

i

Department of Computer and Information Sciences

ENHANCING EXTREMIST DATA

CLASSIFICATION THROUGH

TEXTUAL ANALYSIS

KOLADE OLAWANDE OWOEYE

This dissertation is submitted in part fulfilment of requirements for the

degree of MPhil in Computer and Information Sciences.

April, 2023

ii

Declaration

This thesis is the result of the author's original research. It has been composed by the

author and has not been previously submitted for any examination which has led to the

Award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom

copyrights act as qualified by the University of Strathclyde Regulation 3.50. Therefore,

Due acknowledgement must always be made of the use of any material contained in or

derived from this thesis.

iii

Acknowledgements

Firstly, I would like to express my appreciation to my dissertation supervisor, Dr.

George Weir. His continuous support, unquantifiable assistance and guidance assisted

me to complete my MPhil study. Also, I wish to thank Dr. Richard Frank, an Assistant

Professor in the School of Criminology at Simon Fraser University (SFU), Canada, who

provided me with useful data for my MPhil dissertation.

My heartfelt gratitude goes to my wife, Mrs. Oluwatoyin Owoeye and my Children,

Samuel and Gideon for their patience and support during my research study.

I owe unalloyed appreciation to my parents Dr and Mrs Owoeye who always encouraged

me throughout the period of writing this thesis and to my brothers, Dr. Olumide Owoeye,

Engr. Tope Owoeye, Mr. Oluwafemi Owoeye and my sister, Barrister Titilope Owoeye

for their moral support and encouragement towards the successful completion of this

MPhil programme.

Finally, I appreciate the Tertiary and Trust Fund (TETFund) for their support in my

research study.

iv

Contents

List of Figures………………………………...……………………………… xiv

List of Tables………………………………...………………………………. xvii

List of Publications………………………………...………………………… xviii

Abstract………………………………...…………………………………….. xx

1. Introduction………………………………...……………………… 3

1.1 Problem Statement………………………………...………………… 5

1.2 Aims and Objective of the Study……………………………………. 6

1.3 Research Question………………………...………………………… 7

1.4 Overview of Research Method………………………………...…..... 8

1.5 Overview of Research Tools………………………………...……… 8

1.6.1 Data Sources………………………………...………………………. 9

1.6.2 Data Pre-Processing………………………………...……………….. 10

1.7 Scope of the Study………………………………...…………............ 11

1.8 Limitation of the Study………………………………...…………..... 11

1.9

1.10

The Contributions of the Research Work……………………………

Organisation of Thesis...

12

12

2.

Related Works………………………………………………………

13

2.1 Text Classification………………………………...………………… 13

2.1.2 Bag of Words and Vector Space Model......………………………… 15

2.1.3 Topic Modelling……………………………….................................. 16

2.1.4 Sentiment Analysis..…………….. 20

2.1.5 Posit-Based Classification Method...............………………………... 23

2.1.6 Deep Neural Network Classification Method………………………. 25

2.2 Imputation Methods………………………………………………..... 25

2.2.1 MICE Imputation…………………………………………………..... 27

v

2.2.2 K-Nearest Neighbours(KNN) Imputation.......................…………… 28

2.2.3 MEAN Imputation........……………………………………………... 28

2.2.4 MissForest Imputation……………………………………………..... 29

2.3

Research Gaps ……………………………………………….………

 30

3

Methodology………………………………………………………… 31

3.1 Experimental Design………………………………………………... 32

3.2 Data Sources………………………………………………………… 34

3.2.1

3.2.2

The Dataset’s Complexion…………………………………………..

Attribute of the Dataset………………………………………………

36

 40

3.3

3.4

Data Preparation..……………………………………………………

Tools..…………………………

42

 43

3.5.1 Feature Extraction Process………………………………………….. 47

3.5.2

3.6

3.6.1

3.6.2

Imputation Methods………………………………….........................

Posit Experimental Set-Up...............................……………………...

Posit Textual Analysis (Word-Level Feature)….................................

Extended-Posit Analysis..

48

49

50

52

3.7 The Composite Analysis…………………………………………….. 53

4. Machine Learning…………………………………………….......... 54

4.1 Machine Learning………………………………………………….... 54

4.2 Algorithms…………………………………………………………... 57

4.3 Model Metrics..........………………………………………………… 57

4.3.1 Validation...........……………………………………………………. 58

4.3.2 Evaluation Metrics…………………………………………………... 60

4.4 Machine Learning Set-up……………………………………............ 60

4.4.1 Hyper parameter Turning Set-up…………………………………… 64

4.4.2 Feature Selection...........…………………………………………….. 65

vi

4.5

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

4.5.6

4.5.7

4.5.8

4.5.9

4.5.10

4.5.11

4.6

4.6.1

4.6.2

4.6.3

4.6.4

4.6.5

4.6.6

4.6.7

4.6.8

4.6.9

4.6.10

Classification Result…………………………………………………

Random Forest Classification Result..

Sentiment Based Framework using 27 Features (MF

Imputation)…..

Sentiment Based Framework using 27 Features (KNN

Imputation)…..

Sentiment Based Framework using 27 Features (MICE

Imputation)…..

Feature Selection: Mice Imputation Features......................................

Posit-Based Classification Framework..

Feature Selection: Posit Features...

Extended-Posit Feature Set (71 features) Classification Framework...

Feature Selection: Extended-Posit Features..

Composite Classification Framework...

Feature Selection: Composite Features...

J48 Decision Tree Classification Result..

Sentiment Based Framework using 27 features (MF

Imputation)…..

Sentiment Based Framework using 27 features (KNN

Imputation)…..

Sentiment Based Framework using 27 features (MICE

Imputation)…..

Feature Selection: Mice Imputation Features....................................

