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The autonomous on-orbit assembly of a large space structure is presented using a method 
based on superquadric artificial potential fields. The final configuration of the elements 
which form the structure is represented as the minimum of some attractive potential field. 
Each element of the structure is then considered as presenting an obstacle to the others using 
a superquadric potential field attached to the body axes of the element. A controller is 
developed which ensures that the global potential field decreases monotonically during the 
assembly process. An error quaternion representation is used to define both the attractive 
and superquadric obstacle potentials allowing the final configuration of the elements to be 
defined through both relative position and orientation. Through the use of superquadric 
potentials, a wide range of geometric objects can be represented using a common formalism, 
while collision avoidance can make use of both translational and rotation maneuvers to 
reduce total maneuver cost for the assembly process. 

Nomenclature 

A  =  repulsive potential amplitude 
Ao  =  maximum repulsive potential amplitude 
a, b, c  =  superquadratic shape parameters in xB, yB, and zB directions 
C1, C2  =  control gains 
a  =  superquadric parameter vector  ⎡ ⎤Tcba 21 εε
D  =  relative Euclidian distance between two superquadric centers 
d  =  distance between two superquadric objects 
F  =  superquadric inside-outside function 
f1  =   superquadric scaling function in xB-direction 
f2  =   superquadric scaling function in yB-direction 
f3  =   superquadric scaling function in zB-direction 
I  =  element inertia matrix 
m  =  total number of objects in the workspace 
n  =  superquadric contour parameter 
q  =  error quaternion vector  ⎡ ⎤Tqqqq 4321

q   =  part of error quaternion vector  ⎡ ⎤Tqqq 321

R  =  orbit radius 
r  =  object position vector  
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rG  =  goal point position vector 
s(t)  =  local (orbital) frame state vector 
T  =  control torque vector 
t  =  time 
V  =  global potential field 
Vatt  =  total attractive potential 
Vatt,rot  =  attractive rotational potential 
Vatt,trans  =  attractive translational potential 
Vobs  =  obstacle potential 
vmax  =  maximum controlled velocity 
v  =  velocity vector 
x  =  element state vector  ⎡ ⎤Tqqqqzyx 4321

xB, yB, zB =  Cartesian coordinates in body frame of reference 
xI, yI, zI =  Cartesian coordinates in inertial frame of reference 
xl, yl, zl =  Cartesian coordinates in local orbiting frame of reference 
α  =  superquadric obstacle potential shape parameter 
β  =  braking length-scale 
Φ  =  state transition matrix 
ε1, ε2  =   superquadric roundness parameters 
ρ  =  element radius 
σ  =  repulsive potential length-scale 
Ω  =  circular orbit angular velocity 
ωmax  =  maximum controlled angular velocity 
ω   =  object angular velocity vector 
 
 

I. Introduction 

M any physical systems relax their configuration to attain the lowest possible energy state. This idea has been 

adopted and used in motion planning algorithms for manipulators and mobile robots as the artificial potential field 

method.1 A virtual attractive potential field representing a goal and virtual repulsive potential field representing 

obstacles are summed to generate a global potential field, the gradient of which in principle provides a collision-free 

path to the goal. The method is widely used for autonomous mobile robot path planning in fixed workspaces where 

both target and obstacles are stationary. Extensions to the potential field method due to obstacle and goal position 

motion have also been presented through the definition of a velocity dependent potential function.2 Superquadric 

potential fields have been introduced for manipulator obstacle avoidance in order to accurately capture the precise 

geometric form of obstacles.3 Superquadrics can be used to represent a wide range of geometric objects using the 

same common formalism. The potential field method has also been developed for space applications in areas such as 

proximity maneuvering,4 large angle slew maneuvers,5 formation-flying6, and autonomous and distributed motion 

planning for satellite swarm.7 Other work has focused on the assembly of large, complex space structures using 

extensions of the potential field methodology. Here the adjacency matrix of the graph of the final structure is used to 

form a global potential field.8 The structure can then be re-configured by modifying the adjacency matrix as 
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required. A related approach has been used for the autonomous assembly of a group of homogeneous components 

by defining and summing vector fields which capture sets of behaviors. The final configuration of the system is 

defined by the equilibrium state of the dynamical system formed by the vector fields, in a similar manner to the 

global minimum of an artificial potential field.9  

As noted above, the artificial potential field methodology is based on the assumption of the existence of a virtual 

