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Abstract 

The research presented in this thesis addresses the concepts of application of 

important digital signal processing algorithms in the detection and treatment of 

dysarthria, a neurological motor speech disorder. The novel algorithms 

presented in this thesis include a silence, unvoiced and voiced segmentation 

technique for dysarthric speech based on linear prediction error variance 

(LPEV), an automatic diadochokinetic (DDK) analysis and segmentation 

scheme for dysarthric speech, the application of speech processing algorithms 

in the extraction of prosodic, voice quality, pronunciation and wavelet features 

for the detection and severity classification in dysarthric speech and the 

modification of dysarthric speech features using speech enhancement 

techniques to improve the intelligibility of dysarthric speech in a stress 

production exercise for the treatment of dysarthria. 

In particular, an improved silence, unvoiced and voiced segmentation 

technique for dysarthric speech is proposed. This method is an enhanced 

technique that makes use of a two-layer segmentation approach which 

combines the short-time-energy (STE) and LPEV to distinctly differentiate 

between the silence and voiced segments despite the reduced/inconsistent 

intensity, pauses, voice breaks and slow speech rate experienced in dysarthric 

speech. Including the LPEV into the segmentation process has proved to be 

advantageous in eliminating segmentation errors due to the similarity observed 

between the STE profiles of the silence and voiced segments in dysarthric 

speech. The experimental results have shown that this segmentation method is 

also effective and efficient in reducing the effects of artefacts introduced in 

dysarthric speech. 

A novel automatic DDK analysis scheme is proposed in this research to extract 

individual DDK syllables and analyse them for consistency. This method is 

based on a speaker-specific moving average threshold (rather than a fixed 

threshold) which addresses the varying intensities in the DDK sounds produced 

by speakers with dysarthria. This method also addresses the challenge of intra-

syllable breaks introduced in dysarthric DDK syllables using a minimum 

distance merging approach. In addition, the algorithm analyses the segmented 
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DDK syllables by calculating the individual DDK rates and their variance in 

order to measure the DDK syllable production consistency. The high accuracy 

of the proposed method is tested and verified using both dysarthric and healthy 

controlled databases. 

Three novel schemes for automatic detection and severity classification of the 

dysarthric speech are also proposed in this research. One extracts an extended 

speech feature called centroid formant (which is a representation of energy 

concentration in the frequency spectrum) and classifies these centroid formants 

using neural network classifiers for the detection of dysarthria. The centroid 

formant-based detection scheme also forms the backbone for the development 

of the second and more robust detection scheme which combines centroid 

formants with prosodic, voice quality, pronunciation and wavelet features for 

more efficient classification. A third scheme is developed specifically for the 

classification of dysarthria into three severity levels using the same features as 

in the second scheme. The efficiencies of these detection and severity 

classification schemes are evaluated by calculating the accuracy, sensitivity 

and specificity of the classifiers. 

The effects of modification of prosodic cues used in stress production on the 

ability of listeners to correctly identify the position of the stressed word in 

sentences are also investigated in this research. This investigation is focused 

on the three prosodic cues used by healthy controlled speakers in stress 

production; namely intensity, duration and fundamental frequency. These three 

features are modified acoustically and presented to untrained listeners in an aim 

to evaluate the effects of the individual and combined modifications on the 

listeners’ perception. The findings of this investigation will help clinicians, 

including speech and language therapists, make an informed decision on the 

prosodic feature to focus on during stress production exercises for the 

management of dysarthria.  

Finally, the dysarthria management schemes proposed in this research are 

developed into user-interactive tools in MATLAB from which speaker-specific 

information and reports can be generated and downloaded for progress 

monitoring and further analytical purposes.    
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Chapter 1  

1 Introduction 

In recent years, the management of speech disorders using acoustic and 

instrumental methods has gained increasing research interests due to the need to 

improve how these speech disorders are managed by offering less subjective 

approaches that are based on advanced speech processing principles [1]. Dysarthria 

is a neurological motor speech disorder that affects the production of sounds due to 

the weakness of the muscles and nerves involved [2]. This includes impairment in 

the movement of the lips, larynx, vocal cords, tongue and/or nasal air passage [3]. 

The effects of dysarthria are seen in the speed, variation (in loudness, pitch and 

duration), consistency, and rhythm/movement accuracy in speech production [2, 4, 

5].  

Generally, dysarthria often results from damage to either or both the upper or/and 

lower motor neurons [2]. In some cases, dysarthria can be accompanied by apraxia; 

a state where information from the brain to the mouth is disrupted resulting in the 

production of wrong sounds and movements [3]. Dysarthria can be also be 

accompanied by aphasia; language disorder due to neurological damage [4]. The 

causes of these various speech and language disorders (dysarthria, apraxia and 

aphasia) are often different [2]. 

More specifically, dysarthria can be caused by various neurological conditions [6]. 

In order to give a structured way of describing the different types of its occurrence, 

dysarthria has been divided into six main categories namely; Spastic Dysarthria, 

Ataxic Dysarthria, Hypokinetic Dysarthria, Hyperkinetic Dysarthria, Flaccid 

Dysarthria and Mixed Dysarthria [7]. Dysarthria subtypes are classified by 

examining the five primary speech subsystems namely; phonation, resonance, 

prosody, respiration and articulation [4]. These dysarthria subtypes will be 

discussed in Section 2.2 of this thesis. 
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Dysarthria often results in a decrease in speech intelligibility (when compared with 

the speech from healthy controlled speakers) [8]. Common causes of dysarthria 

include stroke [9], Amyotrophic Lateral Sclerosis (ALS) [10], Parkinson’s disease 

[11-14], multiple sclerosis [15], degenerative diseases [16], brain injury [17], 

tumours [2], etc. The inability to produce speech with high intelligibility is often 

triggered by various control and articulatory factors [18]. The articulatory factors 

consist of the speech production organs – which are also called the articulators- 

such as tongue, lips, larynx, nasal cavity and jaws, whereas, the neuro-muscular 

mechanisms control the movement of these articulators [19]. These disorders affect 

the control of speech articulators but do not necessarily impair language production 

and comprehension [20]. 

1.1 Motivation  

Dysarthria is one of the most common communication disorders representing over 

40% of neurological disorders referred to speech pathologists at Mayo clinic yearly 

[2]. In the UK, dysarthria is also one of the commonly referred disorders to speech 

therapists [21]. Unfortunately, the research attention given to the assessment, 

management and treatment of dysarthria does not follow this trend.  

The current dysarthria assessment methods used by therapists involves both the 

physical examination of the speech production system (lips, tongues, larynx and 

nasal cavity) and speech assessment [1]. The scoring of the speech assessment is 

largely based on the perception of the clinicians rather than objective quantitative 

measures of the relevant speech features [22]. There is, therefore, a need to 

acoustically measure these features in order to characterise the speech impairment 

and classify the severity objectively. The acoustic measurement will give 

quantifiable scores with respect to the various aspects of the speech assessment. 

The scores can then be used to monitor the progress of the speakers before, during 

and after therapy sessions. This classification will also aid the development of a 

progressive treatment tool that can be used on computers and hand-held devices 

which can be monitored remotely by clinicians, including Speech and Language 

Therapists (SLTs). 
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Dysarthria can also have long-term psycho-social impacts on the patients by 

affecting their ability to communicate intelligibly thereby impacting their 

interpersonal relationships, family and career [23]. Early and accurate detection, as 

well as management of this disorder, is therefore of uttermost importance. This can 

be achieved by automating the detection process, independent of human 

subjectivity and perception. 

Another research gap identified is the focus of existing dysarthria classification 

techniques. Most related recent research works [14, 24, 25] are based on the 

assessment of Parkinson’s disease; which is a progressive speech disorder with little 

attention paid on other non-progressive speech disorders [21]. There is, therefore, 

a need to research advanced speech processing techniques that can be used in the 

management and treatment of the various types of dysarthria. 

1.2 Research Aim & Objectives 

One of the main objectives of this study is to explore the application of digital signal 

processing (DSP) principles in the management (assessment and treatment) of 

dysarthria by developing automatic techniques for the extraction of speech features 

from dysarthric speech signals. These acoustic-based techniques will offer 

objective methods that are independent of human perception and expertise which 

can be prone to error due to variability in individual perception [2]. This research 

will also focus on the application of machine learning techniques in the detection 

and classification of dysarthric speech. 

Another objective of this research is to develop an algorithm for the measure of the 

ability of dysarthric speakers to produce short syllables in a fast-repetitive manner 

(also called, diadochokinetic skill) since dysarthria is characterised by reduced 

speech rate. This will help the clinicians in identifying and assessing the 

deterioration in dysarthric speakers’ control and coordination over time.  

The treatment of stress production deficiencies in dysarthria requires a detailed 

understanding of the speech features associated with stress production and their 

impact on speakers’ intelligibility. One of the objectives of this study will be to 

examine the effects of the modification of individual and multiple speech features 

on dysarthric speakers’ intelligibility during stress production activity. This will 
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enable clinicians to make informed decisions during the management of stress 

production deficits in dysarthria. 

In summary, the aim of this research is to develop assisted technology tools for the 

management - assessment, treatment and monitoring - of dysarthria in order to 

achieve the following objectives: 

1. To apply DSP principles in the extraction of acoustic features from 

dysarthria speech  

2. To reduce the analysis errors by developing an improved silence-unvoiced-

voiced segmentation technique for dysarthric speech 

3. To develop novel algorithms for the automatic detection and severity 

classification of dysarthric speech 

4. To assess and analyse dysarthric speakers’ diadochokinetic (DDK) ability 

5. To develop a tool to assist clinicians in making informed-decision in the 

management of stress production deficits in dysarthria.  

1.3 Contributions  

There are six main novel contributions in this research which includes: 

A. Development of an automatic algorithm for the segmentation of dysarthric 

speech into silence, unvoiced and voiced parts using short-time energy 

(STE), zero-crossing rate (ZCR) and linear prediction error variance 

(LPEV) in a two-layer segmentation technique (Chapter 4). 

B. Novel automatic DDK analysis technique for the assessment of dysarthric 

speech using speaker-specific moving average syllable segmentation 

threshold and minimum distance merging (Chapter 5). 

C. Automatic detection of dysarthric speech using extended speech features 

(prosodic, pronunciation, voice quality and wavelets features) and machine 

learning classification techniques (Chapter 6, Section 6.3 and 6.4). 

D. Novel automatic classification of dysarthric speech into three severity levels 

(mild, moderate and severe) using extended speech features and machine 

learning classification techniques (Chapter 6, Section 6.5). 

E. Analysis of stress marking deficits and effects of prosodic features 

(intensity, fundamental frequency and duration) modifications on the 
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speakers’ intelligibility for the clinical management of dysarthria (Chapter 

7). 

F. Development of assistive technology human-machine interfaces for the 

management of dysarthria using DSP and machine learning techniques 

(Chapter 8). 

1.4 Publications 

The academic outputs of this research include: 

 Ijitona, T.B., Soraghan, J.J., Lowit, A., Di-Caterina, G. and Yue, H., 

December, 2017. Effects of acoustic features modifications on the 

perception of dysarthric speech—Preliminary study (Pitch, intensity and 

duration modifications). In  3rd IET International Conference on Intelligent 

Signal Processing (ISP 2017) (pp. 1-6). (Conference paper contribution - 

Chapter 7 of this thesis) 

 Ijitona, T.B., Soraghan, J.J., Lowit, A., Di-Caterina, G. and Yue, H., 

December, 2017. Automatic detection of speech disorder in dysarthria using 

extended speech feature extraction and neural networks classification. In  

3rd IET International Conference on Intelligent Signal Processing (ISP 

2017) (pp. 1-6). (Conference paper contribution - Chapter 6, Section 6.3 of 

this thesis) 

 Lowit, A., Ijitona, T., Kuschmann, A., Corson, S. and Soraghan, J., May, 

2018. What does it take to stress a word? Digital manipulation of stress 

markers in ataxic dysarthria. International Journal of Language & 

Communication Disorders, 53(4), pp.875-887. (Journal paper contribution 

- Chapter 7 of this thesis) 

 Lowit, A., Ijitona, T., & Soraghan, J. (2017). The effects of F0, intensity 

and durational manipulations of the perception of stress in dysarthric 

speech. 106, July 2017. Presented at 7th International Conference on 

Speech Motor Control, Groningen, Netherlands. (Conference poster 

contribution - Chapter 7, Sections 7.5 and 7.6 of this thesis) 

 Ijitona, T., Lowit, A. and Soraghan, J., September, 2017. The effects of 

acoustic modification of fundamental frequency, intensity and duration on 
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the perception of stress in dysarthria speech. In the Royal College of Speech 

and Language Therapists Conference 2017. (Conference poster 

contribution - Chapter 7, Sections 7.5 and 7.6 of this thesis) 

 Ijitona, T.B., Soraghan, J.J., Lowit, A., and Yue, H., October, 2020. 

Automatic diadochokinetic analysis of dysarthric speech using speaker-

specific thresholding and minimum-duration merging. The 21st Conference 

of the International Speech Communication Association (INTERSPEECH 

2020). Submitted (Conference paper contribution – Chapter 5) 

 Ijitona, T.B., Yue, H., Soraghan, J., and Lowit, A., February, 2020. 

Improved Silence-Unvoiced-Voiced (SUV) Segmentation of Dysarthric 

Speech Signals using Linear Prediction Error Variance. The 5th 

International Conference on Computer and Communication Systems 

(ICCCS 2020). Accepted (Conference paper contribution – Chapter 4) 

 Ijitona, T.B., Yue, H., Soraghan, J.J., and Lowit, A., August, 2020, 

Automatic detection and severity classification of dysarthria using prosodic, 

pronunciation, wavelets and voice quality features. The 28th European 

Signal Processing Conference (EUSIPCO 2020). Submitted (Conference 

paper contribution – Chapter 6, Sections 6.4 and 6.5) 

1.5 Outline of the Thesis 

This thesis consists of nine (9) chapters. The first chapter is an introductory chapter 

which includes the motivation for this study, research aims & objectives, novel 

contributions and academic outputs (publications) of this research. The next two 

chapters (Chapters 2 and 3) consists of the review of past and current literature 

related to this research. Chapter 2 covers the review of techniques used in the 

detection and treatment of dysarthria including perceptual and acoustic detection 

techniques, as well as, treatment strategies proposed by researchers over the years. 

Chapter 3 consists of the review of feature extraction techniques for the analysis of 

dysarthric speech, as well as, machine learning classification techniques for 

dysarthria management. The novel contributions of this research are presented in 

Chapters 4 to 8. The first novel contribution, which is the automatic Silence-

Unvoiced-Voiced segmentation of Dysarthric speech using Short-Time Energy, 

Zero Crossing Rate and Linear Prediction Error Variance, is presented in Chapter 
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4. In Chapter 5, a novel technique for the analysis of diadochokinetic syllables in 

dysarthria is presented. Automatic detection of dysarthric speech and severity 

classification techniques are presented in Chapter 6 while the analysis of stress 

production deficits in dysarthria speech is presented in Chapter 7, to assist clinicians 

in making informed decisions when using stress production tasks in the 

management of dysarthria. Five dysarthria management tools, developed in 

MATLAB, are presented in Chapter 8 which includes Speech Examination Tool 

(SETool), Automatic DDK Analysis Tool (DDKTool), Automatic Dysarthria 

Detection Tool (DyDECTOOL), Dysarthria Severity Classification Tool 

(DySECTOOL), and Stress Marking Task Tool (SMAT). The sixth tool called the 

Dysarthria Assessment and Treatment Tool (DySATTOOL) gives users access to 

the other five tools. The last chapter of this thesis, Chapter 9, gives a summary of 

the contributions in this research work as well as the future works relevant to this 

study. 

  



Chapter 2  

2 Review of the Techniques used in Dysarthria Detection 

and Treatment  

2.1  Introduction  

In this chapter, a review of how technologies are used in the detection and treatment 

of dysarthria is discussed. In order to understand the roles played by these 

technologies in its management, dysarthria will be described while highlighting its 

causes, characteristics, symptoms, and effects on the lifestyle of people living with 

this disorder. Current clinical techniques used in the management of dysarthria will 

be an area of focus, providing a review of how the clinicians diagnose, assess and 

treat dysarthria, while the current gaps in the use of technologies will be identified. 

In addition, different pathological speech management techniques proposed over 

the years will be reviewed, while identifying the limitations posed by these 

techniques based on the availability of resources and underlying clinical factors 

such as user-ability, reliability and effectiveness. Various measures used in 

classifying dysarthria into different severity levels will also be discussed with a 

focus on how relevant the measures are and their degree of subjectivity. More 

specifically, the latest advances in assistive technologies and their impacts on 

dysarthria management will be discussed in this chapter.  

2.2 Causes, Characteristics and Symptoms of Dysarthria 

Occurrences of dysarthria are generally categorised into six subtypes depending on 

their prosodic, articulatory, resonance, respiration and phonation characteristics 

[10]. Four of the six types of dysarthria (spastic, hyperkinetic, hypokinetic and 

ataxic dysarthria) result from damages to the upper motor neurons [26]. Pyramidal 

tract damage results in spastic dysarthria [2]; whereas, damages to extrapyramidal 

tract result in hypokinetic or hyperkinetic dysarthria [4]. Ataxic dysarthria, on the 

other hand, is caused by lesions in the cerebellum [27]. The type of dysarthria 

resulting from lower motor neurons damage is called the flaccid dysarthria [10]. 
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This includes damages to the cranial nerves - with motor components. There are 

some occurrences where both the upper and lower neurons are damaged [4, 10]. 

These occurrences are called mixed dysarthria [3]. An example of mixed dysarthria 

is Amyotrophic Lateral Sclerosis which consists of the combination of Flaccid 

Dysarthria and Spastic Dysarthria [15]. The neuromuscular characteristics of 

various types of dysarthria are presented in Table 2-1. 

Table 2-1. Neuromuscular Characteristics of Various Types of Dysarthria 

Characteristics Spastic 

Dysarthria 

Hypokinetic 

Dysarthria 

Hyperkinetic 

Dysarthria 

Ataxic 

Dysarthria 

Flaccid 

Dysarthria 

Rhythm (indivi-

dual/repetition) 

Regular Regular Irregular -/Irregular Regular/Nor

mal or Slow 

Rate (individual 

/repetition) 

Slow/slow Slow/Fast Slow/Slow Slow/Slow Reduced/No

rmal or Slow 

Range 

(individual/repet

ition) 

Reduced/ 

Reduced 

Reduced/ 

Very Reduced 

Reduced to 

Excessive 

Excessive to 

Normal 

-/Reduced 

Tone Reduced Excessive Excessive Reduced Reduced 

Direction Normal Normal Inaccurate Inaccurate Normal 

Force Excessive Reduced Reduced to 

Excessive 

Normal to 

Excessive 

Weak 

The prognosis and characteristics of these various subtypes of dysarthria differ in 

terms of their effects on the primary speech subsystems namely; resonance, 

phonation, respiration, prosody and articulation [2]. The ability to articulate 

consonants is affected by all categories of dysarthria which often results in a slurred 

speech [28]. Difficulty in the articulation of vowels may also occur in cases with 

high severity [2]. The level of intelligibility also varies across the different types of 

dysarthria [4]. These variations in the primary speech subsystems and etiologies are 

discussed in Section 2.2.1 through to Section 2.2.6. 

2.2.1 Spastic Dysarthria 

Spastic dysarthria results in difficulty in coordination and increase in the muscle 

tone. This type of dysarthria usually affects the larynx, lips, throat, cheeks and/or 
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velum [19]. According to the data from Mayo Clinic Speech Pathology, spastic 

dysarthria accounts for 7.3% of all dysarthria [2]. Research has also shown that 

stroke in the brainstem is one of the major causes of this type of dysarthria [5]. In 

spastic dysarthria, the pitch is often low [4] and in some cases, breaks in pitch occur 

[5]. Consonant articulations are often imprecise and the speech prosody shows an 

abnormal pattern (stress, intonation and duration) [5]. There is typically a mild 

occurrence of hypernasality without nasal emission [3, 4]. Spastic dysarthria is also 

characterised by distorted vowels, slow speech rate, mono-loudness, reduced stress, 

mono-pitch and inability to produce long phrases [2]. These features will be useful 

in characterising this dysarthria subtype for research purposes. The etiological 

distribution of spastic dysarthria is shown in Figure 2-1 indicating that the causes 

of spastic dysarthria cannot be streamlined to a specific disease or situation.  

  

Figure 2-1. Etiologies of Various Types of Dysarthria [2] 

2.2.2 Flaccid Dysarthria 

Flaccid dysarthria, on the other hand, causes weakness and inevitably affects speech 

production. Depending on the position (adducted or abducted) of the vocal fold 

paralysed, the voice can be harsh, breathy and characterised by low loudness [2]. 
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Due to the vocal fold paralysis, there is low variability in pitch and loudness 

resulting in mono-pitch and mono-loudness [4]. Other notable symptoms of flaccid 

dysarthria in speech are nasal emission when speaking and reduced loudness over 

time [3]. Research [2] has shown that unlike spastic dysarthria, 40% of flaccid 

dysarthria is caused by degenerative diseases. Only 22% of reported flaccid 

dysarthria is caused by surgical and non-surgical trauma whereas 19% are equally 

caused by vascular and unknown diseases as illustrated in Figure 2-1. The other 

occurrences are from infections, tumours and anatomic malformation [2]. 

2.2.3 Hypokinetic Dysarthria 

Hypokinetic dysarthria is one of the most researched types of dysarthria because of 

its association with Parkinson’s disease [29, 30]. Hypokinetic dysarthria is mainly 

caused by injury in the subtantia nigra [4]. It affects all speech subsystems – 

respiration, phonation, prosody, articulation and resonance [2]. Intelligibility is 

greatly affected in hypokinetic dysarthria and patients experience decreased 

movement and hoarseness in voice quality [2]. Hypokinetic dysarthria is also 

characterised by hypernasality, mono-pitch and mono-loudness [4]. Repetitions of 

syllables, freezing movement, rigidity together with reduced force and decreased 

range in movement can also occur [2]. According to the data from Mayo clinic on 

the occurrence [2], 87% of reported hypokinetic dysarthria are degenerative, 4% 

from vascular-related diseases, 3% from traumatic situation and infections. The 

other occurrences are from multiple and undetermined causes. Research in [2, 13] 

has shown that intelligibility of speech is largely affected by hypokinetic dysarthria; 

the loudness of speech is reduced, the pitch is more varied and the rate of speech is 

increased. These prosodic features can be used to distinguish hypokinetic dysarthria 

from healthy controlled speech. 

2.2.4 Hyperkinetic Dysarthria 

Hyperkinetic dysarthria, on the other hand, is associated with a lesion in the basal 

ganglia [2] which affects the control circuits of speech production which can also 

be manifested in all the five speech subsystems; articulation, prosody, phonation, 

respiration and resonance [31]. This type of dysarthria causes involuntary 

movement characterised as abnormal, unpredictable, fast or slow and sometimes 
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irregular in pattern [3]. It is characterised by strained, harsh or strangled voice 

quality [4] which is similar to that experienced in spastic dysarthria. A common 

resonance symptom is a hypernasality in speech production [4]. The exact 

distribution of the causes of hyperkinetic remains unknown [2]. This may be due to 

the fact that this type of dysarthria can be caused by various processes associated 

with damages to the control circuitry [2]. This further emphasises the need for early 

detection and classification. 

2.2.5 Ataxic Dysarthria  

This type of dysarthria affects the main speech subsystems but is more prominent 

in prosody and speech articulation. It is characterised by less frequent hypernasality, 

harsh voice quality, high variability in loudness patterns resulting in speech 

explosiveness. In terms of prosody, equal stress is placed on all words and syllables 

resulting in incorrect and excessive stress. The speech is slurred due to coordination 

and control deficiencies or breakdown [2]. The prosody of the speech is also 

characterised by an inaccurate duration, intensity [32], intonation and variability in 

articulation [4]. 

2.2.6 Mixed Dysarthria 

According to the research from Mayo Clinic, the combination of any two or more 

types of dysarthria called mixed dysarthria, is the most frequent type of dysarthria 

accounting for about 30% of reported cases of dysarthria and also the most common 

type of motor speech disorders [2]. Examples of mixed dysarthria include 

amyotrophic lateral sclerosis, Friedreich’s ataxia, central pontine myelinolysis, 

Wilson’s disease, multiple system atrophy, hypoxic encephalopathy, multiple 

sclerosis etc. According to research statistics [2], 78% of etiologies of dysarthria 

are degenerative, 7% from vascular diseases and demyelinating diseases account 

for 3%. Other occurrences are from traumatic, neoplastic, toxic-metabolic, multiple 

and other causes [2].  

Now that the various subtypes of dysarthria have been discussed in terms of their 

causes and characteristics, it is important to note that the causes of most of these 

dysarthria subtypes are unknown which makes it clinically challenging to detect the 

disorder at the very early onset. This challenge can be tackled by developing an 
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acoustic-based technique that is able to detect mild dysarthria before the symptoms 

become more severe, with the advantage of being less prone to errors due to external 

factors such as human interference. In addition, some of the speech subsystems 

affected by the various types of dysarthria (prosody, articulation and pronunciation) 

can be examined by analysing the speech samples using signal processing 

techniques.  

Over the years, researchers, especially from clinical-related backgrounds, have 

reviewed ways of characterising dysarthria using perceptual methods and by 

physical examination, which introduces subjectivity and varying results based on 

the physician experience, training and/or exposure [16, 33, 34]. The question now 

is: “Are these (subjective) methods fair?”. Also, “Should they (the methods) be 

conclusive especially when high variability in results can be expected?”, “Are there 

alternative ways of examining dysarthria more objectively?” and “Can techniques 

that are strictly based on speech processing with little or no physical 

manipulation/intrusion be developed?” These questions form the basis of this 

research while highlighting the need to analyse the performance of new “objective 

techniques” and validate their applications in dysarthria management. 

In the next sections, the existing and current methods used in the assessment and 

treatment of dysarthria will be critically reviewed which will include the review of 

various severity levels of dysarthria (presented in Section 2.3) and the review of 

perceptual and acoustic-based techniques used in dysarthria assessment and 

treatment (presented in Sections 2.4 and 2.5). In Section 2.6, a review of the 

strategies used in developing treatment tools for dysarthria will be presented which 

will be accompanied by a review of various treatment tools developed over the 

years for dysarthria treatment and the gaps identified in the 

implementation/application of these tools, cutting across both speech therapy and 

engineering/speech processing fields. After these critical reviews, the focus of this 

research will be discussed in line with the identified gaps which will form the basis 

of the review of the speech features presented in Chapter 3 and the justification for 

the contributions presented in Chapters 4 to 8 of this thesis. 
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2.3 Review of Severity Measures in Dysarthria  

Apart from describing dysarthria based on the six subtypes as presented in Section 

2.2, the occurrence of dysarthria can also be described by their severity levels. 

Severity in speech disorder simply is the measure of the extent to which the speech 

disorder has affected the patient’s voice quality, the ability of the patients to express 

themselves verbally and how understandable the patient’s speech is to the listeners 

[35]. In essence, speech disorder severity gives a measure of how far apart the 

speech is from what is regarded as “healthy” speech [35]. In this section, the 

severity levels in dysarthria will be reviewed, as well as, the measures used in 

quantifying the severity levels in practice and in current studies. 

2.3.1 Intelligibility as a Measure of Severity in Dysarthria 

The question then is: “How is the severity in dysarthria measured or quantified?” 

Over the years, there has been an increased focus on intelligibility as a measure for 

assessing how far apart the dysarthric speech is from “healthy” speech [28, 36-38]. 

Intelligibility, in the real sense, is described as the degree to which the listeners 

understand the speech with respect to the phonetic realisation of the speech [39]. 

This should not be confused with comprehensibility which also includes semantic, 

syntactic and pragmatic characteristics of the speech [38, 39].  

A review of the literature shows that the intelligibility score is often used to describe 

dysarthria since it is a function of speech deficiencies [39]. Over a nine-year period, 

70% of published articles on dysarthria severity made use of intelligibility as the 

primary severity measure [40]. The intelligibility scores are generated by asking 

experienced judges to score the utterances based on an agreed perceptual rating 

scale [38]. There are various perceptual rating techniques used for scoring speech 

intelligibility in dysarthria which can be grouped into two categories; relative, with 

a reference point and absolute, without a reference point. The choice of the rating 

scale is often determined by the intended applications and availability, or lack, of a 

potential reference sample. The effects of using either of these two categories of 

rating scales and their limitations are reviewed in Sections 2.4.1 and 2.4.2. Please 

note that the terms “Relative” and “Absolute” were introduced by the author of this 
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thesis as a way of grouping the various intelligibility rating scales based on whether, 

or not, a reference point is required. 

A. Absolute Intelligibility Measurement Techniques 

In these intelligibility measurement techniques, the listeners are required to listen 

to the utterances and write down (transcribe) what they heard. Usually, the speakers 

would be given single-words, sentences, passage or paragraph to read and their 

utterances recorded before asking the listeners to transcribe the utterances. The 

listener’s transcriptions are then compared with the original passage/paragraph 

given to the speakers. The number of words correctly transcribed is then divided by 

the total number of words in the speech/utterance. This results in a percentage 

representation of the intelligibility score (0-100%) [41]. 

The absolute techniques which require the listeners to transcribe single-words are 

called the single-word intelligibility measures [40]. The use of single-word 

intelligibility measure has many advantages, one of which is that single-words are 

less demanding than sentences or paragraphs [40]. This also helps in reducing the 

potential for fatigue due to long reading sessions. In previous studies, semantically 

predictable words are often recommended to reduce the semantic distance between 

single words and words used in natural communication [40].  

Phoneme intelligibility measure is another absolute intelligibility measurement 

technique which involves the examination of perceptual errors in consonants, 

vowels and diphthongs pronunciations [40]. A typical example of this is “The 

Phoneme Intelligibility Test” which was developed by Yorkston et al. [42]. Single-

words are also used in phoneme intelligibility test but these words have target 

phonemes examined. The phoneme intelligibility test allows the phoneme error 

profile of speakers to be generated in a systematic way [40].  

The sentence intelligibility measure is another absolute technique for measuring 

speech intelligibility [40]. Utterances comprising of sentences are given to listeners 

to transcribe and score based on the percentage of correctly transcribed words with 

respect to the total number of words in the sentences. 

A review of studies on intelligibility measurements has shown that the single-word 

intelligibility scores can be different from sentences intelligibility scores based on 



2.3 Review of Severity Measures in Dysarthria 16 

Tolulope Ijitona 

University of Strathclyde, 2019   

the severity of the speakers [40, 43]. For instance, a study by Yorkston et al. in [43] 

shows that speakers with highly severe dysarthria often show higher single-word 

intelligibility scores when compared with their sentence intelligibility scores. This 

is not the case with speakers with mild dysarthria who produce higher sentence 

intelligibility scores when compared with their single-word intelligibility scores. 

The accuracy of any proposed tool for the classification of the severity levels based 

on intelligibility needs to be high enough to compensate for the variations due to 

the choice of intelligibility task. 

B. Relative Intelligibility Measurement Techniques 

In relative intelligibility measurement techniques, a speech sample is chosen as the 

reference point and other speech samples are rated with respect to the reference 

point. Usually, the speakers would be given single words, sentences, passage or 

paragraph to read and their utterances recorded. After this, the listeners will be 

asked to judge how intelligible the speech is. A review of the literature shows that 

researchers make use of varying scales when performing relative intelligibility 

measurement. For example, in a study in [44], the authors made use of a 5-point 

measurement scale varying from 0, representing unintelligible, to 4, representing 

perfectly intelligible. This 5-point scale introduces subjectively to the intelligibility 

measure because not all the listeners can score the speech samples in a consistent 

manner. In another study by Hazan and Markham [45], a 2-point subjective 

intelligibility scale was used; where listeners rated the presented speech samples as 

“good” or “poor”, which can often lead to erroneous results due to limited options. 

Other point scale measures have been used in assessing the intelligibility in 

dysarthria (2-point, 5-point, 4-point, 7-point and even 10-point scales [44, 45] [46]). 

These point scale measurement methods will be referred to as N-point scales. 

Generally, N-point scales in intelligibility measures are subjective, relative and are 

functions of the listener’s exposure, training and experience which may lead to high 

variation in the results [45]. There is, therefore, a need to explore other ways to 

either compensate for these errors (for example, by training the listeners) or 

generate more objective measurement techniques that are less prone to errors. 

However, some intelligibility measurement methods are based on the comparison 

of the speakers’ utterances with a reference stimulus, regarded as a good reference 
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point of midrange intelligibility [47]. This technique is called the direct magnitude 

estimation (DME) [47, 48]. The reference stimulus can either be chosen by the 

listeners or by the examiners (researchers or clinicians) setting up the experiment. 

In a study by Joan et al [49], listeners were given the opportunity to choose the first 

utterance they listened to as the reference stimulus after which they compared the 

other utterances with the chosen stimulus. The first utterance is assigned 100 and 

the other utterances are rated with reference to the first utterance. If the 

intelligibility of the next utterance is perceived better than the first utterance, the 

listener will give it a score greater than 100 (200 if the listener thinks the 

intelligibility is twice better than the first utterance). If the listener perceives that 

the intelligibility of the next utterance is half as good as the first utterance, the 

listener gives it a score of 50. This way, relative scores are generated with respect 

to the first utterance [49]. This can often result in varied results across listeners 

(especially when the utterances are randomised). 

A review of the literature shows that the choice of reference stimulus can affect the 

intelligibility measures [47, 49] and this is why some researchers have made use of 

a reference stimulus deemed to have midrange intelligibility [47]. This will ensure 

that all the listeners involved in the assessment make use of a single reference 

stimulus thereby reducing the variability of the measures and make the results more 

comparable. The DME techniques can also be applied with or without modulus. 

