
 

 

Ph.D. Thesis 

APPLICATION OF DEEP GENERATIVE MODELS 

FOR THE DESIGN OF PHARMACEUTICAL 

MANUFACTURING PROCESSES  

 

Diego Alvarado Maldonado 

 

A thesis submitted in fulfilment of the requirements for the degree of Doctor of 

Philosophy 

 

Strathclyde Institute of Pharmacy and Biomedical Sciences 

University of Strathclyde 

Glasgow, UK 

2024



i 
 

Declaration of Authenticity and Authorôs Rights 

This thesis is the result of the authorôs original research. It has been composed by the 

author and has not been previously submitted for examination which has led to the award 

of a degree. The copyright of this thesis belongs to the author under the terms of the 

United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. 

Due acknowledgement must always be made of the use of any material contained in, or 

derived from, this thesis. 

Signed:  

Date: 29-08-2024 

 

 

  



ii 
 

Abstract 

Designing processes for pharmaceutical product manufacturing is a complex and 

resource-intensive task. With increasing research costs and quality standards, the 

pharmaceutical industry seeks innovative technologies to enhance productivity and 

maintain competitiveness. While a variety of tools exist in the process design domain for 

optimizing conditions or selecting materials, options for guiding the selection of 

manufacturing operations remain limited. 

In this context, deep generative models (DGMs) emerge as a promising approach. 

DGMs, known for learning the probability distribution of data, have gained popularity for 

their ability to generate realistic examples, commonly applied in text and image 

generation. In drug discovery, DGMs have successfully generated new active substances 

with desirable properties. However, their application in the manufacturing space remains 

unexplored. These models have the potential to assist in operation selection and 

experimental targeting, thereby reducing development time. 

This thesis aims to investigate the applicability of DGMs in pharmaceutical manufacturing 

process design, developing DGMs capable of generating plausible sequences of 

operations for product manufacturing, taking input information about the target product. 

A significant challenge in developing DGMs is the requirement for large datasets. To 

address this, two datasets were constructed using natural language processing (NLP) 

applied to primary and secondary manufacturing data extracted from patents. The 

primary processing dataset comprises over 385K manufacturing processes, while the 

secondary processing dataset includes approximately 9K procedures for various dosage 

forms and active ingredients. 

The study involved training and comparing several architectures based on generative 

adversarial networks (GAN) and variational autoencoder (VAE) using different metrics. 

Real and generated sequences were contrasted manually to evaluate how closely the 

model outputs resemble typical manufacturing sequences. This research contributes to 

the exploration of DGMsô application in pharmaceutical manufacturing, offering insights 

into their potential for operation selection and product development. In the end, DGMs 

were successfully trained and their potential for the generation of plausible sequences 

was demonstrated. A survey assessed by a panel of experts yielded that the models 



iii 
 

generated sequences at least as good as the actual procedures in 38% of occasions for 

the primary domain. While this shows the potential of generative modelling in this field, it 

also remarks there is room for improvement to make it applicable in real-world scenarios.  

  



iv 
 

Acknowledgments 

I would like to begin by expressing my deepest gratitude to my supervisor, Dr. Cameron 

Brown. His guidance, patience, knowledge, and unwavering support throughout this 

project have been invaluable. This experience allowed me to explore and apply 

knowledge in machine learning and integrate it with pharmaceutical sciences, a field I am 

deeply passionate about. Without Dr. Brown's mentorship, this project would not have 

been possible. 

I would also like to recognize my co-supervisor, Professor Blair Johnston, for his guidance 

and feedback on multiple occasions. His insights have been crucial to the development 

of this work. 

Furthermore, I wish to acknowledge all the staff involved in the PhD program at the 

University of Strathclyde. Their assistance, and collaboration over the years have greatly 

contributed to the completion of this thesis. 

Finally, my heartfelt thanks go to my parents, Aide and Hector, and my sister, Daniela. 

Their constant support, encouragement, and motivation have been the driving force that 

helped me persevere throughout this journey. 

  



v 
 

Contents 

Declaration of Authenticity and Authorôs Rights .............................................................. i 

Abstract ......................................................................................................................... ii 

Acknowledgments ......................................................................................................... iv 

Contents ........................................................................................................................ v 

List of Figures ............................................................................................................... ix 

List of Tables .............................................................................................................. xiv 

Chapter 1. Introduction ............................................................................................. 1 

1.1 Introduction .................................................................................................... 2 

1.2 Pharmaceutical Manufacturing Development ................................................. 5 

1.2.1 Primary manufacturing ............................................................................... 5 

1.2.2 Secondary manufacturing ........................................................................... 7 

1.3 AI/ML Role in Pharmaceutical Manufacturing ............................................... 10 

1.4 Overview on Deep Generative Models ......................................................... 12 

Chapter 2. Aims ..................................................................................................... 16 

2.1 Aim ............................................................................................................... 17 

2.2 Objectives .................................................................................................... 17 

Chapter 3. Methods ................................................................................................ 19 

3.1 Data Collection ............................................................................................. 20 

3.2 Natural Language Processing for Information Extraction .............................. 20 

3.2.1 Topic modelling ........................................................................................ 21 

3.2.2 Text classification ..................................................................................... 25 

3.2.3 Named entity recognition (NER) ............................................................... 26 

3.2.4 Dataset Cleaning and Curation ................................................................. 28 

3.3 Sequence Generation with Deep Learning ................................................... 31 



vi 
 

3.3.1 Recurrent Neural Networks ...................................................................... 34 

3.3.2 Transformers ............................................................................................ 36 

3.4 Deep Generative Models .............................................................................. 38 

3.4.1 Generative Adversarial Networks ............................................................. 39 

3.4.2 Variation Autoencoders ............................................................................ 41 

3.4.3 Energy-based models ............................................................................... 42 

3.4.4 Autoregressive models ............................................................................. 42 

3.4.5 Flow-based models .................................................................................. 43 

3.4.6 Performance Metrics in Generative Models .............................................. 43 

3.5 Equipment and Software .............................................................................. 45 

Chapter 4. Data collection ...................................................................................... 47 

4.1 Introduction .................................................................................................. 48 

4.2 Methods ....................................................................................................... 50 

4.2.1 Search strategy and documents retrieval .................................................. 50 

4.2.2 Patents selection ...................................................................................... 52 

4.2.3 Content analysis ....................................................................................... 62 

4.3 Results and discussion ................................................................................. 63 

4.3.1 Search results .......................................................................................... 63 

4.3.2 Patent Classifier ....................................................................................... 65 

4.3.3 Error analysis ........................................................................................... 68 

4.3.4 Pharmaceutical manufacturing corpus ...................................................... 72 

4.4 Summary ...................................................................................................... 78 

Chapter 5. Natural Language Processing (NLP) for Pharmaceutical Manufacturing 

Data Extraction ............................................................................................................ 79 

5.1 Introduction .................................................................................................. 80 

5.2 Methods ....................................................................................................... 82 



vii 
 

5.2.1 Preliminary experiments ........................................................................... 82 

5.2.2 Relevant section detection ........................................................................ 83 

5.2.3 Named entity recognition (NER) ............................................................... 88 

5.3 Results and discussion ................................................................................. 93 

5.3.1 Relevant section identification .................................................................. 93 

5.3.2 Named entity recognition ........................................................................ 102 

5.4 Summary .................................................................................................... 114 

Chapter 6. Deep Generative Models for Primary Manufacturing Process Design . 117 

6.1 Introduction ................................................................................................ 118 

6.2 Methods ..................................................................................................... 120 

6.2.1 Dataset development .............................................................................. 120 

6.2.2 Output representation ............................................................................. 123 

6.2.3 Input representation ................................................................................ 124 

6.2.4 Modelling ................................................................................................ 128 

6.2.5 External Validation .................................................................................. 138 

6.3 Results and discussion ............................................................................... 138 

6.3.1 Data description ..................................................................................... 138 

6.3.2 Generative modelling .............................................................................. 148 

6.3.3 Conditional generation of manufacturing sequences .............................. 165 

6.3.4 Expert assessment ................................................................................. 169 

6.4 Summary .................................................................................................... 170 

Chapter 7. Deep Generative Models for Secondary Manufacturing Process Design

 173 

7.1 Introduction ................................................................................................ 174 

7.2 Methods ..................................................................................................... 176 

7.2.1 Dataset development .............................................................................. 176 



viii 
 

7.2.2 Input and Output representation ............................................................. 178 

7.2.3 Generative modelling .............................................................................. 179 

7.3 Results and discussion ............................................................................... 183 

7.3.1 Data description ..................................................................................... 183 

7.3.2 Generative modelling .............................................................................. 193 

7.4 Summary .................................................................................................... 198 

Chapter 8. Conclusions ........................................................................................ 200 

8.1 Conclusions and future work ...................................................................... 201 

References ................................................................................................................ 210 

Appendices ................................................................................................................ 230 

Appendix A: List of standardised operations ........................................................... 230 

Appendix B: Topics keywords for LDA analysis ...................................................... 233 

Appendix C: Ranges for clusters of conditions ....................................................... 250 

Appendix D: Survey for assessment of the quality of generated procedures for primary 

manufacturing by CVAE and Invariant CVAE ......................................................... 252 

 

  



ix 
 

List of Figures 

Figure 1-1. Product formulation and manufacturing process development scheme. Taken 

and adapted from Osakwe et al work 31. ........................................................................ 8 

Figure 3-1 Example NER output for a secondary manufacturing paragraph. ................ 27 

Figure 3-2 Example dependency tree for a sentence. nsubjpass: passive nominal subject; 

auxpass: auxiliar passive; cc: coordinating conjunction; conj: conjunction; prep: 

preposition; pobj: object of a preposition ...................................................................... 29 

Figure 3-3 Visualisation of representations generated by a convolutional neural network 

for different layers trained on images. Taken from Zeiler et al work 104 ......................... 31 

Figure 3-4 Multilayer Perceptron (MLP). ...................................................................... 32 

Figure 3-5 Architecture classes based on input-output data 107. ................................... 34 

Figure 3-6 Architecture recurrent neural network. ........................................................ 34 

Figure 3-7 Diagram of the most common types of cells used in RNN. From left to right, 

Simple RNN, Long-short term memory (LSTM), and gated recurrent unit (GRU) 107. ... 35 

Figure 3-8 Transformer Architecture. Taken from Vaswani et al 112. On the left, the 

encoder module can be seen which includes two sublayers self-attention, and a feed-

forward network. On the right, the decoder is similar to the first sublayers, but instead of 

feed-forward, a cross-attention sublayer is introduced. This sublayer is fed with 

information on the encoder output and self-attention of the sequence. Then, the results 

are input into another feed-forward network that produces a representation used for a 

particular task. ............................................................................................................. 37 

Figure 3-9 GAN architecture for generator and discriminator networks during training. 

Taken and adapted from Alom et al 69 .......................................................................... 39 

Figure 4-1. Overview pharmaceutical corpus development. ......................................... 50 

Figure 4-2 Example CPC scheme for patent technical classification. Taken from USPTO 

145 ................................................................................................................................ 52 

Figure 4-3  word2vec architectures. On the left hand-side continuous bag-of-words 

(CBOW) and on the right skip-gram (SG). For a sequence of words, CBOW mode will 

predict word t using as inputs the words t-2, t-1, t+1 and t+2 and word. Whereas SG mode 

will output the context words t-2, t-1, t+1 and t+2 given the word t. Taken and adapted 

from Mikolov et al 88 ..................................................................................................... 56 

Figure 4-4 doc2vec architecture. Taken and adapted from Le Q et al 153. .................... 57 



x 
 

Figure 4-5 General scheme of a RNN architecture for binary classification. Text 

Vectorization layer assigns an index to each word. This index is used by the embedding 

layer to locate the corresponding vectorial representation for each word in a lookup table. 

Then, these embeddings are fed into the RNN. In this case, there are two stacked RNN 

layers where each process the information in different directions (bidirectional). The 

output of these layers is subsequently concatenated to be handled by a dense layer. This 

final layer will outcome the probability of the input text belonging to the category ώ  ρ. 

Taken from Tensorflow website 157 .............................................................................. 60 

Figure 4-6 Patent Classifier architecture using abstracts. For claims, 

output_sequence_length is 1001 instead of 116, as in abstracts. Hyperparameters were 

based on Risch J. et al work 151. .................................................................................. 61 

Figure 4-7  Word clouds with top 50 most important words for all the search results (A), 

irrelevant results (B), and pharmaceutical patents (C).................................................. 64 

Figure 4-8 Classification performance for different models. A) comparison of AUC-PR for 

several model trained for different inputs and text representations. B) Precision-recall 

curve for the best model ï RNN + Fasttext using abstract and claims as inputs .......... 66 

Figure 4-9 Comparison of Abstract + RNN performance using custom and pretrained 

embeddings (fasttext) as a word representation during training time............................ 67 

Figure 4-10 Histogram (A) and cumulative frequency (B) of the number of words for 

abstracts and claims. ................................................................................................... 68 

Figure 4-11 Confusion matrix for the best model. PH: pharmaceutically relevant patents 

and NP: non-relevant patents. ..................................................................................... 69 

Figure 4-12 Distribution of CPC classes (A) and keywords for FN (B) and FP (C). ...... 71 

Figure 4-13 Top 5 keywords for subtopics 0 to 8 obtained using NMF. ........................ 73 

Figure 4-14 Top 5 keywords for subtopics 9 to 17 obtained using NMF. ...................... 74 

Figure 4-15 Overall distribution of main topic in the corpus (A), evolution of topics across 

time (B) and evolution of the patents most related to small molecules or biological 

products (C). To note, data for 2021 only covers until September, which is why a sudden 

drop in the number of patents is seen this year. ........................................................... 75 

Figure 4-16  Number of NCE and biologics approved by FDA between 1997 and 2021. 

Taken and adapted from de la Torre et al 164 ............................................................... 77 

Figure 5-1. Overview information extraction (IE) using natural language processing (NLP) 

tools. ............................................................................................................................ 82 



xi 
 

Figure 5-2 Sequence of steps for text preprocessing for topic modelling. .................... 84 

Figure 5-3 Example errors of labelling. Case I presents example of labelling error. Case 

II displays error in prediction. ....................................................................................... 90 

Figure 5-4 Common architecture for NER using DL. .................................................... 91 

Figure 5-5 Paragraph topic classifier performance for the assigned labels. .................. 94 

Figure 5-6 Example of undesirable results of paragraph classification approach. ........ 95 

Figure 5-7 Distribution of the number of tokens per section (A) and Perplexities 

determined for LDA models evaluating shuffling (B) and truncation effect (C) .............. 96 

Figure 5-8 Top 10 keywords for truncated (A) and non-truncated (B) LDA models. ..... 97 

Figure 5-9 Performance for k-Means model changing the number of clusters. ............. 98 

Figure 5-10 t-SNE visualization of document representations generated using LDA. ... 99 

Figure 5-11 Example documents with similar content and classified in the same cluster 

(primary manufacturing) referenced in Figure 9. ........................................................ 100 

Figure 5-12 Normal plot of hyperparameters effects on F1-score for NER models. A: 

sequence max length (number of tokens), B: number of Conv1D layers, C: kernel size, 

D: number of filters, E: dropout rate, F: LSTM units, G: spatial dropout 1D rate, H: number 

of heads (MHA layer), I: keys dimension (MHA), J: embeddings dimensions, K: 

embeddings windows size, L: learning rate, M: weight decay, and N: initializer. ........ 103 

Figure 5-13 Normal plot (A) and magnitude (B) of hyperparameters effects on F1-score 

from Confirmatory Placket Burman design. B: number of Conv1D layers, C: kernel size, 

D: number of filters, E: dropout rate, F: LSTM units, G: spatial dropout 1D rate, H: number 

of heads (MHA layer), I: keys dimension (MHA), J: embeddings dimensions, K: 

embeddings windows size, and M: weight decay. ...................................................... 105 

Figure 5-14 Normal plot (A) and magnitude (B) of hyperparameters effects on F1-score 

from Factorial design. B: number of Conv1D layers, F: LSTM units, and H: number of 

heads (MHA layer). .................................................................................................... 107 

Figure 5-15 F1-score micro average vs the Number of Heads in MHA layer .............. 108 

Figure 5-16 Contour plot Weight Decay vs Learning Rate. ........................................ 109 

Figure 5-17 Best model architecture for NER ............................................................. 111 

Figure 5-18 Confusion matrix for NER ....................................................................... 113 

Figure 6-1. Steps for generative model development for manufacturing routes generation 

for primary domain. .................................................................................................... 120 



xii 
 

Figure 6-2 Top 10 most common substances in the different categories of materials. THF: 

tetrahydrofuran, DIPEA: N-ethyl-N-isopropylpropan-2-amine, Brine: typically, a saturated 

solution of sodium chloride in water. .......................................................................... 141 

Figure 6-3. Comparison of properties distributions between target molecules in the 

training set (n = 359,912) and approved drugs by FDA recorded in ZINC15 database (n 

= 1,615) 203. LogP, log-partition coefficient calculated using RDkit library 205; LogS, log-

molar solubility calculated using SolTranNet 206; MW: molecular weight. ................... 142 

Figure 6-4 Distribution of conditions reported in the training set. Ar: Argon, H2: Hydrogen, 

N2: Nitrogen. ............................................................................................................. 143 

Figure 6-5 Most frequent operations by (A) standardised actions and (B) type of 

operation. Purify refers to chromatography. Dry Solution consists of the removal of water 

from a mixture usually through a desiccant agent. Make Solution refers to the combination 

of two or more materials to form a solution, a suspension, or other type of mixture. .. 145 

Figure 6-6 Evolution across time of the number of patents mentioning the most common 

separation methods. RECRYSTALLISATION refers to crystallisation from a solid 

material, while CRYSTALLISE starts from a solution. DRY indicates that the method of 

drying is unspecified. ................................................................................................. 147 

Figure 6-7. Evolution across time of the number of patents mentioning the most common 

separation methods with respect to the total number of patents. ................................ 147 

Figure 6-8. Distribution of the amount of target molecule obtained in the respective 

process in log-scale (n = 274,956) ............................................................................. 148 

Figure 6-9 Comparison of sequence prediction accuracy in terms of BLEU scores 

resulting from distinct molecular representations of a target substance. .................... 149 

Figure 6-10 Reconstruction Accuracy (A) and condition importance (B) for different 

generative models for output A generation using target molecular descriptors. CD: 

condition included in discriminator; st: stochastic encoder; de: deterministic encoder.

 .................................................................................................................................. 155 

Figure 6-11 Learning curves of feature importance (FI), BLEU and generated sequence 

validity for A) CVAE (‍ πȢπυ) and B) Invariant CVAE (‍ πȢπρ, ‗ πȢπς) trained with 

different number of layers. ......................................................................................... 160 

Figure 6-12. Effect of ‍-control method on CVAE performance during the training process 

calculated on development set. .................................................................................. 163 



xiii 
 

Figure 7-1. Steps for generative modelling for secondary manufacturing route generation.

 .................................................................................................................................. 176 

Figure 7-2  Top 10 most mentioned substances for the secondary manufacturing dataset.

 .................................................................................................................................. 184 

Figure 7-3 Comparison of properties distributions between secondary manufacturing 

dataset molecules in (n = 2,178) and approved drugs by FDA recorded in ZINC15 

database (n = 1,615)203. LogP, log-partition coefficient,t calculated using RDkit library 31; 

LogS, log-molar solubility calculated using SolTranNet 206; MW: molecular weight. ... 186 

Figure 7-4 Top 10 most frequent dosage forms found in the extracted patents. ......... 187 

Figure 7-5. Distribution of conditions pH, temperature, and time obtained. ................ 189 

Figure 7-6 Top 10 most frequent operations found for the entire dataset (A) and some 

common dosage forms such as tablets (B), emulsion (C), and solutions (D). ............. 190 

Figure 7-7 Evolution of the number of records obtained across time (A) and breakdown 

by form (B). Other refers to non-conventional dosage forms such as microspheres, 

microparticles, nanoparticles, among others. ............................................................. 191 

Figure 7-8 Distribution of material weighted for secondary manufacturing in log-scale. 

Median weight = 49.9 g (N = 2,576) ........................................................................... 192 

Figure 7-9 Effects of hyperparameters on reconstruction (BLEU) and dosage form 

importance (FIdf). Plots A and C represent the absolute effect for BLEU and FIdf, 

respectively. Plots B and D correspoind to the normal plots of the effects for BLEU and 

Fidf, respectively. The hyperparameters codes are dropout rate (A), token dropout (B), 

batch size (C), and KL target (D). .............................................................................. 195 

Figure 7-10. Most important effect for reconstruction (A ï dropout rate and B ï Target KL) 

and dosage form importance (C ï Interaction Token dropout + Batch size) ............... 196 

 

  



xiv 
 

List of Tables 

Table 1-1. Typical unit operations in synthesis. Taken from Am Ende et al work 3 ......... 6 

Table 1-2. Typical unit operations for solid dosage forms manufacturing. Taken and 

adapted from Mittal Bôs work 32 ...................................................................................... 9 

Table 1-3. Types of DGMs: advantages and disadvantages 47,63. ................................ 14 

Table 3-1. Libraries and equipment used for data analysis. ......................................... 45 

Table 4-1 Criteria of exclusion for search terms. .......................................................... 51 

Table 4-2 CPC Scheme sections. Taken and adapted from USPTO 145 ....................... 52 

Table 4-3 Hyperparameters for assessed text representations training. Each 

representation was determined for abstracts and claims, separately. .......................... 54 

Table 4-4 Hyperparameters for assessed models. a class weights were calculated using 

scikit learn package for imbalance data. b Separate models were trained for abstracts and 

claims. c Recurrent neural networks were trained using pre-trained fasttext and custom 

embeddings as word representations. ......................................................................... 58 

Table 4-5 Excluded terms in content analysis. ............................................................. 62 

Table 4-6 Distribution of the search results by sources and search terms. ................... 63 

Table 4-7 Distribution of the search results by relevant (PH) and irrelevant (NP) patents 

with CPC. .................................................................................................................... 65 

Table 4-8 Assignation of subtopics to main topics. ....................................................... 74 

Table 5-1 Exclusion criteria for token in vocabulary for BoW representation. ............... 84 

Table 5-2 Hyperparameters assessed for LDA model development............................. 85 

Table 5-3 Definition of labels. *Category added for the final model. ............................. 88 

Table 5-4 Assessed hyperparameters for selection and optimization of NER model. ... 92 

Table 5-5 Degree of agreement between labels assigned based on LDA keywords and 

manually revised sections .......................................................................................... 100 

Table 5-6 Initial Placket Burman design and results for hyperparameters selection. A: 

sequence max length (number of tokens), B: number of Conv1D layers, C: kernel size, 

D: number of filters, E: dropout rate, F: LSTM units, G: spatial dropout 1D rate, H: number 

of heads (MHA layer), I: keys dimension (MHA), J: embeddings dimensions, K: 

embeddings windows size, L: learning rate, M: weight decay, and N: initializer. ........ 102 

Table 5-7 Confirmatory Placket Burman design and results for hyperparameters 

selection. B: number of Conv1D layers, C: kernel size, D: number of filters, E: dropout 



xv 
 

rate, F: LSTM units, G: spatial dropout 1D rate, H: number of heads (MHA layer), I: keys 

dimension (MHA), J: embeddings dimensions, K: embeddings windows size, and M: 

weight decay. ............................................................................................................. 104 

Table 5-8 Full Factorial design and results for hyperparameters selection. B: number of 

Conv1D layers, F: LSTM units, and H: number of heads (MHA layer). ....................... 106 

Table 5-9 Summary selected values for NER model hyperparameters. *Layers to confirm

 .................................................................................................................................. 109 

Table 5-10 F1-scores (micro-average) for confirmatory models in development and test 

sets. BiLSTM: Bidirectional Long Short-Term Memory, Conv1D: unidimensional 

convolution, Attention: multihead self-attention, CE: Character embeddings. ............. 110 

Table 5-11 Breakdown of the performance for best NER model. ............................... 112 

Table 6-1. Exclusion criteria of manufacturing procedures from the dataset for model 

training. a Duplicates corresponded to patents that reported the same molecules and 

procedures but with a different scope. ....................................................................... 122 

Table 6-2. Examples of manufacturing sequences representations. $$: material; %% 

condition; T: temperature; t: time; if no letter is included within %%, it refers to pH. ... 123 

Table 6-3. Assessed molecular representations for generative modelling. ................. 124 

Table 6-4. Sequence prediction networks. Architecture taken and adapted from the 

decoder proposed by Dollar et al127. a transformer blocks were implemented as proposed 

by Vaswani et al112. .................................................................................................... 126 

Table 6-5. Sequence prediction networks for representation B. Adapted from Vaucher et 

al 43 ............................................................................................................................ 127 

Table 6-6. Initial metrics used for assessing sequence generation performance. a. Validity 

criteria for representation B was limited to referencing all the materials in the output 

sequence and the correct identification of target molecule. ........................................ 132 

Table 6-7. Encoder and decoder architecture using Transformers layers. a. If encoder is 

deterministic only one linear layer was used and ‘ᾀ and ÌÏÇ„ᾀς were excluded. b. 

Transformer decoder block was only included in CVAE. The other model did not process 

information on materials. ............................................................................................ 133 

Table 6-8. Material encoder architecture using Transformers layers. a. If the encoder is 

deterministic, only one linear layer was used, whereby ‘ᾀ and ÌÏÇ„ᾀς were excluded. b. 

Transformer decoder block was only included in CVAE. The other model did not process 

information on materials. ............................................................................................ 134 



xvi 
 

Table 6-9. Survey design ........................................................................................... 138 

Table 6-10. Extraction performance metrics per entity type for primary manufacturing 

dataset. ...................................................................................................................... 139 

Table 6-11. Performance metrics for prediction of actions associated with materials and 

conditions (Output B, n = 1000). a. Results from reference model developed by Vaucher 

et al43. Architecture B corresponded to an adaptation of Vaucherôs Transformers trained 

on our dataset with different representations. Architecture A is a modified version of B 

with half transformer blocks and heads. b It refers to the quantiles of accuracies obtained 

by sequence matching evaluated using Levenshtein similarity. For instance, 3.6% of the 

sequences had 100% matching between actual and predicted in Vaucherôs Transformer. 

c it only considers architecture A and B. ..................................................................... 152 

Table 6-12. Examples of randomly generated sequences by different models. .......... 154 

Table 6-13. Performance metrics for variations in CVAE architecture. 1. Percentage of 

unique sequences obtained from new generated sequences; 2. Percentage of generated 

sequence found in the training set. *Pooling by Multihead Attention, implemented as 

proposed by Lee et al 199. ........................................................................................... 157 

Table 6-14 Performance metrics for architecture modification in CVAE model in the 

encoder, pooling method, and latent space injection trained using PI for ‍ dynamic 

adjustment with KL target = 35. ................................................................................. 161 

Table 6-15. Performance metrics for CVAE trained under different ‍-control strategies.

 .................................................................................................................................. 164 

Table 6-16. Effect of KL target on performance metric for Invariant CVAE. ................ 164 

Table 6-17. Example generated vs actual manufacturing sequence. CVAE and Invariant 

CVAE were trained using PI with target KL = 35. ....................................................... 165 

Table 6-18. Determination coefficient (R2) for process yield prediction for different 

models. Yield-BERTôs authors trained that model using datasets: Gram and subgram. 

The former compile values of yield obtained when the final amount of product was in the 

order of grams. Subgram uses data with amounts in the order of miligrams. ............. 168 

Table 6-19. Results survey. ....................................................................................... 169 

Table 7-1.  Exclusion criteria of manufacturing procedures for secondary manufacturing 

dataset. ...................................................................................................................... 177 

Table 7-2. Output representation for secondary processing. $$: condition; T: temperature; 

t: time; if no letter is included within $$, it refers to pH. .............................................. 178 



xvii 
 

Table 7-3. Proposed CVAE architecture based on Transformers for secondary 

manufacturing sequence generation. ......................................................................... 179 

Table 7-4. Automatic performance metrics employed for generation of manufacturing 

sequences for secondary domain. ............................................................................. 182 

Table 7-5. Performance metrics assessed over the test set for CVAE using different 

values of dropout rate (A), token dropout (B), batch size (C), and KL target (D). ....... 193 

Table 7-6. Examples of generated sequence for different APIs and dosage forms. ... 197 

 



1 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1. Introduction 

  



2 
 

1.1 Introduction 

In recent years, the pharmaceutical industry has embarked in a transformation process 

aiming to meet patientôs needs and regulatory requirements as well as adapt itself to the 

changes in health market 1. Historically, the industry has been distinguished by having a 

business model strongly centred on the discovery of new chemical entities that are 

patented and commercialized throughout patent expiry time 2,3. This focus has made the 

largest pharmaceutical companies invest most of their efforts and resources in the design 

and development of novel active pharmaceutical ingredients (API)  4. However, the 

innovation in other processes of value chain, such as manufacturing, seems not to 

maintain the same rate as in research and development (R&D) for new API, which has 

resulted in inefficacious processes with many opportunities for improvement 5.  

Nonetheless, the investment in R&D has not stopped increasing. Between 2001 and 

2020, on average, leading companies have expanded their spending in this area annually 

by 6% 6.  This has been translated into more than 200 new molecules approved for 

commercialisation within the mentioned period 6,7. However, profits have been reported 

to exhibit a declining trend since 2013 8. Aligned with this, analyses point out that less 

than half of the new approved substances are profitable, thereby highlighting the risks 

and the challenges in productivity that the industry must face 6.  It has been argued that 

constantly rising research costs is the main contributing factor to this trend   4,8ï11. In turn, 

tendencies of cost have been associated with increasing regulatory requirements and 

development times 8,10. As a result, new APIs are not enough to cover the losses caused 

by patents expiry and cost reduces new products profit, which increases the need of 

implementing strategies that enhance productivity and make companies more 

sustainable 6,10,11. Thus, the industry has sought for solutions to tackle inefficacies in 

different steps in the value chain, and particularly there has been a special interest in 

manufacturing 1,4,12.  

Aspects to improve in pharmaceutical manufacturing include flexibility in scale-up/down, 

production speed, process control and reliability, and inventory management 3,5,13ï15. 

Thus, initiatives such as Quality by Design (QbD), continuous manufacturing (CM), and 

process analytical technologies (PAT) have been proposed and implemented throughout 

the last decades. The impact of the implementation of QbD for process optimization has 



3 
 

been estimated to reduce costs between 10 and 25% 3. In the same line, large companies 

such as Jansen have estimated that the implementation of CM could reduce costs up to 

a 50% 3. These examples show the conveniency in financial terms of a change towards 

a paradigm oriented in process optimization and increasing in manufacturing productivity. 

In addition, the employment of these initiatives is not only reflected in more profit and a 

cost reduction, but it also has a result more affordable prices for patients, easier 

accessibility to medicines, ensuring acceptable standards of quality and safety. 

Despite the advantages that QbD or CM offer, the transition to these approaches in 

manufacturing have been slow 1,15. Reviews published in 2020 and 2022 pointed out that 

although there have been advancements in the acceptance of QbD for the design and 

development of products and processes, it is not yet a standard practice in the 

pharmaceutical industry 16,17.    It has been claimed that some challenges to progress 

towards a widespread adoption include the extensive requirement of data, experiments, 

documentation, and specialised tools 16. From a regulatory perspective for complex 

products, the lack of data and the complexity of the results to be analysed are additional 

concerns 16.Nonetheless, the publication of research papers and guidance for the 

implementation of QbD in several types of products, as well as the increasing 

implementation of techniques such as multivariate data analysis and different 

approaches for the design of experiments are expected to help QbD usage 16,17. 

In this context, one of the concerns for the adoption of frameworks, such as QbD, is that 

a large number of experiments may be required for a deep understanding of a process 

or product 1. In addition, this may generate a substantial amount of data that, when 

combined with other sources such as process control observations, needs the use of 

tools to facilitate their understanding and usage in process optimisation 13,15. 

Consequently, techniques that aid data analysis and guide decisions at various stages of 

research, including experiment selection, have emerged and become popular in the 

pharmaceutical sector. In this regard, artificial intelligence (AI) has gained special 

relevance in addressing the aforementioned challenges 15. 

AI refers to the application of a series of mathematical models and computational 

capabilities to assist and guide human decision making 15. There exist numerous reported 

applications of AI in pharmaceutical manufacturing. To mention some examples, deep 

learning (DL) has been employed to automate visual inspection of drug products, conduct 



4 
 

automated risk analysis to predict equipment maintenance, and forecast dissolution 

profiles, among others 18,19. Nonetheless, within AI, a group of algorithms have become 

increasingly popular due to offering a different perspective compared to traditional 

predictive tools which are Deep Generative Models (DGMs).  

DGMs are neural networks with varied architectures that aim to estimate or approximate 

the probability distribution of high dimensional data 20. Upon knowing the probability 

distribution of the data, it is possible to draw samples from that distribution. The drawn 

samples are expected to have similar characteristics to the original data. In the medical 

domain, they have been found helpful in tumour classification and COVID-19 diagnosis 

with good accuracy 21. In the pharmaceutical context, DGMs have been employed mainly 

on drug discovery to find out potential drug-like molecules showing promising results 22. 

However, to the best of our knowledge, the application of DGM have not been explored 

deeply in pharmaceutical manufacturing.  

DGMs can potentially be used to generate plausible sequences of unit operations to 

manufacture a product. Resuming pharmaceutical industry challenges in terms of 

process optimization, this ability to generate sequences might help to explore different 

combinations of operations that suits with user needs. In addition, these models could 

assist in targeting the process towards a reduced group of combinations by conditioning 

the selection based on the properties of input materials or target product. In this manner, 

the application of DGMs might reduce time and costs in experimentation, complementing 

other workflows. Nevertheless, for deep generative modelling in a specific domain, a 

large and reliable dataset is required.  

Currently, although a vast amount of information on primary and secondary processing 

is available in documents such as scientific papers and patents, to the best of our 

knowledge, there is not a database covering both domains in an appropriate format for 

their usage in modelling. Due to the substantial efforts that this task requires, automated 

solutions are needed to obtain as much information as possible. Subsequently, once a 

suitable dataset is available, an architecture for DGM can be defined and trained. Thus, 

this thesis aims to develop deep generative models for the design of pharmaceutical 

manufacturing processes taking molecular descriptors as inputs and outputting a 

plausible chain of unit operations. To achieve this, a database on pharmaceutical 

manufacturing domain will be built through the utilisation of natural language processing 



5 
 

(NLP). To finally proceed with the design, training, and validation of the generative 

models. To contextualise more in several subjects covered thus far, this chapter will dive 

into traditional approaches in manufacturing development in both primary and secondary 

production, current state of applications of AI tools in manufacturing, and DGMôs types 

and applications.  

1.2 Pharmaceutical Manufacturing Development 

Manufacturing involves all the processes carried out to transform inputs (raw materials) 

into outputs (API/drug product) in order to have a continuous supply. Depending on the 

outcome, pharmaceutical manufacturing can be primary or secondary 5. Primary 

manufacturing comprises the obtention of API which can be achieved by synthesis or 

extraction from a natural source and further purification steps 5. On the other hand, 

secondary manufacturing encompasses the conversion of one or several APIs to a 

dosage form that can be administrated to a patient 5. This distinction is convenient 

regarding development since the considerations in synthesis vary significantly compared 

to a dosage form production.  

Another convenient distinction is the mode of manufacturing. In this regard, the product 

fabrication can be done in continuous (CM) or as a batch process (BP). Traditionally, BP 

has been extensively used in both primary and secondary manufacturing 23,24. This mode 

is characterized by generating a fixed amount of product and usually, the process can be 

divided into a chain of sequential steps also known as unit operations. In each step, 

intermediate products are generated such that feed the next stage. In contrast, in CM, 

the amount of generated product depends on the time a process is run and some or all 

the unit operations are integrated in such a way that the transformation process occurs 

partially or completely in the same equipment 23. For this work purposes, there will be a 

focus on batch operations since this mode of manufacturing is the most commonly 

applied for the different types of products. 

