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Abstract 

Predictive methods appear to be the most effective way to solve springback in sheet 

metal forming. The accuracy of the predictions depends upon the application of 

accurate material modelling. Experimental devices and methods are being 

continuously improved to incorporate increasingly accurate plastic bending 

characteristics. As part of these efforts, a new tool has been developed to test and 

record the characteristics of sheet metal deformation by investigating the 

Bauschinger effect factors (BEF) and the identified hardening parameters. The 

developed tool is believed to simulate the actual forming conditions of bending and 

provide more reliable information. The initial experimental investigation shows that 

the Bauschinger effect does occur during bending and unbending loadings in sheet 

metal forming. The BEF value was found to increase as the thickness increases. 

Therefore this justifies the need to consider the Bauschinger effect in sheet metal 

forming simulation through the use of relevant constitutive equations. 

A direct optimization method has been successfully applied to identify material 

hardening parameters from the acquired experimental data of the newly developed 

tool. The optimisation result shows that nonlinear kinematic hardening and 

nonlinear mixed hardening models are capable of fitting the smooth transition curve 

of the experimental hardening data. Mixed hardening model performance however 

is considered to be much better as proven by lower residual or fitting error values. 

This justifies the idea that the application of a mixed hardening model is more 

suitable for springback simulation in sheet metal forming. Validation work was 

conducted in order to test the effectiveness of applying the two hardening models by 
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incorporating the identified parameters in predicting springback using finite element 

simulation. Of the two, the mixed hardening modelling has been proven to provide 

better simulation results in predicting springback.  
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CHAPTER 1 

INTRODUCTION 

 

1.1. Introduction 

Sheet metal forming is a very important engineering discipline in 

manufacturing engineering. The applications cover major manufacturing industries 

such as aircraft, automotive, electronics and home appliances. Several methods such 

as blanking, piercing, shearing, stamping, deep drawing, folding and flanging are 

used to produce sheet metal components using different machines and tools or dies. 

To a large extent, the design of sheet metal forming processes and tooling have been 

based on experience, rules of thumb and trial-and-error experiments.  These 

methods are very costly and time-consuming (Keeler 1977).  

For many years, efforts have been made to use scientific knowledge and 

engineering methods to understand sheet metal forming by investigating various 

aspects of this technology such as identifying critical process parameters and 

understanding materials response under forming conditions. In the first case, the 

influence of process parameters on the finished products was investigated, recorded 

and analysed. The information was compiled as useful design guidelines for 

reference by product designers and tool engineers. In the second case, one tries to 

achieve a better understanding of material behaviour using laboratory test 
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experiments to simulate actual forming processes. The outcomes are translated into 

mathematical models, in the form of constitutive laws, for theoretical analysis and 

development of the forming processes. Historically, this analysis was analytical but 

today it is predominantly numerical, based on the use of finite element simulation. 

Apart from the mentioned approaches, in-process monitoring to rectify 

defects in the forming process has also been used (Kerry and Robert 2001; Sun et al. 

2006). This is a method of automatically identifying defective parts during the 

process and immediately responding to the problem by refine-tuning the machine’s 

parameters and/or replacing the tools. 

Despite achieving basic understanding of the nature and technology of sheet 

metal forming, there are still issues to be addressed. These are due to the demands 

placed on sheet metal forming processes with regard to both the increasing tolerance 

requirements of the finished parts and the need for elimination or reduction of 

important secondary processes by using near net shape forming.  

1.2. Statement of the Problem 

To meet tolerance and near net shape forming requirements, the use of 

scientific knowledge and engineering methods is paramount. Better knowledge of 

sheet metals’ responsive behaviour during plastic deformation, in the form of 

theoretical models, is desired for accurate product and tool design using finite 

element simulation. Knowledge improvement requires focusing on the following 

areas (Yoon 2007): 

a. Constitutive models suitable for the description of sheet metals 
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b. Testing procedures and analysis methods used to measure the relevant 

data needed to identify the material coefficients 

c. Tensile and compressive instabilities in sheet forming 

d. Modelling and analysis of springback 

e. Finite Element (FE) formulation 

f. Tool/material contact description 

g. Multi-scale approaches for both continuum and crystal plasticity 

mechanics 

The first four areas have seen the employment of various methods and 

techniques ranging from the well-known tensile test to the torsion test and bending 

test to better understand sheet metal plastic deformation. Nevertheless, the 

development of material characteristics is still lacking.  

1.3. Aim of the Research 

The aim of the research is to improve the quality of constitutive material 

models by experimental identification of their parameters using a testing equipment, 

which resembles the actual plastic deformation process of bending. The aim is also 

to use these parameters in the finite element simulation in order to improve 

springback prediction in sheet metal bending process. 

1.4. Objectives of the Research 

a. To develop an experimental method for understanding the plasticity 

phenomenon of sheet metal deformation using techniques resembling 

the actual sheet forming process of cyclic loading.  
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b. To evaluate the responsive behaviour of sheet metal materials 

undergoing cyclic loading through the newly developed experimental 

tool.  

c. To identify constitutive equation parameters from the acquired data. 

d. To measure the effectiveness of the identified material parameters in 

predicting springback by comparing finite element simulations and 

experimental results. 

1.5. Thesis Organization 

The thesis is organized as follows: 

Chapter 1: Introduction 

This chapter will briefly establish the need for the research work. It covers 

the introduction as a summary of the area of research, a statement of 

problem to justify the motivation for the research, aim of the research, a list 

of research objectives and the organization of the thesis as an overview of 

the whole content of the thesis.  

Chapter 2: Literature Review  

This chapter reviews the available relevant documentation of the previous 

works. The aim is to identify the existing knowledge and any gaps in the 

area in order to justify the rationale and importance of the current work. The 

chapter will be divided into several subsections, namely the introduction, 

overview of sheet metal bending, basics of sheet metal bending, plasticity 

theory for sheet metal forming, previous works and the chapter’s 

conclusions. 
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Chapter 3: Material Characteristics 

This chapter will describe the method used to acquire the properties of the 

research materials. It presents the most fair and objective way to perform 

and analyse the material properties according to the established accepted 

standards. 

Chapter 4: Cyclic Loading Experiment  

This chapter presents the outcome of the cyclic experiment in terms of 

bending stress versus strain. Bauschinger effect factors (BEFs) are also 

derived based on the selected formula. 

Chapter 5: Identification of Material Parameters by Optimisation 

This chapter will highlight the optimisation method used to acquire 

constitutive equation parameters using cyclic loading data described in 

Chapter 4. It will also analyse the capability of the hardening models to fit 

the cyclic data.  

Chapter 6: FE Simulations and Experimental Validation of Springback  

The objective of this chapter is to present validation work in testing the 

effectiveness of applying kinematic hardening parameters and mixed 

hardening parameters derived from the optimisation of bending and 

unbending experimental data in predicting springback using finite element 

simulation. To serve the objective, springback of U-bend profiles from finite 

element simulation and experiment are compared for degree of differences. 
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Chapter 7: Conclusions and Recommendations  

This chapter discusses the extent to which the results close the gap identified 

in Chapter 2 as well as meeting the research objectives stated in Chapter 1. 

The chapter ends with recommendations for future works. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. Introduction 

The demands on sheet metal processes are increasing with regard to both the 

tolerance requirements of the finished parts and the complexity of parts. The 

development in this area, even though it has been established for decades, is still 

required. The following topics have been identified for further improvements (Yoon 

2007): 

a. Constitutive models suitable for the description of sheet metals. 

b. Testing procedures and analysis methods used to measure the 

relevant data needed to identify the material coefficients. 

c. Tensile and compressive instabilities in sheet forming. 

d. Modelling and analysis of springback. 

e. Finite Element (FE) formulation. 

f. Tool/material contact description. 

g. Multi-scale approaches for both continuum and crystal plasticity 

mechanics. 

For points (a) to (d), reliable theoretical and experimental methods are 

necessary to observe and capture material behaviour, especially when it comes to 
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representing actual forming processes. This chapter presents a literature review of 

the research progress with respect to the analytical, experimental and numerical 

aspects of points (a), (b) and (d). Conclusions are drawn from the knowledge gaps 

that could motivate the current work. To start with, the sheet metal forming 

processes and information on the bending process will be briefly reviewed for an 

understanding of the overall subject. 

2.2. Overview of Sheet Metal Bending 

Sheet metal forming processes are classified as plastic deformation methods 

to convert a given shape of the sheet metal to another shape without changing its 

mass or material composition. The processes are divided into 5 subgroups based on 

the important differences in the effective stresses (Lange 1985): 

a. Compressive forming by rolling, flow forming and indenting 

b. Combined tensile and compressive forming, e.g. pulling through a 

die, deep drawing, spinning and flange forming. 

c. Tensile forming-stretching, expanding analogous to deep drawing 

and recessing to form a shallow depression in flat or curved sheet 

metal. 

d. Forming by bending such as bending with linear tool motion and 

bending with rotary tool motion. 

e. Forming by shearing 

According to (Lange 1985), “forming by bending is performed by plastically 

deforming the material and changing its shape. The material is stressed beyond its 

yield strength but below its ultimate tensile strength. There is little change to the 
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material’s surface area. It generally refers to deformation about one axis only. It is a 

flexible process by which a variety of different shapes can be produced through the 

use of standard die sets or bend brakes.” Figure 2.1 presents a classification of 

bending processes. The two major groups are bending with linear tool and rotary 

tool motions. The branches below spread to various specific processes carried out 

on different machines. 
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Figure 2.1 Classification of bending processes (Lange 1985)
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2.3. Basics of Sheet Metal Bending 

In general the bending analysis starts with an assumption of pure bending 

case and boundary condition as shown in Figure 2.2.  

 

 

 

Figure 2.2 A section of sheet metal subjected to pure bending (Perduijn and 

Hoogenboom 1995) 
 

 

The maximum tensile stress is on the outer surface of the bent component. It 

reduces toward the centre of the sheet thickness and becomes zero at the neutral 

axis. In contrast, the compressive stress increases from the neutral axis toward the 

inside of bent component.  

By considering stress distribution on a normal section through a unit width 

of sheet in bending, the force acting on layers of sheet metal across the thickness 
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and finally bending moment can be derived.  Equation 2.1 relates this moment to the 

stress across the sheet metal thickness (Marciniak et al. 2002). 

 

 

Equation 2.1 

If a sheet metal is bent by a moment and then released (without reverse 

loading), springback phenomenon is observed through the change in the sheet metal 

bending curvature and bend angle. This phenomenon is described in Figure 2.3.  

 

 

Figure 2.3 Change in bend angle and curvature in sheet metal bending during 

bending loading and unloading (Marciniak et al. 2002) 

 

By assuming the length in the mid-surface (neutral axis) of the sheet 

thickness remains the same, Equation 2.2 has been derived to relate the bend angle 

and curvature of loading and unloading cases (Marciniak et al. 2002).  

 
R

R
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



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Equation 2.2 
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Plotting moment versus curvature diagram one will find that the curve is 

similar to the corresponding stress-strain curve. This plot is shown in Figure 2.4. 

For that reason suitable values of material parameters in the plasticity theories can 

be identified using moment-curvature based experiment as in cyclic bending test 

(Yoshida et al. 1998). 

 

 

Figure 2.4 Moment versus curvature due to loading and unloading moment in sheet 

metal forming (Marciniak et al. 2002)  
 

2.4. Plasticity Theory for Sheet Metal Forming 

“The theory of plasticity deals with the methods of calculating stresses and 

strains in a deformed body, after part or all of the body has yielded. The most 

difficult problems to solve in plasticity are those of constrained plastic flow. These 

are cases where part of the body has yielded and part is still elastic, the plastic 

strains being of the order of the elastic strains. The compatibility equations and the 

stress-strain relations are difficult to handle and very few complete solutions have 

been obtained to such problem”  (Johnson and Mellor 1973). This statement to a 
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large extend describes the challenge in developing a constitutive law for metal 

plastic deformation. This challenge, however, is worth tackling as knowing 

constitutive law governing sheet metal behaviour during bending helps to optimise 

the manufacturing process. The advantage, for example, is the ability to understand 

the phenomena of springback and formability limitation.  

The plastic deformation of sheet metals can be modelled using two types of 

modelling: classical metal plasticity and cyclic plasticity (Abaqus 2000).  The latter 

is believed to better represent actual sheet metal forming conditions due to its 

capability to consider the Bauschinger effect - a reduction of yield stress on load 

reversal when compared to forward loading. For this reason, this literature review 

will discuss in depth the cyclic plasticity theory, while the classical metal plasticity 

will only be briefly described as an overview.  

2.4.1. Classical Plasticity Theory 

When the inelastic flow of a metal occurs at relatively low temperatures, 

loading is monotonic and creep effects are not important. The deformation can be 

described by the classical metal plasticity model. The three main features of the 

plasticity model are: a yield criterion, a strain hardening rule and the plastic flow 

laws (Bower 2009).  

A yield criterion is a condition to predict whether the solid is in elastic or 

plastic form. It is to determine the critical stress at which permanent deformation 

occurs. Some of the basic choices of the yield criteria are Von Mises and Tresca 

yield condition (Johnson and Mellor 1973). The following equations show the 

respective formulae for these criteria respectively. The symbol ij is defined as the 
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stress tensor acting in a solid, 321  and,  are the principal values of stress tensor 

and 
f  is the yield (flow) stress depending on equivalent plastic strain,  (Bower 

2009). 

           0
2

1
,

2

32

2

31

2

21   fijf  

Equation 2.3 

      0,max, 323121   fijf  

Equation 2.4 

 The materials are said to deform elastically when   0ijf  and plastically 

when   0ijf  . A condition of   0ijf   defines a yield surface. 

Instead of using principal stresses, the criteria can also be defined using stress 

deviator. For Von Mises, Equation 2.3 will become as below: 

 

    fijijij ssf 
2

3
,  

Equation 2.5 

The first term in the equation represents Von Mises effective stress in deviatoric 

stress tensor form defined by the following equation: 

ijkkijijs 
3

1
  

Equation 2.6 

In classical plasticity theory, isotropic hardening has been used as a strain- 

hardening rule. Isotropic hardening assumes that the yield surface is transformed by 

growing its size uniformly in all directions. The centre point will remain in the same 
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place of the stress space. Figure 2.5 shows the transformation of the yield surface 

due to isotropic hardening (Chaboche 2008). Equation 2.7 shows a mathematical 

form of the yield condition in this theory (Yu 2006). R denotes the yield surface 

size, depending on plastic strains through the hardening parameter .  

  0)(   Rf ij  

Equation 2.7 

 

 

 

Figure 2.5 Schematics of isotropic hardening in the deviatoric stress plane and the 

stress versus plastic strain response (Chaboche 2008)  

 

There are a few possible descriptions of isotropic hardening. The two 

equations that are commonly used are Swift law and Voce law (Butuc et al. 2011). 

Equation 2.8 describes the strain hardening defined by Swift law 

 noof H    

Equation 2.8 
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Where; 
f  is the flow stress,   is the equivalent plastic strain, while o , o , H 

and n are material parameters.  Equation 2.9 shows the description of isotropic 

hardening according to Voce law. The description is based on an exponential form 

of hardening.   

  beQ
Yf

 1  

Equation 2.9 

The equation assumes that the yield stress saturates at a certain point.  Q defines the 

maximum change in the size of the yield surface and b is the rate at which that 

maximum is reached (Butuc et al. 2011). Other proposed isotropic hardening 

equations are shown below (Johnson and Mellor 1973): 

Holloman  

n

f H   

Equation 2.10 

  Ludwick 

n

Yf H   

Equation 2.11 

Prager  









Y

Yf
E


 tanh  

Equation 2.12 

Ramberg and Osgood (Lemaitre and Chaboche 1990)  

n

Yf H /1   

Equation 2.13 



 

 18 

The third element of the constitutive model is the plastic flow laws, required 

to predict the plastic strains components in metal deformation. The objective is to be 

able to determine the small change in plastic strain,
ijd .   

For Von Mises yield criterion, the general plastic strain increment is described as in 

Equation 2.14 (Bower 2009). 

f

ij

ij

ij

s
d

f
dd







2

3





  

Equation 2.14 

However, the application of isotropic hardening in the classical plasticity theory is 

limited to monotonous and proportional deformation and it is unable to describe the 

Bauschinger effect of cyclic loading (Chung et al. 2005). To account for the 

Bauschinger effect, cyclic loading modelling has been established.  
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2.4.2. Cyclic Loading Model 

In sheet metal forming, cyclic loading occurs due to bending and unbending 

of material in the die draw bead and when the sheet is drawn over a die shoulder 

corner (Hosford and Caddell 1993; Sanchez 2010; Yoshida et al. 2002). This is 

shown in Figure 2.6.   

     

 

Figure 2.6 Description of cyclic loading (a) draw-bend (b) springback (c) stress-

strain path (Yoshida et al. 2002) 

 

Yoshida described this cyclic process as having four distinct features: load 

reversal and Bauschinger point, transient behaviour, work-hardening stagnation and 

permanent softening as shown in Figure 2.7 (Yoshida and Uemori 2003). The 

description by Yoshida indeed originated from Sowerby and Uko. To describe 
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cyclic loading, Sowerby and Uko used unidirectional testing, where pre-straining in 

tension is followed by reverse straining in compression or vice versa. Figure 2.8 

shows a stress-strain curve for reverse loading using unidirectional testing (Sowerby 

and Uko 1979).  

 

Figure 2.7 Features of cyclic loading in bending (Yoshida and Uemori 2003) 
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Figure 2.8 Sowerby and Uko’s description of stress strain curve due to reversing 

loading direction (Sowerby and Uko 1979)  

 

The Bauschinger effect, by definition, is a reduction of yield stress on the 

reversal of loading when compared to the forward loading. It is also known as early 

re-yielding. The Bauschinger effect factor, BEF, has been used to quantify the 

Bauschinger effect according to the following formula: 

1

21

Y

YY
BEF


  

Equation 2.15 

 and  are shown in Figure 2.9. A zero BEF value indicates that no Bauschinger 

effect is present in loading and unloading deformation (Weinmann et al. 1988). 
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Figure 2.9 Weinmann’s cyclic loading effect (Weinmann et al. 1988) 

 

Another alternative formula is given by G.D. Moan and J.D. Embury below (Thakur 

et al. 1996): 

f

rf

e





2


  

Equation 2. 16 

where   

        = maximum flow stress in forward loading 

  = reverse yield stress 

While providing a good approach to measuring the Bauschinger effect, both 

formulas face a problem in determining the particular value of the reverse yield 

stress. Several researchers proposed the use of a 0.002 strain offset method (Thakur 
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et al. 1996). Figure 2.10 shows an alternative method to the 0.002 strain offset 

method.   

