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Abstract

In recent years, cloud-based computing and storage have become increasingly popular,

as they remove the need for users and developers to buy or rent expensive dedicated

hardware on an ongoing basis. This has led to the increasing centralisation of both ser-

vices and storage, where users are reliant upon a small number of cloud-based providers

to hold their data, and provide them with services they use. Recent events have shown

that security breaches of centralised data stores can lead to significant quantities of per-

sonal data being revealed. This centralisation can also result in inconvenience in the

event of the failure of the service provider, resulting in potential data loss or a loss of

utility of the service.

In contrast, a decentralised service and storage architecture removes the single point

of failure from a network, and allows users to remove their dependency on a single

company or service provider. In addition, by preventing storage providers from having

access to user data, as is inherently needed in a decentralised network to preserve confi-

dentiality, it is possible for users to protect their data from theft or unauthorised access,

giving rise to data security and privacy benefits.

This thesis explores the the challenges encountered in implementing a secure decen-

tralised network, based around storage, and presents solutions to some of these prob-

lems. A security analysis of the MaidSafe network is firstly given, setting the context

of the work, and investigating the state-of-the-art. Potential uses for decentralised ser-

vices are considered, including for use on mobile devices. The importance of client

device security is also considered, and a number of vulnerabilities affecting the security

of client-based software are identified and explored. A practical design of decentralised

architecture for preserving user privacy when discovering users is also contributed, to

illustrate how decentralised service design can be used to enhance privacy of existing

systems, and solve otherwise unsolved problems. A review and analysis of the privacy

policies of popular web-based services then shows the extent to which user privacy is at

risk from centralised web services. Finally, the concepts of identity and authentication

within decentralised networks are considered, with a novel smartcard-based approach

to securing user credentials within a decentralised network demonstrated.
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Chapter 1

Introduction

In recent years, computer security incidents have risen in status from non-events to

headline news. Barely a day goes by without high-profile news reports of a significant

security breach or incident of data theft from internet-connected systems, including ma-

jor household names with international recognition. It is now difficult to name a large

company which has not suffered from amajor, news-worthy security breach. Adobe [1],

Microsoft [2], Sony [3, 4], Target [5], Anthem [6], the US Office for Personnel Man-

agement (OPM) [7], Dropbox [8], Experian [9, 10] and Ashley Madison [11], amongst

others, have suffered from either cyber-attacks or significant data breaches in recent

years, many of which exposed or made available significant quantities of personal data.

Much of the data held by companies can be considered sensitive, either by legal

definition, such as medical or healthcare related data, or by nature of the context from

which it was retrieved. For example, while a security incident involving the release of

email addresses may not necessarily appear at first glance to be particularly severe, users

may feel this a much more serious breach if it were an email list of those attending a

particular clinic for a transmittable or socially stigmatised health condition [12].

Despite data protection legislation such as the UK Data Protection Act [13] being in

force and providing protections for the rights of data subjects, security breaches result-

ing in the exposure of personal information continue to happen, on an alarming scale.

Meanwhile, targeted attacks by foreign threats, commonly referred to as Advanced Per-

sistent Threats (APTs), present an ongoing a risk of intellectual property theft or unau-

thorised access to sensitive data by external attackers [14].

Despite the diverse range of threats being faced by companies and services, one com-

mon factor in many data breaches is the lack of encryption of data held on the server.

Where encryption is used, such as with services like Dropbox, often the encryption op-

erates at storage or server level. This means that data is stored encrypted on the physical

disks, but that user data is accessible in decrypted form to the whole application and ser-
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vice [8]. In situations such as these, the encryption only offers protection against offline

attack, where the servers of the service provider are examined while powered off (and

thus no keys are held in memory), or where physical disks are imaged and exfiltrated

without the corresponding keys. When powered on, and connected to the application,

they expose data in decrypted form. Transparent server-side encryption systems such as

these remove the benefit of the encryption, and instead security falls to that of the lowest

common denominator, usually the user account login process, since unencrypted user

data will be made available to a logged-in session. This was seen in the case of Drop-

box, where login validation logic was found to be non-functional, and user data was

potentially exposed to the wider internet [8].

It is certainly possible that the link between companies not employing encryption

across data, and data breaches, is indirect — one could reasonably conclude that com-

panies employing encryption may be spending more money on a security team, and im-

plementing their recommendations, thus resulting in a strong culture of security within

the organisation and a more secure product overall, which incorporates security as a

design feature. Nonetheless, encryption offers a secondary layer of protection against

security breaches — even if an insecure service is breached, if data is encrypted in a

manner where the cryptographic keys are not accessible to the service operator, the

user data itself remains secure. This defence-in-depth inspired approach is one rarely

seen, and where it is employed, it is often used as a unique selling point of a service, such

as Spideroak¹, rather than as a routine, best-practice security measure. Indeed, this sce-

nario is one addressed by the European Union’s upcoming General Data Protection

Regulation [15], which offers an exception to data breach notifications, in the event

that data was held encrypted in a manner which prevented the attacker from gaining

access to the underlying data, thus rendering it unreadable to them [16, Article 34, §3a].

Another potential avenue an adversary may explore to gain access to data include

access gained through presumed-trusted computer systems, such as workstations used

by staff, or publicly accessible (and tamperable) terminals. If the endpoint used to access

secure data is not itself secure, any data accessible by a user of that system through any

kind of credential entered to the endpoint is not secure. For example, a terminal in a

retail outlet may be unsupervised, allowing a hardware keylogger to be installed. This

would allow the user’s credentials to be captured, thus granting the attacker access to

any operation able to be carried out by the user. Alternatively, a piece of software like

a Remote Access Trojan (RAT) could be used to gain remote access to the terminal,

thus granting an unauthorised user the ability to access corporate systems using the

legitimate and trusted terminal. The challenge of endpoint security is therefore relevant

¹https://www.spideroak.com
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to preventing unauthorised access to sensitive data in an organisation setting. It is also

relevant for individuals wishing to ensure that their own systems are not subject to “evil-

maid” style attacks [17], where their own trusted system is modified by a third party

while the computer is out of sight. This could result in a keylogger or other piece of

pervasive malicious software being installed on the system, perhaps as a replacement

bootloader for their operating system, thus compromising the security of the operating

system running on the computer, even where best-practice techniques such as full-disk

encryption are used.

In an otherwise well-designed and secure service, one major avenue for unautho-

rised access is through social engineering. Indeed, this approach is widely recognised as

being highly effective, and “bug bounty” programs typically make specific exclusions

for social engineering attacks on staff [18, 19]. Given social engineering leverages privi-

leged access of staff, any service not employing encryption in a manner which prevents

access by the service provider is inherently vulnerable, to at least some extent. For ex-

ample, scenarios where high-profile targets’ emails have been accessed by third parties

have highlighted the risks of social engineering being used against helpful staff, in order

to gain access to accounts they should not have access, including, for example, the CIA

Director’s AOL email account [20].

1.1 Thesis Overview

This thesis explores the design of secure, decentralised network services and storage,

and some of the challenges faced in the design and implementation of these services. It

introduces general techniques, which may be used as a stepping stone towards a secure

decentralised storage architecture, or which may themselves be applied more generally

to existing architectures, to significantly increase the security of stored data. An anal-

ysis of an existing secure decentralised network, including demonstration of a number

of novel attacks, is presented, as well as analysis of their severity and ease of realisa-

tion. A number of contributions are made towards the realisation of practical, secure

information storage, whether on centralised or decentralised services, highlighting the

importance of client-side security, and showing that current client-side security mea-

sures are typically inadequate. Widely used software, claiming to offer security through

encryption, is shown to not be secure, with many examples found to make unsubstanti-

ated claims as to their security. Finally, an exploration of identity within a decentralised

network is carried out, given the differences between a centralised and decentralised ser-

vice, and a novel means of handling identities securely on smartcards, without storage

constraints, is presented.
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The remainder of this chapter explains the motivation of this research, based upon

the key problems encountered in secure storage solutions, and describes the main con-

tributions of this work.

1.2 Motivation

This work is motivated by the challenge of allowing people to securely store their per-

sonal data, without fear of it being compromised, in order to preserve their right to

privacy. While this does not inherently require the use of a decentralised network, se-

curity can be considered to encompass a variety of factors, including confidentiality

and availability. In order to ensure the confidentiality of data, and thus offer users the

ability to exercise their right to privacy, it is necessary either to have strict and effective

access controls in place on the data, or to securely encrypt it, such that the data itself is

not readable to an unauthorised user. Given the principle of defence-in-depth, there is

clearly an advantage in doing both, therefore ensuring that even if access control were

to be breached, the data retrieved would be rendered unreadable and unusable to the

attacker. This is further motivated by the upcoming European General Data Protection

Regulation (GDPR) [16]. Availability, on the other hand, encompasses the challenge

of ensuring that a user is able to gain access to their own data at any time, without the

failure of another party, be that technical or commercial, causing a user to lose access

to their data. This is therefore another scenario where a decentralised means of storing

and accessing data may be advantageous.

The key motivations of this work can therefore be summarised as follows:

• Affording individuals a strong assurance of the confidentiality, integrity and avail-

ability of their own data.

• Using these properties to offer users privacy choices which are enforced through

cryptography rather than policy.

• Layering encryption on top of existing policies to offer stronger protection of data,

to reduce the impact of breaches.

• Designing future systems such that user data and functionality is not lost in the

event of a service provider failure.

The following sections shall provide some context as to the challenges faced by users

of internet-based services in an era of increasing platform centralisation.
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1.2.1 Limitations of Centralised Services

When centralised services are built upon other centralised services, a significant chain

of potential failure may occur, whereby a provider of platform-as-a-service technology goes

offline, as a result of their upstream database provider suffering from a prolonged fault ².

Here, in addition to the customers of the platform provider finding their services are

unavailable, many other services using the upstream provider are alsomade unavailable.

For example, a database platform provided as a service, such as DynamoDB, may be

used by many other products, such as Netflix, meaning that a DynamoDB outage could

cause service disruption for Netflix users [21]. Decentralised services naturally remove

this chain of dependency, and allow services to operate without failure of an external

party causing a loss of service.

Additionally, in the event of a centralised service provider deciding to no longer pro-

vide a service, users of that service are often left with little or no recourse to allow them to

continue using the service; since the service itself resides only with the service provider,

and the user’s data is typically held by that provider, users have no option but to stop

using the service. With more centralised services, this increases the risk that users will

find a service they rely upon one day disappears, or announces it will stop operating. At

that point, users may be able to retventurebeatamazonrieve their data from the service,

but will lose the functionality offered by the service. Decentralised service architectures

allow users to be reassured that nobody can take away a service from them, and that

it will continue to be available for them, irrespective of the actions of the developers.

High-profile examples of this include Google Reader, the now-discontinued web-based

RSS reader, and the Revolv Internet of Things hub, which was acquired by Nest and

then closed ³, leaving customers with non-functional hardware.

In addition to the loss of availability of services, a number of high-profile data

breaches have occurred in recent years, whereby unauthorised access was able to be

made to personal data, on account of a centralised service provider’s failure to authen-

ticate users and enforce access control rules properly. This makes it difficult for a user to

safely entrust a third party service provider with their confidential data, since a simple

mistake or failing on the part of the provider may result in its exposure.

There are also clear benefits for user privacy when it is not possible for third parties

to access user data without the user’s consent. Many centralised services have built up

business models whereby user data is regarded as an asset, and it is shared with others

for the purpose of profiling and targeting users with advertisements. There are therefore

benefits to individual privacy and transparency when it is not possible for a third party

²https://aws.amazon.com/message/5467D2/
³http://revolv.com/
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to access a user’s data without their express consent.

Therefore, to summarise, the following scenarios are envisaged as being desirable to

mitigate, as well as practical to seek to solve through the use of encrypted decentralised

services:

• Prevent data from being disclosed to unauthorised third parties via errors or

weaknesses in service provider systems or procedures.

• Allow users to retain access to services and data, even in the event of popular

cloud services experiencing outages.

• Prevent loss of functionality due to a service providing ceasing to offer their ser-

vice.

1.2.2 Convenience versus Security

Centralised web services offer some advantages to users, such as the ability to carry out

password resets in the event that a user forgets their password. Nonetheless, the risks

of such “backdoors” in technology were clearly highlighted in the widely publicised

case of Mat Honan. In under an hour, his “entire digital life was destroyed” — his

Gmail and Google account was compromised and deleted, his Twitter account was

taken over, and his Apple ID account was used to remotely lock and wipe his phone,

tablet and laptop, causing the deletion of all of the data held on those devices [22]. The

means through which Honan’s accounts were compromised highlights the fundamental

weakness of services where user data is accessible to any party other than the authorised

user — social engineering attacks against companies’ support staff, eager to be helpful,

ultimately led to the compromise of the accounts and devices in question.

Based on Honan’s account of events, it was possible for the attacker to gain access to

his Amazon account using only his email address, name, and billing address, the latter

of which were able to be looked up in a phone directory, and the former relatively widely

available online. This was then used to gain access to existing details on his Amazon ac-

count, including the last four digits of the original credit card on the Amazon account,

which was the security question for Apple’s password reset system. This allowed the

attacker to take control of the Apple iCloud account, thus gaining access to the asso-

ciated email as well as the ability to block and wipe any computers, phones or tablets

associated with the account [22].

There is therefore a clear risk to user data, where it is possible for a service provider to

either gain access to a user’s data, or to grant others access to a user’s data. Users entrust

service providers with their personal data, and have expectations of privacy, which are,
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as shown above, not always 8fulfilled. There is also no technical proof or guarantee that

these privacy policies are enforced or followed by the service provider, if it is possible for

them to gain access to user data or allow others access to a user’s data, and deny having

done so.

This example, while extreme, highlights the risks of data held in online services, and

the ease with which even a technically-competent individual (a technology writer) could

be attacked, causing significant disruption to their life, as well as significant data loss.

This scenario highlights the extent to which current services and products are reliant

almost entirely upon a security-by-trust model; where a user simply must trust third

parties in order to protect them, but where these third parties fail to verify the legitimacy

of those attempting to make use of this trust to re-gain access.

Had Honan used end-to-end encrypted services, it is likely that the attacks described

above would not have been possible — services designed around a model where the

provider was untrusted would have prevented social engineering attacks from yield-

ing any useful result, and avoided unintentional disclosure of his information which

later led to account compromise. Despite repeated reminders from many sources that

users should stop using “facts” about themselves as passwords (such as family members’

names, dates of birth, etc.), when access can be gained through account recovery pro-

cesses as a result of such fact-based authentication, there is a clear disparity between the

level of security expected and experienced. These recovery procedures themselves also

frequently contain vulnerabilities [23].

There is, however, a clear trade-off between usability and security, at least within

today’s services. It is possible to design a very secure service which does not facilitate

the recovery of an account following the loss of the password. This may be perceived as

difficult to use by many users, particularly those who do not use password managers to

store their credentials. The ability to reset a web service’s password through an email

link, while convenient, also reduces the security of the web service to that of the security

of a user’s email account. As users have been shown to generally be unable to select and

remember secure, unique, high-security passwords [24], this clearly presents a usability

challenge.

These challenges present opportunities for new approaches to the security of data,

offering increased security and privacy of data, while also removing the availability risks

of having a single point of failure in a service’s architecture.
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1.3 Towards Potential Solutions

There are several potential approaches to eliminating or reducing the risk of attacks

such as those discussed above, and mitigating the impact of one succeeding. Not every

approach will be appropriate in every scenario, nor will every attack be applicable in

every situation.

One potential and signficant approach to reducing the impact and feasibility of secu-

rity breaches is through the use and development of decentralised services, rather than

centralised services where all user data is held under the control (and access) of one or a

small number of companies. When data is not held under the control of one common

entity, it becomes much harder to carry out attacks on a third party to gain access to an-

other user’s data. Had the CIA Director’s emails been held in a decentralised manner,

rather than under the full control of AOL, it would not have been possible for attackers

to gain access to his emails by social engineering AOL staff using information obtained

from Verizon [20]. While attacks against individuals remain possible in a decentralised

system, there is no single point to attack, since all users’ data is not conveniently resid-

ing on one entity’s servers. This makes it more difficult to carry out a denial of service

attack impacting a significant number of users, and means it is necessary to attack every

individual server one-by-one, rather than there being a single large target to attack.

Despite this, in some situations it may not be realistic or practical to use decentralised

services, as this thesis shall explore, particularly in the context of mobile access to ser-

vices. For this reason, more general techniques to ensure the security of data held on a

service are still relevant. Additionally, many of these can also be applied to decentralised

systems, as the techniques themselves can be applied to various scenarios, in the design

or implementation of services, or the security of client end-points for the purpose of

protecting data from unauthorised access.

One fundamental difference between decentralised and centralised services is that

typically, as a result of decentralised services holding user data on untrusted third par-

ties’ computers, all user data is encrypted by a key held only by the user. This is of-

ten referred to as client-side encryption, since the key is only accessible to the client,

rather than the server. This approach offers a significant advantage for user privacy

and security, since it is not possible for any service provider or third party to make

available sensitive data — a user’s data becomes as secure as they make it. Note that

this type of encryption is not in any way unique to decentralised services; it is possible to

create a client-side encrypted service in a regular centralised architecture. Client-side

encrypted services, which protect user data against decryption by the server, remain rel-

atively uncommon, yet are much more widespread in decentralised services as a result

of the frequent desire to hold user data on untrusted computers. This allows for ac-
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tual deployments and implementations of this technology to be studied. One challenge

of client-side encrypted services is around the management of user keys for non-expert

users— there is typically no process in place to facilitate the recovery of lost keys, mean-

ing that users must take responsibility for securely storing their keys in a manner which

will not be lost or compromised.

1.4 Key Research Questions

The thesis argument put forward here is that decentralised storage networks present

significant opportunity for the protection of privacy and security of individuals’ data,

while also introducing the potential for new security considerations, as a result of their

decentralised design. Therefore, the thesis will explore how security and privacy of data

can be protected in such a network. The decentralised and distributed nature eliminates

the concern of a single point of failure from systems. By building a secure storage net-

work, other services and applications can then be built upon this secure storage layer.

These points shall be explored through the following research questions:

• How vulnerable is a decentralised storage network to large numbers of malicious

parties participating in the network, and are such attacks practical?

• How can a decentralised network retain security against large numbers of rogue

users joining, without a centralised entity controlling access to the network?

• How can parties which do not trust each other reach secure agreements in a

decentralised way, in order to allow decentralised services to be used as replace-

ments for centralised platforms?

• Could mobile phones participate in a decentralised network in an efficient man-

ner, given the typical requirement for persistent connectivity to participate in a

decentralised network?

• To what extent are the devices and software used to access a decentralised net-

work a risk to security, and how can these be avoided?

• If services were to be built upon a decentralised platform, how can users discover

other users and content within that network, without relying on centralised dis-

covery processes?

• How can a user protect and secure their own data within a decentralised network

when, by definition, their information is exposed to other users?

9



• Can users feasibly and practically have multiple identities to allow for separation

of different activities on a decentralised network, and reduce their exposure if

some of their keys were to be compromised?

1.5 Thesis Outline and Contributions

Figure 1.1 illustrates the layout of the main chapters of this thesis, highlighting the re-

lationship between chapters.

Chapter 2 presents an overview of security concepts used and referred to by other

chapters, and explores some of the key principles of security, privacy, and the tech-

nology surrounding them, as well as some of the general rules of security and proper

implementation.

Chapter 3 presents the first contribution of this thesis; a high-performance proof-of-

storage system design, to prevent flooding attacks from gaining control of the network,

by requiring and verifying that users contribute a useful resource to the network.

A thorough critical security evaluation of the MaidSafe decentralised network [25]

architecture and implementation is also presented, to provide context for this contribu-

tion, highlighting significant performance gains which can be gained through a modi-

fied cryptographic implementation, without a loss in security. A number of threats to

the network are introduced, with a novel implementation used to show that the uniform

XORmetric cannot be assumed to offer security against determined attackers engaging

in a Sybil attack, and results used to show a high-performance practical attack against

a network relying on address uniformity for self-management. Finally, a decentralised

protocol to allow for ownership-transferable data is contributed, facilitating the muta-

tion and transfer of data on a decentralised network, in a manner which is verifiable to

all other other network members.

Chapter 4 extends the work of Chapter 3 by considering solutions to some of the chal-

lenges introduced by decentralised services. It contributes a decentralised digital con-

tracts solution, allowing for third-party verification of contracts, allowing users within a

decentralised storage network to trade responsibilities to provide storage in the network,

with parties providing storage able to charge for the provision, to offset the use of buyers.

The protocol is threat-modelled, and an extended version is contributed, showing how

both parties may create obligations upon the other, through the use of these verifiable

contracts. A scheme for the implementation of decentralised services is also contributed,

identifying the necessary high-level operations, and showing how these should be im-

plemented to realise secure, user-facing functionality for decentralised services. This

chapter also considers the feasibility of using mobile devices with decentralised network
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Figure 1.1
Diagram illustrating layout of thesis and content of chapters
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services, and contributes a hybrid relay approach, allowing users to join a decentralised

network via a relatively untrusted relay.

The importance of the client software and devices used to access services is explored

in Chapter 5. This chapter contributes a security evaluation of various software used on

endpoint systems, to establish a view of the current state-of-the-art. Firstly, the widely-

used Google Services in the Android operating system are explored, and it is shown

that despite claims otherwise, certificate pinning was not in use, exposing user data

to man-in-the-middle attacks if a certificate authority is compromised. It also shows

that certificate pinning updates are implemented in an insecure manner, permitting

the updates to be blocked from being installed. An architecture entirely trusting the

server is shown to result in poor security decisions, such as sending all user keystrokes in

the password field to a server over unpinned SSL. It was also shown that Google may

remotely change the encryption password on devices using Android Device Manager,

violating user assumptions of the security of device encryption. A review of third party

encryption software is also presented, highlighting the lack of proper implementations

of cryptography on a wide range of popular applications on the Play Store, claiming to

use encryption to protect user data.

In order to make decentralised services useful, they should offer user-facing function-

ality to assist users with finding other service users, in order to permit them to interact.

Chapter 6 contributes a novel solution to the challenge of privacy-preserving contact or

user discovery on a third party service, without requiring the disclosure of information

to the service provider which would identify a user, or allow them to form social graphs

between users. A full analysis is provided of the level of security offered against attack,

and the various attack scenarios are modelled based upon their difficulty and com-

putational requirements. This offers a solution to contact discovery, a process which

currently requires a centralised service to have access to information about all users of

a service, and be trusted to act properly with this information.

Chapter 7 considers the challenge of establishing and authenticating users and their

identities on services, which is necessary both for the security of a decentralised storage

network, as well as for security of applications and services. The contribution of this

chapter is a novel approach to storage of identities on smartcards, for centralised or

decentralised services, allowing a single smartcard to be securely used with an uncon-

strained number of identities, thus permitting users to follow best practice and segre-

gate their identities used on different services. A full security analysis is carried out for

the implementation, showing the measures taken to prevent a variety of attacks, and

the performance of the solution is demonstrated on a readily available and affordable

smartcard.
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Chapter 8 concludes this thesis, and introduces discussion about future work and

challenges in the field of secure decentralised services. It re-visits the research questions

posed in this introduction, and details how these have been answered.

13



Chapter 2

Background Material

This chapter shall review a number of background concepts used within the remainder

of this thesis. Firstly, an overview of centralised and decentralised networks are given, as

well as a history of decentralised network design and related work. Next, a more general

overview of security is given, exploring the principles and a number of the technical

constructs used in order to offer security. Finally, an overview of privacy and previous

related work in the field is given, in light of the close links between security and privacy

in the design of services.

2.1 Service Architectures

Within the context of this work, most services shall be considered to be either cen-

tralised or decentralised. Centralised services are typically those which are operated by

a single provider, within their own infrastructure. This includes many popular web or

cloud-based services. A common characteristic of centralised services is that the core

functionality offered by the service would be lost by either a technical or business fail-

ure of the company behind the service. In contrast, decentralised services are designed

such that functionality is preserved, even in the event of a failure of the technical or

business side of the company behind a service.

2.1.1 Centralised Services

Many of today’s internet-based services are built around centralised architectures.

While, as shall be discussed below, the internet itself is fundamentally decentralised, it

is possible for a centralised architecture to be used in the implementation of a particular

service. An example of a typical centralised service architecture is shown in Figure 2.1,

where a client device connects to a set of remote provider-operated services across a con-

nection. All (or a large number of) service users communicate with these same servers.
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Figure 2.1
A typical centralised service architecture, where client devices communicate with a set of
provider-controlled servers, holding their data under the control of this service provider and
their servers.

While these servers may be distributed geographically throughout the world, users are

still dependent upon one single entity; the provider of the service. If this company were

to choose to cease providing the service, or cease trading, a user’s ability to access the

service would not be guaranteed. A similar outcome could be experienced in the event

of a wide-spread cyber-attack resulting in the service being taken offline, for example.

This service is centralised, in that if the operator of the service ceases to provide the

service, all utility of the service is lost by its end users. The failure of this single provider’s

architecture will result in the loss of availability of the service for all of its users.

In recent years, the expansion of cloud computing has resulted in a second layer of

centralisation across internet-based services; the upstream providers of computing re-

sources, storage and other services may well be heavily centralised, resulting in a water-

fall effect in the event of an outage. When centralised services are built upon other cen-

tralised services, a significant chain of potential failure may occur, whereby a provider of

technology goes offline, as a result of their upstream database provider suffering from

a prolonged fault [26]. In this case, an Amazon DynamoDB cloud database experi-

enced downtime. The knock-on consequence of this was the unavailability of a wide

range of other products and services from Amazon’s clients, including many significant

and well-known websites [21]. In addition there was a knock-on impact on Heroku,

a Platform-as-a-Service provider, which relied on Amazon cloud services for its un-

derlying architecture, causing two significant outages for its users, of 8 and 7 hours

respectively [27].

Here, in addition to the customers of the platform provider finding their services are

unavailable, many other services using the upstream provider are alsomade unavailable.
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Figure 2.2
The chain of dependency of a Heroku-based service, with Heroku being the customer-facing
platform provider, and Amazon AWS the underlying hardware operator.

The ability to remove this chain of dependency, and allow services to operate without

failure of an external party causing a loss of service, is clearly an advantage for the

resiliency and availability of online services. Such failures are not isolated incidents,

with previous disruption causing major outages for major internet services [28].

2.1.2 Modern Web Services

Manymodern internet-based services and applications are designed such that user data

is stored by a single entity, and all users access their data from this entity. Today there

are a number of highly popular web-based email services, such as Gmail, which remain

a part of the federated email network, implementing the standard protocols, but which

hold the email data of many millions of users under the control of a single company. In

the event of a failure of their servers or infrastructure, massive numbers of people may

be left without email, causing major disruption [29].

Similarly, when a user uploads data to a centralised storage service such as Drop-

box, that data is entrusted by the user to Dropbox, who store this data on their own

servers. When the user then wishes to access the data again, they authenticate them-

selves to Dropbox, and request the data be returned to them. In the meantime, this

data resides on Dropbox’s infrastructure, where the user must trust that Dropbox keep

the data secure, and prevent others from accessing it. This trend towards centralised

storage of information and service provision is relatively recent, compared to the his-

tory of computing and the internet. Early file and information retrieval protocols on

the internet, such as gopher and FTP, provided similar functionality in a decentralised

and federated way, as discussed in Section 2.1.4, which anyone could run without the

user-friendly web-interface and product-based overlay provided by Dropbox.

In the context of service provision, a decentralised service can be considered one

where users are not required to use a single provider’s servers to receive access to a ser-
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vice. For example, email itself is a federated and decentralised service as you may install

and operate your own server and client, but Gmail is a centralised mail service, since it

is not possible to host your own installation of Gmail and hold your data independently.

It is also important to consider that there is a subtle distinction between the levels

of decentralisation seen in services. For example, if one user’s email server fails, they

are unable to send and receive email through their server at that time. In contrast,

Distributed Hash Table (DHT)-based decentralised services, which will be discussed

later, remove this reliance upon even a user’s own server, since there is no one-to-one

mapping between users and servers; the user may connect to any available member of

the network and gain access to their data.

User-facing functionality on the internet is increasingly centralised, as a result of

Software-as-a-Service (SAAS) business models and products. The SaaS model for ser-

vices has been described as where “the software system and users’ data are stored off-site

in a central location run by the vendor” [30]. From a perspective of security and privacy

however, there are significant implications for users.

2.1.3 Decentralised Services

Historically and at its heart, the internet is fundamentally a decentralised network. De-

cisions on the routing of packets are taken at a local, per-router, level, using the Border

Gateway Protocol (BGP) to identify available routes [31]. This means that in the event

of disruption to part of the network, working nodes will continue to pass packets to

their destination using alternative routes. This makes the internet inherently resilient,

as there is no single entity which can prevent other entities from continuing to use the

network, and inherent redundancy in connectivity between systems. In the event of the

failure of a network link, packets can be routed to their destination using alternative

routes.

This also applies to the low-level protocols used to provide connectivity and basic

functionality on the internet. For example, HTTP and email are decentralised proto-

cols, since users can operate and interact with their own, or others’, HTTP or email

servers. Indeed, the traditional services of the internet and subsequently world-wide

web were almost always implemented in a decentralised manner, as a result of the in-

herently decentralised design of the internet, aroundmultiple servers located inmultiple

locations, to which users may connect.

By virtue of this, it is possible to build services upon the existing internet infrastruc-

ture which are based on decentralised architectures. There are two common models for

decentralised services on the internet; distributed and federated services. These shall

now be considered.
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2.1.4 Distributed and Federated Services

The Domain Name System (DNS) protocol is not a fully decentralised protocol, al-

though it is designed in a distributed and federated manner. DNS allows for hierarchi-

cal naming and efficient look-up of computers on a wide-spread network, such as the

internet. In order for such a system to work, however, it is necessary for users and server

operators to agree upon a series of naming conventions, and a process through which

names may be claimed on the system. This was implemented through the centralised

process of DNS registries. DNS is distributed in that anyone may run a DNS server, and

it will interact with DNS servers elsewhere on the internet to allow any domain name

to be resolved. It is not, however, decentralised, since overall control of the root zones

is vested in one entity (ICANN), which delegates authority to manage sub-divisions of

the namespace to registrars [32].

Despite the centralisation of the DNS root, the DNS protocol itself makes it possible

for anyone to host their own root zone, although in reality almost all networks advertise

local DNS servers which use the standard Internet Corporation for Assigned Names

and Numbers (ICANN) root zones. Open source projects have undertaken to provide

alternative roots ¹. Many internet service providers and network operators provide their

own DNS servers, in order to reduce query bandwidth and avoid excessive load on the

root DNS servers.

Federated network services are those designed to use standardised communications

protocols, facilitating interoperability and communication between users on different

servers implementing the same standard. Users of different implementations or installa-

tions of a compatible servicemay interoperate and interact with each other, regardless of

the internal structure of their own implementation of the service, provided their imple-

mentation adheres to the agreed-upon standards for interoperability between providers.

Federation is seen in many early internet protocols, where users are identified based

upon their username, as well as the hostname of the server they use. This can be seen

today in email addresses — a user’s email address is formed of a username, the @ sym-

bol, then the hostname of their email server. This made email a federated service, where

each user was able to run their own interoperable server, and send emails to anyone else

with access to an email server. In the event of one email server failing, only those users

either sending or receiving email from it would be affected. Other servers would oper-

ate according to the protocol, and attempt to redeliver mail when the recipient server

was back online. Therefore, from a global perspective, email can be considered to be

decentralised, since the loss of one provider will not prevent others from exchanging

email, although for a given user, they are dependent upon their provider itself, which

¹https://www.orsn.org/en/
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Figure 2.3
A typical federated service architecture

may be using a centralised architecture.

Figure 2.3 illustrates the architecture of a federated service, where multiple servers

are operated by independent third parties, and a client may interoperate with these as

required.

2.2 Impact of Centralisation on Security and Privacy

Centralisation, according to the Merriam Webster dictionary, is the process of bringing

“something under the control of one authority”, or “to bring things [...] together at a

single point or place” [33]. Within the context of a network-based service, this could be

described as a single company or entity having control of a service, and the data of its

users. Note that, with the advent of cloud computing and outsourcing of storage, the

structure and operation of the service itself may be centralised, even though data may

not necessarily be geographically centralised [34]. For example, the popular Dropbox

cloud storage service uses Amazon’s S3 cloud storage product to store user data [35].

The original intention of the internet when it was first designed was for research,

rather than for commercial use, and as such, security was based upon mutual trust, re-

spect, and assumed honour and good intentions of others with access to systems [36].

Indeed, due to the cost of computers at the time, it was simply accepted that they would

be shared. Therefore, it was acceptable to store email on a shared email server, since it

was assumed that those with administrator access to the system would not read or inter-

fere with their emails. These previously-unwritten rules were formalised by the Usenix

Special Interest Group for Sysadmins, in the System Administrators’ Code of Ethics, which

states “I will access private information on computer systems only when it is necessary

in the course of my technical duties. I will maintain and protect the confidentiality of

any information to which I may have access, regardless of the method by which I came
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into knowledge of it.” [37].

More recently, however, the cost of computers and internet connectivity has reduced

incredibly — free wireless access to the internet is now available to the public in towns

and cities [38], and internet-capable devices are available for as little as £10; £5 for

a Raspberry Pi Zero, and £5 for a WiFi adapter. Despite one computer per person

now being practical, and indeed in many cases more than one computer being the

norm [39], today’s internet services continue to be built with the assumption that users

should provide all their data to a service provider, which holds this data on an external

computer, and is trusted to hold the user’s data securely. While this offers some elements

of convenience, since users may easily access their data from anywhere that this server

is available, it has also resulted in the effective centralisation of significant quantities of

important, and sensitive, user data.

In contrast to the strict historical expectations of systems administrators keeping all

user data private, and only accessing it for technical duties, today’s service providers no

longer uphold this principle.

For example, Google’s Gmail service is widely known to read user email, for the

purpose of building advertising profiles of users, which may be incorporated into its

AdSense product, which shows advertising across the wider internet, based upon the

content of a user’s email inbox [40]. Similarly, Yahoo mail defaults to scanning user

email for targeted advertising [41]. Despite widespread criticism [42], Microsoft has

asserted that it is allowed to choose to carry out “content pulls” of user accounts based

upon internal legal review, due to its terms and conditions, and that it may look through

these for their own purpose - CNN described how investigators “pored over emails

and instant messages”, since “the servers storing the information are on its own prop-

erty” [43].

Indeed, The Guardian has highlighted that most webmail services claim rights to

read user data for their own reasons to protect themselves [44]. Such terms and condi-

tions are instituted as contracts between users and the service provider, and therefore

must be accepted for users to make use of the service.

This highlights a fundamental limitation in the threat models used when designing

such products and services — it is clear now that service providers do not view them-

selves as posing a threat to user security or privacy, and therefore consider themselves as

a trusted entity within the design of the service, allowing themselves to authenticate and

verify users, and carry out other similar tasks. This assumption has been questioned by

Berners-Lee, original developer of the world wide web [45], as well as by others [46], as

the inherent centralisation of data is creating both dependency upon a small number of

companies, as well as opening up the actions of users to this small number of companies.
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In contrast, privacy-preserving and high security alternatives would consider as

many components of a network and service architecture as possible to be untrusted,

with trust only placed in the absolute minimum of components necessary to ensure

operation of the service. The assumption that the service provider is trustworthy is, as

discussed previously, now known to be misguided, given that service providers have

now shown on multiple occasions that they do not regard user data as confidential and

inviolable. In any case, the risk of a security breach yielding access to vast quantities of

user data has only further highlighted the risks to users when they must entrust third

parties with their data in order for access to a service.

2.3 Distributed Hash Tables

One of the major challenges within a decentralised network is the efficient location

and retrieval of data, with much previous work having focused on addressing this [47,

48, 49]. The challenge is somewhat different on centralised systems, where inter-node

latency is typically considerably lower, as servers working togethermay be locatedwithin

the same rack of a server cabinet. In contrast, peers in a decentralised network may be

located at opposite sides of the world, posing challenges for data discovery and routing

of requests.

In a conventional network, data is, by default, only held on that one system. In the

event of its failure, the data would be lost if there was no backup copy available to be

restored. This principle underpins the fundamental operation of individual computers,

and means that even within a decentralised and federated system, there is still a risk

of service unavailability or data loss, in the event of a system failure. As a result, vari-

ous techniques for the storage of multiple copies of data exist. An innovative design of

interconnected network, referred to as a Distributed Hash Table (DHT), makes it pos-

sible to overcome this, while remaining entirely decentralised. Within a DHT, many

computers join the network, each taking an address within an address space, derived

from the output of a cryptographic hash function. A more detailed explanation of cryp-

tographic hash functions is given in Section 2.4. The uniform output property of this

hash function results in a probabilistically uniform distribution of nodes within the ad-

dress space of the DHT. Also within this address space are pieces of data, which can be

considered as chunks. Each chunk has an address, and the data is stored by the network

members located closest to the data’s address. Note that this is closeness based on logical

addressing, based solely upon DHT addresses, and not based upon physical proximity.

A variety of DHTs were presented in parallel in the literature, including Chord [50],

CAN [51] and Kademlia [52].
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Figure 2.4
Use of cryptographic hash functions within a DHT for addressing

Figure 2.4 illustrates how cryptographic hash functions may be used to determine

the address of a given piece of data. The DHT can thus be effectively considered as a

key-value store, with the key being the network address, and the value being the data

itself, such that the key is equal toH(value). This is the concept of content-addressable

storage, as proposed by CAN [51].

Multiple nodes with an address close to a given piece of data may be responsible

for the storage of that data, meaning that the loss of any one of these nodes does not

prevent the data from being accessed. The Kademlia DHT network concept has been

extended and widely deployed as the mainline Bittorrent DHT, which was estimated to

have between 15 and 27 million daily users in 2013 [53].

Within theKademlia DHT [52], eachmember forms a routing table ofN entries, for

a network with nodes using N -bit addresses. By calculating the XOR of two network

addresses, a closeness metric is obtained between the two nodes. Each routing table

entry is considered as a bucket, containing a number of nodes’ information. Working

through the routing table, the buckets found should contain routing information (IP and

port) for nodes which are of a given distance from the node in question. For example,

the first routing bucket will contain details of nodes which share zero bits in common

with the seeking node’s address. The second routing bucket would contain details of

nodes with the same first bit of their address. The third bucket would contain details of

nodes sharing the first two bits of their address with the seeking node. This continues for

each bit of the address, meaning that the probability of finding members of the network

to fill the full routing table will decrease for later routing table records [52].

By way of example, Figure 2.5 illustrates this routing process in a simplified two-step
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Figure 2.5
Illustration of XOR-based DHT routing, showing the routing process from the perspective of
node 111 attempting to locate node 001. The annotations on links between nodes indicate the
respective bucket which a target would sit in, based upon address prefix. Node 111 can locate
node 011 in its zero bucket (due to sharing a prefix of zero bits of the address). and this is the
closest known node for node 111. Node 011 can locate node 001 in its first bucket (due to sharing
a prefix of one byte), thus allowing message delivery.

scenario, where node 111 wishes to communicate with node 001. In this scenario, each

node has a bucket size of 1, meaning that for each bitwise XOR address prefix, infor-

mation on only 1 node will be held. In the first step, node 111 attempts to locate node

001, and is unable to do so from its own routing table, since not all nodes are visibile to it

(and those hidden nodes are made lighter in Figure 2.5). Since it is unable to locate the

exact node, node 111 contacts the closest known node to the target node. This is node

011, which is referenced in the bucket for having zero common prefix bits with node

111. The lower half of Figure 2.5 then shows the operations carried out by node 011
— it is able to locate node 001 in its bucket for nodes sharing the first common address

bit. Node 111 can thus communicate with node 001 by communicating messages to

the closest known node to the address, which will either know the node, or know other

closer neighbours of the node.

The end result is that each member of a Kademlia network forms its own routing

table based on its view of the network. Within this table it identifies groups of nodes at

approximate given distances from itself. By virtue of the bitwise addressing, a node will

know more peers whose addresses are closer to itself than those which are further away.

This minimises the size of the routing table which is required on each node, making
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the network addressing system scale. To locate another node within the network, the

client node should attempt to contact the closest available node it knows of within the

network. That node will have a more precise knowledge of nodes addressed closely to

it, and can therefore assist with locating the desired node.

When data is stored on the network, it is held by the nodes with addresses closest to

the address of the data, meaning that there is inbuilt redundancy and resiliency against

loss of individual systems. Sincemessages can be routed to any other node in the network

using the recursive routing process described above, it is possible to join the network at

any location and gain access to data from anywhere, eliminating the impact of nodes

joining and leaving the network during normal activities.

By placing computers within such a network, based on their logical DHT address,

in addition to data, it is possible to create a distributed, decentralised data store, as

demonstrated by Kademlia. The MaidSafe network, the subject of security analysis

within this thesis, is based upon the Kademlia network concept.

2.3.1 Previous Decentralised Networks

A number of previous works have introduced fully decentralised network services for

storage. Freenet was introduced in 2001, designed to offer full decentralisation of all

network functionality, as well as anonymity for those sharing and retrieving content,

as well as providing deniability for systems holding content within the network, such

that they had no knowledge of the data being made available by their system [54]. One

major limitation of Freenet, however, is that it is not intended for the permanent storage

of data, and that which is not retrieved is purged from the network to make space for

new data on the network [54].

The GNUnet project [55] was presentd in 2002 as an approach towards an anony-

mous and distributed backup system for files. It was later extended by the authors to

include support for a censorship-resistant protocol for distributed file sharing, where

content can be addressed by unique friendly names, in addition to key-based identi-

fiers [56]. Previous work has identified a number weaknesses within the anonymity of-

fered to users, as well as the ability for content filtering or censorship to take place on

the platform, as a result of the design of the system [57].

2.4 Cryptographic Hash Functions

Cryptographic hash functions, which are pivotal to the understanding of DHTs, are

designed with several high-level properties necessary for the design of secure systems.

The four main properties of a cryptographic hash function are that [58, Section 5.3.1]:
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• It is non-invertible, so given the output of the function, the input cannot feasibly

be determined

• The hash function can be computed for any input, in a computationally efficient

manner

• Any alteration to the input will change the output of the function significantly

• It should be infeasible to find two non-equal inputs to the function yielding the

same output

The one-way nature of the function, its non-invertibility, is often referred to as pre-

image resistance. A pre-image attack involves attempting to find an input to the function

to produce a specific output. If it were possible to find an input to produce a given

output, this would clearly violate the one-way nature of the hash function, since it would

allow the “reversal” of an arbitrary hash output.

The differing output for differing inputs can be considered as second pre-image re-

sistance, such that for a given input (x), it is infeasible to determine another input value

y, such that H(x) = H(y). Finally, as an extension of this propery, collision resistance

covers the property of ensuring that it should be infeasible to find any two input mes-

sages, such that H(x) = H(y). Note that for the property of collision resistance, this

requires resistance to the birthday paradox scenario, as explored in more detail in Sec-

tion 3.4. Since for the scenario of measuring collision resistance, both input messages

can be selected, it is necessary for a hash double the length of that required to protect

against a second pre-image attack [59, Section 9.7.1][58, Section 5.3.1.2].

From the perspective of designing a secure system, the properties of cryptographic

hashes provide a number of useful constructs. Firstly, a cryptographic hash is usually

assumed to approximate a uniformly random variable [59, Section 9.7.1]. This means

that, for a series of arbitrary inputs, the output of the function should provide a uniform

distribution across its full range. Coupled with the fact that a trivial alteration to the

input should significantly change the output of the function, through its uniforimity,

a hash function serves well as a checksum, and also as an authenticator in a length-

constrained cryptographic construct, such as a block-based cipher or signature. For this

reason, cryptographic hashes are widely used in the generation of digital signatures,

where mesasge undergoing an RSA signature should be shorter in length than than the

public key.
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2.5 The MaidSafe Network

The MaidSafe network ² is a proposed decentralised secure storage network architec-

ture, inspired by the concept of the Kademlia DHT.Within theMaidSafe network, user

data is stored across a large, peer-to-peer network, as described by above. To preserve

confidentiality, data is stored in an encrypted manner, such that it is not readable by

those holding it, and files are split into chunks, with these chunks distributed throughout

the network [25]. Crucial to the concept of MaidSafe is that no one entity, not even the

developers themselves, is capable of exerting centralised control over the network [60].

Decisions must therefore be made in a decentralised and distributed manner, and the

network rules must be designed and carefully balanced to ensure that, in the absence of

a centralised gatekeeper to ensure everyone “plays by the rules”, parties will not be able

to create disruption through refusing to play by the rules [60]. The MaidSafe network

is an interesting target for research, since prior works have tended to focus on the tran-

sient transfer of information through decentralised networks, rather than on persistent

storage of data for longer periods of time.

The MaidSafe network is built around a security model whereby no network entity

other than the owner of data, or their authorised delegate, may decrypt it. Content is

therefore transferred and stored by parties who are incapable of decrypting it [25]. In

order to create a secure network with these properties, while ensuring data integrity and

availability is preserved, a robust data storage strategy is needed. The approach taken

by MaidSafe to achieve this is now explored.

2.5.1 Data Storage and Encryption

Within the MaidSafe network, data is always stored in an encrypted form. To allow for

global deduplication of data, convergent encryption is used [61]. Convergent encryp-

tion [62], proposed by Douceur et al., is an implementation of encryption, whereby the

key used to encrypt a file is derived from its plaintext contents. Therefore, since the key

is derived in a one-to-one mapping from the file contents, different users holding the

same file will each produce the same ciphertext, allowing for inherent deduplication if

this can be detected, thus avoiding the need for multiple copies of the same data to be

stored [62]. This deduplication is achieved within the MaidSafe network, since data is

addressed based upon the cryptographic hash of its encrypted contents.

An illustration of this scheme is shown in Figure 2.6— the client splits their file firstly

into chunks, then derives a key from the cryptographic hash of the chunk contents (rep-

resented by the yellow one-way arrow function). This key is then used to encrypt the

²http://www.maidsafe.net
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Figure 2.6
Illustration of MaidSafe self-encryption process, showing the chunking of a file, followed by
derivation of a key for each chunk, then the encryption of each chunk, and finally the combina-
tion of chunks for XOR-based obfuscation.

chunk, and the keys are later combined to obfuscate (using the XOR function) the out-

put of the cipher outputs, prior to yielding chunks ready for storage within the network.

A more detailed analysis of the actual implementation of this process is presented as a

contribution in Section 3.2.

The MaidSafe storage model incorporates three entities — the client, the chunk

information holder, and the chunk holders. Both the chunk information holder and the

chunk holders are vaults within the network. Each chunk is distributed redundantly

throughout the network 4 times, thus requiring a layer of decentralised management

to ensure that these copies remain, even as nodes join and leave the network. A chunk

information holder therefore is a recordwhich acts as a pointer towards the actual copies

of the chunk data. This is illustrated in Figure 2.7. A user wishing to locate a chunk

will make a query for data under the hash of the chunk’s contents (its address). At this

address, and stored by the 4 closest nodes on the network, will be a chunk information

record, containing information about the locations where the actual data is held on

the network. The chunk information record acts therefore as a set of pointers, held

and maintained by the closest 4 nodes to the chunk’s hash. This record supplies the

addresses at which a chunk itself is currently available on the network. The client may

then retrieve this data from the nodes holding the chunks.

2.5.2 Data Retrieval and Bootstrapping

Since data within the MaidSafe network, and in wider DHT-based services such as

BEP-0044 within Bittorrent [63], is held at unpredictable addresses within the network,

based upon the output of a cryptographic hash function, there is a challenge in locating

data. In order to retrieve data, it is necessary for a user to store both the DHT addresses

of each encrypted chunk, as well as the original cryptographic hash of each plaintext

chunk. This is a result of the decryption key being derived from the plaintext hashes of
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Figure 2.7
Illustration ofMaidSafe chunk information holder (lower right), holding records of the addresses
of chunks, which are distributed throughout the network. Chunks are logical, and are held by
their 4 closest surrounding nodes, according to the XOR of the node address with the chunk
address, as illustrated.
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Figure 2.8
Illustration of the MaidSafe process for retrieval of a chunk, by first locating the account’s data
atlas, and using the listing of files to locate the data map. This data map contains the address of
the ciphertext chunk on the network, and the key needed to decrypt it.

chunks, and the chunks being held at addresses based on their encrypted contents, as

discussed in Section 2.5.1. In order to achieve this, the MaidSafe network introduced a

concept of a data map, which acts as a mapping between plaintext data chunks and the

respective ciphertext addresses in the DHT [61].

Each file would therefore have a data map, acting as a pointer to the chunks within

the file, and record of the keys needed to decrypt the data. The process of locating these

data maps is the next significant challenge for storage of data within a DHT — since

the data map contents is not predictable, it must be stored in order to re-gain access to

data from the network. In the absence of the data map, it is not possible to locate or

decrypt the data. This also means that, in order to access data from a new device in

future, without any a-priori knowledge of the data map contents, the maps themselves

must be stored on the network, leading to the natural question of how to locate those

maps without other knowledge.

The solution used by MaidSafe is the creation of a data atlas, a fixed-location index

store of mutable data, placed at a location selected by the user, containing the keys

and addresses needed to locate and decrypt the data maps and thus re-gain access to a

user’s data. The data atlas is stored encrypted at an address, with both the decrytion key

and the address derived from a user’s account credentials, thus meaning that the only

information necessary to gain access to the network is knowledge of account credentials.

Figure 2.8 illustrates the process through which a user may retrieve their data from the

network, through the use of a data atlas and data map.

2.5.3 MaidSafe Account Handling

In order to protect a user’s data from beingmodified by other users, and create persistent

identitifiers within the MaidSafe network for trust and reputation, it is necessary for an
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authentication system to permit a user to identify themselves on the network, such that

the identity of a user making a request can be proved to other nodes if required, for

the purpose of the reputation system. Other nodes on the network may then use access

controls, based upon this identity and authentication, to control which actions they

will accept from a given node. It is important to note that there is no central identity or

authentication server, and that authentication takes place with other parties a user node

interacts with on the network. For example, a storage node may reject management

instructions from a user’s node which has not identified itself as a manager, and proven

their identity to be one of their managers based upon their public key.

In order to ensure good usability of the network, the MaidSafe network has been

designed such that a user should be able to join the network from a new device, without

the need for them to have any a-priori knowledge of secrets or keys. Therefore, it is

important to ensure that the login process is secure against other parties involved in the

authentication process, including other nodes authenticating a node, since any actor

able to uncover a user’s identity or keys within the network would be able to assume

their identity.

The MaidSafe model of self authentication and login is described in [64]. The

premise is that a user enters a set of credentials, incorporating a username and pass-

word. The username and password are combined in a deterministic process involving a

cryptographic hashing function, to derive an account salt. A randomly generated value

is then defined as the “account access packet”. It is symmetrically encrypted using a key

derived from PBKDF2, incorporating the username and password of the account. The

resulting encrypted data is then stored to the MaidSafe network as encrypted data, at

the address of the hash of the username combined with the account salt.

Finally, a data atlas is generated and stored at an address generated by combining

the username, password and account access packet. The data atlas is encrypted using

a key derived through PBKDF2, incorporating the account’s random string, as well as

the account password. The encrypted data held within the account access packet is the

“data atlas”, as referred to in Section 2.5.2.

Figure 2.9 illustrates the process of derivation of the account login credentials and

keys, according to the original MaidSafe paper on the concept [64]. Note that for secu-

rity, the hash function used to concatenate the username and password to form the salt

should be a slow hash, in order to prevent efficient brute force attacks against usernames

and passwords.
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Figure 2.9
Illustration of the MaidSafe self authentication process, the derivation of account salt from user-
name and password, and the use of the username, password and salt for the generation of keys
and DHT addresses. This process is described by MaidSafe in [64]
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Figure 2.10
The client in the centre of this figure is managed by its 4 closest nodes

2.5.4 Network Management

To ensure the truly decentralised nature of the network, and avoid the need for any cen-

tralised coordination or management of nodes on the network, the MaidSafe network

is designed to be self-managing. Under the concept proposed by MaidSafe, vaults are

responsible for the management of not just other nodes, but also for assigned blocks of

data. When a chunk of data is stored in the network, its data manager is set as the clos-

est (by address) vault. This vault is responsible for distributing 4 copies of the chunk to

other vaults, and then ensuring these vaults store this data and keep it available. When

a client seeks this data, they simply request information on its location from the data

manager, which will inform the client of some current locations of the data. As nodes

go offline, this data manager will create additional copies of the data on more vaults,

such that there are always sufficient copies available. Figure 2.10 shows how the user’s

node is managed by its 4 adjacent nodes in the distributed hash table (by address).

It is worth noting that due to the uniformity of the SHA-512 hash algorithm, as used

in MaidSafe, the closeness of two addresses is not related to their geographic close-

ness — indeed, the addresses will statistically be geographically uniformly distributed,

compared to the geographical distribution of MaidSafe users.

