a main source of textual data, a
corpus to be used for mining manufacturing information was built. Throughout the
process, more than 3 million of patents were collected but these were filtered using
initially CPC classification, as the majority were irrelevant. Nonetheless, a significant
number of these did not have CPC. Therefore, collected documents were used to
generate one of the outcomes of this chapter which is the patent classifier. The patent
classifier consists of a deep neural network which can identify pharmaceutically relevant
patents through abstract text. The performance of this model measured as recall and
precision was 82.9% and 88.7%, respectively. Furthermore, the error analysis reveals
that classification error made by the model did not have a serious impact on the retrieved

documents.

Using the CPC and model, more than 200K pharmaceutical patents were gathered. The
content of the corpus was then validated by using a topic modelling technique known as
non-negative matrix factorization (NMF). This method grouped the patents into topics and
output keywords for every group. With model outputs, it was possible to identify first
inventions main topics based on abstracts and later describe the evolution of patents
content across time. Thus, most patents information can be clustered into the following
topics: Biological Products, Therapeutical Applications, Small Molecules, Pharmaceutical
Compositions, and Manufacturing. The topics about Therapeutical Applications and
Pharmaceutical Composition turned out to be the most frequents. As for substances,
Biologics patens are more dominant than small molecules. This trend started to be
significant from 1992. The patents are expected to contain data of primary and secondary
manufacturing according to these topics and keywords.
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Chapter 5. Natural Language Processing (NLP)
for Pharmaceutical Manufacturing Data

Extraction
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5.1 Introduction

Information extraction (IE) aims to identify and summarise information of interest from
documents for a specific domain . This task is a multistep process that usually requires
the deployment of several components. A first step usually involves preprocessing, which
prepares text to be used downstream #7165, Preprocessing steps can include methods to
filter out irrelevant data to improve the reliability of the information #”. Then, components
such as a part-of-speech (POS) tagger can be applied to individual words to assign
semantic functions (verb, noun, or adjective). In a similar way, named entity recognition
(NER) systems categorise words into a class, which hints at the type of data provided by
each token °%147_ Contrary to POS tagger, the NER component is more domain-specific.
Thus, the development of an IE system involves the design and elaboration of a pipeline

making use of different approaches.

In this regard, several workflows have been developed to extract information from
documents in the chemical domain. O. Kononova et al proposed a methodology to mine
inorganic synthesis procedures from papers . In this work, the authors developed
methods that first identified the paragraphs that contained information on certain types of
reactions. Then, these paragraphs in turn were input into other components to recognize
materials, operations and conditions 16, Continuing with pri
work developed a framework to extract chemical reactions and structures from patents
167 where NER models are highlighted to play a key role. Similarly to the aforementioned
examples, many others found as a common factor the emphasis on the development of

NER mOdels 91,92,168i1 171.

NER systems can be considered the core of IE task *°. This component identifies and
enables the extraction of key information (entities). Depending on the methodology
applied, NER can be based on rules, or machine learning (ML) approaches . Rule-
based NER uses dictionaries or semantic/syntactic patterns to label entities %. It has
been shown that this approach offers very good precision but low recalls, due to the
requirement of exhaustive dictionaries and the need for a wide variety of rules to cover
all the possible variations in word patterns *°. Due to these limitations, ML methods have
become more popular since they provide greater flexibility, achieving good recall and

precision for several applications, particularly when deep learning is used %. In the
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pharmaceutical context, the development of NER models has been focused on the
biomedical and primary processing domain 91:92:94.95.1671170.172 "|n the latter case, models
for the recognition of materials, operations or both can be found. However, to the best of

our knowledge, models for secondary processing have not been found.

Returning to IE workflows, pharmaceutical patents have special considerations to extract
manufacturing data. In a previous chapter, a corpus was built with pharmaceutical
manufacturing patents. However, contrary to what happens in scientific articles, these
patents are written in such a way that their procedures are difficult to reproduce and do
not have well-defined sections that indicate whether or not the specific content of interest
is available #2, In addition, the whole document does not necessarily cover a specific
area, but instead, involves several aspects of an invention that may include clinical
information, analytical data, manufacturing procedures, etc. Therefore, the first step for
data extraction should revolve around the selection of relevant sections or text fragments.
Subsequently, these sections can be inputted into a NER model.

However, as mentioned previously, current available NER models are mostly applied to
primary processing data extraction for pharmaceutical manufacturing applications.
Considering that secondary processing is out of the scope of these models, a new model
for drug product fabrication data mining would be necessary to collect data for both
modes of manufacturing. An additional aspect to consider would be efficiency given the
volume of data. A unique model capable of performing the recognition of entities for both
primary and secondary domains would allow extracting simultaneously all the targeted
information. In addition, it would facilitate the distinguishing between
synthesis/purification procedures and drug product manufacturing. In this manner, this
chapter aims to develop models that assist in data extraction of manufacturing data of
small molecules from patents using natural language processing (NLP) tools from
patents. These tools consist of a relevant section selector and a NER model for both
primary and secondary processing. These models will then be used to build a database
through the corpus developed in the previous chapter. Both proposed model will work in

conjunction for IE as illustrated in Figure 5-1.
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Figure 5-1. Overview information extraction (IE) using natural language processing (NLP) tools.

5.2 Methods

5.2.1 Preliminary experiments

Preliminary tests were carried out as a first approach to develop models and improve the
understanding of certain NLP tools. Initially, a sample of around 49K patents was selected
to determine relevant paragraphs. These patents contained around 3.6M of elements
summing paragraphs, headings and tables. At this point, all the elements were
preprocessed as indicated in section 5.2.2.1, excluding truncation, and then Latent
Semantic Analysis (LSA) coupled with k-Means were used to extract the topics.

LSA is a topic modelling and dimensionality reduction technique which takes as an input
a matrix representing documents 173, This method decomposes document
representation, such as bag-of-words (BoW) or term frequency-inverse term frequency
(TF-IDF) (g™ s ) with D number of documents and a vocabulary size V, into three

matrices applying truncated singular value decomposition (SVD) as shown in Equation 1

82



. The three matrices =" &, wgha ,and N A correspond to a lower
dimensional representation of the documents in a reduced K-dimensional space, a
diagonal matrix containing the singular values with K-latent dimensions , and a matrix
that associates new dimensions and terms, respectively 1. This technique in particular
requires a pre-set value for the rank K of ;, which is usually in the order of hundred*”.

For the present words values of K 100, 200, 300, and 500 were evaluated.

g TYgm 1)
The matrix U obtained from LSA was then used as input in k-Means analysis. The
implementation of k-Means employed for this experiment is described in detail in section
5.2.2.3. At this point, for the selection of the optimal number of clusters only Davies-
Bouldin index was employed. Various numbers of clusters were tested ranging from 40
to 390. Afterwards, with the optimal number of clusters, the top 20 keywords per cluster
were extracted from centroids. Finally, keywords were revised to firstly assign an arbitrary
label which summarises the content and, secondly, define the cluster that may contain
information related to manufacturing of small molecules. The clusters that contained
mostly keywords related to dosage forms, operations, conditions, or materials were
considered relevant. Although this approach turned out to be useful to segment relevant
vs irrelevant content, some weaknesses constrain this application, which are discussed
in detail in results section. Considering these limitations, this approach was then applied

at text sections with additional modifications, instead of paragraphs.

5.2.2 Relevant section detection

5.2.2.1 Preprocessing

From the pharmaceutical corpus, detailed descriptions were retrieved for each patent.
Patents without description were discarded. At this stage, descriptions were separated
into headings, paragraphs and tables. Thus, texts were preprocessed as illustrated in
Figure 5-2. Tokenization was achieved using chemdataextractor 1.3, while the remaining
steps were performed with spacy 3.3.97133, Afterwards, the preprocessed text was
grouped into sections based on headings. Then, a BoW representation was determined
for each section. Additional words were then discarded following the exclusion criteria
shown in Table 5-1. In the end, a vocabulary with approximately 62K tokens was built.

Finally, sections with a number of tokens greater than 0 , Which was calculated as
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indicated in Equation 2 174, were truncated to this length to ensure these were not longer

than the majority of the sections.

0 0O p® 0 O (2)
Where 0 and 0 is the first and third quantile in text length distribution.

Table 5-1 Exclusion criteria for token in vocabulary for BoW representation.

Criteria Regular expression
Present in less than 200 hundred N/A

sections,

Present in more than 70% of all the N/A

sections,

Less than 3 characters, N/A

Containing digits or punctuation, fd" and "(?u)\b\w\w+\b"

Stop-words
Original Text Tokenization ’\:;éng?sgs pun(?tTJ%tion Lemmatization
removal
M The s ol vAThe, 'solvent, A'The', 'solvent,  A'solvent, A'solvent',

was 'was', ‘'was', ‘evaporated', ‘evaporate’,
evaporated to ‘evaporated’, ‘evaporated’, '‘pale’, 'yellow', 'pale’, 'yellow',
give a pale - 'to’, 'give’, 'a’, 'to, 'give’, 'a’, 'solid’, '[INUM]', 'solid’, '[NUM],
yellow solid ‘pale’, -, ‘pale’, -, ‘0 ‘g
(27.2 g) 0 'yellow, 'solid, 'yellow', 'solid’,

o R

Figure 5-2 Sequence of steps for text preprocessing for topic modelling.
5.2.2.2 Topic modelling

The preprocessed sections were divided into 90% and 10% to train and test LDA models,
respectively. Several LDA models were built varying the expected number of topics. In
addition, models were run with and without shuffling and truncating the training set. For
every model, Perplexity was calculated over the test set to select the optimal
hyperparameters. Perplexity is defined as the inverse of the per-word likelihood

geometric mean as shown in Equation 3 8. A lower perplexity is related to a model with
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a better generalization capability &. Thus, the model with the lowest perplexity for the test
set was chosen as the best. Lastly, once the optimal number of topics was chosen,
additional experiments were performed changing hyperparameters alpha and number of
iterations. The hyperparameters employed in the development of LDA models are
summarised in Table 5-2.

e e, OERQ
0 Qi naQ@@q&,—ﬁ 3)

For a sample of O documents, I THQ equals to per-word likelihood of the document j, and (0 is the number
of words of the document "QMore specifically, B 0 is the probability of generating the set of words > =in the
document "Cas defined in LDA generation process. Thus, the better the LDA model fits the data, the higher
probability it assigns to a set of words associated with a document from a test set. This results in a lower
perplexity, as perplexity is inversely related to the log-likelihood of the test data. Lower perplexity values
indicate a better fit, meaning the model can more accurately predict the structure of the unseen data.

Table 5-2 Hyperparameters assessed for LDA model development.

Hyperparameter Tested values

Alpha Symmetric and asymmetric

Iterations 50 and 200

Number of topics 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70,
80, 90, 100

Passes 1

Chunk size 4096

In addition, the top 10 most important words per topic were determined for the best model.
These words were first revised to identify meaningful associations within the topics and
to validate how coherent the model outputs were. On the other hand, keywords were also
employed to assign arbitrary topic labels for the cluster analysis which is discussed in

more detail in the next section.

5.2.2.3 Text clustering

With LDA, latent topics and their contributions were determined for all the patents. In this
way, the next step was to group documents that shared a similar idea. Thus, to define
clusters and allocate documents to each group, k-Means algorithm was employed using
as inputs the document representations outputted by LDA. k-Means is an iterative

clustering technique. The algorithm works by generating k centroids, where Kk is a pre-set
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number of clusters 8. Then, the assignment of documents to a particular cluster is defined
by the distance between documents and centroids, in such a way that every document is
assigned to the cluster whose centroid is the closest 8. Once all documents have been
assigned, centroids are recalculated by averaging document representations®:.
Subsequently, documents are reassigned using the updated centroids. This process is
repeated until no significant changes in the centroids are observed or after a predefined

number of iterations has been completed 8.

In this work, due to the large number of data, a variation called minibatch k-Means was
applied. This version mainly differs from the original k-Means in that, instead of using all
the data in every iteration, subsamples known as mini-batches are employed ™.
However, as in k-Means, the optimal number of clusters must be selected. Therefore,
various models with k ranging from 5 to 60 were trained. To choose the best model,
Davies-Bouldin (DB) and Silhouette (S) scores were calculated as described in Equations
4 and 5 78177, To calculate of these metrics, random samples of 10,000 documents were
drawn. The calculations were done with six different samples to estimate the variability
of the scores. In the case of the DB score, the optimal number of clusters is reached
when the minimum value is found, whereas the opposite applies for the S score.

Y g (@)

p oA

= | A®

Q

Where i represent the average distance between the centroid of the cluster "Gand all its members. Q is the
distance between the clusters ‘Gnd Q

006

: 0w
i A@ho
0 %)
Y o=t i
3

Where o is the average distance between the document "Cand the remaining documents belonging to the
same cluster, and w is the mean distance between the "@h documents and the documents that belongs to the
closest cluster.

As for the implementation of Minibatch k-Means, the scikit learn python module was
employed 8. One of the limitations of this implementation is that it only works with a
Euclidean distance. In this case, the inputs were the LDA document representations

which are probabilities. As such, Euclidean distance has been proven to not be the best

86



choice for this kind of data 8. Alternatively, distances such as cosine and Hellinger seem
to have shown to measure document similarity in a better way for clustering purposes
81179 Consequently, the data were previously transformed for k-Means training. As
proxies of the cosine and Hellinger distance, two transformations were assessed: L2-
normalization and element-wise square root. The chosen distances are strongly the

related to Euclidean distance as illustrated in Equations 6 1 8 17°,

. 6
O oo ® (©)
_ n n 7
ow 1T ?
q q
3 L ’O éFb L7~ 1AL vy gt (8)
O olb ThQ@s pweE @s p
Where O O o ¢ 'Q represent Euclidean, cosine and Hellinger distances. O O if _ and w :

With the centroids of the best model, the latent topic with the highest contribution was
extracted for each cluster. Then, the keywords obtained from LDA were revised and a
label that fit the keyword information was set. Subsequently, all sections were assigned
to a cluster. To validate the model, a random sample of 5 sections per cluster was drawn
and each document was revised. If the section was clearly related to the arbitrary label,
it was marked as 1 or, otherwise, 0. In the case where there was no absolute certainty
about the content, a value of 0.5 was given. At the same time, the sections whose content
was more related to pharmaceutical manufacturing, for instance, having information on
operations, methods, dosage forms or compaosition, were separately labelled with 1, while
if the documents did not meet this condition, were assigned 0. Lastly, the agreement
between the results of the algorithm and the manual assessment of relevant documents
was estimated using Cohen's kappa and the percentage of agreement. The first metric
was used to measure agreement between manufacturing information and the latter to
assess concordance between assigned label and actual section content. It is worth
mentioning that two percentages of agreement were calculated, one for the worst case
and another for the best. In the worst case, the sections with an assigned values of 0.5

were rounded to 0, whereas 1 was used for the other case.
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5.2.3 Named entity recognition (NER)

5.2.3.1 Preprocessing

Contrary to section 5.2.2.1, the preprocessing for NER was limited to tokenization. This
was performed using chemdataextractor 1.3 33, However, it was noticed the package did
not deal very well with punctuation in some particular cases. By which, additional regular
expressions were added to the preprocessing to mitigate this effect as much as possible.
In addition to this step, sentences were segmented using the same package.

5.2.3.2 Training set preparation

Initially, a set of 2,000 paragraphs considered relevant using the methodology described
in preliminary experiments were selected. These paragraphs were segmented into
sentences and then tokenized. Subsequently, using the IOB scheme, every token was
manually labelled using the entity class defined in Table 5-3. The IOB scheme is a label
methodology widely used in named entity recognition applications and stands for inside
(1), outside (O), and beginning (B) 8. This is particularly helpful to identify entities that
are composed of more than one token. In this approach, irrelevant tokens are labelled as
O. As for the remaining, the token that begins the entity is marked with B followed by the
respective label. Then, the rest of the entity tokens are marked with I-[Label]. A tagging
example can be seen in Figure 5-3.

Table 5-3 Definition of labels. *Category added for the final model.

Label Definition

AMOUNT Amount of material employed in a manufacturing
process. Normally expressed in terms of mass or volume
units

DOSAGE_FORM Final product of a secondary manufacturing process

SOLVENT Material used generally to disperse or dissolve another

material as a part of a synthesis, extraction or dosage
form preparation

REACTANT Material used in primary manufacturing to synthetise or
purify a compound. This category includes: reagents,
catalysers, substances to adjust pH, or materials used in
extraction such as chromatographic columns. Solvents
are not included as there is an independent class for this
type of materials

EXCIPIENT Materials forming part of a dosage form formulation,
usually do not have biological activity or are not
responsible for the product's therapeutic effect. Solvents
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YIELD

TARGET

OPERATION

INTERMEDIATES

CONDITION

BIOLOGICAL_MATERIAL
EXCIPIENT_TYPE*

API
PACKAGING

COMPOSITION

EQUIPMENT

are not included as there is an independent class for this
type of materials

Resulting amount or percentage respect to theoretical
expected amount of target product obtained from a
synthesis/purification process

Final product obtained from a synthesis/purification
process with a chemical structure clearly defined. This
category excludes biological products such as proteins
and antibodies.