With modulus means that the reference stimulus is assigned a specific score (for 

example, 10 or 100) and without modulus (also known as free modulus) means that 

the listeners are allowed to give their own preferred score to the reference stimulus 

[47, 49]. 

The N-point scaling and the DME methods are based on the listeners’ perception 

which can be prone to errors especially when the number of listeners is limited. To 

overcome this disadvantage, the number of listeners should be increased so that an 

average can be taken and reduce the effect of any spurious score from a listener. 

The accuracies of the absolute intelligibility measures are more consistent because 

they are less subjective than relative intelligibility measures. However, if the 

assessment is carried out by only one listener, an N-point scaling technique will be 

more appropriate. Apart from the choice of the intelligibility measurement 
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technique, there are, however, other factors that affect the intelligibility measures 

which will be discussed in Section 2.3.2. 

2.3.2 Factors Affecting Intelligibility Measures 

The intelligibility score is influenced by a number of factors which include the type 

of utterance (single words, repetition or sentences), how the speech is presented to 

the listeners (live speech or recorded speech), nature of listeners (native or non-

native speakers) and how transcription is carried out (sentence completion or single 

word transcription) [39]. Environmental factors affecting intelligibility 

measurement have been examined by Dykstra et al [40] and Yorkston et al [50] and 

one of the main factors identified is the set-up where the speech recordings were 

taken. Factors such as lights, noise, closeness to recording equipment and the 

number of persons present can influence the ability of the speakers to speak 

naturally which inadvertently contributes to the speaker’s perceived intelligibility 

[40]. Another environmental factor affecting the intelligibility measure is the 

support received by the speakers from their friends, family members, peers and 

sometimes, by the clinicians [40]. When assessing intelligibility in dysarthria it is 

important to consider these factors and minimise the impact, if possible.  

However, some of the factors that affect speech intelligibility are inherent in speech 

attributes. There are four dimensions of speech intelligibility as suggested in [38] 

including articulation, nasality, voice quality and prosody. Out of these four 

dimensions, articulation accounts for the strongest correlation with the perceived 

intelligibility (0.82) followed by prosody (0.55), voice quality (0.46) and nasality 

(0.32). Three of these dimensions (articulation, prosody and voice quality) will be 

explored when developing the automatic algorithm for the detection of dysarthric 

speech in Chapter 6 of this thesis. 

2.4 Review of Perceptual Techniques used in Dysarthria 

Assessment 

Some of the current research in the assessment of dysarthric speech includes 

perceptual analysis [51], acoustic measurement [7, 13, 52] and intelligibility 

assessment [28, 53]. There are three main techniques traditionally used in the 
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perceptual assessment of dysarthria which include Frenchay’s Dysarthria 

Assessment (FDA) [19], Robertson Dysarthria Profile [2] and Dysarthria 

Examination Battery (DEB) [21].  

2.4.1 Frenchay’s Dysarthria Assessment  

After the term Dysarthria was first used to describe deviations in speech and 

pronunciation due to neurological disorders in 1976, it became important to develop 

methods for assessment of this disorder and distinguish it from other speech-related 

disorders. At this period, a descriptive method of assessment was conventionally 

used which is subjective, unreliable with low sensitivity [33]. Different adjectives 

were used to describe the speech produced by patients with dysarthria [10, 54]and 

this brought up the need to develop a standard method for assessment of dysarthria. 

The Frenchay’s dysarthria assessment (FDA) was developed in 1980 as a more 

reliable assessment of dysarthria compared to the conventional descriptive method. 

The researchers at the Frenchay Hospital in Bristol (FDA was named after this 

hospital) felt that the dysarthria assessment should be applicable to therapy, 

sensitive to change, short and easy to use, require little training and have results that 

are easy to interpret [33]. 

FDA was based on the review of how speech therapists assess and analyse the 

patient’s behaviours focusing on relevant features of their speech production [33]. 

To adequately describe these behaviours, different activities were designed under 

eight sub-headings; which includes reflex, respiratory, lips, jaw, palate, laryngeal, 

tongue, and intelligibility scores resulting in 29 tasks in total. Under each sub-

heading, specific activities were rated and the average is taken to give a score 

between a (least severe) to e (most severe) relying on how skilled they are. In fact, 

it has been shown in [33] that the inter-scorer reliability of FDA increases with 

therapist’s training. Since then different versions of the FDA [29, 55] have been 

developed but most of them have not been able to completely solve the problem of 

subjectivity in the assessment. 

2.4.2 The Robertson Dysarthria Profile (RDP) 

The RDP was developed by SLTs in 1982 to assess motor speech disorders [56] 

with the aims to provide: 
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 Profile of patient’s speech abilities and disabilities 

 Information to aid in dysarthric classification 

 A basis for dysarthria therapy and management 

Although the first two aims were met in the first publication [56], a program was 

developed 5 years later to meet the third aim [57]. In this profile, the speech samples 

of the patients are scored using a 5-grade system from Normal to Good, to Fair, to 

Poor and, finally, to None leaving it prone to inter-therapist variation based on their 

experiences and training levels. In RDP, the patients are assessed under eight sub-

headings which include respiration, phonation, facial musculature, 

diadochokinesis, oral reflexes, articulation, intelligibility and prosody [30]. These 

parameters were weighted differently using the maximum scores [58] as illustrated 

in Table 2-2. 

Table 2-2. The Robertson Dysarthria Profile Scoring 

Parameter Number of Tasks Maximum Score 

Respiration 5 20 

Phonation 12 48 

Facial musculature 20 80 

Diadochokinesis 11 44 

Reflexes 7 28 

Articulation 5 20 

Intelligibility 6 24 

Prosody 5 20 

Total 71 284 

Unlike in FDA, where 29 tasks are carried out, 71 tasks are carried out in RDP 

across the eight different parameters each carrying a score of 4 [58]. Also, it is 

important to note that the highest number of tasks is carried out under facial 

musculature which involves physical examination [30]. 
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2.4.3 Dysarthria Examination Battery 

Dysarthria Examination Battery (DEB) was first introduced by Drummond in 1993. 

DEB examines the patients in all the five speech production subsystems. In DEB, 

five tasks are carried out under the respiration sub-heading involving resting 

breathing, vital capacity, maximum performance tasks (MPT), s:z ratio and word 

per inhalation. Fundamental frequency, intensity, intensity range, maximum 

loudness, maximum pitch and speech quality are also measured under phonation. 

DEB also contains an additional task of oral sensitivity test during the tactile 

stimulation. The major difference between DEB and other assessment tools 

discussed above is the introduction of acoustic measurements to the assessment. 

Only a few pieces of literature were found on DEB. This could be due to the fact 

that some of the measured parameters are similar to those in RDP and FDA. Some 

of the measures in DEB are also subject to the therapist’s perception which can vary 

based on experience and training. All the tasks carried out in the three assessment 

techniques discussed above are presented in Appendix A. 

2.4.4 Computerised Frenchay’s Dysarthria Assessment  

The CFDA is a more recent tool for dysarthria diagnosis. It was proposed in 2015 

by James Carmichael [19]. It is based on digital signal processing methods to 

quantitatively assess speech signals in a quest to diagnose the traits of dysarthria. 

CFDA procedure consists of two main parts; respiration test and phonation test [19]. 

The respiration test involves asking the user to take a deep breath using the mouth. 

After this, the user is asked to exhale the taken breath slowly in a way that 

exhalation can be heard. On the other hand, in the phonation test, the user is asked 

to say the phoneme “AH” and prolong/sustain it as long as they can. The two tests 

are then graded from the highest score A to the least score E. While this technique 

works well for phonation and respiration measurement (when compared with 

traditional assessment method), the pitch detection and excessive airflow 

(hypernasality) have not been taken into consideration [19]. The limitations 

identified in the FDA are also present in CFDA and the problem of the subjectivity 

of users still exists. 
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The perceptual analysis is very useful in the initial clinical diagnosis and assessment 

of dysarthria. However, due to the fact that human beings have different perception 

capabilities and styles, perception scores can vary considerably. This can be seen in 

the global statistical analysis of various dysarthric speech as recorded by DeMino 

and Dynamics in 2011 [26] and the scoring of the Darley, Aronson and Brown 

speech samples [10]. Now that the state-of-the-art perceptual techniques used in 

dysarthria assessment have been reviewed, it is important to also review published 

studies on the use of acoustic features in dysarthria assessment and classification 

which were presented in Section 2.5. 

2.5 Review of Acoustic-based Techniques used in Dysarthria 

Assessment 

In the past two decades, the focus of the research community in dysarthria 

assessment has shifted from using traditional perceptual techniques to developing 

acoustic techniques that are based on speech processing technologies [12, 59]. This 

shift is mainly attributed to the need to objectively assess dysarthria using signal 

processing and machine learning techniques applied in dysarthria speech 

recognition [60-62], loudness detectors [63], pitch trackers [64], speech rate 

detection [52], articulatory feature extraction [59], and respiration and phonation 

analysis [19]. Speech processing techniques such as linear prediction coding, Mel-

frequency cepstral coefficients, perceptual linear prediction and machine learning 

techniques have also been used in some of these acoustic assessments [9, 19, 52]. 

One of the major difficulties in acoustic dysarthria assessment is the development 

of techniques that can easily detect subtle changes in dysarthric speech features as 

most of the existing speech processing methods work well for healthy speech but 

do not give good and consistent results when analysing dysarthric speech [62]. 

Another gap identified is the fact that some of the machine learning techniques used 

(for example DNN) require a large amount of training data; which are not readily 

available for dysarthric speech. 

2.5.1 Choice of Speech Features 

There are several aspects that can be used to acoustically assess dysarthria and 

research [65] has shown that a single method may not be appropriate for every case 
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of speech disorder, thereby necessitating the need to choose appropriate acoustic 

features for specific assessment application and/or speech disorder. Researchers 

found a slow syllable rate with high variability in dysarthric speakers [10, 65] and 

unlike in dysphonia, where only the instantaneous acoustic features of the speech 

are distorted, duration-related features and speech dynamics are also distorted in 

dysarthria [65]. Another study in [42] shows that the articulation movements of 

dysarthric speech are also affected due to poor speech coordination and weakness.  

In other studies [65-67], researchers have noted that spectral features such as 

fundamental frequency, energy, jitter, shimmer, and harmonics-to-noise ratio are 

good indicators of pathological speech. Some other studies [68, 69] suggested that 

cepstral features (such as Mel Frequency Cepstral Coefficients) are also good 

indicators of dysarthric speech. The list of relevant features keeps growing over the 

years even though there are few overlaps on the chosen features by researchers. A 

review of these speech features and their relevance to dysarthria assessment will be 

presented in Chapter 3 of this thesis. 

2.5.2 Dataset/Corpus Used 

Apart from the intended application, another factor that determines the choice of 

speech features is the available dataset. A review of the literature shows that the 

dataset used by researchers in developing dysarthria assessment techniques were 

recorded by experienced personnel, mostly clinicians, within a controlled 

environment [65]. Even though recording and collection of speech data within a 

controlled environment might be more realistic for research purpose, it sometimes 

does not provide the true presentation of the speaker’s day-to-day natural 

communication. Another challenge is that the available data might have been 

collected for a different purpose (for example, for speech recognition) other than 

for automatic assessment [65]. 

Lack of availability of data is one of the limitations researchers face in the 

development of automatic assessment techniques. Another common challenge in 

terms of the dataset is that there is no specific standard for how data for automatic 

dysarthria assessment should be collected [65]. Likewise, the distribution of the 

available dataset varies considerably across various age groups, gender and 

sometimes, demography. This makes cross-validation of assessment techniques 
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across the various dataset challenging [65]. In addition, age and gender mismatch 

between the dataset from dysarthric speakers and that of controlled speakers often 

pose challenges when analysing and validating the automatic assessment techniques 

[2, 65]. 

In the development of an efficient dysarthria assessment tool, it is important to take 

the challenges introduced due to the dataset into consideration. This can be done by 

using age and gender-matched dataset and performing appropriate pre-processing 

on the speech signals before features are extracted. 

2.5.3 Acoustic-based Dysarthria Assessment Techniques Over the Years 

A summary of automatic dysarthria assessment techniques proposed by researchers 

in the past decade is presented in Table 2-3 which includes the performance of the 

various techniques. One of the notable studies on automatic dysarthria assessment 

was presented by Jangwon Kim et al [70] where sentence-level speech features, 

extracted under three subsystems: prosody subsystem, voice quality subsystem, and 

pronunciation subsystem, were used for the classification problem. Their choice of 

speech features was based on the evidence that dysarthric speakers often find it 

difficult to produce certain speech sounds which alter their prosody, pronunciation 

and of course, voice quality [2]. Under the prosody subsystem, pitch and durational 

related features were extracted whereas harmonics to noise ratio, jitter and shimmer 

features were extracted under voice quality subsystem and syllable duration, pause 

to syllable ratio, vowel duration and MFCC-based features were extracted under 

the pronunciation subsystem [70]. Also, the performance of three classification 

techniques, support vector machines (SVM), k-nearest neighbours (KNN) and 

Linear Discriminant Analysis (LDA) were compared. Using the TORGO database, 

a maximum accuracy of 71.3% was realized for prosody subsystem (using SVM 

classification), 71.7% for pronunciation subsystem (using SVM classification), 

68.9% for voice quality subsystem (using LDA classification) and 72.0% for a 

combination of the three subsystems (using LDA classification).  
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Table 2-3. Summary of Automatic Dysarthria Assessment Techniques Proposed by Researchers in Published Studies in the Past Decade 

S/

N 

Study Year Corpus used Classifier No of 

Classes 

Features Accuracy Focus 

1. Automatic intelligibility classification of 

sentence-level pathological speech [70] 

2015 TORGO and NKI 

CCRT databases 

SVMs, 

KNNs 

2 Pitch, Duration, HNR, Jitter, 

Shimmer, MFCCs, Formants and 

Pause to syllable ratio 

72.0% Pronunciation, 

voice quality, 

and prosody  

2. Automatic detection of Parkinson's disease in 

running speech spoken in three different 

languages [71] 

2016 100 Spanish, 176 

German, and 36 

Czech speakers 

SVMs 2 MFCCs, Formants, F0, Energy, 

Duration, Pauses, Bark band 

energies  

97%, 94.3%, 

85% 

respectively 

Prosody, 

pronunciation 

3. Automatic estimation of Parkinson’s disease 

severity from diverse speech tasks [72] 

2015 Parkinson’s and 

Eating Condition 

Sub challenges 

SVMs with 

fifth-order 

kernel 

2 MFCCs, GFCCs, GBF, MFBs, 

F0, Energy, HNR, Jitter, 

Shimmer, segmental features 

76.2%  Pronunciation, 

voice quality, 

and prosody 

4. Perceptually Enhanced Single Frequency 

Filtering FNR Dysarthric Speech Detection and 

Intelligibility Assessment [8] 

2019 UASPEECH (16 

dysarthric 13 health 

speakers) 

GMM-UBM 4 PLP, MFCCs, Multitaper MFCC, 

CQCC, PE-SFCC 

93.64%  Articulation 

5. Automatic Evaluation of Articulatory Disorders 

in Parkinson’s Disease [59] 

2014 46 native speakers 

of Czech 

SVMs 2 Formants, DDK rate, pace and 

fluctuation, VSQ, VOT 

83.3% Articulation 

6. Fully automated speaker identification and 

intelligibility assessment in dysarthria disease 

using auditory knowledge [73] 

2016 Nemours and Torgo 

databases 

GMMs, 

SVMs and 

hybrid 

4 MFCCs, external, middle and 

internal ear model features 

97.2% Phonation and 

Auditory 

model 

7. Classification of speech intelligibility in 

Parkinson's disease [46] 

2014 240 running speech 

samples from 60 

PD and 20 HCs 

SVMs 2 and 3 ZCR, F0, STE, MFCCs, Cepstral 

Separation Difference (CSD) 

92% (2 

classes) 85% 

(3 classes) 

Phonation, 

articulation 

and prosody 
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S/

N 

Study Year Corpus used Classifier No of 

Classes 

Features Accuracy Focus 

8. Assessment of dysarthric speech through 

rhythm metrics [74] 

2013 11 males with 

dysarthria and one 

non-dysarthric adult 

Gaussian 

Bayes 

2 rPVI, nPVI, vocalic intervals and 

duration of voiced & non-voiced 

intervals 

62.98% 

(Dysarthric) 

90.3 % (HC) 

Rhythm 

metrics 

9. Fully automated assessment of the severity of 

Parkinson's disease from speech [75] 

2015 168 PD speakers SVM, Ridge 

and Lasso 

Regression 

2 Pitch, Jitter, Shimmer, Loudness, 

HNR, MFCCs 

Mean 

Absolute 

error: 5.5 

Loudness, 

Voice quality 

& articulation 

10 Automated Intelligibility Assessment of 

Pathological Speech Using Phonological 

Features [76] 

2009 211 speakers (51 

HC) 

Linear 

regression 

2 Phonemic, Phonological, Context-

Dependent Phonological features 

RMSE 3.9 Phonemic and 

Phonological 

measures 

11

. 

Detection of Amyotrophic Lateral Sclerosis 

(ALS) via Acoustic Analysis [77] 

2018 67 ALS and 56 

healthy speakers 

SVM 2 MFCC, Spectral variance, 

Spectral Entropy 

83% female 

and 79% male 

Statistical 

feature 

selection  

12 Intelligibility Classification of Pathological 

Speech Using Fusion of Multiple 

Subsystems [78] 

2012 NKI CCRT Speech 

database 

Bayesian 2 Phoneme probability feature, 

Pitch, Duration, MFCCs, Jitter, 

Shimmer, Formants, HNR, pause 

79.9% (76.8% 

on test set) 

Phoneme, 

Prosody and 

Intonation 

13 Automatic Assessment of Dysarthria Severity 

Level Using Audio Descriptors [79] 

2017 UA speech and 

TORGO database 

Artificial 

Neural 

Network 

4 Energy, STFT magnitude & 

power, ERBFFT & Gammatone, 

Multi-taper Harmonic & Power 

96.44% (UA) 

and 98.7% 

(TORGO) 

Audio 

Descriptors 

14 Automatic Detection of Speech Disorder in 

Dysarthria using Extended Speech Feature 

Extraction &Neural Networks Classification[80] 

2017 10 Ataxic 

Dysarthric and 10 

HC speakers 

Neural 

Networks 

2 Centroid Formant 75.6% Articulation 
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A few other studies have extended Kim’s technique to include more features and 

more languages other than English. One of those studies was presented in [71] in 

2016 where the authors proposed a method for automatic detection of Parkinson’s 

disease in three European languages; Czech (36 speakers), German (176 speakers) 

and Spanish (100 speakers). For enhanced speech feature extraction, the authors 

initially segmented the speech samples into silence, unvoiced and voiced segments 

[71]. This was followed by extracting the MFCC features from both the unvoiced 

and voiced segments. Prosodic features (fundamental frequency, energy, duration 

and pauses), as well as noise and formant measures, were extracted from the voiced 

segments. Finally, the energy of the unvoiced segment was distributed into twenty-

five filter banks. The study made use of SVM classification technique due to its 

success in similar related studies [70, 81]. The speech samples were classified into 

two groups namely; dysarthric speech (Parkinson’s disease -PD) or healthy control 

speech (HC). Accuracies of 97%, 94.3% and 85.0% were realized for Spanish, 

German and Czech group respectively. The technique proposed in this study is not 

fully automated. This can lead to errors and delays during the clinical application 

of the technique. There is also a need to validate the performance of the proposed 

technique using sentences and passage reading dataset. 

The choice of features for the classification feature vector is a function of the type 

of speech task in the available dataset. For instance, a study in [72] in 2015 showed 

that the effective features needed for a specific classification task vary depending 

on the type of speaking task. In their study, the authors proposed a fully automated 

Parkinson’s disease severity classification technique where frame-level and 

utterance-level features were extracted from the speech samples. The extracted 

frame-level features included MFCCs, Mel-Frequency Banks (MFBs), spectral 

features, Gabor features, spectro-temporal features, Gammatone Frequency 

Cepstral Coefficients (GFCCs) and prosodic features (fundamental frequency, 

energy (RMS)), and voice quality features (HNR, jitter and shimmer). Whereas, the 

utterance-level features were extracted using functional and i-vector extraction 

methodologies (using the Universal Background Model (UBM)). Combining these 

features resulted in an accuracy of 76.2% on the training dataset and 74.6% on the 

test dataset using SVM classification technique with fifth-order kernel [72]. 

Although this study suggested that feature fusion system using unsupervised 
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learning has the tendency to increase the accuracy, the proposed techniques suffer 

from high complexity which may cause a delay in real-time clinical applications. 

Also, there is a need to improve the performance (accuracy) of this technique. 

Some researchers have focused on single speech subsystems (the effects of the five 

speech subsystems on different types of dysarthria are discussed in Section 2.2) in 

tackling the automatic assessment problem. In [59] an automatic articulatory 

disorder assessment for Parkinson’s disease was presented although phonation and 

prosodic cues in the speech signals were not considered in this technique. Thirteen 

articulatory features (including voice quality, coordination of Supralaryngeal and 

Laryngeal activity, occlusion weakening, the precision of consonant articulation, 

speech timing, and tongue movement features) were extracted from the speech 

samples [59]. SVM was used in the classification process. An accuracy of about 

87.1% was reached using this technique. Because the technique was based on 

diadochokinetic tasks (repeating /pa/-/ta/-/ka/ syllables at a fast rate), the results of 

these techniques are not directly comparable to other techniques proposed in [70-

72]. Performance validation is needed for this articulation-focused technique. 

One of the widely published automatic assessment techniques is the phonetic score 

histogram [65]. This method was motivated by a study by Green and Carmichael 

[55] where a new feature called the goodness of fit (GOF) to Hidden Markov 

Models (HMMs) was investigated. The GOF feature was used to develop an 

automatic intelligibility metric system for single words [55]. The authors in [65] 

however used the HMMs to align recorded speech samples with their phonetic 

transcriptions. The resulting parameter (phoneme log-likelihood) is then normalised 

by the duration of the speech and used to determine if the speech sample was 

dysarthric or not. It is expected that the distribution of the normalised phoneme log-

likelihood follows a specific pattern for healthy speakers with peaks falling in the 

same histogram bin. Their study showed that this is different for dysarthric speakers 

for whom the location of the peaks are moved to lower histogram bins as the 

severity of the disorder increases [65]. This technique is based on the statistical 

distribution of the phoneme log-likelihood and not on the phonetic, prosody and 

articulatory features in speech. Also, to be able to use this method, a phonetic 

transcription of the speech sample is needed which makes the process semi-

automatic in nature. 
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Although most of the studies on automatic dysarthria assessment are based on 

binary classification (presence or absence of dysarthria), few studies are also 

focused on the ability to automatically classify dysarthria into various severity 

levels. Most of these studies have made use of a 4-point severity level classification 

with “0” indicating the absence of dysarthria, “1” indicating mild severity, “2” 

indicating moderate severity and “3” indicating high severity. For instance, in a 

recent study by Kadi et al [73], a 4-point dysarthria severity was carried out on 

Nemours and Torgo dataset. Auditory knowledge was used to simulate the models 

for the external, middle and inner sections of the ear. The features from the auditory 

models were then combined with MFCC to form a feature vector. Gaussian Mixture 

Models (GMMs), SVM and a hybrid of the SVM/GMM classifier were used for the 

classification. The technique produced an accuracy of 93.2% [73] as against an 

accuracy of 85% realised in an earlier study by Khan et al in [46]. There is a 

continued interest in developing techniques with better performance using speech 

features only and this is what this research work intends to achieve. 

The list of literature keeps growing over the years as both clinicians and researchers 

are interested in automatic technologies that make the assessment of dysarthria easy 

and accessible as presented in Table 2-3. In summary, it is noteworthy that most of 

the classification techniques developed in the past five years are focused on the 

application of the SVM classifier or its variant. This is mainly due to its proven 

performance in automatic speaker and emotion recognition in pathological speech 

[82-86]. A review of the literature indicated that the performance of the SVM 

classifier is highly consistent even with the increasing number of the dataset used 

[77, 84]. The application of SVM classifier in speech processing application will be 

further reviewed in Section 3.7 of this thesis. Also, the performance of various 

classification techniques, including the SVM, will be compared in Chapter 6 of this 

thesis. 

2.6 Review of Strategies Used in the Treatment of Dysarthria 

Over the years, a majority of treatment strategies employed in the treatment of 

dysarthria focused on the speech production subsystems using either behavioural, 

instrumental or prosthetic techniques [18, 41, 87-92]. Behavioural techniques use 

traditional approaches in teaching patients new compensatory skills in speech rate, 
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intensity and repetitions whereas instrumental techniques involve the application of 

modern technology in measuring and giving feedbacks to patients on specific 

speech production skills and the prosthetic techniques use technologies that alter 

the physical properties of the patient’s speech production subsystem. Review of 

these techniques, in different speech production subsystems, are described below. 

2.6.1 Speech Rate 

In literature, manipulation of speech rate was used as a treatment technique for 

improving the intelligibility of dysarthric speakers [18, 41, 87-90]. This dysarthria 

treatment technique was first presented by Beukelman and Yorkston [93] where 

alphabet boards were used to slow down the speech rate which helps in improving 

patients’ speech intelligibility [21]. The effects of speech rate dysarthria on the 

treatment of Parkinson’s disease (hypokinetic dysarthria) was also discussed in [88] 

where both dysarthric and control speaker groups showed considerable 

improvement in the proportion of pauses located at syntactic boundaries. However, 

the effect on this syntactic improvement on speech intelligibility was not examined. 

Moreover, in a later study by Dagenais et al [94], speech samples from four 

dysarthric and two control speakers were manipulated (normal speech rate, 30% 

slower speech rate and 30% faster speech rate) and presented to listeners. The 

listeners rated the utterances in terms of intelligibility (number of correct words) 

and acceptability (perception of utterances). While the acceptability increased with 

faster speech rate for intelligible speakers and a slower rate for less intelligible 

speakers, the intelligibility remained unchanged for most speakers across the 

different speech rates [94].  

Additionally, there is a varied level of success with studies that compare the effect 

of reduction in speech rate. Research [50] suggested that slowing down the speech 

rate does not significantly affect how natural or intelligible the patient’s speech was. 

Pilon’s study [95] on the other hand showed that speech rate manipulation had 

different effects on the patient’s speech depending on their severity as speech rate 

reduction resulted in increased intelligibility for severe dysarthric speakers and 

decreased intelligibility for mild dysarthric speakers [95]. The direct impact of 

varied speech rate on dysarthria treatment remains debatable.  
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2.6.2 Resonance 

Some studies have also considered how resonance can be used to manage 

dysarthria. One of the methods involves the use of continuous positive airway 

pressure (CPAP) to exercise the soft palate during the production of speech [21]. 

This produces resistance to the velopharyngeal muscles [92]. Another technique 

involves the use of a palatal lift which consists of a lift part (along the surface of 

the soft palate) and a retention part (covering the hard palate). This is fastened to 

the teeth by prosthodontist using wires. Although this treatment method has proven 

to be effective, it remains intrusive and not easily accessible [21]. 

2.6.3 Oro-motor 

Exercises involving oro-motor have also been used in the treatment of dysarthria 

[21]. One of the oro-motor treatment techniques involves the use of active exercises 

focused on strength training leading to an increase in the tension that can be 

sustained in a muscle over a period of time and the speed of produced tension. 

Passive exercises are also used which involves deep massage, belly tapping and 

stretching. Studies [21, 91] suggests that strength training can help in producing 

required force and speed for improved intelligibility. However, according to a study 

in [91], there is a need to continue these exercises until a state of fatigue is reached. 

2.6.4 Articulation 

A comparison of speech, articulation and alternating motion rates in [96] suggested 

that articulation treatments showed a promising impact on the treatment of 

dysarthria. When combined with oro-facial muscle movement, a study [34] showed 

that articulation exercises produced a considerable improvement in intelligibility. 

This treatment which involved eight patients with dysarthria post-stroke lasted for 

10 weeks involving 45 minutes of weekly oro-facial movement and articulation 

exercises with each exercise repeated four to five times, three times daily. RDP was 

used to assess the speaker’s progress before and after the therapy. The study showed 

improved intelligibility by an average of 9.9% across speakers. The effects of these 

articulation-based treatment methods, however, need further investigation using a 

larger sample size.  
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2.6.5 Prosody 

Prosody techniques use a combination of various speech elements: pitch, intensity, 

intonation and stress [21] which can either be individually manipulated [97, 98] or 

combined [21, 67] in management of dysarthria. The Lee Silverman Voice 

Treatment (LSVT) exercises focus on increasing the intensity (loudness) of the 

utterances in an aim to increase the speech intelligibility [97]. Some researchers 

[22, 63, 98, 99] have reviewed the LSVT programme and found improvements in 

speech rate, phonation, articulation and intelligibility.  

Although LSVT gives increased loudness and improved vowel space area, the 

direct effect of this treatment on intelligibility has not been established [63]. Also, 

the perceptual based articulatory ratings after LSVT treatment has not shown 

substantial improvement [63]. Another shortcoming of the LSVT is sensitivity to 

subtle articulatory differences especially in consonant production [63] [98]. People 

with difficulty with other speech subsystems, (prosody, resonance, respiration and 

phonation) may find the use of LSVT alone insufficient for treatment and improved 

intelligibility. 

Another study [100] investigated the effects of combining the use of LSVT with 

physiotherapy of the wall of the upper chest. The initial study lasted 4 weeks with 

an hour of therapy per week resulting in an improvement in the carryover from 

sustained vowels compared to using LSVT alone. After which respiration exercises 

were added for another 10 weeks resulting in improvement in reading ability, lung 

measures, speech sustainability and intelligibility. The use of prosody in dysarthria 

treatment has proven to be more effective when combined with other therapy 

techniques. 

Over the years, clinicians, have combined traditional and modern methods in the 

management of dysarthria and there is continued research of the most effective 

method(s) based on the type of dysarthria and severity of the disorder as described 

in Section 2.3. A review of current trends in dysarthria treatment is presented in 

Section 2.7 with a focus on identifying existing gaps in the treatment techniques. 
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2.7 Review of Current Techniques used in Dysarthria Treatment 

The review in this section will be focused on the aims of treatment, the treatment 

structure, and the state-of-the-art treatment techniques. Specifically, treatment 

techniques proposed by researchers [19, 22, 63, 97, 99] over the last few years will 

be critically reviewed. 

2.7.1 Aims of Treatment 

The majority of current treatment techniques are aimed at improving the speech 

intelligibility of dysarthric speakers [21]. Increased loudness has been used by a 

few researchers to achieve this aim [22, 41, 97, 98]. In an aim to improve the speech 

intelligibility, some researchers [41, 90] have also considered the use of speech rate. 

Further evidence on the use of speech rate in treating dysarthria has been discussed 

in Section 2.6.1. Other researchers have focused on improving a specific speech 

aspect; for example, fundamental frequency [21], respiration [100], duration [41], 

and intonation [90]. 

An aspect that has gained research attention in dysarthria treatment is the 

quantification of the measure of therapy needed (or targets to be met) to improve 

the speech intelligibility. For example, in stress marking exercise for dysarthria 

treatment, research [32] has shown some deficiencies in loudness, pitch and 

duration in dysarthric speech and recommended therapy include working on these 

deficiencies. But it is unclear how to manage the deficiencies using quantitative 

scores. In this research (in Chapter 7), this will be addressed and an evidence-based 

treatment tool for dysarthria using the stress marking exercise will also be proposed. 

In conclusion, the ultimate aim for dysarthria treatment remains “to improve speech 

intelligibility and communication effectiveness” As discussed in Section 2.7, most 

researchers focus on using speech rate, resonance, oro-motor, articulation and/or 

prosody tasks to achieve improved intelligibility. In Section 2.7.2, the structure of 

some of the clinically accessible and/or published treatment tools will be reviewed. 

2.7.2 Treatment Structure 

The treatment recommended by the therapists to a particular individual is 

determined by the type of dysarthria, nature of the symptoms and, the severity of 
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the dysarthria which will often require a combination of multiple treatment 

techniques [21]. There are identified cases where the combination of a selection of 

treatment techniques and communication strategies were recommended for various 

individuals [21]. Although the combination of treatment techniques is often used in 

therapy, there is limited evidence to its effectiveness in therapy. 

One key factor that contributes to the choice of treatment structure is the availability 

of the resources needed for the possible treatment techniques [21]. For example, 

practical tools needed for a specific treatment technique might be expensive or not 

accessible. Another factor is the willingness of the patients. Some dysarthria 

patients might not be open to the use of treatment techniques that will require 

physical intrusion or can cause any inconvenience (like wearing palatal lift [21]). 

Therefore, research attention is gradually shifting towards the development of 

speech-based treatment technologies that require little or no physical intrusion. A 

behavioural experiment will also be carried out in this research (Chapter 7) to 

examine the effect of the combination of prosodic cues in the treatment of dysarthria 

in stress marking exercise.  

2.7.3 Other Treatment Techniques 

Apart from the LSVT, some researchers have come up with alternative treatment 

techniques that showed promising results for dysarthria management. Many of 

these published techniques, however, still require clinical validation.  

A. Dysarthria Treatment Programme 

One of the published dysarthria treatment programmes named “The Dysarthria 

Treatment Programme (DTP)” was designed to involve 53 activities in 18 different 

tasks, nine (9) of which are speech-based [101]. The guidelines and task-specific 

stimulus were provided as part of the programme. Due to the large volume of tasks 

and activities available to choose from, support on the choice of task, the duration 

of tasks and complexity of intervention was also provided. Although the 

performance of this programme has not been extensively reviewed by researchers, 

the effects of DTP has been examined in two patients [21, 101]. The DTP treatment 

was administered in 7 sessions within a period of 3 weeks. One patient showed 

improved intelligibility after the treatment but the condition of the second patient 
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got worse (not necessarily because of the therapy) after the 3 weeks [101]. This 

programme has not been validated and lacks therapy effectiveness evidence. 