 

          

Figure 2.10 Determination of yield point by backward extrapolation method 

(Bruhns et al. 1992)  

 

The method uses a straight line, whose angle is 60% offset from the elastic line 

(Bruhns et al. 1992).  

The reverse yield point is followed by a rapid change in work hardening.  

Based on the position of the cyclic hardening curve relative to the monotonic 

hardening curve, the material is said to undergo cyclic hardening if the cyclic curve 

is above the monotonic curve and cyclic softening when the cyclic curve is below 

the monotonic hardening curve (Haupt et al. 1992; Lemaitre and Chaboche 1990). 

Permanent softening,  (Figure 2.8), is described by a steady difference between 

forward and reverse parallel stress after the transient stage. Parallelism of the 
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curves, however, is difficult to achieve and requires proper extrapolation (Sowerby 

and Uko 1979). 

To improve sheet metal forming simulation, there is a need to incorporate an 

appropriate constitutive equation capable of describing the Bauschinger effect. 

Kinematic hardening has been acknowledged to provide the answer. In kinematic 

hardening, the yield surface is transformed by translating from one point to another 

point but its shape and size stay the same. Figure 2.11 illustrates the kinematic 

hardening case. 

 

Figure 2.11 Schematics of kinematic hardening in the deviatoric stress plane and the 

stress versus plastic strain response (Chaboche 2008) 

 

The translation of the yield surface for kinematic hardening model was described by 

(Prager 1956) as 

0)(  oijij Rf   

Equation 2.17 

Where ij
 
represents the coordinates of the centre of the yield surface, which is also 

known as the back stress (Yu 2006). oR  is a material constant representing the size 

of the original yield surface. The yield criteria for this model are slightly different 



 

 25 

from the yield criteria for isotropic hardening. Equation 2.18 shows the Von Mises 

yield criterion for kinematic hardening. The value for 
f  in this formula is 

constant.  

     0
2

3
,  fijijijijij ssf   

Equation 2.18 

The formulation of a kinematic hardening model involves an evolution rule 

of the back stress,
ij . The following linear kinematic hardening model was 

proposed by (Prager 1956)  

ijij dCd    

Equation 2.19 

Where, C is a material constant. Prager’s model however does not give consistent 

results for two and three-dimensional cases. To improve this model, Ziegler’s linear 

hardening equation was proposed according to the following equation (Ziegler 

1959) 

  ijijijoij dCd 


 
1

 

Equation 2.20 

The symbol o is the size of the yield surface at zero plastic strain. The linearity of 

Prager’s hardening model and Ziegler’s hardening model, however, do not represent 

the actual nonlinearity of plastic deformation. To account for nonlinearity condition, 

Armstrong-Frederick (A-F model) introduced a term  , called dynamic recovery, 

into Prager’s and Ziegler’s linear kinematic hardening models.  Equation 2.21 and 
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Equation 2.22 show the respective formulas for these models using nonlinear 

kinematic hardening (Armstrong and Frederick 1966). 

 dCdd ijijij   

Equation 2.21 

 

  


 ddCd ijijijijoij 
1

 

Equation 2.22 

 

C and gamma   are material parameters to be determined from cyclic testing. C is a 

kind of hardening modulus and gamma   defines the rate at which the kinematic 

hardening modulus decreases as the plastic deformation develops. The term d is 

the increment of the equivalent plastic strain.  

Chaboche extended the A-F model by suggesting that several kinematic 

hardening components (additive back stress) exist and he introduced the concept of 

a total back stress. The hardening laws for each back stress are given in Equation 

2.23  (Chaboche 1986; Chaboche 1989). 

      


 ddCd
KijijijijoKij 

1
 

  

Equation 2.23 

 

The overall back stress is computed from the following equation 

 

 

Equation 2.24 

Where N is the number of load cycles.  

Combining isotropic and nonlinear kinematic hardening has been considered 

to be more efficient than the application of kinematic hardening alone in sheet metal 

 
K

N

K ijij




1

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forming simulation. This is due to the capability of isotropic hardening to improve 

cyclic transient of elastic to plastic in stress-strain characteristic whilst at the same 

time kinematic hardening continues to take care of the Bauschinger effect (Chun et 

al. 2002a; Chun et al. 2002b; Rauch et al. 2007; Yoshida and Uemori 2002; Yoshida 

and Uemori 2003). In this type of hardening model, the yield surface is subjected to 

both translation and expansion. The following equation describes the yield function 

of the model (Yu 2006)  

    0  Rf ijij
 

Equation 2.25 

 

One of the possible combinations is between Voce isotropic hardening and 

Chaboche nonlinear kinematic model as shows in Equation 2.26 (Chaboche and 

Rousselier 1983; Chaboche 1986).  

   






  ee
CbQ

Yf
11  

Equation 2.26 

For the past years, several researchers have also proposed alternative cyclic 

models based on additional flow surfaces, called bounding surfaces. Among the 

latest models belonging to this group are the Geng-Wagoner hardening model (G-

W) and Yoshida-Uemori hardening model (Y-U).   

The G-W hardening model is a two-surface model originating from the 

Armstrong-Frederick hardening model. A bounding surface is introduced in the 

model to capture the permanent softening effect by expanding and translating yield 

surface. The following figure illustrates this concept (Geng and Wagoner 2000; 

Geng et al. 2002). 
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Figure 2.12 Geng-Wagoner’s description of two-surface hardening model (Geng 

and Wagoner 2000) 

 

The evolution of back stress   is shown below.  

 
   

ijijijijij

ij

satij

xij dCd 
















  

Equation 2.27 

The symbol   represents the centre of the bounding surface and it is given 

according to the following formula 

  


d
mhh

d B 



σ

"'

 

Equation 2.28 

The letter m is the ratio between kinematic and isotropic response for the bounding 

surface. For m equal 1, hardening is purely isotropic and for m equal 0 hardening is 

purely kinematic. h’ is plastic modulus and h” is another plastic modulus at a 
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certain distance from h’. The symbol   is a measure of the size of the bounding 

surface and B is the stress-mapping point on the bounding surface. 

The Y-U hardening model consists of three different surfaces in the plane 

stress space. Apart from a yield surface and a bounding surface, an additional 

surface has been added to control the permanent softening and the work hardening 

stagnation as shown in Figure 2.7. The yield surface can only translate in stress 

space (kinematic hardening). So its size is constant, Ro (the initial uniaxial yield 

stress). The yield surface expression is given by Equation 2.17. The bounding 

surface on the other hand is assumed to move by translation as well as by 

expansion. The following equation describes the general expression for the 

bounding surface (Yoshida and Uemori 2003; Yoshida and Uemori 2002).   

    0 DBf ijij   

Equation 2.29 

The symbol  here is the centre of the bounding surface, B is its initial size and D 

represents its isotropic hardening. Another expression for this hardening is the 

relative movement of the yield surface with respect to the bounding surface. The 

expression is as follows 

ijijij  
 

Equation 2.30 

The evolution of 

ij  and ij  is given by the following equations 

    


 d
R

RDB
Cd ijij

O

O
ij 











 

 

Equation 2.31 



 

 30 

 
  


 d
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kd ijijijij 











  

Equation 2.32 

Where; C, k and b are material parameters.  

Although the development of advanced hardening models has improved the 

description of cyclic loading deformation characteristics, their application in finite 

element software is still limited, mainly due to their computational ineffectiveness 

(Eggertsen and Mattiasson 2009). Isotropic hardening, kinematic hardening and 

mixed hardening seem to be widely accepted models applied in the finite element 

software. This is because of the reasonable number of material parameters required 

for the constitutive equation (Q, b, C, and ) and more importantly because 

computation is simpler due to only one surface model (Abaqus 2000; Eggertsen and 

Mattiasson 2009; Eggertsen and Mattiasson 2010; Chung et al. 2005).  

2.5. Previous Work on Sheet Metal Bending Research 

Springback has been given major attention in sheet metal forming research 

with numerous studies being conducted to understand and solve the problem. They 

range from inventing new designs of tooling, such as flexible and warm tooling, 

(Bruni et al. 2006; Keum and Han 2002; Zhang and Lin 1997; Zhang et al. 1997) to 

improving the accuracy of springback prediction by empirical and analytical 

methods and computer simulation. The accuracy of the springback prediction by 

analytical and numerical simulation depends to a great extent on constitutive 

equations and material parameter identification. Thus, several studies have been 

performed extensively on the matter. An attempt to review previous works is 



 

 31 

presented and their advantages and disadvantages are discussed here.  Based on the 

review, a conclusion is drawn regarding a knowledge gap, which motivates the 

current research. 

2.5.1. Empirical Methods of Springback Evaluation 

Various experiments have been conducted to obtain empirical data on 

springback, which involved various bending processes such as 90-degree wiping, v-

bending, air bending and deep drawing as well as actual production processes. 

Based on the experiments, equations or charts have been developed as a reference 

for product and tool design in sheet metal forming. Several factors have been 

considered for the empirical equations such as material properties and geometry, 

tool geometry and process parameters. The empirical equations have been compiled 

in handbooks for industrial use (Wilson et al. 1965).  

Davies studied the influence of material thickness, die gap, anvil radius and 

prior cold work for high-strength steels subjected to 90-degree wiping bending. 

Several charts were produced in relation to springback angle. In general, it was 

concluded that springback increased proportionally to anvil radius, die gap and 

material strength, but decreased as thickness increased. Besides, it was found that 

springback can be reduced by increasing the ratio of thickness to radius of the die to 

a value greater than 0.4 (Davies 1981).  

Using air bending and statistical methods, a study of geometric parameter 

interaction with the material properties was performed by Inamdar et al. The study 

concluded that there were interactions among the factors and the design of tools in 

air bending depended on material properties (Inamdar et al. 2002).  
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Tekiner and Tekaslan et al. found similar outcomes when performing tests 

on v-bending. Tekiner in addition also found that springback can be reduced by 

maintaining the load longer on the materials (Tekaslan et al. 2006; Tekaslan et al. 

2008; Tekiner 2004). 

Gau and Kinzel used a wiping tool with three different inserts, with a radius 

of 1/2, 3/8 and 3/16 inch, to indicate the relationship of the Bauchinger effect to 

springback. Figure 2.13 shows their test tool. Cyclic loading was performed on the 

sheet metal by the following procedure: bending (B), reverse-bending (RB), 

bending-reverse-bending (BRB) and bending-reverse-bending-reverse (BRBR). 

Except for bending (B), the next processes require the sheet metal to be turned over 

for bending in the opposite direction. The experimental materials were aluminium 

alloy, high strength steel, aluminium killed draw quality steel and bake hard steel. 

Figure 2.14 shows the result of springback for aluminium alloy AA6111-T4. The 

bending angle after springback decreases as the material is subjected to reverse 

loading. It was concluded that cyclic loading affects springback. In other words, 

Bauschinger effect should be considered in the analysis of sheet metal springback.     
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Figure 2.13 Gau and Kinzel’s wiping tool  
 

 

Figure 2.14 The effect of cyclic loading on springback (Gau and Kinzel 2001) 

 

2.5.2. Analytical Methods for Springback Prediction 

While providing useful information, empirical data tends to focus more on a 

limited set of parameters in a specific bending process. Thus, there is a need to 

consider an alternative more general method applicable to various bending 

processes with different parameters.  
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An approach based on the mechanics of sheet metal bending and plasticity 

theory has been considered as an alternative analytical method. Several model 

assumptions are applied. They include pure bending or tool bending of either non-

hardening or hardening materials, transverse stress across the sheet, neutral axis 

shifting, thickness reduction, anisotropy and strain reversal effect.  Rigid-perfectly 

plastic model was used for example by Hill in his analysis of sheet metal 

deformation based on plane strain bending.  He assumed there was shifting of 

neutral surface with no thickness reduction (Hill 1998).  

Based on beam elastic bending, Gardiner derived a well-known formula to 

define springback in bending based on bending geometry and material properties 

such as Young’s modulus E and yield stress S (Gardiner 1957). The formula derived 

for the relative springback 


  is 

    134
3


Et

RY
Et

RY
r

R


  

Equation 2.33 

Where R and r are the radii of curvature of sheet metal before and after springback, 

E is Young’s modulus, Y is yield stress and t is the sheet thickness.  

Later Timoshenko and Goodier developed a formula based on elastic beam 

theory to account for small R/t (Sanchez et al. 1996).   
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M = the bending moment applied, 

ν = Poisson ratio, 

E=Young’s modulus, 

a= the inside radius of the bend, 

b= the outside radius of the bend. 

 

Sanchez et al. developed a tool, as shown on Figure 2.15 to validate 

Equation 2.33 and Equation 2.34. Steel F50, IF and aluminium killed draw quality 

steel were bent to different R/t values (1.5, 3, 3.3, 3.4, 3.7, 4.1, 4.8, 4.7 and 6.6). 

 

 

Figure 2.15 Sanchez’s schematic of bend tester (Sanchez et al. 1996) 
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The results showed that both formulas underestimate the extent of springback 

mainly due to the assumption of only elastic stresses through the sheet metal 

thickness (Sanchez et al. 1996).  

Concerning improvement of modelling reliability, the incorporation of real 

conditions is being considered. These include nonlinear stress strain relationship, 

thinning of sheet and anisotropy. Nonlinear stress-strain behaviour of bent material 

was taken into account by (Bower 1965); he applied Prager’s isotropic hardening 

described by Equation 2.12. This led to the following formula: 












 YR

Et

xdxx
YR

Et
0

3

tanh540  

       Equation 2.35 

Where; 

∆θ = springback angle, 

Y = yield stress, 

R = radius before springback, 

t = thickness, 

E = Young’s modulus, 

X = Ey/RY, 

y = distance through the thickness measured from the neutral axis 

 

To consider anisotropy, Leu used Hill’s theory of plastic anisotropy and 

included normal anisotropy R in his formula (Leu 1997). The Bauschinger effect 

was neglected. The following equation was derived: 
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Equation 2.36 
 

Where;  

n = strain exponential hardening 

UTS = ultimate tensile strength 

ρ = radius of curvature 

R = normal anisotropy 

E= Young’s modulus 

ν= Poisson ratio 

e= exponential function 

2.5.3. Finite Element Simulations for Springback Prediction 

Analytical methods of solving bending problems can be applied to simple 

shapes and idealised process conditions. Nevertheless, for complex shapes of actual 

products and real bending processes the analytical methods have a limited use. With 

advances in computing technology, finite element simulation provides an alternative 

solution. Yet, reliability and accuracy of the finite element approach is still a 

challenge. Therefore, further developments of the methods are required. Among 

them are the improvements in the finite element formulation (new type of 

elements), the robustness of the numerical methods used and the quality of the 

constitutive models describing the deformation behaviour of the sheet metal 

(Oliveira et al. 2007).  
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This thesis is only concerned with the last aspect of these improvements and, 

in particular, the hardening rules used in material models, such as isotropic 

hardening, linear kinematic hardening, nonlinear kinematic hardening and 

combination of isotropic and kinematic hardening.  

Isotropic hardening for example was used by several researchers to 

determine geometrical effects of die gap, sheet thickness and die radius on the 

springback angle and to show that computer simulation can provide a better 

prediction of the final sheet metal shape.  

Nilsson et al. conducted a v-bending test to prove that finite element 

simulation is a better method of predicting springback. The simulation applied 

simple elastic plastic isotropic hardening data from a tensile test. Materials tested 

were aluminium, stainless steel and low carbon steel of various grades and 

thicknesses. Although the simulation results underestimated the springback angle 

when compared with experimental data, the study concluded that the simulation 

could be used to predict springback (Nilsson et al. 1997).     

Bakhshi-Jooybari et al. performed an experimental and simulation study 

using v-bend and u-bend on a CK67 steel sheet. The simulation used a similar 

material model as that used by Nilsson. However, the simulated springback angles 

were greater than the experimental ones (Bakhshi-Jooybari et al. 2009).  

Using Hollomon’s isotropic hardening model, Samuel focused on 

understanding the stress strain distribution for sheet deformation due to a draw bead 

with 5 mm radius. The author claimed that the drawing force and the blank holding 

force obtained by the simulation were accurately predicted (Samuel 2002). 
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Finite element simulation using complex hardening models has been 

considered to improve simulation of sheet metal forming. This, in particular, refers 

to the case when accounting for a reversal loading in which Bauschinger and the 

hardening transient effects are present. A study by Li et al., for example, found that 

including Bauschinger effect can improve springback prediction (Li et al. 2002). 

Thus, several studies were attempted using kinematic hardening or more complex 

hardening models, to improve the accuracy of the simulation. Some of the studies 

are presented here for reference.  

Song et. al. studied straight flanging and found that using kinematic 

hardening produced better results in terms of springback prediction compared to 

isotropic hardening (Song et al. 2001). Simulations of hemispherical punch 

stretching, cup drawing and bending drawing tests were performed by Moreira and 

Ferron to investigate the impact of various types of hardening modelling in sheet 

metal forming. The isotropic hardening model was found to provide good 

simulation for the first two tests but not for the bending drawing test. They 

concluded that the kinematic hardening model should be considered to simulate 

stress reversals in the process of bending-unbending (Moreira and Ferron 2004).  

Firat did a similar study and found that the kinematic hardening model 

provided fourfold improvement in springback prediction compared to the isotropic 

hardening model. Isotropic hardening produced up to one hundred percent relative 

errors while the kinematic hardening model showed seventeen to twenty percent 

relative error in terms of overall dimensional accuracy(Firat 2007; Firat et al. 2008). 

 Ragai et al. emphasised the importance of including the Bauschinger effect 

in springback prediction but found that anisotropic effect was quite small, with only 
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1 degree difference between the experimental results and the simulation results for 

different material orientations; the study was conducted using a draw-bend test for 

stainless steel 410 (Ragai et al. 2005). On the other hand, a study on high strength 

steel performed by Gomes et al. indicated that orientation has a significant influence 

on springback. Average simulation errors were 25% for 0 degree, 32% for 45 

degree and 23% for 90 degree orientations (Gomes et al. 2005). However, the study 

was based on an isotropic hardening model, which meant the Bauschinger effect 

was neglected. It is believed that this could contribute to a bigger discrepancy 

between simulation and experimental results. 

The influence of the hardening model has also been investigated in 

(Eggertsen and Mattiasson 2009; Eggertsen and Mattiasson 2010; Oliveira et al. 