The security of relying on uniformity of hashes within this self-management con-

struct has however not been reviewed, and therefore one of the main contributions of

this thesis is a substantive critical review of the self-management protocol, along with

identification and implementation of a number of novel attacks, as well as a review of

mitigation strategies.

2.5.5 Security Model and Encryption

Data is secured on the MaidSafe network following the basic premise that the user’s

client device is not compromised, but that any and all other nodes on the network may

conspire against the user. Data confidentiality should always be preserved, even in the

presence of an entirely untrusted network. The network is designed to make use of a

reputation system, which ensures that in a predominantly honest network, the majority

of users will prevent dishonest network users from affecting the usage of honest users.
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This is intended to prevent denial of service, since any node which fails to follow the

network rules would no longer be considered reliable, and thus would not be relied

upon to properly hold data [60]. It is presumed that users retain knowledge of their

own username, password and PIN (all of which are used to generate a unique per-

user key, which finds and decrypts their own account data, after retrieving it from the

network) [64]. TheMaidSafe login process was explored in more detail in Section 2.5.3.

Security on the MaidSafe network is multifaceted, and is not based upon any single

assumption (aside from the client device not being compromised). Data confidential-

ity is preserved through the use of symmetric AES encryption on all chunks, with the

key derived from the contents of the data, as described in Section 2.5.1, thus forming

convergent encryption, as introduced in [65].

2.5.6 Deduplication

According to analysis by IDC, only 25% of digital data stored by users is unique [66].

This means that the storage of user data is inherently an inefficient process, involving

significant duplication. The process of deduplication ensures that multiple copies of the

same data are not needlessly stored, by recognising when a file (or constituent blocks of

a file) already exists on the storage system. The president of industrial analysts DCIG, is

quoted as saying that in a corporate environment, deduplication can allow a company

to store 20x more data with the same storage faclities [67]. In an analysis of backup

storage, Meyer and Bolosky found that across four weekly backups, file-level deduplica-

tion achieved a saving of 72% in storage requirements [68]. While clearly not all users

will want to make use of a decentralised storage network solely to store full backup

images of their computers, the ability to deduplicate data globally at file-level through

decentralised platforms such as MaidSafe appears likely to be able to offer significant

reductions in the storage capacity necessary on the network to store files.

Conventionally, encrypted data is not easily deduplicated between different users

(since the same file would exist differently for each user, depending on their encryp-

tion key). Within the MaidSafe network model, data is globally deduplicated, while still

being encrypted, by deterministically deriving the encryption parameters (key and IV)

from the file itself. As highlighted in previous works, convergent encryption allows for

a known-plaintext attack, in that any party with access to plaintext data may derive the

encrypted version which will be stored on the network [69]. Various techniques exist

which allow end users to mitigate this, such as using a per-account salt to allow for dedu-

plication within data held in their own account, without exposing their data to known

plaintext attacks by third parties ³, although these prevent global, network-level dedu-

³https://www.mail-archive.com/cryptography@metzdowd.com/msg08949.html

33



plication from taking place. The MaidSafe network has therefore elected to use global

deduplication despite these risks.

By using this global file-level deduplication, data remains encrypted (and thus con-

fidential), while only requiring the space for a single copy on the network. In order to

provide reliable operation and resiliency against nodes going offline, data on the Maid-

Safe network is replicated 4 times to randomly selected areas of the network. As a result,

given only a quarter of user data is unique [66], this balances with the replication factor

of 4, to result in approximately the same storage requirement as that of data held by

users.

2.6 Key Challenges in Decentralised Networks

In the absence of any centralised control over a network such as the MaidSafe net-

work, there are a number of challenges introduced, which would conventionally be

easily mitigated through the use of a trusted entity in a centralised architecture. Within

a decentralised network, lacking such a trusted entity, these challenges pose a greater

consideration, which this thesis shall address.

2.6.1 Resource Management in Decentralised Networks

Since the very early days of peer-to-peer decentralised systems, resource management

has been an important consideration, to prevent a small number of users from taking

advantage of the generosity of others [70]. This was illustrated by research conducted

by Sen and Wang on the FastTrack network, which showed that only 1% of network

users were providing 73% of the network bandwidth needed to share files [71]. In an

earlier study carried out on the Gnutella peer-to-peer network, Adar et al. showed that

70% of users were not sharing any files, and that only 1% of all users were actually

providing responses to half of network requests [72].

While these previous works have focused on the use of decentralised networks for

file sharing, the challenge identified remains the same — if a network lacks adequate

precautions to protect against free-riding, there is no individual incentive for a user to

contribute to the network, be that by uploading data for others, in the context of a

file sharing network, or holding data for others in a storage network. Since it has been

demonstrated that significant quanitites of users are willing to free-load [72], it is clear

that for a decentralised storage network to succeed, it must be balanced to ensure users

may store data, but cannot use excessive quantities of storage to the detriment of others.
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2.6.2 Application of Storage Limitations

Conventional, centralised, storage services often use a quota-based system of resource

control, where users are permitted to store up to a certain capacity of data [73]. Beyond

this point, the user would either not be able to store further data, or may be required to

pay the service provider for an increased storage quota.Within a decentralised network,

this is not necessarily possible without trusting a single entity to accurately and fairly

enforce these quotas, and identifying which users should receive payment for storage is

non-trivial.

It is therefore clear that it is necessary to have a decentralised means of restricting

storage utilisation. Given the MaidSafe network has no central entity controlling ac-

count creation, it is not immediately apparent if it is possible to offer users a free storage

quota, since such quotas could be defeated through creation of multiple accounts. A

means of restricting storage available to users, without requiring a centralised trusted

authority is therefore desireable. Ideally, it should allow for the variation in storage

quota based on contribution, be that financial or by provision of storage itself, in or-

der to be flexible and allow users to contribute to the network, and gain more storage

allowance.

In previous works, storage quotas have typically been centralised in operation. For

example, in the work of Druschel and Rowstron, storage quotas depended upon cen-

trally issued and trusted smartcards, which contained a user’s storage quota [74]. While

users could offer more storage (in exchange for an increased storage quota), and audits

over provided and used storage were carried out, the network ultimately depended upon

a smartcard issued by a trusted centralised entity, as “enforcing quotas in the absence of

a trusted third party would likely require complex agreement protocols” [74]. Through

the decentralised and peer-managed approach of the MaidSafe network, it may be pos-

sible to achieve this without explicitly trusting any individual authority, since all state-

ments are verifiable by any other user of the network [60].

The most obvious means of enforcing storage limitations on users, in a decentralised

manner, is to allow users to store a quantity of data proportional to the quantity of data

they themselves are storing for other users, as was originally proposed by MaidSafe in

discussions during this research. This ratio could be one-for-one, allowing users to store

the same amount of data as they hold, or it could be different, allowing users to store

more or less data than they themselves store for other users, based on other factors. One

example would be base storage upon only unique data, since network deduplication

within the MaidSafe network, as discussed in Section 2.5.6, would ensure such data

was not stored again. Another approach would be to share the cost of storing a given

piece of data which multiple users wished to store between all users also holding that
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data. Therefore, users holding non-unique data would only be charged proportionately

to the number of existing holders of the data.

The work of Ngan, Wallach and Druschel presented the concept of auditable and

decentralised quotamanagement, however required an auditing process which required

a public ledger to be permanently available, detailing a list of the identifiers of every file

being held by a vault, and similarly, a list of the identifier of every file held by a client [75].

While this is a significant improvement upon the requirement for a trusted centralised

entity in the original proposal by Druschel & Rowstron [74], the presence of such public

audit logs poses a risk to the privacy of users on the network — users storing specific

data could be targeted, and vaults providing their storage could also be identified and

targeted.

While MaidSafe have proposed the concept of offering free storage to users, without

them being required to contribute resources, up to the average storage utilisation per

user, this thesis argues this is too easily abused, given there is no way to restrict how

many accounts one user can create, i.e. a “Sybil attack” [76], where many accounts are

created by an attacker, and joined to the network for the purpose of gaining a majority

in voting protocols. Indeed, it would be quite conceivable to make a modified fork of

the open source MaidSafe client, which could unify multiple accounts, allowing users to

effectively gain unlimited storage without contributing resources to the network. Natu-

rally, this would be of significant detriment to the network. While means of restricting

account creation are possible, these would ultimately end up either making it difficult

or time-consuming to join and use the network (which is detrimental to the network by

discouraging users), or too easy for malicious users to create more accounts.

One means of mitigation of this is to only permit users to store data, when they

themselves are proven to be storing data. This removes the motivation for even the

most selfish of users to create multiple accounts, as they would receive no extra storage

by having many accounts. Within the context of the MaidSafe decentralised network,

this could be achieved in two ways — through proof of storage, and through manager

confirmation of this value.

2.6.3 Performance Challenges of Proof of Storage Schemes

Building upon work such as that by Juels and Kaliski [77] and that of Zheng and

Xu [78], a proof of data storage could be used to verify that a vault holds the data

it claims to, and has not corrupted it. A trivial proof would be for the vault to pro-

vide the hash of data. This is unsuitable for actual use, as it is easily replayed — a node

holding data could simply remember the hash, and return it each time it was requested,

without actually retaining the data. In a DHT, data is indexed by its hash, meaning that
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the request to verify data must identify the data itself by its hash. As shown by the work

of Juels and Zheng though, it is possible to carry out challenge-response style proofs,

which would be safe against such attacks.

A limitation of these proofs is that they conventionally require the verifier to them-

selves retrieve the data, in order to verify the proofs, or to have retained it. While a

verifier could pre-compute a number of challenges and responses, and then request

them at a later point, this is a hindrance to ad-hoc verification. Being able to verify

that a user was positively contributing to the network by storing data in their vaults,

without needing to consider the data they held, would be effective and place no addi-

tional network overhead on the verification process. Therefore, the high performance

proof of arbitrary data storage, as contributed in Section 3.8.2, may be used to allow

for the high-performance validation of storage of arbitrary random data. This provides

a means for new users to the network to rapidly gain credibility by storing data and

proving the storage of this data in an efficient manner, without placing a storage or

computation burden on the verifier, an established peer on the network.

2.6.4 Contact and Resource Discovery

An area of intersection between centralised and decentralised services occurs in the field

of privacy-preserving centralised services. These services are designed to preserve the

privacy of users from the server operator as much as possible. Examples of this include

the Signal secure communication application, formerly known as TextSecure.

One common challenge between centralised and decentralised services is that of

discovery. Much work has been carried out on the process of service discovery, whereby

it is possible to identify what services are available, and access them [79, 80]. Techniques

applicable in dencentralised networks have also been proposed [81, 82]. The internet

is, fundamentally, a decentralised architecture, and curation and aggregation services

such as search engines and hyperlinks have been used to locate services and content for

many years [83].

One challenge of discovery is that in order to make an object discoverable, it is typi-

cally necessary to broadcast information about its existence and location. For example,

to have a website indexed by a search engine, it is necessary for search engines to be

aware of the website, either by having a hyperlink inbound to the page, or perhaps by

informing search engines about the presence of the website [84]. While in a situation

such as discovery of a website, there should be no problem in disclosing the identity

of the website, since the owner presumably wishes to make their website available to

others, by having it indexed on a public search engine, this is not necessarily the case

for all scenarios.
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The problem of user or contact discovery is a problem encountered in many sce-

narios involving applications or services designed to offer social or sharing-related fea-

tures — it is clearly desirable for a user to be able to locate their existing contacts and

acquaintances on the service, without needing to establish contact with each of their

contacts, to ascertain if they use the service, and what their username or account iden-

tifier is on that service. For this reason, many services, particularly those based around

smartphone applications, make use of phone-number based user discovery. At present,

this is often carried out by uploading the user’s own phone number, and those of their

contacts [85]. An intersection can then be carried out on the server, both between the

user’s phone number and others’ contact lists, and between the user’s contact list and

the phone numbers of other service users. The result of this intersection would then be

the list of users to be alerted to having a new contact, and a list of the user’s existing

contacts using the service, respectively. This naturally raises privacy considerations, as

well as posing practical concerns within a decentralised network, where no such trusted

intermediary is available.

The current state-of-the-art in privacy preserving contact discovery, even within cen-

tralised services, fails to preserve privacy, and the problem of identifying mutual con-

tacts in a privacy-preserving manner remains “an unsolved problem” [86], according

to the developer of Signal, a leading encrypted messaging application. State-of-the-art

techniques typically use partially-truncated cryptographic hashes ⁴, relying on the am-

biguity of the hash of an identifier to preserve privacy by returning multiple results,

which may be selected from by the client. This technique is somewhat similar to that

of bloom filters, which do not offer the performance needed for such applications [86],

and which also require a central entity to be trusted with the full dataset.

Section 6.2 contributes a solution to this problem, designed for both centralised or

decentralised implementations, while preserving privacy in a predictable andmodellable

fashion.

2.6.5 Ownership-Transferable Data and Records

Conventional approaches to mutable (updatable) data within decentralised networks

has typically focused on the storage of data at a known address, derived from a user’s

public key [63]. This model, such as that proposed within the Bittorrent DHT, places

considerable onus on users— it is necessary to either use a different key for each record,

or to accept key-reuse, while also incrementing a salt against the key. Neither of these

techniques proves particularly desireable — management of unique per-value keys is

impractical for most users, and requires users to store keys in a location which may be

⁴https://github.com/SilentCircle/contact-discovery
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vulnerable to attack. Alternatively, the re-use of keys means that in the event of com-

promise, all of a user’s data is accessible and able to be modified.

As highlighted by the Bittorrent approach, which is the state-of-the-art in the field at

present, as a widely-used DHT implementation, there is no ability to re-key data. In the

event that a user believes their keys may have been compromised, there is no procedure

through which they may change their keys, since the address of data is derived from the

user’s public key. Therefore the need to change keys due to potential compromise would

lead to the need to re-upload all data to new keys, and remove or clear the previous

entries.

Being able to initiate a transition between private keys introduces the opportunity for

securely ownership-transferable data, allowing for addresses within a DHT to become

tradeable assets, perhaps akin to usernames or DNS-based domain names, by ensuring

that a previous owner has no access to the keys necessary to control the data once

ownership is transferred. In such scenarios, the ability for the recipient of a key to secure

the address using a key held only to them is essential. Section 3.10 therefore contributes

an approach to achieve such ownership-transferable data in a decentralised network.

2.7 Decentralised Smart Contracts

Within a decentralised environment, there is inherently a challenge in how to allow mu-

tually untrusting users to carry out business in the decentralised environment. Pothier

defined a contract as “an agreement by which two parties mutually promise and engage,

or one of them only promises and engages to the other, to give some particular thing,

or to do or abstrain from doing some particular act.” [87, Section 1]. Fundamentally,

Addison identified contracts as being either bilateral or unilateral [87, Section 1]. In ei-

ther case, a contract requires two parties to be involved; one of whom makes a promise,

and the other to whom the promise is made. Where there are binding obligations on

both parties, the contract can be considered bilateral, and where obligations are only

binding one party, with the other party not bound by any obligations, the contract can

be considered unilateral [87, Section 1].

Within a decentralised storage network, one obvious area where the formation of

contracts may be useful is in the provision of storage. By allowing parties to contract

others to provide storage to the network, users may enjoy the functionality of providing

increased storage to the network, such as having a larger capacity of storage for them-

selves. While this may be difficult for users of laptops or mobile devices, with limited

or no ability to expand their available storage, the ability to contract a third party to

provide this would be beneficial to such users. In a decentralised network, there is a
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challenge posed in how to ensure that a user paying for storage is not penalised as a

result of a provider failing to honour an agreement. The contract can be termed smart,

since it can be validated and enforced automatically by other users within the network.

Section 4.2 shows how such contracts can be implemented in a decentralised manner.

2.8 Security and Privacy

Within this thesis, the terms security and privacy are regularly used, when referring to

protection of user data, or the usage of such data. Despite a wide range of definitions

being found in the literature, the implications of security and privacy shall be considered

here, in an inter-related context.

2.8.1 Security

While various definitions of security and privacy exist, security is widely considered to

be the overall protection of confidentiality of data, integrity of data, and availability of

data [88]. This definition encompasses the needs of a storage system, or indeed a more

general networked system, since it provides for being able to reach the data, as well as

being assured it has not been tampered with or corrupted, and being able to detect any

tampering or corruption. Finally, it covers ensuring that the data cannot be read by an

unauthorised party. While there are several other possible properties of a secure system,

including trustworthiness, non-repudiation, accountability and auditability [88], these

may not always be appropriate — for example, an auditable system must, by definition,

reveal some information as to user actions within the audit logs, and the inability to

prove what was said may also benefit chat and communications protocols seeking to

offer strong security against the compromise of either party in a conversation.

Although security and privacy are often considered separate, it can be argued that

one cannot have privacy without security — in light of the many security breaches seen

in recent years, resulting in the publication of large quantities of personal information,

it is clear that privacy cannot be achieved without security. In the absence of security,

unauthorised access to information may be possible, thus violating the privacy of the

data.

One solution to the problem of having to trust a company to securely maintain a

centralised store of data, including personal data, is for users to not disclose sensitive

data directly to the company, and to instead disclose it instead in an encrypted form,

therefore only readable by the user, or those they provide the necessary decryption key

to. This means that, even in the event of a compromise of a service, or a rogue employee

abusing users’ trust, the operators of the service have no privileged access to user data.

40



By only holding encrypted data which is inaccessible to an attacker, the risk of in-

formation disclosure in the event of a technical failure is minimised — had Dropbox

kept user data encrypted, their failure to verify passwords properly [8] would not have

resulted in any meaningful information leakage to those gaining access to accounts dur-

ing the process. This comes in trade-off with usability however, as users will also lose

access to their information if they lose or forget the cryptographic keys or credentials

needed to gain access to their information.

While client-side encryption of data stored on remote services therefore offers sig-

nificant benefits for users, it is not in itself a solution to the problem of security. For

client-side encrypted data to be secure, this assumes the client is secure, which is in

itself not an easy or safe assumption, given the wide-spread prevalence of highly dam-

aging malicious software infecting users’ systems [89]. There are also concerns as to

the security of the hardware on systems as well, especially within embedded and mo-

bile platforms, which are now highly popular means of accessing the internet for many

users [90]. Finally, the security of the software in use itself, and the distribution chan-

nels used to gain access to it, are also of significance, since if the correct software cannot

be installed and verified, it is possible for malicious [91] or deliberately weakened soft-

ware [92] to find its way into use, which could leak keys or otherwise expose users data,

despite the service itself being secure and not having access to user data.

There are therefore a wide variety of different security considerations for users stor-

ing and retrieving data, both on their own systems, as well as externally.

2.8.2 Privacy

The definition of privacy has been a topic of considerable discussion, with many dif-

ferent definitions proposed and defended. Parker proposed a definition of privacy as

“control over when and by whom the various parts of us can be sensed by others” in

1973, before the widespread adoption of ubiquitous computing and the internet [93].

Wilton proposed a more recent definition in 2008, linking identity and privacy, high-

lighting the importance of controls and consent, and in the separation of unrelated data,

such that people may “keep the different spheres of their life separate”, and noted that

different participants in a discussion of identity and privacy typically had incredibly

different ideas as to the meaning of the concepts [94].

DeVries noted that one of the main formal definitions of privacy is from the Fourth

Amendment to the US constitution, and the “right of the people to be secure in their

persons, houses, papers and effects, against unreasonable searches and seizures” [95].

One of the fundamental challenges raised was that of the analogue nature of this defi-

nition — when data about a person is held on a database server, physically outwith the
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home of an individual, the Fourth Amendment would not be immediately applicable to

such a scenario. Indeed, precedent has since been established that the Fourth Amend-

ment protections do not apply to data held on a third party system, on the argument

of the so-called third-party doctrine, in that “a person has no legitimate expectation of

privacy in information he voluntarily turns over to third parties.” (442 U.S. 735 (1979)

Smith vs. Maryland).

Part of the challenge of applying an analogue privacy law is due to the difficulty in

applying the concepts of search and seizure to digital data — seizure has been ruled by

the Supreme Court of the United Stated to be “some meaningful interference with an

individual’s possessory interests in that property” [96]. With an analogue possession, its

physical seizure may result in deprivation of access by the owner, in the same way that

theft deprives the rightful owner of their property. In contrast, when electronic com-

puter data is considered, the potential to create a bitwise digital clone of the data raises

new questions and challenges. Specifically, when a search or seizure would be required

for evidence gathering, there is no requirement to deprive someone of possession of

their data, since a digital copy may be made. This may also be carried out on data be-

ing transferred between computers, without physically gaining access to an individual’s

property and carrying out physical searches for data, as discussed by Kerr [97].

Privacy in the digital age, from the perspective of US law, was described by DeVries

as being split into two freedoms — the freedom to be left alone, and the concept of

informational privacy to cover data and its use. While the former was argued to be en-

shrined by the protections against government intrusion into life in the United States

Constitution, it was to cover “protection of autonomy and free choice”, whereby deci-

sions are based upon whether the claimant had a “reasonable expectation of privacy”

and if appropriate justification was given by the party or government entity breaching

it [95].

Kerr has highlighted, however, the challenge over what counts as a search or seizure

— any violation of a “private space” counter to a “reasonable expectation of privacy”

is considered a search under the Fourth Amendment, and the physical act of taking

evidence from the scene for use at trial is a seizure [97]. Within the context of digital

data, this would indicate that the taking of a computer system or hard disk drive would

be considered a seizure, as possession of the device would be lost. However, the seizure

of data digitally, without physical interference, as a result of downloading of data from

a remote server, was found to not amount to a seizure, as it was not altered or made

unavailable [97].

Specifically in the context of digital data, Kerr highlighted an important consider-

ation as to seizure, given computers work by making copies of data — when an email
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is sent across the internet, it is split into packets of data, and these packets are trans-

mitted toward their destination. At various intermediate points, they are processed by

routers, and are re-transmitted. Many actions also inherently create copies of data —

for example, an email server will create a copy of an incoming email to place it within a

user’s inbox. Kerr’s thesis of when data copying presents data seizure has attempted to

reconcile this by arguing that a seizure occurs when the “intended course of possession

or transmission” is interfered with, and it was not already known to the person accused

of the seizure. The concept of privacy within the cloud has also been considered by

Robison in an analysis of the online privacy in the context of US legislation, specifi-

cally where cloud services are used as communications services, as well as for remote

computing services [98].

2.8.3 Privacy in Legislation

Within the United States, where many online services are based, there is no single law

enshrining the right to privacy in all contexts — the Fourth Amendment, as discussed

previously, offers protections against government search and seizure, but makes no con-

sideration as to private or corporate search or seizure. The 1974 Privacy Act defined

the FTC’s “fair information practices” (FIPs), although this covers government compli-

ance, and only to information issued or collected by government, and has many lim-

itations [95]. Other laws covering privacy include the Fair Credit Reporting Act, the

Computer Fraud and Abuse Act, the Electronic Communications Privacy Act and the

Children’s Online Privacy Protection Act, which each cover only a small and limited

area of privacy. A more complete list is given in An overview of privacy law, by Solove &

Schwartz [99].

From a European perspective, however, there are strong privacy protections in place

as a result of the Data Privacy Directive (95/46/EC), a European directive to member

states to pass a local law covering the points of the directive, themselves based upon the

OECD’s 1980 principles for the protection of personal data [100]. As a result, govern-

ments within Europe have had to be much more proactive in introducing legislation

and regulation around user privacy [101]. Indeed, as Fromholz discussed, the USA

and Europe have vastly different approaches to the regulation and control of individ-

ual privacy — European regulation has been proactive, based on pre-empted needs for

regulation, and have led to broad privacy protections being in place. In contrast, US

privacy legislation is typically narrow, designed to legislate only as a reaction to a par-

ticular incident — as stated by Schwartz & Reidenberg, medical and direct marketing

data stand out as particularly lightly regulated areas [102]. Swire & Litan have also re-

viewed the Data Privacy Directive, highlighting the significant differences in culture and
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approach to privacy, highlighting how people in the US are typically more concerned

about the abuse of personal data by government, from centralised databases, and that

this has fed into the majority of US privacy legislation [103]. In stark contrast to this,

the European Directive is focused more on preserving user privacy against companies

holding or gathering personal data, and on ensuring that appropriate consent is given

by users [103].

The point of intersection between the two seemingly antithetical and perhaps incom-

patible approaches to privacy was what was referred to as the Safe Harbor agreement,

brokered between the United States and the European Union in 2000, shortly after the

introduction of the EUDirective [99]. This agreement wasmade, as theUS did not have

privacy laws of a sufficient level to meet the requirements for “adequate” privacy pro-

tection, but companies based in the US wanted to have access to the European market,

and customers residing there, without having to tighten their own domestic legislation

to the extent required by the EU [104]. Indeed, the EU-US Safe Harbor agreement

has been described as a compromise between the typically self-regulated approach to

privacy by US companies [105], and the much stricter European legislation [104].

The Safe Harbor agreement aimed to remove the challenges faced with the EU’s

comparatively heavily regulated handling of private data (which is established as a “fun-

damental right” [104]), in comparison with the relatively hands-off approach taken in

the US, where privacy protections are typically implemented voluntarily by companies,

in order to prevent potential lawsuits [104]. Despite this, a European court ruling re-

cently led to the effective suspension of the Safe Harbor provision [106]. In this case,

Schrems brought a case against Facebook Ireland Ltd. on account of its transfer of EU

citizens’ personal data to the United States, and its storage there. The case centred

around Schrems’ complaint that Facebook’s transfer of his personal data to the United

States did not offer sufficient protections, and that he wished to exercise his right to

prohibit the transfer of such data, on account of surveillance activities being carried out

by public authorities within the United States.

The Irish High Court found that, since US law did not give EU citizens a right to be

heard, and that oversight of intelligence services was carried out through secret proce-

dures, it did not offer adequate protection. The end result was that Decision 2000/520,

which stated the European Commission “may find that a third country ensures an ad-

equate level of protection”, and established that the Safe Harbor program offered such

protections, was reversed. This meant that data transfers under Safe Harbor are no

longer automatically valid, and that legal challenge may be made to data being trans-

ferred to the United States by European companies [106].

This case has highlighted the importance of legal protections within the operation

44



of services, and the difference in approach between the US and EU’s respective ap-

proaches to privacy. The use of encrypted, decentralised services presents a solution to

this, by allowing a developer in the United States to provide a service to users world-

wide, without having to navigate regulatory challenges in order to store user data. By

offloading the storage of encrypted (and thus not personally identifying or sensitive)

data to a decentralised network, the service will be more reliable and resilient, as well as

more private, while ensuring the service preserves user privacy, irrespective of location

or jurisdiction.

2.8.4 Privacy in Relation to Services and Storage

As highlighted above, data privacy is considered as a matter for self-regulation within

the US, with the FTC encouraging companies to self-declare their own policies and

procedures, allowing customers to choose from services based on these declarations.

Therefore, such self-set policies and agreements become an area of interest for those

using or accessing services.

Privacy policies, terms and conditions, and other legal documents form a near-

universal part of the experience of using connectivity-based services today. Virtually

every website, mobile app, and even physical service provider has an agreement of this

form, to which users are required to agree, in order to make use of the service. Often,

however, these agreements are stated to be implicitly accepted by accessing or using a

service, which gives rise to a number of considerations surrounding the validity of these

agreements. Online agreements typically take the form of either a click-wrap [107], or

browse-wrap [108]. These names are derived from an early form of software-related

agreement, referred to shrink-wrap, whereby a user was held to have accepted a soft-

ware End User License Agreement (EULA) by opening the shrink-wrap seal on the

physical packaging itself [109].

The original premise of these policies was that, with the rise of general-purpose com-

puter software being sold, it would be impractical for every user of a piece of software to

individually negotiate a contract with the company providing the software. The ability

to offer a standardised agreement, which users would automatically indicate acceptance

to through the use of the product or the unsealing of the packaging, created a concept

whereby a standard-form contract could be offered and established between users and

the providers of software [109]. As web-based services have gained popularity, a num-

ber of new considerations arise, specifically around how these policies are put in place,

and how variations or changes to these policies are handled, since these policies are

effectively legal contracts. “signed” through clicking a box, or indicating acceptance.

These considerations have been highlighted by recent trends in how online busi-
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nesses are run. For example, in recent years there has been a tendency for companies to

build their businesses around the prospect of making money as a result of data gathered

from the users of an (otherwise) free-to-use service. Indeed, as Bruce Schneier stated

in a conference talk in 2010,“Don’t make the mistake of thinking you’re Facebook’s

customer, you’re not –– you’re the product,” [110]. With the rise in free (at point of

use) services on the internet, designed to encourage users to engage with them for the

purpose of gaining a larger user-base, which itself is then claimed as an asset by the

company for the purpose of its valuation [111]. This highlights an interesting consid-

eration for privacy — it is in the interests of a company to ensure its own value is as

high as possible, and if a company’s value is based upon the information it holds about

its users, there will be a fundamental risk to user privacy in these scenarios. This has

been showed true in a number of scenarios where companies which held user data were

liquidated, and attempts were made to sell or otherwise liquidate user data as an asset.

For example, during the bankruptcy of RadioShack in the United States, an attempt

was made to sell customer data including names, email addresses, addresses, and phone

numbers [112], as well as information about purchase values, and stores visited [113].

This fell in direct contrast to the company’s own privacy pledge, which stated “we will

not sell or rent your personally identifiable information to anyone at any time”, and that

“we pride ourselves on not selling our private mailing list” [114].

As a result of representation made by other companies, as well as various US states,

the process was scaled back, to no longer include phone numbers, and only include

email addresses of customers who had made a purchase in the previous 2 years [115].

Nonetheless, the approved sale was in direct contradiction to RadioShack’s own privacy

policy, showing that such policies are not necessarily legally enforceable by customers,

in the event of a company’s bankruptcy — the data was offered for sale in a public

auction [112].

Online services are recognised as being largely self-regulated, with regard to the han-

dling of personal data (through privacy policies), which is why the FTC generally seeks

to hold companies to account by ensuring they honour their own (self-set) privacy poli-

cies [105]. Significant in this case, was that sale was inhibited as a result of the company’s

own privacy policy, and not on account of privacy legislation [115]. This was also seen

in the case of Toysmart, which was in a similar situation— Toysmart reached a set-

tlement with the FTC, agreeing they sold customer information after stating it would

never be shared with third parties. Jodie Bernstein, the director of the FTC’s Bureau

of Consumer Protection, stated “Customer data collected under a privacy agreement

should not be auctioned off to the highest bidder” [116]. Significantly, the FTC ruling

also stated “The settlement also protects customers of Toysmart from unilateral privacy
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policy changes in the future by a bankruptcy purchaser. Any change in the original

Toysmart policy will have to be approved by consumers on an ‘opt-in’ basis before the

successor company can make such a change”. This highlights an important area for

consideration from the perspective of cloud and web-based services, namely that of pri-

vacy protections for users of services in today’s increasingly centralised network services.

2.9 Human Factors

One of the fundamental challenges of building services, both centralised and decen-

tralised, is in securing user credentials and keys against theft of unintentional disclosure.

These arise as a result of the human factors within the implementation of secure sys-

tems — a system may have a proper cryptographic implementation, yet offer no actual

confidentiality if a user reveals their passwords through social engineering, or re-uses

them across other insecure services.

2.9.1 Passwords as Credentials

When the security of a system is placed in the hands of users whose role is not specifically

related to security, the risk of serious vulnerabilities in practical security arise, such as

seen in the case of Phone House, an independent Dutch mobile phone retail outlet,

co-located within Media Markt, a large electronics store. In this case, multiple serious

failures in operational security, including amongst others the writing down of passwords

on post-it notes and the use of shared unencrypted documents containing (weak) login

passwords to external portals, allowed a customer to gain access to the personal data of

over 12 million Dutch phone users [117].

Fundamentally, this attack was successful as a result of poor operational security

awareness by employees, and the reliance upon password-based logins for services con-

taining highly confidential information. Passwords are, by their nature, inherently vul-

nerable to replay attacks, shoulder-surfing attacks, and social engineering attacks. In a

typical password-protected system, having knowledge of the password is sufficient to al-

low ongoing access to the protected resource, until the password is changed, either as a

result of routine, or as a result of the account owner becoming aware of the unauthorised

use of their account.

Many alternatives to password-based login have been proposed, and indeed exist

in currently available implementations. Client certificate authentication was defined

in TLS 1.0 [118], providing a means for websites to authenticate a user via a public-

key certificate held within their browser. Two-factor authentication protocols are also

available to augment password-based login systems. One commonly used approach is
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that of TOTP [119], which generates a short, easily typed, time-based numeric one-time

password, based on a symmetrically shared secret between the client and the server.

With the rise in use of touchscreen-based devices, the difficulties of password en-

try are also becoming increasingly clear. Conventional advice is to increase password

length, and increase password complexity through the addition of numbers and sym-

bols, although these measures face usability challenges on devices not designed for

complex text entry, such as smartphones [120]. Fundamentally, password authenti-

cation is a process of proving knowledge of a secret, and the server-side validation of

this secret. While zero-knowledge password protocols have been proposed and imple-

mented [121, 122, 123], significant web services and applications continue to favour

transmission of user passwords in plaintext to the server for validation, as demonstrated

in Section 5.2.3 with regard to research carried out on Google’s platform.

Within the context of a decentralised network, such as MaidSafe, the security model

is based around the assumption that a user can derive an identity key as a result of their

own credentials. Improving the handling and secure storage of such credentials will

therefore significantly improve the security of a storage solution, as a result of reducing

the exposure of keys to human-induced weaknesses.

2.9.2 Key Storage

When a given message is encrypted by a key, it is naturally necessary for the key to be

retained, to recover the original message. If the scenario of file storage is considered, the

ciphertext may be assumed to be stored elsewhere, and therefore only the key need be

retained. Nonetheless, it is essential for recoverability of data that the key is stored in a

manner which retains its confidentiality. Otherwise, an adversary gaining access to the

key may retrieve the data and decrypt it. One approach to this problem is be to create

an encrypted store, within which such keys may be stored, which is the approach taken

by password managers. In this case, however, the process of encrypting this store would

generate a new key, which must be retained to gain access to the store. This new key

then needs to be held confidentially, but with the knowledge that loss of this key will

remove access to the entire contents of the key store. The perceived risk to the user of

the loss of this key is therefore potentially higher — loss of all their data, or a significant

proportion of it, would clearly be a worse scenario to recover from than the loss of a

single file.

Therefore, both a collection of many keys, or a master key used to gain access to

many keys are of high value to a user, and users will take measures to prevent their

loss. With the limited ability and perhaps willingness to memorise large quantities of

passwords [124], it is impractical to expect users to commit to memory large numbers of
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unique keys. Indeed, previous large-scale studies have found that typical user passwords

may have between 37 and 51 bits of entropy [125]. Such passwords are not sufficient

to use directly as cryptographic keys, and indeed should not be considered as keys, due

to their limited randomness, and limited character-set from which the characters of a

password are chosen [125].

A visible example of this effect is seen in the Bitcoin cryptographic currency. Bitcoin

offers users a truly decentralised approach to holding money in a wallet under their

control, which can only be spent through knowledge of a private key [126]. Despite

this, large numbers of users choose to hold their coins in centralised exchanges or online

wallets, offering backup and storage of their account private keys [127]. This continues,

even after many security breaches, leading to personal information compromise or theft

of coins [128, 129]. This may be as a result of the perceived “safety” offered through

the use of such a service, since loss of a wallet key or password will not result in the

irretrievable loss of their money.

Applying the same logic to storage services highlights that there may be a clear trade-

off between security and usability which should be considered. If users feel they may

easily lose their keys, it is likely, given the precedent from Bitcoin, that users may store

their keys in potentially insecure manners, such as escrowing them with a third party

perceived to be trustworthy, in order to mitigate against loss of their keys, and thus data.

2.9.3 The Value of Successful Attacks

Recent years have seen considerably numbers of high-profile security breaches of per-

sonal and confidential data, which was entrusted by users to companies. In one case,

80 million customers of a US-based health insurance provider had personal details in-

cluding names, addresses, dates of birth, social security numbers, and employer details

and income accessed [6]. In another, the fingerprint records of 5.6 million US fed-

eral employees with security clearances, and 21.5 million personnel records for other

federal employees, including highly personal security clearance questionnaires, were

accessed [7]. These attacks have since been attributed to a foreign attacker, although

the precise motivations remain unclear [130].

It is clear, however, that one key ongoing challenge faced by companies is that of

how to securely store information, preventing it from being accessed by unauthorised

parties, while ensuring it remains usable when authorised access is required. Usability

here is a considerable challenge, since invasive security measures may require significant

changes or actions on the part of the user.Many security systems in use today require the

user to act as the decision-maker when there is doubt or uncertainty as to the security

of an operation. For example, the widely used Secure Socket Layer (SSL) scheme is
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implemented in web browser to provide secure connections between user web browsers

and servers. In the event of an error being encountered, the default behaviour of SSL

is to fall back to asking the user to make a decision, and presenting the details of the

error which was detected. Previous work has investigated the efficacy of such a process,

and highlighted the extent to which users may make incorrect decisions in situations

where certificate validation fails, recommending instead that users not be relied upon to

make decisions where an unsafe situation has been detected [131]. The reliance upon

a human user as a decision-maker for trust has also presented itself as a problem in

scenarios where a user is not present, such as in embedded systems or non-interactive

scenarios where there is no web browser for a user to interact with [132].

2.10 Security of Implementations of Current Services

TheAndroid operating system is an always-online, cloud-enabled operating system [133],

released as an open-source core, referred to as the Android Open Source Project, in

addition to a proprietary and commercially-licensed suite of Google-branded software,

commonly referred to as Google Mobile Services (GMS) [134]. GMS is a centralised

service, operated by Google, in-keeping with the description given in Section 2.1.1.

Google reported in its May 2014 I/O event that there were more than one billion

active users of Android. Given the near-ubiquity of Android devices, it is worth bearing

in mind that weaknesses present in the platform, particularly in the closed mobile ser-

vices components, which are not modifiable by manufacturers in the same way as the

open components of the platform, may expose over a billion users to attack [135].

Previous works have explored the check-in process carried out by mobile devices

using older versions of Google Mobile Services [136], and focused on a number of

privacy considerations with regard to data transmitted to servers operated by Google.

To preserve the security of information transferred between a client device and the

corresponding back-end service, Transport Layer Security (TLS) is used. TLS is the

current state-of-the-art transport protection protocol, incorporating authentication of

identity of the server, in addition to encryption of the data transferred across the link,

and is widely used in online banking and other websites and applications. It is commonly

referred to as Hypertext Transfer Protocol (Secure) (HTTPS), and recognised by end

users through the presence of a padlock icon within their web browser.

2.10.1 Overview of Transport Layer Security (TLS)

Communications betweenAndroid devices and theGoogle servers were protected using

TLS. TLS is designed to authenticate the remote server, ensuring it is operated by the
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party claimed in the domain name, and to then provide protection against both active

and passive attackers sniffing or intercepting traffic on the wire, through the use of

encryption [118].

To monitor and carry out research on traffic protected using TLS, an interception

system can be configured. For Android devices, a dedicated Wi-Fi network is created,

and the Android device’s network settings are manually configured, such that a Linux

computer running mitmproxy software is set as the default network gateway [137]. This

ensures that all network traffic from the device is routed via mitmproxy, which then

forwards it through another network interface to the internet, after carrying out false

TLS handshakes. A new certificate authority (CA) must be generated, and the public

key of this must be manually added to the system partition of an Android device. This

allowed the proxy to generate certificates believed valid by the operating system. This

simulates the same scenario as a compromised publicly trusted Certificate Authority

(CA).

2.10.2 Previous CA Compromises

The CA system is far from perfect, since the compromise of a trusted CA will permit

rogue certificates to be issued. Despite procedural and policy-based measures in place

to attempt to prevent this, there have been a number of high-profile compromises of

CAs in the past, indicating that TLS is far from perfect when considering dedicated

attacks by parties able to compromise, or already in control of, a trusted CA.

The default Android 5.1 operating system image, shipped by Google, was found to

ship with 162 trusted root certificate authorities. Such certificate authorities may issue

certificates for any domain, and recent efforts to monitor issuance and use of certificates

have highlighted a number of scenarios where certificates have been mis-issued. For ex-

ample, Symantec recently issued an extended-validation certificate for Google.com as

part of a testing process, breaking policies CAs are required to abide by [138]. On an-

other occasion, a trusted intermediate certificate was issued by CCNIC, and used by

MCS Holdings in a man-in-the-middle proxy device [139]. In yet another occurrence,

the Indian National Informatics Centre issued certificates for Google domains [140].

Similarly, the French ANSSI certificate authority was found to have falsely issued cer-

tificates for Google domains, which were then used within commercial devices to carry

out monitoring of network traffic [141].

It is therefore clear that certificate authorities are a viable target through which

false certificates may be generated, given these situations, as well as the external at-

tacks on Diginotar and Comodo, leading to the issuance of certificates for sites such

as Google, Tor and Yahoo, which may have been used to intercept traffic of Iranian
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internet users [142]. With the compelled certificate issuance attack [143], the concept

of coercion or compulsion being used against a valid CA to issue a certificate for a third

party website was also introduced, offering another threat which client endpoint devices

may be subjected to.

2.10.3 Certificate Pinning

In light of the issues with the CA system identified above, certificate pinning is a tech-

nique used to attempt to reduce the exposure of applications reliant upon CAs for server

authentication, by constraining the CAs permitted to attest to the identity of the ser-

vice in question. Certificate pinning therefore acts as a means for a client device or

application to restrict the CAs which will be trusted to issue certificates for a given do-

main [144]. Under certificate pinning, an application or web domainmay be configured

to only accept certificates issued by a given CA, or to only accept a given public key for

connecting to that domain. The release notes for Android version 4.4 stated that it in-

troduced an implementation of this to protect users against connections to false Google

certificates [145].

In a working implementation of certificate pinning, a whitelist of permitted certifi-

cates (incorporating public keys) should be loaded to clients prior to being shipped —

to prevent a compelled certificate issuance attack [143] from being carried out against

users, it is important that a list of public keys is stored, rather than a list of permitted

certificate authorities, otherwise the same certificate authority could be compelled to is-

sue an adversary a certificate for the site. Support for certificate pinning was introduced

in Android version 4.2 [146].

In Section 5.2, the security of the deployed Android certificate pinning implementa-

tion will be investigated as a contribution to this thesis, to investigate the security offered

by a real-world deployment of this technique. This is significant to decentralised net-

work security, since in a decentralised network, there is typically no third party on the

network which can be trusted. In contrast, certificate pinning is implemented as ameans

to restrict the set of third party CAs which are able to issue trusted attestations about

the authenticity of a remote centralised server. With certificate pinning being an action

hidden “behind the scenes” within applications, it is therefore essential from a user per-

spective that it operates as expected and described, since it is difficult for a user to verify

this.
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2.11 Conclusions

This chapter has detailed the background and context within which this work exists.

Related work on decentralised networks has been explored, and some of the challenges

posed in the design and implementation of decentralised networks have also been high-

lighted. An overview of the MaidSafe network, the subject of chapters 3 and 4, has been

given, including the necessary background material on the operation of the network, its

addressing structure, and the main principles of operation of the network.

In addition, some background on decentralised and smart contracts has been given,

and on the concepts and definitions of security and privacy, both from a technical and

legal perspective, since the main focus of this work is on the preservation of security and

privacy of personal data. Finally, the challenges of provision of practical security have

been explored, specifically around human factors such as the use of passwords for secu-

rity, and the challenges of cryptographic key storage and use. This will be used as back-

ground to the problem of secure identity management, when considered in Chapter 7.

Finally, some background of TLS has been considered, within the context of communi-

cation with mobile application Application Programming Interface (API)s. The issues

of trusting a wide range of CAs has been introduced, and the operation of certificate

pinning as a means to restrict the CAs trusted by a given application or website has

been considered.

Chapter 3 will now present the first contributions of this thesis, investigating the

security of the MaidSafe network, and how such a network can be protected against

attackers flooding the network with new members, without compromising the decen-

tralised nature of the service.
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Chapter 3

Security of the MaidSafe Decentralised Network

3.1 Introduction

The MaidSafe network is a decentralised, distributed network, intended for the storage

and retrieval of files and other user data. Background to the MaidSafe network is given

in Section 2.5. Any user may join the MaidSafe network and provide storage resources

through a ‘vault’, and make use of the network to retrieve or store data, through a

‘client’. This chapter shall provide a thorough overview of the MaidSafe network, its

principles of operation, as well as the security model upon which it was designed. This

chapter shall explore the operation of such a network, which in turn explains many

of the requirements of a decentralised network. It shall then introduce a number of

contributions with regard to the security of the network, and present a number of new

potential attacks against a decentralised network.

3.1.1 Chapter Contributions

This chapter presents the following 5 contributions.

• A security evaluation of the MaidSafe network, highlighting new weaknesses and

design considerations within decentralised network architectures.

• An improved cryptographic implementation of the MaidSafe self-encryption al-

gorithm, offering significantly improved performance, while using the same cryp-

tographic constructs.

• The identification and demonstration of practical attacks against the self-managed

nature of theMaidSafe network, including a distributed architecture able to carry

out rapid attacks against the network through pre-computation.
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• A novel high-performance proof-of-storage algorithm, allowing for the low-

overhead verification of contribution of storage to theMaidSafe network, without

the identified vulnerabilities of the current implementation within the MaidSafe

network.

• A decentralised protocol for ownership-transferable data, allowing for mutable

data to be stored under selected addresses on the network, while also allowing for

the transfer of control of the address to a new owner or key, permitting transfer

of ownership and re-keying of a user’s keys.

3.1.2 Terminology Notice

Throughout the remainder of this chapter, the terms vaults and clients will be used

to refer to the storage and data retrieval entities respectively. The term ‘node’ will be

used as the collective term for both clients and vaults, where no distinction is necessary,

such as when considering the design and architecture of the underlying distributed hash

table. Vaults will typically be considered as fixed computers which remain connected to

the network the majority of the time. Clients are devices which may be mobile or fixed,

and may not always be online. In many cases, a single computer will run both a client

and vault, but it is not necessarily assumed that both are running on the same system.

3.2 MaidSafe Self-Encryption Algorithm

The self-encryption implementation presented by MaidSafe is a somewhat modified

version of convergent encryption, through the use of block-based chaining. This section

therefore analyses the implementation of convergent encryption within the MaidSafe

network, as introduced in Section 2.5.1.

One initial weakness of the MaidSafe system was identified and reported through

concept review— the system did not feature ciphertext authentication — cipher modes

proposed [61] did not feature inbuilt authentication, or use AEAD (Authenticated En-

cryption with Associated Data) techniques, such as encrypt-then-MAC.

The original MaidSafe proposal for self-encryption was described as part of a

whitepaper [61]. The current implementation is based on this original proposal, al-

though it now uses the Salsa20Poly1305 authenticated cipher, rather than the AES-256

cipher as originally proposed. Therefore, the lack of ciphertext authentication within

the original AES-CBC implementation has been addressed as a result of reporting this

weakness.
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3.2.1 Analysis of the Encryption Implementation

This section provides an analysis of the current implementation of the MaidSafe self-

encryption algorithm ¹, as of June 2016.

Firstly, plaintext data of non-trivial size is split into n chunks (C0 to Cn−1). If a file is

split into chunks, it is split into a minimum of n = 3 chunks. Chunks are a maximum of

1 MB in size, and a minimum of 1 KB. In the event of a file being smaller than 3 KB, it

would be directly encrypted into the data map structure, rather than split into chunks.

The key material for chunk Cx is selected as the first 32 bytes of H(Cx−1), and the

nonce is selected as the subsequent 24 bytes. Note that for the first chunk of the file,

where x = 0, Cx−1 is selected as the last chunk of the file.

The padding chunk for chunkCx is the full hash of the chunkCx (64 bytes), followed

by the final 8 unused bytes of the hash of chunk Cx−1, and the full hash of chunk Cx−2.

After instantiating the Salsa20Poly1305 cipher using the key and nonce, both of

which are deterministic and based upon the file’s contents, the resulting ciphertext is

XOR’d with the padding chunk— the padding chunk is simply repeated until it reaches

the length of the ciphertext output. This output becomes the data to be stored on the

network, and its cryptographic hash is taken as the address under which the data is

stored, since data is stored at the address of its hash. It is worth noting that this XOR

process does not add to the security properties, and is thus extraneous.

Finally, the keying data needed to recover the file is stored in the form of a data

map, which contains the plaintext hashes of each chunk, and the resulting ciphertexts

of each chunk. The hashes of each plaintext chunk act as the necessary keys to remove

the padding process carried out, and carry out decryption, while the ciphertexts are the

addresses from which the encrypted data must be retrieved form the network.

Figure 3.1 represents this process, showing the selection of key, nonce and obfuscation

chunk from the hash outputs of two adjacent chunks.

This shows that block-level deduplication is taking place, and that deduplication can

be achieved through a single file. Significant, however, is that there is potential infor-

mation leakage in two ways, as a result of the MaidSafe encryption implementation.

The first is the well-documented principle of known-plaintext attacks, as discussed in

Section 2.5.1 whereby any user of the decentralised storage network may attempt to

identify if existing known plaintext data is present on the network [147]. Since any party

knowing the plaintext of a file may generate the same ciphertext (per the definition of

convergent encryption, where the same key and nonce are used for each chunk, given

the same original plaintext), it is possible for a party knowing a plaintext to locate it on

the network as a ciphertext, and thus potentially monitor it, or users accessing it.

¹https://github.com/maidsafe/self_encryption
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Figure 3.1
Representation of MaidSafe self-encryption process for chunk Cn

The second potential attack was identified as a result of analysis of the implemen-

tation and its output, given the nature of the MaidSafe implementation of block-level

deduplication. Since a chunk has influence over the ciphertext of two other adjacent

chunks, it appeared that it should be possible to identify files sharing a sequence of

three common blocks. By way of example, three files were created, each of exactly 6

MB in size, designed to result in 6 chunks of ciphertext. The first file contained all zero

bytes, the second was identical with the first byte set to 0xFF, and the third was iden-

tical to the first, with the last byte of the file set to 0xFF. The purpose of this test was

to demonstrate that inferences could be drawn between files that were similar to each

other. Here, the the plaintexts (with the exception of the final byte) can all be considered

to be prefixes of each other. One of the principles of a strong cipher implementation

is that identical blocks of data should not encrypt to the same ciphertext output [148].

Specifically, the hypothesis posed here is that patterns between plaintext chunks may

be passed through to the resulting ciphertext blocks.

The first file (all zero bytes) was encrypted into a single block, since the hash of each

block was identical, resulting in each identical block being encrypted in an identical way.

For the purpose of clarity, cryptographic hash outputs are given in a truncated form;

all were distinct, and no collisions occur in this truncated form for presentation. The

first file encrypted into the ciphertext block 5dc38. This was therefore the block output

for a 1 MB block of bytes with value 0x00, with both adjacent blocks also being 0x00.
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The second file, identical with the exception of the first byte being 0xFF, encrypted

as follows. The first ciphertext block was f085f, the second was 5b725, the third was

6924a, and the remaining blocks were again 5dc38. This was as expected, since for a

varied chunk C1, chunks C1, C2, C3 would be expected to differ from the remainder,

which would be otherwise unchanged from the previous test.

Using the third test file, where the last byte was set to 0xFF, it was predicted that the

last, first and second chunks would be altered compared to the original test, and this

was confirmed, with the ciphertext output hashes being d1bf4, aad69, three blocks of

5dc38, and a final block of 8cd03. Figure 3.2 illustrates these three experiments, and

highlights the propogation of variations in plaintext blocks through to ciphertext blocks.

Specifically, the presence of unmodified blocks shows that the self-encryption process

specifically does not cascade variations through the resulting ciphertext, allowing for

analysis and comparison of ciphertexts.

Therefore, the presence (and equality of) three adjacent identical blocks could be

identified within the file in question, without knowledge of the original plaintext data.

This confirmed that the output of the convergent encryption algorithm, based upon

the implementation by MaidSafe, would make it possible to reveal the presence of three

known adjacent plaintext blocks, as well as identify patterns at block-level within plain-

text files. For a file with chunks towards the 1 KB lower chunk limit, it is highly likely

that, in some contexts, the structure of the file may be repeatable between files. This

allows for the revealing of information both about the internal structure of similar files,

as well as between different files.

This information leakage, however, is unavoidable if one wishes to achieve global,

rather than per-user, deduplication, as used by MaidSafe. Convergent encryption ne-

cessitates that a given plaintext encrypts to the same ciphertext, and block-level dedu-

plication requires that a small change in a file does not result in cascading changes

throughout the file, which would render deduplication ineffective.