1.2.1 Primary manufacturing 

In primary manufacturing process design, API origin is determinant to select the process 

conditions and unit operations. APIs can be classified depending on its origin as small 



6 
 

molecules and biologics 13. Small molecules can be obtained usually by synthesis, 

whereas biologics are produced by extraction from natural sources or biotechnology 13.  

The following workflow for the development of an API synthesis process is based on 

Siegfried Labs study case and includes route selection, initial optimization, purification 

steps, process refining and scale-up and commercial production 25. The three first steps 

can be defined at laboratory scale and usually are explored at a scale of hundreds of g 

to kg 26. In route selection, synthesis steps are chosen considering aspects such as 

reduction of the number of steps, avoidance of hazardous transformations, materials 

cost, and consecutive or parallel reactions. Afterwards, the selected route is fine-tuned 

by checking every step and select the most appropriate reactants in terms of cost, quality 

and safety. Additionally, reaction conditions are optimized such as temperature, 

stoichiometry and concentration to get the best yield.  

Table 1-1. Typical unit operations in synthesis. Taken from Am Ende et al work 3 

Unit operation Considerations 

Reaction/Quench Chemical kinetics, mass transfer, heat 
transfer, addition, removal 

Distillation Mass transfer, heat transfer, addition, 
removal, time, stability 

Extraction Mass transfer, heat transfer, addition, 
removal, time, stability 

Crystallization Chemical kinetics, mass transfer, heat 
transfer, addition, time, stability, 
crystallization kinetics, method, stirring 

Filtration Addition, removal, time, stability 

Drying Mass transfer, heat transfer, addition, 
removal, time, stability 

 

Next, purification steps are defined. At this stage, intermediates and product should be 

analysed to evaluate whether purification is needed since excessive purification steps will 

affect yield. For instance, intermediates may have a purity that is good enough for the 

succeeding process step and so purification is not needed. Other factors to consider are 

shown in Table 1-1. Once all the synthetic and purification steps are determined, scale-

up is performed.  

Scale-up can go from kilograms to industrial-scale of produced material. In this phase, 

the feasibility of the process developed at laboratory scale is assessed in terms of 



7 
 

availability of equipment, conditions, compliance of good manufacturing practice (GMP), 

safety and risk management. As a result of this assessment, changes in the originally 

proposed procedure can be done, for instance, new critical parameters can be identified 

to adjust and control, or some operations have to be reconsidered as might not be 

feasible for safety issues, scale-up effects or costs. Once the process has been 

standardised for the intended batch size, validation is performed to report to regulatory 

bodies to manufacture for commercial purposes. 

Other aspects to consider throughout the development process are control strategies and 

API critical attributes. In solid products, certain the type of salt or polymorph can have a 

strong influence on API therapeutical efficacy or toxicity as well as its manufacturability 

as a drug product. In these cases, if a particular type of salt is required, additional reaction 

steps might be needed; or if a specific polymorph is sought, further purification steps such 

as crystallization become more critical in the development. Similarly, all the process steps 

must be controlled appropriately by which certain parameters should be monitored in-

process such as temperature, pressure or mixture composition. Finally, in certain steps, 

API critical attributes like assay, particle size distribution, and impurities should be tested.  

1.2.2 Secondary manufacturing 

Secondary manufacturing aims to transform an API into a dosage form to be 

administrated to a patient. A dosage form is a vehicle that facilitates the delivery of an 

API to the end-user, and contributes to ensuring product stability (physical, chemical and 

microbiological), efficacy and safety 27. To accomplish these objectives, a drug product is 

primarily composed of API, excipients and packaging system 27. Excipients are defined 

as materials without biological activity that are added to a product to improve aspects 

such as manufacturability, stability, patient acceptability and/or product performance 28. 

In the same line, container closure systems protect a dosage form from environmental 

and mechanical risks 28.  

In Figure 1-1, usual pharmaceutical development steps are displayed. During the first 

stage of development a characterization of the API physical, chemical and 

biopharmaceutical properties take place. However, the development must also be guided 

by pre-set objectives such as the type of dosage form that will be manufactured and 

special conditions that the route of administration can have 29. In this way, in the 



8 
 

formulation stage, appropriate excipients and closure system are chosen based on the 

dosage form and API stability and biopharmaceutical performance. In this step, the 

selection of manufacturing process will be established based on API physicochemical 

properties and dosage forms requirements. To exemplify the importance of this, the 

product profile indicates that the product is an injectable solution that is administrated 

through a parenteral route. This product profile points out that the solution requires to be 

sterile, so the ideal is to work in aseptic conditions during the manufacturing process. In 

addition, upon being a liquid, the type of unit operations will be limited to those typical for 

the preparation of this type of dosage forms 30. In addition, excipients can be added to 

improve manufacturability for a certain process. In this manner is possible to notice the 

interdependency among process, excipient, and dosage form, revolving around API. 

 

Figure 1-1. Product formulation and manufacturing process development scheme. Taken and adapted from 
Osakwe et al work 31. 

As a result of the pre-formulation and formulation stages, there is a set of excipients and 

a series of unit operations that can be employed in the fabrication of the dosage form. It 

is then an analysis is done where the available option of manufacturing, equipment and 

conditions are taken into consideration to design the process and select unit operations 

27. Subsequently, it is necessary to define process conditions and equipment settings. As 

can be seen in Table 1-2, every unit operation has several parameters and considerations 

that can be affected by additives or process conditions. Given the number of variables 

that can affect process performance and therefore product quality, it is necessary to 

define what variables or parameters are critical and a range of working values. This task 

Preformulation 
Studies

ωAPI Physical and chemical 
properties studies and 
development of analytical 
methods

Formulation

ωCompatibity and excipients 
selection

Manufacturing 
Development

ωStudies for process 
undertanding and 
determination of critical 
parameters and operations

Technology transfer 
and commercialization

ωTransfer from development 
to manufacturing, scale-up 
and process validation



9 
 

can be accomplished by employing tools such as risk analysis and design of experiments 

(DoE) 27,29. Thus, it is possible to have a complete understanding of process and unit 

operations to establish the best working conditions.  

Table 1-2. Typical unit operations for solid dosage forms manufacturing. Taken and adapted from Mittal Bôs 
work 32 

Unit operation Explanation Consideration 

Granulation Increase particle size to 
improve powder flow 
properties 

Technique (dry or wet 
granulation), additives, 
particle size distribution, 
flowability, physical 
properties of material to 
granulate 

Drying Remove moisture from a wet 
powder 

Temperature profile, 
batch size, initial water 
contents, air flow 

Particle size reduction Reduce particle size Method (attrition, shear, 
impact), type of 
material, moisture  

Blending Mix components, direct 
impact on drug product 
uniformity 

Blender type (agitator, 
tumbling or high-shear 
mixers), mixing time, 
speed, addition order 

Encapsulation Powder mixture is filled into a 
hard empty capsule 

Filling volume, 
flowability, capsule size 

Compression Compaction of powder 
mixture to convert to tablet 

Compression force, 
press type and speed, 
formulation, die 
geometry, die filling, 
moisture, flowability 

Coating Addition of thin film onto 
granules or tablet surface. 

Product flowability, 
moisture, additives, 
product geometry and 
shape, equipment 
settings 

 

Process understanding leads to the determination of optimal parameters as well as the 

establishment of process robustness. In addition, with the identification of critical 

parameters, control strategies can be implemented, prioritizing critical points 27. Once the 

robustness and reproducibility of the process have been verified, scale-up proceed. At 

this stage, changes in equipment and process equipment due to scale change should be 

incorporated into risk analysis, additional adjustments may be required to standardize the 

process 33. Once the process has been defined, it can be validated. 



10 
 

1.3 AI/ML Role in Pharmaceutical Manufacturing 

Driven by increasing dataset sizes and enhanced computing capabilities, AI has emerged 

as a technology with a great potential to improve all the pharmaceutical supply chain 

leading to more self-managing and autonomous processes 34. These benefits have been 

recognised by regulatory bodies such as Food Drug Administration (FDA) and European 

Medicines Agency (EMEA), which have promoted the adoption and development of 

frameworks for a good and responsible use of AI 35,36. Although applications have been 

reported in the entire lifecycle of pharmaceutical products, there has been a special 

emphasis in early stages of research. An analysis of FDA submissions between 2016 

and 2021 revealed that there is an increasing use of AI tools, showing a significant growth 

in 2021 with more than 100 submissions using this technology37.  It has also been 

highlighted that AI has been mostly utilised in clinical development and drug discovery 37 

. This is aligned with previous statements remarking that pharmaceutical industry 

innovation is more present in R&D.  

Although AI includes a wide range of fields, machine learning (ML) is perhaps that most 

popular area. ML gathers algorithms and models that can learn to identify patterns on 

data that allow them to perform a task 38.  The set of data used during learning are usually 

known as training set.  Depending on the type of task, these algorithms can be classified 

into supervised and unsupervised learning 38. In supervised learning, a ML method aims 

to learn to map a set of input features ὀ onto a response or outcome space ὁ 38. In turn, 

depending on the nature of the response ὁ, a task can also be catalogued as regression 

(continuous) or classification (discrete). These groups may well correspond the most 

numerous usages of AI in the pharmaceutical context.  It can be found how supervised 

approaches support the prediction toxicity, dose, and other relevant properties in clinical 

development 37,39,40. In pharmaceutical manufacturing, models such as neural networks 

have been integrated into PAT to monitor critical attributes like particle size distribution 

or composition in both primary and secondary manufacturing 41. Aligned with the design 

and development of processes, in the primary domain, supervised approaches have also 

been used to predict synthesis routes and experimental procedures 42,43.  Route 

prediction have been achieved using transformers models, that are neural architectures 

used in novel large language models such as generative pre-trained transformers (GPT) 

43. 



11 
 

On the other hand, the applications of unsupervised algorithms seem to be more limited 

in manufacturing process design. Contrary to its supervised counterpart, these models 

learn from unlabelled data whereby the final output is not clearly defined 38. Therefore, 

they aim to extract underlying or latent information, thereby usually being associated with 

knowledge discovery. There exists a wide diversity of tasks for which unsupervised 

learning is relevant, and some include clustering analysis, dimensionality reduction, and 

density estimation 38. Particularly, it is common to find multidimensional data in the 

context of monitoring and control which may be complex to analyse directly. In this 

scenario, techniques oriented to represent information in a few variables are useful for 

further analysis. Due to this, methods like principal components (PCA) or autoencoders 

(AE) have been employed to obtain representations that can be combined with other 

approaches to perform a task of interest. Examples include again PAT, where PCA is a 

popular technique employed for visualisation as well as regression by combination with 

supervised approaches using as inputs spectral data 44. In the same way, Cacciarelli et 

al proposed the use of AE for simultaneous monitoring of multiple process parameters 

and fault detection 45.  

Another interesting application of unsupervised learning is feature extraction. Forbes et 

al applied non-negative matrix factorisation (NMF) to create meaningful features from 

mass spectra that enables the characterisation of polymorphs and different components 

in mixed particles samples 46. At this point, most applications focus on the interpretation 

of data and characterization of materials or processes that, although crucial for 

manufacturing development, they do not directly provide information on the process itself. 

Namely, most information must be interpreted by developers to define operations and 

conditions of the process, contrary to some supervised examples mentioned above 

whose output points out more explicitly this information. In that direction, generative 

models, another type of unsupervised approaches capable of extracting features and 

estimating probability distributions, have become a promising tool.  

Generative models (GM) encompass a set of algorithms that aim to estimate the joint 

probability distribution for a set of variables representing a group of examples 20,47. This 

approach, contrary to traditional classification or discriminative models, such as support 

vector machines or random forest, are limited to learn a decision boundary for a group of 

classes. On the other hand, GM requires learning more complex correlations among the 



12 
 

variables under consideration 47. This distinction has implications for training complexity, 

as generative modelling can require more time to attain satisfactory results 47. Most 

applications of GM are centred on synthesis of data samples that are difficult to 

differentiate from real samples 20,47ï50. Several algorithms can be used for generative 

tasks, such as gaussian mixture models (GMM) or Latent Dirichlet Allocation (LDA) 47. 

The latter has interesting applications in text analytics which will be explored in the next 

chapters. Nonetheless, one of the most remarkable group of GMs currently correspond 

to Deep Generative Models (DGMs). DGMs have gained significant relevance in recent 

years across many areas, particularly in drug discovery considering the pharmaceutical 

context. Earlier in this chapter, the potential applications in manufacturing were briefly 

mentioned. Thus, in the following section, more details about these models, their 

applications, and variants will be explored.  

1.4 Overview on Deep Generative Models 

DGMs estimate the underlying probability distribution of a training data making use of a 

variety of neural network architectures 20,47. Thus, during the training process, these 

models learn a generator function able to synthesise examples with similar characteristics 

to the original data. Compared to other generative modelling approaches, the use of 

neural networks provides a greater flexibility that allows to handle different kinds of data 

structures. In other models, when data does not correspond to numeric representations, 

preprocessing steps are needed to make data ñusableò. On the other hand, neural 

networks can learn these representations and, simultaneously, tailor them to execute a 

task, without needing the same level of processing. This versatility has led DGMs to be 

deployed in a wide variety of fields including the generation of images, text, molecules, 

among many others 51. Similarly, the versatility and flexibility of these models have led to 

the development of multiple variants.  

To compare different approaches, Goodfellow at al proposed a taxonomy considering 

models whose method of parameter estimation is closely related to maximum likelihood 

52. In this method, a model, represented as ὴ ὼȠ , assigns a probability to a sample 

ὼ that depends on model parameters . In this manner, the optimisation process aims to 

find a set of values for  that maximises ÌÏÇὴ ὼȠ , which corresponds to the 

likelihood of the model under the training data ὼ. The models can define ὴ  in an 



13 
 

explicit or implicit manner, depending on the tractability of the distribution. When the data 

distribution has a high complexity, so that may not be computed, is considered as 

intractable. In this scenario, for parameter estimation, the density function ὴ  can be 

assumed implicit, as in generative adversarial networks (GAN), or approximated to a 

simpler distribution, as in the case of variational autoencoders (VAE). Finally, with 

tractable cases, autoregressive models and normalising flows can be applied. However, 

the tractability of data imposes strong constraints on the models, which limits the type of 

data that can be used and demands a higher computational capability to be trained. Thus, 

it is possible to notice that the complexity of data distribution influences the selection of 

the model and affect its performance.   

Among all the different variants, GAN and VAE constitute perhaps the most 

representative models. The availability of implementations and their ability to model data, 

without major constraints, compared to approaches with an explicit density, might explain 

their widespread diffusion. As has been reiterated, a considerable number of models for 

drug discovery can be found, in particular, VAE and GAN-based 22,53,54. Typically, in these 

models, molecules are represented as SMILES (simplified molecular-input line-entry 

system) or molecular graphs. Then, models are trained to generate drug candidates in 

the form of these representations. Upon learning molecules distribution, it is possible to 

generate and explore a large diversity of chemical structures. It is also worth noting that 

applications using autoregressive models, normalising flows, and energy-based models 

such as denoising diffusion have also been reported, increasing the range of options in 

this area 55ï57.  An interesting characteristic of this application is the need of targeting the 

search of candidates based on a particular group with desirable properties such as 

partition coefficient (logP) or solubility. In this scenario, DGMs are particularly useful as 

the architectures allows the incorporation of information on properties to condition the 

outputs and guide the search.  

All these benefits have also been extended to other domains. In material science, there 

are usages for the discovery of new materials not only in terms of compositions and 

chemical structures, but it is also used to find out new polymorphs. In this regard, Noh et 

al developed a VAE to generate synthesisable compositions and polymorphs of 

vanadium oxide 58. Another interesting application was proposed by Kim et al where a 

conditional GAN was used to predict possible crystal structures for a given molecular 



14 
 

composition in ternary systems of Mg ï Mn ï O 59. In chemical synthesis design, DGMs, 

again using VAEs or GANs, have been recently proposed as methods to search novel 

synthetic pathways 60,61. Thus far, it is possible to see how generative models has been 

employed in applications of pharmaceutical interest, where there is a special emphasis 

on novel materials discovery. More recently, DGMs have been trained as a tool to explore 

alternative chemical reactions, which can aid primary manufacturing design 62. 

Nonetheless, it is worth mentioning that, to the best of our knowledge, there are no 

additional reports of other applications for manufacturing design, whereby this is an area 

whose potential is yet to be researched more deeply. Similarly, different types of 

architectures have been briefly mentioned; however, VAE and GAN may well be regarded 

as the most popular approaches, possibly explained by the advantages these offer 

compared to other models. The advantages and disadvantages of several approaches 

are summarised in Table 1-3. Finally, the different variants will be discussed in the 

methods section. 

Table 1-3. Types of DGMs: advantages and disadvantages 47,63. 

Model Density  Advantages Disadvantages 

Generative 
Adversarial 
Networks (GAN) 

Implicit High quality sample 
generated 

Difficult to train. 
Low diversity in 
generated samples 
Limitation for 
sequential and 
discrete data. 
More sensitive to 
hyperparameters 
selection. 
Slow convergence. 

Variational 
Autoencoders 
(VAE) 

Approximated Fast and easy to 
train. 
Explicit and more 
controllable latent 
space. 

Generated samples 
quality not good. In 
image generation, 
samples tend to be 
blurry. 
Prone to collapse 
when training on 
sequential data. 

Energy-based 
models  

Architecture-
dependent (implicit 
or explicit) 

High quality 
samples and 
controllable latent 
space.  

Dimensionality 
constraints. 
Require long 
training and 
sampling times and 
may be more 



15 
 

unstable during 
training. 
Difficulties for 
sampling 
 
 

Autoregressive 
model 

Explicit Powerful density 
estimator able to 
model complex 
distribution 

Restricted to 
certain types of 
data.  
Slow training and 
generation 
process. 

Flow-based models Architecture-
dependent (explicit 
but approximation 
can also be 
applied) 

Powerful density 
estimator able to 
model complex 
distribution. 
 

Dimensionality 
constraints. 
Performance tends 
to degrade with 
high dimensional 
data. 
Limitation for 
sequential and 
discrete data. 
High computational 
cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2. Aims 

  



17 
 

2.1 Aim 

The main purpose of this work is to develop deep generative models (DGM) for the design 

of pharmaceutical manufacturing processes with special focus on variational 

autoencoders (VAE) and generative adversarial networks (GAN) since these represent 

the approaches more widely employed. Specifically, the research aims to train models 

capable of generating multiple plausible sequences of unit operations conditioned on 

given final product molecular descriptors for both primary and secondary processing. By 

leveraging the potential benefits of DGM, this study seeks to enable the exploration of 

diverse manufacturing routes, facilitating more targeted experimentation and reducing 

the time and resources required for research and development (R&D) efforts in the 

pharmaceutical industry at early stages. Drawing upon insights from other domains where 

DGM have shown promising results, such as drug discovery, this research endeavours 

to demonstrate the implications for process design and innovation. 

2.2 Objectives 

In order to achieve the aforementioned aims, the following objectives will be pursued: 

a. Build a dataset suitable for training deep generative models. The dataset 

comprises information on chemical identity of the final product, unit operations, 

dosage form (if applicable) for API synthesis and/or purification route (primary 

manufacturing) and drug product fabrication (secondary manufacturing) obtained 

from documents such as patents. Given models based on deep learning require 

a substantial amount of data for them to be able to capture meaningful 

information, a number of observations in the order of thousands will be collected. 

The construction of the dataset implies the processing and analysis of the text to 

verify the relevancy (Chapter 4).  

 

b. Extract and structure data for model training using automated approaches such 

as natural language processing (NLP). This will involve training and evaluation of 

NLP models to effectively extract target information (Chapter 5). Subsequently, 

the extracted data will undergo cleaning and curation to prepare structured 

datasets for primary and secondary manufacturing applications. 

 



18 
 

 

c. Analyse datasets to identify trends, patterns, and biases. Employing statistical 

analysis, and visualization techniques, the objective is to establish the type of data 

available and limitations for the design of neural network architectures in both 

domains, primary (Chapter 6) and secondary (Chapter 7). By gaining insights into 

the characteristics and biases present in the datasets, adjustments to data 

preprocessing, network structures or parameters can be made to enhance model 

performance and robustness. 

 

d. Design and train a generative network architecture that can generate a set of 

plausible unit operations for the manufacturing of an API/drug product by 

assessing different frameworks based on VAE and GAN models (Chapter 6 and 

7). The assessment will encompass the effect of various data representations, 

hyperparameters, and network arrangements on model performance. Given the 

domain-dependent nature of generative modelling, relevant metrics from other 

domains will be adapted for sequence generation tasks to evaluate model 

performance effectively. The experimental setup will include comparisons of 

different frameworks and configurations to identify optimal settings for generating 

sequences of unit operations. 

 

e. Validate models for process design. Given the lack of a reference or ground truth 

due to the unsupervised nature of generative approaches, validation will focus on 

qualitative assessment of the plausibility of generated sequences. This will involve 

conducting a survey with domain experts, who will evaluate the generated 

sequence of unit operations in terms of their suitability for execution in a lab 

environment. In addition, performance metrics, calculated using a test set and 

defined in the previous point, will complement the analysis. These metrics will 

provide quantitative insights into the performance of the generative models for 

each domain studied (Chapter 6 and 7). 

 

 

 



19 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3. Methods 

  



20 
 

3.1 Data Collection 

As a source of manufacturing information, Patents were employed. Patents from 1976 to 

2021 were obtained from the United States Patent and Trademark Office (USPTO) 

website. A list of relevant patents was built based on keywords searched on USPTO API 

and Patent View website, and cooperative patent classification system (CPC). Although 

the selection of patents was assisted by machine learning tools. The specific approaches 

applied to gather documentation and build a corpus are discussed in more detail in 

Chapter 4.  

Patents were chosen as a primary source for mining due to ease of access and the 

extensive literature available addressing the extraction of information from these 

documents. In this regard, existing databases used for the development of machine 

learning models contained a substantial number of records, in the order of thousands. 

This makes manual extraction impractical by which methods to automate this process 

were used.  

3.2 Natural Language Processing for Information Extraction 

Natural Language Processing (NLP) is a field related to artificial intelligence (AI) that 

comprises a set of approaches that enables computing systems to interpret natural 

language (i.e., text or speech) 72. In recent years, there has been significant progress and 

an increase in its usage promoted by developments and improvements in other areas 

such as big data, deep learning, and computing capabilities. As a result, NLP has become 

extensively employed in several tasks. Some include neural translation, text generation, 

and information extraction. For the purposes of this work, we will focus on this later usage. 

Information extraction (IE) refers to the process of gathering data of interest from 

unstructured sources and providing it with a structure to make it usable for machine 

learning applications 73. Contrary to tabulated data, unstructured data does not possess 

a pre-defined organization or format, for example, text. It has been suggested that most 

available data is characterized by some lack of structure 74. This limits its usability in 

different areas which has been a strong driver for the development of strategies to make 

full use of it. 



21 
 

There exist various approaches that allow the obtention of information from documents. 

In this regard, ruled-based and machine learning (ML) approaches have been deployed 

to extract and organize data. The former involves the utilization of linguistic rules based 

on regular patterns found in texts. These can be based on word morphology, syntaxis, or 

other features. ML, on the other hand, does not depend on preset rules. Instead, by using 

data, it identifies or learns patterns that help to a task completion. In turn, ML techniques 

can be grouped into supervised and unsupervised. Supervised approaches require 

labelled data to indicate what information to identify, and thus, learn relevant patterns. In 

NLP context, these are usually employed in text classification or named entity recognition. 

In contrast, unsupervised techniques do not make use of label data to train models. 

These can be used in areas such as topic modelling.  

For the extraction of data in this thesis, it was necessary to deploy multiple techniques.  

Text classification and topic modelling were applied to select patents and fragments of 

text containing relevant information. This is explained thoroughly in Chapter 4. Named 

entity recognition (NER) was crucial in the identification of keywords associated with 

manufacturing processes. The details of how a NER system was trained are described 

in Chapter 5. Finally, to organize the information, different sets of rules and clustering 

techniques were used as explained in Chapters 6 and 7. Thus, theoretical aspects 

considered during the application of all these approaches are discussed below. 

3.2.1 Topic modelling 

Topic modelling encompasses algorithms that aim to capture the prevalent subjects in a 

set of documents 75. Typically, these algorithms represent a collection of documents in 

terms of relevant words or keywords 75. These words are expected to be related to one 

another in a meaningful and coherent manner. Consequently, the keywords can be 

interpreted as a topic of the collection of documents. Among the most common 

algorithms, non-negative matrix factorization (NMF), latent semantic analysis (LSA) and 

Latent Dirichlet Allocation (LDA) can be found 75ï77.  

All these algorithms share the following characteristics. They are unsupervised 

approaches that output a set of topics, and each topic has a distribution of words. The 

relevancy of each word in a topic is defined by a weight assigned by the algorithm. In the 

same manner, each document can be associated with each topic by another set of 



22 
 

weights. These values enable the assessment of how related a topic is to a document by 

ranking the topics and their set of words. Thus, each document can be labelled with a 

respective topic. As documents can be naturally grouped into topics, this also can be 

considered as a text clustering methodology. 

Another important aspect to highlight is how words are input into these models. As with 

any ML algorithm, a numerical representation is necessary to carry out all the required 

calculations. For cases such as LSA, LDA, and NMF, the collection of documents can be 

transformed into a frequency matrix. This matrix has as many columns as unique words 

(V) and the number of rows is equal to the number of documents considered in the 

analysis (D). In this manner, the frequency matrix will have Ὀ ὠ dimensions. The value 

of each cell ύȟ represents the frequency of a particular word Ὥ in a document Ὦ. There 

exist two variants of this matrix: count-based and term frequency-inverse document 

frequency (TF-IDF). In the former, also known as bag-of-words (BOW), frequency is 

calculated as the count of each word in each document. TF-IDF, on the other hand, uses 

the relative frequency for the words by dividing the counts into the number of words in 

the document (ὸὪ) and multiplying by a correction factor related to the number of 

documents that contain the word (ὭὨὪ). ὭὨὪfactor reduces the effect of words with a high 

frequency that may not have a significant contribution to the meaning of a document, for 

instance, articles. Equations 1-3 illustrate the calculation of TF-IDF.  

 ὸὪȟ
ὧέόὲὸί έὪ ύέὶὨ ὭὭὲ ὨέὧόάὩὲὸ Ὦ

ὲόάὦὩὶ έὪ ύέὶὨί έὪ ὸὬὩ ὨέὧόάὩὲὸ Ὦ
 ρ 

ὭὨὪ ρ ÌÏÇ
ρ ὲόάὦὩὶ έὪ ὨέὧόάὩὲὸί

ρ ὲόάὦὩὶ έὪ ὨέὧόάὩὲὸί ὧέὲὸὥὭὲὭὲὫ ὸὬὩ ύέὶὨ Ὥ
 ς 

ύȟ ὸὪȟẗὭὨὪ σ  

The main purpose of using topic modelling in this work was to cluster documents and 

extract their keywords to identify whether the content was relevant for further analysis. 

Throughout this thesis, NMF and LDA were utilized in different scenarios. Next, these two 

techniques are described.  

3.2.1.1 Non-negative matrix factorization 

NMF is a dimensionality reduction method that uses as inputs non-negative matrices 78. 

In NLP context, NMF has been used to extract meaningful topics from a collection of 



23 
 

documents. In the same manner, this allows to group documents based on topics and, 

for a given topic, it is possible to rank how related a document is to a determined topic 

using output weights. As an input, TF-IDF matrix is frequently used. NMF decomposes 

the input matrix ╧ ᶰᴙ  into two positive matrices ╦ᶰᴙ  and ἒᶰᴙ , as 

shown in Equation 4, respectively, where K corresponds to the number of topics.  

╧ ╦╗ τ 

As a result of the decomposition, ╧  can be reconstructed by multiplying ╦ and ╗. 

Consequently, the weights of both, ╦ and ╗, represent the contributions of the words to 

the topics and the topics to the documents, respectively. Thus, a document Ὦ is usually 

assigned with the topic k whose weight is the highest based on their contribution from ╗. 

For topic interpretation, the top 10 words with the highest weights in each topic derived 

from ╦ were used.  

Regarding the choice of K, this is a hyperparameter that must be specified before training 

the model. It has been suggested that NMF performs best with values lower than 20 77. 

It has also been recommended that manual revision is important to ensure the quality of 

the topics since there seems not to be a consensus about metrics for automatic 

evaluation of topic quality 77. This thesis uses NMF as a text clustering approach whereby 

the selection of the optimal number of clusters is based on typical clustering metrics, such 

as Davies-Bouldin score 79. However, a revision of the keywords was done to ensure 

coherence and interpret each topic. The settings used to train this model are specified in 

Chapter 4. 

3.2.1.2 Latent Dirichlet Allocation 

LDA is a generative probabilistic model that assumes a document is a mixture of topics 

76,80. Each topic, in turn, follows a characteristic distribution of words. In this approach, 

documents are represented using a Bag-of-words (BOW) representation. As a result of 

these assumptions, a document can be generated by a probabilistic process 75,76. Similar 

to NMF, LDA requires the specification of the number of topics (K). Nonetheless, it has 

two additional hyperparameters, ♪ and ♫. Taking into consideration these assumptions 

and hyperparameters, a document can be generated through a generative process as 

described in Algorithm 3-1. When the LDA model is fitted, it yields two main outputs: the 

probability distribution of documents over topics and the distribution of topics over words. 



24 
 

Algorithm 3-1. Generative Process LDA. Taken and adapted from Ng. A. et al80 

For each topic Ὧᶰρȟςȟȣȟὑȡ 

1. Sample the distribution of words for each topic ▓ꜚͯ ὈὭὶ♫ȟ  with ꜚ 
corresponding to the distribution of each word in the kth topic. 

 

For each document Ὦ in a collection of Ὀ documents: 

1. Draw a sample with the mixture topics for a document Ὦ : Ᵽ▒ͯ ╓░►♪ . Ᵽ▒ 

corresponds to the distribution of topics in the document Ὦ. 

2. Choose the number of words for ▒: ὲ ὖͯέὭίίέὲⱩ 

3. For each word Ὥɴ ρȟςȟȣȟὲ the document Ὦ,  

a. Choose a topic Ὧ  from the mixture of topics for the document Ὦ 

Ὧͯ ὓόὰὸὭὲέάὭὥὰⱣ▒ 

b. Choose a word Ὥ  from a mixture of words for the document Ὦ . word 

ὭͯὓόὰὸὭὲέάὭὥὰ▓ꜚ    

Where ╓░►♬ is a Dirichlet distribution that has the following probability function: 

ὴⱣȿ♬
ɜɫ‎

ɩɜ‎
— ẗẗẗ—   

With ♬  being a vector with K dimensions, where each element is positive. ɜẗ 

corresponds to the Gamma function. For the generative process, there are two 

independent Dirichlet distributions involved, one parameterised with ♪  which defines 

the distribution of topics per document by which has K components. On other hand, 

the Dirichlet distribution with parameter ♫ has as many components as words in the 

collection of documents and controls the contribution of words over topics.  

 

 

Since its publication in 2001, LDA has been widely used in topic modelling applications 

and numerous variants have been proposed 75. It has also been combined with other 

algorithms such as K-means 81, as was done in this thesis. The topic probability 

distribution of each document served as a numeric representation for clustering 

documents 81. Other important considerations include the selection of hyperparameters 

and text preprocessing. It has been advised to use LDA where more than 20 topics are 

expected for the collection 77. In our case, default values for ‌ and ‍ from gensim library 



25 
 

were used. The optimization of hyperparameters and text preprocessing is discussed in 

detail in Chapter 5. 

3.2.2 Text classification 

Text classification consists of the assignment of a label to a block of text through 

supervised techniques. This task has been applied widely in different domains. For 

instance, it has been used to automatically detect misuse/abuse of medication 82. In the 

biomedical domain, there are proposals to apply NLP techniques to associate clinical 

records with classes of diseases 83. Another example includes the automatic classification 

of patents into CPC classes 84,85.  The input can be found in different forms, going from 

sentences to full documents. 

Traditionally, these algorithms employ a combination of techniques to transform words 

into numerical representations, which are then used with traditional ML techniques. The 

process to develop a model for this task involves the following steps: text preprocessing, 

vectorization, and training a ML model 86. Text preprocessing usually involves 

tokenization (splitting text into tokens), removal of irrelevant tokens, and vocabulary 

normalisation. In this context, the term ñtokensò refers to individual words and punctuation 

marks. Different approaches for processing text applied in this work are described more 

deeply in Chapters 4 and 5. It is important to note that the extent of preprocessing varies 

depending on the task. For instance, there are some scenarios where words such as 

ñnotò or ñneitherò may be considered irrelevant, while in others, such as sentiment 

analysis, these words are crucial for the task. Following preprocessing, the resulting 

tokens are vectorised, i.e., they are converted to numerical representations suitable for 

ML training. 

Various approaches have emerged to properly represent words for ML. Historically, 

frequency-based techniques were widely employed. In this category, it is worth 

mentioning Bag-of-words (BOW) and TF-IDF matrices, which were mentioned in topic 

modelling section 86,87. More recently, in 2013, the development of word embeddings was 

a breakthrough for NLP 88. By means of neural networks, continuous representations that 

capture semantic similarity could be created. Over time, advancements in neural network 

architectures and learning methods have led to the development of new representations, 

resulting in the creation of word embeddings with performance improvements. These 



26 
 

advancements have not only benefited text classification but also favoured NLP tasks in 

general 87. Different word embeddings used in this work as well as drawbacks and 

advantages are reviewed in Chapter 4. 

Once numerical representations are generated, conventional ML algorithms can be 

applied. Classification techniques such as logistic regression, support vector machines, 

and Naïve Bayes are commonly trained for text classification 86. Nonetheless, deep 

learning (DL) has emerged as the state-of-the-art approach for this task due to its 

tendency to outperform more traditional models 89. More complex DL models involving 

convolution neural networks (CNN), recurrent neural networks (RNN) or Transformers 

networks are typically employed  89. Further details about DL models will be explored in 

posterior sections.  

However, ML models are often characterised by their need for large datasets to 

effectively learn complex patterns and attain acceptable performances. Considering the 

supervised nature of text classification, this implies that a significant number of labelled 

examples are required for model development. To address this limitation, there exist label 

databases for predefined purposes. For instance, in patent cases, websites, such as 

PatentView, offer datasets with records of CPC classes for documents from 1976 up to 

current date. When there is no available dataset for the specific task, it is necessary to 

generate the data. This can be achieved by manual labelling or using semi-supervised 

approaches where techniques such as topic modelling can be used to generate labelled 

data to subsequently train a classification model. In the context of this thesis, text 

classification was used for patent classification. A significant portion of the collected 

documents did not report CPC class, whereby the relevance of many could not be 

verified. In this manner, a DL model was trained to classify unlabelled patents. This 

application is covered in Chapter 4. 

3.2.3 Named entity recognition (NER) 

Previously, several NLP tasks, such as text classification and topic modelling, have been 

explored. These tools have helped distinguish irrelevant from relevant data when 

extracting information on manufacturing. In the same manner, these methodologies have 

allowed, to some extent, the summarisation of the data by identifying keywords which 

enable a more in-depth analysis of the initial collection of documents. However, up to this 



27 
 

point, no specific information has been extracted and organised to fulfil the projectôs 

primary objective. To tackle this particular issue, named entity recognition (NER) has 

played a crucial role. 

NER is an NLP task that classifies individual words or tokens into predefined categories. 

These categories are determined based on specific information targeted for extraction, 

and this set of terms is known as named entities. An example of a NER output can be 

observed in Figure 3-1. Concerning the availability of models, generic NER models have 

been designed to identify places, and names, among other types of information 90. 