Extended Posit...

Feature Selection: Extended-Posit...

Posit...

Feature Selection: Posit..

Composite Based Classification Framework......................................

Feature Selection: Composite Based Classification Framework........

66

 66

69

71

74

 76

 78

 80

 82

84

 86

 88

89

91

94

96

98

100

102

104

105

108

109

vii

4.7

4.7.1

4.7.2

4.7.3

4.7.4

4.7.5

4.7.6

4.8

4.9

4.9.1

4.9.2

4.10

4.10.1

4.10.2

KNN Classification Results...

MF Imputation...

KNN Imputation..

MICE Imputation..

Extended-Posit Classification..

Posit-Based Classification...

Composite Based Classification..

The Validation Of Nigerian Extremism Dataset.................................

J48 Classification Results...

Posit-Based Classification Results...

Extended-Posit Based Classification...

Random Forest Classification Results...

Posit Classification Based Results...

Extended Posit-Based Classification Result..

110

113

116

119

122

125

128

129

129

131

133

133

135

137

5.

5.1

Neural Networks……………………………………………………

Neural Networks…………………………………………………….

138

138

5.1.1 Multilayer Perceptron (MLP)...................................………………... 139

5.1.2 Recurrent Neural Network (RNN)…................…………………….. 142

5.2 Optimisation Algorithm…………………………………………...... 143

5.2.1 ADAM...…………………………... 144

5.3 Loss Function………………………………………………….......... 145

5.4 Activation Function..............………………………………………... 146

5.5

5.5.1

5.5.2

5.6

5.7

5.8

Regularisation......................…………………………………………

Dropout...

 Early Stopping...

Google Colaboratory...

TensorFlow..

Validation Metric..

147

148

149

150

150

151

viii

5.9

5.91

5.92

5.93

5.10

5.11

5.11.1

5.11.2

5.11.3

5.11.4

5.11.5

5.11.6

5.12

5.12.1

5.12.2

5.12.3

5.12.4

TensorFlow Implementation...

The MLP (multi-layer perceptron)…..

RNN...

Early Stopping..

Classification Results..

RNN Classification Results...

Sentiment-Based Framework (MF Imputation)….............................

KNN Imputation..

MICE Imputation..

Posit Classification Frameworks..

Extended Posit Classification Framework..

Composite Classification Framework..

MLP Classification Results..

Sentiment-Based Framework: (MF, KNN and MICE Imputation)…

Composite-Based Classification Framework.....................................

Posit-Based Classification Results...

Extended Posit Classification Results...

153

153

153

154

154

155

156

158

160

162

164

166

166

171

173

175

176

6.

Result Analysis and Evaluations………………………………….. 177

6.1 Sentiment-Based Classification Framework………………………... 178

6.2 Composite-Based Classification Framework……………………….. 179

6.3 Feature Selection vs Model Optimization...………………………… 181

6.4 Machine Learning and Neural Network Algorithms………………... 181

6.4.1 Overall Classification Result......................................………………. 182

6.5 Validation of Nigerian Extremism Webpages………………………. 183

6.6 Results Comparison With the Literature……………………………. 184

6.7

Human-Verification of Manually Labelled Data…………………… 195

7. Conclusions and Future Work…………………………………… 186

ix

7.1 Conclusions……………………………………………………….... 186

7.1.2 The Contributions from the Thesis…………………………………. 189

7.2 Future Work………………………………………………………… 189

x

List of Figures

1.1

2.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

The Proposed Composite Framework………………………………..

MICE Imputation Framework Source..

The Architecture of the Research Methods..

Total words for the Extremism (ICCRC) Data.....................................

Number of Sentences for Extremism (ICCRC) Data...........................

Average Sentence Length for the Extremism (ICCRC) Data...............

Average Word Length for the Extremism (ICCRC) Data....................

Type/Token Ratio for the Extremism (ICCRC) Data...........................

Sentiment Experimental Set-up..

Sentiment Feature Extraction Process..

Data Frame of the Dataset..

Word-level Feature Extraction Process using Posit Analysis..............

Processed Features using Posit...

Composite Feature Extraction Process...

Validation Curve-MF Imputation...

Sentiment Based Framework using 27 features (KNN Imputation)….

Validation Curve-KNN Imputation..

Sentiment Based Framework using 27 features (Mice Imputation)….

Validation Curve-MICE Imputation...

Mice Imputation Confusion Matrix..

The Wrapper Method in MICE Imputation using Random Forest.......

The Embedded-Method in MICE Imputation using Random Forest...

Validation Curve- Posit..

Posit Confusion Matrix...

The Wrapper Method in Posit using Random Forest...........................

8

27

32

36

37

38

38

39

42

44

46

50

51

53

68

69

70

71

74

74

75

76

77

78

79

xi

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

The Embedded Method in Posit using Random Forest........................

Validation Curve-Extended Posit...

Extended Posit Confusion Matrix…………………………………….

The Wrapper Method in Extended-Posit using Random Forest...........

The Embedded Method in Extended-Posit using Random Forest........

Validation Curve-Composite…..

Composite Confusion Matrix…...

The Wrapper Method in Composite using Random Forest..................

The Embedded Method in Composite using Random Forest...............

Validation Curve-MF Imputation…………………………………….

MF Imputation Confusion Matrix……………………………………

Validation Curve-KNN Imputation…………………………………..

KNN Imputation Confusion Matrix………………………………….

Validation Curve-Mice Imputation...

Mice Imputation Confusion Matrix..

Wrapper Feature Selection Method-Mice Imputation..........................

Embedded Method Feature Selection Mice Imputation.......................

Validation Curve-Extended Posit Imputation.......................................

Extended Posit Imputation Confusion Matrix......................................

Wrapper Method-Extended Posit...

