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Abstract

Many of the advantages that the flourishing fields of quantum technologies and quantum
information theory achieve over their classical counterparts rely on quantum correla-
tions. Such correlations represent a valuable resource and their characterization and
quantification is a key theoretical task.

We study the quantum correlations for systems which are symmetric under the ex-
change of any two particles for two main reasons. Firstly, exchange symmetry constrains
the set of possible states for the system and reduces the degrees of freedom required to
describe them, simplifying the characterization of quantum correlations. Furthermore,
systems that exhibit exchange symmetry have notable physical properties that make
them well-suited for quantum information tasks and quantum simulation.

In this thesis we investigate how exchange symmetry affects the mathematical de-
scription, as well as the physical realization and measurement, of quantum correlations.
To begin with, we address the open problem of quantifying identical-particle entangle-
ment. We introduce a novel entanglement measure accounting for the wavefunction
(anti)symmetrization in the first quantised picture of systems of fermions and bosons.
This measure, which may be evaluated by means of semidefinite programming, is sensi-
tive to quantum correlations originating from interactions and other entanglement gen-
erating dynamical processes, rather than the kinematic effect of (anti)symmetrization.
We apply our novel measure to estimate entanglement based on measurements of a
system of two ultracold fermionic atoms in an optical trap.

Exchange symmetry is not only a property of identical-particle states, but can per-
tain also to distinguishable subsystems. Based on the properties of subspaces of states
which are symmetric or antisymmetric under particle exchange, we introduce a novel
class of exchange-symmetric bound entangled states. We provide a simple parametriza-
tion that makes it possible to obtain states which are bound entangled in terms of a
convex combination of well-studied exchange-symmetric states.

Finally, we study the quantum correlations of a family of states with exchange sym-
metry in the multipartite device-independent scenario. We evaluate the noise robustness
of the task of entanglement certification for varying numbers of uncharacterised mea-
surement devices for the states of the family. The resulting structure enables us to
establish a hierarchy of quantum correlations in the tripartite case.
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Introduction

In recent years the technologies inspired by the physics of quantum information have
begun to be transferred from the laboratory to high-tech industry. With an escalation
in public interest and investment in the many ground-breaking quantum-based tech-
nologies (QT) [1, 2], it is looking increasingly likely that some instances of QT will
make their way into our everyday lives in the near future. Indeed, at present any-
one using a GPS system is benefiting from an example of QT, atomic clocks, which
play an important role in the global positioning technology. Quantum cryptographic
schemes are already commercially available [3] and numerous other technologies are
being developed. Quantum-enhanced metrology is being applied to commercial magne-
tometers [4–6], gravimeters [7] and, more recently, accelerometers [8]. Quantum imag-
ing [9] is sparking interest in applications ranging from hazardous gas detection [10] to
microscopic biological imaging [11]. Private companies have developed quantum anneal-
ers [12–14], a scale up of which will enable the simulation of systems that are classically
intractable [15]. Finally, although still at an early stage, the technological implications
of realising scalable quantum computers are revolutionary [16,17].

With the approach of the quantum information technology era it is of ever-increasing
interest and importance to have a deep understanding of the fundamental physical prin-
ciples underlying such potentially world-changing technologies. This has motivated ex-
tensive joint theoretical and experimental efforts in detecting and controlling quantum
resources. The most notable of such resources is the type of quantum correlation called
entanglement. Entanglement can be understood as the lack of a description in terms
of factorised, or uncorrelated, single-subsystem states. While entanglement theory is
a well-developed field of quantum information theory, there remain a number of open
questions, one of which is given by the characterisation and quantification of entangle-
ment of identical-particle systems.

One of the defining features of quantum systems is the quantization of observable
quantities, or in other words, the existence of minimum discrete units (quanta, or quan-
tum numbers) for physical properties in a given system. In quantum mechanics, when
particles have the same quantum numbers, they are not only operationally, but also in-
trinsically indistinguishable. Quantum mechanical spin, or intrinsic angular momentum,
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is one such physical property possessed by all physical systems, which may be classified
according to their spin quantum number. In particular, in particle physics, objects
with integer values of spin are called bosonic, whereas those with half-integer spin are
called fermionic and such distinction reflects in their wavefunction representation. The
wavefunctions describing systems of multiple bosons are necessarily symmetric under
the exchange of any two particles, whereas fermionic systems are antisymmetric under
particle exchange [18].

The particle-exchange symmetry intrinsic to such physical systems constrains the
set of allowed physical states and affects the entanglement properties therein [19]. The
main difficulties are connected with the wave-function (anti)symmetrization of systems
of identical (fermions)bosons, bringing about correlations in play which have kinematic
rather than dynamical origin. Entanglement, which is often inferred by analysing cor-
relation functions, is however typically generated by dynamical processes, such as in-
teractions. It is therefore of great interest to unravel the structure of correlations in
identical-particle systems.

Entanglement of identical particles Several approaches to identical-particle en-
tanglement characterization [20–29] and quantification [30,31] have been put forward in
the last two decades, but a general consensus on the topic has still not been reached. In
this thesis I address the issue in terms of a mathematical tool which has been applied ex-
tensively to quantum information theory in recent years, semidefinite programming [32].
Semidefinite programs are special cases of convex optimization instances suitable for im-
posing constraints over density matrices and quantum operations [33], which have been
applied for multipartite entanglement detection [34], device-independent entanglement
certification [35], quantum complexity theory [36] and nonlocal games [37].

Based on well-established identical-particle entanglement criteria [21], in Chapter 2
we introduce an entanglement measure for systems with exchange symmetry expressed
as a semidefinite program. Our novel measure takes into account the symmetry of
identical-particle states and quantifies the correlations present in a composite system
which are not due to the exchange symmetry, but only to entanglement-generating
processes, such as interactions or global operations acting on multiple subsystems. Fur-
thermore, in Chapter 3 we prove the usefulness of our measure for entanglement estima-
tion based on measurements of correlation functions in systems of interacting identical
fermions. Even when the state of the system may not be fully recovered by measure-
ments, the information extracted from the correlation functions may be imposed as a
constraint in the optimization algorithm in terms of which our measure is evaluated.
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We therefore obtain lower bounds on the entanglement due to interactions that are
consistent with the incomplete information about the system.

Bound entanglement and exchange symmetry Exchange symmetry is not a
property pertaining only to identical-particle systems. Permutation invariance is a prop-
erty of several physical systems and fundamental forces [38] and has been studied to
exploit the rich structure it enforces. Permutation-symmetric systems are of aid in the
study of condensed matter theory [39], quantum error correction [40], decoherence-free
(noiseless) subspaces [41] and entanglement theory [42]. The mathematical properties of
permutation-symmetric subspaces may therefore bring about new insight into physical
systems. Specifically, the symmetry constrains the number of independent degrees of
freedom in complex systems, allowing a simpler mathematical description and a better
unraveling and control of their properties. One such property is bound entanglement,
an attribute of statistical mixtures of entangled states which may not be used, even
by taking many copies of them, to generate a maximally-entangled state by means of
local operations and classical communication [43]. Bound-entangled states are of great
theoretical and experimental interest, but they are difficult to characterize and have
proven challenging to realize in laboratories [34,44,45]. By looking into the properties
of the exchange-symmetric and antisymmetric subspaces, in Chapter 4 we identify a
novel class of states with a simple parametrization and amenable to experimental real-
ization. We derive both analytical results and numerical recipes, based on semidefinite
programming, to deterministically and randomly generate bound-entangled states of
any bipartite system.

Furthermore, exchange symmetry plays an important role in preserving entangle-
ment from degradation due to interaction with a noisy environment [41]. In particular,
distinguishable-particle states which are antisymmetric under particle exchange are nec-
essarily entangled and have proven to be a most valuable resource in terms of resistance
to decoherence [46]. Despite the fact that it may be engineered to obtain advantages [47],
noise is the main adversary in the realization of quantum systems. Noise reduction and
error-correction in quantum information tasks are well-developed research areas, how-
ever noise may never be entirely removed from a real physical system. Robustness
to noise is therefore a valuable property of entangled states, particularly for schemes
relying on entanglement certification.

Device-independent entanglement certification A general and interdisciplinary
problem in quantum information processing is the certification of entanglement shared
between a number of parties under different assumptions. In quantum communication
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protocols, such as quantum key distribution (QKD), quantum cryptography and state
sharing it is a key requirement to benchmark the performance of the protocol when
a number of measurement devices, or the parties manipulating them, are untrusted.
More specifically, the need to assess quantum-enabled performance enhancements under
such assumptions has prompted the development of the theory of device-independent
entanglement certification (DIEC) [48].

The typical scenario for device-independent quantum information processing in-
volves an unknown multipartite quantum state shared between a number of distant
parties. When a number of the parties are untrusted, the trusted parties may interpret
the conditional states resulting from the untrusted parties’ measurements by assum-
ing that the latter’s measurement devices are uncharacterised. If the trusted parties,
possessing a full characterization of their own measurements, are able to certify the
presence of entanglement from the available conditional states, the composite system
is said to demonstrate steering [35]. Entanglement is a necessary condition for steer-
ing, but the converse is not true. Steering may thus be considered a stronger type of
quantum correlation than entanglement and its study is relevant to the benchmarking
of quantum communication protocols in presence of adversary parties [48,49].

A stronger condition than the steering one may be enforced, regarding all measure-
ments by all parties on the quantum state as uncharacterised. This is the fully-device-
independent scenario, and if the joint conditional probability distributions arising from
the uncharacterised measurements suffice for entanglement certification, the system is
said to be nonlocal [49]. Nonlocality is therefore defined in terms of a stronger condition
than steering, giving rise to the quantum correlation hierarchy illustrated in Figure 1.

In Chapter 5 of this thesis we investigate the quantum correlation structure of
the totally antisymmetric tripartite state as a function of external noise. We find the
maximum noise threshold within which the entanglement may be certified for all com-
binations of trusted and untrusted parties. Our work provides benchmarks for the
noise robustness of relevance for experimental applications of entanglement certification
schemes, as well as providing a characterization of the quantum correlation structure
for an interesting class of exchange-symmetric states.

Outline

This thesis reports the characterization and quantification of quantum correlations in
physical systems with exchange symmetry. The content is arranged according to the
following structure:
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Entanglement

Steering

Nonlocality

Figure 1: Matryoshka (russian doll) hierarchy of quantum correlations.

• In Chapter 1 we introduce the basic elements of quantum theory which will be
applied in the rest of this work. We introduce the mathematical formalism of
entanglement and the algebraic techniques which allow its quantification.

• In Chapter 2 we define a novel measure for identical-particle entanglement based
on semidefinite programming. We begin by introducing the conceptual issues in
defining entanglement for identical-particle systems which make the subject a very
interesting one. A brief review of the existing approaches to the topic is outlined,
with focus on a well-established identical-particle entanglement criteria which will
be the basis of our entanglement measure. Finally, we introduce the notions
of symmetric and antisymmetric entanglement negativity, our novel method for
entanglement quantification of systems of identical bosons and fermions.

• In Chapter 3 we demonstrate an application of our novel entanglement measure,
antisymmetric negativity, to the task of entanglement estimation based on exper-
imental data resulting from measurements of correlation functions in systems of
few ultracold identical fermionic atoms in an optical trap. Our measure provides
the advantage of detecting the correlation structure in such systems, distinguish-
ing the correlations arising from entanglement-generating processes from those
due to the exchange symmetry. Furthermore, when incomplete information about
the measured quantum state is available, antisymmetric negativity may be applied
for providing a lower bound to the entanglement in the system.
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• In Chapter 4 we present a novel class of bound-entangled states based on the
properties of the antisymmetric subspace. We propose a method for the deter-
ministic generation of states in said class based on semidefinite programming. In
addition to this, the method may be adapted for the randomized generation of
bound-entangled states. We further highlight an additional class of states which
may be fully characterized analytically and is amenable to an intuitive geomet-
rical representation. The class comprises Werner, Isotropic and bound-entangled
states with a simple parametrization [50].

• In Chapter 5 we study the quantum correlation hierarchy for the totally antisym-
metric tripartite state in presence of noise. We operate in the device-independent
approach to quantum information and assess the noise threshold within which
entanglement certification is possible for different combinations of trusted and
untrusted parties. Our results benchmark the robustness to noise of multipartite
entanglement, steering and nonlocality characterization of a state of great interest
to quantum information theory and applications.
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Chapter 1

Elements of Quantum Theory

In this chapter we revise the background elements of quantum theory that are particu-
larly important in this thesis, in order to establish properly the corresponding notation
and definitions. Such revision of known concepts is not only incorporated for the sake of
self-consistency, however, since even in the basic notions of quantum theory lie subtleties
and assumptions which are often overlooked and may cause confusion and misunder-
standings in the assessment of quantum correlations. In what follows we outline the key
concepts underpinning our work and introduce the notation we rely on in the remain-
der of this thesis. For further reading we recommend a selection of quantum mechanics
textbooks in references [51–54].

The state of a quantum system S is described in terms of a vector |ψ〉 of a Hilbert
space H over the complex numbers. Unless otherwise stated, states will be assumed to
be normalised (| 〈ψ|ψ〉 | = 1) and Hilbert spaces to have a finite dimension d, therefore
they will be equivalently indicated by H ≡ Hd ≡ H(d) ' Cd. The expectation values
〈ψ|O|ψ〉 of observables of the system are given by the action of hermitian operators
O = O† on the states O |ψ〉.

A general mixed state, a statistical mixture of pure quantum states, is described by
the density operator ρ of the system S. The density operator is a positive, hermitian,
unit-trace operator on H, and it can be expressed as a convex combination of projectors
onto pure states |ψ〉〈ψ|:

ρ =
∑
i

pi |ψi〉〈ψi| , (1.1)

where {pi}i form a normalised probability distribution. The set of density operators on
H will be indicated by D(H). Generalised measurements on mixed states are described
in terms of Positive Operator-Values Measures (POVM), given by a set of hermitian
positive-semidefinite operators {Mi = E†iEi}i, such that

∑
iMi = 1. The post-selected



2

states conditional to a measurement outcome i are given by

ρi =
EiρE

†
i

Tr(EiρE
†
i )
, (1.2)

where Tr is the trace operation and Tr(EiρE
†
i ) = Tr(Miρ) the probability of obtaining

the post-selected state ρi.
The description of a composite quantum system S12 consisting of the subsystems

S1 with Hilbert space H1(d1) and S2 with Hilbert space H2(d2) is given in terms of a
vector |Ψ〉12 belonging to the tensor product of the subsystems’ spaces H12(d1d2) =

H1(d1)⊗H2(d2). Notice that in general, given a composite system, the partitioning in
subsystems is not unique.

1.1 Quantum Entanglement

The paradigmatic scenario for the study of quantum correlations requires the identifica-
tion of two (or more) parties, which are commonly given the names of Alice (A) and Bob
(B). The two parties have access to a quantum system with which they may interact by
means of physical quantum operations, for example projective measurements. A compos-
ite quantum system can be partitioned in subsystems, the mathematical representation
of which may be given in terms of a tensor product structure of single-subsystem Hilbert
spaces underlying the composite one. Let us focus on the case where the composite sys-
tem is partitioned into subsystems with a tensor-product structure in such a way that
each party has access to one of the subsystems only, unambiguously. This will allow us
to establish a connection between the outcomes of operations performed by the distinct
parties to the properties of the subsystem pertaining to each party. We may interpret
this scenario formally by calling SAB = SA + SB the composite quantum system whose
states are vectors in the Hilbert space HAB = HA⊗HB. We may appreciate how having
required each subsystem to be unambiguously accessible by one party only allows to
label the individual Hilbert spaces according to the party acting on them. We will call
subsystems with this property individually addressable subsystems.

A vector state in the composite tensor product space is called unentangled if it can
be written in the factorised form |α〉A ⊗ |β〉B . Any state |ψ〉AB ∈ HAB that is not
unentangled, i.e. it may not be written in factorised form, is entangled. Composite
states of the joint system always admit a decomposition in the form

|ψ〉 =
∑
i

√
pi |ai〉 |bi〉 , (1.3)
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called Schmidt decomposition [19], where {|ai〉}dAi=1 for A and {|bi〉}dBi=1 for B are an
appropriate choice of orthonormal bases. The non-negative coefficients of the decom-
position {pi} form a probability distribution and are called Schmidt coefficients. The
number r of non-zero terms in such a probability distribution, which is equivalent to
the number of non-trivial factorized terms entering in the Schmidt decomposition, is
called the Schmidt rank of |ψ〉.

A generalisation of the Schmidt rank may be defined for mixed states. A density
operator ρ has Schmidt number m if it can be written as convex combination of pure
states |ψi〉, each having at most Schmidt rank m, and if for any convex combination
corresponding to ρ there is at least one state |ψi〉 with Schmidt rank greater or equal
to m (with non-zero probability) [55].

A mixed state is separable or unentangled if it has Schmidt number one, that is, if
it can be expressed as

ρ =
∑
i

pi |αi〉〈αi| ⊗ |βi〉〈βi| . (1.4)

Notice that in such an expression, the states |αi〉 (|βi〉) do not necessarily correspond
to an orthonormal basis for A (for B). A mixed state is entangled if it has Schmidt
number strictly larger than one, equivalently, if it is not of the form (1.4).

Peres PPT criterion

In general, the determination of separability of a mixed state is a hard task [34, 56].
For this reason a number of alternative strategies have been developed in order to test
the entanglement of a state. One such criteria is given by partial transposition [57,58].
The partial transposition of a separable state ρΓA = (TA ⊗ 1B)[ρ], where T indicates
the transposition operation, is still a positive-semidefinite operator. Therefore, if ρΓA is
not positive-semidefinite, then ρ must be entangled. The criterion is independent of the
subsystem on which the partial transposition is performed, since the positivity of the
partially transposed state only depends on its spectrum. It is easy to see that the latter
does not depend on the subsystem on which the partial transposition is carried out.
This enables us to indicate the partially transposed state simply by ρΓ, unless further
specification is required.

Robustness

Separability may be analytically addressed for certain classes of states. A helpful tool
for such purpose is given by the notion of entanglement robustness. Consider a bipartite
system with local dimensions d1 and d2 respectively, a density operator ρ and a separable
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state ρS acting on the Hilbert space H = Cd1 ⊗Cd2 . We call robustness of ρ relative to
ρS the quantity R(ρ‖ρS) given by the minimal s ≥ 0 such that

ρ(s) =
1

1 + s
(ρ+ sρS) (1.5)

is a separable state. In particular, the robustness of ρ relative to the maximally mixed
state 1/(d1d2) is called random robustness of ρ.

The random robustness is known for pure bipartite states [59]. Given a pure state
|ψ〉 on H = Cd1 ⊗ Cd2 in its Schmidt decomposition

|ψ〉 =

r∑
i=1

√
λi |ai〉 |bi〉 , (1.6)

where r = min{d1, d2} and λ1 > λ2 > ... > λr, the random robustness of |ψ〉 amounts
to [59]

R(ψ‖1/(d1d2)) = d1d2

√
λ1λ2. (1.7)

The class of states of the form

ρψ(s) =
1

1 + s

(
|ψ〉〈ψ|+ s

1

d1d2

)
(1.8)

is separable for s ≥ d1d2

√
λ1λ2.

1.1.1 Entanglement measures

Entanglement has become a major topic of research in light of theoretical developments
showing its usefulness for a great number of applications [60, 61] and experimental ad-
vances allowing for unprecedented control of quantum systems [62–65]. The identifica-
tion of entanglement as a resource naturally led to efforts concerning its quantification.
A plethora of figures of merit, assigning some positive-valued number to a quantum
state and a bipartition, have been put forward to quantify the presence of entangle-
ment or its usefulness for a particular task, composing what is informally called the
zoo of entanglement measures [66]. Many advances have been established in quantum
information theory in laying out the properties of a well-defined entanglement measure
and in proving connections and relationships between the known measures [66]. The
quantification of entanglement is based on the concept of local operations and classical
communication (LOCC), defined as the set of operations that local parties may per-
form restricted to either one of the individual subsystems associated with the ability
to communicate, via a classical channel, information about the outcome of each party’s
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operation in order to coordinate the manipulation of the quantum system. The correla-
tions that may be generated in a system by use of LOCC are called classical correlations.
Correlations that may not be described as arising from LOCC operations are labelled
quantum correlations [66].

Quantum operations are described in terms of generalised measurements, which de-
scribe manipulations beyond the wavefunction collapse following projective measure-
ments and allow for cases where joint measurements are performed on the composite
system+environment state and some of the environment’s subsystems may be discarded.
If the system and environment are initially uncorrelated then the evolution of the sys-
tem may be described in terms of trace non-increasing, completely positive linear maps
Φ mapping density operators to density operators with the property Tr(Φ(ρ)) ≤ 1. The
action of such maps, also called quantum channels, is given in terms of a set of operators
{Ki}i, called Kraus operators, such that

Φ(ρ) =
∑
i

KiρK
†
i , (1.9)

with the property
∑

iK
†
iKi ≤ 1 [19]. An important set of operations is given by

the separable operations, where the Kraus operators admit a product decomposition
Ki = Ai ⊗ Bi, ∀i. Any LOCC operation can be written as a separable operation, but
the converse is not always true [67].

Different axiomatic approaches exist for defining entanglement measures, but key
requirements are that they map density matrices to real positive numbers, return 0 for
separable states and do not increase under LOCC. Additional constraints, such as con-
vexity and additivity [66] are often additionally imposed for mathematical convenience.
An entanglement measure E is called convex if, for every convex combination

∑
i piρi,

the following relationship holds:

E(
∑
i

piρi) ≤
∑
i

piE(ρi). (1.10)

If an entanglement measure E satisfies the property E(σ⊗n) = nE(σ), for any density
matrix σ, then it is called additive.

The most notable pure-state entanglement measure is the entropy of entanglement
Ee(|ψ〉) [68], defined as the von Neumann entropy [69] of the partially transposed density
matrix ρ1 = Tr1(|ψ〉〈ψ|) =

∑
i 〈i|(|ψ〉〈ψ|)|i〉, where {|i〉} is an ortho-normal basis ONB

of subsystem 1:
Ee(|ψ〉) = −Tr(ρ1 log ρ1). (1.11)
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The relevance to many quantum information theory tasks of the many properties of
entropy of entanglement, such as its connection with classical Shannon entropy [70], is
such that it is often required for mixed state entanglement measures to boil down to Ee
when applied to pure states.

The entropy of entanglement is not effective at quantifying entanglement of mixed
states and a number of mixed-state entanglement measures have been studied [66].
Among these, entanglement negativity (or simply negativity) stands out for its intuitive
definition and relative ease of evaluation. The entanglement negativity of a bipartite
density matrix ρ is given by the expression

N (ρ) =
‖ρΓ‖1 − 1

2
, (1.12)

where ‖x‖1 = Tr
√
xx† indicates the 1-norm, or trace norm. It is equivalent to the

absolute sum of the negative eigenvalues of the partial transposition of ρ. We will
discuss how negativity may be evaluated in section 1.2 and recall a generalisation of the
notion to the multipartite case in the following section.

1.1.2 Multipartite entanglement

The multipartite case, described by the Hilbert space H =
N⊗
i=1
Hi, presents a richer en-

tanglement structure than the bipartite case. For pure states, the most straightforward
extension of separability is called full-separability and is a property of products of N
single-particle states

|ψFS〉 =

N⊗
i=1

|φi〉 . (1.13)

Furthermore, pure N-partite states may be k-separable [71], and we call their set Σk−sep

when they can be written as the tensor product of k ≤ N states. Given a partition

labelled by the multi index Sdjj = {i1, .., idj} such that {1, ..., N} =
k⋃
j=1

S
dj
j and Sdjj ∩

Sdll = ∅, k-separable states are of the form

|ψk−sep〉 =
k⊗
j=1

|φj〉Sd
j
, (1.14)

where |φj〉 ∈
⊗
i∈Sd

j

Hi. The notion of k-separability leads to a natural hierarchy of

multipartite entanglement, since a k-separable state is also (k − 1)-separable. States
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which do not admit a k-separable representation for any k > 1 are called genuinely
multipartite entangled.

A mixed state ρ is called k-separable when it admits a decomposition in terms of a
convex combination of k-separable pure states,

ρ =
∑
j

pj

∣∣∣ψ(j)
k−sep

〉〈
ψ

(j)
k−sep

∣∣∣ , (1.15)

where {pj}j form a probability distribution and |ψk−sep〉 ∈ Σk−sep. Mixed k-separable
states may well exhibit entanglement in all possible partitions in subsystems, therefore
the attribution of genuine multipartite entanglement to a mixed state requires the test-
ing of separability of all possible bipartitions and all convex combinations thereof. This
may be a cumbersome task and the problem is often simplified by assessing whether a
state is a PPT-mixture [42], that is whether it may be written as a convex combination
of states satisfying the PPT condition in all partitions.

Genuine multipartite negativity

Entanglement negativity may be generalised to detect genuine multipartite entangle-
ment [72, 73]. The intuitive idea is that the bipartite negativity needs to be minimised
over all bipartitions of the quantum system, as well as for all possible convex combi-
nations of density matrices. Let the index m label a bipartition M |M̄ , where M is a
subsystem and M̄ its complementary subsystem. The genuine multipartite negativity
(GMN) of a state ρ is given by

Ng(ρ) = min
ρ=

∑
k pkρk

∑
pkµ(ρk), (1.16)

where µ(ρ) = min
m

(‖ρΓm‖1 − 1)/2 is the minimum negativity over all bipartitions. The
definition in (1.16) may be expressed in the alternative form [74]

Ng(ρ) = min
ρ=

∑
m pmρm

∑
pmNm(ρm), (1.17)

where the summation index runs over all possible bipartitions M |M̄ and Nm(ρ) =

(‖ρΓm‖1 − 1)/2.

1.2 Semidefinite Programming and Quantum Theory

The ubiquity of the concept of convexity in quantum statistical mechanics naturally
feeds the temptation to formulate quantum problems as convex optimization programs.
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Convex optimization programs are a special class of mathematical optimization prob-
lems, including, among others, least-squares, linear programming and semidefinite pro-
grams [33]. Many of these mathematical tools have important applications in physics
and we will focus on semidefinite programming, which in recent years has become of
growing interest for the quantum information theory [32]. In particular, the importance
of positivity for density operators and the dynamical maps governing their evolution
suggests that semidefinite programming [33] is a useful resource in giving operational
formulations to quantum information tasks [75].

A SemiDefinite Program (SDP) is a convex optimization algorithm where the figure
of merit is a linear function being minimized with hermiticity-preserving constraints on
hermitian matrices. In mathematical terms, given a hermiticity-preserving map Φ and
two hermitian operators A and B, a semidefinite program is given by a triple (Φ, A,B)

associated with the following pair of optimization instances:

Primal problem

maximise 〈A,X〉

subject to: Φ(X) = B,

X ≥ 0

Dual problem

minimise 〈B, Y 〉

subject to: Φ∗(X) ≥ A,

Y = Y †

(1.18)

where 〈·, ·〉 is an inner product (given by the trace inner product Tr(AX) for density
operators A,X), representing the objective function, and Φ∗(·) is the adjoint of the map
Φ [32]. It is also possible to consider semidefinite programs having both equality and
inequality constraints in the primal problem. The primal and dual problem may be
understood as computational tasks aimed at optimizing (i.e. maximizing or minizing)
the figures of merit 〈A,X〉 (〈B, Y 〉) subject to some mathematical constraints. The
duality of semidefinite programs is a useful resource for the reason that, for a given
problem, a solution may be obtained by solving either its primal or dual formulation
and the computational complexities in the two cases may vary significantly.

Semidefinite programs can be solved efficiently with numerical computer algorithms,
allowing for the obtaining of a solution in polynomial time in the number of opti-
mization variables [33]. There are several computational tools available implementing
semidefinite optimization on common platforms, one of which is the CVX package for
Matlab [76].
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1.2.1 Entanglement negativity as a semidefinite program

Consider the partially transposed density operator x = ρΓ, which in general has a
number r+ and r− of positive and negative eigenvalues respectively. Let us write x in
the decomposition where its first r+ eigenvalues are positive:

x =
∑
i

xi |xi〉〈xi| =
r+∑
i=1

xi |xi〉〈xi|+
r++r−∑
i=r++1

xi |xi〉〈xi| =
r+∑
i=1

xi |xi〉〈xi| −
r++r−∑
i=r++1

|xi| |xi〉〈xi|

= x+ − x−, (1.19)

where x+ =
r+∑
i=1

xi |xi〉〈xi| and x− =
r++r−∑
i=r++1

|xi| |xi〉〈xi| are positive-semidefinite opera-

tors. The trace norm of x may be seen to yield the sum of the absolute values of the
eigenvalues of x, ‖x‖1 =

∑
i |xi|, therefore the negativity (as defined in section 1.1) of

a normalised density operator may be seen as the sum of the negative eigenvalues of its
partial transposition

N (ρ) =

r++r−∑
i=r++1

|xi|. (1.20)

Furthermore, we have the matrix inequality −x− ≤ x ≤ x+ and one may always express
x+ and x− to have orthogonal support, such that x = x+ − x− = x̃+ ⊕−x̃−. Consider
now the matrix X given by

X =

(
+x+ 0

0 −x−

)
. (1.21)

and a positive hermitian matrix M ≥ 0 of the form

M =

(
M0 ∗
∗′ M1

)
, (1.22)

with the constraint −M ≤ X ≤ M , where ∗ indicates generic matrix blocks. Because
of the block structure, we have that TrM0 ≥ Tr(x+) and TrM1 ≥ Tr(x−), so TrM ≥
Tr(x+) + Tr(x−), meaning that the trace of M is lower-bounded by the trace-norm of
x. The lower bound for TrM may indeed always be achieved when M is given by

M =

(
x+ 0

0 x−

)
. (1.23)
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Thus, this suggests the possibility of rewriting the trace-norm of an operator x as

‖x‖1 = min Tr(M)

such that M ≥ 0

−M ≤ x ≤M. (1.24)

The expression in (1.24) may be cast in the form (1.18) [32] and we may therefore put
forward the following formulation of the entanglement negativity as an SDP:

Proposition 1. Given a normalised bipartite density matrix ρ, its entanglement neg-
ativity is given by the SDP

N(ρ) = min(Tr(M)− 1)/2

such that M ≥ 0

−M ≤ ρΓ ≤M. (1.25)

The formulation of entanglement measures in terms of semidefinite programs can
be extended to the the multipartite regime [72]. We will show in Chapters 2 and 5
that genuine entanglement negativity, as expressed in equation (1.17), may also be
thought of as an SDP. The formulation involves additional constraints, a higher level of
complexity and is more demanding in terms of computational resources, however it is
a direct generalization of the expression in 1.25.
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Chapter 2

Quantifying Identical-Particle
Entanglement

2.1 A Preamble of Intentions

It is well known that quantum mechanics has brought about a deep overturning of
our understanding of nature. Our classical environment, based on the deterministic
clockwork of trajectories of material points in phase space, bears little resemblance
to the stochastic and immaterial behaviour of fields within the quantum realm. And
yet quantum mechanics may be considered to be the most successful theory to date,
based on the accuracy and the depth to which its predictions have been tested. It
should be no surprise that a theory so mind-boggling yet undisputed has given rise
since its first formulations to much heated debate and controversy, which persist to
this day concerning certain of its facets. Interestingly, many of the greatest advances
in our understanding of the theory and its technological breakthroughs have been the
brainchildren of the most harsh and overarching of debates, which have been so profound
as to involve mathematicians and philosophers in its resolution. It is safe to say that
quantum theory has pushed the boundaries of what doing physics means.

Despite my awareness of the immense difficulty in making sense of many quantum
features, it was not without surprise that I learnt about an ongoing debate involving
two of the most “ancient” features of quantum mechanics: the identity of particles and
entanglement, formulated respectively in the mid 1920’s and 1930’s. How is it possi-
ble that after over 80 years of investigation there are still papers being published on
such a fundamental subject? A hint towards the answer to this question may come
by looking at the breadth of the publications which have addressed the issue in recent
years, spanning from mathematical physics to experimental quantum optics and even
to philosophy [20–29, 77–81]. The picture emanating from this literature may lead one
to appreciate the subtleties of the interplay of identity of particles and entanglement
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and how recent experimental and theoretical advances have sparked new interest in a
subject which had been perhaps prematurely set aside as an oddity. Entanglement of
identical particles lies at the heart of most current research topics in quantum physics
and of the technological advances it promises to achieve, yet there is still no universal
consensus on a mathematical definition covering all aspects of this phenomenon, let
alone the interpretation of predictions concerning it. It is no ambition of this work to
resolve the dispute, but to lay it out, highlight certain critical points at the heart of it
and put forward a new perspective on the subject; one that may be of theoretical and
experimental interest in the hope that it may be of help in getting closer to understand-
ing the true nature of entangled identical particles and unlocking their full potential
applications.

2.2 Entanglement and Subsystems

Entanglement is not a property of quantum states. Given a set of vectors |ψi〉 in the
Hilbert space H and the associated probabilities pi there is no answer to the question
“how entangled is the state ρ =

∑
i pi |ψi〉〈ψi| ?”, the information provided being insuf-

ficient for any assessment of entanglement. Entanglement is a property of subsystems
and is therefore a notion that only applies to composite quantum systems allowing
a partitioning into subsystems. This imposes a constraint on the types of physical
systems for which entanglement is a meaningful concept, requiring them to be either
bipartite or multipartite. A bipartite quantum system SAB = SA + SB is described by
states which are vectors of a Hilbert space with a structure HAB = HA⊗HB such that
dim(HA)× dim(HB) = dim(HAB). The states of a K-partite system SK =

∑K
i=1 Si are

vectors of a Hilbert space with structureHK =
⊗K

i=1Hi and
∏k
i=1 dim(Hi) = dim(HK).

It is important to notice that in general the partitioning into subsystems is not
unique and there may be several alternative choices of single-subsystem Hilbert space. In
addressing the entanglement in a composite physical system SAB described by the global
state ρ in HAB it is therefore formally appropriate to use the phrasing the entanglement
of the state ρ with partitioning A|B, where A|B indicates the Hilbert space structure
HAB = HA ⊗HB.

Entanglement is not an observable of the total system. It is a statement about
the indivisibility of a composite quantum system, stemming from the interplay of the
composite Hilbert space tensor-product structure and the superposition principle. It
is the formalisation of the idea that for certain quantum systems the whole is more
than the sum of its constituents. Nonetheless, entanglement is a fundamental feature
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of composite systems and has been proven to be useful for a vast number of quantum
information tasks, as discussed in the Introduction of this thesis.

The fact that for a given quantum system there are in general multiple partitions
in terms of which the state may be described implies that an independent notion of
entanglement may be associated with each partition. We will see that this is the case
for systems of identical particles, for which the plurality of entanglement notions has
caused confusion and debate.

Furthermore, no assumption is required about the subsystems in order to meaning-
fully define a notion of entanglement. As long as a tensor product structure is identified,
given a quantum state and its partition it is possible to introduce some notion of en-
tanglement, or inseparability.

2.3 Identical Particles

The identity of particles is a concept that goes back to the early days of quantum me-
chanics. Its roots lie in wave-particle duality: if particles may be described as energy
levels of a field then the quantum numbers describing the state characterise it com-
pletely. This approach was first put forward as early as Debye’s 1910 paper on the
theory of radiation [82], but it wasn’t until the connection between identity of particles
and statistics became manifest that the identity of particles attracted much attention.
The main breakthrough was the acknowledgement that in a statistical approach to
quantum mechanics the counting of microstates of light quanta with same frequency
required to consider states of particles which only differed by the exchange of two or
more particles as the same state. In the span of the years 1924-1926 a series of physical
and philosophical debates lead to a number of seminal results, including the definition
of Bose-Einstein statistics [83] and the Pauli exclusion principle [84]. The latter, in
particular, was a corollary of the discovery by Pauli of spin, or ‘two-valued quantum
degree of freedom’, as he put it. In his seminal paper Pauli states:

There can never be two or more equivalent electrons in an atom for which
in strong fields the values of all quantum numbers n, k1, k2, m1 (or, equiv-
alently, n, k1, m1, m1) are the same. If an electron is present in the atom
for which these quantum numbers (in an external field) have definite values,
this state is “occupied" [84]

The last sentence of the above quote foreshadows the introduction of the occupation
number representation, which will be an important tool in the mathematical description
of systems of identical particles.
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The connection between spin and statistics was first established by Pauli in 1940 [85].
He argued that particles with half-integer spin should obey Fermi-Dirac statistics and
particles with integral spin should obey Bose-Einstein statistics. However, it wasn’t
until 1964 that a rigorous proof was provided by Streater and Wightman [18]. Even
so, the connection is established by a negative proof, showing that half-integer bosons
are inconsistent (they lead to negative probabilities) and that the field of fermions with
integer spins is always zero. It does not, in fact, prove that spin 1/2 particles must
have Pauli exclusion, or that integer spin particles must have Bose-Einstein statistics.
In other words, the spin-statistics connection is not shown to be inevitable [86].