B. Altered Auditory Feedback (AAF)  

AAF, which was initially developed for people with stuttered speech, was proposed 

in 2010 [99] as another method of controlling the speech rate of people with 

dysarthria (PwD). The AAF involves having the speaker wear an audio device 

through which the speaker hears the altered version of their speech, therefore, 

making the speaker slow down when speaking. Research [99] suggested that the 

use of AAF can have a positive impact on the improvement of intelligibility of 

people with Parkinson’s disease although this method has not been tested on other 

types of dysarthria. It is also important to point out that based on the results of this 

research there is no correlation between the severity and treatment progress [99]. 

Other variants of AAF that might be useful for dysarthria treatment include delayed 

auditory feedback (DAF) where the speech heard by the speaker is delayed by some 

time (50 to 200ms) and frequency-shifted feedback (FSF) which involves sending 

frequency shifted (distorted pitch) version of the speech. These methods, however, 

require testing on other dysarthric speakers. 

C. Computerised Assessment and Treatment of Rate, Intonation, and 

Stress 

CATRIS was developed in a quest to assess other dysarthric speech features other 

than loudness, which was the focus in LSVT [97]. There are two major aims of 

CATRIS; development of an assessment tool for stress, intonation and rate of 

speech and the development of a computerised speech therapy tool. Based on 

related research [102], it has been discovered that intensive speech rate (reduced 

rate) and intonation treatment (contrast in the final intonation pattern of questions 

and statements) can improve the intelligibility of speech in neurological diseases 

such as Parkinson’s disease. This method has also not been tested extensively on 

different types of dysarthria and analysis of other respiration and phonation features 

in dysarthric speech is lacking.  
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D. Music Therapy for Dysarthria Treatment  

One interesting study on dysarthria treatment uses music therapy treatment protocol 

based on research in biomedical theories which showed that musical stimulations 

can help in improving neurological conditions [103]. The music treatment protocol 

involved the use of preparation, respiratory, oro-motor, rhythmic, and melodic 

exercises [103]. The study also suggested that the use of vocal intonation tasks and 

therapeutic singing can help to enhance the prosodic cues in patient’s speech [103]. 

This suggested protocol has not been extensively clinically validated although there 

is theoretical evidence of its potential effectiveness in dysarthria treatment. 

However, the use of music-protocols in the treatment of dysarthria is not the focus 

of this research but an extensive review of the various music-protocols for the 

treatment of dysarthria and their limitation can be seen in [104]. 

E. “Be Clear” Therapy 

Another notable dysarthria treatment technique recently published in [105] is called 

“Be Clear”, an intensive dysarthria treatment programme focused on improving 

speech intelligibility designed originally for adults with non-progressive dysarthria. 

This dysarthria treatment protocol comprises of two stages; the pre-practice stage 

and an intensive practice stage based on four categories of tasks including 

functional phrases, service request, functional speech tasks and homework tasks 

[105]. The protocol relied heavily on the repetition of tasks. The performance of 

this treatment protocol was examined using 8 participants with non-progressive 

dysarthria. The results showed an improvement in word intelligibility and sentence 

intelligibility by 3.2% and 8.6% respectively. There is, however, a need to cross-

validate these results using more dysarthric speakers across different severity levels. 

F. Combined Therapy Approaches 

A review of the literature showed an interesting trend in combining two or more 

therapies to improve the speaker’s intelligibility during dysarthria treatment [100, 

106]. Combined therapy approaches are not only common in speech-based 

therapies but also in speech and non-speech therapy combinations. Tamplin in [106] 

combined the use of vocal exercises with the therapeutic singing of familiar songs. 

This method helped to improve the naturalness of the speech and reduce the 

duration of pauses between words. Solomon et al also proposed, in their study [100], 
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a combination of intensity and respiration based treatment which involved the 

combination of LSVT therapy [97] and breathing exercises with physical therapy. 

This produced improvements in intelligibility and sound pressure level, although 

several speech measures were not sustained after the treatment [100]. 

Unfortunately, most of these studies were carried out on single or very few patients 

and require clinical cross-validation. 

As discussed in Sections 2.5 and 2.6, this research will be focused on the automatic 

assessment of dysarthria using speech features. The feature extraction and 

classification techniques of these speech features will be reviewed in Chapter 3. 

2.8 Summary 

In this chapter, the term dysarthria has been introduced as a neurological motor 

speech disorder that is grouped into six categories based on the characteristics and 

causes. A review of current clinical techniques used in the assessment and treatment 

of dysarthria has also been presented which includes both perceptual techniques 

and acoustic techniques. An overview of severity levels as a function of the 

speakers’ intelligibility scores have been presented and studies involving the use of 

non-speech/speech-based features have been reviewed with respect to the various 

strategies used in dysarthria treatment. Finally, existing and current techniques used 

in the treatment of the dysarthria have been reviewed while identifying the research 

gaps and limitation of these techniques. 

In the next chapter, speech processing technologies for the assessment and 

treatment of dysarthria will be reviewed. The different methods used in the 

extraction of the relevant speech features identified in this chapter (Chapter 2) will 

be reviewed and their limitations discussed in Chapter 3. This review will form the 

basis for the chosen research methodology and contributions presented in Chapters 

4-8 of this thesis.  



Chapter 3 

3 Feature Extraction and Classification Techniques in 

Dysarthria Management 

3.1 Introduction  

Extraction of features from speech signals is a fundamental requirement for most 

speech processing, recognition and identification applications which includes 

mathematical modelling, time-domain analysis, spectral analysis and/or cepstral 

analysis of the speech signals. The features to be extracted from speech signals are 

determined by the intended applications. In disordered speech processing applications, 

the goal of the feature extraction scheme is to describe each speech signal using 

reliable representations such that dissimilar utterances can be differentiated. In this 

chapter, feature extraction techniques for dysarthric speech processing will be 

reviewed and a comparison of the standard techniques used in speech feature 

extraction will be carried out. A review of state-of-the-art techniques used in the 

silence-unvoiced-voiced segmentation will also be presented, as well as, a review of 

machine learning schemes used in various speech disorder detection applications. 

3.2 Pre-processing of Speech Signals  

In signal processing, pre-processing is often carried out in order to enhance the 

performance of the feature extraction algorithms [107, 108]. Amplitude normalisation, 

noise reduction, pre-emphasis filtering, and direct current (DC) component removal 

are some of the commonly used pre-processing techniques in speech processing 

applications which will be introduced in this section.  

3.2.1 DC Component Removal 

Recorded audio signals often contain a constant component with a non-zero mean 

[109]. This could be due to the DC bias of the equipment used for recording and storing 

the audio signals which creates a DC offset that carries no useful information [109]. 

The DC offset can affect the signal energy calculation if not removed. The effect of 
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DC offset is reduced by subtracting, from the audio signal, the mean amplitude of the 

audio signal given by 

𝑠′[𝑛] = 𝑠[𝑛] − 𝜇𝑠 (1), 

where s[n] is the original audio signal of length N, 𝑠′ is the signal after removing the 

DC component and 𝜇𝑠  is the mean amplitude of the audio signal defined by  

The effect of DC component removal is illustrated in Figure 3-1.  

  

Figure 3-1. Original Audio Signal (top-left), Mean Value (top-right), Audio Signal 

after DC Component Removal (bottom-left) and after Amplitude 

Normalization (bottom-right) 

3.2.2 Amplitude Normalization 

The maximum amplitudes of recorded audio signals are a function of the standard 

environmental conditions, the size and shape of the room, the distance of the recording 

object from the mouth of the speakers, the type of equipment used for recording and 

other external factors [108]. Recorded audio signals can, therefore, have varying 

amplitudes based on these factors. One way to standardise the amplitudes of the audio 

𝜇𝑠 =
1

𝑁
∑ 𝑠[𝑛]

𝑁−1

𝑛=0

 (2). 

(s) 
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signals is by amplitude normalisation achieved by dividing their values by the absolute 

maximum amplitude in each signal as illustrated in (3) below.  

𝑠𝑁[𝑛] =
𝑠′[𝑛]

max(|𝑠′[𝑛]|)
  

𝑓𝑜𝑟 𝑛 = 0,1,2,3, … , 𝑁 − 1 

(3) 

where 𝑠𝑁[𝑛] is the normalized audio signal. This point-by-point division of the signal 

by its absolute maximum amplitude thereby constraining the dynamic range of the 

signal between -1.0 and +1.0. This will eliminate the effect of varying energy range. 

Another state-of-the-art normalization method is based on dividing each instantaneous 

signal value by the variance of the audio signal [109]. However, this method does not 

constrain the dynamic range of the normalized signal [109]. The effect of amplitude 

normalization in an audio signal is illustrated in the bottom-right plot in Figure 3-1. 

3.2.3 Noise Reduction 

Sometimes, the audio recordings may be corrupted by noise [110], due to how the 

audio recordings were taken, where the recordings were taken and the type of 

equipment used. It is therefore important to remove or reduce the effects of these noise 

components from audio signals before analysing the signals in order to: 

• Improve the perceptual quality of the distorted speech 

• Improve objective intelligibility and Speech to Noise Ratio (SNR) of the 

signal 

• Enhance the robustness of feature extraction and speech processing 

applications 

Research has shown that there are different filters used in removing noise from audio 

signals [111]. One of the commonly used time domain-based noise filters in speech 

processing is the Wiener filter [112, 113]. The Wiener filter, developed in the 1940s 

by Norbert Wiener, was one of the first applications of stochastic signal models in 

optimizing filters based on prior knowledge of the signal [114]. It is assumed that the 

signals can be modelled using stochastic processes that are stationary with known 

power spectral density. To reduce the computational complexity, the FIR linear 

discrete time filter is used. The initial (silent/non-speech) part of the signal is modelled 

to get the noise and the filter is applied to the speech part of the signal. The Wiener 

filter improves the SNR and the Mean Square Error (MSE) [113], with a trade-off in 
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speech distortion [111]. Figure 3-2 illustrates the effects of the Wiener filter on an 

audio signal corrupted by noise. The right plots show a cleaner waveform and 

spectrum.  The noise reduction/removal technique is also useful in audio signal 

enhancement [115]. 

 

Figure 3-2. Corrupted Audio Signal before and after noise reduction using Wiener 

filter  

3.2.4 Pre-Emphasis Filtering 

In speech processing applications, the pre-emphasis filter is useful in flattening of the 

dynamic range of the audio signal’s power spectrum [109]. Pre-emphasis filtering is 

also applied to compensate for the effect of the suppressed high-frequency components 

during speech production [116]. This involves increasing the amplitude of high-

frequency bands and reducing the amplitude of low-frequency bands thereby flattening 

the spectral tilt. The most often used pre-emphasis filter is given by 

𝐻𝑝(𝑧) = 1 − 𝑎𝑧−1   

0.9 ≤ 𝑎 ≤ 1, 

(4) 

where 𝑎 is the pre-emphasis filter co-efficient that can be tuned to adjust the filtering 

effect. This filter is a high pass FIR filter whose magnitude response is shown in Figure 

3-3 when 𝑎 = 0.97. 
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Figure 3-3. Magnitude and Phase Response of a Pre-emphasis Filter; 𝑎=0.97 

3.2.5 Resampling 

Audio recordings taken at different times and using different devices can be sampled 

at different frequencies. There is, however, a need to have all the audio signals used 

for the same application sampled at the same frequency, which can affect the 

perceptual quality of the signal. To adequately sample a speech signal, without 

aliasing, the sampling frequency should be more than double of the maximum 

frequency of the signal based on the Nyquist sampling criterion [117] given by 

𝑓𝑠  >  𝑁𝑞 = 2𝑓𝑚𝑎𝑥 
(5), 

where 𝑓𝑠 is the sampling frequency, 𝑁𝑞 is the Nyquist frequency and 𝑓𝑚𝑎𝑥 is the 

maximum frequency of the signal. Figure 3-4 shows the periodogram of four audio 

signals sampled at 44,100Hz. This one-sided magnitude response shows frequency 

components between the ranges of 0 Hz to 22,050 Hz. Human speech has frequency 

components in the audio frequency range between 20 Hz and 20 kHz in the frequency 

spectrum [111]. This means that the Nyquist frequency when considering the whole 

frequency range is 40 kHz. However, there is a need to consider the range of 

frequencies where the majority of the speech information resides. This can be done by 
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analysing different audio signals in the frequency domain. As illustrated in Figure 3-4, 

it can be seen that most of the frequency components (or information) in the audio 

signals are located between the 0-8000Hz range. Therefore, a sampling frequency of 

16 kHz has been adopted in this research. 

 

 
Figure 3-4. Periodogram of 4 Audio Signals Sampled at 44,100 Hz 

3.2.6 Frame Blocking and Windowing in Speech Processing 

Although waveforms can be used to describe some phonetic information in a speech 

signal, it is not useful in illustrating time-varying properties of the signal [108], which 

include phonetic, perceptual, voice quality and frequency characteristics of the speech 

signal [118]. Moreover, speech signals are non-linear and have varying frequency 

characteristics. It is, therefore, useful to analyse the speech signal in small time 

segments. Each frame can be analysed independently as a linear signal. The process of 

breaking down the speech signal into smaller overlapping segments of speech is called 

framing. The choice of frame size is a function of the intended application. Smaller 

frame sizes give better time resolution but poor frequency resolution [111]. This is 
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called Wideband analysis. Narrowband analysis, on the other hand, uses bigger frame 

size resulting in better frequency resolution but poor time resolution.  

For speech processing applications, there is a need to consider the range of the 

fundamental frequencies of human speech. Humans speak at varying fundamental 

frequencies depending on their age, gender and voice quality [111]. The fundamental 

frequency of a typical adult female is between 165 and 255 Hz and that of a typical 

adult male is between 85 and 155 Hz [119]. The minimum fundamental frequency 

across children and adults is 50Hz. Consequently, at least 20ms frame size (that is, 

1/50Hz) is needed for a good frequency resolution. A 20ms segment of a speech signal 

sampled at 16 kHz is equivalent to 320 samples. These 20ms frames are applied every 

5ms (75% overlap). This reduces the effect of discontinuity in the analysis between 

consecutive frames. The frame duration, frame periods and frame feature vectors are 

illustrated in Figure 3-5. Speech features are extracted from each speech frame as 

illustrated. 

Windowing is also an important process in speech processing. It involves the 

application of window filter to each speech segment (after framing) before processing. 

Windows are used to reduce the effect of spectral leakage and scallop losses in the 

audio signal to be processed [118]. Windowing also helps to reduce the effect of 

discontinuities in consecutive frames by tapping the edges of each frame [118]. The 

most commonly used window in speech processing is the Hamming window [111]. 

 

Figure 3-5. Framing in Speech Processing 

Block n Block n+1 

Frame size 

Speech waveform 
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vector size 
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Speech features are extracted from each speech frame 
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3.3 Time-domain Feature Extraction 

Time-domain features used in speech processing include duration [120], intensity [22], 

short-time energy [121], zero-crossing rate [121] and speech rate [122]. Their 

applications in dysarthric speech assessment and classification are also presented in 

this section.  

3.3.1 Short-Time Energy 

Short-time energy (STE) is the measure of the total energy of the speech signal in a 

short-time speech segment [25]. Speech signals are time-varying and nonstationary in 

nature and thus the energy associated with speech signals is also time-varying [123]. 

It is therefore important to know how the energy of a speech signal varies from a short-

time segment to another. This results in STE measurements. The STE in a speech 

segment is described as the summation of the square of the signal amplitude given by 

𝐸𝑚 = ∑ 𝑥2[𝑚]

𝐹−1

𝑚=0

 (6), 

where F is the length of the frame and 𝑥[𝑚] is a short-time speech segment of 𝑠𝑁[𝑛].  

In speech processing applications, the STE has been used in estimating the loudness 

or intensity of a speech segment [25]. High STE in speech segments indicates high 

loudness and vice versa. Likewise, STE has been applied in the segmentation of speech 

signals into silence, voiced and unvoiced segments [124, 125]. Silent parts of the 

speech signals will normally have the least STE when compared with voiced and 

unvoiced segments. Another application of STE is the detection of the start and 

endpoints of an utterance. In a study by Enqing et al [123], STE was used to detect 

voice activity in speech signals, although the study also shows that STE is very prone 

to noise in the environment. Combining the STE with adaptive noise reduction 

techniques, however, increases the robustness of the analysis [123]. 

Moreover, STE is useful in other speech processing techniques such as speech 

recognition [124], speech recovery [126], speaker recognition [127] and blind speech 

separation [128]. Most of these applications have been targeted toward healthy speech 

since disordered speech signals have very high variability in STE which can introduce 
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artefacts to the analysis as shown in Figure 3-6. There is a need to further investigate 

these variabilities for dysarthria detection application. 

 

Figure 3-6. Waveform and Short Time Energy of Two Audio Signals from Healthy 

Controlled (left) and Disordered (right) Speakers 

The differences between the STE of healthy control speech and dysarthric (AD) speech 

are graphically illustrated in Figure 3-6. The top plots are the waveform of the recorded 

audio signals when the speakers uttered the sentence “The model wrote her memoirs 

in Lima.” The lower plots show the corresponding STE of the two signals. It is 

expected that the STE of the audio signals will vary across the sentence, however, the 

STE of the disordered speech showed higher variability. The dysarthric speaker could 

not sustain high intensity for a long period of time causing dips and breaks between 

syllables and extended pauses between words. These observations make the STE a 

useful feature in differentiating dysarthric speech from healthy speech. 

3.3.2 Zero-Crossing Rate  

Zero crossing rate (ZCR) is another important time-domain feature used in speech 

processing applications. The ZCR is the measure of the number of times the speech 

signal crosses the zero amplitude line [25]. The ZCR is estimated across all frames and 

the ZCR for the nth frame of an audio sample is given as: 
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𝑍𝐶𝑅(𝑛) = ∑|𝑠𝑔𝑛(𝑥𝑙[𝑚]) − 𝑠𝑔𝑛(𝑥𝑙[𝑚 − 1])|

𝑀

𝑚=2

 

𝑙 = 1, 2, 3, 4, … , 𝐹 

𝑠𝑔𝑛(𝑥𝑛,𝑚) = 1  𝑤ℎ𝑒𝑛 𝑥𝑙[𝑚]  ≥ 0 

           = 0  𝑤ℎ𝑒𝑛 𝑥𝑙[𝑚] < 0 

  (7) 

 

where F is the number of frames in the speech sample, M is the length of each frame 

and 𝑥𝑙[𝑚] is the 𝑙th short-time speech segment of 𝑠𝑁[𝑛]. The ZCR can be measured 

as the number of zero crossings per frame or the number of zero crossings per second, 

derived by dividing the number of zero crossings in a frame by the length of the frame 

in seconds.  

In speech processing applications, the ZCR is often used in the classification of a 

speech segment into silence, unvoiced and voiced segments [25, 129]. The model of 

speech suggests that there a relationship between zero crossing rate and energy 

distribution across frequencies; high frequency components will have high number of 

zero crossings and low frequency components will have low number of zero crossings 

[130]. Silent segments are usually characterised by negligible ZCR. Unvoiced speech 

segments are characterised by high ZCR because most of the energy of the unvoiced 

segments are found in high frequencies (by extension high ZCR) whereas voiced 

speech segments are characterised by low ZCR because most of the energy of the 

voiced segments are found in low frequencies (by extension low ZCR). Over the years, 

the ZCR segmentation threshold has been a major topic for discussion among 

researchers. Most researchers have proposed the use of a fixed segmentation threshold 

[129, 131] which often results in misclassifications between voiced and unvoiced 

segments. The study by Jalil et al [25] also shows that the ZCR varies from speaker to 

speaker and is a function of their gender. Female speakers tend to have higher ZCR 

than male speakers because they (female speakers) have higher fundamental frequency 

than male speakers. Consequently, a fixed gender-independent ZCR threshold, in 

itself, is not sufficient to adequately classify a speech segment into silence, unvoiced 

and voiced segments. The use of a speaker-dependent segmentation threshold will be 

explored in this research.  

Apart from the segmentation of speech into silence, unvoiced and voiced segments, 

the ZCR can also be used in differentiating between healthy control speech and 
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dysarthric speech. Due to the poor voice quality and high variability (in intensity and 

fundamental frequency) experienced in dysarthric speech samples, it is expected that 

their ZCR will be higher than those observed in healthy control speakers. An example 

is seen in Figure 3-7 where the range of the zero-crossing of a healthy control speech 

signal (bottom-left) was between 30 and 120 per frame whereas that of disordered 

speech (bottom-right) was between 40 and 720 per frame (with a frame size of 50ms). 

The differences observed in the ZCRs of healthy and dysarthric speech are due to 

increase in the energy concentration at high frequencies in dysarthric speech which 

also affects the voice quality. These differences show that ZCR can be useful in 

disordered speech classification. 

 

Figure 3-7. Waveform and Zero Crossing Rate of Two Audio Signals from Healthy 

Controlled (left) and Disordered (right) Speakers 

3.3.3 Duration-related Features  

The duration of a speech signal is a measure of how long the speech signal is in 

seconds. In speech processing applications, the duration of an utterance can often be 

used to describe the prosodic and stress characteristics of the utterance [132]. Long 
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duration is often used to show an emphasis on a particular segment/word in an 

utterance with respect to the other parts of the utterance [32]. 

Pauses are also duration-related features that are often used to separate words or 

sentences, to indicate breaks in utterances and sometimes to mark stress [133]. Pauses 

are measured in seconds or milliseconds as the period of silence between speech 

segments. The application of pauses in word/syllable segmentation, speech breaks 

quantification and stress marking will be explored in this research.  

In addition, the speech rate can be measured as the number of syllables produced by a 

speaker per second [18]. Speech rate should not be confused with word rate which is 

the number of words produced per unit second [134]. The word rate is partially a 

function of the sentence composition whereas the speech rate is a function of how fast 

or slow a speaker speaks. As discussed in Section 2.6.1, one of the strategies 

researchers have used in the treatment of dysarthria is targeted towards improved 

speech rate. The application of speech rate will be explored in the development of a 

novel DDK analysis tool presented in Chapter 5.  

Extended features derived from the time-domain features described above are used in 

various speech processing applications discussed in Section 3.5. 

3.4 Spectral and Cepstral Features Extraction 

While the time domain representation shows how a signal varies with time, the 

frequency domain representation shows the spectrum of the power distribution of the 

signal over a range of frequencies. The frequency-domain representation, called the 

spectrum contains information about the frequency distribution and phase shift 

required to reconstruct the original signal in the time domain [135]. A signal can be 

converted from the time domain to the frequency domain (and vice versa) using a pair 

of equations called transforms [111, 135]. A good example of the time-frequency 

transform is the Fourier transform. The Fourier transform (FT) convert a time domain 

signal into frequency domain representation of the signal [111, 136]. Inverse Fourier 

transform (IFT), on the other hand, converts the frequency-domain function to the 

time-domain representation of the signal. The cepstrum is, however, derived when the 

IFT of the logarithm of the Fourier transform of a signal is taken [111]. (Cepstrum is 

derived from the word “spectrum” by reversing spec to form ceps) Just as in the case 
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of the frequency spectrum, there exists power cepstrum, real cepstrum, complex 

cepstrum, and phase cepstrum [111].  

In this section, various spectral and cepstral features used in speech processing 

applications, especially in the analysis of disordered speech will be discussed. Their 

applications in dysarthria detection and classification will also be reviewed. 

3.4.1 Fundamental Frequency  

The fundamental frequency (F0) of a speech signal is defined as the lowest spectral 

component which corresponds to the natural frequency at which the vocal cords vibrate 

(open and closes) during speech production [137]. The F0 of a signal can be measured 

by estimating the separation in pulses in the time domain called the pitch period [111]. 

The F0 in the voiced segments of a speech signal depends on two factors; the variation 

in the length of the vocal cords and how the aerodynamic factors adjust to suit the 

vibration in the vocal cords [111]. When the vocal cords are short and thick, voiced 

sounds with low F0 are produced whereas when the vocal cords are long and thin, 

voiced sounds with high F0 are produced [111]. However, during speech production, 

the glottis vibrates resulting in less periodic signal [138]. These glottal vibrations result 

in variation in amplitudes, speech rate and waveform shape [139]. Due to these 

variations, speech signals are not perfectly periodic which makes the F0 estimation a 

challenging problem [138], although, variations in F0 are useful in prosody and lexical 

differentiation in tonal languages [138].  

The range of F0 for an individual is also a function of their gender or age [111]. As 

mentioned in Section 3.2.6, the F0 for a typical male adult ranges from 85Hz to 180Hz 

whereas that of typical female ranges between 165Hz and 255Hz. Children have the 

highest range of F0, between 250Hz and 500Hz [111]. 

Over the years, researchers have used different techniques in tackling the problem of 

F0 estimation in speech signals which include the autocorrelation-based pitch 

detection method [139, 140], cepstral pitch detection algorithm [139], average 

magnitude difference function [109, 139], robust algorithm for pitch tracking [141] 

and YIN fundamental frequency estimator [138]. In this section, the various F0 

estimation techniques will be reviewed while highlighting their limitations.  
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A. Autocorrelation-based Pitch Extraction Algorithm 

The autocorrelation method is one of the frequently used pitch detection techniques. It 

was first proposed by Sondhi in a study where he presented three methods for pitch 

extraction, two of which were based on the autocorrelation function [142]. These 

methods include pitch extraction by minimum phase compensation, pitch extraction 

by autocorrelation of spectrum flattened speech and pitch extraction by centre clipping 

and autocorrelation. 

In general, the autocorrelation function (ACF) of a periodic signal is also periodic 

where the period of the ACF is defined by the period of the signal [111, 140]. To 

calculate the pitch period in a short-time speech segment, the ACF of the segment is 

derived and the period of the ACF is estimated. The F0 is then estimated by taking the 

inverse of the pitch period. The autocorrelation function of a signal is defined by 

𝐴𝐶𝐹(𝜏) = 𝑟𝑙(𝜏) =∑𝑥(𝑖)𝑥(𝑖 + 𝜏)

𝐹

𝑖=1

 
  (8), 

where 𝐴𝐶𝐹(𝜏) is the autocorrelation function of lag 𝜏 of windowed signal 𝑥(𝑖) where 

F is the frame (window) size. 

The major sdrawback of the autocorrelation-based pitch extraction algorithm is the 

presence of false peaks due to harmonics. To overcome this limitation, researchers 

[137, 140] have introduced the use of a low pass filter before the application of the 

autocorrelation function to the speech segment. A low pass filter will remove high-

frequency components from the speech signal which will, in turn, reduce the effects of 

high-frequency formants. The use of low pass filter does not, however, remove the 

low-frequency formants [140] (especially the first formant). 

A wide variety of methods have been proposed to remove/reduce the effects of the 

low-frequency formants in the extraction of the F0 in a speech signal. These include 

spectral flattening techniques such as centre clipping [142], peak and centre clipping 

[140], inverse filtering by linear prediction, and spectral flattening by linear prediction 

[140, 143]. These methods, however, do not totally eliminate the problem of false 

peaks introduced by the formants. 
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The autocorrelation method has its own challenges due to the interference of low-

frequency formants. Another pitch extraction technique was developed based on the 

cepstral analysis. This is discussed in the subsection below. 

B. Cepstral-based Pitch Extraction Algorithm 

The theory of cepstral analysis is based on the fact that the Fourier transform of a 

speech signal can result in peaks with regular spacing which are the spectral harmonics 

of the signal [139]. Taking the logarithm of the spectrum reduces and re-scales the 

amplitudes of these peaks. This also results in a waveform that is periodic in nature 

whose period is related to the pitch period of the original signal [139]. 

Unlike the autocorrelation-based technique, the cepstrum method does not make use 

of a low pass filter [109]. Audio signals are first divided into frames of 20ms and 5ms 

overlaps as discussed in Section 3.2.6. A Hamming window is then applied to the 

framed section. Cepstrum analysis is performed on the windowed signal after which 

the peak value is detected between 50Hz and 500Hz range. This peak value is used to 

determine the pitch period along the time axis. It is important to point out that the 

cepstral analysis was designed based on the assumption that the signal to be analysed 

has regularly spaced spectral harmonics [139]. Any deviation from this assumption 

results in errors in the pitch extraction algorithm [139].  

C. Average Magnitude Difference Function (AMDF) Pitch Extraction Algorithm 

The AMDF is also widely used for extraction of pitch in speech recognition and speech 

processing applications. This method is a variation of the autocorrelation method 

discussed above. AMDF gives a better pitch measurement resolution than the 

conventional autocorrelation method [109]. The AMDF-based pitch extraction 

algorithm is faster than the autocorrelation method in terms of computation speed and 

cost [141]. Similar to the autocorrelation method, the audio signal is first passed 

through a low-pass filter of cut-off frequency 900Hz after which a Hamming window 

is applied. The average magnitude difference function is calculated as 

𝐴𝑀𝐷𝐹(𝜏) =
1

𝑁
∑|𝑥(𝑖) − 𝑥(𝑖 − 𝜏)|

𝐹

𝑖=1

 (9), 

where x(i) is the windowed speech signal and F is the window length. The pitch period 

is estimated by computing the minimum value of the AMDF between the pitch period 
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range of 20ms (50Hz) and 2ms (500Hz). Although there is an improved measurement 

resolution, the AMDF pitch extraction method also suffers from the false peak 

problems introduced by the spectral harmonics as experienced in the autocorrelation-

based method [141]. To overcome these challenges, a cross-correlation based method 

called the Robust Algorithm for Pitch Tracking (RAPT) was proposed by Talkin [141].  

D. Robust Algorithm for Pitch Tracking (RAPT) 

The RAPT was designed to be robust to noise and speaker group (male or female) 

while maintaining the pitch tracking accuracy [141]. Pitch-tracking technique is based 

on the normalised cross-correlation function (NCCF). After the peak values of the 

NCCF are estimated, dynamic programming is carried out to select the best F0 

candidates in each frame [109]. The selection is based on both the local and the global 

(contextual) evidence. This reduces the drastic jumps and discontinuities in F0 

estimation. A very similar pitch extraction method is called the Integrated Pitch 

Tracker based on the NCCF of the linear prediction residue of the signal rather than 

the NCCF of the signal [139]. 

E. YIN Fundamental Frequency Estimator 

The YIN fundamental frequency estimator was developed by two researchers in the 

early 21st century [138]. It was named after the yin-yang philosophy of balance in an 

attempt to strike a relationship between autocorrelation and cancellation in the 

estimator. The YIN estimator was developed to solve the problem of sub-harmonic 

peaks introduced by the autocorrelation technique. The YIN estimator is based on a 

function that minimizes the difference between a discrete signal and its delayed 

replica. This function is called the difference function which is represented by (10). 

𝑑𝑛(𝜏) =∑(𝑥(𝑖) − 𝑥(𝑖 − 𝜏))2
𝐹

𝑖=1

 (10) 

where 𝑑𝑛(𝜏) is the difference function of lag 𝜏 of windowed signal x(i) where 𝑊 is 

the window size. The YIN estimator also makes use of the cumulative mean function 

to de-accentuate high-period dips in (10). This helps to reduce the errors due to 

subharmonic peaks. The YIN estimator also incorporates the use of parabolic 

interpolation to further reduce the effect of the estimation error.  
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The performance of the five F0/ pitch extraction methods discussed above is examined 

and illustrated in Figure 3-8 and Figure 3-9. In Figure 3-8, two speakers, one healthy 

control speaker and one dysarthric speaker were given a sentence to read out. The texts 

in the sentence are “The model wrote her memoirs in Lima”. The utterances from the 

two speakers were recorded and analysed. Four of the five F0 estimation techniques 

outperformed the RAPT technique. The estimation errors recorded in the RAPT 

method were more pronounced as the pitch tracker performed poorly within individual 

words and across words. The profiles from the autocorrelation method, cepstral, 

AMDF and YIN methods show that the peak pitch was clearly marked as well as the 

variation across the sentence. In terms of consistency, the cepstral and the AMDF 

methods gave a good tracking consistency for healthy control speech. Most pitch 

tracking techniques perform well when analysing healthy speech, however, that was 

not the case when analysing disordered speech. For example, the cepstral method 

showed a good performance in tracking the F0 in the healthy control speech but gave 

a poor performance in tracking the F0 in disordered speech resulting in pitch doubling. 

The autocorrelation, AMDF and YIN methods performed relatively better in tracking 

the F0 in the disordered speech.  

As illustrated in Figure 3-9, these techniques were also used to estimate the F0 in a 

single word (construct) from a healthy speaker and a dysarthric speaker. The F0 of the 

healthy control speaker is shown on the left and that of the dysarthric speaker is shown 

on the right. As discussed earlier, the RAPT technique performed poorly both in 

healthy control speech and dysarthric speech samples. For, the first part of the word 

(“con”) in the healthy speech sample, the other four techniques performed well. 

However, for the middle part of the word (“-st-”), the cepstral method resulted in false 

peaks. Also, in the last part of the word (“-ruct”), the autocorrelation method resulted 

in pitch-halving, the Cepstral method resulted in pitch doubling and the AMDF method 

performs poorly.  