Embedded Method for Extended-Posit...

Validation Curve-Posit Imputation...

Posit Imputation Confusion Matrix..

Wrapper Method Feature Selection-Posit...

Embedded Method Feature Selection Posit..

Validation Curve Posit Mice Imputation..

Composite-Based Confusion Matrix..

Wrapper Method for Composite...

Embedded Method for Composite..

80

81

82

83

84

85

86

87

88

90

91

93

94

95

96

97

98

99

100

101

102

103

104

105

105

107

108

109

109

xii

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

4.51

4.52

4.53

4.54

4.55

4.56

4.57

4.58

4.59

4.60

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Validation Curve-MF Imputation...

MF Imputation Confusion Matrix..

Validation Curve-KNN Imputation..

KNN Imputation Confusion Matrix...

Validation Curve-Mice Imputation...

Mice Imputation Confusion Matrix..

Validation Curve-Extended Posit...

Extended Posit Confusion Matrix...

Validation Curve-Posit...

Posit Confusion Matrix...

Validation Curve-Composite..

Composite Confusion Matrix...

Validation Curve-Posit...

Posit Confusion Matrix...

Validation Curve-Extended Posit...

Extended-Posit Confusion Matrix..

Validation Curve-Posit...

Posit Confusion Matrix...

Validation Curve-Extended Posit...

Extended-Posit Confusion Matrix..

A Neural Network with 2 Hidden Layers...

Recurrent Neural Network and a Feed-Forward Neural Network........

Different Types of RNN...

An illustration of a RNN with its three gates.......................................

Gradient Descent Algorithm...

Structure of different training sets..

Normal Neural Network before and after applying Dropout................

Training Set Accuracy Source..

Model Accuracy Curve-MF Imputation Curve-MF Imputation...........

112

113

115

116

118

119

121

122

124

125

127

128

130

131

132

133

134

135

136

137

139

141

142

142

143

147

148

149

155

xiii

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

5.37

5.38

Model loss Curve-MF Imputation..

MF Imputation Confusion Matrix..

Model accuracy Curve-KNN Imputation Curve-KNN Imputation….

Model loss CURVE-KNN Imputation...

KNN Imputation Confusion Matrix...

Model loss Curve-MICE Imputation..

Model accuracy Curve-MICE Imputation..

MICE Imputation Confusion Matrix..

Model Accuracy Curve-Posit Imputation...

Model loss Curve-Posit Imputation..

Posit Imputation Confusion Matrix..

Model Accuracy Curve-Extended Posit...

Model loss Curve-Extended Posit..

Extended Posit Imputation Confusion Matrix......................................

Model Accuracy Curve-Composite..

Model loss Curve-Composite...

Composite-Based (Posit MICE) Confusion Matrix..............................

Model Accuracy Curve-MF Imputation...

Model loss Curve-MF Imputation..

Model Accuracy Curve-KNN Imputation..

Model loss Curve-KNN Imputation...

Model Accuracy Curve-Mice Imputation...

Model loss Curve-MICE Imputation..

MF Imputation Confusion Matrix..

KNN Imputation Confusion Matrix...

Mice Imputation Confusion Matrix..

Model Accuracy Curve-Composite..

Model Loss Curve-Composite..

Composite Confusion Matrix...

155

155

157

157

158

159

159

160

161

161

162

163

163

164

165

165

166

167

167

168

168

168

168

170

170

171

172

172

173

xiv

5.39

5.40

5.41

5.42

Model Accuracy Curve-Posit...

Model loss Curve-Posit..

Posit Confusion Matrix...

Extended Posit Confusion Matrix...

174

174

175

176

xv

List of Tables

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

Complexion Analysis of Extremist (ICCRC) Dataset………………..

Noun Keyword List..

Confusion Matrix 2x2...

The Model Parameters..

The Random Forest Model Parameters..

Gridsearch Best Parameters for MF Imputation...................................

MF Classification Result using Random Forest...................................

Gridsearch Best Parameters for KNN Imputation................................

KNN Classification Result using Random Forest................................

Gridsearch Best Parameters for MICE Imputation...............................

Mice Imputation Classification Result using Random Forest..............

Gridsearch Best Parameters for Posit Data...

Posit Classification Result using Random Forest.................................

Gridsearch Best Parameters For Extended-Posit Data.........................

Extended-Posit Classification Result using Random Forest................

Gridsearch Best Parameters for Composite Data.................................

Composite-Based Classification Result using Random Forest............

The J48 Model Parameters...

Gridsearch Best Parameters for MF Imputation...................................

MF Imputation Classification Result..

Gridsearch Best Parameters for KNN Imputation................................

KNN Imputation Classification Result...

Gridsearch Best Parameters for Mice Imputation................................

Mice Imputation Classification Result...

39

44

59

62

66

67

68

69

71

72

73

76

78

80

82

84

86

89

89

91

92

93

94

96

xvi

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

5.1

5.2

5.3

5.4

5.5

Gridsearch Best Parameters for Extended Posit...................................

Extended Posit Imputation Classification Result.................................

Gridsearch Best Parameters for Posit...

Posit-Based Classification Result...

Gridsearch Best Parameters for Composite..

Composite-Based Classification Result..

The KNN Model Parameters..

Gridsearch Best Parameters for MF Imputation...................................

MF Imputation Classification Result using KNN................................

Gridsearch Best Parameters for KNN Imputation................................

KNN Imputation Classification Result using KNN.............................

Gridsearch Best Parameters for MICE Imputation...............................

Mice Imputation Classification Result using KNN..............................

Gridsearch Best Parameters for Extended-Posit...................................

Extended Posit Classification Result using KNN.................................

Gridsearch Best Parameters for Posit...

Posit Classification Result using KNN...