Additionally, a wide variety of domain-specific NER systems exists, focused on extracting 

data on chemical substances, diseases, symptoms, etc 91,92. In order to develop these 

models, multiple methods can be employed. 

 

Figure 3-1 Example NER output for a secondary manufacturing paragraph. 

As in several NLP tasks, rule-based and ML techniques can be applied in the 

identification of entities 90. However, the application of one approach does not exclude 

the other. ML models combined with rules for refinement have also been reported 90. 

Nonetheless, for NER, DL has also provided outstanding results compared to other 

approaches in several fields 90,93.  

When employing DL, currently, the most widely adopted architectures centred around 

bidirectional long short-term memory (BiLSTM) networks and transformers 90. Both are 

sequence-to-sequence models designed to capture the dependency between words. For 

a sequence of words, these networks are interconnected in a manner that allows 

information on preceding or subsequent words or steps to be processed at every time 

step. In this manner, these networks can learn word representations that incorporate 

meaning and context, to a certain extent.  



28 
 

BiLSTM networks have been used for a longer time compared to transformers. Typically, 

BiLSTMs are combined with a conditional random field (CRF) model that acts as a 

decoder to convert word representation into class 90. However, more recently transformer 

architecture has emerged as the most representative model for this task in several 

domains. Apart from offering a higher performance when pretrained in large datasets, 

transformers are generally faster as they allow parallelisation 90. Nonetheless, the 

selection of a model tends to be case-specific. It has been shown that BiLSTM can still 

outperform pretrained transformers such as SciBERT or BioBERT in domain-specific 

NER such as material science 93.  

For this thesis, a DL model for NER was trained on pharmaceutical manufacturing data. 

The primary requirement was labelled tokens containing the relevant information. This 

study aimed to collect data on operations, materials, and conditions for both primary and 

secondary manufacturing. While there are datasets and models trained on primary 

processing 94,95, to the best of our knowledge, there was no available dataset with labelled 

data on both domains was not available, nor was there an existing NER system for 

extracting the specific terms required. In this manner, a dataset with labelled data was 

first created to proceed with model training. The process of elaboration of the dataset and 

the NER system is detailed in Chapter 5. 

3.2.4 Dataset Cleaning and Curation 

With the NER model, relevant keywords are identified and categorised. The categories 

enable to organise terms into groups, which in turn help identify the type of information 

to process. Consequently, materials, conditions, operations, and other types of entities 

can be separated and analysed. Concerning operations, assuming they occur in the order 

mentioned in a section allows depicting a procedure as a sequence of actions. In this 

manner, inputs (materials) and outputs (sequences) are available to train a model; 

however, some aspects must be addressed to prepare the dataset. Firstly, there are 

multiple ways to denominate the same term, whereby entities must be normalised to 

reduce noise and facilitate the identification of relevant subsequences. Secondly, ideally, 

conditions and materials should be associated with an operation. This aids in setting rules 

to standardise actions with ambiguous terms and provides a more comprehensive view 

of the manufacturing process.  



29 
 

To achieve this, a hybrid approach combining ML and ruled-based tools was applied. 

Initially, the association between materials and conditions with the respective operations 

was established through dependency trees to set rules. A dependency tree represents 

the semantic relationships between pairs of words 96.  These relationships are organised 

in a hierarchical structure, comprising a head and a dependent 96. In turn, each type of 

relation can be defined based on grammatical functions 96. This is illustrated in Figure 

3-2. In the example provided, there are 2 actions: ñaddò and ñstirò. In addition, there is a 

chemical substance (ñHClò) and a condition (ñ30 minutesò). The dependencies show that 

ñHClò can be associated directly with ñaddò, while ñstirò can be related to ñ30 minutesò by 

descending to a lower level in the tree. Thus, this example highlights the subordination 

between materials/conditions and operations. Using this concept, it is possible to 

establish logical instructions to find out the association among entities. To automate this 

process, along with the developed NER model, Spacy library was used to build the 

dependency trees for each sentence 97. 

 

Figure 3-2 Example dependency tree for a sentence. nsubjpass: passive nominal subject; auxpass: auxiliar 
passive; cc: coordinating conjunction; conj: conjunction; prep: preposition; pobj: object of a preposition 

From the extracted data, two distinct datasets were created for primary and secondary 

manufacturing. The normalisation of terminology was conducted separately for materials, 

conditions, and operations in each dataset. For materials, dictionaries from several 

sources were utilised such as Pubchem, Drugbank, ChEMBL, and Pipeline Pilot software 

98ï100.  The list of obtained materials was cross-referenced with these dictionaries and 

their corresponding InChI (international chemical identifier) was extracted 101. In cases 

where the retrieval of InChI was not feasible, alternative identifiers were used for 

normalisation such as UNII (unique ingredient identifier). UNII corresponds to an 

alphanumeric code used to identify a substance considering its properties, based on 

ISO11238 guidelines 102. This approach was particularly valuable in secondary 



30 
 

processing for substances, such as excipients, that may not be pure but rather a mixture 

of various materials. To facilitate this task, removing some subtokens from material terms 

was necessary as, in some cases, these hindered the search. On the other hand, 

terminology related to generic entities of intermediary subproducts encompassing terms 

such as ñsolutionò, ñsuspensionò, and ñmixtureò was standardised differently.  

For intermediates, operations, and conditions, words were grouped based on semantic 

similarity. To measure this, word embeddings trained for NER were used to represent 

terms. Principal components analysis (PCA) was applied to representations and the 

components explaining at least 80% variance were used for clustering analysis. K-means 

models were then fitted to create clusters. To determine the most appropriate number of 

groups, Davie-Bouldin score was determined. Thus, the number of groups with the lowest 

score value was chosen for each type of entity. Then, the top 10 closest and farthest 

words to the centroid were revised to assign a label to each group. For instance, if a 

cluster contained terms like ñ30 ÁCò, ñ25 deg.Cò, and ñ80 degrees Cò, the cluster was 

labelled as temperature. In this manner, it was possible to identify types of conditions, 

operations, and materials and discard terms that might not be relevant. In the case of 

intermediate materials, the assigned labels served as the standardised form for the terms 

within the respective clusters.  

In the case of conditions, additional steps were undertaken to standardise units and 

magnitudes, especially for conditions related to temperature, pressure, repetitions, pH, 

and atmosphere. These were selected since they were the most frequently reported and 

were important later for model development. Moving on to operations, they were manually 

revised thoroughly to define a standard way of expressing manufacturing actions. The 

definition of action categories was adapted from the works of Vaucher et al and Wang et 

al 95,103. Among the clusters, it was found categories that were ambiguous. For instance, 

the term ñincreaseò was found very often but, in isolation, it did not provide sufficient 

information for a better understanding of a process. Consequently, conditions and 

materials associated with these terms were also assessed to reassign these entities into 

a more specific class. The list of the standardised terminology for operations can be found 

in Appendix A. 

Other types of process-related entities such as yield, amount, and concentration were 

also revised. They were only checked for consistency in units and magnitude. However, 



31 
 

they were not considered for modelling. Finally, a random sample of 100 procedures from 

the final version of the datasets was drawn. Each sample was compared to the source to 

validate the extraction accuracy of materials, conditions, and operations. Additional 

considerations were taken into account depending on the dataset. Details about the 

cleaning and curation process for the dataset are provided in Chapters 6 and 7.  

 

3.3 Sequence Generation with Deep Learning 

DL is a subfield of machine learning that belongs to a family of methods known as 

representation learning (RL) 64. DL enables the generation of meaningful features for 

either supervised or unsupervised learning. This is achieved by performing a series of 

nonlinear transformations on data. With each transformation, different features are 

extracted, capturing different levels of detail. This is illustrated in Figure 3-3. As can be 

seen, in the initial transformations (low-level), the model learns generic information 

related to colours, eyes, and so forth. As the transformations progress deeper (high-

level), the extracted features reveal more complex details, such as shapes and figures. 

These capabilities make DL a powerful tool for various applications in tasks related to 

classification, regression, or unsupervised learning. DL excels in fields such as computer 

vision and NLP, where it finds applications in image detection, captioning, text generation, 

among many others.  

 

Figure 3-3 Visualisation of representations generated by a convolutional neural network for different layers 
trained on images. Taken from Zeiler et al work 104 



32 
 

A MLP graphical representation is shown in Figure 3-4. This can be expressed as a series 

of nested functions, as indicated in Equation 5 105. ὀ is the input data,  Ᵽ ἥ ȟἥ ) 

represents the parameters, „ is a non-linear function also known as activation, and 

ὪὀȠⱣ is the output. During training, the parameters Ᵽ are learnt by minimizing a loss 

function ὰ  through backpropagation, often using optimisation algorithms such as gradient 

descent 105. The MLP in the example consists of two hidden layers, indicating the network 

depth. The layers have 4 and 2 units, respectively. Within each unit, input data is 

multiplied by a set of weights, the products are summed. This sum adjusted with a bias 

term before undergoing activation. Thus, each layer produces as many outputs as units, 

which feed into the next layer.  

ὪὀȠⱣ „ ἥ „ ἥ ὀ υ 

 

 

Figure 3-4 Multilayer Perceptron (MLP).  

It is important to highlight that MLP, like any neural network, can be configured in various 

ways. The number of hidden layers, the number of units per layer, the type of unit, the 

activation function, and the connections between layers, among others are factors that 

affect the performance of a model for a particular task and define its architecture. In 

addition, several other variables can impact the model during training. Some to remark 

include the use of regularisation like normalisation or dropout, as well as the chosen 

training strategy. The training strategy involves the selection of an optimisation technique 

and critical parameters such as learning rate. Regarding the optimisers, stochastic 



33 
 

gradient descent (SGD) and adaptative momentum estimation (Adam) are very popular 

in deep learning community 106. It is worth noting that many of these factors cannot be 

learnt and must be chosen carefully to achieve a good performance. This set of factors 

are known as hyperparameters.  

Resuming the concept of architecture, neural network flexibility in terms of how structural 

hyperparameters can be arranged has led to the design of different models suitable for 

various specific kinds of data. For instance, convolutional neural networks (CNN) have 

had a big impact on image-related analysis. However, for this thesis, there will be a 

special emphasis on sequential data, specifically, sequences of discrete variables.  

This type of data refers to sets of variables with a temporal relationship. More exactly, 

there is an ordinal arrangement among them. Examples of such data can be found in 

several domains. in NLP, language can be seen as a sequence of words organised in an 

specific order which gives cohesion and coherence. In the field of chemistry, DNA and 

proteins can be expressed as an ordered chain of nitrogenous bases and amino acids, 

respectively. Manufacturing processes also fall into this category, comprising a sequence 

of unit operations where each step depends on the outcome of the previous one. This 

class of dependency has allowed the usage of specific architectures designed to tackle 

temporal relationships. Particularly, architectures such as recurrent neural networks 

(RNNs) and transformers have shown remarkable results. These will be explored in the 

next sections. 

Finally, the modelling of sequential data has led to the definition of different architectural 

designs tailored to different input/output scenarios as depicted in Figure 3-5. In the first 

class, exemplified by a typical MLP, a single input produces a single output. The 

dimensionality of this output varies depending on model design and task requirements. 

Then, the subsequent types address various applications with sequential data. In the 

one-to-many model, a single input generates a sequence, a common scenario in image 

captioning. Here, the input image, represented by a vector, is transformed into a 

sequence of words. Conversely, the many-to-one reverses this process with a sequence 

producing a single output, typically applied in text classification. Lastly, many-to-many 

architectures, also known as sequence-to-sequence models, generate new sequences 

based on another one. This approach is commonly seen in language translation or NER. 

This work places particular emphasis on the generation of sequences. Thus, in 



34 
 

subsequent chapters, one-to-many and many-to-many models will be explored for 

manufacturing procedures generation.  

 

 

Figure 3-5 Architecture classes based on input-output data 107.  

3.3.1 Recurrent Neural Networks 

The architecture of a RNN is displayed in Figure 3-6.  At each time step ὸ, the input ὀ is 

fed into a cell. This cell comprises a certain number of units and receives inputs ὀ and 

information from the previous step ὸ ρ.  This information is operated to generate a 

hidden state for the timestep ὸ (ἰ).  The hidden state is then passed through the next 

cell, generating the hidden state for the succeeding step, and can also be processed for 

an output layer ἷ to produce features for ὀ that, to a certain extent, consider information 

from previous time steps. In this manner, the generated features take into account the 

context of the inputs. This process is repeated until Ὕ number of steps have been 

completed. 

 

Figure 3-6 Architecture recurrent neural network. 



35 
 

A key factor influencing the efficiency of an RNN in processing data is the type of cell. 

Figure 3-7illustrates common cell architectures used in DL. The mathematical expression 

for a Simple RNN, or Elman network, can be seen in Equation 6. This architecture, 

proposed by Elman in 1990, marked a significant milestone in RNN development 108. 

However, the practical applications of this cell are limited due to its susceptibility to 

vanishing and exploding gradient problems. Vanishing gradient happens when gradients 

have small values during training. As a results, these values become much smaller during 

back-propagation, which hinders neural networks from learning effectively. On the other 

hand, gradient explosion exhibits the opposite behaviour; gradients with large values tend 

to grow rapidly. This instability in gradients can prevent model from converging.   

ἰ Ὢὀȟἰ  φ 

ÔÁÎÈἣἰ ἥ ὀ Ἢ  

 

Figure 3-7 Diagram of the most common types of cells used in RNN. From left to right, Simple RNN, Long-
short term memory (LSTM), and gated recurrent unit (GRU) 107. 

To mitigate Elman network weaknesses, long short-term memory (LSTM) and gated 

recurrent unit (GRU) cells were proposed. LSTM was designed in 1997 with various 

improvements 109. The mathematical formulation is described in Equations 7-12. In 

summary, LSTM consists of 3 gates: an input gate ἱ, a forget-gate Ἦ, and an output gate 

ἷ. These three components receive inputs including the hidden state from the previous 

cell and the current input, computed independently. Each gate is activated with a sigmoid 

function to scale values between 0 and 1. These calculate the memory state Ἣ, which 

determines how much information from the previous and new memory states is retained 

or forgotten for use in the next cell. Finally, the new hidden state ἰ is calculated, serving 

as output along with Ἣ. While both ἰ and Ἣ are propagated towards the next steps, ἰ 

values can also be used to feed further layers. As a remark, ṩ operator represents 

element-wise multiplication, also known as Hadamard product. 



36 
 

Ἦ ʎἥὀ ἣἰ Ἢ  χ 

ἱ ʎἥὀ ἣἰ Ἢ  ψ 

ἷ ʎἥ ὀ ἣἰ Ἢ  ω 

Ἣ ÔÁÎÈἥὀ ἣἰ  ρπ 

Ἣ ἮṩἫ ἱṩἫ ρρ 

ἰ ἷṩÔÁÎÈἫ ρς 

LSTMs have outperformed simple RNNs in various applications. However, it requires a 

larger number of parameters to be learnt. In consequence, LSTMs are more 

computationally expensive, especially when dealing with long sequences. Aiming to 

address both the limitations of Elman networks and LSTM computational cost, GRUs 

were introduced by Cho et al in 2014 110. The calculations for GRU are illustrated in 

Equations 13-16. This cell makes use of an update gate Ú and a reset gate Ἲ. The first 

gate defines how much information is updated, while the reset gate establishes how much 

information to omit or forget. Unlike LSTMs, GRU cell generates a single new hidden 

state ἰ. 

ὂ ʎἥὂὀ ἣἰ  ρσ 

Ἲ ʎἥὀ ἣἰ  ρτ 

ἰ ÔÁÎÈἥ ὀ ἣ Ἲṩἰ ρυ 

ἰ ρ ὂ ṩἰ ὂṩἰ ρφ 

Overall, Both LSTM and GRU have demonstrated a superior performance compared to 

simple RNN 110. Nonetheless, there is no consensus regarding which cell offers a better 

performance. Therefore, the choice tends to be case-specific in this regard 110,111. On the 

other hand, from a computational cost perspective, using GRU cells can be trained faster 

than LSTM in large datasets or complex architectures, which in many cases can guide 

the decision 111.  

3.3.2 Transformers 

Although RNNs have been a significant advancement in the modelling of sequential data 

with neural networks, they still possess some aspects to improve. The sequential nature 

of RNNs, where the calculation of step ὸ depends on the previous step  ὸ ρ, imposes 

substantial computational demands when training on large datasets. In response to this 

limitation, Transformers architecture was developed. Unlike RNNs, Transformers do not 



37 
 

require processing a sequence step by step; instead, it can process the entire sequence 

at once. This is achieved by introducing two types of layers: positional embeddings (PE) 

and attention mechanism to replace recurrent cells. PE capture information on a step 

position in a sequence, while attention estimates the dependencies of the steps within 

and between sequences.  

 

Figure 3-8 Transformer Architecture. Taken from Vaswani et al 112. On the left, the encoder module can be 
seen which includes two sublayers self-attention, and a feed-forward network. On the right, the decoder is 

similar to the first sublayers, but instead of feed-forward, a cross-attention sublayer is introduced. This 
sublayer is fed with information on the encoder output and self-attention of the sequence. Then, the results 

are input into another feed-forward network that produces a representation used for a particular task. 

Figure 3-8 shows the architecture of the transformers model. This network has two main 

layers an encoder and a decoder. Both layers receive the sum between token 

embeddings and positional embeddings for a sequence and perform self-attention by 

using a scaled-dot product as shown in Equation 17. In self-attention, the matrices Q, K, 

and V correspond to the same input-embedded sequences 112. On the other hand, in the 

decoder, cross-attention is performed. In this case, K and V correspond to the encoder 

output, while Q is derived from the output of the self-attention in the first sublayers of the 

decoder 112. As mentioned previously, attention mechanism learns dependencies 



38 
 

between sequence steps, producing scores that fall into the range of 0 and 1. The 

attention scores quantify the relationship among the steps of a sequence and allow the 

model to decide what steps to focus on. 

!ÔÔÅÎÔÉÏÎἝȟἕȟἤ ÓÏÆÔÍÁØ
Ἕἕ

Ä
ἤ ρχ 

All these changes have accelerated the training process, allowing the use of large 

amounts of data. Consequently, transformers architecture has become the main driver in 

the development of large language models (LLM). LLMs are transformers pre-trained on 

extensive corpora usually, in a self-supervised fashion, to predict the next word or 

sentence based on previous context 113.  Then, LLM weights can be reuse by fine-tuning 

the parameters for specific applications. These models are characterised by having a 

vast number of parameters learnt. For instance, GPT-3, a LLM trained by OpenAI, has 

approximately 135 billion parameters 113. In practice, training LLM from scratch demands 

substantial technical resources in terms of data and hardware 113.  However, this limitation 

has been addressed using approaches such as model fine-tuning and transfer learning 

for specific tasks, which has facilitated their widespread adoption. 

3.4 Deep Generative Models 

Deep generative models (DGM) comprise neural network architectures that aim to 

estimate the probability distribution of a set of variables for a given set of examples 47,66. 

Among the most frequently deployed models, autoregressive approaches (AR), 

variational autoencoders (VAE) and generative adversarial networks (GAN) can be 

pointed out. Overall, these models aim to obtain a generator function Ὣ such that Ὣ◑

●, where ● represents samples of interest that are independent and identically distributed 

(i.i.d.), and ◑ is a vector of latent variables that can map values from ὀ through the 

generator Ὣ, whose probability distribution is approximately ὴ ●   66. 

Regarding the usage of DMGs for sequence generation, a range of models have been 

reported. To the best of our knowledge, most of these have focused on text generation. 

More related to the pharmaceutical domain, applications in the generation of drug 

candidates represented as SMILES or molecular graphs can be found 114,115. Although 

not in the generative domain, Transformers have been used to predict synthesis 



39 
 

procedures from reaction SMILES 43. As can be seen, given the nature of manufacturing 

sequences, models applied for sequences of discrete variables, such as text or 

sequential molecular representations, can be adapted for pharmaceutical procedure 

generation. This work will primarily focus on investigating the use of VAE and GAN, as 

they represent some of the most extensively studied approaches in this context. In 

addition, there exists a gap in exploring how well these approaches perform in 

manufacturing sequence generation. Below, different approaches will be discussed 

further than GANs and VAEs, however, the present work will focus on these two models. 

3.4.1 Generative Adversarial Networks 

GANs were introduced by Goodfellow et al in 2014 67, having shown remarkable success 

in image generation. Unlike VAE, GANs do not require an explicit specification of a 

probability distribution or rely on additional assumptions 47. The architecture consists of a 

generative network Ὣ ◑ and a discriminative network Ὠ ●, both of which are trained 

concurrently 68. The first component Ὣ ◑  creates samples in ●-space, while the 

discriminative network Ὠ ● distinguishes between real (1) or fake (0) samples. The 

parameters of Ὣ ◑ are adjusted to maximise the probability of the generated samples 

be classified as real 68. The adversarial training process is illustrated in Figure 3-9. 

 

 

Figure 3-9 GAN architecture for generator and discriminator networks during training. Taken and adapted 

from Alom et al 69 



40 
 

The objective function depends on both discriminative and generative network ὪὫȟὨ  

and is defined as shown in Equation 18 67: 

ÍÉÎÍÁØὪὫȟὨ ●ͯ ● ÌÏÇὨ ● ◑ͯ ◑ ÌÏÇρ Ὠ Ὣ ◑  ρψ 

The optimal value is reached at a saddle point where the discriminator is not able to 

distinguish between real and generated samples 66. While the model performance is 

generally good, training and tuning can be complex since the system can be unstable 

and prone to collapse 47. To tackle training difficulties, various modifications have been 

adopted into the loss function. In this regard, a widely used variant is Wasserstein GANs 

with Gradient Penalty (WGAN-GP) 70,71. Wasserstein's loss is illustrated in Equation 19. 

In WGAN, one of the main changes is that the discriminator network does not output 

probabilities directly, instead, this network is trained to yield unbounded values that 

represent the ñqualityò of the input sample 71. As a result, the discriminator network, in 

this context, is also known as critic and measures the distance between probability 

distributions 71. 

ÍÁØὒ ͯ Ὠ ● ͯ Ὠ Ὣ ◑  ρω 

For sequence generation, GANs poses additional challenges due to the discrete nature 

of the outputs. Normally, sequence generation models include an output layer that 

assigns probabilities to each possible token or operation, in our case, at every time step. 

In this manner, the sequence can be constructed step by step by sampling the operation 

with the highest probability. In adversarial networks, this output is then fed into a 

discriminator for training the networks. However, this procedure of sampling is non-

differentiable, thereby hindering weights from being updated through backpropagation 

116. To overcome this, various strategies to use adversarial training have been proposed. 

These can be oriented to modify network architecture to produce a continuous and 

differentiable output, while others adjust the loss function using reinforcement learning 

(RL). Architectural-based approaches, for instance, may employ techniques such as 

relaxing the sampling procedure by applying Gumbel distribution or incorporating 

autoencoders (AE) 116,117. 

AEs are commonly used architectures in deep learning applications 118. These models 

enable data compression into a continuous latent space through an encoder 118. In turn, 



41 
 

this projection can be restored back into the original data by a decoder 118. This approach 

allows sequences to be represented as a continuous vector that is differentiable and can 

serve as an input into a discriminator network, facilitating adversarial training. In addition, 

by knowing the distribution of the latent space, samples can be generated in this space 

and, subsequently, transformed into sequences by the decoder. Building upon this 

concept, architectures such as adversarial autoencoders (AAE) and adversarially 

regularized autoencoders (ARAE) have been proposed 119ï121.  

3.4.2 Variation Autoencoders 

VAEs belong to the family of autoencoders that learn a latent space that follows a specific 

probability distribution. In this framework, the encoder is known as recognition model, 

and projects a sample ● onto a latent space ◑ 65. Next, the decoder, or generative 

network, uses as input the latent projection and tries to reconstruct ● 65. To point out, the 

dimensionality of the latent space ◑ dimensions is lower than input data ●, by which this 

technique can also be used as a dimensionality reduction approach. 65,66.During training, 

VAE learns a joint distribution ὴ ὀȟὂ and  which can be decomposed into ὴ ὀȟὂ

ὴὂὴ ὀȿὂ, where the conditional distribution ὴ ὀȿὂ acts as a decoder model and 

ὴὂ is a prior distribution that characterises the latent space 65φυ. The encoder 

ή ὂȿὀ is a function that approximates the posterior ὴ ὂȿὀ since this distribution cannot 

be estimated given its intractability 65,66. Finally, the loss function is known as the evidence 

lower bound (ELBO) and is defined as shown in Equation 20. 65. The first term in the loss 

function maximised the reconstruction accuracy, while the second term, corresponding 

to Kullback-Leibler divergence, minimises the difference between the prior and the learnt 

posterior distribution of ◑. 

ὒ ͯ ᾀȿὼÌÏÇὴ ὼȿᾀ Ὀ ή ᾀȿὼȿȿὴᾀ ςπ 

VAEs have also been used to generate sequences. Contrary to GANs, VAEs tend to be 

easier to train and less prone to mode collapse. However, when training on sequential 

data, VAE may suffer from a problem known as posterior collapse. This occurs when the 

model disregards the information provided by the latent space, resulting in uninformative 

sequence representation incapable of reconstructing the input data 122. Consequently, it 

tends to produce repetitive and limited data, failing to learn meaningful features for data 

representation. To tackle posterior collapse, a balance between reconstruction and KL 



42 
 

divergence in the loss function is essential 123,124. VAEs with this variation in the loss 

function is referred to as ɓ-VAE, which was introduced by 125. This approach has been 

frequently applied in the generation of SMILES sequences in literature 49,126,127. 

3.4.3 Energy-based models 

Energy-based approaches can be regarded as the first generative models using neural 

networks. The first architectures dates to 1980s with Boltzman Machines (BM) and 

Restricted Boltzman Machines (RBM) 64. In the original formulations, ὴ ὼ depends 

on an energy function Ὁὼ and a partition function ὤ, which is also related to Ὁὼ, as 

shown in Equations 21 and 22 51. ὤ acts as a scaling factor to ensure that the sum of all 

the probabilities equals 1. Ὁὼ can be estimated by using neural networks and its 

analytical form depends on the architecture. Due to this, there are no constraints 

regarding the type of data to model 51. However, a limitation is that ὤ may not be tractable 

51. In contrast to other models, there is no generative function learnt, by which the 

generative process may be challenging and require some approximation 51. Difficulties in 

ὤ tractability and sampling restrict their usages in several domains. 

ὴ ὼ
Ὡ

ὤ
 ςρ 

ὤ Ὡ Ὠὼ ςς 

3.4.4 Autoregressive models 

In AR models, ὴ ὀ is explicitly defined by decomposing each observation ὀ as a 

sequence of variables ὼȟὼȟȣȟὼ  63. In this manner, the density function can be 

determined calculating the product of a set of conditional probabilities as illustrated in 

Equation 23. This approach allows likelihood estimation as the sum of the likelihoods of 

each conditional probability. Nonetheless, it is evident that under the assumption which 

allows variable decomposition, it should be possible to express data as an ordered set of 

variables. Although this is more natural in some scenarios such as modelling of time 

series or text, it is not a trivial problem in tabular data or images 63. In the same manner, 

given that sequences are usually generated step by step, sampling can be slow 51. 

Another limitation is related to dimensionality. Higher dimensions increase the number of 



43 
 

terms to estimate, thereby leading to a more complex model 63. Finally, more common 

architectures to estimate these probabilities include neural autoregressive density 

estimator (NADE), masked autoregressive density estimator (MADE), recurrent neural 

networks (RNN), transformers-based models 51,63.   

ὴ ● ὴ ὼȟȣȟὼ ὴὼȿὼȟȣȟὼ   ςσ 

3.4.5 Flow-based models 

Flow-based models or normalising flows (NF) is another approach that can estimate 

exact density without approximations. NF also can be classified as a deep latent variable 

model (DLVM) since it assumes a random variable ●ͯ ὴ● can be obtained by 

transforming a group of latent variables ◑ͯ ▬◑ through a generator. Considering a 

smooth and invertible function Ὢȡᴙ ᴼᴙ , ◑ and ● are related in the following manner 

◑ Ὢ● 65.51.  As a result, ὴ ● can be derived through the change of variable rule 

using the density function ὴ◑ as can be seen in Equation 24 51. Thus, ὴὼ corresponds 

to ὴ ᾀ adjusted using the absolute value of the determinant of the Jacobian matrix of 

Ὢ  with respect to x with f being parameterised using a deep neural network. 

Nevertheless, while it has been remarked that NF are powerful density estimators, the 

invertibility of Ὢ only permits the use of a reduced type of neural networks 63. In the same 

way, another condition for their application is that ● and ◑ should have the same 

dimensionality 66. This fact affects the scalability of NF in high dimensional data and 

reduce the control over the latent space. Thus, although several modifications have been 

introduced to make NF more flexible, their applicability in several domain is an area that 

seems to require further development. 

ὴ ● ὴ ᾀ Ὢὼ  ÄÅÔ
 ‬Ὢ ᾀ

‬ὼ
 ςτ 

3.4.6 Performance Metrics in Generative Models 

Generative and discriminative models differ significantly in terms of evaluation due to the 

absence of a reference or ground truth. Since DGMs goal is to produce realistic samples 

that are not necessarily equal to the training set, they cannot be compared directly to the 

reference set to estimate error as in classification/regression models. In the evaluation of 



44 
 

generative models, domain-specific metrics are often employed, i.e., the choice of metrics 

depends on the model and the type of data being generated. For autoencoders, 

assessing reconstruction accuracy from the latent is a common practice. This helps to 

determine how well the latent space is related to the data and how reliable a model is in 

generating data. In sequential data, metrics like BLEU and Levenshtein distance can be 

used to measure reconstruction 128,129.  

On the other hand, with only reconstruction, it is not possible to ensure the quality of 

generated examples. Reconstruction is limited to see whether a decoder can restore an 

example to its original form using example projection onto latent space. In this case, there 

exists a reference, which does not occur when new samples are generated. Thus, in 

several domains, specific metrics have been proposed to assess high-level properties 

that indicate that the model generates examples that belong to a similar distribution to 

the dataset of interest. A more concrete example of this is in drug discovery. Multiple 

approaches have been used to formulate indicators of the validity of a newly generated 

molecule. Along the same line, it is often sought that generated samples are novel and 

relevant to the domain.  

In this work, since autoencoders are used, BLEU and Levenshtein similarity are used to 

measure reconstruction accuracy, both of which are explained in more detail below. On 

the other side, other attributes of manufacturing sequences related to sequence validity 

are explored based on logical rules that are discussed in Chapters 6 and 7, for primary 

and secondary manufacturing, respectively. 

3.4.6.1 Bilingual Evaluation Understudy (BLEU) 

BLEU score is a metric widely used in machine translation and NLP 128. It is applied in 

the evaluation of similarity between generated and reference sequences. This metric 

computes n-grams precision, that is the ratio between the matching n-grams in generated 

and reference sequences, and the total number of n-grams in the reference. A n-gram is 

a subsequence of n consecutive steps drawn from a sequence. For instance, the 

sequence [ñADDò, ñSTIRò, ñHEATò, ñPURIFYò] can be split into 2-grams in the following 

manner: [ñADDò, ñSTIRò], [ñSTIRò, ñHEATò], and [ñHEATò, ñPURIFYò]. In the standard 

BLEU score, individual precisions are determined for up to 4-grams and the geometric 

mean between the four ratios is calculated. Finally, this is multiplied by a factor that 

considers the difference in length between candidate and reference. BLEU is a bounded 



45 
 

metric between 0 and 1, where 1 means perfect matching between the reference and the 

candidate. 

3.4.6.2 Levenshtein Distance  

Levenshtein or edit distance is a metric used to measure the difference between two 

strings. However, it has also been used to compare sequences like DNA or 

manufacturing actions 43,129. Lev counts the number of insertions, deletions or 

substitutions needed to convert a sequence to the other. This score is usually normalised 

by dividing the counts by the lengths of the largest sequence between reference and 

candidate. In the same manner, lev can be expressed between 0 and 1. The similarity 

can then be measured by subtraction between 1 ï normalised distance. Lev distance 

focuses mostly on comparing individual components in a sequence, whereas BLEU 

considers subsequence thereby considering order and length. 

3.5 Equipment and Software 

The specifications of equipment and software used for data analysis and model 

development are recorded in Table 3-1. 

Table 3-1. Libraries and equipment used for data analysis. 

Model Software Library Ref. Equipment 

Non-negative 

matrix 

factorization 

(NMF) 

Python 3.8 Scikit-learn 1.1  130 Processor: Intel(R) 

Xeon(R) CPU E5-

2667 v3 @ 

3.20GHz 3.20 GHz 

(12 cores),  

Memory: 128 GB 

RAM installed,  

Graph card: NVIDIA 

Quadro K6000 

GPU Memory 12.0 

GB 

Latent Dirichlet 

Allocation 

(LDA) 

Python 3.8 Gensim 4.1 131 

FasText 

embeddings 

Python 3.8 Genism 4.1 131 

Named Entity 

Recognition  

Python 3.8 Tensorflow 2.8 (deep 

neural network)  

132 Processor: Intel(R) 

Core(TM) CPU i9-



46 
 

 12900K @ 

3.20GHz 3.20 GHz 

(12 cores),  

Memory: 64 GB 

RAM installed,  

Graph card: NVIDIA 

GeForce RTX3090 

GPU Memory 24.0 

GB 

Spacy 3.3 (text 

processing)  

97 

Chemdataextractor  

(text processing)  

133 

Dataset 

cleaning and 

curation 

Python 3.8 

 

Spacy 3.3. 97 

Chemdataextractor 133 

Scikit-learn 1.1  130 

Pubchempy 99 

Pipeline Pilot   

Deep 

Generative 

Models  

Python 3.9 Tensorflow 2.11  132 

Visualization R 4.1   

 

 

 

 

 

  



47 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4. Data collection 

  



48 
 

4.1 Introduction 

Over time, information on the design and development of medicines has undergone an 

intensive democratization process. During this process, a vast amount of data has been 

made accessible by the private sector, regulatory agencies and academic institutions. As 

a result, a large amount of information is available to be consulted in digital sources 134. 

Information available covers the whole pharmaceutical product lifecycle, ranging from 

design and development of new chemical entities to pharmacovigilance and safety 

aspects 134ï136. Consequently, pharmaceutical information can be said to be varied and 

abundant. However, another important feature is that much of this information is 

unstructured 134,136. This means that data are usually not found in a tabulated and 

organized way such that it cannot be easily used for analysis and machine learning 

development. This leads to the capture and selection of relevant information on a large 

scale that cannot be done manually, instead, requires a certain degree of automation. It 

is at this point that natural language processing (NLP) comes into play.  

In the last decades, there have been many initiatives to use NLP to mine data from 

unstructured documents and build usable databases for diverse fields. In particular, the 

biomedical field can be highlighted to have numerous related datasets obtained through 

text mining 137. For example, Roche Diagnostics constructed a disease marker dataset 

by extracting information from 50 million abstracts 138. Other examples are the 

development of drug-drug interactions data sets and methodologies to extract drug side 

effects 139,140. In turn, all these data sets have provided comprehensive access to 

information and could enable the use of artificial intelligence (AI) to accelerate the 

discovery of new molecules and improve therapies for patients 138. In pharmaceutical 

manufacturing, most works building databases has focused on primary processing for the 

extraction of chemical reactions and materials. Nonetheless, independently of the field, 

to build any of these applications enabling data extraction, a fundamental starting material 

is a corpus. 