2007). Oliveira et al. compared the influence of the material model on springback 

prediction of a u-shape profile. The hardening laws used for the study were the 

isotropic hardening Swift law and the Voce law, a combination of Swift hardening 

with nonlinear kinematic hardening and a combination of Voce hardening with 

nonlinear kinematic hardening. The nonlinear kinematic hardening was represented 

by the Lemaitre-Chaboche law. The study concluded that each of the constitutive 

laws provides different results due to different predicted through-thickness stress 

gradients. The authors further concluded that the strain-path changes identified in 

the u-shape are very important and should be considered in the springback 

investigation. For that, the use of a bending-unbending test to characterize material 

data is required.  

Eggertsen and Mattiasson studied and compared 5 hardening laws: 

Holloman isotropic hardening law, a combination of Holloman isotropic hardening 
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and Ziegler kinematic hardening law, Armstrong and Frederich hardening law (A-

F), Geng and Wagoner hardening law (G-H) and Yoshida and Uemori hardening 

law (Y-U). Parameters of the hardening laws were determined using the inverse 

method based on a three-point bending proposed by (Zhao and Lee 2002). The 

quality of hardening rules was evaluated based on two bending processes. The first 

process was a three-point bending experiment, in which the performance was 

measured by trying to get the best fit with the experimental force-displacement 

curve. The findings indicated that the isotropic hardening produced the worst result. 

The A-F hardening model fitted well the lower part of the curve but was unable to 

produce a good fit for the upper part, , which is the permanent softening region. The 

Y-U hardening law provided the best results, but due to its mathematical complexity 

the preferred hardening law was that slightly less perfect one proposed by Geng and 

Wagoner (G-W). The second process was a Numisheet’93 standard benchmark test 

as in Figure 2.16.  Table 2.1 shows the detailed results. Simulations of u-bending 

showed that all the hardening laws underestimated the springback angle, 1 . The 

best prediction of the springback angles was obtained for the A-F hardening law. 
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Figure 2.16 Numisheet’93 benchmark (a) experimental set-up (b) definition of the 

angles 1  and 2 (Eggertsen and Mattiasson 2009) 

 

  

Table 2.1 Comparison between springback angles predicted by using various 

hardening rules and the experimental angles for material TKS-DP600 (Eggertsen 

and Mattiasson 2009) 

 

 

 

Based on these results, we are able to say that the spring predictive ability of 

multiple-surface based hardening rules (G-W and Y-U) is not as good as in the case 

of the one-surface based hardening rules. 

Lee, Chung and others conducted experimental validations to evaluate 

springback simulation based on the isotropic hardening law, kinematic hardening 

law and combination of the two laws. Additionally they used a new non-quadratic 
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anisotropic yield function. Materials tested were aluminium AA5754-O and 

AA6111-T4 grades and a DP-steel. Material parameters were determined using a 

cyclic tension and compression test. They used three bending processes, u-bending, 

unconstrained cylindrical bending and double-s rail bending; the last two processes 

are shown in Figure 2.17.  

 

 

Figure 2.17 (a) Unconstrained cylindrical bending (b) double-s rail (Lee et al. 

2005a)  
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For unconstraint cylindrical bending the overall simulation results overestimated 

springback. For u-bending and double-s rail, the combined hardening provided the 

best results compared to isotropic or kinematic hardening (Chung et al. 2005; Lee et 

al. 2005a; Lee et al. 2005b). 

2.5.4. Cyclic Loading Experiments  

 The simple and efficient monotonic tensile test has been utilised extensively 

in early research on hardening. The need to describe the actual forming process, 

which involves bending-unbending requires the tensile test to perform cyclic or 

reverse loading, which is very difficult to perform for sheet materials. Several 

special design specimens and devices have been developed in an attempt to include 

the reversal effect in tensile tests for sheet metal. The device developed by Yoshida 

et al. (Yoshida and Uemori 2002; Yoshida et al. 2002; Yoshida and Uemori 2003) is 

shown in Figure 2.18,  while the devices proposed by Boger et al. (2005), Kuwabara 

et al. (2009) and Cao et al. (2009) are shown in Figure 2.19, Figure 2.20 and Figure 

2.21. 

 Yoshida and Boger’s devices are almost similar. The sheets are packed 

together and supported by lateral plates to prevent buckling. Up to 0.25 and 0.13 

compressive strains were recorded for low carbon steel and strength steel 

respectively. Kuwabara on the other hand used two comb-shaped dies to prevent 

buckling. Using a servo-controlled hydraulic cylinder A, the lower die-2 moves 

right and left so that a continuous tensile and compression reverse load can be 

applied to the sheet metal specimen. Compressive strains of 0.15-0.2 were recorded.  
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Figure 2.18 Yoshida’s specimen holder to prevent buckling in compression 

(Yoshida et al. 2002) 

 

 

 

Figure 2.19 Boger’s schematic representation of the sheet metal specimen and 

uniaxial tension/compression tool (Boger et al. 2005) 
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Figure 2.20 Kuwabara’s comb-shaped device to prevent compression buckling (a) 

comb shape dies and (b) testing machine (Kuwabara et al. 2009) 

 

Because of the need to constrain the sample in the thickness direction to prevent 

buckling, all raw stress-strain results require corrections for frictional and biaxial 

effects arising from this supporting force. Cao et al. (2009) claimed that none of the 

methods were capable of suppressing buckling completely due to unavoidable 

exposed area of the specimen. In the first two methods, the exposed areas were 

identified between the dies and clamps of the tensile machine; and in the latter 

method, between each pair of the ‘fingers’ of the die. 

To improve the normal support on the entire specimen area during cyclic 

loading, they developed a four-block wedge with pre-loaded spring. Despite solving 

the buckling problem, the biaxial effect and the frictional effect between the die and 

specimen still exist. An additional frictional effect was also acknowledged between 

wedge plates and spring (Cao et al. 2009). 
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Figure 2.21 Cao’s tension and compression tool (Cao et al. 2009) 

 

In conclusion, setting up a tensile test for reversal loading is quite difficult. 

Cyclic torsion of sheet metal tubes and cyclic simple shear of sheet metal strips are 

proposed to overcome the buckling problem. One of the advantages of cyclic 

torsion is its capability to extend to large strain deformation. The tool, however, 

totally deviates from the actual sheet forming process and the sheet has to be 

welded, which would affect the material properties (Boger et al. 2005). The sliding 

effect on the other hand is the main problem in the cyclic simple shear test. 

Furthermore, the measurement of the local strain is quite difficult due to the limited 

area of the shear zone. The test however is very easy to setup and use (Thuillier and 

Manach 2009).  

 Using a cyclic bending test has been considered as another preferred 

alternative, considering its capability and flexibility to perform reverse loading to 

study the Bauschinger effect and its resemblance to industrial bending processes. 



 

 48 

Moment and curvature relationship in association with the springback phenomenon 

observed in the process can be used to derive a fundamental understanding of the 

stress-strain behaviour during elastic-plastic deformation. Motivated by this 

relationship, substantial experimental research has been conducted to develop and 

validate stress-strain modelling in terms of moment-curvature relationship. 

 In Carbonniere et al. (2009), a comparison study of kinematic hardening 

parameters, derived from the bending-unbending test and from the shear test was 

conducted on 1mm thick trip steel and aluminium alloy. The bending test and a 

specimen used are shown in Figure 2.22.  

 

 

Figure 2.22 The bending device and a four-piece specimen (Carbonniere et al. 2009) 

 

The aim was to evaluate the performance of the parameters identified in one test in 

finite element simulation of the results obtained in another test. The material 
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parameters established from the bending-unbending test, when used in the shear test 

simulation, provided very good description of the experimental shear data. This 

result is shown in Figure 2.23. When shear derived material parameters were used, 

the ability to describe the experimental bending-unbending data was worse. This 

result is shown in Figure 2.24.  
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Figure 2.23 Shear test and finite element results for material parameters identified 

from the bending test of 1 mm thick (a) trip steel b) aluminium alloy (Carbonniere 

et al. 2009) 
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Figure 2.24 Bending test and finite element results for material parameters 

identified from the shear test of 1 mm thick a) trip steel b) aluminium alloy 

(Carbonniere et al. 2009) 
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 In Weinmann et al. (1988), the authors conducted an experiment to capture 

deformation behaviour of steel and aluminium sheet in a forming operation, focused 

particularly on the draw beads. The authors intended to show the Baushinger effect 

as a function of strain amplitude, pre-strain and sheet thickness. They found that 

Bauschinger effect decreased as strain amplitude increased and there were no 

significant changes due to thickness reduction; hence the moment across the sheet 

thickness was carried by an individual layer in a similar manner. However, the 

conclusion is limited to thin sheets with 3 mm thickness and less. Pre-strain on the 

other hand showed a significant influence on the Bauschinger effect and quickened 

the development of a steady-state hysteresis loop. It was found that pre-strain 

increased the first cycle Bauschinger effect factor. The device used by the authors is 

shown in Figure 2.25. 

 

Figure 2.25 Weinmann’s bending-unbending test equipment (Weinmann et al. 

1988)  
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 A similar experimental tool was developed by Yoshida (Yoshida et al. 

1998), as shown in Figure 2.26, to study cyclic strain hardening and the 

Bauschinger effect of 0.42 mm thick stainless steel 304, 0.50 mm thick stainless 

steel 430 and 0.98 mm thick low carbon steel (SPCC). The authors used an 

optimization technique based on iterative multipoint approximation to identify 

material parameters for isotropic and nonlinear kinematic hardening which would 

give satisfactory agreement between the experimental and analytical moment-

curvature results for a number of cycles. Verification was performed by comparing 

the stress-strain curves derived from the cyclic tests with the experimental curves 

obtained by tensile testing. They found a good match provided the material 

parameters for bending-unbending were based on experimental results for more than 

one cycle. 

 

Figure 2.26 Yoshida’s schematic experimental set up for cyclic bending (Yoshida et 

al. 1998) 
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In Brunet et al. (2001), the authors used a four-point bending test to study 

cyclic loading and the least-square optimization to identify parameters for isotropic-

nonlinear kinematic hardening of the Lemaitre-Chaboche equation. Materials used 

were 0.8 mm thick of aluminium alloy and low carbon steel. They suggested that it 

was sufficient to consider the first cycle and monotonic loading for the material 

parameters of the constitutive equation to be established. Verification was 

conducted similarly to (Yoshida et al. 1998).  

Figure 2.27 shows the three-point bending test used by Geng et al. (2002),  

Zhao and Lee (2002) and  Omerspahic et al. (2006). Instead of using the moment-

curvature relationship, the tool provided a force-displacement graph for the cyclic 

study. Geng et al. used the tool to compare hardening laws for cyclic loading with 

the one derived from tension-compression test. Materials for the study were 

aluminium alloy 6022-T4, high-strength low-alloy steel (HSLA) and drawing-

quality silicon-killed steel (DQSK). They found that the constitutive models 

obtained by fitting the reverse-bend test and tension-compression test show 

significant differences when evaluated in terms of their stress-strain responses 

following a stress reversal and the nonlinear kinematic hardening law that was 

unable to match the Bauschinger effect at strains larger than 0.02.  

Zhao and Lee conducted finite element analysis of the cyclic bending using 

isotropic, nonlinear kinematic and combined hardening for low carbon steel 

(SPCEN) and high strength steel (SPRC). Isotropic hardening overestimated the 

hardening component, while kinematic hardening underestimated it. Combined 

hardening was capable of showing the predictable Bauschinger effect accurately. 

They used a genetic algorithm to identify parameters for the combined hardening.     
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Omerspahic et al. continued with that work using a redesigned three-point 

bending tool for high strength steels ZSte340 and DP600 and aluminium alloy 

AA5182. Two parameters for each of the isotropic hardening and  nonlinear 

kinematic hardening were identified by minimizing the sum of square differences 

between experimental and finite element results using the response surface method 

of an optimization code.  

Chun et al. used the three-point bending and the results of Zhao and Lee to 

identify material parameters for their proposed hardening equation based on a 

modification of the Chaboche constitutive equation. The modification accounted for 

a permanent offset in the flow stress. It was found that the parameters describing 

bending were similar to parameters derived from tension-compression and fitted 

well the permanent offset of the experimental curve. In general, they concluded that 

both  the three-point bending and tension-compression can be used to identify 

material parameters for the proposed equation (Chun et al. 2002a; Chun et al. 

2002b). 
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Figure 2.27 Schematic drawings of three-point bending used by (a) (Geng et al. 

2002) and (Zhao and Lee 2002) and  (b) (Omerspahic et al. 2006) 

 

Boers et al. developed a bending test as in Figure 2.28, not only for studying 

material parameters, but also to study hardening stagnation after reverse loading.  

 

 

Figure 2.28 Tool for cyclic loading investigation proposed by (Boers et al. 2010) 

 



 

 57 

As shown in the figure, the tool consists of eight components and one sheet metal 

sample (label 1 to 9). During experiment, the sides of a rectangular sample (5) are 

firmly clamped by a pair of hydraulically actuated clamps (3 and 4). The clamps are 

mounted on two air-suspended linear guides (1 and 2) that can move frictionless 

along and around the axes of two cylinders (8 and 9). Clamp 4 provides rotation 

whereas clamp 3 measures the applied bending moment by using an elastic joint (6). 

The authors claimed that the tool was capable of providing better results compared 

to cyclic shear, tension-shear and three-point bending methods (Boers et al. 2010). 

2.5.5. Material Parameters Identification 

Part of the crucial task of improving the constitutive models is to identify 

their parameters. The inverse identification method shown in Figure 2.29 has been 

adopted as one of the solutions (Yoshida et al. 2003). The idea is to adjust material 

parameters in the finite element code to produce a particular response such as 

geometry, force or moment that match the experimental data. The identification 

processes is done by minimising the difference between the finite element 

simulation results and the experimental results by using optimisation methods.  
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Figure 2.29 An inverse identification method to identify material parameters using 

finite element simulation (Yoshida et al. 2003) 
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This optimisation method works by finding a set of design parameters,

 nxxxxx .....,, 321
 that can in some way be defined as optimal. These parameters 

are obtained by minimizing or maximizing an objective function f(x), which is the 

difference between experimental results and numerical results. The optimisation 

variables are the material parameters that appear in the constitutive model 

(Chaparro et al. 2008). The most common optimisation methods are based on the 

evolutionary algorithms, derivative-free (direct search) algorithms and derivative 

(gradient based) algorithms. Evolutionary algorithms are judged to be very robust 

with the capability to tackle initial solution requirements as well as local minimum 

problems. However, they depend on sub-optimal algorithms to guarantee the 

optimisation of the global minimum of the objective function. Derivative-free 

(direct search) algorithms use simple strategies by eliminating derivative 

calculation, which leads to less Programming. However, they are time-consuming 

due to the need to perform many iterative calculations. The derivative algorithms on 

the other hand require less iterative calculation, which gives an advantage in terms 

of quick converging to the solution. Their limitation is due to difficulty in selecting 

an initial trial solution (Chaparro et al. 2008; De-Carvalho et al. 2011).  

Several researchers used the inverse identification method together with a 

selected optimisation method to determine cyclic hardening parameters. Yoshida et 

al. applied inverse identification method to experimental results obtained in a 

bending-unbending process (Figure 2.26). The authors used an optimisation 

technique based on iterative multipoint approximation to identify material 

parameters for isotropic and nonlinear kinematic hardening, which would give 

satisfactory agreement between the experimental and simulation moment-curvature 
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results for a number of cycles. Verification was performed by comparing the stress-

strain curves derived from the cyclic tests with the experimental curves obtained by 

tensile testing. They found a good match provided the material parameters for 

bending-unbending were based on experimental results for more than one cycle 

(Yoshida et al. 1998).  

Zhao and Lee (2002) used inverse identification for three-point bending as 

shown in Figure 2.27(a) and a genetic algorithm optimization method to identify 

parameters for a combined isotropic-kinematic hardening equation. However, their 

tool has two distinct drawbacks. First, finite element simulation faces a contact 

problem at the punch rollers. To solve this problem, an equivalent non-contact 

model had to be built by Zhao and Lee. Second, instead of using moment-curvature, 

the measurement was in the form of force and displacement. As a consequence, the 

measurement of Bauschinger effect was not satisfactory (Geng et al. 2002).  

Chun et al. used the same three-point bending test and the genetic algorithm 

optimisation to determine material parameters for their newly proposed anisotropic 

kinematic hardening and modified isotropic hardening equations. It was found that 

the identified parameters were comparable to parameters derived from tension-

compression and fitted well the permanent offset of the experimental curve (Chun et 

al. 2002a). A similar type of bending but with a different type of optimisation 

technique was used by Omerspahic et al. Two parameters for each of the models of 

isotropic hardening, nonlinear kinematic hardening and viscoplastic hardening were 

identified by minimizing the sum of squared differences between experimental and 

finite element results using a response surface method of LS-OPT optimization 

software (Omerspahic et al. 2006).  
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  A comparison study of kinematic hardening parameters, derived from a 

three point bending test and from a shear test was conducted by (Carbonniere et al. 

2009). Gradient-based algorithm has been used in minimizing the difference 

between experimental results and numerical results. They concluded that bending-

unbending testing is able to provide acceptable material parameters.   

Zhang et al. used four-point bending and a gradient-based optimisation 

method (Guess-Newton algorithm) to determine isotropic hardening parameters, 

Young’s modulus and initial yield stress for a stainless steel clad with copper sheet 

(bimetallic). They concluded the inverse identification method is applicable to 

bimetallic sheet metal (Zhang et al. 2010). 

Some researchers did not use finite element simulation as part of the inverse 

method. Instead, they applied optimisation directly to match a constitutive equation 

and experimental results. The application of this approach to bending-unbending, 

however, is very limited. One such particular work was by Brunet et al. (2001). 

They used a three-point bending tool, an analytical formula describing bending-

unbending results and a sequential quadratic Programming optimisation algorithm 

to identify parameters in a combined isotropic-kinematic hardening model. 

Verification of the material parameters application to springback prediction was not 

performed but it was strongly suggested by the authors (Brunet et al. 2001). 

Direct application of optimisation to other types of testing is noticeable 

through several papers. Some of the works focused on material parameters 

identification and quite a number focused on evaluating optimisation performance 

for different algorithms. Andrade-Campos et al. sought to determine 16 parameters 

of a thermo-elastic viscoplastic constitutive model using a gradient based algorithm 
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method and a continuous evolutionary algorithm method for an aluminium alloy 

grade AA1050-O. The experimental data came from a tensile test and a shear test. 