The spin-statistics connection applied to Schrödinger’s wave mechanics leads to
the introduction of the symmetrization postulate. Identical-particle states need to be
permutation invariant, thus they must be eigenstates with eigenvalue either +1 or −1

of the operator which permutes two particles. The postulate states that the particles
with positive eigenvalue, which are thus symmetric under exchange of two particles,
have integer spin and are called bosons. The particles with negative eigenvalue are
antisymmetric under exchange of two particles, have half-integer spin and are called
fermions. The association is consistent with the Pauli exclusion principle, since an
antisymmetric state of two particles with the same quantum numbers is necessarily
zero.

The spin-statistics connection and its relationship with the symmetrization postu-
late is still a somewhat mysterious one, since quantum formalism is compatible with
parastatistics and there is ongoing research seeking violations of the spin-statistics con-
nection [86]. Nonetheless, in this thesis we work within the standard formalism wherein
spin-statistics and the symmetrization postulate are related according to the principles
established above.

In the following sections we recall the two main formalisms developed for repre-
senting systems of identical particles, the so-called first-quantised and second-quantised
representations.

2.3.1 First-quantised representation of identical particles

Let us consider a system of N identical particles SN each having d internal degrees of
freedom. In the usual Schrödinger representation of quantum states, also known as first-
quantised representation, the system will be described by a vector in the total Hilbert
space HdN ' CdN ≡ (Cd)⊗N . The symmetrization postulate implies that two families of
identical particles are possible. Consider the family of swap operators {Vjk}jk described
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by their action on the factorised basis states for the global Hilbert space

Vjk |ψ1〉1 · · · |ψj〉j · · · |ψk〉k · · · |ψN 〉N = |ψ1〉1 · · · |ψk〉j · · · |ψj〉k · · · |ψN 〉N . ∀j, k (2.1)

Such permutation is hermitian and corresponds to its own inverse Vjk = V †jk =

V −1
jk ∀j, k. The identical-particle states which are invariant under Vjk, ∀j, k are called

symmetric and correspond to states describing bosons. Those which have a π phase
change under the swap operator are called antisymmetric and correspond to states
describing fermions.

Bosonic states lie within the symmetric subspace of the total Hilbert space

HS(d,N) = H∨N = {|ψ〉 : Vjk |ψ〉 = |ψ〉 ∀j, k = 1, ..., N, |ψ〉 ∈ HdN} , (2.2)

where ∨ is the symmetric tensor product. The projector on the symmetric subspace is
given by

P
(d,N)
S =

1

N !

∑
π∈SN

Pd(π), (2.3)

where
Pd(π) =

∑
i1,...,iN∈[d]

∣∣iπ−1(1), ..., iπ−1(N)

〉〈
i1, ..., iN

∣∣ (2.4)

is the permutation operator, [d] = {1, .., d} is the set of integer values that may be taken
by each index and π ∈ SN a permutation in the symmetric group SN .

Fermionic states, on the other hand belong to the antisymmetric subspace

HA(d,N) = H∧N = span {|ψ〉 : Vjk |ψ〉 = − |ψ〉 ∀j, k = 1, ..., N, |ψ〉 ∈ HdN} , (2.5)

where ∧ is the antisymmetric tensor product. The projector on the antisymmetric
subspace is given by

P
(d,N)
A =

1

N !

∑
π∈SN

(−1)sgn(π)Pd(π). (2.6)

The symmetric and antisymmetric subspaces are orthogonal, i.e.

P
(d,N)
S P

(d,N)
A = P

(d,N)
A P

(d,N)
S = 0. (2.7)

The indistinguishability of particles implies that all physical observables O need to be
permutation invariant:

VjkOVjk = O ∀j, k = 1, ..., N. (2.8)
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If this were not case the expectation values of observables would allow to physically
distinguish between particles, which would be a contradiction.

The identity of particles in combination with the spin-statistics connection poses
strong symmetry constraints on the first-quantised representation of states and opera-
tors. The possible states the systems may be found in and the operations that may be
carried out on them are greatly restricted by the symmetry conditions. In particular,
no statement can be made about a set of labelled particles, since that property could
be attributed to any other set of the same number of particles. The lack of individuality
of identical particles, however, does not imply that the concept of particle is a flawed
one in identical-particle systems. Sets of identical particles are enumerable, that is to
say they possess cardinality, but not ordinality [81]. In other words, it is not possible
to make statements about a specific set of K particles within the system, but about an
unspecified set of K particles. We will see a specific way to assert such statements in
section 2.6.

2.3.2 Second quantisation and occupation number representation

The first-quantised representation of quantum mechanics does not incorporate special
relativity and leads to inconsistencies when relativistic effects are incorporated naively
into the theory [54]. The efforts to reconcile the two theories led to the development
of quantum field theory, which is a more general framework encompassing both special
relativity and quantum mechanics. As the name suggests, the fundamental constituents
of quantum field theory are not particles but quantum fields. In this context particles
may be identified as quantised excitations of the underlying fields. Quantum field
theory retains many of the features of quantum mechanics, including the superposition
principle and the Born rule for measurements, however it may account for phenomena
which are not covered by non-relativistic QM, in particular particle number fluctuations.
Systems described by quantum fields may be described by states with non-integer and
fluctuating number of particles, the number of particles merely becoming an observable
of the system with given expectation value and variance.

In the context of quantum field theory, the formalism which describes systems of
many bosons and fermions is called second-quantised representation. In simple terms,
whereas a first-quantised representation describes a quantum system in terms of state-
ments of the kind “Which particle is found in the state |ψ〉?”, the second-quantised
language approaches the description in terms of “How many particles occupy the state
|ψ〉? ”. It is evident that the latter approach is automatically consistent with the car-
dinality and lack of ordinality proper to systems of identical particles. Let us briefly
outline the main features of the formalism.
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Fock representation

Consider a single particle Hilbert space H spanned by the ONB of single-particle states
{|φi〉}di=1. The ith state is usually referred to as the ith mode. The term mode comes
from the analogy between the modes of a system of independent quantised harmonic
oscillators and the single-particle states which may be occupied in the second-quantised
formalism. Consistently with such analogy, the modes may be described in terms of
creation and annihilation operators, represented respectively by a†i and ai, acting on
a zero-point energy state |0〉, called the vacuum state. The ith mode is thus given by
|φi〉 = a†i |0〉, whereas the ai operator annihilates the vacuum, ai |0〉 = 0. Fermionic
and bosonic states can be represented in terms of these ingredients, in the so-called
occupation-number representation, or Fock representation. The state of modes |φj〉 each
occupied by nj bosons or fermions are called Fock states and may be written as

|n1, ..., nd〉F =
(a†1)n1

√
n1!
· · ·

(a†d)
nd

√
nd!
|0〉 , (2.9)

where
∑d

j=1 nj = N is the total number of particles.
The Bose and Fermi statistics are recovered by enforcing constraints on the creation

and annihilation operators, known as canonical commutation relations (CCR).
The bosonic commutation relations are[

aj , a
†
k

]
≡ aja†k − a

†
kaj = δjk, [aj , ak] = [a†j , a

†
k] = 0, (2.10)

whereas the fermionic anticommutation relations are{
aj , a

†
k

}
≡ aja†k + a†kaj = δjk, {aj , ak} = {a†j , a

†
k} = 0. (2.11)

As a consequence of the CCR, bosonic and fermionic Fock states are amenable to a
Hilbert space representation. For a fixed total number of particles N =

∑
j nj , a given

bosonic Fock state may be identified in its first-quantised representation as

|n1, ..., nd〉 ≡ NSP
(d,N)
S

 d⊗
j=1

( nj⊗
k=1

|φj〉

) , (2.12)
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where NS is a bosonic-state-specific normalisation constant and P (d,N)
S the projector on

the symmetric subspace. For fermionic Fock states we have

|n1, ..., nd〉 ≡ NAP
(d,N)
A

 d⊗
j=1

( nj⊗
k=1

|φj〉

) , (2.13)

where NA is a fermionic-state-specific normalisation constant and P (d,N)
A the projector

on the antisymmetric subspace. We call the first-quantised representations of bosonic
and fermionic Fock states Slater permanents and Slater determinants respectively.
There is a one-to-one correspondence between the Fock and first-quantised represen-
tations. In fact, Fock states constitute a complete ONB of the second-quantised state
space, whereas Slater permanents and determinants form complete ONBs for the bosonic
and fermionic first-quantised sectors respectively.

When no constraint is enforced on the number of particles, we may represent the
bosonic and fermionic Fock spaces respectively as

H(S)
F =

∞⊕
n=1

HS(d, n)

H(A)
F =

∞⊕
n=1

HA(d, n). (2.14)

Mode representation

While the Fock representation solves the labelling problem for identical particles by
construction, it does not automatically provide a notion of subsystems. The states of
the kind (2.9) do not have an explicit tensor product substructure of Hilbert spaces.
The identification of subsystems requires an additional step, which is naturally achieved
with the association

|n1, ..., nd〉m ≡ |n1〉 ⊗ · · · ⊗ |nd〉 = ⊗dj=1 |nj〉 . (2.15)

This is the mode representation, or occupation-number representation, and as we will
discuss in section 2.5 it is amenable to the definition of a notion of entanglement. With
no constraint on the total particle number and a finite number of modes d, the bosonic
space is infinite-dimensional, whereas the fermionic case is 2d-dimensional due to Pauli
exclusion. Physical constraints on the total number of particles in a system may be
enforced to further restrict the set of allowed states to a subspace of the HB and HF
Hilbert spaces.
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2.4 Particle Number Super-Selection Rules

The previous section highlights how the second-quantised approach is more general
than the first-quantised one, covering systems with variable numbers of particles and
relativistic energy regimes. There are physical systems, however, where the two repre-
sentations are equivalent and may be mapped one into the other. Systems of massive
particles in non-relativistic regimes, where the number of particles are fixed and free of
fluctuations, are one of such instances. These systems may be formally characterised by
introducing a conservation law, called particle-number super-selection rule (SSR) [87],
constraining the set of physical states describing the system. Low-energy electrons, cold
atoms and molecules are examples of such systems which are of great interest of current
research seeking applications of quantum theory. An ultracold atom system, for in-
stance, typically is unaffected by relativistic effects and the particle-number oscillations
due to the field-excitation nature of the particles are suppressed enough to be negligible
for the study and characterisation of their properties. In such systems, the notion of
particle is a well-defined one, its first-quantised representation being a meaningful one
and viable of bringing insights in the understanding of the physical properties which
the mode representation does not capture in its entirety.

In the Fock representation, fixing a number of particles amounts to restricting the
set of possible states to the fixed-number N -particle sectors HS(d,N) and HA(d,N) for
bosons and fermions respectively. A similar correspondence may be established under
particle number SSR between mode-represented states and first-quantised ones.

The particle number SSR constraining the system to having fixed number N of
particles restricts the possible set of states to those which may be written in the mode
representation in the form

|ψ〉 =

N∑
j=0

ψj

d⊗
i=1

∣∣∣nji〉 , d∑
i=1

nji = N, ∀j. (2.16)

Bosonic states of the form (2.16) may be represented in a
(
d+N−1
d−1

)
-dimensional Hilbert

space. Fermionic systems, on the other hand, need to account for Pauli exclusion,
therefore the mode-occupation quantum numbers nji are constrained to the dichotomic
values 0 or 1. This further constrains systems of fermions to have local dimension d

larger or equal than the number of particles N :

N =
∑

i=1,...,N
ni=0,1

ni ≤ d. (2.17)



20

Fermionic states of N particles may therefore be written in the mode representation as
vectors in a

(
d
N

)
-dimensional Hilbert space.

It is clear that the Hilbert space representations in the first and second quantised
pictures have different dimensions, however the particle number superselection rule en-
sures that there is an isomorphism connecting the two state spaces [88]. The first and
second quantised approach are therefore equivalent in presence of a particle number
SSR, leading to the same predictions for expectation values of observables. The entan-
glement properties associated with the two representations, however, are inequivalent.
As previously discussed statements about entanglement depend not only on the state
of the system but also on the partitioning into subsystems. Clearly, the subsystem
structures in the first and second-quantised representations in general do not coincide.

2.5 Entanglement of Identical Particles

Before carrying out a formal analysis of identical-particle entanglement, let us draw
upon a simple example that illustrates the issues involved in describing entanglement
of fermions with the standard approach. Consider two very well separated laboratories,
for instance in different galaxies, where scientists are able to prepare pure (to a good
enough degree of approximation for practical purposes) single-fermion states. Suppose
one of the fermions is prepared in a spin up eigenstate with spatial amplitude given by
ψL(x) = 〈x|L〉 and the other is prepared in a spin down state with spatial amplitude
ψL(x) = 〈x|L〉. The two fermion state would therefore still necessarily be described by
wavefunction

|ψ〉12 =
1√
2

(
|L〉1,x |↑〉1,σ |R〉2,x |↓〉2,σ − |R〉1,x |↓〉1,σ |L〉2,x |↑〉2,σ

)
, (2.18)

since the symmetrization requirement holds regardless of the particles’ states. In the
above equation the labels 1, 2 refer to the two distinct single-particle Hilbert spaces, x
and σ refer to the position and spin degrees of freedom respectively of each single-particle
Hilbert space. In the following equations we will omit this explicit notation for the sake
of clarity where this will be unambiguous as a result of the ordering of the kets. The state
(2.18) would be labelled as entangled according to the standard entanglement definition
(section 1.1), however it may not be used to perform entanglement-enabled quantum
information tasks, such as violating a Bell inequality [21]. To show this, let us consider
an example in a typical Bell experiment. Here, the two parties, typically referred to
as Alice and Bob, and the particles are considered to be well-separated, in order to
assess the nonlocality of the correlations between the outcomes of measurements. We
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therefore consider a state of the kind

|ψ−〉 =
1√
2

(|L〉 |↑〉 |R〉 |↓〉 − |R〉 |↓〉 |L〉 |↑〉), (2.19)

where 〈L|R〉 = 0. In the Bell scenario the parties each measure the internal (spin)
degree of freedom in its own localised spatial region, L for Alice and R for Bob. The
measurement operators need to be exchange symmetric, because of the identical nature
of the particles, therefore Alice’s measurement operator is of the kind

MA = (|L〉〈L| ⊗ σA)⊗ (1⊗ 1) + (1⊗ 1)⊗ (|L〉〈L| ⊗ σA), (2.20)

and Bob’s takes on the form

MB = (|R〉〈R| ⊗ σB)⊗ (1⊗ 1) + (1⊗ 1)⊗ (|R〉〈R| ⊗ σA), (2.21)

where σA and σB are projective measurement operators for the single-particle spin
degree of freedom. The expectation value of the joint measurement is given by

〈ψ−|MAMB|ψ−〉 = 〈↑|σA|↑〉 〈↓|σB|↓〉 . (2.22)

Equation (2.22) shows that the expectation value for the joint measurements factorises
in the spin degree of freedom, which is therefore uncorrelated. The probability distri-
butions generated by such a setup are uncorrelated and may not violate a Bell inequal-
ity [89].

In this perspective, it would appear that despite the fact that the wavefunction looks
like that of an entangled state, the entanglement arising does not exhibit correlations
in the same way that the entanglement of a distinguishable-particle state would. On
the contrary, let us consider the state

|φ〉12 =
1

2
(|L〉 |R〉+ |R〉 |L〉) (|↑〉 |↓〉 − |↓〉 |↑〉) , (2.23)

where 〈L|R〉 = 0. The state (2.18) may result from the appropriate tuning of interac-
tions between two particles, for example two photons with a common optical path in a
beam-splitter or two ultracold atoms trapped in a double-well shaped magneto-optical
trap. It is also clearly an entangled state, but it is the state of a spin singlet and it
can be used to violate Bell inequalities and for quantum state teleportation [21]. If one
evaluates the expectation value in the left-hand side of equation (2.22) over the state
|φ〉12, one does not obtain a factorised expression as in the right-hand side of (2.22).
Indeed, it is shown explicitly in references [21,90,91] that the joint measurement yields
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correlations of EPR (Einstein, Podolski and Rosen, discussed in section 5.1.3) kind,
which are known to violate a Bell inequality [62,89].

States which violate Bell inequalities are said to exhibit nonlocality, a notable physi-
cal property of quantum states with many applications of great practical and theoretical
interest, a number of which will be reviewed in Chapter 5. It is therefore of great in-
terest to identify the source of such nonlocality and gain a better understanding of the
structure of states which bring it about. In such context, what is it that makes the
state |φ〉12 different from the previous state |ψ〉12? It is easy to see that the former
state arises from the antisymmetrization, i.e. the projection onto the antisymmetric
subspace, of a state of the kind

|σ〉12 =
1√
2

(|L〉 |↑〉 |R〉 |↓〉+ |R〉 |↓〉 |L〉 |↑〉) , (2.24)

which is entangled, whereas the state in equation (2.23) is the antisymmetrization of
|A〉 |B〉, which is separable. This seems to suggest that the entanglement properties
should be addressed somewhat prior to antisymmetrization, the latter being a mathe-
matical requirement due to the field nature of identical particles. Antisymmetrization,
however, should not be considered on the same grounds as entanglement. With this
intuition in mind, we will review in section 2.6 a proposal for an entanglement criteria
for identical particles which takes into account the aforementioned problems. Before we
proceed, however we will recall an important class of permutation-invariant entangled
states, which we will investigate from an identical-particle entanglement perspective in
section 2.7. Its properties will be of use in highlighting the structure of the symmetric
and antisymmetric subspaces. Furthermore, we will summarize a selection of recent
literature tackling the problem of characterizing and quantifying identical-particle en-
tanglement.

2.5.1 Maximally entangled symmetric and antisymmetric distinguishable-
particle states

One of the reasons of interest in entanglement is its usefulness as a resource in quantum
information and metrological tasks. The class of states with the most entanglement,
as quantified in terms of the LOCC paradigm, in a physical system is thus a specially
interesting one and is called that of maximally entangled states (MES) [92]. We will
briefly review some well-known features of MES in the distinguishable-particle bipartite
case and investigate the structure of the class when restricted to the symmetric and
antisymmetric subspace, suitable for the description of bosons and fermions.
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Let us consider a state of 2 particles each described by a Hilbert space H ' Cd

spanned by basis vectors {|i〉 , i = 1, ..., d}. One definition for a maximally entangled
state is requiring that its partial trace in one of the subsystems yields the maximally
mixed state in the other subsystem [56]. The canonical maximally entangled state of
two qudits is given by ∣∣ψ+

〉
=

1√
d

d∑
i=1

|i〉 |i〉 , (2.25)

hence
TrB(ψ+) = TrB

(1

d

∑
i,j

|i〉〈j| ⊗ |i〉〈j|
)

=
1

d

∑
i

|i〉〈i| = 1

d
1A. (2.26)

The definition we adopted for a maximally entangled state entails the fact that also all
states of the kind

1⊗ U
∣∣ψ+

〉
(2.27)

are maximally entangled. In fact, we have the relation

TrB(1⊗ Uψ+1⊗ U †) = TrB(ψ+1⊗ UU †) = TrB(ψ+) =
1

d
1A, (2.28)

owing to the cyclicity of the trace and the unitarity of U †U = 1. On the other hand,
it can also be shown that every maximally entangled state can be written in the same
form (2.27) [19]. Furthermore, the useful property

1⊗B
∣∣ψ+

〉
= BT ⊗ 1

∣∣ψ+
〉
, (2.29)

for any d × d matrix B =
∑
ij
bij |i〉〈j| and its transpose BT =

∑
ij
bji |i〉〈j|, helps us

understand how a maximally entangled state behaves under the swap operation. In
fact, we have that

V (1⊗ U)
∣∣ψ+

〉
= U ⊗ 1

∣∣ψ+
〉
. (2.30)

and for identical particles the following requirement holds:

V (1⊗ U
∣∣ψ+

〉
) = ±1⊗ U

∣∣ψ+
〉

= ±UT ⊗ 1
∣∣ψ+

〉
, (2.31)

with a plus sign for bosons and minus for fermions. The right-hand sides of equations
(2.30) and (2.31) imply that the symmetry properties of identical-particle maximally
entangled states boil down to the symmetry properties of the unitary matrix U charac-
terizing the states. Specifically, for bosons we require a unitary symmetric matrix and
for fermions a unitary antisymmetric matrix. Let us consider the cases separately.
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Bosons

The canonical distinguishable-particle maximally entangled state |ψ+〉 is a symmetric
state itself so it is a maximally entangled state also in the bosonic subspace. The class
of MES derived from |ψ+〉, though, is restricted to those of the form

1⊗ U+

∣∣ψ+
〉
, (2.32)

where U+ is a unitary symmetric matrix. In general, any unitary symmetric matrix may
be obtained as the exponential of a symmetric matrix X = XT. The class of maximally
entangled bosonic states is thus generated by the symmetric matrices X which define
symmetric unitaries via

U+ = eiX . (2.33)

It is possible to define maximally entangled states for bosons in any dimension for the
bipartite case, a property which we will see does not apply in general for fermions.

Fermions

The fermion case requires more care since |ψ+〉 is a symmetric state and does not lie in
the fermionic subspace. Antisymmetric maximally entangled states need therefore be
in the form

1⊗ U−
∣∣ψ+

〉
, (2.34)

where U− is an antisymmetric unitary matrix. A striking consequence of this result
is that it is not possible to define a class of maximally entangled antisymmetric states
for fermions in odd dimensions, for it is impossible to construct a d× d antisymmetric
unitary matrix. Let us prove this result by pointing out a constraint on antisymmetric
matrices with odd dimensions. In fact,

det(A) = det
(
AT
)

= det(−A) = (−1)d det(A), (2.35)

so if d is odd A is singular, i.e. det(A) = 0. There is no such thing, however, as a
singular unitary matrix, so the antisymmetric unitary matrix may exist only in even
dimensions. The analysis must therefore be restricted to the antisymmetric matrices
U− ∈M2k(C). We begin by introducing the canonical antisymmetric unitary matrix

U0 = 1k ⊗ J ∈M2k(C), (2.36)
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where 1k is the identity in Mk(C) and

J =

(
0 1

−1 0

)
(2.37)

is the symplectic matrix in M2(C). A generic antisymmetric unitary matrix may thus
be obtained from

U− = OU0O
T (2.38)

where O is an orthogonal matrix, i.e. OOT = 12k [93]. The maximally entangled
antisymmetric subspace is thus generated by that of the orthogonal matrices O.

2.5.2 Review of recent literature on identical-particle entanglement

In this section we give a brief summary of the recent developments in the study of
entanglement of identical particles. It does not intend to be an exhaustive literature
review, but rather an introduction to the criticalities of the subject and the diverse
approaches at their solution. Our aim is to lay out the context of our work, the stage of
development of the field and most importantly the existing acknowledged notions which
we base our results upon.

Before the last 20 years the entanglement of identical particles was treated effectively
in the same way as entanglement of distinguishable particles. This entails regarding
the particles as subsystems in the first-quantised representation and applying standard
entanglement measures to the states and partitioning provided. The symmetry or an-
tisymmetry of the states under particle exchange means that in this perspective all
pure states, with the exception of factorised copies of the same single-particle state for
bosons, are to be regarded as entangled [94]. As we have argued in a previous section,
such an approach does not address the conceptual problem of considering as subsystems
the individual labelled particles, which are not physically accessible. Furthermore, it
may not distinguish between correlations due solely to statistics and those arising from
known entanglement-generating processes, such as interaction.

Mode Entanglement

A number of different approaches have been put forward to deal with the interplay of
symmetrization and entanglement. One such approach relies on the second-quantised
mode representation, which is outlined in section 2.3.2. This approach relies on the
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introduction of an alternate partitioning into subsystems, in such a way that the sub-
systems are distinguishable and the symmetry constraints become implicit in the def-
inition of the modes that the particles in the system may occupy. Because it maps a
system of indistinguishable subsystems to an equivalent system of distinguishable ones,
where well-established theoretical machinery exists for entanglement classification and
quantification, mode-entanglement is a very powerful resource. The subsystems identi-
fied by the modes are physically and operationally accessible and provide an intuitive
understanding of the correlations arising between them. Standard mode entanglement
is in fact quantified by applying a distinguishable particle entanglement measure, such
as entanglement entropy (1.11), to a second quantised state partitioned between the
modes according to the occupation number representation (2.15).

For such reasons mode entanglement has become the standard approach at the eval-
uation of entanglement in identical-particle systems, both in quantum optics, quantum
information theory and quantum many-body physics [95,96].

Recent developments, however, have put such approach under closer inspection and
identified substructures in the mode-entanglement paradigm depending on the con-
straints that the systems of identical particles underlying the mode representation struc-
ture possess [95]. The presence of particle number super-selection rules (SSR) has led to
the alternate definitions of mode entanglement discussed in references [25,87,97]. Such
efforts established a connection between a notion of entanglement of particles and mode
entanglement projected onto a fixed particle-number subspace. In [25], in particular,
the relationship between such SSR and the notion of entanglement between particles
was explored. Applying standard entanglement measures to systems of massive non-
relativistic particles in the mode representation does not account for the fact that the
operations that the parties acting on the system may perform are restricted due to the
particle number SSR. This fact leads to an overestimation of the entanglement which
is operationally accessible to the parties, if the standard mode entanglement notion is
considered. To account for this, Wiseman and Vaccaro [25] introduce the notion of en-
tropy of particle entanglement Ep(|ψAB〉) of a pure state |ψAB〉 of N identical particles
shared between two parties, Alice and Bob. Such entanglement measure is related to
the standard mode entanglement EM (|ψ〉) via the definition

Ep(|ψAB〉) =
∑
n

PnEM (
∣∣∣ψ(n)
AB

〉
), (2.39)

where
∣∣∣ψ(n)
AB

〉
= Πn |ψAB〉 is the projection of the state on the fixed particle-number

subset (n for Alice, N − n for Bob) and Pn is the associated projection probability.
Such considerations were further developed in [97] to address the entanglement of
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mixed states in presence of SSRs. Here, the preferred entanglement measure is taken
to be Entanglement of Formation [56] Ef (ρ), which in its SSR constrained version is
expressed as

ESSR
f (ρ) = min

{pi,ψi}

∑
i

piEM (|ψi〉), (2.40)

where the minimum is taken over all decompositions of ρ such that |ψi〉 obey the SSR,
i.e. they have constant particle number.

A novel and powerful tool for entanglement characterization in the second-quantised
representation emerged in the early 2010’s, shifting the focus from the properties of
states to those of algebras of commuting observables, identified as subsystems [27, 98–
104]. The approach is based on identifying an algebra A, generated by polynomials in
the bosonic or fermionic creation and annihilation operators and containing all phys-
ically relevant observables. States are given by positive normalized linear functionals
ω : A → C with the properties

ω(A) ≥ 0 if A ≥ 0,

ω(1) = 1. (2.41)

Within such an algebraic approach entanglement is defined in terms of commuting sub-
algebras (A1,A2) of A, such that A1∪A2 = A and every element of A1 commutes with
A2 and vice-versa, for short [A1,A2] = 0. This structure generalizes the partitioning of
subsystems in terms of Hilbert spaces, and allows for the definition of local observables
O = A1A2, where A1 ∈ A1 and A2 ∈ A2. A state ω is defined as separable if the
expectation values for all local observables can be decomposed in convex combinations
of factorised expectations:

ω(A1A2) =
∑
k

λkω
(1)
k (A1)ω

(2)
k (A2), (2.42)

where ω(1,2) are other states and λk ≥ 0∀k,
∑

k λk = 1.
Research in the second-quantised picture investigated the entanglement and nonlo-

cality properties of a system in relation to the choice of mode description [29,105,106].
In fact, systems of identical particles possessing both spin and spatial degrees of freedom
are amenable to different partitioning into modes. Mode entanglement in many-body
systems is addressed in such cases as either spin entanglement or spatial entanglement,
depending on the fundamental subsystems chosen [107,108].

In the early 2000’s, instead, a series of publications was released looking at the first-
quantised representation of systems of identical particles and the introduction of a notion
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of entanglement which would account for the symmetry properties of the states [24,109].
Separability criteria are introduced for systems of two or more identical particles based
on whether or not a symmetrized state was obtainable or not by projection on the
relevant symmetry sector of a factorised state. We dedicate special focus to such results,
for our work will be based in the first-quantised representation and briefly summarise
the concept in the following section.

Slater Rank

An entanglement criterion for distinguishable-particle pure states is given by the as-
sessment of the number of nonzero coefficients of a unique canonical representation,
the Schmidt decomposition. An analogous canonical form can be obtained for sym-
metric and antisymmetric states. The derivation of the decomposition is based on the
second-quantised representation but its form is also reflected in the first-quantised rep-
resentation as well, in view of the duality between the two for fixed particle numbers.
Let us consider the bipartite case first.

A generic state of two fermions can be expressed as

|ψA〉 =
∑
j,k

wjkc
†
jc
†
k |0〉 , (2.43)

where wjk = −wkj are the coefficients of an antisymmetric matrix and c†i |0〉 = |φi〉
are the fermionic creation operators whose action on the vacuum gives a single particle
state. Any state of the form (2.43) is unitarily equivalent to a decomposition in a
canonical form [24], analogous to the Schmidt decomposition, such that

|ψA〉 =

rA∑
i=1

√
λia
†
ib
†
i |0〉 =

rA∑
i=1

√
λi
2

(|ai〉 |bi〉 − |bi〉 |ai〉), (2.44)

where {ai, bi}i are a set of orthonormal modes, λi ≥ 0 are called Slater coefficients and
rA is called the fermionic Slater rank of the state. In order to distinguish standard
entanglement arising from antisymmetrization from that independent of it, the authors
in [24] call states with a Slater rank larger than one correlated.

Similarly, the generic bosonic state

|ψS〉 =
∑
j,k

vjkd
†
jd
†
k |0〉 , (2.45)
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where vjk = vkj are symmetric and {d†i}i are the bosonic creation operators, admits a
decomposition of doubly occupied orthonormal states [109]

|ψS〉 =

rS∑
i=1

√
λi

(
b†i

)2
|0〉 =

rS∑
i=1

√
λi |i〉 |i〉 , (2.46)

where rS is called bosonic Slater rank. A pure bosonic state is considered non-correlated
[109] if it has bosonic Slater rank rS = 1.

The notion of Slater Rank may be generalised to systems of many identical particles,
where it counts the minimum number of orthogonal Slater determinants or permanents
in a superposition describing the quantum state [109]. Furthermore, a notion of Slater
number may be defined for mixed states of identical bosons and fermions in analogy
with the Schmidt number.

An identical-particle entanglement measure was put forward in [24] for pure fermionic
states in connection with the notion of Slater rank. Given a fermionic state of the form
(2.43), consider the quantity

η(|ψA〉) = |
〈
ψ̃A

∣∣∣ψA〉 | =
∣∣∣∣∣∣
∑
ijkl

εijklwijwkl

∣∣∣∣∣∣ , (2.47)

where the dual state
∣∣∣ψ̃A〉 =

∑
kl w̃klc

†
kc
†
l |0〉 is defined in terms of the dual coefficient

matrix w̃kl =
∑
ijεijklw∗kl, ε

ijkl being the totally antisymmetric tensor. It was proven
in [110], and further discussed in [24, 109], that if η(|ψA〉) = 0, then the Slater rank of
|ψA〉 is equal to 1. Therefore, it was argued in [109], that the quantity η(|ψA〉), referred
to as Slater correlation measure, could be regarded as an identical-particle concurrence
of entanglement measure, quantifying the correlations of states which are not given
by a single Slater determinant. The measure was extended to cover mixed states by
minimizing η(|ψA〉) over all pure state convex combinations:

Csl(ρ) = inf
∑
i

piη(|ψi〉). (2.48)

Furthermore, a generalisation of the Slater correlation measure for multipartite states
was put forward in [109].

The idea of Slater rank has inspired a number of publications over the course of the
last two decades which have focused on the first-quantised representation of identical-
particle systems and investigated the entanglement properties trying to set aside the
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correlations arising from statistics. A variety of criteria and measures for identical-
particle entanglement have been proposed in such works [28, 30, 31, 111], in some cases
attributing different entanglement properties to the same states. For instance, in [28]
a pure bosonic state is considered separable if and only if all particles are in the same
single-particle state, that is to say if the state is a bosonic product state. In [111],
on the other hand, the only bosonic pure separable states are identified as the Slater
permanents (the symmetric counterpart of the determinant), that is to say when it is
given by the symmetrization of orthogonal single-particle product states.

Role of detection process

The topic of entanglement of identical particles is yet to be settled, with debate and
controversy still arising for certain aspects. For instance, in a 2014 paper by Killoran
et al. [77], the authors claim to have established an extraction protocol obtaining a
quantum enhancement by manipulation of a state whose correlations were due only
to symmetrization. The procedure applied a beam splitter operation on an identical-
particle Slater determinant state, obtaining a final state which was mode-entangled
and with the same form as the original first-quantised state. The claim was backed
by a series of papers by Lo Franco et al., who developed an independent identical-
particle entanglement criteria [112] such that symmetrization was to be considered as
entanglement as it could be used as a resource. In other publications however, [95,113],
it was argued that the entanglement in the output of the setup may be understood to
be generated by the extraction process, which is nonlocal in the partitioning in which
the final state entanglement is considered. This would contradict the statement that
the entanglement from the symmetrization was transferred into the mode picture.

These considerations show that a relevant role in the characterization and detection
of entanglement is played by the measurement process. In particular, for identical-
particle systems the detection process may generate entanglement [114]. An elegant
solution to account for measurement-induced entanglement and provide a characteriza-
tion of entanglement with a subsystem structure reflecting the experimental setting was
put forward in [115, 116]. Observables associated with experimental measurements of
systems with an internal and an external (position) degree of freedom are of the form

OD = (OL ⊗ α)⊗ (OR ⊗ β) + (OR ⊗ β)⊗ (OL ⊗ α), (2.49)

where OL and OR are mutually orthogonal projectors describing spatial detectors,
whereas α and β are observables for the internal degree of freedom. If measurements on
a state ρ are performed spanning all elements of a complete set of observables {χi}i for
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the internal degree of freedom, the detector-level density matrix may be tomographically
reconstructed by means of

ρD = N
∑
ij

χi ⊗ χjTr (ODρ) , (2.50)

where N is a normalization constant. Thereby, by applying an entanglement measure
to the detector-level state ρD, which is a composite state partitioned according to the
measurement settings, one measures the detector-level entanglement between the two
detectors.

To sum up, entanglement of identical particles is a rich and diverse field with unre-
solved questions still on the table. For instance, there are still opposing views concerning
whether (anti)symmetrization should be considered on the same footing as entanglement
generated by other processes, such as interaction or measurement [81, 90, 95, 112, 113].
In the following section we will introduce an entanglement criteria which takes an orig-
inal approach at the identification of subsystems upon which we base the entanglement
measure in our work.

2.6 Criteria for Entanglement of Identical Particles

An extensive treatment of the problem of classification of entanglement in identical-
particle systems was put forward in the early 2000’s in a series of papers by Ghi-
rardi, Marinatto and Weber (GMW) [20, 21, 90, 91] providing entanglement criteria for
identical-particle entanglement. The criterion does not rely only on the mathematical
structure of the wavefunction, as in the standard definition of entanglement. Instead,
it is based on the possibility of making objective statements about the properties of the
individual subsystems, thus enabling to assign an element of reality, in Einstein’s terms,
to each particle. The GMW criteria is cast in terms of distinguishable-particle states
where each particle may be labeled and addressed separately, however it is straightfor-
wardly applicable to fermionic and bosonic states. The concept of objective properties
may be described in mathematical terms and is introduced in this section.

Definition 2.1. Consider a composite quantum system S = S1 + S2 of two distin-
guishable particles described by the pure density operator ρ = |ψ〉〈ψ| on the composite
Hilbert space H(12) = H(1) ⊗H(2). We will say that the subsystem S1 has a complete
set of properties if and only if there exists a one dimensional projection operator P ,
defined on the Hilbert space H(1) of S1, such that:

Tr(E(P )ρ) = 1 (2.51)
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where
E(P ) = P ⊗ 1. (2.52)

This condition may be seen [21] to be equivalent to the standard notion of separa-
bility for distinguishable particles in pure states. In fact, given a pure separable state
|ψ〉 = |α〉 |β〉, we may choose P = |α〉〈α| and trivially satisfy condition (2.51). On the
other hand, if we have a projector P = |α〉〈α|, for a generic state |ψ〉 =

∑
i

√
λi |ai〉 |bi〉

in its Schmidt decomposition, the left-hand side of (2.51) reads

Tr(E(P )ρ) =
∑
ij

√
λiλj 〈ai|α〉 〈α|ai〉 〈bi|bj〉 =

∑
i

λi| 〈ai|α〉 |2, (2.53)

which is equal to one only if there is only one term in the Schmidt decomposition of |ψ〉,
e.g. |a1〉 = |α〉. The state |ψ〉 is therefore a separable state. Furthermore, the above
considerations grant that if one of the subsystems has a complete set of properties,
necessarily so does the other [91].