3.2.1.1 Critical Evaluation of Approach

Since the MaidSafe proposal contains no facility for re-keying of data, with the key to

a given block of data derived only from the block itself, and the next two blocks, this

highlights that known-plaintext attacks may be leveraged across third party users’ data,

but at block level, rather than at file level. The advantage of this process, however, is

that deduplication may operate at block level, rather than at file level, although this

would not likely result in as much inefficiency as one may expect. Meyer and Bolosky

carried out a study of over 800 desktop computers having their filesystems backed up,

and found that whole-file deduplication would achieve about 75% of the savings of even
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Figure 3.2
Correlation between input blocks and output ciphertexts undergoing self-encryption
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the most aggressive (and thus efficient) block deduplication, and that for four weeks of

full image backups, whole-file deduplication achieved 87% of the savings made using

block-level deduplication [149]. Also worth noting is that Meyer and Bolosky’s study

used much smaller blocks of data, with a maximum block size of 128 KB considered.

In contrast, the MaidSafe approach considers blocks to be typically 1 MB each, for

files larger than 3 MB, with three common blocks needing chained together to result

in the same ciphertext being produced, and therefore an invocation of deduplication.

Intuitively, using a significantly larger block size will result in fewer savings— tomatch a

block between files, each must contain an entire block, relative to the chunk boundaries,

which is identical. In MaidSafe’s implementation, this requires three adjacent identical

blocks of perhaps 1 MB each, before deduplication would offer savings. The use of

variable-length deduplication could also improve the efficiency of deduplication with

such large blocks ².

Therefore, the use of file-level deduplication, may expose some information as to the

structure of users’ files, and their commonality with other files. From previous work, it

has been shown that file-level deduplication offers relatively high efficiency compared

to block-level deduplication, with significantly smaller blocks, indicating that the losses

of using file-level deduplication may be minimal.

By accepting that deduplication would only be carried out at file-level, it is also be

possible to remove the potential leakage of information as to the relation between ci-

phertexts, without any disadvantages compared to the current approach. Specifically,

it is clear from the process used by MaidSafe, and evaluated above, that it is possi-

ble to begin decryption from any location of the ciphertext, provided the appropriate

keys are known. It would also be possible to significantly simplify the above process,

removing the stage of “obfuscation” from the MaidSafe proposal, through the use of

a stream cipher. By basing the stream cipher key and nonce/initialisation vector from

the hash of the entire file, a secure stream cipher output can be derived using knowl-

edge of the entire file’s contents, rather than an individual block’s contents. Indeed, the

Salsa20Poly1305 cipher already used by MaidSafe’s current implementation is a suit-

able authenticated stream cipher which could be applied across the file. The ciphertext

could then by chunked as required, and the resulting chunks hashed to obtain their

addresses on the network. This would remove the need to carry out a per-byte XOR

process against a varying output, which has been found to be a significant performance

overhead [150], and would result in a ciphertext which could only be identified by a

third party possessing the full contents of the plaintext, rather than merely a subset

thereof. The Salsa20 stream cipher has a constant-time seekable output, allowing for a

²https://restic.github.io/blog/2015-09-12/restic-foundation1-cdc/
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given chunk of data to be decrypted in constant-time, without requiring access to pre-

vious chunks, provided knowledge of the key and the offset of the chunk in relation to

the start of the stream cipher [151].

3.2.2 Improved Performance of Convergent Encryption Implementation

In an attempt at improving the performance of the MaidSafe Rust implementation of

self-encryption, which was found to perform poorly, even when compiled as a release

binary, the algorithm was implemented in C. Libsodium was used as the provider of all

cryptographic functions, in order to ensure a well-reviewed implementation was used.

The only algorithmic modification taken was to remove the padding process — the ob-

fuscation of data chunks by XOR’ing against other keying material from related blocks

raises a potential weakness if an adversary were able to obtain intermediate ciphertexts

through a side channel, as it would potentially expose keying material for other blocks.

By removing this step, which is not necessary for the security of the Salsa20Poly1305

cipher construct, the risks of XOR’ing with raw keying material can be eliminated.

To ensure an accurate comparison between the MaidSafe implementation of con-

vergent file encryption, and this improved version, this implementation was configured

to operate in the same way. Firstly, the same chunk size selection algorithm was imple-

mented, to avoid any disparity due to filesystem overheads if different chunk sizes were

used. Secondly, both systems were configured to output to a /tmp ramdisk on the same

Linux system, ensuring that storage performance was not a constraint on overall per-

formance. The MaidSafe implementation also carried out an internal self-check on the

resulting ciphertext, and a similar check on the ciphertext output was implemented in

this alternate approach, to ensure the task being carried out was comparable between

both instances.

Since theMaidSafe implementation was single-threaded, the improved implementa-

tion was also implemented only as a single threaded application. For both applications,

the exact same test data was used; a single 100 MB file containing pseudo-random data,

retrieved from /dev/urandom using the following command; dd if=/dev/urandom
of=/tmp/sourceFile bs=1M count=100.

The original MaidSafe implementation was used to encrypt this file with the CPU

clock speed fixed at various levels. This process was repeated 20 times with different

random input files, each of the same length, yielding a 95% confidence interval result

as to the performance of both implementations.

For a 100 MB random plaintext, the MaidSafe encryption implementation, com-

piled to a release binary for maximum performance, required a mean time of 10.4

seconds to complete, with a standard deviation of 0.23 seconds. The improved imple-
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Figure 3.3
Performance comparison between MaidSafe Rust implementation and this C implementation
to encrypt 100 MB of data, error bars indicate 1 standard deviation from 20 repetitions

mentation presented here required a mean of 0.62 seconds to complete, with a standard

deviation of 0.007 seconds. All timings were the sum of the user-land and kernel-land

times measured from the Unix time command. This indicated that there were signifi-

cant performance gains from using a simple C-based implementation. To ensure correct

implementation and memory management, the implementation was tested against the

Valgrind dynamic analysis tool with all detection enabled, and all tests were passed

across a variety of lengths of inputs. Figure 3.3 shows the performance improvement

achieved over the MaidSafe implementation.

The security assumptions of this implementation remain the same as with MaidSafe

— the Salsa20 nonce was derived from the output of the SHA-512 hash of the data,

and this ensures the cipher remains secure, with a unique nonce for each plaintext, pro-

vided SHA-512 remains collision resistant. Indeed, this is also an assumption accepted

by Bernstein, the author of the cipher, in the upstream reference implementation of

Salsa20 [152].

3.2.3 Network Addressing

Within the MaidSafe network, all nodes are assigned a globally unique address, based

upon the hash of a public key, which corresponds to a private key held by the user [60].

This address is derived according to Equation 3.1, whereA is the resulting node address,

H() is the SHA-512 cryptographic hash function,Kpriv is the randomly generated node

RSA private key, and pub() is a function yielding the public key from a given private

key. It should be noted that the type of key used could be varied, as could the hashing
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algorithm. The security of a user’s identity is therefore constrained by the security of

the process through which their private key was generated, and a strong, verified secure

random source should be used for key generation [153].

A = H(pub(Kpriv)) (3.1)

A cryptographic hashing algorithm, as discussed in Section 2.4, is designed with a

number of security properties in mind. These include the uniformity of output distribu-

tion, in order that the output is statistically random, provided the input distribution is

uniform [59][Section 9.7.1]. If the output of the function H() is taken to be uniform,

the addresses of nodes throughout the network should also be uniform. For this reason,

the developers of MaidSafe have made the assumption that, in light of the uniformity

of the SHA-512 hash function, it would be computationally infeasible to carry out a

pre-image attack, i.e. an attack resulting in the selection of a particular node address.

Indeed, to do so would require a two-step process — firstly, a public key would need to

be found, such thatH(Kpub) yielded the desired address. Secondly, a private key would

have to be found, such that pub(Kpriv) yielded the desired public key. Otherwise, it

would not be possible for the attacker to assume this identity on the network, as they

would be unable to authenticate using the key [64].

Each node on the MaidSafe network is managed by other vaults on the network, and

thus a system of mutual management is in place, where all vaults are equally responsi-

ble for the health of the network. Node managers are selected by their logical location

in the network — a node’s 4 closest vaults will act as its managers, with distance mea-

sured through the bitwise XOR-distance between node addresses, based on the routing

distance metric used within the Kademlia DHT [52]. As such, each node will be re-

sponsible for the management of some nodes, and those nodes will be responsible for

the management of other nodes.

The bitwise XOR distance between two nodes is, as implied by the name, simply

calculated by carrying out an exclusive-or logical operation between the binary rep-

resentation of two different addresses on the network. Due to the nature of the XOR

calculation these distances are unique (i.e. if node B is a distance, d from node A, no

other node can be at distance d from either node A, or B), since node addresses are

globally unique [154]. Table 3.1 illustrates the relative bitwise XOR distance between

sequential numbers for the range of single-digit hexadecimal numbers, given node ad-

dresses and other SHA-512 hashes are often quoted in hexadecimal format.
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Table 3.1
Bitwise XOR Distances From Previous Number

Hex Decimal Binary XOR distance Hamming distance
0x0 0 0000 N/A N/A
0x1 1 0001 0001 1
0x2 2 0010 0011 2
0x3 3 0011 0001 1
0x4 4 0100 0111 3
0x5 5 0101 0001 1
0x6 6 0110 0011 2
0x7 7 0111 0001 1
0x8 8 1000 1111 4
0x9 9 1001 0001 1
0xa 10 1010 0011 2
0xb 11 1011 0001 1
0xc 12 1100 0111 3
0xd 13 1101 0001 1
0xe 14 1110 0011 2
0xf 15 1111 0001 1

3.3 Threats Identified

A series of threats against decentralised networks, built around a peer-managed repu-

tation model shall now be considered. These threats were identified within the context

of the MaidSafe network, and include both logical (conceptual) flaws, as well as imple-

mentational ones with demonstrations. These threats may also be applicable to other

systems implementing decentralised management, or indeed storing user data within a

DHT-type construct.

Previous work has reviewed the security of peer-to-peer DHTs, and highlighted a

number of concerns such as the return of invalid data, the incorrect directing of traf-

fic undergoing routing and the incorrect claiming of responsibility for a value by a

node [155]. Indeed, the MaidSafe network has mitigated these concerns through a

number of techniques. The return of invalid data is a concern whereby a client may be

unable to detect an invalid value being returned to it, in response to a request. To detect

this, data may be held at an address corresponding to its hash. This allows any party to

validate the data, including the recipient, by ensuring that H(data) = address [61].

There has also been previous work, in addition to that which forms the basis of

this thesis, reviewing the MaidSafe network [156]. Indeed, a number of observations

are made by Jacob et. al around the design and implementation of the MaidSafe trust

model and architecture. In their security analysis, they identify that it is assumed that
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users have a “non-manipulable” address within the DHT. They also highlight that “an

attack on this property, i.e. if nodes could select specific positions, would kill the se-

curity architecture of MaidSafe completely.” Jacob et. al, however, concluded that the

network offered “sufficient protection against mass surveillance attacks”, and that de-

feating the consensus-basedmanagement system ofMaidSafe would be “very expensive

for an attacker”, requiring either a full Sybil attack, or an attacker which “manages to

successfully break the hash function to generate IDs close to a desired position” [156].

This chapter shall show that it is not necessary to break the hash function in or-

der to generate IDs close to a desired position within the network, and that an offline

pre-computation attack can be carried out efficiently. As a result of this attack being

identified and reported to MaidSafe, the size of a manager group was increased from 4

to 32, with the threshold ofmajority raised from 3 to 28, as observed by Jacob et. al [156].

3.3.1 Address Proximity Attack

A novel attack upon the MaidSafe allocation of addresses was identified in the course

of this work, in an area of the MaidSafe protcol reviewed by others and stated to be

“very expensive for an attacker” to exploit [156]. The process of generating a device

address is described in Section 3.2.3, and results in the output of a uniformly distributed

address, as the output of a cryptographic hash function. The original security model of

MaidSafe was that each node would be managed by 4 other nodes, and that these 4

nodes would be selected based upon their bitwise-XOR proximity to the node’s address.

Within MaidSafe, for two nodes, x and y, their distance is given by Equation 3.2. This

distance is considered as a vector of bits, of the same length as the address itself.

d(x, y) = x⊕ y (3.2)

For any inputs x and y, non-negativity is established, since d(x, y) ≥ 0. Equation 3.3

illustrates the XOR distance is commutative, as the XOR function itself is commutative.

Equation 3.4 demonstrates the triangle equality is also established [52], where distances

are considered as vectors of bits. In the equations below, a⃗ denotes the vector of bits

corresponding to the address of a.

d(x⃗, y⃗) = x⃗⊕ y⃗ = d(y⃗, x⃗) = d(y⃗, x⃗) (3.3)
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Figure 3.4
Illustration of unidirectionality of bitwise XOR node closeness

d(xi, yi) + d(yi, zi) = xi ⊕ yi + yi ⊕ zi = xi ⊕ zi = d(xi, zi)∀i (3.4)

For any given address in the hashspace, x, there exists for a given distance, D, only

one other address, y, for which d(x, y) = D. This is due to the singularity of the bitwise

XOR function, such that for one fixed input, no second input can yield the same output.

By way of example, if one node were to have a binary address (shortened for clarity) of

a = 00001111, and another node were located at b = 00101110, then these two nodes

have an XOR distance of a⊕b = 00100001. By looking at the least significant bit of this

result, it is clear that there cannot exist any other address with LSB of z in the binary

number space, such that 1⊕ z = 1, other than the previous value of z = 0. Therefore,

address distance is unidirectional.

From the perspective of a fixed node, there can therefore never be more than one

node at any given distance from it. There is therefore no possibility of collision in node

addresses based on distance, short of a full SHA-512 hash collision, which should be

mitigated by a properly designed cryptographic hashing algorithm, as discussed in Sec-

tion 2.4. The unidirectionality of the distance metric therefore means that each node

may have 4 distinct, unambiguous closest nodes, which may act as managers for the

node [156].

3.3.1.1 Distance vs. Closeness

The distance between two nodes is defined, as discussed above, as the bitwise XOR of

the two node addresses. Closeness is not in itself defined mathematically as a metric -

instead, it is used to refer to the 4 nodes with lowest distances from a given point - these

nodes are the 4 closest nodes.

Bitwise XOR node closeness is unidirectional, since one node can be a close neigh-

bour to another node, while the other node has other closer neighbours. This is illus-

trated in Figure 3.4, where node E will find that its closest 4 nodes are A, B, C and D.

In contrast, node G will find that its closest 4 nodes are D, E, H and I. As a result, while

the distance between two nodes is symmetric, where d(E,G) = d(G,E), the closeness

is not symmetric [52].
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Within this example, node E will find that its closest 4 nodes are A, B, C and D, yet

node G will find that its closest 4 nodes are D, E, H and I. Therefore, while the distance

between two nodes is symmetric, where d(E,G) = d(G,E), nodes are not necessarily

mutually close.

3.3.1.2 Vulnerability to Attack

TheMaidSafe networkmakes some assumptions as to the security of SHA512 hashes [156].

Firstly, it assumes the hash output is uniform. Uniformity is desirable, as uniformity is

designed to hinder an attacker deliberately positioning themselves towards a particular

area of the network. Any kind of bias in the hash algorithm would reduce the difficulty

of surrounding a given node. For a truly uniform hash, the mean distance between each

node on the network should be approximately equal, as the probability of being placed

in any area of the network is equally likely.

The MaidSafe implementation, however, is vulnerable to attack, as a result of in-

correct assumptions made as to the security of cryptographic hashing. To demonstrate

this, a successful attack must first be defined, based upon MaidSafe’s implementation

of node management. By considering a successful node insertion attack as one in which

a pre-selected address on the MaidSafe network is able to have a new, close, node in-

troduced to it, such that this new node becomes one of the existing node’s managers,

it is clear such an attack may compromise the MaidSafe self-management model of

security [156].

For a hash space of H (2512 in this case), and N uniformly distributed nodes, the

mean distance between nodes in such a network is given by Equation 3.5. By way of

example, for 5 nodes in an address space of 5, the mean distance between nodes would

be 1.

d̄ =
H

N
=

2512

N
(3.5)

Within such a large address space (2512 ≈ 1.34× 10154), the mean distance between

nodes is significant.

At this point, the weakness in the MaidSafe implementation becomes clear — it

made the assumption that it the uniformity of a cryptographic hash algorithm meant

it was computationally infeasible to be able to craft an input which would result in a

node being placed at a given location within the network. While the regular property

of irreversibility of a cryptographic hashing algorithm does aim to offer this assurance,

it does so for targeted outputs. Therefore, the property of pre-image resistance aims to

67



Figure 3.5
Attack space of one address

make it computationally difficult to determine an input which will produce an output

of a specific value. This does not, however, guarantee that it will be difficult to produce

an output within a given range, which is the property MaidSafe assumed was present

within a cryptographic hash algorithm.

If an attacker is able to place a node within the mean distance between nodes, then

on average, this node would become the closest node to the existing node. As the closest

node to an existing node, the new node would become a manager of the existing node.

Indeed, the attacker would still become a manager of the existing node if the attack

resulted in the new node having an address closer than the 4th closest node prior to the

attack, although for ease of demonstration this attack shall firstly be demonstrated for

the scenario of becoming the closest node.

Given amean distance between nodes of d̄, an attacking node will become the closest

neighbour if its resulting address falls within 2d̄
H
% of the overall network address space,

which is the same as the output space of the cryptographic hash function. This is because

to become a close node, it is simply necessary to be closer to the target node than either

of the two adjacent nodes. This is shown in Figure 3.5.

For a network of N nodes, it is therefore possible to become closer than the mean

inter-node distance in a relatively small number of attempts. As node addresses are

uniformly distributed, the probability of a generated address falling within the desired

region is 1 in H
2D

. This is because it is possible for the node to reside on either side of

the target, therefore the denomenator of the equation must be multiplied by 2. For a

network of 1 million nodes, this means the probability of generating a neighbour for

a desired node is shown in Equation 3.6. This can be intuitively validated, since for a

network of 1 million nodes, the probability of an attack reaching between any two nodes

is approximately 1 in 1 million.

Pcomp =
2× ( 2512

1×106
)

2512
=

1

1× 106
(3.6)

Therefore, the difficulty of positioning an attack node within the mean inter-node
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Figure 3.6
Attack against node with 4 neighbours

distance of any given node is entirely linear with the number of nodes on the network.

With every attempt at generating an address having a constant probability of success,

and each attempt being independent of previous attempts, a successful attack would

take place, on average, after half this number of attempts. Therefore, for a network of

1 million nodes, an attacker could introduce its own closest node to any target in half a

million attempts, on average.

3.3.1.3 Compromising Further Nodes

These calculations demonstrate the probability of introducing a single malicious node

to the network, within the mean inter-node distance for a given network size. Given the

definition of closeness on the network, this attack is already considering the definition of

closeness, by being nearer to the target than any other adjacent nodes. As these calcu-

lations were carried out to be closer than the closest (on average) existing node, which

would be the mean inter-node distance, the difficulty of an attack which simply aimed

to introduce a new node to replace one of the closest 4 nodes would be easier, given the

wider attack space.

For uniformly distributed nodes, Figure 3.6 shows the wider range of attack possible

in this case - since each node is statistically uniform in address position, the mean dis-

tance between them is, on average, the same. To become one of the 4 closest nodes to

the target address, it is now only necessary to introduce the malicious node closer than

the current 4th closest node. In this case, where d̄ is the mean distance between nodes,

this gives the attacker a range of addresses of, on average, 4D in size.

With this increased attack target, a node will become one of the 4 closest nodes, on

average, if it is able to reach this area of 4D nodes. This requires, on average, a quarter

of the number of attempts as previously, therefore for a network of 1 million nodes, an

attacker could, on average, place a single new node as one of the closest 4 nodes of a

given target within 125,000 attempts.

3.3.1.4 Attack Scalability

Operations on the MaidSafe network are validated using a consensus of the 4 closest

nodes to the node requesting the operation. A consensus threshold of 3 from 4 is re-
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Figure 3.7
Node A compromised by 3 malicious nodes, despite close legitimate node B

quired, in order to approve an action on the network. This means that a threshold of 2

from 4 is also sufficient to carry out a denial of service attack against a user, since an at-

tacker controlling 2 closest neighbours is able to block a consensus from being reached.

For the remainder of this section, however, it shall be assumed that the attacker wishes

to carry out a complete attack with at least 3 closest neighbours — this allows a false

consensus to be reached, therefore potentially overriding the actions of the user under

attack, since the 3 attacker-controlled nodes may collude to approve actions.

The effective difficulty of compromising at least 3 of the 4 closest nodes does not

significantly increase with each successive malicious neighbour added to the network—

assuming that no other nodes join or leave the network while an attack is taking place,

the network size will only increase by 1 node following each attack. The proximity of

legitimate nodes to a given node should also not typically significantly alter the difficulty

of this attack, although it is worth noting that since node distribution is probabilistic and

uniform, this is never guaranteed.

By way of example, if a node has one legitimate neighbour clustered very close to it,

it is not necessary to be closer than this node - it is merely necessary that the malicious

nodes be located closer than the closest adjacent legitimate node. This is demonstrated

in Figure 3.7.

Since this attack is based on positioning the node within an incredibly large region

of the address space, the probability of achieving this with a relatively small number

of attempts is the issue here. The difficulty of positioning 2 malicious nodes around

a target is, on average, only twice the difficulty of placing one - this makes the attack

linearly scalable. This can be justified by returning to Equation 3.6, and noting that

to obtain 2 adjacent malicious nodes, the process needs to be completed only twice —

these calculations weremade assuming a worst-case scenario, where the attacker wished

to be closer to the target node than any other node would be, on average.

3.3.1.5 Scalability

To measure the ability of this attack to scale with a growing network, the number of bits

of security provided by the uniform hash shall be considered. That is, while MaidSafe

uses the SHA-512 hash to compute addresses, this hash is effectively being truncated
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for the purpose of closeness assessment, given the significant orders of magnitude of

difference between the available address space, and the number of users of the network,

as descriped in Section 3.3.1.2. If the number of significant bits of a given address is

defined as the number of bits required to uniquely identify a given node, on average,

assuming a uniform distribution of nodes in the network, an address offers only log2N

bits of security, for a network of N nodes.

Due to this logarithmic relationship, doubling the number of nodes on the network

will only add 1 extra significant bit to the hash. For a network of 1 million nodes, the

SHA-512 hash is therefore effectively truncated to log2(1 × 106) = 20 significant bits.

By way of comparison, the Bitcoin cryptocurrency uses partially truncated hashes as

a proof-of-work scheme, whereby block hashes must be below a given value. For block

389405 ³, a prefix (i.e. truncation) of 69 bits was required, and this task is completed

around once every ten minutes as part of the mining process [126]. Therefore, an attack

to surround a given user in the MaidSafe network would require significantly less work

than successfully mining a Bitcoin. By way of comparison, the difficulty of generating

an input, hashing to the address of a node closer than the mean inter-node distance for

the network 269

220
= 249 times less computationally intensive, for a network of 1 million

nodes. Indeed, even with a network of a 1 billion nodes, this attack remains significantly

less difficult than mining a Bitcoin block — the effective hash truncation would result

in effective addresses of log2(1× 109) = 30 significant bits, still far below the difficulty

of carrying out Bitcoin mining, indicating the feasibility of such an attack. Gaining a

series of 3 such partial hash collisions would therefore result in having management

control over a given network user, and allow for attacker-controlled false consensus to

be reached.

3.3.2 Attack Implementation

Until this point, the calculations presented here have been intended to demonstrate

that the assumptions placed in cryptographic hashing algorithms by MaidSafe do not

offer security against an attacker potentially generating hash inputs which correspond to

addresses adjacent to another node. To leverage this design weakness in order to carry

out an attack, it is necessary for an attacker to possess the private key, corresponding to

the public key which, when hashed, yields one of the four closest addresses to the victim.

Using a regular laptop, with quad-core Intel Core i7 4750HQ CPU, it was found

to be possible to generate 1000 RSA keypairs in approximately 62 seconds, using the

regular RSA implementation in the Go language ⁴. Since this was a relatively slow

³https://blockchain.info/block-height/389405
⁴https://golang.org/pkg/crypto/rsa/#GenerateKey
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process, constrained by the processing capabilities of the laptop, a distributed attack

implementation was designed.

3.3.2.1 Distributed Attack Architecture

This architecture was designed to emulate a scenario such as a bot-net, whereby a se-

ries of diverse computing devices were used to attempt to generate large numbers of

private key pairs, and return the addresses and private factors of these keys. A Redis

key-value pair cache was used as the storage back-end, and it was exposed to a series of

Go worker nodes, each generating as many private keys as possible, and indexing them

in the Redis database. A client was also created, allowing an authorised user to query

the database based on a partial prefix of the necessary key. To ensure high performance

of this querying mechanism, the Redis SCAN command was used, which matched based

on a partial prefix of the string contents of the hexadecimal representation of the target

address. Therefore, to ensure partial matching was possible, where the significant bits

of a hash did not necessarily align with byte boundaries of hexadecimal characters, a

group of SCAN queries were made, allowing for each permissible prefix to be located.

Therefore, given the address of a target on the network, it was possible to carry out a

search and determine the address and private keys of the closest pre-computed addresses

available within the database.

3.3.2.2 Observations

The intention of this workwas not to produce themost efficient possiblemeans of storing

the private keys generated during this process, based on the assumption of the low cost of

storage— a 500 GB Samsung Evo 850 SSD can be purchased for £112 ⁵. Storage of an

RSA private key was found to require merely the private exponent D, the two factors

of the public modulus, P and Q, and the output of the SHA-512 hash, as an index

to locate the key. With access to the private key, the public key itself may be retrieved

without being stored, by multiplying P and Q [59, Section 3.3]. Therefore, assuming

keys with 2048-bit public modulus were required, a total of 128 + 128 + 64 = 320

bytes of storage was required to hold each key. A 500 GB drive was therefore capable

of theoretically holding, assuming fully efficient storage, around 1.4× 109 private keys

and public key hashes.

Based on the calculations from Section 3.3.1.2, a database of 1.4 × 109 keys would

be sufficient to compromise, on average, any user of a network containing of the order

of 1 billion nodes, given a 1 billion node network would have an effective hash length

of 30 bits, and 230 leads to 1.0 × 109 keys necessary, on average, in order to position a

⁵http://www.amazon.co.uk/gp/product/B00P73B1E4
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node between the mean inter-node distance between each node.

Based on the performance of the laptop used for testing, as described in Section 3.3.2,

it was clear that generation of keys was the performance constraint in this attack. Since

an adversary may be assumed to not care about the security of keys, merely their own

ability to control a given node as a manager, an alternative attack approach was im-

plemented as an option — if the security, through primality, of the RSA keys used was

not considered as significant by the adversary, RSA keys could also be generated us-

ing unsafe candidate primes. Profiling of the performance of key generation indicated

that the key generation process could be sped up by a factor of over 100 times, if prime

validation was not carried out.

By re-implementing the Go random prime generation function ⁶ to no longer carry

out the ProbablyPrime check on the prime candidates, generation of RSA keypairs

for use in an attack was significantly accelerated — on the same laptop, 100,000 RSA

keys were generated in 47 seconds, and 1000 RSA keys were generated in around 300

milliseconds. This resulted in a speed-up of 131.9 times the original implementation.

3.4 Application of the Birthday Attack

While these results are based upon calculating the difficulty of attacking a selected net-

work node, and achieving a rogue consensus of three attacker-controlled nodes, this is

not the only applicable attack on the network. Where an attacker has a motive to cause

mischief, or where there is any kind of gain able to bemade through gaining a rogue con-

sensus around any node on the network, the birthday paradox must be considered [59,

Section 9.7.1].

The birthday paradox is defined as the probability that any two people in a given

group share the same birthday (i.e. date and month). A naive attempt to calculate the

probability of two people sharing a given birthday would be that P = N × 1
3652

=

N × 7.5 × 10−6, for N people in a room. While this is indeed the probability that

two individuals, from a group whose birthdays are uniform (i.e. not from a gathering of

twins, or similar) share a given selected birthday, this is not the same as any two individ-

uals sharing a birthday. In this scenario, the probabilty is much higher, since a birthday

is shared if any member of the group has the same birthday as any other member of the

group. Specifically, for a group of only 23 people, paradoxically, the probability of at

least 2 members of the group sharing a (non-specified) birthday is 50.7% [59, Section

2.1.5].

Therefore, the birthday paradox highlights that the difficulty of surrounding any

⁶https://golang.org/src/crypto/rand/util.go?#L31
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node with 3 malicious neighbours may be lower than that of compromising an indi-

vidually targeted node. In certain scenarios, where there is value to be gained by an

attacker able to form false consensus around a node, there may be a motive to carry out

untargeted attacks. Alternatively, an attacker motivated by a desire to vandalise may

use an untargeted attack to cause denial of service, either by preventing the generation

of a genuine consensus, thus preventing a user making requests to the network, or by

erasing a user’s data.

3.4.1 Potential Attack Applications

The ability to generate a false consensus on the network was identified to be a significant

threat for a number of reasons. Putting aside simple denial of service style attacks, which

are a constant and ongoing feature of the modern internet [157], rogue consensus can

be abused in a number of additional ways. For example, a malicious user may use a false

consensus to gain control of a user’s data atlas, the section of encrypted data necessary

for a user to gain access to this network. By either blocking access to this data, or by

generating a false request to delete or overwrite it, it would be possible for an attacker

gaining a false consensus to firstly retrieve the data atlas, and secondly to initiate a

deletion of the data atlas. At this point, the user would be unable to re-connect to the

network, and the attacker would be in a position to ransom a user’s access to data back

to them.

While similar attacks could be carried out on any other piece of data within the

network, since the closest 4 neighbours are used to reach consensus on requests initiated

by a user, gaining the ability to create this request to overwrite or remove the data

atlas would result in the maximum damage (and therefore most likely pay-out from the

victim to gain access to their own data). This attack could be mitigated by users holding

local backup copies of their data atlas, in order to re-gain access to the keys needed to

connect to the network, and re-locate their data, but this would be somewhat defeating

the purpose of a secure, decentralised storage network like MaidSafe, which is designed

to free them from needing to store and backup keys offline.

This attack was documented and reported to MaidSafe, and as a result of these

findings, the decision was taken to design all data on the network to be undeletable, and

ensure that other nodes on the network would reject deletion requests against data. It

was recommended that every block of data on the network should be signed by the user’s

key itself, and that this signature (and the corresponding public key needed to verify

it) should be visible and accessible as part of the data. This ensures that even a false

consensus cannot alter data generated by a user — without access to the same signing

key, the group of nodes holding the data would reject the update as invalid. To carry out
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this attack successfully, it would therefore be necessary to attack each individual copy

of the data atlas, and gain consensus around the addresses holding it, then unilaterally

replace the data without informing the rest of the network.

Despite the MaidSafe network being designed to protect details of requests being

made against outside adversaries, by encrypting messages exchanged between nodes

and their neighbours, it is worth noting that the data atlas may easily be identified

by these neighbours, as well as by any other node able to observe the requests being

issued, such as the nodes receiving the requests. Traffic analysis allows for the inference

of the address of a user’s data atlas — the address of the atlas, per the design of the

MaidSafe network, remains constant, based upon the derivation of a network address

from the user’s login credentials [64]. Therefore, the first request made by a user upon

connection to the network must be retrieval of their data atlas, in order to gain access

to their identity keys and then access their account, making it possible for a malicious

attacker to identify the address of the data atlas to compromise.

Mitigation of this attack is not trivial — storage of offline backups of the data atlas

was one approach considered, although it would result in an inconsistent view of a user’s

data if multiple clients were used. Since the data atlas acts as a pointer towards the user’s

data map, it is necessary for updates to the data atlas to be propogated, in order to gain

access to newly added data. For this reason, offline backups do not present a solution

to the problem of ensuring the data atlas is correctly held on the network. Instead, this

attack is better mitigated by re-considering the threat model of the data atlas, since its

loss or corruption would result in the loss of access to all data within the user’s account.

3.5 Manager Verification

Much of the MaidSafe security model is built around every node having managers,

with these managers being the four closest nodes to the node in question, at the time

the operation is carried out. As shown in Section 3.3.1.1, the definition of proximity

within an XOR network is unidirectional, meaning that while one of the four closest

nodes to A nay be B, this does not imply or indicate that A is one of the four closest

nodes to B. This means that, in the absence of an omniscient view of the network,

which is not achievable in a decentralised network, due to the inherent lack of central

authority with knowledge of every node’s address, it is not possible for nodes to generate

a map of the network.

Therefore, while a node itself is able to determine its managers, by looking at which

nodes are locally closest to it, there is no guarantee that these managers may be able to

determine this. Another node may believe that it should be a manager of the node, but
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there may be other nodes which are closer. Previous work analysing the network has

stated as a security assumption that users assume “the view on the network is equal for

all nodes” [156], but given the uni-directional nature of closeness within the network,

this cannot be guaranteed without an omniscient view of the network, requiring it to be

centralised.

This limitation poses a potential concern for the MaidSafe network — while it is

possible to carry out theoretical analysis of the network from an omniscient perspec-

tive, and demonstrate the difficulty of becoming managers of a given node, without

an omniscient entity on the network, the potential for such an attack cannot be ruled

out, since nodes can only rely on the nodes they themselves can detect. If an attacker

were able to disrupt communications or segment the network, such that a node could

be tricked into believing that colluding nodes were its closest neighbours, it could be

convinced to join an attacker-controlled group.

Per the Kademlia network design [52], close nodes can be discovered through a

request which is propagated through the DHT. When a request to find close nodes is

made, a DHT node issues a propagating request with the target address it seeks. Nodes

progressively closer to the target address will respond with the closest nodes they know

to the target address, resulting in an eventual convergence on the closest nodes to the

target address. Since this query is carried out through multiple nodes, and nodes know

more nodes in their close address-space, as discussed in Section 2.3, the final nodes

located will be the closest responding nodes to the target address.

3.6 Chunk Information Holders

As discussed in the MaidSafe network overview in Section 2.5.2, data on the MaidSafe

network is held in chunks, which are distributed throughout the network based on the

hash of the encrypted chunk. At the logical area of the address-space, where the chunk’s

hash is located, the closest 4 nodes are selected as “chunk information holders”. These

nodes are responsible for managing the chunk in question — their tasks include re-

questing other nodes hold the actual data, and then verifying this data in future. These

nodes also handle updates of mutable data, by verifying the request, as well as handling

the garbage collection of data, by requesting the deletion of data when it is no longer

required.

This puts chunk information holders in a highly privileged position, within the con-

text of the MaidSafe network. The 4 nodes are responsible for selecting nodes to hold

the data — 4 copies of each chunk are held on the request of the chunk information

holders, and the nodes holding the chunks are then managed by their own managers
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(their 4 closest nodes). This architecture gives rise to a number of vulnerabilities, on ac-

count of the unbalanced privileged access given to the chunk information holders.While

the issue of selection of chunk holders was discussed previously from the perspective of

the lack of determinism or randomness in the allocation, there was no security impli-

cation highlighted [156]. A number of practical security implications of this shall be

demonstrated.

3.6.1 Data Distribution Authority

The first weakness identified was that while chunk information holders are selected

deterministically and uniformly, as a result of the cryptographic hash of the chunk,

the nodes used to hold the actual chunk data itself are selected entirely arbitrarily by

the chunk information holders. This means that, in the event of malicious nodes being

introduced to the network, they may rapidly begin to influence the distribution of data

on the network. A group of rogue chunk information holders may issue chunks to a

group of nodes under their collusion, if they wish to gain control of the stored copies of

data. This would potentially allow these chunk information holders to refuse access to

data, on request. Since the storage of the resulting chunks is arbitrary, and not auditable

by a third party through deterministic locating of data, it is not possible to determine

wrongdoing in the actions of chunk information holders. If they were to request data be

stored only on cooperating nodes, it would be possible for an attacker to gain control

over all copies of the chunks they act as information holder for, violating the availability

guarantees by the MaidSafe network.

3.6.2 False Data Mutation

Data mutation requests are generated by the owner of a given chunk of mutable data,

and the request is validated by their four closest neighbours, per the standard consensus-

building approach. Once consensus on the action is approved, the action is relayed to

the chunk information holders of the chunk in question. The chunk information hold-

ers validate the consensus, ensure the data is not marked as immutable, then request

the individual chunk holders update their copy of the chunk to the new version. In the

event of either a node’s managers being compromised, or a chunk information holder

being compromised, it would be possible for data to be falsely mutated. As a result of

this, an appropriate mitigation would be to ensure that all mutable data is signed, and

that mutation requests are signed with the same public key as the original data. This

prevents a compromised chain of trust between the node’s managers, and the chunk in-

formation holders, from being used to falsely mutate user data, causing data loss. This
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is naturally only a concern for mutable data, since it cannot inherently be validated

against its address in the same manner that immutable data can be. Therefore, by re-

quiring the nodes holding chunks to validate the signature of mutated data, it is possible

to ensure that the data is genuinely produced by the same user who initially stored it,

thereby preventing vandalism.

To demonstrate this, an extension of this solution has been implemented in Sec-

tion 3.10, to allow for transferable-ownership of signed data, while ensuring that a chain

of validity is preserved, allowing for a node to re-join the network after any period of

inactivity, and still verify the legitimacy of any update, without allowing an attacker to

downgrade data to maliciously alter ownership data.

3.6.3 False Data Removal

Since nodes holding chunk data are accountable only to the chunk information holders,

it is the responsibility of chunk information holders within the MaidSafe network to

identify when data is no longer required, and organise the removal of the data. To

ascertain whether or not a chunk is required by a user, without maintaining a list of users

requiring a given chunk, the MaidSafe network carries out a repeated XOR process,

whereby a chunk’s watch list is XOR’d with the identity of a node requesting a chunk

be retained. Therefore, for a chunk requested by two nodes, the chunk watch list will

hold the value of A⊕B, for two nodes, addresses A and B.

From the perspective of a chunk holder, however, the only way to verify the authen-

ticity of a request is to ensure it came from the chunk information holders, which are

the 4 closest nodes to the chunk address. Since the request itself is not directly relayed

by the chunk information holders to the chunk holders, the chunk holders can only

verify the deletion request based on the details they receive from the chunk informa-

tion holders. As the chunk information holders process all requests to delete data, they

therefore have the ability to follow the value of the chunk watch list. To determine when

the last chunk watcher has been removed, the list is XOR’d with the watcher identity

unsubscribing from the chunk, therefore meaning that when all watchers have chosen

to remove the file, the watch list will be left as an all-zero value. The chunk information

holders may therefore indicate to the chunk holders that the data is no longer required,

by simply returning the current value of the chunk watch list, since for watch list value

L, L⊕L = 0, therefore resulting in an empty watch list, resulting in the removal of the

chunk data, even though it may be required by nodes.

Since the chunk information holders are responsible for the control of the 4 copies

of the chunk held on the network, it is possible for them to cause data loss for users,

by exerting their control over all copies of the data on the network. As a result of our
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reporting of this issue to MaidSafe, it was agreed that the best mitigation against attacks

such as these would be to make all data on the network undeletable, until such a time

as a suitable mitigation was identified.

3.6.4 Mitigation and Analysis

When the original threat model of the MaidSafe network was carried out, attacks like

this resulting in the false deletion of data were not directly considered, as the network’s

reputation system was assumed to provide sufficient guarantees against the growth of

malicious nodes in the network — the reputation network was designed to ensure that

data was stored based on availability and capability of nodes to hold the data in ques-

tion, with data removed from low-reputation parties [25]. In the event of collusion of a

number of entities, their reputation need not necessarily suffer — while if nodes were

to generate their own commands falsely, or refuse legitimate commands, these would

result in detectable refusal to follow the rules of the network, this is not the case for all

attacks. If malicious chunk information holders were to only attempt to target chunks

for which collaborating malicious nodes held a majority of consensus, they could carry

out attacks such as those described above, without fear of reprisals, since only the chunk

information holders themselves hold the information necessary to determine whether a

file should be retained, and its content.

In order to mitigate this risk, it is necessary to ensure that chunk information holders

do not hold a privileged position, granting them exclusive access to manage data. By

carrying out a small number of changes, it is possible to ensure that chunk information

holders cannot directly cause data loss or denial of service without detection. Firstly, the

storage locations of chunk data should be deterministically derived from the hash of the

chunk data — rather than allowing the chunk information holders to arbitrarily locate

chunks, the nodes selected to hold data should be selected based upon a modification

of the cryptographic hash of the chunk contents. For example, for a data chunk whose

address (and therefore chunk information holders) is A, copies of the chunk may be

held by the node closest to address Hn(A), where Hn is the recursive cryptographic

hash function, with n ∈ Z | n > 0, for n iterations.

Any member of the network may therefore verify that data is being stored at the

correct location, without the chunk information holders having the ability to select col-

luding nodes to hold data. While this process does not mitigate concerns with regard

to the formation of consensus and close groups, as discussed earlier in this chapter, this

mitigates the specific risk of a rogue chunk information holder group having consider-

ably more influence than other rogue nodes on the network.
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3.7 Dishonest Vault Attack

The dishonest vault attack is explored in further detail here. In this attack, a user can

uploadmore data than they are themselves storing, thus bypassing one of the limitations

of the MaidSafe network, whereby users would be restricted to storing only up to the

average of other users, unless a node offered more storage space. This serves to balance

the needs of users to store data, while also ensuring that malicious users do not fill up

every vault on the network with meaningless data, thus preventing others from storing

data. To balance this, MaidSafe had proposed that users should only be able to store as

much data as they store for other people.

3.7.1 Overview of Attack

The dishonest vault attack is a concern when othermitigations to attacks are considered,

such as preventing the deletion of data, to mitigate attacks against chunk information

holders, as described in 3.6.3. If data is not able to be removed from the network, to pre-

vent denial of service through data deletion, it is important to ensure that users cannot

upload more data to the network than is sustainable, as their data may not be removed

after it is stored. Since, from the perspective of members of the MaidSafe network, all

data is opaque to the holder, it is not possible for it to be filtered or otherwise scruti-

nised; such decisions can only be made based on rules such as the node of origin, and

its reputation.

This attack involves a user generating their own vault, and offering to store signifi-

cant quantities of data for other users. Note that this attack may be combined with the

storage hand-off attack, considered in Section 3.9, for enhanced efficacy. After offering

significant storage to the network, the user may store data per the network rules, then

revoke their storage offered.

3.7.2 Analysis of Impact

Since data was proposed to not be deletable on the network, the user has effectively

unlimited storage. While their account reputation may be decreased as a result of this,

since any user may retrieve any data from the network, to allow for login to take place,

it would not be possible to deny the user access to the data, even if they were to retrieve

it from a new account.

While this would require a custom client implementation, in order to use a different

account key to decrypt data, this cannot be prevented by the network, since retrieval of

data is separate from decryption of data, and it is never necessary to prove ownership

of data to the network, or it would not be possible for users to take part in verification of
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data integrity or other network housekeeping tasks to ensure reputation scores are held

correctly.

3.7.3 Mitigation of Attack

In order to mitigate this attack, it would be possible to adjust the storage limitation

algorithm, such that clients may only store as much data on the network as they have

already been verified to hold.While this cannot prevent a user from following the proto-

col to gain storage, holding data, before later removing it, that is a consideration more

towards the deletion or expiry of data, rather than towards the validation of storage

— nothing other than reputation can force that a user keep their vault online, without

offering opportunities for loss of data or denial of service.

This does, however, raise a new challenge, namely around how a user may join the

network and establish credibility — without a reputation, a user will struggle to find

nodes willing to store data on their system, therefore preventing users from storing data

on the network and thus gaining reputation by following the rules of the network. To

prevent this, a proof-of-storagemechanism is proposed in Chapter 4, which would allow

a user to store verifiable data, and allow a third party to verify this, without requiring

others to entrust the vault with their data. It is worth noting that the MaidSafe network

does have design provisions for this scenario, since the duplicate copies of chunks ensure

that nodes are not holding the sole copy of a given chunk on the network. Nonetheless,

a means of proving the storage of data offers an approach through which users may

gain reputation on the network following their entry, without others being required to

trust them.

3.8 Incorrect Proof of Storage Implementation

As introduced in Section 2.6.1, the challenge of resource management is significant

within a decentralised network, given the lack of a central entity to manage and enforce

storage quotas. One of the approaches considered in previous works includes proof of

storage, whereby actors on a network provide a proof to others that they are storing

data. This proof may be validated by other parties, in order to validate the veracity of

the claim of storage on the network.

One of the limitations of a proof of storage is that it often necessitates the verifier to

also hold the data being validated. This makes validation of proofs of storage difficult to

scale, and thus disincentivises others from validating claims of storage being provided,

as they would also have to store the data themselves.
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3.8.1 MaidSafe Implementation

The current MaidSafe proposal for proof of storage ⁷ is based around a cryptographic

hashing technique, whereby a node may prove to a group of verifying nodes that it holds

a given piece of data by returning a response to a challenge.

The protocol currently designed by MaidSafe requires that the verifiers present the

node with a challenge string. This string is appended to the original data chunk whose

presence is being proved, and the response is given to the verifiers. They may verify this

by carrying out the same operation. During review, it was established that this construct

is vulnerable to a length extension attack, whereby an attacker without storing the data

could return a correct response to a challenge.

In a length extension attack, which is applicable to a wide variety of hashing al-

gorithms, including the MD5, SHA-1 and SHA-2 families [158], it is possible for an

adversary to compute the hash of 2 concatenated messages, such as H(a||b), without

knowledge of both a and b, provided suitable padding is allowed for. This could remove

the requirement for the user to store the contents of a, and thus negating the premise of

the storage proof. Indeed, given the MaidSafe network identifes ciphertext chunks by

their hashes, as discussed in Section 2.5.1, there is no requirement for amalicious prover

to even storeH(a), since they will be provided this to carry out the proof. Previous work

has produced software which will generate such extended hashes ⁸.

A direct and immediate mitigation for this weakness would be to use a proper keyed

hash construct, such as an HMAC function, which is designed to be resistant to such

length extension attacks when combining two parameters ⁹.

3.8.2 Implementation of a High Performance Proof of Storage System

The concept of proof of retrievability was introduced as a way to allow a server to prove

to a client that it can retrieve a given file, without requiring the transmission of the

full file itself. Therefore, the client may be satisfied that the server holds the data, and

that it is not corrupted, truncated or tampered with, and that it would be retrievable

if required [77]. The proof of retrieval was introduced as a special case of a proof of

knowledge, designed to cover a large stream of data, such a file or chunk.

One challenge of implementing a proof of storage protocol is that of ensuring effi-

ciency for the verifier— if the verifier is required to store the full file, in order to validate

the verification response, there is little advantage for the verifier, as they need to ensure

they retain all their data independently. Therefore, it is necessary to ensure that, at least

⁷https://github.com/maidsafe/SystemDocs/blob/master/en/system_components/proof_of_resources.md
⁸https://github.com/bwall/HashPump
⁹https://rdist.root.org/2009/10/29/stop-using-unsafe-keyed-hashes-use-hmac/
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for the purpose of verifying a new node’s credibility in storing data, it is possible for ver-

ification to take place without the verifier retaining the same quantity of data as being

held by the new node.

One approach is to generate a finite series of challenge-response verification ques-

tions, and pre-compute the answers to these. By way of example, to request verification

of a segment of a chunk, from byte 100 to byte 200, the verifiermay pre-compute i keyed

hashes (HMAC(key, data)) of that range of data, for a series of i keys (Ki), with a given

per-challenge nonce N , i.e. Vi = HMAC(rnd_keyi, chunk[100 : 200]||noncei). A
keyed hash should be used to prevent length extension attacks being carried out on the

hash, since an implementation may append the nonce to the hash of the data. Provided

that the node being verified cannot predict the challenges used, it is necessary for it

to retain the full data, in order to be able to present the keyed hash of a given range of

data. The verifying node would have to store a number of pre-computed challenges, for

different ranges of data, and with different nonces and HMAC keys, in order to ensure

that the node being verified is not likely to pass verification without holding the full file.

The process of verification is therefore somewhat complex for the verifier as it requires

them to pre-compute sufficient challenges to use in future.

An alternative approach would be for the verifying node to generate synthetic data

for the purpose of establishing credibility by a verifier. By using a random-access stream

cipher, such as Salsa20, it is possible to generate an unpredictable pseudo-random se-

quence securely, and store only the seed parameters needed to re-initialise it [151]. By

storing only a 32 byte key and 8 byte nonce, it is possible to generate the same output

in a repeatable manner. This allows the verifier to store only 40 bytes, and generate, in

constant time, any arbitrary position of the output, since the output is entirely a function

of the position within the output [159].

A verifier may therefore provide a new node wishing to gain reputation with an

arbitrary block of random data from the output of the stream cipher, and request it be

stored. The verifier may, with only 40 bytes of data stored, verify any portion of the

contents of the data, by merely requesting that segment of the data, or any function

derived thereof. The purpose of this is to permit a node joining the network to bootstrap

trust by demonstrating its capability to reliably store data, at a point where its reputation

may be non-existent, meaning that no user would wish to rely on the node to store data

on its behalf.

From a security perspective, the best current cryptanalysis of the Salsa20 stream ci-

pher has managed to break 8 rounds [160], and 15-round Salsa20 has been proven to

offer 128-bit security against differential cryptanalysis [161], showing that differential

cryptanalysis would require more effort than an exhaustive attack against a 128-bit key.
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The key properties of a stream cipher are that knowledge of its output should not reveal

either the initial state, or the key to the stream cipher, and that the output should be

indistinguishable from random data [162]. Since the best cryptanalysis to date against

Salsa20/20 has shown no progress towards violating either of these, knowledge of out-

put of the stream cipher would not allow a node to recover the initial stream cipher

state, which would have allowed a node proving storage to avoid storing the data in

question, by using the same technique as used by the verifier.

Section 4.2 continues this work by applying this concept for the purpose of storage

limitation and upgrades, within a decentralised network, and shows how this can be

used to form a decentralised contract protocol, allowing mutually untrusting users to

form contracts to offer storage, while being externally verifiable.

3.9 Storage Hand-Off Attack

The storage hand-off attack presented here is a means through which a malicious party

on the network may falsely gain reputation or credibility, without offering the storage

and utility to the network which would ordinarily be required to gain that reputation.

Within the MaidSafe proposal, nodes are required to store data they are allocated, in

order to gain and retain reputation. By penalising nodes which lose or corrupt data, and

by storing data on reliable and well-reputed nodes, data is more likely to be stored in a

reliable location on a node with reliable storage and a reliable connection, on account of

reputation. The edge-case of a previously reliable node going offline is handled through

the inbuilt redundancy of the network.

Since nodes are rewarded through the reputation system for the storage of data,

and potentially also through the SafeCoin currency proposed by MaidSafe, there is an

incentive for a malicious node wishing to gain reputation to attempt to have the network

believe it stores more data than it actually does. Such an attack could allow a user to gain

the reputation benefit of storing that data, without having to actually store it reliably.

Within the MaidSafe network, immutable data may be easily integrity-verified, since

the hash of a chunk’s contents is its address. Therefore, if address A contains data, D,

this data may be verified by ensuring that H(D) = A. Such a verification process re-

quires that the data be retrieved for verification, although an alternative proof of storage

process, not requiring the retrieval of data, was discussed in Section 3.7.

In the storage hand-off attack, it would be possible for a node to be asked to hold a

given chunk, and to then discard the chunk, having verified that it was held by 3 other

nodes. In the event that the node was required to produce the chunk for verification, the

node may retrieve the chunk by making a regular data retrieval request on the network,
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and then relay the retrieved chunk to the node requesting verification.

Other than by attempting to infer the likelihood of such actions based on request

latency, there is no clear solution to this problem within the MaidSafe network’s design

— it is logically not possible to verify if data is actually stored on a system, rather than

stored elsewhere and loaded into memory when required. In this case, elsewhere could

be on other nodes on the MaidSafe network.

An approach to prevent storage hand-off from being used by malicious network

members to falsify the appearance of offering a large quantity of storage to the net-

work is to require that each node hold a different version of the data. This way, it is not

possible to offload the chunk, as the data held is unique. In order to preserve availability

in the presence of offline nodes or nodes which depart the network, it is necessary to

ensure redundancy remains available. One solution would be to utilise erasure codes

across chunks — this would allow for recovery of data in an n-from-m fashion, where

any n blocks from m are required to retrieve the data, with a loss of up to m−n blocks

permitted without data loss.

An erasure code library such as zfec [163] would offer each chunk holder a unique

block of data, which they were required to store. In the event of the loss of a chunk, this

would be detected in the data verification process, and another node may be allocated

that chunk to be stored, after the node responsible for holding the lost data is absolved

of the responsibility and suffers the appropriate reputation decrease as dictated by the

network rules. The use of erasue codes across entire files would also increase the re-

siliency of the MaidSafe proposal, since the loss of all 4 copies of a single chunk results

in the loss of access to the file in question.