The study found that the evolutionary algorithm results were only slightly better 

than the gradient based results. Thus, it was fair to conclude that both methods were 

applicable to determine material parameters for the constitutive model (Andrade-

Campos et al. 2007).    

Mahmoudi et al. used a multi-objective genetic algorithm to derive 

parameters for the Chaboche kinematic hardening model. The experimental data 

came from a tension-compression test. They claimed that the derived parameters 

were capable of improving prediction of cyclic ratcheting and the hysteresis loop 

model (Mahmoudi et al. 2011).  

Several researchers proposed a combination of two or more optimisation 

methods as a strategy to combine the advantages of individual optimisation 

methods. Chaparro et al., for instance, proposed a combination of two gradient-

based algorithms and an evolutionary-based algorithm. The two gradient-based 

algorithms were the steepest descent method and the Lavenberg-Marquardt (LM) 

method, while the genetic algorithm was represented by the evolutionary-based 

algorithm (EA). The strategy was used to identify parameters for the Barlat’91 yield 

criterion, an isotropic Voce type law and a kinematic Lemaitre and Chaboche law 

for 1 mm EN AW-5754 of aluminium alloy subjected to uniaxial tensile test and a 

simple shear test. Performances of the combined algorithm strategies were 

compared with performances of single algorithm strategies. The combined strategies 

(EA, the steepest descent method and LM) recorded 25 minutes of CPU calculation 

time, as compared to 30 minutes and 60 minutes recorded for Lavenberg-Marquardt 
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and the evolutionary algorithm, respectively. The results, however, did not show 

any significant differences, which meant that optimisation is relatively well 

performed by all algorithms (Chaparro et al. 2008).  

De-Carvalho et al. compared the performance of various strategies (cascade, 

parallel and hybrid) for combining Laverbert-Marquardt (LM) and evolutionary 

algorithm (EA) in material parameter identification. The performance was measured 

by taking into account the value of the objective function, the number of iterations 

as well as the material parameters identified. Several constitutive models were used 

including a nonlinear isotropic hardening model and an elasto-viscoplastic model of 

isotropic and kinematic hardening. The first model used data from uniaxial tension 

of stainless steel AISI 304 and the latter used data from monotonous tensile and 

shear tests of low carbon steel E220BH. For cascade strategies applied to elastic-

plastic hardening, it was concluded that all the strategies led to satisfactory results 

and similar final parameters. Performing LM followed by EA slightly improved the 

objective function but with a considerably larger number of iterations. Similar 

results were observed for the parallel strategy in terms of material parameter 

identification. However, the objective function was better than for single algorithm 

strategies. As for hybrid methods, the performance was evaluated based on elasto-

viscoplastic model. Again material parameter identification produced insignificant 

differences among the strategies, with hybrid strategies showing considerable 

improvement only in terms of objective function values. In certain cases, LM 

performed better than hybrid strategies. Model parameters established by all 

strategies produced acceptable fit of experimental results (De-Carvalho et al. 2011).  
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2.6. Conclusions 

Despite various efforts to improve sheet metal forming through accurate 

springback prediction and material modelling, there remains room for improvement 

of knowledge in this subject. One area of improvement is the adequacy and quality 

of experimental tests used to identify material parameters in constitutive equations. 

More accurate constitutive laws describing material behaviour are required to 

improve the quality of the analytical and finite element simulation results so that 

they can better represent the real deformation process. 

Property data obtained from the uniaxial tensile-compression test is no 

longer sufficient. An attempt to account for the Baushinger effect in cyclic testing of 

sheet faces a buckling issue and suffers from friction due to the side support. Cyclic 

bending test managed to produce better results but they often refer to an ideal three-

point bending rather than real industrial bending processes. This gap in the 

knowledge of plastic deformation requires further works. 

Experimental identification of material parameters using inverse method 

requires an efficient optimisation strategy. The potential of using direct optimisation 

should be further explored; this method has an advantage of avoiding complex 

boundary conditions in the finite element model of a bending process. 

 To address the above issues in the current research, a plain-strain pure 

bending tool has been developed to perform experiments on a selection of materials, 

with a view to identifying material parameters for constitutive equations for a range 

of thicknesses. It is expected that this research will improve the predictive capability 

of sheet-metal forming practitioners so the throughput times can be reduced.  
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CHAPTER 3 

MATERIAL CHARACTERISTICS 

 

3.1. Introduction 

Stress-strain relations describing the work hardening, strength and 

formability of the material are among the material properties of significant 

importance and are obtained by using tensile testing. In this work, tensile testing 

was used to evaluate the fundamental material properties of cold rolled low carbon 

steel and stainless steel of various thicknesses. The objective is to apply the 

properties as input data for finite element simulation in Chapter 6. The mechanical 

properties of the materials stated from some of literatures are shown in Table 3.1 

and 3.2 (Groover 2002; Budynas and Nisbett 2008). 

Table 3.1 Cold rolled low carbon steel  

Standard and grade 

EN10130:1999: DC01 

BS1449:1991: CR4 

JIS G3141: SPCC 

SAE: 1010 

Chemical composition, % C = 0.120, P = 0.045, S = 0.045, MN = 0.6 

Mechanical properties 

Yield strength : 140–280 MPa 

Tensile strength: 270–410 MPa 

Young’s modulus: 207 GPa 

Total elongation: 30% 

Strength coefficient: 500 MPa 

Strain hardening exponent: 0.25 
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Table 3.2  Stainless steel 

Standard and grade 

ASTM: 304 2B 

2B denotes cold rolled, heat treated, pickled, 

skin passed. 

Chemical composition, % 
C = 0.055, Cr = 18.2, Ni = 8.1, 

Mn = 1.8, P = 0.31, S = 0.001,  Si = 0.357 

Mechanical properties 

Yield strength: 275 MPa 

Tensile strength: 650 MPa 

Young’s modulus: 190-200 GPa 

Total Elongation: 55 

Strength coefficient: 1200 MPa 

Strain hardening exponent: 0.40 

 

3.2. Material Preparation and Procedure 

3.2.1. Specimen Preparation 

The tensile test specimens were manufactured in the form of bundles from 

rough blanks using a CNC milling machine. Prior to machining, the specimen 

blanks were cut in the direction of 0º from the direction of sheet metal rolling.  In 

order to avoid buckling of the thin and high strength material, a pin-loaded type 

specimen with 50 mm gage length was used as suggested by the ASTM E8M. 

Detailed dimensions of this standard are shown in Figure 3.1. 
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Figure 3.1Standard tensile specimen geometry and the prepared specimens (ASTM 

E8M 2004) 
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3.2.2. Test Procedure and Set-up 

The tensile test standard used was ASTM E8M: “Standard test methods for 

tension testing of metallic materials (metric)”. All tests were performed at room 

temperature. From the experimental data, true stress-strain graphs were derived and 

the Young’s modulus and yield strength of the material were recorded. The test 

procedure is described below: 

 

i. The machine was warmed up to normal operating temperature to 

minimize errors that may result from transient conditions. 

ii. The specimen was held in vertical grips. 

iii. The specimen was stretched until fracture at a crosshead speed of 

5.0 mm /minute.  

iv. Force and extension data were recorded. 

v. Engineering stress (s) and strain (e) were calculated from these 

data with reference to the initial cross-sectional area of the 

specimen before test.  

vi. These values of engineering stress and engineering strain were 

used to calculate the true stress and true strain for each specimen 

by using the following relationships: 

 1 es  

 1ln  e    

vii. A similar procedure was applied to all specimens. 
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Figure 3.2 shows the experimental set-up of the test. 50 kN tensile machine, 

an extension meter model 7609V and Rubicon 825 data acquisition system from 

Denison Mayes Group were used for this experiment.  Figure 3.3 shows the method 

used to establish the Young’s modulus and yield strength from the true stress-strain 

graph of the data.   
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Figure 3.2 Tensile test experimental set-up 

  

 

 
 

Figure 3.3 Identification of material properties by using true stress-strain graph  
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3.3. Results and Discussions 

Figure 3.4 shows the force versus extension for low carbon steel and stainless steel 

obtained for different specimen thicknesses. A comparison based on the same 

thickness shows that plastic deformation of stainless steels requires higher force 

than plastic deformation of low carbon steel. Forces recorded for 1.5 mm and 1 mm 

thick low carbon steel specimens show a short plateau at the onset of plastic 

deformation (confirmed in stress-strain graphs later on in this chapter), which may 

indicate the occurrence of Luders bands, but no attempt was made to actually 

observe them during the test. All curves showed a typical smooth transition from 

elastic to elastic-plastic deformation. 

 

Figure 3.4 Force versus extension for cold rolled low carbon steel (MS) and 

stainless steel (SS) subjected to tensile test 
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3.3.1. True Stress-Strain Characteristics for Cold Rolled Low Carbon Steel 

Figure 3.5 shows the true stress-strain relationship for cold rolled low carbon 

steel of 1 mm thick.  

 

Figure 3.5 True stress versus true strain for 1 mm cold rolled low carbon steel 

 

 

As mentioned before, the 1 mm thickness curve shows the Luders band 

effect explicitly. Although the overall stress-strain curves for the specimens were 

similar, the calculated Young’s moduli were found to be scattered, as indicated in 

Table 3.3.  
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Table 3.3 Material properties of 1 mm cold rolled low carbon steel 

Sample 1 2 3 4 5 Average 

Young’s modulus 

(GPa) 
211.93 168.70 195.10 138.40 185.07 179.84 

Difference (value 
minus average) 

32.09 –11.14 15.26 –41.44 5.23 
 

Yield strength 

(MPa) 
240.60 239.83 234.58 240.16 239.17 238.87 

Difference (value 

minus average) 
1.73 0.96 –4.29 1.29 0.30 

 

       Sample 2 3 5 Average 

  Young’s modulus 

(GPa) 
168.70 195.10 185.07 182.96 

  Yield strength 

(MPa) 
239.83 234.58 239.17 237.86 

  

  

Therefore, only the best three specimens were considered for an average 

value, which was useful for application in the finite element simulation. The best 

three specimens were selected from among the lower values of the absolute 

difference between the Young’s modulus of the specimen and the average Young’s 

modulus of five specimens. The results show that the values of yield strength were 

almost similar, with differences ranging from 0.3 to 4.29 MPa. Young’s moduli on 

the other hand were slightly scattered. The absolute differences ranged from 5.23 to 

41.44. The best three samples selected were samples 2, 3 and 5.  

Figure 3.6 shows the stress-strain curve for 1.5 mm cold rolled carbon steel. 

The Luders bands were slightly noticeable and the stress beyond the yield point was 

consistent for all specimens.  



 

74 

 

 

Figure 3.6 True stress versus true strain for 1.5 mm cold rolled low carbon steel 

 

Table 3.4 shows the mechanical properties for 1.5 mm cold rolled low 

carbon steel.  

Table 3.4 Material properties of 1.5 mm cold rolled low carbon steel 

Sample 1 2 3 4 5 Average 

Young’s modulus 

(GPa) 
172.57 157.19 118.22 175.83 150.55 154.87 

Difference (value 

minus average) 
17.70 2.32 –36.65 20.95 –4.32 

 

Yield strength 

(MPa) 
191.34 191.48 191.18 189.55 187.83 190.28 

Difference (value 

minus average) 
1.06 1.20 0.90 –0.73 –2.45 

 

       

       Sample 1 2 5 Average 

  Young’s modulus 

(GPa) 
172.57 157.19 150.55 160.10 

  Yield strength 

(MPa) 
191.34 191.48 187.83 190.22  
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The results show that the values of yield strength were almost the same, with 

differences ranging from 0.73 to 2.45 MPa. The Young’s moduli on the other hand 

were slightly scattered. The absolute differences ranged from 2.32 to 36.65. The 

best three samples were samples 1, 2 and 5.  

Figure 3.7 and Table 3.5 show the true stress–true strain graph and 

mechanical properties for 2 mm cold rolled low carbon steel specimens. 

 

Figure 3.7 True stress versus true strain for 2 mm cold rolled low carbon steel 

 

 

From the graph, sample 1 was out of range and considered disqualified for 

further analysis. Overall, the stress beyond the yield point was very consistent for all 

the samples.  
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Table 3.5 Material properties of 2 mm cold rolled low carbon steel 

Sample 1 2 3 4 5 Average 

Young’s 

modulus (GPa) 
91.35 199.24 163.35 234.95 153.28 168.43 

Difference (value 

minus average) 
–77.08 30.80 –5.08 66.52 –15.15 

 

Yield strength 

(MPa) 
238.02 232.98 234.38 222.71 223.85 230.39 

Difference (value 

minus average) 
7.63 2.59 3.99 –7.68 –6.53 

 

       

       Sample 2 3 5 Average 

  Young’s 

modulus (GPa) 
199.24 163.35 153.28 171.96  

 
 

Yield strength 

(MPa) 
232.98 234.38 223.85 230.40 

 
 
 

  

The yield strength value of 2 mm cold rolled low carbon steel (230.40 MPa) 

in Table 3.5 was almost equal to the yield strength value of 1 mm low carbon steel 

(237.86 MPa) in Table 3.3. The yield strength values for all specimens were almost 

similar, with differences ranging from 2.59 to 7.68 MPa. The Young’s moduli on 

the other hand were quite scattered. The absolute differences ranged from 5.08 to 

77.08. The best three samples, with the smallest absolute differences were samples 

2, 3 and 5.  

3.3.2. True Stress-Strain Characteristics for Stainless Steel 

The same approach as that used for low carbon steel was applied to 

determine the best values of the mechanical properties of stainless steel. Figure 3.8 

and Table 3.6 show the graph and mechanical properties of stainless steel of 0.5 mm 

thickness.  
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Figure 3.8 True stress versus true strain for 0.5 mm stainless steel 

 

 

Table 3.6 Material properties of 0.5 mm stainless steel 

Sample 1 2 3 4 5 Average 

Young’s modulus 

(GPa) 
101.24 74.87 93.20 77.25 106.73 90.66 

Difference (value 

minus average) 
10.58 –15.79 2.54 –13.41 16.07 

 

Yield strength 

(MPa) 
272.38 286.07 270.92 285.52 269.17 276.81 

Difference (value 

minus average) 
–4.43 9.26 –5.89 8.71 –7.64 

 

       

       Sample 1 3 4 Average 

  Young’s modulus 

(GPa) 
101.24 93.20 77.25 90.56 

  Yield strength 

(MPa) 
272.38 270.92 285.52 276.27 
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The results in Table 3.6 show that the values of yield strength were similar, 

with differences ranging from 4.43 to 9.26 MPa. The Young’s moduli were 

scattered. The absolute differences ranged from 2.54 to 16.07. The best three 

samples having Young’s modulus values with the smallest absolute differences 

were samples 1, 3 and 4.

Figure 3.9 and Table 3.7 show the true stress-strain and mechanical 

properties of 1 mm stainless steel. From the figure, the flow stress for specimen 5 

was lower than the stresses of the rest of the specimens at a strain value of more 

than 0.02. 

Figure 3.9 True stress versus true strain for 1 mm stainless steel 
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Table 3.7 Material properties of 1 mm stainless steel 

Sample 1 2 3 4 5 Average 

Young’s modulus 

(GPa) 
106.48 80.09 175.75 116.88 147.74 125.39 

Difference (value 

minus average) 
–18.91 –45.30 50.36 –8.51 22.35 

 

Yield strength 

(MPa) 
315.20 341.03 302.51 322.57 329.18 322.10 

Difference (value 

minus average) 
–6.90 18.93 –19.59 0.47 7.08 

 

 
      Sample 1 4 5 Average 

  Young’s modulus 

(GPa) 
106.48 116.88 147.74 123.70 

  Yield strength 

(MPa) 
315.20 322.57 329.18 322.32 

            

                            

The difference in yield strength and Young’s modulus of the specimen were 

very low and considered very acceptable. Overall, the values of yield strength were 

almost similar, with differences ranging from 0.47 to 19.59 MPa. The Young’s 

moduli on the other hand were scattered. The absolute differences ranged from 8.51 

to 50.36. The best three samples having Young’s modulus values with the smallest 

absolute differences were samples 1, 4 and 5.  

Figure 3.10 and Table 3.8  show the true stress-strain and mechanical 

properties of 2 mm stainless steel. 
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Figure 3.10 True stress versus true strain for 2 mm stainless steel 
 

Table 3.8 Material properties of 2 mm stainless steel 

Sample 1 2 3 4 5 Average 

Young’s modulus 

(GPa) 
127.32 95.84 123.41 122.88 140.06 121.90 

Difference (value 

minus average) 
5.42 –26.06 1.51 0.98 18.16 

 

Yield strength 

(MPa) 
274.08 271.97 266.49 274.42 278.54 273.10 

Difference (value 

minus average) 
0.98 –1.13 –6.61 1.32 5.44 

 

       Sample 1 3 4 Average 

  Young’s modulus 

(GPa) 
127.32 123.41 122.88 124.54 

  Yield strength 
(MPa) 

274.08 266.49 274.42 271.66 
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The flow stress of specimen no. 3 was lower than that of the other samples. 

The differences in the yield point and Young’s modulus however were among the 

lowest and are considered acceptable. Overall, the values of yield strength were 

similar, with differences ranging from 0.98 to 6.61 MPa. The Young’s moduli for 

samples 2 and 5 were quite different. The absolute differences range from 0.98 to 

26.06. The best three samples having the smallest absolute differences in Young’s 

modulus values were samples 1, 3 and 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

82 

 

3.4. Conclusions 

i. The tensile test graphs explicitly show the nonlinear and linear hardening 

of material behaviour in sheet metal deformation, which will be included 

in the material model used in this research. 

ii. Except for 1 mm and 1.5 mm cold rolled low carbon steels, in which 

Luders bands were observed, the transitions between the elastic and 

plastic deformation for other materials were very smooth. With the effect 

of the Luders bands, the yield strength of 1 mm low carbon steel was 

slightly greater than the yield strength for 2 mm cold rolled low carbon 

steel. 

iii. The yield points for stainless steel were distinctly observed, with 1 mm 

thick samples showing the largest yield point followed by 2 mm and then 

0.5 mm samples. The elastic-plastic transition was very smooth and the 

Luders bands did not occur.  

iv. The Young’s modulus values deviated from the normally acceptable 

values of 200 GPa to 210 GPa, values for steels. For this reason the 

Young’s modulus values of 207 GPa and 190 GPa for low carbon steel 

and stainless steel respectively were applied in this research. These 

values were adopted from Budynas and Nisbett (2008). The yield 

strength values however are within acceptable ranges.    
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CHAPTER 4 

CYCLIC LOADING EXPERIMENT 

 

4.1. Introduction 

In sheet metal forming, cyclic loading occurs due to bending and unbending 

of material as in the die draw bead and when the sheet is drawn over a die shoulder 

corner (Hosford and Caddell 1993; Sanchez 2010; Yoshida et al. 2002). This has 

been illustrated in Figure 2.6 in Chapter 2 but it is also shown in Figure 4.1 below 

for convenience. 