Gridsearch Best Parameters for Composite..

Composite-Based Classification Result using KNN............................

The Model Parameters..

Posit-Based Classification Result using J48...

Extended Posit-Based Classification Result using J48.........................

Posit-Based Classification Result using Random Forest......................

Extended Posit-Based Classification Result using J48.........................

MF Imputation Classification Result using RNN.................................

KNN Imputation Classification Result using RNN..............................

MICE Imputation Classification Result using RNN............................

Posit Classification Result using RNN...

Extended Posit Imputation Classification Result using RNN..............

98

100

102

104

106

107

110

110

113

114

116

117

119

120

122

123

125

126

128

129

130

132

134

136

155

157

159

161

163

xvii

5.6

5.7

5.8

5.9

5.10

5.11

5.12

6.1

6.2

6.3

6.4

Composite-Based Classification (Posit-Mice) Result using RNN.......

MF Imputation Classification Result using MLP.................................

KNN Imputation Classification Result using MLP..............................

Mice Imputation Classification Result using MLP..............................

The Composite Classification Result using MLP.................................

Posit Classification Result..

Extended-Posit Classification Result..

Comparison of the Classification Methods..

Result Comparison between Wrapper and GridsearchCV Methods

using J48...

Result Comparison between Wrapper and GridsearchCV Methods

using Random Forest..

Results comparison with the literature...

165

169

169

170

172

174

176

179

180

180

184

xviii

List of Publications

i. G. Weir, K. Owoeye, A. Oberacker and H. Alshahrani, "Cloud-based Textual

Analysis as a Basis for Document Classification," 2018 IEEE International

Conference on High Performance Computing & Simulation (HPCS), Orleans,

2018, pp. 672-676, doi: 10.1109/HPCS.2018.00110.

ii. K. O. Owoeye and G. R. S. Weir, "Classification of Radical Web Text Using

a Composite-Based Method," 2018 IEEE International Conference on

Computational Science and Computational Intelligence (CSCI), Las Vegas,

NV, USA, 2018, pp. 53-58, doi: 10.1109/CSCI46756.2018.00018.

iii. K. O. Owoeye and G. R. S. Weir, "Classification of Extremist Text on the

Web using Sentiment Analysis Approach," 2019 IEEE International

Conference on Computational Science and Computational Intelligence

(CSCI), Las Vegas, NV, USA, 2019, pp. 1570-1575, doi:

10.1109/CSCI49370.2019.00302.

xix

Abstract

The high volume of extremist materials on the Internet has created the need for

intelligence gathering via the Web and real-time monitoring of potential websites for

evidence of extremist activities. However, the manual classification for such contents is

practically difficult and time-consuming. In response to this challenge, the work reported

here developed several classification frameworks. Each framework provides a basis of

text representation before being fed into machine learning algorithm. The basis of text

representation are Sentiment-rule, Posit-textual analysis with word-level features, and an

extension of Posit analysis, known as Extended-Posit, which adopts character-level as

well as word-level data. Identifying some gaps in the aforementioned techniques created

avenues for further improvements, most especially in handling larger datasets with better

classification accuracy.

Consequently, a novel basis of text representation known as the Composite-based method

was developed. This is a computational framework that explores the combination of both

sentiment and syntactic features of textual contents of a Web page. Subsequently, these

techniques are applied on a dataset that had been subjected to a manual classification

process, thereafter fed into machine learning algorithm. This is to generate a measure of

how well each page can be classified into their appropriate classes. The classifiers

considered are both Neural Network (RNN and MLP) and Machine Learning classifiers

(such as J48, Random Forest and KNN). In addition, features selection and model

optimisation were evaluated to know the cost when creating machine learning model.

However, considering all the result obtained from each of the framework, the results

indicated that composite features are preferable to solely syntactic or sentiment features

which offer improved classification accuracy when used with machine learning

algorithms. Furthermore, the extension of Posit analysis to include both word and

character-level data out-performed word-level feature alone when applied on the

xx

assembled textual data. Moreover, Random Forest classifier outperformed other

classifiers explored. Taking cost into account, feature selection improves classification

accuracy and save time better than hyperparameter turning (model optimisation).

1

Chapter One: Introduction

1. Introduction

Radicalisation is used often in relation to Jihadism or Islamic extremism [1]. Other

concepts of radicalisation are also seen as a component of Fascism or white supremacy

[2]. Radicalisation is defined as a desire to rule, of which social movements and its

actions serve as the vessels to achieving the power [3]. To this effect, radicals form a

uniform society founded on strong, opinionated belief and doctrine. They attempt to

create society conformists by suppressing all opposition [3]. In 1985, the earliest piece of

investigation on violent radicalism and the Internet appeared, but the vast majority of

investigations began after the year 2000 when digital methods of radicalisation became

more sophisticated [4].

The spread of extremist documents on the Internet is alarming and has become a major

concern for government and security agencies. Terrorist and extremist groups adopt

digital method such as Web technologies for various functions including dissemination

of information, propaganda, fundraising, recruitment and assignment of deadly missions

[5-10]. The potential dangers of online extremism cannot be over-emphasised. For

example, three thousand people were killed in the 9/11 terrorist attacks in the United

States [7] while four people were killed and many injured in an extremist attack at

Westminster, London [8] to mention a few. However, a survey from the National

Consortium for the Study of Terrorism and Responses to Terrorism (START) [9], also

reported 2,794 terrorist attacks from 1970 to 2016 in the United States that resulted in

3,659 deaths. The Global Terrorism Index, GTI [9] reported that Boko-Haram in Nigeria

was one of the world’s deadliest extremist groups in 2014 with a record of 6,700 deaths.