Action or intermediary step carried out to manufacture a
product.

Materials or mixture of materials which are the result of
an operation of a previous process and intervene in a
later operation or process. These materials are reported
in a generic manner, for instance, some common terms
that fall into this category within an appropriate context
are mixture, solution, suspension, etc.

Specific settings under which an operation is performed.
This includes, but is not limited to, temperature and
pressure.

Materials originated from either extracts or parts of
plants, animals, bacteria or other organisms.

Class assigned to an excipient depending on its chemical
properties or function within a formulation.

Active pharmaceutical ingredient

Materials employed as a primary or secondary packaging
for the storage of pharmaceutical products.

Composition or concentration of the components of a
mixture. This can be reported as a proportion,
percentage or other concentration units like molar (M).
Instruments, vessels, or specialised machines used in an
operation.

During model development step, additional paragraphs were also added. The added

paragraphs were characterised by a poor performance to get their entities recognized by

the trained models. Thus, 2,069 sentences were included. In the end, the training set

consisted of 7,440 sentences. As a final step, sentences with one token and duplicates

were removed to obtain 7,215 (221,257 tokens). These sentences were further corrected

by comparing actual and predicted labels by models and manually correcting. Example

of errors are illustrated in Figure 5-3, where the corrected error only corresponded to case

I. The correction procedure was repeated twice, randomly selecting the order of the

examples during training stage.
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Case | Case Il

word tag pred word tag pred

extract  B-INTERMEDIATES B-INTERMEDIATES acid I-REACTANT I-REACTANT

was 0 o] salt I-REACTANT I-REACTANT

washed B-CONDITION B-OPERATION of I-REACTANT 0]

with 0 0] 2 |-REACTANT B-AMOUNT

Nacl B-EXCIPIENT B-EXCIPIENT (dimethylz I-REACTANT B-REACTANT

solution  B-INTERMEDIATES 0 ( o] 0

twice B-CONDITION B-CONDITION 4.25 B-AMOUNT B-AMOUNT

and 0 0 g I-AMOUNT I-AMOUNT

dried B-OPERATION B-OPERATION ) o] 0

Figure 5-3 Example errors of labelling. Case | presents example of labelling error. Case Il displays error in
prediction.

Finally, examples were split into training, development, and test set where sentences
were distributed in the following percentages 80, 10 and 10, respectively. The sampling
was randomised and stratified by paragraph labels. This sampling strategy was used to
ensure the different types of paragraphs employed were represented during training and
test stage. To select the best model, the performance of the NER model in the
development set was monitored during training. As a performance metric, f1-score micro
average was utilised. Finally, the performance over development and test set was

reported.

5.2.3.3 Model architecture and initial settings

In the literature, various approaches for NER have been reported; however, methods
based on deep learning (DL) have provided the best performance *°. DL-based NER
consists of a system of three components: an input representation, a contextualiser
encoder, and a label decoder *°. The input representation generates a numerical
representation for each word or token. As representations, word embeddings such as
word2vec, fasttext, or transformers-based models are frequently used. Nonetheless,
other features can also be included such as character embeddings or part-of-speed
information . Then, the contextualiser processes information from inputs as a sequence,
thereby considering the token order, to generate a contextual representation that feeds
a decoder %. Typically, this component corresponds to bidirectional (Bi) recurrent neural
networks with long short-term memory (LSTM) or gated recurrent unit (GRU) cells *°.
Finally, the latter component translates the input into entity types, assigning a label to
each token. This task is normally achieved using a conditional random field (CRF) layer

%_ This architecture is illustrated in Figure 5-4.
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O B-OPERATION B-AMOUNT I-AMOUNT B-EXCIPIENT I-EXCIPIENT

CRF — CRF — CRF — CRF — CRF — CRF — Decoder

LSTM VF LSTM # LSTM # LSTM «F LSTM «P LSTM «F
Contextualiser
LST™M LST™M LST™M LST™M LSTM LSTM «—

[010203] [040201] 090705 030606 [ososoe] [020109] }Embeddlngs

After Slftl ng 250 g calaum carbonate

Figure 5-4 Common architecture for NER using DL.

As a base architecture in this work, fasttext embeddings-BiLSTM-CRF was employed.
To establish initial settings, word embeddings were pre-trained using gensim package
with vector size and windows size in ranges be 1007 300 and 51 20, respectively 3. As
for the remaining hyperparameters, gensim default settings were used. Then, the
embeddings were connected to a convolutional layer (Conv1D). This information fed a
BIiLSTM, which in turn, was input in a multihead attention (MHA) layer. This latter layer
was included as some works in this area have reported to provide good results 17082,
MHA applies an attention mechanism over the features which enable the algorithm to
focus in the most important features for the task. Finally, these results input a CRF layer,

which assigned the final label.

The deep neural networks were trained using Tensorflow 2 132, AdamW was selected as
the optimizer. As a performance measurement, the micro-average fl-score was utilised.
Then, the hyperparameters were evaluated to choose the optimal model. The values
employed for each are listed in Table 5-4. In the selection of the most important factors,
sequential sets of experiments were run. Firstly, the most important variables were
filtered out, and values were selected using Placket Burman and Factorial designs. Then,
the 2 most important variables were optimised by using a central composite design
(CCD). These experiments were performed using paragraphs from the 49K patents
employed in section 5.2.1. This text was used for embeddings training. As for the labelled
data, the dataset which has the initial 2,000 paragraphs, without curation, was employed.
Once, the best initial conditions were selected, confirmatory experiments were run to

verify and optimise the final model.
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Table 5-4 Assessed hyperparameters for selection and optimization of NER model.

Variable Code Layer Range Comment

max_len A 8310113 When a RNN is trained using
batches, it is necessary all the
sequences have the same number
of tokens. For this reason, a
sequence max length is specified.
When a sentence is shorter than
max length, this will be padded.
Otherwise, sentences are
truncated, only considering the
first tokens.

numb_conv B ConvlD 1to5 Number of convolution layers

1d

kernel size C ConviD 1to5

filters D ConvlD 128 to 512

dropout E 0.3t0 0.7

Istm_units F LSTM 100 to 300 Number of recurrent units in a
LSTM layer

spatial_drop G 0.3t00.7

out

mha_heads H Attention 1to8 Number of heads in a self-
attention layer

mha_keys [ Attention 32t0128 Dimension of the key in a self-
attention layer

emb_dim J Fasttext 100 to 300 Embeddings dimension for the

emebddins pretrained fasttext model
emb_win K Fasttext 5to 20 Embeddings dimension for the
emebddins pretrained fasttext model

Ir (log) L -2to -3 Learning rate (optimizer)

wd (log) M -3to -4 Weight decay (optimizer)

init N A, B Initializer. Neural networks

weights are usually initialised by
taking values from a random
distribution. However, depending
on the library employed, the
initializer  changes, potentially
affecting results. Which is why 2
methodologies were assessed
tensorflow default (A) and pytorch
default (B)

5.2.3.4 Model architecture optimization

Confirmatory experiments were conducted varying some additional conditions not

included in the initial experimental designs. At this stage, the full training set was used.
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In addition, fasttext embeddings were trained, varying windows size and embedding
dimension, with the detailed description paragraphs of around 208K patents. The main
objective at this point was to evaluate the effect of removing ConvlD and MHA layers.
Similarly, the experiments included additional features such as character-level
embeddings (CE), along with variations of dropout rates, as suggested elsewhere %,
The best performing model was finally selected based on the highest micro-average f1-
score for both development and test set. With the chosen model, an error analysis was
carried out to evaluate the most common mistakes. Finally, code and embeddings

employed for this work <can be found in  hitps:/github.com/Diego-

Alvarado/nlp for pharma manufacturing.git and https://doi.org/10.15129/d688a529-
cb11-4081-89a1-76bbd6a03f80.

5.3 Results and discussion

5.3.1 Relevant section identification

5.3.1.1 Preliminary results

Using LSA + k-Means on approximately 3.6 million paragraphs, the text could be grouped
into 220 clusters. Based on cluster keywords, a total of 11 labels were established and
assigned to each. This analysis initially provided a good insight into the type of
information that might be found in patents. As expected, the diversity of data related to
pharmaceuticals was abundant. Many aspects, in general, were covered in these
documents, including invention description and background, pharmacological and
therapeutical application, clinical evaluation, analytical techniques, manufacturing,
among others. In information extraction applications, it has been suggested that models
provide better results when trained in a domain-specific field 4’. As can be seen, many
areas could be identified through paragraph analysis, whereby filtering information to only
manufacturing-related data may be the best approach to ensure the best efficiency and
quality at extracting information before carrying out a named entity recognition task over
each piece of text. Thus, the idea of developing a methodology that enables the

identification of relevant paragraphs was explored.

Since only a portion of all the collected patents was being analysed at this point, a neural

network was trained with the 49K labelled patens to predict labels for unseen examples.
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The labels and classification performance for each class are summarised in Figure 5-5.
While a high fl-score was reached surpassing 90%, a paragraph-based approach
showed to not be the most appropriate to select manufacturing data. The reason behind
this is illustrated in Figure 5-6. Even though the algorithm selected the first two
paragraphs accurately as relevant due to containing information on manufacturing, the
remaining paragraph was classified into topic 9, which corresponded to chemical
characterization. It can be noticed that although the third paragraph contained data on a
purification process, there was also a description of mass spectrometry (MS) and nuclear
magnetic resonance (NMR) results. Under these considerations, it is understandable why
the algorithm classified the third paragraph as that topic. Nonetheless, if this decision was
followed, this paragraph would have been omitted for entity extraction, thereby losing
data related to the purification process. Like this example, many others were observed
where paragraphs contain information on several topics which might cause a loss of data.

Topic Classifier Performance

0. Other topiCS p—

1. Operatlonfcondltons—
2. Materials.

3. Dosage forms_

4. AP ——

5. Chemical description :
6. Dosage Regimen

7. Solid DFODGFUGS_I
8. Testing, 1

9. Physicochemical Charact. .
10. Biological products

00 02 04 06 08 10
F1-Score

Figure 5-5 Paragraph topic classifier performance for the assigned labels.

On the other hand, it was also noticed that filtering by sections might be more helpful at
the moment to collect all the relevant information. Most revised patents were structured
in such a way that a section usually covered a specific topic, mentioning most steps and
conditions. In the manufacturing case, this means the entire manufacturing process for a
product is frequently described in one unique section. Going back to the example in
Figure 5-6, if the entire section had been chosen, there would not have been a loss of

data and, the purification data could have been included as well in all the process data.

Nonetheless, although the use of sections may be better, some drawbacks may still be

found. For instance, there are situations when several sections cover different steps of
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the process, or irrelevant content could be included. In consequence, this might hinder
the structuring of the data. In this manner, the use of sections to filter have still some
limitations, but still, being more promising than paragraphs. Thus, this highlights the
importance of postprocessing to mitigate these constraints. Finally, a section-based
selection was explored for filtering information of interest instead of paragraphs as more
data could be retrieved and ease procedures organization, despite the limitations.

Step 4: 4-{2-[4-(4-Chloro-3-difluoromethoxy-phenyl)-pyrazol-1-yl]-ethyl}-
3,5-dimethyl-1H-pyrazole

N
- \
\( \

~=N

o. = |
\ NH
cl
ITo a solution of 4-(4-chloro-3-difluoromethoxy-phenyl)-1H-pyrazole (123 mg, Topic 1

0.50 mmol) in dry DMF (4.0 mL) was vacuumed and refilled with nitrogen,
followed by addition of sodium hydride, 60% in paraffin oil (22 mg, 0.55 mmol).

The reaction mixture was stirred at room temperature for 20 minutes, then 4-(21 ~ Topic 1
chloro-ethyl)-3,5-dimethyl-1H-pyrazole (159 mg, 1.0 mmol) (ChemDiv, BB0O1-
4360) was added. The reaction mixture was stirred at room temperature for 20
hours. The mixture was partitioned between water (50 mL) and ethyl acetate
50 mL).

The organic phase was separated, dried over sodium sulphate, filtered, and Topic 9
concentrated in vacuo to give a crude product. The crude product was purified
by silica gel chromatography eluting with 0-100% EtOAc in hexane to give 4-{2-
[4-(4-Chloro-3-difluoromethoxy-phenyl)-pyrazol-1-yl]-ethyl}-3,5-dimethyl-1H-
pyrazole (123 mg, 67% yield) as colorless resin. MS (ESI m/z) é 1.98 (s, 6H);
2.82 (t, 2H, J=7.35); 4.12 (1, 2H, J=7.35); 7.18 (t, 1H, J=7.34); 7.46 (m, 1H);
7.52 (m, 2H); 7.95 (s, 1H); 8.11 (s, 1H); 11.92 (s, 1H).

Figure 5-6 Example of undesirable results of paragraph classification approach.
5.3.1.2 Sections modelling
A total of 208,596 patents were used for topic modelling. These were equivalent to
5,542,816 different sections. With these data, LDA models were trained to determine
potential topics. During this process, the effect of the order of the examples and inclusion
of long texts was assessed. Regarding the first, it has been reported that LDA may suffer

from Rnordero effect, which means t hat t
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affect the results 82, This was confirmed in Figure 5-7B where perplexity tended to
increase every time the number of topics was greater. In contrast, when the order was
randomized, the opposite behaviour was exhibited. Perplexity tends to decrease as a
function of the number of topics, whereby shuffled data provided a behaviour that fits
more with theory . In this way, the results suggested that shuffling data is necessary to

have reliable LDA models.

A

T 1 R i AR SO 383
0.006 -
2
‘@ 0.004 -
c Q;+1.51QR
o}
[m]
0.002 - I
0.000 - . . . S .
0 200 400 600
Number of Tokens
B C
-8~ No Shuffling Shuffling -~ Truncated No Truncated
3000 - 180 -
> >
= 2000 - i 7o
& 1000 - & 150-
140 -
10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100
Number of topics Number of topics

Figure 5-7 Distribution of the number of tokens per section (A) and Perplexities determined for LDA models
evaluating shuffling (B) and truncation effect (C)

Regarding the effect of text length on model performance, the distribution for the number
of words per preprocessed section and the effect of truncation can be seen in Figure 5-7A
and C. Nearly 87% of all the sections contained 425 tokens or fewer. This point
corresponded to the superior limit of the boxplot, by which, based on the IQR rule, values
greater than this threshold can be suspected to be outliers. Thus, texts whose length was
higher than 0 were defined as long. Observing Figure 5-7C, truncated texts showed
lower perplexities throughout the assessed range, compared to texts without truncation.
This difference even led to a different optimal number of topics, with values of 60 and 90

for truncated and non-truncated models, respectively. Furthermore, apart from the

96



difference in perplexity, the output quality was also affected, impacting on the topic

interpretability as illustrated in Figure 5-8.

A Topic #18 Topic #20 Topic #32
dose - [N mixture - mass - [l
day- solution - chemical - [
week - [l mmol - ppm - I
study - . add - spectra - [J
subject - i stir - magnetwc |
hour- i reaction - -1
administer - [ dry - spectrum 1
administration - I ethyl - resonance - ||
treatment - wash - perform - ||
example - | water - solvent - |
0.;30 0.2]5 0.I10 0.I15 0.I20 O.E)O O.IOS O.'10 O.I15 O.IZO O.bO 0.65 O.I10 O.I‘I5 O.IZO
Probability
B . . .
Topic #23 Topic #49 Topic #73
invention - [l diclofenac - cell- i
taste - [} glucan = compound - I
government - || poly - acid -
artificial - [ calcitonin - example -
hee - il solution - sialidase -
support - [} brs - lysosomal - ||
hemoglobin - | example - include - |
right = i ptx = embodiment -
nsclc - [ diketopiperazine = invention =
fsh- ] glycopyrrolate - sialylation -
0.000.050.100.150.20 0.000.050.100.150.20 0.000.050.100.150.20
Probability

Figure 5-8 Top 10 keywords for truncated (A) and non-truncated (B) LDA models.

Overall, when the texts were not truncated, very specific words were found within the
most important words. For instance, active ingredients or uncommon operations seemed
to have a greater relevance (Topic 49 and 73 - Figure 5-8B). Another aspect observed in
the sections without truncation was that the LDA model yielded topics with keywords that
were difficult to interpret more often (Figure 5-8B i Topic 23). Lastly, while there were
topics with a distribution that clearly favour certain words, some groups had keywords
with more uniform probabilities (Figure 5-8B i Topics 32 and 73). In consequence, it is
possible that these keywords did not generalise well the topics, by which the documents
in these groups might not necessarily be related to what keywords suggested, reducing
model interpretability and reliability. Once again, although this happened in both models,
these kinds of topics were less frequent for truncated data. In this manner, the truncated

model was concluded to be the best, with 60 latent topics. Furthermore, section truncation
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was also demonstrated to generate more understandable topics. Keywords for both

models can be found in Appendix B.