A corpus comprises a large collection of documents focused on a specific domain 141. As 

a major input for the development of NLP applications, it is usually found that many 

resources have been allocated on gathering and curating documents to have reliable 

corpora to be used. Thus, similarly to the aforementioned datasets, annotated corpora 



49 
 

have been made available to serve as gold standards and aid NLP tasks. Aligned with 

this, examples in primary preprocessing can be found like a chemical reaction corpus 

built by Cheminformatics Elsevier Melbourne University (ChEMU) in 2020 and chapati 

corpus, which is a product of a collaboration between the European Patent Office (EPO) 

and ChEBI (Chemical Entities of Biological Interest) organization 94,142. The former uses 

complete patents and includes annotations of materials, operations and conditions, 

whereas the latter provides information on only chemical substances 94,142. These corpora 

have been used to develop named entity recognition tools which enable the automatic 

extraction of information from multiple documents. Thus, it is possible to notice how 

significant a corpus is as a starting point for NLP applications. 

Regarding corpora development for pharmaceutical manufacturing, most efforts have 

been concentrated in the primary manufacturing and biomedical domains. However, to 

the best of our knowledge, there are no corpora available for secondary manufacturing. 

As to primary processing, while there exists a gold standard developed by ChEMU team 

94 as previously discussed, this is limited to a few hundred patents and was developed 

for a specific task. On the other hand, with the current available patents, a larger dataset 

could potentially be built, nonetheless, it is necessary to establish a sampling frame of 

documents which can be used to train generative models. Considering these gaps, the 

present work collects pharmaceutical patents containing information related to either 

primary or secondary manufacturing to be used in downstream NLP modelling and 

dataset construction for training generative models. This task is accomplished as can 

summarised in Figure 4-1 by web scraping documents from the available web application 

programming interfaces (API) of the United States Patents and Trademark Office 

(USPTO) and using model-based approaches to select the information of interest. Finally, 

content relevance is validated by identifying main topics and keywords from the selected 

files. The scope of this work is limited to patents obtained from USPTO due to ease of 

accessibility and high availability of literature for information extraction in this type of 

documents. 



50 
 

 

Figure 4-1. Overview pharmaceutical corpus development. 

4.2 Methods 

4.2.1 Search strategy and documents retrieval 

All the granted patents between January 1976 and September 2021 were downloaded 

from United States Patent and Trademark Office website (https://www.uspto.gov/). These 

patents were available in XML and TXT format. To select the patents that were 

pharmaceutically relevant, search results were scraped from the following websites: Bulk 

Search and Download API (uspto.gov) and PatentsView. The terms employed in the 

searches included the official dosage forms established by the FDA and the synonyms 

of drug substances obtained from DrugBank database 143,144. Some terms were excluded 

from the latter list. The criteria of exclusion for synonyms can be seen in Table 4-1. These 

terms were discarded since they corresponded in most cases to acronyms that may have 

several meanings depending on the field. In this manner, if these were included, irrelevant 

results would have been obtained. 

https://www.uspto.gov/


51 
 

Table 4-1 Criteria of exclusion for search terms. 

Criteria Regular expression Example of Excluded Terms 

Numeric expressions "^\d+[\.\,]?\d+$" 33355 

Alphanumeric expressions 

with fewer than 3 

consonants 

"^[a-z]{1,3}\-?\d+$" bb1111 

Terms with more than 10 

words 

N/A 

 
 

 

HAEMOPHILUS INFLUENZAE 
TYPE B CAPSULAR 
POLYSACCHARIDE 
MENINGOCOCCAL OUTER 
MEMBRANE PROTEIN 
CONJUGATE ANTIGEN 

Term with fewer than 5 

characters 

N/A E265 

 

 

After filtering, there were a total of 43,538 search terms. These were distributed in 157 

and 43,381 corresponding to dosage forms and active ingredients synonyms, 

respectively. The search was automatised for each term on both websites using Python 

3.8. The search criterion in USPTO API was based on the appearance of search terms 

in patent claims, while the presence in abstract was applied for PatentsView. The results 

were stored and preprocessed. The preprocessing consisted of removing duplicates and 

incomplete records. In the final list, patent number, and Cooperative Patent Classification 

(CPC) - when available - were stored. The patent number was subsequently used to trace 

back and extract abstracts, claims, and detailed descriptions from XML/TXT files. 

CPC is a classification system that assigns a category to a patent depending on the 

technical field. In this system, patents are divided into 9 sections (A-H and Y). In turn, 

every main section is subdivided in classes, subclasses, groups, and subgroups. As a 

result, an alphanumeric code is assigned. An example of this is illustrated in Figure 4-2.    

A description of every main category is displayed in Table 4-2. It is worth noting that a 

patent may fall into more than one category. Thus, CPC subclasses A61K Preparations 

for Medical, Dental, or Toilet Purposes, A61P Specific Therapeutic Activity of Chemical 

Compounds or Medicinal Preparations, and A61Q Specific Use of Cosmetics or Similar 

Toilet Preparations were considered as relevant since they may contain information on 

either primary or secondary manufacturing. 



52 
 

 

Figure 4-2 Example CPC scheme for patent technical classification. Taken from USPTO 145 

Table 4-2 CPC Scheme sections. Taken and adapted from USPTO 145 

Section Technical Field 

A Human necessities 

B Performing operations; transporting 

C Chemistry; metallurgy 

D Textiles; paper 

E Fixed constructions 

F Mechanical engineering; lighting; heating; weapons; blasting engines or 

pumps 

G Physics 

H Electricity 

Y General tagging of new technological developments; general tagging of 

cross-sectional technologies spanning over several sections of the IPC; 

technical subjects covered by former USPC cross-reference art collections 

[XRACs] and digests 

 

With the search results, an exploratory analysis of abstracts was carried out to evaluate 

how related the patents were to the intended content. Thus, keywords were extracted by 

using term-frequency inverse document frequency (tf-idf) technique. The abstracts were 

preprocessed as indicated in section 4.2.2.1. Words that were presented in fewer than 

10 documents were discarded. This algorithm was run using scikit-learn library. The top 

50 most important terms based on tf-idf scores were revised to define whether or not the 

selected patents were pharmaceutically relevant. 

4.2.2 Patents selection 

Although relevant search results were selected by means of CPC, not all of them had a 

category assigned. Therefore, a patent classifier was developed to select pharmaceutical 



53 
 

documents from those whose CPC was not available using machine learning. As a 

training set, all the patents retrieved with CPC were employed. As input in model 

development, abstracts and claims were evaluated individually. 70% of the data was used 

to train the model. The classifier performance was assessed using the remaining 30%. 

Usually, text has to go through several preprocessing steps to be converted to a 

numerical representation. Then, conventional machine learning models are applied to 

achieve the task. In the following sections, these steps are described in detail.  

4.2.2.1 Text Preprocessing 

The preprocessing steps comprised converting text to lowercase, tokenization, removing 

stop-words and punctuation, and normalising words 146,147. In tokenization step, text is 

split into a list of meaningful tokens, which are substrings that can be words and 

punctuation 146,148. Then, words that did not provide relevant meaning, also known as 

stop-words 146, and punctuation were discarded. Examples of stop-words include articles 

such as ñtheò and ñaò, or common verbs such as ñisò and ñhaveò. A complete list of these 

words was obtained from spacy 3.0 library 97. Additionally, the words ñherebyò and ñsaidò 

were included.  

Words normalization consists of transforming words into their base form to reduce 

redundance and ease analysis 146,147. In this manner, morphological changes of a word 

or inflections done to express, for instance, tense or number, are removed 146. This task 

is normally accomplished by the application of two approaches: stemming and 

lemmatization. Stemming, through a set of rules, changes a word into a stem form, 

without considering context 146. Depending on the rules employed, there exist several 

stemmers, being Porter and Snowball some of the most popular 146,148. To illustrate the 

result, the strings ñformulationò, ñformulatedò and ñformulateò will be converted to the stem 

ñformulò, using Porter stemmer. On the other hand, lemmatization is dependent on the 

context. This technique considers word syntactic function (verb, noun or adjective) in a 

sentence to convert a word to its base form, in this case known as lemma 146. To exemplify 

this method, we will consider the following sentences:  

¶ ñThe active ingredients may be formulated as compositions containing several 

active ingredients in a single dose form and/or as kits containing individual 

active ingredients in separate dose forms.ò,  

¶ ñThe following can be used as additional formulation aidsò, and 



54 
 

¶ ñThe invention discloses a method for controlling a production process of a 

formulated productò. 

While the word ñformulationò is a noun, ñformulatedò can be an adjective or a verb. By 

lemmatizing, the lemma of ñformulationò will be the same word. On the other, for the string 

ñformulatedò, there will be two possible outputs: ñformulateò, when it is a verb, and 

ñformulatedò, in the other case.  As can be seen above, both methods provide different 

results. A major drawback seen with stemming is that stems may not always be actual 

words 148. This makes legibility more difficult, for instance, in scenarios when keywords 

are required like topic modelling 148. Nonetheless, lemmatization may be less robust as it 

is sensitive to the method used to identify word functionality in a sentence 148. In the end, 

abstracts and claims were lemmatized considering the advantage that lemmatization 

offers in terms of interpretability. 

4.2.2.2 Numerical representation 

Numerical representations for textual data provide a notion of similarity between texts 

and enable the use of textual data in machine learning modelling. There exist several 

ways to extract features from this kind of data which include count-based representations 

and document/word embeddings 146,147. For the selection of the most convenient 

representation for classification, term frequency ï inverse document frequency (tf-idf) 

matrix, fasttext and doc2vec representations were assessed. The parameters employed 

to calculate every representation can be seen in the Table 3. The packages employed to 

learn these representations are described in section 3.5. These techniques are discussed 

in more detailed in the next subsections. 

Table 4-3 Hyperparameters for assessed text representations training. Each representation was 
determined for abstracts and claims, separately. 

Representation Parameters 

tf-idf min_df = 10 

Doc2vec149,150 dm=0, dbow_words=1, vector_size=300, negative=10, 

min_count=10, sample = 1e-5, workers=cores, window= 20 

Fasttext151,152 window = 20, min_count = 10, sample= 1e-5, ngram= (3, 6), 

alpha= 0.05, epochs = 20 

 



55 
 

4.2.2.2.1 Count-based representations 

Count-based methods build a frequency matrix of all the words in a corpus. These 

methods include bag-of-words (BoW) and term frequency ï inverse document frequency 

matrix (tf-idf) 146,147. In BoW, a document is represented by a vector whose number of 

elements equals the number of unique words in the corpus. In turn, each element 

represents the number of times a specific term is found in a document. In the end, a 

matrix containing as many columns as unique words and as many rows as documents is 

formed. This approach has as a disadvantage that tend to overestimate the importance 

of the most recurrent words in the corpus 147. 

Nonetheless, this drawback can be mitigated by using tf-idf matrix 147. In this method, 

term frequency (ὸὪ) is first defined in relative terms as a function of the total number of 

words in the document. Then, ὸὪ is multiplied by a correction factor which is inversely 

proportional to the number of times that a word appears in all the corpus. In this manner, 

when a term is present in many documents, it will have a low value for this factor. By 

doing this, those terms that are very frequent and do not provide much information are 

assigned a lower value. The calculation is detailed in the section 3.2.1146. 

Finally, for this work, tf-idf representation was selected for assessment over bag-of-words 

since ponders terms more accurately 146,147. However, although these approaches are 

relatively easy to calculate, they are not able to represent words semantics and context 

properly 147. Furthermore, these methods are limited by the vocabulary of the training set, 

thereby ignoring information given by unseen words or out-of-vocabulary (OOV) in new 

documents to classify. To tackle some of these limitations, word embeddings have shown 

very promising results. 

4.2.2.2.2 Text embeddings 

In 2013, Mikolov et al developed word2vec 88. This is a self-supervised algorithm based 

on fully connected neural networks where vectorial representations are generated for 

each word in a corpus 88. There are two ways of training this algorithm: continuous bag-

of-words (CBOW) and skip-gram (SG) 88. The architecture for both approaches is 

illustrated in Figure 4-3. In both methods, the weights generated in the hidden layer of 

the model for each word provide a relative notion of meaning. This means words that 

have a similar meaning are expected to have similar values for their respective vectors. 



56 
 

This approach, to a certain extent, considers words semantics 146,147. In addition, vectors 

can be used as inputs in machine learning models such as neural networks, individually, 

or calculating average to represent a sentence or a block of text in other techniques like 

support vector machines or logistic regression. However, this method does not generate 

a representation for unseen words. This may be an issue for new documents that contain 

words not included in the training set or with spelling mistakes. Thus, in 2015, P. 

Bojanowski et al proposed fasttext 152. 

 

Figure 4-3  word2vec architectures. On the left hand-side continuous bag-of-words (CBOW) and on the 
right skip-gram (SG). For a sequence of words, CBOW mode will predict word t using as inputs the words t-
2, t-1, t+1 and t+2 and word. Whereas SG mode will output the context words t-2, t-1, t+1 and t+2 given the 

word t. Taken and adapted from Mikolov et al 88 

Instead of using words to generate representations, fasttext uses subwords. In this 

approach, words are divided into n-grams 152, for instance, the word ñoctanolò can be split 

into subwords in the following manner <oct, cta, tan, ano, nol> where n = 3. Then, fasttext 

generates representations for each individual subword in such a way that a vectorial 

representation for each word will be equivalent to the sum of the respective subwords 



57 
 

vectors 152. Like word2vec, there are two modes of training CBOW and SG, whose inputs 

and outputs are analogous 152. Moreover, the word vectors generated by fasttext can also 

be used in the same way as word2vec 152. Going back to octanol example, it is then 

expected in the case of another alcohol not included in the training set, to give an 

example, dodecanol, fasttext can still provide a representation for this word by summing 

up its subwords vectors. Additionally, this vector maintains similar values compared to 

resembling words. 

Nonetheless, even though these two algorithms can generate good representations for 

individual words, this might not be the case for blocks of text such as sentences or 

paragraphs. A usual approach to represent text is to average word vectors 149. However, 

the resulting vector may be biased towards the most frequent words and information may 

be lost upon ignoring sequence order 149,153. Due to these constraints, algorithms to obtain 

embeddings for an entire text have been developed. An example of this is doc2vec 153. 

This technique follows a similar architecture to word2vec approach 153. However, in 

addition to word embeddings, each document is allocated a vector which is concatenated 

with word vectors to return the outputs 153. The architecture of doc2vec representation 

can be observed in Figure 4-4. To conclude this section, to choose the best 

representation doc2vec and fasttext algorithms were evaluated. Hyperparameters for the 

training of these models in this work are detailed in Table 4-3.  

 

Figure 4-4 doc2vec architecture. Taken and adapted from Le Q et al 153. 

4.2.2.3 Machine Learning Methods 

In the current work, support vector machines, logistic regression, and recurrent neural 

networks were assessed for patent selection. These models have been widely used for 



58 
 

text classification 86. Although there are several alternatives, the main motivation to 

choose these three models are related to their computational cost and previous reports 

indicating the use of these for patent classification 84,85,151. Employed hyperparameters 

are shown in Table 4-4 and models are described the next subsections. The packages 

employed for model training are cited in section 3.5. 

Table 4-4 Hyperparameters for assessed models. a class weights were calculated using scikit learn 
package for imbalance data. b Separate models were trained for abstracts and claims. c Recurrent neural 

networks were trained using pre-trained fasttext and custom embeddings as word representations. 

Model Hyperparameters 

Logistic Regression (LR) class_weighta,  
max_iter = 1000,  
solver = "saga",  
random_state = 42 

Support Vector Machines (SVM) class_weighta,  
random_state = 42,  
max_iter = 1000 

Recurrent Neural Networks (RNN) c spatial_dropout = 0.5,  
dropout = 0.5,  
optimizer = adam 
learning_rate = 0.001 
epochs = 20 
batch_size = 256, 
patience early_stopping = 3 epochs 
class_weighta 

 

4.2.2.3.1 Logistic Regression (LR) 

Among the selected models, LR is the simplest and fastest model as it has fewer 

parameters 84. LR can be used to model the conditional probability of a patent to belong 

to a specific category (ώ ρ) given a text vectorial representation ● and model 

parameters Ᵽ (ὖώ ρȿ●ȠⱣ). In this way, the model assigns a probability to a text ï 

abstract or claims ï to belong to a relevant (ώ ρ or irrelevant group (ώ π) 86. However, 

it does not return directly the class, by which it is necessary to set a threshold to define 

the category.  In Equation 1, the relationship between conditional probability and vectorial 

representation is shown 86. 

ὖώ ρȿ●ȠⱣ
ὩⱣ●

ρ ὩⱣ●
ρ 



59 
 

4.2.2.3.2 Support Vector Machines (SVM) 

SVM projects features onto a hyperplane in so that the separation between classes is 

maximised 154. As a result, a boundary can be formed, enabling to set a decision region 

to classify data depending on the position with respect to the hyperplane 154. SVM can be 

linear and non-linear in accordance with a kernel 154,155. This kernel is an auxiliar function 

which provides an additional dimension to determine the hyperplane 154. Linear SVM was 

selected for this assessment as this approach is more appropriate to handle data of high 

dimensionality like text representations 155. In this case, a document with a representation 

vector ● will be classified in the class 1 if Ᵽ● π, where Ᵽ╣● is the distance between x 

and the hyperplane 155. 

 

4.2.2.3.3 Recurrent Neural Network (RNN) 

RNN comprise a deep neural network architecture capable of handling sequential inputs 

like word sequences 156. Contrary to LR and SVM, in the case of text classification, RNN 

is not fed using a representation for an entire document, instead, vectors for each word 

are input into different cells, which process word representations separately. In addition, 

these cells are interconnected to one another in such a way that the sequence order of 

the words is maintained. In this manner, not only is individual information of the words 

processed by a cell, but this cell also receives the output of a previous or posterior cell; 

therefore, the cell ponders information on surrounding states thereby considering word 

context to generate a result. Figure 4-5 illustrates a general scheme for a RNN used for 

classification.  



60 
 

 

Figure 4-5 General scheme of a RNN architecture for binary classification. Text Vectorization layer assigns 
an index to each word. This index is used by the embedding layer to locate the corresponding vectorial 

representation for each word in a lookup table. Then, these embeddings are fed into the RNN. In this case, 
there are two stacked RNN layers where each process the information in different directions (bidirectional). 

The output of these layers is subsequently concatenated to be handled by a dense layer. This final layer 
will outcome the probability of the input text belonging to the category ώ  ρ. Taken from Tensorflow 

website 157 

In the last decade, RNN have undergone a significant increase in popularity due to their 

performance in natural language modelling 86. In particular, two kinds of cells have 

contributed for this approach to outperform other models: long short terms memory 

(LSTM) and gated recurrent unit (GRU) 86. These cells basically module how much 

information from neighbour cells should be ñforgottenò or ñretainedò. These cells utilise 

different approaches to accomplish the modulation task, whereby differences in 

parameters are observed, where GRU has fewer parameters than LSTM 86,156. In some 

cases, this fact plays in favour of GRU as usually having fewer parameters is associated 

with lower overfitting 151. More details about the functioning of each cell are provided in 

Chapter 3. Thus, GRU cells were chosen as model architecture in this work. An 

analogous architecture to what is shown in Figure 4-5 was employed for the patent 

classifier. The number of units of each layer is specified in Figure 4-6. 



61 
 

 

Figure 4-6 Patent Classifier architecture using abstracts. For claims, output_sequence_length is 1001 
instead of 116, as in abstracts. Hyperparameters were based on Risch J. et al work 151. 

4.2.2.4 Metrics 

Precision (P), recall (R) and F1-score were used to assess model performance. In the 

context of information retrieval, precision would measure how many of the retrieved 

documents were relevant using a model, in relative terms 158. On the other hand, recall 

measures how effective a method is at retrieving relevant documents 158. F1-score 

summarises these two metrics by returning the harmonic mean 158. The formal calculation 

for these metrics is shown in Equations 2 to 4 158. However, as indicated in previous 

sections, the majority of models do not return directly a class, instead, they yield a 

probability or a value which influences this decision. As a result, a threshold must be set 

to categorise a document into a class and depending on this value, the aforementioned 

metrics may vary. 

ὖ ὖὶὩὰὩὺὥὲὸȿὶὩὸὶὭὩὺὩὨ
Π ὶὩὰὩὺὥὲὸ ὨέὧόάὩὲὸί ὶὩὸὶὭὩὺὩὨ 

Π ὶὩὸὶὭὩὺὩὨ ὨέὧόάὩὲὸί
ς 



62 
 

Ὑ ὖὶὩὸὶὭὺὩὨȿὶὩὰὩὺὥὲὸ
Π ὶὩὰὩὺὥὲὸ ὨέὧόάὩὲὸί ὶὩὸὶὭὩὺὩὨ

Π ὶὩὰὩὺὥὲὸ ὨέὧόάὩὲὸί
σ 

Ὂ
ςὖὙ

ὖ Ὑ
τ 

In this manner, these metrics are not appropriate to summarise the overall performance 

of a model, but they are more useful to aid an optimal threshold selection. Thus, a 

complementary metric was used which was area under the precision-recall curve (AUC-

PR). AUC-PR has been recommended as the first choice to evaluate performance in 

binary classification for imbalanced data 159. This metric seems to be more sensitive to 

changes in the minority class, allowing to appreciate more easily the effect of class size 

differences 159. Considering that a preliminary analysis suggested that the obtained data 

were imbalanced, AUC-PR was also evaluated. In the end, the model with the highest 

AUC-PR was chosen as the best. Then, P, R and F1-score were calculated over a range 

of values to select the parameter that yields the largest F1-score. 

4.2.3 Content analysis 

Once the best model for patent classification was selected, this was used to retrieve the 

pharmaceutically relevant patents from those whose CPC was not available. This led to 

have a final corpus which contains patents with pharmaceutical information that can be 

extracted. To evaluate the type of information, which is expected to be found in the 

corpus, topic modelling was carried out. tf-idf matrix was calculated for preprocessed 

abstracts. At this stage, terms that contained digits, with less than three characters or 

included in Table 4-5 were excluded. Similarly, terms that appeared in less than 50 

documents were discarded. In addition, bigrams were included, and sub-linear 

transformation was applied to the values.  

Table 4-5 Excluded terms in content analysis. 

Term 

Relate provide include 

present useful describe 

invention include e.g. 

comprise [NUM] example 

disclose have select 

   



63 
 

Later, minibatch nonnegative matrix factorization (NMF) was used to group patents in 

topics and extract keywords. NMF was trained with the following hyperparameters: 

n_components=18, batch_size=16000, random_state=32, beta_loss="kullback-leibler", 

l1_ratio=0.5, and max_no_improvement = 10. Eventually, top 20 keywords were 

extracted for each topic and revised to define the main relationship. Then, topics of each 

document were identified, and distribution was analysed. 

4.3 Results and discussion 

4.3.1 Search results 

3ô238,764 patents were obtained in the search results. The patent distribution based on 

search terms can be seen in Table 4-6. The majority of the results were obtained by using 

dosage form terms compared to active ingredients synonyms. Keywords for the results 

obtained from abstracts can be seen in Figure 4-7. Based on that, the obtained patents 

seem not to be pharmaceutically relevant. Thus, CPC classification was revised in more 

detail to identify patents that contain information on pharma. 

Table 4-6 Distribution of the search results by sources and search terms. 

Database Terms Results 

Patentsviews Active pharmaceutical 

ingredients drugbank 

544267  

(16.80%) 

Dosage forms 1048039 

 (32.36%) 

USPTO Bulk Search API Active pharmaceutical 

ingredients drugbank 

244553 

 (7.55%) 

Dosage forms 1401905 

 (43.29%) 

 

18.2% of the results did not report CPC. Of the remaining patents, only 7.5% 

corresponded to pharmaceutical patents A61K, A61P, and A61Q; this group will be 

denominated as PH. As for the majority group (NP), 61% of patents corresponded to 

sections B, G, and H. These categories enclosed inventions related to devices or pieces 

of equipment related to, but not limited to, the generation of electricity, measurement of 



64 
 

physical properties or execution of unit operations 145, which is consistent with the 

keywords shown in Figure 4-7A and B. On the other hand, keywords observed in Figure 

4-7C showed patents in group PH contained information about therapeutical substances 

and formulations. 

 

 

Figure 4-7  Word clouds with top 50 most important words for all the search results (A), irrelevant results 

(B), and pharmaceutical patents (C). 

The main source of irrelevant information was terms related to dosage forms. This can 

be seen in Table 4-7, where most non-pharmaceutical patents were obtained by using 

dosage forms as search terms. This result was expected as several words employed to 

describe dosage forms have several meanings in different fields and were not exclusive 

to the pharmaceutical context, as in active ingredients case. In this case, it was necessary 

to apply an additional filter to the dosage form to obtain information on secondary 

manufacturing whereby CPC becomes useful to bound the results to pharmaceutical 



65 
 

data. However, a limitation of using this classification was that all the results did not count 

in this class. As stated previously, 18.2% of results do not have CPC class, which is 

equivalent to 590.761 patents whose relevance was uncertain. Thus, a method to classify 

patents into either group PH or NP was developed and applied. 

Table 4-7 Distribution of the search results by relevant (PH) and irrelevant (NP) patents with CPC. 

Database Terms Class Number of 
patents 

Patents View Active ingredients NP 406103 (12.5%) 

PH 137027 (4.23%) 

Dosage forms NP 1019339 (31.5%) 

PH 27147 (0.83%) 

USPTO API Active ingredients NP 74739 (2.31%) 

PH 25120 (0.78%) 

Dosage forms NP 950098 (29.3%) 

PH 8430 (0.26%) 

Total   3238764 

4.3.2 Patent Classifier 

Abstract and claims were retrieved for all the patents with an assigned CPC. 

Approximately, 97.9% of the information could be extracted from files. Most patents 

whose abstracts or claims were not available corresponded to years from 2002 to 2004. 

This period coincided with the first years that XML format started being used by USPTO, 

resulting in documents with varying syntaxis that hindered information extraction. Due to 

this limitation, a small portion of the data from all the patent files could not be obtained. 

In the end, with retrieved information, models for patent classification were trained and 

the results are discussed below. 

The performance of the trained models can be seen in Figure 4-8A. Overall, the best 

result was achieved by RNN in both cases, using abstract and claims as inputs. This 

model yielded an average AUC-PR of 0.926. This result was followed by LR and linear 

SVM, with average AUC-PR of 0.871 and 0.869, respectively. The outcomes obtained 

presented a certain agreement with the literature for similar tasks  84,85,151. RNN are 

usually the first choice for text classification. The reason behind that is RNN have been 

reported to outperform other algorithms like the other models employed in this work. 

Unlike LR and SVC, RNN not only considers individual words but also captures the 

connection between words. In this way, RNN can identify more complex patterns. 



66 
 

 

Figure 4-8 Classification performance for different models. A) comparison of AUC-PR for several model 
trained for different inputs and text representations. B) Precision-recall curve for the best model ï RNN + 

Fasttext using abstract and claims as inputs 

Upon comparing word representations, doc2vec showed the lowest performance in all 

the models, being lower than TF-IDF method. This suggests that doc2vec trained under 

the employed hyperparameters did not capture the differences between both groups and 

is not the best representation for the classification of this kind of document. On the other, 

fasttext had a higher performance compared to custom word embeddings trained along 

with RNN with AUC-PR 0.929 and 0.923, respectively. This difference could be caused 

by overfitting, although this different might not be large enough to conclude so further 

testing is required to confirm.  

The evolution of model performance across training is shown in Figure 4-9. For the model 

with custom embeddings, AUC-PR values for the training set increased rapidly, whereas 

the validation set decreased after epoch 2. In addition, the difference between losses of 

training and validation set tended to increase rapidly. In opposition to this behaviour, 

although training took longer when fasttext embeddings were used, the difference in 

performance and loss between the test and training set was stable. The first behaviour 

indicates that the model is ñmemorizingò how to classify the training sample, instead of 



67 
 

learning any latent information that yields good results in unseen samples, which may 

indicate the model overfit 160. As a result, the generalization of this model is poorer than 

using fasttext embeddings. In this manner, pre-trained embeddings provide more reliable 

results as it is less prone to overfitting. 

 

Figure 4-9 Comparison of Abstract + RNN performance using custom and pretrained embeddings (fasttext) 
as a word representation during training time.  

Regarding the effect of using abstracts or claims as an input for classification, the results 

are compared for RNN-Fasttext models in Figure 4-8B. The AUC-PR of both models are 

similar with values 0.927 and 0.930 for abstract and claims, respectively. Although, the 

usage of claims to classify patents provided a slightly higher performance, when other 

metric like F1-score was compared the results were the opposite. F1-score for RNN with 

abstract was 85.7%, while a value of 85.6% was obtained for claims. By seeing closely, 

the most visible difference between abstract and claims is the number of words. The 

distributions of number of words in abstract/claims are shown in Figure 4-10. While 90% 

of abstracts are described with 98 words or fewer, this figure increases to 1001 words for 

claims. From the results, it is demonstrated that even though claims provide additional 

information, this is not helpful to define whether or not a patent is related to 

pharmaceutical manufacturing. Therefore, claims contain information that is redundant 

and, to a certain extent, is already compressed in abstract for this particular task.  



68 
 

 

Figure 4-10 Histogram (A) and cumulative frequency (B) of the number of words for abstracts and claims. 

To conclude the best model selection, although the utilization of claims for classification 

might not harm performance, this may lead to a greater computational cost. This could 

be observed at the training stage, where the duration of an epoch using abstract and 

claims was approximately 13 and 92 minutes, respectively. In this manner, since claims 

did not improve performance significantly and could cause prediction or training to take 

a longer time, Abstract + RNN + Fasttext was chosen as the best model for patent 

classification. 

4.3.3 Error analysis 

The confusion matrix in Figure 4-11 describes the performance of the final model in more 

detail. Performance in terms of precision and recall was 82.9% and 88.7%, respectively.  

As can be seen, the data were imbalanced, where the group of interest (PH) represented 

the minority group. 1.4% of the predictions corresponded to false positives (FP). This 

meant that 17.1% of the retrieved patents were misclassified into PH class. In the 

scenario of false negatives (FN), the model did not recognise 11.3% of the relevant 

patents as such. Consequently, approximately 1 in 9 pharmaceutical patents are 



69 
 

expected to not be identified as relevant, thereby not being considered for further 

analyses. 

 

Figure 4-11 Confusion matrix for the best model. PH: pharmaceutically relevant patents and NP: non-
relevant patents. 

Having considered the two types of errors that the model presents, FP are of particular 

significance in this case. On the one hand, while FN cause a loss of data to be analysed, 

these may not impact directly on conclusions as these patents are simply omitted and the 

proportion is minor compared to FP. On the other hand, FP would be analysed with true 

positives, which may mislead conclusions depending on their content. In consequence, 

content profiling for misclassified patents was performed to assess what data FP and FN 

are expected to provide. 

The most common CPC classes derived from the profiling of FP and FN are displayed in 

Figure 4-12A. 73.4% of FP patents belong to main class C, which groups inventions 

related to chemical entities and metallurgy. In particular, classes C07D, C07K, and C12N 

stood out as they are the most frequent and comprise heterocyclic, peptides, and acyclic 

compounds. Similarly, C07 inventions, in general, cover organic compounds, while 

enzymes and microorganismsô compositions are grouped into C12N class. Thus, it is 

possible to see the majority of FP led to retrieve patents about chemical substances that 

can be regularly found in pharmaceutical context, and these may provide data about 

synthesis and/or purification process. 



70 
 

As for the remaining classes, A61L, G01N and Y10S corresponded to 24.3%. The latter 

is a generic category which involves new technological patents. Y10S belongs to a 

recently implemented section (Y) that covers a wide range of inventions. Usually, the 

patents that fall into this category have another assigned class, whereby Y10S class may 

not specify clearly the invention field. Therefore, a more accurate definition of the 

technical field is obtained from additional CPC. Regarding G01N and A61L, these 

comprise patents about methods to test or analyse materials and methods or apparatus 

for sterilising materials. Even if these could still be of interest in other fields in pharma, 

these types of inventions may not offer specific information on manufacturing. 

Consequently, G01N and A61L categories might be of concern for information extraction 

of manufacturing data as these documents may introduce noise to the collected corpus. 

However, their impact is not expected to be significant since these represent a minority 

within all FP and can be discarded by analysing in more detail other sections such as 

detailed description which will be the focus in further chapters. 

Another aspect to highlight was that multiple classes in common could be observed 

among the top 10 most frequent categories of FN and FP. For instance, C07D, C12N and 

C07K were also found in FN. Nonetheless, even though these classes co-occurred with 

relevant classes - A61K, A61P, and A61Q, patents were not recognized as relevant by 

the algorithm.  

Upon observing keywords for FN and FP in Figure 4-12B and C, terms related to 

application area were the main difference. While FN keywords provided an idea of 

patents were about compounds and chemical substances, these did not suggest what 

the specific application of the compounds might be. In contrast, FP keywords mentioned 

terms related to diseases or directly words such ñpharmaceuticalò or ñtreatmentò. 

Consequently, this points out that the algorithm requires the abstract to contain words 

emphasizing that the invention has a therapeutical application, apart from indicating that 

it is about a chemical substance or drug product. This fact shows that the algorithm is 

consistent about the identification of patents of pharmaceutical interest as one of the most 

important aspects to achieve this is the field of invention. In addition, this suggests that 

the abstract might not provide all the necessary data to have a higher performance.  



71 
 

 

Figure 4-12 Distribution of CPC classes (A) and keywords for FN (B) and FP (C). 

To conclude this section, most errors found could be considered reasonable and are not 

expected to yield a substantial number of off-topic patents. FN could be caused by 

limitations of the information provided by the abstract since this seems to not offer insight 

into the invention field on all occasions. As shown in the previous section, claims did not 

help to improve performance significantly, by which using detailed descriptions might help 

to retrieve more data but with a much higher computational cost. On the other hand, an 

important portion of FP turned out to be relevant. This idea is supported by the fact that 

most frequent classes in FP were related to new organic chemical entities, usually found 

in pharma, and keywords suggest these molecules may be used in the treatment of some 

diseases. However, there still is a minority group that is unlikely to contain manufacturing 

information such as patents of classes G01N and A61L. Although it was shown these 

represent a small proportion of all classified patents and might not have a big impact on 

conclusions, it would be convenient to consider further filters to discard these patents 

during the information extraction of manufacturing data. 



72 
 

4.3.4 Pharmaceutical manufacturing corpus 

Initially, 197,724 patents were identified as pharmaceutically relevant and there were 

590,761 patents whose content was unknown. After applying the patent classifier in 

unknown patents, 18,299 documents (3.1%) were found to potentially have content 

related to pharmaceutical products. As expected, a significant portion of unknown patents 

were unrelated to the field of interest in this study. This result is consistent with the 

proportion of documents extracted in the search results, which was around 6.1%. In the 

end, after discarding additional patents due to not including abstract, a total of 208.664 

documents were gathered 

The collection of documents accounted for information from January 1976 to September 

2021. Using non-negative matrix factorization (NMF) over abstracts, patents were 

categorized into 18 subtopics and their content was explored in more detail. As a note, 

NMF is a soft-clustering technique, by which it does not assign a document to a unique 

topic. Instead, it allocates weights to every topic in such a way that those weights 

measure the relatedness of the documents to each topic. In addition, NMF provides the 

most important terms to define every topic. The top 5 keywords for each group can be 

observed in Figures Figure 4-13 and Figure 4-14. As can be seen, keywords confirmed 

documents fitted well with subjects related to pharmaceutical manufacturing in most 

cases and also showed aspects usually highlighted in the inventions.  



73 
 

 

Figure 4-13 Top 5 keywords for subtopics 0 to 8 obtained using NMF. 



74 
 

 

Figure 4-14 Top 5 keywords for subtopics 9 to 17 obtained using NMF. 

Table 4-8 Assignation of subtopics to main topics. 

Topic Subtopics 

Pharmaceutical Composition 0, 2, 6, 11, 14 

Small Molecules 1 

Biological Products 3, 4, 7, 16 

Therapeutical Application 5, 8, 10, 12, 13, 15, 17 

Manufacturing 9 

 

Subsequently, through subtopics keywords, 5 major topics were identified: Biological 

Products, Therapeutical Applications, Small Molecules, Pharmaceutical Compositions, 

and Manufacturing. The assignation of subtopics to major topics is shown in Table 4-8. 