3.10 Decentralised Transferable-Ownership Mutable Data

As discussed previously, one of the recommended solutions to handling the challenge of

falsely mutated data was to carry out signature-based verification of all mutation oper-

ations on the network. While immutable data does not require any ownership records,

since it cannot be updated or removed after creation, mutable data requires either a

consensus-based approach to validation of requests, or a signature-based approach. The

former approach has been shown in Section 3.6 to be vulnerable to false consensus at-

tacks, specifically around the chunk information holders although also around the node

owning the data.

MaidSafe has proposed to implement a signature-based approach, where data must

be signed with the same signature as used by the originator of the data. For example,

within the context of theMaidSafe network, a node of addressAwould sign the original
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mutable data with the private keyKpriv, corresponding toKpub = A. In order to mutate

the data, this requires that the user retains their private key, and it is not compromised.

It also precludes a user from transferring data into the control of another user, as would

be required in the event of a user believing their keys were compromised, and wishing

to fully re-key their account.

Additionally, a number of new opportunities are presented in a network allowing for

the transfer of data between users. By allowing for the transfer of ownership of DHT

keys, they become something which may be traded or exchanged between users. Given

the MaidSafe network has proposed a scheme for friendly-naming of resources based

upon hashes in the DHT [164], the ability to securely and verifiably transfer a named

resource between users allows for various opportunities, such as the exchange or sale

of domain name-like identifiers. Related techniques allowing for mutable data within

DHTs have been proposed, although these do not permitt the transfer of ownership of

identifiers [63], meaning it is not possible for users to re-key their data.

3.10.1 Challenges of Signature-Based Approaches

One key challenge of a signature-based approach, within a decentralised network, is

preventing the rolling back of data. A malicious attacker could potentially roll back a

user’s data atlas, by initiating a mutation request against the data, using an old copy of

it (which was therefore validly signed by the owner). One simple mitigation would be

to not store the signature alongside the data; merely the public key owning it, therefore

preventing a malicious party from gaining the signature requesting its storage. This

would not be ideal, however, as any party with access to the request, such as a user’s

own managers, the chunk holders, or the chunk information holders, could gain access

to the signature in order to replay it. Additionally, this would prevent any other party on

the network from validating the integrity and legitimacy of the data being presented, and

require anyone retrieving the data to trust the chunk holders to not collude to modify

it. Better approaches would permit any such tampering to be detected by any member

of the network, as with regular immutable data, using a content-defined address.

An alternative approach would be to use a challenge-response approach, whereby

the individual chunk holders require a unique nonce to be included in the signed up-

date message. This once again assumes that the chunk holders would not collude to

attack data, and also prevents others from validating the content of the chunk, since the

signature would not be verifiable without knowledge of the challenge, and assurance

that the challenge was unique and not previously used before.

Any ability for a value to be replayed would allow for a malicious party to reverse a

transfer of a key to a new owner, potentially allowing for fraudulent sales to be carried
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out; once the payment was received, the key could be reverted to the original owner,

leaving the new (rightful) owner with neither their money nor the desireable key they

had purchased (like a domain name).

One other challenge posed by the signature-based approach is that of nodes which

have been offline for a period of time, and which later re-join the network. It is impor-

tant to ensure that these nodes are not required to blindly trust the assumptions made

by the rest of the network, particularly where resources may be exchanged for money,

or where ownership of keys is changing. Therefore, it is necessary to ensure that any

change in ownership of a key is verifiable by any third party which has been offline

for a long period of time, but which was monitoring the key in question. It remains

important that during this verification, it is possible for the previously-offline node to

ensure that the order of transfers is also correct — if the transfers can be replayed in

the wrong order by a malicious party, it could result in the node gaining an incorrect

view of the ownership of the key, potentially allowing it to be tricked into recognising

incorrect ownership. Throughout the process however, the hash of the address must not

be changed, otherwise the utility of being able to pass ownership of a key (an address)

in the network would be eliminated.

3.10.2 Formulating an Ownership Structure

To formulate a structure which may represent the ownership of data, and also handle

transfers of this ownership, without resulting in a loss of transfer directionality, the pre-

viously identified challenges can be used to form a series of requirements. Firstly, all

updates to data must be signed by the private key corresponding to the owner of the

chunk, in order to ensure that false mutation requests are rejected. Secondly, these up-

dates must contain an order field (for example, a counter), in order to ensure that older

signed requests cannot be relayed over newer ones, resulting in a downgrade of the data

version held on the network. Thirdly, transfers of ownership should be verifiable, and

held in a chain, allowing a party offline for any arbitrary period of time to ensure own-

ership has been correctly transferred. This means that it is not necessary to retain every

previous value of the data; merely to store the requests altering the ownership of the

chunk. While one approach would be to build a separate chain of modifications, each

held in a separate key, such as that of a Blockchain construction, this would result in the

generation of many more keys, presenting an overhead to the network upon requests

to change ownership, and also require the retrieval of many more values than would

otherwise be required, which may cause delays given the routing latency of a DHT.

The solution presented therefore aims to take the simplest approach which also sat-

isfies these requirements. Therefore, the following specifications are introduced:
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• Every update message must be signed by the current owner of the chunk

• Every update message must contain a sequential counter field, which increments

monotonically

• The current owner of a chunk must be defined within the chunk’s data, adjacent

to the chunk’s value

• An array, containing previous chunk ownership change approvals, must be con-

tained adjacent to the chunk’s value

• All ownership changes must indicate a new owner public key, which must be

appended to the ownership change array

• Ownership may be verified by following the chain from the earliest-known owner,

and ensuring that the current owner is reached through an uninterrupted chain

of ownership transfers

To maximise the use of existing web standards, the JSON Web Token construct was

used to represent transfer messages and signed data — JWTs are compact and stan-

dardised [165] brief messages, with low overhead, designed for the secure exchange of

signed data. A JSON Web Token contains three fields; a header, a body, and a signa-

ture. Each is encoded into base64 form for transfer, therefore ensuring the encoding is

safe to transfer via URL-encoded or form-encoded data on the web. Each field is con-

catenated together, separated by a full-stop character. The final field is then a signature,

with the algorithm of the signature indicated within the header field of the data. While

some implementations of JWT have been found to be vulnerable to manipulation as a

result of their trusting of header fields prior to the validation of the signature, this does

not pose a risk to implementations which specify the accepted signature schemes [166].

The header of a stored record on the network should contain the information shown

in Listing 3.1, and the body data is shown in Listing 3.2.

Listing 3.1

Required JWT header

{
”id”: ”abcd”,
”owner”: ”8ef20e8897be93df4cf521d...”,
”version”: ”1”

}
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Listing 3.2

Required JWT body data

{
// arbitrary data held here
”stringVal”: ”Arbitrary data here”,
”booleanVal”: false,
”integerVal”: 9

}

By storing the encoded JWT, it is possible to verify the signature on the token, and

thus verify the integrity of a given token upon its retrieval. The header of the JWT

presents the current owner of the chunk, therefore allowing verification of ownership

update messages.

In the event of issuing an update to this chunk, at the same address, two changes must

be made — the version flag must increment to 2, the next un-used version available,

and the body should be updated to contain the new data. In the event of an ownership

change, the version flag must again increment, and the owner field should be updated

to contain the public key of the new owner.

Nodes receiving update messages incorporating a change in the owner field must

store such updates — for this reason, they should not specify a message body, since

they are not updating the content of the chunk, and the entire JWT must be retained

to validate the signature. This would therefore require the storage of previous chunk

contents, which may be undesireable in the event of a user wishing to re-key following

a suspected compromise or loss of their keys, or potentially following a major advance

in cryptography requiring a different algorithm to be used.

Therefore, a node storing a chunk must retain the data shown in in Listing 3.3. Note

that a “Transfer JWT” is as defined in Listing 3.4, and may be stored in the transfer

history field as received, in base64-encoded format. To validate a transfer chain, the

first item in the transfer_history array is decoded, and the owner obtained. That

owner public key is then used to validate the signature on the second transfer, and the

process is repeated for all subsequent transfers in the list.

Listing 3.3

Node chunk record

{
”id”: ”chunk_address”
”owner”: ”current_owner_public_key”,
”transfer_history”:
[
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{Transfer_JWT_1},
{Transfer_JWT_2}

]
}

Listing 3.4

JWT ownership transfer data

{
”id”: ”abcd”,
// new owner follows
”owner”: ”8ef20e8897be93df4cf521d...”,
”version”: ”2”

}
{

// null body
}
// signature by previous owner

By storing base64-encoded transfer JWTs, using the minimal scheme detailed above,

with truncated JSON keys to reduce the overhead of human-readable keys, a historical

ownership message may be represented in as little as 242 bytes — 20 bytes are required

to represent the overall JSON structure, 44 bytes for the base64-encoded Ed25519 32-

byte public key of the new owner, 2 bytes for the version field, and 88 bytes each, for

an un-truncated SHA-512 hash output as the chunk address and the base64-encoded

Ed25519 signature. Ed25519 is a high-performance asymmetric signature scheme, no-

table for its short signatures (64 bytes) and public keys (32 bytes) [167], ideal for min-

imising the length of each ownership record, while retaining a target of 2128 security,

and having a best-known attack of 2140 bit operations of equivalent security.

Therefore, an ownership history may be stored, for n previous owners, with an over-

head of 24 bytes for the JSON structure, 88 bytes for the chunk address, and 242 bytes

for each record n (with a JSON overhead of 2 bytes per record). This offers a low over-

head approach to the storage and representation of an ownership history record, while

ensuring that a full audit trail is preserved to satisfy any node as to the legitimacy of own-

ership changes that occurred while offline. A key with a history of 4 previous owners

could therefore have its full ownership record represented in only 1088 bytes.
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3.10.3 Threat Modelling

The possible attacks on this construction may be threat modelled — firstly, the possible

attackers are identified, and then the types of attack are explored. The assumptions

made in each scenario are stated below.

There are three actors to be considered — the current owner, a previous owner, and

any third party who has never been an owner of the chunk.

3.10.3.1 Third Parties

Third parties are assumed to not have access to a user’s live signing keys, and therefore

cannot generate signed update requests which would be accepted. A third party could

replay an old signed message, but the counter field of these messages would be below

the current version, therefore preventing replayedmessages from being accepted. In the

absence of valid signing keys, however, or holding a pre-signed update request which

had not yet been submitted to the network, a third party cannot generate an acceptable

ownership update message.

3.10.3.2 Previous Owner

A previous owner is a special case of a third-party, where the party has previously held

the valid owner key for a chunk, but has since submitted an ownership change to the

network. Since a previous owner is not detailed as the current owner, and is only ref-

erenced in the historical ownership change record, there is no difference between a

previous owner and a third party, from the perspective of forging ownership updates.

In the special case of a number of outdated nodes entering the network, there is a

risk that a malicious previous owner could relay a false chain of updates to this node, in

the event that the outdated node still was of the view that the previous owner controlled

the data. This would be resolved through consensus on the network, since the data held

by the node would be out of line with that held by the other nodes holding the same

replicated data. This attack is somewhat equivalent to the risk of a parallel side-chain

forming in a Blockchain-like construction, but is mitigated when the node itself identi-

fies the data it holds is no longer in line with its peers. Since a decentralised network like

MaidSafe holds data in multiple locations, an attempt to carry out this attack would re-

sult in inconsistent data on the outdated node, which could verify the ownership history

was different from the remainder of the network, and report the attack to other nodes,

while updating to the network’s view of ownership.
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3.10.3.3 Current Owner

The current owner of a chunk is able to produce a signed message which will allow

for ownership to be updated. The process of transferring ownership is ordinarily irre-

versible — after a third party verifies the new owner record is present, perhaps from

more than one of the chunk holders to mitigate against a single rogue chunk holder,

the former owner is no longer the owner of the chunk, and therefore cannot carry out

mutations on the chunk. This prevents the reversal of the transfer, since the transfer

would need to be signed by the recipient of the chunk.

This highlights one of the risks identified earlier; namely that of the risk posed by

chunk information holders selecting the nodes to hold the final chunks. In this scenario,

it is possible for a rogue chunk information holder group to select colluding chunk hold-

ers. For this reason, it is important to ensure the mitigations detailed in Section 3.6.4

are applied, so that chunk holders are deterministically selected from the chunk address,

rather than arbitrarily selected.

Provided the current owner cannot collude with the chunk information holder to

select colluding chunk holders, the current owner will therefore not be able to reverse

the ownership transfer, as the chunk holders would then reject the second transfer due

to not being signed by the new owner.

3.10.3.4 Evaluation

This approach offers security against previous owners changing the ownership records

— other nodes will reject their attempts to present a new signed ownership record, since

previous owners are no longer listed as the current owner. Legitimate chunk holders

will reject replay attempts, since a replay would result in the decrement of the chunk’s

sequential counter. Since the signature of the current owner is validated for all value

updates, or ownership changes, a third party cannot satisfy legitimate chunk holders

that a mutation request is valid.

It is important to ensure that when signature verification is carried out, it is done in

the correct order — the security properties of a signature are such that it is possible to

verify a message is not modified since being signed by a given, known public key [59,

Section 1.8.3]. These security properties do not extend to allowing for the verification

that a given message originated from a given public key, as was shown by Koblitz and

Menezes in their presentation of a practical Duplicate Signature Key Selection attack [168].

In this attack, it is shown that for a given signature and message, a non-trivial public

key can be generated, such that the signature will validate against the public key, and

the attacker holds the corresponding private key. It is therefore essential to ensure in

an implementation such as this, that the signature is validated against a known-correct
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public key.

For the case of transfer of ownership, this means that a data mutation or ownership

transfer request should include a header (within the signature), detailing the address of

data to be mutated on the network. At this point, the declared address should not be

regarded as trusted, although the corresponding public key owning that key should be

retrieved from the network. This indicates the current owner public key to the verifier

of the request. The signature on the received message should then be validated against

the public key retrieved from the existing record on the network, and specifically not

from any public key in the request or any other location. Following this verification,

it can be ascertained that, for the data chunk of the stated address, the signed request

originates from the true owner of the chunk. If the wrong address was claimed, an

incorrect public key would be retrieved from the existing network record, and therefore

the incorrect public key would be used for validation, ensuring that validation fails.

3.11 Conclusions

A security evaluation of the MaidSafe network was carried out, in order to investigate

the security of various components of the network. A number of weaknesses were iden-

tified in the original implementation of the decentralised management protocol. These

weaknesses were disclosed to MaidSafe, in order that they may be fed into the develop-

ment of their network.

First, it has been shown that allocating managers based upon address-based prox-

imity or closeness is inadequate, and that the difficulty of carrying out an attack, thus

gaining control over manager nodes, is low. Specifically, it was shown that, for a net-

work of 1 million nodes, the difficulty of placing a node in a location which is below the

mean inter-node distance was 249 times less computationally intensive than the process

of mining a single Bitcoin block; a process which takes place approximately every ten

minutes. This highlights the difference in order of magnitude of the processes, and that

if a large-scale attack was suitably motivated, it could be carried out.

Second, the challenge of correctly identifying which nodes are another node’s man-

agers has been highlighted — while related work has assumed that “the view of the

network is equal for all nodes” [156], this is not necessarily achievable within the Maid-

Safe network, given the uni-directional nature of closeness meaning that even though

A is one ofB’s closest neighbours, the reverse does not necessarily hold true. This high-

lights a limitation of theoretical analysis, in that it assumes nodes are able to identify the

correct manager group for another node, despite not necessarily having knowledge of

that area of the network.
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Third, an area of centralisation has been identified in the MaidSafe design, allowing

for the potential deliberate destruction or withholding of user data, namely around the

chunk information holders. A group of chunk information holders was able to arbitrar-

ily distribute data to a location of their choosing, potentially allowing for the selection of

colluding nodes, rather than deterministic selection of nodes, which would help to pre-

vent deliberate collusion. This would allow chunk information holders to initiate denial

of service attacks on data they controlled. Another issue identified was the reliance upon

the chunk information holders to approve mutation requests by reaching consensus on

incoming requests — where a false consensus can be achieved, the data may be falsely

mutated. It was also identified that chunk information holders could falsely request the

removal of data from the network, by maliciously claiming it was no longer required,

thus causing a loss of availability. As a result of this weakness, it was agreed with Maid-

Safe that the best mitigation was to prevent deletion of data until a suitable mitigation

was identified.

Fourth, an attack was introduced, where a vault may utilise more storage capacity

than they otherwise should, in order to prevent over-use of the shared storage resource

on the network. In particular, a hand-off attack was identified, whereby a user can claim

credit for storing large quantities of data, then subsequently re-transmit these to other

nodes for storage, either in encrypted or obfuscated form. In the event of this data

being requested, the rogue vault may request the retrieval of the copies it independently

stored, and fulfil the request without needing to actually store the data, yet still gaining

credit for storing the data on the network. To assist with this, a high performance proof-

of-storage algorithm using a seekable stream cipher has been introduced, assisting the

bootstrapping process by allowing third party verifies to efficiently ascertain that a given

node is holding a set of arbitrary data, thus establishing credibility on the network.

Finally, a signature-backed transferable ownership scheme has been contributed, in

order to allow users to re-key their accounts without losing access to addresses they

already held their data at. The ability to re-key data is beneficial, in that it facilitates the

routine rolling of keys as a good practice management strategy, and also facilitates the

transfer of resources on the network between users. In particular, while other schemes

for mutable data updating in decentralised networks exist, the ability to exchange an

address between users has not been addressed, which would allow for the trading of

desirable names.

Chapter 4 will now build upon the work of this chapter, investigating how untrusting

parties can form contracts between themselves, and look at how an application would

be built upon a decentralised storage network, and the feasibility of connecting to such

an application from a mobile device.
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Chapter 4

Decentralised Service Implementation &

Performance

4.1 Introduction

One of the main advantages of centralised, commonly web-based, services, as discussed

in Section 2.2, is that they offer convenient mobile access to a user’s data, wherever they

may be. In contrast, when using cellular-based data connections to access decentralised

services, a number of new challenges are introduced, including considerations as to the

overheads of maintaining and keeping alive connections between other members of the

network, and handling incoming requests for data.

When considering decentralised services from the perspective of mobile users, it is

important to consider the practical aspects of gaining access to storage or resources —

without an always-online node being online on behalf of the user, they are unable to

contribute resources to the network. Under a model such as MaidSafe, which is based

on the premise of matching user demands against contribution, as discussed in Sec-

tion 2.6.2, this poses a challenge for users. If a mobile-only user is unable to benefit

from the security and privacy benefits of decentralised services, this will significantly

restrict the reach of such services to those users. To avoid this limitation, it would be

possible for one user to offset the storage requirements of another— there is no technical

reason why the user must themselves provide the storage; merely that users do not take

advantage of the generosity of others, as discussed in Section 2.6.1.

This chapter explores practical considerations as to application of decentralised ser-

vices. In particular, it focuses on building a secure protocol for the creation of a digital

contract, allowing one party to purchase storage from another party. This contract may

be verified in the absence of a trusted third party, thus allowing a purchase of storage to

take place. In the event that the provider of storage fails to offer storage as required, the
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buyer can be absolved of responsibility given the presence of such a contract, and the

reputation system of the network may reduce the reputation of the storage provider as a

result. A scheme to formulate the necessary operations within a decentralised network

to provide user-facing services is also considered. Finally, in light of the performance

issues identified when attempting to access decentralised services from mobile devices,

a relay-based approach to accessing decentralised services is considered, to improve and

make more practical access from mobile devices.

The contents of this chapter is based upon a number of published works [A3, A7,

A8, A12]. Thanks and credit are also duly given to Pierre-Louis Dubouilh, who assisted

with measuring performance of current decentralised DHT-based solutions as part of

his Bachelors’ degree project.

4.1.1 Chapter Contributions

This chapter presents the following 3 contributions.

• A decentralised digital contracts solution, allowing for third-party verification

of contracts within a decentralised environment. This is demonstrated to allow

users of a decentralised storage network to form purchase agreements for storage

within the network, and others able to verify this agreement is honoured. A threat

model of this protocol is presented, along with an extension allowing for bilateral

obligations to be included in such a contract, rather than simply obligations upon

the provider of the service.

• A scheme for the implementation of decentralised services is presented, identify-

ing the necessary high-level operations, and showing how these should be imple-

mented to realise secure, user-facing functionality for decentralised services.

• A hybrid relay-based approach is demonstrated as a viable solution to the prob-

lem of performance of mobile devices within a decentralised network, allowing

mobile devices to access a decentralised service with the same relative ease as a

regular centralised HTTP service, through the use of untrusted relays.

4.2 Storage Contracts

Fundamental to ensuring the flexibility of a storage-based network is the ability for a

user to store files, even when they perhaps are unable to contribute towards the storage

of files for other users. In the case of centralised storage systems, users typically pay the

service operator for the allocation of a larger storage quota. In the case of a decentralised
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network however, this is not necessarily feasible, since data is split into chunks. These

chunks are distributed tomany vaults, with chunks redistributed throughout the network

as nodes join and leave. As discussed by Ngan et al. , it is desirable to allow users to

exchange storage quotas, such that a user with a surplus of storage can agree to sell

that to a user who wishes to store more data than they can themselves store [75]. In a

decentralised storage network, this matching of users means that sufficient storage will

be present to ensure the longevity of the network, while offering users flexibility. This

problem was discussed in more detail in Sections 2.6.1 and 2.6.2.

4.2.1 Motivation

Some users may have poorer internet connectivity than others, or they may be plan-

ning to travel for an extended period of time, therefore leaving their vault turned off.

This gives rise to a desire for users to contract others to provide storage on their be-

half. In a decentralised and trust-less network which requires all users to participate

reciprocally, it is therefore necessary to identify a means through which a contract for

storage could be enforced, such that the provider (rather than the buyer) would lose

reputation for failing to provide the storage as agreed, and to ensure that neither party

can lie about the terms of the agreed storage deal. A protocol, implemented on top of

a decentralised storage network is therefore proposed, which would permit irrepudia-

ble and non-forgeable agreements to offset storage to be negotiated, and enforced, by

the decentralised network. This forms the basis of decentralised contracts, which will

be verifiable by third parties, while facilitating privacy between parties negotiating the

agreement.

4.2.2 Decentralised Storage Purchase Protocol

The protocol operates as follows:

• Buyer locates a provider offering storage for sale (this could be provided as a

decentralised service listing buy/sell offers)

• Buyer and provider negotiate a price for an agreed quantity of storage, duration,

price, and offer validity

• Provider signs this offer of sale with their private key, and states a (for example)

Bitcoin address in the offer

• Buyer reviews the offer, ensuring the offer is as agreed
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• To complete the deal, the buyer pays the agreed funds to the provider via the

agreed Bitcoin address

• The sale is verifiable by any third party able to view the contract, since the Bitcoin

transaction is visible on the blockchain

The sale agreement can be made available at any point in the future by the buyer,

allowing other nodes to verify that it has completed a transaction with the provider of

the storage. Since there is no requirement for the disclosure of the agreement prior to

this point, there is no requirement for the transaction details to be made public unless

there is a dispute. The provider would be responsible for storage provision, and their

own reputation would be affected in the event of a shortfall affecting this user, as the

user could present this contract to indicate the provider had agreed to contribute stor-

age on their behalf. While Bitcoin is used above as an example for payment processing,

this could easily be adapted to any cryptographic currency permitting third-party veri-

fication of payments via a public ledger (like the Bitcoin blockchain), and some method

of timestamping (like the block ID).

The provider is protected from a malicious buyer, since the buyer cannot forge the

seller’s signature. This protects the details of the offer. It also states the identity of the

buyer (their public key), meaning that another user cannot attempt to claim their enti-

tlement to storage from another user’s agreement. The offer contains a validity period

(to prevent a buyer from requesting an offer, waiting a significant period of time un-

til the value of storage or currency has changed, then accepting it), by specifying the

transaction must take place before a given block ID on the blockchain.

The buyer is protected from a malicious provider, as the provider cannot deny the

agreement exists (as the agreement was signed by the provider), and anyone can verify

the agreed fee was paid, before the offer expired, thus validating the contract and its

content. Note however that it is not possible for the seller to prove the existence of a

contract with a given buyer; the buyer will always have deniability, since a seller could

generate any contract they desired, and sign a copy containing any arbitrary terms.

As such, this protocol allows two parties, neither of whom need trust each other, to

negotiate a deal for one to provide storage on behalf of the other party. Both parties

are protected from the other failing to honour their part of the deal. In the event of

the provider reneging on the deal, they can be held accountable by the decentralised

network’s reputation structure, as the agreement is provable. The MaidSafe network

implementation of decentralised reputation would therefore handle scenarios where a

provider reneges on a deal.

It is important to note that this network remains decentralised — purchasing storage

from a user does not alter or influence where that data is stored — it is simply an offset-
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ting process to ensure further storage exists in the network, to avoid storage space being

depleted. Buyers are protected from price-fixing as they can purchase storage from any

party on the network, without any inconvenience of moving their data around. As any

user can already provide any quantity of storage to the network, this protocol does

not reduce decentralisation, rather it increases flexibility for users, by allowing them to

“shop around”, thus encouraging a free market for pricing or terms.

4.2.3 Threat Modelling of Protocol

This proposal can be threat modelled by considering the relevant actors, and their po-

tential actions within the protocol. The three actors are the seller, the buyer (or potential

buyer, while negotiations are taking place), and any third party. During the process of

negotiation, a potential buyer and potential seller may present each other with offers of

storage capacity, for a duration of time, for a given price. These may or may not be of

the form of signed offers; the negotiation itself does not form a contract, and if signed

offers were to be used, it would be possible for the potential buyer to invoke the contract

by making payment as specified within the offer. At this point, the buyer could present

any of the previous signed offers — for this reason, the seller should use a different pay-

ment address in each offer, to prevent substitution of contracts. Even if substitution was

to take place, the buyer would only be able to present contracts from earlier in negoti-

ations, which they may have accepted at the time; since they could have accepted that

offer at the time, and offers have an inbuilt expiry time, as discussed above).

A malicious or dishonest buyer (or potential buyer) cannot modify the content of a

contract, as to do so requires the production of a valid signature, signed by the seller

(storage provider). A dishonest seller cannot repudiate a contract, since the contract

offer is signed using their private key, indicating that they or someone with access to their

private key produced the offer. Since every participant in the Distributed Hash Table

(DHT) network is identified by their public key, it is possible to retrieve the provider’s

public key for the purpose of signature verification.

In the event that a seller attempts to deny a contract ever existed, the buyer merely

needs to reveal the contract agreed, and any third party may verify three factors —

firstly, the public key of the seller from the contract statement, secondly whether or not

payment wasmade (by examining the receiving address for transactionsmade to it of the

required amount), and finally the terms agreed in the contract (i.e. quantity of storage

agreed and the duration it would be provided for). Since whether or not payment was

made is able to be ascertained by any third party from the blockchain, and the origin

address of the payment confirms the party disbursing the funds, it is possible for any

third party to validate the validity of the buyer’s claims.
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Privacy is preserved from all third parties, since there is no requirement for the ex-

istence of the contract to be disclosed at any point in the process, unless either of the

two parties of the transaction makes available the contract. While an arbitrary con-

tract may be generated and presented by the seller at any time, with retroespectively

selected terms or details, even where a contract did not exist, this does not affect the

process, since payment would be concluded at the point of acceptance, and therefore

the contract is to protect the buyer.

To consider the scenario offering each party maximum gain, the optimal scenario

for a buyer to deceive a verifier is to present either:

• a contract they have not paid the appropriate fee to activate

• a contract which was between another user and the seller, to which the buyer is

not a party

• a contract with arbitrary terms designed to favour the buyer.

The first scenario is avoided by the need for payment to be made, by the agreed

time (based on block number), to the given address. This payment, and its value, may

be verified by the blockchain by any third party, preventing falsification of the payment

existing. The second scenario is avoided by any third party verifying the contract to

require a signed attestation from the buyer, which can be verified. This can be carried

out in one of two ways — the buyer could be asked to sign an arbitrary message featur-

ing an arbitrarily and randomly selected nonce by the verifier, using the private key of

the Bitcoin (or other cryptographic currency) address that made the purchase, or the

contract specification could require that the contract state the decentralised network

address of the buyer, which they would be able to sign a message with.

The scenarios offering gain for a deceptive seller would be:

• to deny the existence of a contract, and claim the payment was unrelated, or a

gift

• to claim that funds were not received, and back out of the contract, secretly re-

taining the payment

• to present a differing set of terms to those offered to the buyer, and insist these

less favourable terms were the ones agreed to.

The first scenario is avoided, since the onus is only ever with the buyer to produce

the contract. Since it is signed, the seller cannot believably deny its existence, or state

the terms are falsified. The second scenario is avoided, as the payment is used as the act
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of signing the contract by the buyer, and thus accepting the offer. Provided the payment

takes place using a method allowing for third party verification of receipt of payments,

such as Bitcoin with its blockchain, it can be ascertained by any interested third party,

having viewed the buyer’s copy of the contract, that payment was indeed made per

the agreement. The final scenario is avoided because this contract protocol only facili-

tates the placing of obligations upon the seller; the buyer’s sole obligation is to provide

payment if they wish to accept the agreement. In the event of contradictory versions

of contract being presented, the one most favourable to the buyer (which any rational

buyer would present) would be accepted by the third party verifier. A buyer presenting

a less-favourable version of the contract would only be detrimenting themselves.

4.2.4 Adding Bi-Directional Obligations to Contracts

Note that if bi-directional contracts are desired, such as where there would be obliga-

tions upon the buyer, this can be achieved through a small modification to the protocol.

It is necessary to obtain the digital signature of the buyer on the contract, in order to hold

terms against the buyer. It is assumed that a rational buyer would only sign a contract

they had accepted — a buyer signing other contracts arbitrarily would be irrational,

and could be held to these (provided some party made payment), in the same manner

in which someone who signs any physical contract they are presented with could be held

to the signed agreements. The buyer’s signature on the contract allows either party to

present the contract, and invoke third-party adjudication of the situation. Note that in

this scenario, the process of offers and contracts should be more carefully considered.

To prevent a buyer from signing, then accepting (by providing payment) the contract

without providing a signed copy to the seller, therefore depriving them of the ability to

prove the buyer’s acceptance of the terms, the process of the offer must be clarified.

The process forms that of a four-way handshake — The buyer solicits an offer from

the seller, and specifies their requirements. The seller returns a signed offer, indicating a

price, stating the terms of the offer including its expiry. If the buyer wishes to accept the

terms, they should sign a response to the contract. This response should be appended

to the offer, and should be a signature across the full offer (including the seller’s sig-

nature). At this point, both parties have agreed the terms of the contract in principle,

although this contract is not yet binding, as no payment information is provided. The

seller then appends a payment request, including the Bitcoin or other payment address,

to the signed response, and signs the resulting message, which now incorporates the of-

fer, response and payment request. This must be conveyed to the buyer, such that they

may verify the signature on the message is consistent with the party providing the offer,

and then make payment. The payment may be verified by a third party, and the signed
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message incorporating the payment request now contains all the necessary information

to allow a third party to verify the contract.

With a bi-directional contract, the seller can present the final message, which incor-

porates the terms signed by the buyer, as well as the payment information, to allow a

third party to verify the contract was agreed. While a seller could potentially present the

buyer-signed contract without the buyer having paid, this would only result in the buyer

not having to pay, and being bound to a contract to which they had already agreed and

signed, making this scenario no different than the uni-directional contract described

previously in the threat model.

4.3 Service Implementation

The majority of today’s services available to users are built around centralised architec-

tures, as discussed previously in Section 2.1.1. These typically require users to divulge

their information to the server, in order for the server to provide them access to their

data, perhaps in more readable or usable forms, or simply through holding it so it may

be retrieved from anywhere. This forms the basis of much of what is referred to by users

as cloud storage, where the storage of their data is offloaded to a third party specialising

in the storage of that data.

Another advantage of such centralised services is that they frequently offer access to

user data and other functionality through just a web browser, or a mobile application.

These typically access the backend user data through an API, able to be queried by the

application for specific requests.

One significant trade-off here, however, is that for data to be available to a user

via any web browser, it is usually necessary for it to be held by the service provider in

a manner which renders it readable to the service operator. While this data may be

encrypted when stored by the provider, it would be readable to them, since they would

hold the keys needed to return the data to a client’s web browser session.

The two key risks identified in Sections 2.1.1 and 2.2 were those of unauthorised

access to the data held by the service provider, or that where the service provider ceases

to provide access to data, as a result of a failure, or decision to no longer offer the service.

An example of the former situation would be compromise of the service provider,

or where the service is a false-front to gather user data. An example of where a service

provider ceases to provide access to data would be that of Google Reader, where Google

decided to cease providing the service, requiring users to identify another service to use

before their data was removed.

Decentralised services can solve both of these problems — within the context of
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this work, they are inherently designed to encrypt user data such that only the user may

access it, so that user data may be safely stored on untrusted systems. Additionally, given

the decentralised nature, it is not possible for the failure or decision of a single entity to

result in the user’s inability to continue to access their data.

The aim of this section is therefore to show that it is possible to operate services,

which feature functionality familiar to users, which are not reliant upon a single entity’s

security or ongoing operation for utility of the service to be maintained. This empowers

users to retain access to, and control of, their data at all times, and prevents another

single party from depriving them of this utility.

This chapter will focus on decentralised network services backed by a storage net-

work, which holds key-value pair data. This allows for any DHT-based storage net-

work to be used, since DHTs are inherently key-value oriented, and allows services to

be implemented on platforms such as the MaidSafe network, or indeed the mainline

Kademlia DHT.

4.4 Service API and Storage Model

In order to demonstrate service implementations under a decentralised network, the

following primitives are proposed for use. Each primitive is designed to represent user-

facing functionality, required in order to allow for high-level applications to be devel-

oped upon such a network. Each API call is given a verb, which shall be represented as

VERB within this section, to highlight the relations between such verbs.

4.4.1 GET Verb

The GET verb is designed for the retrieval of data from the decentralised network, based

upon its address. This verb should be executed with a SHA-512 hash supplied as the

address from which to retrieve data. After retrieval, the data should be verified — the

SHA-512 hash of the data should be the same as the address which was requested, since

content is addressed by its hash within DHT-based networks.

Note that the GET verb implicitly assumes that the user possesses the necessary infor-

mation in order to gain access to the chunk, and decrypt it as required. This is because

a secure decentralised network stores all user data in encrypted form, since the content

of chunks is exposed to other, potentially untrusted users of the network. The GET verb

therefore decrypts data from the requested address, using the key held in the appro-

priate data map, which was queried in order to locate the desired data at the address

specified. More detail of the implementation of the MaidSafe implementation of the

data map is given in Section 2.5.1.
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4.4.2 PUT Verb

The PUT operation is designed to allow a user to upload data to the network, either for

storage or for sharing with another user, which is a special form of storage, where the

key is shared with another user, as discussed below for the SHARE verb.

A PUT operation accepts a chunk of data, and stores it at the address defined by either

an optional address supplied in the case of mutable data, or at the address of the chunk’s

SHA-512 hash, in the case of immutable data where no address is supplied. There is

an implicit step whereby the application calling this API takes measures to ensure the

key used to encrypt the data stored by a PUT operation is held and accessible by the

user. Ordinarily this would be by storing the hashes of each block of the data, and the

ciphertext, within a data map for the file, and storing this with a key held within the

user’s root data atlas, as discussed in more detail in Section 2.5.2.

4.4.3 UPDATE Verb

The UPDATE operation may be carried out at any time following the PUT operation

against a given address, provided this address is holding mutable data. In the event that

data is immutable, this operation will fail. Mutable data may be used for data which

will be modified in future, such as a data atlas or data map, or in any other scenario

where it is desirable for the underlying application to hold data at an address owned by

a given user. Note that in order to UPDATE a given address, it is necessary to provide an

update ciphertext, signed using the same private signing key as used to sign the original

data. If an invalid signature is supplied, nodes on the network will refuse to accept the

updated version of the data. A secure protocol for updating of data is given in further

detail in Section 3.10, which also securely facilitates the update of owner for a given

piece of data within the network, preventing roll-back attacks, and allowing for secure

re-synchronisation by an offline node, without requiring this node to trust the current

state of the network.

4.4.4 DELETE Verb

For mutable data, it may be possible to invoke a DELETE operation on a given address.

Note that MaidSafe have previously indicated they do not intend to permit the deletion

of data, as a result of some of the potential attacks detailed in Section 3.3, which were

highlighted to raise the possibility of data deletion by unauthorised parties. Nonetheless,

for the purpose of completeness, the DELETE operation is considered here. A deletion

may be considered as a special case of the UPDATE operation, in that it must be signed

by the same key used previously to hold the data, or in the case of an implementation
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allowing for update of ownership records, by the key most recently indicated as owner.

In this scenario, a deletion of data would result in the previous owner publishing a new

record to the key as an ownership update, granting control to a randomly-generated

private key, with the new contents of the chunk containing this private key, thus per-

mitting any other user to re-gain control of this chunk by using the supplied private key

to sign a new ownership message passing control to a key only known to themselves.

The DELETE operation therefore removes the previous content of the value although,

as with all digital systems, it should not be assumed that all previous copies of the data

have been erased.

4.4.5 SHARE Verb

The share verb is one proposed to facilitate the secure and confidential sharing of in-

formation between two users of the network. Any user who has knowledge of the public

key of another user may share a message with them. Using this process, the sender en-

crypts the message using the public key of the recipient, and stores the information at

a deterministic sharing address, derived from both of their public keys. Note that, for

the case of a user sharing with another user, whom is not aware of the sender’s public

key (such as an unsolicited message), it is possible for the message to be delivered to an

append-only data record, held at an address derived from the recipient’s public key.

For the scenario of user A sharing data with user B, user A would PUT the data,

encrypted with userB’s public key, as mutable data at the network addressH(A|B). In

the event that userAwished to sendmore data, before userB retrieved the existing data,

user A may GET the existing value of H(A|B), and UPDATE it with a further messages

contained within the structure.

This allows for secure, decentralised, asynchronous messaging between two users on

the network. Previous works focusing on service implementations across DHTs have

typically viewed messaging as a real-time or synchronous process [169], although the

ability to carry out asynchronous messaging has been highlighted as a desirable prop-

erty within decentralised communications architectures by the IETF [170]. Previous

work on implementing asynchronous messaging across DHTs has identified a need for

this, and an implementation was presented, although it used a single notification chan-

nel for a recipient, potentially raising challenges over how a user may receive multiple

messages from multiple senders, over a period of time [171]. In contrast, this approach

resolves these limitations, by creating an inbox per sender-recipient pair, and having a

separate inbox for unsolicited contact. This approach also facilitates asynchronous ac-

knowledgement of receipt of a message, so an offline sender may still become aware the

recipient has come online and received their message.
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When user B comes online, one of their first tasks will be to check for any incoming

messages on these pre-arranged addresses. Therefore userB will carry out a GET query

against the address H(A|B) to determine if any messages have been sent by user A. If

a message is present, it will be retrieved and decrypted using user B’s private key.

To provide confirmation to user A that the message has been retrieved, it is possible

for userB to provide userA with an acknowledgement. This is not mandatory, and will

reveal that userB has been online since the message was sent, so there may be scenarios

where a user may not wish to reveal this information. To acknowledge the message, user

B carries out a PUT or UPDATE, depending on if a previous acknowledgement has been

sent, to address H(H(A|B)). This is the hash of the inbox address queried by user B.

As this is deterministic, user A can therefore also determine this address, and therefore

may retrieve the acknowledgement, signed by user B.

4.4.6 GETSHARES Verb

The GETSHARES verb is a helper, used to combine the computation ofH(sender|self),
for a given sender who the user wishes to accept asynchronous messages from, and a

GET operation against the same address. This instruction may be used by user B, with

the parameter of user A’s address, in order to identify any messages shared by user A.

GETSHARES may also be used to send an acknowledgement to H(H(sender|self)), as
described for SHARE.

4.4.7 GETADDRESS Verb

The GETADDRESS verb is provided as a helper to locate a DHT address hash based

upon a human-readable friendly-name, as proposed originally by MaidSafe [164] as

selectable identities. Within the context of this work, such a selectable identity would be

stored as mutable data. For a given parameter friendly name, N , H(N) is calculated,

and a GET operation is carried out implicitly on H(N), resulting in the retrieval of the

current mapping of the friendly name to another DHT address. This allows for the

transfer or re-keying of a given friendly name towards a new account. Therefore, if a

user has told another that their username on the decentralised network is, for example,

“Steve1”, another user may use GETADDRESS(Steve1) to obtain the current public key

address which “Steve1” is using on the network. This key is protected against unau-

thorised modification by third parties using the signed, decentralised, transferable data

technique, described in Section 3.10.

To register a friendly-name N on the network, a PUT request is used to store a mu-

table chunk, stored at the address H(N), containing a signed statement by the current
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owner of the name, pointing towards the current user. Note that the key used to sign

the message need not be the key owner declared in the message; the key used to sign the

message is simply the key required in order to modify the record and change the desti-

nation of the friendly name. Techniques such as this, within decentralised networks, are

inherently vulnerable to flooding or Sybil-like attack, whereby users may create large

numbers of identities at trivial cost to themselves, thus occupying the desirable friendly-

names, requiring that users select more complex friendly-names to avoid ones already

occupied [76].

4.5 Performance of Decentralised Services

A fundamental factor in whether or not decentralised services will gain user adoption

is their usability, as well as their performance. Previous works have investigated char-

acteristics of web-based applications which affect usability, and highlighted, in addition

to the expected factors regarding user interface and accessibility, [172], that latency

affects the usability of services. Therefore, it is important to consider the performance

(and thus latency) of services; within decentralised networks, previous study has high-

lighted the challenges of performance within DHTs, specifically around that of typically

high latencies, and comparatively low throughputs [173].

Decentralised services are a long-existing concept, with research proposing decen-

tralised services and strategies as early as in 1993 [174]. Many popular services, in-

cluding Skype [175] and Spotify [176, 177], were originally built upon decentralised,

peer-to-peer technologies. Both have since moved from decentralised architectures to

centralised architectures [178, 179].

This raises a number of privacy concerns for users — while it is not possible to ascer-

tain for definite the reasons as to these decisions, the decision by Skype to move away

from a peer-to-peer architecture, towards a centralised one controlled by Microsoft, has

faced criticism [180]. Indeed, it has since been shown that, following the acquisition of

Skype by Microsoft, although not necessarily as a direct result of moving away from a

peer-to-peer architecture, Microsoft now has the capability to read and filter commu-

nications over Skype, and that this is carried out on a regular basis to all users [181],

and this has been shown to apply even to apparently encrypted communications [180].

In a truly decentralised system, designed to resist the tampering or influence of a single

party, this would not be possible, since no one entity would have absolute control over

the client software, meaning the user community could continue to use the peer-to-peer

technique. This is one reason that it is important to ensure decentralised service imple-

mentations feature open source client code, such that users may maintain them, in the
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event of the corporate failure of their original developer, or a deviation from practices

which users find acceptable.

The principal architect of Skype has however claimed that the move away from peer-

to-peer technology within Skype was technical, and related to offering better connec-

tivity to mobile devices, for which the previous peer-to-peer architecture was not ideal,

particularly around use of mobile clients for asynchronous messaging [182]. This high-

lights that there are ongoing and current technical and practical issues relating to the

use of decentralised, peer-to-peer technology for mobile access. Therefore, this section

focuses on the performance implications of achieving decentralised service implemen-

tation. It shall first explore performance of some standard DHT-based protocols, and

shall then consider an improved hybrid approach, designed to offer the best compromise

between centralised and decentralised services.

4.5.1 Performance of Current Decentralised DHT-Based Services

To investigate the performance of decentralised services within a variety of real-world

network configurations, network latency was profiled between a number of different

servers, each located in a different region. Latency was considered specifically, as a re-

sult of the Kademlia routing technique being heavily reliant upon sequentially querying

nodes in different parts of the network in order to discover nodes and data. This makes

the protocol very latency-dependent, since queries cannot be completed until this has

occured, and if destination nodes are geographically distant, the latency will also im-

pact on the data transfer itself. Unlike in other networks, where nodes may be organ-

ised by their geographical proximity, DHT-based networks organise nodes by their ad-

dresses, meaning that nodes may be required to communicate across high-latency links

routinely. This work comparing network latency across various servers highlighted a

significant consideration for decentralised networks, where users with close addresses

may be geographically distant — even on a 1 Gigabit per second dedicated network

connection within a data-centre, round-trip latencies were found to vary significantly

based on geographical locations. For example, the mean round trip latency between

DigitalOcean servers in London and Amsterdam was as low as 8.24 milliseconds, while

the mean round-trip latency from New York to Los Angeles was 86.8 milliseconds. A

more extreme example was seen between London and Singapore, with a mean round-

trip latency of 336 milliseconds. This is of particular significance within a decentralised

network, where the process of retrieval of a particular value requires an iterative look-

up process, through several nodes, some of which will undoubtedly be geographically

distant in a diverse network of geographically distributed users.

The performance of decentralised services on mobile devices is also a significant
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consideration for the future — mobile devices are now more widely used for internet

access than regular desktop computers, within the United States [183]. In the develop-

ing world, mobile phones are increasingly becoming the primary means of connectivity

for a growing number of new users, with 1.9 billion high-speed smartphone internet

subscriptions worldwide in 2014, and 6.7 billion total worldwide mobile phone sub-

scriptions [184]. Previous work has explored the challenge of mobile access to DHT-

based networks [185, 186], and in particular considered the power consumption im-

plications [187]. One further consideration here, along with the finding that mobile

devices cannot effectively act as full members of a DHT for more than around 2 to 3

hours due to power usage, is that this previous study was carried out on a WiFi network.

Indeed, using the cellular network would result in even higher power consumption, par-

ticularly in a scenario where many small messages were being sent over a period of time,

due to the cellular suspend_backoff timer, used to hold the application processor (AP)

awake during periods of several sleep and wake cycles [188].

Due to the significant variations in power consumption, particularly over short-term

processes, on modern smartphones carrying out multiple operations in the background,

it was found inappropriate to attempt to profile the power usage of a device while par-

ticipating in a decentralised network. Therefore, overall time taken to carry out a trans-

action with the network was considered, since this will define how long the radio or

network interface remains active for, to carry out a given task.

An initial test was carried out to ascertain the performance of a service implemented

upon a standard DHT. The two key parameters identified here were query latency and

throughput. Query latency was the time taken for a GET request on the network, to re-

trieve a given value from the DHT, to be carried out. In the tests carried out, it was

found to take approximately 12 seconds for the key to be retrieved from the network.

This appeared in line with previous research, which has shown that DHT lookup per-

formance is typically slow, since lookup performance isO(log(N)) for a network of size

N [189]. As the mainline BitTorrent DHT was found to have up to 27 million users per

day in research carried out in 2013 [53], this would indicate around 8 look-up cycles

may be required to locate a given key on a large DHT. Throughput in transferring data

across the DHTwas found to vary directly with latency—with a latency-unconstrained

ethernet connection having a 3.5millisecond latency to the first external internet router,

a throughput of 420 kilobytes per second was achieved across the DHT. By adding an

artificial 100 millisecond latency to this system using the iptables firewall, the through-

put fell to 50 kilobytes per second, on account of the large number of small packets

being sent to locate the necessary nodes, and then to relay the outgoing data to these

nodes.
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Therefore, from the perspective of a mobile device, having to carry out multiple

recursive lookups poses a performance challenge, as well as a practical challenge from a

power usage perspective of cellular radio utilisation. The relatively slow throughput was

also a significant consideration, as it will require the radio to be kept active for longer,

in order to complete transmission of data.

To establish the performance within a constrained environment, for the purpose

of experimental reproducibility, a simulation of a decentralised DHT-like network was

created. Firstly, a client and server application were configured to communicate using

UDP, in line with how state-of-the-art DHT implementations work [190] — the server

was designed to simulate the DHT, without considering the routing latency presented

by the DHT, such that the transport efficiency may be investigated.

A 1 MB file of random data from /dev/urandom was generated and selected, to

be transmitted to the simulated network using UDP. A maximum UDP packet size

of 8100 bytes was selected, since this was able to pass through the Linux networkng

stack without being dropped. Note that while there is no definitive maximum UDP

packet size, others have suggested the use of smaller UDP packets ¹, which results in

the requirement to transmit more packets, and therefore results in a greater time until

transmission is completed. Therefore, these results present a best-case scenario for the

transmission of UDP packets, for comparison, and it should be noted that performance

gains achieved beyond this would be more significant when smaller packets were used.

Performance of the transfer of a 1 MB file was found to vary linearly with the latency

introduced to the connection through iptables, with the transfer taking 1.15 seconds at

no added latency, and as much as 78.6 seconds with 200 ms of added latency. This is

shown in Figure 4.1.

Note that these results assume a simple, non-parallel process of retrieval is carried

out, where each chunk was located in a different location, and retrieved sequentially.

If an implementation featuring multiple network connection threads was created and

used, performance would be improved, as the impact of latency on the overall perfor-

mance would be reduced.

Clearly this presents a significant challenge, both from the perspective of service per-

formance, as well as from the perspective of power consumption. The simplest means

to mitigate it, based on the performance considerations from above, would be to ensure

that the process of transferring the same data took less time, therefore requiring less

transmission time over the cellular or WiFi interface.

¹http://www-01.ibm.com/support/knowledgecenter/SSB23S_1.1.0.10/com.ibm.ztpf-ztpfdf.doc_put.10/
gtpc1/gtpc1mst45.html
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Figure 4.1
UDP performance with varied latency to send a 1 MB file

4.5.2 A Hybrid Approach to Accessing Decentralised Services

The most obvious approach to solving this challenge is to use a transmission protocol

such as TCP, which offers features such as windowing, reliable transport, and fragmen-

tation. These features typically offer significantly improved performance, albeit with the

overhead of establishing a TCP connection, which is the reason they are not typically

used within DHTs, and current DHTs used UDP as discussed above. There are height-

ened challenges in tunnelling through NAT when using TCP [191], meaning that a

server with fixed public IP address would be needed to act as the TCP relay. This relay

server would communicate with the remainder of the DHT over UDP as normal, in or-

der to preserve the decentralised nature of the network. Therefore, users are dependent

upon the relay, although may change relays as desired, since the process of relaying

their requests to the decentralised network can be fulfilled by any relay.

In addition, by reducing or removing the delays required in order to access the de-

centralised network through the O(log(n)) lookup process, there would be benefits for

mobile devices. Eliminating the need to hold open active connections with other peers

would allow a mobile device’s cellular radio or WiFi interface to sleep for longer peri-

ods of time, saving power on the device significantly over being a direct member of the

network.

To achieve these savings, without removing the benefits of decentralisation to users,

a hybrid approach to access decentralised services is proposed. Within this hybrid ap-

proach, the concept of an relatively untrusted relay server is introduced, in order to

allow for a client to gain access to resources and data on the decentralised network,

without entrusting any other party with their keys or network identity credentials. This

allows a client application running on a device to access the decentralised network, as
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though it were any other regular web-based API, facilitating the re-use of the many

existing and well-established libraries for connection to web-based API services.

Nonetheless, when adding any kind of fixed server to a decentralised network design,

it is important to consider the implications of the creation of such a server, specifically

around whether it would introduce a central point of failure for users, or whether the

operator of the server may gain any kind of advantage on the network, specifically over

allowing access to unencrypted user data, or falsifying requests on behalf of the user.

This proposed solution avoids the risks of centralisation within the network, by en-

suring that these relatively untrusted relay servers are, as the name suggests, considered

potentially malicious by the client software running on the user’s device. The client soft-

ware should not assume that the relay acts correctly, and should be able to detect any

kind of interference, and switch to an alternative relay. To avoid centralisation, relays

are federated, allowing a user to, in principle, connect to any relay server of their choice.

Relays can by run by any party, since there is no inherent requirement for users to trust

the operator. Nonetheless, to ensure continuity of access to services, it is important that

they are run by a diverse range of users. One approach to this is to encourage users to

self-host relay servers, an approach which has seen success in open source projects ².

Here the motivations of a user for running a relay server shall not be considered, as

many other systems have shown that people are willing to host servers out of goodwill to

other users. For example, the Syncthing community provide a variety of relay servers for

free to users, and allow anyone to host their own relay, which assists users behind NAT

in using their synchronisation tool. Likewise, the Tor anonymity protocol allows anyone

to host a relay or bridge, and indeed many companies choose to support the network by

hosting such nodes ³. Indeed, to preserve diversity of those offering relays, for resiliency

purposes, there are benefits in encouraging users to run relay servers out of goodwill,

rather than as a large-scale commercial service with single entity causing wide failure,

although nothing here precludes this from happening, such as using business models

seen by VPN providers, where free trials are available, and a small fee gives higher

speeds and wider choice of relays which are available only to subscribers.

4.5.2.1 The Hybrid Service Connection Model

Within the hybrid service connection model, it is assumed that a client application is

shipped with a bootstrap list of candidate relay nodes, or makes contact with the de-

centralised network at least once, in order to obtain a list of relay nodes. This ensures

that the application may gain access to the decentralised network, either using a relay

²https://github.com/syncthing/relaysrv
³https://metrics.torproject.org/networksize.html
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Figure 4.2
Architecture of relay-based mobile access

from a list of bootstrap relays, or by having the ability to join the decentralised network

through bootstrapping to find a public list of relays. The architecture of this is shown in

Figure 4.2.