potential field which attracts maneuvering objects toward a goal, while repelling them away from both static 

obstacles and other maneuvering objects. There are strong analogies with physical scalar potential fields which 

represent the electric field from electrostatic charges. The gradient of the artificial scalar potential field forms a 

vector field which then defines the motion of maneuvering objects in the workspace. While the methodology is 

appealing due to its intuitive nature and computationally efficient implementation (controls are typically available in 

analytic form), there is often no guarantee that local minima are not present which may trap the maneuvering objects 

in some configuration other than the desired one.2 This problem can be overcome by generating the potential field as 

a numerical solution to the Laplace equation,4 or by various heuristics such as adding noise to escape form any local 

minima. As will be seen, superquadric obstacle representations provide potential surfaces which are largely 

symmetrical away form the obstacles, reducing the possibility that local minima may form. More importantly, since 

all maneuvering objects are in relative motion simultaneously, even if an object is caught in a temporary local 

minimum, it will be displaced due to the motion of other objects perturbing the potential field.  

Superquadric functions provide an efficient and flexible means of representing geometric shapes, overcoming 

the deficiencies of other representations such as spherically symmetric Gaussian or power law functions where 

objects are represented as spheres of diameter equal to the maximum physical object dimension. Rather than a 

simple spherical form, the superquadric potential can be moulded to represent the geometric shape of an object by 

attaching the potential to the object body axes. In this way the obstacle potential becomes a function of both the 

obstacle position and its orientation, unlike previous methods that de-couple translation and rotation.  

Transformations with quaternion parameters are then used to define the element superquadric obstacle potentials in 

an inertial frame which are then summed together in addition to the attractive goal potential. The global potential 

field is then a function of both the position and orientation of the maneuvering objects. This allows collision 

avoidance by both translation and rotation, allowing more precise maneuvering than is possible using spherically 

symmetric potential fields and reducing maneuver cost. The methodology developed is applied to the autonomous 
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assembly of a set of heterogeneous components into a truss-like structure. Other applications include the formation 

and re-configuration of symmetric patterns of spacecraft for formation-flying applications where collision-avoidance 

can make use of both translation and rotation.      

II. Attractive Potential Field 

The attractive potential field is a function defined with the goal position at its global minimum. A maneuvering 

object will then move down the gradient of the potential field towards this global minimum, and with a suitable 

dissipation function will come to rest. In this paper the goal configuration will be defined by both a goal position and 

orientation. The Euclidean distance between a maneuvering object and the goal position is used to define the 

translational attractive potential while error quaternions are used to define a rotational attractive potential. In order to 

reach the global minimum of the attractive potential field, both a final position and orientation must be achieved. In 

the subsequent analysis it will be assumed that continuous torques are available for attitude control and that discrete 

impulses are available for translational control. This is similar to the configuration of agile robot free-flyers which 

use control moment gyros and pulsed thrusters for actuation. 

The overall attractive potential is the summation of both the translational and rotational attractive potentials. The 

translational attractive potential aims to null the Euclidian distance between a maneuvering object and its goal 

position, while the rotational attractive potential aims to bring the error quaternion to , relative to the 

required final orientation. The attractive potential guides each extended maneuvering object toward its goal 

configuration, both in position and orientation through impulsive velocity changes and continuous torque 

commands. The attractive potential is therefore defined as: 

⎡ T1000 ⎤

 rot,atttrans,attatt VVV +=  

 ( ) Iωωqqrr TT
Gatt CV

2
1

2
1

1
2 ++−=    (1) 

Adding a translational potential to a rotational potential in a single global potential field leads to full 6 degree-of-

freedom maneuvering control, as will be seen later. The controller is able to choose between translation and/or 

rotation to reach its goal and most importantly, with the addition of repulsive obstacle potentials will allow 

translation and/or rotation to be exploited for collision avoidance.10
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In order to ensure a continuous approach to the goal, the required maneuvering object velocity vector may be 

chosen to be directed along the gradient of the potential at every point in the workspace. Therefore, the required 

maneuvering object velocity vector v can be expressed as:11

 
att

att

V
Vk

∇
∇

−=v   if    0  ≥V&
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rr
rr

−
−

−=  (2) 

so that an impulse is applied if , otherwise control intervention is not required if the maneuvering object 

is already moving towards the goal such that . An exponential time approach is guaranteed if 