To remark, 68.1% of patent abstracts mainly focused on the health benefits or 

pharmaceutical products and the majority of patents correspond to the last decade as 

observed in Figure 4-15A. This latter covers inventions involving novel delivery systems 



75 
 

for conventional active pharmaceutical ingredients, natural products, and cosmetics, 

whereby all of these may not be necessarily associated with the treatment of a disease. 

As for the therapeutical applications, these may comprise well-known substances 

repurposing or new chemical entities usages. Particularly in this topic, when the top 20 

keywords were observed, some of the most common terms were related to pathologies, 

namely ñcancerò, ñpainò, ñinfectionsò, or ñskinò. This may denote what groups of diseases 

and pharmacological groups were having more attention during the assessed period.  

 

Figure 4-15 Overall distribution of main topic in the corpus (A), evolution of topics across time (B) and 
evolution of the patents most related to small molecules or biological products (C). To note, data for 2021 

only covers until September, which is why a sudden drop in the number of patents is seen this year. 

Regarding new substances, biologics and new chemical entities (NCE) represented 

27.2% of the total. However, it is worth noting that when the top 5 topics with the greatest 

weights were considered, new substances came to account for 70.6% of all the 

documents. This suggests that even though it was not the main point of the patent, all of 

these were related to some substance. This result was expected considering a previous 

study performed by Ouellette L. et al in 2010. This shows usually a substance is protected 

by several patents, where each covers different aspects of the invention161. During that 

study, an important outcome was that by 2005, a NCE could have between 3.5 and 5 



76 
 

patents related on average 161. In addition, the authors showed that this number tended 

to increase 161. This would explain the trend shown in Figure 4-15B, where most topics 

have undergone a significant increase in the last decades, except for small molecules. In 

addition, all the topics different to biological products and small molecules were more 

frequent; thereby pointing out that currently more patents are being used to protect a new 

substance. However, this would not explain the large difference observed between 

patents related to small molecules and biological products. 

Going into more details about patents evolution across time, the number of patents 

related to either biological products or small molecules taking the top 5 most important 

topics is shown in Figure 4-15C. It was observed that until 1992, small molecules were 

the focus of the inventions. However, after that time, terms related to biological products 

such as ñproteinsò and ñantibodiesò started to have a greater weight. From this time 

onwards, the difference between these topics has kept increasing, to a greater or lesser 

extent, until the most recent date. In this regard, this trend had been pointed out in 2012 

by Jones et al 162. In their findings, the authors indicated that at least before the 2000s, 

biologics had surpassed small molecules and, between 2005 and 2008, the gap between 

these had been widen162. Some of the factors that favoured biologics evolution were lack 

of strong regulation in comparison to small molecules, finding new small molecules has 

become harder as this field has been exploited for a longer time, and technological 

development has eased biologics manufacturing 162,163.  

Interestingly, biologics dominance has not been translated into a greater market share. 

Figure 4-16 reveals that, even though biologics approvals were raised, small molecules 

kept being higher164. Similarly, it has been estimated that around 90% of the worldwide 

market share corresponds to small molecules163. This has been explained by the fact that 

the transition to a biologics-based market is a long-term process since the majority of 

infrastructure has been developed to manufacture small molecules162. Similarly, the high 

costs of biologics hinder the accessibility to all the population163. Thus, the disparity 

between marketed and patented products shows that many inventions are not 

commercialised. This may be caused by market projections, technical feasibility or other 

decisions that a company could make162. In terms of information retrieval, these facts 

suggest that patents are a good source of novel information as it is expected to find many 

more compounds compared to what is available in the market. However, the trade-off is 



77 
 

that the information found in patents might not always be as complete as for marketed 

products. 

 

Figure 4-16  Number of NCE and biologics approved by FDA between 1997 and 2021. Taken and adapted 

from de la Torre et al 164 

To conclude, a corpus about pharmaceutical manufacturing containing 208,664 patents 

was built. This corpus covers a period of 46 years. Through exploratory analysis, the 

content of the documents was validated. This information can be summarised, but not 

limited, in 5 main topics: Biological Products, Therapeutical Applications, Small 

Molecules, Pharmaceutical Compositions, and Manufacturing. Additionally, some trends 

could be observed where most patents corresponded to recent years and related to 

pharmaceutical compositions and therapeutical applications. The former trend might 

generate some bias towards recent files. Regarding substances class, most documents 

had content associated with biological products followed by small molecules. Finally, from 

this corpus, pharmaceutical manufacturing information is expected to be extracted. For 

instance, information on secondary manufacturing is likely to be found in patents 

belonging to Pharmaceutical Compositions; also, primary manufacturing data such as 

synthesis or purification method is to be in topics related to small molecules or biologics. 



78 
 

4.4 Summary 

Although several corpora related to biomedical topics can be found, that is not the case 

for pharmaceutical manufacturing. Using patents as a main source of textual data, a 

corpus to be used for mining manufacturing information was built. Throughout the 

process, more than 3 million of patents were collected but these were filtered using 

initially CPC classification, as the majority were irrelevant. Nonetheless, a significant 

number of these did not have CPC. Therefore, collected documents were used to 

generate one of the outcomes of this chapter which is the patent classifier. The patent 

classifier consists of a deep neural network which can identify pharmaceutically relevant 

patents through abstract text. The performance of this model measured as recall and 

precision was 82.9% and 88.7%, respectively. Furthermore, the error analysis reveals 

that classification error made by the model did not have a serious impact on the retrieved 

documents.  

Using the CPC and model, more than 200K pharmaceutical patents were gathered. The 

content of the corpus was then validated by using a topic modelling technique known as 

non-negative matrix factorization (NMF). This method grouped the patents into topics and 

output keywords for every group. With model outputs, it was possible to identify first 

inventions main topics based on abstracts and later describe the evolution of patents 

content across time. Thus, most patents information can be clustered into the following 

topics: Biological Products, Therapeutical Applications, Small Molecules, Pharmaceutical 

Compositions, and Manufacturing. The topics about Therapeutical Applications and 

Pharmaceutical Composition turned out to be the most frequents. As for substances, 

Biologics patens are more dominant than small molecules. This trend started to be 

significant from 1992. The patents are expected to contain data of primary and secondary 

manufacturing according to these topics and keywords. 

 

 

 

  



79 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5. Natural Language Processing (NLP) 

for Pharmaceutical Manufacturing Data 

Extraction 

  



80 
 

5.1 Introduction 

Information extraction (IE) aims to identify and summarise information of interest from 

documents for a specific domain 73. This task is a multistep process that usually requires 

the deployment of several components. A first step usually involves preprocessing, which 

prepares text to be used downstream 147,165. Preprocessing steps can include methods to 

filter out irrelevant data to improve the reliability of the information 147. Then, components 

such as a part-of-speech (POS) tagger can be applied to individual words to assign 

semantic functions (verb, noun, or adjective). In a similar way, named entity recognition 

(NER) systems categorise words into a class, which hints at the type of data provided by 

each token 90,147. Contrary to POS tagger, the NER component is more domain-specific. 

Thus, the development of an IE system involves the design and elaboration of a pipeline 

making use of different approaches. 

In this regard, several workflows have been developed to extract information from 

documents in the chemical domain. O. Kononova et al proposed a methodology to mine 

inorganic synthesis procedures from papers 166. In this work, the authors developed 

methods that first identified the paragraphs that contained information on certain types of 

reactions. Then, these paragraphs in turn were input into other components to recognize 

materials, operations and conditions 166.  Continuing with primary manufacturing, Loweôs 

work developed a framework to extract chemical reactions and structures from patents 

167, where NER models are highlighted to play a key role. Similarly to the aforementioned 

examples, many others found as a common factor the emphasis on the development of 

NER models 91,92,168ï171.  

NER systems can be considered the core of IE task 165. This component identifies and 

enables the extraction of key information (entities). Depending on the methodology 

applied, NER can be based on rules, or machine learning (ML) approaches 90. Rule-

based NER uses dictionaries or semantic/syntactic patterns to label entities 90. It has 

been shown that this approach offers very good precision but low recalls, due to the 

requirement of exhaustive dictionaries and the need for a wide variety of rules to cover 

all the possible variations in word patterns 90. Due to these limitations, ML methods have 

become more popular since they provide greater flexibility, achieving good recall and 

precision for several applications, particularly when deep learning is used 90. In the 



81 
 

pharmaceutical context, the development of NER models has been focused on the 

biomedical and primary processing domain 91,92,94,95,167ï170,172. In the latter case, models 

for the recognition of materials, operations or both can be found. However, to the best of 

our knowledge, models for secondary processing have not been found. 

Returning to IE workflows, pharmaceutical patents have special considerations to extract 

manufacturing data. In a previous chapter, a corpus was built with pharmaceutical 

manufacturing patents. However, contrary to what happens in scientific articles, these 

patents are written in such a way that their procedures are difficult to reproduce and do 

not have well-defined sections that indicate whether or not the specific content of interest 

is available 142. In addition, the whole document does not necessarily cover a specific 

area, but instead, involves several aspects of an invention that may include clinical 

information, analytical data, manufacturing procedures, etc. Therefore, the first step for 

data extraction should revolve around the selection of relevant sections or text fragments. 

Subsequently, these sections can be inputted into a NER model.  

However, as mentioned previously, current available NER models are mostly applied to 

primary processing data extraction for pharmaceutical manufacturing applications. 

Considering that secondary processing is out of the scope of these models, a new model 

for drug product fabrication data mining would be necessary to collect data for both 

modes of manufacturing. An additional aspect to consider would be efficiency given the 

volume of data. A unique model capable of performing the recognition of entities for both 

primary and secondary domains would allow extracting simultaneously all the targeted 

information. In addition, it would facilitate the distinguishing between 

synthesis/purification procedures and drug product manufacturing. In this manner, this 

chapter aims to develop models that assist in data extraction of manufacturing data of 

small molecules from patents using natural language processing (NLP) tools from 

patents. These tools consist of a relevant section selector and a NER model for both 

primary and secondary processing. These models will then be used to build a database 

through the corpus developed in the previous chapter. Both proposed model will work in 

conjunction for IE as illustrated in Figure 5-1. 



82 
 

 

Figure 5-1. Overview information extraction (IE) using natural language processing (NLP) tools. 

5.2 Methods 

5.2.1 Preliminary experiments 

Preliminary tests were carried out as a first approach to develop models and improve the 

understanding of certain NLP tools. Initially, a sample of around 49K patents was selected 

to determine relevant paragraphs. These patents contained around 3.6M of elements 

summing paragraphs, headings and tables. At this point, all the elements were 

preprocessed as indicated in section 5.2.2.1, excluding truncation, and then Latent 

Semantic Analysis (LSA) coupled with k-Means were used to extract the topics. 

LSA is a topic modelling and dimensionality reduction technique which takes as an input 

a matrix representing documents 173. This method decomposes document 

representation, such as bag-of-words (BoW) or term frequency-inverse term frequency 

(TF-IDF) (╒▓ᶰᴙ ) with D number of documents and a vocabulary size V, into three 

matrices applying truncated singular value decomposition (SVD) as shown in Equation 1 



83 
 

173. The three matrices ╤ᶰᴙ , ♅▓ᶰᴙ , and ╥ ᶰᴙ  correspond to a lower 

dimensional representation of the documents in a reduced K-dimensional space, a 

diagonal matrix containing the singular values with K-latent dimensions , and a matrix 

that associates new dimensions and terms, respectively 173. This technique in particular 

requires a pre-set value for the rank K of ἳ, which is usually in the order of hundred173. 

For the present words values of K 100, 200, 300, and 500 were evaluated.  

 ╒▓ ╤♅▓╥
╣  (1) 

The matrix U obtained from LSA was then used as input in k-Means analysis. The 

implementation of k-Means employed for this experiment is described in detail in section 

5.2.2.3. At this point, for the selection of the optimal number of clusters only Davies-

Bouldin index was employed. Various numbers of clusters were tested ranging from 40 

to 390. Afterwards, with the optimal number of clusters, the top 20 keywords per cluster 

were extracted from centroids. Finally, keywords were revised to firstly assign an arbitrary 

label which summarises the content and, secondly, define the cluster that may contain 

information related to manufacturing of small molecules. The clusters that contained 

mostly keywords related to dosage forms, operations, conditions, or materials were 

considered relevant. Although this approach turned out to be useful to segment relevant 

vs irrelevant content, some weaknesses constrain this application, which are discussed 

in detail in results section. Considering these limitations, this approach was then applied 

at text sections with additional modifications, instead of paragraphs. 

5.2.2 Relevant section detection 

5.2.2.1 Preprocessing 

From the pharmaceutical corpus, detailed descriptions were retrieved for each patent. 

Patents without description were discarded. At this stage, descriptions were separated 

into headings, paragraphs and tables. Thus, texts were preprocessed as illustrated in 

Figure 5-2. Tokenization was achieved using chemdataextractor 1.3, while the remaining 

steps were performed with spacy 3.3.97,133. Afterwards, the preprocessed text was 

grouped into sections based on headings. Then, a BoW representation was determined 

for each section. Additional words were then discarded following the exclusion criteria 

shown in Table 5-1. In the end, a vocabulary with approximately 62K tokens was built.  

Finally, sections with a number of tokens greater than ὗ , which was calculated as 



84 
 

indicated in Equation 2 174, were truncated to this length to ensure these were not longer 

than the majority of the sections. 

 ὗ ὗ ρȢυ ὗ ὗ   (2) 

Where ὗ and ὗ  is the first and third quantile in text length distribution. 

Table 5-1 Exclusion criteria for token in vocabulary for BoW representation. 

Criteria Regular expression 

Present in less than 200 hundred 

sections, 

N/A 

Present in more than 70% of all the 

sections, 

N/A 

Less than 3 characters, N/A 

Containing digits or punctuation, ñ\d" and "(?u)\b\w\w+\b" 

 

 

Figure 5-2 Sequence of steps for text preprocessing for topic modelling. 

5.2.2.2 Topic modelling 

The preprocessed sections were divided into 90% and 10% to train and test LDA models, 

respectively. Several LDA models were built varying the expected number of topics. In 

addition, models were run with and without shuffling and truncating the training set. For 

every model, Perplexity was calculated over the test set to select the optimal 

hyperparameters. Perplexity is defined as the inverse of the per-word likelihood 

geometric mean as shown in Equation 3 80. A lower perplexity is related to a model with 

Lemmatization

Å['solvent', 
'evaporate', 
'pale', 'yellow', 
'solid', '[NUM]', 
'g']

Stop-words 
and 

punctuation 
removal

Å['solvent', 
'evaporated', 
'pale', 'yellow', 
'solid', '[NUM]', 
'g']

Numbers 
tagging

Å['The', 'solvent', 
'was', 
'evaporated', 
'to', 'give', 'a', 
'pale', '-', 
'yellow', 'solid', 
'(', '[NUM]', 'g', 
')', '.']

Tokenization

Å['The', 'solvent', 
'was', 
'evaporated', 
'to', 'give', 'a', 
'pale', '-', 
'yellow', 'solid', 
'(', '27.2', 'g', ')', 
'.']

Original Text

ÅñThe solvent 
was 
evaporated to 
give a pale -
yellow solid 
(27.2 g)ò



85 
 

a better generalization capability 80. Thus, the model with the lowest perplexity for the test 

set was chosen as the best. Lastly, once the optimal number of topics was chosen, 

additional experiments were performed changing hyperparameters alpha and number of 

iterations. The hyperparameters employed in the development of LDA models are 

summarised in Table 5-2. 

 ὖὩὶὴὰὩὼὭὸώὩὼὴ
  ὰέὫὴ◌

  ὔ
 (3) 

For a sample of Ὀ documents, ÌÏÇὴύ  equals to per-word likelihood of the document j, and ὔ is the number 

of words of the document Ὦ. More specifically, ὴύ  is the probability of generating the set of words ◌▒ in the 

document Ὦ as defined in LDA generation process. Thus, the better the LDA model fits the data, the higher 
probability it assigns to a set of words associated with a document from a test set. This results in a lower 
perplexity, as perplexity is inversely related to the log-likelihood of the test data. Lower perplexity values 
indicate a better fit, meaning the model can more accurately predict the structure of the unseen data. 

Table 5-2 Hyperparameters assessed for LDA model development. 

Hyperparameter Tested values 

Alpha Symmetric and asymmetric  

Iterations 50 and 200 

Number of topics 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 

80, 90, 100 

Passes 1 

Chunk size 4096 

 

In addition, the top 10 most important words per topic were determined for the best model. 

These words were first revised to identify meaningful associations within the topics and 

to validate how coherent the model outputs were. On the other hand, keywords were also 

employed to assign arbitrary topic labels for the cluster analysis which is discussed in 

more detail in the next section. 

5.2.2.3 Text clustering 

With LDA, latent topics and their contributions were determined for all the patents. In this 

way, the next step was to group documents that shared a similar idea. Thus, to define 

clusters and allocate documents to each group, k-Means algorithm was employed using 

as inputs the document representations outputted by LDA. k-Means is an iterative 

clustering technique. The algorithm works by generating k centroids, where k is a pre-set 



86 
 

number of clusters 81. Then, the assignment of documents to a particular cluster is defined 

by the distance between documents and centroids, in such a way that every document is 

assigned to the cluster whose centroid is the closest 81. Once all documents have been 

assigned, centroids are recalculated by averaging document representations81. 

Subsequently, documents are reassigned using the updated centroids. This process is 

repeated until no significant changes in the centroids are observed or after a predefined 

number of iterations has been completed 81.  

In this work, due to the large number of data, a variation called minibatch k-Means was 

applied. This version mainly differs from the original k-Means in that, instead of using all 

the data in every iteration, subsamples known as mini-batches are employed 175. 

However, as in k-Means, the optimal number of clusters must be selected. Therefore, 

various models with k ranging from 5 to 60 were trained. To choose the best model, 

Davies-Bouldin (DB) and Silhouette (S) scores were calculated as described in Equations 

4 and 5 176,177.  To calculate of these metrics, random samples of 10,000 documents were 

drawn. The calculations were done with six different samples to estimate the variability 

of the scores. In the case of the DB score, the optimal number of clusters is reached 

when the minimum value is found, whereas the opposite applies for the S score.  

 
Ὑ

ί ί

Ὠ
  

(4) 

  
Ὀὄ

ρ

Ὧ
ɫ ÍÁØὙ  

Where ί represent the average distance between the centroid of the cluster Ὥ and all its members. Ὠ  is the 

distance between the clusters Ὥ and Ὦ.  

 ί
ὦ ὥ

ÍÁØὥȟὦ
 

(5) 

 Ὓ
ρ

ὲ
ɫ ί  

Where ὥ is the average distance between the document Ὥ and the remaining documents belonging to the 

same cluster, and ὦ is the mean distance between the Ὥth documents and the documents that belongs to the 

closest cluster.  

As for the implementation of Minibatch k-Means, the scikit learn python module was 

employed 178. One of the limitations of this implementation is that it only works with a 

Euclidean distance. In this case, the inputs were the LDA document representations 

which are probabilities. As such, Euclidean distance has been proven to not be the best 



87 
 

choice for this kind of data 81. Alternatively, distances such as cosine and Hellinger seem 

to have shown to measure document similarity in a better way for clustering purposes 

81,179. Consequently, the data were previously transformed for k-Means training. As 

proxies of the cosine and Hellinger distance, two transformations were assessed: L2-

normalization and element-wise square root. The chosen distances are strongly the 

related to Euclidean distance as illustrated in Equations 6 ï 8 179. 

 
Ὀ ὀȟὁ  ὼ ώ  

(6) 

 

 
Ὀ ἸȟἹ

ὴ

ς

ή

ς
  

(7) 

 

 
Ὀ ὀȟὁ

Ὀ ὀȟὁ

ς
ȟὭὪ ȿὀȿ ρ ὥὲὨ ȿὁȿ ρ  

(8) 

 

Where ὈȟὈȟὥὲὨ Ὀ  represent Euclidean, cosine and Hellinger distances. Ὀ Ὀ  if ὼ  and ώ . 

With the centroids of the best model, the latent topic with the highest contribution was 

extracted for each cluster. Then, the keywords obtained from LDA were revised and a 

label that fit the keyword information was set. Subsequently, all sections were assigned 

to a cluster. To validate the model, a random sample of 5 sections per cluster was drawn 

and each document was revised. If the section was clearly related to the arbitrary label, 

it was marked as 1 or, otherwise, 0. In the case where there was no absolute certainty 

about the content, a value of 0.5 was given. At the same time, the sections whose content 

was more related to pharmaceutical manufacturing, for instance, having information on 

operations, methods, dosage forms or composition, were separately labelled with 1, while 

if the documents did not meet this condition, were assigned 0.  Lastly, the agreement 

between the results of the algorithm and the manual assessment of relevant documents 

was estimated using Cohen's kappa and the percentage of agreement. The first metric 

was used to measure agreement between manufacturing information and the latter to 

assess concordance between assigned label and actual section content. It is worth 

mentioning that two percentages of agreement were calculated, one for the worst case 

and another for the best. In the worst case, the sections with an assigned values of 0.5 

were rounded to 0, whereas 1 was used for the other case. 



88 
 

5.2.3 Named entity recognition (NER) 

5.2.3.1 Preprocessing 

Contrary to section 5.2.2.1, the preprocessing for NER was limited to tokenization. This 

was performed using chemdataextractor 1.3 133. However, it was noticed the package did 

not deal very well with punctuation in some particular cases. By which, additional regular 

expressions were added to the preprocessing to mitigate this effect as much as possible. 

In addition to this step, sentences were segmented using the same package. 

5.2.3.2 Training set preparation 

Initially, a set of 2,000 paragraphs considered relevant using the methodology described 

in preliminary experiments were selected. These paragraphs were segmented into 

sentences and then tokenized. Subsequently, using the IOB scheme, every token was 

manually labelled using the entity class defined in Table 5-3. The IOB scheme is a label 

methodology widely used in named entity recognition applications and stands for inside 

(I), outside (O), and beginning (B) 180. This is particularly helpful to identify entities that 

are composed of more than one token. In this approach, irrelevant tokens are labelled as 

O. As for the remaining, the token that begins the entity is marked with B followed by the 

respective label. Then, the rest of the entity tokens are marked with I-[Label]. A tagging 

example can be seen in Figure 5-3. 

Table 5-3 Definition of labels. *Category added for the final model. 

Label Definition 

AMOUNT Amount of material employed in a manufacturing 
process. Normally expressed in terms of mass or volume 
units 

DOSAGE_FORM Final product of a secondary manufacturing process 
SOLVENT Material used generally to disperse or dissolve another 

material as a part of a synthesis, extraction or dosage 
form preparation 

REACTANT Material used in primary manufacturing to synthetise or 
purify a compound. This category includes: reagents, 
catalysers, substances to adjust pH, or materials used in 
extraction such as chromatographic columns. Solvents 
are not included as there is an independent class for this 
type of materials 

EXCIPIENT Materials forming part of a dosage form formulation, 
usually do not have biological activity or are not 
responsible for the product's therapeutic effect. Solvents 



89 
 

are not included as there is an independent class for this 
type of materials 

YIELD Resulting amount or percentage respect to theoretical 
expected amount of target product obtained from a 
synthesis/purification process 

TARGET Final product obtained from a synthesis/purification 
process with a chemical structure clearly defined. This 
category excludes biological products such as proteins 
and antibodies. 

OPERATION Action or intermediary step carried out to manufacture a 
product. 

INTERMEDIATES Materials or mixture of materials which are the result of 
an operation of a previous process and intervene in a 
later operation or process. These materials are reported 
in a generic manner, for instance, some common terms 
that fall into this category within an appropriate context 
are mixture, solution, suspension, etc. 

CONDITION Specific settings under which an operation is performed. 
This includes, but is not limited to, temperature and 
pressure. 

BIOLOGICAL_MATERIAL Materials originated from either extracts or parts of 
plants, animals, bacteria or other organisms. 

EXCIPIENT_TYPE* Class assigned to an excipient depending on its chemical 
properties or function within a formulation. 

API Active pharmaceutical ingredient 
PACKAGING Materials employed as a primary or secondary packaging 

for the storage of pharmaceutical products. 
COMPOSITION Composition or concentration of the components of a 

mixture. This can be reported as a proportion, 
percentage or other concentration units like molar (M). 

EQUIPMENT Instruments, vessels, or specialised machines used in an 
operation. 

 

During model development step, additional paragraphs were also added. The added 

paragraphs were characterised by a poor performance to get their entities recognized by 

the trained models. Thus, 2,069 sentences were included. In the end, the training set 

consisted of 7,440 sentences. As a final step, sentences with one token and duplicates 

were removed to obtain 7,215 (221,257 tokens). These sentences were further corrected 

by comparing actual and predicted labels by models and manually correcting. Example 

of errors are illustrated in Figure 5-3, where the corrected error only corresponded to case 

I. The correction procedure was repeated twice, randomly selecting the order of the 

examples during training stage. 

 



90 
 

Case I Case II 

  
Figure 5-3 Example errors of labelling. Case I presents example of labelling error. Case II displays error in 

prediction. 

Finally, examples were split into training, development, and test set where sentences 

were distributed in the following percentages 80, 10 and 10, respectively. The sampling 

was randomised and stratified by paragraph labels. This sampling strategy was used to 

ensure the different types of paragraphs employed were represented during training and 

test stage. To select the best model, the performance of the NER model in the 

development set was monitored during training. As a performance metric, f1-score micro 

average was utilised. Finally, the performance over development and test set was 

reported. 

5.2.3.3 Model architecture and initial settings 

In the literature, various approaches for NER have been reported; however, methods 

based on deep learning (DL) have provided the best performance 90. DL-based NER 

consists of a system of three components: an input representation, a contextualiser 

encoder, and a label decoder 90. The input representation generates a numerical 

representation for each word or token. As representations, word embeddings such as 

word2vec, fasttext, or transformers-based models are frequently used. Nonetheless, 

other features can also be included such as character embeddings or part-of-speed 

information 90. Then, the contextualiser processes information from inputs as a sequence, 

thereby considering the token order, to generate a contextual representation that feeds 

a decoder 90. Typically, this component corresponds to bidirectional (Bi) recurrent neural 

networks with long short-term memory (LSTM) or gated recurrent unit (GRU) cells 90. 

Finally, the latter component translates the input into entity types, assigning a label to 

each token. This task is normally achieved using a conditional random field (CRF) layer 

90. This architecture is illustrated in Figure 5-4. 



91 
 

 

Figure 5-4 Common architecture for NER using DL. 

As a base architecture in this work, fasttext embeddings-BiLSTM-CRF was employed. 

To establish initial settings, word embeddings were pre-trained using gensim package 

with vector size and windows size in ranges be 100 ï 300 and 5 ï 20, respectively 131. As 

for the remaining hyperparameters, gensim default settings were used. Then, the 

embeddings were connected to a convolutional layer (Conv1D). This information fed a 

BiLSTM, which in turn, was input in a multihead attention (MHA) layer. This latter layer 

was included as some works in this area have reported to provide good results 170,181. 

MHA applies an attention mechanism over the features which enable the algorithm to 

focus in the most important features for the task.  Finally, these results input a CRF layer, 

which assigned the final label.  

The deep neural networks were trained using Tensorflow 2 132. AdamW was selected as 

the optimizer. As a performance measurement, the micro-average f1-score was utilised. 

Then, the hyperparameters were evaluated to choose the optimal model. The values 

employed for each are listed in Table 5-4.  In the selection of the most important factors, 

sequential sets of experiments were run. Firstly, the most important variables were 

filtered out, and values were selected using Placket Burman and Factorial designs. Then, 

the 2 most important variables were optimised by using a central composite design 

(CCD). These experiments were performed using paragraphs from the 49K patents 

employed in section 5.2.1. This text was used for embeddings training. As for the labelled 

data, the dataset which has the initial 2,000 paragraphs, without curation, was employed. 

Once, the best initial conditions were selected, confirmatory experiments were run to 

verify and optimise the final model. 

After sifting 250 g

[0.1 0.2 0.3] [0.4 0.2 0.1] [0.9 0.7 0.5] [0.3 0.6 0.6]

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

CRF CRF CRF CRF

O B-OPERATION B-AMOUNT I-AMOUNT

calcium

[0.8 0.8 0.6]

LSTM

LSTM

CRF

B-EXCIPIENT

carbonate

[0.2 0.1 0.9]

LSTM

LSTM

CRF

I-EXCIPIENT

Embeddings

Contextualiser

Decoder



92 
 

Table 5-4 Assessed hyperparameters for selection and optimization of NER model. 

Variable Code Layer Range Comment 

max_len A  83 to 113 When a RNN is trained using 
batches, it is necessary all the 
sequences have the same number 
of tokens. For this reason, a 
sequence max length is specified. 
When a sentence is shorter than 
max length, this will be padded. 
Otherwise, sentences are 
truncated, only considering the 
first tokens. 

numb_conv
1d 

B Conv1D 1 to 5 Number of convolution layers 

kernel_size C Conv1D 1 to 5  

filters D Conv1D 128 to 512  

dropout E  0.3 to 0.7  

lstm_units F LSTM 100 to 300 Number of recurrent units in a 
LSTM layer 

spatial_drop
out 

G  0.3 to 0.7  

mha_heads H Attention 1 to 8 Number of heads in a self-
attention layer 

mha_keys I Attention 32 to 128 Dimension of the key in a self-
attention layer 

emb_dim J Fasttext 
emebddins 

100 to 300 Embeddings dimension for the 
pretrained fasttext model 

emb_win K Fasttext 
emebddins 

5 to 20 Embeddings dimension for the 
pretrained fasttext model 

lr (log) L  -2 to -3 Learning rate (optimizer) 

wd (log) M  -3 to -4 Weight decay (optimizer) 

init N  A, B Initializer. Neural networks 
weights are usually initialised by 
taking values from a random 
distribution. However, depending 
on the library employed, the 
initializer changes, potentially 
affecting results. Which is why 2 
methodologies were assessed 
tensorflow default (A) and pytorch 
default (B) 

 

5.2.3.4 Model architecture optimization 

Confirmatory experiments were conducted varying some additional conditions not 

included in the initial experimental designs. At this stage, the full training set was used. 



93 
 

In addition, fasttext embeddings were trained, varying windows size and embedding 

dimension, with the detailed description paragraphs of around 208K patents. The main 

objective at this point was to evaluate the effect of removing Conv1D and MHA layers. 

Similarly, the experiments included additional features such as character-level 

embeddings (CE), along with variations of dropout rates, as suggested elsewhere 180. 

The best performing model was finally selected based on the highest micro-average f1-

score for both development and test set. With the chosen model, an error analysis was 

carried out to evaluate the most common mistakes. Finally, code and embeddings 

employed for this work can be found in https://github.com/Diego-

Alvarado/nlp_for_pharma_manufacturing.git  and https://doi.org/10.15129/d688a529-

cb11-4081-89a1-76bbd6a03f80. 

5.3 Results and discussion 

5.3.1 Relevant section identification 

5.3.1.1 Preliminary results 

Using LSA + k-Means on approximately 3.6 million paragraphs, the text could be grouped 

into 220 clusters. Based on cluster keywords, a total of 11 labels were established and 

assigned to each. This analysis initially provided a good insight into the type of 

information that might be found in patents. As expected, the diversity of data related to 

pharmaceuticals was abundant. Many aspects, in general, were covered in these 

documents, including invention description and background, pharmacological and 

therapeutical application, clinical evaluation, analytical techniques, manufacturing, 

among others. In information extraction applications, it has been suggested that models 

provide better results when trained in a domain-specific field 147. As can be seen, many 

areas could be identified through paragraph analysis, whereby filtering information to only 

manufacturing-related data may be the best approach to ensure the best efficiency and 

quality at extracting information before carrying out a named entity recognition task over 

each piece of text. Thus, the idea of developing a methodology that enables the 

identification of relevant paragraphs was explored.   

Since only a portion of all the collected patents was being analysed at this point, a neural 

network was trained with the 49K labelled patens to predict labels for unseen examples. 

https://github.com/Diego-Alvarado/nlp_for_pharma_manufacturing.git
https://github.com/Diego-Alvarado/nlp_for_pharma_manufacturing.git
https://doi.org/10.15129/d688a529-cb11-4081-89a1-76bbd6a03f80
https://doi.org/10.15129/d688a529-cb11-4081-89a1-76bbd6a03f80


94 
 

The labels and classification performance for each class are summarised in Figure 5-5. 

While a high f1-score was reached surpassing 90%, a paragraph-based approach 

showed to not be the most appropriate to select manufacturing data. The reason behind 

this is illustrated in Figure 5-6. Even though the algorithm selected the first two 

paragraphs accurately as relevant due to containing information on manufacturing, the 

remaining paragraph was classified into topic 9, which corresponded to chemical 

characterization. It can be noticed that although the third paragraph contained data on a 

purification process, there was also a description of mass spectrometry (MS) and nuclear 

magnetic resonance (NMR) results. Under these considerations, it is understandable why 

the algorithm classified the third paragraph as that topic. Nonetheless, if this decision was 

followed, this paragraph would have been omitted for entity extraction, thereby losing 

data related to the purification process. Like this example, many others were observed 

where paragraphs contain information on several topics which might cause a loss of data.  

 

Figure 5-5 Paragraph topic classifier performance for the assigned labels. 

On the other hand, it was also noticed that filtering by sections might be more helpful at 

the moment to collect all the relevant information. Most revised patents were structured 

in such a way that a section usually covered a specific topic, mentioning most steps and 

conditions. In the manufacturing case, this means the entire manufacturing process for a 

product is frequently described in one unique section. Going back to the example in 

Figure 5-6, if the entire section had been chosen, there would not have been a loss of 

data and, the purification data could have been included as well in all the process data.  

Nonetheless, although the use of sections may be better, some drawbacks may still be 

found. For instance, there are situations when several sections cover different steps of 



95 
 

the process, or irrelevant content could be included. In consequence, this might hinder 

the structuring of the data. In this manner, the use of sections to filter have still some 

limitations, but still, being more promising than paragraphs. Thus, this highlights the 

importance of postprocessing to mitigate these constraints. Finally, a section-based 

selection was explored for filtering information of interest instead of paragraphs as more 

data could be retrieved and ease procedures organization, despite the limitations. 

 

Figure 5-6 Example of undesirable results of paragraph classification approach. 

5.3.1.2 Sections modelling 

A total of 208,596 patents were used for topic modelling. These were equivalent to 

5,542,816 different sections. With these data, LDA models were trained to determine 

potential topics. During this process, the effect of the order of the examples and inclusion 

of long texts was assessed. Regarding the first, it has been reported that LDA may suffer 

from ñorderò effect, which means that the order of the examples in the training set may 



96 
 

affect the results 182. This was confirmed in Figure 5-7B where perplexity tended to 

increase every time the number of topics was greater. In contrast, when the order was 

randomized, the opposite behaviour was exhibited. Perplexity tends to decrease as a 

function of the number of topics, whereby shuffled data provided a behaviour that fits 

more with theory 80. In this way, the results suggested that shuffling data is necessary to 

have reliable LDA models. 

 

Figure 5-7 Distribution of the number of tokens per section (A) and Perplexities determined for LDA models 

evaluating shuffling (B) and truncation effect (C) 

Regarding the effect of text length on model performance, the distribution for the number 

of words per preprocessed section and the effect of truncation can be seen in Figure 5-7A 

and C. Nearly 87% of all the sections contained 425 tokens or fewer. This point 

corresponded to the superior limit of the boxplot, by which, based on the IQR rule, values 

greater than this threshold can be suspected to be outliers. Thus, texts whose length was 

higher than ὗ  were defined as long. Observing Figure 5-7C, truncated texts showed 

lower perplexities throughout the assessed range, compared to texts without truncation. 