Moreover, using the RAPT method in the estimation of F0 in dysarthric speech sample 

resulted in poor performance with a lot of errors. The Cepstral method resulted in false 

peaks for consonant sounds in the words. The autocorrelation method also resulted in 

a few false peaks but the AMDF and the YIN methods gave good performance with 

very few estimation errors. The analysis of these results shows that the AMDF and the 

Yin techniques gave good and comparable results with low estimation errors for both 
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healthy control and dysarthric speech samples. It is important to point out that out of 

the five techniques and across the different speaker groups, the YIN pitch estimation 

technique outperformed the other techniques for both single-word and sentence 

samples and will be used for F0/pitch extraction in this research. 
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Figure 3-8. Comparison of five pitch detection techniques and their performance in 

sentences produced by healthy (left) and dysarthric (right) speakers 
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Figure 3-9. Comparison of five pitch detection techniques and their performance in 

words produced by healthy control (left) and dysarthric (right) speakers 



3.4 Spectral and Cepstral Features Extraction 58 

Tolulope Ijitona 

University of Strathclyde, 2019   

3.4.2 Linear Prediction Coefficients  

Linear Prediction Coding, also known as LPC, is a spectral analysis technique used for 

encoding a signal in a way that the current value of a signal is taken as a linear function 

of the previous values [144]. The coefficients generated after LPC are called the linear 

prediction coefficients. The LPC analysis assumes that the human vocal tract can be 

modelled as a tube with varying diameter. This results in a mathematical model which 

gives an approximation of the human vocal tract response [145]. This linear prediction 

error (𝑃𝑒) is given by 

𝑃𝑒 = 𝐸{𝑒
2[𝑛]} = 𝐸 {(𝑥[𝑛] −∑𝑎𝑘𝑥[𝑛 − 𝑘]

𝑁

𝑘=1

)

2

} (11), 

where 𝑎𝑘 is the kth LPC coefficient, N is the order of the linear prediction and 𝑥[𝑛] is 

the speech signal. The speech sample x[n] is represented as a weighted linear sum of 

N previous samples; given that N is the order of the LPC estimation. This results in a 

prediction system where the next sample is predicted by the sum of N preceding 

samples. The resulting coefficients of the LPC are used in estimating the formants; the 

frequency characteristics of a speech signal over time. Formants are frequencies within 

the speech spectrum where acoustic energy are concentrated [146]. For example, a 

speech signal sampled at 8kHz and encoded at 8 bit per sample will have a bit rate of 

64kbits/sec. However, performing a linear prediction will reduce the rate to 

24kbits/sec.  

Furthermore, research [144, 147] has shown that even though the bit rate is reduced 

during linear prediction coding, the estimated speech signal remains audible and 

comprehensible. Due to these attributes, the LPC is useful in speaker identification and 

also in speech coders with low or medium bit rate [148]. The LPC also offers a robust 

and reliable way of estimating the main frequency components of speech signals 

(formants) [148]. Nevertheless, the LPC analysis gives a poor performance in the 

detection of emotion due to reduced speech quality [144]. There is usually a trade-off 

between emotion prediction optimisation and speech quality.  

In addition, the LPC analysis will be useful in considering the frequency characteristics 

of the dysarthria speech. The accuracy of the LPC-based technique in formants 

estimation is high [9] compared to other feature extraction techniques [149]. The LPC 

is robust to noise unlike the MFCC feature extraction technique [145]. Also, the 
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formants estimation is used as a tool for measuring the intelligibility and pronunciation 

features in spoken language [62] which will be explored in this research. 

3.4.3 Formants  

Formants are resonance in the frequency spectrum of a speech signal [98]. There are 

two main methods of extracting formants from a speech signal. The first method 

involves LPC root solving and the second uses an adaptive bandpass filter to estimate 

the formants [98]. The latter is robust to speaker type and non-stationary background 

noise, however, requires high computational cost [109].  

The LPC formant extraction is based on the energy distribution of the signal in the 

frequency domain also called the power spectral density. The formants positions are 

chosen in such a way that they match this distribution of energy. These formants are 

frequencies with bandwidths of less than 400Hz. Therefore, frequency bands with a 

high concentration of energy and bandwidths less than 400Hz are located as the 

formants of the speech signal. Using LPC analysis, the order of the linear prediction is 

a function of the sampling frequency of the speech signal given by the rule of thumb 

given by 

𝑃 = 2 +
𝐹𝑠

1000
 (12), 

where 𝑃 is the order of the LPC and 𝐹𝑠 is the sampling frequency [111]. This is 

because if the number of poles does not match the number of resonances present in the 

signal, the model spectrum will lead to errors as poles will be placed in-between the 

actual formants [111, 150, 151]. The estimated LPC coefficients are converted from 

rectangular form to polar form and the phases of the coefficients with bandwidths less 

than 400Hz and positive phase are extracted as the bands of resonance of the spectrum. 

The extracted positive phases are called formants. In Figure 3-10, the formants of two 

audio signals ae extracted, one from a healthy control speaker and the other from a 

disordered speaker using the LPC-based formant extraction algorithm. The LPC-based 

formants extraction algorithm performed well in being able to track the formants in 

both speaker groups. The formants alone might not be sufficient to classify dysarthric 

speech but the combination of these formants with other features will be of interest in 

this research. 
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Figure 3-10. Formants extracted from Two Audio Signals from Healthy Controlled 

(left) and Disordered (right) Speakers 

3.4.4 Mel Frequency Cepstral Coefficients (MFCC)  

MFCC is one of the extensively used feature extraction techniques in speech 

processing. This feature extraction technique was first proposed by Davis and 

Mermelstein in [152] and since then many variations of the original algorithm have 

been developed [153]. The MFCCs are used to estimate the power spectrum of a 

speech signal using overlapping triangular frequency bins with equal height. 

Construction of M-length Mel filter bank will result in M overlapping triangular filters 

with equal height. The ith triangular filter can be represented as 
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𝐻𝑖(𝑘) =

{
  
 

  
 

0          𝑓𝑜𝑟  𝑘 < 𝑓𝑏𝑖−1
(𝑘 − 𝑓𝑏𝑖−1)

(𝑓𝑏𝑖 − 𝑓𝑏𝑖−1)
     𝑓𝑜𝑟  𝑓𝑏𝑖−1 ≤ 𝑘 ≤ 𝑓𝑏𝑖

 

(𝑓𝑏𝑖+1 − 𝑘)

(𝑓𝑏𝑖+1 − 𝑓𝑏𝑖)
    𝑓𝑜𝑟  𝑓𝑏𝑖 ≤ 𝑘 ≤ 𝑓𝑏𝑖+1

0         𝑓𝑜𝑟  𝑘 > 𝑓𝑏𝑖+1

, 𝑖 = 1,2, 3, … ,𝑀

}
  
 

  
 

 (13), 

where 𝑏𝑖 is the ith band, 𝑓𝑏𝑖 is the ith band frequency, M is the number of filters and k 

is the discrete Fourier transform index.  

Although MFCC has been widely used in speech processing applications, there are 

certain limitations to its computation and usage. Research has shown that the MFCC 

computations are not robust to noise especially additive noise [148]. Another major 

limitation of the MFCC is the fact that the performance of the algorithm is dependent 

on the number of filters used and also on the range of the filter banks [154]. When the 

number of the filters is reduced below an optimum point, the overall performance of 

the MFCC reduces. When the number of filters is increased above an upper optimum 

point, the overall performance of MFCC is negatively affected [115]. These lower and 

upper optimum numbers of filters are dependent on the specific application of the 

feature extraction technique. 

Moreover, change in the Mel filter shape also affects the overall performance of the 

system. In a filter shape analysis experiment, research [155] showed that using a 

critical masking curve gives a better performance in speaker verification than the 

conventional triangular filter shape. The architectural complexity of MFCC algorithm 

is also high compared to other feature extraction techniques [108], resulting in high 

computational time and cost.  

The MFCC algorithm has been modified in various ways to overcome some of the 

limitations discussed above. These modifications include cubic compression in MFCC 

to increase accuracy [156], a combination of principal component analysis with MFCC 

[157] and the fusion MFCC technique [158]. For the purpose of this research, a 

modified MFCC technique (with liftering) will be used to extract some articulatory 

and phonation speech features in conjunction with other feature extraction techniques 

and machine learning techniques discussed in Section 3.7 for dysarthric speech 

classification. 
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3.5 Extended Feature Extraction 

Speech features derived from time-domain and spectral features are called extended 

features since they are derived from other speech features. Techniques used in 

estimating these features are discussed below with emphasis on their applications in 

disordered speech analysis. 

3.5.1 Jitter  

Jitter, also known as fundamental frequency perturbation, is a pitch-based speech 

feature which measures the variation in fundamental frequency in speech signals. It is 

calculated by estimating the short-term pitch period perturbation [109] which is given 

by 

𝐽𝑖𝑡𝑡𝑒𝑟 =
1

𝑁 − 1
∑|𝑇0𝑖 − 𝑇0𝑖+1|

𝑁−1

𝑖

  (14), 

where 𝑇0𝑖 is the pitch period of the ith frame and N is the number of frames. As the 

fundamental frequency varies from frame to frame, the jitter value increases. This 

extended feature is very useful in quantifying pitch variability in speech.  

Over the past decade, researchers have used the jitter in the measurement of speech 

intelligibility [159], stress and emotion classification [160], and speech encoding 

[111]. Another interesting application of jitter measurements is in the detection of 

pathological disorders in speech signals [161, 162]. For example, Silva et al [162] 

proposed a method for the detection of pathological voices using a jitter estimation 

algorithm. In this research, the use of jitter in the detection of dysarthria and its 

classification into various severity levels will be explored. 

3.5.2 Shimmer  

Shimmer, on the other hand, is the measure of variation in peak amplitudes in a speech 

signal between consecutive frames. Shimmer also known as the short-time amplitude 

perturbation is measured from cycle to cycle and it shows the transient change in 

energy in speech signals [109]. The shimmer of an audio signal is given by 
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𝑆ℎ𝑖𝑚𝑚𝑒𝑟 =  
1

𝑁 − 1
∑|20log (𝐴𝑖/ 𝐴𝑖+1)|

𝑁−1

𝑖−1

 (15) 

measured in decibels, where 𝐴𝑖  is the amplitude of the ith frame and N is the number 

of frames. As the amplitude varies from frame to frame, the shimmer value increases. 

This extended feature is also useful in quantifying amplitude variability in speech. Just 

as the fundamental frequency perturbation (jitter), shimmer has been used in various 

speech processing application such as in stress and emotion classification [160], 

speech emotion recognition [163]and pathological speech classification [161]. 

3.5.3 Harmonic to Noise Ratio 

Harmonic to noise ratio (HNR) gives the measurement of the relative amount of noise 

in a signal [164]. During phonation, noise can be added to the speech signal due to the 

turbulent airflow through the glottis. Partially closed vocal cords can allow the passage 

of excessive airflow resulting in turbulence. Another source of additive noise in speech 

signals is due to the aperiodic vibrations of the vocal cords [164]. The HNR shows the 

ratio of the periodic (harmonics) to the aperiodic (noisy) components of the speech 

signal which is measured in decibels (dB). The value of HNR for healthy adults ranges 

from 11-13 dB whereas that of isolated vowels can be as low as 7.4 dB [164]. The 

HNR of a speech signal is defined by (16). 

𝐻𝑁𝑅 = 10 𝑙𝑜𝑔10 (
Signal Energy − Noise Energy

Noise Energy
) (16) 

Since the autocorrelation of the signal at lag zero (𝑅𝑥𝑥[0]) is equal to the total signal 

energy and the harmonic energy can be represented by the autocorrelation at the peak 

period (𝑅𝑥𝑥[𝑇0]), the HNR can also be defined as: 

𝐻𝑁𝑅 =  10 𝑙𝑜𝑔10 (
𝑅𝑥𝑥[𝑇0]

𝑅𝑥𝑥[0] − 𝑅𝑥𝑥[𝑇0]
) (17) 

Furthermore, the HNR is related to the quality of the speaker’s voice. Research [67, 

164] has shown that the HNR can be used to determine the perceptual impression and 

define the physiological aspects of the voice. The HNR is, therefore, a significant 

feature in determining the voice quality and measuring the deviation of a speech signal 

from the expected quality range. 
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Ferrand in his study on the effects of vocal ageing on HNR showed that the HNR 

changes (decreases) as the speakers become older due to voice instability [164]. 

Another factor that impacts the variation seen in HNR is the effect of pathological 

influence on voice quality [67, 164]. People with pathological speech tend to have 

lower voice quality leading to an increase in the additive noise in the speech [164]. 

This invariably results in decreased HNR. HNR measures have also proven to be more 

sensitive to differences in voice quality than jitter measures [164]. The effects of 

combining the HNR and Jitter measures in the detection and classification of speech 

disorders have not been widely researched and will be investigated in this study. 

3.5.4 Wavelets  

The wavelet transform is a very useful tool in analysing non-periodic signals as well 

as noisy or transient signals [165] mainly because the wavelet transform analysis can 

examine both the time and frequency characteristics of a signal simultaneously [166, 

167]. The history of the wavelet transform is dated as far back as 1909 when the 

mathematician Alfred Harr proposed the Harr wavelet, however, the concept of 

wavelet was first introduced in 1981 by Jean Morlet who is a geophysicist [168]. Since 

then, there have been various methods for the wavelet transform. The wavelet 

transform makes use of wavelets which are short finite length waveforms whose mean 

amplitude is zero [165]. The Discrete Wavelet Transform (DWT) is based on subband 

decomposition of signals which is also similar to subband coding in speech signal 

coding applications [168, 169].  

In DWT, the signal to be analysed is decomposed by passing the signal through digital 

filters with specified cut-off frequencies [166]. Wavelets are generated by the process 

of iteration of filtering and rescaling of the signal through a pair of low pass and high 

pass filters as shown in  

Figure 3-11 (Mallat tree) [170]. The outputs of both the high pass and low pass filters 

are decimated by two and that of the low pass filter is further decomposed using 

another layer of low pass and high pass filter [170].  

Over the years, the wavelet transform has been applied in diverse fields such as 

condition monitoring [171], climate forecasting [172], financial analysis [173, 174] 

and biomedical applications [175, 176]. This has led to an increasing number of studies 
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and research on the use of wavelet transform and its modifications for signal analysis, 

manipulation and investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11. Mallat-tree Diagram showing Different Levels of DWT 

Illustrated in Figure 3-12 are results of four-level wavelet analysis carried out on ataxic 

dysarthric and healthy control speech samples. The percentage of residual energy after 

the wavelet decomposition at every level in dysarthric speech samples is higher than 

that of healthy control speech samples. This difference, however, reduces as the level 

increases [166].  

The wavelet transform has been used in various speech processing applications 

including music and speech separation [177], emotion recognition [178], automatic 

detection of swallowing difficulty [179] and pathological voice detection [180, 181] 

with promising outcomes even though its application in automatic speech disorder 

detection and severity classification has not been examined. This research aims to fill 

this gap and explore the use of wavelet transform in severity classification in 

dysarthria.  
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Figure 3-12. Comparison of Four-Level Wavelet Analysis of Dysarthria (left) and 

Healthy Controlled (right) Speech Signals 

3.6 Review of Silence-Unvoicing-Voicing Segmentation Techniques 

The classification of human speech into three distinct sections: silence, unvoiced and 

voiced (SUV) is significant in many speech processing applications which are based 

on whether or not the vocal cords vibrate during the production of the speech segment. 

The silence segment is a period within the human speech where no sound is produced 

which could occur at the start of statements, during pauses in between words/syllables 

and at the end of statements. Speech segments produced when the vibration of the 

vocal cords is aperiodic are called unvoiced segments. Whereas voiced segments are 
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produced when the vocal cords vibrate in a periodic manner. SUV segmentation is one 

of the prerequisites in feature extraction algorithms such as pitch detection, formant 

extraction, word separation, and syllable segmentation.  

Being a three-class problem, the SUV segmentation is a more challenging 

classification problem than voiced activity detection (VAD) and voiced-unvoiced 

(VU) classifications consisting of two classes only. Research [182] has shown that 

SUV segmentation can be performed by combining both VAD and V/U segmentations. 

This will require prior knowledge of the noise statistics of the speech signal [182], 

thereby making the classification problem dependent on the accuracy of the noise 

statistics. The SUV segmentation is, therefore, often treated as a unique problem. 

In existing and current research works, a number of SUV classification methods have 

been developed involving the use of unsupervised learning [182], ZCR [125] [131], 

pattern recognition algorithms [183], cumulants [184], autocorrelation algorithms 

[25], spectral parameters [185] and combinations of two or more of these methods [25, 

186]. There is, however, a need to develop a method that reduces the architectural cost 

and also improves robustness at low signal energy (intensity) experienced in dysarthric 

speech. Moreover, finding fine boundaries between voiced and unvoiced segments is 

a major limitation of most existing methods [25]. 

A few researchers have also focused on the use of STE and ZCR in the SUV 

segmentation of speech [124, 125]. This involves setting up a segmentation rule for 

both STE and ZCR based on pre-defined thresholds. Voiced sounds are classified as 

sounds with a relatively low number of zero-crossing and high STE, unvoiced sounds 

have a high number of zero-crossing and low STE and silence segments have low ZCR 

and low STE. Using fixed ZCR and STE thresholds do not give good performance 

across various speech samples [25], especially in varying intensity profiles 

experienced in dysarthric speech. 

3.7 Review of Machine Learning Techniques for Dysarthric Speech 

Classification 

Over the years, researchers have used various classification techniques ranging from 

statistical/mathematical methods [26, 64, 187], to perceptual methods [6, 188], to 

machine learning methods [67, 68, 189] for the classification of dysarthria into 
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different severity levels. But in recent years, machine learning techniques have gained 

more research attention due to their performance [190-192]. In this section, different 

machine learning techniques will be reviewed with respect to their application in 

dysarthric speech classification. 

3.7.1 Neural Networks 

Artificial neural networks (ANN) are models that are biologically-inspired by how 

information is processed in the neural systems [193] which allows the computer to 

learn patterns and observations from large data. ANN consists of a number of neurons 

that are interconnected and working together to achieve a particular goal which could 

be to recognise patterns [189], solve a problem [194], identify subjects [195], classify 

data [79] or detect an abnormal situation [69]. Due to its non-linear mapping function, 

an ANN has the potential to effectively learn data with non-linear models such as 

speech [196]. Researchers have achieved significant results using ANN with just one 

layer of hidden neurons to recognize patterns and predict outputs from non-linear input 

data [189, 197]. In recent years, however, multi hidden layers have been more used 

due to the increased complexity of the dataset. 

ANN has been used in many speech processing applications for different purposes 

such as speech recognition [189, 196, 198], speaker identification [195, 199], emotion 

detection [200] dysarthria automatic detection [79] and speech classification [6, 189]. 

Of all these applications, little research attention has been given to the application of 

ANN in speech classification especially in the area of dysarthria severity classification 

[189], whereas a lot of attention has been given to using ANN techniques in speech 

recognition within the research community [60, 201]. There is, therefore, a need to 

explore the possibility of applying different variants of ANN in the dysarthria detection 

and severity classification problem. 

3.7.2 Support Vector Machines 

The support vector machine (SVM) was introduced by researchers in [202] as a 

supervised learning technique for mapping input and output data using a classification 

or regression function [203]. In recent years, the SVM classification technique has 

been applied in various disciplines because of its high accuracy, flexibility and ability 

to handle complex data [203]. SVM classifiers belong to the kernel methods family. 
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Kernel methods are learning methods whose dependence on the training data is only 

by dot-products [204]. The kernel functions convert the input data to a feature space 

with high dimension [203]. This allows the classifier to perform dot-products in the 

high dimension and feature vector space with complex structure. The SVM classifier 

has the ability to produce non-linear boundaries and work on data set with no fixed 

dimension in the vector space [204] which makes the SVM useful in speech-related 

applications. In speech processing, SVMs are mainly used for regression analysis, 

class separation (also known as classification) and detection of irregularity [205].  

The simplest form of SVM is a binary classifier consisting of two distinct classes that 

are separated by a hyperplane. New observations are mapped as points in the SVM 

model space and then classified to either side based on their position with respect to 

the hyperplane [205]. The SVM classifier is set to find the optimal hyperplane that can 

best differentiate the classes by minimizing the classification error. The data points 

that are closest to this optimal hyperplane are called the support vectors [205]. The 

optimal hyperplane maximizes the margin between the support vectors on either side 

of the plane [204]. 

SVMs are grouped into different types based on the type of classifiers used. Broadly 

speaking, SVM classifiers can either be linear, (with linear classification boundaries) 

or nonlinear (with nonlinear classification boundaries). The linear classifiers provide 

simplicity in training whereas the nonlinear classifiers provide a better training 

accuracy especially in a linearly inseparable dataset [204]. Quadratic, cubic, fine 

Gaussian, medium Gaussian, coarse Gaussian are common types of nonlinear SVM. 

Nonlinear SVMs are differentiated by their hyperparameters such as the degree of the 

polynomial kernel (for example cubic, quadratic), the width of the Gaussian kernel 

(gamma) and the soft margin constant (C) [204].  

The SVMs have proved to be very useful in the classification of complex dataset 

especially when nonlinear kernels are used. However, the major limitation of the SVM 

classifiers is that they are binary classifiers in nature. Researchers have however used 

the pair-wise classification technique to overcome this limitation in multiclass 

classification problems [206]. In this research, the performance of the various types of 

SVM classifiers will be examined in automatic dysarthric speech detection and 

severity classification. 
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3.7.3 k-Nearest Neighbours  

The k-nearest neighbours (kNN) is a classification technique that involves 

identification of the k elements that are the closest neighbours in the training dataset 

to the test element [205]. The test element is classified to the dominant class within its 

k closest neighbours. The kNN classifier is also called the memory-based classifier 

because the labels of the training elements are needed at run-time [207].  

In kNN classification, the first step includes labelling of the training dataset in the 

various classes. The test data elements are then located in the dataset space and their 

k-nearest neighbours identified. The distance between the elements can either be 

estimated using the Euclidean distance function or a multidimensional distance 

function. The voting for the most suitable class can be done either by a majority vote 

or a weighted vote (to achieve a well-balanced vote) [207].  

Applications of the kNN classification technique in speech processing include speech 

emotion detection [206, 208], speech recognition [209], and repetition detection in 

stuttering [210]. Although the kNN classification technique is simple to implement, 

flexible and can naturally handle multi-class problems, it requires storage memory for 

the pre-labelled elements and a large data search [207]. Another limitation is the need 

to describe a distance function that fits the classification problem. In other speech-

related applications, the question of the most suitable size of k neighbours also arises. 

The performance of the kNN classifier in comparison to other types of classifiers will 

be of interest in this research. 

3.7.4 Deep Learning 

Over the years, the type and nature of the neural network architecture have evolved 

from the simple models to a variety of highly complex and sophisticated models. 

Researchers have made use of a variant of single-layer, multi-layer, self-organizing, 

self-recurring, time delay, and even adaptive neural network models to address various 

nonlinear, multidimensional classification problems [205]. There exists a continuous 

need, within the research community, to improve these models to achieve higher 

intelligence levels that closely match human intelligence. This quest for stronger and 

more robust artificial intelligence has opened a research path for deep learning within 

and beyond the machine learning research community. 
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Deep learning algorithms are often motivated by a need for higher classification 

efficiency, increased data complexity, availability of more computer processing power 

and recent advances in the cognitive neuroscience field [205]. Deep neural networks, 

spiking neural networks, hierarchical temporal memory and cortical algorithms are 

some of the examples of the deep learning techniques [205], most of which are 

biologically inspired and are quite promising in speech-related applications [198, 211, 

212]. Although deep learning algorithms are relevant in supervised, unsupervised and 

reinforcement learning, there are a few limitations in their implementation [213]. One 

major set-back of deep learning is the requirement for a very large amount of training 

data [214] which are not readily available in dysarthric speech analysis. Due to 

increased complexity and cost, deep learning is often not applied when the 

performance of other classifiers is deemed good enough. 

3.8 Summary  

In this chapter, various feature extraction techniques relevant to this research have 

been reviewed. The review also involves the techniques used in pre-processing of 

speech signals to enhance the performance of the feature extraction algorithms. 

Techniques used in the extraction of time-domain features, as well as spectral and 

cepstral features, are reviewed and their performance compared both for healthy 

control and dysarthria speakers. In addition to this, extended features derived from 

time-domain, spectral and cepstral features are also reviewed and their applications to 

disordered speech discussed. Furthermore, the major gaps in the segmentation of 

disordered speech into silence, unvoiced and voiced segments are identified and the 

review of current machine learning techniques relevant to the automatic detection and 

severity classification in the dysarthric speech is also presented. This chapter provides 

the foundation for the contributions of this research work presented in Chapters 4 to 8 

of this thesis.   

As discussed in this chapter, traditional techniques for the SUV segmentation of 

dysarthric speech are prone to errors which motivated the development of a novel SUV 

segmentation technique presented in the next chapter that gives a better segmentation 

performance both in healthy controlled and dysarthric speech. One of the ways of 

assessing dysarthric speech is to measure the ability of the speakers to produce 

repetitive sounds at a fast rate using DDK syllables. In Chapter 5 of this thesis, an 
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automatic DDK analysis technique which is based on moving average segmentation 

and duration-based merging is proposed. Furthermore, machine-learning techniques 

are proposed in Chapter 6 for the automatic detection and severity classification of 

dysarthric speech using speech features that characterise dysarthric speech which 

includes: jitter, shimmer, HNR, centroid formants, MFCCs, wavelets and prosodic 

features. In addition, an assessment of the impact of manipulation of three prosodic 

features (intensity, duration and pitch) on the listeners’ ability to correctly identify the 

location of the stressed word in dysarthric sentences will be presented in Chapter 7, to 

enable clinicians to make informed decisions when administering prosody-based 

therapies. The techniques proposed in this thesis are developed into interactive 

dysarthria management tools in MATLAB which are presented in Chapter 8 of this 

thesis.  



Chapter 4 

4 Novel Silence Unvoiced Voiced (SUV) Segmentation in 

Dysarthric Speech  

4.1 Introduction  

In this chapter, a novel algorithm for the segmentation of dysarthric speech into 

silence, unvoiced and voiced (SUV) segments will be described. The proposed 

algorithm will be based on the combination of short-time energy (STE), zero-crossing 

rate (ZCR) and linear prediction error variance (LPEV). Extending the previous work 

in this field, the proposed method will address the difficulties in distinguishing 

between voiced and unvoiced segments in dysarthric speech. More precisely, the error 

variance of the linear prediction coefficients will be used to design a three-fold 

decision matrix that can accommodate the high variability in loudness experienced in 

dysarthric speech. In addition, a moving average threshold approach will be proposed 

in order to provide an “as-fit” segmentation technique that is fully automated and that 

will be able to handle highly severe dysarthric speech with varying loudness and ZCRs. 

The ability of the proposed fully-automated algorithm will be validated using real 

speech samples from healthy speakers, and speakers with ataxic dysarthria. 

Furthermore, the performance of the algorithm in real-time segmentation and its 

application extraction of speech features will be presented in this chapter. 

4.2 SUV Segmentation Algorithm for Dysarthric Speech 

The proposed SUV segmentation is divided into five stages namely; pre-processing, 

ZCR estimation, STE estimation, linear prediction and decision stage. The block 

diagram of the proposed SUV segmentation algorithm is illustrated in Figure 4-1. The 

audio sample to be segmented is first pre-processed after which the segmentation 

features are extracted. The features are extracted in short-time frames (the importance 

of short-time analysis in speech processed are discussed in Section 3.2.6). The size of 

the frames used in this algorithm is 31.25 milliseconds (that is, 1/32 second or 512 

samples at a sampling rate of 16 kHz as discussed in Section 3.2.5). The feature 
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extraction step is carried out by estimating the number of zero crossings in each speech 

frame, calculating the STE and then performing a linear prediction to estimate the 

prediction error variance of each frame. The last stage of the process involves the 

classification of each speech frame to one of the three SUV classes. 

 

  

 

 

 

 

 

 

 

 

Figure 4-1. The Block Diagram of the Proposed SUV Segmentation Technique 

4.2.1 Pre-processing 

There are three steps involved in the pre-processing of the audio signal in readiness 

for feature extraction. These include noise removal, resampling and amplitude 

normalization. Additive noise in a speech signal can often interfere in the feature 

extraction process. As discussed in Section 3.2.3, noise removal/reduction helps in 

improving the perceptual quality of distorted speech.  

 The Wiener filter is used to remove the undesired additive noise due to the recording 

equipment or background noise. The FIR Wiener filter was chosen because of its lower 

computation cost since the SUV segmentation is to be carried out in real-time [113]. 
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After denoising, the audio signals are resampled to 16 kHz. This is to ensure that all 

the signals are sampled at the same rate. The choice of this sampling rate is as a result 

of the range of human speech frequencies and the Nyquist criterion (as discussed in 

Section 3.2.5). Sampling all the audio signals at the same rate also helps in equalizing 

the frame size which will normalize the ZCR to be estimated in Section 4.2.2. 

Afterwards, the amplitudes of the resampled audio signals are normalised. Due to the 

variations in speaker volume and microphone distance, the amplitude of the audio 

samples is normalised such that the signal lies between -1.0 and +1.0 (without 

changing the sign of the signal values as discussed in Section 3.2.2). Amplitude 

normalisation is achieved by dividing the signal by its maximum absolute value. The 

resulting denoised resampled and normalised audio signals are divided into 

overlapping frames of 512 samples each with 75% overlap between consecutive 

frames. Using overlapping frames is targeted towards improvements in the 

segmentation process. 

4.2.2 Zero-Crossing Rate Estimation  

The first step in the feature extraction stage is the estimation of the ZCR across all 

frames. The ZCR for unvoiced speech segment is expected to be higher than that of 

the voiced segment [129]. This is because unvoiced frames are less periodic with 

varying frequencies, leading to a high rate of change in amplitude and signal value 

sign. For silent frames of the speech, the ZCR is expected to be approximately zero, 

provided the speech signal is free of background noise [129]. However, the number of 

zero crossings within a speech segment is affected by the quality of the recording 

[124]. A speech sample recorded using different devices will give variable ZCRs 

across devices based on their impulse responses. To reduce the effect of this variability 

in ZCRs, the use of a signal-specific threshold that is a function of the ZCRs across all 

the frames of the audio sample is proposed. The threshold of the ZCR segmentation is 

therefore based on the quality of individual speech sample rather than a fixed value. 

The proposed ZCR threshold is given by (18). As the ZCR varies across devices, the 

threshold also varies to match the range of variation in recording quality. 
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𝑍𝐶𝑅𝑇ℎ𝑟𝑒𝑠 = 𝑘 ∙ [max(𝑍𝐶𝑅) − min(𝑍𝐶𝑅)] (18) 

where k is the voicing threshold factor. For this study, by inspection, k is taken to be 

0.3. This choice was made after analysing 700 single words from both healthy 

controlled and dysarthric speakers. Differences in ZCR values are used to section the 

speech signal into silence, unvoiced and voiced classes.  

4.2.3 Short-Time Energy Estimation 

The STE is also estimated across all frames and measured to decibels. Since the 

amplitudes of the signals have been normalised in the pre-processing stage, the STEs 

can be used to distinguish the silence frames from the other parts of the signal in a 

healthy speech. The speech signals from healthy control speakers are expected to have 

very low STE in silent frames and the voiced frames are expected to have the highest 

STE. However, this is not what is observed in dysarthric speech. The loudness of the 

dysarthric speech varies considerably, therefore, affecting the STE values. 

High variability in loudness in dysarthric speech samples leads to a mismatch in STE 

for silence, unvoiced and voiced frames. This implies that the voiced or unvoiced 

frames in dysarthric speech can often have low STE due to reduced loudness, 

especially at the end of the utterance. In addition, there can be bursts of loudness within 

the utterances which can affect the performance of the STE-based SUV segmentation 

proposed in [124, 125]. The STE in itself is, therefore, not sufficient to adequately 

segment the dysarthric speech into SUV segments.  

4.2.4 Linear Prediction Error Variance  

The third feature extracted in this proposed SUV segmentation algorithm is the linear 

prediction estimation error variance (LPEV). The LPEV is derived from the linear 

prediction of the speech signal. Linear predictive coding (LPC) is used in speech 

processing to model audio signals for feature extraction [147], speech recognition 

[134] and speech synthesis [215]. This is achieved by predicting the next signal value 

based on the last P values where P is the linear prediction order. The P previous values 

are weighted by the LPC coefficients and added to give the next signal value. The LPC 

gives a very close approximation to the original signal [134]. The residual signal after 

the estimated signal being removed from the original signal is called the linear 
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prediction estimation error (LPE). The variance of the LPE is measured for each frame, 

which is called the LPEV. 

The LPEV is useful in SUV segmentation because LPC shows different performance 

for different parts of the speech sample. In the voiced frames, most of the signal energy 

is extracted in the LPC coefficients as formants and the residual signal contains very 

low energy in comparison with the original signal energy. However, for unvoiced 

frames, the residual signal energy is usually higher than the linearly predicted signal 

energy because most of the signal energy is decomposed in the residual signal. Despite 

the high variability in dysarthric speech, the linear prediction algorithm is still able to 

accurately predict the next signal value given the previous P values. The order of the 

linear prediction algorithm (that is, the P-value) used in this proposed method is given 

by (12). This is based on the rule of thumb for formant estimation [80, 216]. The linear 

prediction error, on the other hand, is given by (11) as discussed in Section 3.4.2. 

The analysis of the LPEV has shown that, in dysarthric speech signals, the variance of 

the LPE for unvoiced frames is lower than that of voiced frames for the same speaker. 

The lowest LPEV is recorded in silent frames. The residual signal in an unvoiced frame 

does not vary significantly since it consists mainly of the original signal energy. For 

voiced signal, on the other hand, there is a high variance in residual signal energy due 

to the change in formant energy across different sounds. The threshold value is taken 

as the median LPEV. This gives a basis for segmenting speech samples into silence, 

voiced and unvoiced segments. 