0  ≥V&

0  <V&

( )attV
max evk β−−= 1  for some maximum translational speed vmax and braking parameter β. For maneuvering 

towards a single goal with no obstacles, motion planning then becomes a stability problem through the use of 

Lyapunov’s theorem. If the dynamical system formed by the global potential field is shown to be stable the 

maneuvering object will reach its goal. The time derivative of the function Vatt is expressed as: 

 ( ) ( ) ωIωqqrrv TT &&& ++−= 12CV G
T

att            (3) 

However, the first derivative of the quaternion is defined as:12 

 Qωq
2
1

=&          (4) 

where Q is the matrix of quaternion components and is defined in the usual manner as: 

          (5) 
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Substituting for the quaternion kinematics in Eq (3) it can be seen that 

 ( ) ωIωqQωrrv TTT && ++−= 1CV G
T

att  

   ( ) ( )ωIqQωrrv TT &++−= 1  CG
T          (6) 
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and so we have qqQT
4q=  such that: 

 ( ) ( )ωIqωrrv T && ++−= 41  qCV G
T

att  (7) 

Euler's equation defines the external torque T acting on the rigid body as: 

  IωωωIT ×+= &                        (8) 

Hence; 

 ( ) ( )IωωTqωrrv T ×−++−= 41 qCV G
T

att
&   (9)  

A linear control torque will now be defined such that ωqT 241  CqC −−=  and so: 

 ( ) ( )Iωωωωrrv T ×−−+−= 2  CV G
T

att
&         (10) 

However, it is clear that  so that: ( ) 0  =× Iωωω T

 ( ) ωωrrv T
2  CV G

T
att −−=&          (11) 

Using Eq. (2) it is then concluded from Eq. (11) that  is satisfied for all states except the goal position, so 

that the proposed attractive potential function can be considered as a Lyapunov function where: 

0  <attV&

 0  2 ≤−−−≤ ωωrr TCkV Gatt
&          (12) 

With the definition of the attractive potential field, the addition of obstacles through the use of superquadric 

potential can now be considered. By attaching the superquadric potential to the object body axes, translation and 

rotational motion will then become strongly coupled, allowing precise maneuvering for collision avoidance 

III. Superquadric Obstacle Representation 

Superquadrics are a family of complex geometric objects which include superellipsoids and superhyperboloids. 

The geometric object which will be used here is the superellipsoid, which may be referred to with the general term 

superquadric.13 Superquadrics are mathematical representations of solid objects. They are a set of parametric 

functions that have great utility in object modeling. Their parametric characteristics enable the creation of a range of 
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object shapes by manipulating the so-called roundness and shape parameters. A generic superquadric function is 

defined in body axes as:  
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The inside-outside function F defines whether a point lies inside, on the surface or outside a superquadric surface 

and is given by:14
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Consider any point P with coordinates (xB,yB,zB) with respect to a set of body axes attached to the superquadric. 

If F<1, point P lies inside the superquadric whereas if F=1, the point lies on the superquadric surface, and finally if 

F>1, the point lies outside the superquadric. Various obstacle shapes can now be represented using the superquadric 

methodology by adjusting the five parameters defined in Eq. (13). For example, in order to define a spherical shape 

at some distance from the object edges, the shape parameters ε1, and ε2 should approach unity. The superquadric 

form of particular object shapes will be defined and used later for application to the on-orbit assembly problem. As 

will be seen, through the appropriate choice of shape parameters the precise geometric form of objects can be 

captured in proximity to them, but smoothed away from the object to allow for collision avoidance with less 

likelihood of local minima formation. 

A. Parallelepiped Obstacle (Cuboid) 

The parallelepiped shape is common in structural assembly problems. A wide range of elements can be modeled 

by manipulating the superquadric parameters. Columns and plates can be modeled by fixed parameters, while 

triangles and trapezoids can be modeled by a variable set of parameters. Parallelepiped obstacles were first 

investigated by Volpe as static objects for collision avoidance during manipulator control.15    

To form a parallelepiped shape the values of ε1 and ε2 are chosen to approach zero in proximity to the object to 

have a sharp edged parallelepiped. On the other hand, their values should approach unity far from the obstacle edges 
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to form a smooth ellipsoid. Figure 1 shows a superquadric model for such a cuboid element. The most general form 

of an implicit function for a parallelepiped object is defined as: 
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where the scaling functions f are used to define the required geometric form of the parallelepiped. 