Once a connection is established, it is possible for a client to carry out all network

operations through a relay node. Here, the proposal is security-modelled to ensure that

relays do not hold a privileged position whichmay reveal user data. All requests received

by the network which would mutate or store data must be signed, per the protocol de-

scribed in Section 3.10. A client shall make requests to the network by sending a request

to the relay, which then relays the message to the decentralised network. This inherently

places the relay node in a “man-in-the-middle” capable position, which requires con-

sideration to be given as to constraining the relay’s ability to adversely affect a client’s

communications.

Firstly, all data stored on the network is encrypted, thus ensuring that the relay cannot

gain access to the data contained within chunks being relayed. This prevents the relay

node from gaining access to the content of a user’s data. When a client application

requires data be uploaded to the network, the node holding the data will issue a signed

response, acknowledging receipt of the data, incorporating the cryptographic hash of its

content (which is the address for immutable data), and the identity of the nodemanaging

the storage of the data. This is to ensure that a relay has genuinely passed the request

on to the network, and that the data held by the network was not tampered with or
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modified by the node.

One limitation of the use of a relay is that, within a decentralised network, the process

of verifying the signature of the node holding the data is difficult — it is not possible to

immediately identify the node holding the data, and verify that this is correct. A deter-

mined node could generate private keys corresponding to a large range of public keys,

and use this to generate signatures from addresses appearing to be close to the address of

the data, in an attack similar to that demonstrated in Section 3.3.2. Fundamentally, this

attack is not easily mitigated without the client holding a large database of the current

network’s configuration, which in itself is not feasible due to the requirement to effec-

tively hold an entire map of the network, which would not scale to a larger network; the

fundamental goal of DHT routing was to create a scalable solution with logarithmic

complexity, rather than one with linear or poorer routing complexity [52].

Therefore, this issue is not unique when a relay is introduced; a party determined

enough to create false identities on a decentralised network can typically carry out a so-

called Sybil attack [76] with relative ease, simply by generating new identities. As was

shown in Section 3.3.1.2, this is a challenge inherent to the MaidSafe network, where

it is assumed that users may verify the validity of a node claiming responsibility to store

a given piece of data.

In a hybrid solution, however, a relatively straightforward solution exists to this chal-

lenge; a second relay, assumed to be non-colluding, may be used to verify the presence

of the data on the network. This requires an element of trust to be placed by the user in

the relay, meaning this not an entirely untrusted relay implementation, but the ability

to receive independent confirmation of the presence of data is advantageous for users

unable to act as full members of the network for power reasons. Indeed, a similar tech-

nique would be advisable on the regular decentralised network, since the MaidSafe

network implements localised opportunistic caching of content on the network, which

would allow a managing node to cache content rather than truly distribute it to the

network.

Fundamentally, however, this concern can be mitigated within a decentralised net-

works by allowing a node to verify their own content is located within the network

through its retrieval; unreliable relays may be reported by users as unreliable, therefore

harming their reputation by clients. Relays must sign responses they issue to clients, to

allow the client to have assurance the relay is willing to use its reputation to confirm

it carried out the action. This allows a client to verify, and prove to another user, that

a given relay server produced a falsified attestation that information was stored on the

network — the client may verify if the data is indeed held on the network, and draw

their own conclusions. If such a report was stored on the network in a deterministically-
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located manner, it is possible for other parties to view the reputation records for a given

relay. For example, by storing reputation reports at addresses corresponding to suc-

cessive cryptographic hashes of a given relay’s address, users may identify reputation

reports concerning a given relay. For a relay of public key R, it will have an address

of H(R) on the network. The first report of the relay’s reputation may be made at

H(H(R)), and the second at H(H(H(R))), once the first address has been used, and

so on. This allows for users accessing the network to make reports as to the reliability or

otherwise of relays. Indeed, a relay could also suffer reputational damage as a result of

falsely claiming that a given address does not exist on the network; the relay will return

a signed attestation that the content was unable to be found, and a relay found to be

falsely hiding the existence of reputation reports about itself or other relays could be

detected by other users, and thus lose its trust in the community.

The process for verifying reputation reports can be automated, since it would simply

require the parsing of a regular relay response, and carrying out independent verifi-

cation of whether or not a request was indeed carried out. The following logic should

be used to correctly process a relay response, to prevent a malicious client from falsely

claiming a relay to be acting improperly on the network.

Firstly, for a claim of data not being stored properly on the network;

• Ascertain the address the relay claimed to update, and verify if this data exists on

the network

• Identify if data is mutable or immutable. Immutable data may be verified simply

by requesting the data and ensuring that it exists on the network. Immutable data

is stored at the address of its content’s hash, therefore it is self-verifying

• If immutable, check the hash of the content which was found at the address; if it

exists, the complaint is false or the relay has since stored the data it was accused

of withholding.

• If immutable, establish the current version of the data held; if the version held is

greater than or equal to the version from the relay receipt, the complaint is false

or since irrelevant. Otherwise, the complaint is valid.

Fundamentally, the relay does not gain access to the plaintext of a user’s data at any

point, and it may carry out its duties without requiring such access. All requests from

the user for storage are merely relayed (in signed form) by the originator of the request,

which is the client application. The relay is therefore not in a position to gain access to

the contents of data passing through it at any point, meaning it is not necessary for the

relay to be inherently trustworthy. While a client cannot necessarily be sure any given
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relay is passing requests to the correct network (a determinedmalicious relay could relay

requests to a second, forked decentralised network), but none of the properties of the

confidentiality of user data would be defeated here; such an adversary could potentially

erase user data in future to cause denial of service, but reasonable precautions being

taken would prevent this, such as using a second relay to verify the actions of the first, to

establish the trustworthiness of the first relay, and looking for reports of misbehaviour

from a relay on the network, using an unrelated relay to seek such reports, or while

accessing the network directly.

To mitigate some of the risks of malicious relays, users may operate their own, and

share them with friends or associates who also operate such relays, creating a series of

independent relay nodes allowing access to the network. Confidentiality of all informa-

tion transferred is preserved in such scenarios.

4.5.3 Performance of Hybrid Relayed Network

An implementation of this hybrid decentralised network was created, and used to deter-

mine the possible throughput when transmitting data directly to the relay server over a

TCP connection. 8100-byte chunks (as used previously to measure UDP performance)

were able to be streamlined into a single HTTP request to the hybrid API.

One significant improvement of the proposed hybrid approach to access to a decen-

tralised network is that users may select their relays based upon geographical location.

This is in contrast to the actual data on the network itself, which is uniformly distributed

across the network, based upon the distribution of users providing storage. Therefore,

a client application selecting the relay with the lowest latency will realise the fastest

transmission times to their initial relay. This relay may then carry out the intensive op-

erations on the network on the client’s behalf, waiting for values to be retrieved, and

then return a response from the network to the user application. The relay may option-

ally cache data from the network, particularly immutable data, in order to offer more

rapid retrieval of content for users.

4.6 Conclusions

The practical considerations of a decentralised storage network have been considered,

with a view to creation of applications upon such a network. Firstly, the research ques-

tion of how parties who do not trust each other has been addressed with the contribu-

tion of a decentralised digital contracts solution, allowing for agreements to be made

and enforced within the decentralised network. This was presented within the context

of a contract for the purchase of storage on the network. These contracts are able to
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be enforced by third parties on the network, potentially allowing for fully automated

agreements to be in place, with programmatic validation and enforcement. Secondly,

a high level scheme for implementation of decentralised services has been presented,

showing the high level operations available for applications to implement to build their

functionality. Finally, to address the research question of the practicality of connecting

to a decentralised storage network from a mobile device, performance of accessing de-

centralised storage was investigated across both UDP and TCP protocols, and a hybrid

relay-based approach was then contributed as a result of the identified limitations in

performance over connections with non-negligible latency. The contributed approach

allows mobile devices to connect to an untrusted relay server to gain access to a de-

centralised network, without having to stay active on the network and thus incurring

battery usage and high levels of network traffic.

This makes accessing and using decentralised services more practical from a mobile

device, but also highlights the importance of ensuring the security of client devices,

particularly when highly portable platforms such as mobile devices are being used.

Chapter 5 will therefore consider the security of endpoint devices used to access a de-

centralised storage network, exploring the security of the Android platform, as well as

other implementations of encryption within Android applications.
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Chapter 5

Endpoint Security

5.1 Introduction

A key challenge of achieving secure services and storage is the security of the endpoint

used to gain access to the service — if a device with access to sensitive data is able to be

compromised, the data the device may access can then be accessed through the vulner-

able device. Endpoint security shall be considered in the context of both client devices,

such as computers, smartphones and tablets, as well as to service-side equipment, de-

ployed by the service provider.

This chapter shall consider endpoint security of mobile computing platforms, from

the perspective of attempting to gain a trustworthy operating environment. A number of

security weaknesses in the implementation of Google’s components of the Android op-

erating system are explored, highlighting the risks posed to over a billion users of such

devices, in the event that their network connection is untrustworthy. In addition, the

capabilities exposed to Google, and the extent to which data is transmitted to Google

over inadequately verified channels are demonstrated, and it is shown that Google can

remotely enable its device management features on a device, to then change the encryp-

tion and lockscreen passphrase on the device, thus overriding a user’s security settings

on the device.

The importance of correct use and implementation of cryptography is also shown,

with an analysis carried out across a number of popular Android encryption apps, which

highlight the importance of well-reviewed implementations of standard cryptography,

rather than through the development of custom solutions. This highlights the impor-

tance to privacy and confidentiality of user data of providing encryption of files at a

platform level, rather than at an application level. The prevalence of relatively widely

used Android applications, marketed as providing file encryption, which were easily

broken highlights the risks of relying on the application software alone for security.
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This chapter is based upon work published in [A4, A10, A14, A21], exploring the

security of various client devices and software, identifying vulnerabilities, and ways to

improve the security of client software and devices.

5.2 Security of Android Certificate Pinning and Device Provisioning

Android 4.2 introduced certificate pinning functionality as a security feature, as dis-

cussed in Section 2.10. As highlighted previously, Android 4.4 stated that this function-

ality was enabled for connections to Google’s centralised mobile services platform, to

protect users against connections being tampered with or spoofed by third parties with

access to rogue CA certificates, as discussed in Section 2.10.3. This section shall detail

work carried out to assess the operation of the Android certificate pinning process on

a Google Experience device, to ascertain whether the implementation was sufficiently

secure to protect users against the types of attacks which certificate pinning is intended

to prevent. Since certificate pinning is used to protect the device setup and provisioning

process (also referred to as check-in), the ability to compromise this, or other connec-

tions to Google’s mobile services platform, may permit a third party attacker to exert

control over client devices, which would violate the security of the client device.

5.2.1 Client Provisioning Process

A newly configured Sony Xperia Z Ultra (Google Play Edition), running Android 4.4.4,

was reset to the clean, pre-installed configuration of the operating system, with the

only addition made being a single additional root trusted certificate authority. This

was added to the internal operating system CA store, to emulate a scenario where a de-

fault trusted system CA has been compromised. It was then connected to the internet

through a network configured to allow for interception and active tampering with the

ongoing connection, as discussed in Section 2.10.1. Upon connection to the internet,

it underwent an initial provisioning process triggered by Google Mobile Services. This

involved the Android device establishing a connection to Google’s provisioning servers

over HTTPS and requesting provisioning data, while at the same time sending device

information (including unique device serial numbers such as the device’s IMEI number

and MAC address). The received provisioning data configured the Android device, set-

ting a number of system-only configuration options within a protected database on the

device [136]. As part of this initial process, a number of URLs were delivered to, and

stored on the device, for the purpose of future configuration updates. One of these con-

figuration files pertained to a whitelist of digital certificates for various domain names.

The purpose of this list is to increase user security by ensuring that connections to se-
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Figure 5.1
Android check-in data indicating plain HTTP updates

Figure 5.2
Plain HTTP GET request to retrieve certificate pinning data

cure websites are not being intercepted due to a Man in the Middle attack (MITM)

attack, through the compromise of a CA. This list is referred to as the pin list within the

operating system, as shown in Figure 5.1 This pinning update data was versioned and

signed in a corresponding metadata file to prevent tampering, with the public signing

key communicated to the client through the initial setup process.

Note that, at this point, the interception of the check-in process was being carried

out through an intercepted SSL connection, indicating that the check-in process was

occurring without any form of certificate pinning validation. Therefore, any adversary

with access or ability to issue a certificate for Google’s check-in servers, signed by any

valid CA as discussed in Section 2.10.2, could return their own responses and URLs

for this part of the process, as well as intercept and monitor the entire device check-in

process, using such a compromised connection. One example of an attack would be to

replay outdated certificate pinning records returning disabled pins, such as those shown

to exist here.

5.2.2 Certificate Pinning

As shown in Figure 5.1, the supplied pinning URL was a plain HTTP link, rather than

a secure HTTPS link. The HTTP request observed through interception also indicated

that this process was indeed being carried out over plain HTTP, as shown in Figure 5.2.

It was found to not be possible to tamper with the contents of the pin database,

since it was signed and authenticated by the client, with a CA-signed public key used to

validate this signature transmitted during the initial check-in.

The pinning data sent by the server was of the form shown in Figure 5.3 — each

record contained a domain prefix, an enabled state, and a certificate pin record con-

taining public key hashes. Of note was that the enabled state for every pin was false,
therefore indicating that the certificate pins were not being enforced. According to the

Android source code, a disabled pin is only used for logging, and is not used to block
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Figure 5.3
Pinning data for a single site, from the HTTP-served configuration file

connections where pinning fails ¹. This indicates that, since devices were receiving only

disabled pins, user data would not be protected when pinning violations were detected.

Nonetheless, any adversary with the ability to intercept network traffic would be

able to intercept this specific HTTP request, and filter it, either blocking the request,

returning an error, or responding with an old database, to prevent a future update

from taking place. Significantly, no certificate pins were shipped with the device — the

/data/misc/keychain/pins file was not present on a clean device, since the /data
partition is erased during a factory reset ². Since no certificate pins were shipped with the

device, no protection from certificate pinning was available out of the box. Even with

pins configured to notify Google, these notifications were not issued, since no pinning

records were available on the device.

Since no pins were shipped on the device, any party with network-level access would

be able to return a 404 error on attempts to update this pinning list. Indeed, by config-

uring mitmproxy to return a 404 error upon requests to the certificate pinning URL,

there was no visible sign of failure, nor any alert to the user that their connection may

be tampered with, or that no certificate pins had been loaded. Had certificate pins been

updated over an HTTPS link, this would not have been as easy to carry out, and it

would have required a valid certificate. This attack is therefore viable for network oper-

ators, or indeed countries with access to a national, and relatively centralised, internet

gateway, even if they do not have access to SSL certificates for interception purposes,

and it is of high impact, since it prevents Android devices from receiving any pinning

data. As users are not notified of this failure, they may use their device normally, with-

out being aware of the lack of protection. This may be used by a malicious entity to

leverage incorrectly-issued SSL certificates which would have otherwise triggered CA

pinning alerts.

Significantly, since the logging feature requires a pinning list to be present ³, such an

¹http://androidxref.com/4.4.4_r1/xref/libcore/crypto/src/main/java/org/conscrypt/PinListEntry.java#40
²https://android.googlesource.com/platform/bootable/recovery/+/kitkat-release/recovery.cpp#104
³http://androidxref.com/4.4.4_r1/xref/libcore/crypto/src/main/java/org/conscrypt/PinListEntry.java#40
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Figure 5.4
Android setup process sending password rating traffic to Google servers

Figure 5.5
Android setup process sending current password being typed to Google servers

attack would not be detectable by Google through the pinning reports, since devices

would not have any pins loaded, and therefore would not report any failures.

5.2.3 Account Registration Security

During the process of setting up an Android device, users are encouraged to either cre-

ate a newGoogle account, or log into an existing one. It was observed through intercep-

tion of this traffic that during the process of registering a new account, the registration

process sent a message upon each change of the password field to Google’s servers, as

shown in Figure 5.4. While this was sent over HTTPS, the fact this data could be cap-

tured using a system-installed CA indicated that an attacker with access to a rogue CA

would also be able to capture this. These recurring requests appear to indicate that the

traffic is being used for the purpose of rating the user’s password.

By examining these messages, it became clear that the setup process was transmitting

to Google the plaintext content of the text box, upon every change to its value, as shown

in Figure 5.5. Indeed, this request was found to contain the selected Gmail address of

the account being created, the current content of the password box, and the first and

last names of the user, as supplied to the setup process.

Despite this, there would appear to be no clear reason for the chosen Gmail address,

or indeed the user’s full name, to be transmitted as part of the process for measur-

ing password strength. Indeed, doing so made it easier to filter only traffic containing

plaintext passwords, and to also receive the user’s name and chosen email address, which

would potentially be useful to a malicious party attempting to gain access to users’ email

accounts. There also appears to be no clear justification for carrying out this process

online — offline password strength meters are widely available and implemented for
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various platforms ⁴, removing the need to send passwords in plaintext.

In light of the goal of a password strength meter being to encourage users to use

a stronger password, after they perhaps entered a weaker one, this appears to be a

badly designed system, which may result in users inadvertently revealing other, weaker

passwords, which they may commonly use. With 55% of adult internet users in the

UK admitting that they “use the same password for most, if not all, websites” [24],

revealing the plaintext contents of this password entry box, prior to the user selecting a

password, poses a significant risk to users, if their connection was being intercepted, as

previously discussed. Since everything typed into the box is sent to a remote server, this

poses a significant risk that more than one password as used by an individual may be

compromised, in the event their traffic was undergoing a man-in-the-middle attack.

Additionally, on two other occasions within the registration process, the chosen user

password was sent to Google over HTTPS, in a fully readable form. Given the lack

of certificate pinning, this puts users at significant risk during the device setup process,

as they enter passwords. Techniques avoiding the need for the trust of the server when

handling passwords have been introduced in previous works [192], and these could as-

sist in eliminating the transmission of plaintext passwords over a potentially insecure

network. For example, client-side hashed passwords could be sent to the server, or Se-

cure Remote Password (SRP) verification data could be sent by the client to the server

during registration.

5.2.4 Remote Control of Device

During the check-in process, Android was found to obtain configuration information

from Google’s servers, as discussed in Section 5.2.1. One of these configuration param-

eters pertains to the status of the “‘Android Device Manager” feature, which is a part

of Google’s system application suite, that does not form part of the open source core of

Android. This device manager service offers the ability to locate and remotely lock or

wipe a lost or stolen Android device, by using the associated Google account. Android

Device Manager is a piece of software commonly used for Mobile Device Manage-

ment (MDM).

From analysis of the data exchanged during the check-in process, it was determined

the Android Device Manager tool was able to be remotely enabled. On a freshly-reset

Sony Xperia Z Ultra, it was first verified, while offline, that Android Device Manager

was disabled in the Security settings menu by default. After connecting the device to the

internet, it was noted (without having logging into a Google account or similar) that the

check-in process had silently enabled device administrator privileges for AndroidDevice

⁴https://github.com/dropbox/zxcvbn-ios
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Figure 5.6
Google check-in process remotely enabling Android Device Manager

Manager. The received request for enabling device manager is shown in Figure 5.6.

As it was therefore possible for Google to use the check-in process to remotely en-

able the device administrator features of Android Device Manager, and this process

completed before any login or account creation was carried out, the Android Device

Manager feature may pose risks to users during (and after) the setup process. By default,

Android Device Manager allows devices to be located and remotely locked or wiped.

The process of remote locking, however, was identified to be of potential interest for

this security analysis, as it exposed a major limitation of the Android security model’s

reliance upon Google as a trusted third party. Namely, if a user loses their device, they

can log into their Google account online and carry out a variety of operations, including

setting a lockscreen password to protect their device in case it is found or in the posses-

sion of a malicious party. In the event that the device already has such a password, it is

overridden and replaced with the new one.

Android devices also feature device encryption functionality, designed to protect data

from attack in the event of the theft of a device, or access by an unauthorised party.

Android data encryption would require the device password to be entered at power-on,

in order to decrypt the data held on the device. The password entered here is the same as

that entered on the regular device lockscreen, and therefore the two are linked, as is clear

from a long-running feature request to allow the separation of the two features [193].

On account of this, a hypothesis was formulated, that the Android Device Manager

functionality would most probably make use of the regular Device Administrator APIs

permitting the changing of the user password. This theory was formed on the basis

of the regular password change functionality triggering an update of the encryption

password ⁵.

To test this hypothesis, a test was constructed, whereby the Sony Xperia Z Ultra was

encrypted using a password, and logged into a Google account. While monitoring the

system debug logs, a request to remotely lock the device was issued through Android

Device Manager’s web interface. Figure 5.7 shows the device logs gathered during this

process, indicating that the process also changed the device encryption password, as a

result of a remotely-initiated message from Google’s servers.

The device was then rebooted, and the original password attempted, as well as that

⁵http://androidxref.com/4.4.4_r1/xref/frameworks/base/core/java/com/android/internal/widget/LockPatternUtils.java#622
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Figure 5.7
Android Device Manager changing device encryption password remotely

of the new password. The original password was no longer capable of decrypting the

device, and only the new password, sent over the internet from Google’s Android De-

vice Manager servers, was able to be used. This raises two concerns — firstly that a

malicious party could compel or social engineer Google to change the password on a

device remotely, and secondly that a malicious party gaining access to Google’s systems

could carry out a denial-of-service attack on users, thus locking them out of their phones

by changing their password.

5.2.5 Summary of Findings

A number of insecurities in smartphones and tablets running on the Google Android

platform have been highlighted. It has firstly showed that the implementation of certifi-

cate pinning without using an HTTPS connection can be easily blocked or tampered

with, thus preventing a device from loading certificate pinning data.Without any certifi-

cate pins loaded, there is no constraint on which CAs may present valid certificates for

Google, which is a major risk given previous instances of CAs issuing false certificates,

as discussed in Section 2.10.2. The entire setup process of an Android device was then

demonstrated to be carried out over an unpinned connection as well, raising significant

security and privacy concerns in the event that a man-in-the-middle attack is carried

out with a valid CA-signed certificate in use. Thirdly, the setup process was shown to

reveal, again over an unpinnedHTTPS connection, plaintext user password candidates

undergoing strength evaluation, therefore exposing every password a user attempts to

use during the process of account creation. This again poses a concern in the event that

the connection is being intercepted. The check-in process also was shown to be capable

of remotely enabling device administrator functionality on the device, before login had

even taken place. Finally, it was hypothesised and demonstrated to be accurate that

the Android Device Manager service acts as a bypass to device encryption, allowing

for Google to remotely change the lockscreen password on a device, which would also

change the device encryption password. This poses significant concerns for users wish-

ing to ensure the confidentiality of their data, and raised the concern that a compromise

of Google’s systems could result in widespread denial of service attacks against Android
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users.

These issues were reported to Google, which defended the behaviour of the system

as by-design, but did not address the security concerns highlighted. The ability for an

applicationwith device administrator access to change the device lockscreen credentials,

and thus encryption key, has since been removed from Android 7.0 and onwards [194].

5.3 Encryption Applications on Android

The Android platform commonly ships with the Google Play Store, allowing users to

install third party software and, more recently, multimedia content to their Android

device ⁶. Previous work has explored the issue of malicious software being distributed

on the Play Store, and the prevalence of it [195]. Other works have focused on the

ability for forensic recovery of data from popular instant-messaging applications [196],

and on the security of SSL implementation within applications [197].

This section shall explore a number of Android applications available on the Google

Play Store, each of which claims to encrypt user data, to protect it from unauthorised

access or theft, in order to enhance a user’s privacy by giving them control over who

may access their files. The purpose of this exercise was to evaluate how well-protected

user data was, using existing encryption tools available on the platform, and to ascertain

if these applications were protecting user data in the manner they claimed.

5.3.1 Selection of Applications and Testing Methodology

A range of applications were investigated, each of which had more than 5,000 users, ac-

cording to the Google Play Store. Two had between 5 and 10million users, and two had

between 500,000 and 1million users. Two apps were also by so-calledGoogle Play “Top

Developers”. For balance, some less popular applications were also selected, with a few

thousand users, in order to give a distribution of applications. Due to some applications

having similar or identical names, each application is introduced with its package name

(of the approximate form com.x.y.z), since this is a static identifier which uniquely

defines the application in the Android ecosystem.

Each application was installed on a freshly-reset Motorola G 2014 Android device,

running Android 5.0.2, the latest version of Android available for it at the time of car-

rying out the investigation. All applications were used in their default configuration.

Typically, the application would prompt for the configuration of a PIN, and then the

user would be able to use the application. Future launches of the application would re-

quire the entry of this PIN. Rather than attempt to attack or recover this PIN, the focus

⁶https://play.google.com
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of this work was on the quality of encryption used to protect user files — the findings

highlight that these PINs are immaterial to the security of the files, and therefore merely

serve as “security-through-obscurity” to stop a casual user from accessing files.

For each application, a video or image file was captured using the device’s camera,

and was stored on the device’s internal storage. Prior to encrypting it, it was retrieved

to a computer using the Android Debugging Bridge (ADB) feature. The ADB interface

was also used to use a Linux shell to explore the shared storage filesystem on the device,

to locate the encrypted files, and to then retrieve them for analysis. The Android device

used was not rooted, and elevated privileges were not used on the device during this

investigation — at all times, only files from the shared storage partition of the device

were retrieved, and these are files which are accessible to any application running on

the Android device. The only exception to this was for ease of extraction of the database

for the Password Locker application, as discussed in more detail in Section 5.3.5.

The following sections shall consider each of the applications, its security claims, and

the findings of this work.

5.3.2 Vlocker-Hide Videos

The Vlocker application used package name com.simpleapp.vlocker [198], and ver-

sion 1.0.1 was investigated, which was the latest version available, released on 20th Jan-

uary 2016. At the time of writing, it had between 500,000 and 1 million downloads

from the Play Store, and 4574 reviews with an average score of 4.2/5 stars.

5.3.2.1 Developer Claims

The developer of the software claimed to use encryption within the application —

“Vlocker is the Super Video Hider. Lightning encryption and password recovery fea-

ture allow your privacy more secure”. More specifically, the developers claim “Encryp-

tion - your videos are encrypted using advanced 128 bit AES encryption”, although

somewhat intriguingly also claim they allow for email-based recovery of a user’s PIN

within the application [198].

5.3.2.2 Operation of Application

Following use of the encryption feature of vlocker, the captured video file was no longer

available at its original path. A hidden directory .vlocker was noted to have been

added to the /sdcard shared storage area of the device. Within this folder was a folder

layout of the vault shown by the application. A new file was found, with the same name

as the original file, with the suffix .vlocker appended to it. This file was retrieved to
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Figure 5.8
Comparison of original file and vlocker-protected file

the computer using ADB.

An initial inspection of the so-called encrypted file indicated that it had not been

encrypted with AES-128, as claimed by the developers. Indeed, after the first 8192

bytes of the file, the remainder was byte-for-byte identical with the original file, indi-

cating that only the MPEG4 header had been modified, as shown in Figure 5.8, which

shows a comparison of the original file with the file after processing by vlocker. Cursory

inspection highlights that this header has not been encrypted by AES, as the output dis-

tribution is nowhere approaching uniform — in particular, there is a high bias towards

bytes having the value 0xFF. Indeed, where a byte of 0x00 would be expected in the

original video, a byte of 0xFF was seen in the vlocker-protected file.

The remainder of the bytes of the header appeared to have simply had each of their

bits individually flipped. For example, the fourth byte of the file (0x18 == 000110002),

was encoded to 0xE7 = 111001112, indicating that a bitwise NOT function had been

applied to each byte of the header.

Therefore, Equation 5.1a was formed, to determine the output of the encryption

process. It can be reversed by re-arranging for decryption, as seen in Equation 5.1b.

ciphertext[i] = 255− plaintext[i] (5.1a)

plaintext[i] = 255− ciphertext[i] (5.1b)

Carrying out this process across the first 8192 bytes of the header revealed the orig-

inal file, and this was confirmed by both per-byte comparison of the file, as well as the

original and decoded files having the same cryptographic hash.
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Figure 5.9
Comparison of original file against FotoX-protected file

5.3.2.3 Security Conclusions

Therefore, it can be concluded that, contrary to the claims of the developers, vlocker did

not make use of AES-128 encryption. Indeed, it did not make use of encryption at all —

the protection applied to files is merely that from hiding them in a folder whose name

begins with a “.” character, which typically hides them from view, and by inverting the

bytes of the MPEG-4 header. This amounts to basic obfuscation, and does not protect

user data as the application claims to.

5.3.3 Hide Pictures & Videos - FotoX

FotoX, available on the Play Store using package name com.smsrobot.photox, claims

that “all your private data will be secured, encrypted and invisible to other Gallery

apps” [199]. The developers, SMSROBOT Ltd, are listed as being “Top Developers”

on theGoogle Play Store, and FotoX has between one and 5million installs, with 21,131

reviews giving an average of 4.3/5 stars. Version 1.9 of the application was investigated,

released in October 2015, the most recent available at the time of investigation in Jan-

uary 2016.

5.3.3.1 Operation of Application

FotoX was used to protect a JPEG image which was stored on the Android device’s

shared storage. Following the use of the encryption process, the file was no longer visible

within the original directory. Like with vlocker, a hidden folder whose name began with

dot was used to hide the folder from FotoX.

Within the directory .FotoX of the shared storage was the filesystem layout of the so-

called vault, and these folders contained the protected files. The encrypted file had the

suffix .quickcrypt appended to its name. It was extracted using ADB, and compared

to the original file. This comparison indicated that only the very first few bytes of the

file differed. Figure 5.9 shows a comparison of this region of the header of the file.

Specifically, FotoX had only swapped a pair of bytes — the first two bytes of the

file, containing the JPEG magic bytes of FF D8 had been swapped with the 11th and

12th bytes, which were 00 00. This was the only difference between the two files, and
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reversal was trivial, by swapping the bytes back to their original locations, to obtain the

original file.

5.3.3.2 Security Conclusions

It was clear that FotoX does not employ encryption in its handling of images, as was

claimed in its description. The swapping of 2 bytes in the header with another 2 bytes

was sufficient to ensure the image would not open in image viewers, but this does not

offer any level of security as one would expect from software claiming to implement

encryption.

Another application from the same developer was also investigated — “Vault - Hide

Photos/App Lock”, using package name com.smsrobot.vault, had 500,000 to one

million downloads on the Play Store, and an average of 4.1/5 stars from 7249 reviews.

Like with FotoX, Vault claims that “Once in the Vault, all your private data will

be secured, encrypted and invisible to other Gallery apps”. Investigation revealed that

Vault used the same process as described in this section to protect images, swapping

bytes from the header. There was once again no encryption involved in protecting users’

files, despite the developer’s claims in the description of the application.

5.3.4 Video Locker & Photo Locker (Handy Apps)

Video Locker is an application by the Google Play Store “TopDeveloper” Handy Apps.

It had an average rating of 4.3/5 stars from 144,343 reviews, and had between 5 and

10 million installs. Version 1.2.1 was investigated, the latest available at the time, as of

January 2016. Photo Locker is a similar application by the same developers, with an

average rating of 4.2/5 stars, after 151,636 reviews. Photo Locker has between 10 and

50 million installs. Version 1.2.1 was again investigated.

5.3.4.1 Developer Claims

The developers of Video Locker claim it is “the ultimate secret gallery app”, and that

a key feature is its encryption, according to its Play Store description:

“Encryption - hidden videos are not onlymoved to a secret location on your

phone but are also encrypted using advanced 128 bit AES encryption. This

means that even if someone manage to steal your SD card and copy the

hidden video files, they will still be unable to view the locked videos” [200]

Identically worded claims were made for Photo Locker [201], including the assertion

of 128-bit AES encryption. Since the operation of the two applications were found to
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Figure 5.10
Comparison of original file against Video Locker-protected file

be near identical, the operation of the two shall be considered together — only minor

differences exist between the applications, specifically around the types of file accepted

by each application.

5.3.4.2 Operation of Application

Upon encrypting a video with Video Locker, it was found to have been removed from

its original location. A new folder within the shared storage, named .VL was identified,

containing the vault contents. Each file had .vl appended to its name. Photo Locker

created a similar directory named .PL.
For videos, only the first 8192 bytes differed from the original file, indicating that only

the file header had been encrypted. Likwise for images, only the first 2048 bytes had

been modified. It was noticed that the header contents appeared to be more uniformly

distributed than the previous applications investigated. This indicated that a proper

encryption algorithm may have been used, which would produce a ciphertext relatively

indistinguishable from random data.

Figure 5.10 shows a comparison of the first 144 bytes of the original file, against the

protected file, showing the seemingly-encrypted header data.

To verify if encryption was being properly applied, all Video Locker application data

was fully erased from the device, including the vault. This meant that the application

had lost all of its state data. Therefore, it believed it was running under a new install,

and a new setup process was completed, with a different PIN used within the app.

Another (different) video was then encrypted by Video Locker, and the encrypted video

extracted.

The header of the two encrypted files were now compared— if these two ciphertexts

held similarities, there would therefore be a correlation between the ciphertexts, indi-
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Figure 5.11
Comparison of two different Video Locker-protected files

Figure 5.12
Comparison of the original video files

cating that similar plaintexts resulted in similar ciphertexts. As shown in Figure 5.11,

the two headers were similar for the vast majority of bytes, indicating that this was likely

use of a statically initialised cipher. Indeed, the offsets of the bytes differing in the ci-

phertext were the same offsets as the bytes differing in the plaintexts. For example, at

offset 0x1A of Figure 5.11, two bytes differ between the ciphertexts.

Figure 5.12 shows that these same bytes in the plaintext differed. For ease of identi-

fication, those bytes are highlighted with arrows.

Therefore, it was clear that, given the correlation between the two ciphertexts, the

same key and initialisation parameters were being used, even though a different PIN

was being used in the application for the encryption of the second file. This was con-

firmed by using the XOR function across differing bytes of both plaintext and cipher-

text. For example, from Figure 5.12, bytes 0x31 - 0x33 were [03, 20, 8A] in VID_3,

and [00, E7, D9] in VID_4. Within the ciphertexts, these bytes were [10, BD, 03] and

[13, 7A, 50] respectively.

By carrying out the XOR function across the plaintexts, the result was [00 ⊕
03, 20 ⊕ E7, 8A ⊕D9] = [03, C7, 53]. Across the ciphertexts, the result of XOR was

[10⊕13, BD⊕7A, 03⊕50] = [03, C7, 53], showing that theXORof the two ciphertexts

revealed the XOR of the two plaintexts, thus proving the same key and cipher param-

eters are used on different files, thus leaking information about the difference between
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different ciphertexts, and suggesting the use of a stream cipher mode of operation.

Since the same key was used for all data encrypted by the app, and this was static be-

tween different installations of the app, this makes the ciphertext vulnerable to a simple

known-plaintext attack. By encrypting a large file, and recording both the plaintext and

ciphertext of that file, any arbitrary file may be decrypted with the XOR function, since

an unknown ciphertext was able to be XOR’d with the ciphertext whose correspond-

ing plaintext is known, and the result XOR’d with the known plaintext to reveal the

unknown plaintext. Alternatively, a ciphertext-only attack could be carried out, since

the XOR of two bytes of ciphertext corresponds with the XOR of the corresponding

two plaintext bytes. This conveys the XOR distance between the two bytes. By then

XOR’ing this distance with known dictionary values or header bytes, and moving this

candidate data around the file, a match may be found yielding the second plaintext,

since the XOR of the two ciphertexts is equivalent to the XOR of the two plaintexts.

5.3.4.3 Decryption of Video Locker & Photo Locker Data

While the above information indicated that that files could be decrypted by an attacker,

the process used to protect user files remained somewhat unclear and convoluted. It was

identified firstly that using a different PIN and recovery email address for the application

did not affect the encryption procedure — the same ciphertext was generated in each

case. This also confirmed the static nature of the IV and key, and confirmed the above

findings carried across different PINs and recovery email addresses.

A file named .config was located within the root directory of both apps’ vaults.

This file contained two base64-encoded strings, which themselves decoded to scram-

bled data. By analysing the operation of the application upon a clean install, and after

restoring this data, it emerged that this information was held to allow a user to transfer

their data to a new Android device. This file contained a protected copy of the user’s

PIN and recovery email address. Neither was padded, allowing for trivial identification

of the length of each — following decoding from base64, the number of bytes was the

same as the length of each string.

Since the recovery process could be initiated on a new device, it was clear this data

must be able to be accessed by the application itself, and it was clear the user PIN was

not hashed, given its length. It was determined that a static key was used to decrypt

this data, using AES-128 in CTR mode, with a static (fixed) IV. Analysis of the strings

within the application binary revealed that the key and IV were constant, static values

which were stored within the application.
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5.3.4.4 Security Conclusions

While Video Locker does indeed use encryption, it only encrypted the header of the

MPEG-4 file, rather than its contents. It used static parameters for this header en-

cryption, for all files, irrespective of PIN used, leaking information between files. These

static parameters were hard-coded into the application and therefore offer no security

to users. Indeed, the use of CTR encryption with fixed initialisation vector also leaked

other information, although the use of a static encryption key and IVmeant that anyone

with access to this widely-used software, or knowledge of how it operates, may decrypt

files by any other user. It therefore offers no realistic level of security against third parties

wishing to access user data.

5.3.5 Password Locker

Password Locker is an application by Handy Apps, the same developer as Video Locker

and Photo Locker, and also a Google Play Store “Top Developer”. It has between

100,000 and 500,000 users, and an average rating of 3.9/5 from 1,179 reviews. Pass-

word Locker, as the name suggests, is designed to securely store user passwords, which

are naturally highly sensitive.

For example, the developers state that Password Locker “stores your sensitive infor-

mation offline and passwords safe, secure and organised”, and that it has “many op-

tional convenient features for it to be the best password manager ever designed specifi-

cally for Android” [202]. Specific details are also given as to the encryption supposedly

used — the developers state:

Secure

Lock up your data in Password Locker with extremely tough and strong

256-bit AES encryption - military level encryption (takes trillions of years

to decrypt) [202]

5.3.5.1 Operation of Application

Password Locker stored its password database within the application’s private storage,

meaning that root access was required to retrieve the database for the purpose of this

analysis. Note, however, that it also offers a paid feature to enable cloud synchronisation

of passwords with a user’s Dropbox or Google Drive account, which may expose this

database to third party services. Nonetheless, given the ease with which Android devices

may be rooted with exploits such as CVE-2014-3153 (TowelRoot) and CVE-2015-3636

(Ping Sockets root), it is possible that a malicious party may gain access to the database

through an application on the device. Nonetheless, if the claims made by the developers
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Figure 5.13
Password Locker Database Structure

are accurate, users would have nothing to fear, as their data would be appropriately

encrypted.

The database was found to hold base64-encoded fields, in the structure of the

records, as shown in Figure 5.13. From this, it was immediately possible to identify the

use of weak, potentially broken cryptography, by the observation of a common prefix

between the two ciphertexts for bank_label and acc_name. Since this was simply the de-

fault record created by the application, it was possible to verify the hypothesis that they

shared a prefix of 3 characters (given the 4 base64-encoded characters in common).

Indeed, this suspicion was found correct — the bank account label was “Sam Sam-

ple” and the account name was “Sample Checking Acct”. Once again, there was no

padding present in the ciphertexts, and lengths of plaintexts could be identified directly

from ciphertext lengths.

The presence of prefixes also indicated that the cipher in use was not being initialised

with unique parameters for each operation. Therefore, to demonstrate the ability for key

recovery, the following process was carried out, where kc is a known ciphertext, kp is the

corresponding known plaintext, and uc is a ciphertext with an unknown corresponding

plaintext, with the length of uc < kc:

key = kc⊕ kp (5.2a)

up = key ⊕ uc (5.2b)

By XOR’ing a known plaintext and ciphertext together per Equation 5.2a, the AES

block key is obtained. By then XOR’ing this block key against a ciphertext with un-

known plaintext, for the length of this ciphertext, discarding any remaining block key

material, the unknown plaintext up was recovered, per Equation 5.2b.

This was confirmed across 2 Android devices, with different PINs and security pa-

rameters set on each, to prove that the key used is static, and not derived from the

user’s password. Therefore, the data is effectively only obfuscated. Anyone carrying out

the above may decrypt any other user’s Password Locker database trivially, using Equa-

tion 5.2b, since key is constant and hard-coded across all installations of the application.

Once again, AES was being used in CTR mode.
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5.3.5.2 Security Conclusions

Password Locker’s improper use of encryption raises significant concerns, specifically for

users synchronising their data to an external service, as permitted by the application.

It was identified that the same hard-coded AES key was used between different installs

of the application, thus rendering the encryption ineffective, and merely obfuscation.

Given the importance of passwords, and the perception of security offered here, users

may be at risk, in the event their password database was able to be retrieved by an

attacker.

5.3.6 Video Locker (NewSoftwares.net)

Video Locker is an application by the developer NewSoftwares.net. To avoid ambiguity

with the other application named Video Locker, investigated previously, this shall refer

to this application as Video Locker Advanced, in-keeping with its package name. It had

an average rating of 4.2/5 stars from 192 reviews, and had between 10,000 and 50,000

installs. Version 1.0.3 of the application was investigated, which was released in January

2016, and the latest available. The developers claim to use “Encryption - The app locks

your personal videos, prevents video hack.”, and that it protects private videos “using

fast encryption techniques” [203].

5.3.6.1 Operation of Application

Video Locker Advanced was used to encrypt a video captured from the camera on the

test phone. The video was retrieved from the device prior to its encryption to provide a

comparison.

After encryptionr, and in-keeping with the other apps investigated so far, the file

was no longer visible in its original location. A new directory (which was not hidden)

was located within the root folder of the device share storage, titled Video Locker
Advanced Encrypted Data. Within this directory was a vault structure, and the en-

crypted file was located, with the original file extension separator dot replaced with the

# symbol. Therefore a file named VID_1.mp4 became VID_1#mp4.
Comparison of the original file with the protected file indicated that only the header

of the video had been modified, with the first 100 bytes of the header changed in posi-

tion. Therefore, the fourth byte became the 96th byte, as shown in Figure 5.14 — the

fourth byte 0x18 is seen at address 0x61. The ASCII representation makes this reversal

of the bytes clearer, as shown in the right column of Figure 5.14.
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Figure 5.14
Comparison of original file against Video Locker-protected file

5.3.6.2 Security Conclusions

From the above, it was clear that Video Locker Advanced did not use the advanced en-

cryption techniques which it claimed — this amounted to reversing the bytes of the file

header. Concerningly, the application features Dropbox backup support [203], which

may lead users to believe that they are uploading only encrypted data to Dropbox, when

they are in fact uploading plaintext user files with merely minor obfuscation of the file

headers.

5.3.7 Gallery Vault

Gallery Vault is an application by ThinkYeah Mobile, with between 10 and 50 million

reported users on the Play Store. It has an average rating of 4.4/5, based on 223,160

reviews. Version 2.6.5 was investigated, which was the latest version available as of Jan-

uary 2016.

The developers state that “The hidden file are all encrypted”, and that “GalleryVault

is a fantastic privacy protection app to easily hide and encrypt your photos, videos and

any other files that you do not want others to see” [204].

5.3.7.1 Operation of Application

Like the other applications investigated, Gallery Vault created its own vault area on the

shared storage, under the directory name .galleryvault_DoNotDelete_X, where X

was the Unix epoch time in seconds of the creation of the vault.

Encrypted files were stored within a directory named file, and named after the

epoch time of their encryption. While this appeared initially to hide the filenames, a

folder named backup was located adjacent to the vault, containing a backup of the ap-

plication’s internal database, galleryvault.db. Note that this database was contained

within the device shared storage, and was therefore accessible to any software on the
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Figure 5.15
Schema of the GalleryVault database file table

Figure 5.16
Comparison of original file against GalleryVault-protected file

phone, and to anyone with access to the device.

This database contained a table named file, which stored an unencryptedmapping

between protected and unprotected files. The field org_name and org_path contained

the original name and path of the file respectively, with the path also including the

original filename. The database schema is shown in Figure 5.15.

A JPEG photograph was taken, and encrypted using GalleryVault. After extracting

the encrypted file from the vault, it was compared to the original file. Figure 5.16 shows

this comparison— only the first ten bytes of the file were found to differ, and had simply

been set to have byte values of zero.

While recovering from this would be straightforward, only requiring identification

of the correct header values, based upon the image dimensions, it was found that this

was not necessary, on account of the leakage of the original header information within

the GalleryVault database file.

Within the file table, the field org_file_header_blob contained the plaintext origi-

nal file header, as shown in Figure 5.17. Therefore, with access to only the GalleryVault-

protected file, and the backup database held in an adjacent directory, within the globally

accessible shared storage, it was possible to immediately recover the file header, which

can be compared against Figure 5.16 to be identical to the original file’s header which

was removed.
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Figure 5.17
GalleryVault database leaking original file header

5.3.7.2 Security Conclusions

From the above, it is clear that GalleryVault did not carry out encryption of user image

files. The first ten bytes of the file header were zeroed out, although the header was

backed up, in plaintext, within an SQLite3 database that was held adjacent to the pro-

tected file. Therefore, anyone with access to the device can trivially restore these ten

bytes, and have restored the original file.

5.3.8 Encrypt File Free

Encrypt File Free, by MobilDev, was the second application listed in the Play Store

search for the query “encrypt”. It had 50,000 to 100,000 installs, and an average rating

of 3.6/5 from 255 reviews. Version 1.0.8 of the application, from November 2014, was

the latest version available, and the version investigated.

5.3.8.1 Developer Claims

The developer of Encrypt File Free states “Encrypt File Free can encrypt and protect

photos, videos, audios, pictures, doc, ppt, xls, pdf and other files using a password”, and

that “The encrypted file can only be opened with the correct password” [205]. They

also state users should “Encrypt your files and not just hide them. This solution is better

and safer than simply hiding files”.

5.3.8.2 Operation of Application

Since this tool was designed to encrypt files of any type, rather than specifically videos

or images, a test file was created, as a first test of the algorithm. The test file consisted of

the sequence of 16 increasing bytes, 00, 11, 22... FF, followed by 16 bytes set to FF,
48 zero bytes, and a further 32 bytes set to FF. The intention of using this test file was

to ascertain if the output of the cipher was strong and uniform, or weak and potentially

breakable. The plaintext data is shown in Figure 5.18.

Upon encrypting this file, which contained a total of 112 bytes, a ciphertext of 1168

bytes was returned. Examination of this file highlighted that this file could likely be split

into three chunks — an ASCII representation of a 16 bytes hex string, perhaps a hash

like MD5, some unknown data, and finally data which appeared to be the encrypted

content of the file. Figure 5.19 shows the resulting ciphertext output from Encrypt File
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Figure 5.18
Plaintext selected for testing of Encrypt File Free

Figure 5.19
Ciphertext output from Encrypt File Free for above test file

Free, with some of the 1024-byte header truncated for readability.

The first 32 bytes were found to contain an ASCII representation of the plain, un-

salted, MD5 hash of the user’s PIN for the application. For the example shown in Fig-

ure 5.19, the PIN used was “111111” (as ASCII characters), and the MD5 hash shown

in the first 32 bytes is an ASCII representation of md5(111111). Therefore, the PIN

was trivially exposed to anyone with access to a ciphertext produced by the application,

on account of the ease of brute-forcing MD5 hashes. This may be a risk where users

unintentionally expose their device or other PINs, as a result of the re-use of that PIN

within this application. Also of interest was that if the original data and hash lengths

(112 + 32) were subtracted from the overall ciphertext length (1168), this indicated the

middle section of the data occupied exactly 1024 bytes, perhaps suggesting padding or

some form of fixed-length lookup table.

Indeed, by altering the PIN hash located at the header of the file, the same file could

be decrypted by another device, which had never been in contact with the plaintext

file, thus showing that the file was not being encrypted with the user PIN, and that

its presence was merely for checking validity of the entered PIN. Therefore, the pro-

cess was no better than storing the file in plaintext, since it could be trivially decoded

without knowledge of the user’s PIN. In contrast to the other applications investigated

however, Encrypt File Free did actually modify the body of the file, rather than merely
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the headers, although it does not offer any effective security.

5.3.8.3 Cryptanalysis of the Output

The output of the cipher was found to be very weak, and appeared to represent that

of a monoalphabetic substitution cipher. Specifically, the pattern of blocks of data was

visible in the output, with 16 differing values, then 16 values (say A), then 48 different

values (say B), then a further 32 bytes of A. This pattern indicated that the structure of

the input plaintext was remaining constant through to the ciphertext. This can be seen

at the lower part of Figure 5.19, where the pattern of repeated bytes has been exposed

from the plaintext through to the ciphertext.

By focusing on the 1024-byte block of unknown header data, it was observed that dif-

ferent byte values appeared with slightly different frequencies. An entropy estimation by

the Unix ent utility indicated that the header entropy was approximately 7.47 bits per

byte, although with the arithmetic mean of data bytes significantly lower than expected,

at around 80. Were the data uniformly distibuted, this would be expected to be nearer

127.5. The auto-correlation coefficient across the header was also somewhat elevated,

at around 0.3, rather than 0, which would be expected for random and unpredictable

data.

An inconsistency within the distribution of the data within the 1024-byte header was

also noticed, since each byte value from 0x00 to 0xFF was found to exist exactly once

within the first 256 bytes. This therefore appeared to be a form of one-to-one look-up

table, given the lack of duplicates, and presence of each value.

By using a crib from a known plaintext and ciphertext mapping, and the guess that a

form of monoalphabetic substitution was taking place, it is possible to consider that the

plaintext byte 0x00 from the first byte of the plaintext from Figure 5.18 was mapped

to a ciphertext byte of 0x74, per Figure 5.19. By observing that the byte 0x74 appears

at offset 0x80 of this 256-byte header, it appears that the plaintext is obtained by sub-

tracting the value 0x80. This was verified for other byte values — the ciphertext byte

0x98 corresponded to plaintext 0x33, and the ciphertext byte appeared at offset 0xb3.
Subtracting 0x80 from this resulted in the plaintext byte 0x33 as expected.

Therefore, it is possible to decode any arbitrary file protected by this application,

simply through cryptanalysis of the ciphertext, and knowledge of a single plaintext cre-

ated with the application. While the header varied between uses of the program, this

process can be used to decode any file created by the application.
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5.3.8.4 Security Conclusions

It has been shown that Encrypt File Free utilises weak obfuscation, which does not

require knowledge of a key to access their so-called “encrypted” files. The cipher is ef-

fectively a monoalphabetic substitution cipher, and offers no protection from frequency

analysis, with the mapping from plaintext to ciphertext being one-to-one. The process

of identifying this and carrying out the attack was demonstrated, and shown to be able

to be identified merely by analysing ciphertext output against a single known plaintext.

A written review from a user in September 2015 entitles “Unbreakable” states “En-

cryption still holds, after 2 months. (I hope) LoL” [205]. This does not appear to be

the case, and the ciphertexts were not able to stand up to basic analysis, with a security

level commensurate with that of a monoalphabetic substitution cipher. The application

also leaked the unsalted, plain MD5 hash of the user’s PIN in the header of each file,

potentially exposing a user’s PIN to other applications, which may be damaging if this

were to be re-used in other scenarios, such as on a lock-screen or a bank card.

5.3.9 Conclusions of Analysis and Discussion

An analysis of a range of Android applications claiming to implement encryption to

protect user files from unauthorised access was conducted. This selection of applica-

tions encompassed those from 5,000 to 10,000 users, through to those with 10 to 50

million users. These applications were highly rated, and in some cases are from “Top

Developers” on the Google Play Store. Every application here claimed to encrypt files

for privacy or security, although only one actually implemented a standard cipher, and

it was trivially breakable and improperly implemented. In most of the other cases, appli-

cations merely obfuscated or removed file headers. In one case, the header was simply

moved to a plaintext field within an SQLite3 database, stored next to the protected file.

The second application appearing on a Google Play Store search for “encrypt” was

found to use a simple obfuscation algoithm to carry out so-called encryption of files,

and a thorough an analysis of it has been presented, describing how to decrypt files

which were “encrypted” using it. One application was also identified, which claimed to

use AES-128 encryption, yet merely inverted the first 8192 bytes of the file header. An-

other application making such claims used AES-128 in CTR mode, with fixed key and

initialisation vector, irrespective of a user’s PIN, and it was demonstrated that XOR’ing

two ciphertexts together would reveal the differences between the two plaintexts, indi-

cating the inadequacy of this configuration. The static parameters were also extracted,

allowing for the decryption of the file headers.