 

Figure 4.1 Description of cyclic loading (a) draw-bend (b) springback (c) stress-

strain path (Yoshida et al. 2002) 
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The bending-unbending deformation causes an effect where the yield stress 

during reversal loading is lower than the yield stress during forward loading. This 

effect is known as Bauschinger effect. To improve sheet metal forming simulation, 

there is a need to incorporate an appropriate constitutive equation capable of 

describing the Bauschinger effect and so-called cyclic transient, which describes 

transition between the elastic and elastic-plastic state during repeated loading. A 

combination of isotropic and nonlinear kinematic hardening has been considered as 

one of the best material models proposed for this purpose, as the former has been 

associated with the capability to improve cyclic transient and the latter with the 

capability to take care of the Bauschinger effect (Chun et al. 2002a; Chun et al. 

2002b; Yoshida and Uemori 2002; Yoshida and Uemori 2003). Identification of 

material parameters in this and other models requires a proper cyclic bending 

experiment to be developed and carried out. 

4.2. Objectives 

i. To develop a new bending unbending tool as a way to enhance the 

existing knowledge of the sheet metal plasticity with regard to cyclic 

load bending resembling to what is happening in the sheet metal 

forming( in the die draw bead and when the sheet is drawn over a die 

shoulder corner). 

ii. To evaluate the responsive behaviour of sheet metal materials 

undergoing cyclic loading for any Bauschinger effect, transient 
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behaviour and work-hardening stagnation characteristics by using the 

newly developed experimental tool.  

iii. To acquire stress-strain data useful for identifying parameters in 

kinematic and mixed hardening model (the identification work however 

will be covered in the next chapter, Chapter 5). 

4.3. Tool and Specimen Preparation 

4.3.1. The Cyclic Loading Tool  

Figure 4.2 shows the newly developed bending and unbending testing tool 

for sheet metal. It is based on the concept of symmetrical crank-slider mechanism, 

and consists of three main components; slider (part 1), cranks/holders (part 2) and 

connecting rods (part 3). Also see Appendix C. List of the parts weight is shown in 

Table 4.1. 

 

Figure 4.2  (a) The tool attached to the tensile machine (b) components of the tool: 

slider (1), cranks/holders (2) and connecting rod (3) 
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Table 4.1 List of parts’ weight 

 

To operate the tool, the slider was attached to the moving part of the tensile 

test machine. When the tensile machine was operated, the slider would move 

downward or upward based on the machine stroke direction. The movement would 

cause the left and right cranks to rotate and subsequently bend (downward 

movement) or reverse bend (upward movement) the sheet metal that was being 

attached to it. These movements are shown in Figure 4.3. By doing this the tool 

realised a pure sheet bending process. The bending or downward movement result is 

shown in Figure 4.4. 

 

Figure 4.3 The sheet metal specimen attached to the tool is subjected to bending or 

reverse bending depending on the holder rotating direction, (a) moving in 

downward direction and (b) moving in upward direction 

 

Part No. Part Name Weight (gram)

1 Slider 1300

2 Crank/Holder 500

3 Connecting Rod 900
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Figure 4.4 Sheet metal in bent position (a) and the produced part after the process(b) 

 

Figure 4. 5 shows the initial, the bending and the reverse bending position of 

the tool’s crank/holder and the forces acting on it. By knowing the forces, the 

bending moment can be calculated. A detail analysis to configure the bending and 

reverse bending moment is described in section 4.3.4. During downward movement, 

the bending force and the part weight (G2) will contribute to the bending moment of 

sheet metal. During upward movement, the weight of the components however, will 

resist the reverse bending force. This condition however is believed to have 

insignificant effect on the real physical of the sheet metal bending. Meaning the 

Bauchinger effect can still be investigated. In fact for the work of identifying 

hardening parameters, only the downward movement data or the bending operation 

data will be used.   
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Figure 4. 5 The positions and the forces acting on the crank/holder (a) initial 

position, (b) bending position and (c) reverse bending position. 
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4.3.2. The Cyclic Loading Specimen 

The cyclic loading specimen size  was 105 mm long and 24.5 mm wide. It 

was clamped between a pair of acrylic sheets in the tool holders. Figure 4.6 shows 

the schematic drawing of the specimen.    

 

Figure 4.6 The description of specimen for newly cyclic loading tool 

 

Figure 4.7 (a) shows the specimen together with 2 pairs of acrylic sheets 

used to minimise friction during the bending and unbending processes. Sheet metal 

plates were placed on the top of the acrylic sheets to prevent them from being tilted 

during the bending and unbending processes.  

Fasterners were used to clamp the sheet metal plates, the acrylic sheets and 

the sheet metal specimen. The fasterners however were manually tightened to give a 

light compression force so as to allow the sheet metal specimen to slide between the 

acrylic sheets during the bending and unbending processes. This sliding movement 
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would cause the specimen to undergo axial stretching due to restriction from the 

fastener body (the fasteners’ body penetrating through the specimen thickness). To 

avoid this, oblong shape holes were cut on the specimen, as shown in Figure 4.6, to 

allow it to slide freely without restriction. Indeed, these holes indirectly also 

reduced the contact area between the test specimen and  the acrylic sheets and 

subsequently minimising the friction effect. Lubrication was applied to further 

reduce friction effect. The lubricant being used for this work was 1200-2 from 

Lubriplate as shown in Figure 4.8.  

 

Figure 4.7 (a) Acrylic sheets used to minimise friction effect during bending and 

unbending processes (b) parts after bending and unbending processes 
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Figure 4.8  1200-2 super lubrication from Lubriplate to minimise friction effects on 

the specimen in bending and unbending experiments 

 

4.3.3. Curvature and Strain Calculation 

For the tool to be useful, it was necessary to convert the acquired raw data in 

the form of displacement into curvature and then into bending strain. For this 

purpose, the tool and the specimen geometrical relationship during bending 

condition were analysed.  Figure 4.9 shows the relationship between the tool angles 

(θ2) and the sheet metal bending angle (α) which was then related to curvature (ρ) 

by an equation, ρ=1/radius of curvature (R).  
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Figure 4.9 Geometrical parameters of the tool and sheet metal specimen (a) bending 

direction and (b) reverse bending direction 

 

The symbol l and α shown only in Figure 4.9(b) are the length of sheet metal 

that was being subjected to reverse bending operation and its bending angle. The 

length was equal to the gap between the rights and left tool holder or the cranks. 

The bending angle, α depended directly on the crank angle, θ2 and indirectly to the 

connecting rod angle θ3. The first angle was a function of the slider displacement in 

the form of Xb distance and the tool length, r2 and r3 whilst the connecting rod angle 

was a function of the crank angle and the tool length. The relationship is shown in 

Equation 4.1 and Equation 4.2 and is applicable for bending and reverse bending 

(Shigley and Uicker 1995). 
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The curvature of sheet metal bending was calculated using Equation 4.3 (Marciniak 

et al. 2002).   

R/1  

Equation 4.3 

The following procedure shows how this curvature was being derived based on the 

tool’s geometrical configuration, during downward and upward operations (Figure 

4.10 and Figure 4.11). Only half of the tooling was considered for the derivation. 
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a) Downward movement (bending operation) 

The crank angle in a downward movement is always in the range of 90 < θ2 <180. 

To calculate curvature, triangle ABC  as in Figure 4.10 was used to find 

relationship between the crank angle and the bending angle.  

 

Figure 4.10 Tool’s geometrical configuration for curvature derivation during 

downward movement/bending operation 
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Equation 4. 4 

Since  180 90 
2

 , so  
2

 is always positive 

Using the following equation from (Marciniak et al. 2002) 

Rl   

Equation 4. 5 

The curvature formula is derived as described below 
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Equation 4. 6 

Angles in this formula should be converted into radian. 
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b) Upward movement (reverse bending) 

 

Figure 4.11 Tool’s geometrical configuration for curvature derivation during 

upward operation/reverse bending operation 

 

The crank angle in an upward movement is always in the range of 0 < θ2 <90. 

From Triangle ABC   
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Equation 4.7 



 

97 

 

Since  90 0 
2

 , 
2

  is always positive. 

Since Equation 4.7 is similar to Equation 4.4, Equation 4.6 is applicable to find 

curvature for reverse bending movement. 

To change the curvature value into strain the following formula is used (Marciniak 

et al. 2002): 

 
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Equation 4. 8 

 

where y is a distance from the middle surface of the sheet metal. For y equal to half 

of the sheet metal thickness, the strain calculated is for the outer surface. 
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4.3.4. Moment Calculation 

To calculate bending moment, we need to know the forces acting on the 

bending tool. For this purpose, the crank-slider static force analysis was performed 

with an assumption that the inertial force could be neglected due to a nearly 

constant or uniform motion so the value of such force would be relatively small 

compared to other forces such as gravity force and reaction forces from the sheet 

metal specimen. Friction forces were also assumed to be negligible. An analysis to 

derive the moment equation was performed based on a downward movement and an 

upward movement of the slider.  

a) Downward movement (bending operation) 

The analysis began by configuring reaction forces acting on the tool and its 

components by using free body diagram as shown in Figure 4.12. 
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Figure 4.12 Free body diagrams for a downward movement of the bending tool and 

its components 

 

 

This free body diagram was analysed part by part beginning from part 1, part 3 and 

then part 2.  
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For slider (part 1) 
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For connecting rod (part 3) 
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Using equations derived from part 1 and part 3, moment acting on part 2 was 

calculated as follows: 
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Equation 4.9 
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b) Upward movement (reverse bending) 

The free body diagram for upward movement is shown in Figure 4.13. The 

analysis was performed as in the case for downward movement. 

 

Figure 4.13 Free body diagrams for an upward movement of the bending tool and 

its components 
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For slider (part 1) 
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For connecting rod (part 3) 
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From the information from part 1 and part 3, moment acting on part 2 was 

calculated based on the following free body diagram: 
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Equation 4. 10 

               Except for the force P sign, the two equations (Equation 4.9 and Equation 

4. 10) were the same. The acquired data needed to be analysed in the form of stress. 

To convert bending moment, M into stress, the following formula was applied 

(Marciniak et al. 2002). 

                                                    

2Wt

4M
  

Equation 4.11 

W and t are the width and thickness of the material.  
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4.4. Results and Discussions 

Results in the form of stress versus strain graphs are shown in Appendix A. 

Significant observations can be derived from the graphs.  Data from the second 

bending cycle (label B2) and third bending cycle (label B3) were used for 

optimisation work described in Chapter 5. Reversed bending data (label RB1 and 

RB2), though similar in trend, were not considered for this purpose since the 

acquired data at second and third bending cycle were sufficient. Reverse bending 

data were used only for quantifying the Bauschinger effect.  

From the graphs, the bending and reverse bending showed a distinct elastic 

behaviour before the yield point. The cyclic loading reached a steady state condition 

or stabilized immediately after the first cycle. Except for specimen (a) of 1 mm 

thickness, the curves for low carbon steels (Figure 4.14 and Figure 4.16) showed a 

nonlinear stress-strain relationship after the yield point. A smooth elastic-plastic 

transient curve was followed by rapid work- hardening curve. Work hardening 

stagnation as mentioned by Yoshida and Uemori (2003), however, was not visible. 

Thus the existence of this stagnation behaviour in cyclic loading was not further 

studied in this work. From the onset of plastic region to near the middle of the 

plastic region the hardening curves for each specimen seemed to be consistent in 

path. The curves however were slightly deviated from each other towards the end of 

the plastic region. This deviation was believed to be caused by friction between 

specimen’s and the tool holders’ surfaces.  
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Figure 4.17, 4.18 and 4.19 show results for stainless steel of 2 mm, 1 mm 

and 0.5 mm thickness. The results were similar in trends for all the graphs. The 

curves showed rapid work hardening after the yield point. There was a sign of stress 

drop at strain around 0.01, 0.007 and 0.002 for 2 mm, 1 mm and 0.5 mm thickness, 

respectively. The stress then continued to increase more or less in linear relation to 

strain. There was a sign of deviation of the hardening curves at the end of plastic 

region.  

This characteristic and stress drop was believed to be caused by friction. 

Two sources of the friction were suspected to contribute to this observation. The 

first was the specimen-tool contact and the second was the tool fitting used in all 

joints. This includes tolerances, allowed clearances, roughness in the working 

surfaces and lubrication. Although, attempt had been made to minimize friction 

effect from the specimen-tool contact by placing the layer of acrylic sheets above 

and below the sheet metal material specimen plus with sufficient lubricant, it was 

still unavoidable due to the tool fitting. The effects, however, were considered small 

and the data acquired especially at the beginning of the work on hardening region 

were sufficient for identifying hardening parameters. Thus the data were acceptable 

and the capability of the tools to provide information on cyclic loading was proven. 

In contrast to Thakur’s statement (Thakur et al. 1996) the reverse re-yielding 

from the results of the current work was quite obvious to trace and there was a 

distinct indicator for the particular point. This led to a simple 0.002 offset way in 

identifying the reversal yield stress point useful for calculating Baushinger Effect 

Factors (BEF). Based on the method, BEF for low carbon steel and stainless steel 
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were calculated using the formula (Equation 2.15) proposed by Weinmann 

(Weinmann et al. 1988) as shown below: 

 

1

21

Y

YY
BEF


    Equation 2.37 

Y1 and Y2 are shown in Figure 2.9. A zero BEF value indicates that no Bauschinger 

effect is present in loading and unloading deformations. The results are shown in 

Table 4.2 and 4.3.  The values for Y1 were taken from average of B2 and B3 cyclic 

data and Y2 were taken from average of RB1 and RB2 cyclic data. 

  

Table 4.2 Summary of BEF data for cold rolled low carbon steel 
 

 

 

 

 

 

no Y1-B2 Y1-B3 Average |Y2-RB1| |Y2-RB2| Average BEF

1 987.971 990.637 989.304 144.414 138.192 141.303 0.857

2 1061.245 1029.037 1045.141 178.515 178.515 178.515 0.829

3 1014.546 1017.451 1015.998 191.017 186.420 188.719 0.814

Average 0.834

no Y1-B2 Y1-B3 Average |Y2-RB1| |Y2-RB2| Average BEF

1 937.421 938.102 937.762 168.923 161.782 165.353 0.824

2 936.890 922.366 929.628 165.516 173.485 169.501 0.818

3 837.108 846.571 841.839 203.075 202.641 202.858 0.759

Average 0.800

no Y1-B2 Y1-B3 Average |Y2-RB1| |Y2-RB2| Average BEF

1 1206.976 1201.468 1204.222 482.512 478.348 403.785 0.665

2 1242.286 1202.057 1222.172 572.366 557.959 474.150 0.612

3 1144.893 1126.840 1135.867 350.313 409.653 380.734 0.665

Average 0.647

2 mm thick

1.5 mm thick

1 mm thick
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Table 4.3 Summary of BEF data for stainless steel 
 

 

 

The values in the tables proved that the Baushinger effect exists when sheet 

metal was subjected to bending and unbending loadings. It was very interesting to 

note that the thickness of the material seemed to have influence on the Bauschinger 

effect as indicated by the increase of BEF values when the thickness increased. This 

was contrary to the finding by Weinmann who stated that the material thickness had 

insignificant relationship with the Bauschinger effect. This finding however should 

not over rule Weinmann’s statement completely as the materials used for 

experiments may undergo different rolling processes during production. Further 

investigation perhaps is necessary.   

no Y1-B2 Y1-B3 Average |Y2-RB1| |Y2-RB2| Average BEF

1 922.399 926.486 924.443 146.725 139.290 143.008 0.845

2 980.960 939.876 960.418 154.348 149.167 151.758 0.842

3 914.360 987.514 950.937 158.904 155.694 157.299 0.835

Average 0.841

no Y1-B2 Y1-B3 Average |Y2-RB1| |Y2-RB2| Average BEF

1 1099.429 1086.720 1093.075 296.007 293.242 294.625 0.730

2 1037.715 1086.720 1062.218 305.542 291.994 298.768 0.719

3 1099.429 977.849 1038.639 248.382 243.161 245.772 0.763

Average 0.738

no Y1-B2 Y1-B3 Average |Y2-RB1| |Y2-RB2| Average BEF

1 1208.418 1116.225 1162.322 739.792 738.368 739.080 0.364

2 1242.168 1166.875 1204.522 769.019 793.935 781.477 0.351

3 1342.295 1166.875 1254.585 767.667 789.071 778.369 0.380

Average 0.365

2 mm thick

1 mm thick

0.5 mm thick
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4.5. Conclusions 

The following conclusions were derived based on the experimental results. 

The outcomes were believed to have enhanced knowledge in the field of plasticity 

of sheet metal forming.  

i. The developed experimental tool was capable of providing significant 

data for analysis of the Bauschinger effect and understanding behaviour 

of sheet metal materials undergoing cyclic loading.  

ii. The yield point for stress-strain curve from bending unbending loading 

was traceable. This point was followed by a smooth elastic-plastic 

transient curve and steady work hardening curve. 

iii. The existence of work hardening stagnation in the cyclic stress-strain 

curves was not observed. This likely due to small bending angle of about 

20 degree (first bending) to 40 degree (subsequent bending) which 

produced insufficient accumulated strain for work hardening stagnation 

to be observed. 

iv. The Bauschinger effect did occur during bending unbending loading in 

sheet metal forming as indicated by BEF values in Tables 4.1 and 4.2. 