Using document representation for the optimal LDA model, k-Means algorithm was
applied to cluster documents. The results for the selection of the optimal number of
groups are displayed in Figure 5-9. The first factor analysed was the effect of data
transformation. Across the assessed range and for both metrics, L2-norm outperformed
square root transformation. Knowing this, the analysis next focused on selecting the
optimal number of clusters for normalised data. The optimal points given by the DB and
S scores differed. However, one of the main differences between both scores was the
variability. the S score showed values with a higher scattering compared to the DB score.
Therefore, the differences in S score might not have been as significant as with DB index.
Due to this consideration, the selected number of clusters for k-Means was 60, which
was the optimal considering the DB index.

Davies-Bouldin Silhouette

26-

2.4 - b 0.45 - |
0 22" L\; 0.40 - Transformation
S B . )
§ 2.0- 0.35 L2-norm

18- Square

0.30 - Root
16-
14 = , : T 025- { . .
20 40 60 20 40 60

Number of Clusters (k)

Figure 5-9 Performance for k-Means model changing the number of clusters.

5.3.1.3 Section selector performance

Figure 5-10 depicts the LDA representation for a sample of 2000 sections, using t-
distributed stochastic neighbour embedding (t-SNE) to reduce dimensionality. A total of
17 labels were assigned to the clusters. It was possible to visualise how documents
belonging to the same cluster and label tend to be close to each other. An example of
this can be seen in the references 1 and 2 (black points) in Figure 5-10, whose texts can
be seen in Figure 5-11. These two sections were about to synthesis procedures, and it
can be seen how the algorithm correctly classified them into a primary manufacturing
topic, having similar values. In the same manner, upon selecting labels related to

manufacturing, as listed in Table 5-5, LDA representations allowed the agglomeration of
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documents into two clearly defined regions about pharmaceutical manufacturing. These
results supported that LDA enabled the numerical comparison of documents which are
semantically similar. In addition, LDA + k-Means enabled the separation of information

into interpretable topics, considering this work scope.

=~ Ref.1 ™ Label

L i \ * biologics
7’ . A\ * biologics, description
30— 4 f \ ., Clinical data, pharmacology,
Y, Ref. 2 , therapy, in-vivo/in-vitro studies
’ * cosmetics
/ U description, field,
/ / scope, and figure
! / * dosage forms
! / hple
| * / manufacturing
manufacturing, testing, biclogics
~ medical devices, materials
\ s natural product, nutraceuticals

o . & ~3. primary manufacturing
- -~
-

Dimension 2

primary manufacturing, description
\ primary manufacturing, peptides
« crystallization
\ secondary manufacturing
+ 0 * spectrometric data

30 - : & P’s \ * testing, evaluation
L . 1
\\ 'S % : :
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| Manufacturing

\ $ / -
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\\\ i! t/, 1= Yes
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Figure 5-10 t-SNE visualization of document representations generated using LDA.

The results of the performance assessment are summarised in Table 5-5. In this case,
the agreement between sections and labels assigned can be seen for the best and worst
case. The overall percentage of agreement in the worst case was around 81%. The
lowest degree of agreement was found for the cluster assigned with the spectrometric
data label. The LDA topic most important for this label corresponded to the number 32,
which was characterised for having keywords with uniform probabilities, as shown in
Figure 5-8A. As discussed previously, this fact results in keywords with a poor power of
characterisation, which results in low generalization. As a result, these keywords were
not helpful to define a reliable label. Another unique aspect of the documents classified
under this label was that LDA representations were widely spread with respect to the
others. This could be evidenced in Figure 5-10where documents belonging to analytical

topics were very sparse, and it was difficult to appreciate a dense cluster. In this manner,

99



this cluster in particular was not reliable and grouped sections that were not related to

the assigned label. Nonetheless, despite this cluster behaviour, it is important to note that

the cluster did not contain sections on manufacturing considering the revised sample.

Likewise, the label was assigned as nonrelevant since it is focused on spectrometric

results. Therefore, for manufacturing information retrieval, the sections belonging to this

cluster were not considered for the subsequent data extraction step, which should not

affect final results.

Ref. 1 (Patent Number US10590109B2)

Ref. 2 (Patent Number US8324225B2)

Step 9
4-((2-(dimethoxymethyl)-6-(methylamino) pyrid-3-ylymethyl) morpholin-3-one

Compounds t-butyl-(6-(2-methoxyethyl)-5-((3-carbonylmorpholine)methyl) pyrid-2-
yl)(methyl) aminocarboxylate 9i (70 mg, 0.18 mmol), trifluoroacetic acid (1 mL) and
dichloromethane (4 mL) were mixed, and stirred for 6 h at room temperature. The
mixture was alkalified with triethyl amine, and subjected to exsolution under
reduced pressure. The residuals were purified through a preparative silica gel plate
(petroleum ether/ethyl acetate 1:1), to obtain the target product 4-((2-
(dimethoxymethyl)-6-(methylamino) pyrid-3-yl) methyl) morpholin-3-one 9j (46 mg,
colorless solid), at a yield of 86%

MS m/z (ESI): 296 [M+1].

EXAMPLE 377
1-[2-[4-(4-Acetyl-piperazin-1-yl)-phenylamino]-7-(1-ethyl-propyl)-7H-pyrrolo[2,3-
d]pyrimidin-6-yl]-ethanone

. \ \ O
I
~ )\

\

‘ \

To a solution of 1-[2-chloro-7-(1-ethyl-propyl)-7H-pyrrolo[2,3-d]pyrimidin-6-yl]-
ethanol (61 mg, 0.2 mmol) in CH,Cl, (2 mL) is added Dess-Martin periodinane (242

mg, 0.5 mmol). The reaction mixture is stirred for 1 h, quenched with 10%
NaS;03:saturated NaHCO3 (1:1) aqueous solution, and extracted with CH,Cl. The

extracts are washed with water and brine, dried over Na,80,4, and concentrated in
vacuo. The residue is purified by flash chromatography (SiO,, EtOAc/Hexane 1:3) to
afford 58 mg of 1-[2-chloro-7-(1-ethyl-propyl)-7H-pyrrolo[2,3-d]pyrimidin-6-yl]-
ethanone.

LCMS: 266 (M+H)™".

By repeating the procedures described in example 2071, using 1-[2-chloro-7-(1-ethyl-
propyl)-7H-pyrrolo[2,3-d]pyrimidin-6-yl-ethanone as a starting material, 1-[2-[4-(4-
acetyl-piperazin-1-yl)-phenylamino]-7-(1-ethyl-propyl)-7H-pyrrolo[2,3-d]pyrimidin-6-
yll-ethanone is obtained

LCMS: 449.4 (M+H)*"

Figure 5-11 Example documents with similar content and classified in the same cluster (primary
manufacturing) referenced in Figure 9.

Table 5-5 Degree of agreement between labels assigned based on LDA keywords and manually revised

sections
Label Related to Worst Best  Number of
manufacturing?  Case Case Clusters

Spectrometric data No 20.0%  20.0% 1
Primary manufacturing, No 50.0% 60.0% 2
description
Biologics, description No 60.0% 80.0% 1
Biologics No 75.6%  86.7% 9
Testing, evaluation No 76.0%  80.0% 5
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Clinical data, pharmacology, No 80.0%  95.6% 9
therapy, in-vivo/in-vitro

Medical devices, materials No 80.0%  80.0% 1
Natural product, No 80.0% 80.0% 1
nutraceuticals

Description, field, scope, No 92.5%  95.0% 8
figure

Manufacturing, testing, No 100.0% 100.0% 1
biologics

Cosmetics Yes 60.0%  80.0% 1
Dosage forms Yes 60.0%  80.0% 1
Primary manufacturing, Yes 60.0% 100.0% 1
purification, crystallization

Hplc Yes 80.0%  80.0% 1
Manufacturing Yes 80.0%  90.0% 4
Primary manufacturing, Yes 80.0% 100.0% 1
peptides

Secondary manufacturing Yes 90.0%  90.0% 2
Primary manufacturing Yes 100.0% 100.0% 11
Weighted Average by Number of Clusters 81.7%  89.3% 60

The remaining labels presented values greater than or equal to 50%, leading to an overall
performance greater than 80% for both cases. This suggests that there is a high
agreement between the information provided by the documents and the interpretation
provided by the topic keywords and clusters, at least being better than a random guess.
Given that there was a good level of agreement between the cluster interpretation and
the grouped sections, it was possible to generalise to a higher level by directly relating
the labels with the possibility of containing information on manufacturing, with a special
emphasis on small molecules. Therefore, all the clusters with a label about manufacturing
was marked as relevant. The list of labels with relevant and irrelevant information can be
seen in Table 5-5. In this manner, this methodology enabled to indirectly determine what

sections were of interest.

In the end, 22 out of 60 clusters were considered relevant. Although, as can be seen in
Table 5-5, there were a few labels considered irrelevant that still mentioned aspects about
fabrication and composition, these were discarded as pharmaceutically relevant because
they only provided generic information; for instance, some sections listed all the possible

dosage forms. Interestingly, when the agreement was calculated by relevancy, the group
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of manufacturing had a higher level with 88.1% for the worse case, while 77.8% was
obtained for the other group. Some possible reasons behind that were the presence of
few sections that were related to manufacturing, and perhaps the most frequent, sections
that could be associated with other similar labels. Finally, with model output and manual
revision, agreement was measured using Cohnen 6s kappa for manufactur
resulted in a value of 91.1%, which can be considered acceptable 83, In this way, the
results suggested that the algorithm was able to distinguish sections with information of
interest from those that were irrelevant. Nonetheless, it is worth to highlight that even
though this approach may help to distinguish relevant information in an efficient manner,
there still sections in the sample which were difficult to define thereby the final selection

might still contain a reduced number of irrelevant information.

5.3.2 Named entity recognition

5.3.2.1 Experimental Designs for NER model optimization

The initial results and the effect of each factor can be observed Table 5-6 and Figure
5-12. The results showed the most important factor was learning rate (L), with the highest
magnitude. The rest of the factors did not deviate significantly from normality. A possible
reason was that the effect of L was so strong, particularly at a high level, that most of the
scores were close to zero. In this manner, L obscured the effect of the other factors to a
certain extent. Thus, in this run, the learning rate was concluded to be a factor that
required to be optimized, given its magnitude. On the other hand, to confirm the effect of

the remaining factor, a second Placket Burman design with 11 factors was performed.

Table 5-6 Initial Placket Burman design and results for hyperparameters selection. A: sequence max length
(number of tokens), B: number of Conv1D layers, C: kernel size, D: number of filters, E: dropout rate, F:
LSTM units, G: spatial dropout 1D rate, H: number of heads (MHA layer), I: keys dimension (MHA), J:
embeddings dimensions, K: embeddings windows size, L: learning rate, M: weight decay, and N: initializer.

# A B C D E F G H I J K L M N F1-
score
1 113 1 3 512 03 128 03 6 96 100 20 0.001 0.0001 B 74.3%
2 113 3 1 512 03 256 05 6 32 100 5 0.001 0.0001 A 74.6%
3 83 3 3 128 03 256 05 2 32 300 20 0.001 0.0001 B 70.4%
4 113 3 1 128 03 128 03 2 32 100 20 0.01 0.001 B 42.2%
5 83 1 1 512 03 256 0.3 2 9% 300 5 0.001 0.001 B 68.1%
6 113 1 1 512 05 128 05 2 32 300 S5 0.01 0.0001 B 0.0%
7 113 3 3 512 05 256 05 6 9 300 20 0.01 0.001 B 0.0%
8 83 1 3 512 05 256 03 2 32 100 20 0.01 0.0001 A 6.0%
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9 83 3 3 512 03 128 05 2 9% 100 5 0.01 0.001 A 0.0%
10 83 3 1 512 05 128 03 6 32 300 20 0.001 0.001 A 65.3%
11 83 3 1 128 05 25 03 6 96 100 5 0.01 0.0001 B 0.0%
12 113 1 1 128 05 256 05 2 96 100 20 0.001 0.001 A 55.1%
13 113 1 3 128 03 25 03 6 32 300 5 001 0.000 A 0.0%
14 113 3 3 128 05 128 03 2 96 300 5 0.001 0.0001 A 72.6%
15 83 1 3 128 05 128 05 6 32 100 5 0.001 0.001 B 61.5%
16 83 1 1 128 03 128 05 6 96 300 20 0.01 0.0001 A 0.0%
O -
4‘5' -20 b’
D
=
L
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-60 -

0
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Figure 5-12 Normal plot of hyperparameters effects on F1-score for NER models. A: sequence max length
(number of tokens), B: number of Conv1D layers, C: kernel size, D: number of filters, E: dropout rate, F:
LSTM units, G: spatial dropout 1D rate, H: number of heads (MHA layer), I: keys dimension (MHA), J:
embeddings dimensions, K: embeddings windows size, L: learning rate, M: weight decay, and N: initializer.

For the second Placket Burman, the factor L was fixed to 0.001. Similarly, the variables

corresponding to max_len (A) and init (N) were also maintained constant with values of

113 and default initializer A. The max sequence length was adjusted at the highest level

as the more tokens are included, the more likely is to retrieve entities which are mentioned

in the last part of a string, for long sentences. In addition, this variable did not have a

negative impact on model performance. Regarding the initializer, the default for

TensorFlow library was set since, even though it has been pointed out that this factor

may affect model convergence %, it is not a parameter which is usually reported to be

optimized for named entity recognition applications 92172180181 Apart from this, in the

same manner as sequence length, this parameter did not affect significantly the
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performance either. As for the remaining variables, some of the ranges were widened to
confirm whether the variable definitely has no effect, or the levels employed in the
previous experiment were not broad enough to observe a significant difference. The

second design is shown in Table 5-7.

Table 5-7 Confirmatory Placket Burman design and results for hyperparameters selection. B: number of
ConvlD layers, C: kernel size, D: number of filters, E: dropout rate, F: LSTM units, G: spatial dropout 1D
rate, H: number of heads (MHA layer), I: keys dimension (MHA), J: embeddings dimensions, K:
embeddings windows size, and M: weight decay.

Run B C D E F G H I J K M Fl-score
1 4 1 128 0.3 300 0.3 6 128 100 20 0.001 40.7%
2 1 5 128 0.7 300 03 6 128 300 5 0.0001 69.1%
3 4 1 512 07 300 0.3 1 32 300 5 0.001 51.3%
4 1 5 512 03 300 0.7 6 32 100 5 0.001 48.8%
5 1 1 128 0.7 100 0.7 6 32 300 20 0.001 38.4%
6 4 5 128 0.3 100 0.7 1 128 300 5 0.001 28.0%
7 4 5 128 0.7 300 0.7 1 32 100 20 0.0001 34.2%
8 1 1 512 03 300 0.7 1 128 300 20 0.0001 69.6%
9 1 1 128 03 100 03 1 32 100 5 0.0001 67.8%

10 4 1 512 0.7 100 0.7 6 128 100 5 0.0001 58.0%
11 4 5 512 0.3 100 0.3 6 32 300 20 0.0001 64.9%
12 1 5 512 0.7 100 0.3 1 128 100 20 0.001 44.6%

The results of the second design are shown in Table 5-7 and hyperparameters effects
can be seen in Figure 5-13. In this case, factor M (weight decay) had the greatest effect
on performance, by which M was further optimized in a final CCD, along with the learning
rate. The next hyperparameters were G (spatial dropout), which is related to E (dropout).
Dropout is usually applied to deactivate randomly a pre-set proportion of units at the
training stage, which mitigates overfitting #*. However, an excess of deactivated units
may hinder model training, whereby this value should be chosen carefully*®. For both
types of dropouts, the effect was negative by which a lower dropout favours model

performance. Thus, this was fixed at 0.3.
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Figure 5-13 Normal plot (A) and magnitude (B) of hyperparameters effects on F1-score from Confirmatory

Placket Burman design. B: number of Convl1D layers, C: kernel size, D: number of filters, E: dropout rate,

F: LSTM units, G: spatial dropout 1D rate, H: number of heads (MHA layer), I: keys dimension (MHA), J:
embeddings dimensions, K: embeddings windows size, and M: weight decay.

Next, the hyperparameters related to the convolutional layer such as B, C, and D also
had an important effect. Whereas the effect of B and C was negative, D had the opposite.
This indicates the highest performance can be obtained at the lowest levels of kernel size
(C) and the number of layers (B). A convolutional layer has been suggested to help the
model to detect semantic features that are more relevant to text classification tasks .
However, in this work architecture, Conv1D followed the embedding layer, by which many
layers or a higher kernel size may cause excessive filtering resulting in a loss of
information from word embeddings. This also leads to the question of whether a
convolutional layer actually helps to retrieve more information. To evaluate this, a
confirmatory experiment was carried out. As for the layer settings, it was also shown that
a high number of filters (D) seems to be favourable for the model. In the end, the best

kernel size and the number of filters were 1 and 512, respectively.