The following definition was therefore put forward in [91] for the entanglement of
pure states of distinguishable particles:

Definition 2.2. Consider the composite two-distinguishable-particle system S = S1 +

S2 described by the pure density operator ρ = |ψ〉〈ψ| on H(12) = H(1) ⊗ H(2). The
subsystem S1 is non-entangled with S2 if it possesses a complete set of properties.

In dealing with identical particles, instead, one needs to account for the indistin-
guishability and thus the impossibility of applying labels to the particles. The following
notion of complete set of properties for a subsystem is given for a two-identical-particle
system (Definition 7.2 in [91]).

Definition 2.3. Given a composite quantum system S = S1 + S2 of two identical
particles described by the pure density operator ρ = |ψ〉〈ψ| on H(12) = H⊗H, we will
say that one of the constituents has a complete set of properties if and only if there
exists a one dimensional projection operator P , defined on the Hilbert space H of each
of the subsystems, such that:

Tr(E(2)(P )ρ) = 1, (2.54)

where
E(2)(P ) = P ⊗ (1− P ) + (1− P )⊗ P + P ⊗ P. (2.55)

The above definition differs from 2.1 in that the operator E(P ) in equation (2.52)
is replaced by its exchange symmetric counterpart E(2)(P ) in (2.55). The quantity
Tr(E(2)(P )ρ) now gives the probability of finding at least one particle, without specifying
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which one, into the state onto which the one-dimensional operator P projects onto. In
fact, the term Tr(P ⊗ (1 − P )ρ) in (2.54) gives the probability that particle 1 has the
property associated with P while the second one does not have said property, the term
Tr((1− P )⊗ Pρ) gives the same probability with particles interchanged and the term
Tr(P ⊗ P )ρ) gives the probability that both particles have the property P . The three
aforementioned cases are mutually exclusive and therefore the sum of the three terms
yields the probability that at least one particle possesses the property specified by P .

In the case of two identical fermions, Pauli exclusion prevents double occupation, so
the third term always yields zero probability and the projection operator (2.55) can be
replaced by

E(2)
F (P ) = P ⊗ 1+ 1⊗ P. (2.56)

In the fermionic case, in analogy with the distinguishable particle case, if one of
the subsystems has a complete set of properties, so does the other. This is not true
in general for bosons, though, since both particles may have the same property. Based
on the above considerations, the authors of [91] introduce the following definition of
identical-particle separability:

Definition 2.4. GMW criterion The identical constituents S1 and S2 of a composite
quantum system S = S1 + S2 are defined as non-entangled when both constituents
possess a complete set of properties.

With the insight from such definition, Ghirardi, Marinatto and Weber were able
to derive a Theorem for the pure state case, connecting complete sets of properties to
the entanglement present prior to symmetrization or antisymmetrization. We outline
a brief sketch of the proof to gain insight on the structure of the states classified as
separable according to definition 2.4.

Theorem 2.5. (Th. 7.1 in [91]) One of the identical constituents of a composite
quantum system S = S1+S2, described by the pure normalized state |ψ〉 has a complete
set of properties iff |ψ〉 is obtained by symmetrizing or antisymmetrizing a factorized
state.

Proof. Suppose ψ is obtained by symmetrization of a factorized state, then we have

|ψ〉 = N(|χ〉 |φ〉 ± |φ〉 |χ〉). (2.57)

As the single particle Hilbert spaces are identical we may always write

|χ〉 = α |φ〉+ β |φ⊥〉 , 〈φ|φ⊥〉 = 0 (2.58)
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and by choosing P = |φ〉〈φ| we get

Tr(E(2)(P )ρ) =
2(1± |α|2)

2(1± |α|2)
= 1 (2.59)

On the other hand, if Tr(E(2)(P )ρ) = 1, since E(2)(P ) is a projector

E(2)(P ) |ψ〉 = |ψ〉 . (2.60)

However, if we choose an orthonormal set of single-particle states {|ϕi〉} such that
P |ϕ0〉 = |ϕ0〉 and decompose the state as

|ψ〉 =
∑
ij

cij |ϕi〉 |ϕj〉 ,
∑
ij

|cij |2 = 1 (2.61)

one gets

E(2)(P ) |ψ〉 = c00 |ϕo〉 |ϕo〉+ |ϕ0〉

∑
j 6=0

c0j |ϕj〉

+

∑
j 6=0

cj0 |ϕj〉

 |ϕ0〉 = |ψ〉 . (2.62)

Now consider the fermionic case, where c00 = 0. If we introduce the normalized
state |Ξ〉 =

√
2
∑
j 6=0

c0j |ϕj〉, then

|ψ〉 =
1√
2

(|ϕ0〉 |Ξ〉 − |Ξ〉 |ϕ0〉) . (2.63)

In the bosonic case, instead, we introduce the state

|Θ〉 =

√
4

2− |c00|2

c00

2
|ϕ0〉+

∑
j 6=0

c0j |ϕj〉

 (2.64)

and obtain the two particle state

|ψ〉 =

√
2− |c00|2

4
(|ϕ0〉 |Θ〉+ |Θ〉 |ϕ0〉). (2.65)

We point out for further reference that |ϕ0〉 and |Θ〉 are orthogonal only if c00 = 0,
in which case |ψ〉 is obtained by symmetrizing a state of factorised orthogonal single-
particle states, with projection probability 1/2.

It is therefore possible to state the following Theorems for the bosonic and fermionic
case:
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Theorem 2.6. (Th. 7.2 in [91]) The identical fermions S1 and S2 of a composite
quantum system S = S1+S2 described by the pure normalized state |ψ〉 are non-entangled
iff |ψ〉 is obtained by antisymmetrizing a factorized state.

Theorem 2.7. (Th. 7.3 in [91]) The identical bosons of a composite quantum system
S = S1 + S2 described by the pure normalized state |ψ〉 are non-entangled iff either the
state is obtained by symmetrizing a factorized product of two orthogonal states or if it
is the product of the same state for the two particles.

Having reviewed a number of seminal papers tackling the topic of identical-particle
entanglement and analysed the critical aspects which make the quantification of said
entanglement a difficult task, we may proceed to lay out the original work in the field
carried out within this thesis. Our work relies on the framework and the definitions for
separability and entanglement reviewed in section 2.6. In our proposal we will take fur-
ther the implications of Theorems 2.6, 2.7 and put forward a quantitative entanglement
measure for identical particles.

2.7 Quantifying Identical-Particle Entanglement

The Theorems 2.6 and 2.7 arising from the GMW identical-particle entanglement cri-
teria state that the separability of a fermionic or bosonic pure state may be inferred by
its separability properties prior to the (anti)symmetrization due to spin-statistics. It
is desirable to extend this principle to allow for the quantification of entanglement in
identical-particle systems.

For fermionic systems, the notion of quantification of entanglement prior to sym-
metrization is captured by the Slater rank. To show this, let us consider the sim-
plest nontrivial scenario of two spin 1/2 fermions with spatial degree of freedom of
dimension 2. The total first-quantised Hilbert space will thus be given by HA =

(Hx ⊗ Hσ) ∧ (Hx ⊗ Hσ), where Hx ' C2 is the Hilbert space for the space d.o.f.
spanned by the ONB {|L〉 , |R〉} and Hσ ' C2 is relative to the spin d.o.f spanned by
the ONB {|↑〉 , |↓〉}.

Consider the two fermion state given by

|ψs〉 =
1√
2

(|L ↑〉 |R ↓〉 − |R ↓〉 |L ↑〉), (2.66)

which has Schmidt rank equal to two, Slater rank equal to one and is thus unentangled
according to the GMW criteria. In fact, a state with Slater rank 1 is the antisym-
metrization of a product state, and is therefore unentangled according to definition 2.4.
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It is straightforward to see that the state may be obtained as the antisymmetrization
of the factorised state

|σs〉 = |L ↑〉 |R ↓〉 . (2.67)

Indeed, |σs〉 is the state with the minimum entanglement (it is separable) projecting on
(2.66) and it has Schmidt rank equal to 1. Now consider the state

|ψe〉 =
1

2
(|L ↑〉 |R ↓〉+ |L ↓〉 |R ↑〉 − |R ↓〉 |L ↑〉 − |R ↑〉 |L ↓〉), (2.68)

it has Schmidt rank 4 and Slater rank 2. Furthermore, it may be obtained by antisym-
metrizing the entangled state

|σe〉 =
1√
2

((|L ↑〉 |R ↓〉+ |L ↓〉 |R ↑〉), (2.69)

which has Schmidt rank 2. Indeed, no pure state with Schmidt rank smaller than 2, i.e.
a product state, exists whose antisymmetric image is (2.68) [24]. The Schmidt rank is a
coarse-grained entanglement measure, such that states with higher Schmidt rank can be
considered as more entangled. Therefore, the previous examples suggest that the Slater
rank is a coarse-grained identical-particle entanglement measure and it can be inter-
preted as the Schmidt rank of a given fermionic state prior to the antisymmetrization.
The concept is illustrated in Figure 2.1.

The picture emerging from these considerations suggests to define an entanglement
measure for a target identical-particle state based on a distinguishable-particle measure,
many of which are known and well-characterised, and applying it to an unsymmetrized
state which projects onto the target symmetric or antisymmetric state. For any state
ρ with a given symmetry, however, there are infinite states whose projection on the
corresponding symmetry sector is equal to ρ.

It appears clear that for all fermionic and almost all bosonic states the symmetriza-
tion procedure increases the entanglement, so this suggests to measure the entanglement
of ρ as the minimum entanglement of a state σ whose antisymmetric image is propor-
tional to ρ. We may put forward a definition for such a measure.

Given a target identical-particle state ρµ, where µ = S indicates the symmetric
subspace and µ = A indicates the antisymmetric subspace, its identical-particle entan-
glement may quantified by a measure Ẽµ such that

Ẽµ(ρµ) = min
σ
{E(σ) : PµσPµ = Tr(Pµσ)ρµ}, (2.70)
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Figure 2.1: Illustration of interpretation of the Slater rank as a coarse
grained measure identical-particle entanglement. We consider two ex-
ample states of a system of two spin-1/2 fermions in a double well. The
single particle states are colour labelled according to the left (L) or right
(R) well and up (↑) and down (↓) spin. The schematic vertical line on
the left-hand side represents the exchange symmetry directive, whereas
rSC and rSL indicate the Schmidt and Slater rank of the state respec-
tively. The states indicated on the right-hand side of the illustration
belong to the class of states with minimum Schmidt rank projecting on
their exchange symmetric counterparts on the left-hand side. The min-
imum Schmidt rank of the states prior to antisymmetrization matches

the Slater rank of the antisymmetrized states.

where σ is a state with no symmetry constraint and E is a standard distinguishable-
particle entanglement measure.

There is a problem with definition (2.70) in the fermionic case, however, since it
does not account for the probability of the mapping on ρµ. This opens the possibility
of having trivial minima for the optimization instance. In fact, for a given antisymmet-
ric target state ρA, any symmetric state automatically satisfies the constraint in the
minimization on the right-hand side of (2.70), including all those which are separable.
Such a measure would therefore classify all fermionic states as separable, trivializing
the entanglement measure. An additional constraint is required in the minimization
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instance in (2.70), which we may derive by looking into the properties of the symmetric
and antisymmetric images of separable states. In particular, in order to overcome the
problem of classifying all fermionic states as separable it is sufficient to lower bound the
projection probability on the antisymmetric subspace. We will therefore look at a class
of entanglement measures given by

Eµ(ρµ, pµ) = min
σ
{E(σ) : PµσPµ = Tr(Pµσ)ρµ, Tr(Pµσ) ≥ pµ}, (2.71)

where pµ > 0 is the projection probability lower bound for a given symmetry class µ.
We will see how an appropriate choice for such constraint leads to a well-defined

entanglement measure which we will prove to be consistent with the GMW criteria.

2.7.1 Properties of the bipartite (anti)symmetric subspace

We will look into the properties of the symmetry sectors in the fermionic and bosonic
cases separately.

Fermions

To begin with, we investigate the structure of separable pure states in the bipartite
case. Such states are of the kind |ψsep〉 = |α〉 |β〉, with normalized single particle states
α and β which need not necessarily be orthogonal. The normalized antisymmetrization
of such states, which describes fermionic non-entangled states (adopting the Ghirardi
et al. [21] criterion), reads

PA |ψsep〉
‖PA |ψsep〉 ‖

=
|α〉 |β〉 − |β〉 |α〉√
2(1− | 〈α|β〉 |2)

. (2.72)

Given a vector |v〉 in a state vector space H ' Cd, it can be expressed as a linear
combination of |α〉 and a vector |ᾱ〉 which is orthogonal to |α〉 and dependent on the
vector |v〉. Therefore, any state belonging to the vector space may be written as

|β〉 = 〈α|β〉 |α〉+
√

1− | 〈α|β〉 |2 |ᾱ〉 (2.73)

and it is straightforward to see that any separable antisymmetric state is equivalent to
one obtained antisymmetrizing orthogonal states:

PA |ψsep〉
‖PA |ψsep〉 ‖

=
|α〉 |ᾱ〉 − |ᾱ〉 |α〉√

2
. (2.74)
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We may show that the projection probability is related to the overlap of the two
single particle states for a given state ψsep = |α〉〈α| ⊗ |β〉〈β|,

Tr(PAψsep) = Tr

(
1

2
(1− V )ψsep

)
=

1

2
(1− | 〈α|β〉 |2) (2.75)

where V is the swap operator. Thus if an antisymmetric state can be obtained by anti-
symmetrizing a separable pure state, it can always be obtained by antisymmetrizing a
separable pure state with extremal projection probability Tr(PAψ

′
sep) = max{Tr(PAψ) :

ψ = ψsep} = 1/2. The result may be extended to the mixed case by considering sepa-
rable density matrices of the form

σsep =
∑
i

piσi ⊗ ρi (2.76)

with σi = |ψi〉〈ψi| and ρi = |φi〉〈φi| and noting that the projected state has the same
form if we replace each |φi〉 with the orthogonal complement

∣∣ψ̄i〉 of |ψi〉. If we call the
mixed state obtained with the latter modification σ′sep, we also have Tr(PAσ

′
sep) = 1/2.

A useful outer approximation, for the purpose of entanglement quantification, of
the set of separable states is given by the set {ρΓ

PPT ≥ 0} of PPT states, so it will
prove interesting to investigate the antisymmetric image of this class of states. Let us
therefore evaluate max{Tr(PAρ) : ρ = ρPPT} for mixed states. We will show that it is
equivalent to maximizing over a set of special states, called Werner states, which have
the important feature of being separable if and only if they are PPT [117].

Consider the following functional τ [·], called twirling operator :

τ(σ) =

∫
dU(U ⊗ U)σ(U † ⊗ U †), (2.77)

where the integration is performed over the Haar measure dU for unitary operators [118].
Functional τ projects a generic density matrix σ onto the subset of the Werner states
parametrized by a single parameter pσ,

τ(σ) = (1− pσ)
2

d(d+ 1)
PS + pσ

2

d(d− 1)
PA. (2.78)

It is trivial to see that τ(PA) = PA and thus it is possible to write

Tr
(
PAσ

)
= Tr

(
τ(PA)σ

)
(2.79)
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and by cyclicity of the trace operator

Tr
(
τ(PA)σ

)
= Tr

(
PA

∫
dU(U † ⊗ U †)σ(U ⊗ U)

)
. (2.80)

Being the integration over all unitaries it is true that

τ(σ) =

∫
dU(U † ⊗ U †)σ(U ⊗ U), (2.81)

thus giving us the result

Tr
(
PAσ

)
= Tr

(
PAτ(σ)

)
= pσ

2

d(d− 1)
Tr
(
P 2
A
)

= pσ (2.82)

We have just shown that the maximization of Tr(PAσ) over all possible PPT states is
equivalent to maximizing over the set of PPT Werner states, wherein the extremal value
for separability in the bipartite case is pσ = 1/2 and is identical to that for PPT-ness.

In general, therefore, we may state the following proposition:

Proposition 2. If ∃ σsep :
PAσsepPA
Tr(PAσsep)

= ρA

then ∃ σ′sep with the same projection on the antisymmetric subspace but projection
probability

Tr(PAσ
′
sep) = max{Tr(PAσ) : σ = σsep} = max{Tr(PAσ) : σΓ = σ} =

1

2
. (2.83)

Bosons

The bosonic case presents some differences from the fermionic one, for instance there
may be symmetric pure separable states. Again, let us begin with a pure separable
state |ψsep〉 = |α〉 ⊗ |β〉 and let’s take its symmetrization

PS |ψsep〉
‖PS |ψsep〉 ‖

=
|α〉 |β〉+ |β〉 |α〉√
2(1 + | 〈α|β〉 |2)

. (2.84)

Decomposing |β〉 in its component along |α〉 and its orthogonal component we may find
that

PS |ψsep〉
‖PS |ψsep〉 ‖

=
2 〈α|β〉 |α〉 |α〉+

√
2(1− | 〈α|β〉 |2)(|α〉 |ᾱ〉+ |ᾱ〉 |α〉)√
2(1 + | 〈α|β〉 |2)

. (2.85)
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It is evident that, unlike the fermionic case, choosing |β〉 = |ᾱ〉 does not yield the same
state, due to the non-cancellation of the |α〉 |α〉 term. In general, thus, a statement
similar to Proposition 2, which we proved in the fermionic case, does not hold in the
bosonic case. Let us investigate the pure state case in order to show why.

Consider the parametrization |β〉 = cos θ |α〉+eiϕ sin θ |ᾱ〉, leading to the expression

|ψsep〉 = |α〉 |β〉 = |α〉
(
cos θ |α〉+ eiϕ sin θ |ᾱ〉

)
(2.86)

with overlap 〈α|β〉 = cos θ. The symmetrization of |ψsep〉 reads

PS |ψsep〉
‖PS |ψsep〉 ‖

=
2 cos θ |α〉 |α〉+ eiϕ sin θ(|α〉 |ᾱ〉+ |ᾱ〉 |α〉)√

2(1 + cos2 θ)
. (2.87)

Suppose now we want to obtain the same vector by symmetrizing a separable state
given by the tensor product of two non-overlapping single-particle states:

PS |ψsep〉
‖PS |ψsep〉 ‖

=
PS |α′〉 |β′〉
‖PS |α′〉 |β′〉 ‖

(2.88)

with 〈α′|β′〉 = 0. In general we may parametrize the new states as |α′〉 = cos ε |α〉 +

eiφ sin ε |ᾱ〉 and |β′〉 = − sin ε |α〉+ eiφ cos ε |ᾱ〉 and obtain the symmetric state

PS |α′〉 |β′〉
‖PS |α′〉 |β′〉 ‖

=
1√
2

(
−2 cos ε sin ε |α〉 |α〉+ 2e2iφ cos ε sin ε |ᾱ〉 |ᾱ〉+

eiφ(cos2 ε− sin2 ε)(|α〉 |ᾱ〉+ |ᾱ〉 |α〉
)
. (2.89)

It is easy to see that in order for equations (2.87) and (2.89) to be equal the two
conditions cos ε sin ε = cos θ√

1+cos2 θ
, ∀θ, ε

cos ε sin ε = 0 ∀ε,
(2.90)

must be met, which is impossible. The symmetrization of two factorised non-orthogonal
states may not be obtained by symmetrizing two orthogonal ones, which would have
projection probability on the symmetric subspace equal to 1/2.

We have thus shown that in general it is not possible, au contraire to the fermionic
case, to reproduce a state given by the symmetrization of the tensor product of two non-
orthogonal states by symmetrizing another product state with orthogonal single-particle
wavefunctions.
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Furthermore, we may look into the symmetric image of PPT states by applying the
twirling operator (2.77) in analogy with Equation (2.83). We thus obtain

min{Tr(PSσ) : σΓ = σ} =
1

2
. (2.91)

2.7.2 Identical-particle entanglement and projection probability on
the (anti)symmetric subspace.

In the previous section we investigated the relationship between the (anti)symmetric
image of separable states and the projection probability on the respective symmetry
subspace. We may draw conclusions from such relations to fix the projection probability
in definition (2.71) of identical-particle entanglement.

First, it is evident that the projection probability on the antisymmetric subspace
for a separable state Tr(PAσsep) needs to lie in the ]0, 1/2] interval. For the purpose of
quantifying identical-particle entanglement of an antisymmetric state using the measure
(2.70), in order to establish whether or not there exists a separable state projecting onto
the target state ρA, based on Proposition 2 it is sufficient to constrain the minimisation
in (2.70) to the states with projection probability Tr(PAσ) ≥ p, with p ≡ psep = 1/2. In
fact, with such lower bound our entanglement measure will correctly return zero if there
exist a separable state projecting on the target antisymmetric state. We may indeed
argue that psep is the best choice of projection probability in our optimization instance.
States with projection probability larger that psep lie outside of the antisymmetric image
of separable and PPT states and would fail to detect if a state may be obtained by
antisymmetrizing a PPT state. On the other hand, for small enough values of p we will
prove in section 4.3 that the optimal state for the optimization instance may return
PPT-entangled states, thus failing to the detect entanglement. Setting p = psep =

1/2 fixes the bound to the maximum projection probability (on the antisymmetric
subspace) of a separable state, avoiding both the lack of sensitivity to PPT-entanglement
for p ∈ [0, 1/2[, and the lack of unentangled identical-particle states for p ∈]1/2, 1].
Furthermore, we will see in section 2.11 that such choice is consistent with the GMW
criteria and its corollaries.

The bosonic case has a richer structure, and we will see that special care is required
in treating the projection probability in relation to identical-particle entanglement. Let
us begin by observing that

Tr(PSψsep) =
1

2
(1 + | 〈α|β〉 |2), ∈

[
1

2
, 1

]
. (2.92)
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Using the same reasoning as for the fermionic case the codomain of the probability
projection for separable and PPT states can be shown to be the same also for mixed
states. We thus know that if there exists a separable state that projects onto the target
symmetric state, its projection probability must lie in the [1/2, 1] interval. This would
seem to suggest, similarly to the fermionic case, that the lower bound for the probability
of projecting on the symmetric subspace should be given by 1/2.

An additional consideration is required in the bosonic case, however. In order for
separable identical-boson pure states to be correctly identified as those obtained by sym-
metrizing orthogonal factorised states (Theorem 2.7), the projection probability needs
to be fixed to 1/2. Consider the expression in equation (2.65), defining the structure
of separable bosonic states according to the GMW criteria (2.4). The coefficient c00 is
equivalent to the overlap 〈α|β〉 in (2.87), and therefore related to the projection proba-
bility Tr(PS |ψsep〉〈ψsep|) = 1/2(1 + | 〈α|β〉 |2). Allowing a projection probability larger
than 1/2 in the IPE definition (2.71) would imply defining states which are the sym-
metrization of non-orthogonal factorised states as separable, which is in contradiction
with the GMW criteria (2.7). Let us discuss a simple example of this fact.

Consider a non-orthogonal two-identical-qubit product state |ψ〉 = |0〉 |+〉, where
|+〉 = (|0〉+ |1〉)/

√
2, and its symmetrization

|ψS〉 =
PS |ψ〉
‖PS |ψ〉 ‖

=
1√
3

[√
2 |0〉 |0〉+

1√
2

(|0〉 |1〉+ |1〉 |0〉)
]
. (2.93)

We may immediately verify that |ψ〉 is an optimal state for ES(|ψS〉〈ψS | , 1/2) in equa-
tion (2.71), since Tr(PS |ψ〉〈ψ|) ≥ 1/2 and PS |ψ〉〈ψ|PS = Tr(PS |ψ〉〈ψ|) |ψS〉〈ψS |.

Therefore ES(|ψS〉〈ψS | , 1/2) = E(|ψ〉〈ψ|) = 0, because |ψ〉 is a separable state. With
the projection probability lower bounded by 1/2 our identical-particle entanglement
measure (2.71) classifies as unentangled a state which is obtained by symmetrizing a
non-orthogonal product state, which is incompatible with the GMW criteria (2.4) and
the associated Theorem (2.7).

Consistency with the criteria for the case of symmetrized orthogonal product states
may be recovered by replacing the inequality for the projection probability in (2.71)
with an equality to 1/2. We will refer to the bosonic identical-particle entanglement
measure for a state ρS with fixed projection probability on the symmetric subspace as

ES(ρS) = min
σ
{E(σ) : PSσPS =

1

2
ρS}. (2.94)

Because Tr(PS |ψ〉〈ψ|) = 3/4, |ψ〉 is not an optimal state for the instance ES(|ψS〉〈ψS |)
with the projection probability fixed. Furthermore, we proved in section 2.7.1 that no
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product state exists projecting on ψS with probability 1/2.
On the other hand, the state

|ψ+〉 =
1√
2

(|0〉 |1〉+ |1〉 |0〉) (2.95)

is classified as separable by ES , since ES(|ψ+〉〈ψ+|) = 0 with optimal state |φ〉 = |0〉 |1〉
and Tr(PS |φ〉〈φ|) = 1/2. This is consistent with the GMW criteria, since |ψ+〉 is the
symmetrization of the orthogonal product state |φ〉. The examples we provided consist
of an argument in favour of having a fixed projection probability as a constraint in
(2.71), rather than a lower bound. The bosonic case has a special set of states, however,
where this argument does not apply. In fact, symmetric product states are clearly
separable, yet they cannot be obtained by symmetrizing a product of orthogonal states
with projection probability on the symmetric subspace equal to 1/2, as shown in section
2.7.1.

The above considerations suggest that, in analogy with the formulation of Theorem
2.7, the quantification of entanglement prior to symmetrization should treat the case of
symmetric product states and symmetrized orthogonal product states separately. The
IPE quantification of bosonic states may then be carried out in the following way. Given
a bosonic state ρS , if the standard entanglement of the bosonic state is zero, that is to
say if the state is separable even post symmetrization, then its identical-particle entan-
glement is zero. If the standard entanglement of ρS is nonzero, then its entanglement
measure is given by ES(ρS). An intuitive argument which justifies this approach is that
the key problem with the quantification of identical-particle entanglement is associated
with the fact that, in most cases, the symmetrization of states increases entanglement.
In the case of symmetric product states this is not an issue and there is no need to
assess the entanglement prior to symmetrization.

Fixing the projection probability is not necessary for fermions, due to the property of
antisymmetric states of cancelling the c00 terms in eq. (2.65) by construction. We may
however prove that replacing the lower bound in (2.71) on the projection probability
with an equality yields the same optimal value for the entanglement measure, provided
the measure of choice is convex.

To prove this let us begin with considering the state σf , taken as the optimal state
of our minimization instance in (2.71). By definition, σf needs to satisfy the following
properties:

• PAσfPA = Tr(PAσf )ρA

• Tr(PAσf ) ≥ p
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• E(σf ) ≤ E(σ)∀σ satisfying the previous two conditions.

Now let us suppose that ∃σf : Tr(PAσf ) > p. We may parametrize it as

Tr(PAσf ) =
p

t
t ∈]0, 1[. (2.96)

Also, it is always possible to construct a second state

σ′ = tσf + (1− t)PS
dS
, (2.97)

where PS/dS is the normalized projector on the symmetric subspace. It is straightfor-
ward to see that σ′ satisfies the first two conditions for being an optimal state but we
may see, by bearing in mind that E(PS/dS) = 0, that

E(σ′) ≤ tE(σf ) + (1− t)E(PS/dS) = tE(σf ) < E(σf ) (2.98)

where we applied the convexity of the entanglement measure E. The last equation
contradicts the third condition for optimality for σf , thus leading to the conclusion that
the hypothesis Tr(PAσf ) > p is absurd if σf is an optimal state.

Based the above considerations we may replace the lower bound on the projection
probability in the definition (2.71) of identical-particle entanglement with an equality
both in the bosonic and fermionic case. In the bipartite case, therefore, we may put
forward the following mathematically rigorous definition:

Definition 2.8. Given a bipartite identical-particle state ρµ, where µ = A indicates a
fermionic state and µ = S a bosonic one, its identical-particle entanglement (IPE) is
given by

Eµ(ρµ) = min
σ

{
E(σ) : PµσPµ = Tr(Pµσ)ρµ, Tr(Pµσ) =

1

2

}
. (2.99)

The quantity in (2.99) may not be calculated analytically or in an efficient numerical
way for all entanglement measures E. If the measure of choice is the entanglement
negativity N , however, the optimization problem may be formulated as a semidefinite
program (SDP). SDPs allow to find an exact solution, up to arbitrary precision, in
such a way that the time required for obtaining a solution is polynomial in the number
of optimization variables [33]. In the following section we will therefore show how
identical-particle entanglement measures may be calculated by means of semi-definite
programming.
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2.8 Identical-Particle Entanglement as a Semidefinite Pro-
gram

Entanglement quantification may be a complicated task and only in few cases is an
analytical evaluation possible. For this purpose a number of numerical techniques exist
that enable the evaluation of entanglement measures to an arbitrary degree of accuracy,
depending only on the computational resources available. One such technique is given by
semidefinite programming, which may be used to calculate entanglement measures when
they may be expressed as the convex optimization of a linear functional of matrices with
positive-semidefiniteness constraints. One such measure is entanglement negativity,
which we expressed as an SDP in section 1.2.1.

The fact that entanglement negativity may be evaluated as a minimisation instance
suggests that it may be a good measure for the purpose of evaluating identical-particle
entanglement according to the formulation in (2.99), where we minimize the entangle-
ment measure with additional linear constraints. Bearing this in mind, we may cast the
identical-particle entanglement of a bipartite state ρµ evaluated by the entanglement
measure N as the semidefinite program

Nµ(ρµ) = min
M,X

(Tr(M)− 1)/2

such that

−M ≤ XΓ ≤M

M ≥ 0

X ≥ 0

Tr(X) = 1

PµXPµ = Tr(PµX)ρµ

Tr(PµX) =
1

2
. (2.100)

The above expression may be related to that for standard entanglement negativity,
which we recalled in (1.25). In (2.100), however, we minimize over two sets of positive
semidefinite matrices M and X. The optimization over M returns the values of the
negativity of the positive and normalised density matrix X, which in turn is optimized
to minimize negativity, compatibly with the constraints that X projects onto the target
state ρµ with projection probability given by Tr(PµX) = 1

2 .
In other words, the identical-particle negativity of the target state ρµ is given by

the minimum negativity of the normalised state X, provided that the symmetric or
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antisymmetric image of X is ρµ itself and that the projection probability is 1/2. We
have argued in the previous section as to why 1/2 is a suitable option for projection
probability. We call this identical-particle entanglement measure symmetric negativity
and antisymmetric negativity for the bosonic and fermionic case respectively. The mea-
sure may be evaluated numerically by means of the SDP in (2.100) and applies to both
pure and mixed states in any dimension. In the following section we define explicitly
the entanglement measure in the bosonic and fermionic cases and illustrate their main
properties.

2.9 Quantification of Identical-Particle Entanglement by
Means of Symmetric and Antisymmetric Entanglement
Negativity

In sections 2.7 and 2.8 we introduced respectively a novel notion of inter-particle en-
tanglement quantification for states of identical particles and a strategy to compute it
explicitly as a semidefinite program. We will call such entanglement measure identical-
particle entanglement negativity (IPN) when not specific to either fermions or bosons.
In the following we will define IPN in the fermionic and bosonic cases explicitly and
outline some of the key properties of the resulting entanglement measures.

Definition 2.9. Given a target symmetric state ρS , its symmetric negativity (SN) is
given by

NS(ρS) = min
{
N(σ) : PSσPS = Tr(PSσ)ρS , Tr(PSσ) = pS

}
. (2.101)

with pS = min
σΓ≥0
{Tr(PSσ)} = 1/2.

Definition 2.10. Given a target antisymmetric state ρA, its antisymmetric negativity
(AN) is given by

NA(ρA) = min
{
N(σ) : PAσPA = Tr(PAσ)ρA, Tr(PAσ) = pA

}
. (2.102)

with pA = max
σΓ≥0
{Tr(PAσ)} = 1/2.

In the bipartite case, we have argued in Equations (2.83) and (2.91) that the pro-
jection probabilities pS = min

σΓ≥0
{Tr(PSσ)} and pA = max

σΓ≥0
{Tr(PAσ)} are both equal to

pS = pA = 1/2. We point out that the expressions for pS and pA can be cast as semidef-
inite programs. This will be of use in introducing an identical-particle entanglement
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measure in the multipartite case, where such quantities are not known from analytical
considerations (section 2.12.1). Let us look into the properties of the symmetric and
antisymmetric negativity.

2.9.1 Properties of Identical-Particle Entanglement Negativity

Convexity

The objective functions of the SDPs defining antisymmetric and symmetric negativity
are convex by definition. In this section we show explicitly that the measure of entangle-
ment for identical particles given by the SDP (2.100) is convex for convex combinations
of density matrices. The argument is similar to the proof of convexity for a measure
of distillable entanglement formulated as a semidefinite program in [119]. In general,
this result holds even if a different entanglement measure is chosen as objective function
for the class of identical-particle entanglement measures we discuss in Equation (2.99),
provided the chosen measure E is convex.

In what follows we are consistent with definitions 2.10 and 2.9 in fixing the projection
probability to 1/2, however our argument holds regardless the value of the projection
probability.

To begin with, a function f acting on a convex set X such that f : X → R is said
to be convex if

∀x1, x2 ∈ X, ∀t ∈ [0, 1] : f
(
tx1 + (1− t)x2

)
≤ tf(x1) + (1− t)f(x2). (2.103)

What we want to prove is

Nµ(ρ̃) = Nµ

(
tρ+ (1− t)ρ′

)
≤ tNµ(ρ) + (1− t)Nµ(ρ′), (2.104)

with t ∈ [0, 1] and the identical-particle negativity Nµ is defined as

Nµ(ρ) = min
{
N(σ) : PµσPµ = Tr(Pµσ)ρ, Tr(Pµσ) = 1/2

}
. (2.105)

We may start by noting that, by applying the definition of IPN, the optimal value
for the SDP in (2.100) may be expressed as Nµ(ρ̃) = N(σ̃f ) where N is the standard
entanglement negativity and σ̃f satisfies a number of conditions. First, it must satisfy
the conditions

Pµσ̃fPµ = Tr(Pµσ̃f )ρ̃, (2.106)

and
Tr(Pµσ̃f ) = 1/2 (2.107)
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which is are the constraints in (2.105). Second, it must be an optimal state for (??)
and must therefore have the minimum negativity N among all states σ satisfying the
previous two conditions:

N(σ̃f ) ≤ N(σ). (2.108)

We will refer to ˜sigmaf as the optimal state for the instance Nµ(ρ̃). Consider now two
density matrices ρ and ρ′,for which we may define σf and σ′f optimal states respectively
for Nµ(ρ) and Nµ(ρ′). Consider the definition of σ̃f , alongside the following observation:

Pµ(tσf + (1− t)σ′f )Pµ = Tr(Pµ(tσf + (1− t)σ′f ))(tρ+ (1− t)ρ′). (2.109)

We then have the relationship given by

N(σ̃f ) ≤ N(tσf + (1− t)σ′f ). (2.110)

Standard negativity, however, is a convex function itself, so we obtain the desired in-
equality:

Nµ(ρ̃) = N(σ̃f ) ≤ N(tσf +(1−t)σ′f ) ≤ tN(σf )+(1−t)N(σ′f ) = tNµ(ρ)+(1−t)Nµ(ρ′).

(2.111)

Non-increasing under LOCC

Similarly to the argument for convexity, we know that any well-defined entanglement
measure E to be used as an objective function in (2.99) is non-increasing under local
operations and classical communication (LOCC) [56]. Here, we show explicitly that our
identical-particle entanglement measure Eµ of Definition 2.8 is LOCC non-increasing.
Our proof does not depend on the fixing of the projection probability in (2.99), so we
will derive it for a generic projection probability constraint Tr(Pµσ) = p ∈]0, 1].