For example, the scaling functions for a column and a plate are constants. They can then be set to a, b, and c, the 

semi major axis in xB, yB, and zB directions respectively such that: 
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It is now possible to modify the nested level surfaces defined by Eq. (16) to form a sphere away from the object 

rather than an ellipsoid by adjusting the coefficients as: 
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The inside-outside function is then expressed as: 
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Deformable superquadric surfaces are represented by introducing a new shaping parameter, n, related to each 

surface. This parameter replaces both ε1 and ε2 with the value of n→ ∞ near the object edges (to ensure sharp edges) 

while n→ 1 away from the object (to ensure smoothness) to form an n-ellipsoid with semi-axes a, b, and c. 

Following Vople, n can be defined as:16 

 
de

n
α−−

=
1

1    (19) 

The parameter α has a major influence on the potential field and the transition from sharp to smooth potential 

surfaces. The parameter α determines both the sharpness of the object potential shape and the transition from the 

actual obstacle shape to a spherical shape at large distance. Increasing the value of α increases the sharpness of the 

transition, which limits the range of influence of the object. Similarly, decreasing the value of α allows for the effect 
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of the object shape to influence the potential field at large distances from the object. By changing its value the 

influence of object edges can be manipulated to overcome the formation of any local minima which may form when 

dealing with multiple objects. Figure 1 shows the effect of α on the object iso-potential contours. 

B. Cylindrical Obstacle (Beam) 

Beam elements are again widely used in structural assembly problems, especially in truss-type structures. 

Cylinders can be represented by a superquadric function by setting the shape parameter ε1→0, and ε2 = 1. Figure 2a 

shows a superquadric model for a cylindrical element. 

The objective of having spherical symmetry away from the obstacle edges will be guaranteed by deforming the 

superquadric shape from a cylinder to a sphere. For a spherical shape both ε1 and ε 2 should be set to unity, hence the 

parameter ε2 will remain unchanged throughout the workspace, while the parameter ε1 should be gradually changed 

from zero at the beam edge to unity. It is then inversely proportional to the contour parameter n. Hence, the 

superquadric model can be adapted to the following form as: 
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for a cylinder of radius ρ. The corresponding inside-outside function is then expressed as: 

 ( )
n

B
n

BB
B c

zcyx
,F

2222

⎟
⎠

⎞
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ρρρ
xa  (21) 

The beam element iso-potential contours are shown in Fig. 2. The iso-potentials in the circular cross-section 

plane remains unchanged, whereas those in the longitudinal plane change their shape in the same way as those of the 

cuboid element to provide sharp edges close to the beam and a smooth symmetric potential far from the beam. 

IV. Obstacle Potential Field 

The formulation of the obstacle potential field from the individual obstacles depends on the behavior required 

whilst approaching an obstacle. Two types of repulsive potential fields are used: the avoidance potential field and 

the approach potential field, as defined by Volpe15. Each is defined over a certain distance around the obstacle.  The 

objective of the avoidance potential is to prevent collision between the controlled object and the surrounding 
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obstacles. This is achieved by introducing a repulsive potential around the obstacle which is sufficient to force the 

controlled object to move away from the obstacle regardless of the kinetic energy of each of them. The best way to 

ensure this requirement is to define infinite repulsive potential in the avoidance potential region. The minimum 

distance between any two superquadric object surfaces, an obstacle at xB,obs and a maneuvering object at xB,obj, can 

be determined from the distance D between their geometric centers. This is found to be:17

 ( ) ( ) ⎥
⎦

⎤
⎢
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−−
nobj,Bobjnobs,Bobs ,F,FDd 2
1

2
1

1 xaxa  (22) 

The avoidance potential is then calculated through the use of the so-called Born approximation for a Yukawa 

potential in which the exponential term reaches zero faster than the inverse distance term as18: 

 ( )
d

dexpAVobs
α−

=   ,   d ≥ dmin (23) 

The objective of the approach potential is to decrease the kinetic energy of the maneuvering object when 

approaching the obstacle within a certain distance to reduce the approach velocity and to generate smooth contact 

between objects. Smooth contact is clearly required in the goal position to achieve the final contact for mechanical 

assembly. The approach potential function can then be expressed as: 

 ⎟
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+
αα
11

  dexpAVobs  ,   d < dmin (24) 