Just a single terrorist attack in Nigeria was recorded among the 20 most deadly terrorist

attacks worldwide in 2016. In 2014, nine similar attacks happened in that same country,

Nigeria.

https://www.standard.co.uk/topic/westminster-attack

2

Examples of extremist Websites are jihadi Websites, far-right propaganda and bomb-

making instructional Websites. Many law enforcement and intelligence agencies are

interested in countering the use of the Internet for extremism due to the rapid increase of

extremist documents online, this situation has created the need for efficient automated

systems for the classification and identification of Web pages with extremism contents.

An automated method to classify or identify such radical documents on the internet is

one of the counter-terrorism measures against internet cyber threats of which text

document is the most common content type on the Web. However, manual classification

of such content on the Internet is impractical due to the existence of billions of Web

pages of diverse uses.

The number of different text feature representation (a basis of text feature) methods to be

considered in this research for building a classification model are sentiment analysis,

Posit (word-level information), and Posit (both word and character-level information).

In an attempt to further improve the textual content classification, a computational

framework known as the composite-based classification method is proposed which is

based on the combination of a machine learning algorithm, and the hybrid of both

sentiment and syntactic features of the Web texts, to build a model for the automatic

classification of extremism Web pages. A mix of sentiment and syntactic features

derived from the textual data is regarded as composite features, a basis for text features

representation. The rationale behind the hybrid features in the composite approach is to

explore the richer feature set that feeds into building a classification model. Sentiment

analysis generates sentiment features in unstructured data while Posit provides the

quantitative syntactic features that ‘enrich’ the information given by the text corpus.

The effectiveness of the classification frameworks would be analysed and tested on two

different text corpora. The first dataset is created with Web crawlers at the International

Cyber Crime Research Centre (ICCRC) at Simon Fraser University in Burnaby, British

Columbia, Canada, while the second corpus is data retrieved from Nigerian Websites.

3

After collection and pre-processing, each text corpus contains three manual classes that

cover the themes "pro-extremist," "neutral" or "anti-extremist" based on the contents of

the data. For example, pro-extremist expresses extremism contents from "extremist and

jihad organisation Websites”. The neutral group reflects contents from the media/news

that impartially report terrorist events. The anti-extremist class contains items that

express views against terrorism. The Web data retrieved from Nigerian domain sources

would be used to test the validity of a trained dataset obtained from ICCRC. The

assumption is that, since the Nigerian data is potentially similar to the ICCRC data, in

the sense that we are interested in the same classification categories, if it performs well,

this could be taken as validation for the approach since it would seem to work well

across differently sourced data sets (for the same classification tasks).

The objective of the thesis is to develop a robust automatic Web-content classification

model. Therefore, the manual classification of the Terrorism and Extremism Network

Extractor (TENE)-sourced Web pages (a Canadian ICCRC data) serves as a threshold to

measure the success of our automated method. The thesis explores different

classification algorithms namely, neural networks (Multilayer Perceptron (MLP),

Recurrent Neural Network (RNN)) and machine learning algorithms (such as, J48,

Random Forest (RF) and K-Nearest Neighbours (KNN)) which are implemented using

both TensorFlow and Sckit-learn API respectively.

1.1 Problem Statement

The adoption of an internet presence on such platforms as YouTube, Facebook, Twitter

and other online forums gave extremist groups like Boko-Haram and ISIS the

opportunity to dramatically increase their membership. Extremist’s activities include

dissemination of information, propaganda, fundraising, recruitment and assignment of

deadly missions. In such contexts, the Internet poses a threat to national security. One

4

form of counter-terrorism measure is the classification of such extremist documents

(Web pages) on the Internet.

The manual classification for such radical documents on the Web is practically difficult

and time-consuming due to the existence of billions of Web pages of diverse uses. In

response to this challenge, an automated classification system is needed for such a task.

However, building such a classification model requires transforming text of unstructured

data into a form that can be utilised by various machine learning algorithms, which is a

key challenge in enhancing data classification through textual analysis. Traditional

methods such as bag of words and vector space models [11-12] have been proposed for

the text document representations used in a classification model. In the vector space

model, text is extracted into word sequence and the weight for the features is computed

as a weight vector, then a classifier is developed based upon the weight vector space.

However, text has many features and the dimensionality of the vector space can be very

high, which leads to time and space complexity in the classification model process.

However, a method to extract fewer but more useful features is crucial to building

efficient classification systems.

In recent times, methods such as Sentiment [5] and Posit analysis, both at word-level

[14] and character-level [15], to mention a few, have been widely used to characterise a

set of text for use in a classification model. Sentiment analysis method such as [5], [13-

14] relies on the use of keywords (frequently used keywords) to obtain sentiment in each

Webpage and reducing the number of keywords to top k-nouns (which often carry the

sentiment) poses a challenge as the chances are certain that some Webpages in each class

have few or none of the selected keywords. This situation results in the non-capture of

some sentiment values from larger Web page data, thereby hindering the training process

of useful sentiment features of the Web pages. Such data incompleteness is regarded as

missing data which can impair the classification accuracy when machine learning

algorithms are applied.

5

Posit, on the other hand, is designed to generate quantitative data at the level of word and

part-of-speech content of texts. It creates data based on word-level information which

could be a disadvantage when applied to short data such as the content of tweets, as

many of the original features may result in zero values.

To address the challenges mentioned above, this thesis proposes different imputation

approaches to address the data incompleteness (missing data) faced by the sentiment

analysis method (the sentiment analysis approach that utilises top-k noun keywords to

obtain sentiment from text corpus before being fed into a machine learning). Moreover, a

novel framework is also proposed to improve the textual content classification method

further, the proposed framework is known as the composite-based classification method.

The rationale behind the hybrid features in the composite approach is to explore the

richer feature set that feeds into building a classification model.