This difference even led to a different optimal number of topics, with values of 60 and 90 

for truncated and non-truncated models, respectively. Furthermore, apart from the 



97 
 

difference in perplexity, the output quality was also affected, impacting on the topic 

interpretability as illustrated in Figure 5-8.  

 

Figure 5-8 Top 10 keywords for truncated (A) and non-truncated (B) LDA models. 

Overall, when the texts were not truncated, very specific words were found within the 

most important words. For instance, active ingredients or uncommon operations seemed 

to have a greater relevance (Topic 49 and 73 - Figure 5-8B). Another aspect observed in 

the sections without truncation was that the LDA model yielded topics with keywords that 

were difficult to interpret more often (Figure 5-8B ï Topic 23). Lastly, while there were 

topics with a distribution that clearly favour certain words, some groups had keywords 

with more uniform probabilities (Figure 5-8B ï Topics 32 and 73). In consequence, it is 

possible that these keywords did not generalise well the topics, by which the documents 

in these groups might not necessarily be related to what keywords suggested, reducing 

model interpretability and reliability. Once again, although this happened in both models, 

these kinds of topics were less frequent for truncated data. In this manner, the truncated 

model was concluded to be the best, with 60 latent topics. Furthermore, section truncation 



98 
 

was also demonstrated to generate more understandable topics. Keywords for both 

models can be found in Appendix B. 

Using document representation for the optimal LDA model, k-Means algorithm was 

applied to cluster documents. The results for the selection of the optimal number of 

groups are displayed in Figure 5-9. The first factor analysed was the effect of data 

transformation. Across the assessed range and for both metrics, L2-norm outperformed 

square root transformation. Knowing this, the analysis next focused on selecting the 

optimal number of clusters for normalised data. The optimal points given by the DB and 

S scores differed. However, one of the main differences between both scores was the 

variability. the S score showed values with a higher scattering compared to the DB score. 

Therefore, the differences in S score might not have been as significant as with DB index. 

Due to this consideration, the selected number of clusters for k-Means was 60, which 

was the optimal considering the DB index. 

  

Figure 5-9 Performance for k-Means model changing the number of clusters. 

5.3.1.3 Section selector performance 

Figure 5-10 depicts the LDA representation for a sample of 2000 sections, using t-

distributed stochastic neighbour embedding (t-SNE) to reduce dimensionality. A total of 

17 labels were assigned to the clusters. It was possible to visualise how documents 

belonging to the same cluster and label tend to be close to each other. An example of 

this can be seen in the references 1 and 2 (black points) in Figure 5-10, whose texts can 

be seen in Figure 5-11. These two sections were about to synthesis procedures, and it 

can be seen how the algorithm correctly classified them into a primary manufacturing 

topic, having similar values. In the same manner, upon selecting labels related to 

manufacturing, as listed in Table 5-5, LDA representations allowed the agglomeration of 



99 
 

documents into two clearly defined regions about pharmaceutical manufacturing. These 

results supported that LDA enabled the numerical comparison of documents which are 

semantically similar. In addition, LDA + k-Means enabled the separation of information 

into interpretable topics, considering this work scope. 

 

Figure 5-10 t-SNE visualization of document representations generated using LDA. 

The results of the performance assessment are summarised in Table 5-5. In this case, 

the agreement between sections and labels assigned can be seen for the best and worst 

case. The overall percentage of agreement in the worst case was around 81%. The 

lowest degree of agreement was found for the cluster assigned with the spectrometric 

data label. The LDA topic most important for this label corresponded to the number 32, 

which was characterised for having keywords with uniform probabilities, as shown in 

Figure 5-8A. As discussed previously, this fact results in keywords with a poor power of 

characterisation, which results in low generalization. As a result, these keywords were 

not helpful to define a reliable label. Another unique aspect of the documents classified 

under this label was that LDA representations were widely spread with respect to the 

others. This could be evidenced in Figure 5-10where documents belonging to analytical 

topics were very sparse, and it was difficult to appreciate a dense cluster. In this manner, 



100 
 

this cluster in particular was not reliable and grouped sections that were not related to 

the assigned label. Nonetheless, despite this cluster behaviour, it is important to note that 

the cluster did not contain sections on manufacturing considering the revised sample. 

Likewise, the label was assigned as nonrelevant since it is focused on spectrometric 

results. Therefore, for manufacturing information retrieval, the sections belonging to this 

cluster were not considered for the subsequent data extraction step, which should not 

affect final results. 

Ref. 1 (Patent Number US10590109B2) Ref. 2 (Patent Number US8324225B2) 

 

 
Figure 5-11 Example documents with similar content and classified in the same cluster (primary 

manufacturing) referenced in Figure 9. 

Table 5-5 Degree of agreement between labels assigned based on LDA keywords and manually revised 
sections 

Label Related to 
manufacturing? 

Worst 
Case 

Best 
Case 

Number of 
Clusters 

Spectrometric data No 20.0% 20.0% 1 

Primary manufacturing, 
description 

No 50.0% 60.0% 2 

Biologics, description No 60.0% 80.0% 1 

Biologics No 75.6% 86.7% 9 

Testing, evaluation No 76.0% 80.0% 5 



101 
 

Clinical data, pharmacology, 
therapy, in-vivo/in-vitro 

No 80.0% 95.6% 9 

Medical devices, materials No 80.0% 80.0% 1 

Natural product, 
nutraceuticals 

No 80.0% 80.0% 1 

Description, field, scope, 
figure 

No 92.5% 95.0% 8 

Manufacturing, testing, 
biologics 

No 100.0% 100.0% 1 

Cosmetics Yes 60.0% 80.0% 1 

Dosage forms Yes 60.0% 80.0% 1 

Primary manufacturing, 
purification, crystallization 

Yes 60.0% 100.0% 1 

Hplc Yes 80.0% 80.0% 1 

Manufacturing Yes 80.0% 90.0% 4 

Primary manufacturing, 
peptides 

Yes 80.0% 100.0% 1 

Secondary manufacturing Yes 90.0% 90.0% 2 

Primary manufacturing Yes 100.0% 100.0% 11 

Weighted Average by Number of Clusters 81.7% 89.3% 60 

 

The remaining labels presented values greater than or equal to 50%, leading to an overall 

performance greater than 80% for both cases. This suggests that there is a high 

agreement between the information provided by the documents and the interpretation 

provided by the topic keywords and clusters, at least being better than a random guess. 

Given that there was a good level of agreement between the cluster interpretation and 

the grouped sections, it was possible to generalise to a higher level by directly relating 

the labels with the possibility of containing information on manufacturing, with a special 

emphasis on small molecules. Therefore, all the clusters with a label about manufacturing 

was marked as relevant. The list of labels with relevant and irrelevant information can be 

seen in Table 5-5. In this manner, this methodology enabled to indirectly determine what 

sections were of interest. 

In the end, 22 out of 60 clusters were considered relevant. Although, as can be seen in 

Table 5-5, there were a few labels considered irrelevant that still mentioned aspects about 

fabrication and composition, these were discarded as pharmaceutically relevant because 

they only provided generic information; for instance, some sections listed all the possible 

dosage forms. Interestingly, when the agreement was calculated by relevancy, the group 



102 
 

of manufacturing had a higher level with 88.1% for the worse case, while 77.8% was 

obtained for the other group. Some possible reasons behind that were the presence of 

few sections that were related to manufacturing, and perhaps the most frequent, sections 

that could be associated with other similar labels. Finally, with model output and manual 

revision, agreement was measured using Cohenôs kappa for manufacturing data. This 

resulted in a value of 91.1%, which can be considered acceptable 183. In this way, the 

results suggested that the algorithm was able to distinguish sections with information of 

interest from those that were irrelevant. Nonetheless, it is worth to highlight that even 

though this approach may help to distinguish relevant information in an efficient manner, 

there still sections in the sample which were difficult to define thereby the final selection 

might still contain a reduced number of irrelevant information. 

5.3.2 Named entity recognition 

5.3.2.1 Experimental Designs for NER model optimization 

The initial results and the effect of each factor can be observed Table 5-6 and Figure 

5-12. The results showed the most important factor was learning rate (L), with the highest 

magnitude. The rest of the factors did not deviate significantly from normality. A possible 

reason was that the effect of L was so strong, particularly at a high level, that most of the 

scores were close to zero. In this manner, L obscured the effect of the other factors to a 

certain extent. Thus, in this run, the learning rate was concluded to be a factor that 

required to be optimized, given its magnitude. On the other hand, to confirm the effect of 

the remaining factor, a second Placket Burman design with 11 factors was performed. 

Table 5-6 Initial Placket Burman design and results for hyperparameters selection. A: sequence max length 
(number of tokens), B: number of Conv1D layers, C: kernel size, D: number of filters, E: dropout rate, F: 
LSTM units, G: spatial dropout 1D rate, H: number of heads (MHA layer), I: keys dimension (MHA), J: 

embeddings dimensions, K: embeddings windows size, L: learning rate, M: weight decay, and N: initializer. 

# A B C D E F G H I J K L M N F1-
score 

1 113 1 3 512 0.3 128 0.3 6 96 100 20 0.001 0.0001 B 74.3% 

2 113 3 1 512 0.3 256 0.5 6 32 100 5 0.001 0.0001 A 74.6% 

3 83 3 3 128 0.3 256 0.5 2 32 300 20 0.001 0.0001 B 70.4% 

4 113 3 1 128 0.3 128 0.3 2 32 100 20 0.01 0.001 B 42.2% 

5 83 1 1 512 0.3 256 0.3 2 96 300 5 0.001 0.001 B 68.1% 

6 113 1 1 512 0.5 128 0.5 2 32 300 5 0.01 0.0001 B 0.0% 

7 113 3 3 512 0.5 256 0.5 6 96 300 20 0.01 0.001 B 0.0% 

8 83 1 3 512 0.5 256 0.3 2 32 100 20 0.01 0.0001 A 6.0% 



103 
 

9 83 3 3 512 0.3 128 0.5 2 96 100 5 0.01 0.001 A 0.0% 

10 83 3 1 512 0.5 128 0.3 6 32 300 20 0.001 0.001 A 65.3% 

11 83 3 1 128 0.5 256 0.3 6 96 100 5 0.01 0.0001 B 0.0% 

12 113 1 1 128 0.5 256 0.5 2 96 100 20 0.001 0.001 A 55.1% 

13 113 1 3 128 0.3 256 0.3 6 32 300 5 0.01 0.001 A 0.0% 

14 113 3 3 128 0.5 128 0.3 2 96 300 5 0.001 0.0001 A 72.6% 

15 83 1 3 128 0.5 128 0.5 6 32 100 5 0.001 0.001 B 61.5% 

16 83 1 1 128 0.3 128 0.5 6 96 300 20 0.01 0.0001 A 0.0% 

 

 

Figure 5-12 Normal plot of hyperparameters effects on F1-score for NER models. A: sequence max length 
(number of tokens), B: number of Conv1D layers, C: kernel size, D: number of filters, E: dropout rate, F: 
LSTM units, G: spatial dropout 1D rate, H: number of heads (MHA layer), I: keys dimension (MHA), J: 

embeddings dimensions, K: embeddings windows size, L: learning rate, M: weight decay, and N: initializer. 

For the second Placket Burman, the factor L was fixed to 0.001. Similarly, the variables 

corresponding to max_len (A) and init (N) were also maintained constant with values of 

113 and default initializer A. The max sequence length was adjusted at the highest level 

as the more tokens are included, the more likely is to retrieve entities which are mentioned 

in the last part of a string, for long sentences. In addition, this variable did not have a 

negative impact on model performance. Regarding the initializer, the default for 

TensorFlow library was set since, even though it has been pointed out that this factor 

may affect model convergence 64, it is not a parameter which is usually reported to be 

optimized for named entity recognition applications 92,172,180,181. Apart from this, in the 

same manner as sequence length, this parameter did not affect significantly the 



104 
 

performance either. As for the remaining variables, some of the ranges were widened to 

confirm whether the variable definitely has no effect, or the levels employed in the 

previous experiment were not broad enough to observe a significant difference. The 

second design is shown in Table 5-7. 

Table 5-7 Confirmatory Placket Burman design and results for hyperparameters selection. B: number of 
Conv1D layers, C: kernel size, D: number of filters, E: dropout rate, F: LSTM units, G: spatial dropout 1D 

rate, H: number of heads (MHA layer), I: keys dimension (MHA), J: embeddings dimensions, K: 

embeddings windows size, and M: weight decay. 

Run B C D E F G H I J K M F1-score 

1 4 1 128 0.3 300 0.3 6 128 100 20 0.001 40.7% 

2 1 5 128 0.7 300 0.3 6 128 300 5 0.0001 69.1% 

3 4 1 512 0.7 300 0.3 1 32 300 5 0.001 51.3% 

4 1 5 512 0.3 300 0.7 6 32 100 5 0.001 48.8% 

5 1 1 128 0.7 100 0.7 6 32 300 20 0.001 38.4% 

6 4 5 128 0.3 100 0.7 1 128 300 5 0.001 28.0% 

7 4 5 128 0.7 300 0.7 1 32 100 20 0.0001 34.2% 

8 1 1 512 0.3 300 0.7 1 128 300 20 0.0001 69.6% 

9 1 1 128 0.3 100 0.3 1 32 100 5 0.0001 67.8% 

10 4 1 512 0.7 100 0.7 6 128 100 5 0.0001 58.0% 

11 4 5 512 0.3 100 0.3 6 32 300 20 0.0001 64.9% 

12 1 5 512 0.7 100 0.3 1 128 100 20 0.001 44.6% 

 

The results of the second design are shown in Table 5-7 and hyperparameters effects 

can be seen in Figure 5-13. In this case, factor M (weight decay) had the greatest effect 

on performance, by which M was further optimized in a final CCD, along with the learning 

rate. The next hyperparameters were G (spatial dropout), which is related to E (dropout). 

Dropout is usually applied to deactivate randomly a pre-set proportion of units at the 

training stage, which mitigates overfitting 184. However, an excess of deactivated units 

may hinder model training, whereby this value should be chosen carefully184. For both 

types of dropouts, the effect was negative by which a lower dropout favours model 

performance. Thus, this was fixed at 0.3.  



105 
 

 

Figure 5-13 Normal plot (A) and magnitude (B) of hyperparameters effects on F1-score from Confirmatory 
Placket Burman design. B: number of Conv1D layers, C: kernel size, D: number of filters, E: dropout rate, 
F: LSTM units, G: spatial dropout 1D rate, H: number of heads (MHA layer), I: keys dimension (MHA), J: 

embeddings dimensions, K: embeddings windows size, and M: weight decay. 

Next, the hyperparameters related to the convolutional layer such as B, C, and D also 

had an important effect. Whereas the effect of B and C was negative, D had the opposite. 

This indicates the highest performance can be obtained at the lowest levels of kernel size 

(C) and the number of layers (B). A convolutional layer has been suggested to help the 

model to detect semantic features that are more relevant to text classification tasks 185. 

However, in this work architecture, Conv1D followed the embedding layer, by which many 

layers or a higher kernel size may cause excessive filtering resulting in a loss of 

information from word embeddings. This also leads to the question of whether a 

convolutional layer actually helps to retrieve more information. To evaluate this, a 

confirmatory experiment was carried out. As for the layer settings, it was also shown that 

a high number of filters (D) seems to be favourable for the model. In the end, the best 

kernel size and the number of filters were 1 and 512, respectively.  

Regarding attention layer parameters H and I, although they seemed to increase f1-

score, the magnitude of their effects was not significant compared to the others. In 

particular, the size of each attention head for keys (I) had an effect of around 0.7%. Since 

no major benefit was obtained from this parameter, for the next experiments, the middle 

point (64) was chosen. On the other side, the number of heads (H) had a greater effect 

with nearly 4.1%, therefore, the highest level was selected. However, the overall effect 

that this layer provides is lower considering the number of parameters that requires, thus, 

this layer was subsequently evaluated to see whether it improves NER performance. 



106 
 

The influence of hyperparameters related to NER main components such as embeddings 

and LSTM layer was moderate to low. The embeddings parameters windows size (K) 

and embeddings dimensions (J) behaved inversely. Pretrained embedding with a higher 

number of dimensions provided better results. This is aligned with previous works that 

claim that embeddings with higher dimensions tend to represent better semantic 

information of the words 88. On the other hand, a lower window size favoured model 

performance. This parameter defines how many words behind and ahead are evaluated 

with respect to a particular word in a sentence to train embeddings. A wide window might 

cause the algorithm to lose focus on the target word, degrading the representation of 

semantic information for this data. LSTM number of units in turn had a behaviour where 

the highest number of units seemed to give a better contextual representation for entity 

recognition, although the effect was expected to be greater given the importance of this 

component, by which this was verified subsequently. In this manner, the best pre-trained 

embeddings had parameters windows size 5 and dimension 300.  

To confirm the effect of the variables related to Conv1D, MHA and LSTM layers, whose 

magnitude was low, a third batch of experiments was run. For this case, a full factorial 

design was employed with two centre points. The number of headings for the attention 

layer was widened to ensure a larger range was covered. Conv1D parameters were set 

as aforementioned. The levels for LSTM units used in the previous experiments were 

maintained. The matrix design can be seen in Table 5-8 and results in Figure 5-14.  

Table 5-8 Full Factorial design and results for hyperparameters selection. B: number of Conv1D layers, F: 
LSTM units, and H: number of heads (MHA layer). 

Run B F H F1-score 

1 2 200 5 75.8% 

2 1 300 8 75.7% 

3 1 300 2 75.9% 

4 3 300 8 74.9% 

5 3 300 2 76.0% 

6 1 100 8 75.6% 

7 1 100 2 75.7% 

8 3 100 8 74.6% 

9 3 100 2 75.0% 

10 2 200 5 75.7% 

Average 75.5% 

 



107 
 

 

Figure 5-14 Normal plot (A) and magnitude (B) of hyperparameters effects on F1-score from Factorial 
design. B: number of Conv1D layers, F: LSTM units, and H: number of heads (MHA layer). 

Factorial experiments yielded the overall effects were not significantly different. This can 

be seen in Figure 5-14, where no significant deviations from normal distribution were 

found. By observing effect magnitude, the negative impact of the addition of convolutional 

layer (B) on f1-score was confirmed, with this factor having the highest effect. Similar to 

the previous set of experiments, more LSTM units (F) seemed to increase recognition 

performance, but it only generated a marginal difference. Nonetheless, the number of 

heads (H) in the attention layer effect resulted in the opposite trend to what was observed, 

where more heads improved performance. There are two possible hypotheses about this 

behaviour.  

On the one hand, the levels employed in factorial design were expanded to 2, 5, and 8, 

whereas previously 1 and 6 heads were assessed. The maximum performance was 

reached with 5 and 6 heads, which meant that a reduced number of heads may not have 

a positive impact, in the same way as an excessive number, as illustrated in Figure 5-15. 

As a result, the optimal value of this hyperparameter would be around 5. On the other 

hand, the obtained effects in this experiment were not particularly large, which might be 

due to the observed difference being random. The rest of the factors yielded a similar 

behaviour as exhibited in previous models. This led to conclude that the best 

hyperparameters for B, F, and H were 1, 300, and 5, respectively. However, the trends 

shown by the B and H did not confirm the benefits of the convolutional and attention layer 

on the improvement of entity recognition, reinforcing the need to carry out confirmatory 

experiments without these layers. 



108 
 

 

Figure 5-15 F1-score micro average vs the Number of Heads in MHA layer 

Going back to the previous experiments, the parameters learning rate and weight decay 

turned out to be the most important. Thus, a central composite design (CCD) was used 

for optimization. The results of weight decay and learning rate optimization can be seen 

in Figure 5-16. The contour plot showed that extreme values of both hyperparameters 

were harmful to model performance. In addition, it was confirmed that the values 

employed in the previous tests were within the area where the highest f1-scores could be 

obtained (learning rate 0.001 and weight decay 0.0001). Learning rate has been reported 

in the literature to be perhaps the most important hyperparameter to optimize 64. This 

statement is in line with the results obtained in this work. Finally, the optimal values 

yielded by the results wereρπȢ   and ρπȢ  for learning rate and weight decay, 

calculated through the fitted curve. 



109 
 

 

Figure 5-16 Contour plot Weight Decay vs Learning Rate. 

To sum up this section, the best values for the majority of hyperparameters were defined 

using different sets of experiments. The most important variables were learning rate and 

weight decay, which are related to the optimizer component for training the model. As for 

the other features, the set values can be seen in the Table 5-9. To highlight, most of the 

variables had a consistent effect throughout all the experiments, however, there were still 

questions about the effect of attention and convolutional layers. This led to verifying the 

actual benefit of including these layers, by which additional tests were carried out to 

confirm this. In the end, at this point, a base architecture was defined, but the 

inclusion/exclusion of some parts of the model might improve performance further which 

is explored in the following sections. 

Table 5-9 Summary selected values for NER model hyperparameters. *Layers to confirm 

Hyperparameters Selected Value 

A: Sequence max length 113 

B: Number of Conv1D layers* 1 

C: Kernel size* 1 

D: Number of filters* 512 

E: Dropout rate 0.3 



110 
 

F: LSTM units 300 

G: Spatial dropout 1D rate 0.3 

H: Number of heads (MHA)* 5 

I: Keys dimension (MHA)* 64 

J: Embeddings dimensions 300 

K: Embeddings windows size 5 

L: Learning rate ρπȢ  

M: Weight decay ρπȢ  

N: Initializer. A 

  

5.3.2.2 Confirmatory experiments 

The summary of the results can be seen in Table 5-10. Using as a base model the 

architecture without convolution or attention layers (BiLSTM), it can be seen that the self-

attention layer did not enhance f1-score in any case. Instead, a reduction of 2.6% on 

average was observed when used. On the other hand, Conv1D seems to have a 

significant improvement in model performance, thereby confirming the effect of this layer 

discussed in the previous section, helping to filter relevant semantic features 185. A similar 

effect was expected for the attention layer; however, this was not the case. In this manner, 

for the best model, the attention layer was discarded, whereas the Conv1D layer was 

demonstrated to be needed to have the best performance possible.  

Table 5-10 F1-scores (micro-average) for confirmatory models in development and test sets. BiLSTM: 
Bidirectional Long Short-Term Memory, Conv1D: unidimensional convolution, Attention: multihead self-

attention, CE: Character embeddings. 

Model Dev Test Average 

BiLSTM 81.7% 79.6% 80.6% 

BiLSTM + Conv1D 84.6% 82.0% 83.3% 

BiLSTM + Attention 79.4% 76.7% 78.0% 

BiLSTM + Attention + Conv1D 83.8% 82.0% 82.9% 

BiLSTM + Conv1D + CE + Dropout (0.3) 84.7% 83.5% 84.1% 

BiLSTM + Conv1D + CE + Dropout (0.5) 84.9% 83.2% 84.0% 

BiLSTM + Conv1D + CE + Dropout (0.7) 85.4% 83.0% 84.2% 

 

 



111 
 

 

Figure 5-17 Best model architecture for NER 

In addition to the inclusion or exclusion of specific layers, the confirmatory test also 

included the evaluation of the use of additional features such as characters embeddings 

(CE). CE have been proven to enhance NER performance in several domains 180. To 

some extent, this is achieved by modelling other features not considered by word 

embeddings such as word morphology and spelling 180. However, the effect of CE might 

be obscured by the effect of word features 180. Due to this, some authors recommend 

adjusting dropout to maximise the effect of CE and model performance.  Therefore, tests 

using CE with several levels of dropout were also assessed 180. As observed in Table 

5-10, the additional features increased model performance independently of the rates of 

dropout used, with f1-scores surpassing 83.0% in all cases. When comparing the 



112 
 

behaviour of performance metrics using different dropouts, a disparity in trends was 

observed. For the development set, the higher the dropout, the better the performance, 

while the test set resulted in the opposite. However, on average, the former trend was 

dominant, whereby the model with the highest dropout was selected as the best. The 

best model architecture is illustrated in Figure 5-17. 

5.3.2.3 Error analysis 

The performance of the final model for each entity is broken down in Table 5-11. Overall 

performance, in terms of precision and recall, was 84.9% and 83.5%. These values were 

comparable to other works in similar domains, where results revolved around 60 and 98% 

147. To highlight, the 3 most difficult entities to recognize were related to packaging 

materials, excipient type, and targets, having the lowest values for the different metrics. 

A key aspect of these types of entity is the low recall, which is translated into a loss of 

information during extraction. From the confusion matrix shown in Figure 5-18 Confusion 

matrix for NER, the most common error for these entities was not to be recognized or 

classified as irrelevant (ñOò). Additionally, this error was also the most frequent among 

the other types of entities.  

Table 5-11 Breakdown of the performance for best NER model. 

Entity Precision Recall F1-Score 

AMOUNT 94.1% 95.0% 94.5% 

API 88.1% 88.2% 88.1% 

BIOLOGICAL_MATERIAL 87.2% 83.6% 85.3% 

COMPOSITION 75.8% 81.1% 78.1% 

CONDITION 89.3% 83.3% 86.2% 

DOSAGE_FORM 80.7% 82.4% 81.5% 

EQUIPMENT 80.2% 81.3% 80.6% 

EXCIPIENT 83.3% 79.1% 81.1% 

EXCIPIENT_TYPE 70.9% 64.6% 67.6% 

INTERMEDIATES 78.5% 75.5% 76.9% 

OPERATION 89.6% 89.1% 89.4% 

PACKAGING 66.5% 58.0% 61.8% 

REACTANT 81.2% 83.4% 82.3% 

SOLVENT 88.7% 88.6% 88.7% 

TARGET 73.2% 72.9% 72.6% 

YIELD 97.4% 94.4% 95.7% 

micro avg 84.9% 83.5% 84.2% 

 



113 
 

 

Figure 5-18 Confusion matrix for NER 

Interestingly, in the specific cases of material-related entities such as targets or 

packaging, these were also misclassified into another material class such as reactant or 

dosage form, respectively. It was noticed that this behaviour could be extrapolated to any 

other similar type of entity, for instance, API, excipients, or solvents. Consequently, it can 

be concluded that the model was associating the materials with material-concept tags. 

Going to other types of entities such as amount, composition, and yield, these tended to 

be classified into one another, when misclassified. However, despite the error, the model 

still associated entities with similar concepts. In contrast, this trend was not observed in 

operations or conditions. Operations were sometimes tagged as intermediates or dosage 

forms were classified as operations. However, these cases were marginal compared to 

operations falling into the ñOò class, representing 0.8% and 1.5% of the predictions, 

respectively. Furthermore, other types of errors were even less frequent. Thus, overall, 

the model yielded errors that could be considered reasonable in most cases. However, 



114 
 

for information retrieval and machine learning development, further processing and 

cleaning steps may be required to mitigate the effect of these errors on the reliability of 

the extracted data. As for the possible causes of these errors, these might be explained 

by two sources: context modelling and training set size. 

In the first instance, sentences were used as inputs for NER model and, for this type of 

input, the surrounding words might have not sufficed to know whether or not a token 

belongs to a specific category occasionally. An example of this was seen with materials 

that can be used as excipient or reactant like Sodium Hydroxide or Hydrochloric Acid, 

where in a synthesis procedure, the model recognized them as EXCIPIENT. Another 

possible reason may be that the employed embeddings do not completely capture the 

differences between the entities. In this regard, the embeddings deployed for the present 

work generate a unique representation for each token. Recent developments have 

provided embeddings based on transformers that generate representations for tokens 

considering context 94,147,186. In this way, the same word may have several 

representations depending on the other surrounding words. This approach has shown 

good results in other domains  94,147,186, which can be worth exploring as an opportunity 

for improvement in future works. 

Going back to the cases of targets and packaging materials, a characteristic of these 

types of entity was that there were not many examples in the training set. Nearly 2.0% of 

the sentences had terms related to packaging materials, while around 2.6% contained 

tokens about targets. In this manner, the inclusion of examples containing this type of 

entity with a greater diversity of terms might help the model learn to identify these better. 

Although it was observed that these entities were not mentioned very often throughout 

the patents compared to not being identified. In particular, the main focus of the studied 

patents was formulations and packaging materials were not mentioned. In the case of 

targets, a common pattern in the analysed document was the implicit reference; thus, 

chemical structure or name was described in different sections. Additionally, these 

entities were not abundant in the corpus, hindering model learning. 

5.4 Summary 

In this chapter, a set of tools was developed to aid the extraction of information on primary 

and secondary manufacturing from patents. The process by which these tools were 



115 
 

trained and validated is discussed throughout the chapter. The first component comprises 

a section selector. This model filters sections that potentially contain information on 

manufacturing, with special emphasis on small molecules. This made use of 

unsupervised approaches such as LDA and k-Means to group documents and provide 

interpretation for each cluster based on keywords. The interpretability and agreement of 

the cluster topics were validated by manual revision of a sample of sections. The overall 

degree of agreement between assigned topic labels based on the cluster keywords and 

the actual section topic was 81.7%, in the worst case. For the identification of relevant 

documents, the agreement was measured using Cohenôs kappa, obtaining a value of 

91.1%. This suggests that there is a good level of agreement between the output of the 

model and the actual section topic. In this manner, this approach has been proven to be 

useful to select relevant fragments of text. Then, once the fragments of text containing 

the relevant information have been filtered, it is necessary to apply another algorithm that 

recognizes the specific information we are interested in extracting. 

To accomplish this, a NER model was trained. This model consisted of a deep neural 

network with a base architecture comprising word embeddings, a contextualiser 

(BiLSTM) and a decoder (CRF). After optimizing hyperparameters and neural network 

architecture, the best architecture was determined. During optimization, the 

hyperparameters related to the optimizer (learning rate and weight decay) were found to 

be the most important. In addition to this, the inclusion of a convolutional layer and 

additional features like character embeddings proved to be helpful to enhance entity 

recognition performance. The overall performance for the NER model, measured using 

the micro-average f1-score, was 84.2%. The most common errors were associated with 

the inability to detect an entity, followed by confusion between recognized entities, to a 

lesser extent. For instance, a material which is a final product of a synthesis (TARGET) 

could be confused with a reactant. However, these kinds of error seem to be occasional. 

Future work focused on improving the NER algorithm may focus on using word 

embeddings based on transformers. Approaches such as bidirectional encoder 

representations from Transformers (BERT) are more context-sensitive and have 

provided promising results in other domains helping models to characterise words whose 

meaning is dependent on context. However, the developed model showed to be able to 

recognize the required information with a high level of accuracy, although some errors 



116 
 

may still occur. Due to this, when applying, post-processing steps are recommended to 

mitigate the effect of errors in dataset construction or machine learning application 

reliability using the data extracted by these approaches. This will be discussed in more 

detail in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



117 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6. Deep Generative Models for Primary 

Manufacturing Process Design 

  



118 
 

6.1 Introduction 

In primary manufacturing, deep learning (DL) has become a powerful tool to assist 

process design. With novel emerging techniques and substantial efforts done to build 

large datasets, multiple models have been trained to achieve tasks in specific areas in 

material discovery, and synthesis route prediction, being the latter perhaps the most 

relevant in manufacturing. Specifically, it is possible to find commercial platforms based 

on DL for retrosynthetic planning such as IBM RXN 187. In addition, these developments 

are not only limited to this task but there are also tools to predict sequences of operations 

to perform a particular reaction 43. Complementing this, deep neural network architectures 

in the prediction of reaction yield, conditions, and optimal solvent can also be found 

43,188,189. In this manner, providing a set of models, that in conjunction, can cover various 

considerations in reaction planning. This could in turn allow a more informed, rapid, and 

autonomous process design, by targeting feasible chemical reactions with their 

respective process and conditions, saving time and resources. 

To highlight, many of these options employ sequence-to-sequence or translation-based 

approaches to predict a synthesis path for a target molecule. On the other hand, there 

have been proposals using deep generative models (DGMs). In this sense, various 

models have been cited previously in this work such as the developments performed by 

R. Tempke et al and S. Li et al 60,61. Although sequence-to-sequence models have shown 

promising results, it has been argued that these are more likely to inherit biases from 

datasets 60. Typically, these biases can be related to that sources mainly report 

successful experiments 60. In this manner, the possibility of discovering new routes or 

alternatives can be restricted to interpolation based on existing data. This has become a 

strong driver to explore the applicability of DGMs in different aspects of synthesis 

planning given their capacity to generate examples not observed in the training set and 

provide diverse options. Thus, apart from chemical reaction generation, the application 

of DMGs, such as variational autoencoder (VAE), has also been tested to predict reaction 

conditions 190,191.  

Nonetheless, as discussed throughout this work, the availability of models for the 

generation of sequences of operations is limited. The main development in this area, 

proposed by A. Vaucher et al, utilises translation-based approaches 43. This model 



119 
 

involves transformers architectures that, processing information on a chemical reaction 

expressed as a reaction SMILES, outputs a sequence of actions and conditions to 

produce a given target molecule. Thus, the model has demonstrated the potential of DL 

in generating experimentally valid procedures and has established a foundation in this 

area 43. Aligned with this, DGMs could expand the application of DL for manufacturing 

sequence generation, offering solutions to the limitations faced by traditional models. As 

discussed previously, the low degree of generalisation of predictive approaches could be 

overcome by generative modelling as these would allow learning more complex 

relationships and distributions. These might facilitate a wider exploration in the 

manufacturing space to discover different routes and attain more generalisability.  

Thus, this chapter presents the steps taken for the design and training of DGMs. These 

are summarised in Figure 6-1. In particular, the following aspects are discussed: the 

development of a training set, evaluation of different architectures, and applicability and 

limitations of these models. As with any DL model, a large number of data is required. In 

this manner, making use of the tools developed, a training set for sequence prediction is 

built. Previously, it has been mentioned models can inherit biases from the data. 

Therefore, the training set is described, and their limitations are explored. As for the 

modelling, considering the selection of operations must be customised according to the 

chemical reaction materials, there is a special focus on conditioned models. Going more 

into detail about the models, frameworks such as adversarial autoencoder (AAE) and 

variational autoencoder (VAE) are assessed along with the effect of variations in 

architecture and hyperparameters. Finally, performance metrics and limitations are also 

analysed to provide insights into the feasibility of employing these models in real-world 

manufacturing scenarios. 



120 
 

 

Figure 6-1. Steps for generative model development for manufacturing routes generation for primary 
domain. 

6.2 Methods 

6.2.1 Dataset development 

In the previous chapter, ML models were developed to identify sections about 

manufacturing and then extract keywords for primary and secondary processing. Thus, 

sections focused on synthesis and purification were selected and named entities were 

extracted using the NER model. In this regard, sections that mentioned keywords related 

to dosage forms and excipients were discarded. In the same manner, records without 

operations were also excluded. On the other hand, procedures whose target could be 

associated with an InChI identifier were considered for further analyses. This resulted in 

a dataset with 716,707 records in 30,854 patents, where each represented the steps for 

a single reaction or purification of a unique target molecule. With this initial dataset, 

terminology was then standardised as indicated in Chapter 3, subsection Dataset 



121 
 

Cleaning and Curation. Nonetheless, specific details for the harmonisation of conditions, 

materials, and operations are provided below. 

Firstly, materials classified as solvents and reactants were processed by removing stop-

words. The terms that only consisted of anions were removed from the dataset based on 

a list, given that the information on the molecule entity was assumed to be incomplete or 

ambiguous. Then, InChI identifier was searched for each material using Pipeline Pilot 

software or pubchempy module in python. To tackle spelling mistakes of the unidentified 

materials, rapidfuzz module was used to determine the matching between the remaining 

unidentified terms and a dictionary built from the entities with InChI. This was only applied 

to the most common substances. For the standardisation of intermediates, conditions, 

and operations, it proceeded individually for each type of entity as indicated in Chapter 3 

to generate clusters of entities. Then, through the most representative words of each 

cluster (closest words to the centroid), a label was assigned.  For conditions, each cluster 

depicted the type of conditions such as temperature or time. These were further 

processed by separating magnitudes and units to later convert all to the same units. This 

was applied mostly for temperature and time, as these were the most prevalent 

conditions.  