The repulsive potential amplitude, A, is used to define the maximum repulsive potential between objects. This 

amplitude should be defined depending on the maximum allowable translational velocity of the objects. The 

parameter A is crucial for structural assembly problems as it is expressed as a function of the configuration of the 

objects. Allowing the obstacle potential to vanish at the goal configuration allows smooth contact, which is again 

required for connection of the elements for assembly.19 The repulsive amplitude may then be expressed as a smooth 

Gaussian function as: 

 ( )( )σ21 Grr −−−= expAA o  (25) 

so that mechanical contact can be made as the maneuvering objects reach their goal. The global potential field 

required for on-orbit assembly will now be formed from the attractive goal and repulsive obstacle potential fields. 
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V. Global Potential Field 

The global potential is a linear superposition of the attractive and repulsive potentials, as shown in Fig. 3 for a 

single object. However, different potentials must be defined with respect to the same frame of reference. Although, 

each superquadric obstacle function is expressed in a body frame attached to the obstacle, only the distances 

between them are required to calculate the obstacle potential function. Object coordinates are therefore transformed 

from an inertial frame to a body frame through a homogeneous transformation.  This operation is well established by 

using quaternions as: 
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The quaternion parameters in Eq. (26) are the actual quaternion parameters which orient the object, unlike those 

in the attractive potential which are error quaternions. Transformation between the two types of quaternions is 

carried out through the following equation: 
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Substituting the local coordinates produced from Eq. (26) in conjunction with Eqs. (19) and (21) in Eq. (22), the 

distance between any two objects is calculated and consequently the obstacle potential is fully defined. The addition 

of different potential functions may result in some issues such as: 

i) Local minimum due to the interference between spherically symmetric attractive potentials and obstacle 

potentials produced with sharp edges. 

ii) Local minimum due to the existence of multiple obstacles close to each other. 

iii) The "goal non-reachable due to obstacle nearby" problem which exists when an obstacle is located near the 

goal position. Consequently the global minimum of the potential field may be shifted from the desired location. 

However, all these problems were in fact found to be overcome through the use of the superquadric obstacle 

representation by virtue of its spherical symmetry, and the decay of the obstacle potential amplitude, A, when 
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approaching the goal configuration.  The overall potential field of a maneuvering object i in the presence of m-1 

obstacles is now defined as: 

For di,j ≥ dmin 
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and for di,j < dmin 
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Therefore, the required kinematics for object i in the presence of m-1 obstacles through continuous approach to 

the goal is provided in the same way used to determine object velocity with the absence of obstacles as discussed in 

section II. The required translational velocity is found to be: 
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while the control torques can be determined from the quaternion kinematics as  
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 ( )−1
iiii,ii CqC IωωωqIω ×++−= 241&   ,  44 ,iii,i qq qq& −= T &

IωωωIT

  (32) 

 iiii = + ×&   (33) 

where  ⎡ zyx ∂∂∂∂∂∂=∇ ⎤T   (34-a) 

 ⎡ qqq 321 ∂∂∂∂∂∂=∇ ⎤Tq   (34-b) 

 ⎡ qqqzyx 321 ∂∂∂∂∂∂∂∂∂∂∂∂=∇ ⎤T*  (34-c) 

The following example shows the simultaneous motion of four objects: two parallelepipeds of dimensions 1 x 1 

x 0.1 m and of 1 kg mass and two discs of 1 m diameter, 0.1 m thickness and 1.2 kg mass. The maximum controlled 

velocity is 0.01 m/sec and the maximum controlled angular velocity is 0.1 rad/sec, consequently large translational 
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maneuvers will be replaced by rotational maneuvers when the objects are in close proximity. The repulsive 

parameters are defined as α = 1, Ao = 4, σ = 0.1, and β = 1. The control law parameters, C1 and C2, are selected as 

unity. Each pair of identical objects will switch their location to demonstrate the interaction between the 

translational and rotational potential fields. The obstacle avoidance potential fields demonstrate how objects of 

different shapes can be modeled using superquadric functions. Due to the formulation of the control method, the 

objects choose between translation and/or rotation in order to reduce the global potential function and so reach their 

goals. The initial object configuration is shown in Fig. 4, while the translational maneuvers and error quaternion 

parameters are shown in Fig.5. Figure 6 shows the objects during the maneuver. 