4.2.5 Segmentation Decision Criteria  

Combining the ZCR, STE and LPEV criteria, the audio samples are segmented into 

the three classes; Silence, Unvoiced, and Voiced at the decision stage. The flowchart 

of the proposed algorithm is illustrated in Figure 4-2. In the case of clean speech 

samples, silence segments have zero ZCR and very low (approximately 0) LPEV while 

unvoiced segments have high ZCR and low LPEV, and voiced segments have low 

ZCR and high LPEV. However, in realistic conditions, audio samples are not usually 

noiseless due to environmental conditions and recording quality. To mitigate these 

challenges, more refined segmentation criteria are used. 
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Figure 4-2. Flow Chart of the Proposed Algorithm 
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As illustrated in Figure 4-2, a three-fold criterion was used for the segmentation 

process. The thresholds used in this segmentation process are speaker-dependent and 

are a function of the range of extracted features (ZCR and STE). The use of speaker-

specific thresholds ensures that the process works automatically without any 

interference from the users. Also, fixed thresholds are known to result in low accuracy 

in dysarthric speech since their intensity profiles are not as observed in healthy speech 

(due to high variability and bursts of loudness).  

The threshold for the ZCR measures is given in (18) and the threshold for the LPEV 

measures is given by the median of the LPEV values in the whole signal and the 

threshold of the STE is fixed at 0 dB. To keep the threshold within an acceptable range, 

the ZCR threshold is, however, kept within the range of 100 and 200 zero crossings 

per frame and the LPEV threshold is kept at a minimum of -100 dB. These thresholds 

are used to determine if the measured values are “high” or “low”. For example, if the 

measured ZCR for a particular frame is less than the ZCR threshold (ZCRthres), the 

ZCR for the frame is marked as “low” and vice versa. Apart from “low” and “high”, 

those instances, where the measured values are approximately equal to zero, are also 

noted. Table 4-1 gives a summary of the decision matrix. 

Table 4-1. Three-fold SUV Segmentation Criteria 

  *occurs only during bursts of loudness  

Layers STE LPEV ZCR Dysarthric Speech 

Layer L1  Low Low Approximately 0 Silence 

Low Low Low Silence 

Low Low High Silence 

Layer L2 Low High Low Voiced 

High Low Low Voiced* 

High High Low Voiced 

Low High High Unvoiced 

High Low High Unvoiced* 

High High High Unvoiced 
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Using the decision matrix, the decision-making stage involves two layers (L1 and L2). 

The first layer, L1, is where the silence frames are separated from the rest of the speech 

signal. The separation is based on the LPEV and the STE thresholds. When the LPEV 

and STE values for a particular frame are lesser than the thresholds the frame is 

assigned ‘S’ (silence). The silent frames are characterised by low LPEV and low STE. 

If one or both of these two parameters is/are “high”, the ZCR is needed to decide the 

class in the second decision layer, L2. After the silence frames have been separated in 

L1, the remaining components of the signal are taken through the second layer, L2, 

where the voiced and unvoiced segments are separated based on the ZCR threshold. If 

the ZCR is higher than the threshold, the segment is classified ‘U’ (unvoiced), 

otherwise, the segment is classified ‘V’ (voiced). This two-layer process ensures that 

the boundaries between the 3 classes are well defined.  

4.3 Experimental Results 

The proposed method was tested on 385 audio samples recorded in an echo-free 

environment. The audio samples are from 20 speakers, 10 of which are ataxic 

dysarthric speakers and 10 age and gender-matched healthy control speakers. Each 

speaker produced 20 single word speech. Each group consisted of 5 males and 5 

females. The recorded audio samples were prescreened and 15 were removed due to 

the quality of the recording.  This corpus was taken from the dataset reported by [27]. 

The audio samples were manually labelled using Praat (using the established Praat 

voicing labels) whereas MATLAB was used for speech analysis. The results of the 

experiment were compared with that of the state-of-the-art segmentation technique 

proposed in [129] and [131]. 

Figure 4-3 shows the results of one of the audio samples where a speaker said the word 

‘differ’. Grey, Red and Blue colours were used to represent the ‘S’, ‘U’ and ‘V’ 

segments respectively. The word is divided into two syllables (di-ffer). The proposed 

method accurately removes the silence segments and automatically separates the 

unvoiced segments from the voiced segments. The first syllable contains voiced 

sounds whereas the second syllable contains both unvoiced and voiced sounds. Due to 

reduced loudness at the start of the second syllable, the STE of the sound ‘ff’ was lower 

than the STE threshold. Without considering the LPEV, the unvoiced sound (‘ff’) 
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would have been classified as silence. Figure 4-4 shows the results of the SUV 

segmentation based on the method proposed in [129] and [131].  

 

Figure 4-3. SUV Segmentation of the Word “Differ” using the proposed method 
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Figure 4-4. SUV Segmentation of the word “Differ” using ZCR+STE method [129] 

 

Figure 4-5. SUV Segmentation of “Whitehouse” using the proposed method 
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Figure 4-6. SUV Segmentation of the Word “Whitehouse” using ZCR+STE 

method in [129] 

Figure 4-5 shows the result of the proposed method in another single word 

“Whitehouse”. The proposed method correctly identified all the voiced, unvoiced and 

silence segments despite the high variability in intensity. The ZCR+STE method in 

[129], on the other hand, resulted in multiple errors as shown in Figure 4-6. It can be 

seen in Figure 4-6 that modification of the STE threshold (to a lower value) will 

introduce more errors into the segmentation results, thereby, reaffirming that STE 

alone is not sufficient for segmenting the dysarthric speech due to high variability in 

intensity. 

The experimental results were compared with the manually labelled annotation for the 

385 audio samples and the errors in the proposed segmentation method were measured. 

An SUV segmentation described in [129, 131] using STE and ZCR was also 

implemented and compared with the experimental results from the proposed three-fold 

method. The results of this comparison are presented in Figure 4-3, Figure 4-4, Figure 

4-5, and Figure 4-6. The average accuracy of traditional STE+ZCR was 94.8% as 

illustrated in Table 4-2. With the same dataset, the average accuracy of the proposed 

method across the 3 classes was 98.9% and the average percentage error rate was 1.1%. 

Table 4-2. Performance of the proposed algorithm on dysarthric data set 

comprising of 385 audio signals 

Segment 
Accuracy 

STE+ZCR Method Proposed Method 

Silence 96.2% 99.4% 

Unvoiced 89.3% 98.4% 

Voiced 99.0% 99.0% 

Average 94.8% 98.9% 
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One major advantage of the proposed method over the STE + ZCR method in [129] is 

its high sensitivity at low energy. An example is illustrated in Figure 4-3 and Figure 

4-4. This is because periodic and quasi-periodic speech components are detected in 

linear prediction and the LPC method is independent of the signal energy. In terms of 

consistency, since the LPEV is very sensitive even at low signal energy, there is a 

reduction in classification gaps due to fluctuations in signal energy, therefore 

improving the detection of the inter-class boundaries. 

Furthermore, voice onset is well defined in the proposed method (represented by a 

very steep rise in LPEV). Consequently, this method is very useful in voice activity 

detection applications. Using STE in voice activity detection does not give well-

defined boundaries between silence and the first voiced/unvoiced segment in the 

speech samples. When compared with the manually labelled annotation, the proposed 

method produced consistently accurate results for both male and female speakers. 

4.4 Summary 

In this chapter, a novel algorithm for the segmentation of dysarthric speech into 

silence, unvoiced and voiced segments has been presented. This method uses a three-

fold segmentation decision matrix based on the ZCR, STE and LPEV of the signals. 

The algorithm reduces the segmentation error due to reduced loudness with high 

variability experienced in dysarthric speech. The LPEV ensures that the unvoiced and 

voiced segments with low intensity are accentuated while suppressing the silence 

segments. In this algorithm, speaker-specific thresholds are used for the segmentation 

problem thereby reducing the errors due to fixed segmentation thresholds. 

Experimental results show that the proposed algorithm leads to accurate segmentation 

of dysarthric speech with fine boundaries between the three classes despite the high 

variation in intensity in the signals. This algorithm can also be applied in the extraction 

of voice-based and spectral features such as fundamental frequency, formants, voiced 

activity detection, syllable duration, speech rate, etc. This algorithm can, therefore, be 

extended to other speech processing applications. 

  



Chapter 5 

5 Novel Automatic DDK Analysis for Assessment of 

Dysarthria  

5.1 Introduction 

A novel technique for the automatic analysis of diadochokinetic (DDK) samples 

from dysarthric speakers is presented in this chapter. The proposed algorithm will 

be based on the automatic segmentation of DDK syllables and estimation of the 

DDK rate as well as the peak intensity of the DDK syllables. Improving on previous 

techniques for DDK syllable segmentation, the proposed technique will make use 

of a moving average threshold to reduce the effect of intensity bursts and high 

variability in intensity due to articulatory breakdown. In addition, a minimum 

duration merging method will be proposed in order to reduce over-segmentation 

due to intra-syllable pauses between the consonant and the vowel sounds. The 

performance of the proposed algorithm will be validated using 284 DDK samples 

from 71 speakers. These include speakers with ataxic dysarthria, Parkinson’s 

disease, young speakers and healthy control speakers. Furthermore, the reliability 

of the proposed technique will be validated by increasing and decreasing the 

threshold by 2 dB and measuring the performance of the technique at these 

threshold values. The applicability of the proposed technique in supporting 

clinicians during the assessment of dysarthria will also be presented in this chapter.  

5.2 Diadochokinetic Skill in Speech 

Diadochokinetic (DDK) skill is the ability of speakers to rapidly repeat alternating 

movements in speech [217]. DDK tasks often involve repetition of syllables at a 

very fast rate. The most common examples of syllables used in DDK tasks are /pʌ/ 

/tʌ/ and /kʌ/. DDK rate also called the alternating motion rate (AMR), is the 

measure of the number of syllables repetitions within a period of time (typically 1 

second). The average DDK rate in healthy adults ranges from 5 to 7 repetitions per 
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second, however, this varies with age [217]. DDK tasks are routinely used by 

speech and language therapists (SLTs) to assess speech difficulties both in children 

and in adults. Analysing and interpreting the results can be challenging as the 

clinicians will have to manually transcribe and annotate the recorded speech signals 

to measure the peak loudness, the duration of the repetitions, syllable repetition rate 

and the variability of the repetitions [217].  

Recently, research interests in quantitative analysis of DDK tasks using 

instrumental methods have increased [217]. These instrumental methods offer time-

savings, improved reliability, the ability for post-treatment analysis, progress 

tracking, and more information about the speech samples. In this study, a fully 

automated instrumental DDK analysis algorithm is proposed which will record the 

DDK samples from the patients (using a microphone connected to a computer), 

analyse the recorded signals, extract the peak loudness and the DDK rate.  

5.3 Participants 

The details of the participants involved in this study are shown in Table 5-1. The 

dataset consisted of 71 individuals; 23 of which have been diagnosed with 

Parkinson’s disease, 8 participants diagnosed with ataxic dysarthria, 13 young 

participants and 27 healthy control participants. Each of these participants carried 

out 4 DDK tasks on fast repetitions of /pʌ/, /tʌ/, /kʌ/, and /pʌtʌkʌ/. The data is 

collected in noise and echo-free environment. All data used in this study are 

recorded using the same equipment set-up. The recorded audio samples are labelled 

according to the assigned speaker number shown in Table 5-1 

Recorded speech samples for each task are stored in separate folders with the 

speaker number. The data is stored in a secured cloud server which is accessible for 

research purposes. For this study, the recorded audio samples were manually 

labelled in Praat and separated to individual DDK syllables. The automatic 

segmentation algorithm was, however, developed in MATLAB using the 

methodology proposed in Section 5.4. 
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Table 5-1. Participants for the Automatic DDK Analysis Study 

Parkinson’s Disease 

Speaker Group 

Ataxic Dysarthria 

Speaker Group 

Control Speaker 

Group 

Speaker  Gender Speaker  Gender Speaker  Gender 

PD01  M AD01  M C01  F 

PD02  F AD02  F C02  M 

PD03  M AD03  F C03  F 

PD04  M AD04  M C04  F 

PD05  F AD05  F C05  M 

PD06  M AD06  M C06  M 

PD07  M AD07  M C07  M 

PD08  M AD08  M C08  M 

PD09  M 

Young Speaker Group 
C09  F 

PD10  M C10  F 

PD11  M Speaker  Gender C11  M 

PD12  M Y01  F C12  M 

PD13  M Y02  F C13  M 

PD14  F Y03  M C14  M 

PD15  M Y04  F C15  M 

PD16  M Y05  M C16  M 

PD17  M Y06  F C17  M 

PD18  M Y07  F C18  F 

PD19  M Y08  F C19  M 

PD20  F Y09  M C10  F 

PD21  M Y10  M C21  M 

PD22  M Y11  M C22  M 

PD23  F Y12  M C23  F 

   Y13  F C24  M 

      C25  M 

      C26  M 

      C27  M 
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5.4 Proposed Methodology 

The proposed automatic DDK analysis algorithm is designed to tackle three of the 

main issues faced by instrumental DDK analysis methods as discussed in [217]. 

These include errors due to reduced or increased intensity, over-segmentation due 

to inter-syllable pauses and under-segmentation due to the choice of threshold. The 

aim of the proposed algorithm is to automatically extract the DDK rate and peak 

loudness of DDK syllables from DDK audio samples by the following: 

 Accurately segmenting the DDK syllables using intensity thresholding 

 Reducing the errors due to inter-syllable pauses 

 Reducing the errors due to dips between consonant and vowel segments 

 Setting a changing segmentation threshold to account for erratic intensity or 

reduced peak intensity caused by an articulatory breakdown 

 Eliminating the skewed DDK rates at the start and the end of each recording 

The block diagram of the proposed algorithm is illustrated in Figure 5-1. The 

methodology includes pre-processing, syllable segmentation, peak intensity 

extraction, syllable duration measurement and the estimation of the DDK rate and 

its covariance. 

 

 

 

 

 

Figure 5-1. Block Diagram of the Automatic DDK Analysis Tool 

5.4.1 Pre-processing 

The recorded audio signals from the DDK tasks are first pre-processed to remove 

additive noise and resample the signal. The noise due to the recording equipment 

and recording environment are removed using a Wiener filter. After which, the 

audio signals are sampled at 16 kHz to ensure a uniformed sampling rate across all 

audio samples (based on the Nyquist sampling criterion as described in 3.2.5). 
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5.4.2 DDK Syllable Segmentation 

Estimating the peak intensity and the syllable duration requires that the utterances 

are segmented into the individual DDK syllables as produced by the speakers. 

Therefore, the next stage after the pre-processing involves the segmentation of the 

audio signals into the individual syllables. This is achieved by detecting the 

boundary point between consecutive syllables (that is, the point where a syllable 

ends and the next one begins). The boundary points are the low turning points in 

the intensity profile which are determined by the difference function of the intensity 

profile. At turning points (maximum and minimum turning points), it is expected 

that the first-order derivative (the first-order difference function for the discrete-

time system) of the intensity function will tend to zero. At the minimum turning 

point, the second-order derivative of the intensity function is expected to be greater 

than zero.  

However, to locate the troughs (minimum turning points) in the intensity profile, 

there is a need for a segmentation threshold below which the minimum turning 

points can be searched for (this will reduce the search region thereby reducing the 

computational time). The choice of segmentation threshold was based on two 

factors. The first factor being that the range of the intensity profile varies from 

speaker to speaker as well as by age and gender. The second factor is that dysarthria 

speech samples are often characterised by the highly varied intensity which can be 

accompanied by an articulatory breakdown. There is, therefore, a need to apply a 

segmentation threshold that is unique to an individual’s intensity range but varying 

in nature to cope with varying intensity.  

The first type of threshold considered is the mean intensity threshold. Using the 

mean intensity of the speaker’s intensity profile ensures that the threshold is 

associated with a particular speaker which is more appropriate than using a fixed 

threshold for all speakers. Even though this helps in addressing the factor of the 

speaker’s intensity range, it does not consider cases where the speaker’s intensity 

varies considerably within the same utterance as shown in Figure 5-2. Although in 

this example, some of the syllables are correctly segmented, a good number of the 

syllables are omitted because their corresponding intensity troughs are located 
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above the segmentation threshold. This results in under-segmentation of the DDK 

audio sample as illustrated in Figure 5-2. 

 

Figure 5-2. Waveform of a DDK audio signal (top) and the intensity profile 

(bottom) showing the identified peak intensity using speaker-

specific mean intensity segmentation 

To address this segmentation challenge, a moving average threshold approach is 

introduced with an averaging window of approximately half a second. This window 

size is chosen because previous research [217] shows that the expected range of 

DDK syllable duration is between 100 milliseconds and 200 milliseconds. The 

moving average threshold is unique to the speaker, not fixed and a function of the 

moving range of the intensity profile of the signal as well as the variability of the 

speaker’s intensity. The moving average threshold of the ith frame of the audio 

signal is given by (19). 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑚𝑜𝑣𝑖𝑛𝑔(𝑖) =
1

𝑁
∑𝐼𝑁𝑇𝑖(𝑘)

𝑁

𝑘=1

=
1

𝑁
∑|𝑥𝑖[𝑘]|

2

𝑁

𝑘=1

 
(19) 

 

where N is the length of the frame, 𝐼𝑁𝑇𝑖 is the intensity profile of the ith frame, 

which is the square of the amplitude of the audio signal 𝑥𝑖[𝑘].  
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The effects of using the moving average threshold are illustrated in Figure 5-3. All 

of the omitted syllables in Figure 5-2 were accurately segmented in Figure 5-3 using 

the moving average threshold as shown by the yellow line on the intensity profile. 

(NB: Figure 5-2 and Figure 5-3 show the same DDK audio sample segmented using 

the mean threshold approach and moving average threshold approach respectively). 

The use of moving average threshold helps in reducing the errors likely to be 

introduced due to reduced peak intensity caused by articulatory breakdown. In 

addition, using a fixed threshold value can result in too high threshold which can 

result in the omission of syllables with reduced peak intensity or too low threshold 

which can lead to syllables merging. 

 

Figure 5-3. Effects of Moving Average Threshold on DDK Segmentation 

Moreover, another challenge faced by current instrumental DDK segmentation 

techniques is over-segmentation of syllables. DDK syllables are often over-

segmented when multiple troughs are detected within the same syllable. In Figure 

5-4, one of the DDK syllables has been over-segmented due to an intensity dip 

between the consonant and vowel sounds as shown in black. This leads to an 

increase in the number of syllables and reduces the measured mean DDK rate for 

the speaker.  
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To address the issue of over-segmentation, the proposed algorithm makes use of a 

minimum syllable duration criteria to reduce the over-segmentation errors due to 

inter-syllable pauses. An analysis of multiple speech samples shows that the 

maximum number of syllables achievable by a very fast speaker is 9 syllables in a 

second. This means that the minimum syllable duration is 0.11 second (or 111 

milliseconds) and that any syllable with duration less than 100 milliseconds has a 

high probability of being incomplete and most likely a pseudo-syllable (that is, a 

segment of a syllable). Two consecutive short pseudo syllables are therefore 

merged to form one syllable. This is termed minimum syllable duration merging.  

Furthermore, this approach caters for scenarios where the syllable has been wrongly 

segmented into more than 2 pseudo syllables by merging neighbouring pseudo 

syllables based on the minimum syllable duration criteria. Apart from reducing the 

errors due to inter-syllable pauses, this minimum duration-based merging also helps 

in reducing (or eliminating) the errors introduced by dips between the consonant 

and vowel segments in the DDK syllables; thereby addressing the challenges of 

over-segmentation.  

An illustration of the advantages of minimum duration-based merging is shown in 

Figure 5-5. Although, one of the /tʌ/ syllables has been over-segmented in Figure 

5-4 due to the inter-syllable dip between the consonant and the vowel sounds, using 

the minimum duration syllable merging approach discussed above, the pseudo 

syllables are detected and merged as shown in Figure 5-5, in which all the DDK 

syllables are correctly segmented and the error in the DDK rate estimation 

eliminated. Apart from inter syllable dips (between constant and vowel sounds), 

this minimum duration merging method can also help in reducing over-

segmentation due to pauses within each syllable; which is common in dysarthric 

speakers. 
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Figure 5-4. Automatic Syllable Segmentation of a DDK Audio Signal 

illustrating Over-segmentation due to inter-syllable dip. 

 

Figure 5-5. Corrected Syllable Segmentation using the Minimum Duration 

Pseudo-Syllable Merging Approach 
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5.4.3 Feature Extraction 

After syllable segmentation, the peak intensities and the duration of the individual 

syllables are extracted from the segmented signal. The summary of the features 

extracted are shown in Table 5-2. The peak intensities are estimated as the STE of 

the syllables given by (6) as discussed in Section 3.3.1. Whereas the syllable 

duration is estimated by calculating the difference between two consecutive syllable 

boundaries. The final stage of the proposed automatic DDK analysis tool involves 

the estimation of the coefficient of variation of the peak intensity and duration of 

the individual syllable. The coefficient of variation is defined as the standard 

deviation of a variable (that is, DDK rate or Peak Loudness) divided by the mean 

of the variable. The peak intensities are measured in decibels, the DDK rates 

measured in syllables per second and the coefficients of variation measured as 

percentages. 

Table 5-2. Summary of Extracted Features for Proposed Automatic DDK 

Analysis Algorithm 

S/N Variable Description Unit 

1 DDKrate Number of syllable repetitions per second /s 

2 DDKpi Peak Intensity of DDK syllables dB 

3 DDKavrate Average DDK rate /s 

4 DDKavpi Average Peak Intensity dB 

5 DDKavd Average DDK syllable duration s 

6 rDDKrate Range of DDK rate [min, max] /s 

7 rDDKpi Range of Peak Intensity [min, max] dB 

8 stDDKrate Standard Deviation of DDK rate /s 

9 stDDKpi Standard Deviation of Peak Intensity dB 

10 cDDKrate Coefficient of Variation of DDK rate % 

11 cDDKpi Coefficient of Variation of Peak Intensity % 
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5.5 Experimental Results 

In this section, the performance of the proposed DDK analysis algorithm is 

examined experimentally. All the audio samples were manually labelled by 

marking the start and the endpoint of each DDK syllable and the individual syllable 

duration were measured. These manually labelled results were then compared with 

the results from the automatic segmentation algorithm. An example of the manually 

labelled DDK audio sample is illustrated in Figure 5-6. It is important to note that 

the first and the last syllables were removed from the analysis to reduce the errors 

introduced due to the skewed DDK rates at the start and the end of each recording. 

As shown in Figure 5-6, the syllable boundaries are marked by the blue lines. In 

this figure, 23 syllables were extracted (after the removal of the first and the last 

syllables). The DDK rate for each syllable was measured as the reciprocal of the 

syllable duration. These calculated DDK rates were then compared with the DDK 

rates estimated using the proposed algorithm. 

 

Figure 5-6. Manually Labelled DDK Audio Sample for Speaker C20 Performing 

the Fast Repetition of /pʌ/ Task 

The difference between the average DDK rates estimated automatically and those 

calculated manually was measured. Audio samples where the difference was more 

than 1 syllable per second were noted. Table 5-3 shows that all the DDK audio 

samples from control speakers were accurately segmented and their corresponding 

mean DDK rates correctly match the manually measured DDK rates resulting in a 

mean DDK rate accuracy of 100%. Automatic segmentation and analysis of the 

DDK audio signals from Parkinson’s disease, ataxic dysarthria and young speaker 
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groups resulted in mean DDK rate accuracies of 98.91%, 96.88% and 88.46% 

respectively. As shown in Table 5-3, the automatic DDK analysis algorithm gave a 

good performance with an average accuracy of 97.18% across the 4 speaker groups.  

Table 5-3. Performance of the Automatic DDK Analysis Algorithm on Mean 

DDK Rate Estimation 

Speaker Group Size Correct Incorrect Total %Accuracy 

PD 23 91 1 92 98.91 

AD 8 31 1 32 96.88 

Control 27 108 0 108 100.00 

Young 13 46 6 52 88.46 

All 71 276 8 284 97.18 

To verify the reliability of the proposed algorithm, the segmentation thresholds for 

the same set of DDK audio samples were varied. The threshold for each audio 

sample was first estimated as the moving average of the peak intensities. Thereafter, 

two other thresholds that are 2 dB higher or 2 dB lower than the moving average 

threshold were used. This choice of ±2 dB was made because research [217] has 

shown that control speakers often vary their peak intensities by about 2 dB during 

DDK tasks. It is expected that the automatic DDK segmentation algorithm should 

still perform reliably if the threshold is increased by 2dB or decreased by 2dB.  

The reliability of the algorithm was measured by comparing the mean DDKavrate, 

DDKavpi, DDKavd, stDDKrate, and stDDKpi for these two thresholds. The outcomes 

of this reliability test are shown in Table 5-4. Comparing the mean and the standard 

deviation values of the variables at +2 dB and -2 dB threshold show that varying 

the threshold by ±2 dB has little or no effect on the performance of the proposed 

algorithm. The resultant mean of the parameters and their corresponding standard 

deviation for the two thresholds are largely comparable. In addition, the mean and 

standard deviation of the absolute difference between the results from the two 

thresholds were calculated as shown in Table 5-4. These values are very low 

compared to the actual values in columns 2 and 3 of this table. Very low mean and 

standard deviation of the absolute difference between the two measurements 

recorded for the five variables shows that the results from the two threshold values 

are highly comparable.  
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Table 5-4 Outcomes of DDK Analysis Variables at Thresholds of +2 dB and -

2 dB of the estimated moving average threshold 

Variable 

Mean ± STD 

+2 dB -2 dB 
Absolute Difference 

DDKavrate 5.59 ± 1.05 5.59 ± 1.04 0.09 ± 0.19 

DDKavpi 51.98 ± 14.58 51.69 ± 14.63 0.45 ± 1.44 

DDKavd 0.20 ± 0.07 0.20 ± 0.05 0.006 ± 0.038 

stDDKrate 1.08 ± 0.44 1.08 ± 0.44 0.07 ± 0.12 

stDDKpi 6.17 ± 2.71 6.62 ± 3.10 0.52 ± 1.08 

 

 

Figure 5-7. Scatter Plots Validating the Performance of the Proposed Automatic 

Algorithm across the Four Speaker Groups 

To further examine the proposed algorithm, the resultant DDKavrate and DDKavd 

from the proposed algorithm were compared with those estimated from the manual-
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labelling. The comparisons were carried using scatter plots for individual speaker 

groups as shown in Figure 5-7.  

The results in the proposed automatic algorithm and the manually-labelled 

measurements are more consistent in the control speaker group, PD speaker group 

and AD speaker group with correlation coefficients of 1.00, 0.99 and 0.98 

respectively. The correlation coefficient in the Young speaker group was, however, 

0.89 due to varying DDK syllable distance in young speaker group. The DDK 

syllable distance in the young speaker group varied from 100 to 410 milliseconds 

which differs from the expected range of 100 to 200 milliseconds [217]. 

5.6 Discussion 

This study has addressed the major limitations in the segmenting DDK syllables 

such as reduced peak intensity due to articulatory breakdown, over-segmentation 

due to inter syllable pauses, the dips between the consonant and vowel segments 

and under-segmentation due to the inappropriate choice of the threshold. In this 

study, two speaker-specific threshold approaches have been examined. Although 

the mean threshold approach works well for DDK samples from control speakers, 

its performance is reduced in dysarthric speakers. The use of a speaker-specific 

moving average threshold approach improved the performance of the algorithm, 

especially when analysing disordered speech. The moving average threshold 

ensures that the threshold value is adjusted as the intensities vary within the audio 

signal. An averaging window of about half a second is used to ensure that the 

averaging is carried out across multiple syllables.  

Average accuracy of 97.8% has been achieved across the four different speaker 

groups. The accuracy was estimated with a minimum difference of 1 syllable per 

second. One of the factors that contributed to high accuracy is the ability to 

accurately detect the boundaries between consecutive syllables thereby making the 

segmentation process less prone to errors. The use of speaker-specific moving 

average threshold also contributed to the ability to detect the boundaries between 

two consecutive syllables. 

Moreover, the reliability test carried out using two threshold values 2 dB greater 

than or less than the estimated threshold shows satisfactory reliability across five 
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measured parameters as shown in Table 5-4. With very low mean absolute 

difference between the two measurements, the high performance was maintained. 

This reliability test also reveals that the algorithm will still give a satisfactory 

performance when the average intensity is varied by 2 dB (as experienced in audio 

samples from control speakers).  

Furthermore, the algorithm reduces errors due to inter syllable pauses and dips 

between the consonant and the vowel sounds. Dysarthric speakers often add inter 

syllable pauses during DDK syllable production leading to over-segmentation; 

thereby resulting in the extraction of pseudo-syllables. The proposed algorithm uses 

the minimum duration merging method to merge multiple consecutive pseudo-

syllables to form syllables; thereby reducing over-segmentation.  

The proposed automatic DDK analysis technique will be useful to clinicians in the 

assessment of oro-motor skills of dysarthria speakers. Apart from assessing the 

ability to produce repetitive movements, the proposed technique can potentially be 

used in other speech processing applications such as syllable segmentation and 

speech recognition in dysarthric speech. 

5.7 Summary 

In this chapter, a novel algorithm for the automatic segmentation and analysis of 

DDK audio samples has been presented. This automatic algorithm is designed to 

support clinicians in assessing and analysing DDK audio samples from dysarthric 

speakers. This algorithm uses a speaker-specific moving average threshold 

approach to segment DDK audio signals into syllables. It also uses minimum 

duration criteria to merge multiple pseudo-syllables previously over-segmented. 

This technique helps in reducing errors due to high variability in intensity, errors 

due to articulatory breakdowns experienced by dysarthric speakers, errors due to 

inter-syllable pauses and under-segmentation errors due to inappropriate 

thresholding. Experimental results show that the moving average thresholding 

coupled with minimum duration merging leads to higher segmentation accuracy 

when compared with manually labelled syllables. The reliability of this automatic 

DDK analysis algorithm has been tested and verified using a database comprising 

of 71 speakers.   



Chapter 6 

6 Novel Automatic Detection and Severity Classification 

of Dysarthric Speech 

6.1 Introduction 

In this chapter, novel algorithms for automatic detection and classification of 

dysarthria into various severity levels will be presented. The first novel algorithm 

presented will be designed to analyse and detect ataxic dysarthria in speech using 

an extended speech feature referred to as Centroid Formants combined with neural 

networks classification technique. Then a more robust dysarthria detection 

algorithm will be presented. This robust detection algorithm is based on a feature 

vector consisting of 29 speech features. These features are selected and extracted 

based on the prosodic, phonetic and vocal quality characteristics of the dysarthric 

speech. The performance of this fully automated detection algorithm will be 

examined using various machine learning techniques. Finally, a novel automatic 

classification technique for classifying dysarthric speech in to three severity levels 

using various machine learning techniques will be presented. These techniques 

were validated using a dataset from ataxic dysarthria speakers and gender and age-

matched healthy control speakers.  

6.2 Corpus 

The dataset used for this study consists of 1400 audio samples from 20 speakers, 

10 of which are ataxic dysarthric (AD) speakers and 10 gender-matched healthy 

control speakers. Each group consists of 5 males and 5 females. These audio 

samples consist of single words and sentences from the two speaker groups. Each 

speaker produced 20 single words and 50 sentences. This corpus was taken from 

the dataset reported by [23]. The ataxic dysarthric speakers have no cognitive 

deficiency neither do they have any visual and hearing impairment. The severity of 

the ataxic dysarthric speakers varied from mild to severe cases as illustrated in 
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Table 6-1. In addition, all of them were monolingual speakers of Standard Southern 

British English or Standard Scottish English.  

Table 6-1. Details of AD participants involved in the study 

Participant Age Gender Etiology Intelligibility Score (%) 

AT_01 46 M CA 74 

AT_02 60 F CA 67 

AT_03 28 M FA 6 

AT_04 52 F CA 25 

AT_05 28 F FA 9 

AT_06 65 F SCA6 58 

AT_07 72 M CA 19 

AT_08 51 M CA 44 

AT_09 56 M SCA8 82 

AT_10 57 F FA 80 

CA: Cerebellar ataxia of undefined type, FA: Friedreich’s ataxia and SCA: spinocerebellar ataxia 

The intelligibility scores for the ataxic dysarthric speakers varied from 6 to 82 as 

shown in Table 6-1. These intelligibility scores were estimated from the average 

scores from five trained listeners during a passage reading task as presented in [23]. 

The etiologies of these participants are either cerebellar ataxia (50%), Friedreich’s 

ataxia (30%) or spinocerebellar ataxia (20%). The available dataset from this corpus 

consists of 6 different types of audio samples namely; limericks, oro-motors, 

reading, sentences, single words and story retell, among them only sentences and 

single words are used in this study since they are the most relevant to the features 

to be extracted. This dataset was used for training, testing and validation of the three 

novel techniques presented in this chapter. 
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6.3 Automatic Detection of Ataxic Dysarthria using Extended 

Feature  

6.3.1 Methodology 

The block diagram of the proposed algorithm is illustrated in Figure 6-1. The first 

stage is pre-processing followed by feature extraction. After extraction of the 

speech features, a two-class classification is carried out using neural networks 

classification methods.  

 

Figure 6-1: Block Diagram of the Proposed Algorithm  

6.3.1.1 Pre-processing 

Audio signals are not stationary in nature and thus it is essential to analyse these 

signals in short time intervals by dividing the audio signals into uniform short 

interval frames. The resulting amplitude normalised audio signals sampled at 16 

kHz are divided into overlapping frames of 256 samples each with 80% overlap 

between consecutive frames. The overlapping is used to improve the segmentation 

process. 