To begin with, we need to take into account the identity of particles and therefore
restrict the physical set of LOCC non-increasing maps to those which are symmetry
preserving. We refer to such maps as ΛSP

LOCC and they have the following structure:

ΛSP
LOCC(·) = PSΛSP

LOCC(PS · PS)PS + PAΛSP
LOCC(PA · PA)PA. (2.112)

Therefore, given a state ρµ with symmetry µ ∈ {A,S} we have

ΛSP
LOCC(ρµ) = PµΛSP

LOCC(PµρµPµ)Pµ = PµΛSP
LOCC(ρµ)Pµ. (2.113)
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Proposition 3. Given a symmetry-preserving LOCC map ΛSP
LOCC and an identical-

particle state ρµ with symmetry µ ∈ {A,S}, the following inequality holds:

Eµ
(
ΛSP

LOCC(ρµ)
)
≤ Eµ(ρµ). (2.114)

Proof. Let us call Σ the optimal state for the minimization instance defining Eµ(ρµ),
which therefore has the property PµΣPµ = pρµ, with Tr(PµΣ) = p. By looking at the
action of ΛSP

LOCC on Σ, we obtain the expression

PµΛSP
LOCC(Σ)Pµ = PµΛSP

LOCC(PµΣPµ)Pµ = pPµΛSP
LOCC(ρµ)Pµ = pΛSP

LOCC(ρµ), (2.115)

which is the condition constraining the minimization for Eµ
(
ΛSP

LOCC(ρµ)
)
. The density

operator ΛSP
LOCC(Σ) therefore satisfies the constraints for Eµ

(
ΛSP

LOCC(ρµ)
)
, and because

E
(
ΛSP

LOCC(Σ)
)
≤ E

(
Σ
)
, we necessarily have that Eµ

(
ΛSP

LOCC(ρµ)
)
≤ Eµ(ρµ).

Structure of the optimal states

Consider a target identical-particle state ρµ and its identical-particle negativity

Nµ(ρµ) = min
{
N(σ) : PµσPµ =

1

2
ρµ
}
. (2.116)

Let σ̃ be an optimal state for the minimization (2.116). Then the permutation invariant
state

σ̃V =
σ̃ + V σ̃V

2
(2.117)

is also an optimal state for (2.116). In fact, we have

Pµσ̃V Pµ = Pµσ̃Pµ =
1

2
ρµ (2.118)

by construction and

‖σ̃Γ
V ‖1 =

1

2
‖σ̃Γ + V σ̃ΓV ‖1 ≤

1

2
(‖σ̃Γ‖1 + ‖V σ̃ΓV ‖1) = ‖σ̃Γ‖1. (2.119)

Therefore if σ̃ is an optimal state for (2.116) then so is σ̃V .
By construction, the state σ̃V is a direct sum of symmetric and antisymmetric

density operators
σ̃V = Pµσ̃V Pµ ⊕ Pµ̄σ̃Pµ̄. (2.120)

where µ̄ indicates the complementary symmetry subspace to µ (i.e. if µ = A then µ̄ = S
and vice-versa). The set of optimal states for the identical-particle negativity of a given
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state ρµ therefore always includes states of the kind

σ =
1

2
(ρµ + σµ̄). (2.121)

2.9.2 Pure-state antisymmetric entanglement negativity

We have seen in the previous sections that antisymmetric negativity is a well-defined and
general entanglement measure, applying both to pure and mixed states. Its evaluation,
however, relies on the solution of the associated SDP and may not be carried out
analytically except for special cases. It is useful to define a restricted version of the
measure applying only to pure states, which may however be evaluated analytically.
We will discuss an application of this notion in Chapter 4.

Consider a pure antisymmetric state |ψA〉, it may always be represented in its Slater
Decomposition

|ψA〉 =

b d
2
c∑

i=1

√
λi
2

(|ai〉 |bi〉 − |bi〉 |ai〉) , (2.122)

where {|ai〉}
b d

2
c

i=1, {|bi〉}
2b d

2
c

i=b d
2
c+1

and 〈ai|bj〉 = δabδij . We may define an unsymmetrized
state

|σ〉 =

b d
2
c∑

i=1

√
λi |ai〉 |bi〉 (2.123)

such that |ψA〉 = 1√
2
(|σ〉 − V |σ〉), V being the swap operator.

Consider now a generic bipartite state in its Schmidt decomposition

|ψ〉 =

r∑
i=1

√
ψi |αi〉 |βi〉 , (2.124)

its entanglement negativity will be

N(ψ) =
(
∑

i

√
ψi)

2 − 1

2
. (2.125)

We may define the function f(ψ) =
∑

i

√
ψi such that N(ψ) = f(ψ)2−1

2 and f(ψ) =√
2N(ψ) + 1. It follows directly from equation (2.123) that f(σ) =

∑
i

√
λi and thus

f(ψA) = f
(

1√
2
(|σ〉 − V |σ〉)

)
=
√

2f(σ). The relationship between the negativity of the
state ψA and σ is therefore given by:

N(ψA) =
f2(ψA)− 1

2
=

2f2(σ)− 1

2
= 2N(σ) +

1

2
. (2.126)
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Based on the above considerations, we may put forward the following definition of
pure-state antisymmetric negativity (PS-AN):

Npure
A (ψA) =

N(ψA)− 1
2

2
. (2.127)

The above quantity is a restriction of the antisymmetric negativity of Definition 2.10
when the minimization is restricted to pure states only. The purity of a state σ, which
may be expressed as Tr(σ2), is a nonlinear constraint for the elements of σ, so it may
not be enforced in an SDP. By relying on the Slater decomposition, however, we may
assign a quantitative value to the entanglement of an antisymmetric state prior to
the antisymmetrization. In this sense, the pure-state antisymmetric negativity is a
generalisation of the concept of Slater rank.

2.9.3 Antisymmetric negativity and violation of the GMW criteria

Our approach to quantifying identical-particle entanglement relies on the separability
criteria proposed by Ghirardi, Marinatto and Weber which is based on the possibility
to attribute a complete set of properties to separable pure states.

The connection between identical-particle negativity and the GMW criteria is given
by the generalisation of the Theorems 2.6 and 2.7 and we are able to prove, in the
fermionic case, that nonzero values of antisymmetric negativity imply a violation of the
GMW criteria. In the following section we establish this connection and put forward
an upper bound to the violation, in terms of the pure-state antisymmetric negativity.

Le us recall the formulation of the GMW criteria in order to investigate the possible
ways in which it may be violated. In particular, we focus on the mathematical defini-
tion of a complete set of properties, which may be formulated for distinguishable and
indistinguishable-particle systems alike.

Given a composite quantum system S = S1 + S2 described by the pure density
operator χA, one of the subsystems has a complete set of properties iff there exists a
one dimensional projection operator P = |φ〉〈φ|, defined on the Hilbert space H(1) of
S1, such that:

Tr[(P ⊗ 1+ 1⊗ P )χA] = 2Tr(P ⊗ 1χA) = 1.

We prove that nonzero values of antisymmetric negativity imply a violation of such
condition.

Theorem 2.11. Given the pure antisymmetric density operator χA = |χA〉〈χA|, if
Npure
A (χA) > 0, then the subsystems of χA do not have a complete set of properties.
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Proof. To begin with, we may use the symmetry properties of the state |χA〉 and the
cyclicity of the trace operator to rewrite the projection probability as

Tr(E(φ)χA) = 2Tr(PA |φ〉〈φ| ⊗ 1PA |χA〉〈χA|). (2.128)

If we now choose an orthonormal basis {|φi〉}d−1
i=0 of the single particle Hilbert space

such that |φ0〉 = |φ〉 we may use the spectral decomposition of the identity operator

1 =
d−1∑
i=0
|φi〉〈φi| to obtain

PA |φ〉〈φ| ⊗ 1PA =

d−1∑
i=0

PA |φ0〉 |φi〉 〈φ0| 〈φi|PA =

d−1∑
i=0

1

2

∣∣ψ−0i〉〈ψ−0i∣∣ =:
Q

2
, (2.129)

where
∣∣ψ−0i〉 = (|φ0〉 |φi〉− |φi〉 |φ0〉)/

√
2. The projection probability thus reduces to the

expectation value over |χA〉 of the operator Q we defined above. The action of Q on
the antisymmetric state is given by

Q |χA〉 =
1√
2

d−1∑
i=0

〈
ψ−0i
∣∣χA〉 (|φ0〉 |φi〉 − |φi〉 |φ0〉)

=
1√
2

(
|φ0〉 (

d−1∑
i=0

〈
ψ−0i
∣∣χA〉 |φi〉)− (

d−1∑
i=0

〈
ψ−0i
∣∣χA〉 |φi〉) |φ0〉

)
=

=‖ Q |χA〉 ‖
1√
2

(|φ〉
∣∣φ̄〉− ∣∣φ̄〉 |φ〉), (2.130)

where
∣∣φ̄〉 =‖ Q |χA〉 ‖−1/2

d−1∑
i=0

〈
ψ−0i
∣∣χA〉 |φi〉 is orthogonal to |φ〉, therefore ‖ Q |χA〉 ‖2=‖

Q |χA〉 ‖
√

2| 〈φ|
〈
φ̄
∣∣PA |χA〉 | and we obtain

‖ Q |χA〉 ‖=
√

2| 〈φ|
〈
φ̄
∣∣PA |χA〉 |. (2.131)

An upper bound on the projection probability is therefore given by

max
φ

Tr(E(φ)χA) = max
φ

2| 〈φ|
〈
φ̄
∣∣χA〉 |2. (2.132)

We want to find an upper bound for the right-hand side of (2.132) in terms of an
unsymmetrized pure state which projects onto our target antisymmetric state |χA〉.
This would allow us to relate the negativity of the optimal state for NA(χA) to the
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left-hand side of (2.132). Consider the quantity

max
α,β,χS

| 〈α, β|χ〉 |, (2.133)

where 〈α, β| ≡ 〈α| 〈β|, |χ〉 =
√
p |χA〉+

√
1− p |χS〉 and we maximise over |χS〉, which

is a pure state with support on the symmetric subspace. We will see how this expression
is connected with the entanglement properties of the state |χ〉, so we will relate it to
the upper bound we are seeking. In fact, if we expand the absolute value in equation
(2.133) as

|√p 〈α, β|χA〉+
√

1− p 〈α, β|χS〉 |, (2.134)

the maximization of the absolute value of two terms in expression (2.134) is necessarily
larger than the sum of the moduli of the individual terms. Performing the maximization
over the symmetric component yields

max
χS

|
〈
φ, φ̄

∣∣χS〉 | = max
χS

|
〈
φ, φ̄

∣∣PS |χS〉 | = 1√
2

max
χS

| 1√
2

(
〈
φ, φ̄

∣∣+
〈
φ̄, φ

∣∣) |χS〉 | = 1√
2
.

(2.135)
The quantity (2.133) is therefore lower bounded according to the inequality

max
α,β,χS

| 〈α, β|χ〉 | ≥ max
φ,χS

√
p|
〈
φ, φ̄

∣∣χA〉 |+√1− p
2

. (2.136)

We may now formulate our desired upper bound on the projection probability as

max
φ

2|
〈
φ, φ̄

∣∣χA〉 |2 ≤ 2

p

∣∣∣∣∣ max
α,β,χS

| 〈α, β|χ〉 | −
√

1− p
2

∣∣∣∣∣
2

, (2.137)

which may be further simplified if we adopt a probability projection onto the antisym-
metric space p = 1/2 consistent with the entanglement measure 2.8, introduced in this
thesis, and note that

max
α,β,χS

| 〈α, β|χ〉 | = √q0, (2.138)

where √q0 is the largest Schmidt coefficient in the decomposition

|χ〉 =
√
q0 |a0〉 |b0〉+

d−1∑
i=1

√
qi |ai〉 |bi〉 , (2.139)

and the maximum is indeed reached for |α〉 = |a0〉 and |β〉 = |b0〉. Note that for
|χ̃〉 which reaches the maximum over |χS〉 we have that the maximum for the largest
Schmidt coefficient corresponds to the minimum of the negativity, so that we have
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N(χ̃) = Npure
A (χA). We may thus formulate the desired upper bound as

max
φ

Tr(E(φ)χA) ≤ 4(
√
q0 − 1/2)2. (2.140)

We are still not done yet, as we would like to relate the right-hand side of inequality
(2.140) to the negativity of the non-symmetrized state |χ〉. To do so we may begin
by taking into account the relationship between negativity of a state and its Schmidt
coefficients:

N(χ) =

(
d−1∑
i=0

√
qi)

2 − 1

2
. (2.141)

The maximum negativity will be thus achieved via the maximization

max
qi 6=q0

d−1∑
i=0

√
qi (2.142)

with the constraint that
d−1∑
i=0

qi = 1, and we may prove that it is reached when the

Schmidt coefficients qi 6=0 are all equal, thus leading to the inequality

(
d−1∑
i=0

√
qi)

2 ≤
(√
q0 + (d− 1)

√
1− q0

d− 1

)2
. (2.143)

To prove it, we may resort to the theory of majorization. Consider two decreasingly

ordered probability distributions p̄, q̄ ∈ Rd+ such that
d−1∑
i=0

pi =
d−1∑
i=0

qi = 1 and p0 ≤ p1 ≤

... ≤ pd−1, q0 ≤ q1 ≤ ... ≤ qd−1. We may associate with each distribution a quantum
state whose Schmidt coefficients are the square roots of the elements of the probability
distribution :

|ψ(p̄)〉 =
d−1∑
i=0

√
pi |i〉 |i〉

|ψ(q̄)〉 =

d−1∑
i=0

√
qi |i〉 |i〉 . (2.144)

There is a known Theorem [19] which connects the entanglement properties of the
quantum states to the majorization properties of the associated probability distribu-
tions. Namely, there exists an LOCC map ΛLOCC : ΛLOCC[ψ(p̄)] = ψ(q̄) iff p � q, i.e.
k∑
i=0

pi ≤
k∑
i=0

qi ∀k ∈ [0, d− 1]. In general, given a probability distribution p̄ with a fixed
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element p0, it majorizes a distribution q̄ given by [120]

q0 = p0, qi =
1− p0

d− 1
∀i 6= 0. (2.145)

By taking this into account alongside the fact that the action of the map ΛLOCC[ψ(p̄)] =

ψ(q̄) and that entanglement negativity is LOCC non-increasing, we have:

N
(
ψ(p̄)

)
= N

(
ΛLOCC[ψ(p̄)]

)
≤ N

(
ψ(q̄)

)
. (2.146)

The above equation amounts to the inequality

(

d−1∑
i=0

√
pi)

2 ≤ (
√
q0 + (d− 1)

√
1− q0

d− 1
)2. (2.147)

We may thus obtain the dependence of q0 on the negativity by finding the solutions for
q0 to equation (√

q0 + (d− 1)

√
1− q0

d− 1

)2
= 2N(χ̃) + 1, (2.148)

where χ̃ is defined below equation (2.139). The resulting solution has two branches for
d ≥ 2 and N(χ̃) ≥ 0, namely

q±0 =
1

d2

(
d(d− 1)− (d− 2)(2N(χ̃) + 1)±

√
(d− 1)(2N(χ̃) + 1)(d− 2N(χ̃)− 1)

)
.

(2.149)
Since q0 gives the upper bound to max

φ
Tr(E(φ)χA) in (2.140), which we want to prove is

< 1 for N(χ̃) > 0, we only need to focus on the upper branch q+
0 . Indeed, the quantity

ε
(
q+

0 (N)
)

= 1− 4

(√
q+

0 (N)− 1/2

)2

(2.150)

lower bounds the violation of the GMW condition (2.9.3) and is strictly larger that zero
for any d ≥ 2 and N(χ̃) = Npure

A (χA) > 0.

The proof of Theorem 2.11 shows that the relationship between the violation of
the GMW criteria and the pure state antisymmetric negativity depends on the local
dimension d. We report in Figure 2.2 the quantity ε

(
q+

0 (NA)
)
as a function of the pure

state antisymmetric negativity NA = Npure
A (χA) of a generic antisymmetric pure state

χA, for d = 4.
Figure 2.2 illustrates a typical relationship between antisymmetric negativity values

and a quantification of the violation of the GMW separability criterion. The caveat is
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Figure 2.2: Lower bound to the violation ε
(
NA

)
of the GMW condition

(2.9.3) as a function of the pure state antisymmetric negativity NA for
local dimension d = 4.

that, given a two-fermion pure quantum state described by the density matrix ρA, if its
antisymmetric negativity NA(ρA) is nonzero then its pure-state antisymmetric negativ-
ity is necessarily nonzero and Theorem 2.11 implies ρA violates the GMW separability
criterion.

Theorem 2.11 therefore establishes an explicit connection between our novel identical-
particle entanglement measure (Definition 2.10) and the well-established identical-particle
entanglement criteria introduced in references [21, 90, 91]. In the following section we
focus on the application of symmetric and antisymmetric negativity to a number of
notable states, in order to outline the measure’s principal features.

2.10 Examples of the Application of AN and SN

Having laid out a mathematically precise definition of identical-particle entanglement
and characterised its main features, we showcase its usefulness by applying our novel
entanglement measures, introduced at the beginning of section 2.9, to simple states of
particular interest. Let us begin with antisymmetric negativity. For all local dimensions
d, states of the form ∣∣ψ0

A
〉

=
|A〉 |B〉 − |B〉 |A〉√

2(1− | 〈A|B〉 |2)
, (2.151)

where |A〉 and |B〉 are arbitrary single-particle states, one may directly verify the state-
ment NA(

∣∣ψ0
A
〉〈
ψ0
A
∣∣) = 0, given that |AB〉 is an optimal state for NA(

∣∣ψ0
A
〉〈
ψ0
A
∣∣) and
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is also separable. The separability according to AN of state (2.151) is consistent with
the GMW criteria, since it is given by the antisymmetrization of orthogonal factorised
states. This means that there is no two-qubit fermionic entangled state, since for d = 2

the antisymmetric subspace is one-dimensional and given by the state (2.151). This
should not be alarming, since real fermions always possess both a spatial and a spin
degree of freedom, so that entangled fermionic states may exist even in the simplest
cases. In fact, if we consider fermionic singlet states of the form (2.23), they may be
represented as

∣∣ψ1
A
〉

=
1

2
(|L ↑〉 |R ↓〉+ |R ↑〉 |L ↓〉 − |R ↓〉 |L ↑〉 − |L ↓〉 |R ↑〉) . (2.152)

By applying the SDP associated with the definition 2.10 of antisymmetric negativity,
we obtain NA(

∣∣ψ1
A
〉〈
ψ1
A
∣∣) = 1/2, which corresponds to the standard negativity of the

state ∣∣σ1
〉

=
1√
2

(|L ↑〉 |R ↓〉+ |R ↑〉 |L ↓〉) . (2.153)

The state
∣∣ψ1
A
〉
can be easily seen to be the antisymmetric projection of

∣∣σ1
〉
with

projection probability 1/2. Furthermore, if 〈L|R〉 = 0, the second-quantised spin-mode
representation of eq. (2.152) reads

|σ2〉 =
1√
2

(
|L〉↑ |R〉↓ + |R〉↑ |L〉↓

)
, (2.154)

where we have used spin as a subsystem subscript. For the above states we obtain the
relationship NA(

∣∣ψ1
A
〉〈
ψ1
A
∣∣) = N(

∣∣σ1
〉〈
σ1
∣∣) = N(|σ2〉〈σ2|) = 1/2, highlighting in this

simple case the connection between the notion of antisymmetric negativity and mode
entanglement. Such connection will be discussed in additional detail in Chapter 3 of this
thesis, where we investigate the different notions of entanglement for spin-1/2 fermionic
systems.

Let us now look into the bosonic case, focusing on a fixed local dimension d = 4

and basis {|i〉}3i=0. As mentioned in section 2.7.1, factorized bosonic states of the
form |A〉 |A〉, for arbitrary |A〉, are unentangled and do not require the application
of symmetric negativity. On the other hand, a state of the form

∣∣ψ0
S
〉

=
1√
2

(|0〉 |1〉+ |1〉 |0〉) (2.155)

is entangled in the standard sense and its IPE is given by applying symmetric negativity.
The state

∣∣σ0
〉

= |0〉 |1〉 with Tr(PS
∣∣σ0
〉〈
σ0
∣∣) is clearly optimal for NS(ψ0

S), which is
therefore equal to zero, consistently with the GMW criteria defining as separable a state
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given by the symmetrization of a product state of orthogonal single-particle states. A
more interesting example is provided by considering the symmetrization of a product
state of non-orthogonal single-particle states,

∣∣ψ1
S
〉

=
|A〉 |B〉+ |B〉 |A〉√

2(1 + | 〈A|B〉 |2)
, (2.156)

with 〈A|B〉 6= 0 and where we may choose for example |A〉 = |0〉 and |B〉 = (|0〉 +

|1〉)/
√

2. The state
∣∣ψ1
S
〉
may not be obtained by symmetrizing a product state of

orthogonal single-particle states and in fact we find that

NS(
∣∣ψ1
S
〉〈
ψ1
S
∣∣) ' 0.0352, (2.157)

where the numerical value on the right-hand side of (2.157) is obtained by numerically
solving the SDP associated with NS(

∣∣ψ1
S
〉〈
ψ1
S
∣∣). A nonzero value for the symmetric

negativity is in agreement with the GMW criteria, which label the state (2.156) as
entangled. This difference between the fermionic and bosonic case may seem surprising,
but is consistent with the requirement that both subsystems possess a complete set
of properties, and that each CSP be unequivocally associated with one and only one
subsystem. The overlap between the two identical-boson single-particle states, which
we have shown not to be an issue for fermions, prevents this from being so and requires
to describe the state (2.156) as entangled in the identical-particle sense. Finally, we
may consider the bosonic analogue of the the state (2.152) which, in the basis defined
above equation (2.155), reads

∣∣ψ2
S
〉

=
1

2
(|0〉 |1〉+ |1〉 |0〉+ |2〉 |3〉+ |3〉 |2〉 , (2.158)

which is clearly the symmetrization of
∣∣σ2
〉

= 1√
2
(|0〉 |1〉+ |2〉 |3〉 with Tr(PS

∣∣σ2
〉〈
σ2
∣∣) =

1/2. In analogy with the fermionic case, we have NS(
∣∣ψ2
S
〉〈
ψ2
S
∣∣) = N(

∣∣σ2
〉〈
σ2
∣∣) =

1/2, in accordance with the idea of evaluating identical-particle entanglement prior to
symmetrization.

It is worth stressing once again out that the above results are consistent with the
GMW criteria provided the projection probability for the optimal state is fixed to 1/2,
thus highlighting such choice as crucial in the definition of our identical-particle entan-
glement measure. In fact, such choice is particularly crucial in the bosonic case, where
the GMW criteria identify as separable the states which are obtained by symmetrizing
orthogonal product states, but not non-orthogonal ones.
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2.11 Maximally Entangled Fermionic States

Entanglement being a resource that one typically desires to maximise, we will look into
the maximally entangled states of identical fermions. The structure of maximally entan-
gled antisymmetric states was outlined in section 2.5.1, however the entanglement was
there assessed with standard entanglement measures, thus treating the particles identi-
fying the subsystems as distinguishable. In this section we argue that the same states
are maximally entangled also in terms of identical-particle negativity and we provide
the relationship between the maximum antisymmetric negativity and the dimension of
the local subsystems.

The Slater decomposition of a maximally entangled antisymmetric state, the latter
being well-defined only in even dimension, is given by the form (2.122) where all the
Slater coefficients λi are equal to 1/d. The pure-state antisymmetric entanglement
negativity of a maximally entangled antisymmetric state is straightforward to compute
analytically by means of equation (2.127) and is equal to

Npure
A (ψ+

A) =
d− 2

4
, (2.159)

where ψ+
A is the density operator of a maximally entangled pure antisymmetric state.

Because Npure
A is a linear monotonical function of the standard negativity, we know that

this is the maximum pure-state antisymmetric negativity for a given dimension d. We
also know that NA(ψ+

A) ≤ Npure
A (ψ+

A), because the latter is a minimization problem
equivalent to NA(ψ+

A) with an additional constraint of purity on the density matrices
in the optimization set. Therefore if the optimal state for Npure

A (ψ+
A) is also an optimal

state for NA(ψ+
A), as calculated by means of the SDP (2.100), the associated optimal

value is the maximum antisymmetric negativity achievable. As reported in table 2.1, we
may show that this is the case for local dimensions up to d = 8 and conjecture that the
relationship holds for any dimension. We therefore identify the conjectured maximally
identical-particle-entangled fermionic states as those identified in section 2.5.1.

Furthermore, the relationship between the PS-AN and the standard negativity allows
us to establish the maximum identical-particle negativity even for odd dimensions. The
maximum standard negativity for odd dimensions is in fact given by (d−1)/2, compared
to d/2 for even dimension. The conjectured maximum value for the antisymmetric
negativity in any dimension may thus be expressed as

Nmax
A (d) =

1

2
bd− 2

2
c. (2.160)

Before continuing it is worth pointing out that the relationships established in this
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d NA(ψ+
A) Npure

A (ψ+
A)

2 0 0
4 0.5 0.5
6 1 1
8 1.5 1.5

Table 2.1: Tabulated values of maximum identical-particle entangle-
ment, as quantified by AN NA(ψ+

A) (calculated by means of the SDP
2.100) and the PS-AN Npure

A (ψ+
A) (given by (2.159)) applied the maxi-

mally entangled antisymmetric state ψ+
A with local dimension d.

section between antisymmetric negativity and standard negativity only hold for the
classes of states we have investigated. In general, an analytical formulation for the IPN
of any mixed identical-particle state is not known, however it can be obtained as the
solution of the corresponding SDP.

2.12 Multipartite Entanglement of Identical Particles

The study of entanglement of identical particles may be extended beyond the bipartite
case. In particular, the definition of IPE in terms of entanglement negativity allows a
direct generalisation of the bipartite notion. Entanglement negativity, in fact, may be
modified to detect genuine multipartite entanglement [73]. The intuitive idea is that
the negativity needs to be evaluated in all bipartitions of the quantum system. Let the
index m label a bipartition M |M̄ , where M is a subsystem and M̄ its complementary
subsystem. The genuine multipartite negativity (GMN) of a state ρ is given by

Ng(ρ) = min
ρ=

∑
k pkρk

∑
pkµ(ρk), (2.161)

where µ(ρ) = min
m

(‖ρΓm‖1 − 1)/2 is the minimum negativity over all bipartitions. The
definition in (2.161) may be expressed in the alternative form [72]

Ng(ρ) = min
ρ=

∑
m pmρm

∑
pmNm(ρm), (2.162)

where the summation index runs over all possible bipartitions M |M̄ and Nm(ρ) =

(‖ρΓm‖1 − 1)/2. In this last formulation, we may appreciate how GMN can be cast as
an SDP stemming from a generalisation of (1.25) to the multipartite case. Let us look
into the tripartite case for the sake of clarity, bearing in mind that the results extend
to the N-partite case without loss of generality.
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Consider a tripartite state ρABC , it is called PPT-mixture (PPTm) if

ρABC = pAρ
PPT
A|BC + pBρ

PPT
B|AC + pCρ

PPT
C|AB, (2.163)

where ρPPT
X|Y Z is PPT in the bipartition X|Y Z. The genuine negativity of ρABC is given

by the minimum of the sum of negativities in any bipartition for all decompositions of
ρABC , as per equation (2.162). In terms of semidefinite programming, equation (2.162)
may be expressed as

Ng(ρABC) = min(Tr(MA|BC +MB|AC +MC|AB)− 1)/2

subject to : MA|BC ,MB|AC ,MC|AB ≥ 0,

ρ̃A|BC , ρ̃B|AC , ρ̃C|AB ≥ 0,

−MA|BC ≤ ρ̃Γ
A|BC ≤MA|BC

−MB|AC ≤ ρ̃Γ
B|AC ≤MB|AC

−MC|AB ≤ ρ̃Γ
C|AB ≤MC|AB

ρ̃A|BC + ρ̃B|AC + ρ̃C|AB = ρABC (2.164)

where the optimization is performed over decompositions of ρABC into un-normalised
positive hermitian operators, one for every bipartition.

2.12.1 Genuine multipartite (anti)symmetric negativity

The notion of identical-particle negativity can be extended to the multipartite case in
analogy with genuine multipartite negativity. The idea is to quantify the entanglement
of a state ρµ with given symmetry as the minimum entanglement of an unsymmetrized
state projecting on ρµ with projection probability fixed by p = max{Tr(PAσ) : σ =

σPPTm}, in analogy with the bipartite case. In the tripartite case, it was shown in [121]
that p = 1/3. An entanglement measure may be associated with this idea, genuine
multipartite identical-particle entanglement, and it may be evaluated as a semi-definite
program when the genuine multipartite negativity is the figure of merit and the corre-
sponding SDP is analogous to (5.19) with additional constraints.
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Definition 2.12. Given an (anti)symmetric state ρµ, we call genuine tripartite (anti)symmetric
negativity the optimal value for the SDP

Ng(ρµ) = min(Tr(MA|BC +MB|AC +MC|AB)− 1)/2

subject to : MA|BC ,MB|AC ,MC|AB ≥ 0,

ρ̃A|BC , ρ̃B|AC , ρ̃C|AB ≥ 0,

−MA|BC ≤ ρ̃Γ
A|BC ≤MA|BC

−MB|AC ≤ ρ̃Γ
B|AC ≤MB|AC

−MC|AB ≤ ρ̃Γ
C|AB ≤MC|AB

ρ̃ = ρ̃A|BC + ρ̃B|AC + ρ̃C|AB

Pµρ̃Pµ = Tr(Pµρ̃)ρµ

Tr(Pµρ̃) = p, (2.165)

where p = max{Tr(PAσ) : σ = σPPTm} = 1/3 in the tripartite case. The gen-
eralisation to the N-partite case is straightforward, introducing the index m labelling
bipartitions, we may define genuine multipartite (anti)symmetric negativity as

Ng(ρµ) = min(Tr(
∑
m

Mm)− 1)/2

subject to : Mm ≥ 0

ρ̃m ≥ 0

−Mm ≤ ρ̃m ≤Mm for all bipartitions m

ρ̃ =
∑
m

ρ̃m

Tr(ρ̃) = 1

Pµρ̃Pµ = Tr(Pµρ̃)ρµ

Tr(Pµρ̃) = p, (2.166)

where the parameter p = max{Tr(PAσ) : σ = σPPTm} may be itself independently
evaluated numerically as an SDP, when it is not known from analytical considerations.
As a concluding remark we may point out that while the quantity (2.166) is well-defined,
it is affected by a problem common to most multipartite entanglement measures. The
size of the operators involved in the optimisation scales exponentially in the number of
parties, so it becomes intractable even for small numbers. The problem of efficiently
quantifying multipartite entanglement in many-body systems is still an open one.
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In conclusion, in this chapter we have introduced a new entanglement measure,
(anti)symmetric negativity, for systems of identical (fermions)bosons with a solid math-
ematical formalism, an intuitive interpretation and the possibility of being computed
efficiently by means of semidefinite programming. We arrived at the formulation of
the measure based on the GMW [21] entanglement criteria and showed that when the
antisymmetric negativity of a fermionic pure state is not null, then the state violates
the GMW separability conditions (2.54). We reported the results of the application
of (anti)symmetric negativity to a number of example bipartite states and outlined a
possible extension of the measure to the multipartite case.

The entanglement measure we introduce brings new insight into the study of correla-
tions in identical particle systems, characterised by exchange symmetry. Its application
to fermionic and bosonic states can be understood as the quantification of the entangle-
ment prior to the symmetrization prescription, required by the spin-statistics connec-
tion, and is the direct extension of a series of entanglement criteria that have become
well established in this field of research. Our efforts, however, are not only of fundamen-
tal but also of practical interest, since antisymmetric negativity can be directly applied
at entanglement estimation in ultracold atom experiments. We will discuss an example
of the application of antisymmetric negativity in a specific experimental setting.
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Chapter 3

Identical Particle Entanglement in
Physical Systems of Two Ultracold
Fermionic Atoms

The problem of fully understanding many-body systems of strongly correlated fermions
has long resisted a general solution [122]. The exponential increase in complexity as
a function of number of particles required in accurately reproducing density matrices
goes beyond the capabilities of classical computers, whereas the strongly interacting
regime prevents the application of most standard approximate methods [123, 124]. A
notable solution to this problem was first put forward in 1982 by Richard Feynman [125],
suggesting that quantum mechanical systems could be used to simulate a controllable
version of the condensed matter system under investigation. This idea of quantum
simulation has recently become a flourishing field of research [15] and one of the four
pillars of the recent Quantum Flagship European funding programme [2].

One of the main branches of current research in quantum simulation is the study
of ultracold atoms in optical lattices. Techniques such as laser cooling [126] and evap-
orative cooling [127] bring atoms to temperatures as low as ∼ 0.5nK, and have been
a powerful tool for the study of materials, such as the experimental realization of the
Bose-Einstein Condensate (BEC) [128,129], classified as an independent state of matter,
in dilute atomic gases [130,131]. The degree of control achieved over cold atomic gases
sparked interest in attempting to further manipulate such systems with coherent radia-
tion by confining them in optical lattices, in order to reach strongly interacting regimes
whose understanding is still a challenge. One of the main goals of current research
in cold atom physics is the simulation of condensed matter systems whose theoretical
description remains an open problem, including exotic phases, frustrated spin systems
and high-critical-temperature superconductors [132].
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An important tool for the analysis of many-body systems is the study of correla-
tion functions, in particular related to the detection of entanglement [133–135]. As was
first observed in the notable Hanbury-Brown-Twiss (HBT) experiment [136], however,
exchange symmetry strongly affects the correlation functions of identical particle sys-
tems. In fact, one of the key features of fermionic systems is the inevitable presence of
correlations due to the exchange symmetry of identical particle systems and the wave-
function antisymmetrization in the first-quantised representation. Such correlations are
a kinematic effect, in the sense that they are related to the system geometry and in-
trinsic properties, rather than originating due to interactions. They are connected with
the quantum field nature of fermions and are intrinsic to all many-fermion states. In
the original HBT experiment, an intensity interferometer, originally aimed at the astro-
nomical observation of the star Sirius [136], an interference effect was detected in the
signal from the two photomultiplier tubes at the interferometer output, despite the fact
that no phase information was being collected. The quantum interpretation of such
interference attributed the effect to the bunching of photons, which results from the
fact that they are identical particles with integer spin and therefore their wavefunction
is symmetric under particle exchange.

There are strategies to generate entanglement without direct interactions (e.g. via
measurement) [137–139] and not all dynamical processes involving interactions lead to
entanglement. In fact, the entanglement in the final state for any such strategy will
depend on the initial state of the system. Entanglement may also arise from dynamical
physical processes, in particular those involving interactions between particles. Most
experimental efforts aimed at entanglement generation, in fact, rely on interactions [140].
Furthermore, entanglement growth is connected with phase transitions in interacting
quantum matter [141], for example in the quench dynamics in the one-dimensional Bose
Hubbard model [142–145].

Based on the above considerations, the ability to distinguish correlations arising from
interactions and those due to wavefunction antisymmetrization is of fundamental and
practical interest. Our efforts in defining an entanglement measure for identical systems
which removes the wavefunction antisymmetrization, suggest that the antisymmetric
negativity is well-suited for such a task.

In this chapter we apply the identical-particle measure antisymmetric negativity
(AN) to systems of few identical ultracold fermionic atoms with the aim of quantifying
correlations due to interactions and distinguishing them from those due to antisym-
metrization. We focus on low-dimensional systems, where there is a good degree of
experimental and theoretical control of the system and its representation, in order to
obtain a full understanding of the interplay of exchange symmetry and entanglement
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and provide a building-block that can be useful in the study of genuinely many-body
systems.

In section 3.1 we introduce the Fermi-Hubbard dimer, the main focus of our anal-
ysis, and its theoretical description in terms of the Hubbard model and a discretized
space representation. Section 3.2 reviews current experimental techniques for the mea-
surement of momentum correlations of a fermionic dimer. The connection between
entanglement, antisymmetrization and correlations in fermionic systems is introduced
in section 3.3. Such connection is investigated in section 3.4 by applying antisymmetric
negativity for entanglement estimation based on measured momentum correlations in a
Fermi-Hubbard dimer. Finally, the methods and results of the investigation are outlined
in section 3.5.

3.1 Fermionic Dimer: a Building Block for Strongly Inter-
acting Fermionic Systems

Gases of ultracold atoms are a suitable physical system for simulating strongly-correlated
quantum many-body systems. In fact, by loading an ultracold atomic gas into an array
of retroreflected far-detuned laser beams with a fixed wavelength λ, one may create a
conservative sinusoidal potential with periodicity λ/2, which traps the atoms around
fixed points, simulating a crystal lattice. When the atomic gas is sufficiently dilute,
the scattering between the atoms is accurately described solely in terms of two-body
processes [146]. The features of the interaction are dependent on the atomic species
and on the lattice potential.

Interactions may be tuned between the trapped atoms by magnetic Feshbach res-
onance [124, 147]. A magnetic Feshbach resonance occurs when the energy associated
with the formation of a bound molecular state approaches the kinetic energy of the
scattering process between two atoms [146]. The energy difference can be controlled
by means of an external magnetic offset ∆M , thus tuning the interaction between the
atoms without manipulating the optical lattice potential.