In addition to the previously observed limitation in using Posit analysis on short text

(such as twitter text), the system has been upgraded to complement the convectional

word-level statistics (27 default word-level features) with an extra 44 character features

for each instance of text data [5]. The new addition include quantitative information on

individual alphanumeric characters as well as a subset of special characters such as

question marks, exclamation marks, asterisks, periods, dollar signs, etc. Consequently,

each data item is represented by a set of 72 features [5]. However, Posit with the

different data level information will be applied to non-short text data. This is to establish

both methods’ effectiveness and improvement in building a textual classification model.

Hence, keyword modelling in sentiment-rule based analysis and Posit-textual based

classification models will be revisited in this thesis. The classification models to be

considered are both neural network models and traditional machine learning algorithms.

A GridSearchCV algorithm will be explored for hyperparameter tuning to obtain the

optimal values for each of the machine learning models. However, the methods to be

examined in this thesis raise some questions when classifying extremist Web data, these

questions are presented in section 1.3.

6

1.2 Aims and Objectives of the Study

The thesis aims to develop a Web-content classification model. The specific research

objectives are to:

i. Develop an enhanced textual content classification method, a composite-based

classification method.

ii. Evaluate different imputation methods (such as KNN, MICE and MissForest)

applied to compensate for missing values on sentiment-based feature set.

iii. Develop Posit (word-level) and Posit (word and character-level)-based

classification methods.

iv. Evaluate the performance of composite-based classification with existing

methods namely, Sentiment-Rule, Posit-based classification and Extended Posit.

1.3 Research Question

This section presents the research questions that are focused on the frameworks to be

considered in this thesis which include:

i. Can the imputation method efficiently compensate for missing values faced by

feature set obtained via sentiment analysis (a procedure that utilises top-k

noun keywords to obtain sentiment values from text corpus) before being fed

into machine learning for the classification task?

ii. Can the composite approach (the combination of sentiment and syntactic

features in textual content as a basis for text features) be effective to create a

well-working machine learning model?

iii. What is the cost of model optimisation (hyperparameter turning) over feature

selection when creating a machine learning model?

7

iv. Considering the selected machine learning and neural network algorithms

(such as RNN, MLP, KNN, J48 and Random Forest) on a pre-processed

feature, which model produces the best classification accuracy on extremist

Web textual data?

v. Can a model based on the dataset used for these experiments be validated on

another dataset of a similar domain but a different source?

1.4 Overview of Research Method

A different experiment is performed to test each research question. The experiments

consist of different classification frameworks developed for the classification of

extremist Web content. Each framework provides a basis of text representation before

being fed into a machine learning algorithm. For example, the sentiment features of the

Web pages will be generated through the sentiment analysis, where linguistic markers

(top-k noun keywords) are used to pinpoint the sentiment of each Web page. Then, a

lexical approach, a Sentistrength [16] resource, would then assign a sentiment value to

each of the Web pages. Thereafter, we propose different imputation approaches to

address the data incompleteness (missing data) faced by sentiment analysis (the method

that relies on the use of top-k noun keywords to obtain sentiment around each Web

page). The imputation approach maintains all situations by substituting an approximated

value based on other available data for missing data [17]. The feature set can then be

analysed using standard procedures for comprehensive data analysis once all missing

values have been imputed. Syntactic features of textual contents of a Web page would be

obtained through a textual analytic tool called Posit. Posit is a Unix-Scripting program

that is capable of generating frequency data, as well as Part-of-Speech (POS) tagging in

unstructured textual data. The composite features explore the combination of both

sentiment and syntactic features of textual content of a Web page as a basis for document

classification. The composite framework is illustrated in Figure 1.1.

8

Various machine learning algorithms that will be applied to each feature are neural

network models (RNN and MLP) and traditional machine learning algorithms such as

(J48, Random Forest and KNN), this is to generate a measure of how well each page can

be classified into their appropriate classes. Then, the feature selection algorithms, both

wrapper method type (Recursive feature elimination (RFE) and the embedded method

will be applied to the various feature sets. Applying these feature selection algorithms to

the classification models will allow us to explore the full range of effectiveness and the

cost on the feature subsets performances (feature optimisation).

Figure 1.1: The Proposed Composite Framework

1.5 Overview of Research Tools

Tools explored for the study are Google Colab GPU, and Python libraries (Pandas,

Scikit-learn, TensorFlow) are used to implement the experiments and to output the

results into files. The details of the tools will be re-visited later in this thesis.

Sentiment features Syntactic features

Composite Features

Sentiment Rule-Based
Approach

Posit Textual Analysis
Approach

Classification Results

Machine Learning Algorithms

9

1.6.1 Data Sources

In this section, we describe the two different data sources that would be explored to test

the effectiveness of the methods.

i. Extremism Dataset (ICCRC)

The Web pages that comprise the initial extremism dataset were obtained from extremist

and associated Websites using the TENE-WebCrawler which is a software developed at

the International Cyber Crime Research Centre (ICCRC), Simon Fraser University,

Canada. This crawler traverses the Internet following links based on keyword searches,

extracting Web pages and analysing each page visited [5]. One collection of such Web

pages was initially classified manually by ICCRC workers, with each Web page

classified as "pro-extremist," "neutral," or "anti-extremist" based on its content. The total

number of manually classified Web pages was 7500, with 2500 Webpages in each

category.

ii. Nigerian Extremism Dataset

A second extremism dataset was compiled from the content from Nigerian Websites.

Websites with extremism topics were retrieved from Nigerian Websites with the aid of

Beautiful Soup framework [18]. The compiled Nigerian dataset consisted of 70 text

documents from different websites, classified manually based on their content, the

Webpages were manually categorised into the three classes, pro-extremist, anti-extremist

and neutral. The result was 70 Web text documents in each class. These data were later

classified manually with the aid of a qualitative research tool, NVivo [19]. The details of

the data sources are further explained in the later part of the thesis.