6.3.1.2 Formants Extraction 

The formant extraction algorithm, in this proposed technique, is based on the Linear 

Prediction Coding (LPC) analysis, which gives a smoothed approximation of the 

power spectrum of the original signal [13]. The formant extraction process is 

described in Section 3.4.3 and the order he linear prediction function is given by 

(12). Figure 6-2 and Figure 6-3 show the formants for the word defer extracted from 

ataxic dysarthric speech and health speech respectively. Although the two speakers 

pronounced the same word “defer”, their formants differ and the energy 

concentration in the frequency spectrum also differs. The formants and formants 

energy for various dysarthric speakers were compared with healthy speaker and the 

differences observed motivated the extraction of an extended feature called 

Centroid Formant.  
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Figure 6-2. Formants extracted from Ataxic Dysarthric speech 

 

Figure 6-3. Formants extracted from Healthy Control speech 

6.3.1.3 Centroid Formants Extraction 

Centroid formants are the weighted averages of the formants in each frame in the 

short-time frequency spectrum. The formants are weighted by their corresponding 

energy, thereby resulting in a measure of where the power in the frequency 

spectrum of an audio signal is centralised. For instance, if the majority of the power 

in the spectrum resides in high-frequency components, then the centroid formant 

will lie in the high-frequency range. Figure 6-4 and Figure 6-5 illustrate the centroid 

formants of the audio files shown in Figure 6-2 and Figure 6-3 respectively for an 

ataxic speaker and a healthy speaker. Given that F1n, F2n, F3n, and F4n are the 

four formants of the nth frame of an audio signal and the corresponding formants 

energy are E1n, E2n, E3n and E4n respectively. The centroid formant of the nth 

frame is given by CFn as in (20). 
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𝐶𝐹𝑛 =
𝐸1,𝑛𝐹1,𝑛 + 𝐸2,𝑛𝐹2,𝑛 + 𝐸3,𝑛𝐹3,𝑛 + 𝐸4,𝑛𝐹4,𝑛

4
 (20) 

The centroid formant can be used to measure the rate of change of the formants and 

the intonation pattern of the audio signal. This is because as the formants change 

from low frequency to high frequency, the centroid formants also change in the 

same pattern. The weighting of the individual formants also ensures that frequency 

components with highest power contribution are given the highest weight. 

Therefore, the effects of picking weak peaks as formants will be reduced.   

 

Figure 6-4. Centroid formants for AT speech 

 

Figure 6-5. Centroid formants for healthy speech 

In addition, there is a close relationship between pitch and centroid formants 

profiles for healthy control speech. If the energy contribution of each formant 

remains the same within a speech segment, the centroid formant will give a pattern 

similar to the fundamental frequency. However, this similarity with pitch profile 

does not apply for audio signals with rapidly changing intonation patterns, which is 
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the case in dysarthric speech. The centroid formant is very sensitive to the rapid 

changes in pitch and intonation which means that the high pitch variability in 

dysarthric speech can be effectively tracked using centroid formants, thereby 

making centroid formants a suitable feature to be explored for dysarthria detection.  

6.3.1.4 Classification 

Using the extracted centroid formants, the audio samples are classified into healthy 

control and dysarthric classes. One of the commonly used machine learning 

methods is ANN. This classification technique is robust and it combines pattern 

recognition with acoustic-phonetic methods [21]. In this ANN learning technique, 

knowledge of the acoustic and phonetic characteristics of the speech is used to 

generate rules for classifiers [22]. The classification was carried out using different 

settings of hidden layer neurons by varying the number of neurons (J) and finding 

the optimum J with the highest accuracy. The neural network classifier with one 

hidden layer and 10 neurons had the highest performance and was used for the 

classification. The excitations (inputs) are the centroid formants and the 

observations (outputs) are the binary signals indicating whether or not the 

corresponding audio sample is dysarthric (0) or healthy (1).  

The performance of the chosen classifier was analysed using the confusion matrix 

which is a tabular representation of the correctness of the outputs of the classifier 

when compared with the targets (outputs versus targets) as shown in Table 6-2.  

Table 6-2. Confusion Matrix Relationship between Output and Target Classes 
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In the confusion matrix, the number of audio signals whose output classes match 

the expected target classes are indicated in green (true positives, TP, and true 

negatives, TN) and the number of data set whose output classes do not match the 

expected target classes are indicated in red (false positives, FP and false negatives, 

FN). The accuracy of the classifier is calculated as the percentage of the correctly 

classified data set as indicated in Table 6-3. The other classification performance 

parameters include specificity, sensitivity and precision as described in Table 6-3. 

Table 6-3. Description of Classification Parameters 

Parameters Description Annotation 

Positive Dysarthric audio samples 1 

Negative Healthy control audio samples 0 

Total Total number of audio samples 𝑁 

True Positive The number of audio samples correctly 

classified as dysarthric 

𝑇𝑃 

True Negative The number of audio samples correctly 

classified as healthy control 

𝑇𝑁 

False Positive The number of audio samples incorrectly 

classified as dysarthric 

𝐹𝑃 

False Negative The number of audio samples incorrectly 

classified as healthy control 

𝐹𝑁 

Accuracy The measure of the ability of the classifier to 

correctly classify all audio samples 

𝑇𝑃 + 𝑇𝑁

𝑁
 

Specificity The measure of the ability of the classifier to 

correctly classify healthy control audio samples 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Sensitivity The measure of the ability of the classifier to 

correctly classify dysarthric audio samples 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision The measure of the exactness of the classifier in 

identifying dysarthric audio samples 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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6.3.2 Experimental Results 

The classification was carried out using the Neural Network Toolbox in MATLAB 

software. The audio samples were distributed randomly as follows; 70% of the 

audio samples were used for training, 15% for testing and 15% for validation. The 

confusion matrix of the classifier is illustrated in Figure 6-6. 

 

Figure 6-6. Confusion Matrix for the Outputs of The ANN Classifier 

Even though a single hidden layer has been used for this classification, the overall 

accuracy recorded was 75.6% using 10 neurons. The confusion matrix for the 

trained neural network is illustrated in Figure 6-6. The first two columns of the 

confusion matrixes indicate the two target classes (0 for healthy speech and 1 for 

dysarthric speech). Likewise, the first two rows of the confusion matrixes show the 

two output classes (0 or 1) whereas the third row shows the sensitivity, specificity 

and accuracy of the network respectively. The third column represents the negative 

predictive value, precision and accuracy of the network respectively. The training 

dataset gives an accuracy of 74.3%, the validation dataset gives an accuracy of 
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80.3%, and whereas the test data set gives an accuracy of 77.0% bringing the total 

accuracy to 75.6%. 

6.3.3 Discussion 

The application of an extended speech feature in the classification of dysarthric 

speech from healthy speech using neural networks has been explored in this section. 

The extended feature, called centroid formants, proposed in this study resulted in 

an accuracy of 75.6% with just one hidden layer and 10 neurons. This classification 

has been carried out across different levels of severity of ataxic dysarthria from mild 

to highly severe cases. Classification using other artificial intelligence techniques 

such as Deep Neural Networks (DNN), Support Vector Machine (SVM), LQV and 

Hidden Markov model, however, needs to be explored. In addition, this study opens 

up new research opportunities for the application of the centroid formants in speaker 

identification, speech recognition and emotion detection in disordered speech. The 

performance of the detection algorithm can be improved by combining the centroid 

formants features with other spectral and cepstral features; which can also be 

extended to other classification applications. This will be explored in the next 

section, where a more robust dysarthria detection algorithm which makes use of 

centroid formants and other relevant speech features will be presented. 

6.4 Novel Robust Automatic Dysarthria Detection Algorithm 

Presented in this section is a novel automatic dysarthria detection algorithm that 

models dysarthric speech using prosodic, voice quality, phonetic and wavelet 

features. These features are selected based on the characteristic differences between 

dysarthric and healthy control speech samples. This algorithm consists of four 

stages namely; pre-processing, acoustic analysis, feature vector design, and 

classification. The pre-processing stage involves techniques used in enhancing the 

speech samples in preparation for the acoustic analysis stage. The speech signals 

are segmented into silence, unvoiced and voiced parts in the pre-processing stage. 

The second stage involves modelling of the speech signals by extracting features 

that describe the prosody, phonation, voice quality, and articulation characteristics 

of the speech signals. The feature vector design stage involves the combination of 

these extracted features to form a feature vector that is suitable for the classification 
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of the speech samples into dysarthric and healthy control classes. Finally, in the 

classification stage, multiple classification techniques are used, and their 

performances are compared using four performance parameters namely; accuracy, 

sensitivity, precision, and specificity. 

6.4.1 Pre-processing 

The speech pre-processing stage comprises of resampling of the audio signal, 

amplitude normalisation, pre-speech and post-speech silence removal and SUV 

segmentation. All the audio signals are resampled at 16 kHz ensuring that they are 

not under-sampled with respect to Nyquist criteria as discussed in Section 3.2.5. 

After resampling, the amplitudes of the audio signal are normalised to keep the 

values between +1.0 and -1.0. Subsequently, the silence segments before and after 

the speech (that is, pre-speech silence and post-speech silence) are removed using 

a cut-off threshold of at least 10% of the maximum signal amplitude. This is 

followed by segmentation of the audio signal into silence, unvoiced and voiced 

parts. The SUV segmentation is carried out using the novel three-fold (STE, LPEV 

and ZCR) segmentation approach presented in Chapter 4. 

6.4.2 Acoustic Analysis 

The acoustic analysis stage aims at extracting important and useful information 

from the speech signals that can adequately distinguish dysarthric speech from 

healthy control speech whilst discarding the less relevant information. This acoustic 

analysis process makes use of multiple features in an aim to consolidate any speech 

information that could be missing in a single feature. This makes the system more 

robust and reduces the classification error. As discussed in Chapters 2 and 3, there 

are features that differentiate disordered speech signals from healthy control speech 

signals. These features are grouped under prosody, voice quality, pronunciation, 

and wavelet analysis subheadings. It is important to note that at the start of this 

study, over 50 features were identified but the relevance of each feature was tested 

and the features with the highest classification accuracies were selected for this 

study. The choice of selected features is also based on the characteristics of the 

dysarthric speech as well as the speech subsystem to be modelled. 
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6.4.2.1 Prosody Analysis 

Prosody analysis involves the extraction of duration, fundamental frequency (F0) 

and intensity-based features from speech signals. It, however, requires the speech 

signals to first be segmented into silence, unvoiced and voiced parts as the prosodic 

features are extracted from the voiced segments of the speech signals. As discussed 

in Section 2.2, the characteristics of the prosodic features extracted from the 

dysarthric speech are different from those extracted from the controlled speech in 

terms of value (or amplitude), range and variability. These differences are, 

therefore, explored in distinguishing between dysarthric speech samples and 

healthy control speech samples. The features extracted under the fundamental 

frequency subset include the mean and standard deviation of F0 whereas the 

features extracted under the intensity subset include the peak amplitude and mean 

amplitude. 

6.4.2.2 Voice Quality Analysis 

One of the characteristics of dysarthric speech is hoarse voice quality. A review of 

literature presented in Section 3.5.3 has shown that the harmonic to noise ratio 

(HNR) is one of the speech features that describe the voice quality of a speaker. 

Amplitude and frequency perturbation (shimmer and jitter) have also been used in 

recent studies to model speakers’ voice quality. These features (HNR, shimmer and 

jitter) have been popularly used to assess the voice quality in speech disorders using 

sustained vowel sounds. In this study, these features will be extracted from single 

words and sentences. To model the differences, in voice quality, between dysarthric 

speakers and healthy control speakers, six (6) voice quality features are extracted 

from the audio signals which form the voice quality subset in the feature vector: 

mean jitter, mean shimmer and HNR at cut-off frequencies of 500Hz, 1500Hz, 

2500Hz and 3500Hz. 

6.4.2.3 Pronunciation Analysis 

Control and coordination difficulties often lead to pronunciation errors which also 

contributes to reduced intelligibility in dysarthria. A review of previous studies 

presented in Section 3.4.4 shows that Mel frequency cepstral coefficients (MFCCs) 

can be used to model the pronunciation variations in speech. The Mel-scale, which 

maps a linear frequency scale to a non-linear frequency scale, is based on the 
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auditory perception of human which is a function of the pronunciation. In the 

estimation of the short-time MFCCs, hamming windows that are 16ms (256 

samples at a sampling rate of 16 kHz) in length with 75% overlap are used. This 

frame size gives a good balance between resolution quality and complexity of 

extracted features. The MFCCs are extracted using twelve triangular frequency 

banks. The mean MFCCs are estimated for each frequency bank across all frames 

resulting in 12 features per utterance.  

Moreover, another set of features used in modelling pronunciation in speech signals 

are the centroid formants. As discussed in Section 6.3.1.3, the centroid formants are 

the weighted average of the first four formants in each frame. As the pronunciation 

varies, the centroid formants also vary in value. This variation makes centroid 

formants useful in detecting dysarthria in speech. In modelling the pronunciation 

characteristics, the peak centroid formants and mean centroid formants are 

estimated for each utterance bringing the total number of pronunciation features to 

14 features per utterance. 

6.4.2.4 Wavelet Analysis 

The last group of features used in this study are wavelets features. Although wavelet 

analysis has been applied to various speech processing applications such as emotion 

detection and speech separation, its application in automatic detection of dysarthria 

has not yet been explored. As presented in Section 3.5.4, the percentage residual 

energy of dysarthric speech samples after the wavelet decomposition at every level 

varies considerably from that of healthy control speech samples. Although these 

variations occur at every level of decomposition, they are more pronounced at the 

lower levels. In this study, four-level wavelet analysis is carried out on all the 

utterances resulting in five wavelet features. These include the total energies in level 

4 approximation, level 1 detail, level 2 detail, level 3 detail and level 4 detail signals.  

6.4.3 Design of Feature Vector  

The feature vector consists of four feature blocks namely; prosody feature block, 

voice quality feature block, pronunciation feature block, and wavelet feature block 

as illustrated in Table 6-4. These feature blocks contain 4, 6, 14 and 5 features 
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respectively. The description of the features in each feature block is also presented 

in Table 6-4.  

Table 6-4. Summary of the Extracted Features for the Automatic Detection of 

Dysarthria 

S/N Feature Block Feature Description 

1. Prosody meanF0 Mean fundamental frequency 

  stdF0 The standard deviation of the fundamental 

frequency 

  meanInt Mean intensity 

  peakInt Peak intensity 

2. Voice Quality meanJit Mean jitter 

  meanShim Mean shimmer 

  HNRs Harmonic to noise ratio at cut-off 

frequencies of 500 Hz, 1500 Hz, 2500 Hz 

and 3500 Hz 

3. Pronunciation meanCF Mean centroid formant 

  peakCF Peak centroid formant 

  MFCCs Mel-frequency cepstral coefficients using 

12 triangular frequency banks 

4. Wavelets ED1 The energy of level 1 detail signal 

  ED2 The energy of level 2 detail signal 

  ED3 The energy of level 3 detail signal 

  ED4 The energy of level 4 detail signal 

  EA1 The energy of level 4 approximate signal 

Under the prosody feature block, the extracted features per utterance include mean 

fundamental frequency, the standard deviation of the fundamental frequency, peak 

intensity and mean intensity. The mean jitter, mean shimmer, and harmonic to noise 

ratio at cut off frequencies 500 Hz, 1500 Hz, 2500 Hz and 3500 Hz are the extracted 

features under the voice quality feature block. The features extracted under the 

pronunciation feature block are mean centroid formant, peak centroid formant and 

twelve Mel-frequency cepstral coefficients.  
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Finally, the features extracted under the wavelet feature block include the energy 

of the level 4 approximate signal as well as energies of level 1, 2, 3, and 4 detail 

signals. This makes up a total of 29 features in the feature vector as shown in Table 

6-4. The prosody and voice quality features are extracted from the voiced segments 

of the audio signals whereas the pronunciation features are extracted from the 

unvoiced and voiced segments. The wavelet features, on the other hand, are 

extracted from the whole signal since the focus is on the total energy of the detail 

signal at every level and total energy of the approximate signal at level 4 of the 

wavelet analysis. 

6.4.4 Classification and Experimental Results 

As discussed extensively in Section 3.7, researchers have made used of various 

classification techniques in detecting abnormalities in speech. Although only a few 

of these techniques have been applied to automatic detection of dysarthria, some of 

them have shown promising results in the classification of pathological disorders 

with accuracies ranging from 62% using statistical methods in [74] to 97 % using 

support vector machines in [73]. In this study, the performances of variants of six 

classification techniques were investigated. These classification techniques include 

decision tree, discriminant analysis, logistics regression, support vector machines, 

k-nearest neighbours, and neural networks classifiers. The application of multiple 

classifiers is achieved using the classification learner tool in MATLAB. This tool 

is advantageous when comparing the performance of more than two classifiers 

using a single input/output dataset. In the classification learner tool, multiple 

classifications are carried out simultaneously and the results are compared using its 

interactive user interface. The tool comprises of 23 different classifiers which are 

variants of the decision tree, discriminant analysis, logistics regression, support 

vector machines, and k-nearest neighbours classifiers. The neural networks 

classification, on the other hand, is carried out using the dedicated neural network 

tool in MATLAB. This tool allows the dataset to be classified using networks of a 

varying number of hidden layers and neurons. 

The performance of the proposed automatic dysarthric detection technique was 

examined in an experiment involving multiple classifiers. The experiment was 

carried out on 1329 audio samples from both ataxic dysarthria and healthy control 
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speaker groups. The participants in the dysarthric speaker group are as described in 

Table 6-1. Out of the initial 1400 recorded audio samples for this study, 71 audio 

samples were removed due to signal distortion, recording errors or/and incomplete 

recordings. The 29 features described in Section 6.4.3 are extracted from each of 

the audio signals resulting in an input data of dimension 1329 x 29. The target data 

contains binary information of which 1 signifies the dysarthric speech sample and 

0 signifies healthy control speech sample. For classification purposes, 70% of the 

dataset was used for training, 15% for validation (in order to prevent generalization) 

and the remaining 15% for testing. The classification was carried out in two stages. 

The first stage involves the use of NN Tool in MATLAB for classification and the 

second stage involves the use of classification learner tool, also in MATLAB, for 

the other 23 classifiers.  

In analysing the performance of the classifiers, four parameters were used. These 

parameters are accuracy, specificity, sensitivity and precision described in Table 

6-3. The ability of the classifier to accurately identify the class of all audio samples 

belonging to is termed accuracy and the ability of the classifier to accurately detect 

dysarthric audio samples is termed specificity. Whereas, sensitivity and precision 

are the measures of the ability to correctly classify dysarthric audio samples and the 

exactness of the classifier respectively. 

In the first stage of the classification, single-layer neural networks with a varying 

number of neurons were used in classifying the input data into two classes 

(dysarthric and healthy control). The number of neurons in the hidden layer was 

varied from 2 to 20 in steps of 2 to get the optimum number of neurons for the 

classification problem, as illustrated in Figure 6-7. Optimal performance was 

reached when the number of neurons in the hidden layer was 10 with an accuracy 

of 99.4%. The confusion matrix of the trained neural network with 10 hidden 

neurons is presented in Figure 6-8. This trained neural network also resulted in 

training dataset accuracy of 99.9%, validation dataset accuracy of 97.4% and the 

test dataset accuracy of 99.0%.  
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Figure 6-7. Accuracy of the Neural Network Classifiers with One Hidden Layer 

and Varying Number of Neurons  

 

Figure 6-8. Confusion Matrix of the Trained Single-layer Neural Network with 

10 Neurons for the Automatic Detection of Dysarthria 

In the second stage with the use of the classification learner, 23 different classifiers 

were used to classify the audio samples into dysarthric and healthy control classes. 

The performances of the 23 classifiers were examined by comparing their 

accuracies as illustrated in Table 6-5.

Optimal 

performance 
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Table 6-5. Performance of the Various Classification Techniques used 

Decision Tree Support Vector Machine k-Nearest Neighbours Discriminant Analysis Logistics Regression 

Classifier Accuracy Classifier Accuracy Classifier Accuracy Classifier Accuracy Classifier Accuracy 

Simple Tree 87.1% Linear SVM 95.4% Fine kNN 99.0% 
Linear 

Discriminant 
79.2% 

Logistics 

Regression 
95.0% 

Medium Tree 91.7% 
Quadratic 

SVM 
98.3% Medium kNN 97.7% 

Quadratic 

Discriminant 
80.1%   

Complex Tree 92.5% Cubic SVM 98.6% Coarse kNN 91.5% 
Subspace 

Discriminant          
93.4%   

Boosted Tree 96.7% 
Fine 

Gaussian 
85.3% Cosine kNN 97.7%     

Bagged Trees 97.6% 
Medium 

Gaussian 
98.5% Cubic kNN 97.1%     

RUS Boosted 

Trees 
92.9% Coarse SVM 94.0% 

Weighted 

kNN 
98.0%     

    
Subspace 

kNN 
72.6%     
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The variants of the decision tree classifiers used are the simple tree, medium tree, 

complex tree, boosted tree, bagged tree, and RUS boosted tree classifiers. The 

variants of the discriminant analysis classifiers include linear discriminant, 

quadratic discriminant and subspace discriminant classifiers. The variants of the 

SVM classifiers include linear, quadratic cubic, fine Gaussian, medium Gaussian 

and coarse SVM classifiers. Whereas the variants of the kNN classifiers include 

fine, medium, coarse, cosine, cubic, weighted and subspace kNN classifiers. In 

addition to these classifiers, the logistic regression-based classifier was also used as 

shown in Table 6-5. 

As presented in Table 6-5, each of the six variants of the decision tree classifiers 

used gave an accuracy of over 90% except the simple tree classifier. The bagged 

tree classifier resulted in the highest accuracy of 97.6% in the group. Furthermore, 

the SVM classifiers resulted in accuracies greater than 90% except for the fine 

Gaussian classifier with an accuracy of 85.3%. In the SVM group, the medium 

Gaussian classifier resulted in the highest accuracy of 98.5%. Within the kNN 

classifier group, the subspace kNN classifier resulted in the least accuracy of 72.6% 

and the fine kNN classifier resulted in the highest accuracy of 99.0%. Statistical 

discriminant analysis using linear, quadratic and subspace discriminant analysis 

resulted in accuracies of 79.2%, 80.1% and 93.4% respectively whereas the 

logistics regression analysis resulted in an accuracy of 95.0%. Out of these 23 

variants of classifiers, the fine kNN classifier resulted in the highest accuracy of 

99.0%. Comparing this with the accuracy of the neural network with single hidden 

layer and 10 neurons, whose confusion matrix is shown in Figure 6-8, shows that 

the neural network gave the highest total accuracy of 99.4% with only 8 incorrect 

classifications out of 1339 audio samples. 

Furthermore, other performance indices of the single-layer neural network classifier 

with 10 neurons are presented in Table 6-6. The specificity of the classifier was 

100% for training samples, 97.1% for validation samples and 99.0% for test 

samples. The classifier also resulted in high precision of 100%, 96.8% and 98.9% 

for training, validation and test audio samples respectively. Although the values of 

the four performance parameters varied across training, validation and test samples, 

the value of the assessment parameters for all audio samples was 99.4% each. 
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Table 6-6. Performance Indices of the Single-Layer Neural Network with 10 

Hidden Neurons for the Automatic Detection of Dysarthria 

Performance 

Index 

Training 

Samples 

Validation 

Samples 

Test 

Samples 

All 

Samples 

Specificity 100% 97.1% 99.0% 99.4% 

Sensitivity 99.8% 97.9% 98.9% 99.4% 

Precision 100% 96.8% 98.9% 99.4% 

Accuracy 99.9% 97.4% 99.0% 99.4% 

6.4.5 Discussion 

The automatic detection technique presented in this study is more robust than the 

one presented in Section 6.3 as it makes use of prosody, pronunciation, voice quality 

and wavelets features. Unlike in other techniques, this proposed method looks at 

the features that model the characteristics of dysarthria speech across multiple 

dimensions. The features were selected based on an initial analysis of the effects of 

the individual features in the detection of dysarthria in speech. The 29 features 

extracted in this study were analysed individually to verify their relevance in the 

automatic detection problem. Although different speech subsystems were 

considered, the most relevant features were chosen to accurately model the 

differences between dysarthric and healthy speech samples.  

Under the prosody subsystem, the most varying features in dysarthric speech are 

the fundamental frequency and intensity. Dysarthric speech is characterised by high 

variability and reduced fundamental frequency, therefore the mean and standard 

deviation of the fundamental frequency were extracted. In addition, reduced 

loudness is often experienced in the dysarthric speech which informed the choice 

of mean and peak intensity features for the classification of dysarthria.  

Moreover, the selected voice quality features are based on the amplitude and 

frequency perturbation as well as the harmonic to noise ratio. An initial study 

reveals that the harmonic to noise in healthy control audio samples are greater than 

those in dysarthric audio samples. Furthermore, the mean and peak of the weighted 

formants called centroid formants, as described in Section 6.3.1.3, are extracted 
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under the pronunciation subsystem. Based on recent research works in dysarthria 

detection, MFCCs are also selected under the pronunciation subsystems.  

An analysis of wavelet energies reveals that more energy components are 

decomposed in lower level signal details (level 1 and 2) in dysarthric speech when 

compared with healthy control speech. The differences observed in the wavelet 

energies could be due to the high pitch and intensity variations experienced in 

dysarthric speech. These differences were explored by estimating the total energies 

in levels 1, 2, 3 and 4 detail signals as well as the level 4 approximate signal.  

Moreover, the choice of features has contributed greatly to an increase in accuracy 

in the proposed technique. Although the same audio samples were used in the 

method presented in Section 6.3, the accuracy of the automatic detection algorithm 

has increased from 75.6% to 99.4% in the method proposed in this section. One of 

the factors that contributed to this increase is the extraction of features from 

multiple speech subsystems. Another factor is the novel inclusion of wavelet 

features in the feature vector. Although wavelets analysis has been applied in other 

speech processing applications, its use in automatic detection of dysarthria is novel 

and the results are promising which opens up more research opportunities in its 

application. Recent research has also shown that wavelets can be used to track pitch 

variations in healthy speakers [218]. 

The proposed algorithm has consistently shown improved performance across the 

four measured classification parameters when compared with techniques proposed 

in recent literature presented in Table 2-3. An accuracy of 99.4% indicates that 

incorrect classifications of audio samples are 3 in 500 audio samples. This can give 

clinicians a level of confidence when making decisions. Although the proposed 

algorithm has only been applied to the detection of ataxic dysarthria, its potential in 

detection of other types of dysarthria is promising as the selected features are based 

on the common characteristics of the various types of dysarthria. 

Although deep learning has been a major topic of discussion amongst researchers 

in recent years, its necessity remains contentious. In deep learning, there exists a 

trade-off in complexity and performance. The necessity of deep learning is often 

questioned when the performance of the classification technique is already good 

enough as in the case in this study. Increasing the complexity of the algorithm 
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whose accuracy is already 99.4% needs to be justified. Another consideration is the 

size of the available data which is quite limited, in this study, for deep learning. 

With the availability of more training data, the application of deep learning may be 

considered in future work. 

6.5 Automatic Severity Classification of Dysarthric Speech 

6.5.1 Methodology 

The application of the automatic detection technique proposed in Section 6.4 was 

further explored in the classification of the dysarthric speech into different severity 

levels. For the purpose of this research, the severity levels are described by the scale 

illustrated in Table 6-7 with respect to absolute intelligibility score. Severity level 

0 was assigned to healthy control audio samples. For dysarthric audio samples, 

three severity levels (1, 2 and 3) were assigned. Severity level 1 was assigned to 

mild dysarthric with absolute intelligibility score ranging between 70% and 100%. 

Severity level 2 was assigned to moderate dysarthric audio samples with an absolute 

intelligibility score range between 40% and 69%. And severity level 3 was assigned 

to severe dysarthric with an absolute intelligibility score range between 0% and 

39%. Using these ranges, three dysarthric speakers (AT_01, AT_09 and AT_10) 

were classified as mild, three (AT_02, AT_06 and AT_08) were classified as 

moderate and four (AT_03, AT_04, AT_05 and AT_07) as severe as illustrated in 

Table 6-8. These ranges make the severity levels well distributed across the dataset 

available for this study.  

Table 6-7. Severity Level based on Intelligibility Score Range 

Severity 

Level 

Description Absolute Intelligibility Score 

Range 

0 Healthy - 

1 Mild Dysarthria 70% - 100% 

2 Moderate Dysarthria 40% - 69% 

3 Severe Dysarthria 0% - 39% 
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Table 6-8. Severity Classification of Participants involved in the Study 

Participant Intelligibility Score (%) Assigned Severity Level 

AT_01 74 1 

AT_02 67 2 

AT_03 6 3 

AT_04 25 3 

AT_05 9 3 

AT_06 58 2 

AT_07 19 3 

AT_08 44 2 

AT_09 82 1 

AT_10 80 1 

 

6.5.2 Experimental Results 

An experiment was carried out on the 1329 audio samples previously used for the 

automatic detection of dysarthria. Again, 70% of the audio samples were randomly 

selected for training, 15% for validation and 15% for testing. For the neural network 

classification, single-layer classifiers with a different number of neurons were 

tested to find the optimal number of neurons that will result in improvement in 

performance as the number of neurons increases. The test was set-up by increasing 

the number of neurons from 2 to 20 in steps of 2. Optimal performance was reached 

when the number of neurons was increased to 12. Beyond this point, the 

performance did not increase significantly. Furthermore, the number of hidden 

layers was increased to 2 and different combinations of the number of neurons were 

tested. An analysis of the performance shows that increasing the number of hidden 

layers does not improve the performance of the classifier. The confusion matrix of 

the neural network classifier with one hidden layer and 12 neurons is shown in 

Figure 6-9. The performance parameters of the classifier are presented in Table 6-9. 

An accuracy of 99.5% was achieved for training samples, that of the validation 
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samples was 97.0% and the accuracy of test samples was 91.0%. This brings the 

percentage of accurately classified samples to 97.8%.  

 

Figure 6-9. Confusion Matrix of the Trained Single-layer Neural Network with 

12 Neurons for the Four-class Severity Classification of Dysarthria 

Additionally, the ability of the classifier to accurately classify the healthy control 

audio samples called the specificity was tested. The specificity of the classifier was 

99.2% in the training samples, 97.5% in the validation samples and 94.1% in the 

test samples. The overall specificity was measured to be 98.1% which shows that 

healthy control speakers are less likely to be classified as dysarthric. The overall 

sensitivity and precision of the classifier were 97.5% and 96.5% respectively. 
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Table 6-9. Performance Indices of the Single-Layer Neural Network with 12 

Hidden Neurons for Four-class Severity Classification of Dysarthria 

Performance 

Index 

Training 

Samples 

Validation 

Samples 

Test 

Samples 

All 

Samples 

Specificity 99.2% 97.5% 94.1% 98.1% 

Sensitivity 99.8% 96.1% 86.2% 97.5% 

Precision 99.1% 96.1% 83.1% 96.5% 

Accuracy 99.5% 97.0% 91.0% 97.8% 

6.5.3 Discussion 

The same set of features used for the automatic detection of dysarthria were also 

used for the four-class severity classification, the performance of the classifier 

showed high consistency across the training, validation and test audio samples. The 

results of the proposed technique also showed an improvement in performance 

when compared with other studies on multi-class severity classification techniques 

presented in [46, 73, 79].  

To further investigate the performance of other types of classifiers the 

Classification Learner tool was used. As stated in Section 6.4.4, the classification 

learner tool consists of 23 classifiers which are variants of decision tree, support 

vector machines, k-nearest neighbours, discriminant analysis and logistics 

regression-based classifiers. The results of the classification learner tool are 

presented in Table 6-10. Out of the 23 classifiers used, 12 classifiers gave an 

accuracy greater than 90%. The quadratic SVM classifier gave the highest accuracy 

of 95.6%. Closely followed is the fine kNN classifier with an accuracy of 95.5%. 

Although these two classifiers resulted in high classification performance, the 

neural network classifier gave a better performance as illustrated in Figure 6-9 and 

Table 6-9. The neural network classifier was therefore chosen as the best fit for this 

severity classification problem.  
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Table 6-10. Performance of the Various Classifiers used for the 4-class Severity Classification 

Decision Tree Support Vector Machine k-Nearest Neighbours Discriminant Analysis Logistics Regression 

Classifier Accuracy Classifier Accuracy Classifier Accuracy Classifier Accuracy Classifier Accuracy 

Simple Tree 
70.1% 

Linear SVM 
91.9% 

Fine kNN 
95.5% Linear 

Discriminant 

69.3% 
  

Medium Tree 
84.4% Quadratic 

SVM 

95.6% 
Medium kNN 

94.4% Quadratic 

Discriminant 

73.7% 
  

Complex Tree 
85.7% 

Cubic SVM 
95.3% 

Coarse kNN 
76.4% Subspace 

Discriminant          

85.2% 

 
  

Boosted Tree 
91.6% Fine 

Gaussian 

58.6% 
Cosine kNN 

94.7% 
    

Bagged Trees 
94.7% Medium 

Gaussian 

95.4% 
Cubic kNN 

93.7% 
    

RUS Boosted 

Trees 
91.1% Coarse SVM 

85.0% Weighted 

kNN 

95.0% 
    

    
Subspace 

kNN 

58.4% 
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Furthermore, validation audio samples are used to measure the generalisation of the 

classifier and halt the training when the generalisation stops improving. With a 

validation accuracy of 97.0%, the neural network classifier performed very well in 

terms of generalisation. This is also evident during testing as the testing accuracy 

was 91.0%. 