These findings are highly concerning, and show that there are significant security im-

142



plications for users relying on software such as that which was investigated, particularly

when applications have in excess of 10 million users reported by Google Play. These

applications all claimed to use encryption, and a viable attack to recover plaintext from

all of them has been demonstrated. Were users to rely on these applications for privacy,

or to protect sensitive data, it may be recovered by an attacker carrying out analysis of

the files and the applications concerned. None of these applications offered sufficient

protection for user data, and none of them made use of any kind of “key” to alter the

mapping of plaintext to ciphertext, a key requirement of an encryption algorithm [59,

Section 1.4].

This also highlights an important consideration for users, which is that they are

forced to trust software to do what it claims to. All of these applications claimed to

encrypt files, and some even made specific claims as to the type of encryption used. De-

spite this, none of the applications investigated offered satisfactory security. Since none

of these applications were open sourced, which is an important principle of Kerchoff’s

Assumption [206], where the algorithm and operation of software should be assumed

to be known by an adversary. Since these applications did not do so, they did not en-

courage the auditing of their implementations, potentially leading to many millions of

users misplacing their trust in this software. Indeed, obscurity offered no security here,

as these applications were nonetheless breakable.

This highlights the important of open source, peer-reviewed, robust use of strong

cryptography, specifically around the use of well-established algorithms correctly. None

of the applications considered here gave any consideration to the need for authentica-

tion of ciphertexts, nor to the importance of ensuring no information about a plaintext

was revealed in the ciphertext, such as structure or even full plaintext content, for the

solutions only obfuscating file headers.

With all of the encryption apps considered within this work being relatively user

friendly and user-focused, this gives rise to consideration as to the trade-offs between

security and usability. Many of the applications considered here featured password reset

functionality, allowing users to reset their encryption password if they forgot it. This nat-

urally raises questions as to the level of security offered, if it is possible for the password

to be easily reset by the user receiving an email. There does however raise a more gen-

eral question, around whether or not it is ethical or appropriate to advertise software as

being secure, when it is heavily vulnerable to attacks such as those demonstrated here.

Were users to depend on this software for confidentiality, then suffer as a result of their

data being accessed, despite being encrypted, there is a question around whether or not

such descriptions were misleading or inaccurate. Given that the applications consid-

ered here were often not implementing any kind of encryption, their claims are clearly
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questionable at best.

The United States’ FTC issues advice for app developers, encouraging them to con-

sider security at the start of making an application [207], although much of this advice

focuses more on privacy and data protection, rather than on proper implementation of

cryptography. App developers have previously been found guilty of misleading prac-

tices, although these have typically focused on non-transparent fees to use applications,

such as by sending premium rate SMS messages without making users aware [208].

It does appear to remain an open question, however, as to whether or not there

is a legal case for claims of false or misleading advertising against mobile application

developers, especially where an application is made available for free. While legisla-

tion exists to protect consumers from digital content sales [209], the rise in alternative

business models, whereby the user does not pay directly for the application, but the

developer receives money as a result of advertisements shown within the application

to users, raises questions as to whether there is any recourse available for users against

misleading claims made by developers.

5.4 Conclusions

This chapter has presented research carried out into the security of one component of

the Android platform’s defences against attacks on the network connection, as well as

an analysis of a range of widely used Android encryption apps. This highlighted that

the measures in place to protect the security of data being transmitted from an Android

device to Google were inadequate, and demonstrated how this could be used to prevent

the update of certificate pins to devices, thus breaking a key component of the network

security layer. In addition, it was shown that the device setup process permitted the

remote server to exert significant control over the client device, with the user’s Android

device inherently trusting the server with the plaintext of not just the selected password,

but also all text entered into the password field, to permit a server-side strength meter to

be used. A defence-in-depth approach would attempt to minimise the risk of exposing

sensitive information such as this, but it was demonstrated that this is not the case, with

an adversary holding a valid CA certificate for Google’s domain able to do this. This is

a scenario which has been seen in the past on a number of documented occasions. This

highlights the risk of relying upon a mobile device for secure computing and access to

data within a decentralised network, since an application could be run on an Android

device to permit access to a decentralised storage network, but the device would still

be vulnerable to the issues identified here, highlighting the risks of existing centralised

platforms and services upon the endpoint used to access the decentralised services.
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The analysis of a range of Android encryption applications highlighted the impor-

tance of security claims being challenged; widely used Android apps claiming to encrypt

user data were found to either use heavily flawed encryption permitting plaintext recov-

ery, or to not use encryption at all. A home-made monoalphabetic substitution cipher

was found in the second app listed on the Play Store for the search query “encrypt”.

Several of the apps also leaked the user’s selected PIN credential for file “encryption” as

an unsalted hash, permitting easy recovery of the original PIN entered. This highlights

the importance both of well-audited software, and of not relying on the end application

to provide encryption of user data. With many of the applications investigated featur-

ing cloud synchronisation features, there is the potential for malicious service providers,

or third parties able to breach these services and access user data, to retrieve plaintext

data which users believe to be encrypted. This highlights a key risk of decentralised ser-

vices; namely that the implementation of user data encryption must be strong enough

to withstand attacks from all third parties, since user data will be exposed to others. The

applications considered in this chapter did not do this, and user data would have been

at risk.

Having now identified important factors in securing endpoint devices in this chapter,

and ensuring the performance of access to a decentralised storage network in Chapter 4,

Chapter 6 shall focus on the mapping between users and devices; for decentralised

services to be usable, users must be able to interact with other people easily, discovering

their public keys and identities within the network, without relying upon a centralised

authority to do this, as is carried out currently.
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Chapter 6

Preserving Privacy in Centralised and

Decentralised Discovery

6.1 Introduction

As discussed in Section 2.6.4, a common challenge between centralised and decen-

tralised services alike is that of discovery in a privacy-preserving manner. One particu-

lar area where this is highly visible and relevant is that of user discovery. Many modern

social and communications applications encourage users to use their telephone number

to find existing contacts who also use the service. This allows uses to boostrap their ex-

isting social network, and is beneficial to the service provider as it reduces user friction

in beginning to use the application.

The state-of-the-art in this technique, as discussed in Section 2.6.4, is to carry out a

manual intersection of telephone numbers server-side, and return the account identi-

fiers of other service users who are listed in the user’s contacts list. The major downside

of this approach is that it reveals a user’s social graph to the server, and permits tracking

of users across services, since their telephone number is static across all services. This

may be a significant privacy issue for services where users might want to control who

can see that they use a service.

Despite this, there is no clear privacy preserving techniquewhich offers sufficient pro-

tection against the server operator to prevent trivial identification of users’ social graphs.

The state-of-the-art in privacy preserving user discovery is that carried out by Signal

(previously known as TextSecure), where partially-truncated cryptographic hashes are

used to provide some level of ambiguity between users, although this is imperfect, as

highlighted in Section 2.6.4.

This chapter shall contribute an exploration of the techniques available to perform

privacy preserving service user discovery, define the problem, and present a solution
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to the problem which offers security against the service operator identifying users’ so-

cial graphs in an efficient manner on the server, through the use of deliberately slow

cryptographic hashing and the pairing of contacts in a novel manner. The complexity

of an attack is calculated and demonstrated, and a security analysis of the solution is

presented.

6.2 Privacy Preserving Service User Discovery

Despite phone numbers not being a strict secret (like that of a secret encryption key),

since they must be exchanged for calls or SMS messages to be sent and received, past

research has been conducted into means to preserve number privacy. Previous work has

highlighted this, exploring how users can preserve the privacy of their long-term phone

number, while still being contactable, and discuss the use of temporary phone numbers

as a way for users to avoid having to give out their persistent and permanent phone

number to untrusted third parties [210].

Given the potential for breach of privacy which could occur if a list of phone numbers

are service user identities were to be disclosed from a service gather such data [211], it

is therefore of clear benefit to user privacy for a central server to not be able to observe

the phone numbers of users and their contacts while attempting to find other users.

Privacy preserving service user discovery is therefore a related problem to that of

Cristofaro et al.’s Private Contact Discovery [212], and potential solutions may be sought

from the field of private information retrieval. The problem differs from these, how-

ever, since the goal is for a user to determine which of their contacts also uses a service,

rather than to privately carry out an intersection of their contacts with another individ-

uals’ contact list. The problem differs since under private contact discovery, both parties

carrying out the intersection have access to their own contact lists. Under service user

discovery, the server aggregating each user’s contact data representation should not

have access to the underlying contact data. To preserve user privacy, the identifier of

any given user of a service (i.e. their phone number), as well as that of their contacts,

should be inaccessible to both the server and other service users, although the value

retrieved by a user need not be obscured from the server, provided it does not reveal

user phone numbers.

A successful implementation of privacy preserving service user discovery therefore

requires that;

• Phone numbers or other identifiers are not available to those who do not already

know them.

• Mutual contacts should be able to determine they both use the service.
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• It should be impractical for users and server operators to infer information about

another party’s other contacts.

• A user need only know another user’s phone number (or other identifier) to use

the protocol

• The server and its operators should not be able to see user phone numbers or

generate social graphs

6.2.1 Approaching the Problem

Telephone numbers are designed to be relatively short for the purpose of manual en-

try and sharing, and comprise only a limited character-set of Arabic numbers for en-

try on numeric keypads, therefore making them inherently low-entropy. While various

mutual contact negotiation protocols have been proposed, including high performance

ones [213], these requires high entropy (non-enumerable) inputs to be used, which is not

the case for telephone numbers. To illustrate this, if it is assumed that every digit from 0

to 9 is equiprobable at each position within a telephone number (to give a high estimate

of entropy), a ten digit telephone number has a maximum of 33 bits of entropy, based

on a per-symbol entropy of 3.32 bits, as shown in Equation 6.1, as derived from [214].

H(x) = −
n∑

i=1

p(xi)logbp(xi) = −log2
1

10
= 3.32bits/symbol (6.1)

Entropy therefore cannot be created and introduced to a telephone number, without

rendering it unusable for contact discovery, since the other party would not be aware

of the extra data added to the number. However, it is possible to double the effective

entropy of a telephone number, by storing paired telephone number records, combining

the identifiers of the two contacts, rather than storing individual telephone numbers.

If user discovery is considered as a process carried out between discrete pairings of

mutually connected users, it is possible to remove any reliance upon individual phone

numbers (which are relatively low entropy). This fits with a clear potential use-case,

whereby two people aremutually connected (that is, both have the other in their contacts

list). Both parties could therefore derive the same contact pairing.

Each user of the service would generate a list of potential pairings, based upon a

combination of their phone number, and that contact’s number. This process is entirely

deterministic, and repeatable by the other party (who is in possession of the same two

phone numbers). To avoid ambiguity, it is necessary to ensure that the pairing will always

be formed in the same order.

148



6.2.1.1 Privacy Considerations

Despite the use of hashing of phone numbers, this still permits a service operator to

carry out generation of a social graph. Social graphs generated from data gathered

frommobile devices have previously been shown to reveal significant information about

users’ social ties, indicating there are naturally privacy considerations here. Potentially

more significantly, however, since a service utilising phone numbers for discovery carries

out the process on each of its users’ address books, it would be possible for the server

operator to build a social graph incorporating individuals who have not chosen to use

the service, simply by identifying which hashed phone numbers are queried by which

users.

In order to provide the WhatsApp Service, WhatsApp will periodically ac-

cess your address book or contact list on your mobile phone to locate the

mobile phone numbers of other WhatsApp users (“in-network” numbers),

or otherwise categorize other mobile phone numbers as “out-network”

numbers, which are stored as one-way irreversibly hashed values. [215]

6.3 Novel Approach to Private Service User Discovery

A novel approach to the problem would be that of the formation of contact pairs. In

this approach, one party forms a contact pair with each of their contacts, based upon

the combination of both parties’ phone numbers in a predictable manner. This con-

tact pair is defined as the concatenation (with deterministic ordering) of the originating

user’s phone number, and that of their contact. Forming these contact pairs doubles the

difficulty of attacking a hashing algorithm. This can be demonstrated by the number of

possible permutations of phone numbers. By considering a situation where there is a set,

x, of all possible phone numbers, from which all numbers are issued, then an attempt

to carry out a brute force attack on a hashed phone number will require, on average,
x
2
attempts to identify an individual number. In contrast, if contact pairs are used, an

attacker can determine 2 phone numbers in x2

2
attempts. This presents a significant

increase in work; for the case of the USA where there are around 2.8 billion possible

phone numbers, it would take an average of 1.4× 109 hash calculations to determine a

number. If contact pairs were used, however, such an exhaustive attack would take an

average of 3.9× 1018 attempts.

The increase in difficulty of carrying out an exhaustive search of a hashspace presents

potentially significant benefit to the privacy of service users, since it is possible to double

the entropy of a phone number through the use of a pairing. As a consequence, this in-

creases the difficulty of carrying out an attack bymany orders ofmagnitude. Indeed, and
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intuitively from the calculations presented above, the more potential phone numbers,

the exponentially greater the difficulty in carrying out a brute force attack. To further

increase the security against a brute force attack, a memory-intensive hashing function,

such as scrypt, may be used to slow down and increase the cost of attacks [216].

Since the scrypt function requires a salt input, the salt input should be selected as

the cryptographic hash of the concatenation of a service-specific identifier, to prevent a

service-independent rainbow table being created by an adversary. The two telephone

numbers then form the input to the hash, which is the contact pair, separated by a

delimeter. By placing the service salt (a component known to any adversary) at the

beginning of the hash, this is thus protected against hash length extension attacks against

the service-specific salt. This is important to prevent two services, one whose salt was the

prefix of another’s, re-using their pre-image calculations by carrying out a hash length

extension attack [217].

Once a client has computed a series of contact pairs, it may query the server for the

scrypt outputs of these, and identify if such an output has previously been lodged with

the server. If this is the case, this would indicate that the other contact in the pair uses

the service, and has published that they wish to be visible to the user in question.

6.4 Background on Memory Hard Hashes

The scrypt hash function is a memory-hard, deterministic, key derivation algorithm,

designed to be resistant against brute-force attacks from dedicated hardware, as well as

general purpose computers [216]. It features tunable difficulty parameters, allowing the

required memory and processing power to be adjusted to meet the needs of the imple-

mentation. In this section, it is demonstrated that scrypt is a memory-hard hash, which

is suitably difficult to parallelise, and that its parameters offer a wide degree of tuning,

allowing RAM and CPU requirements to be tailored. This is significant in ensuring that

the solution remains practical for mobile phones to implement, yet remains difficult to

attack using large-scale computing resources.

The scrypt function takes three parameters related to performance; which shall be

referred to asN , r and p, to maintain consistent notation with previous literature [216].

N is the CPU/RAM cost parameter, r is a memory multiplication factor, and p is a

parallelisation factor. Increasing any of these parameters results in a slower calculation

of the resulting output hash, with a linear increase in processing time, as each parameter

is increased.Of note is that the cost parameter,N , gives an exponential rise in processing

time, since the scrypt algorithm calculates the cost factor as 2N .

This scalability of performance makes an scrypt-like algorithm ideal for tunable per-
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formance, to ensure parameters offer sufficient resistance to attack, while offering ac-

ceptable performance on mobile phones.

6.4.1 Performance on Mobile Phones

Since the proposed contact discovery protocol places significant computational load

onto the client device (and indeed this provides the basis of the security of the pro-

posal), achieving suitable performance on mobile devices is critical to the viability of

this solution. For the purpose of consistency, all tests were repeated 20 times, and the

average of these runs is presented. Additionally, each Android device was tested while

plugged into a computer, with the screen enabled throughout the test, to ensure that

performance was not limited by the CPU governor reducing the processor’s clock speed

in sleep.

These results were carried out using a native C implementation of the scrypt algo-

rithm, invoked using JNI (Java Native Interface) from a standard Android application,

and are thus achievable by an application implementing this protocol. For these mea-

surements, only a single core was used for the scrypt process. No other applications were

running on the device at time of running the test, and the devices were all disconnected

from their respective wireless or mobile networks (to prevent incoming push messages

from triggering the handling of incoming messages).

For each of the three scrypt parameters, the value was varied across a range of

values, commensurate with the bounds given in previous work, as shown in Equa-

tions 6.2 and 6.3 [218]. This was to allow for the identification of suitable parame-

ters offering sufficiently high performance on mobile devices, yet offering resistance to

large-scale attacks from an attacker.

1 < 2N < 2128×
r
8 (6.2)

0 < p ≤ 232 − 1× 32

128× r
(6.3)

By rearranging Equation 6.3, Equation 6.4 can be derived, which constrains both

p and r parameters of the scrypt function. This is as expected from the definition of

scrypt, where a unit increase in any parameter results in a unit increase in the number
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Table 6.1
Android device performance and chipset comparison

Device Chipset Release Secs/Unit Work
Motorola Defy TI OMAP 3610 10/2010 4.20× 10−6

Samsung Galaxy S2 Exynos 4212 04/2011 4.85× 10−6

Samsung Nexus 10 Exynos 5250 11/2012 1.83× 10−6

Samsung Galaxy Note 2 Exynos 4412 11/2012 2.56× 10−6

Sony Xperia T Qualcomm MSM8260A 09/2012 2.58× 10−6

Sony Xperia Z Qualcomm APQ8064 02/2013 2.67× 10−6

Sony Xperia Z Ultra Qualcomm MSM8974 06/2013 1.75× 10−6

Asus Nexus 7 (2013) Qualcomm APQ8064 07/2013 2.68× 10−6

Oppo N1 Qualcomm APQ8064 10/2013 2.51× 10−6

Sony Xperia Z2 Qualcomm MSM8974AB 04/2014 2.00× 10−6

Oppo Find 7 Qualcomm MSM8974AC 05/2014 1.60× 10−6

of loop cycles executed.

0 < p× r < 230 (6.4)

By altering one scrypt parameter at a time, while holding the other two constant, it

was determined that each parameter had a linear effect on the execution duration of

the scrypt function. As such, by monitoring the execution duration of 72 different scrypt

tasks (each repeated 20 times for accuracy), for all values in the ranges of 210 ≤ 2N ≤
213, 10 ≤ R ≤ 15, 1 ≤ P ≤ 3. Since the performance of the algorithm was previously

found to be linear in relation to each parameter, a work factor was also introduced, and

calculated for each problem, as shown in Equation 6.5 wherew refers to the work factor

for a given set of parameters.

w = 2N ×R× P (6.5)

Table 6.1 shows the calculated performance per unit work factor, calculated for a

variety of Android devices released between 2010 and 2014. This selection was made

to include devices including different chipsets, of varying ages.

Combining these measured performance parameters with Equation 6.5, is possible

to predict the time taken for a givenmobile device to carry out a given scrypt calculation,

and to thus establish the necessary parameters of the scrypt function, based on the

desired time taken on a particular model of mobile phone.
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6.4.2 Parallelisation of scrypt

The scrypt algorithm, being memory-intensive and inherently difficult to parallelise, is

designed specifically to be difficult to scale in a cost-effective manner, including through

the use of GPUs [219]. Similarly, the scrypt algorithm is designed to resist attacks by

custom hardware, through the costs involved in the creation of such a device [216].

In order to demonstrate this is true, and establish the viability of a larger-scale attack,

the performance and throughput of the scrypt algorithm was tested against a set of

parameters, N = 217, R = 5, P = 1, which equates to an scrypt work factor, per the

earlier definition in Equation 6.5 of 655360.

An example attack was implemented using various numbers of threads, on a dual-

CPU Intel Xeon E5-2620 server, with 2.0 GHz clock speed. For the purpose of this

experiment, the number of threads used to calculate 120 scrypt hashes was varied. The

number 120 was selected, since it has factors of many common integer numbers of cores

(allowing each CPU thread to attack its own integer number of hashes), therefore offer-

ing a generous estimate of attack performance. Since the CPUs in use supported Intel’s

hyperthreading technology, and thus presented 24 virtual CPU cores, rather than the

12 physical CPU cores, this made it possible to verify if an scrypt attack’s performance

would be improved.

Figure 6.1 shows that for up to 12 threads, the total computing time (as a sum of all

tasks executed) was approximately constant - this indicated that the scrypt algorithm

could be effectively parallelised for physical cores. Above 12 threads, however, the total

execution time increased linearly, indicating that hyperthreaded cores were not offering

any performance advantage. This linear increase in execution time continued, with 120

parallel threads requiring 9×more combined processing time than was required for up

to 12 threads. This indicates that the scrypt algorithm requires (and was bounded in

performance by) physical CPU cores, rather than hyperthreaded virtual cores.

Figure 6.1 also indicates that RAM usage increased linearly with the number of

parallel threads executed. Therefore, even on a system with a large number of CPUs,

attack performance will be constrained byRAMbandwidth and available quantity. This

confirms the assertions made by Percival, as to the difficulty and cost of carrying out a

large-scale attack against scrypt [216].

Having determined above that parallel CPU-based attacks against scrypt scale lin-

early, up to the number of physical CPUs available, the performance of a single CPU

core from the server was determined, by carrying out the same benchmarking process

as carried out on the mobile phones (per Section 6.4.1). A single Xeon E5-2620 CPU

core required 6.73×10−7 seconds per unit of scrypt work (per Equation 6.5), which was

2.3× faster than that of the current-generation mobile phone tested, the Oppo Find 7,
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Figure 6.1
Time of execution of parallel scrypt tasks, and RAM usage, simulating an attack

with an MSM8974AC CPU.

6.5 Implementation Description and Performance

To demonstrate the practicality of this proposal in an actual implementation, a client

application was created for the Android operating system. This section explores design

considerations of the solution, the techniques to be implemented on the client, and the

overall performance of the solution, as implemented, as well as the process used to select

the scrypt parameters.

6.5.1 Client Application

The client application was an Android application, written in Java, invoking scrypt via a

JNI (Java Native Interface) library. This implementation allowed for development of the

Android application and user interface with the standard Java-based API, while gaining

the performance benefits of a natively-compiled C library for the intensive scrypt oper-

ations. This also allowed for the reference implementation of scrypt to be used, rather

than a new implementation being created. The Java application was tested against the

scrypt test vectors, to verify its operation was correct [216].

This client application carried out service user discovery using the following process:

• Identify the user’s phone number from their handset

• Access the user’s contacts, and obtain a list of phone numbers
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• For each phone number:

– Compute the result of scrypt(number1 + ”, ”+ number2)

– Store this output as the request key

– Take the cryptographic hash of this request key

– Query the server for the value held under this hash

– If a value is returned, decrypt it with the output of scrypt (as described be-

low)

– Continue to next phone number

For each phone number in the contacts list, a pair is created, by combining the two

telephone numbers together. For a user withn contacts, there will therefore ben pairings

calculated by the client application. For the purpose of efficiency, the results of scrypt

on each pairing can be cached locally on the handset, meaning the scrypt calculation

need only be carried out once on the mobile device.

Upon querying the server, if no existing record was found, the client then creates such

a record. To ensure that the process of querying records is repeatable (such that either

party will make the same request), it is necessary to deterministically select the order

in which both contacts are combined. By placing the lower (numerically) telephone

number first, after removal of any non-numerical symbols such as the “+” international

prefix, both clients will always generate and seek the same order of pairing of phone

numbers.

The process of hashing the output of the scrypt function is used, to allow the client to

decrypt a message uploaded by the party making the contact pair record, without the

server ever being made aware of the raw output of the scrypt function. This message

should not be presumed secure against all attacks (any party knowing both telephone

numbers may retrieve it), but it allows for two parties to exchange a service-based iden-

tifier such as a username, without the server becoming aware of either party’s identifier

on the service. This process is entirely optional, and no value need be stored on the

service if this is not desired; it is merely possible to be carried out if desired.

For the server to decrypt this record, it would require knowledge of the output of the

scrypt function for the same inputs as used to encrypt the record, meaning that it would

be necessary for the server to know the phone numbers of both parties. Determining

these would, from the perspective of the server, effectively require the server to carry

out a full pre-image attack across all potential phone numbers, therefore resulting in

considerable resources being required. This scenario is considered in more detail in

Section 6.6.
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6.5.2 Server Application

The server-side implementation is designed to be similar to that of the Signal server

implementation, in that a simple API can be provided for client queries. As this proposal

for the user-discovery portion of a service can be built around key-value storage, the

Redis key-value pair storage backend was used for performance. During development,

the API was also tested with the Postgres database. Users present the server with a

request for information regarding a given contact pair (where this request is the result

of the computationally intensive scrypt process), and receive either an error to signify

such a pair not existing, or a response containing the value associated with that pairing

(a non-error return). With only two new API functions required, this server application

is easily implemented on top of an existing communications system.

6.5.3 Parameter Selection

In order to preserve user privacy against attackers with significant computing resources,

it is necessary to balance the scrypt parameters, such that exhaustive attacks are infea-

sible, yet users can generate their own contact pairs in a reasonable time. Client devices

should only need to generate a contact pair once, as it can be stored locally for fu-

ture queries against the network, thus reducing computing power used after the initial

preparation. Having determined in Section 6.4.2 that the scrypt function on the tested

server CPU was around only 2.3× faster than the fastest mobile phone available today,

the desired performance on a current-generation mobile phone can be balanced with

that of the attacker.

To determine suitable example scrypt parameters, a scenario should be considered,

with a user of a US or UK-based mobile user, using a mobile handset at the end of its

typical lifespan of 2 years [220], to identify worst-case performance for a typical user.

In this case, the 2-year old Sony Xperia Z is considered as the reference handset. It

required 2.67× 10−6 seconds per unit of scrypt work), as determined in Section 6.4.1.

In order to ensure that the process is suitably responsive, it should be ensured that the

process of contact discovery for one contact takes less than a second, such that the user

can see clear activity taking place. For a user with 150 contacts, which is Dunbar’s num-

ber, the maximum number of stable social connections a person may maintain [221],

the process should therefore take less than 150 seconds to complete (in the background).

As demonstrated previously, performance of scrypt is scalable by physical cores, so this

could be achieved by parallelising the process of contact discovery. For the purpose of

ensuring a responsive user experience on other applications on the phone, only 1 CPU

core will be considered usable be used for contact pair generation.
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Based on this limit of 1 second per contact, as a worst-case scenario for a 2-year old

handset, it is possible for an scrypt work factor of 3.74×105 to be used, per Table 6.1 in

Section 6.4.1. To determine suitable parameters, Equation 6.5 is used, solving for the

highest possible value of N , while keeping P = 1 (to maximise memory usage), adjust-

ing R as necessary to obtain the closest possible solution. Therefore, suitable parame-

ters for the scrypt function, under these constraints, would be N = 217, R = 3, P = 1,

yielding a work factor of 3.93× 105.

Based on these parameters and the modelled performance of both the server and

mobile phones, it was predicted that that each scrypt hash should take 1.05 seconds to

calculate on the phone, and 0.26 seconds on a server CPU core. This was confirmed

experimentally to be accurate, and matched with the predictions made from the work

factor calculations detailed in Section 6.4.1.

6.6 Potential Attacks

In this section, potential means through which an adversary may attack this system

are considered. The performance of this proposed solution under these scenarios is

considered.

In a user-targeted attack, a user (of known phone number) is singled out by an adver-

sary, and as much information as possible about this user is sought from the network. In

an untargeted attack, an adversary wishes to gain as much information as possible about

as many users as possible, such as their telephone numbers or social relationships. In or-

der to evaluate the security of this solution, and the extent to which it provides security,

the requirements of a privacy preserving solution must be considered, per Section 6.2.

The principal goal of this solution is to prevent a party from evaluating the full range

of possible telephone numbers, thus identifying which users are present on the service

and their social graphs, which is possible to be carried out on current state-of-the-art

implementations, as discussed in Section 2.6.4.

In a social graph discovery attack, the attacker is assumed to wish to evaluate and

explore the social graph of a user, for the purpose of identifying their contacts, and the

contacts of those contacts. Such an attack can be continued for a number of iterations,

in order to find users located more distantly through the social graph. An active and

effective attack can also use the information gained through exploring the social graph

to speed up attacks within future branches of the graph.

These analyses presume that the service provider is actively colluding with an ad-

versary, such that attacks are not constrained by network latency or server-side rate

limiting. As such, a real-world attack against a non-colluding service would take signif-
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icantly longer, without direct access to make unlimited queries to the service database.

Within this solution, the server has access to the full database of user key-value pair

records. The key of each record is the cryptographic hash of the output of the scrypt

algorithm for a given pair of telephone numbers. The value of this data is an encrypted

representation of the uploading user’s service identifier, encrypted by the direct output

of the scrypt function. Since the server does not receive the raw output of the scrypt

function (only its hash), then without a suitable pre-image attack against the crypto-

graphic hash, the server cannot decrypt the value without knowing the original input

to the contact pair, and carrying out the scrypt operation itself to derive the key.

6.6.1 Untargeted Attacks

In an untargeted attack, it is necessary for an adversary to generate a set of telephone

numbers, within which they wish to carry out their attack. As the size of this set in-

creases, the computation necessary to carry out the attack increases quadratically, due

to the pairing of contacts (thus doubling the entropy of each record), as explored in

Section 6.3. Since this attack is based around the goal of identifying user telephone

numbers, it should be assumed that the adversary does not have access to a list of valid

telephone numbers. If an adversary were to have access to a list of valid telephone

numbers, this attack would be unnecessary, since the adversary already has such a list,

and would simply be wasting computing resources. While it would be possible to use

such a list to carry out mappings of a user’s social relationships, this would be a series

of targeted attacks, since the adversary has already acquired a target user’s telephone

number. These are considered in Section 6.6.2.

To identify all possible service users with US-based telephone numbers (a set of 2.8

billion, based on around 10 million possible numbers in around 280 area codes), it

would be necessary to generate (2.8 × 109)2 = 7.8 × 1018 total contact pairs. Each

would then need to be evaluated through the scrypt function. Since every service uses

a different service identifier within the scrypt salt, this process must be carried out for

every service an adversary wishes to probe. Per the parameters selected in Section 6.5.3,

it was established that the scrypt process recommended by this solution would take

approximately 1 second on a 1-year old mobile phone, and around 0.26 seconds on

one core of our server.

If an adversary wished to evaluate the entire set of contact pairings in under y years, it

would be necessary for them to run N parallel attack instances, where N is established

from Equation 6.6, P is the number of contact pairs to be evaluated, s is the work-

performance rate of the CPU (6.73× 10−7 seconds per unit scrypt work for the server

considered in this work), w is the number of units work required per hash (3.93× 105),
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and 3.154× 107 is a constant, the number of seconds in a year.

N =
P × w × s

y × 3.154× 107
(6.6)

In this case, to carry out an attack in under 5 years, 1.31× 1010 (13.1 billion) of our

server CPU cores would be necessary, in order to evaluate all permutations of the 2.8

billion possible telephone numbers. Note that it is not possible to short-cut this process,

while still evaluating all telephone numbers, as an adversary cannot establish if a contact

pair reveals duplicates of already-discovered telephone numbers, unless they exhaus-

tively search the full range of contact pairs. One would assume there are considerably

easier and more cost-efficient means of identifying lists of user telephone numbers, and

that this level of computational power is not viable to use to establish social graphs of

users. Since these calculations are based on evaluating only telephone numbers within

the United States, the introduction of more potential phone numbers will exponentially

increase the number of pairings to evaluate.

With a thermal design power (TDP) of 95 watts per CPU ¹, with 6 hardware cores,

13.1 billion CPU cores would require on the order of magnitude of 2 × 1011 watts of

power. This would result in energy consumption over the 5 years of 9 × 1015 Watt-

hours. By way of comparison, the UK’s annual electricity consumption for 2014 was

3.09× 1014 Watt-hours.

Since this attack duration is based on parameters selected to offer reasonable perfor-

mance on a 2-year old mobile phone (per Section 6.5.3), it would be possible to increase

these parameters to account for future advances in CPU technology, depending upon

the desired level of security.

While it is not possible to accurately determine the number of possible telephone

numbers in the entire world, since this would require an understanding of the (often

not publicly undocumented) numbering scheme of every individual country, if it was

assumed that a country had, as a conservative estimate, 8 unique digits per telephone

number (noting that UK and US numbers contain more, with 10 such digits), there

would be 1× 109 possible telephone numbers per country to evaluate. With 196 coun-

tries, this would lead to a total of 1.96 × 1012 possible telephone numbers, and thus

3.84 × 1024 contact pairs. To evaluate these, per the agreed scrypt parameters, again

within 5 years, would require the dedicated use of 6.44× 1015 server CPU cores, based

on the CPU used for this work. As discussed in Section 6.4.2, this attack is not eco-

nomically scalable through the use of dedicated hardware or GPUs, on account of the

¹http://ark.intel.com/products/64594
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memory-hard nature of the scrypt algorithm.

6.6.2 Targeted Attacks

In a targeted attack, the phone number of the target user must be known. Therefore, an

adversary may wish to identify the contacts of this user, through either an exhaustive,

or targeted, search. When one half of the contact pair is known (in this case, the target

user), the difficulty of carrying out a targeted attack is reduced to that of evaluating the

potential contact telephone numbers (rather than all permutations of contact pairs).

One specific attack which can be carried out under our solution is a contact confir-

mation attack, whereby an adversary is able to confirm if two given users are in contact

with each other. For this to be viable, it is necessary for the adversary to know the phone

numbers of both users. The solution proposed here would allow the third party to con-

firm that at least one of the two users has registered with the service in question, and that

they have the other user in question added as a contact. The adversary cannot prove

reciprocity of contact, or that contact has taken place. Similar information can already

be gathered by the server operator of state-of-the-art services, and indeed access to an

individual’s contact list would reveal this information. Indeed, it is also not possible to

determine at this point which contact of the pair is a user of the service — both parties

would upload the same contact pair record, therefore it is not possible at this stage to

determine which of the two contacts uses the service.

It is worth noting, however, that this attack is not scalable, and requires the adversary

to have specifically identified two individuals to verify a relationship between, having

already established their telephone numbers. For such an attack to be viable, an adver-

sary must isolate a single user’s potential contacts to a relatively small number (much

smaller than the full range of telephone numbers). Otherwise, this attack becomes a

generic targeted attack aimed at discovering an individual’s contacts. Having been able

to establish this subset of potential contacts themselves, however, the adversary would

likely be simply confirming what they already knew - they would have had to already

establish the presence of relationships between users to make this attack meaningful.

It is worth noting that while discovery of an individual targeted user’s contacts re-

mains computationally feasible, it remains (in absolute terms) relatively computationally

intensive. As such, the attack is not scalable to significant numbers of users, and tends

towards a regular targeted attack at that point. Even then, an individual of interest is

already making available their telephone number to their legitimate contacts, and social

engineering of these contacts would likely yield more rapid (and cost effective) results.

The difficulty of evaluating an individual user’s contacts on the service may be calcu-

lated through the process described in Section 6.6.1 — in the case of a targeted attack,
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seeking only USA phone numbers, (2.8× 109) scrypt operations would need to be car-

ried out to evaluate all possible contacts of the user in question. Using Equation 6.6,

with the parameters selected in Section 6.5.3 (P = 2.8 × 109, s = 6.73 × 10−7,

w = 3.93× 105), 23 Xeon E5-2620 CPU cores would need to be dedicated to evaluat-

ing one user’s contacts with phone numbers in the USA, to complete the process within

in a single year. To evaluate contacts worldwide, based upon the numbers calculated

in Section 6.6.1, 16,430 Xeon E5-2620 CPU cores would be required to evaluate one

user’s contacts list in a single year.

While these figures do indicate it would be practical to carry out such an attack

against an individual’s contacts list, the barrier to carrying this out is significantly in-

creased in this solution — it is not possible for the service operator to collude to provide

the information, as it is not available to them. It is also not possible to form a social graph

from access requests, since records are pairing-based, and access records will therefore

only ever be recorded from one party. Similarly, this attack requires a linear increase in

computing resources to scale; carrying it out against another individual will require the

same level of computing power as the first would require. Finally, it is also possible that

an adversary would simply be put off from carrying out an attack of this scale — there

could be better returns available from using the hardware to mine Bitcoins, rather than

attempting to find out the phone numbers of an individual’s contacts.

6.6.3 Social Graph Discovery Attack

In a social graph discovery attack, the objective of the adversary is to attempt to explore

a user’s social graph. If there is a target user with a known telephone number, they

can be used at the centre of the attack. Such an attack will first seek to identify this

user’s contacts, which is effectively a targeted attack. This would require (for a USA-

only scenario as discussed above) 2.8 × 109 operations to be carried out. This would

identify the user’s first-order (directly known) contacts. From this point, a more rapid

attack can be carried out to intersect each of the user’s known contacts with each other;

if it is assumed that the target user had 150 contacts (per Dunbar’s number discussed

previously), this would result in a further 22,350 operations to be carried out (each

contact being checked against each other).

As was established in Section 6.6.2, the untargeted component of this attack would

require 23 of the reference CPU cores to evaluate one user’s contacts against all possible

US telephone numbers within a year. Under this attack mode, it would also highlight

any links between mutual contacts of the target. To continue to further propagate the

attack to second order contacts or beyond, it would be necessary to carry out 150 ×
2.8× 109 look-up operations; one for each of the contacts of the first user. This would,
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on average, yield 150 contacts for each of those contacts. At this point, there would likely

be some duplicate contacts, but in a worst-case scenario of no interconnection between

second order contacts, the links between second order contacts could be established

with (1502 × (1502 − 1) = 5.1 × 108 further operations (150 contacts for each of the

original target’s contacts, each checked against each other).

This attack therefore presents an opportunity to explore the social graph of an in-

dividual. While it initially begins as a targeted attack around an individual’s contacts,

these can then be used to carry out more targeted attacks, if information about the

connections between such users is desired. To explore beyond the first order of a user’s

contacts, however, will require more targeted attacks to be carried out, and each of

these requires 23 core-years of the reference server CPU to carry out. Therefore, while

the attack is initially feasible to ascertain the first-order social graph of a contact, going

beyond this to exhaustively search the “contacts of contacts” requires a targeted attack

to be carried out for each user. At this point, the second order graph could be evalu-

ated in 4.3 core-years of work on the reference CPU, testing each “contact of a contact”

against each other, to establish connections.

If particularly well-connected nodes are identified amongst the social graph, these

could become the subjects of their own targeted attack, to exhaustively discover all of

their own contacts, and potentially reduce the need to carry out more exhaustive tar-

geted attacks, albeit with the trade-off of not necessarily identifying every user in the

social graph.

6.6.4 False Friendship Attacks

As discussed in previous work, when considering contact discovery protocols, it is nat-

urally desirable for service users to be able to prevent unwanted invites from causing

annoyance or irritation [212]. In this implementation of privacy preserving service user

discovery, this is addressed by requiring that all contacts are reciprocated. Since a ser-

vice user will only attempt discovery of contacts they know, it would be possible for a

user to publish a contact pair for a large number of users. In reality, server-side rate lim-

iting, and the computational work necessary to produce each contact pair would most

likely discourage this behaviour from most users. Even if this were to happen, only a

user attempting to locate the first user would ever find out about this request, as without

knowing the requesting telephone number they will never discover the contact request.

As such, this solution does not allow for a user to receive unsolicited contact requests.

Since user will only discover contact pairing requests from users whose telephone num-

ber they know, there is no direct harm from the generation and publication of false

contact pairings. Indeed, these may also provide an element of plausible deniability, or
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at least distraction for an adversary. The introduction of decoy contacts is discussed in

Section 6.8.

6.7 Comparison and Evaluation

In order to evaluate the performance and security of this solution, compared to the state-

of-the-art, we compare an implementation of this privacy preserving user discovery

system to version 0.31 of the open-source TextSecure server ². The privacy risks posed

by the state-of-the-art are compared to the threats identified discussed in Section 6.6,

and the overall performance and ease of implementation is compared.

6.7.1 Comparison with TextSecure Server

The TextSecure service operates around a semi-trusted server security model, where

the content of messages between users is encrypted, but the user discovery protocol is

visible to the service operator. While operating a local TextSecure server instance, it

was possible to easily obtain a list of the telephone numbers of all service users, by run-

ning a single SQL query on the database, namely SELECT number from accounts;. It
should be noted that this was not due to the contact discovery process; rather it was due

to the inherent need for a TextSecure server to validate user phone numbers. Nonethe-

less, hashes of contacts were also made available to the server, and could be retrieved as

the server operator. In the event of the contact discovery server being compromised by

an adversary (or an untrustworthy entity operating it), all user telephone numbers may

be exposed.

A social graph of links between service users could also be formed by the operator

of a TextSecure server, or indeed anyone gaining access to it, on account of its contact

discovery process. The HTTP request from client to server supplies a set of contact

tokens to query for existence on the service, each being the unpadded base-64 repre-

sentation of a truncated SHA1 hash of the contact’s telephone number, as discussed in

Section 2.6.4. Since the SHA1 hashing algorithm is highly vulnerable to a brute-force

attack across the full phone number space, and the service operator already has full

access to the list of all telephone numbers on the service, it would therefore be rela-

tively straightforward for the server operator to create a mapping between telephone

numbers and the corresponding contact token received. Indeed, this is how the contact

discovery process functions internally, since the TextSecure server maps the incoming

contact tokens to existing accounts (which are identified by their telephone number).

The TextSecure contact discovery solution therefore reveals to the service operator

²https://github.com/WhisperSystems/TextSecure-Server
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both the identity of every user, and their full social graph of contacts. It is also possible

for the service operator to identify if a given telephone number is a user of the service

(per the list of all users available in the database). It must be noted however, that this

conclusion is based solely upon technical analysis of technical possibility — there is

no reason to suggest the operators of such a service would carry this out; rather this

highlights what a malicious service provider or party gaining access to the servers could

do, or could be compelled to do.

6.7.2 Contribution Overview

In contrast, the contribution of a privacy preserving user discovery solution offers pro-

tection against this kind of data collection by a service operator. Indeed, the above

limitations of the TextSecure server implementation are the equivalent of untargeted

attacks (since it is viable to carry them out against every service user). In contrast, as

justified in Section 6.6.1, it is impractical for a service operator to identify the telephone

numbers of all service users. Under the solution described in this chapter, it is also con-

siderably more difficult for a service operator to identify if a given user makes use of the

service, since this forms a targeted attack, as per Section 6.6.2, as well as the knowledge

of one of their contacts, which requires significant resources, proving costly to use. From

the perspective of an adversary with access to the server, this solution offers users sig-

nificant privacy gains, compared to the state-of-the-art, and significantly increases the

complexity of an attack, as justified in Sections 6.6.1 and 6.6.2.

The state-of-the-art protocol is designed to allow any user to determine if any other

person makes use of the service, simply by searching for their phone number. With this

solution, a third party cannot easily determine if an arbitrary telephone number makes

use of the service, unless they know the phone number of a user which is a mutual

contact of the target. In this case, it is possible to confirm that either of the two parties

uses the service, and that one of the two parties has declared a relationship with that

telephone number.

Indeed, while this may initially appear to pose a risk to users, in that a knowledgeable

attacker could potentially establish information about their social pairings, surprisingly

little information can be ascertained from the publication of a contact pair — since

either party may publish it, it can only be determined that:

• One of the two parties uses the service

• One of the two parties has published a contact pairing record for the other

The identity of the party publishing the contact pairing cannot be determined by an

adversary in these circumstances, even having identified the phone numbers forming
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the pairing, since the ordering is deterministic (as described in Section 6.5.1). Likewise,

while it is possible to tell that one party published such a contact pairing record, the link

may not be mutual, or this party may have published a decoy record, as discussed in

Section 6.8. The processing necessary to carry out this attack also increases linearly with

the number of potential contacts to attempt to match against. Therefore, while it is pos-

sible for an adversary to make suppositions as to contact relationships between entities,

they would require a small list of potential telephone numbers to identify links between,

indicating they likely already were only able to establish information they already had.

In any case, existing social networks already offer significant quantities of publicly avail-

able information as to contacts, and therefore reduce the risk of being able to identify

potential contact pairings. Indeed, Farahbakhsh et al. [222] found that a user friend list

was the most common information for users to make available publicly on Facebook,

with 63% of users allowing public access to their friends list). While it is possible for a

determined adversary to evaluate all potential contacts for an individual user, this at-

tack is highly time consuming, and requires as many scrypt operations as contacts as

the adversary wished to attempt. These may well also yield a number of false hits, if the

user made use of decoy records, per Section 6.8.

The solution presented here also inherently features protection against unwanted

communications using the service, since it requires that users have mutually elected to

communicate with each other, for discovery to occur. While this naturally provides a

small reduction in flexibility of the service, it also ensures mutual consent is established

before users are able to see each other on a service— this is inherently necessary in order

to prevent a third party from determining if a given individual uses a particular service,

but also offers improved privacy, since it would prevent another user from determining

someone uses a given service, unless they choose to make that information available to

them.

6.7.3 Performance Comparison

Despite the increase in client-side computation necessary in order to generate a contact

pairing, the server-side performance of this solution should be comparable to that of

other contact discovery implementations, as there is no increase in computing required

on the server. To verify and prove this, the time required to carry out a server-side

query to find 150 potential existing contacts was carried out against both an offline

TextSecure server instance, and an implementation of this solution. Both TextSecure

and this solution’s implementation used the Redis key-value store for the handling of

contact discovery queries, to ensure the backend technology was not skewing results.

As shown in Figure 6.2, this solution offered comparable server-side performance
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Figure 6.2
Server-Side Performance Comparison with TextSecure

to TextSecure, while tested on a local system. Results shown were averaged over 20

executions of each set of tests. Tests included upto 150 contacts, on account of Dun-

bar’s number [221]. The performance of this proposed solution was slightly faster for

smaller contact lists, and TextSecure was slightly faster for larger contact lists (above

around 110 contacts). Nonetheless, with each query taking around 3 to 6 milliseconds,

the server-side performance offers no perceivable difference in performance — the la-

tencies involved in connecting to a remote system significantly exceed these, especially

over mobile connections [223].

6.8 Attack Mitigations

Since this proposal requires mutual recognition of a relationship for users to find con-

tacts, it is possible for users to dilute the information gained by a highly determined

adversary launching a targeted attack, by generating decoy contact pairs. These contact

pairs would be generated locally by the client device, and uploaded to the discovery ser-

vice, just like any other contact pair. In the event of a user being targeted, the adversary

would discover both the user’s legitimate contacts, as well as the decoy contacts, pro-

vided the decoy contacts were within the range of telephone numbers being evaluated.

Decoy contacts do not pose any risk or significance to other users, since contact pairs

can only be discovered by a party which seeks to find them. As such, client devices can

add decoy contact pairs to the server (albeit at the computational expense of generat-

ing these contact pairs), meaning that a search will uncover both legitimate and false

contacts, making it more difficult to generate a social graph of that user’s contacts.

Since the privacy of user phone numbers is protected in this solution as a result of the

expense of parallelising and rapidly computing scrypt hashes, it is necessary to consider

the privacy protections in place, in light of the inevitable computational advances of

the future, as a result of Moore’s Law. Firstly, while this solution is presented and jus-
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tified using scrypt, it should be possible to upgrade the security parameters of the hash

function used, as well as to alter the function used, in future versions of the protocol.

As such, the server API access URL should be versioned, allowing for deprecation (and

removal of the legacy database from the server following deprecation).

A version upgrade of the protocol would permit upgraded scrypt work parameters

(N , r and p) to be selected, such that the computation required to generate a contact

pair increases. The influence of these parameters was discussed in greater detail in Sec-

tion 6.5.3.

If the server can be trusted to act honestly (which is not assumed in the design of

this solution), clients could also elect to request the removal of their published contact

pairs following a successful pairing being established. This would mitigate the threat to

their privacy, as the contact pairs would no longer be present or accessible to external

adversaries. There are considerations as to potential vandalism, but this would be of the

form of targeted attacks, and it would be straightforward for client implementations to

automatically re-publish any missing contact pairings they have not had reciprocated,

resulting in communication with the other party. This would mitigate the concern of

random vandalism or removal of pairings. Nonetheless, this should not be considered

as an aspect of the protocol’s security, rather as a feature which may be used to hide

the disclosure of contact pairings from other users of the service attempting to carry out

targeted or untargeted attacks.

6.9 Conclusions

A novel approach to the preservation of social graph privacy against a service operator

has been contributed in this chapter. This technique advances the state-of-the-art by

permitting users to identify if any of their existing contacts use a service, without expos-

ing their social graph, or telephone number, to the service provider. The solution is also

design to operate in a decentralised service environment, where there is no centralised

discovery server. A security analysis of the solution is carried out to demonstrate the

complexity of carrying out both targeted and untargeted attacks against the solution,

with techniques proposed to mitigate the risks of brute force targeted evaluations of a

single user’s contacts, through the injection of false positive records, which will present

no adverse effect to the contact identification system. A social graph discovery attack

is also presented, which does reduce the security properties offered, where an attacker

is interested in identifying the contacts around a particular user, and the difficulty of

this attack is equivalent to the difficulty of a regular targeted attack. This attack could

be scaled up by a determined adversary to then repeat the process for well-connected
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nodes within the target’s contacts, and carry out a targeted attack there. This process

may increase the ease with which an adversary may recover an individual’s social graph,

although to achieve full coverage of the social graph, will require recursive targeted at-

tacks to be carried out, raising the computation necessary in such instances.

The contributed approach makes it possible for two parties to identify that they both

use a given service, without disclosing their telephone number, or any trivial derivative

thereof (such as a cryptographic hash of it). By incorporating a service-specific salt,

users cannot be tracked between services, and the use of the slow scrypt key derivation

function across contact pairs prevents trivial evaluation of all possible contacts, since

mutual contact pairs must be established in order to identify a connection between a

pair of users.

Having now ascertained that a decentralised network can be used to facilitate secure

user discovery, while preserving privacy and avoiding the introduction of a centralised

service for this purpose, Chapter 7 will conclude the contribution chapters of this thesis

by investigating how identity and authentication should be handled in a decentralised

network, and how to permit users to protect their identity within a decentralised net-

work, particularly in light of the vulnerabilities of endpoint software as identified in

Chapter 5. The next chapter will therefore explore how a user can hold multiple secure

identities, without requiring a complex process or multiple credentials, and ensuring

that these long-term keys remain secure, even if a user’s system is compromised, given

that these identity keys are all that is needed for a third party to gain access to a user’s

personal data stored on the platform.
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Chapter 7

Identity and Authentication

The concepts of identity and authentication are fundamentally inter-linked. This chap-

ter explores these two concepts, and their importance in a decentralised storage net-

work, including an overview of available authentication and identification technolo-

gies, and their applicability to decentralised storage. It then highlights the contributions

made by this thesis towards secure identity management and user authentication, in the

form of a design and implementation of a secure smartcard-based solution for the man-

agement of an unlimited number user identities in a decentralised network, without any

storage constraints.

The work presented in this chapter has been published in [A15].

7.1 Introduction to Identity and Authentication

Identity, as defined by the Oxford English Dictionary, is “a set of characteristics or a

description that distinguishes a person or thing from others” and “the sameness of a

person or thing at all times or in all circumstances” [224]. This can be condensed

to a requirement for uniqueness and consistency; that every person should have an

individual identity, and each of these should be unique with respect to all others.

In the context of a traditional individual multi-user computer system, the concept of

an account is used to represent identity. Every user account is unique with respect to

others available, as an account must contains at least one distinct field, such as username

or user ID. Within the system in question, an individual user can be identified based

on their username or user ID, in an unambiguous and repeatable fashion. On each

occasion an individual uses the system, they will be recognised as the same user, and be

presented with the same files.
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7.1.1 Relation to Secure Systems

While a user of a system’s identity ensures they are able to gain consistent access to

the system in question, this does not provide any security against other users presenting

themselves as this user; knowledge of a user account’s unique identifier, such as user-

name or user ID, would allow an imposter to present themselves as a user. To prevent

this, authentication is used in combination with an identity, such that a user is required

to authenticate that they are identified as the legitimate person to whom the account

belongs.

This process of authentication is the process of validating that a person presenting

an identity is authorised to use it, by being the holder of it. Traditionally, authentica-

tion takes place through the use of a per-identity secret, whereby an entity may prove

their identity through the knowledge of a secret. In the process of weak authentication,

knowledge of this secret is proven through its disclosure to a verifier, which is typically

the computer system being used. The verifier compares the secret disclosed by the user

to a stored record of a representation of this secret, and can ascertain if the provided

secret is correct.

This process of weak authentication establishes that, under the assumption that the

secret for an identity is not disclosed or revealed to any party other than the owner

of the identity or the verifier, the individual claiming to use the identity is the same

individual as previously, and that they are permitted to use the identity. The assumption

of secrecy of this authentication secret, typically a password, is however not necessarily a

suitable assumption to make. It also fundamentally requires the existence of an external

entity, trusted to handle and validate secrets without revealing them to others. Similarly,

it requires that users take adequate precautions to prevent their authentication secrets

from being obtained by others. Finally, it is seriously limited in that anyone able to obtain

the secret may then complete a separate authentication process to the same identity, and

gain the same level of access as the user.