The interaction between translation and rotation is evident as the objects change their orientation whilst 

translating to their respective goals. The ability to simultaneously rotate and translate for collision avoidance is a 

novel aspect of the method presented here and arises from the coupling of the translational obstacle potential field to 

the orientation of the objects through the use of superquadric potential fields attached the object body axes. 

VI. Implementation for On-Orbit Assembly 

The previous analysis has shown that the superquadric obstacle representation along with quaternion parameters 

for attitude representation can succeed in bringing maneuvering objects to their goals while avoiding mutual 

collisions by rotation and translation. Each structural element is now assumed to maneuver as a free-flyer having 

translational maneuvers actuated using thrusters (impulsive velocity changes), and rotational maneuvers actuated 

using control moment-gyros (continuous torques). On-orbit assembly will be considered in low Earth orbit (LEO) of 

altitude 100 km, so that the motion of the maneuvering objects is propagated using linearised orbital dynamics.   

A. Equations of Motion: 

The equations of motion describing transfer of a maneuvering object from some initial point on a circular orbit 

towards a goal are now defined. By considering small distances between the initial position of the maneuvering 

objects and their goal positions, the relative motion can be described using the Clohessy-Wiltshire (CW) equations.20 

The state transition matrix of the CW equations will propagate the element motion between control impulses. 

In this model a structural element is placed in orbit with a reference orbital angular velocity Ω, and position 

vector r. It is required to bring this element to its goal which is placed near the origin of a local orbiting frame of 

reference at a position rG, as shown in Fig. 7. 
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The linearised equations of motion in a local orbiting frame are then found to be: 

 LLx z 2 &&& Ω−=                   (35-a) 

                   (35-b) LL yy Ω−=&& 2

2       (35-c) LLL xzz &&&  23 Ω+Ω=

where 3RGM=Ω is the circular orbit angular velocity. The solution to these linear differential equations 

describes the maneuvering element motion, with the state transition matrix Φ(t) as: 

 ( ) ( ) ( )0sΦs tt =  (36) 

where , and s(0) is the initial conditions for the current period of free flight between 

impulses. The state transition matrix can then be defined as:

( ) ⎡ T
LLLLLL zyxzyxt &&&=s ⎤

20
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B. On-Orbit Assembly 

Many future large space structures will be unable to be launched as a single assembly. Carrying unassembled 

structural elements in several launch vehicles then assembling them in-orbit will be required for both large 

mechanical structures, such as trusses, and for large science missions using multiple spacecraft for formation-flying. 

It is assumed that all the elements for the structure are initially on a circular orbit in some initial configuration. 

Natural orbital motion can bring the elements toward their goals or away from them, depending on their relative 

position and velocity. Therefore, control actuation is required when the global potential field is not monotonically 

decreasing and the elements maneuver towards their goal. The only limitation on the initial configuration of the 

elements is that they should have sufficient ∆v to accomplish the assembly process. 
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The artificial potential field can control the assembly process through constructing an attractive potential field 

with a global minimum situated in the goal configuration of each element, while the repulsive potential field is used 

for collision avoidance. The potential functions, both attractive and repulsive, will be described with respect to the 

local, orbiting frame of reference. Control intervention will be used when the rate of change of the global potential 

function is larger than some non-positive value. Control actuation is then required when: 

  (38) fi cV ≥&

The control trigger constant, cf, can be set to zero for Lyapunov-like stability, however a negative value can be 

used in order to preempt collision avoidance maneuvers. The correct choice of the control constant results in 

minimizing the required thruster activity and so minimizing the propellant mass used for the assembly process.  

C. On-Orbit Assembly Example 

The initial velocities of all the elements to be assembled are set to zero relative to the goal position, hence the 

initial rate of change of the potential is zero. As a result, control actuation will be required if cf<0 and so the 

assembly process will start. The rate of change of the global potential is found and the control actuation is made 

according to Eq. (38).  

This example considers the assembly process of 14 beams of 0.1 m diameter, 1 m length, and mass of 20 kg and 

plates of dimensions 1.2 x 1.2 x 0.3 m and mass of 75 kg, and of dimension 2.2 x 1.2 x 0.5 m and mass of 230 kg. 