The properties of the system may be measured with high precision and up to a
controllable degree of noise [15, 148]. One of the main tools of investigation for such
systems is given by site-resolved imaging, which allows measurement of correlations
in position space between the individual particles [149]. Several important properties,
such as transport, phase fluctuations and long-range coherence [147] are, however, only
accessible by addressing correlations in momentum space. In the following sections we
review the mathematical models in terms of which ultracold fermionic lattices may be
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understood and momentum correlations may be experimentally accessed. We focus on
the simplest instance of such physical systems: the fermionic dimer.

Many-body systems have traditionally been treated in statistical terms, due to the
impossibility of controlling the individual degrees of freedom. The degree of control
over the fundamental constituents of many-body systems achieved in current experi-
ments [147, 150, 151] are paving the way for a bottom-up approach aimed at the sim-
ulation of condensed matter systems. For such efforts to be successful, a complete
understanding of the properties of the building blocks of such quantum simulators is
crucial. Entanglement has also been connected with many macroscopic properties of
condensed matter systems [145, 152, 153]. We investigate the entanglement properties
of the Fermi-Hubbard dimer and propose a novel scheme for the characterization and
quantification of inter-particle entanglement based on current experimental measure-
ment techniques.

3.1.1 Hubbard model

A very successful model for the description of condensed matter systems, which ul-
tracold atoms in optical lattices may be a simulation of, is the Hubbard model [154].
Developed in 1963 to describe electrons in periodic potentials, the Hubbard model de-
scribes the dynamics of two fermionic species, labelled by the (pseudo)spin variable σ,
in terms of the tunneling amplitude between neighbouring lattice sites J and an onsite
interaction term U . The model also applies to systems of cold atoms in optical lattices,
if appropriate conditions are met [155]. In order to provide the description of such
complex systems in simple terms, the model relies on a number of approximations.

• The tight-binding approximation, associated with deep lattice sites, allows for a
description in terms of non-orthogonal Wannier functions localised on the lattice
sites. Appropriate lattice depth also ensures that tunneling amplitudes between
non-neighbouring sites are negligible.

• The periodicity of the potential leads to an energy band structure, but for a
Fermi energy low enough a description in terms of a single band may give accu-
rate predictions. Furthermore, the low energy regime allows for treatment of the
interaction potential in the Born approximation.

• Low density allows restriction of interactions to two-body interaction terms only.

Provided the above prescriptions are satisfied, the physical system of two fermionic
atoms in a double-well potential, also referred to as a Fermi-Hubbard or fermionic dimer,
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may be described in terms of the Fermi-Hubbard Hamiltonian (FHH) [147]

H = −J
∑
σ=↑,↓

(a†LσaRσ + a†RσaLσ) + U
∑

X=L,R

nX↑nX↓, (3.1)

where J is the tunnelling term, U the on-site interaction and a†Xσ, aXσ and nXσ =

a†XσaXσ are the canonical creation, annihilation and number operators of a second-
quantised representation. The labels L and R represent the single-site wavefunctions
which are well approximated by Gaussians centred in the corresponding site for periodic
potentials. The model describes a system of 1−D potential wells displaced by a distance
a.

We may look into the symmetries of the FHH. Consider the site-specific spin oper-
ators

Six =
1

2
(a†i↑ai↓ + a†i↓ai↑)

Siy =
i

2
(−a†i↑ai↓ + a†i↓ai↑)

Siz =
1

2
(a†i↑ai↑ + a†i↓ai↓), ∀i = L,R, (3.2)

and the total spin operator

S2 =
∑

ij=L,R

(SixSjx + SiySjy + SizSjz). (3.3)

The total spin operator commutes with the FHH and it may be diagonalised simultane-
ously alongside one of its components, i.e. Sz = 1

2(a†L↑aL↑+a†L↓aL↓+a†R↑aR↑+a†R↓aR↓),
and they may thus be used as quantum numbers S and mS respectively.

By introducing two-fermion wavefunctions in terms of creation operators |XσYτ 〉 ≡
a†Xσa

†
Y τ |0〉, the FHH may be described in terms of the Fermi-Hubbard basis {|φi〉}i =

{|L↑L↓〉 , |R↑L↓〉 , |L↑R↓〉 , |R↑R↓〉} and is given by

HFH =


U −J −J 0

−J 0 0 −J
−J 0 0 −J
0 −J −J U

 . (3.4)
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For any U, J > 0, the ground state of Hamiltonian (3.4) is nondegenerate and given by
the eigenvector

|ψgs〉 ≡ |ψ0〉 =

[
|L↑L↓〉+ |R↑R↓〉+

(
U
4J +

√
1 +

(
U
4J

)2)
(|L↑R↓〉+ |R↑L↓〉)

]
√(

2 + U
4J +

√
1 +

(
U
4J

)2) (3.5)

and ground state energy Egs ≡ E0 = U/2 −
√

4J2 + U2/4. The remaining eigenstates
are given by

|ψ1〉 =
1√
2

(|R↑L↓〉 − |L↑R↓〉)

|ψ2〉 =
1√
2

(|R↑R↓〉 − |L↑L↓〉)

|ψ3〉 =

[
|L↑L↓〉+ |R↑R↓〉+

(
U
4J −

√
1 +

(
U
4J

)2)
(|L↑R↓〉+ |R↑L↓〉)

]
√(

2 + U
4J −

√
1 +

(
U
4J

)2) , (3.6)

with respective eigenenergies given by E1 = 0, E2 = U and E3 = U/2 +
√

4J2 + U2/4.
A generic mixed state is instead given by the density operator

ρFH =


PLL ρ12 ρ13 ρ14

PLR ρ23 ρ24

PRL ρ34

h.c. PRR

 , (3.7)

where PXY are the populations of the wells and ρij the coherences.

Momentum correlations

In momentum space the basis wavefunctions are well approximated by Gaussian func-
tions of position φX(x) for X = L,R, which depend on the details of the potential wells.
The momentum wavefunction representation can be obtained by Fourier-transforming
the position wavefunction, and the Fourier transform of a Gaussian is also a Gaussian
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with an added phase shift proportional to the lattice spacing a:

φL(x) = g
(
x− a

2

)
→ g̃(k)e−ik

a
2

φR(x) = g
(
x+

a

2

)
→ g̃(k)e+ik a

2 . (3.8)

The two-body momentum correlations 〈n↑(k1)n↓(k2)〉 in the fermionic dimer can there-
fore be described as the expectation valueG(k1, k2) = 〈n↑(k1)n↓(k2)〉 = Tr(ρFHZ(k1, k2))

of the momentum correlator

Z(k1, k2) =


1 e−iak2 e−iak1 e−ia(k1+k2)

1 e−ia(k1−k2) e−iak1

1 e−iak2

h.c. 1

 . (3.9)

If we insert equation (3.7) in the expression for the momentum correlations, in the
quadrature representation we have [147]

〈n↑(k1)n↓(k2)〉 = 1

+2 Re(ρ13 + ρ24) cos ak1 − 2 Im(ρ13 + ρ24) sin ak1

+2 Re(ρ12 + ρ34) cos ak2 − 2 Im(ρ12 + ρ34) sin ak2

+2 Re ρ23 cos a(k1 − k2)− 2 Im ρ23 sin a(k1 − k2)

+2 Re ρ14 cos a(k1 + k2)− 2 Im ρ14 sin a(k1 + k2). (3.10)

The above expression shows that the measurement of momentum correlations only pro-
vides partial information about an unknown mixed state. This makes entanglement
estimation from such measurements a problematic task, since full state reconstruction
is not an option. In fact, the coherences ρ12, ρ24, ρ13 and ρ34 only appear pairwise
summed in eq. (3.10). Even if the momentum correlations are associated with in-situ
measurements of the populations PXY , these may only constrain the coherences owing
to density matrix positivity constraints, but does not allow for a full reconstruction of
ρFH. For the purpose of entanglement estimation, we will need to account for the par-
tial information available and therefore only provide bounds for the value of appropriate
entanglement measures.

3.1.2 Discretized space model

One of the strengths of the Fermi-Hubbard model is that it provides a simple representa-
tion suitable for the treatment of genuinely many-body systems. It may also be applied
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to describe systems of few components, where it can be compared to first-quantized
representations of the physical system. For a fermionic dimer, consisting of only two
particles, it is possible to adopt numerical techniques for the solution of the associated
Schrödinger equation. One of such techniques involves the discretization of the space
and momentum degrees of freedom, deriving in the first instance a single-particle finite
dimensional Hamiltonian HN providing an approximate description of the dynamics
of a single, free particle. The spectrum of this single-particle Hamiltonian is useful in
connecting the discretized space representation to the Fermi-Hubbard model. In fact, a
discretized version of the Wannier functions in equation (3.8) can be obtained in terms
of the two lowest eigenvectors of HN , ε̄0 and ε̄1. Within this section we provide a de-
tailed description at the discretized-space approach for the description of the dynamics
of a fermionic dimer.

This approach relies on a microscopic description of the interaction between the
fermions, wherein the system kinematics and dynamics are determined by a Hamiltonian
of the form

H(12) = H ⊗ 1+ 1⊗H + I(x, y), (3.11)

where H is the single-particle Hamiltonian

H =
~

2m
∇2
x + V (x). (3.12)

The operator V (x) models the double-well potential the particles are trapped in and
I(x, y) describes the interaction between the particles. A suitable parametrization of a
double-well potential is given by the quartic function

V (x) =
Vmax

a4

(
x2 − a2

)2
, (3.13)

where a and Vmax are the inter-well distance and potential barrier respectively. The
interaction between the fermions is taken to be point-like, and thus described by a Dirac-
delta function I(x, y) = gδ(x− y), with the coupling constant g tuning the strength of
the interaction.

It is important to take into account which subsystems are being identified in the
tensor product structure of equation (3.11). If the fermions may be distinguished by
having opposite spin, the value of each spin may be used as a subsystem label and no
additional exchange symmetry constraint is required. If, however, the fermions are spin
polarised they need to be treated as identical subsystems and the set of available states
is restricted to the antisymmetric subspace. In this case, the Pauli exclusion principle
is enforced and the point-like interaction term bears no effect. We will therefore study
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the spin-polarized case in the non-interacting regime only.
An analytical solution for the Schrödinger equation associated with Hamiltonian

(3.12) is not known, however approximate numerical methods may be applied to repro-
duce the system dynamics to a satisfactory degree of accuracy. One such approach may
be obtained by assuming a discretization of the position variables to a finite number N
of available position bins of width ∆, thus transforming the continuous variable differ-
ential equation into a matrix equation [156]. The key point in this manipulation is the
matrix representation of the Laplacian operator. Consider the action of the Laplacian
on a wavefunction

∇2ψ(x) = lim
∆→0

[ψ(x+ ∆)− ψ(x)] + [ψ(x−∆)− ψ(x)]

∆2
. (3.14)

If the position space is discretized to the values {xi}Ni=1 such that xi − xi−1 = ∆, ∀i,
then an approximate expression for the action of the Laplacian reads

∇2ψ(xi) '
[ψ(xi+1)− ψ(xi)] + [ψ(xi−1)− ψ(xi)]

∆2
. (3.15)

With such discretization, the single particle Hamiltonian is represented by an N × N
matrix in the discretized position basis {|xi〉}Ni=1

HN = − ~
2m∆2



2 −1

−1 2 −1

−1
. . . . . .
. . . . . . −1

−1 2 −1

−1 2


+



V1

V2

. . .
. . .

VN−1

VN


,

(3.16)
where Vi = V (xi) is the potential evaluated at the centre of the i-th position bin. For
deep potentials, the values of the vector ξ̄L = ε̄0 − ε̄1, where ε̄0 and ε̄1 are respectively
the lowest and second-lowest energy eigenvalues of HN , are distributed according to a
Gaussian function centred in the left well. Analogously, a discretized Gaussian centred
in the right well is given by ξ̄R = ε̄0 + ε̄1 [157]. When the potential barrier is relaxed
tunneling between the sites is possible and the Wannier functions are non-orthogonal.
Furthermore, the quartic potential we used to represent the discretized Hamiltonian is
not periodic and therefore when tunneling is enabled the single-site wavefunctions cease
to be symmetric Gaussians.
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When represented in the orthonormal basis {|xi〉 |yj〉}Ni,j=1, the delta function is rep-
resented by an N2 × N2 diagonal matrix given by [δN ]ik,jl = 〈xi|xk〉 〈yj |yl〉 = δikδjl.
Approximate discretized eigenvalues and eigenvectors for the problem may be thus de-
rived by diagonalising the Hamiltonian matrix

H
(12)
N = HN ⊗ 1+ 1⊗HN + gδN , (3.17)

which is the discretized version of equation (3.11).
A generic mixed state ρN of the system may be represented in a spectral decom-

position of the Hamiltonian eigenvectors. We may obtain a discretized momentum
correlation function GN by writing ρN in its discretized momentum representation ρ̃N
and considering its expectation values in the discrete momentum basis {|ϕi〉}Ni=1 (whose
derivation is discussed in Appendix A):

GN (p, q) = Tr

[(
|ϕp〉〈ϕp| ⊗ |ϕq〉〈ϕq|

)
ρ̃N

]
, ∀p, q = 1, .., N. (3.18)

3.2 Momentum Correlations Measurement of a Fermionic
Dimer

In this section we report the main features of interest for our work of the experimental
setup from ref. [147] aimed at the detection of momentum correlations for a system
of two fermions in a double-well potential. The physical system consists of two 6Li

atoms confined in a quasi-1D double-well potential realized with two far-red-detuned
optical tweezers. The system is a realization of a fermionic dimer, where the tunneling
parameter J is controlled by varying the depth of the well potentials and the on-site
interaction U is tuned with a Feshbach resonance.

Measurements of the state of the system are carried out by a spin-resolved imaging
technique [158]. The atoms are resonantly driven to emit fluorescence photons which are
detected by a single-photon sensitive camera. Spin resolution is obtained by applying a
magnetic offset [151]. The resolution of the atom position measurements is of the order
of 4µm, which is larger than the well separation a ' 1.5µm. In order to assess the
in-situ position distribution, therefore, an imaging scheme is employed separating the
individual atoms up to 180µm and by means of fluorescence imaging achieving a high
fidelity of identifying each atom in the correct well [147].

In similar fashion the momentum space distribution may be measured by appropriate
manipulation of the system prior to imaging. After the system is prepared in the desired
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state, the atoms are allowed to expand in a weak optical potential along the double-
well axis. Because of the quasi-ballistic expansion, the imaging of the atoms after a
quarter of the trap period T returns the Fourier transform of the original position space
distribution:

〈n(p)〉t=0 ∝ 〈n(x)〉t=T/4 , (3.19)

where 〈n(p)〉t=0 is the momentum distribution before the expansion and 〈n(x)〉t=T/4
is the position distribution after a time-of-flight t = T/4. By rescaling the resulting
distribution to a numerical factor due to the time-of-flight it is possible to average the
spin-resolved momentum measurements in order to construct the momentum correlation
function G(k1, k2) discussed in section 3.1.1 [147].

3.3 Entanglement Estimation Based on Joint Measurements

Following up on the previous section, where we briefly reviewed a measurement strat-
egy to obtain correlation functions based on joint measurements of a composite system
of two ultracold fermionic atoms, we now argue that such correlations are per se in-
effective at demonstrating particle-entanglement unless the identity of the particles is
assessed. Specifically, we consider an instance where the correlations arising from mea-
surements on an entangled distinguishable-fermion state display the same structure as
those obtained from the same measurements on an identical-particle separable state.

In this section, moreover, we discuss some simple examples highlighting the effects
of exchange symmetry on the statistics and correlation functions resulting from joint
measurement outcomes on systems with exchange symmetry. In particular, we focus on
correlations between subsystems in a first-quantised representation, where the relevant
physical entities are considered to be the particles composing the system. These are of
the kind first measured in Hanbury-Brown-Twiss (HBT) [136] experiments.

Consider the composite bipartite quantum state |Ψ〉 ∈ H ⊗H and two observables
A =

∑
i ai |i〉〈i| and B =

∑
i bi |i〉〈i| represented in their spectral decomposition over the

ONB {|i〉} of H ≡ Cd. The collection of outcomes ā = (a1, ..., ad) and b̄ = (b1, ..., bd)

are random variables with a state-dependent probability distribution. One may define a
bivariate correlation function C(ā, b̄) = 〈Ψ|A⊗B|Ψ〉 such that if C(ā, b̄) = f(ā)g(b̄) for
some functions f, g : Cd → R, then the random variables ā and b̄ are uncorrelated. Such
is the case for a pure state of two distinguishable and separable particles |Ψs〉 = |ψ〉 |φ〉.
In fact, the correlation function may be expressed as

C(ā, b̄) =
∑
ij

ai|ψi|2bj |φj |2 =
∑
i

ai|ψi|2
∑
j

bj |φj |2 ≡ fψ(ā)gφ(b̄). (3.20)
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A different structure emerges when a bipartite state which is antisymmetric under ex-
change symmetry is considered. At this stage we still consider the subsystems as distin-
guishable, meaning that no symmetry constraint is necessary on the observables. Given
the state

|Ψ〉A =
1√
2N

(|ψ〉 |φ〉 − |φ〉 |ψ〉), (3.21)

where N = 1− | 〈ψ|φ〉 |2, the correlation function reads

C(ā, b̄) =
1

2N
(
fψ(ā)gφ(b̄) + fψ(ā)gφ(b̄)− 2 Re 〈ψ|A|φ〉 〈φ|B|ψ〉

)
, (3.22)

which in general is not factorizable. The entangled state |Ψ〉A therefore leads to corre-
lations which may be extracted and quantified from C(ā, b̄).

Consider now the case when the state in equation (3.21) describes two identical
fermions. As we have argued in Chapter 2, there is good reason to regard such state as
separable. The observable describing the joint measurement needs to be permutation
invariant and unless A = B, it is therefore given by A ⊗ B + B ⊗ A. The correlation
function in this case reads

CA(ā, b̄) =
1

N
(
fψ(ā)gφ(b̄) + fψ(ā)gφ(b̄)− 2 Re 〈ψ|A|φ〉 〈φ|B|ψ〉

)
, (3.23)

which, apart from a normalization factor, has the same structure as the expression
(3.22). This simple example shows how in general, by looking at the structure of corre-
lation functions alone without taking into account the nature of the subsystems which
yield the random variables ā and b̄, it is not possible to distinguish between the case of
entangled distinguishable systems and that of separable identical-particle systems. The
problem lies in the antisymmetrization requirement for fermionic first-quantised states,
which leads to analogous correlation patterns as those obtained with entangled systems.
This makes it a difficult task to estimate the entanglement in identical-fermion systems
based on measurements of correlations, one that antisymmetric negativity is useful for.
In fact, correlation measurement outcomes may be incorporated as constraints in the
optimization instance (2.10) which defines antisymmetric negativity, making it possible
to estimate the minimum entanglement between the subsystems which is not due to
antisymmetrization and is compatible with the information available within the mea-
surement dataset.
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3.4 Antisymmetric Negativity for Experimental Entangle-
ment Estimation

The theoretical description of the experimental measurements acquisition discussed in
section 3.2 enables a great degree of control over the state preparation for two trapped
ultracold fermions and the possibility of precise measurement of the system’s properties
including position and momentum space probability distributions, but not entangle-
ment. Entanglement, in fact, is not an observable of the system, but an algebraic
property of a given quantum state and its partitioning in subsystems. In order to
extract an exact characterization of the entanglement in the physical system it is nec-
essary to reconstruct completely the density operator describing the state in a process
called full quantum tomography [159, 160]. Full tomographic reconstruction of a state
is in general a challenging task so alternative methods of entanglement certification
and quantification in presence of unknown states have been developed, such as device-
independent entanglement certification and entanglement witnesses (which we review
in Chapter 5). In this section we discuss the usefulness of antisymmetric negativity
for identical-particle entanglement estimation when incomplete information about the
state is available, that is, when full a tomographic reconstruction is not available.

Let us consider a two-identical-fermion system characterized by an unknown den-
sity matrix ρ. As discussed extensively in Chapter 2, alternative representations may
be employed for the state of identical fermions, both in terms of distinguishable modes
and identical particles. We are interested in the assessment of identical-particle entan-
glement properties so we focus on the first-quantised representation in terms of identical
particles, which in presence of a particle number SSR may always be obtained from a
mode representation. The state in the particle representation is therefore described by
the antisymmetric density matrix ρA. If ρA can be perfectly reconstructed from mea-
surements the antisymmetric negativity may be directly applied to the reconstructed
density matrix and an exact measured value of identical-particle entanglement provided.
Suppose, instead, that the state is unknown but there is partial information available
from a set of measurements {Mµ}nµ=1 with measurement outcomes given by

Tr(MµρA) = mµ ∀µ = 1, ..., n. (3.24)

Assuming the measurements are characterised, equation (3.24) is a linear constraint
on the density matrix ρA and may thus be enforced as a constraint in a semidefinite
program. Our aim is to incorporate such constraint in the SDP 2.10 defining antisym-
metric negativity. The unknown state ρA may be related to the optimization variable
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σ in Definition 2.10 via the constraint

PAσPA =
1

2
ρA, (3.25)

where we recall PA is the projection on the antisymmetric subspace. By inserting
equation (3.25) in (3.24) we obtain the constraint

2Tr(MµPAσPA) = mµ, ∀µ = 1, ..., n, (3.26)

where we also need to require the antisymmetric image of σ to be a positive operator:

PAσPA ≥ 0. (3.27)

Normalization is ensured by the Tr(PAσ) = 1/2 condition in the SDP 2.10. If we run the
SDP 2.10 replacing constraint (3.25) with (3.26) and (3.27), the optimal value returned is
the minimum antisymmetric negativity consistent with the partial information available
of the state ρA. The numerical value obtained by applying this SDP is therefore a lower
bound for the identical-particle entanglement present between the identical fermions.

In real experimental scenarios the outcomes of measurements are not known ex-
actly, but are given by a random variable with a probability distribution and associated
confidence intervals. The real value of the outcome of measurement Mµ lies in the
interval [mmin

µ ,mmax
µ ]. Semidefinite programs, however, allow for the enforcing of ma-

trix inequality constraints. As a consequence, given a measurement outcome and its
confidence interval we may replace the constraint (3.26) with

2Tr(MµPAσPA) ≥ mmin
µ

2Tr(MµPAσPA) ≤ mmax
µ , ∀µ = 1, ..., n, (3.28)

in such a way that the optimal value of the antisymmetric negativity SDP provides a
lower bound on the antisymmetric negativity compatible with the confidence interval
associated with the measurement outcome.

3.5 Identical-Particle Entanglement of a Fermionic Dimer

Having discussed the experimental techniques associated with measurements of the
properties of two fermionic atoms in a double-well potential and a strategy to find a
lower-bound for identical-particle entanglement in such systems, let us present specific
results of the application of such method to cases of particular interest. The bounds
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on the quantitative estimate are based on two key ingredients: the measured outcomes
of experiments and the well justified assumptions about the physical model. In this
section we discuss how the ability to enforce stronger assumptions about the system
can provide stricter bounds on the estimated entanglement measures and we quantify
the associated improvement.

A preliminary discussion of the different possible notions of entanglement for a
double-well system of two fermions is required at this stage. As we discussed in Chapters
1 and 2, entanglement is a notion relative to the representation of quantum states and
their partitioning into subsystems. In the case of two identical fermions, states may
be given in the first or second quantised representation. Each representation is in turn
subject to different possible partitionings.

For spin-1/2 fermions the single-particle Hilbert space is spanned by the four vectors

{|ϕi〉}4i=1 = {|L ↑〉 , |L ↓〉 , |R ↑〉 , |R ↓〉}, (3.29)

where the position space amplitude is given by 〈x|X〉 = φX(x), for X = L,R. One may
therefore write a state of the system as the first-quantised wavefunction

|ψ〉 =
∑
i>j

ψij√
2

(|ϕi〉 |ϕj〉 − |ϕj〉 |ϕi〉), (3.30)

where the partition is carried out between particles. We have argued in Chapter 2 that
the appropriate identical-particle entanglement notion for the state (3.30) is given by the
GMW criteria and it may be quantified by antisymmetric negativity. We will compare
AN with the standard negativity applied to (3.30), in order to quantify how much a
standard distinguishable-particle entanglement measure applied to an identical-particle
state overestimates the IPE.

Furthermore, one may consider the state in its occupation number representation
of the four modes in (3.29). This representation allows to further partition the total
Hilbert space, for instance between the two modes with spin up and those with spin
down,

|ψσ〉 =
∑

klmn=0,1
k+l+m+n=2

ψklmn |k〉L↑ |l〉R↑
∣∣∣ |m〉L↓ |n〉R↓ , (3.31)

where the vertical bar represents the partition along which the entanglement may be
evaluated. Such partition, using spin as a subsystem label, is equivalent to that of the
Fermi-Hubbard basis {|φi〉}i and the entanglement properties will coincide.
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Analogously, one may consider the partition between the left and right well:

|ψx〉 =
∑

klmn=0,1
k+l+m+n=2

ψklmn |k〉L↑ |l〉L↓
∣∣∣ |m〉R↑ |n〉R↓ . (3.32)

This notion identifies the sites of the Hubbard model as the subsystems and is typically
adopted when there are more than two particles, thus making a labelling of the particles
in terms of only two spin variables inconvenient.

We will compare the above described notions of entanglement for a series of states
of interest and investigate the connections and differences emerging therein. This kind
of analysis aims at showing that under certain regimes mode entanglement may capture
the entanglement properties of the particles in the system, whereas in others this is not
the case and an analysis in terms of a first-quantised representation is preferred.

3.5.1 Fermi-Hubbard regime

We begin by operating in the regime of validity of the Fermi-Hubbard model, with no
further assumption. The states of the system are therefore described by a density matrix
ρFH of the form (3.7). As argued in section 3.2, the populations of ρFH may be estimated
by in-situ position measurements. The coherences, on the other hand, are constrained
by the momentum correlation measurements via the relation (3.10), but they are not
completely determined. It is possible to provide bounds for the off-diagonal elements
of ρFH, however, by generating a reconstruction of the correlations and, by comparison
with the measured data, obtaining an estimate of the systematic and statistical errors
of the matrix elements. We briefly review the procedure established in ref. [147] and
apply it to obtain confidence intervals for the entries of ρFH.

Let us call R̄ the discretized reconstruction of the binned momentum correlations
D̄. The reconstruction is given by a weighted sum over the discretized Fermi-Hubbard
basis functions B̄

R̄ =
∑
i

wiB̄i, (3.33)

where the weights wi are chosen as those minimising the difference between data and
reconstruction. A suitable figure of merit is given by the total square error [(R̄ −
D̄).(R̄− D̄)], where the dot (·.·) multiplication is the element-wise multiplication of the
discretized vectors and the square brackets [·] indicate summation over all discretized
momentum variables.

The systematic errors may be evaluated by repeating the reconstruction multiple
times with a random sampling of the parameters describing the basis B̄ according to a
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normal distribution. The statistical errors are obtained by resampling the momentum
correlations with fixed basis parameters but adding simulated shot noise and evaluating
the resulting reconstructions. The final errors on the matrix entries are given by the
standard deviation of the distribution resulting from all the instances of the resampling,
adding up the systematic and statistical contributions.

The result of this procedure is an optimal density matrix ρ̃FH and an error matrix
ρε, such that the real values for the system’s density matrix entries [ρFH]ij are subject
to the relation

[ρ̃FH]ij − [ρε]ij ≤ [ρFH]ij ≤ [ρ̃FH]ij + [ρε]ij , ∀i, j. (3.34)

In order to assess the spin-mode entanglement compatible with the errors on the en-
tries of ρFH, we may apply the SDP (1.25), defining the entanglement negativity of
a distinguishable-subsystem state, with incorporated the constraints (3.34). If we call
NL(ρεFH) the negativity lower bound associated with the measurement of ρFH with
uncertainty given by ρε, its explicit formulation is given by

NL(ρεFH) = min
M,X

(Tr(M)− 1)/2

such that M ≥ 0

−M ≤ XΓ ≤M

X ≥ 0

Tr(X) = 1

[ρ̃FH]ij − [ρε]ij ≤ [X]ij ≤ [ρ̃FH]ij + [ρε]ij ∀i, j. (3.35)

It is worth pointing out that not all the matrices satisfying the constraint (3.34) are
density matrices, because the nature of the reconstruction procedure does not enforce
such constraint automatically. This is not a problem in the extraction of a lower bound
for the negativity in terms of an SDP, since the positivity and normalization of the
optimal state can be expressed as a constraint in the optimization instance.

In order to address the identical-particle entanglement we need to write the first-
quantised representation of ρFH, by mapping it onto the 16-dimensional basis {|Xσ〉 |Y τ〉},
for X,Y = L,R and σ, τ =↑, ↓. Recalling the discussion about the relation be-
tween representations in Chapter 1, the substitution rule is given by |X〉↑ |Y 〉↓ →

1√
2
(|X ↑〉 |Y ↓〉 − |Y ↓〉 |X ↑〉). With such substitution we may map the optimal re-

constructed matrix elements and the corresponding confidence intervals onto a first
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quantised representation and run the constrained SDP described in section 3.4 in order
to obtain a lower bound NL

A(ρεA) for the antisymmetric negativity. We will compare
such value with that of the standard negativity applied to the antisymmetric optimal
state constrained by the confidence intervals, which we will call NL(ρεA).

We apply the above described entanglement measures to reconstructions based on
experimentally measured well populations and momentum correlations for different es-
timated values of the magnetic offset ∆M , measured in Gauss, which brings about the
on-site interaction via Feshbach resonance. We show the resulting momentum correla-
tions in the noninteracting (δM = 568G) and strongly interacting (δM = 625G) cases in
Figures 3.1a and 3.1b respectively. A collection of values for the different entanglement
notions associated with magnetic offset are reported in Table 3.1.

∆M (G) 568 580 590 600 610 625
NL(ρεFH) 0 0.1165 0.2019 0.2991 0.3228 0.3190
NL
A(ρεA) 0 0.1165 0.2018 0.2991 0.3228 0.3189

NL(ρεA) 0.4480 0.7331 0.9037 1.0982 1.1455 1.1379

Table 3.1: Table of values of the spin-mode negativity NL(ρεFH), an-
tisymmetric negativity NL

A(ρεA) and standard negativity NL(ρεA) as a
function of magnetic offset ∆M measured in Gauss. The system is pre-
pared close to the ground state of the Fermi-Hubbard model with fixed
double-well potential and the on-site interaction determined by the mag-
netic offset. The spin-mode and antisymmetric negativity coincide up to
three decimal places, indicating that for such state preparations mode
entanglement reflects that of particles. The small differences in the val-
ues for the 625G case may be attributed to the algorithmic evaluation

of the entanglement measures.

The first striking feature of Table 3.1 is the coincidence of the values of spin-mode
negativity and antisymmetric negativity, up to three decimal places. We conjecture the
small discrepancy is due to the algorithmic nature of the evaluation of antisymmetric
negativity, which minimizes over a very broad set of both pure and mixed states. When
the two fermions in the double well potential are described by a spin singlet, using
the spin z-component to label the modes captures the same entanglement properties as
thinking about the system in terms of identical particles. In other words, partitioning
the system in terms of spin-modes and identical-fermions yields the same value for
entanglement negativity, up to three decimal places. In particular, we can see how both
measures capture the onset of entanglement due to interactions. On the other hand,
the standard negativity applied to the antisymmetric first-quantised state overestimates
the entanglement due to interaction, because it does not take into account wavefunction
antisymmetrization.
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(a) 〈n(k1)n(k2)〉
∆M = 568G

(b) 〈n(k1)n(k2)〉
∆M = 625G

Figure 3.1: Experimentally measured momentum correlations
〈n(k1)n(k2)〉 for two fermions with opposite spin in a double-well poten-
tial in the non interacting (3.1a) and strongly interacting (3.1b) cases.
The data was provided by the Ultracold Quantum Gases Group at the

Physikalisches Institut of Heidelberg University [147].

Physical assumptions and entanglement estimates

The tightness of the lower bounds provided in the previous section depends on the
unavailable information about the system. Here we show that if additional data is
available about the system, or if more stringent assumptions can be made about it,
the lower bounds can be improved. We rely on the discretized space model described
in section 3.1.2, so that we may implement assumptions in terms of a microscopic
description of the system.

The discretized Hamiltonian (3.17) is parametrized by parameters Vmax, a and g.
The interplay of such parameters will determine the basis eigenfunctions in terms of
which the state prepared in the experiment may be described. By making assumptions
about the state preparation, we may derive a parametric model that can be fitted to the
measured position coordinates and momentum correlations. The value of entanglement
measure associated with the optimal states of the fit procedure may be used as an esti-
mate of the entanglement in the system. In particular, we want to show the connection
between the assumptions about the system and the entanglement lower bounds.

We first consider the case when the only assumption is that we are operating in
the Hubbard regime. This means that there should exist a mapping between the states
in the Fermi-Hubbard basis (3.7) and the state represented in the discretized model,
which we will call ρD. We may establish this connection by recalling the modelling of
Wannier functions in section 3.1.2, meaning we can use the replacement rule |X↑Y↓〉 →
ξX ⊗ ξY . We recall that in the Fermi-Hubbard regime the distinct spin values allow us
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to label and distinguish the subsystems, so we do not require the antisymmetrization of
wavefunctions and we can address the spin-mode entanglement properties. The model
parameters are therefore the matrix elements of ρFH alongside those describing the
potential and interaction.

Information about the experiment can be used to reduce the degrees of freedom.
Typically, the inter-well distance is related to the wavelength of the trapping laser, which
is a known parameter in experiments. Furthermore, the relationship J = (E1 − E0)/2

between the tunneling parameter, which may also be measured, and the lowest energy
eigenvalues of the double-well potential allows to fix the inter-well barrier Vmax. The
in-situ measurements can also fix the populations of ρFH. We may therefore estimate
the quantum state by fitting the discretized state representation, parametrized by the
coherences and the coupling constant g, to the measured momentum correlations.

A further reduction of the free parameters may be enforced if the system energy is
much lower than the first-excited state of Hamiltonian (3.11). Then one may adopt a
pseudo-2D description where the only the ground and first excited states are populated.
The density matrix may in this case be modelled by

ρ
(2)
D =

(
p Re z + i Im z

Re z − i Im z 1− p

)
, (3.36)

where p is the population of the ground state, z is the coherence and the state is
represented in the {|ε0〉 , |ε1〉} basis given by

H
(12)
N |ε0〉 = ε0 |ε0〉 ,

H
(12)
N |ε1〉 = ε1 |ε1〉 , (3.37)

having written ε0 and ε1 for the lowest and second-lowest energies respectively. Assum-
ing the double-well potential can be experimentally characterised, the free parameters
for ρ(2)

D are the coupling constant g, the ground-state population p, the coherence real
(Re z) and imaginary (Im z) parts, which are linked to p due to positivity constraints.

Finally, if the state can be prepared very close to the ground state energy, it is
possible to model it in terms of the pure ground state ρgs

D = |ε0〉〈ε0|, which amounts
to the previous case with fixed p = 1. The only free parameter in this case is the
interaction coupling constant.

The simulated momentum correlations may be calculated for states ρD, ρ
(2)
D and

ρgs
D by means of equation (3.18) and the resulting distribution can be fitted to the

experimentally measured momentum correlations. We report examples of the simulated
plots in Figure 3.2.
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(a) ρ(2)D
(b) ρgsD

Figure 3.2: Optimal fitted momentum correlations obtained with the
discretized model and simulated shot noise. Figure 3.2a applies the
pseudo-2D description (3.36) and Figure 3.2b is obtained from the sim-
ulated pure ground state. The purity of the state increases the visibility

of the fringes in the correlation plots.

To demonstrate how additional physical assumptions affect the ability to estimate
entanglement in the double-well system, we apply the three models discussed above
to fit the momentum correlations in the strongly interacting case with magnetic offset
∆M = 625G. We calculate the spin-mode, antisymmetric and standard negativity
for the optimal states resulting and compare the estimated value for the entanglement
measures in Table 3.2. The fitting method is discussed in detail in Appendix A.

Negativities
Case NL(ρFH) NL

A(ρA) NL(ρA)

ρD 0.29 0.29 1.09
ρ

(2)
D 0.37 0.37 1.24
ρgs
D 0.46 0.46 1.42

Table 3.2: Table of Negativities from left to right: negativity for spins
(mode entanglement) NL(ρFH), antisymmetric negativity for particles
NL
A(ρA) and standard negativity for particles NL(ρA) estimated from

the momentum correlations measured in the strongly interacting case
∆M = 625G. We compare the entanglement measures for three density
matrices with different assumptions fitted to the measured momentum
correlations: ρD is in the generic Fermi-Hubbard regime, ρ(2)D assumes
occupation of the ground and first-excited state only and ρgsD is the pure

ground state.