Regarding attention layer parameters H and |, although they seemed to increase f1-
score, the magnitude of their effects was not significant compared to the others. In
particular, the size of each attention head for keys (1) had an effect of around 0.7%. Since
no major benefit was obtained from this parameter, for the next experiments, the middle
point (64) was chosen. On the other side, the number of heads (H) had a greater effect
with nearly 4.1%, therefore, the highest level was selected. However, the overall effect
that this layer provides is lower considering the number of parameters that requires, thus,

this layer was subsequently evaluated to see whether it improves NER performance.
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The influence of hyperparameters related to NER main components such as embeddings
and LSTM layer was moderate to low. The embeddings parameters windows size (K)
and embeddings dimensions (J) behaved inversely. Pretrained embedding with a higher
number of dimensions provided better results. This is aligned with previous works that
claim that embeddings with higher dimensions tend to represent better semantic
information of the words 8. On the other hand, a lower window size favoured model
performance. This parameter defines how many words behind and ahead are evaluated
with respect to a particular word in a sentence to train embeddings. A wide window might
cause the algorithm to lose focus on the target word, degrading the representation of
semantic information for this data. LSTM number of units in turn had a behaviour where
the highest number of units seemed to give a better contextual representation for entity
recognition, although the effect was expected to be greater given the importance of this
component, by which this was verified subsequently. In this manner, the best pre-trained
embeddings had parameters windows size 5 and dimension 300.

To confirm the effect of the variables related to ConvlD, MHA and LSTM layers, whose
magnitude was low, a third batch of experiments was run. For this case, a full factorial
design was employed with two centre points. The number of headings for the attention
layer was widened to ensure a larger range was covered. ConvlD parameters were set
as aforementioned. The levels for LSTM units used in the previous experiments were

maintained. The matrix design can be seen in Table 5-8 and results in Figure 5-14.

Table 5-8 Full Factorial design and results for hyperparameters selection. B: number of Conv1D layers, F:
LSTM units, and H: number of heads (MHA layer).

Run B F H Fl-score
1 2 200 5 75.8%
2 1 300 8 75.7%
3 1 300 2 75.9%
4 3 300 8 74.9%
5 3 300 2 76.0%
6 1 100 8 75.6%
7 1 100 2 75.7%
8 3 100 8 74.6%
9 3 100 2 75.0%

10 2 200 5 75.7%

Average 75.5%
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Figure 5-14 Normal plot (A) and magnitude (B) of hyperparameters effects on F1-score from Factorial
design. B: number of Conv1D layers, F: LSTM units, and H: number of heads (MHA layer).

Factorial experiments yielded the overall effects were not significantly different. This can
be seen in Figure 5-14, where no significant deviations from normal distribution were
found. By observing effect magnitude, the negative impact of the addition of convolutional
layer (B) on fl-score was confirmed, with this factor having the highest effect. Similar to
the previous set of experiments, more LSTM units (F) seemed to increase recognition
performance, but it only generated a marginal difference. Nonetheless, the number of
heads (H) in the attention layer effect resulted in the opposite trend to what was observed,
where more heads improved performance. There are two possible hypotheses about this

behaviour.

On the one hand, the levels employed in factorial design were expanded to 2, 5, and 8,
whereas previously 1 and 6 heads were assessed. The maximum performance was
reached with 5 and 6 heads, which meant that a reduced number of heads may not have
a positive impact, in the same way as an excessive number, as illustrated in Figure 5-15.
As a result, the optimal value of this hyperparameter would be around 5. On the other
hand, the obtained effects in this experiment were not particularly large, which might be
due to the observed difference being random. The rest of the factors yielded a similar
behaviour as exhibited in previous models. This led to conclude that the best
hyperparameters for B, F, and H were 1, 300, and 5, respectively. However, the trends
shown by the B and H did not confirm the benefits of the convolutional and attention layer
on the improvement of entity recognition, reinforcing the need to carry out confirmatory

experiments without these layers.
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Figure 5-15 F1-score micro average vs the Number of Heads in MHA layer

Going back to the previous experiments, the parameters learning rate and weight decay
turned out to be the most important. Thus, a central composite design (CCD) was used
for optimization. The results of weight decay and learning rate optimization can be seen
in Figure 5-16. The contour plot showed that extreme values of both hyperparameters
were harmful to model performance. In addition, it was confirmed that the values
employed in the previous tests were within the area where the highest fl1-scores could be
obtained (learning rate 0.001 and weight decay 0.0001). Learning rate has been reported
in the literature to be perhaps the most important hyperparameter to optimize . This
statement is in line with the results obtained in this work. Finally, the optimal values
yielded by the results werep T8  andp e for learning rate and weight decay,

calculated through the fitted curve.
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Figure 5-16 Contour plot Weight Decay vs Learning Rate.

To sum up this section, the best values for the majority of hyperparameters were defined
using different sets of experiments. The most important variables were learning rate and
weight decay, which are related to the optimizer component for training the model. As for
the other features, the set values can be seen in the Table 5-9. To highlight, most of the
variables had a consistent effect throughout all the experiments, however, there were still
guestions about the effect of attention and convolutional layers. This led to verifying the
actual benefit of including these layers, by which additional tests were carried out to
confirm this. In the end, at this point, a base architecture was defined, but the
inclusion/exclusion of some parts of the model might improve performance further which

is explored in the following sections.

Table 5-9 Summary selected values for NER model hyperparameters. *Layers to confirm

Hyperparameters Selected Value
A: Sequence max length 113

B: Number of ConvlD layers* 1

C: Kernel size* 1

D: Number of filters* 512

E: Dropout rate 0.3
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F: LSTM units 300
G: Spatial dropout 1D rate 0.3
H: Number of heads (MHA)* 5

I: Keys dimension (MHA)* 64

J: Embeddings dimensions 300
K: Embeddings windows size 5

L: Learning rate pm?d
M: Weight decay pm?d
N: Initializer. A

5.3.2.2 Confirmatory experiments

The summary of the results can be seen in Table 5-10. Using as a base model the
architecture without convolution or attention layers (BiLSTM), it can be seen that the self-
attention layer did not enhance fl-score in any case. Instead, a reduction of 2.6% on
average was observed when used. On the other hand, ConvlD seems to have a
significant improvement in model performance, thereby confirming the effect of this layer
discussed in the previous section, helping to filter relevant semantic features . A similar
effect was expected for the attention layer; however, this was not the case. In this manner,
for the best model, the attention layer was discarded, whereas the Conv1D layer was
demonstrated to be needed to have the best performance possible.

Table 5-10 F1-scores (micro-average) for confirmatory models in development and test sets. BiLSTM:
Bidirectional Long Short-Term Memory, Conv1D: unidimensional convolution, Attention: multihead self-
attention, CE: Character embeddings.

Model Dev Test  Average
BiLSTM 81.7%  79.6% 80.6%
BiLSTM + ConvlD 84.6%  82.0% 83.3%
BiLSTM + Attention 79.4%  76.7% 78.0%
BiLSTM + Attention + Conv1D 83.8% 82.0% 82.9%

BiLSTM + Conv1D + CE + Dropout (0.3) 84.7%  83.5% 84.1%
BiLSTM + Conv1D + CE + Dropout (0.5) 84.9%  83.2% 84.0%
BiLSTM + Conv1D + CE + Dropout (0.7) 85.4%  83.0% 84.2%
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fasttext embeddmngs | nput: | [(None, 113, 300)]

InputLayer output: | [(None, 113, 300)]
Y
convld | mput: | (None, 113, 300) clhr_in mput: | [(None, 113, 22)]
ConvlD | cufput: | (None, 113, 512) InputLayer | outpui: | [(None, 113, 22)]
4
batch_normalization | nput: | (None, 113, 512) time_distributed{embedding) | nput: (None, 113, 22)
BatchNormalization | output: | (None, 113, 512) TimeDistributed(Embedding) | output: | (None, 113, 22, 25)

l

activation | mput: | (None, 113, 512) tme_distributed_1(bidirectional) | mput: | (None, 113, 22, 25)
Activation | output: | (None, 113, 512) TimeDistributed(Bidirectional) | output: {None, 113, 50}
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concatenate | input: | [{None, 113, 512), (None, 113, 50)]

Concatenate | output: (None, 113, 562)
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Figure 5-17 Best model architecture for NER

In addition to the inclusion or exclusion of specific layers, the confirmatory test also
included the evaluation of the use of additional features such as characters embeddings
(CE). CE have been proven to enhance NER performance in several domains . To
some extent, this is achieved by modelling other features not considered by word
embeddings such as word morphology and spelling *¢°. However, the effect of CE might
be obscured by the effect of word features 8°. Due to this, some authors recommend
adjusting dropout to maximise the effect of CE and model performance. Therefore, tests
using CE with several levels of dropout were also assessed . As observed in Table
5-10, the additional features increased model performance independently of the rates of

dropout used, with fl-scores surpassing 83.0% in all cases. When comparing the
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behaviour of performance metrics using different dropouts, a disparity in trends was
observed. For the development set, the higher the dropout, the better the performance,
while the test set resulted in the opposite. However, on average, the former trend was
dominant, whereby the model with the highest dropout was selected as the best. The

best model architecture is illustrated in Figure 5-17.

5.3.2.3 Error analysis

The performance of the final model for each entity is broken down in Table 5-11. Overall
performance, in terms of precision and recall, was 84.9% and 83.5%. These values were
comparable to other works in similar domains, where results revolved around 60 and 98%
147 To highlight, the 3 most difficult entities to recognize were related to packaging
materials, excipient type, and targets, having the lowest values for the different metrics.
A key aspect of these types of entity is the low recall, which is translated into a loss of
information during extraction. From the confusion matrix shown in Figure 5-18 Confusion
matrix for NER, the most common error for these entities was not to be recognized or
classi fied as Additionadlyl thisrearar tvas @l$o @heé jnost frequent among

the other types of entities.

Table 5-11 Breakdown of the performance for best NER model.

Entity Precision Recall F1-Score
AMOUNT 94.1%  95.0% 94.5%
API 88.1%  88.2% 88.1%
BIOLOGICAL_MATERIAL 87.2%  83.6% 85.3%
COMPOSITION 75.8% 81.1% 78.1%
CONDITION 89.3%  83.3% 86.2%
DOSAGE_FORM 80.7%  82.4% 81.5%
EQUIPMENT 80.2%  81.3% 80.6%
EXCIPIENT 83.3% 79.1% 81.1%
EXCIPIENT_TYPE 70.9%  64.6% 67.6%
INTERMEDIATES 78.5% 75.5% 76.9%
OPERATION 89.6%  89.1% 89.4%
PACKAGING 66.5%  58.0% 61.8%
REACTANT 81.2%  83.4% 82.3%
SOLVENT 88.7%  88.6% 88.7%
TARGET 73.2%  72.9% 72.6%
YIELD 97.4% 94.4% 95.7%
micro avg 84.9%  83.5% 84.2%
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Figure 5-18 Confusion matrix for NER

Interestingly, in the specific cases of material-related entities such as targets or
packaging, these were also misclassified into another material class such as reactant or
dosage form, respectively. It was noticed that this behaviour could be extrapolated to any
other similar type of entity, for instance, API, excipients, or solvents. Consequently, it can
be concluded that the model was associating the materials with material-concept tags.
Going to other types of entities such as amount, composition, and yield, these tended to
be classified into one another, when misclassified. However, despite the error, the model
still associated entities with similar concepts. In contrast, this trend was not observed in
operations or conditions. Operations were sometimes tagged as intermediates or dosage
forms were classified as operations. However, these cases were marginal compared to
operations falling into the #n O0 c | as s, representing 0.8% and
respectively. Furthermore, other types of errors were even less frequent. Thus, overall,

the model yielded errors that could be considered reasonable in most cases. However,
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for information retrieval and machine learning development, further processing and
cleaning steps may be required to mitigate the effect of these errors on the reliability of
the extracted data. As for the possible causes of these errors, these might be explained

by two sources: context modelling and training set size.

In the first instance, sentences were used as inputs for NER model and, for this type of
input, the surrounding words might have not sufficed to know whether or not a token
belongs to a specific category occasionally. An example of this was seen with materials
that can be used as excipient or reactant like Sodium Hydroxide or Hydrochloric Acid,
where in a synthesis procedure, the model recognized them as EXCIPIENT. Another
possible reason may be that the employed embeddings do not completely capture the
differences between the entities. In this regard, the embeddings deployed for the present
work generate a unique representation for each token. Recent developments have
provided embeddings based on transformers that generate representations for tokens
considering context 9414718 |n this way, the same word may have several
representations depending on the other surrounding words. This approach has shown
good results in other domains 9414718 which can be worth exploring as an opportunity

for improvement in future works.

Going back to the cases of targets and packaging materials, a characteristic of these
types of entity was that there were not many examples in the training set. Nearly 2.0% of
the sentences had terms related to packaging materials, while around 2.6% contained
tokens about targets. In this manner, the inclusion of examples containing this type of
entity with a greater diversity of terms might help the model learn to identify these better.
Although it was observed that these entities were not mentioned very often throughout
the patents compared to not being identified. In particular, the main focus of the studied
patents was formulations and packaging materials were not mentioned. In the case of
targets, a common pattern in the analysed document was the implicit reference; thus,
chemical structure or name was described in different sections. Additionally, these

entities were not abundant in the corpus, hindering model learning.

5.4 Summary

In this chapter, a set of tools was developed to aid the extraction of information on primary

and secondary manufacturing from patents. The process by which these tools were
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trained and validated is discussed throughout the chapter. The first component comprises
a section selector. This model filters sections that potentially contain information on
manufacturing, with special emphasis on small molecules. This made use of
unsupervised approaches such as LDA and k-Means to group documents and provide
interpretation for each cluster based on keywords. The interpretability and agreement of
the cluster topics were validated by manual revision of a sample of sections. The overall
degree of agreement between assigned topic labels based on the cluster keywords and
the actual section topic was 81.7%, in the worst case. For the identification of relevant
document s, the agreement was measured using C
91.1%. This suggests that there is a good level of agreement between the output of the
model and the actual section topic. In this manner, this approach has been proven to be
useful to select relevant fragments of text. Then, once the fragments of text containing
the relevant information have been filtered, it is necessary to apply another algorithm that

recognizes the specific information we are interested in extracting.

To accomplish this, a NER model was trained. This model consisted of a deep neural
network with a base architecture comprising word embeddings, a contextualiser
(BIiLSTM) and a decoder (CRF). After optimizing hyperparameters and neural network
architecture, the best architecture was determined. During optimization, the
hyperparameters related to the optimizer (learning rate and weight decay) were found to
be the most important. In addition to this, the inclusion of a convolutional layer and
additional features like character embeddings proved to be helpful to enhance entity
recognition performance. The overall performance for the NER model, measured using
the micro-average fl-score, was 84.2%. The most common errors were associated with
the inability to detect an entity, followed by confusion between recognized entities, to a
lesser extent. For instance, a material which is a final product of a synthesis (TARGET)
could be confused with a reactant. However, these kinds of error seem to be occasional.
Future work focused on improving the NER algorithm may focus on using word
embeddings based on transformers. Approaches such as bidirectional encoder
representations from Transformers (BERT) are more context-sensitive and have
provided promising results in other domains helping models to characterise words whose
meaning is dependent on context. However, the developed model showed to be able to

recognize the required information with a high level of accuracy, although some errors

115



may still occur. Due to this, when applying, post-processing steps are recommended to
mitigate the effect of errors in dataset construction or machine learning application
reliability using the data extracted by these approaches. This will be discussed in more

detail in the next chapter.
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Chapter 6. Deep Generative Models for Primary

Manufacturing Process Design
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6.1 Introduction

In primary manufacturing, deep learning (DL) has become a powerful tool to assist
process design. With novel emerging techniques and substantial efforts done to build
large datasets, multiple models have been trained to achieve tasks in specific areas in
material discovery, and synthesis route prediction, being the latter perhaps the most
relevant in manufacturing. Specifically, it is possible to find commercial platforms based
on DL for retrosynthetic planning such as IBM RXN 87, In addition, these developments
are not only limited to this task but there are also tools to predict sequences of operations
to perform a particular reaction “3, Complementing this, deep neural network architectures
in the prediction of reaction yield, conditions, and optimal solvent can also be found
43,188,189 |n this manner, providing a set of models, that in conjunction, can cover various
considerations in reaction planning. This could in turn allow a more informed, rapid, and
autonomous process design, by targeting feasible chemical reactions with their

respective process and conditions, saving time and resources.