Thus the Bauschinger effect should be considered in sheet metal forming 

simulation through the use of related constitutive equations. 
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CHAPTER 5 

IDENTIFICATION OF MATERIAL PARAMETERS BY 

OPTIMISATION 

 

5.1. Introduction 

Part of the crucial task in improving the constitutive models is determining 

the most accurate method to identify their parameters. The inverse identification 

method, as shown in Figure 2.29 and updated here in Figure 5.1, has been adopted 

to provide the solution. This identification processes was done by minimising the 

difference between the finite element simulation result and the experimental result 

by updating material parameters. The method however faced several limitations, 

such as a lengthy computing time, nonlinearity of geometrical boundary conditions, 

convergent issues due to contact and friction of the tools’ nodes and material’s 

nodes and sensitivity of numerical elements. 
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Figure 5.1 An inverse identification method to identify material parameters using 

finite element simulation (Yoshida et al. 2003) 

 

To avoid these limitations, direct application of optimisation algorithms has 

been applied on the cyclic experimental data by several researchers. The most 

common optimisation methods are the derivative (gradient based) algorithm, 

derivative-free (direct search) algorithm and evolutionary algorithm.  
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Evolutionary algorithms are judged to be very robust methods with the 

capability to tackle initial solution requirements as well as local minimum problems. 

However, these methods still depend on sub-optimal algorithms to guarantee 

identification of the global minimum of the objective function. Direct search 

algorithms, also known as derivative-free algorithms, use simple strategies by 

eliminating derivative calculation. This approach is more favourable due to its 

simplicity, flexibility and reliability. The methods, however, are time-consuming, 

user-dependent and faced with a convergence problem for local minimums. The 

gradient-based algorithms have limitations due to being strongly dependent on user 

skills and the requirement for initial trial solutions, as well as the convergence 

problem.  

Even though most of the methods show significant differences in 

computation time, the parameters’ identified values are insignificantly different. 

Thus it is acceptable to use any of the optimisation methods as long as the 

computing time is acceptable. For that reason, the simplified Nelder–Mead method 

was selected to perform the minimisation optimisation for the current work.  

This particular chapter thus deals with the optimisation works being 

conducted to identify the constitutive parameters. It begins with an introduction to 

the Nelder–Mead direct search method and proceeds with a discussion on the 

Programming algorithms of the identification methods.  
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5.2. Objectives 

Three objectives have been set for this chapter, namely: 

i. To determine material parameters for nonlinear kinematic hardening and 

mixed hardening equations.  

ii. To identify the best material model capable of fitting the bending-

unbending data. 

iii. To evaluate the applicability of using direct search optimization method 

in materials parameters identification. 

 

The Chaboche nonlinear kinematic hardening model as described by 

Equation 5.1 was chosen for kinematic hardening in this work. A combination of 

this hardening model and Voce isotropic hardening models in Equation 5.2 was 

selected to represent the mixed hardening model as shown by Equation 5.3 

)1(0



  e

C
 

Equation 5.1 

)1(0
 beQ   

Equation 5.2 
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eQ b

 

Equation 5.3 

  The parameters involved are: Q, b, C and  . Q defines the maximum 

change in the size of the yield surface and b is the rate at which that change occurs. 
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C is a kind of kinematic hardening modulus and  defines the rate at which the 

kinematic hardening modulus decreases as the plastic deformation develops. This is 

a widely accepted model in sheet metal forming (Chun et al. 2002a) and has been 

applied in finite element software, such as Abaqus (Abaqus 2000).  

5.3. Overview of Nelder–Mead Simplex-Direct Search 

Nelder-Mead Simplex is a derivative free optimisation method and is widely 

used by researchers in the fields of chemistry, engineering and medicine. It is 

available in several forms of optimisation software such as Matlab (Lagarias et al. 

1998). The main disadvantage of the algorithms is its difficulty in convergence. 

While the advantages of the algorithm are its robustness, simplicity in Programming 

as well as its low consumption of storage space and computing time. The robustness 

is judged based on its capability to tolerate noise in the function values. The 

simplicity in Programming is evident from its simple algebraic manipulation using 

only function values. When the number of variables is small, the algorithms are 

acceptably equal to much more complex algorithms that require a great deal of 

storage overhead and algebraic manipulation (Dennis Jr and Woods 1985). Taking 

these advantages into consideration, this method has been favourable in certain 

cases.  

  Briefly, the algorithm works by forming a simplex, a geometrical figure, 

which is formed by n+1 vertices, to converge to minima. The symbol “n” is 

assigned as number of variables of a function. For every iteration, the algorithm 

starts calculating a reflected point of the worst point through the centroid. 

According to this value, the algorithm will carry out a reflection or extension, 
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contraction or shrink to form a new simplex. In other words, the function values at 

each vertex will be evaluated in every iteration, and the worst vertex with the 

highest value will be replaced by another vertex, which has just been found. 

Otherwise, a simplex will be shrunk around the best vertex. This process will be 

repeated iteratively until a desired error value is satisfied.  

  The convergence speed of the simplex method may be affected by three 

parameters, α, β, γ (   reflection coefficient, contraction coefficient and expansion 

coefficient). Depending on these coefficients, the volume of the simplex will be 

changed by the operations of reflection, contraction or expansion respectively. The 

steps can be summarised as follows (Pham and Wilamowski 2011): 

Step 1: obtain α, β, γ, select an initial simplex with random vertices x0, 

x1,…, xn and calculate their function values. 

Step 2: sort the vertices x0.,x1,…, xn of the current simplex so that f0, f1,…, 

fn are in an ascending order. 

Step 3: calculate the reflected point xr, fr 

Step 4: if fr < f0: 

(a) calculate the extended point xe, fe 

(b) if fe < f0 , replace the worst point by the extended point xn = xe, 

fn = fe 

(c) if fe > f0 , replace the worst point by the reflected point xn = xr, 

fn = fr 

Step 5: if fr > f0: 

(a) if fr < fi, replace the worst point by the reflected point xn = xr, fn 

= fr 
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(b) if fr > fi: 

   (b1) if fr > fn: calculate the contracted point xc, fc 

(c1) if fc > fn then shrink the simplex 

(c2) if fc < fn then replace the worst point by the 

contracted point xn = xc, fn = fc 

   (b2) if fr < fn: replace the worst point by the reflected point xn = 

xr, fn = fr 

Step 6: if the stopping conditions are not satisfied, the algorithm will 

continue at step 2 

5.4. Programming for Material Parameter Identification   

A computer program using Mathlab software by The MathWorks Inc. was 

developed, incorporating commands to perform least square optimisation of 

nonlinear kinematic hardening and mixed hardening. The fiminsearch subroutine 

from the Nelder–Mead Simplex optimisation method was used. The algorithm of 

the Programming was (The MathWorks Inc. 2008): 

Step 1: Writing M-code for importing input data from Microsoft 

Excel. 

Step 2: Writing objective functions for constitutive model 

Step 3: Initial guess 

Step 4: Minimisation using fminsearch command to call for the 

Nelder–Mead algorithm. 

Step 5: Return the results 
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There were two parts for the Programming code, the main body and the 

subroutine. Step 1 and step 5 were structured in the main body of the code, while 

steps 2, 3 and 4 were structured in the subroutine Programming. The main body of 

the program included tasks such as importing input data of bending-unbending from 

Microsoft Excel, calculation of adjusted R-square and residuals. Adjusted R-square 

is an indication of goodness of fit for hardening models on the experimental data. A 

value closer to 1 indicates a better fit.  Residuals are defined as the difference 

between the data values and the values that are predicted by the model. A residual 

plot with lower random errors indicates a good fit of the hardening models to the 

experimental data. 

To simplify the Programming code and to satisfy the requirement of only 

real number calculation for Nelder–Mead for this work, the x values of the imported 

data were repositioned to start from 0-value. The subroutine of the program 

included tasks for initial guess input and declaring the constitutive formula as an 

objective function. The steps and the coding for the optimisation program are shown 

below.  

Step 1: Writing M-code for importing input data from Microsoft Excel and a 

command to call the objective function. The code requires the file name, the 

sheet and the column and the row number of the data in the Microsoft Excel 

file. 

The code to import low carbon steel data is: 

          nydata=xlsread('MS2mm.xls','b2_a','v17:v3000'); 

           nxdata=xlsread('MS2mm.xls','b2_a','u17:u3000'); 
 

The code to import stainless steel data is: 



 

122 

 

        nydata=xlsread('SS2mm.xls','b2_a','v17:v3000'); 

           nxdata=xlsread('SS2mm.xls','b2_a','u17:u3000'); 

 

A command to call the objective function for nonlinear kinematic hardening 

equation and mixed hardening equation are K2 and MIXED respectively. The 

calling coding for K2 is shown below. 

[estimates, model,C,gamma,ErrorVector]=K2(nxdata,nydata);   

 [sse,FittedCurve] = model(estimates); 

 

Step 2, Step 3 and Step 4: Writing the objective function for the constitutive 

model, initial guess and optimisation 

The objective function formula was abbreviated as FittedCurve. Another 

subroutine named model was created to calculate the sum square error (sse) and to 

fit it to the calculated curve of the constitutive model. The outputs of this 

calculation were used to calculate adjusted R-square and the residuals in the main 

program. The program for nonlinear kinematic hardening equation is shown below. 

To identify the four mixed hardening parameters, the formula and the start points 

were replaced with mixed hardening formula and additional two values, Q and b, of 

initial guess from isotropic hardening equation.  

function [estimates,model,C,gamma,ErrorVector] = K2(nxdata,nydata) 

 

start_point =[1000 1]; 

model = @expfun; 

options=optimset('MaxFunEvals',10e9,'MaxIter',10e9) 

 

estimates = fminsearch(model, start_point,options);   

function [sse,FittedCurve] = expfun(params) 

       C = params(1); 

 gamma = params(2); 

   

       FittedCurve =200+(C/gamma)*(1-exp(-gamma*nxdata)); 

 ErrorVector= (FittedCurve-nydata); 

 sse =sum((ErrorVector .^ 2)); 
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            end 

  end 
 

Step 5: Return the function results and plot the graph with parameters.  

  The function results include calculating adjusted R-square (Adj_Rq) and 

residuals. 

  %MSE=SSE/v, v=n-m, n=#of data, m=# of parameters 
    n=3000-17; 
    m=2; 
    v=n-m; 
    MSE=sse/(v-3)% MSE: the mean square error or the 

residual mean square.m is number parameter 
    RMSE=sqrt(MSE)% STANDARD DEVIATION 
    nyA=(sum(nydata))/(n); %denumerator depends on 

initial and final data 
    Residual=ErrorVector 
    G=(nydata-nyA); 
    SSE=sse 
    SST=sum((G.^2)) 
    Rq=1-(sse/SST) 
    Adj_Rq=1-(SSE*(n-1))/(SST*(v)) 

 

Coding for plotting the graphs and results 

plot(x, y, 'c') 
    hold on 
 plot(nxdata, nydata, 'b') 
    hold on 
 plot(nxdata, FittedCurve, '--r'); 

  

 xlabel('nxdata') 
  ylabel('f(estimates,nydata)') 
title(sprintf('C=%1.3f,gamma=%1.3f, Adj_R=%1.4f,',... 
      C,gamma,Adj_Rq)); 
legend('data','data','fit using N-Kinematic Equation ') 
    hold off 

 

The Programming codes are attached in Appendix B for reference.  
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5.5. Results and Discussions 

Average data from the second cyclic loading (label B2) and third cyclic 

loading (label B3) were used for optimisation. The aims are to identify the best 

material model capable of fitting the experimental data, to evaluate the applicability 

of using direct search optimisation method and to determine the material hardening 

parameters. The discussion begins by looking at kinematic hardening performance 

and later at mixed hardening performance.  

Figure 5.2, 5.3 and 5.4 illustrate how well the nonlinear kinematic hardening 

model fitted the experimental data for 2 mm, 1.5 mm and 1 mm low carbon steel.  

The adjusted R square values were above 0.9976. Hence, the optimisation technique 

and the capability of the nonlinear kinematic hardening equation to fit the data were 

accepted.  
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(a)           
 

 
(b)  

Figure 5.2 Optimisation of cold rolled low carbon steel data using nonlinear 

kinematic equation for t= 2 mm (a) B2 (b) B3 
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(a)  

 

 
(b)  

Figure 5.3 Optimisation of cold rolled low carbon steel data using nonlinear 

kinematic equation for t= 1.5 mm (a) B2 (b) B3 
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(a)    

 

 

(b)  

Figure 5.4 Optimisation of cold rolled low carbon steel data using nonlinear 

kinematic equation for t= 1 mm (a) B2 (b) B3 
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Figure 5.5 shows fitting results of nonlinear kinematic hardening equation 

on 2 mm thickness stainless steel data. The adjusted R-square values recorded were 

around 0.9791which was lower than the values recorded for 2 mm thick low carbon 

steel (0.9976). This result was believed to be due to the equation inability to 

properly fit the decreasing stress curve at strain around 0.01. The cause of the 

condition was explained in Chapter 4. Figure 5.6 show residual graphs for fitting the 

hardening equation for stainless steel. The calculated data were well distributed with 

the highest error occurring at the decreasing stress curve with residual value about 

50 MPa for B2.  
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(a)   

 

 
(b)  

 Figure 5.5 Optimisation of stainless steel data using nonlinear kinematic equation 

for t= 2 mm (a) B2 (b) B3 
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Figure 5.6 Residuals for fitting nonlinear kinematic hardening on B2 stainless steel 

data of 2 mm thickness 
 

 

 

 

 

Figures 5.7 and 5.8 show fitting results of nonlinear kinematic hardening 

equation on 1 mm and 0.5 mm thickness stainless steel data. The adjusted R-square 

values about 0.9584 for 1 mm and above 0.9715 for 0.5 mm thickness.  Figure 5.9 

shows the residual graph for 1 mm thickness stainless. The calculated data were 

well distributed and the highest residual recorded was nearly 60 MPa at strain 

0.009.  
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(a)  
 

 
(b)  

 Figure 5.7 Optimisation of stainless steel data using nonlinear kinematic 

equation for t= 1mm (a) B2 (b) B3 
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(a)  

 

 
(b)  

 

Figure 5.8  Optimisation of stainless steel data using nonlinear kinematic  

equation for t= 0.5mm (a) B2 (b) B3 
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Figure 5.9  Residuals for fitting nonlinear kinematic hardening on B2 stainless steel 

data of 1 mm thickness. 
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Table 5.1 shows values for C and gamma of kinematic hardening equation 

derived from the optimisation result of cold rolled low carbon steel and stainless 

steel. 

   

Table 5.1 Nonlinear kinematic parameters for cold rolled low carbon steel                

and stainless steel 

 
 

 

 

Figure 5.10, illustrates how well the nonlinear mixed hardening model fits 

the experimental results for 2 mm thickness low carbon steel. The adjusted R-square 

value was about 0.999. Similar result was also observed for 1.5 mm and 1 mm 

thickness as shown in Figure 5.11 and Figure 5.12. The fitting performance of 

mixed hardening equation thus was marginally better than that of kinematic 

hardening for low carbon steel.  

 

C(MPa)  γ C(MPa)  γ

B2 61895.093 72.87 36008.702 38.708

B3 52341.714 59.53 34232.859 36.516

B2 89442.952 131.202 85661.834 109.039

B3 74966.886 105.01 81955.631 107.618

B2 161662.646 208.806 238933.016 340.668

B3 159157.996 198.329 206173.805 323.676

*Low carbon steel /

Stainless steel

*1/     

0.5 mm

Note:

Bending 

cycle

Low carbon steel Stainless steel

2 mm

*1.5 /                 

1 mm
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(a) 

 

                                                                                                
(b) 

Figure 5.10 Optimisation of cold rolled low carbon steel data using nonlinear mixed 

hardening for t= 2 mm (a) B2 (b) B3 
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(a) 

 

 
(b) 

Figure 5.11  Optimisation of cold rolled low carbon steel data using nonlinear 

mixed hardening for t= 1.5 mm (a) B2 (b) B3 
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(a) 

 

 
(b) 

Figure 5.12 Optimisation of cold rolled low carbon steel data using nonlinear mixed 

hardening for t= 1 mm (a) B2 (b) B3 
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In contrast to the results on low carbon steels, one will notice that the mixed 

hardening equation performance is better than the kinematic hardening equation for 

fitting stainless steels data. Most of the adjusted R-square values were above 0.99 

for all thicknesses as indicated in Figure 5.13, 5.14 and 5.15 as compare to the 

adjusted R-square values that are shown in Figure 5.5, 5.7 and 5.8. 

.   
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 (a) 

 

 

(b) 

Figure 5.13 Optimisation of stainless steel data using nonlinear mixed hardening for 

2 mm (a) B2 (b) B3 
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(a)  

 
(b)  

Figure 5.14 Optimisation of stainless steel data using nonlinear mixed hardening 

equation for t= 1 mm (a) B2 (b) B3 
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(a) 

 
 

(b) 

Figure 5.15 Optimisation of stainless steel data using nonlinear mixed hardening 

equation for t= 0.5 mm (a) B2 (b) B3 
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It was noted that the residual values recorded for 2 mm and 1 mm 

thicknesses were about 20 MPa as shown in Figure 5.16, Figure 5.17 and Figure 

5.18. This value was less than the values recorded by fitting using kinematic 

hardening equations shown in Figure 5.6 and Figure 5.9 (about 60 MPa).This 

finding justified the capability of the mixed equation to model the hardening 

deformation curve better than the kinematic hardening equation. 

 
Figure 5.16 Residuals for fitting mixed hardening on B2 stainless steel data of 2 mm 

thickness 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
-20

-15

-10

-5

0

5

10

15

20

25

Strain

R
e
s
id

u
a
ls

 (
M

P
a
)

 

 



 

143 

 

 

Figure 5.17 Residuals for fitting mixed hardening on B3 stainless steel data of 2 mm 

thickness 

 
Figure 5.18 Residuals for fitting mixed hardening on B2 stainless steel data of 1 mm 

thickness 
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Table 5.2 indicates the mixed hardening parameters derived from the 

optimisation. Part of the data from this table and Table 5.1 were utilized to validate 

the effectiveness of kinematic and mixed hardening parameters in predicting 

springback using finite element simulation (Chapter 6).  