7.1.2 Strong Authentication of Identity

In order to alleviate these limitations of weak authentication, the concept of strong

authentication is introduced. With strong authentication, there is no requirement for

the transfer (and thus disclosure) of the authentication secret to the verifier; instead,

the user wishing to authenticate their identity does so by proving their knowledge of

the authentication secret, rather than revealing it. By no longer divulging the secret

on each authentication attempt, strong authentication techniques can also offer pro-

tection against various attacks involving the interception of the secret, or the replay of
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past authentication sessions [225]. An example of such strong authentication is the Se-

cure Remote Password (SRP) protocol, which is designed to provide verification that

a user has knowledge of a particular password, without the password being revealed,

or held on the verifying system in a form which could be used to determine the user’s

password [122].

7.1.3 Trust in Authentication

One remaining limitation of strong authentication is the requirement for a trusted veri-

fier.While strong authentication protocols like SRP remove the need for users to disclose

their raw passwords in the process of authenticating their identity, the actual software

carrying out the verification must be trusted not to produce either false positive, or false

negative, statements of validation [122]. In a false positive scenario, the verification

server asserts that a user passed verification for an identity when they did not actually

have knowledge of the password or secret, and in a false negative scenario the verifi-

cation server wrongly asserts that a user failed authentication to their identity. Both of

these scenarios are problematic in the authentication of identities — in the former, an

unauthorised user may be wrongly authenticated to an identity other than their own,

and in the latter, an authorised user may be denied the ability to authenticate to their

own legitimate identity. Similarly, the service provider also needs to securely store user

credentials, or the representations of those, such as hashes, used to verify credentials.

7.1.4 Federation of Authentication

Recent advances in authentication technology have often focused on federated, dele-

gated authentication, where a user may authenticate to an identity within a given ser-

vice by identifying and authenticating themselves to an external, unrelated third party

service. Examples of this kind of identification and authentication federation include

OAuth2 and OpenID. In these scenarios, a user wishing to identify and authenticate

themselves is asked to select the external service they will authenticate with. The user is

then redirected to that service to carry out its login process. If it succeeds, the external

service will return a cryptographically signed statement affirming that the user has au-

thenticated, and thus verified their identity correctly. This signed response is verified by

the first service, and if valid, is regarded as a valid assertion that the user has correctly

authenticated.
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7.1.5 Limitations of Delegated Authentication

Schemes such as OAuth2 allow services to separate themselves from the handling of

user authentication, and for the establishment of third party identity and authentica-

tion providers. A user therefore no longer needs to trust the original service provider

to authenticate their knowledge of a password and other secret properly, and to store

that password securely or in a manner which cannot be compromised by others. One

fundamental limitation of such schemes, however, is that while offloading the process of

authentication to a third party identity and authentication provider, the need for trust is

also similarly offloaded. Under a federated, delegated authentication system, users must

fully trust their identity and authentication provider to only ever issue valid assertions,

and to never be tricked into issuing a false assertion.

In terms of dependency upon third parties, use of federated and delegated authen-

tication therefore introduces an element of intentional centralisation around the login

process. Since third party services are not required to store verification information for

user authentication, one advantage of this is that security breaches do not threaten to

compromise user credentials, as there are no passwords or equivalent verification mate-

rials stored or available. A disadvantage of this approach, however, is that the service’s

user identity and authentication becomes entirely under the influence of the third party

providers, and it is no longer possible for the service in question to ensure authentication

requests are legitimate, other than by trusting the third party authentication provider.

In the event of a malicious entity compromising or coercing the third party authen-

tication provider, or one of its privileged employees with access to the source code or

backend database, it would be possible for the authentication provider to make a legiti-

mately signed false statement of authentication to a given identity. This would allow an

unauthorised user to gain access to an identity they cannot legitimately authenticate to.

7.2 Enforcing Authentication

One of the challenges of authentication, as described so far in Section 7.1, is that it is

fundamentally built upon a premise of an attestation. If a typical web-based application

which requires authentication to a user account is considered, the result of authentica-

tion is a boolean confirmation of whether or not a given session is permitted to make

use of the service under a given identity. Fundamentally though, as this attestation is

simply the boolean output of whether or not the action is permitted, the authentica-

tion process can be bypassed by the service operator, or someone with access to their

servers, to allow a user to access a given account. This is based on the same premise as

the weakness on delegated authentication, as described in Section 7.1.5.
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This bypass of authentication could be a result either of malicious actions, or of un-

intentional yet non-malicious actions, as seen in the case of Dropbox [8], where, as a

result of an unintentional code change, for a period of around 4 hours it was possible

for any user to log into any user account without knowing its password, and gain full

access to the files stored within that account. Scenarios such as this highlight the impor-

tance of the link between identity and authentication — without adequate and proper

authentication taking place, the identity, from the perspective of the service, is unable

to be trusted or relied upon. To create a secure system, authentication and identity must

therefore be sufficiently linked, such that a failure of either will prevent use of the service.

Without this, it is possible (as shown in the case of Dropbox) for an error or malicious

action to result in the unauthorised use of an identity, putting the confidentiality of user

data at risk.

7.2.1 Mandatory Authentication

Taking into consideration the risk of an error in the authentication process resulting

in the improper handling of user identities within a web application, the concept of

mandatory authentication can be considered, whereby the process of authentication is

embedded into the use of an identity, such that it would be impossible for a service

provider to incorrectly authenticate a user and grant access to data. This would al-

low for a service whereby users need not trust the service provider, or indeed a third

party authentication provider, to carry out authentication correctly, since the use of an

identity would require integral authentication through knowledge of a secret, or other

authentication factor.

An example of this kind of authentication is the “self authentication”, as proposed

by MaidSafe, and detailed in Section 2.5.3. When using self authentication, there is

no separate stage of authentication required prior to the issuance of a request; rather,

the request itself is cryptographically signed by the holder of the identity, such that the

request may be verified by anyone knowing the identity, which is the public key. This

allows for the creation of an effectively stateless service, where no state information

(identity, authentication state) need be held by the service. By removing this requirement

for session state to be held, it is therefore no longer necessary to trust the service in

question to carry out user identification and authentication. Instead, by verifying that

data being sent to a service by a user is signed by the corresponding identity key, it is

no longer necessary for a third party (such as the service provider) to be trusted to carry

out authentication; any third party, trusted or otherwise, may verify the signature on

the data to be sure it originated from the user it claims to belong to.
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7.2.2 Identity-based Cryptography

The process of self-authentication may be considered a form of identity-based cryptog-

raphy [226], whereby some kind of public information about a user (effectively part of

their identity) is used as the user’s public key. In conventional identity-based cryptogra-

phy, however, there is a requirement upon a highly trusted third party, which generates

private keys for users based upon their generator secret. In this manner, a user may

verify a message from another user, simply by knowing their identity (such as their em-

ployee number or email address). The obvious limitation of a scheme such as this is the

trust placed in the trusted key generator, which is capable of generating the private key

for any given public key.

The process of self authentication presents an alternative to this approach, by consid-

ering a user’s identity to be their public key (or its cryptographic hash). Unlike identity-

based cryptography though, it remains necessary to verify the key presented by a user

on the first occasion it is used, to ensure that the correct mapping between user and

public key is established, since the public key acts as a form of consistent pseudonym.

There is no requirement for trust in a third party, since each user is able to create their

own identity by simply generating a new private key, and publicising the public key

component of it.

The conflation of identity and public key provides a verifiable form of security — the

process of exchanging identities also serves as an exchange of the user’s public key. This

facilitates secure product designs by default, since by default a user’s identity facilitates

encrypted, authenticated communications using asymmetric cryptography.

7.3 Biometric Authentication

Biometric authentication has been one proposed solution to the challenge of authentica-

tion and identification of users. One particular implementation which has gained signif-

icant traction and interest in recent years has been fingerprint authentication, through

the use of an on-device fingerprint reader. This section shall explore practical secu-

rity considerations as to the use of biometric authentication, and show that fingerprint

authentication does not present any viable solutions to the challenge of authentication.

7.3.1 History of Fingerprint Reader Usage

Fingerprint readers are, without doubt, one of the must-have features on almost every

smartphone launched in 2015 or 2016. The Samsung Galaxy range of flagship devices

have featured a fingerprint reader since the Note 4 and S5 [227]. Sony’s latest Z5 range
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include fingerprint readers across the range [228]. Indeed, even newer entrants to the

market such as OnePlus are including a fingerprint reader on their handsets [229].

Smartphone fingerprint readers are used typically to implement biometric authen-

tication. Biometric authentication is a means of authenticating a user based on making

measurements of one or more physical characteristics — in this case their fingerprint.

Fingerprint authentication on personal computing devices is not an entirely recent

concept, having previously been seen on Thinkpads and other enterprise laptops, and

even on some high-end Personal Digital Assistants (PDAs). A more detailed history of

the use of biometrics and fingerprints has been presented by Corcoran [230].

The first widespread, consumer-focused smartphone implementation of a fingerprint

reader was seen on the Motorola Atrix, launched in early 2011, which supported us-

ing the inbuilt fingerprint reader as a means of the user authenticating to their phone’s

lockscreen [231]. Following the introduction of the iPhone 5S in September 2013, fea-

turing a fingerprint reader integrated on the home button, fingerprint readers within

smartphones became much more popular; The HTC One MAX was released in Octo-

ber 2013 with a fingerprint reader, and subsequent products from many manufacturers

followed suit.

With such widespread adoption, it is important to investigate the user factors which

may have resulted in this increase in popularity, as this may offer an insight into what

users feel important on their smartphones, and what they are willing to accept.

7.3.2 User Attitudes and a Need for Convenience

The premise behind fingerprint authentication on mobile devices is typically as a re-

placement for the password or PIN. Good passwords require users to follow a multitude

of rules, ensuring the length, complexity and uniqueness of every password they use.

Remembering unique passwords for an ever-increasing number of services places a sig-

nificant demand upon users, and leads to more easily guessable, or re-used passwords.

Users now carry out 50% of their password entry operations on smartphones, where

special characters are difficult to type, and long passwords are inconvenient [120].

A key attraction of biometric authentication is that it allows users to move away from

passwords, both for use in authenticating to third parties, and for unlocking their own

physical device. This eliminates the requirement to enter passwords, and avoids the

inconvenience of forgetting passwords.

There is clear indication from previous studies that users are aware of, and willing to

use, biometrics — in their 2005 survey, Clarke and Furnell found that 83% of surveyed

mobile phone users would be willing to use biometric authentication [232]. Indeed, of

those aware of the existence of fingerprint authentication, 99% were happy to use it.
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This is in clear contrast with iris recognition, where only 70% of those who were aware

of it were happy to use it.

In contrast, an earlier survey from 2000 [233], which focused more generally on

authentication, rather than specifically on mobile phone authentication, found 67% of

surveyed users were willing to use fingerprint authentication. While this would indicate

that either user attitudes towards fingerprint authentication have changed with time,

or that users consider mobile authentication a special case, a 2007 study on the uses

of authentication technologies [234] found that only around 40% of users surveyed

agreed biometrics were useful when accessing a computer, in contrast with 66.1% when

considering financial transactions.

It is worth noting that these surveys were carried out prior to the recent widespread

adoption of smartphones. Nonetheless, it is clear that users are willing to use fingerprint

authentication, and that the increased portability of smartphones, combined with the

large quantities of personal data stored within, is potentially a driver for the uptake

of the technology. Harbach et al. showed that the perceived inconvenience of a secure

lockscreen on a smartphone was a factor in around one third of people not enabling one,

and with an average of 48 unlocks per day, there is a clear argument for convenience of

unlocking frequently used devices like smartphones [235].

7.3.3 Biometrics in Authenticaton and Identification

Fingerprints, and biometrics in general, present users with a simple alternative to PINs

or passwords, to which they are accustomed. Fingerprint authentication is often viewed

by users more favourably than alternatives, due in part to the user perception that bio-

metrics are the most secure form of authentication [234]. In particular, there is a com-

mon belief that fingerprints are secure in part due to their relative uniqueness, and their

use in criminal justice, which may also add to their positive perception as highlighted

above. This does raise an important distinction though when considering the use of fin-

gerprints — the needs of an identification system are somewhat different to those from

an authentication system.

In a biometric identification system, the goal is to reliably ascertain who an individual

is, based upon a comparison of measurements taken from a sample, which are then

matched against previous measurements. For this to work correctly, each individual in

a population should be uniquely defined, and should be recognisable in future against a

previous measurement. Therefore, there is considerable focus on the uniqueness of the

characteristics. For example, in a criminal investigation, the aim of forensic fingerprint

analysis is to recover the fingerprints of individuals who may have been present at a

crime scene. Biometric identification is then carried out to ascertain if this recovered
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fingerprint matches that recovered from any other crime scenes, or from individuals

known to have previously committed crimes.

In contrast, a biometric authentication system is designed to allow an individual

asserting their identity to prove this assertion, based upon their ability to provide bio-

metric measurements in keeping with previously enrolled values. In the authentication

scenario, a rapid result and a low false-positive rate are desirable. One consideration

is that a strong authentication process, per the definition from the European Central

Bank, is required to be non-reusable and non-replicable, to prevent re-use of a previ-

ously valid authentication session which may have been observed. There is however

an exception made for authentication based on biometric factors, since it is inherently

based on static measurements of a person. The distinction between identification and

authentication is also discussed in [230].

7.3.4 Fundamental Limitations of Biometrics

7.3.4.1 Static and Unchangeable

The most fundamental limitation of fingerprint-based authentication is that our fin-

gerprints are the ones we were born with, and the ones we keep for life. They are, by

virtue of being part of us, unchangeable. This is an advantage in one sense, as a user

cannot ‘forget’ their fingerprints in the same way an infrequently used password can be

forgotten over time. For many users, the convenience of not forgetting passwords is a

significant draw of fingerprint authentication.

7.3.4.2 Irrevocable Identifiers

By virtue of being static in nature, there is no effective means of revocation. If your

fingerprints are compromised by some means, there is no way you can prevent the

compromised copies from being re-used in future. This is a limitation of the process

of fingerprint authentication, since ultimately the verifier is expecting to see the same

fingerprint on each occasion. Breaches of fingerprint data are now no longer a hypothet-

ical situation, given the recent theft of 5.6 million US federal government employees’

fingerprints from the Office of Personnel Management (OPM) [7].

7.3.4.3 Easily Observed and Captured

Fingerprints are also easily captured without the subject being aware, both with and

without physical contact. As highlighted in 2013 following the highly publicised “break-

ing” of Apple’s new Touch ID feature, a latent fingerprint was captured using a high-

resolution photograph of the glass touchscreen of an iPhone. It was then used to create
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a mould that could form an artificial fingerprint, capable of unlocking the phone [236].

While a relatively in-depth process, this highlights one fundamental risk of relying on

fingerprint authentication on smartphones — they are held and touched by the user in

daily operation, and their large glass surfaces act as a magnet for the user’s fingerprints.

Additionally, it was recently shown that fingerprints can also be captured without

physical contact. A series of high resolution photos, including one from a press release,

were used to recreate the fingerprints of the German defence minister [237]. Indeed,

this is not the first occasion in which a German politician’s fingerprints have been pub-

licised; in 2008, an index fingerprint was obtained and reproduced from a water glass

used by the German interior minister during an event at a University, resulting in over

4000 copies being made onto plastic foil capable of being used on various fingerprint

readers [238].

7.3.4.4 Their Pervasive Nature

Another property of fingerprints is that they are static, and cannot easily be ‘turned off’.

As you go about your life, you are leaving a trail of fingerprints around. With the rise

of fingerprint authentication, this could be considered tantamount to leaving a trail of

sticky notes containing your username and password to every account you have, every

time you touch something.

If a password is compromised or known by someone else, it is relatively straightfor-

ward to change it, therefore revoking it, with the biggest inconvenience merely having

to memorise a new password. Since they remain constant at all times, this isn’t possi-

ble with fingerprints. Our inability to effectively control where our fingerprints are left

behind is a significant concern. You can be careful to only type your bank password

in the privacy of your own home, on a system with no keyloggers, with the curtains

closed to prevent onlookers, but if you use a fingerprint to authenticate with your bank

(either directly or indirectly), you cannot avoid leaving those fingerprints around. There

is no concept of security level with fingerprints in the same way that one can use a sin-

gle low-security “throw-away” password for uninteresting accounts which don’t contain

any personal data of value.

7.3.5 Limitations of Fingerprint Sensing

Smartphone fingerprint sensors have been subject to a variety of high-profile attacks,

where fake fingerprints made from a variety of materials designed to have properties

similar to human skin have been accepted as valid fingerprints. Indeed, these techniques

are not outwith the practical reach of private individuals [236].

More fundamentally, a fingerprint sensor within a computer system is typically de-
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signed to convey a measurement of an individual’s raw fingerprint to another compo-

nent of said computer system, responsible for either deriving a cryptographic key, or

unlocking an existing cryptographic key held securely on the device [230]. Therefore,

by identifying the input format expected by the key storage or computation module,

it is possible to present a falsified (or previously-captured) fingerprint reading “on the

wire”, thus bypassing the need to handle the creation of a fake physical fingerprint.

7.3.6 Legislatory Concerns

7.3.6.1 Fingerprinting in Criminal Process

Within most countries in the world, there is a presumption of innocence for those ac-

cused of crimes, until they are convicted at a trial in a court of law. Until that point, they

remain innocent and not having been convicted of any wrongdoing. In many jurisdic-

tions, those who are under arrest, and have not been charged with, or convicted of, an

offence, may be required to give fingerprints, which can be held on a database, for the

purpose of identifying any linked crimes an individual may be responsible for [239].

This process, by its definition, involves the capturing of a record of an individual’s

fingerprints. Since fingerprints are static and irrevocable, this individual’s fingerprints

are now potentially on file indefinitely. If fingerprints are used as a secure means of

authentication, this is equivalent to being required to hand over a full list of all your

past, present, and future passwords, simply as a part of the investigatory process.

While there may be legal procedures through which individuals can appeal to have

their records removed if they were not convicted of an offence, it will never be possible

for that individual to be sure that their fingerprints no longer reside on a database some-

where. The same applies to those travelling to a country which stores fingerprint records

of those entering as a matter of routine, such as the USA under the OBIM program (for-

merly US-VISIT) [240]. Large databases are not impenetrable to unauthorised access

either, as was shown in the OPM breach mentioned above.

Fingerprints may also be handled differently from a legal perspective than something

which is known to a person, such as a password or PIN. In the US state of Virginia, a

judge found that requiring the disclosure of a password or PIN would be in breach of

the 5th Amendment, but that requiring a person suspected of committing a crime to use

their fingerprint to unlock a device was constitutional [241]. It highlights an interesting

situation on some devices, such as the iPhone, where a fingerprint can only be used

within 48 hours of the last successful fingerprint login, after which the PIN must be

used.
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7.3.7 Current Implementation

7.3.7.1 Weaknesses in Smartphone Implementations

Today’s consumer devices featuring fingerprint authentication technology typically

make use of the ARM TrustZone Trusted Execution Environment (TEE), which al-

lows for isolated secure world code to be executed on the regular CPU, separate from

untrusted user code, such as that of a mobile device’s operating system.

Recent research by Zhang et al. has nonetheless highlighted the problem of poor

implementational security of fingerprint readers on many mobile devices. In their pa-

per, a number of security issues with implementations of fingerprint sensors in main-

stream phones were identified [242]. In the most extreme case of the HTC One MAX,

the user’s enrolled fingerprint was stored in a world-readable file. This meant that any

unprivileged application running on the phone could read the file containing a user’s

fingerprint, without the user being aware.

While the established best practice for implementation of fingerprint readers involves

the use of the ARM TrustZone to hold, validate and handle all fingerprint data, Zhang

et al. highlighted that even with this in place, there have been exploits against Trust-

Zone, and the fingerprint reader device is often exposed to the regular, non-TrustZone

operating system of the mobile phone. This allows the fingerprint reader to be accessed

by software running on the phone, provided it is able to elevate its privileges sufficiently

to do so.

In addition, there have been numerous publicly documented exploits of TrustZone

technology [243, 244, 245]. All of these allowed for arbitrary code execution within the

secure environment, and the latter specifically gives a proof of concept to show how the

user’s raw fingerprint can be captured and retrieved from the reader, despite only code

running in the TrustZone being able to read from the fingerprint reader on the device

in question.

7.3.7.2 Implicit Trust in the Reader

Another, more general consideration with today’s implementation of fingerprint au-

thentication is that of trust of the capture device. Since, by definition, fingerprint data is

constant, it is necessary for the reader or capture device to be trustworthy, and not store

or transmit it for use or storage by unauthorised parties. This raises the questions of who

is authorised to receive the data, how the biometric data may be used, and the manner

in which it may be stored and processed. Specifically when a device holds biometric

data (such as a smartphone), a question arises over if the company who manufactures

the smartphone has, or should have, any right (or ability) to access that data. In the case
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of Android devices, for example, there is also the question of whether or not Google

(the developer of the core operating system) has the ability or right to access the data.

A rise in the use of fingerprint authentication on smartphones would also likely fuel a

rise in the use of fingerprint authentication in other areas. For example, Poland has in-

stalled bank ATMs featuring fingerprint authentication since 2010, where a fingerprint

is used in conjunction with a PIN to withdraw cash [246]. Significantly, this requires

users to provide their fingerprints to an unverifiable device operated by a third party.

Fake (or real, with unauthorised modifications) ATMs have been a popular way for

criminals to “skim” cards and obtain PINs via fake keypads and card readers.

If users become comfortable with providing their fingerprint to equipment request-

ing it, without being familiar with it (to identify signs of tampering or illegitimacy), they

may find their fingerprint data is stolen by criminals. While the same is completely true

of bank card numbers and PINs as used presently at ATMs, there is little long-term im-

pact of such details being compromised; the bank freezes the account and reverses the

transactions, and issues a new card to the account holder, who sets a new PIN. In the

case of biometric authentication, it is not possible to change or revoke the biometric.

7.3.7.3 Other Potential Uses

Biometric data is potentially of huge value to advertisers and other businesses, as it

allows for theoretically globally unique identification of users, simply based upon their

use of a product or service. If fingerprint readers become a common feature of consumer

electronic devices such as smartphones, undoubtedly the question over rights to use such

data will emerge and need answered.

Whether it is legal, ethical or acceptable for fingerprint data to be used to pervasively

track a user is a question which should be answered before such technology becomes

widespread, otherwise we may find ourselves in a situation like we face with internet-

based services, where users have relatively limited technical controls and restrictions

over the use and sharing of their personal data, and websites carry out widespread

tracking of user activity and actions across the wider internet.

The ability for an advertiser to tell with certainty that the current visitor to a website,

or user of an application, is the same one as in a previous browsing session, would

be of incredible value — this would persist across devices and browsing sessions. It

would also be effective against attempts to prevent such tracking, such as a user clearing

their cookies. While the suggestion not to provide fingerprints to such websites may

well be the obvious one, ensuring this is enforced with technical (rather than legislatory)

measures is essential. With current fingerprint reader implementations generally “black

box” systems, not open to scrutiny by researchers or experts, this is difficult to achieve.
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7.3.7.4 Lack of Ability to Verify Actions Being Carried Out

In contrast to a PIN or password, where a user is prompted to enter a particular one

for a given service or action, fingerprints remain constant between services. This means

that the contextual information as to the action being carried out following fingerprint

verification is critical. Since the same fingerprint may be used to unlock a device, as well

as authorise a high-value bank transfer, it is important to ensure users have a reliable and

trustworthy way to understand the operation they are approving via their fingerprint.

Entering a PIN requires a user to understand the action they are authorising —

presuming a user follows good practice and doesn’t have the same PIN on all of their

bank cards, they can easily detect that they are carrying out a transaction on the wrong

card due to the PIN being rejected. Likewise, while not fool-proof against malicious at-

tack [247], the screen on an EMV chip-and-PIN payment terminal confirms the value

of a transaction being carried out, or the recipient and value of a transfer. On a smart-

phone featuring fingerprint authentication, simply providing a fingerprint is sufficient to

carry out a variety of operations. These can extend from merely unlocking the device,

to logging into an app or website, to initiating a bank transfer. Indeed, smartphone

apps from major banks now allow for the use of fingerprints to authenticate transac-

tions [248].

7.3.8 Future Considerations

7.3.8.1 Avoiding the Reader Completely

With the rise in smartphone fingerprint sensors, it is interesting to note that, while early

devices with such sensors (such as the Motorola Atrix) featured their sensor on the rear

of the device, where it could be avoided or covered by a case, more recent implementa-

tions (such as the iPhone and Samsung’s Galaxy range of devices) feature the fingerprint

reader on the front, within the device’s physical home button. This presents usability

benefits for consumers, since authentication can be carried out using a button they al-

ready use for other tasks. Additionally, for the purpose of unlocking the device, the same

button which was used to wake the phone can then be immediately used as a fingerprint

reader to verify the user’s fingerprint. On the other hand, this also makes it easier for a

user to unintentionally authenticate a request, simply through over-familiarity with the

process.

Continuing this trend, it is conceivable that in the future, the need for a fingerprint

reader in itself may be eliminated, given a recent patent application by Apple [249], to

include a fingerprint reader within the screen. At that point, and arguably also today,

with the reader a component of one of the major buttons on the phone, the question
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arises over if a user has a choice as to whether they wish to be fingerprinted or not while

using a device. While users can avoid using the reader for the purpose of authentication,

it is much more difficult with the current “black-box” style fingerprint authentication

systems to verify that the fingerprint data isn’t being read or stored. With sensors em-

bedded in screens, it may not be clear to a user when they are authenticating a request,

since the authentication process may no longer be a clear distinct action, thus bypassing

the careful consideration that should be taken before proceeding.

7.3.8.2 Fingerprint Payments

The latest, and potentially one of the most visible, consumer application of fingerprint-

based authentication on smartphones is for the authentication of payments carried out

via a mobile device. By placing their smartphone against a contactless reader, a user

is able to select the card to use for payment, and authenticate the payment by simply

placing their finger against their smartphone’s fingerprint reader.

Early implementations which are seen on today’s consumer devices, such as Apple

Pay, appear to have a number of weaknesses, as exhibited in their own demonstration.

Specifically, there is no authentication of the transaction amount visible — as seen in

their product demonstration, an Apple Pay user simply knows that they are being asked

to approve a transaction with the selected card, but there is no indication of the value

of the transaction being carried out [250].

Taking into consideration the design of smartphone-based payment systems, which

are now deployed and operational in theUSA andUK, there is a risk of early users being

victims of fraud, as a result of innovative fraudsters, given the reliance of these systems

on fingerprint authentication. Even putting aside the limitations of fingerprints being

unchanged and potentially known to third parties, and the ease with which they can be

captured, a fingerprint reader is ultimately used to authenticate to a “trusted” area of

the smartphone, often based on ARM TrustZone technology, as discussed earlier.

If the contents of this TrustZone were to be compromised, the user’s fingerprint

would most likely no longer be necessary in order to authorise transactions on behalf of

a user. The presentation of a permitted fingerprint is used by the semi-isolated Trusted

Execution Environment (TEE) to permit the use of cryptographic keys, which are them-

selves only accessible by the TEE. In the event of the TEE being compromised (as dis-

cussed earlier), these keys may be exfiltrated from the device, or otherwise abused by a

malicious user (such as by forcibly enrolling a new fingerprint).
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7.3.9 Potential Mitigations

Despite many of the potential risks and challenges of the use of fingerprints in secure

authentication, it is clear that consumers feel it is secure enough, and products incorpo-

rating fingerprint readers are now reaching the market in significant quantities. In this

section, some ways in which these risks can potentially be mitigated or reduced are con-

sidered, to allow for a practical solution to the clear user demand for a simpler means

of authentication.

7.3.9.1 Legislation

Firstly, strong legislation is necessary to govern how biometric informationmay be used,

and shared. Where such legislation exists, it often covers only government or official

use of biometric information [251], rather than commercial or third party use of, and

gathering of, biometric information.

When a user voluntarily provides their fingerprints to a piece of consumer electronic

equipment, they are no longer engaging with a legislated entity. Indeed, in many juris-

dictions, the handling of electronic or personal data (which may include biometric data)

is left to self-regulation and loose oversight, rather than legislation [105].

Given the unique way in which biometric information cannot be changed, legislation

governing the technological protection of biometric data is necessary, to ensure that

consumer technology utilising it is designed to reduce the risk of compromise as much

as possible.

7.3.9.2 Transparent Implementations

In order to mitigate many of the risks of current implementations (such as TrustZone

exploits and similar), it would be advisable for implementations of biometric authen-

tication to be designed and documented publicly, with all relevant source code as to

the operation of the authentication mechanism made available for review. With finger-

print authentication set to become near-ubiquitous in the short-term, there would be

considerable benefit in ensuring that the technology is secure, on account of the hesita-

tions people hold about the use of biometric authentication, and the significance with

which end users place on trust and resistance to attack [252]. Ensuring that implemen-

tations are transparent and open to independent scrutiny would facilitate verification

of correct implementation, and the identification of security weaknesses. While it could

be argued that such disclosure would make attacks easier, a lack of source code has

not held researchers back in finding vulnerabilities in TrustZone and other fingerprint

reader implementations, as discussed earlier.
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7.3.9.3 Trusted Software

If a product offers a consistent and predictable user interface for the request of fin-

gerprint authentication, it is important to ensure that this interface is trustworthy. For

example, it is critical that the application or service requesting identifying information

is clearly and correctly identified to the user, to prevent social engineering attacks, or

falsely generated prompts from overriding the system prompt to change the appearance

of the prompt (making it appear a different application is requesting authentication).

At each opportunity, the user should also be clearly presented (using a trusted soft-

ware implementation, which is again open to scrutiny and security testing by indepen-

dent researchers) with a summary of the action being carried out at each point. A sepa-

rate cryptographic key should be used for each application using biometric authentica-

tion, to prevent a rogue application from generating a valid authentication message in

response to its own request, which would be accepted by another service as an attesta-

tion that the user had agreed to an operation. This would be a risk in a scenario where a

service accepted a signed random value as an attestation — another application could

request the same random value, and replay the token, unless a unique key is used for

every application.

7.3.9.4 Avoidance of Over-use

One factor identified here is that the over-use of fingerprint authentication may well

pose a risk. Consumers seek convenience, and the convenience of fingerprint authen-

tication is attractive, compared with the task of typing lengthy passwords on a small

on-screen keyboard. Despite this, repetitive authentications result in people becoming

lazy, as is seen in their use of short or simple passwords for which they are asked for reg-

ularly. If fingerprint authentication is over-used, it seems likely that people may become

overly comfortable with simply approving everything that is requested, rather than val-

idating the precise request. Especially when a fingerprint reader is located on the home

key of a product, the natural reaction will be to approve the action, rather than to scru-

tinise it further and verify that it is indeed the action which should be carried out. By

encouraging users to pause and consider the request, perhaps even enforcing this via a

short on-screen time-out, this would go some way to ensuring that users are aware of

the action they are providing authentication for.

7.3.9.5 Awareness of Risk

It is also important for service and application implementers to be aware of the risks of

fingerprint authentication, particularly around those whose fingerprints may be known
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to, or have been captured by, third parties. While today’s payment solutions allow fin-

gerprint authentication as a means of proof the card-holder is present, this ultimately

relies on the integrity of the TrustZone implementation used to hold these keys. If these

keys were extracted, or a man-made fingerprint was presented to the reader, the proof

that a customer was present to authorise a transaction is less robust. With the ease with

which an unwilling party can be compelled to give their fingerprints, it is also likely that

people may be forced to unlock fingerprint-authenticated equipment against their will,

to authorise transactions or simply for their fingerprints to be captured for future use.

7.3.9.6 Plan for Compromise

Finally, in light of the previous point, it appears necessary to begin to plan for a future

where fingerprint and other biometric authentication is readily subverted by malicious

use of, or threat of, force. While the same is true for today’s passwords and PINs, users

are always capable of selecting and using a new password. Early adopters of biomet-

ric authentication technologies will be at risk of emerging threats, and we should be

prepared for a time where people’s fingerprints are widely known. For this reason, it

is important to consider this risk in future, when deploying biometric technology, and

for companies relying on it to be aware that the presence of a seemingly biometrically-

verified signature does not necessarily indicate the user has agreed or given their con-

sent. This may also have implications on the legal status of biometrically-authenticated

signatures.

7.3.10 Conclusions of Fingerprint Authentication

It is clear from the above that fingerprint authentication, and biometric authentication

in amore general sense, is based upon a premise whereby a user’s biometric information

cannot be spoofed or otherwise retrieved by an unauthorised individual. State-of-the-

art implementations are built around a model whereby the fingerprint reader requires a

trusted path to a secured area of themain CPU, where the verification of biometrics may

take place, and operations carried out if authentication succeeded. Implementations

have, however, been shown to not carry this out correctly, indicating that the assumption

a TrustZone-based implementation offers adequate security is unsafe. Coupled with

the inherent nature of fingerprints (and other useful biometrics) as unchangeable, it

is clear that while useful for identification, they do not offer the necessary properties

for use in secure authentication, since there are already large numbers of people whose

fingerprints or other biometrics have been captured and are being stored, thus negating

any security or privacy for these individuals, were these records to be used in future. For

this reason, biometric authentication should not be used to secure access to long-term
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secrets or keys, due to the demonstrated regularity with which vulnerabilities are found

in implementations, which would prove catastrophic for users relying on this to store

their information securely and privately. A better solution would allow for the revocation

of keys, the ability to have more than one set of keys, perhaps for different types of data

or actions, and would prevent a passive user from unknowingly giving another party

access to their authentication credentials.

7.4 User Credentials and Key Storage

As described previously, usernames and password-based weak authentication remains

the most popular way of carrying out authentication with a service. Recent high-profile

security breaches have highlighted a number of human factors concerning the use of

memorised authentication credentials. While a variety of best-practices exist around

password security, previous studies have highlighted the extent to which users eschew

guidelines and recommendations, simply on account of the impracticality of implement-

ing them. One specific example is the advice to use different password on every service,

so if one website is compromised, no other accounts are compromised — despite this,

many users continue to select the same password for every service, on account of the

difficulty in memorising and using such a number of passwords. Most password-based

logins also retain the disadvantages of generic weak authentication schemes; since the

password is disclosed during login, it can therefore potentially be socially engineered or

otherwise observed, and then re-used.

Existing technologies such as SSL and TLS client authentication certificates can be

used to implement strong authentication, whereby the process of establishing a TLS

connection with a remote server verifies the authenticity of the client’s certificate, based

upon its signature. It is therefore possible for a certificate authority (CA), perhaps run

by the service, to sign user certificates based upon a user’s verified identity, and then

require this certificate to be presented in the future during authentication.

One limitation of this process, however, is that it places a requirement upon a cen-

tralised certificate authority, which could be compromised or compelled to issue a valid

certificate for a given identity to another user. There are also a number of security con-

siderations around the use of client certificates in the browser, such as the ease with

which malicious software (or social engineering) can be used to obtain a user’s private

key files from their filesystem, and exfiltrate them to a malicious party. One potential

mitigation against attacks like this is the use of a separate, more trusted, key storage de-

vice, which interacts with the authentication request and securely holds the user’s keys,

without the ability for them to be disclosed or extracted by third party software. This
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forms the premise of smartcard-based authentication.

7.5 Smartcard Authentication

The term smartcard is typically used to refer to a portable and standalone module,

capable of the storage of, or proccessing of, data separate from a host device which

presents it with a request. Smartcards are seen, amongst other implementations, on

modern banking cards, as a means of securely authenticating transactions, in GSM

mobile phones as a secure storage area for the cryptographic keys used to establish

and assert a given subscriber’s identity to the mobile network, and in loyalty cards and

pre-payment cards for telephone use or utilities.

Smartcards are typically designed to a high specification to resist attacks such as

power analysis and power glitching. The intention is to ensure that when under active

attack, data held within the smartcard cannot be determined by any external attacker,

and that the operation of the smartcard cannot be influenced by the external attacker,

except in manners that were designed (such as legitimate user input). Smartcards are

therefore ideal for the secure usage of cryptographic keys, since they are designed to be

resistant to attacks which may be used to retrieve those keys directly from the memory

on the card. The smartcard can carry out the cryptographic processing requiring the

key, therefore ensuring that strong authentication is enforced — since the smartcard

will not reveal or allow others to access the raw key, a successful authentication on a

well-designed, replay-resistant authentication service therefore proves that the correct

card was present during the authentication attempt. This forms a second factor of au-

thentication (something you have), which can be combined with a PIN or other secret,

that is used as a first factor (something you know). By having the smartcard validate the

PIN, it need not be revealed to any third party, and the smartcard can be protected

against use by unauthorised persons. Therefore, carrying out a single authentication

request can indicate that two factors of authentication were validated correctly, pro-

vided the issued smartcards can be trusted to carry out this validation correctly, and

the smartcard response was correctly validated.

7.5.1 Existing Smartcard Authentication Schemes

A number of existing standards and implementations allow smartcards to be used for

authentication. PKCS#11 offers a standardised interface through which software may

carry out cryptographic operations (such as signing and encrypting), without revealing

the keys held within the smartcard [253]. The Personal Identity Verification (PIV) in-

terface, from NIST SP 800-73, likewise defines a standard for identity verification and
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authentication using keys held on a smartcard, for use in the US military and federal

government.

Previous work has considered the security of the PKCS#11 techniques for the bind-

ing or wrapping of cryptographic keys, and highlighted the complexity of implemen-

tations. Hertl reviewed a number of attacks within PKCS#11 [254], and the design of

the proposed solution mitigates against each of these. The impact of these attacks is

discussed in more detail in Section 7.8.9.

These authentication protocols are fundamentally built upon the principle of using

a smartcard for secure cryptographic operations, without disclosing the keys involved.

One limitation of these implementations, however, is that they are typically designed to

allow for the use of only a single identity on a given smartcard. This is also seen in other

implementations of smartcards for key management or authentication, such as on the

OpenPGP card, where only one set of keys can be held on the smartcard.

7.5.1.1 Multiple Identities

While holding a single identity on a smartcard is advantageous in situations where users

should only have access to a single identity (such as in a workplace handling sensitive

information, or gaining access to secure facilities), in more generic use-cases there are

advantages to user privacy of having multiple independent identities, from the perspec-

tive of third party services being used. For example, a third party service provider may

record the identities of users accessing information on a service. A user may wish to ac-

cess information without disclosing their identity to a service provider, perhaps to read

information about a medical condition, or perhaps simply because they wish to access

it without a permanent record of accessing the content being tied to their identity. In

these scenarios, the ability for a user to create multiple identities may be advantageous

for user privacy, as it allows users to switch between identities as they desire, retaining

the convenience of being logged in and authenticated to a service, without having all

their activity recorded against their original account. Within the context of personal

and business use, implementations such as Android Work introduce separate profiles

on mobile devices, to allow corporate data to be kept entirely separate from personal

data, even though it may be held and accessed on the same device.

This level of isolation is therefore of utility to users, and is desirable to privacy-

concious users, who wish to control what information may be associated with their

identity by third parties. Due to the limitations in storage capacity of smartcards, how-

ever, there is clearly a finite limit as to the number of separate identities which may be

held on a given smartcard. Larger capacity smartcards are also more expensive than

those with lower storage capacities, on account of the increased protected memory be-
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ing required on the card. In comparison with other microcontroller-based systems, it is

notable that storage capacities of smartcards typically are significantly lower than con-

ventional unsecuredmicrocontrollers, on account of the cost and complexity of securing

such memory. By way of example, a 40KB memory dual-interface Javacard smartcard

is available for sale at £5.65 per unit.

7.5.1.2 Identity Size

In order to establish a secure identity, contained on a smartcard, aminimumasymmetric

key size of 2048 bits was selected, on account of the Certificate Authority and Browser

Forum (CAB) requirement that all RSA keys issued after 2011 have aminimummodulus

of 2048 bits. To offer defence against key-misuse attacks, where a user is asked to sign a

given message, where signing is mathematically the same operation as decrypting, such

as in RSA, the precaution of creating two identity keys is beneficial. One key may be

used exclusively for signatures and attestations, and the other key may be used solely for

decryption of incoming messages. This indicates that a user identity contains two 2048

bit keys, in a representation which allows them to be unambiguously distinguished by

software using the identity.

This form of identity identity satisfies the properties of an identity, as described earlier

in this chapter, since the user’s public key remains consistent throughout time, and can

be distinguished from all other users’ public keys, in the absence of two users generating

the same private key. If this were to happen, however, this would indicate insufficient

entropy in the random number generation stage of key generation, and the keys would

likely be broken with relative ease.

Since smartcards typically contain only a few kilobytes of persistent memory (and of-

ten even less transient random-access memory), it is clear that the storage requirement

for an identity, while small, is significant when considering a smartcard of limited stor-

age capacity. For example, some programmable smartcards may ship with as little as 8

kilobytes of persistent memory, which must be shared between the program code, and

the keys held on the card. Using 512 bytes of this for a single identity will quickly make

identities difficult to scale, and require the re-use of identities in order to hold them all

on a single card.

To grant users privacy, however, as discussed earlier in this chapter, it is desirable for

users to be able to present multiple identities, therefore granting them the benefits of a

consistent identity with which to establish a reputation, while allowing the separation

of different activities under separate identities. To achieve this, the ability to hold keys

without being constrained by the capacity of the smartcard is desirable.

190



7.6 Secure Smartcard Identity Storage

In order to remove the constraint of smartcard capacity, thus making it possible for a

single user to access an effectively unlimited number of identities in a practical manner, a

means of securely offloading keys from a smartcard us presented. This implementation

was designed around a robust threat model, designed to address the secure usage of

sensitive data on the smartcard. By way of comparison with the current state-of-the-art,

the OpenPGP card has an open specification, and open implementations available for

Javacards. These cards, however, are only able to hold a single identity, itself comprising

three 2048-bit RSA keys; one for decryption, signing, and authentication. The ability

to securely use a large number of keys is therefore a clear advancement to the state-

of-the-art, allowing a user to carry a single smartcard which provides access to a large

number of identities.

A low-cost, scalable solution to the challenge of key management is contributed

within this section. The solution allows a single smartcard to be used with an effectively-

infinite number of separate identities. These identities (and their corresponding keys) are

entirely orthogonal, and cannot be correlated or linked by a hypothetical omniscient

third party with access to all public keys. This allows a user to protect as many keys

as they desire, without encountering any limitation based on the smartcard’s storage

capabilities. This also means that cheaper (lower storage) smartcards can be purchased,

on account of the constant memory requirement, rather than a linear memory require-

ment as more keys are added. The inherent limitations of storage on smartcards has

previously been the topic of other work [255]. The proposed solution therefore allows

a user to carry a single smartcard, capable of utilising any of an unlimited number of

their secure keys to decrypt or prove their identity, rather than only being able to hold

a limited number of keys. By way of comparison with the state-of-the-art, in the case of

the OpenPGP card, the three RSA-2048 keys it can hold are realistically sufficient for

only a single identity (one key for decryption, one for signing, and one for authentica-

tion) [256].

The proposed solutionmakes use of a regular smartcard, and uses an implementation

of logic within the client application on a PC or other reader to interact with logic within

the applet, and allow for the secure loading and offloading of keys. This is achieved

by holding a pair of symmetric keys (one for encryption, the other for authentication)

within the smartcard, using the regular properties of the smartcard to prevent them from

being extracted or observed. These keys may then be used to decrypt incoming keys

which were previously offloaded from the same smartcard. This removes the constraint

of holding each key on the smartcard, while also ensuring that the offloaded keys are

secured using standard symmetric encryption and ciphertext authentication, to avoid
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an attacker being able to use the offloaded keys in any environment other than on the

smartcard used to generate and offload the key in question.

In addition to asymmetric keys capable of representing a user’s identity through de-

cryption and signing of data, the contributed implementation also allows for the secure

offloading of symmetric AES keys, used either for confidentiality or authentication of

data, where the data is not shared with other individuals, and thus symmetric cryp-

tography is desired. This is designed to offer a means of protection for secrets, without

exposing a single master key to the host computer. Rather, an offloaded key may be

loaded, and used to decrypt a given file. It also increases the feasibility of implementing

previous research based upon storing indentity-based attributes on smartcards, while

reducing the cost of necessary storage on smartcards [257].

7.6.1 Overview of Solution

Within the proposed solution, the smartcard is designed for use in all cryptographic

operations using long-term keys. In the case of the encryption and decryption of large

quantities of data (such as user files), the smartcard will carry out the necessary crypto-

graphic operations to recover a per-file encryption key to be used with a file. For asym-

metrically encrypted data, the smartcard will decrypt an RSA ciphertext, and provide

the host system with the per-message symmetric key. This ensures that a minimum of

data is exposed to the computer at a time. Indeed, it reduces data available to the host

computer to the minimum extent possible while still providing usable access to a system

— in order to read an encrypted email, it is fundamentally necessary for the host device

to have access to the plaintext of this email. By constraining the system’s access to only

the symmetric key needed to decrypt this one email and any associated attachments,

the confidentiality of the remainder of messages is protected, even if the host system is

an untrusted system, such as a public computer.

Likewise, where a user does not wish to share or receive data with others, and simply

wishes to keep it confidential, the same principle is applied, and the smartcard will only

reveal a per-file or message symmetric key to the host device. This ensures, once again,

that a key with the lowest possible scope (covering only the entity being accessed) is

made available to the host system.

While a system such as this would conventionally require large numbers of keys, and

pose a complex key management challenge to users, this solution requires only a single

smartcard, capable of protecting an unlimited number of asymmetric and symmetric

keys, through the use of secure key offload. The offload process allows for the host device

to retrieve an encrypted and authenticated representation of a symmetric or asymmetric

key, without being able to use, or ascertain the identity of the key when offloaded. It may
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Figure 7.1
Architecture of key offload solution. Components in grey are held securely within the smartcard
and cannot be exported or retrieved. The offloaded key may be loaded into the transient key
slot of the smartcard, by loading each of the components of the key shown in the offloaded key.

later be loaded onto the smartcard for use. This solution has been designed with the

assumption that offloaded key data is not held securely by the user, and that it may be

accessed by an adversary or other untrustworthy third party. This assumption reduces

the challenge of key storage to users, since keys may be held on cloud storage, and

backups may be given to friends or colleagues, without exposing the user’s keys. Indeed,

keys may be made available publicly, without revealing any information about the key

or its owner.

Figure 7.1 shows the architecture of keys used in the proposed solution — the smart-

card stores various keys and PINs persistently, which are illustrated in grey within the

smartcard. These PINs are used to validate the user attempting to use the card is per-

mitted to do so. If user authentication is successful, the stored MAC and AES keys can

be used to validate and decrypt offloaded keys respectively. An offloaded key compo-

nent is shown as an example, being loaded into the transient key area of the smartcard.

Each component of the offloaded key is encrypted individually by the card’s AES key,

with a unique random IV, and the overall key component is authenticated using the

card’s MAC key. The MAC of each component covers the full component, including

the IV. The loaded transient key is then used to carry out cryptographic operations. To

preserve the security of the internal card keys, the card’s AES and MAC keys are not

available for any use other than decryption of existing keys.

In order to remove the storage constraint of conventional smartcard solutions, the

contributed approach was designed to securely offload the cryptographic keys from

the smartcard, therefore no longer requiring them to be held within the smartcard. To

ensure they remain secure, the keys themselves are offloaded in an encrpted format,

and may be held on an external storage device. Since the keys are protected, they may

even be stored on the internet, or otherwise distributed to multiple locations (offering

simple access to the keys when required). Within the context of a decentralised storage

network, it would be possible for the offloaded keys to be stored on the decentralised
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network itself, and retrieved by the user when attempting to use the keys.

CBC-MAC has been shown previously to be secure, provided the underlying block

cipher is secure [258], which is currently believed to be the case for the AES block

cipher (originally known as Rijndael [259]), given its selection as a NIST standard,

its continued use in internet standards, along with its recognised resistance to viable

cryptographic attack [260].

The proposed solution allows software on a user’s computer (or mobile device) to

interact directly with the card using APDUs (Application Protocol Data Units), as de-

fined in ISO7816-4 [261]. Figure 7.2 illustrates the format of a typical host-to-smartcard

APDU, and the components which form it. The CLS field is a single byte, indicating the

class of the applet, which is used to identify which applet the incoming command is

intended for. The INS field is a single byte indicating the instruction within the applet

which is being invoked. The next two fields are a single byte each, and are P1 and P2,
which are two parameter fields for the instruction. These are used to pass a parameter

or other extra information to the instruction being executed. The next field is the sin-

gle byte Lc, which is used to indicate the length (in bytes) of the following data section.

Lc may simply be set to zero if no data is required by the instruction. Finally, Le is a

single byte to indicate the maximum response length expected by the host device. If no

response data is expected, this field may be set to zero.

7.6.1.1 Key Lifecycle

Asymmetric identity key generation is carried out on the smartcard, initiated by the host

device requesting the generation of a new key. Key generation will erase any asymmetric

key held on the card, since keys are not stored on the card. Following generation of a key,

it must be securely offloaded from the card, through the export process. The result of

this is an offloaded key, containing the asymmetric key, in encrypted and authenticated

form. For RSA keys, Chinese Remainder Theorem format private keys are used for

offload, and each of the 5 Chinese Remainder Theorem key components (DP1, DQ1, P,
PQ and Q) is exported. To prevent key components being incrrectly loaded (for example,

loading P in place of Q, or replacing PQwith P), which would expose the implementation

to key recovery attacks, only the correct key component may be loaded. The Key ID

field is used to prevent this, as described in Section 7.6.4.

The offloaded form of the private key is provided to the host device, which should

store the key appropriately, in a location where it can be retrieved in future. Since the

offloaded key is encrypted using a key held only within the smartcard, exposure to a

third party will not result in the compromise of this key component.

Following the offload of a private key, the host device may request the corresponding
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Figure 7.2
Generic Host-to-Smartcard APDU

public key component. For RSA, this is provided in the form of the public modulus,

and the RSA exponent. Since keys are not held on the smartcard itself, and must be

offloaded to ensure they are not lost, the smartcard applet was designed to prevent the

retrieval of the public key until such a time as the key has been fully exported. This is

to prevent incorrect use of the smartcard, resulting in a user no longer having access to

their keys.

At an arbitrary point in the future, the host device may load a set of keys onto the

smartcard, in order to allow for the use of an existing key. The offloaded key is transmit-

ted to the smartcard, where it is validated and decrypted. The asymmetric key is then

loaded and available for use on the smartcard.

7.6.2 Basic APDU Message Structure

This solution allows software on a user’s computer (or mobile device) to interact directly

with the card using APDUs (Application Protocol Data Units), as defined in ISO7816-

4 [261]. Figure 7.2 illustrates the format of a typical host-to-smartcard APDU, and the

components which form it. The CLS field is a single byte, indicating the class of the

applet, which is used to identify which applet the incoming command is intended for.

The INS field is a single byte indicating the instruction within the applet which is being

invoked. The next two fields are a single byte each, and are P1 and P2, which are two

parameter fields for the instruction. These are used to pass a parameter or other extra

information to the instruction being executed. The next field is the single byte Lc, which

is used to indicate the length (in bytes) of the following data section. Lcmay simply be set

to zero if no data is required by the instruction. Finally, Le is a single byte to indicate the

maximum response length expected by the host device. If no response data is expected,

this field may be set to zero.

7.6.3 Secure Treatment of Keys

To protect the security of cryptographic keys, and ensure they are never made available

to the host device, a robust set of security measures are put in place. These measures

assume that the host device communicating with the smartcard is untrustworthy, or

otherwise compromised, and therefore do not entrust any secure material to the host
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device. When keys are exported from the smartcard, they are protected through a num-

ber of precautions.

Firstly, a unique 128-bit initialisation vector (IV) is generated, using the smartcard’s

hardware random number generator, for each export operation carried out by the

smartcard. This is to mitigate against the risks of re-use of IVs within the cipher-block-

chaining (CBC) mode of AES. The key is then encrypted symmetrically using AES-256,

with a key that is held on the smartcard. To authenticate the resulting ciphertext and

ensure that an exported key which has been corrupted, modified, or tampered with is

detected, the symmetric CBC-MAC authenticator is used, itself using a different key

from the encryption operation.

Figure 7.3 illustrates the format of the resulting key, when exported from the smart-

card.

Figure 7.3
Encrypted key blob format

The resulting offloaded key may be held on storage which would normally be con-

sidered insecure, or otherwise lacking in the requisite confidentiality for the storage of

cryptographic keys. This presents an advantage for users, since keys can now be safely

held on a system where they could be reached by a third party, without fear of compro-

mise.

7.6.4 Key Component Security

In order to prevent an attacker from carrying out a cut-and-paste attack, which could

result in an attacker being able to swap key components and compromise offloaded keys,

the key ID field is used as an additional security measure. As shown in Figure 7.3, the

key ID field consists of two values; a randomly generated 31-byte value, to prevent key

components from being swapped between different keys, and a 1-byte field containing

the component ID of the key. Each key component has an identifier, corresponding to

the field within the smartcard to which it may be assigned. During a loading attempt,

the least significant byte of the key ID field is checked by the smartcard, to ensure that
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the component is being correctly loaded. This prevents the loading of, for example, a P
component to the PQ field on the card.