To highlight, many of these options employ sequence-to-sequence or translation-based
approaches to predict a synthesis path for a target molecule. On the other hand, there
have been proposals using deep generative models (DGMs). In this sense, various
models have been cited previously in this work such as the developments performed by
R. Tempke et al and S. Li et al %961, Although sequence-to-sequence models have shown
promising results, it has been argued that these are more likely to inherit biases from
datasets ©. Typically, these biases can be related to that sources mainly report
successful experiments . In this manner, the possibility of discovering new routes or
alternatives can be restricted to interpolation based on existing data. This has become a
strong driver to explore the applicability of DGMs in different aspects of synthesis
planning given their capacity to generate examples not observed in the training set and
provide diverse options. Thus, apart from chemical reaction generation, the application
of DMGs, such as variational autoencoder (VAE), has also been tested to predict reaction

conditions 190191,

Nonetheless, as discussed throughout this work, the availability of models for the
generation of sequences of operations is limited. The main development in this area,

proposed by A. Vaucher et al, utilises translation-based approaches 3. This model
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involves transformers architectures that, processing information on a chemical reaction
expressed as a reaction SMILES, outputs a sequence of actions and conditions to
produce a given target molecule. Thus, the model has demonstrated the potential of DL
in generating experimentally valid procedures and has established a foundation in this
area *. Aligned with this, DGMs could expand the application of DL for manufacturing
sequence generation, offering solutions to the limitations faced by traditional models. As
discussed previously, the low degree of generalisation of predictive approaches could be
overcome by generative modelling as these would allow learning more complex
relationships and distributions. These might facilitate a wider exploration in the

manufacturing space to discover different routes and attain more generalisability.

Thus, this chapter presents the steps taken for the design and training of DGMs. These
are summarised in Figure 6-1. In particular, the following aspects are discussed: the
development of a training set, evaluation of different architectures, and applicability and
limitations of these models. As with any DL model, a large number of data is required. In
this manner, making use of the tools developed, a training set for sequence prediction is
built. Previously, it has been mentioned models can inherit biases from the data.
Therefore, the training set is described, and their limitations are explored. As for the
modelling, considering the selection of operations must be customised according to the
chemical reaction materials, there is a special focus on conditioned models. Going more
into detail about the models, frameworks such as adversarial autoencoder (AAE) and
variational autoencoder (VAE) are assessed along with the effect of variations in
architecture and hyperparameters. Finally, performance metrics and limitations are also
analysed to provide insights into the feasibility of employing these models in real-world

manufacturing scenarios.
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Figure 6-1. Steps for generative model development for manufacturing routes generation for primary
domain.

6.2 Methods

6.2.1 Dataset development

In the previous chapter, ML models were developed to identify sections about
manufacturing and then extract keywords for primary and secondary processing. Thus,
sections focused on synthesis and purification were selected and named entities were
extracted using the NER model. In this regard, sections that mentioned keywords related
to dosage forms and excipients were discarded. In the same manner, records without
operations were also excluded. On the other hand, procedures whose target could be
associated with an InChl identifier were considered for further analyses. This resulted in
a dataset with 716,707 records in 30,854 patents, where each represented the steps for
a single reaction or purification of a unique target molecule. With this initial dataset,

terminology was then standardised as indicated in Chapter 3, subsection Dataset
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Cleaning and Curation. Nonetheless, specific details for the harmonisation of conditions,

materials, and operations are provided below.

Firstly, materials classified as solvents and reactants were processed by removing stop-
words. The terms that only consisted of anions were removed from the dataset based on
a list, given that the information on the molecule entity was assumed to be incomplete or
ambiguous. Then, InChl identifier was searched for each material using Pipeline Pilot
software or pubchempy module in python. To tackle spelling mistakes of the unidentified
materials, rapidfuzz module was used to determine the matching between the remaining
unidentified terms and a dictionary built from the entities with InChl. This was only applied
to the most common substances. For the standardisation of intermediates, conditions,
and operations, it proceeded individually for each type of entity as indicated in Chapter 3
to generate clusters of entities. Then, through the most representative words of each
cluster (closest words to the centroid), a label was assigned. For conditions, each cluster
depicted the type of conditions such as temperature or time. These were further
processed by separating magnitudes and units to later convert all to the same units. This
was applied mostly for temperature and time, as these were the most prevalent

conditions.

On the other side, the clusters of operations or intermediates gathered synonyms of the
same action or type of substance, respectively. In the particular case of operations, the
assignation was verified manually by revising all the terms. At this point, new assignations
or types of actions were added since some terms found did not fit accurately with the
initially allocated definition of the clusters. After this first validation, a second adjustment
was carried out by considering the related materials and/or conditions. For instance, if a
term had an ambiguous type of action, |like 6in
related to temperature, the type of action wa
corresponded to a Oowirtyhd aa cntaitoenr iaasls oscuicaht eads 6 ma
t he operation was reassigned i nto 6dry sol u
harmonisation of actions, the concepts and definitions proposed by %1% were adapted to
this work. A list of the standardised terms used can be found in Appendix A. Then, the
resulting dataset was validated by drawing a random sample of 100 procedures and

manually comparing the observed information to the source. Recall, Precision, and F1-
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score were estimated using this information. Finally, additional data was excluded

according to the criteria described in Table 6-1 to be used in generative model training.

Table 6-1. Exclusion criteria of manufacturing procedures from the dataset for model training. @ Duplicates
corresponded to patents that reported the same molecules and procedures but with a different scope.

Exclusion criteria Number of records discarded
1. Duplicate procedures and target 2 231,958
2. Presence of ambiguous or irrelevant operation 14,897
types such as Afoll ow a
isecondary manufactu
Afdecol ouriseo, fAseto, i
irepl aceo, Aproceedo, ¢
3. Number of steps lower than 2 and higher than 28 35,592
(excluding fAino alteri ng¢
b
4. More than 11 materials (target + solvents + 1,241
reactants)
5 Finishing with operati: 6,537
solutionodo or starting v
6. Likely associated with multiple reactions 29,840
7. Less than 3 types of operations based on classes 11,349

defined in Appendix A Table Al, errors in the
order of operations, or multiple repeating steps

Final number of records 385,293

Ideally, it is expected that a manufacturing sequence provides a minimum amount of
information useful to execute the process. Therefore, brief sequences with only one
reported step (3) or with ambiguous terms (2) were excluded. Similarly, it was desirable
that a procedure reported different or diverse types of operations that described, as
accurately as possible, how materials were manipulated and/or the different
transformations that these underwent to yield the target molecule. In this manner, the
following five operation categories were defined founded on the terms observed in the
final dataset: material handling, material mixing, parameter setting, chemical
transformation, and separation methods. Thus, sequences with operations falling into at
least three of these categories were maintained for model development (7). Finally, it was
expected that a chain of operations maintained a logical order or consistency in terms of
repetitions, transformations, or typical associated actions. An example of this criterion
was that sequences with three or more consecutive operations being the same were

discarded. Addition criteria, such as (3) (> 28 steps) and (4) aimed at optimising
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computational cost and removing atypical sequences, were taken into account. Finally,
the resulting dataset was randomly split into 80%, 10% and 10% for training,
development, and validation, respectively. The final dataset can be found in
https://zenodo.org/records/13377654.

6.2.2 Output representation

Manufacturing sequences were represented using two approaches as can be observed
in. Table 6-2. Representation A only consists of a list of operations found in the procedure.
This representation was employed in exploratory experiments. On the other hand,
representation B was based on the implementation of action prediction using
transformers by Vaucher et al “%. Apart from operations, the sequence includes
placeholders to associate materials and target molecules with the operations through an
index within $$. Similarly, conditions of temperature, time, and pH were also included in
this representation through a class within %% symbol. The number within %% indicates
a range of the specified condition. The equivalency of classes and ranges is described in
Appendix_C. Finally, a YIELD token is used to indicate the target molecule and the
process end. Compared to A, this representation provides more information about the
process and is more readable. B was also used to train models and compared to Vaucher

et al work.

Table 6-2. Examples of manufacturing sequences representations. $$: material; %% condition; T:
temperature; t: time; if no letter is included within %%, it refers to pH.

Patent No. US8859535B2 Output Output
Representation A Representation B*
Intermediate 178.2 (4-Bromophenyl)- 1. ADD 1. ADD $0%
(2-oxabicyclo[2.2.2]oct-4- 2. STIR 2. ADD $3%
yl)methanone 3. FILTER 3. ADD $1% at
To a solution of (4-Bromo-phenyl)-(2- 4. WASH %T2%
oxa-bicyclo[2.2.2]oct-4-yl)methanol 5. DRY [VACUUM] 4. STIR for %t3%
(224 mg, 0.821 mmol) in DCM (13 ml) 5. FILTER
was added a total of manganese 6. WASH with DCM
dioxide (1.414 g, 16.264 mmol) at RT 7. DRY [VACUUM]
and the reaction mixture was stirred for 8. YIELD: $2$

20 hrs. The suspension was filtered
through a pad of hyflo and the residue
was washed with DCM, dried in vacuo
to yield the title intermediate (220 mg,
0.745 mmol, 91%) as a colourless
solid.
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6.2.3 Input representation

A key characteristic of the generative models was the capability of customising the
generated sequence according to a target molecule or material properties. To ensure
this, models were trained in a supervised manner by inputting information on either target
or precursors + target. However, various options can be employed to represent molecules
in ML. For instance, molecular descriptors have been historically used. In the same
manner, different types of fingerprints have shown good results for distinct machine-
learning applications 192193, Additionally, deep learning has enabled the usage of discrete
representations such a SMILES and molecular graphs for properties prediction as well
as molecule generation %1% As can be seen, there are multiple alternatives to represent
molecules. Thus, the first step of model design was to define which of these may be the

most appropriate for manufacturing sequence generation.

In order to assess what representation could potentially provide better performance on
generative modelling, their capability of sequence prediction was studied. Thus, several
deep neural networks were trained using different types of representations. The
evaluated representations are described in Table 6-3. Initially, as an exploratory stage,
the predictability of representation A was carried out by modifying different settings of the
models. Subsequently, to compare to other models available, deep neural networks to
predict representation B based on Transformers proposed by Vaucher et al

representation B were adapted.

Table 6-3. Assessed molecular representations for generative modelling.

Representation Description
Molecular descriptors Includes 1D and 2D descriptors. 1D
groups atoms counts and

physicochemical properties such as LogP,
polar surface area, etc. 2D refers to
molecule fragments and connectivity

indices*®®.
Simplified  molecular-input  line-entry Consists of sequence of ASCII characters
system (SMILES) assigned following rules based on

molecular graphs and connectivity*°®,
Molecular ACCess System (MACCS) Binary code of 166 bits where each value
Keys represents the presence or absence of a
molecule substructure®’.
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Min-hashed Fingerprint (MHFP-2048) Sequence of integers from 0 to 2047.
Each integer decodes a substructure of a
molecule. Proposed by Capecchi et at in
20202,

SVAE VAE to generate SMILES was pre-trained
and the latent space obtained was used
as input in the predictive models, the
architecture of this model was adapted
from Dollar et al'*’

6.2.3.1 Prediction of actions

Going more into detail about the architecture employed in the prediction, it was expected
the different types of networks may vyield different performances. In this manner, if only
one type of architecture were used, it could be argued that the network employed may
not have been able to use the information provided by the representations efficiently to
produce good results. To study the effect of the inputs more accurately, two different
types of neural networks were employed, one based on recurrent neural networks (RNN)
and another using Transformers. The hyperparameters applied to each of these neural
networks are described in Table 6-4. Subsequently, models to predict sequences were

trained using as outputs only operations and varying target molecule representation.

When SMILES was used as a representation and fed directly into the model, an additional
module was included. This module consisted of an embedding layer, which received
SMILES characters, with a dimension of 300; 3 stacked GRU layers with 300 hidden
units; an additive attention layer; a global max pooling; and finally, a dense layer with 128
units. Both, RNN and transformer networks, were trained using Adam optimizer. The
learning rate was set in 5e-4 for RNN, while a learning rate scheduler was used for
transformers where the learning rate started from 0 and increased linearly every step for
15 epochs to 1e-4. The training was initially programmed to continue for 150 epochs.
BLEU score was monitored for a random sample drawn from the test set in each epoch.
However, this was stopped early if there was no improvement in the performance metric
for 30 consecutive epochs. Teacher forcing was employed to ease learning.
Subsequently, additional transformers and RNN networks were trained using as inputs
randomly generated vectors as control. Categorical cross entropy was used as a loss

function.
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Table 6-4. Sequence prediction networks. Architecture taken and adapted from the decoder proposed by
Dollar et al'?’. 2 transformer blocks were implemented as proposed by Vaswani et alt'2,

Layer type Activation Hyperparameters
RNN
Input Max sequence length: 30
Embedding Embedding dim: 30
Dense Relu Units: 128
GRU (Layer 1) Tanh Units: 128
GRU (Layer 2) Tanh Units: 128
GRU (Layer 3) Tanh Units: 128
Dense Softmax Units: No. Operations
Transformers
Input Max sequence length: 30
Embedding Embedding dim: 300
Transformer encoder Relu No. blocks: 1
a Heads: 1

Key dim: 512

Feed forward: 300
Transformer decoder Relu No. Blocks: 1
a Self-attention

Heads: 1

Key dim: 512

Cross attention

Heads: 1

Key dim: 512

Feed forward: 300
Dense Softmax Units: No. Operations

With the descriptors that provided the highest BLEU, a transformers network was then
trained using as inputs target + precursors. Materials not related to operations of
separation or purification were chosen as precursors. Thus, the inputs of each procedure
were represented as a matrix with dimensions (number of materials, representation
dimension). Transformers-based model was chosen to model inputs with this structure
as this layer is permutation invariant. Therefore, the order of materials in the matrix

representation does not affect the result.

6.2.3.2 Prediction of actions associated with materials and conditions

On the other hand, the assessment of the prediction of actions along with materials and
conditions was limited to molecular descriptors and MACC Keys. The other
representations were not included at this stage due to computational cost and

performance. This is discussed in Results and Discussion section. In this case, the
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modelling was centred on Transformers-based architectures and the settings are

specified in Table 6-5.

Table 6-5. Sequence prediction networks for representation B. Adapted from Vaucher et al 43

Layer type Activation Hyperparameters
Transformers
Input materials Max number of materials: 11
Input sequence Max sequence length: 81
Layer normalisation
Dense Identity Units: 256
Positional Embedding dim: 256
embeddings for
materials
Dropout Dropout rate: 0.4
Embeddings for Embedding dim: 256
operations
Transformer encoder Relu No. blocks: 4

Heads: 8

Key dim: 256

Feed forward: 2048

Attention dropout: 0.3

Dropout rate: 0.4
Transformer decoder Relu No. Blocks: 4

Self-attention

Heads: 8

Key dim: 256

Cross attention

Heads: 8

Key dim: 256

Feed forward: 2048

Attention dropout: 0.3

Dropout rate: 0.4
Dense Softmax Units: No. Operations

Compared to Vaucherds model , the main differe
was related to how material information was processed. In the original model, precursors
and targets are expressed as reaction SMILES. Since that information was not available
in our dataset, materials were expressed as a set of features with dimensions (number
of materials, number of features). Within the features, in addition to the descriptors of
each material, a 3-component vector was introduced where each value corresponded to
0 or 1 depending on the material role in the process. Namely, 1 was assigned if a given
material was classified into TARGET, REACTANT or SOLVENT, otherwise, the value
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corresponded to 0. Additionally, contrary to the previous models for representation A,
positional embeddings were used to associate operations and materials through
placeholders. These embeddings were summed to each set of features after being
passed through a linear layer. Dropout was also applied at this point to avoid
overdependence on a group of features. In this manner, the output was processed by the
Transformer blocks. Another variation of the model was also tested using 4 heads, 2
blocks, and 1024 feed-forward dimensions. The two neural networks were trained for 100
epochs with a batch size of 128. Nonetheless, early stopping was also applied as

indicated in the previous section.

6.2.4 Modelling

For sequence modelling, different types of autoencoders (AE) were explored. As
discussed in previous chapters, AE provides a framework to reduce dimensionality into
a continuous latent space. This representation in turn can be helpful to represent discrete
data such as manufacturing sequences. There exist various classes of AE depending on
latent space probability distribution, loss function, and training strategy employed for
parameter learning. Considering their relevance in generative modelling, these include
variational autoencoders (VAE), adversarial autoencoders (AAE), and adversarially
regularised autoencoders (ARAE). The training of any of these types of AE enables the
assignment of a probability distribution to latent space either due to an assumption or
determined by another neural network. Both, AAE and ARAE, follow a similar training
scheme to generative adversarial networks (GAN). As for VAE, several variants can be
found whose differences are centred on loss function and architecture. Finally, all the
models trained were conditioned to ensure the generated manufacturing routes could be

customised according to predefined inputs.

As discussed previously, two ways of expressing sequences were also assessed. Firstly,
apart from being used to study the predictive power of different inputs, representation A
was also used to investigate preliminarily the effect of distinct types of layers,
hyperparameters, and models on the performance metrics chosen. This information was
used to refine the model and assess the advantages or disadvantages of these initial
settings. In addition, it was used as a starting point to implement and compare to

representation B. Vaucher et al employed this later way of expressing sequences to
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develop a predictive model using another dataset “3. Thus, their implementation was also
adopted for our dataset and used as a reference. Subsequently, generative models were
also applied with additional modifications. More details of all the models trained are

provided below.