All objects move under both natural orbital motion and control action with a maximum controlled velocity of 0.1 

m/sec and a maximum controlled angular velocity of 0.1 rad/sec. The repulsive parameters are defined as α = 7, 

 Ao = 6, σ = 0.1, and β = 1. The control law parameters, C1 and C2, are selected as unity. The initial configuration of 

the objects is shown in Fig. 8, while the object trajectories and error quaternion parameters are shown in Fig. 9. The 

maneuvering object angular velocities are shown in Fig. 10, while Fig. 11 shows the object configuration during the 

assembly process, as well as part of their trajectories to illustrate the objects paths. The final assembled truss-like 

structure is shown in Fig. 12. The structure requires approximately 150 s to complete the assembly using a 

maximum controlled velocity of 0.1 m s-1. The control trigger constant cf was set to zero, since this is the most 

difficult case chosen to demonstrate the utility of the method. 
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D. Cost of Assembly 

The assembly cost is measured by the overall ∆v summed from every control action. It is affected by the 

presence of the obstacle potential of other objects so that a variation in cost for different elements is expected. Cost 

optimization could be achieved through the optimal choice of parameters such as the maximum controlled velocity 

and control trigger cf defined in Eq. (38), since this represents the threshold at which the controller will act. Figure 

13 shows the absolute ∆v for each element, where an initial ∆v of 0.1 m s-1 is delivered to initiate the assembly 

process by maneuvering the objects towards the goal.  Small impulses are required at the end of each object 

trajectory to help in the precise coordination between objects to avoid collision and to reach their goals. The 

maneuvering object translation costs are shown in Table 1 and are seen to be relatively modest. 

Again, the key benefit of the method presented relative to other approaches is the ability to capture the geometric 

form of maneuvering objects, unlike spherically symmetric potentials8 and the ability to perform coupled 

translational and rotational maneuvers for collision avoidance. This is more flexible than other approaches to 

distributed motion planning.7 

E. Free-Flying Robots 

In order to demonstrate the flexibility of the methodology presented, two free-flying robots, of dimension 0.1 x 

0.1x 0.1 m and mass of 0.5 kg, are consider maneuvering in proximity to the structure. The free-flyers are controlled 

using the same control parameters as the structural elements. Each free-flyer is affected by the repulsive potentials 

of the 16 elements constituting the structure, in addition to the other free-flyer. Figure 15 shows the proximity 

motion of the two free-flyers, R1 and R2 who maneuver past each other. Their close maneuvering inside the 

structure again demonstrates the flexibility of the method. 

F. Structure Reconfiguration 

In this example, a hexagonal structure is assembled from 6 beams. All beams are again considered as extended 

rigid bodies rather than point masses, as used in previous studies.9 The beam type objects have length 1 m, diameter 

0.1 m and a mass of 20 kg mass, and are initially in a parking position with 1 m separation distance, Fig. 16. The 

beams are then tasked to perform an extremely complex maneuver to form a closed hexagonal formation without 

collision. Later, the objects are disassembled and are then tasked to form a new line configuration, again without 
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collision. All control constants are unity, the maximum controlled velocity is 0.02 m sec-1, while the repulsive 

parameters are defined as α = 6, Ao = 50, σ = 0.1, and β = 1.  

During the 400 sec of the first task, strongly coupled translation and rotation maneuvers are performed to from 

the initial goal configuration shown in Fig. 17. The total translation costs are shown in Table 2. As the objects are 

disengaged, they are repelled due to their mutual repulsive potentials, while later each maneuvers towards its new 

configuration. Using the same parameters as in the first phase, the objects are able to reach their new goals and are 

assembled together in a line without collision in 200 sec, Fig. 18. The middle objects such as (1) and (4) require 

larger impulses and consequently total maneuver cost since they experience a more complex potential field topology 

compared with those on the two ends as shown in Table 3. 

VII. Conclusion 

On-orbit assembly using superquadric potential fields has been presented. The obstacle superquadric potential 

field has been attached to each obstacle body axes so that the global potential is a function of both position and 

orientation. Interaction between the translational and rotational attractive potential along with that of the obstacles 

results in flexibility for the algorithm to choose which behavior, rotation and/or translation, is effective in driving the 

assembly process. Various object shapes were used within the algorithm, represented using the superquadric 

functions. The obstacle repulsion amplitude was scaled to maintain constant repulsive amplitude for all locations 

away from the goal, while decreasing the amplitude close to the goal to allow mechanical contact for assembly. 