 

Table 5.2 Mixed hardening parameters for cold rolled low carbon steel                                   

and stainless steel                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q(MPa) b C(MPa)  γ Q(MPa) b C(MPa)  γ

B2 847.332 73.015 48.93 0.507 226.047 362.677 13090.568 13.71

B3 31.7065 216.641 47599.406 54.657 251.445 320.71 9660.395 27.272

B2 726.324 120.031 480.62 93.558 261.785 560.714 16186.042 63.769

B3 722.817 102.685 0.007 587.606 259.638 536.962 14427.591 70.795

B2 133142.75 5949.839 161662.645 208.806 196963.091 8643.23 238933.015 340.668

B3 87288.021 3448.352 159157.996 198.329 658043.769 2502.961 206173.804 323.676

*Low carbon steel /

Stainless steel

Stainless steelBending 

cycle

2 mm

*1.5 /                 

1 mm

*1/     

0.5 mm

Note:

Low carbon steel
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5.6. Conclusions 

i. A combination of the developed tool for cyclic bending data acquisition 

and a robust Programming optimisation technique provides a way to 

reduce time and problems in material parameter identification for 

constitutive equations compared to the inverse and iterative method by 

finite element simulation.  

ii. Though the overall fitting using nonlinear kinematic model was 

relatively smooth and considered acceptable, its capability however was 

still less than the performance shown by mixed hardening model.  This 

justifies the idea that the application of mixed hardening model is 

welcome for springback simulation in sheet metal forming.  

iii. Optimisation technique using the Nelder–Mead Simplex direct search 

method was capable of providing an accurate and fast solution for 

material parameters identification for constitutive equation.  
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CHAPTER 6 

FE SIMULATIONS AND EXPERIMENTAL 

VALIDATION OF SPRINGBACK  

 

6.1. Introduction 

Using a complex hardening model has been considered to improve finite 

element simulation of sheet metal forming. This, in particular, refers to the effect of 

reversal loading or the Bauschinger and hardening transient effects. A study by Li et 

al. found that including the Bauschinger effect can improve the quality of 

springback prediction (Li et al. 2002). Several other studies were conducted using 

various hardening models to investigate the accuracy of the simulation. Some of 

these works were presented in Chapter 2.  

To improve sheet metal forming simulation there is a need to incorporate an 

appropriate constitutive equation capable of describing the Bauschinger and the 

cyclic transient effect. Combining isotropic and nonlinear kinematic hardening has 

been considered as one of the best choices; as the former has been associated with 

the capability to improve cyclic transient and the latter with the capability to 

accommodate the Bauschinger effect (Chun et al. 2002a; Chun et al. 2002b; Rauch 

et al. 2007; Yoshida and Uemori 2002; Yoshida and Uemori 2003).  
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6.2. Objectives 

The objective of this chapter is to present validation work in testing the 

effectiveness of applying kinematic hardening model and mixed hardening model in 

predicting springback using finite element simulation. The Chaboche nonlinear 

kinematic hardening model was chosen for kinematic hardening, whilst a 

combination of the kinematic hardening model and isotropic hardening model was 

selected to represent the mixed hardening model. The mixed modelling equation is 

shown in Equation 6. 1. The first part of the equation represents the isotropic 

hardening model while the second part represents the Chaboche nonlinear kinematic 

hardening model. 

 )1()1(0



   e

C
eQ b

 

Equation 6. 1 

To meet the validation criteria, a U-shaped bending tool was developed and 

an experiment was conducted to produce U-shaped parts. The parts’ profile was 

compared with the finite element result of U-shape part. The results were analysed 

in term of springback angle for the degree of difference between the experiments 

and the simulations.  
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6.3. Springback Measurement 

The Numisheet’93 method has been widely used to define springback 

measurement in a U bending profile. It is shown in Figure 6.1 (Lee and Yang 1998). 

 

Figure 6.1 Numisheet’93 method to measure springback (Lee and Yang 1998) 

 

In certain cases, the dimension for point A is changed to suit the depth of die 

drawing, such as the one shown in Figure 6.2. 
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Figure 6.2 Modified Numisheet’93 method to measure springback (Samuel 2000) 

 

In general, the springback measurement is based on two angles, θ1 and θ2 (θ 

and β in Figure 6.2). By definition, θ1 is characterised as the angle between the 

bottom surface of the punch and the sheet metal wall, whilst θ2 is the angle between 

the wall and the flange. Another measurement is the curvature radius of sidewall, ρ. 

For the current work, the springback measurement was calculated based on 17 mm 

depth of the drawing die and the reference point A in Figure 6.1 was set at 8.5 mm. 
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6.4. U-bending Experiment 

The Numisheet’93 experimental setup was used for experimental validation 

of the finite element simulation. Figures 6.3 and 6.4 show the experimental setup 

and the developed die. The detail drawings are shown in Appendix D for reference. 

The die is very similar to the die design used by Oliveira (2007) and Taherizadeh 

(2009) for studying the draw bead effect in material springback. 

 

Figure 6.3 Numisheet’93 geometry for U-die bending (Liu et al. 2002) 
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Figure 6.4 U-bending die developed for the validation work 

 

Materials used in the experiment were 1 mm stainless steel and 1.5 mm cold rolled 

low carbon steel. The blank size for the material was 150 mm long and 25 mm 

wide. The outcome of the bending experiment is shown in Figure 6.5. 
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 Figure 6.5 Experimental U-bending parts of stainless steel and  

cold rolled low carbon steel 

 

To measure the θ1 and θ2 angles, x-y coordinates of five control points in 

the parts were acquired using a profile projector as shown in Figure 6.6 and Figure 

6.7(a).  
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Figure 6.6 Acquiring x-y data using profile projector for five points of the U-

bending parts.  
 

 

 
 

Figure 6.7 Measuring springback angle for 1 mm thick stainless steel from U- 

bending part (a) the control points location used for acquiring                                

the x-y coordinates (b) determining the angles using AutoCad. 
 

 

 

The coordinates were used to draw lines representing the part’s profile. For 

this purpose, AutoCad software was used. To draw line, point 1 was connected to 

point 2, while point 3 to point 4. As for point 5, it was a straight line parallel to x-

axis. Using command “lengthen” from AutoCad, the lines were lengthened to cross 

each other as required to obtain springback angles. The springback angles were 



 

154 

 

determined by using the angular dimensioning feature. This approach is shown in 

Figure 6.7(b). 

Table 6.1 and 6.2 show the x-y coordinates acquired using the mentioned 

approach for stainless steel and low carbon steel. The identified springback angles 

based on the drawings generated from these coordinates are shown in Table 6.3 and 

Table 6.4. Three samples were used for each of the materials.  

 

 

Table 6.1 X-Y coordinates acquired from 1mm thick stainless steel part                              

(mm) 

 

 

Table 6.2 X-Y coordinates acquired from 1.5 mm thick                                          

cold rolled low carbon steel part (mm) 

 

 

 

Point X Y X Y X Y

1 0 0 0 0 0 0

2 -28.37 -1.488 -37.901 -0.122 -31.527 -0.492

3 -55.763 5.549 -59.568 8.464 -56.783 7.212

4 -55.957 7.132 -59.681 9.836 -56.962 8.663

5 -82.18 14.936 -84.966 16.669 -81.191 16.76

Sample 1 Sample 2 Sample 3

Stainless steel

Point X Y X Y X Y

1 0 0 0 0 0 0

2 -24.475 -1.52 -24.759 -2.832 -30.06 -1.633

3 -55.566 5.183 -55.975 3.027 -57.701 5.356

4 -55.707 6.858 -56.151 4.083 -57.863 6.741

5 -86.576 18.414 -82.071 14.5 -83.851 17.096

Low carbon steel

Sample 1 Sample 2 Sample 3



 

155 

 

Table 6.3 Springback angles for stainless steel (degree) 

 

 

Table 6.4 Springback angles for cold rolled low carbon steel (degree) 

 

 

The average springback values measured from low carbon steel were 96.982 

and 92.586 for θ1 and θ2, respectively. As for stainless steel, the values measured 

were 96.243 for θ1 and 94.882 for θ2. These experimental results were required to 

validate the reliability of the kinematic and mixed hardening parameters derived 

from the bending-unbending experimental data in predicting springback of the same 

part profile using finite element simulation.  

 

 

 

 

 

 

 

 

 

angle\sample 1 2 3 Average

θ1 96.987 94.708 97.033 96.243

θ2 93.984 94.524 96.139 94.882

Stainless steel

angle\sample 1 2 3 Average

θ1 94.812 99.462 96.671 96.982

θ2 91.258 92.937 93.562 92.586

Low carbon steel
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6.5. Finite Element Simulation  

The finite element simulation was performed using Abaqus software. The 

simulation used a 2-dimensional model and an incremental implicit approach. The 

model and approach have been widely used in U-bending, especially because of its 

unconditional stability with large time steps and the capability to ensure the 

convergence to a globally self-equilibrated stress-state (Firat 2007). Three major 

stages were involved: loading, unloading and springback deformation. In the 

loading stage, the punch moved downward to a specified distance step by step. 

During this procedure the punch established contact with the sheet metal blank and 

deformed it into the desired shape. In the unloading stage, the punch moved 

upwards and lost contact with the sheet metal. While in the final step, the blank 

holder was released and the workpiece was rejected from the die. As a result of 

these steps the part underwent springback, primarily due to the unbalance in 

through-thickness stresses. 

Due to the symmetry of the tooling, only half of the geometry was 

generated. Three rigid body parts and one deformable body were drawn for the 

tooling model. The rigid bodies were punch, die and blank holder, whilst the 

deformable part was the 75 mm long blank material. 1 mm and 1.5 mm thick blanks 

were used to represent stainless steel and low carbon steel material respectively. 

The gap between the die and the punch is equal to two times thickness of the 

respective blank. For 1 mm thick stainless steel, the gap was 2 mm and for 1.5 mm 

thick cold rolled carbon steel the gap was 3 mm. 
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The blanks were meshed using a continuum, plane strain, 4 nodes- reduced-

integration element (CPE4R) for its capability to handle simulation involving large 

mesh distortion or large strain analysis. For better simulation result as well as for 

reasonable computing time, the element length should be smaller than the die and 

punch radii (Abaqus 2002). For that reason the element length should be smaller 

than 5 mm of die and punch radii. The element size for stainless steel is 0.75 mm in 

length and 0.25 mm in height. As for cold rolled carbon steel, the size is 1 mm time 

0.375 mm. 

Friction coefficient was assumed to be 0.17 for both stainless steel and low 

carbon steel (Samuel 2000; Firat 2007). The blank holding forces were 118 kN and 

45 kN for low carbon steel and stainless steel respectively. The values were 

reasonable to avoid profound deformation on the blank due to holding pressure 

(Bouvier et al. 2005). Figure 6.8  shows the tooling model and the simulation stages 

involved.       
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Figure 6.8  2-dimension model of finite element simulation for U-bending (a) 

loading stage, (b) unloading stage and (c) springback stage 
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Table 6.5 shows the mechanical properties of 1 mm stainless steel and 1.5 

mm low carbon steel used in the simulation. The kinematic hardening parameters 

and mixed hardening parameters are shown in Table 6.6 and 6.7. The values were 

derived from cycle B2 of cyclic loading test as described in Chapters 4 and Chapter 

5.  

 

Table 6.5 Mechanical properties of cold rolled low carbon steel                             

and stainless steel 

 
 

 

Table 6.6 Kinematic hardening parameters for cold rolled low carbon steel            

and stainless steel 

 
 

 

Table 6.7 Mixed hardening parameters for cold rolled low carbon steel                 

and stainless steel 

 
 

Four simulations were performed based on the type of cyclic hardening 

properties being used. To measure springback angles, x-y coordinates from five 

control points or element nodes were recorded from the top surface of the blank 

Young Modulus(GPa) Yield Strength(MPa) Young Modulus(GPa) Yield Strength(MPa)

207.00 190.22 190.00 322.32

Low Carbon Steel Stainless Steel

C(MPa)  γ C(MPa)  γ

89442.952 131.202 85661.834 109.039

Low carbon steel (1.5 mm) Stainless steel(1 mm)

Q(MPa) b C(MPa)  γ

726.324 120.031 480.62 93.558

Q(MPa) b C(MPa)  γ

261.785 560.714 16186.042 63.769

Stainless steel (1 mm)

Low carbon steel (1.5 mm)
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model. Figure 6.9 shows the simulation result for 1 mm thick stainless steel using 

non-linear kinematic hardening parameters.  All recorded x-y values are shown in 

Table 6.8 and Table 6.9.  

 

 

Figure 6.9 Measuring springback angle for 1 mm thick stainless steel from FE result 

(a) the control points location used for acquiring the x-y coordinates (b) determining 

the angles using AutoCad. 

 

 

Table 6.8 X-Y coordinates acquired from simulation using kinematic and mixed 

hardening parameters for 1 mm thick stainless steel (mm) 

 

 

point node x y x y

1 501 1.81E+01 4.98E+00 1.70E+01 1.02E+01

2 331 -6.30E+00 1.24E+01 -7.61E+00 1.68E+01

3 216 -2.21E+01 9.50E+00 -2.26E+01 1.25E+01

4 196 -2.33E+01 6.73E+00 -2.35E+01 9.63E+00

5 1 -5.00E+01 -3.16E-03 -5.00E+01 3.21E+00

Kinematic Hardening Mixed Hardening

Stainless Steel
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Table 6.9 X-Y coordinates acquired from simulation using kinematic and mixed 

hardening parameters for 1.5 mm thick cold rolled low carbon steel                           

(mm) 

 

 
 

These coordinates were used as control points to draw lines representing parts of U-

bending top surface profile in AutoCad software. Using angular measurement 

feature from the software, the springback angles were determined. This approach is 

similar to the method used to measure springback angles from the experimental part 

as shown in Figure 6.7.  

 

 

 

 

 

 

 

 

point node x y x y

1 501 4.00E+01 5.50E+00 4.03E+01 5.50E+00

2 331 6.01E+00 6.26E+00 6.33E+00 5.76E+00

3 161 -2.45E+01 -1.40E+00 -2.45E+01 -1.39E+00

4 151 -2.48E+01 -3.40E+00 -2.47E+01 -3.38E+00

5 1 -5.00E+01 -1.32E+01 -5.00E+01 -1.30E+01

Kinematic Hardening Mixed Hardening

Low Carbon Steel



 

162 

 

6.6. Results and Discussions 

Table 6.10 shows a summary of the springback angles from the experiment 

and simulation for stainless steel. The per cent difference of the simulation results 

and the experimental results is used to indicate the performance of the particular 

hardening model. The smaller the difference, the better is the performance of the 

particular hardening model.  

 

Table 6.10 Springback angle measured from experiments and                   

simulations of 1 mm thick stainless steel material 

 

 

 

  From Table 6.10, it is very obvious that the springback angles which were 

predicted by using mixed hardening model were better than the angles predicted by 

using kinematic hardening model. The difference between the experimental results 

and the simulation results by using mixed hardening model was less than 12 per 

cent. The best predicted value was for angle θ2 where only about 2.4 per cent 

differences were recorded. The worst predicted springback angle was for θ1 which 

was produced by using kinematic hardening model. The per cent difference 

Experiment Kinematic Mixed

96.243 114.905 107.552

%DIFF 19.391 11.750

94.882 97.953 92.573

%DIFF 3.237 -2.434

%DIFF. = [Simulation-Experiment/Experiment]*100

θ1

θ2

Stainless steel
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recorded was around 19. The per cent recorded by using mixed hardening however 

was not very good also; though the value recorded (11.75 per cent) was less than 19 

per cent. For angle θ2, both models performance was within acceptable value that is 

about 3 per cent. 

Further investigation of the results for low carbon steel proved that using 

mixed hardening model did provide better solutions in predicting springback. These 

results are summarised in Table 6.11.  

Table 6.11 Springback angle measured from experiments and                     

simulations of 1.5 mm thick cold rolled low carbon steel material 

 

 

 

The performance of the simulation using mixed hardening model is far 

better than the results produced by kinematic hardening model. The per cent 

difference recorded for the model was less than 4. The best predicted angle was for 

angle θ1. The worst predicted springback angle was for θ2 by using kinematic 

hardening model. The per cent difference recorded was around 8.  For angle θ1, the 

model performance was better with value less than 5 per cent. 

The simulation results obtained using kinematic hardening model over 

predicted all the springback angles, both for stainless steel and low carbon steel. 

Experiment Kinematic Mixed

96.982 101.239 96.583

%DIFF 4.389 -0.411

92.586 99.956 96.136

%DIFF 7.960 3.834

Low carbon steel

θ1

θ2

%DIFF. = [Simulation-Experiment/Experiment]*100
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Simulations results using mixed hardening model on the other hand seemed to show 

both over and under predicted springback angles. These predicted angles however 

were very close to the experimental results. In conclusion, this indicated a 

significant improvement of springback predicting capability when using mixed 

hardening model. 
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6.7. Conclusions 

i. Comparing kinematic hardening model with mixed hardening model, the 

mixed hardening model provided better simulation results in predicting 

springback. This was due to the capability of isotropic hardening to 

represent cyclic transient better, whilst the nonlinear kinematic hardening 

had the capability to improve description of the Bauschinger effect. 

ii. Kinematic hardening however, on its own was capable of providing 

relatively good springback simulation illustrated by errors of less than 8 per 

cent, except for angle θ1 of low carbon steel. 

iii. Overall, the data provided by the bending-unbending experiments was 

considered valuable and reliable for simulating springback prediction. 

Although the highest percentage error recorded was 19% (kinematic 

hardening), the rest of the percentage errors recorded were between 12% and 

0.411% (mixed hardening). Thus, the percentage errors were acceptable. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1. Conclusions 

The following conclusions are drawn based on the results of the current work. 

Some of the conclusions are repeated from the chapters’ conclusions, specifically 

from Chapter 4, 5 and 6. The outcomes are believed to enhance knowledge in the 

field of plasticity of sheet metal forming.  

i. Although further improvements are still required, the developed 

experimental tool and the method are capable of providing an insight 

into behaviour of sheet metal subjected to cyclic loading, thus enhancing 

our knowledge of sheet metal forming with regard to the Bauschinger 

effect. Using the tool and the established formula, the Bauschinger effect 

factor (BEF) was found.  

ii. The sheet material tested using the developed tool showed a typical 

stress response with a distinct elastic region, a low value yield point 

followed by work hardening. The existence of work hardening 

stagnation in cyclic stress-strain curves was not observed. This is likely 

due to small bending angle of about 20 degree (first bending) to 40 

degree (subsequent bending) which produced insufficient accumulated 

strain for work hardening stagnation to be observed. 
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iii. The bending data obtained in cycle two and cycle three of bending 

unbending experiments was successfully approximated using an efficient 

direct optimisation method (Nelder-Mead Simplex), which enabled 

identification of material parameters for two constitutive equations used.  

iv. Of the two hardening models – kinematic hardening and mixed 

hardening, the mixed hardening model provided better simulation results 

in predicting springback. This was due to the capability of the isotropic 

hardening part of this model to describe cyclic transient and the 

kinematic hardening part to improve description of the Bauschinger 

effect. Overall, data provided by bending-unbending experiments proved 

to be valuable for supporting the job of simulating springback.  