6.2.4.1 Architecture design using output representation A

6.2.4.1.1 Model exploration

To find out the best-performing model to generate sequences based on representation
A, variations of conditional VAE, AAE and ARAE were tested. Initially, the representation
that gave a better prediction accuracy in previous experiments was used as a condition.
In the case of AAE, deterministic and stochastic encoders were also tried, while
deterministic encoder was only applied for ARAE as in the original proposal . On the
other hand, while the architecture of the decoders was fixed for all VAE, AAE, and ARAE,
the encoder was changed depending on whether the condition was injected in this
module. Additional components were also included depending on the models. Of the
three evaluated models, ARAE possessed the highest complexity since included a
discriminator and a generator network '°, while AAE only included a discriminator. In
conditional ARAE, a regressor or classifier network can also be included depending on
the formulation as proposed by Zhao et al *'°. This component predicts the condition
given the latent vector and its inclusion promotes the independence between latent space
and target features. The layers and their established hyperparameters for all the distinct

modules are listed below.

1 Decoder. RNN: an embedding layer with 50 dimensions; a normalization layer
and a feed-forward network with 128 units that processed condition; 3 stacked
GRU layers with 256 units, GRU initial states corresponded to concatenated latent
vector and processed conditions passed through a dense layer with 256 units; a
layer normalization and an output dense layer the yielded the logits for each step.
All probabilities were decoded into operation through greedy search.

1 Encoder. RNN: an embedding layer with 50 dimensions; a normalization layer; 3
stacked bidirectional GRU layers with 128 units; a layer normalization, a global
max pooling 1D layer and an output layer varied depending on whether the
encoder was deterministic or stochastic. In the deterministic case, the output layer

consisted of a single dense layer with 128 units, while the stochastic layer had 2
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dense layers with 128 units each that generated a mean-vector and a log var-
vector. I n addition, condition infor
was processed using a residual network with dimension 128 for both intermediate
and final layers. Then, the results were normalised to be concatenated with the
embedded operations and finally processed by the recurrent layers.

1 Discriminator. A layer normalization layer, 2 dense layers with 128 units and
leaky RelLu as activation function, and 1 dense layer to generate logits. Variations
were attempted with concatenated conditions and latent representation.

1 Generator. Similar to the discriminator replacing the output layer with a dense
layer with 128 units and changing the activation function by ReLu in the
intermediate layers. This module only was used for ARAE.

1 Predictor. Similar to the discriminator replacing the output layer with a dense
layer with 128 units and changing the activation function by ReLu in the

intermediate layers.

Regarding training, a description of the process for VAE and AAE can be found in
Algorithm 6-1 and Algorithm 6-2. Specifically in VAE, as suggested by Bowman et al'?3,
KL divergence weight (beta) was increased in every epoch. This approach is also known
as KL-annealing. For this work was adjusted linearly starting from 0 until a maximum
of 0.05 for 60 epochs. After that, the optimization process was allowed to continue until
reaching 100 epochs. Conditional ARAE parameters, on the other hand, were learnt as
suggested by Zhao et al *°. Nonetheless, RMSProp was used as optimiser for all the
modules varying the learning rate. For the autoencoder, encoder, and predictor update
steps, a learning rate of 1e-3 was set. Meanwhile, 2e-6 and 1-e5 were applied for the

discriminator and the generator, respectively.

Algorithm 6-1. VAE training scheme

0: latent space, 6: manufacturing sequence, and 0: target or target + precursors,f Tt
Initialise encoder (1)) and decoder () weights %.and [ randomly.
For each epoch:
For each training step:
1. Calculate s andl | ¢
HA TaG 1 e
2. Sample 6 using reparameterisation trick with x 0 Fg .
» H, 4,8

3. Reconstruct o.
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e 1N »he
4. Determine loss and update parameters %oand [ using Adam with
learning rate le-4.
fil VMg sorp | TR@DM 1 t0 1 oM §) 89

Updatet 8
If epoch < 60:

I Bty —
Else: f T8t v

Algorithm 6-2. AAE training scheme. Taken and adapted from Arjovsky et al and Makhzani et al”%120, a
Discriminator with and without condition (y) was also attempted.

0: latent space, 6: manufacturing sequence, and 0: target or target + precursors, _
p TE v.
Initialise encoder (f}), decoder (1)), and discriminator ("Q weights %[ , and] randomly.
For each training step:
1. Train encoder and decoder:
Compute » 1 e ifnis deterministic, otherwise:
HA TaG e
» H, 4,8 ",withx0 I
Compute 6 1 D
Calculate loss fi Mg dofp | TN@OMH
Update %0and [ using RMSProp with learning rate 1le-3.
2. Train discriminator 2
Compute das in (1) and draw a random sample ¥ §  F¢ .
Compute 0 o) o with x "Y1ip .
Calculate loss:

fl My Up QO Mg~ Q0 _tV 3ROs p

Update] using RMSProp with learning rate 2e-6.
Repeat ¢ times.
3. Train encoder/generator
Compute 0as in (1)
Calculate loss fl My o0 Q0O
Update %ousing RMSProp with learning rate 1e-5.

All the models were initially set to be updated for 100 epochs. However, early-stopping
was applied to avoid overfitting and reduce training times. As a consequence, the learning
process was stopped after 20 epochs without improvement, starting to count after a
warmup period of 10 epochs. As a stopping metric, geometric mean among various
performance indicators was used. These metrics included uniqueness, validity, condition

permutation importance, and reconstruction accuracy. To measure reconstruction
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accuracy, BLEU score was used, which is described in Chapter 3. The other metrics

employed in preliminary tests are defined in Table 6-6. Performance metrics were

monitored in every epoch.

Table 6-6. Initial metrics used for assessing sequence generation performance. & Validity criteria for
representation B was limited to referencing all the materials in the output sequence and the correct

identification of target molecule.

Metric Definition Calculation
Uniqueness  Proportion of unique sequences in N MYe Qi 6XH 6 Q¢ wQI
generated samples NnNoQs Qi HOOR Qi
Validity 2 Proportion of sequences that meet Nwowai ™ 6 Q¢ wQi
rules established in code found in MN0Q: Qi Lwd@Ra Qi
https://zenodo.org/records/13377654
Diversity Average of the type of operations For each sequence:
found in the generated sequences MNYon&ON Qi vaidaeg o C
based on 5 types predefined. For v
more details see
https://zenodo.org/records/13377654
Novelty Proportion of generated sequences Mi QN o Mow Q¢ Vb
found in the training set N"QQ¢ Qi WOPOQE O
Condition Mean decrease in reconstruction B BT aar mve
Permutation  accuracy (BLEU) after permutating 000Y Q’AQO' OBA G A
Importance the condition. Based on grouped
or features feature importance proposed by Au
importance  Q et al'®,

(FD)

6.2.4.1.2 Effect of network type

At this point, all the models assessed were based on RNN. To assess the effect of other

types of layers, CVAE was trained, adjusting the encoder and decoder architectures to

deploy transformers. Transformer blocks and embeddings were implemented as in

Vaswani 64 Tokemand positional embeddings to process operations were the

same for both modules. The encoder consisted of two stacked transformer encoder

blocks that processed information on target molecular representation. In parallel, two

transformer decoder blocks received embedded sequences of operations. These blocks,

first, executed self-attention over operations and then performed cross-attention between

output and target descriptors previously operated. The result of this layer was then pooled

by a pooling by multihead attention layer (PMA). Finally, additional linear layers were

incorporated to obtain the latent representation. PMA was based on Lee et al proposal*®®.
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The decoder had a similar architecture to the encoder. Nonetheless, latent representation
was concatenated with the embedded operations. Subsequently, this result was
processed by a linear layer. The output was then operated by the transformer decoder
blocks in an autoregressive manner. Thus, a causal mask was required to ensure this
behaviour. Finally, an output layer estimated operations probability. In this manner,
operations, at each timestep, were sampled using greedy search. The details about the
hyperparameters employed can be found in Table 6-7. As optimiser, Adam was used with
a learning rate that was increased linearly every timestep until reaching le-4 for 15

epochs.

Table 6-7. Encoder and decoder architecture using Transformers layers. & If encoder is deterministic only
one linear layer was used and* and | T, Cwere excluded. ® Transformer decoder block was only included
in CVAE. The other model did not process information on materials.

Layer type Activation Hyperparameters
Input sequence Max sequence length: 30
Embedding Embedding dim: 128
Encoder
Transformer encoder Relu No. blocks: 2
block (conditional) Heads: 4
Key dim: 128
Feed forward: 512
Transformer decoder Relu No. Blocks: 2
block Self-attention
Heads: 4
Key dim: 128
Cross attention
Heads: 4
Key dim: 128
Feed forward: 512
PMA Relu Heads: 4
Key dim: 128
Dense (* )? Identity Units: 128
Dense (I 1,02 Identity Units: 128
Decoder
Dense Relu Units: 128
Transformer encoder Relu No. blocks: 2
block (conditional) Heads: 4
Key dim: 128
Feed forward: 512
Transformer decoder Relu No. Blocks: 2
block Self-attention
Heads: 4
Key dim: 128

Cross attention
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Heads: 4

Key dim: 128
Feed forward: 512
Dense Softmax Units: No. Operations
6.2.4.1.3 Effect of including precursors
I n addition, the effect of precursorso i
assessed. This was done by using the best-performing model between CVAE and AAE
based on transformers. RNN models were avoi

results, whereas transformer has been used in problems where permutation invariance
is required °°. Moreover, a modification in the architecture was also introduced where
the weights of Transformers encoder blocks in both, the decoder and encoder, were
shared. This was motivated by the increase in computational cost due to the change in

input structure.

6.2.4.2 Architecture design using target and precursors.

6.2.4.2.1 Selection of best model

To include targets and precursors, the layers employed were only centred on
transformers as in the section Prediction of actions associated with materials and
conditions. In this way, a material encoder module was introduced. This module
processed materials data to be fed into either the encoder or decoder. In the same
manner, the encoder and decoder followed a similar architecture. Nonetheless, the effect
of hyperparameters such as the number of transformers blocks and 1 parameter values
during training were explored. These experiments used CVAE as a main framework. For
KL-annealing,T was increased linearly until the maximum value for 20 epochs. The
models were trained for 100 epochs. Hyperparameters for each module are defined in
Table 6-8.

Table 6-8. Material encoder architecture using Transformers layers. 2 If the encoder is deterministic, only
one linear layer was used, whereby * and | T, Cwere excluded. ® Transformer decoder block was only
included in CVAE. The other model did not process information on materials.

Layer type Activation Hyperparameters

Input sequence Max sequence length: 81
Embeddings for Embedding dim: 256
operations

Material encoder

Input materials Max number of materials: 11
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Layer normalisation

Dense Identity Units: 256
Positional Embedding dim: 256
embeddings for
materials
Dropout Dropout rate: 0.1
Transformer encoder Relu No. blocks: 2
Heads: 8
Key dim: 256
Feed forward: 2048
Attention dropout: 0.1
Dropout rate: 0.1
Encoder
Transformer encoder Relu No. blocks: 2
block (conditional) Heads: 8
Key dim: 256
Feed forward: 2048
Attention dropout: 0.1
Dropout rate: 0.1
Transformer decoder Relu No. Blocks: 2
block Self-attention
Heads: 8
Key dim: 256
Cross attention
Heads: 8
Key dim: 256
Feed forward: 2048
Attention dropout: 0.1
Dropout rate: 0.1
PMA Relu Heads: 8
Key dim: 256
Dense (* ) Identity Units: 128
Dense (I 1,0 Identity Units: 128
Decoder
Dense Relu Units: 128
Transformer encoder Relu No. blocks: 2
block (conditional) Heads: 8
Key dim: 256
Feed forward: 2048
Attention dropout: 0.1
Dropout rate: 0.1
Transformer decoder Relu No. Blocks: 2
block Self-attention
Heads: 8
Key dim: 256
Cross attention
Heads: 8

Key dim: 256




Feed forward: 2048

Attention dropout: 0.1

Dropout rate: 0.1
Dense Softmax Units: No. Operations

In contrast to the previous section, not all generative approaches were employed. At this
stage, exploration was focused on CVAE and AAE. The exclusion of ARAE was primarily
due to the complexity that this implied to model target + precursors. More details are
given in the section Results and discussion. Additionally, a variation of CVAE was also
evaluated, which is known as Invariant CVAE. Thus, the layers employed in the encoder
were varied depending on the model. While CVAE included both Transformer encoder
and decoder blocks as conditional information, that was not the case for other models
where only transformer encoder blocks were used. For instance, contrary to CVAE, the
encoder of the invariant version did not include information on the condition. As a result,
the loss function was changed as proposed by Moyer et al 2%, Finally, an AAE was trained
with the best architecture for the encoder and decoder as indicated in Algorithm 6-2.

6.2422 Ef fect of b control strategy, encoder and

Another modification introduced to VAE was regarding how{ parameter was updated.
To have greater control over the loss, dynamic calculation off on every step was carried
out as in Control VAE 2°%, In this variant, Shao proposed the usage of a proportional-
integral (PIl) controller, that can help to prevent posterior collapse and promote
disentanglement of latent variables. The training algorithm with these modifications can
be seen in Algorithm 6-3. For Pl control, the target KL was initially set at 35.

Subsequently, with the best model, the effect of this parameter was assessed.

Algorithm 6-3. CVAE and invariant CVAE training scheme with PI controller. & Noam scheduler was run as
suggested for transformers by Vaswani 112, b In Invariant CVAE, _ was also updated at each time step,
being two times the value of f . Loss function was calculated according to

0: latent space, 6: manufacturing sequence, and o: target + precursors, 0: target O
Otimestep, Q@ ™rIPQ WINPT T T T 18U
Initialise encoder (1) and decoder (1)) weights %.and[ randomly.
For each epoch:
For each training step:
1. Calculate s andl | g
AT € n oo

If Invariant CVAE:
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AT € n o
2. Sample 6 using reparameterisation trick with x 0 Fg .
06 & oS
3. Reconstruct o.
6 n o
4. Determine loss and update parameters % and [ using Adam with
learning rate set according a noam scheduler* with factor 0.2 and
warmup steps 16000. 5 5
i My pofp | @D 1 TO 1 6 @) 69
If Invariant CVAE ®: 3
il p _tMy oo | TR _TO0 nosos ¢ 1
tO no0vL & 0

5. Update| 8

If Pl controllerand 0 1T

Qo 6 0O o

ko)
p Agdo
fm8t 1 6 p p8L'CO " p QiQo
I 6 @ 00
Iff 0 p8tf 0 p8t
Iff 6 m8tl 0 T8t

00

_ ¢tf o
Else:T updated as in Algorithm 6-1 withT equals 0.05 and 0.01 for
CVAE, and Invariant CVAE, respectively. _ was set at 0.02, being

updated asT .

In addition, some final modifications to the architecture were studied. The encoder
architecture in the architecture shown in Table 6-7 was compared to others only based
on transformer encoder block. The pooling method was also assessed in the encoder.
PMA was compared to the approach used in the BERT language model 2°2, In BERT, the
pooling method is typically applied to the output representations of the [CLS] token, which
is a special token added to the input sequence. This [CLS] token is used as a kind of
aggregate representation of the entire input sequence for downstream tasks. Finally, two
approaches were explored for injecting the latent space into the decoder. The first method
consisted of passing the latent space through a linear layer, applying layer normalization,
and then summing it with token embeddings. The second approach entailed
concatenating the latent space with the condition, and this combined representation is

processed by the transformer encoder.
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6.2.5 External Validation

The two best approaches were chosen to proceed with external validation via evaluation
from experts. The experts were academics with PhD in areas related to chemistry and
experience in the design of processes for primary manufacturing. The four participants
counted with years of experience in the design and development of pharmaceutical
processes in different stages of the primary domain. Some of them centred on purification
and others in synthesis. The survey consisted of comparing actual and generated
procedures of manufacturing for a given set of materials. In total, 50 sets of materials and
target were drawn from the test with their respective procedure. Later, two manufacturing
sequence were generated using the two best models. In this manner a total of one
hundred questions were obtained. Then, these were split into 4 surveys of 25 questions
each. This is illustrated in Table 6-9 and the surveys can be found in https://pinkie-pint-

zooloqist-408j.onrender.com/ or a sample of the question can be seen Appendix D.

Table 6-9. Survey design

Survey Model Questions Target
1 Invariant CVAE 25 Setl
2 CVAE 25
3 Invariant CVAE 25 Set2
4 CVAE 25

6.3 Results and discussion

6.3.1 Data description

The final dataset comprises 385,293 records describing synthesis and/or purification
processes for 359,912 molecules. These include substances that can be used as
synthesis intermediates or active pharmaceutical ingredients. The data was obtained
from 23,342 patents. Table 6-10 shows the efficiency of the extraction of keywords for
each type. The overall precision and recall were 96.2% and 92.7%, respectively. The
overall accuracy measured as F1-Score was 94.3%, which is comparable to other works
having as a reference Kononova et al dataset of inorganic reactions with an accuracy of
93.0% 1. To highlight, the recovery of materials from text, without considering TARGET,

was the lowest with around 88%, followed by conditions, with a close value, and finally,
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operations being approximately 99%. Thus, the main limitation in the data collection
methodology concerned materials. The following sections will present an overview of

trends and relationships of the types of entities extracted.