Analysis of the confusion matrix of the neural network classifier illustrated in 

Figure 6-9 shows that the majority of the incorrect classification was not as a result 

of inter-class error within the three severity classes but between the healthy control 

class and the severity classes. If this error can be reduced or eliminated, the 

performance of the classifier can be improved. One way to address this is by 

implementing the robust automatic detection algorithm proposed in Section 6.4 first 

and then perform a three-class severity classification on the audio samples classified 

as dysarthric. A three-class neural network-based classifier was set-up to investigate 

this approach.  

In the three-class classifier, the dysarthric audio samples were classified into three 

classes representing mild, moderate and severe dysarthria respectively. The three 

class problem is a more realistic problem as clinicians will already know if the 

speakers are dysarthric or not before assess the severity of the speech disorder.  Just 

as in the four-class classifier, the number of neurons in the hidden layer was 12. 

70% of the dysarthric audio samples were used for training, 15% for validation and 

15% for testing. The confusion matrix of the three-class classifier is shown in Figure 

6-10. All the training and validation audio samples were accurately classified into 

the three severity classes with an accuracy of 100%. Only two audio samples within 

the test samples (one from the moderate class and the other from the severe class) 

were misclassified as mild. This brings the accuracy of the test samples to 97.8% 

and the overall accuracy to 99.7%. This shows that a two-level classification 

(automatic detection followed by severity classification) can improve the 

performance of the classifier. 

The analysis of the performance of the proposed classification technique showed 

promising results. The proposed technique can potentially be useful in the 

classification of other neurological speech disorders. Its application in emotion 

detection and speech recognition in dysarthria also needs to be explored. 
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Figure 6-10. Confusion Matrix of the Trained Single-layer Neural Network with 

12 Neurons for the Three-class Severity Classification of Dysarthria 

6.6 Summary 

In this chapter, three novel techniques for automatic dysarthria detection and 

severity classification have been presented. These techniques involve the use of 

spectral and cepstral features to distinguish between dysarthric and healthy control 

speech samples. The first method makes use of an extended speech feature called 

centroid formants to automatically classify ataxic dysarthria. The second method 

uses a more robust feature vector which consequently increases the accuracy from 

75.6% in the first method to 99.4%. Finally, a neural networks-based severity 

classification algorithm is presented that classifies audio samples from dysarthria 

speakers into three severity levels. It results in the classification accuracy of 97.8% 

in four-class classification (including healthy control class) and 99.7% in three-

class classification.  



Chapter 7 

7 Analysis of Stress Production Deficits in Dysarthric 

Speech for the Clinical Management of Dysarthria 

7.1 Introduction  

In this chapter, perceptual analysis of the utterances from ataxic dysarthria speakers 

during a stress production exercise will be presented. This will include stress 

marking exercise carried out by 10 ataxic dysarthria speakers together with two 

listening experiments. Each of the listening experiment will be carried out among 

50 untrained listeners. The effects of dysarthria and severity on the ability of the 

speakers to accurately mark stress will be reviewed while also considering how the 

position of the target word (word to be stressed) affects their stress marking 

abilities. An initial study on how dysarthric speakers mark stress with respect to 

acoustic features (intensity, pitch and duration) will be presented. Also presented in 

this chapter is an experiment on the effects of acoustic modifications on how 

listeners perceive stress marking in dysarthric speech. This will give a comparison 

of acoustic modifications and the perception of the listeners. Finally, clinical 

recommendations will be presented showing potential target levels for intensity, 

fundamental frequency and durational amplifications during stress marking therapy 

exercises in the management of dysarthria. Throughout this chapter, three software 

will be used; two software for speech processing and one statistical software. These 

are MATLAB (Version 9.1), Praat (Version 5.4.04) and IBM SPSS Statistics 24. 

7.2 Participants 

The participants in this investigation include 10 speakers with ataxic dysarthria 

consisting of 5 males and 5 females as illustrated in Table 7-1. In addition to the 

ataxic dysarthric (AT) speakers, 10 healthy control (HC) speakers were also 

recruited. These healthy control (HC) speakers were aged-matched, as well as 

gender and dialectal background matched, with the AT speakers. These participants 

are taken from the dysarthric speech data set reported in [133]. The participants 
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have no cognitive deficiency neither do they have any visual and hearing 

impairment. Their severity varied from mild to severe cases. In addition, all of them 

are monolingual native speakers of English.  

Their intelligibility scores varied from 18 to 91 as shown in Table 7-1. These 

intelligibility scores were estimated from the average scores from five trained 

listeners during the passage reading task described in [21]. The etiologies of these 

participants are either cerebellar ataxia (50%), Friedreich’s ataxia (30%) or 

spinocerebellar ataxia (20%). Each participant produced 30 sentences using the 10 

Subject-Verb-Object-Adverbial (SVOA) structured sentences across three (3) 

sentence conditions. These sentence conditions are stress on the initial (S), medial 

(O), and final (A) target words tagged T1, T2, and T3 respectively. For example, 

T1 implies that the target word to be stressed is in the initial position (subject) of 

the sentence. The words in the sentences are tagged W1, W2 and W3 representing 

the subject, object and adverbial respectively. Audio recordings are saved in the 

format of AT_XX_YY_ZZ where XX is the participant’s number (from 01 to 10), 

YY is the sentence number (from 01 to 10) and ZZ is the stress position (01-initial 

02-medial or 03-final position).  

Table 7-1. Details of participants involved in the study 

CA: Cerebellar ataxia of undefined type, FA: Friedreich’s ataxia and SCA: spinocerebellar ataxia 

 

The list of the 10 SVOA structured sentences used for this study is given below. 

Participant Age Gender Etiology % Intelligibility 

Score 

AT_01 46 M CA 26 

AT_02 60 F CA 33 

AT_03 28 M FA 94 

AT_04 52 F CA 75 

AT_05 28 F FA 91 

AT_06 65 F SCA6 42 

AT_07 72 M CA 81 

AT_08 51 M CA 56 

AT_09 56 M SCA8 18 

AT_10 57 F FA 20 
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1. The model wrote her memoirs in Lima 

2. The gardener grew roses in London 

3. The landlord owns dwellings in Reading 

4. The lawyer met the model in London 

5. The diva made a movie in Venice 

6. The minister has a nanny from Norway 

7. The widow bought a villa in Ealing 

8. The milliner got a memo from Melanie 

9. The murderer met his lawyer in Limerick 

10. The neighbour plays melodies on her mandolin 

In addition, 50 listeners were recruited for the perceptual experiment. These 

listeners are untrained and do not have any hearing or speech impairment. They are 

all native speakers of English and mainly university students aged between 18 and 

50 years old. Their suitability for the study was tested by engaging them in a 

practice experiment where each participant is required to attain more than 80% 

accuracy in a stress identification task in healthy speech. Listeners with less than 

80% stress identification accuracy were excluded from the study. In terms of sample 

size, the total number of audio samples in the first listening experiment is 212 and 

that of the second experiment is 259 audio samples. 

7.3 Initial Study on Stress marking in Healthy Control and 

Dysarthric Speech 

Before carrying out acoustic modifications on the utterances produced by dysarthric 

speakers, it is important to understand how dysarthric speakers show stress relative 

to what healthy control speakers will do. This is achieved by carrying out a stress 

production exercise for both speaker groups. The stress production exercise showed 

that both speaker groups make use of pitch, intensity and duration to mark stress. 

That is, speakers emphasized the stressed word by increasing the fundamental 

frequency, increasing the intensity and/or elongating the duration of the stressed 

word. An analysis of variance (ANOVA) was also carried out on the data from both 

speaker groups using IBM SPSS Statistics 24. The results of the ANOVA showed 

that the three acoustic features (pitch, intensity, and duration) of the target word are 

significantly independent of the acoustic features of the other words in the sentence. 
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Furthermore, the comparison of the analysis of how healthy control and dysarthric 

speakers mark stress, with relation to intensity, pitch, and duration of words, is 

illustrated in Figure 7-1, Figure 7-2, and Figure 7-3 respectively. 

The peak intensities of the words (W1, W2, and W3) were measured for the three 

sentence conditions (T1, T2, and T3) for the two speaker groups and the average 

peak intensity was estimated across the 10 healthy control speakers. This was also 

done for the 10 ataxic dysarthric speakers. The average peak intensities for the 

healthy control and dysarthric speakers are shown in Figure 7-1. In the first sentence 

condition (T1), across healthy control speakers, the average peak intensity for W1 

was higher than that of W2 and W3. The highest average intensity was recorded for 

W1 when the sentence condition was T1. Similarly, the highest average intensity 

was recorded for W2 when the sentence condition was T2. Likewise, the highest 

average intensity for W3 was observed in sentence condition T3. This trend is the 

same for dysarthric speakers. This trend was also observed for dysarthric speakers. 

The major difference being that the average intensities in healthy control speech are 

larger than those observed in dysarthric speech. It is also important to point out that 

the average peak intensity for W3 remained unchanged for both T1 and T2 sentence 

condition whereas is increased in T3 sentence condition. These observations show 

that both healthy control and dysarthric speaker groups make use of increased 

intensity to mark stress. 

  

Figure 7-1. Effects of Stress Marking on the Intensity of Words in Healthy 

Control and Dysarthric Sentences 
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Figure 7-2. Effects of Stress Marking on the Pitch of Words in Healthy Control 

and Dysarthric Sentences 

Moreover, the peak pitch (fundamental frequency, F0) profiles for both healthy 

control and dysarthric speaker groups were also analysed. These are shown in 

Figure 7-2. In healthy control speech samples, the highest average F0 for W1 was 

observed in T1 sentence condition, while the highest average F0 for W2 was 

observed in T2 sentence condition, and, as expected, the highest average F0 for W3 

was observed in T3 sentence condition. These results show that healthy control 

speakers emphasize (stress) words by increasing the F0 of the word being stressed. 

Like in the peak intensity profiles (Figure 7-1), the peak pitch profiles for the two 

speaker groups are quite similar. However, the extents to which the dysarthric 

speakers reduced or increased the F0 of the words are quite limited. For example, 

in T1 sentence condition, for healthy control speakers, the difference in the peak 

intensities of W1 and W2 was about 70Hz whereas the difference observed in 

dysarthric speakers was only about 40Hz. This implies that dysarthric speakers are 

unable to fully accentuate the stressed word using F0 as much as healthy control 

speakers do. In all, both speaker groups use F0 in emphasizing words in a sentence. 

 

Figure 7-3. Effects of Stress Marking on the Duration of Words in Healthy 

Control and Dysarthric Sentences 
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The analysis of the average duration was a bit different from how the peak intensity 

and peak F0 were analysed. The average duration was analysed across sentence 

conditions rather than across words. This is because different words are expected 

to have different durations but the increase in duration (due to stress) can only be 

observed when comparing the duration of a word in a sentence condition with the 

duration of the same word in another sentence condition. This is what was 

illustrated in Figure 7-3. The average duration of W1 (Subject) was longest in T1 

sentences, whereas, that of W2 (Object) was longest in T2 sentences, and that of 

W3 (Adverbial) was longest in T3 sentences. The trends in both speaker groups are 

quite similar but the average duration of the words spoken by dysarthric speakers 

are generally longer. This validates the hypothesis that utterances from dysarthric 

speakers are characterised by slowed speech when compared with healthy speakers. 

The analyses of the peak intensity, peak F0 and duration show that both speaker 

groups use increased intensity, increased F0 and increased duration to mark stress, 

of words, in sentences. The extent to which the two speaker groups increase these 

acoustic features is, however, different in the two speaker groups. The healthy 

control speakers accentuated the three acoustic features more than the dysarthric 

speakers to mark stress. This explains why listeners are more likely to identify the 

emphasized word in healthy control speech than in dysarthric speech. 

In addition to these studies, a logistics regression on the impact of these prosody 

parameters on the listeners’ ability to correctly mark stress was carried out for 

healthy control speaker group (in order to understand why listeners found it easier 

to identify the stressed word in healthy control speaker group) using IBM SPSS 

Statistics 24. The results are shown in Table 7-2. The significance p-value threshold 

used for the regression analysis was p< 0.05. In T1 utterances, the odds of listeners 

ability to accurately identify the target word increases as the peak intensity, duration 

and peak F0 of W1 increases, and the odds increases as the peak intensity of W2, 

duration of W2 and peak F0 of W3 decreases. In T2 utterances, the odds of listeners 

ability to accurately identify the target word increases as the peak intensity and peak 

F0 of W2 increases and the odds increases as the peak intensity of W1, peak F0 of 

W1, duration of W3 and peak F0 of W3 decreases. In T3, the odds of listeners 

ability to accurately identify the target word increases as the peak intensity and peak 



7.3 Initial Study on Stress marking in Healthy Control and Dysarthric Speech 133 

Tolulope Ijitona 

University of Strathclyde, 2019   

F0 of the W3 increases and the odds increases as the peak intensity and peak F0 of 

W2 decreases.  

Table 7-2. Logistics Regression of the Effects of Acoustics Features on Listener 

Accuracy 

Variables in the Algorithm 

T1 B S.E. Wald df Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower Upper 

S

t

e

p 

1
a 

W1 Peak dB 0.182 0.029 38.910 1 0.000 1.199 1.133 1.269 

W1 Dur 0.009 0.002 20.965 1 0.000 1.009 1.005 1.013 

W1 Peak F0 0.011 0.005 5.592 1 0.018 1.011 1.002 1.020 

W2 Peak dB -0.101 0.041 6.158 1 0.013 0.904 0.834 0.979 

W2 Dur -0.008 0.003 9.907 1 0.002 0.992 0.987 0.997 

W2 Peak F0 0.003 0.006 0.175 1 0.676 1.003 0.990 1.015 

W3 Peak dB -0.049 0.036 1.875 1 0.171 0.952 0.888 1.021 

W3 Dur 0.001 0.002 0.188 1 0.664 1.001 0.996 1.006 

W3 Peak F0 -0.009 0.004 4.905 1 0.027 0.991 0.983 0.999 

Constant -3.467 1.916 3.274 1 0.070 0.031     

Variables in the Algorithm 

T2 B S.E. Wald df Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower Upper 

S

t

e

p 

1
a 

W1 Peak dB -0.078 0.023 11.989 1 0.001 0.925 0.885 0.967 

W1 Dur 0.002 0.002 0.924 1 0.336 1.002 0.998 1.005 

W1 Peak F0 -0.009 0.004 4.758 1 0.029 0.991 0.982 0.999 

W2 Peak dB 0.271 0.031 74.768 1 0.000 1.312 1.234 1.395 

W2 Dur 0.003 0.002 2.588 1 0.108 1.003 0.999 1.007 

W2 Peak F0 0.011 0.004 8.356 1 0.004 1.011 1.004 1.019 

W3 Peak dB -0.180 0.032 31.864 1 0.000 0.835 0.784 0.889 

W3 Dur -0.004 0.002 3.171 1 0.075 0.996 0.992 1.000 

W3 Peak F0 -0.002 0.004 0.268 1 0.605 0.998 0.991 1.005 

Constant -1.552 1.607 0.933 1 0.334 0.212     

Variables in the Algorithm 

T3 B S.E. Wald df Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower Upper 

S

t

e

p 

1
a 

W1 Peak dB -0.050 0.034 2.191 1 0.139 0.951 0.890 1.016 

W1 Dur 0.002 0.002 1.063 1 0.302 1.002 0.998 1.005 

W1 Peak F0 -0.008 0.005 2.355 1 0.125 0.992 0.981 1.002 

W2 Peak dB -0.172 0.040 18.691 1 0.000 0.842 0.779 0.910 

W2 Dur 0.001 0.002 0.117 1 0.732 1.001 0.997 1.005 

W2 Peak F0 -0.012 0.006 3.983 1 0.046 0.988 0.977 1.000 

W3 Peak dB 0.289 0.034 73.891 1 0.000 1.336 1.250 1.427 

W3 Dur 0.000 0.002 0.036 1 0.850 1.000 0.996 1.005 

W3 Peak F0 0.023 0.004 40.379 1 0.000 1.023 1.016 1.030 

Constant -5.067 1.569 10.434 1 0.001 0.006     

a. Variable(s) entered on step 1: W1 Peak dB, W1 Dur, W1 Peak F0, W2 Peak dB, W2 Dur, W2 

Peak F0, W3 Peak dB, W3 Dur, W3 Peak F0. 

Parameters Description 

B: Regression 

Coefficient for 

the constant 

(intercept) 

S.E.: Standard 

error around 

Coefficient for 

the constant (B) 

Wald: Wald 

statistic to test 

the Odds ratio 

(Exp(B)) 

df: degrees of 

freedom for 

Wald chi-

square test 

Sig: p-

value for 

Wald chi-

square test 

C.I.: 
Confidence 

Interval 



7.4 Focus Sentence Selection 134 

Tolulope Ijitona 

University of Strathclyde, 2019   

These observations imply that listeners are more likely to correctly identify the 

stressed word if dysarthric speakers are able to increase the peak intensity, peak F0 

and duration of the target word. Increased intensity, F0 and duration, therefore, can 

be used in therapy to help dysarthric speakers mark stress in sentence thereby 

increasing their speech intelligibility. But the question is, should these dysarthric 

speakers increase their intensity, F0 and duration as much as the healthy speakers 

will? Also, should the therapy be focused on all three features at the same time or 

some of them? These questions will be answered in the following sections. 

7.4 Focus Sentence Selection 

A prior study was carried out in [27] on the dataset. This study involved a perception 

experiment using seven untrained listeners who are native speakers of English and 

do not have any hearing impairment. Listeners were asked to identify the 

emphasized (stressed) word in the sentence. Sentences where more than 60% of the 

listeners could not locate the target word, were identified and selected for this study. 

These included sentences where no stress has been placed on any of the words and 

sentences where the AT speakers produced incorrect pitch contours. These 

identified sentences formed the baseline (focus utterances) for this experiment. 

These focus utterances were also grouped into two; utterances with appropriate 

pitch contours but requiring amplification only (AMP) and utterances with 

inappropriate pitch contours (IPC). For this study, 7 AMP utterances and 8 IPC 

utterances were selected. 

7.5 Stress Marking Features Modifications 

Two distinct pitch modifications techniques were implemented based on the 

category of the focus sentences (AMP or IPC). Pitch incremental modifications 

were carried out on all the focus sentences while pitch contour modifications were 

carried out on IPC sentences only. 

7.5.1 Pitch Amplification 

To establish a reference point for pitch incremental modifications, audio samples 

from the 10 healthy speakers were examined. These healthy control (HC) speakers 



7.5 Stress Marking Features Modifications 135 

Tolulope Ijitona 

University of Strathclyde, 2019   

were aged-matched, as well as gender and dialectal background matched with the 

dysarthric speakers. The HC speakers were given the same SVOA structured 

sentences and the average increment in the fundamental frequency (F0) of the target 

word was estimated for the three sentence conditions. As presented in [32], HC 

speakers mark stress by increasing F0 before a target word and decreasing F0 after 

the target word. As illustrated in Figure 7-4, the pre-target increments and post-

target decrements vary across the sentence conditions but the average pre-target 

increment and post-target decrement are 14% and 30% respectively. 

Consequently, the F0s of the target words were increased to a maximum of 30% 

(picking the worst case possible) at an incremental rate of 25%, 50%, 75% and 

100% (that is, 0.25 of 30% =7.5%, 0.5 of 30% =15%, 0.75 of 30% =22.5% and 1.00 

of 30% = 30% respectively). Praat (Version 5.4.04), a speech processing software, 

was used to modify the pitch incrementally. Figure 7-5 illustrates pitch incremental 

modifications carried out on AT_08_04_01. The pitch contours are represented by 

the blue bars in both plots. The F0 of the target word has been increased by 30% 

while keeping that of other words the same. 

 

Figure 7-4. Mean F0 change before (left) and after (right) the target 

7.5.2 Pitch Contour Modification 

Pitch contour modifications, on the other hand, involves the modification of the 

pitch contours of the IPC sentences. A scenario of IPC is when all the words in the 

sentence have been stressed equally. This could be due to the fact that the AT 
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speakers have placed pauses before each word in the sentences. Another scenario 

is when the stress has been placed on the wrong word or on two words (the target 

word and another word). The pitch contour modification was implemented using 

Praat. And the new signal is stored using the synthesis function in Praat. It is 

important to note that for all pitch contour modifications carried out in this study, 

the pitch contours of the target words were not modified in any way. Only the pitch 

contours of other words were modified. This is to ensure that the pitch contour of 

the target word is preserved for the pitch amplification process. 

An example illustrated in Figure 7-6 shows the pitch contour of AT04_06_02 

before and after pitch contour modifications. Here, the pitch contour of ‘O’ word in 

the SVOA structured sentence 6 from speaker AT_04 has been preserved. Whereas 

the pitch contours of the other words in the sentence have been modified to 

correspond with the expected pitch profile for target position 2. Without increasing 

F0 of the target word, it can be seen that the resulting pitch profile shows the 

location of the target word. It is important to note that sometimes AT speakers can 

use the wrong pitch contour (for example, falling F0) within the target word. In this 

case, a more complex pitch contour modification will be required. 

 

Figure 7-5. AT_08_04_01 speech before (top) and after (bottom) 30 % 

increment in F0 of the highlighted target word 
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Figure 7-6. AT04_06_02 before (top) and after (bottom) pitch contour 

modification 

7.5.3 Intensity Amplification  

Apart from increasing F0, the initial study in Section 7.3 has shown that healthy 

speakers use increased intensity to mark stress. Healthy speakers increase their 

intensity just before the target word and decrease the intensity right after the target 

word. However, for ataxic dysarthric speakers, the variation in intensity is reduced. 

The relative changes in intensity are dependent on the position of the target word. 

In this study, the intensities of the target words in the focus sentences (all the 15 

focus sentences AMP and IPC inclusive) were modified at 4 incremental rates. The 

incremental rates used are 25%, 50%, 75% and 100%. The increments are done in 

MATLAB (Version 9.1). The intensity increment was achieved by multiplying the 

amplitude of the target word by the incremental factor as given in (21). 

𝐼𝑛𝑡𝑛𝑒𝑤 = 𝐼𝑛𝑡𝑜𝑙𝑑(1 + 𝑓𝑎𝑐) (21) 

where 𝐼𝑛𝑡𝑛𝑒𝑤 is the new intensity, 𝐼𝑛𝑡𝑜𝑙𝑑 is the initial intensity and fac is the 

incremental factor (fac=0.25, 0.5, .75 or 1).  
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An example of the intensity modification is presented in Figure 7-7. In this figure, 

the speaker AT_05 produced sentence 09 with the target word position in the final 

part of the sentence (03). Looking at both waveforms, for the original and modified 

signals, it can be seen that the intensity of the target word has been modified by 

increasing the amplitude of the highlighted segment of the speech signal. Likewise, 

the intensity profiles in dB before intensity modification shows an occurrence of 

mono loudness. However, after increasing the amplitude of the target word 

waveform by 100%, the intensity profile shows an emphasis on the target word. 

 

Figure 7-7. AT_05_09_03 before (top) and after (bottom) 100% increment in 

intensity 

7.5.4 Duration Amplification  

Modifying the duration of a target word without altering the intensity or the pitch 

could be challenging. Over the past few decades, researchers have offered 

techniques for elongating or shortening speech signals based on time-domain [219] 

or frequency domain analysis [220]. These techniques included resampling, 

frequency domain interpolation, and phase vocoder.  

Resampling techniques involve upsampling or downsampling the speech signal in 

the time domain. After which the audio signal is saved at the original sampling 

frequency. This technique is simple and fast to implement. However, the quality of 

the signal is compromised leading to modifications in pitch and distortion of the 
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sounds (unnatural sounds). On the other hand, frequency interpolation involves 

Fourier transform followed by interpolation and inverse Fourier transform. The 

frequency-domain interpolation alters the signal intensity and pitch quality, 

therefore, also resulting in unnatural sounds. 

For the purpose of this study, the phase vocoder technique was used. The phase 

vocoder (PVOC) is a well-known audio synthesis technique used for time dilation 

and pitch scaling. Time dilation or scaling is achieved by modifying the original 

short-time Fourier transform (STFT) of a signal before performing an inverse short-

time Fourier transform (ISTFT) on the modified spectrum [221]. The STFT 

coefficients are modified by keeping the amplitudes the same and modifying the 

phase so that there are more or fewer oscillation cycles in each frequency band 

[222]. Even though the first implementation of PVOC was for a low bit rate speech 

encoding [221], PVOC has gained high popularity in audio and music processing. 

The PVOC is based on the assumption that most audio or music signals consist of 

resonances of sinusoids and thus the amplitudes and the phases of these sinusoids 

can be estimated using the STFT function. In the initial application of PVOC, that 

requires coding and decoding, these amplitudes and phases can be coded (by 

quantization) and transferred over a channel to a decoder [221]. Over the years, 

different modifications have been proposed to the original PVOC depending on the 

required application. 

For time-scaling applications, the phase vocoder can be implemented in two ways:  

1. Using varying hop factors for the analysis and synthesis stages (hop factor 

is distance, in samples, between the first samples of consecutive short time 

frames) 

2. Phase interpolation and instantaneous frequency calculations. The phase 

interpolation guarantees phase coherence; to preserve the correlation 

between consecutive adjacent frames [223].  

A phase interpolation-based PVOC was used to modify the duration of the target 

words. The audio signal is represented as a summation of sinusoids with time-

varying amplitudes and instantaneous phases. The PVOC modifies the STFT of the 

sinusoidal signal by unwrapping the phases of the STFT coefficients. This is 
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achieved by using the increment in phase between two successive frames to 

estimate the instantaneous frequency of close sinusoid in individual channels [223]. 

An example of the duration modification is presented in Figure 7-8. In this figure, 

the speaker AT_02 produced sentence 03 with the target word position in the final 

part of the sentence (03). For the original and modified signals, it can be seen that 

the duration of the target word has been modified by elongating the highlighted 

segment of the speech signal by 100%. The duration is now double of the original.  

 

Figure 7-8. AT_02_03_03 before (top) and after (bottom) 100% increment in 

duration 

7.5.5 Addition of Pauses 

Another modification carried out on the speech signals is the addition of pauses. 

Research [27, 32] has shown that speakers also use the addition of pauses to 

emphasize the target word in sentences. Pauses are added just before the target word 

and after the target word in two different scenarios. 
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7.6 Listening Experiments 

The listening experiment consisted of two stages. The first experiment involves the 

modification of the three prosody stress markers, pitch, intensity, and duration 

individually. The second experiment involves a combination of these features. The 

second experiment also will involve a combination of the three features and the 

addition of pauses before the target words. The methodology for the proposed 

modifications for the individual features (F0, intensity, and duration) has been 

described in Section 7.5. It is expected that the results of experiment 1 will be a 

guide to how the modifications in experiment 2 will be combined (for example, 

whether a 25% increment in F0 is sufficient for stress marking, the subsequent 

modifications will not go beyond 25% in F0). 

7.6.1 Experiment A: Effects of Individual Modifications 

This experiment involved individual manipulation of intensity, duration, and 

fundamental frequency. These features are increased in steps of 25% (that is, 25%, 

50%, 75% and 100%). This gives 12 different modifications for each audio sample. 

For this experiment, 15 audio samples from people with Ataxic dysarthria were 

used; five audio samples for each sentence condition. The audio samples are also 

grouped into two; IPC and AMP as described in Section 7.4. The set-up of the 

modifications involved in the first listening experiment is illustrated in Table 7-3. 

For the AMP audio samples, the three acoustic features (intensity, duration, and 

fundamental frequency) were amplified in increments of 25%. For the IPC audio 

samples, the acoustic features amplifications were carried out together with the 

pitch contour modifications as described in Section 7.5.2.  

The aims of the first experiment are: 

• To investigate the effect of acoustic features amplification on the listeners’ 

ability to correctly identify the target word 

• To examine the effect of pitch contour modification on IPC samples 

• To determine what level of amplification is enough to give a significant 

improvement in listener accuracy 
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• To determine which of the acoustic features has more impact on listener 

accuracy 

In order to validate the listeners’ suitability, an initial screening was introduced. 

The screening process involved a practice experiment. The participants were 

presented with 10 audio samples (practice sentences) where the target words are 

well amplified and not wrongly emphasised. Listeners needed to identify at least 8 

target words correctly before being allowed to participate in the main experiment 

(that is, at least 80% accuracy). Out of the 52 participants initially recruited, 2 of 

them achieved accuracies of less than 80% and therefore were excluded from the 

main experiment.  

Table 7-3. Set-up of Listening Experiment 1 

S/N Sent. 

Cond. 

Modifications No of 

Combinations 

No of 

Samples 

1 T1, T2, T3 None - 15 

2 T1, T2, T3 Pitch Contour* (IPC utterances) 1 8 

3 T1, T2, T3 25% Intensity 1 15 

4 T1, T2, T3 50% Intensity  1 15 

5 T1, T2, T3 75% Intensity  1 15 

6 T1, T2, T3 100% intensity 1 15 

7 T1, T2, T3 25% Duration  1 15 

8 T1, T2, T3 50% Duration  1 15 

9 T1, T2, T3 75% Duration  1 15 

10 T1, T2, T3 100% Duration 1 15 

11 T1, T2, T3 25% F0 1 15 

12 T1, T2, T3 50% F0 1 15 

13 T1, T2, T3 75% F0 1 15 

14 T1, T2, T3 100% F0 1 15 

15 T1, T2, T3 Practice Sentences (for 

listeners’ initial screening) 

 10 
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7.6.2 Experiment B: Effects of Combination of Two or More Modifications 

In the second experiment, individual amplifications and modifications are 

combined (that is, 2 or 3 amplifications carried out on a single audio sample). In 

addition, the effects of combining pitch contour modification and intensity/duration 

amplification are also examined. The setup of the second experiment is shown in 

Table 7-4. In terms of sample size, the total number of audio samples in the first 

listening experiment is 212 and that of the second experiment is 259 audio samples. 

The same set of listeners were used in both experiments. The summary of the 

modifications in the two experiments is presented in Table 7-5. 

Table 7-4. Set-up of Listening Experiment 2 

S/N Sent. 

Cond. 

Modifications No of 

Combinations 

No of 

Samples 

1 T1, T2, T3 None - 15 

2 T1, T2, T3 Pitch Contour** and Intensity 4 32 

3 T1, T2, T3 Pitch Contour** and Duration 4 32 

4 T1, T2, T3 25% Intensity & 25% Duration 1 15 

5 T1, T2, T3 25% Intensity & 75% F0 1 15 

6 T1, T2, T3 25% Duration & 75% F0 1 15 

7 T1, T2, T3 25% Intensity & 50% Duration 1 15 

8 T1, T2, T3 25% Intensity & 100% F0 1 15 

9 T1, T2, T3 25% Duration & 100% F0 1 15 

10 T1, T2, T3 50% Intensity & 25% Duration 1 15 

11 T1, T2, T3 50% Intensity & 75% F0 1 15 

12 T1, T2, T3 50% Duration & 75% F0 1 15 

13 T1, T2, T3 Pauses before target 1 15 

14 T1, T2, T3 Pauses after target 1 15 

15 T1, T2, T3 25% Duration, 25% Intensity & 75% F0 1 15 

The aims of the second experiment are: 

• To understand the effects of combining acoustic feature modifications on 

the ability of the listeners to correctly identify the target word. 
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• To analyse how corrected pitch contours (for IPC samples) and intensity& 

durational modifications affect the listeners’ accuracy 

• To investigate if the effects of the addition of pauses before and after the 

target have any impact on listeners’ accuracy 

Table 7-5. Summary of Modifications for the Two Listening Experiments 

7.7 Experimental Results 

7.7.1 Individual Manipulations 

The 15 focus sentences (AMP and IPC) were manipulated by increasing the 

intensity, duration, and fundamental frequency as described in Section 7.5. The 

listener’s accuracy was measured for different sentence conditions (T1, T2, and T3) 

and utterance groups (AMP and IPC). The effects of duration, intensity and 

fundamental frequency for AMP utterances are illustrated in Figure 7-9 and that for 

IPC utterances are illustrated in Figure 7-10.  

For AMP utterances, increasing the duration by 25% in T1 utterances, increases the 

listener accuracy, though an accuracy drop was experienced in T2 and T3 

utterances. This could be due to the location of the target word. However, this drop 

is not significant as it is within the natural variance of the listeners’ perception. 

Increasing the duration further to 50% improves the listener accuracy significantly. 

A further increase in duration beyond 50% does not give a further significant 

improvement in listener accuracy. Furthermore, increasing the intensity of the 

target words in AMP utterances improves the listener accuracy as the increment 

progresses. However, after a 50% increase in intensity the improvements in listener 

accuracy became less significant. In addition, increasing F0 gave significant 

improvements from 25% to 50% to75% and to 100%. The significance of 

improvements increased across all manipulations. 

S/N  Modifications 

1 F0 Intensity Duration Pitch Contour 

2 F0& 

intensity 

F0& 

duration 

Intensity 

&duration 

F0, intensity & duration 

 Pause before target Pause before target & most salient parameter 
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Figure 7-9. Effects of Individual Amplifications on Listener Accuracy in AMP 

Utterances 

None D25 D50 D75 D100

T1 80.00 86.00 84.00 84.00 88.00

T2 73.00 69.00 82.00 89.00 88.00

T3 81.33 78.67 90.00 94.00 96.67
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Effects of Duration Amplifications

None I25 I50 I75 I100

T1 80.00 82.00 90.00 85.00 87.00

T2 73.00 79.00 87.00 93.00 94.00

T3 81.33 86.00 90.00 92.67 96.67
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Effects of Intensity Amplifications
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Figure 7-10. Effects of Individual F0 Amplifications on Listener Accuracy in IPC 

Utterances 

None D25 D50 D75 D100

T1 49.33 52.00 59.33 71.33 73.33

T2 30.67 46.00 58.00 72.67 78.00

T3 51.00 74.00 78.00 86.00 91.00
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IPC utterances gave similar significance in listener accuracy improvements (Figure 

7-10). The changes in listener accuracy in IPC utterances were relatively higher 

than those experienced in AMP utterances. For example, 50% increment in intensity 

improved the listener accuracy by 15% in IPC utterances and the listener accuracy 

was increased by 10% in AMP utterances. These results imply that 50% increments 

in duration and intensity are sufficient for improving the listener accuracy 

significantly. However, a 100% increment in F0 is necessary to significantly 

improve the listener accuracy. In addition, IPC utterances improved significantly as 

the acoustic features are increased even though the inappropriate pitch contours 

were not corrected. 