1.6.2 Data Pre-Processing

Raw data that contains noise is unclean, and thus degrades the classification result's

quality. Pre-processing, on the other hand, aids in the processing of noisy data and

improves the effectiveness of machine learning algorithms. Before being input into

10

machine learning, the dataset is pre-processed to improve classification accuracy. The

pre-processing steps include noise cleansing, dealing with missing values and scaling of

the data. The detailed process will be re-visited later in this thesis.

1.7 Scope of the Study

This research study focused on the classification of online radicalisation text contents

(extremist Webpages). The research centred on analysing extremist content to gain

deeper insight into which class each content of the Website belong, either neutral, anti-

extremist or pro-extremist. The neutral content reports routinely on terrorist events from

what might arguably be a more impartial and journalistic perspective. The anti-extremist

content reveals opposition to violence while pro-extremist content expresses extremist

contents. Input to the analysis algorithms comprises documents containing varying

degrees of radical and related content and the output is an analysis that details sentiment

and syntactic characteristics of the content.

On the basis of such analyses, machine learning algorithms were used for the text

classification. The technique follows a certain trend namely, manual labelling of

documents into categories, document representation [5, 14 and 15], training a classifier

on seen data and evaluation on an unseen test set [20]. Various text document

representations considered in the study include syntactic, sentiment and composite-based

features. The classifiers explored for the study include, RNN, MLP, J48, Random Forest

and KNN. In order to assess the performance of this classification, the metrics

considered were Precision, Recall, F-measure and accuracy. These aspects will be

detailed in Chapter 2. Many terrorist organisations have created Websites on the Internet

for various purposes such as fundraising, propaganda and recruitment. Hence, Websites

considered for this study include Weblogs (also commonly known as blogs), and online

forums from Websites. This study considers textual content as the data type, which

explores the structure and content of a document such as sentiment and syntactic

features. Various types of features used to assist techniques to categorise online

11

radicalisation text on the Web are the link based and content-based features commonly

used features in the literature [5][13][14].

However, the study focused on content-based features because it often used in text

classification techniques. The content-based features explore the structure and content of

a document such as lexical (frequency of letters, average word length etc.), syntactic

(frequency of function words etc.). Extremists use different languages associated with

radicalisation. However, in this study, the language of all considered documents is

English text. Of course, many genres of extremism or radicalisation exist on the Internet,

including Middle Eastern extremism (a pro-caliphate Islamic political party and the

Website of the Muslim Brotherhood), US domestic extremism and Anti-Semitism (of

public safety agencies, or groups like the Global Counterterrorism Forum). We have

covered these varieties of extremism in our study.

1.8 Limitation of the Study

Much of the data on terrorist organisations is For Official Use Only or Law Enforcement

Only. Hence, extraction of the Web contents from open Web data through Web-Crawler

software was an option explored as a source of data used. The research is based on Web

content classification.

1.9 The Contributions of the Research Work

The thesis compares and contrasts various types of imputation approaches used to

account for missing data in sentiment analysis (the approach that relies on the use of top-

k noun keywords to obtain sentiment around each Web page). According to the findings

of the study, composite features are preferable to just syntactic or sentiment features in

terms of classification accuracy when utilized with machine learning algorithms.

Furthermore, the extension of Posit analysis to include both word and character-level

data out-performed word-level feature alone when applied on the assembled textual data.

Moreover, the Random Forest classifier outperformed the other classifiers that were

12

tested. Feature selection increases classification accuracy and saves time better than

hyperparameter turning.

1.10 Organisation of Thesis

The remainder of the thesis is organised as follows. Chapter Two presents a review of

existing literature on text classification methods. Chapter three contains a description of

the data and the methods adopted in the thesis. Chapter Four describes the

implementation and the results for the machine learning models, Chapter Five describes

the implementation and the results for the Neural Network models, and Chapter Six

describes the analysis and evaluations of the results. Conclusions and future work are

presented in Chapter Seven.

13

Chapter Two: Related Work

This chapter discusses existing concepts of the field of textual classification. Furthermore,

related research is going to be examined to place this thesis into context. The target of this

thesis is to analyse texts in the context of a predefined set of topics, the strengths and

weaknesses of related research would be examined to fill the research gap.

2.1 Text Classification

Text classification is the act of labelling documents into categories with respect to their

content. The process can be manual or automated, and used to easily sort and manage

texts, images or videos. Lists of the textual classification methods described in this

section include Topic Modelling, Sentiment, Posit, Bag of Word and Vector Space

classification-based models.

2.1.2 Bag of Words and Vector Space Model

This section reviews existing studies on Bag of Words and Vector Space Model used for

Web contents classification.

Both Bag-of-Words and Vector Space models are types of representations of text

features used in Information Retrieval and Natural Language Processing. The Bag-of-

Words describes the instances of words within a document and a sentence is represented

as a bag of words vector (a string of numbers) [21]. In the Vector Space model, the text

is extracted into word sequence and the weight for the features is computed as a weight

vector, then a classifier is developed based upon the weight vector space [23]. Existing

research work on both Bag of Words and Vector Space models is discussed below.