Analogously to the results reported in Table 3.1 for entanglement estimation, we see
coincidence between the spin-mode and antisymmetric negativity. We see as expected
that stricter assumptions lead to higher estimated values for the entanglement measure.
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In particular, the pure state model exhibits entanglement close to that of a maximally
entangled two-qubit state, as is expected for a double-well system of two strongly-
interacting fermions with fixed opposite spin, where the only available states are the
two single-well occupation states. Standard negativity, on the other hand, overestimates
the entanglement of the particles and the spins.

3.5.2 Spin-polarised dimer

Aside from the Fermi-Hubbard model, it is interesting to look into the case of the
fermionic dimer with fixed identical spin. Here, it is not possible to use the spin to label
the subsystems, since it is the same for both particles, unlike in the Hubbard model.
This fact makes it a meaningless task to address spin-mode entanglement, whereas a
description in terms of particles is required. The fermions here may not be labelled and
are described in the first-quantised representation by an antisymmetric wavefunction.

Let us review the experimental preparation of such states as presented in [158].
First, a single well is switched on and loaded with two atoms occupying the lowest and
first-excited levels respectively. Subsequently, a second well is adiabatically introduced
so that one of the atoms shifts to the lowest excited state of the second well. When the
two wells are equalised, both particles occupy the ground state of the respective well.
Because it is possible to image the particles spin-selectively, the cases with identical
polarised spin are post-selected from the overall measurement outcomes. The measure-
ment of momentum correlations is carried out with the same technique as discussed in
section 3.2, via ballistic expansion and imaging after a quarter trap period, obtaining

〈
n(x)n(x′)

〉
t=T/4

∝
〈
n(p)n(p′)

〉
t=0

. (3.38)

An example of a measured momentum correlation is given in Figure 3.3. The momen-
tum correlations exhibit interference fringes due to the spin-statistics leading to Pauli
exclusion. This apparent correlation is present even when interactions between the
atoms are tuned off.

Let us investigate what possible states generate such a momentum distribution. If
we assume we are in the regime of validity of the Fermi-Hubbard model, we only allow
the occupation of one level of each well. We may focus, without loss of generality, on the
case when the spin degree of freedom is given by the wavefunction |ψσ〉 = |↑〉 |↑〉. The
Pauli exclusion implies that the only state available for the position degree of freedom
is therefore given by

|ψx〉 =
|L〉 |R〉 − |R〉 |L〉√

2(1− | 〈L|R〉 |2)
. (3.39)
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The momentum space representation of eq. (3.39) may be obtained by Fourier trans-
forming the single-particle states. We may appreciate that the spin-polarised case
strictly constrains the possible states of the system, in the Fermi-Hubbard regime, to
only one allowed antisymmetric pure state

|ΨA〉 = |ψx〉 |ψσ〉 =
|L ↑〉 |R ↑〉 − |R ↑〉 |L ↑〉√

2(1− | 〈L|R〉 |2)
. (3.40)

The state (3.40) is clearly obtained by antisymmetrizing the factorised state |L ↑〉 |R ↑〉,
therefore in accordance with the GMW criteria (reviewed in section 2.6) it is to be
considered a separable state of two identical fermions. Furthermore, its antisymmetric
negativity may be analytically verified to be zero, being |L ↑〉 |R ↑〉 an optimal state for
the SDP defining AN.

We may reproduce the measured momentum correlations by applying the discretized
space model of section 3.1.2. The subsystems associated with the Hilbert space tensor
product structure are the identical fermionic atoms, therefore the solutions of the diag-
onalization of Hamiltonian (3.11) need to be projected on the antisymmetric subspace.
Because of this, the Pauli exclusion prevents the point-like interaction gδ(x1−x2) from
having any effect, so the fermions are effectively treated as noninteracting. If we operate
in the Fermi-Hubbard regime, the only allowed state is the antisymmetric ground state
given by a discretization of (3.39). With these assumptions the only free parameters of
the model are given by Vmax and a, which may be either measured experimentally or
fitted to the measured momentum correlations. In Figure 3.3 we show the results of a
fit of the potential barrier parameter and the antisymmetric negativity of the resulting
optimal state. As expected, the identical particle entanglement is zero, whereas the
standard negativity is that of a maximally entangled qubit state. As we discussed earlier
in this section, there is no meaningful notion of spin-entanglement in a spin-polarised
case.

This case shows the usefulness of antisymmetric negativity for correctly quantifying
the entanglement due to interactions even based on measurements exhibiting strong
correlations. When the correlations are due to antisymmetrization, rather than some
entanglement-generating process, the antisymmetric negativity verifies whether they
can be obtained by a separable state projected on the antisymmetric subspace.

3.5.3 RF coupling

In the previous sections we examined separately the case of the two fermions having op-
posite and polarised spins. We now look into the cases when they are in a superposition
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(a) Experimentally measured 〈n(k1)n(k2)〉 (b) Simulated 〈n(k1)n(k2)〉

Figure 3.3: Experimentally measured (3.3a) and optimal simulated
(3.3b) momentum correlations obtained with the discretized model in
the spin-polarised case. The antisymmetric negativity of the simulated
state is 0, whereas its standard negativity is 1/2. The data was provided
by the Ultracold Quantum Gases Group at the Physikalisches Institut

of Heidelberg University [147].

of both. Such condition is met when the state is in a spin triplet, given by quantum
numbers S = 1 and mS = 0. The ground state of the FHH Hamiltonian is always
given by a spin singlet, so additional terms are required in order for the preparation of
a spin triplet may be obtained by ground state preparation of a Hamiltonian matrix.
This may be done experimentally by inducing a spin imbalance via a radio-frequency
(RF) magnetic coupling in orthogonal directions. The resulting interaction term in the
system Hamiltonian is linear in the magnetic field intensity and the interaction strength
can be parametrised in terms of RF coupling constants. The effect of such coupling is
represented in the second-quantised picture as an additional interaction term in the
FHH:

H = −J
∑
σ=↑,↓

(a†LσaRσ + a†RσaLσ) + U
∑

X=L,R

nX↑nX↓ + gxSx + gzSz, (3.41)

where Sx = SLx + SRx and Sz = SLz + SRz are the global spin terms introduced in eq.
(3.2), gx and gz are the coupling constants tuning the RF coupling. The Hamiltonian
(3.41) can not be represented in the four-dimensional Fermi-Hubbard basis, since the Sx
and Sz terms introduce the following additional spin-polarised states in the represen-
tation: {|L ↑ R ↑〉 , |R ↑ L ↑〉 , |L ↓ R ↓〉 , |R ↓ L ↓〉}. The Hamiltonian may be therefore
represented and diagonalised in the 16-dimensional Hilbert spaces given by the mode
representation (3.31) and the particle representation (3.30).

Different combinations of the parameters U/J , gx and gz will lead to different spin
sectors in the ground state. When the RF coupling is switched off, the system is a
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Fermi-Hubbard dimer and it’s ground state is a spin singlet, as discussed in section 3.1.
When the RF coupling is the dominant contribution, on the other hand, the magnetic
field rotates the spins of the ground state out of the z axis and the lowest energy state
is given by a spin triplet. We will look into the intermediate regime to highlight how
different RF coupling strengths can bring about qualitative variations in the interplay
of mode and particle entanglement.

As a benchmark example, we consider the ground state |Ψ〉 of a Fermi-Hubbard
Hamiltonian with U/J = 10 and vary the coupling constants gx and gz in the [0, J ]

range. First, let us consider the case of strong Sz coupling, with gz/J = 1. The ground
state in this regime is given by a spin triplet with a spin imbalance for the ↑↑ terms given
by Sz favouring such alignment. We may compare the spin-mode and antisymmetric
negativity as a function of gx, as shown in Figure 3.4. This example highlights a
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Figure 3.4: Antisymmetric negativity NA (circle markers) and spin-
mode entanglement negativity NM (diamond markers) as a function of
gx(in units of J) and gz = J applied to the ground state of eq. (3.41)
with U/J = 10. The discrete numerically calculated values are linearly
interpolated in the graphic. The identical particles are unentangled, but

the mode entanglement increases with the gx coupling.

regime where the description in terms of spin-modes does not capture the entanglement
between the identical-particles. With no Sx coupling the ground state triplet is separable
according to both entanglement notions, but the onset of coupling in the x axis yields
an increase in spin-mode entanglement, but not in particle entanglement.

An even richer structure is available when we consider a weaker Sz coupling with
gz/J = 1/3. The entanglement structure in this case is reported in Figure 3.5. We
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Figure 3.5: Antisymmetric negativity NA (circle markers) and spin-
mode entanglement negativity NM (diamond markers) as a function of
gx (in units of J) and gz = J/3 applied to the ground state of eq. (3.41)
with U/J = 10. The discrete numerically calculated values are linearly
interpolated in the graphic. We notice a transition from a singlet regime
gx < 0.2J to a triplet regime gx > 0.2J . Correspondingly, the entangle-
ment notions go from being coincident to having different behaviour.

may notice that by tuning one experimentally controllable parameter, we transition
from a singlet regime gx < 0.2J where the notions of antisymmetric and spin-mode
negativity coincide, to a triplet regime gx > 0.2J where the two entanglement notions
differ. The antisymmetric negativity drops to zero, since the triplet ground state may
be obtained by antisymmetrizing a factorised state, whereas the spin-mode negativity
increases monotonically with gx.

This scenario quantifies the difference between the measures of entanglement given
by the antisymmetric negativity and spin-mode negativity. When the system is prepared
in a spin-singlet state, there is no difference between the entanglement of the spin
modes and the entanglement due to interactions between the particles. On the other
hand, when the state is given by a spin triplet, this is not the case and our measure
quantifies how much the spin-mode entanglement overestimates the identical-particle
entanglement, as measured when antisymmetrization is removed.

In order to provide an estimate of the identical-particle entanglement in the system
we need to be able to measure the momentum correlations spin-selectively. In fact,
the state will populate the eigenstates of the 16-dimensional Hilbert space of the kind
in (3.31) and the ability to assess the momentum for different combinations of spin is
required to witness the differences between the particle-particle entanglement and the
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mode entanglement. Therefore one needs to measure the joint momentum distribution
in the four spin sectors {↑↑, ↑↓, ↓↑, ↓↓}. In the first quantised picture, the measurement
operators are given by

P1↑ ⊗ P2↑ + P2↑ ⊗ P1↑ (3.42)

P1↑ ⊗ P2↓ + P2↓ ⊗ P1↑ (3.43)

P1↓ ⊗ P2↑ + P2↑ ⊗ P1↓ (3.44)

P1↓ ⊗ P2↓ + P2↓ ⊗ P1↓. (3.45)

We may further exploit the state’s symmetries to simplify the entanglement esti-
mation procedure. When the ground state is a S = 1 state, the total wavefunction
antisymmetry constrains the state to be of the form

|ψA(a, b)〉 =
1

N
(|LR〉 − |RL〉) [a |↑↑〉+ b |↓↓〉+ c(|↑↓〉+ |↓↑〉)] , (3.46)

where a and b are the only free parameters (taking c fixed by normalization). The
negativity of the state will therefore only be a function of a and b, so it suffices to
estimate these two parameters from the data. To do so, one may prepare the system
in the identical spin ground state and measure the resulting momentum correlations,
to be used as a reference. Subsequently one prepares the target state |Ψ(gx, gz)〉 in
a regime where it is a spin triplet and thus of the form (3.46). By measuring the
P1↑ ⊗ P2↑ + P2↑ ⊗ P1↑ and P1↑ ⊗ P2↓ + P2↓ ⊗ P1↑ operators one obtains momentum
distributions analogous to the ones from the reference measurement up to detection noise
and a proportionality factor of a and b respectively. From the reconstructed optimal
states one may estimate spin-mode and entanglement negativity, thereby obtaining
a version of Figures 3.4 and 3.5 with entanglement estimates based on momentum
correlation measurements.

In this Chapter we applied antisymmetric negativity to the problem of estimating
identical-particle entanglement in a Fermi-Hubbard dimer. Based on experimentally
measured momentum correlations and physical assumptions about a theoretical model
for their simulation, we provided entanglement lower bounds in different regimes of the
fermionic dimer. We studied the connection between the application of stricter physical
assumptions and tighter lower bounds for the estimated entanglement. Furthermore, we
probed the relationship between identical-particle and mode entanglement, identifying
regimes where the notions coincide and differ. These results show the usefulness of anti-
symmetric negativity, and in general the SDP approach at entanglement quantification,
for understanding identical-fermion systems beyond a description in terms of modes. In
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particular, we overcome some of the difficulties in entanglement quantification which
arise from the exchange symmetry of identical-particle systems by quantifying the en-
tanglement due only to interactions.

Our approach is effective at dealing with an issue of many strategies for experimen-
tal entanglement quantification, that of the availability of partial information about the
state. Due to its formulation as a constrained optimization algorithm, antisymmetric
negativity provides lower bounds consistent with the information that can be extracted
from the measurements. In addition to this, our approach in terms of entanglement
quantification with semidefinite programming can be applied more broadly for entan-
glement estimation in bipartite physical systems, regardless of distinguishability. The
intuitive interpretation of the outcomes of such entanglement estimation strategy and
the robustness of the mathematical definitions underlying it have the potential to make
it an attractive experimental method for a broad scope of physical systems [158].

A drawback of our approach is given by scalability, since the numerical evaluation
requires to optimize over all the unconstrained degrees of freedom, i.e. the elements of
the variable density matrix. The number of such elements has a poor scalability with
dimension and number of subsystems, an issue which is inherited by our entanglement
estimation strategy based on semidefinite programming.
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Chapter 4

Simple Class of Bound Entangled
States Based on the Properties of
the Antisymmetric Subspace

In the previous Chapters we dealt with the interplay of exchange symmetry and en-
tanglement in systems of identical-particles, focusing on a strategy to account for the
spin-statistics connection and quantifying the entanglement therein. In order to intro-
duce the novel identical particle measure 2.8 put forward in Chapter 2, we investigated
a number of properties of the symmetric and antisymmetric subspaces. Such algebraic
subspaces are independent of the nature of the physical systems they describe, therefore
we may apply some of the findings from the study of identical particles to systems of dis-
tiguishable particles. In this Chapter we introduce a novel class of states, characterised
by having properties of experimental and theoretical interest, based on considerations
emerging from the study of the exchange symmetric subspaces for 2 distinguishable
subsystems.

Unravelling the entanglement properties of quantum states is often not an easy
task [66]. Similarly to many other fields of physics, symmetry provides an useful tool
in the evaluation of entanglement properties, by requiring additional constraints and
relationships in the properties of quantum states and the operations which may be
carried out upon them.

By studying the properties of the symmetric and antisymmetric subspace we will
address the presence of bound entanglement in bipartite qudit systems and put forward
a prescription for generation of bound entangled states using semi-definite programming
as well as a novel family of states which exhibits bound entanglement in a well-defined
parameter regime. Let us begin by introducing bound entanglement and its main fea-
tures.
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4.1 Distillable Entanglement

Entanglement has been shown to be a key feature for the realisation of many quantum
information tasks, such as cryptography, dense coding and teleportation [19,92]. Inter-
action with a noisy environment typically (albeit not always) reduces the entanglement
between subsystems and affects the performance of the tasks, up to an extent where the
enhancements brought about by the use of a quantum resource are vanquished. Perfectly
isolating a quantum system from its environment is however a technological challenge
and a major drawback in the onset of quantum-based technologies so several strategies
have been devised to mitigate the detrimental effect of noise on quantum systems, the
most notable being quantum error correction. An alternative approach was put forward
in 1996 by Bennett et al. [161] showing the possibility, by means of local operations,
to take many copies of a noisy weakly-entangled state and obtain a smaller number of
states with higher entanglement. The procedure was given the name of entanglement
distillation, in analogy with the homonymous liquid purification process.

The ability to distill highly entangled states is a good measure for the usefulness
of a noisy quantum state in performing quantum information tasks. Therefore, the
entanglement measure of distillable entanglement was put forward based upon these
ideas. Distillable entanglement may be defined as

ED(ρ) = sup
{
r : lim

n→∞

[
inf
Λ

Tr|Λ(ρ⊗n)−Ψ+
2rn |
]

= 0
}
, (4.1)

where Λ(·) is a trace-preserving LOCC operation and Ψ+
k is the maximally entangled

density matrix in k dimensions. When the state ρ is pure the quantity in (4.1) is called
entanglement concentration. On the other hand, states for which the rate ED(ρ) is
zero are called undistillable. States which are entangled, yet undistillable are called
bound entangled. Distillable entanglement can be interpreted as the rate of production
of maximally entangled pure states from a large number of copies of a given state by
means of a distillation process employing LOCC operations.

4.1.1 Bound entanglement

Bound entangled states are interesting for a number of reasons. They provide a natural
benchmark for testing entanglement detection schemes, as well as probing the relation-
ships and differences between quantum correlations such as entanglement, steering and
nonlocality [34, 44, 45]. Furthermore, they are a useful tool in the mathematical study
of positive but not completely positive maps [58]. The PPT criterion is of relevance
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for the study of bound entanglement since it is a known result that all PPT-entangled
states are bound entangled [43].

In the bipartite case bound entangled states cannot be used for certain tasks such
as teleportation and dense coding, however they have been shown to be useful in other
contexts, such as in superactivation effects in quantum information [162]. Several exam-
ples of bound entangled states have been proposed in the literature [163–167], however
they often rely on a complex structure not amenable to a simple parametrization in
terms of a noise parameter or the system dimensionality. Being able to provide such
a class of states may enhance the understanding of the features of bound entangle-
ment, its relationship with other notions of quantum correlations and provide guidance
in realising bound entanglement experimentally, thus enabling the study of potentially
technologically relevant features such as superactivation.

4.2 Permutation Symmetry and Separability

Consider two subsystems A and B having identical local dimension d and described
by the total Hilbert space HAB ' Cd ⊗ Cd. When the local dimension of a bipartite
system is the same for both subsystems, a composite Hilbert space can be written as
the direct sum of the symmetric and antisymmetric subspaces: HAB = HS ⊕HA, with
the symmetric subspace HS = Cd ∨Cd and the antisymmetric subspace HA = Cd ∧Cd.
We adopt the notation where the symbol ⊕ denotes direct sum, while ∨ and ∧ denote
the symmetric and antisymmetric tensor product, respectively [93]. The symmetric
and antisymmetric subspaces respectively have dimensions dS := d(d+ 1)/2 and dA :=

d(d− 1)/2.
The projector onto the symmetric space is given by

PS =
1+ V

2
, (4.2)

whereas the projector onto the antisymmetric space is given by

PA =
1− V

2
. (4.3)

The projector in (4.2) and (4.3) are orthogonal and their sum is the identity operator
PS + PA = 1. Let us investigate the action of the projectors on the factorised vectors
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|α〉 and |β〉:

PS |α〉 |β〉 =
1

2
(|α〉 |β〉+ |β〉 |α〉) (4.4)

PA |α〉 |β〉 =
1

2
(|α〉 |β〉 − |β〉 |α〉) (4.5)

〈α| 〈β|PS |α〉 |β〉 =
1 + | 〈α|β〉 |2

2
(4.6)

〈α| 〈β|PA |α〉 |β〉 =
1− | 〈α|β〉 |2

2
. (4.7)

The above considerations are of relevance to the individuation of the properties of the
images of separable states on the symmetric and antisymmetric subspaces.

4.2.1 Antisymmetric image of separable states

Wemay put forward a few simple properties pertaining to projections of factorised states
onto the antisymmetric subspace. We recall some of the results outlined in Chapter 2
completing them with proofs in a compact form. Let |ψsep〉 = |α〉 |β〉 be the separable
state given by the tensor product of the normalised states |α〉 and |β〉. The following
proposition holds:

Proposition 4. Given the separable bipartite pure state |ψsep〉, then either ‖PA |ψsep〉 ‖ =

0, or
|ψA〉 = PA |α〉 |β〉 /‖PA |α〉 |β〉 ‖ (4.8)

is a normalized state with Schmidt rank equal to two.

Proof. If we recall the expression for |β〉 in (2.73) we may rewrite the unnormalised
antisymmetric projection of |ψsep〉 as

PA |α〉 |β〉 =
1

2

(√
1− | 〈α|β〉 |2 (|α〉 |ᾱ〉 − |ᾱ〉 |α〉)

)
. (4.9)

It is evident that the only two options are PA |α〉 |β〉 = 0 when | 〈α|β〉 | = 1 or the
normalised state reads

PA |α〉 |β〉
‖PA |α〉 |β〉 ‖

=
1√
2

(|α〉 |ᾱ〉 − |ᾱ〉 |α〉) , (4.10)

which is written in its Schmidt decomposition with both Schmidt coefficients equal
to 1/

√
2 and Schmidt basis given by {|α〉 |ᾱ〉} and {|ᾱ〉 |α〉} for the two subsystems

respectively.
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It is worth noting that the Schmidt coefficients of the image of separable states are
equal (in the nontrivial case), which implies a degeneracy in the Schmidt coefficients
and a non-uniqueness of basis choice in the Schmidt decomposition. We may generalise
this result to the case of mixed states.

Proposition 5. Given the mixed separable state ρ =
∑

i pi |αi〉〈αi| ⊗ |βi〉〈βi|, then its
projection on the antisymmetric subspace ρA = PAρPA/Tr(PAρ) will either be null or
have Schmidt number equal to 2.

Proof. By virtue of Proposition 4, the antisymmetric projection of each of the pure
states in the decomposition of ρ may either be null or be written in the form (4.10).
The resulting antisymmetric state ρA has therefore Schmidt number at most equal to
2. Furthermore, all antisymmetric mixed states have at least Schmidt number two,
because the antisymmetric subspace does not contain product states, as can be verified
by using (4.7).

Proposition 6. Let us consider the state

|ψ〉AB =
PA |α〉 |β〉
‖PA |α〉 |β〉 ‖

, (4.11)

where |α〉 |β〉 is a normalized product state with | 〈α|β〉 | < 1. Then there is another
normalized state |α′〉 |β′〉 such that |ψ〉AB =

√
2PA |α′〉 |β′〉, with projection probability

on the antisymmetric subspace given by ‖PA |α′〉 |β′〉 ‖2 = 1/2.

Proof. It suffices to make the choice |α′〉 = |α〉 and

∣∣β′〉 = |ᾱ〉 =
|β〉 − 〈α|β〉 |α〉
‖ |β〉 − 〈α|β〉 |α〉 ‖

. (4.12)

The above propositions lead to the following Lemma, which is a generalisation of
proposition 6 to the case of mixed states.

Lemma 1. Let ρsep be a separable state such that Tr(PAρsep) > 0. Then there is a
separable state ρ′sep such that Tr

(
PAρ

′
sep
)

= 1/2 and

PAρsepPA
Tr(PAρsep)

=
PAρ

′
sepPA

Tr
(
PAρ′sep

) . (4.13)

Proof. Let ρsep =
∑

i pi |αi〉〈αi| ⊗ |βi〉〈βi|. To any term in the sum such that pi > 0 and
| 〈αi|βi〉 | < 1, associate a probability
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p′i = pi
〈αi| 〈βi|PA |αi〉 |βi〉

Tr(ρsepPA)
(4.14)

and local states ∣∣α′i〉 = |αi〉∣∣β′i〉 = (|β〉 − 〈α|β〉 |α〉)/‖ |β〉 − 〈α|β〉 |α〉 ‖. (4.15)

Then the separable state ρ′sep =
∑

i p
′
i |α′i〉〈α′i|⊗ |β′i〉〈β′i| verifies the stated conditions, as

it can be checked by the application of Proposition 6.

4.3 PPT-Entangled States and Semidefinite Programs

The result of Lemma 1 essentially poses a constraint on the projection probability onto
the antisymmetric subspace of a separable bipartite state. It is therefore possible to
obtain a state which is bound entangled by simply identifying a state which is PPT and
has a probability of projection on the antisymmetric subspace incompatible with the
constraint of Lemma 1. We will see that there are several possibilities to do so, both
based on numerical algorithms and analytical considerations.

The first method we may put forward relies on defining a class of semidefinite pro-
grams whose output is a bound entangled state, because the condition of positivity under
partial transposition is a linear one and is amenable to be enforced as a constraint in
an SDP.

Let ρA be a bipartite antisymmetric state, so that it is fully supported in the anti-
symmetric subspace: ρA = PAρAPA. We are interested in finding the largest probability
of obtaining such a state from a PPT state by projecting onto the antisymmetric sub-
space, that is the following quantity, defined as the solution to an SDP:

pPPT(ρA) := max
σ

Tr(PAσ)

s.t. PAσPA = Tr(PAσ)ρA

σ ≥ 0

Tr(σ) = 1

σΓ ≥ 0.

(4.16)

The following relation may be proved.

Theorem 4.1. For all antisymmetric states ρA the quantity pPPT(ρA) satisfies the
inequality 2/(d(d+ 1) + 2) ≤ pPPT(ρA) ≤ 1/2.
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Proof. Let us start from the lower bound. For the given ρA, let us consider the family
of states σ(p) = pρA + (1 − p)PS/dS . By construction, σ(p) is a valid quantum state,
and it holds that PAσ(p)PA = pρA, with Tr(PAσ(p)) = p. We now want to find a p̄
such that σ(p)Γ ≥ 0 for all p ≤ p̄. One has

σ(p)Γ = pρΓ
A + (1− p)1+ d |ψ+〉〈ψ+|

2dS
. (4.17)

Requiring positivity of an operator is analogous to imposing the constraint that its
smallest eigenvalue is positive. This amounts to requiring that the inequality

min
|φ〉

〈
φ
∣∣σ(p)Γ|φ

〉
= min
|φ〉
{p
〈
φ
∣∣ρΓ
A|φ
〉

+
1− p
2dS

(1 + d|
〈
φ
∣∣ψ+

〉
|2)}

≥ min
|φ〉

{
p
〈
φ
∣∣ρΓ
A|φ
〉}

+
1− p
2dS

≥ 0 (4.18)

be satisfied. We may now focus on minimising the first term of the right-hand side
of the inequality (4.18). Consider the decomposition of the density matrix in terms of
pure state projectors

ρA =
∑
i

pi |ψi〉〈ψi| ≡
∑
i

piψi, (4.19)

we then have the inequality

min
|φ〉

∑
i

pi 〈φ|ψΓ
i |φ〉 ≥ min

{pi,ψi}

∑
i

pi min
|φ〉
〈φ|ψΓ

i |φ〉 ≥ min
ψ,φ
〈ψ|φΓ |ψ〉 . (4.20)

If we now take the Schmidt decomposition |φ〉 =
∑
i

√
pi |i〉 |i〉, having the Schmidt

coefficients pi arranged in decreasing order p1 ≥ p2... we may study

|φ〉 〈φ|Γ =
∑
i

pi |i〉 〈i| ⊗ |i〉 〈i|+
∑
i>j

√
pipj(ψ

+
ij − ψ

−
ij), (4.21)

where
∣∣∣ψ±ij〉 = 1√

2
(|ij〉 ± |ji〉. This allows us to reformulate the minimization on the

right-hand side of equation (4.20) as

min
φ,ψ
〈ψ|φΓ |ψ〉 = min

p1≥p2≥...
−√p1p2 = min

p
−
√
p(1− p) = −1

2
, (4.22)

where we have shown that the smallest eigenvalue of the partial transposition of a pure
state is at most −1/2, and its corresponding eigenstate is antisymmetric.
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Imposing
1

2
(−p+ (1− p)/dS) ≥ 0 (4.23)

one finds
p ≤ 1

dS + 1
=

2

d(d+ 1) + 2
=: p̄. (4.24)

The upper bound can be found by considering that, for an arbitrary PPT state σ, that
is, such that σΓ ≥ 0, one has

Tr(PAσ) =
1

2
(1− Tr(V σ)) =

1

2
(1− Tr

(
V ΓσΓ

)
) =

1

2
(1− d

〈
ψ+
∣∣σΓ
∣∣ψ+

〉
) ≤ 1

2
. (4.25)

We may put together the observations from the previous sections and notice that,
for a given antisymmetric state ρA, it is possible to obtain pPPT(ρA) < 1/2. The
optimal PPT state achieving the value, σ∗ can now be shown to be a PPT entangled
state. Indeed, if σ∗ were separable, then by virtue of Lemma 1 there should exist
another separable state, which is necessarily PPT, that would also project onto ρA with
probability 1/2. We would therefore incur in a contradiction, since we have assumed
that pPPT(ρA) < 1/2 is the maximum value of projection probability for a PPT state
projecting on ρA.

Thus, one can generate PPT entangled states through the following prescription:

1. Generate an arbitrary antisymmetric state ρA;

2. Compute pPPT(ρA) via the SDP in (4.16);

3. If pPPT(ρA) < 1/2, then the optimal state satisfying the constraints of the SDP
is a PPT entangled state.

Notice that antisymmetric states ρA can be generated at random, for example by gen-
erating a random bipartite state ρ, and considering ρA = PAρPA/Tr(PAρ).

4.4 A New Class of Bound-Entangled States

The structure of the optimal PPT-entangled states of the SDP (4.16) may give precious
insight in the definition of an analytical class of states exhibiting bound entanglement.
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4.4.1 Structure of PPT states that generate an antisymmetric state

In the derivation of the lower bound for the maximum projection probability of a PPT
state onto a given antisymmetric state pPPT(ρA) we relied on the class of states

σ(p) = pρA + (1− p)PS
dS
, (4.26)

showing that they belong to the class of feasible solutions to the SDP (4.16). It is
worthwhile remembering that in the bipartite case the direct sum of antisymmetric
subspace and of the symmetric subspace is equal to the total Hilbert space. Moreover,
a convex combination of a symmetric and antisymmetric density operator is equivalent
to the direct sum of the two:

σ(p) = pρA + (1− p)PS
dS

= pρ̃A ⊕ (1− p) P̃S
dS
. (4.27)

Furthermore, the optimal solution to the SDP (4.16) is not unique, but spans a class of
states σ∗. We argue here that, among the PPT states σ∗ that are optimal for the sake
of the probability pPPT(ρA) defined in (4.16), there are always states with the structure

σ∗ = pPPT(ρA)ρA ⊕
[
1− pPPT(ρA)

]
ρS , (4.28)

where ρS is a state with support on the symmetric subspace HS .
This may be seen by noting that if σ∗ is the optimal solution to the SDP (4.16),

then we may always construct an associated permutation invariant state

σ∗V =
(σ∗ + V σ∗V )

2
, (4.29)

which also belongs to the class of optimal states. By construction we have that σ∗V is a
direct sum of symmetric and antisymmetric density operators σ∗V = PAσ

∗
V PA⊕PSσ∗V PS .

In order to check the optimality of σ∗V we need to meet the constraints in (4.16). First,
we begin by noting that (V τV )ΓA = V τΓBV , so that V τV is PPT if and only if τ is
PPT. Therefore, σ∗V is PPT because it is the convex combination of two PPT states.
Finally, in order to satisfy the constraint

PAσ
∗
V PA = PAσ

∗PA = pPPT(ρA)ρA, (4.30)
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we find the desired structure

σ∗V =pPPT(ρA)ρA ⊕ PSσ∗V PS =

pPPT(ρA)ρA ⊕ (1− pPPT(ρA))ρS . (4.31)

4.4.2 Analytic example of PPT-entangled states

We have shown in the previous sections that states with the structure

σ = pρA ⊕ (1− p)ρS (4.32)

are PPT-entangled for appropriate choices of p, ρA and ρS . So far we have shown how
to generate such states by means of SDPs and random generation of antisymmetric
matrices, however it is possible to put forward simple choices for the free parameters of
σ in order for it to be a PPT-entangled state.

From the proof of Theorem 4.1 we already know that choosing ρS = PS/dS with a
small enough projection probability p ≤ p̄, then σ is going to be PPT. What remains
to do is to find a simple condition on ρA ensuring for σ to be entangled. To this
purpose we may make use of Proposition 5, ensuring that any separable state will be
mapped onto antisymmetric mixed states of Schmidt number at most equal to two. We
conclude that as long as ρA has Schmidt number strictly larger than 2 then the state
σ = pρA ⊕ (1− p)ρS is entangled.

The simplest way to make sure that ρA has Schmidt number strictly larger than two
is to choose ρA = |ψA〉〈ψA|, for |ψA〉 an antisymmetric vector state with Schmidt rank
strictly larger than two.

We remark that generic random antisymmetric vector states in dimension d = 2m

have Schmidt rank 2m, and can in principle be generated (up to normalization) start-
ing from a generic vector state without a definite symmetry, and projecting onto the
antisymmetric space.

Let us put forward an analytical non-random example for this class of PPT-entangled
states. Let us consider the case of even dimension d = 2m. Consider the antisymmetric
vector states

|ψA〉 =
m∑
i=1

ci

∣∣∣ψ−2i−1,2i

〉
,

m∑
i=1

|ci|2 = 1, (4.33)

where ∣∣∣ψ−k,l〉 =
1√
2

(|k〉 |l〉 − |l〉 |k〉),
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for k, l = 1, 2, . . . , d and k < l. The vector state |ψA〉 in eq. (4.33) has Schmidt rank
equal to twice the number of non-zero amplitudes ci, so it is sufficient for two of the
coefficients to be nonzero in order to have Schmidt rank larger than 2. Then the state

σ = p |ψA〉〈ψA|+ (1− p)PS
dS
, p ≤ p̄ (4.34)

is PPT-entangled.

4.4.3 New class of states comprising Werner, Isotropic and PPT-
entangled states

The class of states derived in eq. (4.34) provides a satisfactory characterisation of
the entanglement properties as a function of the parametrisation, but there is a more
interesting class of states amenable to the same type of considerations, which comprises
Werner states and states which are local-unitary equivalent to isotropic states. Let us
briefly recall the structure of such classes of states.

Werner states

Bipartite Werner states [117] are the set of mixed states in d× d dimensions which are
invariant under local unitaries of the form U ⊗U . Any Werner state may be expressed
in terms of the parametrization

ρW (pA) = pA
PA
dA

+ (1− pA)
PS
dS
, (4.35)

where PA, PS are the projectors on the antisymmetric and symmetric subspaces and
dA, dS the dimensions of the respective subsystems. Werner states are separable for
pA ≤ 1/2, which is the same interval within which they are PPT. There are therefore
no PPT-entangled Werner states.

Isotropic states

Isotropic states are instead d× d dimensional density operators characterised by invari-
ance under a different kind of local unitary transformations, of the form U ⊗ U∗, where ·∗

indicates element-wise complex conjugation. Isotropic states may be parametrised as

ρI(α) = α |ψ+〉〈ψ+|+ (1− α)
1

d2
, − 1

d2 − 1
≤ α ≤ 1, (4.36)
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where |ψ+〉 is the maximally entangled state. Isotropic states are separable for α ≤
1/(d+ 1) and they are always distillable, thus cannot be bound entangled.

Mixture of Werner, Isotropic and maximally entangled antisymmetric states

As we have shown in the introduction section, states which are equivalent up to a
one-subsystem local unitary to the maximally entangled state are likewise maximally
entangled. Let us consider states of the kind

|φ+〉 = UA ⊗ 1 |ψ+〉 , (4.37)

where UA is an antisymmetric unitary matrix (UTA = −UA). The class of states given
by

σ(p) = p |φ+〉〈φ+|+ (1− p) 1

d2
(4.38)

is local unitary equivalent to the class of Isotropic states. It is important to notice
that antisymmetric unitary matrices only exist in even dimensions, so as discussed
in chapter 2, maximally entangled antisymmetric states only exist in even dimension.
Furthermore, the case of d = 2 is the case of two qubits for which there is known not to
be any bound entanglement. The following considerations will therefore apply to even
local dimension greater or equal to four. Having introduced and characterised a novel
class of bound entangled states and reviewed the entanglement and PPT-ness properties
of Werner and Isotropic states, we may put forward a family of mixed states comprising
such well-known states, but also bound entanglement. We define a 2-parameter class of
states, given by

ρ(pA, pS) = (1− pA − pS) |φ+〉〈φ+|+ pA
PA
dA

+ pS
PS
dS
, (4.39)

with 0 ≤ pA, pS ≤ 1. It is straightforward to see that when pA + pS = 1 the class is
restricted to Werner states:

ρ(pA, 1− pA) = pA
PA
dA

+ (1− pA)
PS
dS

= ρW (pA). (4.40)

Furthermore if pS = (d + 1)/(d − 1)pA the class comprises (up to a local unitary
transformation) the Isotropic states

ρ

(
pA,

d+ 1

d− 1
pA

)
=

(
1− 2d

d− 1
pA

)
|ψ+〉〈ψ+|+

2d

d− 1
pA
1

d2
= ρI

(
1− 2d

d− 1
pA

)
,

(4.41)
when pA ≤ (d2 − 2)/[2d(d+ 1)].
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It is likewise straightforward to find a parameter range where the states are bound
entangled. We know that for pA = 0, we obtain the states in eq. (4.34),

ρ(0, pS) = (1− pS) |ψA〉〈ψA|+ pS
PS
dS

(4.42)

which were shown in the above section to be PPT-entangled when pS ≥ 1− p̄.
We may investigate the parameter space further and find the full entanglement,

PPT-ness and separability properties for this class of states. It is helpful to rely on
a representation of the parameter space in order to make considerations about the
entanglement properties and visualise the different regions of interest. A simple and
intuitive graphical representation may be provided of the entanglement properties of
the class of states in the Cartesian plane (pA, pS). The representation is reported in
Figure 4.1.