On the other side, the clusters of operations or intermediates gathered synonyms of the 

same action or type of substance, respectively. In the particular case of operations, the 

assignation was verified manually by revising all the terms. At this point, new assignations 

or types of actions were added since some terms found did not fit accurately with the 

initially allocated definition of the clusters. After this first validation, a second adjustment 

was carried out by considering the related materials and/or conditions. For instance, if a 

term had an ambiguous type of action, like óincreaseô, and was associated with a condition 

related to temperature, the type of action was reallocated to óheatô, or if the operation 

corresponded to a ódryô action associated with a material such as ómagnesium sulphateô, 

the operation was reassigned into ódry solutionô class. As a reference for the 

harmonisation of actions, the concepts and definitions proposed by 95,103 were adapted to 

this work. A list of the standardised terms used can be found in Appendix A. Then, the 

resulting dataset was validated by drawing a random sample of 100 procedures and 

manually comparing the observed information to the source. Recall, Precision, and F1-



122 
 

score were estimated using this information. Finally, additional data was excluded 

according to the criteria described in Table 6-1 to be used in generative model training.  

Table 6-1. Exclusion criteria of manufacturing procedures from the dataset for model training. a Duplicates 
corresponded to patents that reported the same molecules and procedures but with a different scope.  

Exclusion criteria Number of records discarded 

1. Duplicate procedures and target a 231,958 

2. Presence of ambiguous or irrelevant operation 
types such as ñfollow another procedureò, 
ñsecondary manufacturingò, ñshapeò, 
ñdecolouriseò, ñsetò, ñreduceò, ñincreaseò, ñreturnò, 
ñreplaceò, ñproceedò, and ñothersò 

14,897 

3. Number of steps lower than 2 and higher than 28 
(excluding ñno alteringò or ñno actionò operations) 
b 

35,592 

4. More than 11 materials (target + solvents + 
reactants) 

1,241 

5. Finishing with operations related to ñaddò, ñmake 
solutionò or starting with ñremoveò 

6,537 

6. Likely associated with multiple reactions 29,840 

7. Less than 3 types of operations based on classes 
defined in Appendix A Table A1, errors in the 
order of operations, or multiple repeating steps 

11,349 

Final number of records 385,293 

 

Ideally, it is expected that a manufacturing sequence provides a minimum amount of 

information useful to execute the process. Therefore, brief sequences with only one 

reported step (3) or with ambiguous terms (2) were excluded. Similarly, it was desirable 

that a procedure reported different or diverse types of operations that described, as 

accurately as possible, how materials were manipulated and/or the different 

transformations that these underwent to yield the target molecule. In this manner, the 

following five operation categories were defined founded on the terms observed in the 

final dataset: material handling, material mixing, parameter setting, chemical 

transformation, and separation methods. Thus, sequences with operations falling into at 

least three of these categories were maintained for model development (7). Finally, it was 

expected that a chain of operations maintained a logical order or consistency in terms of 

repetitions, transformations, or typical associated actions. An example of this criterion 

was that sequences with three or more consecutive operations being the same were 

discarded. Addition criteria, such as (3) (> 28 steps) and (4) aimed at optimising 



123 
 

computational cost and removing atypical sequences, were taken into account. Finally, 

the resulting dataset was randomly split into 80%, 10% and 10% for training, 

development, and validation, respectively. The final dataset can be found in 

https://zenodo.org/records/13377654. 

6.2.2 Output representation 

Manufacturing sequences were represented using two approaches as can be observed 

in. Table 6-2. Representation A only consists of a list of operations found in the procedure. 

This representation was employed in exploratory experiments. On the other hand, 

representation B was based on the implementation of action prediction using 

transformers by Vaucher et al 43. Apart from operations, the sequence includes 

placeholders to associate materials and target molecules with the operations through an 

index within $$. Similarly, conditions of temperature, time, and pH were also included in 

this representation through a class within %% symbol. The number within %% indicates 

a range of the specified condition. The equivalency of classes and ranges is described in 

Appendix C. Finally, a YIELD token is used to indicate the target molecule and the 

process end. Compared to A, this representation provides more information about the 

process and is more readable. B was also used to train models and compared to Vaucher 

et al work.   

Table 6-2. Examples of manufacturing sequences representations. $$: material; %% condition; T: 
temperature; t: time; if no letter is included within %%, it refers to pH. 

Patent No. US8859535B2 
 

Output 
Representation A 

Output 
Representation B* 

Intermediate 178.2 (4-Bromophenyl)-
(2-oxabicyclo[2.2.2]oct-4-
yl)methanone  
To a solution of (4-Bromo-phenyl)-(2-
oxa-bicyclo[2.2.2]oct-4-yl)methanol 
(224 mg, 0.821 mmol) in DCM (13 ml) 
was added a total of manganese 
dioxide (1.414 g, 16.264 mmol) at RT 
and the reaction mixture was stirred for 
20 hrs. The suspension was filtered 
through a pad of hyflo and the residue 
was washed with DCM, dried in vacuo 
to yield the title intermediate (220 mg, 
0.745 mmol, 91%) as a colourless 
solid. 

1. ADD 
2. STIR 
3. FILTER 
4. WASH 
5. DRY [VACUUM] 

1. ADD $0$ 
2. ADD $3$ 
3. ADD $1$ at 
%T2% 
4. STIR for %t3% 
5. FILTER 
6. WASH with DCM 
7. DRY [VACUUM] 
8. YIELD: $2$ 

https://zenodo.org/records/13377654


124 
 

 

6.2.3 Input representation 

A key characteristic of the generative models was the capability of customising the 

generated sequence according to a target molecule or material properties. To ensure 

this, models were trained in a supervised manner by inputting information on either target 

or precursors + target. However, various options can be employed to represent molecules 

in ML. For instance, molecular descriptors have been historically used. In the same 

manner, different types of fingerprints have shown good results for distinct machine-

learning applications 192,193. Additionally, deep learning has enabled the usage of discrete 

representations such a SMILES and molecular graphs for properties prediction as well 

as molecule generation 193,194. As can be seen, there are multiple alternatives to represent 

molecules. Thus, the first step of model design was to define which of these may be the 

most appropriate for manufacturing sequence generation. 

In order to assess what representation could potentially provide better performance on 

generative modelling, their capability of sequence prediction was studied. Thus, several 

deep neural networks were trained using different types of representations. The 

evaluated representations are described in Table 6-3. Initially, as an exploratory stage, 

the predictability of representation A was carried out by modifying different settings of the 

models. Subsequently, to compare to other models available, deep neural networks to 

predict representation B based on Transformers proposed by Vaucher et al 

representation B were adapted. 

Table 6-3. Assessed molecular representations for generative modelling. 

Representation Description 

Molecular descriptors Includes 1D and 2D descriptors. 1D 
groups atoms counts and 
physicochemical properties such as LogP, 
polar surface area, etc. 2D refers to 
molecule fragments and connectivity 
indices195.  

Simplified molecular-input line-entry 
system (SMILES) 

Consists of sequence of ASCII characters 
assigned following rules based on 
molecular graphs and connectivity196. 

Molecular ACCess System (MACCS) 
Keys 

Binary code of 166 bits where each value 
represents the presence or absence of a 
molecule substructure197. 



125 
 

Min-hashed Fingerprint (MHFP-2048) Sequence of integers from 0 to 2047. 
Each integer decodes a substructure of a 
molecule. Proposed by Capecchi et at in 
2020192. 

SVAE VAE to generate SMILES was pre-trained 
and the latent space obtained was used 
as input in the predictive models, the 
architecture of this model was adapted 
from Dollar et al127 

 

6.2.3.1 Prediction of actions 

Going more into detail about the architecture employed in the prediction, it was expected 

the different types of networks may yield different performances. In this manner, if only 

one type of architecture were used, it could be argued that the network employed may 

not have been able to use the information provided by the representations efficiently to 

produce good results. To study the effect of the inputs more accurately, two different 

types of neural networks were employed, one based on recurrent neural networks (RNN) 

and another using Transformers. The hyperparameters applied to each of these neural 

networks are described in Table 6-4. Subsequently, models to predict sequences were 

trained using as outputs only operations and varying target molecule representation.  

When SMILES was used as a representation and fed directly into the model, an additional 

module was included. This module consisted of an embedding layer, which received 

SMILES characters, with a dimension of 300; 3 stacked GRU layers with 300 hidden 

units; an additive attention layer; a global max pooling; and finally, a dense layer with 128 

units. Both, RNN and transformer networks, were trained using Adam optimizer. The 

learning rate was set in 5e-4 for RNN, while a learning rate scheduler was used for 

transformers where the learning rate started from 0 and increased linearly every step for 

15 epochs to 1e-4. The training was initially programmed to continue for 150 epochs. 

BLEU score was monitored for a random sample drawn from the test set in each epoch. 

However, this was stopped early if there was no improvement in the performance metric 

for 30 consecutive epochs. Teacher forcing was employed to ease learning. 

Subsequently, additional transformers and RNN networks were trained using as inputs 

randomly generated vectors as control. Categorical cross entropy was used as a loss 

function. 



126 
 

Table 6-4. Sequence prediction networks. Architecture taken and adapted from the decoder proposed by 

Dollar et al127. a transformer blocks were implemented as proposed by Vaswani et al112. 

Layer type Activation  Hyperparameters 

RNN 

Input   Max sequence length: 30 

Embedding  Embedding dim: 30 

Dense Relu Units: 128 

GRU (Layer 1) Tanh  Units: 128 

GRU (Layer 2) Tanh Units: 128 

GRU (Layer 3) Tanh Units: 128 

Dense Softmax Units: No. Operations 

Transformers 

Input  Max sequence length: 30 

Embedding  Embedding dim: 300 

Transformer encoder 
a 

Relu No. blocks: 1 
Heads: 1 
Key dim: 512 
Feed forward: 300 

Transformer decoder 
a 

Relu No. Blocks: 1 
Self-attention 
Heads: 1 
Key dim: 512 
Cross attention 
Heads: 1 
Key dim: 512 
Feed forward: 300 

Dense Softmax Units: No. Operations 

 

With the descriptors that provided the highest BLEU, a transformers network was then 

trained using as inputs target + precursors. Materials not related to operations of 

separation or purification were chosen as precursors. Thus, the inputs of each procedure 

were represented as a matrix with dimensions (number of materials, representation 

dimension). Transformers-based model was chosen to model inputs with this structure 

as this layer is permutation invariant. Therefore, the order of materials in the matrix 

representation does not affect the result. 

6.2.3.2 Prediction of actions associated with materials and conditions 

On the other hand, the assessment of the prediction of actions along with materials and 

conditions was limited to molecular descriptors and MACC Keys. The other 

representations were not included at this stage due to computational cost and 

performance. This is discussed in Results and Discussion section. In this case, the 



127 
 

modelling was centred on Transformers-based architectures and the settings are 

specified in Table 6-5.  

Table 6-5. Sequence prediction networks for representation B. Adapted from Vaucher et al 43 

Layer type Activation  Hyperparameters 

Transformers 

Input materials  Max number of materials: 11 

Input sequence  Max sequence length: 81 

Layer normalisation   

Dense Identity Units: 256 

Positional 
embeddings for 
materials 

 Embedding dim: 256 

Dropout  Dropout rate: 0.4 

Embeddings for 
operations 

 Embedding dim: 256 

Transformer encoder Relu No. blocks: 4 
Heads: 8 
Key dim: 256 
Feed forward: 2048 
Attention dropout: 0.3 
Dropout rate: 0.4 

Transformer decoder Relu No. Blocks: 4 
Self-attention 
Heads: 8 
Key dim: 256 
Cross attention 
Heads: 8 
Key dim: 256 
Feed forward: 2048 
Attention dropout: 0.3 
Dropout rate: 0.4 

Dense Softmax Units: No. Operations 

 

Compared to Vaucherôs model, the main difference with the implementation in this work 

was related to how material information was processed. In the original model, precursors 

and targets are expressed as reaction SMILES. Since that information was not available 

in our dataset, materials were expressed as a set of features with dimensions (number 

of materials, number of features). Within the features, in addition to the descriptors of 

each material, a 3-component vector was introduced where each value corresponded to 

0 or 1 depending on the material role in the process. Namely, 1 was assigned if a given 

material was classified into TARGET, REACTANT or SOLVENT, otherwise, the value 



128 
 

corresponded to 0. Additionally, contrary to the previous models for representation A, 

positional embeddings were used to associate operations and materials through 

placeholders. These embeddings were summed to each set of features after being 

passed through a linear layer. Dropout was also applied at this point to avoid 

overdependence on a group of features. In this manner, the output was processed by the 

Transformer blocks. Another variation of the model was also tested using 4 heads, 2 

blocks, and 1024 feed-forward dimensions. The two neural networks were trained for 100 

epochs with a batch size of 128. Nonetheless, early stopping was also applied as 

indicated in the previous section. 

6.2.4 Modelling 

For sequence modelling, different types of autoencoders (AE) were explored.  As 

discussed in previous chapters, AE provides a framework to reduce dimensionality into 

a continuous latent space. This representation in turn can be helpful to represent discrete 

data such as manufacturing sequences. There exist various classes of AE depending on 

latent space probability distribution, loss function, and training strategy employed for 

parameter learning. Considering their relevance in generative modelling, these include 

variational autoencoders (VAE), adversarial autoencoders (AAE), and adversarially 

regularised autoencoders (ARAE). The training of any of these types of AE enables the 

assignment of a probability distribution to latent space either due to an assumption or 

determined by another neural network. Both, AAE and ARAE, follow a similar training 

scheme to generative adversarial networks (GAN). As for VAE, several variants can be 

found whose differences are centred on loss function and architecture. Finally, all the 

models trained were conditioned to ensure the generated manufacturing routes could be 

customised according to predefined inputs.  

As discussed previously, two ways of expressing sequences were also assessed. Firstly, 

apart from being used to study the predictive power of different inputs, representation A 

was also used to investigate preliminarily the effect of distinct types of layers, 

hyperparameters, and models on the performance metrics chosen. This information was 

used to refine the model and assess the advantages or disadvantages of these initial 

settings. In addition, it was used as a starting point to implement and compare to 

representation B.  Vaucher et al employed this later way of expressing sequences to 



129 
 

develop a predictive model using another dataset 43. Thus, their implementation was also 

adopted for our dataset and used as a reference. Subsequently, generative models were 

also applied with additional modifications. More details of all the models trained are 

provided below. 

6.2.4.1 Architecture design using output representation A 

6.2.4.1.1 Model exploration 

To find out the best-performing model to generate sequences based on representation 

A, variations of conditional VAE, AAE and ARAE were tested. Initially, the representation 

that gave a better prediction accuracy in previous experiments was used as a condition. 

In the case of AAE, deterministic and stochastic encoders were also tried, while 

deterministic encoder was only applied for ARAE as in the original proposal 119. On the 

other hand, while the architecture of the decoders was fixed for all VAE, AAE, and ARAE, 

the encoder was changed depending on whether the condition was injected in this 

module. Additional components were also included depending on the models. Of the 

three evaluated models, ARAE possessed the highest complexity since included a 

discriminator and a generator network 119, while AAE only included a discriminator. In 

conditional ARAE, a regressor or classifier network can also be included depending on 

the formulation as proposed by Zhao et al 119. This component predicts the condition 

given the latent vector and its inclusion promotes the independence between latent space 

and target features. The layers and their established hyperparameters for all the distinct 

modules are listed below. 

¶ Decoder. RNN: an embedding layer with 50 dimensions; a normalization layer 

and a feed-forward network with 128 units that processed condition; 3 stacked 

GRU layers with 256 units, GRU initial states corresponded to concatenated latent 

vector and processed conditions passed through a dense layer with 256 units; a 

layer normalization and an output dense layer the yielded the logits for each step. 

All probabilities were decoded into operation through greedy search. 

¶ Encoder. RNN: an embedding layer with 50 dimensions; a normalization layer; 3 

stacked bidirectional GRU layers with 128 units; a layer normalization, a global 

max pooling 1D layer and an output layer varied depending on whether the 

encoder was deterministic or stochastic. In the deterministic case, the output layer 

consisted of a single dense layer with 128 units, while the stochastic layer had 2 



130 
 

dense layers with 128 units each that generated a mean-vector and a log var-

vector. In addition, condition information was only included in VAEôs encoder and 

was processed using a residual network with dimension 128 for both intermediate 

and final layers. Then, the results were normalised to be concatenated with the 

embedded operations and finally processed by the recurrent layers.  

¶ Discriminator. A layer normalization layer, 2 dense layers with 128 units and 

leaky ReLu as activation function, and 1 dense layer to generate logits. Variations 

were attempted with concatenated conditions and latent representation. 

¶ Generator. Similar to the discriminator replacing the output layer with a dense 

layer with 128 units and changing the activation function by ReLu in the 

intermediate layers. This module only was used for ARAE. 

¶ Predictor. Similar to the discriminator replacing the output layer with a dense 

layer with 128 units and changing the activation function by ReLu in the 

intermediate layers. 

Regarding training, a description of the process for VAE and AAE can be found in 

Algorithm 6-1 and Algorithm 6-2. Specifically in VAE, as suggested by Bowman et al123, 

KL divergence weight (beta) was increased in every epoch. This approach is also known 

as KL-annealing. For this work ‍ was adjusted linearly starting from 0 until a maximum 

of 0.05 for 60 epochs. After that, the optimization process was allowed to continue until 

reaching 100 epochs. Conditional ARAE parameters, on the other hand, were learnt as 

suggested by Zhao et al 119. Nonetheless, RMSProp was used as optimiser for all the 

modules varying the learning rate. For the autoencoder, encoder, and predictor update 

steps, a learning rate of 1e-3 was set. Meanwhile, 2e-6 and 1-e5 were applied for the 

discriminator and the generator, respectively.  

Algorithm 6-1. VAE training scheme 

ὂ: latent space, ὀ: manufacturing sequence, and ὁ: target or target + precursors, ‍ π 
Initialise encoder (ή) and decoder (ὴ) weights ‰ and ‪ randomly. 
For each epoch: 
 For each training step: 

1. Calculate ὂ, and ÌÏÇὂ  
Ⱨ◑ȟÌÏÇⱭ◑ ή ●ȟ◐ 

2. Sample ὂ using reparameterisation trick with ὔͯ ȟἓ. 
◑ Ⱨ◑ Ɑ◑ṩ  ꜗ

3. Reconstruct ὀ. 



131 
 

● ὴ ◑ȟ◐ 

4. Determine loss and update parameters ‰ and ‪ using Adam with 
learning rate 1e-4. 

   fl ὂͯ ὂὀȟὁÌÏÇὴὀȿὁȟὂ ‍ẗὈ ήὂȿὀȟὁȿȿὴὂȿὁ   

 Update ‍Ȣ 
 If epoch < 60: 

  ‍ πȢπυz  

 Else: ‍ πȢπυ 
 

 

Algorithm 6-2. AAE training scheme. Taken and adapted from Arjovsky et al and Makhzani et al70,120. a 

Discriminator with and without condition (y) was also attempted. 

ὂ: latent space, ὀ: manufacturing sequence, and ὁ: target or target + precursors, ‗
ρπ, ὲ υ. 
Initialise encoder (ή), decoder (ὴ), and discriminator (Ὢ) weights ‰, ‪, and .randomly ‫ 
For each training step: 

1. Train encoder and decoder:  
 Compute ◑ ή ● if ή is deterministic, otherwise:  

Ⱨ◑ȟÌÏÇⱭ◑ ή ● 

◑ Ⱨ◑ Ɑ◑ṩ ,ꜗ with ὔͯ ȟἓ 
 Compute ὀ ὴ ◑ȟὁ 

 Calculate loss fl ὂͯ ὂὀȟὁÌÏÇὴὀȿὁȟὂ   

 Update ‰ and ‪ using RMSProp with learning rate 1e-3. 
2. Train discriminator a  

 Compute ὂ as in (1) and draw a random sample Úͯὔ ȟἓ. 
 Compute ὂ ὂ  ὂ with Ὗͯπȟρ. 
 Calculate loss:  

fl ◑ͯ ÚȿὀὪ ὂ ὂͯᴖ Ὢ ὂ ‗ẗ Ƕͯᴖ ȿɳ ǶὪ ὂȿ ρ  

 Update .using RMSProp with learning rate 2e-6 ‫ 

 Repeat ὲ  times. 
3. Train encoder/generator 

 Compute ὂ as in (1)  

 Calculate loss fl ὂͯ ὂȿὀὪ ὂ  

 Update ‰ using RMSProp with learning rate 1e-5. 

 

All the models were initially set to be updated for 100 epochs. However, early-stopping 

was applied to avoid overfitting and reduce training times. As a consequence, the learning 

process was stopped after 20 epochs without improvement, starting to count after a 

warmup period of 10 epochs. As a stopping metric, geometric mean among various 

performance indicators was used. These metrics included uniqueness, validity, condition 

permutation importance, and reconstruction accuracy. To measure reconstruction 



132 
 

accuracy, BLEU score was used, which is described in Chapter 3. The other metrics 

employed in preliminary tests are defined in Table 6-6. Performance metrics were 

monitored in every epoch.  

Table 6-6. Initial metrics used for assessing sequence generation performance. a. Validity criteria for 
representation B was limited to referencing all the materials in the output sequence and the correct 

identification of target molecule. 

Metric Definition Calculation 

Uniqueness Proportion of unique sequences in N 
generated samples 

Π ὟὲὭήόὩ ίὩήόὩὲὧὩί

Π ὋὩὲὩὶὥὸὩὨ ίὥάὴὰὩί
 

Validity a Proportion of sequences that meet 
rules established in code found in 
https://zenodo.org/records/13377654  

Π ὠὥὰὭὨ ίὩήόὩὲὧὩί

Π ὋὩὲὩὶὥὸὩὨ ίὥάὴὰὩί
 

Diversity Average of the type of operations 
found in the generated sequences 
based on 5 types predefined. For 
more details see 
https://zenodo.org/records/13377654   

For each sequence: 
Π ὝώὴὩί έὪ έὴὩὶὥὸὭέὲ Ὥὲ ίὩήόὩὲὧὩ

υ
 

 

Novelty Proportion of generated sequences 
found in the training set 

Π ίὩήόὩὲὧὩ Ὥὲ ὸὶὥὭὲὭὲὫ ίὩὸ

Π ὫὩὲὩὶὥὸὩὨ ίὩήόὩὲὧὩί
 

Condition 
Permutation 
Importance 
or features 
importance 
(FI) 

Mean decrease in reconstruction 
accuracy (BLEU) after permutating 
the condition. Based on grouped 
feature importance proposed by Au 
Q et al198. 

ὄὒὉὟ
ὄὒὉὟÐÅÒÍÕÔÁÔÅÄȤÃÏÎÄ

ὲ
 

 

6.2.4.1.2 Effect of network type 

At this point, all the models assessed were based on RNN. To assess the effect of other 

types of layers, CVAE was trained, adjusting the encoder and decoder architectures to 

deploy transformers. Transformer blocks and embeddings were implemented as in 

Vaswaniôs work 112. Token and positional embeddings to process operations were the 

same for both modules. The encoder consisted of two stacked transformer encoder 

blocks that processed information on target molecular representation. In parallel, two 

transformer decoder blocks received embedded sequences of operations. These blocks, 

first, executed self-attention over operations and then performed cross-attention between 

output and target descriptors previously operated. The result of this layer was then pooled 

by a pooling by multihead attention layer (PMA). Finally, additional linear layers were 

incorporated to obtain the latent representation. PMA was based on Lee et al proposal199. 

https://zenodo.org/records/13377654
https://zenodo.org/records/13377654


133 
 

The decoder had a similar architecture to the encoder. Nonetheless, latent representation 

was concatenated with the embedded operations. Subsequently, this result was 

processed by a linear layer. The output was then operated by the transformer decoder 

blocks in an autoregressive manner. Thus, a causal mask was required to ensure this 

behaviour. Finally, an output layer estimated operations probability. In this manner, 

operations, at each timestep, were sampled using greedy search. The details about the 

hyperparameters employed can be found in Table 6-7. As optimiser, Adam was used with 

a learning rate that was increased linearly every timestep until reaching 1e-4 for 15 

epochs. 

Table 6-7. Encoder and decoder architecture using Transformers layers. a. If encoder is deterministic only 

one linear layer was used and ‘ and ÌÏÇ„  were excluded. b. Transformer decoder block was only included 
in CVAE. The other model did not process information on materials. 

Layer type Activation  Hyperparameters 

Input sequence  Max sequence length: 30 

Embedding  Embedding dim: 128 

Encoder b 

Transformer encoder 
block (conditional) 

Relu No. blocks: 2 
Heads: 4 
Key dim: 128 
Feed forward: 512 

Transformer decoder 
block 

Relu No. Blocks: 2 
Self-attention 
Heads: 4 
Key dim: 128 
Cross attention 
Heads: 4 
Key dim: 128 
Feed forward: 512  

PMA Relu Heads: 4 
Key dim: 128 

Dense (‘)a Identity Units: 128 

Dense (ÌÏÇ„)a Identity Units: 128 

Decoder 

Dense Relu Units: 128 

Transformer encoder 
block (conditional) 

Relu No. blocks: 2 
Heads: 4 
Key dim: 128 
Feed forward: 512 

Transformer decoder 
block 

Relu No. Blocks: 2 
Self-attention 
Heads: 4 
Key dim: 128 
Cross attention 



134 
 

Heads: 4 
Key dim: 128 
Feed forward: 512  

Dense Softmax Units: No. Operations 

 

6.2.4.1.3 Effect of including precursors 

In addition, the effect of precursorsô inclusion along with the target molecule was 

assessed. This was done by using the best-performing model between CVAE and AAE 

based on transformers. RNN models were avoided since the precursorsô order affects the 

results, whereas transformer has been used in problems where permutation invariance 

is required 199. Moreover, a modification in the architecture was also introduced where 

the weights of Transformers encoder blocks in both, the decoder and encoder, were 

shared. This was motivated by the increase in computational cost due to the change in 

input structure. 

6.2.4.2 Architecture design using target and precursors. 

6.2.4.2.1 Selection of best model 

To include targets and precursors, the layers employed were only centred on 

transformers as in the section Prediction of actions associated with materials and 

conditions. In this way, a material encoder module was introduced. This module 

processed materials data to be fed into either the encoder or decoder. In the same 

manner, the encoder and decoder followed a similar architecture. Nonetheless, the effect 

of hyperparameters such as the number of transformers blocks and  ‍ parameter values 

during training were explored. These experiments used CVAE as a main framework. For 

KL-annealing, ‍ was increased linearly until the maximum value for 20 epochs. The 

models were trained for 100 epochs.  Hyperparameters for each module are defined in 

Table 6-8. 

Table 6-8. Material encoder architecture using Transformers layers. a. If the encoder is deterministic, only 

one linear layer was used, whereby ‘ and ÌÏÇ„  were excluded. b. Transformer decoder block was only 

included in CVAE. The other model did not process information on materials. 

Layer type Activation  Hyperparameters 

Input sequence  Max sequence length: 81 

Embeddings for 
operations 

 Embedding dim: 256 

Material encoder 

Input materials  Max number of materials: 11 



135 
 

Layer normalisation   

Dense Identity Units: 256 

Positional 
embeddings for 
materials 

 Embedding dim: 256 

Dropout  Dropout rate: 0.1 

Transformer encoder Relu No. blocks: 2 
Heads: 8 
Key dim: 256 
Feed forward: 2048 
Attention dropout: 0.1 
Dropout rate: 0.1 

Encoder 

Transformer encoder 
block (conditional) 

Relu No. blocks: 2 
Heads: 8 
Key dim: 256 
Feed forward: 2048 
Attention dropout: 0.1 
Dropout rate: 0.1 

Transformer decoder 
block 

Relu No. Blocks: 2 
Self-attention 
Heads: 8 
Key dim: 256 
Cross attention 
Heads: 8 
Key dim: 256 
Feed forward: 2048  
Attention dropout: 0.1 
Dropout rate: 0.1 

PMA Relu Heads: 8 
Key dim: 256 

Dense (‘) Identity Units: 128 

Dense (ÌÏÇ„) Identity Units: 128 

Decoder 

Dense Relu Units: 128 

Transformer encoder 
block (conditional) 

Relu No. blocks: 2 
Heads: 8 
Key dim: 256 
Feed forward: 2048 
Attention dropout: 0.1 
Dropout rate: 0.1 

Transformer decoder 
block 

Relu No. Blocks: 2 
Self-attention 
Heads: 8 
Key dim: 256 
Cross attention 
Heads: 8 
Key dim: 256 



136 
 

Feed forward: 2048 
Attention dropout: 0.1 
Dropout rate: 0.1 

Dense Softmax Units: No. Operations 

 

In contrast to the previous section, not all generative approaches were employed. At this 

stage, exploration was focused on CVAE and AAE. The exclusion of ARAE was primarily 

due to the complexity that this implied to model target + precursors. More details are 

given in the section Results and discussion. Additionally, a variation of CVAE was also 

evaluated, which is known as Invariant CVAE. Thus, the layers employed in the encoder 

were varied depending on the model. While CVAE included both Transformer encoder 

and decoder blocks as conditional information, that was not the case for other models 

where only transformer encoder blocks were used. For instance, contrary to CVAE, the 

encoder of the invariant version did not include information on the condition. As a result, 

the loss function was changed as proposed by Moyer et al 200. Finally, an AAE was trained 

with the best architecture for the encoder and decoder as indicated in Algorithm 6-2. 

6.2.4.2.2 Effect of ɓ control strategy, encoder and decoder architecture 

Another modification introduced to VAE was regarding how ‍ parameter was updated. 

To have greater control over the loss, dynamic calculation of ‍ on every step was carried 

out as in Control VAE 201. In this variant, Shao proposed the usage of a proportional-

integral (PI) controller, that can help to prevent posterior collapse and promote 

disentanglement of latent variables. The training algorithm with these modifications can 

be seen in Algorithm 6-3. For PI control, the target KL was initially set at 35. 

Subsequently, with the best model, the effect of this parameter was assessed. 

Algorithm 6-3. CVAE and invariant CVAE training scheme with PI controller. a. Noam scheduler was run as 
suggested for transformers by Vaswani 112. b. In Invariant CVAE, ‗ was also updated at each time step, 

being two times the value of ‍. Loss function was calculated according to   

ὂ: latent space, ὀ: manufacturing sequence, and ὁ: target + precursors, ὅ: target Ὀ , 

ὸ: timestep, Ὧ πȢπρ, Ὧ πȢπππρ, Ὅπ πȢπ,   ‍π πȢπ. 

Initialise encoder (ή) and decoder (ὴ) weights ‰ and ‪ randomly. 
For each epoch: 
 For each training step: 

1. Calculate ὂ, and ÌÏÇὂ  

ὂȟÌÏÇὂ ή ὀȟὁ 

 
If Invariant CVAE: 



137 
 

ὂȟÌÏÇὂ ή ὀ 

2. Sample ὂ using reparameterisation trick with ὔͯ ȟἓ. 

ὂ ὂ ὂṩ  
3. Reconstruct ὀ. 

ὀ ὴ ὂȟὁ 

4. Determine loss and update parameters ‰ and ‪ using Adam with 
learning rate set according a noam schedulera with factor 0.2 and 
warmup steps 16000. 

   fl ὂͯ ὂὀȟὁÌÏÇὴὀȿὁȟὂ ‍ẗὈ ήὂȿὀȟὁȿȿὴὂȿὁ   

If Invariant CVAE b: 
fl ρ ‗ẗ ὂͯ ὂὀȟὁÌÏÇὴὀȿὁȟὂ ‗ẗ Ὀ ήᾀȿὼȿȿήᾀ  ‍

ẗὈ ήὂȿὀȿȿὴὂ  
 

5. Update ‍Ȣ 
If PI controller and ὸ π: 
Ὡὸ ὅ Ὀ ὸ 

ὖὸ
Ὧ

ρ ÅØÐὩὸ
 

If  πȢπ ‍ὸ ρ ρȢπ: Ὅὸ Ὅὸ ρ ὯẗὩὸ 
‍ὸ Ὅὸ ὖὸ 

If ‍ὸ ρȢπ: ‍ὸ ρȢπ 
If ‍ὸ πȢπ: ‍ὸ πȢπ 
‗ ςẗ‍ὸ 

  Else: ‍ updated as in Algorithm 6-1 with ‍  equals 0.05 and 0.01 for 

CVAE,   and Invariant CVAE, respectively. ‗ was set at 0.02, being 
updated as ‍. 
 

 

In addition, some final modifications to the architecture were studied. The encoder 

architecture in the architecture shown in Table 6-7 was compared to others only based 

on transformer encoder block. The pooling method was also assessed in the encoder. 

PMA was compared to the approach used in the BERT language model 202. In BERT, the 

pooling method is typically applied to the output representations of the [CLS] token, which 

is a special token added to the input sequence. This [CLS] token is used as a kind of 

aggregate representation of the entire input sequence for downstream tasks. Finally, two 

approaches were explored for injecting the latent space into the decoder. The first method 

consisted of passing the latent space through a linear layer, applying layer normalization, 

and then summing it with token embeddings. The second approach entailed 

concatenating the latent space with the condition, and this combined representation is 

processed by the transformer encoder. 



138 
 

6.2.5 External Validation 

The two best approaches were chosen to proceed with external validation via evaluation 

from experts. The experts were academics with PhD in areas related to chemistry and 

experience in the design of processes for primary manufacturing. The four participants 

counted with years of experience in the design and development of pharmaceutical 

processes in different stages of the primary domain. Some of them centred on purification 

and others in synthesis. The survey consisted of comparing actual and generated 

procedures of manufacturing for a given set of materials. In total, 50 sets of materials and 

target were drawn from the test with their respective procedure. Later, two manufacturing 

sequence were generated using the two best models. In this manner a total of one 

hundred questions were obtained. Then, these were split into 4 surveys of 25 questions 

each. This is illustrated in Table 6-9 and the surveys can be found in https://pinkie-pint-

zoologist-408j.onrender.com/ or a sample of the question can be seen Appendix D. 

Table 6-9. Survey design 

Survey Model Questions Target 
1 Invariant CVAE 25 Set 1 
2 CVAE 25 
3 Invariant CVAE 25 Set 2 
4 CVAE 25 

 

6.3 Results and discussion 

6.3.1 Data description 

The final dataset comprises 385,293 records describing synthesis and/or purification 

processes for 359,912 molecules. These include substances that can be used as 

synthesis intermediates or active pharmaceutical ingredients. The data was obtained 

from 23,342 patents. Table 6-10 shows the efficiency of the extraction of keywords for 

each type. The overall precision and recall were 96.2% and 92.7%, respectively. The 

overall accuracy measured as F1-Score was 94.3%, which is comparable to other works 

having as a reference Kononova et al dataset of inorganic reactions with an accuracy of 

93.0% 166. To highlight, the recovery of materials from text, without considering TARGET, 

was the lowest with around 88%, followed by conditions, with a close value, and finally, 

https://pinkie-pint-zoologist-408j.onrender.com/
https://pinkie-pint-zoologist-408j.onrender.com/


139 
 

operations being approximately 99%. Thus, the main limitation in the data collection 

methodology concerned materials. The following sections will present an overview of 

trends and relationships of the types of entities extracted.  

Table 6-10. Extraction performance metrics per entity type for primary manufacturing dataset. 