 

 

 

 

 

 

 

 

 

 



 

168 

 

7.2. Recommended Future Work 

i. It is recommended that more validation test is performed to test the 

effectiveness of the material parameters identified by the current method 

and tool.  It is suggested that an established standard for U-bending part, 

such as the NUMISHEET standard, continues to be used for the 

validation test and should be conducted with careful selection of 

thickness and blank holding pressure combinations.  It is also 

recommended that the materials hardening parameters, identified using 

the developed tool, are systematically tested with various numerical 

parameters of simulation for more comprehensive investigation and 

validation. 

ii. Further improvement on the cyclic bending tool is necessary. Reason for 

discrepancy between experimental data (not smooth strain-stress 

behaviour) and numerical prediction should be identified. Construction 

of the bending tool should be investigated thoroughly in terms of fittings 

used in all joints. This includes tolerances, allowed clearances, 

roughness on the working surfaces, lubrications and other that are 

necessary.  

iii. It is recommended that an inverse identification method is applied based 

on the developed tool to further investigate the reliability of constitutive 

equations and the materials parameters being identified. Although it has 

certain limitations, the inverse identification method is worth exploring.  
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iv. It is suggested that the work in (iii) is also used to investigate and 

improve the finite element simulation limitations such as a lengthy 

computing time, nonlinearity of geometrical boundary conditions, 

convergent issues due to contact and friction description of tools nodes 

and material nodes and sensitivity of numerical element. 

v. In this work, the effects of microstructure changes and Young’s modulus 

changes due to deformation were not considered. To further improve the 

reliability of the springback prediction, it is recommended that these 

effects on reversal stress flows are investigated and described into 

constitutive equations. 
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A CYCLIC LOADING RESULTS 

A1: Low Carbon Steel 

 

 

(a)  

 
(b)  
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(c) 

 

 

(d) 

Figure 4.14 Cyclic stress-strain graphs for low carbon steel 2 mm thick (a) specimen 

no.1, (b) specimen no. 2, (c) specimen no. 3 and (d) average (stress) 
 

 

 

 

 



 

181 

 

 
(a) 
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(c) 
 

 

(d) 

Figure 4.15  Cyclic stress-strain graphs for low carbon steel 1.5 mm thick (a) 

specimen no.1, (b) specimen no. 2, (c) specimen no. 3 and (d) average (stress) 
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(a) 

 
(b) 

 



 

184 

 

 

(c) 
 

 

(d) 

Figure 4.16 Cyclic stress-strain graphs for low carbon steel 1 mm thick (a) specimen 

no.1, (b) specimen no. 2, (c) specimen no. 3 and (d) average (stress) 
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A2: Stainless Steel 

 
(a) 

 
(b) 
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(d) 

Figure 4.17 Cyclic stress-strain graphs for stainless steel 2 mm thick (a) specimen 

no.1, (b) specimen no. 2, (c) specimen no. 3 and (d) average (stress) 
 

 

 

 



 

187 

 

 

 

(a) 
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(c) 

 

 

(d) 

Figure 4.18 Cyclic stress-strain graphs for stainless steel 1 mm thick (a) specimen 

no.1 (b) specimen no. 2, (c) specimen no. 3 and (d) average (stress) 
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(c) 

 

(d) 

Figure 4.19 Cyclic stress-strain graphs for stainless steel 0.5 mm thick (a) specimen 

no.1, (b) specimen no. 2, (c) specimen no. 3 and (d) average (stress)   
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B OPTIMISATION  

Coding for Nonlinear Kinematic Hardening 

clc;clear all; 
global nxdata nydata 
% Identification of kinematic hardening material parameters for  
%  Low carbon steel(2 mm, 1.5 mm and 1 mm) and stainless steel 
%  (2mm, 1 mm and 0.5 mm). 
%  Average Data taken from cyclic loading experiment. 
% To run the optimization for the particular data, delete the % 

symbol in front 
% of the data line AND delete symbol in front of the Reverse 

bending rb1 data line. 
%__________________________________________________________________ 
%                        Low Carbon Steel 

         
%                            2MM // to use Formula 1 in subroutine 

K2  
%     Bending B2       
%            nydata=xlsread('MS2mm.xls','b2_a','v17:v3000'); 
%            nxdata=xlsread('MS2mm.xls','b2_a','u17:u3000'); 
%     Bending B3  
%            nydata=xlsread('MS2mm.xls','b3_a','v17:v3000'); 
%            nxdata=xlsread('MS2mm.xls','b3_a','u17:u3000'); 
%     Reverse bending rb1 
%              y=xlsread('MS2mm.xls','rb1_a','w5:w3000'); 
%              x=xlsread('MS2mm.xls','rb1_a','v5:v3000'); 

      
%                           1.5 mm// to use Formula 1 in subroutine 

K2  
%    Bending B2       
%            nydata=xlsread('MS15mm.xls','b2_a','v17:v3000'); 
%            nxdata=xlsread('MS15mm.xls','b2_a','u17:u3000'); 
%    Bending B3  
%            nydata=xlsread('MS15mm.xls','b3_a','v17:v3000'); 
%            nxdata=xlsread('MS15mm.xls','b3_a','u17:u3000'); 
%    Reverse bending rb1 
%              y=xlsread('MS15mm.xls','rb1_a','w5:w3000'); 
%              x=xlsread('MS15mm.xls','rb1_a','v5:v3000'); 

                         
%                            1 MM // to use Formula 2 in subroutine 

K2 
%    Bending B2   
           nydata=xlsread('MS1mm.xls','b2_a','v17:v3000'); 
           nxdata=xlsread('MS1mm.xls','b2_a','u17:u3000'); 
%    Bending B3 
%         nydata=xlsread('MS1mm.xls','b3_a','v17:v3000'); 
%         nxdata=xlsread('MS1mm.xls','b3_a','u17:u3000'); 
% %     % Reverse bending rb1    
        y=xlsread('MS1mm.xls','rb1_a','w5:w3000'); 
        x=xlsread('MS1mm.xls','rb1_a','v5:v3000'); 

      
%__________________________________________________________________

___                       
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%                          Stainless Steel 

         
%                            2MM // to use Formula 3 in subroutine 

K2 
%    Bending B2       
%            nydata=xlsread('SS2mm.xls','b2_a','v17:v3000'); 
%            nxdata=xlsread('SS2mm.xls','b2_a','u17:u3000'); 
%    Bending B3  
%            nydata=xlsread('SS2mm.xls','b3_a','v17:v3000'); 
%            nxdata=xlsread('SS2mm.xls','b3_a','u17:u3000'); 
%    Reverse bending rb1 
%              y=xlsread('SS2mm.xls','rb1_a','w5:w3000'); 
%              x=xlsread('SS2mm.xls','rb1_a','v5:v3000'); 

         
 %                          1 MM // to use Formula 3 in subroutine 

K2 
%    Bending B2   
%            nydata=xlsread('SS1mm.xls','b2_a','v17:v3000'); 
%            nxdata=xlsread('SS1mm.xls','b2_a','u17:u3000'); 
%    Bending B3 
%         nydata=xlsread('SS1mm.xls','b3_a','v17:v3000'); 
%         nxdata=xlsread('SS1mm.xls','b3_a','u17:u3000'); 
%   Reverse bending rb1    
%         y=xlsread('SS1mm.xls','rb1_a','w5:w3000'); 
%         x=xlsread('SS1mm.xls','rb1_a','v5:v3000'); 

      
%                           0.5 MM // to use Formula 4 in 

subroutine K2 
%   Bending B2       
%            nydata=xlsread('SS05mm.xls','b2_a','v17:v3000'); 
%            nxdata=xlsread('SS05mm.xls','b2_a','u17:u3000'); 
%   Bending B3  
%            nydata=xlsread('SS05mm.xls','b3_a','v17:v3000'); 
%            nxdata=xlsread('SS05mm.xls','b3_a','u17:u3000'); 
%   Reverse bending rb1 
%              y=xlsread('SS05mm.xls','rb1_a','w5:w3000'); 
%              x=xlsread('SS05mm.xls','rb1_a','v5:v3000'); 

      
%__________________________________________________________________          

   thedata=[nxdata nydata]; 
    nxdata=thedata(:,1); 
    nydata=thedata(:,2); 

  

    [estimates, model,C,gamma,ErrorVector]=K2(nxdata,nydata); 
    [sse,FittedCurve] = model(estimates); 
    %MSE=SSE/v, v=n-m, n=#of data, m=# of parameters 
    n=3000-17; 
    m=2; 
    v=n-m; 
    MSE=sse/(v-3)% MSE: the mean square error or the residual mean 

square.m is number parameter 
    RMSE=sqrt(MSE)% STANDARD DEVIATION 
    nyA=(sum(nydata))/(n); %denumerator depends on initial and 

final data 
    Residual=ErrorVector 
    G=(nydata-nyA); 
    SSE=sse 
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    SST=sum((G.^2)) 
    Rq=1-(sse/SST) 
    Adj_Rq=1-(SSE*(n-1))/(SST*(v)) 

  
    plot(x, y, 'c') 
    hold on 
    plot(nxdata, nydata, 'b') 
    hold on 
    plot(nxdata, FittedCurve, '--r'); 

  
    xlabel('nxdata') 
    ylabel('f(estimates,nydata)') 
    title(sprintf('C=%1.3f,gamma=%1.3f, Adj_R=%1.4f,',... 
      C,gamma,Adj_Rq)); 
    legend('data','data','fit using N-Kinematic Equation ') 
    hold off 

 

K2 Objective Function 

function [estimates,model,C,gamma,ErrorVector] = K2(nxdata,nydata) 
   start_point =[1000 1]; 
model = @expfun; 
options=optimset('MaxFunEvals',10e9,'MaxIter',10e9) 
estimates = fminsearch(model, start_point,options); 

  
    function [sse,FittedCurve] = expfun(params) 

     
   C = params(1); 
   gamma = params(2); 

  
% Choose the equation from the lists. To use the formula, delete 

the % 
% symbol from the formula line AND place % on the other formula 

line.  

  
%   1. Formula for MS 2 mm and 1.5 mm 
%       FittedCurve =200+(C/gamma)*(1-exp(-gamma*nxdata)); 
%   2. Formula for MS 1 mm MS 
        FittedCurve =250+(C/gamma)*(1-exp(-gamma*nxdata)); 

  
%   3. Formula for SS 2 mm and 1 mm  
%       FittedCurve =150+(C/gamma)*(1-exp(-gamma*nxdata)); 

  
%   4. Formula for SS 0.5 mm  
%       FittedCurve =435+(C/gamma)*(1-exp(-gamma*nxdata)); 

  
 ErrorVector= (FittedCurve-nydata); 
 sse =sum((ErrorVector .^ 2)); 

          
 end 
end 
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Coding for Mixed Hardening 

clc;clear all; 
global nxdata nydata 
% Identification of MIXED hardening material parameters for  
%  Low carbon steel(2 mm, 1.5 mm and 1 mm) and stainless steel 
%  2mm, 1 mm and 0.5 mm). Average Data taken from cyclic  
%  loading experiment. 
% To run the optimization for the particular data, delete the % 

symbol in front 
% of the data line AND delete symbol in front of the Reverse 

bending rb1 data line. 
%__________________________________________________________________

________ 
%                       Low Carbon Steel 

                         

%                           2MM / to use Formula 1 in subroutine 

MIXED  
    % Bending B2       
%            nydata=xlsread('MS2mm.xls','b2_a','v17:v3000'); 
%            nxdata=xlsread('MS2mm.xls','b2_a','u17:u3000'); 
    % Bending B3  
%            nydata=xlsread('MS2mm.xls','b3_a','v17:v3000'); 
%            nxdata=xlsread('MS2mm.xls','b3_a','u17:u3000'); 
%   % Reverse bending rb1 
%              y=xlsread('MS2mm.xls','rb1_a','w5:w3000'); 
%              x=xlsread('MS2mm.xls','rb1_a','v5:v3000'); 
%       
%                           1.5 mm/ to use Formula 1 in subroutine 

MIXED  
    % Bending B2       
%            nydata=xlsread('MS15mm.xls','b2_a','v17:v3000'); 
%            nxdata=xlsread('MS15mm.xls','b2_a','u17:u3000'); 
%   % Bending B3  
%            nydata=xlsread('MS15mm.xls','b3_a','v17:v3000'); 
%            nxdata=xlsread('MS15mm.xls','b3_a','u17:u3000'); 
%   % Reverse bending rb1 
%              y=xlsread('MS15mm.xls','rb1_a','w5:w3000'); 
%              x=xlsread('MS15mm.xls','rb1_a','v5:v3000'); 

                       
%                           1 MM / to use Formula 2 in subroutine 

MIXED  
    % Bending B2   
%            nydata=xlsread('MS1mm.xls','b2_a','v17:v3000'); 
%            nxdata=xlsread('MS1mm.xls','b2_a','u17:u3000'); 
    % Bending B3 
        nydata=xlsread('MS1mm.xls','b3_a','v17:v3000'); 
        nxdata=xlsread('MS1mm.xls','b3_a','u17:u3000'); 
%   % Reverse bending rb1    
        y=xlsread('MS1mm.xls','rb1_a','w5:w3000'); 
        x=xlsread('MS1mm.xls','rb1_a','v5:v3000'); 
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%__________________________________________________________________                        
%                          Stainless Steel 

         
%                            2MM / to use Formula 3 in subroutine 

MIXED  
    % Bending B2       
%              nydata=xlsread('SS2mm.xls','b2_a','v17:v3000'); 
%              nxdata=xlsread('SS2mm.xls','b2_a','u17:u3000'); 
    % Bending B3  
%              nydata=xlsread('SS2mm.xls','b3_a','v17:v3000'); 
%              nxdata=xlsread('SS2mm.xls','b3_a','u17:u3000'); 
    % Reverse bending rb1 
%              y=xlsread('SS2mm.xls','rb1_a','w5:w3000'); 
%              x=xlsread('SS2mm.xls','rb1_a','v5:v3000'); 

         
%                            1 MM / to use Formula 3 in subroutine 

MIXED  
    % Bending B2   
%                nydata=xlsread('SS1mm.xls','b2_a','v17:v3000'); 
%                nxdata=xlsread('SS1mm.xls','b2_a','u17:u3000'); 
%   % Bending B3 
%              nydata=xlsread('SS1mm.xls','b3_a','v17:v3000'); 
%              nxdata=xlsread('SS1mm.xls','b3_a','u17:u3000'); 
%   % Reverse bending rb1    
%                y=xlsread('SS1mm.xls','rb1_a','w5:w3000'); 
%                x=xlsread('SS1mm.xls','rb1_a','v5:v3000'); 

      
%                           0.5 MM / to use Formula 4 in subroutine 

MIXED  
    % Bending B2       
%            nydata=xlsread('SS05mm.xls','b2_a','v17:v3000'); 
%            nxdata=xlsread('SS05mm.xls','b2_a','u17:u3000'); 
%   % Bending B3  
%            nydata=xlsread('SS05mm.xls','b3_a','v17:v3000'); 
%            nxdata=xlsread('SS05mm.xls','b3_a','u17:u3000'); 
%   % Reverse bending rb1 
%              y=xlsread('SS05mm.xls','rb1_a','w5:w3000'); 
%              x=xlsread('SS05mm.xls','rb1_a','v5:v3000'); 

      
%******************************************************************

******* 
    thedata=[nxdata nydata]; 
    nxdata=thedata(:,1); 
    nydata=thedata(:,2); 

  
    [estimates, 

model,Q,b,C,gamma,ErrorVector]=MIXED(nxdata,nydata);  
    [sse, FittedCurve] = model(estimates); 
%MSE=SSE/v, v=n-m, n=#of data, m=# of parameters 
    n=3000-17; 
    m=4; 
       v=n-m; 
% MSE: the mean square error or the residual mean square.m is 

number parameter        
    MSE=sse/(v-3); 
% STANDARD DEVIATION 
    RMSE=sqrt(MSE); 
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%Denumerator depends on initial and final data 
    nyA=(sum(nydata))/(n);  
    Residual=ErrorVector; 
    G=(nydata-nyA); 
    SSE=sse; 
    SST=sum((G.^2)); 
    Rq=1-(sse/SST); 
    Adj_Rq=1-(SSE*(n-1))/(SST*(v)); 

  
    plot(x, y, 'c') 
    hold on 
    plot(nxdata, nydata, 'b') 
    hold on 
    plot(nxdata, FittedCurve, '--r'); 

  
    xlabel('nxdata') 
    ylabel('f(estimates,nydata)') 

  
    title(sprintf('Q=%1.4f, b=%1.3f, C=%1.3f, gamma=%1.3f, 

Adj_R=%1.4f,',... 
         Q,b,C,gamma,Adj_Rq)) 
        legend('data','data','fit using Mixed Equation')%, 

func2str(model)]) 
    hold off 

 

MIXED Objective Function 

function [estimates, model,Q,b,C,gamma,ErrorVector] = 

MIXED(nxdata,nydata)   

         
        start_point =[400 20 1000 1]; 
        model = @expfun; 
        options=optimset('MaxFunEvals',10e9,'MaxIter',10e9) 
        estimates = fminsearch(model, start_point,options); 

  
    function [sse, FittedCurve] = expfun(params)    
        Q = params(1) 
        b = params(2); 
        C= params(3); 
        gamma= params(4); 

         
% Choose the equation from the lists. To use the formula, delete 

the % 
% symbol from the formula line AND place % on the other formula 

line.  

  
 % formula uses mixed of isotropic and kinematic. 

  
%       1. Formula for MS 2 mm and 1.5 mm 
%               FittedCurve =(200+Q .*(1-exp(-

b*nxdata))+(C/gamma)*(1-exp(-gamma*nxdata)));  
%       2. Formula for MS 1 mm 
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                 FittedCurve =(250+Q .*(1-exp(-

b*nxdata))+(C/gamma)*(1-exp(-gamma*nxdata)));            
%       3. Formula for SS 2 mm and 1 mm  
%               FittedCurve =(150+Q .*(1-exp(-

b*nxdata))+(C/gamma)*(1-exp(-gamma*nxdata)));  
%       4. Formula for SS 0.5 mm              
%                FittedCurve =(435+Q .*(1-exp(-

b*nxdata))+(C/gamma)*(1-exp(-gamma*nxdata)));       
     ErrorVector = FittedCurve - nydata; 
     sse = sum(ErrorVector .^ 2) 

                
    end 
end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

198 

 

 

 

 

 

 

 

 

 

 

 

 

 

C CYCLIC BENDING TOOL DRAWINGS 
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