7.7.2 Pitch Contour Modifications in IPC Utterances 

Apart from amplification, the effects of pitch contour modifications were also 

investigated. The pitch contours were modified as described in Section 7.5.2. The 

results are shown in Figure 7-11. Improvements in listener accuracy were recorded 

in all three sentence conditions. The highest increment was recorded in T2 

utterances and the least increment recorded in T1 utterances. Across the individual 

amplifications and pitch contour modifications, T1 utterances gave the least 

improvements in listener accuracy. 

 

Figure 7-11. Effects of Pitch Contour Modifications on Listener Accuracy in IPC 

Utterances 

T1 T2 T3

None 49.33 30.67 51.00

Modified Contour 68.00 68.67 84.00
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7.7.3 Combination of Manipulations 

Furthermore, the effects of combining the acoustic features amplifications were 

investigated. These combinations included duration and intensity, F0 and intensity, 

F0 and duration and the combination of the three acoustic features. The number of 

possible combinations was determined by the results from Section 7.6. These 

combinations are as illustrated in Table 7-5. 

As shown in Figure 7-12, combining intensity and duration gave a considerable 

improvement in listener accuracy. A 25% increment in duration and 25% increment 

in intensity gave a significant improvement in listener accuracy. Keeping the 

duration constant at 25% and increasing the intensity further to 50% resulted in 

higher accuracy for the three sentence conditions. On the other hand, keeping the 

intensity increment at 25% and increasing the duration to 50% resulted in even 

greater listener accuracy (compared to D25I0). This shows that at the same level, 

duration has more impact on the listener accuracy than intensity for all the target 

positions.  

Combining fundamental frequency and intensity also significantly improve listener 

accuracy. This is illustrated in Figure 7-12. 75% increment in F0 and 25% 

increment in intensity produced 8%, 20% and 20% improvements in listener 

accuracy respectively in the target positions. Further increment in F0 or intensity 

beyond this point did not significantly improve the listener accuracy.  

F0 and duration were also combined during this experiment as presented in Figure 

7-12. A 25% increase in duration and a 75% increase in F0 gave a significant 

improvement in listener accuracy. Keeping the duration increment at 25% and 

increasing the F0 by 100% gives a further improvement in listener accuracy. On the 

other hand, when the F0 increment is kept at 75% and the duration increased by 

50%, T1 and T3 utterances produced further improvement but the improvement 

reduced in T3. The highest overall improvement was noticeable in D25P100. This 

implies that F0 has more effect than duration in improving listener accuracy. 
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Figure 7-12. Effects of Combination of Two Features on Listener Accuracy in 

AMP Utterances 
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Figure 7-13. Effects of Combination of Two Features on Listener Accuracy in 

IPC Utterances 
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Combining the three features also gave significant improvements but not as high as 

when just two features are combined. The corresponding improvements in listener 

accuracy for T1, T2, and T3 utterances were 14%, 16% and 21% in AMP utterances 

and 22%, 41% and 33% in IPC utterances as shown in Figure 7-14.  

 

Figure 7-14. Effects of Combination of Three Features on Listener Accuracy in 

AMP & IPC Utterances 

Based on these results, it has been shown that combining 3 features do not give 

significant improvements when compared with individual and combination of two 

features. It is also difficult for dysarthric speakers to control these three features 

simultaneously. The results of combining the three features in AMP and IPC 
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utterances are very similar but IPC utterances showed the highest improvements in 

all the combinations as shown in Figure 7-14. 

7.7.4 Pitch Contour Modifications and Intensity & Durational 

Manipulations 

The modified pitch contours for IPC utterances described in Section 7.7.2 were also 

combined with individual combinations with intensity and duration increments. The 

resulting accuracies are illustrated in Figure 7-15 and Figure 7-16 respectively. 

Increasing the intensity of the target word for utterances where the pitch contours 

have been corrected gave a consistent significant rise in listener accuracy as the 

increments are progressively increased from 25% to 100%. Duration increments 

(Figure 7-16) also improved the listener accuracy but the relationship is less linear 

than that seen in intensity increments (Figure 7-15). Increments beyond 50% in 

duration for T2 and T3 utterances and beyond 75% in duration for T1 utterances 

did not result in significant improvement. 

 

Figure 7-15. Effects of Pitch Contour Modification and Intensity on Listener 

Accuracy in IPC Utterances 
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Figure 7-16. Effects of Pitch Contour Modification and Duration on Listener 

Accuracy in IPC Utterances 

7.7.5 Effects of Addition of Pauses 

The last sets of modifications included the addition of pauses before and after the 

target word. This was introduced because in the initial study it was discovered that 

healthy controls also signalled stress by adding pauses before or after the target 

word. The average pause used by healthy controls was 250ms. The effects of adding 

a pause before or after the target word are illustrated in Figure 7-17 and Figure 7-18 

for AMP and IPC utterances respectively.  

 

Figure 7-17. Effects of Addition of Pauses on Listener Accuracy in AMP 
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Figure 7-18. Effects of Addition of Pauses on Listener Accuracy in IPC 

Utterances 

For AMP utterances, the addition of a pause before the target word reduced the 

listener accuracy by 7% in T2 utterances and 5% in T3 utterances. However, the 

addition of pauses after the target word increased the listener accuracy by 10% in 

T1 utterances and 7% in T2 utterances. On the other hand, the addition of pauses 

before the target word in IPC utterance did not have any effect on the listener 

accuracy while the addition of pauses after the target word improves the listener 

accuracy by 4% in T1 utterances and 7% in T2 utterances. This implies that 

dysarthric speakers who are not able to amplify the intensity, duration or F0 of the 

target word can add a pause after the target to emphasise stress. 

7.8 Clinical Implications  
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identified clinical implications of this study are as follows: 

A. Different degrees of manipulations are necessary for different acoustic 

parameters: intensity – 50%, F0 – 100%, duration – 50% (that is 100% of 

Healthy Control speakers’ duration increment). 
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contour, resulted in improved perceptual outcomes – treatment can focus 

on areas of strength rather than rehabilitating aspects in deficit. 
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C. Combining parameters did not improve listener accuracy further – therapy 

can be simplified by focusing on just one parameter. 

D. Changes to pitch contours might improve stress marking in some speakers 

who are unable to increase their intensity, duration or F0 on targets. 

E. Insertions of pauses can also bring some improvement without the need 

for amplification of any other aspects. 

These are recommendations for the treatment of dysarthria during stress marking 

exercises. These recommendations will be incorporated in the dysarthria 

management tool presented in Chapter 8 of this thesis. 

7.9 Summary 

Perceptual analyses of how healthy control and dysarthric speakers mark stress have 

been presented in this chapter. The extent to which the two speaker groups use three 

acoustic features, intensity, F0 and duration, to mark stress was also investigated. 

The deficiencies in utterances from dysarthric speakers were identified and shown 

in the increments of the peak intensity, peak F0 and duration of the target. Two 

listening experiments were set up in this chapter, where the effects of modifications 

of these acoustic features on the ability of 50 untrained listeners were examined. 

The results of these experiments indicated that therapists can focus on a single 

feature during therapy sessions and the different degrees of manipulation is needed 

for different features. Clinical recommendations for therapy have been made at the 

end of this chapter on how intensity, F0 and duration can be used to improve 

dysarthric speakers’ intelligibility in stress marking exercises. 

 

 



Chapter 8 

8 Assistive Technology Tools Developed for Dysarthria 

Management 

8.1 Introduction  

In this chapter, novel MATLAB-based assistive technology tools for the assessment 

and treatment of dysarthria will be presented. The tools are developed to assist both 

therapists and patients in assessing the patient’s speech and in tracking their 

progress during and after therapy. The parent-tool, called DySATTOOL, comprises 

of four assessment tools and one treatment tool. The first assessment tool, called 

SETool, was developed to assist the clinicians analyse and extract relevant speech 

features from the dysarthric speech. The SETool can also be used to analyse other 

types of speech as its functionalities are not limited to dysarthric speech only. The 

second assessment tool, called DDKTool, will automatically analyse DDK 

utterances and track the progress of the patients during the DDK task. The third and 

fourth assessment tools will be developed to automatically detect dysarthria in 

speech and classify the speech samples based on the severity. The treatment-related 

tool presented in this chapter will focus on the use of prosodic features in treatment 

of dysarthria during stress marking exercise. The functionalities, controls, 

requirements, as well as limitations of these tools, will also be discussed in this 

chapter.  

8.2 Dysarthria Assessment and Treatment Tool (DySATTOOL)  

8.2.1 Overview 

DySATTOOL is a tool for the management (assessment and treatment) of 

dysarthria which involves processing, analysis and classification of audio signals 

using signal processing technologies. The tool also provides useful information to 

the users, through visual and non-visual feedback, regarding the state of the 
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analysed audio signal. The tool is designed to be used by both the patients and the 

clinicians before, during and after therapy sessions. 

The management of dysarthria using instrumental methods has been a major topic 

of discussion among researchers in recent years. These instrumental methods focus 

on developing tools for processing speech signal and providing the clinician with 

feedback to allow them make informed decisions during assessment and therapy. 

Ability to fully interact with these tools and get valuable feedbacks (both visual and 

non-visual) is paramount whilst developing such tools. Interpretability and 

relevance of results provided by these tools are also important. These factors were 

considered when developing DySATTOOL and the other tools presented in this 

chapter. A screenshot of DySATTOOL is shown in Figure 8-1. DySATTOL was 

designed and developed as a parent tool to provide easy access to the other 

dysarthria assessment and treatment tools discussed in Sections 8.3 to 8.6.  

 

Figure 8-1. Screenshot of Dysarthria Assessment and Treatment Tool 

(DySATTOOL) 



8.2 Dysarthria Assessment and Treatment Tool (DySATTOOL) 158 

Tolulope Ijitona 

University of Strathclyde, 2019   

8.2.2 DySATTOOL Functionalities 

The DySATTOOL is designed to give both patients and clinicians access to five 

tools for the management of dysarthria. The tool allows users to save and download 

user-specific information collated when using the five dysarthria management 

tools. The five dysarthria management tools are Speech Examination Tool (SET), 

DDK Analysis Tool (DDKTool), Dysarthria Detection Tool (DyTECTOOL), 

Stress Marking Task (SMAT), and Dysarthria Severity Classification Tool 

(DySECTOOL). User’s information such as name, reference number and results 

from assessment and treatment tasks can be safely stored using this tool. The tool 

makes it easy for clinicians to monitor the progress of patients across to generate 

the progress report for patients and make an informed decision on the type of 

treatment to be recommended to such patients.  

8.2.3 Controls 

Start Session: Starts a new session for DYSATTOOL. User information is 

collected which includes name and biodata. A reference number is generated for 

new users which can later be used to access user’s progress report. Also, the 

reference number is transferred to other functions after the session has been started. 

Therefore, this function has to be selected before all other functions become active. 

The reference number is stored in the format: Name_Age_Date as a string.  

Speech Examination Tool: Launches the SET tool. The Speech Examination Tool 

analyses audio samples by extracting time-domain and frequency-domain speech 

features. It also allows users to visualize extracted features in an interactive 

graphical user interface. Audio signals to be analysed can be recorded directly using 

this tool, 

DDK Analysis Tool: Launches the DDKTool. The DDK Analysis Tool performs 

an automatic analysis of DDK audio signal using a novel technique. The measured 

parameters include mean DDK rate, minimum DDK rate, and maximum DDK rate, 

coefficient of variation of DDK rate, mean Peak Intensity, minimum Peak Intensity, 

maximum Peak Intensity, and coefficient of variation of Peak Intensity. Audio 

signals to be analysed can be recorded directly using this tool. 
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Dysarthria Detection Tool: Launches the DyTECTOOL. The Dysarthria 

Detection Tool automatically detects dysarthria in speech using 29 speech features 

and Neural Networks Classification. Audio signals to be analysed can be recorded 

directly using this tool. 

Stress Marking Tool: Launches the SMAT. The Stress Marking Task (SMAT) 

analyses dysarthric speech during stress marking task. The intensity and 

fundamental frequency targets during the task are based on research findings. Audio 

signals to be analysed can be recorded directly using this tool. 

Dysarthria Severity Classification Tool: Launches the DySECTOOL for the 

classification of dysarthric speech into 3 severity levels using 29 speech features 

and Neural Networks Classification. 

Close Session: Closes the current session. It reset all parameters and makes the 

other functions inactive until a new session is started. Before a session is closed, a 

message box pops up to confirm if the current session should be closed or not. 

8.3 Speech Examination Tool (SETool)  

8.3.1 Overview 

Analysing speech signals is very important in managing speech-related disorders. 

Certain speech features need to be extracted in order to effectively analyse these 

speech signals. SETool allows users to record, analyse and visualise speech signals. 

The extracted features are displayed and compared in the tool. A screenshot of the 

tool is shown in Figure 8-2 showing its functionality and controls.  

8.3.2 SETool Functionalities 

The SETool is designed to allow users to analyse speech signals and extract speech 

features. The extracted features include fundamental frequency, intensity, ZCR, 

formants, voice-unvoiced segmentation and time-domain representation 

(waveform) of the signal. 

The SETool also allows users to compare three speech features simultaneously 

using three plot spaces provided. As shown in Figure 8-2, the waveform, ZCR and 

STE are displayed simultaneously. In addition, audio signals can be recorded 
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directly using this tool. The SETool allows users to playback a specified segment 

of the audio signal being analysed.  

 

Figure 8-2. Screenshot of Speech Examination Tool (SETool) 

8.3.3 Controls 

Sampling Frequency: Allows users to choose the preferred sampling frequency. 

The users choose one out of four available options; 4096 Hz, 8192 Hz, 16384 Hz 

and 32768 Hz. The default is 8192 Hz. 

Audio File: Allows the users to navigate through the computer’s folders to select 

the audio signal to be analysed. The selected path and file name of the signal is 

displayed after the selection has been made. 

Playback: Allows users to playback a specific segment of the audio signal being 

analysed. The user can specify the start time and end time of the segment to be 

played back. 

Recorder: Records audio signal through the computer’s default microphone (or 

pre-setup microphone) and saves the recorded signal in the current folder using the 

file name pre-defined by users. 

Analysis Options: Contains three drop-down functions which allow the users to 

choose the feature to extract and display on the three plots. The default function is 
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the “waveform”. Once the “Analyse” button is clicked the selected audio signal is 

analysed and the selected features are extracted and displayed on the plot spaces. 

Observations: Performs an automatic assessment of the audio signal based on 

Neural Network classification using MFCC features only. The audio signals are 

classified as dysarthric or healthy. 

Plots 1, 2 and 3: Displays the extracted feature based on the user’s choice in 

“Analysis Options”. This allows the users to compare up to three extracted features. 

An illustration of the 3-plot display is shown in Figure 8-2. 

Save and Exit: Saves the current extracted data in an excel file and closes the 

SETool. The file is saved with the reference number assigned to the patient which 

can be accessed later.  

8.4 Automatic DDK Analysis Tool (DDKTool)  

8.4.1 Overview 

The automatic DDK analysis tool (DDKTool) analyses and automatically calculates 

the rate of DDK repetitions in an audio signal. DDKTool is based on the novel 

automatic DDK analysis tool presented in Chapter 5 of this thesis. This tool records 

and analyses DDK signals while providing feedback to the users. This tool is very 

useful in the assessment of speakers with potential DDK difficulty or inconsistency. 

The DDK task is carried out by allowing the users to produce a repetition of one of 

the DDK syllables (that is, pa, ta, ka or pataka) as fast as they can. This DDK tasks 

can be repeated up to 10 times and the clinicians can assess the variability and 

consistency of the results across various trials. This provides a piece of valuable 

information on how progressive or otherwise, the speaker’s disorder is. The tool is 

also useful when checking for the patient’s progress during and after therapy 

sessions. 

8.4.2 Functionalities 

The DDKTool allows users to record, save and analyse DDK signals. The tool 

automatically segments the DDK signals into individual syllables and estimates the 

duration and peak intensity of each syllable. The tool then estimates the DDKrate 
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which is the number of DDK syllables per second. The average DDKrate, minimum 

DDKrate, maximum DDKrate and the covariance of the DDKrate are estimated for 

each DDK signal. Also, the average, minimum, maximum and the covariance of 

the peak loudness are also estimated. The screenshot of the tool is illustrated in 

Figure 8-3. The tool allows users to analyse and compare up to 10 DDK signals 

while displaying the results of the 10 trials in a table as shown in Figure 8-3. The 

tool is therefore useful not only in analysing DDK signals but also in examining the 

speaker’s consistency and the variability of the measured parameters. 

 

Figure 8-3. Screenshot of the Automatic DDK Analysis Tool (DDKTool) 

8.4.3 Controls 

Speech Recorder: Records DDK audio signals and stores them as .wav files in the 

current folder. The users are allowed to specify the preferred file name. The 

recorded DDK audio signal is automatically analysed and the results of the 

segmentation are displayed on the two plots.  
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Load Audio File: Allows the users to navigate through the computer’s folders to 

select the audio signal to be analysed. The selected path, file name and the duration 

of the selected audio signal are displayed after the selection has been made. 

Playback Current Data: Plays back the current audio signal being analysed. This 

could be the recorded audio signal or the loaded audio signal. 

Plots: The DDKTool consists of two plots arranged vertically. The first plot shows 

the waveform of the segmented audio signal and the second plot shows the peak 

intensities of the individual DDK syllable. 

Table: The value of eight extracted features are displayed in the table for up to 10 

trials. It allows users to compare the results from up to 10 trials. Variation across 

trials can be accessed across the eight measured parameters. 

Download Result: Consists of two functions; save data and clear data. The save 

data function allows users to save the data in the table in an excel file using the 

patient's reference number as discussed in Section 8.2. The clear function, on the 

other hand, clears all the data in the table and clears the plot areas. 

8.5 Automatic Dysarthria Detection Tool (DyDECTOOL)  

8.5.1 Overview 

In Chapter 6, novel techniques for the detection of dysarthria in speech signal using 

extended feature extraction and machine learning classification techniques were 

presented. An automatic detection tool called DyDECTOOL was designed and 

developed to give patients and clinicians access to these novel techniques developed 

in MATLAB. The DyDECTOOL automatically analyses and classifies speech 

signals by extracting 29 prosodic, voice quality, pronunciation and wavelets 

features as described in Section 6.4.2. The extracted features are then classified 

using machine learning classification techniques as presented in Section 6.4.4. The 

classification output (result), as well as the extracted features, are visually presented 

to the users as shown in the screenshot in Figure 8-4.  
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Figure 8-4. Screenshot of Automatic Dysarthria Detection Tool (DyDECTOOL)  

8.5.2 Tool Functionalities 

DyDECTOOL analyses and classifies speech signal into two classes (dysarthric and 

healthy classes) using the classification technique chosen by the user. The extracted 

features including Mel-Frequency Cepstrum Coefficients as well as the 4th level 

wavelet energies and the harmonic-to-noise ratios of the signal are visually 

presented as illustrated in Figure 8-4. This allows the users to further examine and 

assess the extracted speech features. The output of the assessment can be saved in 

an excel file with a file name corresponding to the patient’s reference number. 

8.5.3 Controls 

The “Sampling Frequency”, “Select Audio File”, “Playback” and “Speech 

Recorder” controls perform the same functions as those in SETool (as described in 

Section 8.3.3). 

Assessment: this function allows users to either analyse or analyse & assess the 

speech signal. It also allows users to choose the preferred classification technique 

for the assessment. 

Features & Plots: The 29 extracted features are either presented pictorially using 

plots or in a textbox, as shown in Figure 8-4. Fundamental frequency, intensity and 
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formant-based features are presented in textbox while others are illustrated for 

interpretation and comparison. 

 Save and Exit: Enables the users to save the extracted features as well as the result 

of the assessment in an excel file using the patient’s reference number before exiting 

the tool.  

8.5.4 Dysarthria Severity Classification Tool (DySECTOOL)  

The dysarthria severity classification tool (DySECTOOL) is quite similar to the 

DyDECTOOL except that the speech signals are classified into three severity levels 

(mild, moderate and severe). The screenshot of DySECTOOL is illustrated in 

Figure 8-5. It is expected that the DySECTOOL will only be used in assessing the 

speech of a patient after the speech signal has been classified as dysarthric using 

the DyDECTOOL.  

 

Figure 8-5. Screenshot of Dysarthria Severity Classification Tool (DySECTOOL) 

The DySECTOOL provides the additional function of classifying dysarthric speech 

signals into 3 severity levels based on the novel severity classification technique 

presented in Section 6.5 of this thesis. Apart from the similar “Sampling 

Frequency”, “Select Audio File”, “Playback” and “Speech Recorder” and “Save 
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and Exit” controls, DySECTOOL has two additional controls namely; “Severity 

Classification” and “Severity Level”. 

Severity Classification: Enables the users to choose the preferred classification 

technique to be used in classifying the dysarthric speech signal.  

Severity Level: Shows the output of the severity classification. The corresponding 

severity level (mild, moderate or severe) is highlighted.  

8.6 Stress Marking Task (SMAT)  

8.6.1 Overview 

The stress marking task (SMAT) is a behavioural treatment tool that is designed to 

assist in improving speakers’ intelligibility during therapy sessions. This tool is 

developed based on the research findings, presented in Chapter 7 of this thesis, on 

the effects of modification of intensity, fundamental frequency and duration on 

stress marking in dysarthric speech. The results have shown that listeners are more 

likely to identify the stressed word in a sentence if the intensity is increased by 50% 

or the fundamental frequency is increased by 100% or the duration is increased by 

50%. Prior to the use of this tool, clinicians are advised to carry out an initial 

assessment of the patient to determine the most effective feature to work on based 

on their severity and ability to speak louder, raise the pitch or elongate words.  

8.6.2 Tool Functionalities 

SMAT consists of 120 exercises (that is, 40 exercises per feature) involving 10 

sentences with SVOA (Subject-Verb-Object-Adverbial) structure. There are four 

target positions per sentence. These are no target/stress, stress at the beginning of 

the sentence (that is, on the subject, T1), stress in the middle of the sentence (that 

is, on the object, T2) and stress at the end of the sentence (that is, on the adverbial 

T3). As illustrated in Figure 8-6, the exercises are selected by specifying the 

preferred feature, the sentence number and the target position. For each exercise, 

the texts of the sentence are displayed on the top right side of the interface and the 

speakers are required to stress the highlighted word. In the plot area, the target 

feature-profile is displayed on top and the speaker feature-profile is displayed 



8.7 Summary 167 

Tolulope Ijitona 

University of Strathclyde, 2019   

below. (Please note that the feature-profile can either be intensity profile, 

fundamental frequency profile or duration profile). Each exercise is repeated 

multiple times until the speaker-profile matched the target-profile. 

 

Figure 8-6. Screenshot of the Stress Marking Task Tool (SMAT) 

8.6.3 Controls 

Apart from the common controls “Sampling Frequency”, “Select Audio File”, 

“Playback” and “Speech Recorder”, the additional controls include: 

Target Position: Allows users to select one of the four target positions. 

Sentence Number: Allows users to select one of the 10 SVOA sentences 

Feature Selection: Allows users to select the preferred feature to modify (that is, 

intensity, F0 or duration). 

8.7 Summary 

In this chapter, novel assistive technology tools for the assessment and treatment of 

dysarthria through the use of digital signal processing principles and machine 
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learning techniques have been presented. These tools developed, in MATLAB, will 

assist users (clinicians and patients) in assessing dysarthric speech by extracting 

relevant speech features usefully in the management of this speech disorder.   



Chapter 9 

9 Conclusions and Future Works  

9.1 Conclusion 

In this thesis, a variety of signal processing techniques have been developed and 

used in the analysis, assessment and treatment of a neurological speech disorder 

called dysarthria which include Short-Time Fourier Transform, Wavelet 

Transform, Formant Analysis, Syllable Segmentation, Prosody (intensity, duration 

and pitch) Modification, Speech Segmentation, Harmonic–to-Noise Ratio Analysis, 

Mel Frequency Cepstral Analysis, and other Speech Processing techniques. The 

application of these techniques as well as Machine Learning Classification 

techniques has been researched and proposed for the management of dysarthria.  

In Chapter 2, an extensive literature review was presented, focused on various 

techniques used by clinicians as well as techniques proposed by researchers over 

the years. Key areas such as how the severity of dysarthria is measured and 

classified with respect to the speech intelligibility, perceptual and acoustic 

techniques used in dysarthria assessment, strategies used in dysarthria management 

and techniques used in the treatment of dysarthria are reviewed. Specifically, 

current techniques for dysarthria management including the Lee Silverman Voice 

Treatment, Dysarthria Treatment Programme, Computerised Assessment and 

Treatment of Rate, Intonation and Stress, and Music Therapy were reviewed. The 

major gaps identified in these approaches include robustness (most methods are 

focused on one of two features), need for improved accuracy, ease of application 

and need for an automatic system with little or no human interference. 

In Chapter 3, speech features that differentiate dysarthric speech from healthy 

controlled speech were reviewed. Techniques used in pre-processing the speech 

signals to a form where the speech features are easily and effectively extracted were 

presented in this chapter. The extracted features include time-domain features 

(STE, ZCR and durational features), spectral features (fundamental frequency and 

formants), cepstral features (Mel Frequency Cepstral Coefficients) and extended 
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features (jitter, shimmer, harmonic-to-noise ratio, and wavelets). Various feature 

extraction techniques were analysed and their effects on dysarthric speech were 

discussed in this chapter. A review of methods used in Silence-Unvoiced-Voiced 

segmentation was also presented as well as a review of machine learning techniques 

used in the classification of dysarthric speech. Research gaps in these techniques 

were identified and novel dysarthria management methods proposed in Chapters 4 

to 8 were aimed at addressing these gaps.  

The first novel contribution of this thesis, an algorithm for the automatic silence-

unvoiced-voiced segmentation of dysarthric speech, was presented in Chapter 4. 

This method is an improved segmentation approach which makes use of STE, 

LPEV and ZCR. This method uses a two-layer approach to reduce segmentation 

errors due to reduced loudness in dysarthric speech. The first layer of segmentation 

combines LPEV and STE to separate silence segments whilst the second layer uses 

the ZCR to distinguish between voiced and unvoiced segments. Experimental 

results showed that the use of speaker-specific thresholding helps in improving the 

segmentation performance despite the speaker’s voice quality and severity.  

In Chapter 5, a novel scheme for the automatic analysis of DDK productions for the 

assessment of dysarthria was presented. The algorithm is an enhanced segmentation 

method based on a speaker-specific threshold which varies with the speaker’s 

intensity and voice quality. The automatic DDK analysis algorithm comprises of 

three steps which include DDK syllable segmentation, minimum duration merging 

and DDK metrics estimation. In the first step, the segmentation threshold is 

calculated as a function of the moving average of the DDK signals. This is followed 

by rectification of syllable over-segmentation by merging pseudo-syllables based 

on the minimum DDK syllable duration. In the last step, the DDK metrics which 

includes DDK rates and DDK covariance for each production is calculated as the 

number of DDK syllables per second. Experimental results showed that this 

algorithm gives a better segmentation performance than manually labelled syllables 

and makes the DDK metrics easier and faster to compute. 

Novel methods for the detection of dysarthria and classification of speakers’ 

severity using machine learning techniques were presented in Chapter 6. The first 

method presented in this chapter consists of an algorithm for the automatic detection 
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ataxic dysarthria using extended speech features called Centroid Formants. This 

method results in an accuracy of 75.6% using neural network classification 

technique. The second method presented in Section 6.4 consists of a novel robust 

automatic dysarthria detection algorithm which combines prosody, voice quality, 

pronunciation and wavelet features in the development of the classification feature 

vector comprising of 23 features. Automatic detection was carried out using 

multiple machine learning classifiers and the ANN classifier gives the best 

performance with an accuracy of 99.4%. The method was further developed to 

classify the dysarthric speech signals into various severity levels based on the 

speakers’ intelligibility scores. The neural network classifier gives the highest 

performance with an accuracy of 99.7% in classifying the speech signals into 3 

severity levels. 

In Chapter 7 of this thesis, the stress production deficits in the dysarthric speech 

were investigated with the aim to help clinicians make informed decisions when 

managing dysarthria using stress production exercise. This investigation includes 

the identification of deficits by analysing both dysarthric and healthy controlled 

speech samples. The analysis reveals that all the three prosodic cues (intensity, 

fundamental frequency and duration) used by healthy controlled speakers in 

marking stress are impacted in dysarthric speech. The intensity, fundamental 

frequency and duration of the stressed word in the dysarthric utterances were lower 

than that of healthy controlled speakers. The effects of modifying these three 

prosodic features in the ability of listeners to correctly identify the stressed word in 

dysarthric utterances were further investigated. The experimental results from the 

investigation reveal that modification of at least one of the prosodic features was 

sufficient to increase the listeners’ ability to correctly identify the stressed word in 

dysarthric utterances. Even though the required modifications differ for the three 

features (50 % increment for intensity, 100% increment for fundamental frequency 

and 50% increment for the duration), the results of the investigation show that 

clinicians can focus on improving any one of the features to get similar results. This 

would also be useful when speakers are unable to modify multiple features 

simultaneously. 
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The algorithms presented in Chapters 4 to 7 were developed into interactive tools 

in MATLAB and these tools were presented in Chapter 8 of this thesis. The first 

tool presented was the parent tool called DySATTOOL from which the other tools 

which include SETool, DDKTool, DyDECTOOL, DySECTOOL and SMAT can 

be accessed. The SETool allows users to analyse speech samples and extract speech 

features such as Short-Time Energy, Fundamental Frequency, Formants, Zero 

Crossing Rate and MFCCs. The DDKTool was developed to allow users to record 

and analyse DDK samples by automatically segmenting the DDK samples into 

individual syllables and calculating the average DDK rate as well as the covariance 

of the DDK rates. The DyDECTOOL and DySECTOOL allow users to perform 

automatic detection and severity classification of dysarthric speech respectively 

using the novel algorithms presented in Chapter 6. The sixth tool called SMAT was 

developed to assist users in extracting and measuring the three prosodic features 

required to mark stress during a stress production exercise. 

9.2 Future Work 

In the work presented in this thesis, there are various research topics that can be 

explored for future research. In Chapter 4, the use of linear prediction error variance 

(LPEV) in the segmentation of dysarthric speech has been proposed. The inclusion 

of the LPEV feature in silence unvoiced voiced segmentation of dysarthric speech 

has shown a better performance when compared with the traditional methods and 

its application in dysarthric speech recognition needs to be explored since the LPEV 

is not influenced by varying intensity experienced in dysarthric speech.  

Moreover, one of the notable contributions of this research proposed in Chapter 6 

(Section 6.3) was the introduction of an extended feature called the Centroid 

Formant. The application of the Centroid Formants in the detection of Ataxic 

dysarthria shows promising results but its application in the detection of other types 

of dysarthria needs to be further explored. Also, the Centroid Formants as a 

representation of the energy distribution in the frequency domain contains unique 

information about the speaker which can be used in speech recognition applications. 

Another interesting research area where the Centroid Formants can be applied is in 

the detection of emotions in human speech. These and other potential applications 

of the Centroid Formants have been left for future research. 
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Furthermore, one of the questions yet to be answered is the ability to differentiate 

the six types of dysarthria using speech processing techniques. Considering the 

novel technique for the detection of dysarthria using prosody, voice quality, 

pronunciation and wavelets features presented in Chapter 6, future research may 

include the application of these features in the classification of the various types of 

dysarthria.  

Finally, the algorithms presented in this research work have shown promising 

results in the detection, classification and clinical management of dysarthria, there 

is, however, a need to further explore the application of these algorithms in other 

speech-related and clinical applications. There is also a need to further test their 

performances using datasets relating to other motor speech disorders.   
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Appendices 

Appendix A  Comparison of State-of-the-art Dysarthria 

Assessment Techniques 

Techniques Year Treatment 

aim 

Type of 

study 

Key findings Limitations 

Lee Silverman 

Voice Treatment 

(LSVT) 

2001 Increase 

Loudness 

Traumatic 

Brain 

Injury, 

ataxic 

dysarthria 

Loudness 

increased, 

improved 

intelligibility 

Prosody, 

resonance, 

respiration and 

phonation not 

considered. 

Altered 

Auditory 

Feedback (AAF) 

2010 Improve 

Speech rate 

Parkinson’s 

disease 

Improved 

speech rate 

Other speech 

features not 

considered 

 

Computerised 

Frenchay’s 

Dysarthria 

Assessment 

(CFDA) 

2015 Respiration 

and 

Phonation 

assessment 

Spastic 

Dysarthria 

Gives similar 

results with 

the 

traditional 

method 

Prosody and 

resonance not 

accounted for. 

Computerized 

Assessment and 

Treatment of 

Rate, Intonation 

and Stress 

(CATRIS) 

2010 Automated 

speech 

assessment & 

therapy 

Parkinson’s 

Disease 

Improved 

speech rate 

and 

intonation 

Testing limited 

to Parkinson’s 

disease. Lack 

of rhythm, 

respiration & 

phonation 

features. 

 