Werner

Isotropic

PPT-ES

Separable

1

2

pA

1

2

pS

A

S

ϕ+



W

I

P

Figure 4.1: Entanglement properties of the class of states in (4.39)
represented in the Cartesian plane (pA, pS). The local dimension is fixed
at d = 4. The light blue area represents the separable states, the dark
grey comprises the PPT-entangled states. The isotropic states are found
along the φ+−1 red segment, whereas the Werner states along the blue

S −A segment.
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We may represent a density matrix of the class of states (4.39) ρ(pA, pS) as a point
with coordinates (pA, pS). The states belonging to the class are given by the convex
hull of three extremal states:

• πS = PS/dS represented by the point S = (0, 1)

• πA = PA/dA represented by the point A = (0, 1)

• |φ+〉〈φ+| is represented by the origin of the axes, φ+ = (0, 0)

Let us begin by looking at separability. We know that the separable set is convex,
so its full characterisation may be obtained by taking the convex hull of the extremal
separable states in parameter space. Proposition 5 requires the condition pS ≥ 1/2

for separable states. The extremal points may thus be obtained on the pS = 1/2

segment by the separability conditions for the Werner and Isotropic states. The extremal
Werner state is independent of the system dimension and is represented by the point
W = (1/2, 1/2), its density operator being given by

πW =
1

2
(
PA
dA

+
PS
dS

). (4.43)

The separability properties for states which are local unitary equivalent are the same,
so we may apply the separability condition for Isotropic states obtaining I = (1

2(d −
1)/(d+ 1), 1

2), representing the extremal state

πI =
1

d+ 1
φ+ +

(
1− 1

d+ 1

)
1

d2
. (4.44)

Le us indeed prove that the convex hull of these three extremal points give the
whole set of separable states Σsep for our family by first looking at the set ΣPPT of PPT
states. The task may be solved analytically for our class of states. Consider the partial
transpose of the state in (4.39)

ρΓ(pA, pS) =
1− pA − pS

d
(UA⊗1)V (U †A⊗1)+

pA
2dA

(1−dψ+)+
pS
2dS

(1+dψ+), (4.45)

where ψ+ is the projector on the maximally entangled state. The positivity of ρΓ(pA, pS)

only depends on its spectrum, so we may consider the unitarily equivalent matrix

ρ̃Γ(pA, pS) = (U †A⊗1)ρΓ(pA, pS)(UA⊗1) =
1− pA − pS

d
V+

pA
2dA

(1−dφ+)+
pS
2dS

(1+dφ+).

(4.46)
The operators V , 1 and φ+ are mutually commuting, so they may be diagonalised
simultaneously. In the basis where the operators are diagonal, the eigenvalues of the
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sum operator ρ̃Γ(pA, pS) will be given by the sum of the corresponding eigenvalues
from each addendum matrix. We need to establish for which values of pA and pS are
all eigenvalues positive. We know that operator V only has two eigenvalues, ±1 and
their multiplicities are respectively dA for the negatives and dS for the positives. The
identity operator and the projector on the maximally entangled states are both positive
by construction. Given that the eigenvalues of the sum matrix are obtained from the
sum of the individual eigenvalues, the positivity of ρ̃Γ(pA, pS) will be determined by the
positivity of its minimum eigenvalue, which is given by the two cases−

1−pS−pA
d + pA

d(d−1) + pS
d(d+1) + pS

d+1 −
pA
d−1 ≥ 0, if pS ≤ d+1

d−1pA,

−1−pS−pA
d + pA

d(d−1) + pS
d(d+1) ≥ 0, if pS ≥ d+1

d−1pA.
(4.47)

The first case boils down to the condition pS ≥ 1/2, whereas the second holds for

pS ≥ −
d(d+ 1)

d(d+ 1)− 2
pA +

d+ 1

d+ 2
. (4.48)

The states from the class ρ(0, pS) are therefore PPT for pS ≥ (d+ 1)/(d+ 2). We may
therefore indicate the extremal point with P = (0, (d+1)/(d+2)) and its corresponding
state with

πP = ρ(0, (d+ 1)/(d+ 2)) =
1

d+ 2
φ+ +

d+ 1

d+ 2

PS
dS
. (4.49)

The set ΣPPT of PPT states is thus given by the convex hull of the states πS , πW , πI
and πP and it holds Σsep ⊂ ΣPPT, where the inclusion is strict. This means that the
set ΣPPT \ Σsep is the set of PPT-entangled states.

Let us now return to considering separability. We have just shown that the state
πI is extremal for separability, because the states ρ(pA < 1

2
d−1
d+1 , 1/2) are not PPT,

and therefore entangled. Moreover, πS is extremal for the separable set because states
ρ(0, pS ≥ 1− p̄) belong to the family (4.34), which is PPT-entangled. We may therefore
parametrise the states in Σsep as

σ(pW , pI) = pwπW + pIπI + (1− pW − pI)
PS
dS
, (4.50)

with 0 ≤ pW , pI ≤ 1.
It is worth noting that the area of the region of PPT-entangled states decreases

for increasing dimension d. In fact, the length of the segment PS scales as 1/(d + 2),
whereas the height of the PSI triangle is given by 1

2(d− 1)/(d+ 1). The area APPTe of
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PPT entangled states therefore scales as

APPTe =
(d− 1)2

8(d+ 1)2(d+ 2)2
, (4.51)

exhibiting a quadratic decrease in surface for increasing local dimension d. This result
suggests that experimental preparation of PPT-entangled states from the class (4.39)
would require a less stringent confidence interval concerning the parameters describing
the state in lower dimensions than it would in higher. We recall that d = 4 is the lowest
dimension exhibiting PPT-entanglement, thus appearing to be the most suitable case
for experimental verification.
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Chapter 5

Multipartite Entanglement,
Steering and Nonlocality of the
Totally Antisymmetric State

Quantum mechanics has provided a description of Nature which has been revolutionary
in many of the basic notions upon which we understood physical phenomena. Wave-
particle duality and the intrinsic randomness of measurement outcomes have demolished
the positivist interpretation of our world, wherein a sufficiently accurate knowledge of
the phase-space coordinates and the laws governing the evolution of states of its con-
stituents would enable a perfect predictability of all future and past states of any system.
This revolution, which in itself was ground-breaking, has had enormous influence over
the subsequent development of science and technology, as well as a deep cultural im-
pact, forever changing our world-view and shaping the collective perspective in the 20th

century.
It wasn’t until 1935 and a series of famed discussions involving Einstein and the

other leading physicists in the field, however, than another quantum weirdness became
manifest and lay the foundation for the challenge to a fundamental principle governing
the laws of physics and our understanding of the universe up to that point: the principle
of local realism [89, 168].

In their seminal 1935 article [89], also known as EPR paper, Einstein, Podolsky
and Rosen, showed that certain predictions of quantum mechanics were incompatible
with those of theories where systems could possess locally an element of reality [21,89]
and are therefore completely independent on any physical process in separate regions
of space-time.

We will not use the EPR thought experiment as a benchmark example to introduce
the notions of steering and nonlocality and their relationship to entanglement. Instead,
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we will consider a variation of the EPR scenario which covers the fundamental aspects
of our interest.

Consider the two-qubit state

|φ−〉 =
1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) =
1√
2

(|+〉 ⊗ |−〉 − |−〉 ⊗ |+〉), (5.1)

where |±〉 = (|0〉 ± |1〉)/
√

2. The state |φ−〉 may be seen as a spin-singlet state for
the two subsystems. It is manifest that the pure state in (5.1) is a non-factorizable
one, i.e. it may not be written in the form |σ〉 ⊗ |ϕ〉 and is thus an entangled state of
the two subsystems. The entanglement of the state may be seen to bring about some
degree of correlation between the outcomes of measurements performed on the two
subsystems. Suppose Alice can measure the observable σz: this amounts to projecting
in the {|0〉 , |1〉} basis. If the outcome of Alice’s measurement is +1, Bob’s reduced state
immediately after Alice’s measurement becomes, according to the Born rule,

|ϕ〉〈ϕ|B = TrA
[
(|0〉〈0| ⊗ 1) |φ−〉〈φ−|

]
=

1

2
|1〉〈1|B (5.2)

so Bob’s measurement of σz would deterministically give outcome −1. The opposite
scenario occurs for the other outcome, meaning that the outcomes are perfectly anti-
correlated. On the other hand, if Alice measures in the σx basis, Bob’s system is in
one or the other |±〉 basis states, again deterministically, and the outcomes of Bob’s
measurements will be perfectly anti-correlated with Alice’s outcomes, even if the two
parties are in causally disconnected regions. Such anti-correlation is enabled by the
entanglement in the shared state and is removed when the shared state is a separable
one. This phenomenon was called steering by Schrödinger and reflects the non-local
nature of quantum mechanics. It is important to point out that such non-locality may
not be used for faster than light signaling, which may be proven as a corollary to
the no-cloning theorem [169]. The nonlocality of quantum correlations does not affect
causality. However, with the aid of classical communication between parties, important
technological applications are enabled by quantum nonlocality, such as self-testing [170],
randomness certification [171] and device-independent quantum key distribution [172].

A common goal of many quantum information tasks is that of certification of entan-
glement, which is one of the main resources bringing about quantum advantages. This
may be carried out by tomography, i.e. the reconstruction procedure of the density
matrix of a quantum state by means of the outcomes of measurements, or by means of
entanglement witnesses. Unfortunately, both are highly sensitive to systematic errors,
which may be extremely difficult if not impossible to remove to a satisfactory degree
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from actual experiments [173]. Furthermore, it is of crucial interest in quantum key
distribution and other cryptography protocols to assess the entanglement in a system
of communicating parties when a number of the parties, or the corresponding measure-
ments devices, are untrusted. This has sparked interest in a new approach at studying
quantum correlations, that of device-independent quantum information [35, 48]. The
main idea is somewhat of a reversal of the original EPR argument: assuming quantum
mechanics is correct, if one may not find any local theory describing the correlations
arising from measurements one needs to conclude that the state is entangled to a certain
degree [174].

In the Section 5.1 we review a formal introduction to the device-independent outlook
on entanglement certification and relate it to the concepts of steering and nonlocality.
Section 5.2 extends the concepts to the multipartite scenario. We introduce the noisy
totally antisymmetric tripartite state, which we want to investigate the quantum corre-
lation structure of, in Section 5.3. The quantum correlations of the state are compared
to the better known generalised GHZ and W states, and we compare the multipartite
entanglement, steering and nonlocality of the three in Sections 5.4, 5.5 and 5.6 respec-
tively. Finally, the hierarchy of quantum correlations for the states under consideration
is reported in Section 5.7.

5.1 Device-independent Bipartite Entanglement Certifica-
tion

We want to study the hierarchy of quantum correlations in the device-independent out-
look [35, 48, 174, 175] based on the ability to certify the entanglement of an unknown
state for given number of untrusted parties or, in other words, of uncharacterized mea-
surement devices [48]. In the bipartite case this amounts to investigating the following
three cases:

• Measurements of both parties are characterized. The task we investigate is that
of entanglement certification of an unknown state and it may be achieved, for
instance, by means of entanglement witnesses [34].

• Measurements of one party are uncharacterized. This is the steering scenario
[176], where one (trusted) party performs entanglement certification based on
the conditional states arising from the untrusted party and its own (trusted)
measurements.
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• Both parties’ measurements are uncharacterized. Those states for which entan-
glement may be certified solely based on the conditional probability distribu-
tions of outcomes of measurements, without any previous knowledge of the state
or assumptions about the measurement devices, are said to possess nonlocal-
ity [49, 176–178].

In the following sections we will summarize a few of the principal mathematical concepts
underlying the above three cases.

5.1.1 Entanglement witnesses

Entanglement is not an observable, so its experimental detection needs to rely on some
indirect measurement. In the case where both parties sharing a composite unknown
state have full control over their measurement devices the entanglement certification is
possible via measurement of physical observables [34]. There exist, in fact, necessary
and sufficient entanglement criteria in terms of directly measurable observables, called
entaglement witnesses [58,179–181]. An observableW is called an entanglement witness
if Tr(Wρsep) ≥ 0 for all separable ρsep and Tr(Wρe) < 0 for at least one entangled
ρe. Entanglement witnesses are a very powerful tool for the study of entanglement in
experiments and it is proven that for every entangled state there exists a witness which
detects it [58].

A simple example of entanglement witness is given by the swap operator V , intro-
duced in Chapter 2, detecting the entanglement of Werner states (sec. 4.4.3). A Werner
state may be written as

W =
1

d(d2)− 1

[
(d− Φ)1+ (dΦ− 1)V

]
∀Φ ∈ [−1, 1]. (5.3)

If a Werner state is a product state W = W1 ⊗W2 the expectation value of the swap
operator is positive,

Φ = Tr(WV ) = Tr(W1 ⊗W2V ) = Tr(W1W2) ≥ 0, (5.4)

and the same holds for convex combinations of product states. The extremal value
Tr(WV ) = 0 is reached for pure orthogonal states W1 and W2 and a Werner state
is separable iff Tr(WV ) ≥ 0. The swap operator may therefore detect an entangled
Werner state when its expectation value is negative [182].
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5.1.2 Steering

Our summary of the basic concepts of steering will loosely follow the review in [35].
Let us consider the case of two subsystems individually addressable by two parties,
Alice and Bob. The parties share an unknown bipartite quantum state ρAB on which
Alice may perform mA measurements labelled x = 1, ...,mA each having oA outcomes
a = 1, .., oA. This labelling will be implied throughout the sections covering steering.
The action of the measurements on the quantum state may be described in terms of
POVM elements {Ma|x}a,x acting on the Hilbert space HA, such that

∑
aMa|x = 1 and

Ma|x ≥ 0, ∀a, x. According to the Born rule, the conditional states available to Bob
after Alice’s measurements are given by the unnormalized operator

σa|x = TrA[(Ma|x ⊗ 1)ρAB] (5.5)

with probability
p(a|x) = Tr[(Ma|x ⊗ 1)ρAB]. (5.6)

The set of unnormalized quantum states ΣB = {σa|x}a,x is called an assemblage. In the
typical steering scenario the quantum state ρAB and Alice’s measurements {Ma|x}a,x
are completely uncharacterized, whereas Bob has full control of the measurements on his
subsystem and may fully reconstruct the elements of the assemblage ΣB. This scenario
is also called one-sided device-independent scenario.

Local Hidden State models

In order for Bob to certify entanglement between his subsystem and Alice’s, he needs to
rule out the possibility that the conditional states he observes can be described by a local
hidden state model, that is obtained with a strategy involving no quantum entanglement.
Consider the situation where an external source provides Alice with a classical message
λ with probability distribution µ(λ) and Bob with a corresponding quantum state ρλ,
unbeknownst by Bob. The source may instruct Alice, or her measurement apparatus, to
output the outcome a associated with Alice’s choice of measurement x, with probability
p(a|x, λ). Because the local variable λ is not known by Bob, the assemblage he has
access to is given by the elements

σa|x =

∫
dλµ(λ)p(a|x, λ)ρλ. (5.7)

The assemblages with elements of the form (5.7) are said to have a local hidden state
model (LHS) and do not enable Bob to certify the steering of his own subsystem on



114

behalf of Alice. On the other hand, an assemblage is said to demonstrate steering if it
does not admit a decomposition in the form (5.7). We may therefore put forward the
following definition of steering for a quantum state ρAB

Definition 5.1. The bipartite quantum state ρAB acting on the composite Hilbert
space HA⊗HB is called steerable from A to B if there exists measurements on HA that
produce an assemblage which does not admit a decomposition of the form (5.7).

On the contrary, states which produce assemblages admitting a decomposition (5.7)
for all local measurements by Alice are called unsteerable by Alice. It is worth noting
the asymmetry in the notion of steering. A state which is steerable from A to B is not
necessarily steerable from B to A and vice-versa. The case of states that are steerable by
one party but not the other is called one-way steering, whereas when they are steerable
by both parties we call the scenario two-way steering.

Steering and entanglement certification

We may now ask what is the relationship between the definition of steering 5.1 and
entanglement. An answer may be obtained by looking at the assemblages generated by
separable quantum states

ρsep
AB =

∫
dλµ(λ)ρλA ⊗ ρλB. (5.8)

The assemblages generated by Alice’s measurements on ρsep
AB are of the kind

σa|x = TrA[(Ma|x ⊗ 1)ρsep
AB] =

∫
dλµ(λ)Tr(Ma|xρ

λ
A)ρλB =

∫
dλµ(λ)p(a|x, λ)ρλB, (5.9)

which is of the same form as (5.7). It is manifest that separable states may only give rise
to LHS assemblages. Therefore, if Bob is able to prove steering from his assemblage, the
assemblage may have not originated from Alice’s measurement on a separable global
state ρsep

AB. Steering is a sufficient condition for entanglement in this instance. It is
not however necessary, since there are entangled states that produce always unsteerable
assemblages, independently of the choice of measurements of Alice [183]. We may thus
understand steering as a one-sided device-independent entanglement certification, where
one party (Bob) controls one subsystem of a global quantum state and the other party
(Alice) is untrusted, that is to say her measurements are uncharacterized.

5.1.3 Bell Nonlocality

As we have mentioned in the introductory paragraphs of this Chapter, the EPR scenario
opens to the possibility of studying Bell nonlocality of quantum systems. Typically, the
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understanding of nonlocality is carried out in terms of the correlations extracted from
measurements performed by parties which are space-like separated on a shared quantum
system. The main idea is that if there is no local theory describing the probabilities
associated with different measurement outcomes for the two parties, then one has to
conclude that nonlocality is present in the system. Furthermore, one may adopt a similar
approach to the steering scenario and interpret the correlations that exhibit nonlocality
to be the witness of entanglement between the subsystems. This is a powerful tool for
entanglement certification since it does not require any assumption or information about
the measurement devices for both parties, so it is called fully-device-independent [35,49].

For a comprehensive review of the concepts we will introduce now, the reader may
refer to [49]. We will base our study of nonlocality on the analysis of joint conditional
probability distributions p(ab|xy), where x, y label the measurement choice and a, b

the outcomes of the measurements by the distant parties Alice and Bob respectively,
which we may refer to as behaviours. The first requirement we need to impose on the
behaviours in order to make statements about the locality of the system is that of
no-signaling. A behaviour is said to be no-signaling if∑

b

p(ab|xy) =
∑
b

p(ab|xy′) ∀a, x, y, y′,∑
a

p(ab|xy) =
∑
a

p(ab|x′y) ∀a, x, x′, y. (5.10)

The physical interpretation of no-signaling correlations is that the marginal probabilities
pA(a|xy) =

∑
b p(ab|xy) of Alice are independent of Bob’s choice of measurement and

vice-versa. Bob may not signal to Alice his choice of measurement in any way, and
the other way round. If Bob and Alice’s measurements are space-like separated this is
equivalent to requiring no faster-than-light signaling between the two parties.

The locality of the behaviours is given by a stricter condition, however. The set of
local correlations are those given by

p(ab|xy) =

∫
dλµ(λ)p(a|x, λ)p(b|y, λ). (5.11)

where λ are hidden variables distributed according to the probability density µ(λ) and
where p(a|x, λ) and p(b|y, λ) are Alice and Bob’s local probability distributions, respec-
tively. Correlations which may not be written in the form (5.11) are said to be nonlocal
and to belong to the set of quantum correlations. Indeed, the no-signaling and locality
conditions are inequivalent and it has been proved that there exist states exhibiting no-
signaling correlations but violating the locality condition. An example of a behaviour
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which is not local albeit being non-signaling is given by the Popescu-Rohrlich box [184].
A nonlocal box is an idealized device shared between Alice and Bob which, given the
input x on Alice’s and y on Bob’s side, returns an output a and b respectively to each
party according to some probability distribution p(ab|xy). It describes a more general
set of behaviours than can be generated by measurements of parties on a quantum state.
The Popescu-Rohrlich box, also referred to as PR box, is given by

p(ab|xy) =

1
2 , if a⊕ b = xy

0, otherwise,
(5.12)

where ⊕ denotes addition modulo 2. The behaviour in equation (5.12) satisfies the
no-signaling condition, but not the locality one [49].

The no-signaling and local correlations have a powerful geometrical representation.
Represented in a vector space, the set of behaviours belonging to the no-signaling set
(NS) and local set (L) may each be described as the convex-hull of a finite number of
vertices, a polytope [185]. The vertices of the local polytope are given by the finite set of
deterministic behaviours. Consider an assignment λ : {a1, ..., am} → {b1, .., bm} between
the outputs ax and by associated with inputs x, y = 1, ...,m. Let dλ = {dλ(ab|xy)}
indicate the set of all the probabilities, i.e. the behaviour, dλ is a deterministic behaviour
if it can be written as

dλ(ab|xy) =

1, if a = ax and b = by

0, otherwise.
(5.13)

There are (oA)2m such behaviours and a behaviour pL is local if and only if it can be
expressed as a convex combination of these deterministic vertices

pL =
∑
λ

qλdλ, (5.14)

with qλ ≥ 0 and
∑

λ qλ = 1. The local deterministic behaviours thus correspond to
the vertices, or extreme points, of the local polytope L. The set of vertices of the non-
signaling polytope NS is instead given by the union of the vertices of L and the set of
nonlocal vertices, which are given by a generalization of PR boxes [49].

Any inequality which is satisfied by all elements of the local polytope, but not for
those outside of it is called a Bell inequality, the facets of this polytope being called
tight Bell inequalities.
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CHSH inequality

A notable example of bipartite Bell inequality is given by the Clauser-Horne-Shimony-
Holt (CHSH) inequality [63]. The inequality applies to the case of two measurement
settings x, y ∈ {0, 1} and two possible outcomes a, b ∈ {−1, 1}. Consider the expectation
values

〈axby〉 =
∑
a,b

abp(ab|xy) (5.15)

for the product ab and the Bell parameter

S = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 . (5.16)

By inserting the locality condition (5.11) for the behaviours p(ab|xy) in equation (5.16),
one may derive [49] the following Bell inequality

S ≤ 2, (5.17)

called CHSH inequality. We may show a violation of the CHSH inequality for the
singlet state |ψ−〉 = 1√

2
(|0〉 |1〉− |1〉 |0〉). Consider the Pauli vector σ̄ = (σx, σy, σz) and

measurement x and y corresponding to x̄ · σ̄ and ȳ · σ̄ respectively, such that 〈axby〉 =

−x̄ · ȳ. As measurement settings let x correspond to projecting in the orthogonal
directions v̄1 = (1, 0, 0) and v̄2 = (0, 1, 0), whereas y projects in w̄1 = − 1√

2
(1, 1, 0) and

w̄2 = 1√
2
(−1, 1, 0). The expectation values for the product of the outcomes now read

〈a0b0〉 = 〈a1b0〉 = 〈a0b1〉 =
1√
2

〈a1b1〉 = − 1√
2
, (5.18)

so that S = 2
√

2 > 2 and the CHSH inequality is violated. This example is paradigmatic
in showing the power of Bell inequalities at detecting the nonlocal behaviour of quantum
systems.

5.2 Device-Independent Multipartite Entanglement Certi-
fication

Entanglement certification in the multipartite case presents a much richer structure
than the bipartite case. In the first instance, as discussed in section 1.1.2, there are
several inequivalent notions of entanglement that one may wish to detect. Furthermore,
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in the device independent outlook, one needs to account for the increasing number of
different possible combinations of trusted and untrusted parties. We discuss some known
approaches to the matter in the following sections.

5.2.1 Genuine multipartite entanglement witnesses

The detection of genuine multipartite entanglement can be thought of as the problem
of disproving the existence of a biseparable decomposition for the composite state [34].
For arbitrary mixed states, however, there is still no general result that allows to prove
or disprove the existence of a biseparable decomposition [186]. A typical approach to
overcome this problem is that of testing for decompositions of PPT states, or in other
words checking whether the state is described by a PPT-mixture (sec. 1.1.2) or not, the
set of which may be fully characterised by means of semidefinite programming [72,73].
It was in fact proven that the non-existence of such a decomposition for a mixed state ρ
is equivalent to the existence of a witnessW detecting the entanglement by virtue of the
property Tr(Wρ) < 0. Such witness is called fully-decomposable and its structure is such
that for every bipartition M |M̄ of a subsystem M and its complement M̄ , the operator
may be written as W = PM +QΓM

M , where PM and QM are positive operators [72, 73].
The following SDP, introduced in reference [72], returns a decomposable witness for

a PPT-mixture, if it exists, and is a quantifier of genuine multipartite entanglement:

NGM(ρ) = −min Tr(ρW)

subject to : W = PM +QΓM
M ,

0 ≤ PM ≤ 1

0 ≤ QM ≤ 1 for all bipartitionsM. (5.19)

This measure quantifies the entanglement of states which are not PPT-mixtures, how-
ever it is unable to detect the entanglement of states which are PPT-mixtures but not
biseparable.

5.2.2 Multipartite steering

In the multipartite steering scenario it is a hard task to make general statements for
any number of parties, so we will focus here in describing the tripartite case, for it
showcases the main departures from the bipartite description and the main additional
features arising by adding parties to the scenario. The three parties are called Alice,
Bob and Charlie and we will assume they each have their own individually addressable
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subsystem, so the total Hilbert space is given by HA⊗HB ⊗HC . We assume again for
simplicity that they each have the same local dimension d.

In analogy with the bipartite case, the steering of the global quantum state may be
thought of as entanglement certification in presence of a number of untrusted parties.
As discussed in Chapter 1, however, the multipartite case presents two different notions
of separability or entanglement. Let us briefly recall such notions. A tripartite quantum
state is fully-separable if it can be written in the form

ρFS
ABC =

∫
dλµ(λ)ρAλ ⊗ ρBλ ⊗ ρCλ . (5.20)

A multipartite state which is not fully separable is called multipartite entangled. There
are states, however, in which two subsystems are entangled, the global state may be
written as a convex combination of states which are separable in one bipartition. The
states in this class are called bi-separable and may be written as

ρBS
ABC = pAρ

sep
A|BC + pBρ

sep
B|AC + pCρ

sep
C|AB =∫

dλµ(λ)ρAλ ⊗ ρBCλ +

∫
dνµ(ν)ρBν ⊗ ρACν +

∫
dωµ(ω)ρCω ⊗ ρABω (5.21)

where ρsep
X|Y Z is a state which is separable in the partition X|Y Z. States which are

not biseparable are called genuinely multipartite entangled. It is clear that states which
are genuinely multipartite entangled are also multipartite entangled, but the converse
is not always true. From the steering perspective, an additional possibility compared
to the entanglement scenario is that of having two parties collaborating in steering the
assemblage of the third, as opposed to the case when one party steers the assemblage
of the other two. We may label the two scenarios by the number of parties whose
local measurements are uncharacterized, calling them respectively one untrusted party
scenario and two untrusted parties scenario.

One untrusted party

Let us now look at the structure of assemblages generated by fully separable and bisep-
arable states in the case of one untrusted party, which we may call one-to-two steering
scenario. Assuming Alice is performing measurements {Ma|x}a,x on a fully separable
state, we have the assemblage

σBCa|x = Tr
[
(Ma|x ⊗ 1⊗ 1)ρFS

]
=

∫
dµ(λ)p(a|x, λ)ρBλ ⊗ ρCλ , (5.22)
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for Bob and Charlie, where p(a|x, λ) = Tr(Ma|xρ
A
λ ). The above is the structure of

a multipartite LHS assemblage between Alice and the composite system Bob-Charlie.
We refer to this as the fully-separable case (FS) of entanglement certification with one
untrusted party.

The assemblages arising from measurements on bi-separable states are instead given
by [35]

σBCa|x = Tr
[
(Ma|x ⊗ 1⊗ 1)ρBS

]
=

∫
dνµ(ν)p(a|x, ν)ρBCν +

∫
dλµ(λ)ρBλ ⊗ σCa|x,λ

+

∫
dωµ(ω)σBa|x,ω ⊗ ρ

C
ω , (5.23)

where σa|x,λ = Tr[(Ma|x ⊗ 1)ρACλ ]. Assemblages which do not admit a decomposition
of the kind (5.23) are said to possess genuine multipartite steering. We refer to this as
the biseparable case (BS) of entanglement certification with one untrusted party.

Two untrusted parties

In the scenario of Alice and Bob steering Charlie’s assemblage (two-to-one steering) via
local measurements on a fully separable state we have

σCab|xy = Tr
[
(Ma|x ⊗Mb|y ⊗ 1)ρFS

]
=

∫
dµ(λ)p(a|x, λ)p(b|y, λ)ρCλ , (5.24)

where p(b|y, λ) = Tr(Mb|yρ
B
λ ). For the biseparable case, instead, the assemblage takes

on the form

σCab|xy = Tr
[
(Ma|x ⊗Mb|y ⊗ 1)ρBS

]
=

∫
dνµ(ν)p(a|x, ν)σCb|y,ν

+

∫
dλµ(λ)p(b|y, λ)σCa|x,λ +

∫
dωµ(ω)p(ab|xy, ω)ρCω . (5.25)

The following section gives a brief overview of the computational techniques which allow
the evaluation of multipartite and genuine multipartite steering. An approximate, yet
arbitrarily accurate, version of the task may be solved numerically via semidefinite
programming [35].

5.2.3 Multipartite steering testing with Semidefinite Programs

The task of testing the membership of assemblages to the classes defined in section
5.2.2 is not a trivial one. Since being able to certify steering requires being able to
exclude that all possible decompositions of an assemblage may not be of the LHS kind,
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this is a task that may only be carried out analytically in few cases [187]. Fortunately,
an approximate but converging version of this problem may be cast as a semidefinite
program (section 1.2).

In this section we will follow along the lines of the review paper [35] in order to
show how the device-independent entanglement certification may be formulated as an
instance of a semidefinite program (SDP).

SDPs for entanglement certification with one-to-two steering

The separability of a state may not be expressed as a set of linear equations, so it
may not be enforced as a constraint in an SDP. However, one may restrict the set
of optimization variables to a class of states that provides a good approximation of
the separable set and may be fully characterised in an SDP. This is the case for states
possessing a k-symmetric PPT extension (KSE) introduced in reference [188], which are
defined as those states ρAB such that exists σAB1...Bk

, invariant under permutations of
the Bi subsystems, with the properties TrB2...Bk

(σAB1...Bk
) = ρAB and (σAB1...Bk

)ΓB1...Bl

for l = 1, .., k. In [188] it was shown that a state is separable if and only if it possesses
a KSE for all k. Therefore, membership to the class of states having a KSE for fixed k
is a necessary condition for separability and membership to the class may be tested for
with SDP [35]. The case k = 1 simply tests for PPT-ness in the case of fully-separable
states and for PPT-mixtures in the case of biseparable states.

In the case of fully-separable states it was noted that p(a|x, λ) in equation (5.22)
can be expressed as

p(a|x, λ) =

Ndet∑
ν=1

p(ν|λ)D(a|x, ν), (5.26)

where D(a|x, ν) are the elements of the set of deterministic behaviours. There are
Ndet = omA

A possible elements of the latter, and they may be given byD(a|x, λ) = δaλ(x),
where λ : {0, ...,mA} → {0, .., oA}. Therefore, the structure of the assemblages in
equation (5.22) with a multipartite LHS model may be written in the simpler form

σa|x =

Ndet∑
λ=1

D(a|x, λ)ρBλ ⊗ ρCλ , (5.27)

which significantly simplifies the expression of LHS assemblages, passing from one ex-
pressed in terms of an integral over unknown probability distributions to a finite sum
of fixed deterministic behaviours.
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A multipartite steering test in the one-sided device-independent scenario may be
thus expressed as the SDP:

given {σBCa|x }ax, k

find {σBCλ }λ (5.28)

s.t.
∑
λ

D(a|x, λ)σBCλ = σBCa|x ∀a, x,

{σBCλ } ∈ ΣBC
k−sym,

where each member of the LHS model is tested for membership to the set ΣBC
k−sym

of states possessing a k-symmetric extension, rather than the set of separable states.
The test is inconclusive if the SDP admits a feasible solution, but certifies multipartite
steering if it fails for a given k.

With analogous considerations, in [35] it was shown that for genuine multipartite
steering testing instead we have the following more complicated expression for the
semidefinite program:

given {σBCa|x }ax, k

find {σBCµ }µ, {πBCa|x }ax, {π
C
ν }ν , {γBCa|x }ax, {γ

B
λ }λ (5.29)

s.t.
∑
µ

D(a|x, µ)σBCµ + πBCa|x + γBCa|x = σBCa|x ∀a, x,

trB[πBCa|x ] =
∑
ν

D(a|x, ν)πCν ∀a, x,

trC [γBCa|x ] =
∑
λ

D(a|x, λ)γBλ ∀a, x,

{πBCa|x } ∈ ΣBC
KSE , {γBCa|x } ∈ ΣBC

KSE ,

σBCµ ≥ 0 ∀µ, πCν ≥ 0 ∀ν, γBλ ≥ 0 ∀λ.

Let us break down the above complicated expression in terms of the three addends
of the right hand side of equation (5.23), following the logic in reference [189]. The
first term has the same structure as equation (5.22) and is therefore enforced with an
analogous expression to the one in SDP (5.28).

The second term is characterised by two main features. First, it does not demon-
strate steering from A to B, therefore the partial trace over subsystem C leaves B
an assemblage which is LHS with respect to A. This is enforced in SDP (5.29) in
terms of the decomposition in terms of local deterministic behaviours trB[πBCa|x ] =∑

ν D(a|x, ν)πCν ∀a, x. Second, it is separable, the condition of which may be replaced
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in the SDP with the possession of a KSE {πBCa|x } ∈ ΣBC
KSE . The third term is identical

to the second with the interchange of the B and C subsystem labels.
If the test fails for a given k, the assemblage is proven to demonstrate genuine

multipartite steering. Again, no conclusion can be drawn about the genuine multipartite
steering of the assemblage if the test is successful.

SDPs for entanglement certification with two-to-one steering

The case of fully-separable states is relatively easy to implement, similarly to the one-
untrusted-party case:

given {σCab|xy}abxy

find {σCµν}µν (5.30)

s.t.
∑
µν

D(a|x, µ)D(b|y, ν)σCµν = σCab|xy ∀a, b, x, y,

σCµν ≥ 0 ∀µ, ν.

Here, the locality condition for the behaviour in equation (5.24) is expressed in terms
of the deterministic behaviours D(a|x, µ) and D(b|y, ν) for A and B respectively [189].

The formulation of the membership problem as an SDP in the biseparable case of
two untrusted parties has additional requirements to take into account. The behaviours
p(ab|xy, ω) in equation (5.25) need to be tested to belong to the set of possible quantum
correlations (discussed in section 5.1.3). This is hard problem in general, which may be
simplified to approximate solutions [190] relying on the identification of all the vertices
of the no-signaling polytope (sec. 5.1.3). The number of such vertices increases very
rapidly with the size of the system, for instance, there are 53856 vertices in the no-
signaling polytope for three qubits [191]. Such large numbers of constraints pose a
computational challenge for the solution of SDPs and will not be discussed here.

5.2.4 Multipartite Bell nonlocality

The main ideas in defining multipartite Bell nonlocality consist of a natural generaliza-
tion of the bipartite case [49]. A no-signaling polytope in the tripartite case has defining
property ∑

c

p(abc|xyz) =
∑
c

p(abc|xyz′) ∀a, b, x, y, z, z′, (5.31)
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and permutation of the other parties. Similarly, local correlations must have a decom-
position

p(abc|xyz) =

∫
dλµ(λ)p(a|x, λ)p(b|y, λ)p(c|z, λ). (5.32)

Nonetheless, in the same sense as entanglement and steering, the nonlocality may be
present between a subset of the parties or among all of them. The first such notion of
genuine multipartite nonlocality was introduced by Svetlichny [192], wherein behaviours
that can not be written in the form

p(abc|xyz) =

∫
dλq(λ)pλ(ab|xy)pλ(c|z)

+

∫
dµq(µ)pµ(bc|yz)pµ(a|x)

+

∫
dνq(ν)pν(ac|xz)pµ(b|y), (5.33)

with
∫

dλq(λ) +
∫

dµq(µ) +
∫

dνq(ν) = 1, are said to be 3-way nonlocal or genuinely
tripartite nonlocal. The convex combinations in the form of equation (5.33) describe
states where only two parties share a nonlocal resource (or signal for every measurement
run) and are called 2-way nonlocal or bilocal. Refinements of condition (5.33) have been
put forward to define stronger forms of nonlocality, a discussion of which may be found
in [49].