Table 6-10. Extraction performance metrics per entity type for primary manufacturing dataset.

Precision Recall F1-Score Total entities
OPERATIONS 97.4% 99.0% 98.2% 838
CONDITIONS 95.9% 90.4% 93.1% 386
MATERIALS 95.1% 88.2% 91.5% 1138
TARGET 100.0% 100.0% 100.0% 100

6.3.1.1 Materials

Compared to the other entities, a greater portion of the materials could not be extracted,
being missed nearly 1 in every 10. Although this result can be comparable to the relative
loss of conditions information, this may have a greater impact in absolute terms as
material-related terms are more common than conditions. In total, 4,439,136 materials
and 1,497,611 conditions were identified. This also implied that some key reactants may
not be considered in the model | i nifjthesemere
to be used as inputs. Another limitation of the dataset, in terms of materials extraction,
was the cross-reference. It was noticed that, in some documents, reagents were
referenced using acronyms or a specific notation defined by the authors. This hindered
their identification to calculate molecular descriptors or fingerprints. Regarding the
obtained data, the extraction process prioritised precision since this ensured that the
extracted data was faithful to the original content. This can be seen in the results as
precision was higher than recall, reaching values greater than 95% for all the types of
entities. In this manner, this facilitated that most reactants and solvents detected could

be associated with an InChl identifier to be standardised.

Within the three types of materials defined, the most frequent were terms related to
intermediates representing 37.9%. These include generic words used to refer to a
material or combinations. Although they do not provide specific information on the
composition, they can still be useful to understand how materials are being handled
during a process. This was the main motivation to extract and maintain these words in

the dataset for modelling, as the combination of intermediates and operations can provide
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a more comprehensive representation of a process description. This will be discussed in
more detail in the modelling section. Regarding solvents, these included pure or
combinations of solvents. This type represented 31.0% of materials, being distributed in
1,411 different substances. On the other hand, 31.1% of materials were reactants where
greater diversity was observed compared to solvents with 218,776 substances. On the
other hand, it could also be observed that the most frequent substances presented some

relationships with some operations.

Figure 6-2 shows the most common materials in each category. To highlight, aqueous
solvents (water and brine) are widely used, but their application is particularly recurrent
in operations such as extraction and washing. In the former, it seems to be more
associated with processes involving partition. Conversely, organic solvents were
predominant in operations more related to reaction or purification steps such as
crystallisation or chromatography. As for other reagents, there is no remarkable
dominance of any materials except for some sulphate salts, acids, and bases. Sulphate
salts of sodium and magnesium have a specific utility as desiccant agents, mainly used
after a reaction occurs. HCl and NaOH seem to be consistently used in either reaction or
purification steps, there is not a particular trend in their use. Organic bases such as
DIPEA and triethylamine were usually associated with synthesis steps. Finally, other
inorganic salts such as sodium bicarbonate and ammonium chloride were predominant
in washing and quenching operations, respectively. Although it cannot be generalised for
all substances intervening in a process, the examples discussed previously suggest
materials can be linked to some operations. Thus, this fact can have two implications in
terms of manufacturing path generation. Firstly, if materials are known. they could be
used to predict, at least partially, a sequence of operations. A second option is that, for
certain operations, some materials could be preset, therefore giving a more detailed
description of a process. Nonetheless, the practical applicability of the first option would

require prior knowledge of all materials involved in the process of a target.
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water = _ sodium sulfate = mixture = _
ethyl acetate = _ MgSO4 = residue = -
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Figure 6-2 Top 10 most common substances in the different categories of materials. THF: tetrahydrofuran,
DIPEA: N-ethyl-N-isopropylpropan-2-amine, Brine: typically, a saturated solution of sodium chloride in
water.

6.3.1.2 Target Molecules

In terms of target molecules, although all of them were not exclusively APIs, they showed
similar properties compared to typical drug substances. Specific properties such as
partition coefficient, solubility, and molecular weight displayed a high degree of
overlapping with approved drug substances by FDA, as illustrated in Figure 6-3. This
figure contrasts the distribution of these properties between the training set and ZINC15
database 2%, In addition, the similarity in terms of drug-likeness could be observed
through QED (quantitative estimated drug-likeness) score. This metric ponders 8 different
properties typically used to describe the potential of drug candidates such as the
mentioned molecular weight or LogP as well as other attributes such as the number of
rotatable bonds, polar surface area, among others 2%, On average, QED scores were
0.5447 (SE = 0.2130) for the training set and 0.5462 (SE = 0.2192) for ZINC15 database

molecules, respectively.

LogP LogS MW
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Figure 6-3. Comparison of properties distributions between target molecules in the training set (n =
359,912) and approved drugs by FDA recorded in ZINC15 database (n = 1,615) 2%, LogP, log-partition
coefficient calculated using RDKit library 2%5; LogS, log-molar solubility calculated using SolTranNet 2%,

MW: molecular weight.

This alignment in chemical space confirms that the processes obtained are applied to
typical substances found in the pharmaceutical industry. The generalisation of ML models
depends on the dataset's scope, and the observed properties help to establish the type
of compounds the models can provide reasonable outputs. For instance, 95% of target
molecules in the training set have a molecular weight lower than 594.05 Da, thereby
indicating that any model developed with these data may not generate plausible

sequences of operations for compounds with high molecular weight, such as proteins.

6.3.1.3 Conditions

Conditions for approximately 34% of operations were extracted to provide a total of
1,497,611 data points. The conditions obtained corresponded to temperature, pH, time,
pressure, type of atmosphere and number of times an operation is repeated, namely,
repetitions. Although initially other types of data were obtained such as chromatographic
conditions, these were not included in the final dataset. In the training set, temperature,
time, and pressure were the most frequently reported, comprising 37.7%, 34.0%, and
16.0% of all data points, respectively. On the other hand, pH, the type of atmosphere and

the number of repetitions summed to 12.4%.

In conditions such as type of atmosphere, temperature, and pressure, there was a clear
predominance for certain values. This is shown in Figure 6-4 for temperature and type of
atmosphere. In temperature, a trend towards processes executed under ambient
temperature or values between 10 and 40°C was identified, representing 51.6%.
Reasons such as costs and practical considerations may have contributed to this trend
to a certain extent. The most common type of atmosphere corresponded to argon and
nitrogen. These were seen to be used mainly in the early stages of a process to reduce
environmental interferences or remove a particular component from the reaction mixture
by purging. Regarding pressure, this parameter was mostly reported in qualitative terms
such as reduced or vacuum pressure, with nearly 92.0% of this parameter records. These
two values were usually associated with operations related to the concentration or
removal of solvents. On the other hand, for the remaining 8.0%, the ranges of values

presented a significant fluctuating varying from approximately vacuum to 4.1 MPa. Some
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of these were associated with reactions such as hydrogenation, while others could be

associated with operations such as filtration.
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Figure 6-4 Distribution of conditions reported in the training set. Ar: Argon, H2: Hydrogen, N2: Nitrogen.

By contrast, pH and time exhibit a more even distribution based on the predefined
categories as can be seen in Figure 6-4. It is also possible to observe that processes
moderately to strongly acid seem to be more recurrent but without a remarkable
difference concerning the other categories. In this regard, it is important to bear in mind
that there were not many reports of pH in the operations obtained, representing 1.41% of
conditions. As for the time, a bimodal behaviour was observed where the cutoff point was
around 9 h. Thus, it is possible to see the majority of processes tend to last or proceed in
intervals between 0.75 and 3 h. Conversely, it is also possible to find long-duration
processes that mostly last between 9 and 36 hours. Finally, the number of repetitions
was reported for operations such as washing and extraction where they are usually
carried out between 2 and 4 times. This scenario was the most frequent for this type of

condition representing 94.0% of records.
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Thus far, some trends and patterns in the conditions obtained and their relationship with
some operations have been shown. For instance, it was observed conditions such as
repetitions or pressure tended to be mentioned along with certain operations. Similarly,
although the relations between other conditions and operations were not evident, it could
be seen that, for instance, temperature, type of atmosphere and time were found more
oftenin the early stages of the process. In this manner, this indicates that these conditions
can be more associated with reaction conditions. In turn, reaction conditions are defined
by precursors and targets. In this manner, it should be possible to estimate conditions
based on material properties in the same way as it is intended for operations. This idea
has been exploited in other works, for instance, Karpovich et al trained a CVAE to predict
temperature and time using both precursors and target information for inorganic
reactions!®®. In the same manner, Vaucher et al developed several transformer-based
architectures to predict both operations and conditions using reaction SMILES “3. Having
considered the literature and the available information, although this thesis scope
originally intended to generate operations only, the ability to also generate conditions was
explored in the assessed models. This is discussed in the next sections.

6.3.1.4 Operations
The training set contains 3,256,196 operations distributed in 20,192 terms. Nearly 90%

of processes employed between 3 and 15 steps, with an average of 8.4 operations per

process. After standardising the terminology, 60 standardised actions were identified.

The top 10 most frequent operations and types are illustrated in Figure 6-5. The majority

of operations corresponded to separation methods as shown in Figure 6-5B. This
category included terms related to separatior
(mostly related to chromatography), Adryo, i f
find terms related to materi dli kreamisgulrat i drt hlei
terms associated with a chemical transfor mat
indicating the adjustment of conditions such
frequent. There was a small number of terms that did not fall into any of the previously

mentioned classes. These consisted of operations indicating a physical transformation

such as Acondenseo.
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Figure 6-5 Most frequent operations by (A) standardised actions and (B) type of operation. Purify refers to

chromatography. Dry Solution consists of the removal of water from a mixture usually through a desiccant

agent. Make Solution refers to the combination of two or more materials to form a solution, a suspension,
or other type of mixture.

Concerning the frequency of individual actions, most of the operations referred to terms
more focused on the manipulation of materials or adjustment of process parameters.
Terms such as O6ADDOG, 6STI R6 or O6MAKE SOLUTI ON
processes. However, these actions can be considered generic since they can be used to
describe either synthesis or purification steps, although they were more commonly found
in the description of reaction steps. On the other hand, actions which describe more
accurately an operation being performed were seen in purification steps. For instance, it
was found chromatography (PURIFY) was the most recurrent followed by extraction with
solvents (EXTRACT). The term concentration (CONCENTRATE) was also employed to
indicate the removal of solvent, although the method applied to achieve this is not always
specified. All these terms were characterised to be mainly found in the later stages of a
process. An additional noteworthy aspect is the inclusion, within the training set, of
processes exclusively focused on material purification. These processes differed from
the others by starting with operations related to separation methods and the absence of
precursors. To summarise, the frequency of certain operations and the order of
appearance reveal discernible patterns indicating there is a logical sequence that
operations tend to follow. A generative model is expected to recognise these patterns

and reproduce the order based on inputs.
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6.3.1.5 Other sources of bias

Given the training set covers patents from 1976 to 2021, changes in manufacturing
procedures are anticipated, considering new technologies and trends. The first attribute
of manufacturing sequences observed was the number of steps. Spearman correlation
between the average sequence length and year was -0.25. Although this correlation is
relatively weak, it suggests a subtle trend towards reducing the number of steps required

to manufacture a product.

Another aspect analysed was the type of operations present. As discussed previously,
the majority of operations were related to separation methods. In addition, these
operations were more specific in terms of the type of technique employed compared to
others, more generic. To explore change in this aspect, the evolution of the most common
techniques over time was reviewed. Figure 6-6 exhibits a general increase in the patents
utilising the different methods of separation, which include techniques like crystallisation
or chromatography (PURIFY). However, this pattern is affected by the number of
publications per year. Considering that the number of granted patents throughout the last
decades has increased significantly, a rise in the mentions of the operations is expected.
To account for this, the data were corrected by considering the evolution of the number
of patents per year, as depicted in Figure 6-7. This correction revealed diverse patterns;
for instance, mentions related to methods such as crystallisation and distillation have
decreased, whereas solvent extraction and chromatography exhibited the opposite

behaviour.

The relationships found suggest a temporal effect on manufacturing procedures. Given
the number of patents in recent years is larger, models developed may favour the learning
of the most recent procedures from the latest publications. Although this may be a
desirable behaviour as it would generate sequences resembling more up-to-date

approaches, these would also increase the likelihood of finding certain operations.
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Figure 6-6 Evolution across time of the number of patents mentioning the most common separation
methods. RECRYSTALLISATION refers to crystallisation from a solid material, while CRYSTALLISE starts
from a solution. DRY indicates that the method of drying is unspecified.
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Figure 6-7. Evolution across time of the number of patents mentioning the most common separation
methods with respect to the total number of patents.

Finally, the yield was examined as an additional factor to assess the scale of the

processes under consideration. Figure 6-8 illustrates the distribution of the amount of
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target molecule obtained by a process, revealing that 90% of the procedures yielded
between 14 mg and 20 g of final product. This observation points out that the majority of
procedures extracted from patents are conducted at the laboratory scale. While this focus
on smaller scales provides valuable insights into early-stage developments, it may
impose limitations on the applicability of the extracted knowledge to larger-scale industrial
processes, which are more commonly found in marketed products. Nevertheless, despite
the scale-related constraints, the dataset continues to offer valuable insights into the
selection of operations for process design. Understanding the prevalent use of specific
techniques and methodologies at the laboratory scale provides a foundation for future
research aimed at closing the gap between laboratory-scale processes and their
translation into larger-scale industrial applications.
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Figure 6-8. Distribution of the amount of target molecule obtained in the respective process in log-scale (n
= 274,956)

6.3.2 Generative modelling

6.3.2.1 Selection of molecular representations

The comparison of sequence prediction accuracy, expressed as a BLEU score, for the
different molecular representations of the target can be seen in Figure 6-9. All the
representations provided an improvement in accuracy compared to control. The control

consisted of a baseline for the worst case established by training a model with random
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representations. These were generated by drawing a 128-dimensional random vector
from a normal distribution for each target molecule. In the same way, each set of features
presented differences in BLEU. In addition, the value of each representation was also
affected by the network type. This was observed as the rank of the best-performing
features varied depending on the architecture. In this manner, it is suggested that an
architecture can exploit better certain features than the other. Nonetheless, when the

network effect is assessed, there seems not to be a superior architecture.

On average, RNN and Transformers had a relatively close accuracy with values of 22.6%
and 22.4%, respectively. On the other hand, by contrasting the best and worst descriptors
in each model, the difference in Transformers was 1.89%, while 1.87% was obtained for
RNN. Thus, the effect of the representation is greater than the architecture individually,
as the network type has a difference of 0.02%. This indicates that the selection of a
feature type can be more relevant than the network type. Nonetheless, in turn, the
performance of a set of features is also dependent on the model. As a result, there is not
a set of features that is consistently superior and the representation selection for a model
may not be generalised for several applications.

A RNN B Transformers
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Figure 6-9 Comparison of sequence prediction accuracy in terms of BLEU scores resulting from distinct
molecular representations of a target substance.

Regarding the performance of individual representation, SVAE had the lowest accuracy
in both neural networks. an SVAE was pre-trained with SMILES to generate latent vectors
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that can be used as molecular fingerprints. These types of representations have been
used to predict properties such as partition coefficient and solubility in other works 297:208,
Pre-trained VAE for this purpose can be coupled with a predictor network during training,
which can help to optimise latent space for property prediction. In our work, pretraining
did not include such network, by which the VAE possibly centred on learning features for
the generation of molecules. This might have led to poor performance compared to the
other metrics. Performance using SVAE could be improved by further parameter fine-
tuning for sequence prediction. This idea can also be supported by the results of SMILES

representation.

SMILES performed well in transformers, in opposition to RNN. To make use of SMILES,
an additional network was trained along with the other components of the models. This
component consisted of 3 stacked GRUs and a bottleneck network composed of several
1D-CNN and an attention layer as suggested in the VAE encoder proposed by Dollar?’.
I n this manner, the additional component cort
Thus, the fact that SVAE and the use of SMILES had mixed results indicates SMILES is
more sensitive to architectural changes, by which a careful selection of hyperparameters
is needed to ensure this representation produces good results for a given task. On the

other hand, numerical features seemed to be more robust.

These representations gave variations in performance lower than 1% in both networks,
lower than SMILES. Particularly, molecular descriptors were ranked 1 and 2 in accuracy
for RNN and transformers, respectively. Additionally, in terms of implementation, it also
offers another advantage compared to fingerprints such as MHFP-2048. While the
molecular descriptors comprised 208 values, MHFP has 2048. As a result, the former
may be less computationally expensive to train deep neural networks. This advantage
can also be applied to MACC Keys, which has 166 bits. Thus, molecular descriptors were

chosen for further experiments to predict sequences of operations.