Simulation shows that complex assembly processes can be undertaken, again with simultaneous rotation and 

translation used for collision avoidance between the maneuvering objects. The controls are available in closed, 

analytic form allowing computationally efficient, on-board implementation. 
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Fig. 1-a) Cuboid element representation using a superquadric function 
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Fig. 1-b) Cuboid element obstacle iso-potential contours near the obstacle (α = 1) 
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Fig. 1-c) Cuboid element obstacle iso-potential contours near the obstacle (α = 100) 
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Fig. 2-a) Cylindrical element representation using a superquadric function 
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Fig. 2-b) Beam element obstacle iso-potential contours in circular cross section plane (α = 5) 
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Fig. 2-c) beam element obstacle iso-potential contours in longitudinal plane (α = 5) 
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Fig. 3 Global potential function with a single rectangular obstacle 

 

Fig. 4 Initial object configuration 

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

x, [m]

z,
 [m

]

1
2
3
4

 

Fig. 5-a) Translational maneuvers 
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Fig. 5-b) Quaternion parameters 

 

Fig. 6-a) Object configuration at t = 185  [sec] 

 

Fig. 6-b) Object configuration at t = 206  [sec] 
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Fig. 6-c) Object configuration at t = 272 [sec] 

 

Fig. 6-d) Final object configuration at t = 1000 [sec] 
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Fig. 7 Inertial, local orbiting and body frames for the ith maneuvering object 
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Fig. 8 Initial configuration 

 

Fig. 9-a) Object trajectories 
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Fig. 9-b) Error quaternion about x-axis 
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Fig. 9-c) Error quaternion about y-axis 
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Fig. 9-d) Error quaternion about z-axis 
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Fig. 10-a) Angular velocities about x-axis 
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Fig. 10-b) Angular velocities about y-axis 
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Fig. 10-c) Angular velocities about z-axis 

 

Fig. 11-a) Object configuration at t = 14 [sec] 
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Fig. 11-b) Object configuration at t = 47 [sec] 

 

Fig. 11-c) Object configuration at t = 86 [sec] 

 

Fig. 11-d) Object configuration at t = 95 [sec] 
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Fig. 12 Assembled structure at t = 150 [sec] 
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Fig. 13 Translation cost 
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Fig. 14 Element torques about y-axis 
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Fig. 15-a) Two servicing robots approaching the structure 

 

 
Fig. 15-b) Two servicing robots exchange their positions 

 

 
Fig. 15-c) Two servicing robots in their final configuration 
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Fig. 16 Initial object configuration 

 
Fig. 17-a) Object configuration (t = 20 sec) 

 
Fig. 17-b) Object configuration (t = 40 sec) 
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Fig. 17-c) Object configuration (t = 145 sec) 

 
Fig. 17-d) Object configuration (t = 230 sec) 

 
Fig. 17-e) Object configuration (t = 260 sec) 
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Fig. 17-f) Final configuration (t = 400 sec) 

 
Fig. 18-a) Object configuration (t = 15 sec) 

 
Fig. 18-b) Object configuration (t = 42 sec) 
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Fig. 18-c) Object configuration (t = 77 sec) 

 
Fig. 18-d) Object configuration (t = 200 sec) 
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Table 1 Element translation cost 

element 
no. 

Δv 
[m/sec] 

element 
no. 

Δv 
[m/sec] 

element 
no. 

Δv 
[m/sec] 

element 
no. 

Δv 
[m/sec] 

1 0.20064 2 0.20019 3 0.20055 4 0.17703 
5 0.19876 6 0.20114 7 0.20151 8 0.20065 
9 0.2002 10 0.20057 11 0.17705 12 0.19878 

13 0.20116 14 0.20151 15 0.20045 16 0.19999 
 

Table 2 Reconfiguration first phase total translation cost 

element 
no. 

Δv 
[m/sec] 

element 
no. 

Δv 
[m/sec] 

element 
no. 

Δv 
[m/sec] 

1 0 2 0.035289 3 0.1118 
4 0.20255 5 0.42914 6 0.1025 

 
Table 3 Reconfiguration second phase total translation cost 

element 
no. 

Δv 
[m/sec] 

element 
no. 

Δv 
[m/sec] 

element 
no. 

Δv 
[m/sec] 

1 0.26279 2 0.070863 3 0.060064 
4 0.2029 5 0.062735 6 0.060405 
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