Different Bell inequalities may test for the different definitions of locality in the
multipartite scenario. Let us consider the specific case of three subsystems, each of
which is subject to one of two measurements: A and A′ for subsystem 1, B and B′

for subsystem 2, C and C ′ for subsystem 3. We indicate by E(ABC) the correlation
function representing the expectation value of the product of the measurement outcomes
of observables A, B and C. An inequality which holds for local behaviours of the form
(5.32) is given by the Mermin inequality [193]

|M | = |E(ABC) + E(AB′C) + E(A′BC)− E(A′B′C ′)| ≤ 2. (5.34)

On the other hand, Svetlichny [192] derived an inequality for bilocal behaviours
(5.33), testing for genuinely tripartite nonlocality. The inequality is given by

|SV | = |E(ABC) + E(ABC ′) + E(AB′C) + E(A′BC)

− E(A′B′C ′)− E(A′B′C)− E(A′BC ′)− E(AB′C ′)| ≤ 4, (5.35)

which is referred to as Svetlichny inequality. An example of the difference between a
local and a bilocal behaviour is given by performing local measurements on a three-qubit
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GHZ state
|GHZ〉 =

1

2
(|000〉+ |111〉). (5.36)

It was shown in [194,195] that for certain local measurements the Mermin inequality is
violated, but not the Svetlichny inequality, meaning that the associated behaviours are
bilocal albeit exhibiting nonlocality. Different measurement settings applied to the GHZ
state, however, generate behaviours that may violate both the Mermin and Svetlichny
inequality, and therefore exhibit genuine tripartite nonlocality. This is a useful reminder
that nonlocality is not a property of quantum states, but probability distributions, and
thus depends on how the probabilities are generated.

From the device-independent perspective, the violation of a Bell inequality by a given
behaviour, which does not require any characterization of the measurement devices that
generate it, certifies the notion of entanglement which the Bell inequality is derived for.
In other words, if a Bell inequality holds for local behaviours, its violation certifies
entanglement, if it holds for bilocal behaviours, a violation implies genuine multipartite
entanglement.

In the following, we recall a tripartite Bell inequality for systems of 3 qutrits aimed
at detection of tripartite (not genuine tripartite) nonlocality. We refer to it according
to its original authors’ nomenclature: coincidence Bell inequality [175].

Coincidence Bell Inequality

We review here a Bell inequality for the three qutrit case introduced in [175]. The
inequality applies to a specific Bell scenario. Three parties with individually addressable
subsystems, Alice, Bob and Charlie; have access to two measurement settings each with
three possible outcomes. The outcomes {ai, bj , ck}i,j,k=1,2 are labelled according to the
measurement setting 1 or 2 chosen by the respective party. An inequality which is valid
only for tripartite local behaviours is given by:

S =p(a1 + b1 + c1 = 0) + p(a1 + b2 + c1 = 1) + p(a2 + b1 + c2 = 1)

+ p(a2 + b2 + c1 = 1) + p(a2 + b2 + c2 = 0)− p(a2 + b1 + c1 = 2)

− p(a1 + b2 + c1 = 2)− p(a1 + b1 + c2 = 2) ≤ 3, (5.37)

where
p(ai + bj + ck = r) =

∑
a,b=0,1,2

p(ai = a, bj = b, ck = r − a− b) (5.38)
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and all equalities within the behaviours are to be intended as modulo three. The
inequality was derived to probe the nonlocality of the state

|GHZ〉 =
1√
3

(|000〉+ |111〉+ |222〉), (5.39)

which can be thought of as the generalization to the tripartite case of the maximally
entangled two qutrit state, as well as of the three-qubit Greenberger–Horne–Zeilinger
(GHZ) state

1√
2

(|000〉+ |111〉). (5.40)

Acín et al. [175] show a violation of inequality (5.37) for a specific class of measure-
ments, representing unbiased symmetric three-port beam splitters [196,197], where each
subsystem represents a port of the beam splitter. Each party has access to a local mea-
surement setting given by the phase shift applied to the state an the input end of each
port. These measurements can be labelled by the choice of two phases characterising
a three-component phase vector ϕ̄ = (0, φ, φ′), where φ and φ′ represent the two mea-
surement settings available to the three parties. The measurements are given by the
unitary transformation M(ϕ̄), whose matrix elements are given by

[M(ϕ̄)]jk =
1√
3

exp
{2πi

3
(j − 1)(k − 1)

}
eiϕ(j−1) . (5.41)

for all j, k = 0, 1, 2.
We will apply measurements (5.41) and inequality (5.37) to probe the nonlocality

of the noisy totally antisymmetric tripartite state, which we introduce in the following
section.

5.3 Totally Antisymmetric State

The totally antisymmetric state is an interesting multipartite quantum state for quan-
tum information processing. It has been shown to have possible applications in QKD,
quantum state sharing and state discrimination [198], as well as being a useful theoret-
ical tool, for instance as a counterexample for monogamy relation conjectures [199].

The dimension of the antisymmetric subspace A (Section 2.3) for a system of N
qudits is

(
d
N

)
[93], meaning it has nontrivial support only if d ≥ N . In particular, when

N = d, A is one-dimensional and is spanned by the totally antisymmetric state∣∣∣ψ(N)
A

〉
=

1

N !

∑
π∈Sn

(−1)sgn(π) |π(i1)〉 ... |π(iN )〉 , (5.42)
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where the sum runs over all the permutations of the indices associated with the orthonor-
mal basis {|i〉}d−1

i=0 of H = Cd. Being the antisymmetric subspace one-dimensional, we
may express the projector on the antisymmetric subspace as the density operator asso-
ciated with the pure state

∣∣∣ψ(N)
A

〉
,

P
(N)
A =

∣∣∣ψ(N)
A

〉〈
ψ

(N)
A

∣∣∣ . (5.43)

We may list some of the properties of
∣∣∣ψ(N)
A

〉
[198]. Given

∣∣∣ψ(N)
A

〉
, for all single-

subsystem unitary operators U ∈ H we have U⊗N
∣∣∣ψ(N)
A

〉
=
∣∣∣ψ(N)
A

〉
. Furthermore, it is

the only pure state with this property [200, 201]. In addition to this, it is completely
determined by its two-party reductions. Every two-party reduced density matrix of the
totally antisymmetric state is proportional to PA(N), the projection on the two-quNit
antisymmetric subspace [201].

In this chapter we wish to determine the hierarchy of the quantum correlations for
the tripartite totally antisymmetric state and its relationship to external noise. We will
address the entanglement, steering and nonlocality properties, both in the bipartite and
genuinely multipartite case and study the robustness of the state’s applications when
subject to white noise.

Our aim is to explore the multipartite quantum correlations for the totally antisym-
metric state from a device-independent perspective. In particular, we are interested in
the aspect of entanglement certification when a given number of parties is untrusted,
investigating how much white noise may be added to the state before no entanglement
may be detected. If all three parties are trusted, they may each be assumed to have
full control on the measurements performed on their respective subsystem of the total
quantum state. Given enough measurements, the parties may perform a full quantum
tomography and reconstruct the total quantum state. The certification of entanglement
in this case may be carried out by means of standard entanglement criteria and mea-
sures. Because there are different notions of entanglement in the multipartite setting, in
the three-partite case, specifically, we are interested in confronting the fully-separable
and biseparable case, the partitioning being symmetric owing to the target state’s sym-
metry.

When one of the parties is untrusted we are in the one-sided device-independent
scenario. Due to the symmetry of the system the steering properties are independent
on which of the parties performs the measurements. Without loss of generality, we will
consider only the case when Alice steers the Bob-Charlie composite subsystem. Further-
more, we will see that the steering assemblages σBCa|x generated by Alice’s measurements
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are independent (up to local unitary transformations) of the choice of measurement
settings, however the number of measurements does affect the ability of Bob-Charlie to
detect entanglement. In this scenario we will assume that Bob and Charlie have full
control of their measurements and are capable of reconstructing the elements of their
assemblage. The membership of the σBCa|x assemblages may be then assessed by means
of semidefinite programs (SDPs) (as illustrated in section 5.2.2). In particular, there
are two distinct SDPs which may be employed to test respectively the bipartite and
genuinely multipartite entanglement of the global quantum state.

When two parties are untrusted, again due to symmetry we may only focus on the
case when Alice and Bob steer Charlie’s subsystem. We are in the two-sided device-
independent scenario. It is Charlie alone in this case which has full control of his
measurements and may reconstruct the elements of the assemblage σCab|xy he is provided
with as a result of Alice and Bob’s measurement outcomes. Again, the membership
of σCab|xy may be assessed via SDPs. As discussed in section 5.2, the SDP assessing
biseparability in the two-sided device-independent scenario implies some difficulties in
individuating the correlations between Alice and Bob, so in this work we will focus on
full separability.

Finally, when none of the parties are trusted we are in the situation of a multipartite
Bell test. This is usually referred to as the totally device-independent scenario. None
of the parties’ local measurements are characterized, but we are simply provided with
the behaviours p(abc|xyz) and need to assess whether they may be described by a
deterministic local hidden variable model (LHV) [49]. This may be done by putting
forward a multipartite Bell inequality which is satisfied by all behaviours in the set of
LHV correlations, but not by those outside of it. If the violation of such a Bell inequality
may be established, we may certify the presence of entanglement in the system. There
may be different Bell inequalities for certifying multipartite and genuinely multipartite
entanglement.

From the perspective of device-independent entanglement certification, it is worth
pointing out the inequivalence of entanglement, steering and nonlocality [177]. In par-
ticular, there are states which are entangled but do not exhibit steering and states which
are steerable but show no nonlocality. For the purpose of device-independent entan-
glement certification thus, showing that an assemblage or a behaviour lacks a LHS or
LHV model does not certify the separability of the global quantum state. Only when
one finds a steerable assemblage, or violates a Bell inequality may one make conclusive
statements about the presence of entanglement.

Another point worth stressing is that the entanglement certification may be con-
sidered as device-independent even if specific measurements are used to generate the
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assemblages and behaviours. In fact, each assemblage (or behaviour) is the result of ap-
plying some measurements, but the (semi)device-independent analysis of the resulting
assemblage (or behaviour) does not depend on the knowledge of that measurement.

Antisymmetric, GHZ and W states

Our main goal for this chapter is to investigate the quantum correlation hierarchy for
the totally antisymmetric tripartite state,

|ψA〉 =
1√
6

(|012〉+ |120〉+ |201〉 − |102〉 − |021〉 − |210〉) . (5.44)

We will confront the quantum correlations of the state (5.44) with that of the generalised
GHZ state

|ψGHZ〉 =
1√
3

(|000〉+ |111〉+ |222〉) (5.45)

and the totally symmetric generalised W state

|ψW 〉 =
1√
6

(|012〉+ |120〉+ |201〉+ |102〉+ |021〉+ |210〉) , (5.46)

which have already been studied in the literature [35, 72]. Specifically, we will address
the robustness to white noise of the quantum correlations by studying the state

ρA = (1− p) |ψx〉〈ψx|+ p1/27, (5.47)

where |ψx〉 is either the totally antisymmetric, GHZ or W state. We will indicate with
p∗ the maximum noise threshold within which the entanglement certification is possible
with a given measurement scheme and compare values obtained for the antisymmetric
state to the GHZ and W cases. Such resistance to noise parameter, which specifies
the amount of white noise to be added to a quantum state so that its nonclassical
correlations are lost, is regarded as a measure of the strength of quantum correlations
[175,202]. In the following sections we will refer to p∗ as noise robustness.

5.4 Multipartite Entanglement Certification and Noise Ro-
bustness

In evaluating the entanglement of the noisy totally antisymmetric state we need to take
into account the different notions of entanglement applicable to multipartite systems.
In the device-independent outlook on entanglement certification the task corresponds
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to the scenario when all three parties have full control of the measurement devices and
are capable of fully reconstructing the density operator of the global quantum state,
performing full quantum tomography.

Bipartite entanglement

As far as bipartite entanglement is concerned, due to the symmetry of the state (5.47)
it is sufficient to consider the entanglement in the partition of any one subsystem versus
the remaining two. The quantification of bipartite entanglement maybe carried out
via established entanglement measures. We will apply entanglement negativity, since
it applies to both pure and mixed states and presents a straightforward generalization
to the multipartite case. Such is genuine multipartite negativity (introduced in Section
1.1.2), which is likewise based on the PPT criterion and may be evaluated by means of
semidefinite programming [72,73].

It is worth noting that the notions of entanglement and genuine entanglement coin-
cide for pure states with fixed permutation symmetry, meaning that exchange-symmetric
states which are entangled are also genuinely multipartite entangled [73]. Our case pro-
vides an example that the converse is not true for mixed states.

We begin by noting that the state (5.47) is of the form presented in (1.8), whose
separability may be characterised analytically. We recall that the random robustness of
the pure state |ψx〉 is given by

R(ψx‖1/(d1d2)) = d1d2

√
λ1λ2, (5.48)

where d1, d2 are the local dimensions of the subsystems and
√
λ1,
√
λ2 are the largest

and second largest coefficients respectively in the Schmidt decomposition of |ψx〉. If
we consider the entanglement between one subsystem of our tripartite state and the
composite subsystem given by the other two, we have d1 = 3 and d2 = 32 = 9. For
the three states (5.44), (5.45) and (5.46) under investigation, the Schmidt coefficients
are {1/

√
3, 1/
√

3, 1/
√

3}, therefore we have R(ψx‖1/27) = 9. The comparison between
(5.47) and (1.8) allows to characterise as separable the states of class (5.47) with p =

s/(s+1) ≥ pE ≡ 9/10. The totally antisymmetric, GHZ and W states therefore display
a noise robustness of 90%.

We may check that the separability region coincides with that which satisfies the
PPT criterion by calculating the entanglement negativity for the three states. We
apply the SDP (1.25) for bipartite negativity to do so. The optimal value of the SDP
for entanglement negativity as a function of the noise parameter p is reported in Figure
5.1 and is the same for the three states. It is worth noting that the PPT criterion for
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these states detects entanglement up to the maximum noise threshold obtainable by
looking at separability. This means that the class of states we are considering does not
contain any PPT-entangled states for any bipartition.
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Figure 5.1: Bipartite negativity for the antisymmetric, GHZ and W
state as a function of the noise parameter p.

The characterisation of biseparability may not be carried out in the terms we dis-
cussed separability for the class of states (5.47). We may however investigate in which
regime the states are a PPT-mixture in terms of the decomposable witness discussed
in section 1.1.2. We may apply the SDP in (5.19) in order to obtain a quantification of
genuine multipartite negativity (GMN) for the totally antisymmetric state and compare
it with that of the better known GHZ and W states. When the SDP returns a nonzero
value for the GMN the state is certified to be genuinely multipartite entangled, however
if it returns zero we may not exclude that the state is biseparable, only that it is not a
PPT-mixture.

The noise threshold for detection of bi-PPT-ness does not coincide in the three
states, yielding values of p = pGMN

A = 0.8 for the antisymmetric state, p = pGMN
GHZ = 0.75

for the GHZ state and p = pGMN
W = 0.77 for the W state. A comparison of the values of

GMN for the three cases as a function of the noise parameter is reported in Figure 5.2.
Albeit for a small amount, the totally antisymmetric state shows a better robustness
to white noise for detection of genuine multipartite entanglement, a feature which may
be crucial in attempts to push the limits of application of multipartite quantum states.
It is interesting to notice that there is a difference between the noise threshold for
bipartite and genuinely multipartite entanglement, that is in the range [pGMN

x , pE ], for
x = A,GHZ,W , where the state is entangled but can be written as a PPT-mixture.
Furthermore, it is remarkable of these states to exhibit genuine entanglement between
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Figure 5.2: Genuine multipartite negativity for the antisymmetric,
GHZ and W state as a function of the noise parameter p.

all three parties for noise levels up to 80%.

5.5 Multipartite Steering and Noise Robustness Lower Bounds

We wish to study the steering properties of the totally antisymmetric tripartite state
with added white noise, as a function of the noise parameter p. In particular, we are
interested in uncovering the maximum level of noise the system may endure and still
exhibit steering.

To do so we need to choose the set of measurements {Ma|x}a,x acting on HA which
generate the assemblage. A typical choice is given by mutually-unbiased bases (MUBs),
which are the optimal measurements for detecting correlations in many settings [35].
Two orthonormal bases {|ai〉}di=1 and {|bj〉}dj=1 are called mutually unbiased if

| 〈ai|bj〉 |2 =
1

d
∀i, j = 1, ..., d. (5.49)

The name mutually unbiased is owed to the fact that when a measurement is carried
out in a basis unbiased to that in which the state was prepared, its outcome is random.

5.5.1 Multipartite and genuinely multipartite steering of the noisy
totally antisymmetric state with one untrusted party

In this section we compare the multipartite steering properties for the totally antisym-
metric, generalised GHZ and W states.
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We begin by studying the steering properties in the simple two-qubit case. The
two-qubit totally antisymmetric noisy state is given by

ρ(p) =
p

4
1+ (1− p)

∣∣φ−〉〈φ−∣∣ , (5.50)

where |φ−〉 = (|0〉 |1〉 − |1〉 |0〉)/
√

2. In the two-qubit case, this is also the equivalent of
a GHZ and W state. In [176] it is shown for this state to be steerable when p < 1/2.
For two qubits steering and entanglement coincide, but this may be shown not to be
the case for bipartite scenarios with larger local dimension [177].

In the tripartite case of three qutrits, we construct the assemblages based on mea-
surements in mutually unbiased bases, of which there are four with a local Hilbert space
of dimension 3. The assessment of the membership of the assemblages is carried out
by means of the SDP in (5.28) for multipartite steering and of the SDP in (5.29) for
genuine multipartite steering. As mentioned in Section 5.2.2 the formulation in terms
of SDPs may only test for the membership of assemblages based on the k-symmetric
extension criteria. However, we have shown in the analysis of multipartite entanglement
in section 5.4, that the noise threshold for PPT-ness and separability coincides for the
states under consideration. Therefore, increasing k does not bring about any differences
in the membership of the steering assemblages. We will thus present the results of SDPs
for the case k = 1.

The comparison of the steering noise robustness for the antisymmetric, GHZ and W
states is reported in Figure 5.3 and Table 5.1. The first feature we may observe is that
the noise thresholds in the fully-separable case are larger than those of the biseparable
case for any number of measurements and for all states. The gap between the two values
reflects the ability of the Bob-Charlie composite subsystem to exclude that their assem-
blage comes from a fully separable state but without certifying genuine multipartite
entanglement. It is a showcase example of the difference in the multipartite scenario
between entanglement and genuine entanglement certification. With our choices for Al-
ice’s measurements, entanglement may still be certified for noise levels up to 83%, in the
case of the antisymmetric state, whereas genuine entanglement goes undetected at con-
sistently lower levels of noise, with a maximum of 65%. Another interesting feature is
that the biseparable threshold is strongly more affected by the number of measurements
than the fully-separable case. Whereas in the fully separable case going from two to four
measurements brings about a maximum increase of at most 5%, in the biseparable case
the differences are more pronounced. Passing from two to four measurements, in fact,
increases the noise threshold by about 20%. The antisymmetric state appears to be the
choice with the overall best robustness to noise, albeit not by more than 10%, both in
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Figure 5.3: Noise robustness p∗ of entanglement certification in the
fully-separable (FS, squares) and biseparable (BS, diamonds) cases ver-
sus number of measurements by the untrusted party for the totally an-
tisymmetric ψA (A), GHZ (B) and W (C) states. The number of mea-
surements strongly affects the certification in the biseparable case, which
exhibits overall weaker noise robustness compared to the fully-separable
case. The antisymmetric state is the best performing in both schemes.

FS
mA ψA GHZ W
2 0.81 0.74 0.81
3 0.82 0.78 0.82
4 0.83 0.78 0.82

BS
mA ψA GHZ W
2 0.49 0.48 0.48
3 0.58 0.56 0.56
4 0.65 0.6 0.6

Table 5.1: Tabulated values of noise robustness p∗ for the totally anti-
symmetric ψA, GHZ and W state for different number of measurements
of the untrusted party mA in the fully-separable (FS) and biseparable

(BS) cases.

the fully-separable and bi-separable case. This confirms it as a very promising candidate
for bringing about significant quantum enhancements in quantum information tasks.

Additional insight that we may infer from these results is the dramatic increase
in noise robustness moving from the two qubit case to the three qutrit one. The noise
threshold moves from 50% to 80% in the fully-separable case, and even the more delicate
genuine multipartite entanglement outperforms to the two-qubit case with three or more
measurements.
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5.5.2 Multipartite steering of the noisy totally antisymmetric state
with two untrusted parties

In the two-untrusted party scenario we will focus on the fully-separable case and com-
pare the noise robustness for the different states and increasing number of measurement
settings. The results obtained by applying the SDP in 5.30 are reported in Figure 5.4
and Table 5.2.
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Figure 5.4: Noise robustness of entanglement certification in the fully-
separable case versus number of measurements by the two untrusted
parties for the totally antisymmetric, GHZ and W states. In this case
the number of measurements strongly affects the certification in the fully-
separable case too. Again, the antisymmetric state achieves the highest

noise robustness.

mA ψA GHZ W
2 0.47 0.38 0.48
3 0.6 0.57 0.58
4 0.65 0.57 0.64

Table 5.2: Tabulated values of noise robustness p∗ for the totally anti-
symmetric ψA, GHZ and W state for different number of measurements
of the untrusted parties mA in the fully-separable (FS) case with two

untrusted parties.

The results show different trends for the three states. The totally antisymmetric
and W states show an increase in noise robustness by increasing the number of mea-
surements, whereas the GHZ state saturates at three measurements. The best noise
robustness (0.65) is achieved by the antisymmetric state with four measurement set-
tings, whereas the GHZ state does not improve the threshold of 0.57 passing between
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three and four measurements. The W state has a similar trend to the totally antisym-
metric one, albeit with slightly lower noise thresholds.

The noise robustness is consistently lower than the fully-separable case with one
untrusted party, however, by comparing Tables 5.2 and 5.1, the calculated values for
the fully-separable case with two untrusted parties bear a striking resemblance to the
biseparable case with one untrusted party. Similar noise thresholds are required for the
certification of genuine multipartite entanglement with one uncharacterised measure-
ment device and bipartite entanglement with two uncharacterised measurements, for
the exchange-symmetric states under consideration.

5.6 Bell Nonlocality of the Noisy Antisymmetric State

The certification of entanglement for the noisy totally antisymmetric state in the fully-
device-independent scenario may be assessed by applying the coincidence Bell inequality
reviewed in Section 5.2.4. Consider a state ρ for the three parties Alice, Bob and Charlie,
each acting with the measurement operator M(ϕ̄) defined in equation (5.41) on the
single subsystem Hilbert space spanned by the ONB {|0〉 , |1〉 , |2〉}. The probability of
obtaining an outcome (a, b, c) is given by

p(a, b, c) =

Tr

[
|abc〉〈abc|

(
M(ϕ̄A)⊗M(ϕ̄B)⊗M(ϕ̄C)

)
ρ
(
M(ϕ̄A)† ⊗M(ϕ̄B)† ⊗M(ϕ̄C)†

)]
, (5.51)

where |abc〉〈abc| = |a〉〈a| ⊗ |b〉〈b| ⊗ |c〉〈c|, for each of the measurement settings ϕ̄A, ϕ̄B
and ϕ̄C . The obtained behaviours may be inserted in the coincidence inequality (5.37)
for the device-independent certification of the entanglement of ρ. We obtain a Bell
parameter S in (5.37) which is dependent on the phase settings ϕ̄j , for j = A,B,C.
In order to assess the best performance for entanglement certification for behaviours
generated with the measurements (5.41), we maximise the Bell parameter S over all
variables φj , φ′j characterising ϕ̄j for all j = A,B,C.

We extract two parameters for each of the states under analysis: the maximum noise
threshold p∗ within which the Bell inequality is violated and the maximum violation
Smax of the inequality, i.e. the maximum value of the Bell parameter S. The calculated
values for such parameters for the totally antisymmetric, GHZ and W state are reported
in Table 5.3.

The three states have similar values for maximum Bell violation and noise robust-
ness, the GHZ, with Smax = 4.33 and p∗ = 0.4 slightly outperforming the totally
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ψA GHZ W
Smax 4.28 4.33 4.28
p∗ 0.39 0.4 0.39

Table 5.3: Maximum violation Smax and noise robustness p∗ for the
totally antisymmetric, GHZ and W state.

antisymmetric and W states, which instead return the same values at Smax = 4.28 and
p∗ = 0.39.

5.7 Hierarchy of Quantum Correlations

Having investigated the entanglement certification for all numbers of untrusted parties
we may now establish a hierarchy of quantum correlations, with focus on the robust-
ness to white noise. Figure 5.5 reports the robustness to white noise as a function of
number of untrusted parties in the fully separable and biseparable case, confronting
the antisymmetric 5.5a, GHZ 5.5b and W 5.5c states. Certification of entanglement
is possible for higher noise levels than genuine multipartite entanglement in all cases
under investigation. The antisymmetric and W state provide a better robustness than
the GHZ in the steering scenarios that we considered, applying a maximum number
of 4 measurements in mutually unbiased bases. The GHZ state, however, is better
performing in the nonlocality scenario, where it provides the best noise robustness and
maximum violation of the coincidence Bell inequality with tritter measurements.

The bottom line is that states with permutation symmetry have an overall good
robustness to noise for the task of entanglement certification. We investigate three
notable examples of exchange symmetric states and compare the performance of the
task for different device-independent scenarios and for different notions of multipartite
entanglement.

Our work applies a device-independent entanglement certification approach to a
class of states of interest to quantum information processing uncovering the structure
of the quantum correlations available. We quantify and compare the noise robustness
of entanglement certification tasks for different experimentally feasible setups providing
benchmarks for the thresholds associated with each task. The results set bounds for
the feasibility of the tasks and identify the best performing state among the totally
antisymmetric, generalised GHZ and W states. In particular we find that the totally
antisymmetric state, often less studied than the GHZ and W states, outperforms or is
equivalent to the latter in certain scenarios.
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Figure 5.5: Noise robustness versus number of untrusted parties for the
totally antisymmetric, GHZ and W states. The square markers represent
the noise threshold in the fully separable case, and the diamond markers

those of the biseparable case.

Finally, we characterise the intricate structure of quantum correlations in a mul-
tipartite setting and its interplay with the exchange symmetry of the states. States
with a fixed permutation symmetry may be obtained as ground states of appropriately
engineered hamiltonians and are proven to exhibit an overall high degree of quantum
correlations, highlighting their potential usefulness in quantum information tasks.
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Chapter 6

Conclusions and Outlook

The work presented in this thesis investigates the relationship between quantum corre-
lations and symmetry within physical systems associated with the exchange of subsys-
tems. In the first instance, a novel approach to entanglement quantification in systems
of identical particles was put forward. The proposed entanglement measures, covering
both systems of fermions and bosons, are based on a well-argued and established sep-
arability criteria for identical particles. Both measures may be thought of in terms of
semidefinite programs, allowing for an efficient numerical evaluation and, in the simpler
fermionic case, the detection of entanglement was proven to imply a violation of the
separability criteria.

Our efforts provide new insight into the open debate involving identical particle
entanglement. It overcomes the difficulties in quantifying entanglement resulting from
the spin-statistics connection by effectively removing the symmetrization prescription
which brings about misleading results for identical-particle entanglement quantification.
Furthermore, it’s formulation allows it to be directly applicable to the outcomes of
measurements identical particle systems, an example of which we covered in Chapter 3.

The entanglement measure called antisymmetric negativity, covering the fermionic
case, was shown to have a direct application for the estimation of entanglement based
on real measurements. The data was given by joint measurements in position and mo-
mentum space of a system of two identical fermionic atoms in a double-well potential.
An outstanding feature of our measure is the ability to provide a lower bound to the
entanglement between the identical fermions even when the measurements are insuffi-
cient for full tomographic reconstruction of the system’s state. In fact, its formulation
as a semidefinite program, which is a minimization instance, provides an estimate of
the minimum entanglement consistent with the experimental data and associated con-
fidence intervals. Such approach can be applied to distinguishable particle systems
as well, consisting of an attractive strategy for entanglement estimation without full
quantum tomography.
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Moreover, a comparison of antisymmetric negativity with standard mode and parti-
cle entanglement measures for a Hubbard dimer with RF coupling terms identifies two
regimes: one where the quantification of the entanglement between the modes equals
that of the entanglement between the identical particles, and one where this is not the
case. Because of the connection between entanglement and quantum enhancements in
many quantum information tasks, such a result is of significant conceptual and practi-
cal interest. Being able to identify what states appear to be strongly entangled in the
mode partitioning, but have weak particle entanglement, allows to better select the best
state for a given task. There is strong interest in establishing the connection between
particle entanglement and sensitivity enhancements in atom interferometers [203], and
our approach consists of a step in such direction.

Our identical particle entanglement measure, in fact, admits a straightforward gen-
eralization to the multipartite case, albeit the possibility of its evaluation is limited
by the large number of degrees of freedom involved in the optimization underlying its
formulation as a semidefinite program. Advances in the numerical algorithms for the
solution of semidefinite programs may open up the applicability to multipartite systems
of three or more particles, the latter being of great relevance to quantum computation
and simulation.

By investigating the structure of the bipartite symmetric and antisymmetric sub-
spaces, a novel class of bound entangled states was defined. Numerical prescriptions
were put forward for the random or deterministic generation of states with bound en-
tanglement in systems with any local dimension. Furthermore, a simple two-parameter
class comprising Werner, Isotropic and bound entangled states was first introduced and
its separability and PPT regions were outlined in detail. Simply parametrised families
of bound entangled states versatile tools, being both useful in theorem proofs and in
experimental scenarios, such as those involving superactivation.

Finally, the quantum correlation structure of a family of three-particle states with
exchange symmetry was exposed. The primary objective was the study of the totally
antisymmetric state, whose quantum correlation structure has not been studied in the
literature, to the best of our knowledge. The entanglement, steering and nonlocality
of the totally antisymmetric tripartite state were studied with the device-independent
approach and compared to those of generalised GHZ and W states.

The usefulness of the three states for the task of device-independent entanglement
certification, in the presence of different numbers of untrusted parties, was compared
by finding the maximum noise threshold within which the task is successful, assuming
commonly employed measurement configurations. The collection of results for zero,
one, two and three untrusted parties enabled the outline of a hierarchy of quantum
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correlations for the three states with exchange symmetry under investigation. Certain
aspects of the quantum correlation structure of the totally antisymmetric state remain
to be investigated, especially the device-independent certification of genuine tripartite
entanglement with two and three untrusted parties. Furthermore, the noise thresh-
olds we identify may in principle be improved by considering more general classes of
measurements.
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Appendix A

Discretized space model for
momentum correlations fitting

The discretized-space simulation of the measured momentum correlations for a system
of two identical fermions in a double-well (Chapter 4) is described in section 3.1.2. Here,
we show how the simulated momentum correlations may be fitted to the measured data
for quantum state estimation. We focus on the case of opposite spins to illustrate the
method.

The first step is given by the diagonalization of N2 × N2 Hamiltonian (3.11) and
characterization of its lowest energy states

H
(12)
N |Ei(µ̄)〉 = Ei(µ̄) |Ei(µ̄)〉 ∀i = 1, ..., N2, (A.1)

where the eigenvalues Ei(µ̄) and eigenvectors |Ei(µ̄)〉 are functions of the model vari-
ables Vmax (potential barrier), a (well separation) and g (interaction coupling constant)
incorporated in the vector variable µ̄ = (Vmax, a, g). The experimental preparation of
the system to simulate will determine a parametrization of the representation of the
prepared state, to be fitted, alongside the parameters of the Hamiltonian, to the mea-
sured data. Let us call the model state ρN (ω̄), where ω̄ is the collection of parameters
describing the N2 × N2 state. In its discretized-space representation, ρN (ω̄) may be
written as

ρN (ω̄) =
N2∑
i,j=1

λij(ν̄) |Ei(µ̄)〉〈Ej(µ̄)| , (A.2)

where the structure of the λij(ν̄) coefficients is given by the state preparation and is
determined by parameters ν̄.

We opt for a discretized momentum representation with the same number of bins
as the position space, so that the momentum space is spanned by a basis {|ϕi〉}Ni=1

which may be obtained by applying a unitary transformation matrix UN = eip̄
T ·x̄,
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where p̄ and x̄ are discretized momenta and positions, to the position basis vectors
{|i〉}Ni=1. The momentum representation of the state is therefore given by ρ̃N (ω̄) =

(UN ⊗ UN )ρN (ω̄)(U †N ⊗ U
†
N ). The momentum correlations are thus represented as an

N ×N matrix with elements given by the expectation value

[GN (ω̄)]pq = Tr

[(
|ϕp〉〈ϕp| ⊗ |ϕq〉〈ϕq|

)
ρ̃N (ω̄)

]
, ∀p, q = 1, .., N. (A.3)

Provided the number of bins of the measured momentum correlations is large enough for
the discretization to provide an accurate representation of the system, equation (A.3)
may be directly compared to the measured momentum correlation matrix. If this is not
the case, a finer sampling is required to generate the simulated correlations, which are
then re-scaled and interpolated to match the measurement binning. It was verified that
for values of N > 70 the sampling does not affect the accuracy of the representation with
relative differences larger than 10−3, which is within the experimental error margins.

A.1 Characterization of the Double-Well

As a first application of the discretized model we tackle the characterisation of the
double-well potential. Typically, the interwell distance a is a known experimental design
parameter, but the potential barrier Vmax is not directly accessible. However, in the
Fermi-Hubbard regime for non-interacting fermions, the relationship

J =
1

2
(E2(µ̄)− E1(µ̄)), (A.4)

between the experimentally measurable tunneling parameter J and the first energy gap
E2(µ̄)−E2(µ̄) allows to constrain Vmax. In fact, Vmax is the only free parameter in the
noninteracting case, assuming the well separation is known. We report in Figure A.1
the relationship between tunneling parameter and potential barrier (both measured in
Hz in natural units where ~ = c = 1) calculated with the discretized model. A measured
value of J = 269 ± 50 Hz results in Vmax = 2 ± 0.3 × 104 Hz. Provided the potential
preparation is the same throughout data acquisition in different interacting regimes,
we may constrain the potential barrier parameter in the above indicated confidence
interval, thus improving the fit performance.
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Figure A.1: Tunnel parameter J = (E2 − E1)/2 as a function of po-
tential barrier Vmax calculated with the discretized-space model in the

non-interacting Fermi-Hubbard regime.

A.2 Fit Interface

The simulated momentum correlation matrix GN (ω̄) may be compared element-wise to
the measured correlation matrix with a nonlinear least-squares fit. In order to control
which of the model parameters ω̄ are fixed or constrained by additional information
about the system preparation, I developed a graphical user interface in Matlab’s GUIDE
environment for a simple initialization of the fit and visualization of the fit results and
goodness of fit parameters, here taken to be the sum of squared errors (SSE) and root
mean square error (RMSE), described in the Matlab documentation for the fit algorithm.
An example of the interface for the non-interacting case fitted by a pure ground state
is illustrated in Figure A.2. Because of the many features in the correlation data and
the many parameters ω̄ of the state preparation (see section 3.5.1), the fit algorithm
tends to converge to local minima, suggesting a more broad investigation of confidence
intervals.
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Figure A.2: Graphical user interface for the fitting of measured mo-
mentum correlations. Inputs are initial guesses for the parameters and
corresponding bounds for the fit algorithm to span. Outputs are the
parameter optimal values and confidence intervals, goodness of fit fig-
ures (RMSE and SSE) and the associated antisymmetric negativity of
the optimal state. The graphics from left to right display the measured
correlations, the simulated correlations, a horizontal cut comparing data
with the simulation and the residuals between the linearised data and
simulation. The data was provided by the Ultracold Quantum Gases
Group at the Physikalisches Institut of Heidelberg University [147].

A.3 Confidence Intervals

In order to prevent the convergence in local minima for the fit algorithm from mis-
representing the data, we may investigate the parameter landscape associated with a
goodness of fit indicator. In Figure A.3 we plot the RMSE between the ρ(2)

D model
in section 3.5.1 and the momentum correlations reported in Figure 3.1b as a function
of the excited state population p and the interaction constant g. By fixing a ratio
∆R = R/Rmin = cR between the RMSE R and the minimum calculated value Rmin, we
identify a confidence surface around the optimal fit (or hypersurface if more parameters
are assessed) and corresponding intervals for the fit parameters. These may be used to
bound the corresponding values of estimated entanglement measure, by identifying the
set of values corresponding to the parameter confidence intervals and computing the
maximum and minimum of the set. An example is provided in Figure A.4 for the anti-
symmetric negativity associated with model states parametrized analogously to Figure
A.3.
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Figure A.3: Root mean square error (RMSE) as a function of excited
state population p and the interaction constant g from the ρ(2)D model

(sec. 3.1).
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