  Precision Recall F1-Score Total entities 

OPERATIONS 97.4% 99.0% 98.2% 838 

CONDITIONS 95.9% 90.4% 93.1% 386 

MATERIALS 95.1% 88.2% 91.5% 1138 

TARGET 100.0% 100.0% 100.0% 100 

 

6.3.1.1 Materials 

Compared to the other entities, a greater portion of the materials could not be extracted, 

being missed nearly 1 in every 10. Although this result can be comparable to the relative 

loss of conditions information, this may have a greater impact in absolute terms as 

material-related terms are more common than conditions. In total, 4,439,136 materials 

and 1,497,611 conditions were identified. This also implied that some key reactants may 

not be considered in the modelling thereby affecting modelsô performance if these were 

to be used as inputs. Another limitation of the dataset, in terms of materials extraction, 

was the cross-reference. It was noticed that, in some documents, reagents were 

referenced using acronyms or a specific notation defined by the authors. This hindered 

their identification to calculate molecular descriptors or fingerprints. Regarding the 

obtained data, the extraction process prioritised precision since this ensured that the 

extracted data was faithful to the original content. This can be seen in the results as 

precision was higher than recall, reaching values greater than 95% for all the types of 

entities. In this manner, this facilitated that most reactants and solvents detected could 

be associated with an InChI identifier to be standardised.  

Within the three types of materials defined, the most frequent were terms related to 

intermediates representing 37.9%. These include generic words used to refer to a 

material or combinations. Although they do not provide specific information on the 

composition, they can still be useful to understand how materials are being handled 

during a process. This was the main motivation to extract and maintain these words in 

the dataset for modelling, as the combination of intermediates and operations can provide 



140 
 

a more comprehensive representation of a process description. This will be discussed in 

more detail in the modelling section. Regarding solvents, these included pure or 

combinations of solvents. This type represented 31.0% of materials, being distributed in 

1,411 different substances. On the other hand, 31.1% of materials were reactants where 

greater diversity was observed compared to solvents with 218,776 substances. On the 

other hand, it could also be observed that the most frequent substances presented some 

relationships with some operations. 

Figure 6-2 shows the most common materials in each category. To highlight, aqueous 

solvents (water and brine) are widely used, but their application is particularly recurrent 

in operations such as extraction and washing. In the former, it seems to be more 

associated with processes involving partition. Conversely, organic solvents were 

predominant in operations more related to reaction or purification steps such as 

crystallisation or chromatography. As for other reagents, there is no remarkable 

dominance of any materials except for some sulphate salts, acids, and bases. Sulphate 

salts of sodium and magnesium have a specific utility as desiccant agents, mainly used 

after a reaction occurs. HCl and NaOH seem to be consistently used in either reaction or 

purification steps, there is not a particular trend in their use. Organic bases such as 

DIPEA and triethylamine were usually associated with synthesis steps. Finally, other 

inorganic salts such as sodium bicarbonate and ammonium chloride were predominant 

in washing and quenching operations, respectively. Although it cannot be generalised for 

all substances intervening in a process, the examples discussed previously suggest 

materials can be linked to some operations. Thus, this fact can have two implications in 

terms of manufacturing path generation. Firstly, if materials are known. they could be 

used to predict, at least partially, a sequence of operations. A second option is that, for 

certain operations, some materials could be preset, therefore giving a more detailed 

description of a process. Nonetheless, the practical applicability of the first option would 

require prior knowledge of all materials involved in the process of a target.  



141 
 

 

Figure 6-2 Top 10 most common substances in the different categories of materials. THF: tetrahydrofuran, 
DIPEA: N-ethyl-N-isopropylpropan-2-amine, Brine: typically, a saturated solution of sodium chloride in 

water. 

6.3.1.2 Target Molecules 

In terms of target molecules, although all of them were not exclusively APIs, they showed 

similar properties compared to typical drug substances. Specific properties such as 

partition coefficient, solubility, and molecular weight displayed a high degree of 

overlapping with approved drug substances by FDA, as illustrated in Figure 6-3. This 

figure contrasts the distribution of these properties between the training set and ZINC15 

database 203. In addition, the similarity in terms of drug-likeness could be observed 

through QED (quantitative estimated drug-likeness) score. This metric ponders 8 different 

properties typically used to describe the potential of drug candidates such as the 

mentioned molecular weight or LogP as well as other attributes such as the number of 

rotatable bonds, polar surface area, among others 204. On average, QED scores were 

0.5447 (SE = 0.2130) for the training set and 0.5462 (SE = 0.2192) for ZINC15 database 

molecules, respectively. 

 



142 
 

Figure 6-3. Comparison of properties distributions between target molecules in the training set (n = 
359,912) and approved drugs by FDA recorded in ZINC15 database (n = 1,615) 203. LogP, log-partition 
coefficient calculated using RDkit library 205; LogS, log-molar solubility calculated using SolTranNet 206; 

MW: molecular weight. 

This alignment in chemical space confirms that the processes obtained are applied to 

typical substances found in the pharmaceutical industry. The generalisation of ML models 

depends on the dataset's scope, and the observed properties help to establish the type 

of compounds the models can provide reasonable outputs. For instance, 95% of target 

molecules in the training set have a molecular weight lower than 594.05 Da, thereby 

indicating that any model developed with these data may not generate plausible 

sequences of operations for compounds with high molecular weight, such as proteins.  

6.3.1.3 Conditions 

Conditions for approximately 34% of operations were extracted to provide a total of 

1,497,611 data points. The conditions obtained corresponded to temperature, pH, time, 

pressure, type of atmosphere and number of times an operation is repeated, namely, 

repetitions. Although initially other types of data were obtained such as chromatographic 

conditions, these were not included in the final dataset. In the training set, temperature, 

time, and pressure were the most frequently reported, comprising 37.7%, 34.0%, and 

16.0% of all data points, respectively. On the other hand, pH, the type of atmosphere and 

the number of repetitions summed to 12.4%.  

In conditions such as type of atmosphere, temperature, and pressure, there was a clear 

predominance for certain values. This is shown in Figure 6-4 for temperature and type of 

atmosphere. In temperature, a trend towards processes executed under ambient 

temperature or values between 10 and 40°C was identified, representing 51.6%. 

Reasons such as costs and practical considerations may have contributed to this trend 

to a certain extent.  The most common type of atmosphere corresponded to argon and 

nitrogen. These were seen to be used mainly in the early stages of a process to reduce 

environmental interferences or remove a particular component from the reaction mixture 

by purging.  Regarding pressure, this parameter was mostly reported in qualitative terms 

such as reduced or vacuum pressure, with nearly 92.0% of this parameter records. These 

two values were usually associated with operations related to the concentration or 

removal of solvents. On the other hand, for the remaining 8.0%, the ranges of values 

presented a significant fluctuating varying from approximately vacuum to 4.1 MPa. Some 



143 
 

of these were associated with reactions such as hydrogenation, while others could be 

associated with operations such as filtration.   

 

Figure 6-4 Distribution of conditions reported in the training set. Ar: Argon, H2: Hydrogen, N2: Nitrogen. 

By contrast, pH and time exhibit a more even distribution based on the predefined 

categories as can be seen in Figure 6-4. It is also possible to observe that processes 

moderately to strongly acid seem to be more recurrent but without a remarkable 

difference concerning the other categories. In this regard, it is important to bear in mind 

that there were not many reports of pH in the operations obtained, representing 1.41% of 

conditions. As for the time, a bimodal behaviour was observed where the cutoff point was 

around 9 h. Thus, it is possible to see the majority of processes tend to last or proceed in 

intervals between 0.75 and 3 h. Conversely, it is also possible to find long-duration 

processes that mostly last between 9 and 36 hours. Finally, the number of repetitions 

was reported for operations such as washing and extraction where they are usually 

carried out between 2 and 4 times. This scenario was the most frequent for this type of 

condition representing 94.0% of records.   



144 
 

Thus far, some trends and patterns in the conditions obtained and their relationship with 

some operations have been shown. For instance, it was observed conditions such as 

repetitions or pressure tended to be mentioned along with certain operations. Similarly, 

although the relations between other conditions and operations were not evident, it could 

be seen that, for instance, temperature, type of atmosphere and time were found more 

often in the early stages of the process. In this manner, this indicates that these conditions 

can be more associated with reaction conditions. In turn, reaction conditions are defined 

by precursors and targets. In this manner, it should be possible to estimate conditions 

based on material properties in the same way as it is intended for operations. This idea 

has been exploited in other works, for instance, Karpovich et al trained a CVAE to predict 

temperature and time using both precursors and target information for inorganic 

reactions190. In the same manner, Vaucher et al developed several transformer-based 

architectures to predict both operations and conditions using reaction SMILES 43. Having 

considered the literature and the available information, although this thesis scope 

originally intended to generate operations only, the ability to also generate conditions was 

explored in the assessed models. This is discussed in the next sections. 

6.3.1.4 Operations 

The training set contains 3,256,196 operations distributed in 20,192 terms. Nearly 90% 

of processes employed between 3 and 15 steps, with an average of 8.4 operations per 

process. After standardising the terminology, 60 standardised actions were identified. 

The top 10 most frequent operations and types are illustrated in Figure 6-5.  The majority 

of operations corresponded to separation methods as shown in Figure 6-5B. This 

category included terms related to separation and purification steps such as ñpurifyò 

(mostly related to chromatography), ñdryò, ñfilterò, ñcrystalliseò, etc. Next, it is possible to 

find terms related to material manipulation like ñaddò and mixing like ñstirò. Other types of 

terms associated with a chemical transformation, such as ñreactò or ñquenchò, or 

indicating the adjustment of conditions such as ñheatò, ñcoolò, and ñadjust pHò, were less 

frequent. There was a small number of terms that did not fall into any of the previously 

mentioned classes. These consisted of operations indicating a physical transformation 

such as ñcondenseò.  



145 
 

 

Figure 6-5 Most frequent operations by (A) standardised actions and (B) type of operation. Purify refers to 
chromatography. Dry Solution consists of the removal of water from a mixture usually through a desiccant 
agent. Make Solution refers to the combination of two or more materials to form a solution, a suspension, 

or other type of mixture. 

Concerning the frequency of individual actions, most of the operations referred to terms 

more focused on the manipulation of materials or adjustment of process parameters. 

Terms such as óADDô, óSTIRô or óMAKE SOLUTIONô were extensively used to describe 

processes. However, these actions can be considered generic since they can be used to 

describe either synthesis or purification steps, although they were more commonly found 

in the description of reaction steps. On the other hand, actions which describe more 

accurately an operation being performed were seen in purification steps. For instance, it 

was found chromatography (PURIFY) was the most recurrent followed by extraction with 

solvents (EXTRACT). The term concentration (CONCENTRATE) was also employed to 

indicate the removal of solvent, although the method applied to achieve this is not always 

specified. All these terms were characterised to be mainly found in the later stages of a 

process. An additional noteworthy aspect is the inclusion, within the training set, of 

processes exclusively focused on material purification. These processes differed from 

the others by starting with operations related to separation methods and the absence of 

precursors. To summarise, the frequency of certain operations and the order of 

appearance reveal discernible patterns indicating there is a logical sequence that 

operations tend to follow. A generative model is expected to recognise these patterns 

and reproduce the order based on inputs. 



146 
 

6.3.1.5 Other sources of bias 

Given the training set covers patents from 1976 to 2021, changes in manufacturing 

procedures are anticipated, considering new technologies and trends. The first attribute 

of manufacturing sequences observed was the number of steps. Spearman correlation 

between the average sequence length and year was -0.25. Although this correlation is 

relatively weak, it suggests a subtle trend towards reducing the number of steps required 

to manufacture a product.  

Another aspect analysed was the type of operations present. As discussed previously, 

the majority of operations were related to separation methods. In addition, these 

operations were more specific in terms of the type of technique employed compared to 

others, more generic. To explore change in this aspect, the evolution of the most common 

techniques over time was reviewed. Figure 6-6 exhibits a general increase in the patents 

utilising the different methods of separation, which include techniques like crystallisation 

or chromatography (PURIFY). However, this pattern is affected by the number of 

publications per year. Considering that the number of granted patents throughout the last 

decades has increased significantly, a rise in the mentions of the operations is expected. 

To account for this, the data were corrected by considering the evolution of the number 

of patents per year, as depicted in Figure 6-7. This correction revealed diverse patterns; 

for instance, mentions related to methods such as crystallisation and distillation have 

decreased, whereas solvent extraction and chromatography exhibited the opposite 

behaviour.  

The relationships found suggest a temporal effect on manufacturing procedures. Given 

the number of patents in recent years is larger, models developed may favour the learning 

of the most recent procedures from the latest publications. Although this may be a 

desirable behaviour as it would generate sequences resembling more up-to-date 

approaches, these would also increase the likelihood of finding certain operations.  

 



147 
 

 

Figure 6-6 Evolution across time of the number of patents mentioning the most common separation 
methods. RECRYSTALLISATION refers to crystallisation from a solid material, while CRYSTALLISE starts 

from a solution. DRY indicates that the method of drying is unspecified. 

 

Figure 6-7. Evolution across time of the number of patents mentioning the most common separation 

methods with respect to the total number of patents. 

 

Finally, the yield was examined as an additional factor to assess the scale of the 

processes under consideration. Figure 6-8 illustrates the distribution of the amount of 



148 
 

target molecule obtained by a process, revealing that 90% of the procedures yielded 

between 14 mg and 20 g of final product. This observation points out that the majority of 

procedures extracted from patents are conducted at the laboratory scale. While this focus 

on smaller scales provides valuable insights into early-stage developments, it may 

impose limitations on the applicability of the extracted knowledge to larger-scale industrial 

processes, which are more commonly found in marketed products. Nevertheless, despite 

the scale-related constraints, the dataset continues to offer valuable insights into the 

selection of operations for process design. Understanding the prevalent use of specific 

techniques and methodologies at the laboratory scale provides a foundation for future 

research aimed at closing the gap between laboratory-scale processes and their 

translation into larger-scale industrial applications. 

 

Figure 6-8. Distribution of the amount of target molecule obtained in the respective process in log-scale (n 
= 274,956) 

6.3.2 Generative modelling 

6.3.2.1 Selection of molecular representations 

The comparison of sequence prediction accuracy, expressed as a BLEU score, for the 

different molecular representations of the target can be seen in Figure 6-9. All the 

representations provided an improvement in accuracy compared to control. The control 

consisted of a baseline for the worst case established by training a model with random 



149 
 

representations. These were generated by drawing a 128-dimensional random vector 

from a normal distribution for each target molecule. In the same way, each set of features 

presented differences in BLEU. In addition, the value of each representation was also 

affected by the network type. This was observed as the rank of the best-performing 

features varied depending on the architecture. In this manner, it is suggested that an 

architecture can exploit better certain features than the other. Nonetheless, when the 

network effect is assessed, there seems not to be a superior architecture. 

On average, RNN and Transformers had a relatively close accuracy with values of 22.6% 

and 22.4%, respectively. On the other hand, by contrasting the best and worst descriptors 

in each model, the difference in Transformers was 1.89%, while 1.87% was obtained for 

RNN. Thus, the effect of the representation is greater than the architecture individually, 

as the network type has a difference of 0.02%. This indicates that the selection of a 

feature type can be more relevant than the network type. Nonetheless, in turn, the 

performance of a set of features is also dependent on the model. As a result, there is not 

a set of features that is consistently superior and the representation selection for a model 

may not be generalised for several applications. 

 

Figure 6-9 Comparison of sequence prediction accuracy in terms of BLEU scores resulting from distinct 
molecular representations of a target substance. 

Regarding the performance of individual representation, SVAE had the lowest accuracy 

in both neural networks. an SVAE was pre-trained with SMILES to generate latent vectors 



150 
 

that can be used as molecular fingerprints. These types of representations have been 

used to predict properties such as partition coefficient and solubility in other works 207,208. 

Pre-trained VAE for this purpose can be coupled with a predictor network during training, 

which can help to optimise latent space for property prediction. In our work, pretraining 

did not include such network, by which the VAE possibly centred on learning features for 

the generation of molecules. This might have led to poor performance compared to the 

other metrics. Performance using SVAE could be improved by further parameter fine-

tuning for sequence prediction. This idea can also be supported by the results of SMILES 

representation. 

SMILES performed well in transformers, in opposition to RNN. To make use of SMILES, 

an additional network was trained along with the other components of the models. This 

component consisted of 3 stacked GRUs and a bottleneck network composed of several 

1D-CNN and an attention layer as suggested in the VAE encoder proposed by Dollar127. 

In this manner, the additional component corresponded to SVAEôs encoder network. 

Thus, the fact that SVAE and the use of SMILES had mixed results indicates SMILES is 

more sensitive to architectural changes, by which a careful selection of hyperparameters 

is needed to ensure this representation produces good results for a given task. On the 

other hand, numerical features seemed to be more robust. 

These representations gave variations in performance lower than 1% in both networks, 

lower than SMILES. Particularly, molecular descriptors were ranked 1 and 2 in accuracy 

for RNN and transformers, respectively. Additionally, in terms of implementation, it also 

offers another advantage compared to fingerprints such as MHFP-2048. While the 

molecular descriptors comprised 208 values, MHFP has 2048. As a result, the former 

may be less computationally expensive to train deep neural networks. This advantage 

can also be applied to MACC Keys, which has 166 bits. Thus, molecular descriptors were 

chosen for further experiments to predict sequences of operations. 

Subsequently, the target and materials represented by the molecular descriptors were 

used together to train a transformers model for sequence generation. A large 

improvement was observed, resulting in a BLEU score of 31.2%. The change signified 

an increase of 10.3% with respect to control vs 2.01% obtained using only information on 

the target molecule. This points out that the target molecule, in isolation, cannot ensure 

an optimal performance. Instead, reactants can provide better guidance for operation 



151 
 

selection. This result can be expected since a target molecule can be synthetised and 

purified through various routes. On the other hand, when a synthesis route is established 

with information on materials and conditions, there are fewer freedom degrees for the 

selection. However, in practice, while a candidate molecule can be known, that is not 

necessarily the case for the synthesis route. This initially motivated to assess the 

performance using only the target. Nonetheless, given the importance of the inclusion of 

reactants in the process, it was decided to focus the modelling on conditioning 

manufacturing routes for target and reactants. As for the requirement of prior knowledge 

of reactants, reaction planners could be used to have an educated guess about feasible 

synthesis routes. 

The inclusion of precursors also motivated the usage of a different output representation 

beyond the simple sequence of actions. Thus, based on Vaucherôs work, representation 

B was evaluated. Output B relates each operation with its respective materials, providing 

a more informative and readable result. In addition, this representation also enables the 

incorporation of process conditions into the route. The authors also developed several 

models to predict operations based on transformers using as inputs reaction SMILES. To 

assess the effect of the architectural changes, Vaucherôs transformers (model B) was 

adapted and retrained using our training set and varying the inputs. The other architecture 

(model A) differed mainly in the number of blocks and heads used, which was more 

similar to the transformers model used in the previous tests. MHFP and SMILES were 

excluded in these analyses. The former model could not be trained due to memory 

limitations. The latter, on the other hand, was trained but the network was unstable and 

further tuning was required by which these results were not included. Thus, the 

assessment was carried out with MACC Keys and molecular descriptors.  

Table 6-11 reports the percentage of valid sequences and prediction accuracy in terms 

of BLEU and the percentages of predicted sequences with 100%, 90%, 75% and 50% 

matching with respect to reference. To remark, the validity criteria defined by Vaucher et 

al differ from the one used for this work. In their definition, the syntactical correctness is 

verified by checking whether sequences can be converted to actions without errors and 

ensuring that all the materials in the reaction are mentioned in the resulting sequence 43. 

In our work, we verify that the second part of the criteria is met. Another key difference is 

the definition of actions. While Vaucher et al characterised manufacturing sequences in 



152 
 

24 actions, this work utilised 60. These facts mean that the models presented in this 

section cannot be directly compared to Vaucherôs. Thus, the results of their model were 

recorded in Table 6-11 with informative purposes to provide intuition about the magnitude 

of these metrics. 

Table 6-11. Performance metrics for prediction of actions associated with materials and conditions (Output 
B, n = 1000). a. Results from reference model developed by Vaucher et al43. Architecture B corresponded to 
an adaptation of Vaucherôs Transformers trained on our dataset with different representations. Architecture 
A is a modified version of B with half transformer blocks and heads. b It refers to the quantiles of accuracies 

obtained by sequence matching evaluated using Levenshtein similarity. For instance, 3.6% of the 
sequences had 100% matching between actual and predicted in Vaucherôs Transformer. c it only considers 

architecture A and B. 

Architecture Representation Validity BLEU Accuracy b 

100% 90% 75% 50% 

Transformer a Reaction SMILES 99.7% 54.7% 3.6% 10.1% 24.7% 68.7% 

B Molecular Descriptors 78.8% 52.5% 2.2% 5.0% 18.3% 72.4% 

B MACC Keys 80.0% 52.4% 2.4% 5.1% 18.6% 73.1% 

A Molecular Descriptors 78.4% 52.0% 1.2% 2.8% 14.0% 69.5% 

A MACC Keys 79.8% 52.8% 1.1% 2.8% 14.6% 71.0% 

Mean c 79.3% 52.4% 1.7% 3.9% 16.4% 71.5% 

CV c 1.0% 0.6% 38.9% 33.1% 14.7% 2.2% 

 

Prediction accuracy was more dependent on the architecture. In this case, accuracy was 

measured using several metrics since BLEU seems not to be sufficient to conclude about 

the difference between architectures or representations. This could be evidenced as 

BLEU varied less than the other accuracy metrics. In this regard, 100% Matching can 

reflect more clearly the difference among the assessed factors. Specifically speaking on 

the architecture effect, B provided a greater reconstruction, being, nearly twice that 

achieved by A on average. Alternatively, BLEU scores for architecture A and B were 

52.4% and 52.5%, respectively. In this manner, although BLEU would reach a similar 

conclusion to using the other metrics, the margin was smaller. Therefore, additional 

metrics strengthen the conclusion about the architecture effect. Similarly, the differences 

in models were also reflected in the validity as model B was also superior to A with 79.4% 

and 79.1%. Nonetheless, the variability in this metric seems to be mainly explained by 

the representation. 

Overall, MACC Keys tended to generate a higher proportion of valid sequences. The 

effect magnitude was 1.3%, favouring MACC Keys over molecular descriptors. Regarding 



153 
 

prediction accuracy, MACC Keys was superior in model B for all the metrics, while the 

same applied to only 3 out of 5 metrics. In this manner, this result also suggests that input 

feature performance varies with the model architecture, being aligned with the initial 

results about representation effect. It also can be noticed that MACC Keys, in this case, 

were better than molecular descriptors. This contrasts with previous results where target 

information was the only input, and the output comprised actions. This also confirms that 

performance changes with output expression. Consequently, this would make the 

selection of optimal descriptors case based. 

To summarise, the effect of different types of inputs and architectures on sequence 

prediction expressed in two ways was studied. Regarding inputs, information on targets 

and precursors provided a better performance for sequence prediction. On the other 

hand, the way these materials are represented for modelling can affect either prediction 

validity or accuracy. In addition, the results for a chosen representation can vary with 

model settings indicating that, from a performance perspective, the optimal features 

should be determined case by case. Nonetheless, the effect seems not to be substantial 

as several types of features had similar performances. In this manner, the selection can 

also be guided by other criteria such as interpretability or computational cost. Thus, the 

following representations were selected for generative modelling: molecular descriptors 

for generating action only and MACC Keys for action associated with materials and 

conditions.  

As expected, the architecture also affects performance. Some aspects to highlight include 

RNN was slightly better than Transformers according to initial tests, although none was 

superior. In this manner, RNN and transformers were further compared for different 

generative models. Having said this, performance cannot be the only aspect to consider 

at the moment to select the best model. For instance, Transformers were chosen in cases 

where a set of materials are used as inputs. The use of transformers over RNN was 

driven by the ability of this architecture to handle data that is not necessarily dependent 

on the order, i.e., permutation invariance. Finally, other aspects of architecture such as 

network depth seem to be relevant in modelling. This was shown in the comparison of 

models A and B previously discussed. The effect of these factors is analysed for 

generative modelling in the next sections.  

 



154 
 

6.3.2.2 Models for sequences of actions 

In the first instance, it was shown that the different architectures of generative models 

have the capability of generating sequences of operations. Examples are illustrated in 

Table 6-12. However, the faithfulness of the sequences and the degree to which target 

information guides the generation vary depending on the model. As for the similarity 

between generated and real chains of operations, by inspection, it was seen that some 

approaches tended to exhibit particular patterns. For instance, certain operations could 

be repeated for several consecutive steps contrary to real procedures. Likewise, 

operations typically expected at early stages of a process, such as addition or reaction, 

sometimes appeared in the end of the sequence. In consequence, the presence of these 

patterns may indicate that the explored models did not capture efficiently certain aspects 

such as the logical order of the operations.    

Table 6-12. Examples of randomly generated sequences by different models. 

Model Generated Sequence 

RNN AAE + stochastic 
encoder + conditioned 
discriminator 

add Ÿ add Ÿ stir Ÿ add Ÿ stir Ÿ adjust pH Ÿ extract Ÿ 
wash Ÿ dry solution Ÿ dry solid Ÿ dry solution Ÿ purify Ÿ 
add Ÿ dry solution Ÿ filter Ÿ purify 

stir Ÿ add Ÿ stir Ÿ stand Ÿ add Ÿ stir 

RNN ARAE  add Ÿ add Ÿ stir Ÿ make solution Ÿ heat Ÿ add Ÿ filter 
Ÿ combine Ÿ stir Ÿ add Ÿ filter Ÿ wash Ÿ dry solid [air-
drying] Ÿ make solution Ÿ filter Ÿ wash Ÿ filter Ÿ 
concentrate Ÿ purify 

add Ÿ stir Ÿ heat Ÿ filter Ÿ adsorb Ÿ purify 

RNN CVAE treat Ÿ add Ÿ stir Ÿ cool Ÿ add Ÿ stir Ÿ quench Ÿ stir Ÿ 
separate Ÿ adjust pH [decrease] Ÿ extract Ÿ wash Ÿ dry 
solution Ÿ evaporate Ÿ separate Ÿ purify 

add Ÿ stir Ÿ add Ÿ stir Ÿ add Ÿ wash Ÿ dry solution Ÿ 
concentrate Ÿ purify Ÿ purify 

Trans CVAE make solution Ÿ add Ÿ irradiate Ÿ concentrate Ÿ dry solid 
[vacuum] 

add Ÿ heat Ÿ concentrate Ÿ add Ÿ wash Ÿ add Ÿ filter 
Ÿ wash Ÿ dry solution Ÿ filter Ÿ concentrate Ÿ 
concentrate 

 

In addition, certain approaches were more prone to ignore the target. This is displayed in 

Figure 6-10B. Here, the effect of target descriptors on the reconstruction was measured 

by permutating features, while fixing the latent representation. The majority of models 

exhibited subtle or no changes in their accuracy. Consequently, these cases would point 



155 
 

out that the generated operations are not associated with the specific target. On the other 

hand, under the same criteria, CVAE models seemed to exploit this information to a 

greater extent. Interestingly, another aspect to highlight was the fact that RNN-based 

architectures were inferior in the usage of targets compared to Transformers.  

Resuming the slight superiority of CVAE in terms of target association with sequences, a 

possible explanation could be related to the regularisation applied by KL divergence in 

the loss function. This particularity has been exploited by different variants of VAE to 

disentangle latent space in other domains 209,210. This characteristic promotes the 

independence between latent features and makes them as informative as possible 209. In 

this manner, the model learns latent features without redundant information. Since 

conditional data is provided, the model would then try to separate conditional data, that 

corresponds to the target, from other sources of variation, avoiding overlapping between 

information. As a result, the variation explained by target descriptors is not incorporated 

into the latent representation, allowing the decoder to utilise the target more explicitly.  

 

Figure 6-10 Reconstruction Accuracy (A) and condition importance (B) for different generative models for 
output A generation using target molecular descriptors. CD: condition included in discriminator; st: 

stochastic encoder; de: deterministic encoder. 

Unlike CVAE, models based on adversarial training exhibit superior performance in 

reconstruction, as shown in Figure 6-10A. This result aligns with findings in fields such 

as text generation, where AAE or ARAE are generally better at recreating examples 211. 

Additionally, the observations are aligned with the trade-off between reconstruction and 

disentanglement established for VAE. This was formalised through Higgins et al with ‍-



156 
 

VAE, where the weight of KL-divergence (‍) in VAEôs objective function controls the 

balance between the two properties mentioned previously 125. Usually, higher ‍ values 

result in greater degree of disentanglement. However, it is worth noting that excessively 

high values may lead VAE to collapse in sequence modelling, whereby ‍ must be 

selected thoroughly 126. Thus, the obtained results may confirm that the trends observed 

in other domains also apply to the generation of manufacturing sequences. 

Thus far, none of the models demonstrated superior performance in all assessed 

aspects. The ability to incorporate conditional information is critical to ensure that 

generated sequences are customised for specific targets. Simultaneously, achieving a 

good reconstruction is necessary to generate realistic manufacturing sequences. While 

AAE and ARAE were the best for the latter aspect, the performance in incorporating 

conditional information was lacking. Additionally, as typical GAN-based approaches, 

these models face challenges during the training process, including training stability 

issues due to the loss function 63. In this manner, strategies like monitoring combined with 

early stopping are required to identify the optimal parameters and prevent collapse. The 

inclusion of additional components, such as discriminator or generator networks, adds 

complexity, making models more sensitive to hyperparameters. Under these 

circumstances, despite CVAEôs lower reconstruction, it is still sufficient to ensure good-

quality sequences. Furthermore, CVAE provides a more robust framework that allows 

better customisation. Therefore, for manufacturing sequence generation, CVAE seems 

to be a more convenient option. 

6.3.2.3 Effect of inputs and pooling on the generation of actions 

Having defined CVAE as a reference framework, the effects of input and network 

architecture were studied. The performance metrics of these variations are reported in 

Table 6-13. The first aspect to remark is that the inclusion of reactants as inputs did not 

enhance reconstruction accuracy, but it had a greater importance compared to target 

only. This is consistent with prediction results discussed previously, where materials 

improved predictability. In addition, this behaviour also allowed to confirm that reactants 

possess a greater impact in the selection of operations compared to the target alone. As 

discussed in previous sections, while there might exist multiple paths to manufacture a 

target molecule, the options can be bounded when reactants are included. These are 

required to be handled in particular manners. Additionally, reactants can be associated 



157 
 

with the profile of impurities after reaction, which in turn may hint which techniques are 

feasible or more appropriate for target isolation and purification. Thus, the improvement 

in feature importance might indicate that the model is learning that type of association 

between operations and combinations of materials. In consequence, the inclusion of 

reactants provides additional information which bounds the selection of operations, 

helping to a more customised sequence generation. 

Table 6-13. Performance metrics for variations in CVAE architecture. 1. Percentage of unique sequences 
obtained from new generated sequences; 2. Percentage of generated sequence found in the training set. 

*Pooling by Multihead Attention, implemented as proposed by Lee et al 199. 

Network type Input Pooling 
Method 

BLEU FI Uniqueness1 Novelty2 

RNN Target NA 88.6% 0.2% 95.0% 3.2% 

Transformers  Target Max 
Pooling 

92.3% 0.0% 89.4% 4.1% 

Transformers Target PMA* 80.0% 2.3% 98.1% 1.5% 

Transformers Target + 
Reactants 

Max 
Pooling 

91.5% 17.1% 96.6% 2.9% 

Transformers Target + 
Reactants 

PMA 80.1% 17.2% 99.6% 0.7% 

 

Regarding network architecture, there was a special emphasis on the pooling 

mechanism. This component is part of the encoder, and its role is to aggregate unit 

operations in a single n-dimensional vector. During the encoding, unit operations are 

embedded so that each has a numerical representation. These vectors are further 

operated by an attention mechanism along with conditional information. Finally, this 

results in a series of vectors representing a sequence. Nonetheless, to project sequence 

representation onto a latent space, it is necessary to reduce the dimensionality across 

operations, whereby pooling is crucial. There were two mechanisms tested which 

included max pooling and pooling by multihead attention (PMA). Preliminary tests 

indicated that this had a strong impact on performance, and it was verified in the results 

illustrated above.  

As observed, each mechanism captures and condenses information differently, thereby 

affecting the modelôs ability to generate diverse and meaningful sequences of operations. 

To remark, the trade-off between reconstruction and feature importance appears to be 

once more present. Max pooling may be ignoring conditional information to some extent, 

being more explicit when target descriptors were the only input. On the other hand, 



158 
 

although PMA utilised more conditions in both cases, the reconstruction was penalised. 

Another interesting aspect to mention involves uniqueness and novelty. These metrics 

can act as indicators of the diversity of sequences generated by a model and the risk of 

overfitting. Models employing max pooling generated less diverse sequences. This may 

suggest that the models are not effectively learning a latent structure of the sequences 

and their association with materials, instead max pooling promotes that models memorise 

certain patterns.  

Concluding this part, the inputs and pooling mechanism influence the performance of 

CVAE for manufacturing process generation. Inputs, including reactants and target 

descriptors, provide context for generating meaningful operation sequences. It is worth 

mentioning that, in practice, it is challenging to have information on reactants whereby 

this limitation requires the usage of complementary tools to find appropriate candidate 

materials for target manufacturing. On the other hand, the choice between max pooling 

and PMA contributes to balance reconstruction accuracy and the incorporation of 

conditional information. Although PMA offered a lower reconstruction, it leveraged 

material data to guide selection and produce more diverse sequences. 

6.3.2.4 Models for Generation of actions, conditions, and association of actions with 

materials 

The previous experiments have demonstrated the capacity of generative models to 

produce sequences of operations and link an output sequence with a set of materials, to 

a certain extent. Furthermore, both, target, and reactants, have proven to be more 

beneficial for sequence customisation than target alone. Finally, among the evaluated 

frameworks, CVAE emerged as the most convenient for this task. Subsequently, certain 

architectural characteristics were defined, with transformers and PMA networks being 

more promising in generating more diverse and input-conditioned manufacturing 

sequences. However, at this point, the sequences generated consisted solely of 

operations without expressing their relationship with materials. While this information can 

help provide initial insights into what actions and techniques execute for target fabrication, 

the generation of additional information - such as conditions or association between 

materials and operations - can yield a more comprehensive output. For instance, the final 

sequence could also provide information on addition order.  



159 
 

Accordingly, CVAE was then adapted to generate chains of operations represented as 

output B. Previously, it was hypothesised that CVAEôs loss function favours latent feature 

disentanglement, which in turn supports conditional generation. In this way, Invariant 

CVAE, a variant of CVAE that encourages disentangled latent features, was also 

examined. Figure 6-11 displays the evolution of performance metrics such as validity, 

reconstruction, and feature importance throughout network training for both CVAE and 

its invariant counterpart. Overall, CVAE provided the best results in terms of all the 

metrics, except for validity, compared to the invariant version, regardless of the number 

of layers. In general, a high value for this hyperparameter did not exhibit a substantial 

benefit in either of the variants. The most notorious effect could be observed in CVAE for 

feature importance, where the difference between the deepest and shallowest network 

was approximately 5%. Since the model depth did not exhibit a strong effect, the number 

of layers was set at 2 for further experiments to study other modifications in the 

architecture.  



160 
 

 

Figure 6-11 Learning curves of feature importance (FI), BLEU and generated sequence validity for A) 
CVAE (‍ πȢπυ) and B) Invariant CVAE (‍ πȢπρ, ‗ πȢπς) trained with different number of layers. 

Thus, additional modifications were assessed using a simple CVAE model as a 

reference. Firstly, different network arrangements for the encoder were tested. One was 

based on transformers encoder which mimics language model BERT (bidirectional 

encoder representation from transformers), and the other used Vaswaniôs original 

proposal 112,202.  Aligned with previous results, a different approach to represent the entire 

sequence in a single vector was attempted based on the BERT model. This simply 

involved taking the [START] token representation to be used for mean and log-var 

estimation. Finally, two methods of processing the latent vector by the decoder were also 

evaluated. The results of these changes are summarised in Table 6-14. On average, 

Vaswaniôs transformers and PMA favoured all the metrics, showing values above the 

average for most cases where these networks were employed. Conversely, the injection 

method had mixed results. While concatenating the latent representation with the 


























































































































































