Subsequently, the target and materials represented by the molecular descriptors were
used together to train a transformers model for sequence generation. A large
improvement was observed, resulting in a BLEU score of 31.2%. The change signified
an increase of 10.3% with respect to control vs 2.01% obtained using only information on
the target molecule. This points out that the target molecule, in isolation, cannot ensure

an optimal performance. Instead, reactants can provide better guidance for operation
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selection. This result can be expected since a target molecule can be synthetised and
purified through various routes. On the other hand, when a synthesis route is established
with information on materials and conditions, there are fewer freedom degrees for the
selection. However, in practice, while a candidate molecule can be known, that is not
necessarily the case for the synthesis route. This initially motivated to assess the
performance using only the target. Nonetheless, given the importance of the inclusion of
reactants in the process, it was decided to focus the modelling on conditioning
manufacturing routes for target and reactants. As for the requirement of prior knowledge
of reactants, reaction planners could be used to have an educated guess about feasible

synthesis routes.

The inclusion of precursors also motivated the usage of a different output representation
beyond the simple sequence of actions.

B was evaluated. Output B relates each operation with its respective materials, providing
a more informative and readable result. In addition, this representation also enables the
incorporation of process conditions into the route. The authors also developed several
models to predict operations based on transformers using as inputs reaction SMILES. To
assess the effect of the architectur al
adapted and retrained using our training set and varying the inputs. The other architecture
(model A) differed mainly in the number of blocks and heads used, which was more
similar to the transformers model used in the previous tests. MHFP and SMILES were
excluded in these analyses. The former model could not be trained due to memory
limitations. The latter, on the other hand, was trained but the network was unstable and
further tuning was required by which these results were not included. Thus, the

assessment was carried out with MACC Keys and molecular descriptors.

Table 6-11 reports the percentage of valid sequences and prediction accuracy in terms
of BLEU and the percentages of predicted sequences with 100%, 90%, 75% and 50%
matching with respect to reference. To remark, the validity criteria defined by Vaucher et
al differ from the one used for this work. In their definition, the syntactical correctness is
verified by checking whether sequences can be converted to actions without errors and
ensuring that all the materials in the reaction are mentioned in the resulting sequence *3.
In our work, we verify that the second part of the criteria is met. Another key difference is

the definition of actions. While Vaucher et al characterised manufacturing sequences in
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24 actions, this work utilised 60. These facts mean that the models presented in this

section cannot be directly compared to Vauche

recorded in Table 6-11 with informative purposes to provide intuition about the magnitude

of these metrics.

Table 6-11. Performance metrics for prediction of actions associated with materials and conditions (Output
B, n = 1000). ® Results from reference model developed by Vaucher et al*3. Architecture B corresponded to
an adaptation of Vaucherés Transformers trained on our
A is a modified version of B with half transformer blocks and heads. ° It refers to the quantiles of accuracies
obtained by sequence matching evaluated using Levenshtein similarity. For instance, 3.6% of the

(

sequences had 100% matching between act fadnlyeonsilerpr edi ct e

architecture A and B.

Architecture Representation Validity BLEU Accuracy P
100% 90% 75% 50%
Transformer 2 Reaction SMILES 99.7% 54.7% 3.6% 10.1% 24.7% 68.7%

B Molecular Descriptors  78.8% 52.5% 2.2% 5.0% 18.3% 72.4%
B MACC Keys 80.0% 52.4% 24% 51% 18.6% 73.1%
A Molecular Descriptors  78.4% 52.0% 1.2% 2.8% 14.0% 69.5%
A MACC Keys 79.8% 52.8% 11% 28% 14.6% 71.0%

Mean® 79.3% 524% 1.7% 3.9% 16.4% 71.5%
Cve 1.0% 0.6% 38.9% 33.1% 14.7% 2.2%

Prediction accuracy was more dependent on the architecture. In this case, accuracy was
measured using several metrics since BLEU seems not to be sufficient to conclude about
the difference between architectures or representations. This could be evidenced as
BLEU varied less than the other accuracy metrics. In this regard, 100% Matching can
reflect more clearly the difference among the assessed factors. Specifically speaking on
the architecture effect, B provided a greater reconstruction, being, nearly twice that
achieved by A on average. Alternatively, BLEU scores for architecture A and B were
52.4% and 52.5%, respectively. In this manner, although BLEU would reach a similar
conclusion to using the other metrics, the margin was smaller. Therefore, additional
metrics strengthen the conclusion about the architecture effect. Similarly, the differences
in models were also reflected in the validity as model B was also superior to A with 79.4%
and 79.1%. Nonetheless, the variability in this metric seems to be mainly explained by

the representation.

Overall, MACC Keys tended to generate a higher proportion of valid sequences. The

effect magnitude was 1.3%, favouring MACC Keys over molecular descriptors. Regarding
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prediction accuracy, MACC Keys was superior in model B for all the metrics, while the
same applied to only 3 out of 5 metrics. In this manner, this result also suggests that input
feature performance varies with the model architecture, being aligned with the initial
results about representation effect. It also can be noticed that MACC Keys, in this case,
were better than molecular descriptors. This contrasts with previous results where target
information was the only input, and the output comprised actions. This also confirms that
performance changes with output expression. Consequently, this would make the

selection of optimal descriptors case based.

To summarise, the effect of different types of inputs and architectures on sequence
prediction expressed in two ways was studied. Regarding inputs, information on targets
and precursors provided a better performance for sequence prediction. On the other
hand, the way these materials are represented for modelling can affect either prediction
validity or accuracy. In addition, the results for a chosen representation can vary with
model settings indicating that, from a performance perspective, the optimal features
should be determined case by case. Nonetheless, the effect seems not to be substantial
as several types of features had similar performances. In this manner, the selection can
also be guided by other criteria such as interpretability or computational cost. Thus, the
following representations were selected for generative modelling: molecular descriptors
for generating action only and MACC Keys for action associated with materials and

conditions.

As expected, the architecture also affects performance. Some aspects to highlight include
RNN was slightly better than Transformers according to initial tests, although none was
superior. In this manner, RNN and transformers were further compared for different
generative models. Having said this, performance cannot be the only aspect to consider
at the moment to select the best model. For instance, Transformers were chosen in cases
where a set of materials are used as inputs. The use of transformers over RNN was
driven by the ability of this architecture to handle data that is not necessarily dependent
on the order, i.e., permutation invariance. Finally, other aspects of architecture such as
network depth seem to be relevant in modelling. This was shown in the comparison of
models A and B previously discussed. The effect of these factors is analysed for

generative modelling in the next sections.
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6.3.2.2 Models for sequences of actions

In the first instance, it was shown that the different architectures of generative models
have the capability of generating sequences of operations. Examples are illustrated in
Table 6-12. However, the faithfulness of the sequences and the degree to which target
information guides the generation vary depending on the model. As for the similarity
between generated and real chains of operations, by inspection, it was seen that some
approaches tended to exhibit particular patterns. For instance, certain operations could
be repeated for several consecutive steps contrary to real procedures. Likewise,
operations typically expected at early stages of a process, such as addition or reaction,
sometimes appeared in the end of the sequence. In consequence, the presence of these
patterns may indicate that the explored models did not capture efficiently certain aspects
such as the logical order of the operations.

Table 6-12. Examples of randomly generated sequences by different models.

Model Generated Sequence
RNN AAE +stochastic add Y add Y stir Y add Y sti
encoder + conditoned wash Y dry solution Y dry s
discriminator add Y dry solution Y filter
stir Y add Y stir Y stand Y
RNN ARAE add Y add Y stir Y make sol
Y combine Y stir Y add Y f-il
drying] Y make solution Y f|
concentrate Y purify
add Y stir Y heat Y filter
RNN CVAE treat Y add Y stir Y cool Y
separate Y adjust pH [decre:
solution Y evaporate Y sepal
add Y stir Y add Y stir Y a:
concentrate Y purify Y puri.i
Trans CVAE makes ol uti on Y add Y irradiat

[vacuum]

add Y heat Y concentrate Y
Y wash Y dry solution Y fi
concentrate

In addition, certain approaches were more prone to ignore the target. This is displayed in
Figure 6-10B. Here, the effect of target descriptors on the reconstruction was measured
by permutating features, while fixing the latent representation. The majority of models

exhibited subtle or no changes in their accuracy. Consequently, these cases would point
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out that the generated operations are not associated with the specific target. On the other
hand, under the same criteria, CVAE models seemed to exploit this information to a
greater extent. Interestingly, another aspect to highlight was the fact that RNN-based

architectures were inferior in the usage of targets compared to Transformers.

Resuming the slight superiority of CVAE in terms of target association with sequences, a
possible explanation could be related to the regularisation applied by KL divergence in
the loss function. This particularity has been exploited by different variants of VAE to
disentangle latent space in other domains 20921° This characteristic promotes the
independence between latent features and makes them as informative as possible 2%, In
this manner, the model learns latent features without redundant information. Since
conditional data is provided, the model would then try to separate conditional data, that
corresponds to the target, from other sources of variation, avoiding overlapping between
information. As a result, the variation explained by target descriptors is not incorporated
into the latent representation, allowing the decoder to utilise the target more explicitly.

B
1 1 1 1 1 1 1 1 1 1 1
0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 0.0% 0.5% 1.0% 1.5% 2.0%
Reconstruction Feature Importance
Accuracy (BLEU) (Mean decrease in BLEU, n = 6)

Figure 6-10 Reconstruction Accuracy (A) and condition importance (B) for different generative models for
output A generation using target molecular descriptors. CD: condition included in discriminator; st:
stochastic encoder; de: deterministic encoder.

Unlike CVAE, models based on adversarial training exhibit superior performance in
reconstruction, as shown in Figure 6-10A. This result aligns with findings in fields such
as text generation, where AAE or ARAE are generally better at recreating examples 2.
Additionally, the observations are aligned with the trade-off between reconstruction and

disentanglement established for VAE. This was formalised through Higgins et al withT -



VAE, where the weight of KL-divergence (f ) in VAEO6s objective func

balance between the two properties mentioned previously 12°. Usually, highert values
result in greater degree of disentanglement. However, it is worth noting that excessively
high values may lead VAE to collapse in sequence modelling, whereby I must be
selected thoroughly 26, Thus, the obtained results may confirm that the trends observed
in other domains also apply to the generation of manufacturing sequences.

Thus far, none of the models demonstrated superior performance in all assessed
aspects. The ability to incorporate conditional information is critical to ensure that
generated sequences are customised for specific targets. Simultaneously, achieving a
good reconstruction is necessary to generate realistic manufacturing sequences. While
AAE and ARAE were the best for the latter aspect, the performance in incorporating
conditional information was lacking. Additionally, as typical GAN-based approaches,
these models face challenges during the training process, including training stability
issues due to the loss function . In this manner, strategies like monitoring combined with
early stopping are required to identify the optimal parameters and prevent collapse. The
inclusion of additional components, such as discriminator or generator networks, adds
complexity, making models more sensitive to hyperparameters. Under these
circumstances, despite CVAEOGs | ower rec
quality sequences. Furthermore, CVAE provides a more robust framework that allows
better customisation. Therefore, for manufacturing sequence generation, CVAE seems

to be a more convenient option.

6.3.2.3 Effect of inputs and pooling on the generation of actions

Having defined CVAE as a reference framework, the effects of input and network
architecture were studied. The performance metrics of these variations are reported in
Table 6-13. The first aspect to remark is that the inclusion of reactants as inputs did not
enhance reconstruction accuracy, but it had a greater importance compared to target
only. This is consistent with prediction results discussed previously, where materials
improved predictability. In addition, this behaviour also allowed to confirm that reactants
possess a greater impact in the selection of operations compared to the target alone. As
discussed in previous sections, while there might exist multiple paths to manufacture a
target molecule, the options can be bounded when reactants are included. These are

required to be handled in particular manners. Additionally, reactants can be associated
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with the profile of impurities after reaction, which in turn may hint which techniques are
feasible or more appropriate for target isolation and purification. Thus, the improvement
in feature importance might indicate that the model is learning that type of association
between operations and combinations of materials. In consequence, the inclusion of
reactants provides additional information which bounds the selection of operations,

helping to a more customised sequence generation.

Table 6-13. Performance metrics for variations in CVAE architecture. 1 Percentage of unique sequences
obtained from new generated sequences; > Percentage of generated sequence found in the training set.
*Pooling by Multihead Attention, implemented as proposed by Lee et al 1%,

Network type Input Pooling BLEU FI Uniqueness! Novelty?
Method
RNN Target NA 88.6%  0.2% 95.0% 3.2%
Transformers Target Max 92.3% 0.0% 89.4% 4.1%
Pooling
Transformers Target PMA* 80.0% 2.3% 98.1% 1.5%
Transformers Target + Max 91.5% 17.1% 96.6% 2.9%
Reactants  Pooling
Transformers  Target + PMA 80.1% 17.2% 99.6% 0.7%
Reactants

Regarding network architecture, there was a special emphasis on the pooling
mechanism. This component is part of the encoder, and its role is to aggregate unit
operations in a single n-dimensional vector. During the encoding, unit operations are
embedded so that each has a numerical representation. These vectors are further
operated by an attention mechanism along with conditional information. Finally, this
results in a series of vectors representing a sequence. Nonetheless, to project sequence
representation onto a latent space, it is necessary to reduce the dimensionality across
operations, whereby pooling is crucial. There were two mechanisms tested which
included max pooling and pooling by multihead attention (PMA). Preliminary tests
indicated that this had a strong impact on performance, and it was verified in the results
illustrated above.

As observed, each mechanism captures and condenses information differently, thereby
affecting the model 6s ability to generate dive
To remark, the trade-off between reconstruction and feature importance appears to be
once more present. Max pooling may be ignoring conditional information to some extent,

being more explicit when target descriptors were the only input. On the other hand,
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although PMA utilised more conditions in both cases, the reconstruction was penalised.
Another interesting aspect to mention involves uniqueness and novelty. These metrics
can act as indicators of the diversity of sequences generated by a model and the risk of
overfitting. Models employing max pooling generated less diverse sequences. This may
suggest that the models are not effectively learning a latent structure of the sequences
and their association with materials, instead max pooling promotes that models memorise

certain patterns.

Concluding this part, the inputs and pooling mechanism influence the performance of
CVAE for manufacturing process generation. Inputs, including reactants and target
descriptors, provide context for generating meaningful operation sequences. It is worth
mentioning that, in practice, it is challenging to have information on reactants whereby
this limitation requires the usage of complementary tools to find appropriate candidate
materials for target manufacturing. On the other hand, the choice between max pooling
and PMA contributes to balance reconstruction accuracy and the incorporation of
conditional information. Although PMA offered a lower reconstruction, it leveraged
material data to guide selection and produce more diverse sequences.

6.3.2.4 Models for Generation of actions, conditions, and association of actions with

materials

The previous experiments have demonstrated the capacity of generative models to
produce sequences of operations and link an output sequence with a set of materials, to
a certain extent. Furthermore, both, target, and reactants, have proven to be more
beneficial for sequence customisation than target alone. Finally, among the evaluated
frameworks, CVAE emerged as the most convenient for this task. Subsequently, certain
architectural characteristics were defined, with transformers and PMA networks being
more promising in generating more diverse and input-conditioned manufacturing
sequences. However, at this point, the sequences generated consisted solely of
operations without expressing their relationship with materials. While this information can
help provide initial insights into what actions and techniques execute for target fabrication,
the generation of additional information - such as conditions or association between
materials and operations - can yield a more comprehensive output. For instance, the final

sequence could also provide information on addition order.
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Accordingly, CVAE was then adapted to generate chains of operations represented as
out put B. Previously, it was hypothesised that
disentanglement, which in turn supports conditional generation. In this way, Invariant
CVAE, a variant of CVAE that encourages disentangled latent features, was also
examined. Figure 6-11 displays the evolution of performance metrics such as validity,
reconstruction, and feature importance throughout network training for both CVAE and
its invariant counterpart. Overall, CVAE provided the best results in terms of all the
metrics, except for validity, compared to the invariant version, regardless of the number
of layers. In general, a high value for this hyperparameter did not exhibit a substantial
benefit in either of the variants. The most notorious effect could be observed in CVAE for
feature importance, where the difference between the deepest and shallowest network
was approximately 5%. Since the model depth did not exhibit a strong effect, the number
of layers was set at 2 for further experiments to study other modifications in the
architecture.
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Figure 6-11 Learning curves of feature importance (FI), BLEU and generated sequence validity for A)
CVAE ( 18t pand B) Invariant CVAE ( 18t p_ 18 § trained with different number of layers.

Thus, additional modifications were assessed using a simple CVAE model as a
reference. Firstly, different network arrangements for the encoder were tested. One was
based on transformers encoder which mimics language model BERT (bidirectional
encoder represe nt ati on from transformers), and
proposal 112292 Aligned with previous results, a different approach to represent the entire
sequence in a single vector was attempted based on the BERT model. This simply
involved taking the [START] token representation to be used for mean and log-var
estimation. Finally, two methods of processing the latent vector by the decoder were also
evaluated. The results of these changes are summarised in Table 6-14. On average,
Vaswani 6s transformers and PMA favoured
average for most cases where these networks were employed. Conversely, the injection

method had mixed results. While concatenating the latent representation with the
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