7.7 Principles of Security

In order to ensure that good practice was followed, reference was made to Anderson

and Needham’s principles for robustness in public key cryptography [262].

7.7.1 Combination of Encryption and Authentication

In their principles, Anderson and Needham state that signing should always be car-

ried out before encryption, in order to avoid providing proof to passive third parties

of the authenticity of the ciphertext [262]. This is significant, since it is desired within

the proposed solution for minimal information to be available to a third party with ac-

cess to offloaded keys. Specifically, it is desired that no adversary may determine which

smartcard may load a given offloaded key component, to preserve user deniability, as

discussed in Section 7.10.1.

In our implementation, since authentication of the ciphertext is carried out sym-

metrically using a MAC, the signature cannot be verified without access to the card’s

symmetric key, which is held only on the smartcard and not exportable. The MAC

therefore does not reveal any information to an adversary, and cannot be used to con-

firm the validity of a ciphertext without access to the authentication key held on the

smartcard. This solution was implemented using this approach to ensure that offloaded

keys may be verified prior to being decrypted and loaded, in the principle of defence-

in-depth, to ensure that an invalid key is rejected as early as possible. This therefore

reduces the risk of a maliciously generated key being used as a vector of attack against

the smartcard.

Previous work has also considered the significance of verification within key-offload

scenarios. For example, the key conjuring attack discussed by Clulow [253], highlighted

the risks of allowing any arbitrary 8-byte sequence to be decrypted by a bound key stor-

age device as a DES key, since it provided the opportunity to build a large set of keys for

a parallel search to be carried out. This attack is mitigated through the proper enforce-

ment of the MAC, thus authenticating keys being loaded to the unit. Since all offloaded

keys supported by the unit are generated using the hardware random number generator

on the smartcard, the risks they are generated insecurely externally is alleviated. Since

all functionality using the onboard AES keys requires authentication to the card using

the PIN before it may be carried out, it is therefore not possible for an unauthenticated

attacker to generate new offloaded keys, or to attempt a chosen-ciphertext attack, due
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to the validation of keys.

7.7.2 Key Usage Enforcement

Per Anderson & Needham’s principle 2, this solution is designed to enforce the proper

separation of key usage. This is important when keys are exported, since contextual

information which would normally be held within the smartcard, such as the variable

name used to refer to a key, is lost when the key is offloaded. Therefore, when keys are

stored permanently on the card, it is possible for the developer of the applet to ensure

that different keys are used for signing and decryption. When key offload is carried out,

it is necessary to also ensure that the same RSA key cannot be used both for decryption

and signing. If both operations were permitted, an adversary could request the signa-

ture of a short ciphertext, and would receive the decrypted output, assuming that raw

cipher operations . Since the key is offloaded in 5 components, it is necessary to ensure

that each component is bound by the same usage constraints, to prevent unintentional

or deliberate attempts to sign with a decryption key, and vice versa. The proposed im-

plementation achieves this through the use of a key usage flag, which is contained within

the MAC-authenticated key offload component.

At the point of key generation (which is carried out on the smartcard), a mandatory

key-usage flag must be specified, either for signing or decryption. It is not possible to

leave this field unspecified, nor is it possible to define a key which can be used both for

signing and decryption, since the two are mutually exclusive. When loading an asym-

metric key into the smartcard for use, the key usage flag is set using the bitwise-OR

operation. This ensures that if blobs from different keys are loaded, or mixed, the key

will not function in either mode. The key usage flag is cleared only upon generation of

a new key, which erases the loaded key first, or upon manually erasing the loaded key

to load a new one. Such strict enforcement ensures that it is not possible to carry out

signing or decryption operations

In addition, to ensure that keys cannot have their usage flag modified after creation,

the key usage flag is authenticated using the MAC of the offloaded key component. The

smartcard will reject (and refuse to load) any key components which have a modified

key usage flag.

7.8 Security Threat Model

The contributed solution is designed to allow for as wide a threat model as possible,

in order to make it practical for use in a wide variety of situations. A defence-in-depth

approach has been taken, where as many steps are taken as possible to ensure that
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confidential data is not revealed. It was assumed, and taken into consideration from the

outset, that a user would store their key blobs in an insecure location, such as on cloud

storage, or on a filesystem to which potentially untrusted software may have access, such

as a standard computer or mobile device. Key blobs are therefore tamper-evident, on

account of the embedded MAC for content authentication. In the event that a key blob

is modified, the smartcard will immediately cease attempting to load it when the MAC

verification fails. This also avoids the smartcard processing untrusted input, in case a

weakness in the loading of key parameters was to be identified in a smartcard.

A potential compromise is considered as being a situation where any of the following

occurs:

• the smartcard’s internal AES key or CBC-MAC key is obtained or otherwise

extracted from within the smartcard

• the smartcard’s internal AES key or CBC-MAC key is altered, corrupted or oth-

erwise changed

• the IV selected for encrypting an outgoing key blob is able to be chosen by an

attacker

• unencrypted Chinese Remainder Theorem private key components of any RSA

key handled by the device are able to be obtained from the smartcard

• an unauthenticated user is able to carry out a sign or decrypt operation using an

RSA key handled by the device

• the key usage flag can be ignored or bypassed, allowing an RSA key to be used

for both signing and decryption, or be exported with an incorrect key usage flag

set

• a corrupted or otherwise modified key blob (including usage flag) is able to be

loaded

• any internal state data is disclosed to the user unintentionally

• an external attacker may gather side information as to a user’s identity, based on

an encrypted key blob, other than the key usage flag value

• an external attacker may determine that a given smartcard has the ability to de-

crypt a given key blob
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In contrast, the conventional security assumptions of a smartcard are that keys should

be securely held within protected memory. Keys should only be accessible when used in

an authorised manner, which may require authentication through a PIN or similar. The

key on a smartcard would ordinarily be designed to be generated within the smartcard,

and not exportable, thus guaranteeing that the secret key material does not leave the

smartcard. Physical chip security design features are used to attempt to prevent access

to the memory containing keys, and to provide properties of tamper resistance [263].

These properties are used within the proposed solution for the protection of the card-

based MAC and AES keys, which are used as the underlying keys to decrypt offloaded

keys. Therefore, if a given smartcard is sufficiently protected to prevent keys from being

extracted by an adversary under conventional use-cases, our proposed solution will offer

equivalent security to keys offloaded from the same card, since decrypting those keys

requires the use of the AES key held only within the card.

7.8.1 Preventing Key Theft

In order to prevent the extraction of keys, appropriate JavaCard constructs, as per the

API, are used for the storage of keys. The internal encryption key is held as a 256-bit

AESKey object, and the internal MAC key is held as a 128-bit AESKey. Likewise, 2048-

bit RSA keys are held (temporarily) within an KeyPair object, with appropriate private

and public containers used for access to the components of the key.

The only time the AES encryption and MAC keys are written to is during the first

initialisation of the card. During this point, their values are temporarily held in a byte

array, whose content is erased on every applet selection and deselection, as well as prior

to every future use, and which is defined as transient memory within the JavaCard API.

After this point, and within regular APDU selection code, there is no write operation

ever carried out on either key. No APDUs allow access to any key object or (in the case

of RSA) unencrypted component. Additionally, at no point is any sensitive key material

ever placed in the APDU output buffer, even temporarily. By doing this, the risk of

fault injection attacks is reduced, where a subsequent instruction could be skipped, thus

returning the (non-final) contents of the buffer.

7.8.2 IV Selection

Proper selection of initialisation vectors for AES is ensured, by directly requesting ran-

dom data from the hardware random number generator of the smartcard at the point

of use. This data is then used directly as the IV for the encryption operation. After each

operation involving IV data, it is cleared, in order to prevent extraction of this data in
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future. Additionally, no encrypted data is ever returned without randomly generating

an IV directly before carrying out the encryption operation. Following any other use of

the IV array, such as when loading keys, its value is erased. Likewise, the array itself is

transient, to ensure its state is not held between separate applet usage sessions. It is not

possible to load an IV from the host device prior to an encryption operation, and after

generating the random IV.

7.8.3 Protection of RSA Components

While it is necessary for encrypted key blobs to be exported from the smartcard, mea-

sures are taken to prevent the unencrypted key components from being retrieved.

Firstly, at no point is any unprotected key data placed into the outgoing APDU buffer

(as discussed in Section 7.8.1). Additionally, all temporary buffers used in the process of

exporting the key are cleared, both at the end of the operation. They are also cleared

at the start of all other operations, and are defined as transient so their values are not

held between separate selections of the applet.

7.8.4 Preventing Sign or Decrypt Operations

In order to prevent an unauthorised user from decrypting data or generating signatures,

the JavaCard OwnerPIN construct is used to protect the card and its state. Prior to car-

rying out signing or decryption operations, the verification status of the PIN is checked.

This status is held within a transient variable, as per the JavaCard API documentation.

Checks are also carried out for the failure first, in order to reduce the risk of a fault

injection attack, which may attempt to skip the conditional jump after the verification

instruction, and proceed with executing the code for a valid PIN being presented. Addi-

tionally, a limited number of PIN verification attempts are permitted, and management

of this restriction (as well as changing the Owner PIN) is only possible after verification

with the existing PIN.

It is recommended that in order to ensure the security of the Owner’s PIN, a smart-

card reader featuring a dedicated PIN pad be used, such that the Owner PIN is not

disclosed to the host device, which is not necessarily trusted. On these smartcard read-

ers, the PIN entry and validation process is carried out without any communication

through the host device.

7.8.5 Enforcing Correct Key Usage

To prevent a signing key from being used to decrypt data, and vice versa (since signing is

effectively the same crytographic operation as decrypting), each key blob is stored with
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an authenticated flag defining its use. This is set at the time of key generation, based

on a user parameter. The key usage flag is implemented as two adjacent bits within

a byte, and they are defined to be mutually exclusive. A request is always rejected if

both bits are encountered as set or unset, or if any value other than the two permitted

values is observed. When key blobs are loaded to the smartcard, it is necessary to first

clear the existing key (which also clears the key usage flag to an invalid state of zero).

Following this, the 5 key blobs should be loaded to the device in any order. As each

key blob is loaded, the usage flag is logical OR’d with the existing key usage flag. If,

upon attempting to use the key, the usage flag is not either of the permitted values

(USAGE_SIGN or USAGE_DECRYPT), an attempt has been made to load different parts of

the same key, and the operation is rejected. Similarly, if the key usage flag is incorrect

for the operation being attempted, the operation will be terminated.

7.8.6 Preventing Corrupt or Modified Keys from Use

To prevent a modified or corrupted key blob from being loaded, each key is verified

using a symmetric CBC-MAC authenticator as it is loaded. This authenticator covers

the key usage flag, the initialisation vector, and the key data itself. If the MAC on a

component fails, the component is not decrypted or loaded, and is instead discarded.

This prevents the use of a modified key, or of a key whose usage flag has been altered to

attempt to carry out the wrong operation (signing on a decryption key, or vice versa).

Additionally, the CBC-MAC is only used for the purpose of validating key blobs,

and there is no interface exposed (or present on the smartcard) for the generation of

the MAC of arbitrary data. This is to prevent a scenario where an attacker was able to

coerce or trick a user into symmetrically (rather than asymmetrically) authenticating an

arbitrary message, which would then form a valid MAC for a modified key blob that

would be accepted by their smartcard.

7.8.7 Preventing Disclosure of Internal State Data

In light of the reduced memory environment on a JavaCard, it is desirable to re-use

temporary memory where possible. While conventionally it would be bad practice to

store confidential data in a buffer or array which also is used for non-confidential data,

steps have been taken to prevent this exposing confidential information. Firstly, at no

point is unencrypted key material ever placed in the outgoing APDU buffer. Secondly,

all buffers are cleared at the end of every instruction, before the result is returned. Ad-

ditionally, all buffers are cleared prior to an instruction being executed, to ensure that,

even if a previous erasure were somehow overcome by fault injection, the buffers should
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still be erased prior to use.

7.8.8 Side Information from Key Blobs

Since, as stated above, users are presumed to store their key blobs on untrusted stor-

age locations, such as cloud-based servers or devices running potentially untrustworthy

software, it is necessary to ensure that a third party (such as the operator of a storage

service) cannot establish any information as to the key contained within a given key

blob. For this reason, key blobs are not stored alongside their public key. If multiple

key blobs are to be stored in one location, they should be stored within a list, simply

numbering each key sequentially, and identifying the component identifier of each of

the 5 components of this key. This ensures that no side information is leaked as to the

corresponding public key of a given private key.

The key blob, as described in Section 7.6.3, reveals a randomly-generated IV, the key

usage flag (itself only indicating if a key is for decryption or signing), the AES-encrypted

key blob, and a CBC-MAC as a symmetric authenticator to prevent tampering. The IV

itself is directly generated from the hardware random number generator on the card,

and the MAC is the output of the AES cipher in Cipher Block Chaining mode, which

was demonstrated to be a pseudo-random function in [258]. The MAC itself simply

covers the data already visible in the key blob, and thus its failure would not pose a risk

of leaking unencrypted key data, since theMAC is carried out using an entirely separate

key from the symmetric encryption.

Similarly, it is not possible to determine if a given smartcard can decrypt a given key

blob, since the smartcard itself does not provide any identifier or means to determine

which unit it is. While this could be a downside for a user with many such cards, the

security model is designed such that this should be unnecessary, and a single smartcard

may be safely used for access to various keys. Since Owner PIN authentication is carried

out prior to even validating a key to be loaded, it is not possible for an unauthenticated

attacker to determine if a given unattended smartcard may decrypt a given key blob.

7.8.9 Resistance to Attacks Identified against PKCS#11

Hertl has previously considered a number of attacks against the PKCS#11 standard,

which contains provisions for the binding of keys to a cryptographic token [254]. The

contributed solution advances the state-of-the-art by ensuring it is not affected by these

attacks. This section shall consider these attacks, to demonstrate that the design of this

solution considers each of these attacks, and takes steps to ensure they are not applicable.

The first attack identified by Hertl was the key separation attack, possible within
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a standards-compatible PKCS#11 implementation. This is mitigated in the proposed

solution by enforcing and constraining the card to have a single key used for offloading

of keys. This key cannot be used for any other cryptographic operation in our solution,

and can only be used upon data already validated by the symmetricMAC authenticator.

The output of this operation is also not exposed to the user, only to the underlying AES

engine on the smartcard, therefore preventing the card’s internal AES key from being

used by the user to encrypt or decrypt arbitrary messages.

The expanded key separation attacks affect PKCS#11 by extending the key separa-

tion attack to not be based around the use of the same key. Once again, the proposed

solution is not affected by this attack, because it is not possible to wrap keys with an

arbitrary key. It is also not possible to use the decrypt operation with a key originating

from any source other than an authenticated ciphertext. Additionally, it is not possible

to use the same key to encrypt a key during offloading, because the offload key cannot

be arbitrarily selected.

Key conjuring attacks, originally introduced by Cortier et al. [264] are not practi-

cal within the proposed solution, because all offloaded keys are authenticated using the

symmetric authenticator key, and this key is never exposed to the user for use in crypto-

graphic operations. No key will be decrypted or accepted if the authentication value is

incorrect, thus preventing attackers from attempting to load crafted keys. In addition,

it is necessary for the user to be authenticated to the smartcard by PIN before keys may

be loaded, ensuring only authenticated attackers may attempt to load keys. The sym-

metric MAC contained within each exported key component prevents arbitrary keys

from being loaded by authenticated attackers.

The key binding attack discusses the risks of permitting an attacker to load split keys

inmultiple operations, presenting a composite form of key whichmay be attacked [265],

using techniques such as meet-in-the-middle. This attack is mitigated within this solu-

tion through the presence of the key identifer tag, generated randomly using the smart-

card’s hardware random number generator, and contained within each offloaded key

component. As discussed in Section 7.6.4, this identifier also protects against the swap-

ping of components of keys, which could permit a cut-and-paste attack to be carried

out..

The weaker algorithm attack, where a key is wrapped using a weaker encryption al-

gorithmwhich is weaker than the underlying wrapped key and algorithm, is not relevant

within this proposed solution, as only AES-256 is used for key offloading. This ensures

that the offloaded key is protected adequately, as no weaker algorithms are permitted

for key offloading.

The downgrade attack, where a key can be wrapped then unwrapped with different
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constraints is not possible within the proposed solution, since metadata surrounding the

permitted uses of keys has been designed to be persistent from the point of generation

onwards. Keys are offloaded in a format incorporating aMAC-authenticated usage flag

field, and this MAC is validated before the key may be loaded, thus ensuring that the

key’s usage is as originally defined at the point of generation, and cannot be modified

after that point.

The private key modification attack is mitigated through the presence of the ran-

domly generated key identifier, as discussed in Section 7.6.4, which contains a 31-byte

randomly-generated persistent component to identify a key uniquely, and a key com-

ponent identifier to prevent the swapping of key components during the loading of a

key.

The trojan wrapped key attack is mitigated within this proposal through the sym-

metric authentication of all offloaded keys. This prevents tampering or generation of

a key outwith the smartcard, since such a key will be rejected and no attempt will be

made to decrypt or load it, unless a valid MAC is present on the key.

7.9 Full Implementation and Validation Against Existing Services

To demonstrate that the authentication system proposed and contributed in this chapter

works as described, and can be used to carry out practical authentication against existing

services, a number of integrations were created with existing services and authentication

protocols. Where possible, widely used and popular systems have been selected, in order

to maximise the potential number of users who may benefit from more secure storage

of authentication secrets for strong authentication processes.

7.9.1 2-Factor Authentication Using HOTP/TOTP

Firstly, the TOTP/HOTP two-factor authentication standards, widely used by internet

services including Google, Github, Dropbox, Lastpass, Facebook and others, were se-

lected. HOTP [266] is an HMAC-based symmetric authenticator function, designed to

produce secure, short numerical outputs which can be easily typed by a user who is log-

ging in to a service. Each invocation of an HOTP token will produce a new login token,

by incrementing a counter, used as an input to the HMAC function. A shared secret

between the user’s authentication device, often a smartphone running an application to

generate codes, and the service provider, allows for entered codes to be validated by the

server. TOTP [119] is a derivative of HOTP, to produce time-based authenticator for

the special case where the HOTP counter’s value is set to a representation of the current

time. Use of HOTP or TOTP ensures that even if a user’s session is compromised, such
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as through a keylogger, merely capturing a user’s password will be insufficient to permit

the attacker to log in as the target user in the future.

With both HOTP and TOTP being widely used [267], the ability to securely gener-

ate such tokens without storing them on a smartphone, where they may be vulnerable

to exfiltration through exploits, presents a clear advantage for the security of a user’s

accounts. Previous work has implemented hardware-backed TOTP authenticators, al-

though this has typically focused on storing a limited number of tokens on the security

device. For the case of the Yubico implementation, two HOTP or TOTP keys may be

held within the device [268], where each additional key requires the use of another

“slot” on the device. This presents a clear trade-off for users wishing to store a large

number of TOTP/HOTP keys on a security device, which could be resolved through

the use of secure key offload.

An implementation of the HMAC-SHA1 algorithm was created, and validated

against the test vectors from RFC2104 [269]. Using this implementation of HMAC-

SHA1, HOTP and TOTP were implemented within a smartcard applet. To avoid

complex and slow modular arithmetic operations being carried out on the smartcard

to convert the resulting binary hash output into a decimal number, by representing the

selected hash output modulo 106, this process was carried out within the client applica-

tion.

To facilitate the use of a large number of HOTP or TOTP services, the secrets are

wrapped to a card-specific key prior to being exported. As described previously, this

offloaded key is constrained in its use, and the resulting output is then signed with the

card’s symmetric authenticator, to prevent tampering with offloaded keys. A function

to import and wrap a new HOTP/TOTP secret is exposed as an APDU command,

allowing new secrets to be enrolled with the card, and the encrypted, smartcard-bound

offload key to be returned.

The outputs of the resulting implementation were successfully validated against

the test vectors from both the HOTP and TOTP RFCs [266, 119], and also against

Google’s online TOTP validation system, by enrolling the provided secret into the

smartcard. Testing was then carried out every 30 seconds for 20 repetitions, over a

period of 10 minutes, since the TOTP code is updated every 30 seconds. Since the out-

put of the TOTP algorithm is that from the SHA1 hash, used in HMAC mode, an error

in the implementation would be highlighted within a small number of repetitions, due

to the avalanche effect on the output of the hash function. These tests indicated that the

implementation was correct, and compatible with other implementations in use.
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7.9.2 Account Key Authentication Against Let’s Encrypt

Let’s Encrypt is a widely-trusted certificate authority, included by default within all

major browsers and operating systems [270]. The Let’s Encrypt model for certificate

issuance is based around the ACME protocol, itself undergoing standardisation and re-

view by IETF [271]. Key to the Let’s Encrypt issuance process is the use of an Account

Key. Rather than rely upon conventional username and password authentication to a

CA web portal, where domain validation can be stored per-account, the ACME pro-

posal allows for fully automated certificate issuance through an API, as implemented

by Let’s Encrypt. To request a certificate, a server must generate an account key (typi-

cally a standard RSA-2048 key), and lodge the public key with Let’s Encrypt during a

registration API call.

Following registration, all requests against the API must be signed by the private key

corresponding to the account, thus allowing the origin of API operations to be validated

against the original owner of the account. One major limitation of this proposal is that,

due to the relatively short lifespans of Let’s Encrypt SSL certificates (90 days), users are

encouraged to use a client which holds the account key on the web server, using this key

to request a new certificate when the old one approaches expiry [272].

In the event of a web server being compromised, however, the storage of the long-

term account key presents a weakness, in that the adversary may use this key to gain

access to existing domain validations which have been carried out in the past. With this

account key potentially holding validations for multiple domains, the ability to hold this

key securely, outwith any internet-connected system, would give clear security benefits,

by preventing compromise of the computer from resulting in the compromise of the

account private key. This is a risk which has been identified within the Let’s Encrypt

community, but with no clear solution to date [273].

Let’s Encrypt uses the RSA_SHA256_PKCS1 PKCS#1.5 signature scheme for account

key operations, which is not commonly available on smartcards. Therefore, an imple-

mentation of this signature algorithm was created, following RFC3447 [274]. In the

absence of formally defined test vectors within the RFC, the implementation was vali-

dated against the widely-used PyCrypto library’s implementation of PKCS#1.5.

Given the lack of widespread support for many algorithms within JavaCard smart-

cards, as discussed by [275], it was necessary to create a full implementation of the

RSA signing construction from the basic RSA decrypt operation, since many smart-

cards did not provide raw signing functionality without padding or hashing, and very

few cards supported SHA256 digests within signatures [275]. Using the documenta-

tion for PKCS#1.5, a function to generate compatible signatures was created from first
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principles. This implementation has been made available ¹. A modified version of the

acme-tiny project [276] was used to ensure that messages could be signed by the smart-

card, without requiring the key to be held on, or accessed by, the user’s computer.

All signing operations are carried out by the smartcard, and the resulting signature is

returned to the PC client, for transmission to the Let’s Encrypt server as part of the

certificate request protocol.

The overall solution was tested against the Let’s Encrypt boulder CA, using the pub-

licly available development and testing API. A variety of requests necessary to validate

a domain and request certificate issuance were tested against the Let’s Encrypt API for

10 different private account keys, with no validation failures occurring.

7.10 Attack Countermeasures

In common with other smartcard-based solutions, this solution is based on the assump-

tion of the security of the smartcard used to hold the cryptographic keys and carry out

the operations. As discussed in [277], a smartcard is designed to be secure hardware,

with tamper-resistance, and a restricted interface to ensure that only acceptable com-

mands may be carried out. The assumption is also made that the user of the smartcard

is the authorised user, through the verification of a PIN or other authentication process.

7.10.1 Mitigations Against Invasive Attacks

A wide variety of physical attacks have been attempted against smartcards, including

simple [278] and differential power analysis [279] and fault attacks [280]. Firstly, to

mitigate against fault attacks, which could be used to skip an instruction from being

executed [281], all conditional checks (such as if statements) are designed to check for

the negative. This means that a check for validity would instead be implemented as a

check for invalidity first. This means that, in the presence of a successful fault injection

attack, the condition may be skipped, and the failure code would be reached, rather

than the success code [282].

In order to make power analysis more difficult, random noise is introduced to the

process, by adding some extra instructions which generate random data, and store it

within temporary arrays. Then, in order to introduce a second order of noise (and thus

variable timing), further random data is generated, the quantity of which is based upon

the previously generated random data. The purpose of this variation is to prevent static

timing analysis taking place (such that an attacker could know validation of the duress

PIN would take longer than a regular PIN). Additionally, as a second precaution, the

¹https://github.com/greigdp/Javacard-ALG_RSA_SHA256_PKCS1
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process of PIN validation has been designed such that, upon successful validation of

either PIN, the same quantity of random data is generated, and an AES key is overwrit-

ten. When the regular PIN is entered, a dummy AES key is overwritten (which is itself

located adjacent to the real key), and when the duress PIN is entered, the regular AES

key is overwritten. This forms an implementation of the hiding technique discussed in

[278, Chapter 7], where it was observed that “only a small number of scientific publi-

cations [focus] on concrete implementations of hiding countermeasures.”

Finally, to add further to the variation of the operation of the PIN validation, the

order in which the PINs are validated varies, depending on some of the second-order

randomly generated data. This was implemented on account of the fact that a key se-

curity concept is to avoid branching based on sensitive data, since differential power

analysis may reveal which branch condition was taken, based on whether a new code

offset had to be calculated or not. By altering the order of verification based on random

data, this again makes it more difficult for an attacker to determine if a duress PIN was

entered.

A regular PIN entry operation will also generate an equivalent volume of random

data from the hardware random number generator, and set the value of a dummy AES

key to this newly-generated random data. Therefore, the difference between a valid

PIN being entered, and a duress PIN being entered, is only the segment of memory to

which the random number generator’s output is written. This ensures that, even with

differential power analysis taking place, it should not be possible to distinguish between

a legitimate PIN being entered, and a duress PIN being entered (thus erasing the user’s

AES key and preventing the smartcard from being used to decrypt their keys in future).

7.10.2 Human Factors Including User Duress

The facility has also been added for a user under duress to force an erasure and re-

generation of the internal AES encryption and authentication keys. This occurs during

a login attempt, in a manner which does not reveal that the duress process has been car-

ried out. The intention is that a user under duress can provide (or enter) a PIN which is

accepted by the smartcard, and which irretrievably replaces the internal keys with new

ones that are unable to decrypt previous key blobs. To prevent an adversary from know-

ing that this feature has been invoked (whichmaymake it difficult for a user to deny they

held the keys they are being forced to reveal), this feature has been designed such that,

even under the observation of a skilled adversary (carrying out power monitoring of the

smartcard), it should remain difficult to observe. This duress PIN will therefore enable

usage of the smartcard, as though the regular PIN had been entered, although it will

refuse to accept offloaded keys, in exactly the samemanner as another smartcard would
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react when presented with keys generated from another unit. This feature is designed

such that, in the absence of a user also being found with their own key components, it

is not possible to determine if a given offloaded key was used by the smartcard, which

would indicate that the user had invoked the duress functionality.

7.10.3 Verification of Duress Functionality

In order to demonstrate that the duress protection is resistant to timing analysis, an

experimental setup was constructed in the best-case scenario for an adversary. In this

scenario, the attacker was assumed to have direct access to the smartcard, and the abil-

ity to send PIN verification messages directly from a smartcard reader. The attacker is

therefore able to measure the exact time between sending the message, and receiving

the response. This was identified as a realistic attack vector, since modified client-side

software on the computer would be able to carry out highly accurate timing, by mea-

suring the response time of the smartcard under different operations.

Given the abovemitigations presented, it is hypothesised that it should not be possible

to discern between a valid PIN entry or a duress PIN entry, by observing the processing

time. The JavaCard OwnerPIN construct was used throughout for PIN validation, and

therefore safe, constant-time comparisons are used for PIN verification.

To validate this, 1000 correct PINs were supplied, along with 1000 duress PINs. Note

that an invalid PIN can be detected by an adversary, since the user will be notified of

an incorrect PIN being used. The scenario requiring deniability is the invocation of the

duress PIN by the user, in order to allow the user to invoke this feature without alerting

or drawing suspicion to their actions.

Figure 7.4 shows the result of comparing the time to process 1000 correct and duress

PINs. Themean time to process an owner PINwas 18.206ms with a standard deviation

of 0.81 ms, and the mean time to process a duress PIN was 18.205 ms, with a standard

deviation of 0.80 ms. There is no clear distinction between the owner PIN and duress

PIN being invoked, indicating that knowledge of a single PIN entry event, which would

be sufficient for the user to erase their keys using the duress key, cannot be distinguished

from timing of the PIN validation process. This was confirmed by correlating the two

distributions, resulting in a correlation coefficient of 0.9989 across 1000 samples.

7.11 PIN Entry Security

To prevent the security of the overall solution from being compromised through the

user being required to enter their PIN on their regular computer keyboard, where it

may be captured by a keylogger or similar, the solution presented features support for
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Figure 7.4
Time taken to validate 1000 valid owner PINs, and 1000 duress PINs.

smartcard readers featuring secure PIN entry capabilities, commonly referred to as PIN

pads. The ScardControl interface ² of the PCSC-Lite driver is used to interact with

PIN readers.

Both a Gemalto IDBridge CT710, and a Cherry Smart Board XX44 were used, in

order to ensure both PIN pads with and without screens would be usable. A driver to

interact with the PCSC-Lite APIs was created in Go, and used to issue PIN verification

requests, as well as to initiate PIN change operations. This allows for all operations

requiring a user’s PIN to be carried out entirely upon the smartcard reader.

The APDUs used to initiate a PIN verification and PIN change are passed to the

reader, alongwith parameters to the FEATURE_VERIFY_PIN_DIRECT or FEATURE_MODIFY_PIN_DIRECT
IOCTLs, as appropriate. These parameters indicate the position within the APDU at

which the user’s PIN should be placed, and how it should be aligned (left or right). By

using ASCII representations of characters, the same PIN may be entered on a device

without a secure PIN pad, simply using the regular numeric keypad. Variable length

PINs are supported, provided they are within the length range allowed by the reader,

since left-aligning the PIN ensures it can be validated correctly by the smartcard.

7.12 Performance and Discussion

The primary means of measuring the performance of this solution is through the pro-

filing of the time taken to carry out various cryptographic operations on the smartcard,

in comparison with the time taken to carry out the same operations on the untrusted

²https://pcsclite.alioth.debian.org/api/group__API.html
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host device. For the purpose of this comparison, the performance of key generation, of-

floading, public key retrieval, message signing, and message decryption are considered.

In order for secure offload of keys to be a practical solution for users, an acceptable

level of performance must be achievable by application software which is accessing the

smartcard. To profile the performance, a series of performance tests were carried out

on the smartcard applet, using an application designed to automate the repeated use

of the smartcard for various operations. The mean time to generate a new RSA key,

retrieve each component of the key, load these components in future, retrieve the public

key, sign a message, and decrypt a message are considered.

All performance measurements were carried out using a physical smartcard, with

the applet built against the JavaCard 2.2.2 API. Applets were compiled using the Or-

acle JavaCard JDK, tbhrough the Eclipse JCIDE plugin. The smartcard used was a

JavaCOS A40, which is a CC EAL5+ verified smartcard, based on the Infineon SLE77

platform.

7.12.1 Key Generation

The process of generating an RSA key is carried out using the smartcard’s integrated

secure random source, and requires the generation of two very large numbers, which

should be prime. This process requires firstly the generation of the large numbers, and

secondly the verification of the likelihood of primality of the numbers selected. For this

reason, the time required to generate a new RSA keypair may vary significantly, de-

pending on the number of attempts needed to generate suitable candidate primes. This

is similar to the process used on a desktop computer, where the time taken was found

to vary from 31ms to 531ms in 20 repetitions, with a mean of 167ms. On the smart-

card, key generation performance is inherently slower, with a mean time of 7.4 seconds

required to generate a key, across 20 repetitions.

While key generation is therefore lower performance on the smartcard than on a

desktop computer, this is an operation likely to be carried out relatively infrequently, at

the point of creating a new identity or registration with a service. That a key was able to

be typically generated in less time than it would take for a user to read a few instructions

on a web page indicates that a mean key generation time of 7 seconds should not prove

problematic for usability.

7.12.2 Public Key Retrieval

Similarly to the process of secure key offload, the process of retrieving the public key

from the smartcard was timed over a series of 20 repetitions for different keys. It should
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be noted that this process only retrieved the modulus, on account of the exponent being

a fixed constant value of 65537, thus not requiring retrieval on each use.

The mean time to retrieve the public key was measured as 40.1ms, with a standard

deviation of 0.067ms, highlighting that retrieving or confirming the key present on the

card at any given time does not require a significant period of time.

7.12.3 Signature Generation

The performance of signature generation on the smartcard was found to vary with the

length of the message being signed, on account of a longer message requiring more

bytes to be transferred to the smartcard over the physical link. On account of the equiv-

alence of signing and decryption in RSA, signatures should always be generated of the

cryptographic hash of a message, as discussed in [262]. This prevents a malicious party

from requesting a signature of an intercepted message they wish to have decrypted. To

mitigate this, as discussed in Section 7.7, this solution enforces separate keys for signing

and encryption. For this reason, it is possible to carry out hashing of the message on

the client computer, since even a compromised host device may not decrypt a message

without user consent by requesting a signature. This also allows the direct signing of

a longer message than 255 bytes to be carried out, without exceeding the capacity of

a single APDU, and without requiring a reader which supports extended APDUs be

used. Note that internally, the JavaCard available APIs specify that the SHA-1 digest

is used on the message. This highlights the importance of smartcards being available

using more recent cryptographic primitives, as highlighted by [275].

Figure 7.5 shows the time required to transmit a message of a given length in bytes

to the smartcard, have a signature generated, and receive the RSA signature of the

message. Signature generation performance was linear with respect to the length of

the message to be signed. A signature of 1 byte of data took 5.5ms, and signature of

128 bytes took 22.0ms. This shows that signing operations, to authenticate requests, or

otherwise prove identity, are able to be carried out in a very short period of time.

7.12.4 Message Decryption

The process of decrypting a message involves the loading of a 256-byte ciphertext into

the smartcard, the decryption of the ciphertext using the loaded private key, and the

returning of the plain-text message. Figure 7.6 shows the performance recorded On ac-

count of the varying length of the plaintext, and thus the quantity of data to be returned

to the host device from the smartcard, the performance of a decrypt operation varied

slightly with the plaintext length.
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Figure 7.5
Signature generation performance for messages of lengths from 1 byte to 255 bytes

This performance indicates that it is practical for a decryption operation to be carried

out by an asymmetric key entirely on the smartcard, to reveal either a short message, or

a symmetric key used for a longer ciphertext, thus preventing the long-term asymmetric

key from bbeing exposed to the host computer during the process.

7.12.5 AES Performance

In addition to tests carried out against the asymmetric identity key functionality, the

performance of the symmetric key protocol was also evaluated. In comparison with

RSA, and as is reasonable to expect, performance of the symmetric AES operations

exceeded that of the asymmetric operations.

Across 2220 cycles of testing, generation of an AES key was found to take a mean

of 20.3ms, with a standard deviation of 0.19ms. Likewise, retrieval of the protected

(signed and encrypted) key took a mean of 28.5ms, with a standard deviation of 0.18ms.

The process of clearing the loaded AES key took 15.1ms, with a standard deviation of

0.12ms. Finally, the process of loading an AES key into the smartcard again for later

use took a mean of 44.1ms, with a standard deviation of 0.27ms.

The process of retrieval and loading of the key took longer, on account of the gener-

ation of the CBC-MAC across the encrypted key for export, and the validation of this

MAC prior to decryption of a key being loaded.

Random plaintexts of various lengths from 1 byte to 220 bytes, which was the maxi-

mum ciphertext able to be output by the smartcard, were then encrypted and decrypted
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Figure 7.6
RSA Decryption generation performance for plaintexts of lengths from 1 byte to 255 bytes
which were encrypted into a ciphertext output of 256 bytes

by the smartcard. Themaximumpermissible plaintext length was 220 bytes, on account

of the overhead of a random initialisation vector, and PKCS#7 block-padding being ap-

plied to the plaintext prior to encryption. The performance of encryption is shown in

Figure 7.7, and the performance of decryption is shown in Figure 7.8.

Of note is the stepping observed in the performance of encryption and decryption,

on account of the AES cipher being block-based, and these steps corresponding to 16-

byte increments in plaintext length.

Figure 7.7
AES encryption performance for messages of lengths from 1 byte to 255 bytes
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Figure 7.8
AES decryption performance for plaintexts of lengths from 1 byte to 255 bytes, which were
encrypted by the card and subsequently decrypted

7.12.6 Identification of Performance Overhead

In order to establish the performance overhead of the proposed solution, compared

with the state-of-the-art; namely to simply store a key on the smartcard and use the

key for all cryptographic operations directly, the 2 areas of the proposal resulting in

overhead are considered specifically. The only 2 changes introduced by the proposal,

over the standard cryptographic operations of the smartcard, were found to be through

the secure offloading of key components, and the re-loading of these components for

later use.

7.12.6.1 Secure Key Offload

The key offload process is used following key generation, to retrieve a secured copy of an

identity key, and hold it elsewhere for later use. There are 5 key components retrieved

from the smartcard, as described in Section 7.6.1.1. To measure the performance of

these operations, a series of keys were automatically generated and each component

was retrieved from the smartcard. This process was repeated 20 times.

The time to retrieve each key component, including the time taken for the smartcard

to encrypt it and create the CBC-MAC symmetric signature, was found to be constant,

with a mean of 37.4ms, and a standard deviation of only 0.4ms. The overall time to

retrieve all components of an identity key was therefore found to be around 186ms,

on average. This is the only overhead at generation-time, introduced through the key

offload mechanism proposed here.
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7.12.6.2 Loading a Previously Offloaded Key

The only other overhead introduced through the proposed key offload technique is

experienced when loading an existing key onto the smartcard. This must take place

before the key may be used for cryptographic operations. The process of loading the

components of a key consists of X steps; firstly, the smartcard is issued a clear key oper-

ation, to ensure the key usage flags are reset, and currently-loaded key components are

erased. Secondly, the necessary key components are sent to the smartcard. Thirdly, the

integrity of each component is verified through the symmetric authenticator. Finally,

the key usage flag is updated for the now-loaded key, and the next key may be loaded.

Once all keys are loaded, the loaded key may be used for cryptographic operations.

The clear of any existing loaded key was found to have minimal overhead, with a

mean of 6.1ms required to clear any loaded keys, with a standard deviation of 0.48ms.

The process of loading the 5 components of an offloaded RSA key was found to take

an average of 187.5ms, across 20 repetitions, with a new key generated, exported, and

then re-loaded to the smartcard. Again, there was minimal variation, with the standard

deviation across a full load of 5 key components found to be 1.3ms.

As a result it is clear that for scenarios where a user is not rapidly switching between

keys, the performance presented by the proposed solution is more than satisfactory. In-

deed, since the overhead is only experienced during a key-load or offload event, which

take place only during set-up of the card for a session, or new key generation respec-

tively, the performance for cryptographic operations is unaffected. This was verified

by comparing performance of the proposed offload-based applet with a standard ap-

plet using fixed keys. This is as expected, since the base cryptographic implementations

of signing and decryption are unmodified, with the offload implementation containing

these as a subset of its functionality.

7.13 Conclusions

In comparison with the state-of-the-art, where non-ephemeral keys are held on regular

computers, a means of securely using cryptographic keys held on a smartcard has been

presented, without the usual constraint on the number of keys capable of being held

on the card. This process of secure key offloading allows for the use of low-cost storage

(in comparison to the high-cost secure storage of a dedicated secure smartcard) to hold

keys, including on storage which is potentially untrustworthy, or operated by a third

party.

By holding cryptographic keys outwith the regular computer, and providing a single-

purpose interface through the smartcard interface for cryptographic operations, it is
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possible to securely carry out operations using these keys, without exposing the keys

to the host device. This allows for secure usage of keys on untrusted devices (such as a

computer in a public place), without the risk of exposure of the long-term cryptographic

keys used to form the user’s identity.

Since the number of keypairs able to be used by the smartcard is not constrained by

the smartcard’s storage capacity, it is entirely practical for a user to generate a separate

identity key for every service they use, or entity they interact with. This enhances their

privacy, as described previously, and helps to protect their keys against compromise.

Given the limited capacity of commercially available smartcards, this is a barrier to their

adoption in user-centric deployments. While closed deployments, where the smartcard

is managed by an employer and used only to authenticate to a series of closed services,

are practical with current smartcards, this work presents a practical implementation of

an open, user-controlled smartcard keystore, where a user may generate their own keys

for identities, and manage these identities themselves, without needing to understand

the specific process. Practical applications have been demonstrated, with Let’s Encrypt

account key authentication being implemented on the smartcard, and an implementa-

tion of smartcard-based TOTP two-factor authentication being created.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Recent years have shown the scale of the challenges facing people wishing to hold their

data secure, and preserve their right to privacy. Companies being entrusted with users’

data have suffered from serious data breaches, through to rogue employees releasing

sensitive data, through to vulnerabilities in software allowing unauthorised access to

private data.

Even in an ideal scenario where all these problems could be resolved, there still re-

main a number of problems — the vast majority of today’s services are designed around

a model that trusts the service provider entirely with a user’s data. There is potential

for companies to spring up, in order to abuse this model of trust to gain access to user

data. For example, many services have appeared, which seek to gather bills and finan-

cial statements, and store them within cloud storage services. All parties involved in this

process could, if malicious or compromised, gain access to all of the data in question.

A stronger, more secure, and more privacy preserving way to design these services

is to use a so-called zero-trust model, where service providers are not considered to be

trusted, or required to be trusted for users to gain access to their data securely, and carry

out their business. This presents major benefits for users’ security and privacy — their

data is confidential, even if the service provider were bought over or acts unethically, and

they have full control over who, if anyone, may access their own personal data. This kind

of effective control empowers users to exercise their right to privacy, and allows them to

select who may have access to what information, and under what circumstances.

While this model helps to address the problem of trusting service providers, which has

been shown to be a concern in this thesis, it does not resolve the challenge of ensuring

availability of services, and ensuring users retain utility, even when a service provider

ceases to wish to offer a service. There have been a number of high-profile cases where
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a service provider has ceased to provide a service, and users have been left with no clear

migration path, or way to use their data. This presents a major risk for users, in that

they may have to invest time or money into identifying a suitable alternative service, and

migrating to it, without any clear reassurance this will not happen again in the future.

A decentralised approach to creation of services has been explored in this thesis,

which aims to resolve these concerns of availability and longevity. By ensuring that utility

and functionality cannot be lost in the event of the failure of the developer or operator of

a service, a resilient infrastructure which will out-last individual services helps to ensure

that users remain in control of their data, rather than having their data under the control

of service operators.

Nonetheless, even in a decentralised services model, there remain important consid-

erations around security, specifically around authentication and identification of users,

and ensuring that only authorised users carry out operations. Additionally, the secu-

rity of the client device used to access services remains a consideration, and the risks of

overly-centralised approaches to the setup process of Android devices has been consid-

ered, with weaknesses identified and demonstrated on these devices, allowing Google,

or other attackers, to violate the Android security model and compromise data held on

devices. The risks of poor implementations of hardware security on low-cost devices is

also significant, especially for users in the developing world, where their devices may be

used by multiple people, and may be the only device used in their family for banking

and other services. Finally, the risks of improper implementation of widely available

and used security and encryption software has demonstrated the risks of using unau-

dited, closed-source software claiming to offer security through the use of encryption.

Major flaws in implementations were found in software used by millions of users, in-

cluding static keys used across all installations of an app, through to AES used in counter

mode with static initialisation parameters, through to trivial obfuscation techniques and

home-grown ciphers. All of these highlighted the risks of using software violating Ker-

ckhoff’s principle by failing to open their implementation to scrutiny.

Even with decentralised services, and a zero-trust model for service provision, there

remains the challenge of how to securely authenticate users, since most current au-

thentication processes rely on the service provider being trustworthy and carrying out

authentication correctly, with the potential for complete account take-overs in the event

of social engineering or weaknesses in implementation being shown. While passwords

remain the current means of authentication for most services, a number of alternatives

exist. The fundamental weaknesses of implementations and the concept of biometric

authentication have been explored through an analysis of fingerprint authentication

implementations, and a number of practical concerns surrounding this indicate that
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biometric authentication does not offer a solution to the problem of secure user au-

thentication.

Combining this with the risks and challenges of a secure client implementation, as

discussed above, an implementation of secure identity and key management on smart-

cards has been devised, and demonstrated, which allows for users to hold an uncon-

strained number of decentralised identity keys securely on a single smartcard. These

keys may be used to encrypt and sign data, without exposing the underlying keys to any

client device, significantly reducing the attack surface exposed towards keying material

and other long term keys.

One concern surrounding decentralised and zero-trust services is that it can be dif-

ficult for users to re-key, particularly in current implementations of such services, in the

event that the user believes their keys may have been accessed or stolen by another

party, or even if they wish to change their authentication password for the network, if

they are not using smartcards or similar for identity management. In such a scenario,

the transferable ownership of data within a decentralised network was introduced in

order to provide a means for a user to re-key their data, and change it to be owned by

a different identity, allowing it to be transferred to a a new network identity if the first

was feared compromised, or if a user simply wanted to separate out different data.

To show that decentralised and zero-trust services are viable, such a solution to the

challenge of secure contact discovery has been demonstrated and evaluated from a se-

curity perspective, to show that it is possible for two mutual contacts to discover each

other amongst service users, without disclosing any details about either party’s identity

to the service operator, and without allowing the service operator to monitor access

patterns to establish relationships between different users. It is shown that this can be

implemented entirely using key-value pairs of data, and that therefore this presents a

viable decentralised solution to the ongoing unsolved problem. This may be used in any

scenario where two users, that each know the other’s identifier such as a phone number

or email address, wish to determine if the other uses a given service or protocol, with-

out revealing the identity of themselves or the other party to the service. This helps to

comply with legal requirements in Europe which require consent of data subjects for

their data to be processed; something which is not currently happening in many state-

of-the-art implementations, where users disclose their contacts to the server (without

their explicit consent) to determine if any of them use the service.

8.1.1 Review of Key Contributions

In exploring the above, a number of contributions have been made to the field, which

address the research questions posed in Chapter 1.
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First, the question of how vulnerable a decentralised storage network is to large num-

bers of malicious users joining the network was addressed in Chapter 3, with a review

of the protocol used to establish how nodes and managers are allocated. This was pub-

lished in [A1]. The algorithm for determining proximity of nodes was analysed, to pro-

duce a prediction as to the difficulty of compromising nodes within the network. This

was demonstrated to be a feasible and practical attack through the generation of a large

number of identities in a highly efficient manner.

The question of how to secure a decentralised network against large numbers

of rogue users was also addressed in Chapter 3, with the contribution of a high-

performance and efficient proof-of-storage protocol.

This was then built upon in Chapter 4 to address the third research question, around

whether secure agreements can be reached amongst untrusting parties in a decen-

tralised network. The secure decentralised digital contracts solution contributed shows

that this can be achieved, in an efficient way, and was published in [A3], within the con-

text of building contracts to allow for the purchase or sale of storage on the network.

Whether smartphones and other mobile devices could feasibly connect and partic-

ipate in a decentralised network was also explored in Chapter 4, since a useful secure

storage network requires convenient access, as well as advanced capabilities such as buy-

ing and selling storage. A hybrid relay-based solution was contributed, showing that it

was feasible for mobile devices to use a relatively-untrusted relay server to act on their

behalf on the network, while avoiding disclosing plaintext contents to the relay server,

protecting their data.

Next, given that users may wish to access their storage from mobile devices, the se-

curity of these was considered, to address the research question posed around whether

users are at risk as a result of such software, and how this could be mitigated. This was

explored in Chapter 5, which contributed a security evaluation of the Google compo-

nents of the Android platform, which has been published in [A4]. Further work on the

security of specific Android hardware devices was published in [A14]. The security of

software implementing encryption on Android was also considered, to address the soft-

ware side of the research question, since pivotal to a decentralised storage network is the

local encryption of user data, to avoid exposing it to third parties. This was published

in [A21].

The question of how to discover other users and content within a decentralised net-

work, without centralised servers for indexing and finding common contacts, was ad-

dressed in Chapter 6. An approach was contributed, which solves this problem in an

efficient manner, scaling in complexity on the client side by the size of a user’s contact

list. The resulting protocol offers measurable protection against attackers attempting to
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ascertain users’ social graphs, and this is quantified.

The final two research questions, around how users can protect and secure their own

data when it is fundamentally exposed to others, and around allowing users to have

multiple secure identities, such as to separate work and personal files, were addressed

together in Chapter 7. Here, an approach to the storage of long-term identity keys on

smartcards was contributed, such that the number of identities is not constrained by the

capacity of the smartcard.

8.2 Future Work

A number of areas of future work have been identified in the course of this thesis. This

section details these, and some considerations which may be of interest to those keen to

further explore the fields of work discussed in previous chapters.

8.2.1 Decentralised Networks

This thesis has primarily focused on a small number of specific security considerations

of the MaidSafe network. Where possible, these have been approached in a manner

which is as generic as possible, while still remaining accurate and useful. There would

be benefit in future work exploring the security of other decentralised networks—much

of the existing literature has focused on distributed hash tables, rather than on secure

implementations of services upon them, and it is likely that there remain weaknesses in

other implementations, perhaps similar to those identified here. Specifically, Chapter 3

showed that the XOR metric in itself does not provide a strong guarantee as to the

difficulty of creating a chosen cluster of conspiring nodes on a network. If other services

or implementations make similar assumptions as to the distribution of members of their

networks, they may be vulnerable to similar attacks to those showed here.

8.2.2 Identity Management

One of the fundamental assumptions made in the identity implementation of the Maid-

Safe network was that user private keys could be derived from a secret credential, such

as a password. Good practice is to ensure that all passwords are regularly changed, al-

though changing a password in such a scenario would prove problematic — since the

password is used as the input to a key derivation function, changing the password will

result in a new key being derived.

During the login process, there is a need to ensure that appropriate key derivation

function parameters are selected. For the example of scrypt, there are 3 parameters to
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select. In the event that these are changed, it will not be possible to derive the same key

as previously, from the same credential being input. This therefore means that there is

a requirement to correctly identify the correct parameters to use, in a secure manner.

If a new user to the network can be “tricked” into using low parameters, this will make

it easier for a malicious entity to attempt to brute-force their credential. Nonetheless,

it is also necessary that an existing user logging in from a new device many gain use

the same parameters as previously. One naive approach would be to store the login

parameters on the decentralised network in plaintext, although this would also be visible

to third parties wishing to attempt to find users with weak key derivation parameters.

Future work could focus on addressing this challenge, and attempt to securely ascertain

the correct parameters to use for an existing user logging in. Solving this would make

it easier to allow a user to select arbitrary parameters at login, perhaps based on the

processing speed of their computer.

Another area of potential interest for future work would be on secure implementa-

tions of newer, more modern cryptographic constructs on smartcards. While this work

focused on the design of a secure system to use smartcard-based keys for multiple iden-

tities at once, which can be disposed of after use, the performance of RSA keys is a

limiting factor, especially on embedded systems. A correct and secure implementation

of asymmetric constructs based around Edwards curves (such as Ed25519) may offer

better performance and security properties for a smartcard. In addition, these use much

shorter public keys, and have safe, well-reviewed high level implementations allowing

for their use in authenticated encryption and deterministic signature generation.

8.2.3 Client Security

In investigating client and endpoint security factors, it is clear that real-world implemen-

tations of encryption software often leave much to be desired. Themost obvious piece of

future work would be to extend an existing automatic application scanner to attempt to

identify use of weak cryptographic constructs. Similar work has been carried out to at-

tempt to find applications which fail to properly validate SSL and TLS certificates, and

identifying applications using poor cryptography (such as block ciphers in ECB mode

or CTR or CBC mode with a non-random IV). Such techniques would however not

be able to identify flawed attempts at encryption which merely act as obfuscation, such

as those shown in Section 5.3. Further work could perhaps look at the creation of safer

cryptography libraries for developers wishing to encrypt data in another application,

without having a clear understanding of the risks of naive implementation of encryp-

tion (such as lack of authenticated ciphertexts, order of encrypt and MAC operations,

re-use of IVs, etc.). Current cryptographic libraries, even those which aim to be easy
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for developers to use, typically return keys to the calling application, and this keying

material must be stored securely and properly in order for the encryption to be mean-

ingful. A potential alternative approach would be for a cryptographic library to build

itself around a secure key store implementation, such as that implemented in Chapter 7,

such that applications calling the APIs would be returned merely a reference to the key,

which need not be held securely, since the underlying key could only be obtained by the

same application calling the cryptographic API. This would enforce strong keys, and

prevent re-use of IVs, while also ensuring that developers have a simple API to use for

encryption and decryption operations.
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