14

A technique for text analysis that explores the Bag of Words model for a predictive

analysis was proposed [21]. The research was conducted with a set of unstructured data

which were pulled together from the domain of natural language processing (NLP), in a

bid to gain a wide scope of attraction from various researchers and on-field practitioners

to create the right impression of forecasting and predicting insights in a simple and

explanation fashion. The research detailed the operations of the framework for the fast

usage of Bag of Words model for text mining processing. Short text multi-class

classification problems in the Bags of Words model were addressed using word vector

enrichment of flow frequency words [22]. The research was keen to explore three

different aspects of the problem about the classification of three different domains which

happen to be Reuter news article classification, classification of journal article titles, and

text snippets classification. The research employed bag of words model in underpinning

the variables from both the general and specific domains. The outcome of their study

showed that a mix of the information in the unsupervised word vector model with a

supervised linear model enhances classification performance when compared with other

classifiers to address other text classification problems. The technique explored in the

research was effective because it requests no change to the linear classifier throughout

the training, the technique only applies to the text being classified.

The analysis of a vector space model for data classification on the Internet of a thing

(IoT) was discussed [23]. The objective of the research was to give a perception of how

the accessibility of information could trigger an increase in the IoT. The research

brought into the limelight the proposal of a new text classification algorithm design

through the aid of the vector space model. The algorithm developed triggers a rise in

feature selection and weighting method through the approach of synonym replacements

made to the traditional text classification algorithms. The result obtained from the

experiment showed a better performance when compared with existing algorithms. The

vector Space model used to classify Arabic text was discussed [24]. The research

applied KNN algorithms to explore the different variations of vector space models

(VSMs), with the keen intention of creating new segments of the Arabic text classifier to

15

segment the Arabic text. The results obtained from the research showed that the cosine

categories’ performed better than the dice and Jaccard algorithms.

2.1.3 Topic Modelling

This section discusses existing methods used in a topic model for classifying extremist

Web content.

A topic model is a form of statistical model for detecting the conceptual "topics" that

appear in a group of documents. It is also a frequently used text-mining tool to unravel

hidden semantic structures in a text document. Topic modelling and critical discourse

analysis were combined to obtain the patterns of the representation around the keyword

terms Islam and Muslim in a word corpus of a sizeable Swedish Internet forum ranging

from the year 2000 to 2013 [25]. The corpus used in the course of the research was

derived from the flashback, one of the biggest Web forums in the world. The outcome of

the study indicates that Muslims are observed as a homogenous forum that can be

attributable to conflicts and violent acts.

A new Seed-guided Multi-label Topic Model (SMTM) was proposed [26]. SMTM

performs multi-label classification efficiently for a group of documents without any

labelled document with just a few words relevant to each class of the document. In the

proposed method, a single category topic is attached to each class of document which

gives the meaning of the class. However, in a process of operating with multi-label

documents, the research distinctly models the class sparsity in the method by exploring

the techniques, spike and slab prior and weak smoothing prior. SMTM automatically

chooses the appropriate class for each document without using any threshold tuning. In

addition, a seed-guided biased GPU sampling method to monitor the topic inference of

SMTM was also developed for the supervision of the seed words. The effectiveness of

the model on the two public datasets showed that the proposed method achieved good

classification results.

16

A topic modelling algorithm such as Latent Dirichlet Allocation (LDA) has been used

largely to design documents as a collection of topics. LDA is a generative probabilistic

model for the gathering of discrete data [27]. Some studies have shown how it has been

used to analyse the same Web contents to detect important topics in extremist online

forums. For example, a study in [28] explored the Latent Dirichlet allocation (LDA)

algorithm. The authors developed a framework to detect latent topics by analysing the

contents of dark websites. A Web-crawler was explored to extract the Dark Web

contents used for the analysis. Then, the Latent Dirichlet allocation (LDA) algorithm

was applied to analyse the Web content to reveal latent topics from Websites of terrorists

or extremists. The result of the experiment showed that LDA-based analysis allocates a

probability to a document and covers the exchangeability of both words and documents.

A new low-dimensional text representation approach for topic classification was

developed [29]. The model was developed based on the multi-level LDA representation.

A Latent Dirichet Allocation (LDA) model was explored to extract possible topic

clusters in the dataset. The effectiveness of the model was implemented on two datasets.

The first dataset was obtained from the FriendFeed social network, manually interpreted

with ten classes, while the second was an ideal text classification benchmark, Reuters

21578, the R8 subset (interpreted with eight classes). Eventually, the result from the

proposed classification model gave improved results for both datasets.

2.1.4 Sentiment Analysis

The proposed method presented in this thesis is an underpinning of sentiment analysis

that uses keywords as a linguistic marker technique to pinpoint sentiment in a Web page.

This section details existing methods on sentiment-based classification method.

Sentiment analysis tends to determine opinion or emotion in unstructured textual data.

Methods used in sentiment analysis include machine learning and semantic orientation.

17

Sentiment analysis uses a computational approach to obtain opinionated contents and

classifies the overall review of the topic into positive, negative and neutral. It also

reveals users' intentions, emotions and opinion hidden in the unstructured text [30].

Sentiment analysis uses a computational approach to obtain opinionated content and

classifies the overall review of the topic into positive, negative and neutral. The

techniques used by sentiment analysis for classification include machine learning and

lexicon-based approaches. The studies on sentimental analysis of public opinions as

expressed on social media in Ghana as regards government policies and decisions using

machine learning algorithms were carried out [31]. The research used the Naïve Bayes,

Support vector machine and random forest algorithms for analysis. It was discovered that

the Naïve Bayes classifier was adjudged the best with an accuracy of 99%. The use of

sentiment analysis as a tool of supervised machine learning algorithm to classify

Lithuanian news website contents, especially those that pertain to financial issues was

examined [32]. The results revealed that the non-balanced dataset produced the highest

accuracy through the Naïve Bayes algorithm with the support vector machine coming

behind at a lower level of accuracy.

The sentiment analysis of social media texts using machine learning techniques such as

the Support Vector Machine (SVM), Naïve Bayes (NB) and the Artificial Neural

Networks (ANN) techniques were examined. The study revealed the ANN technique had

the best classification accuracy to the tune of 90% [33].

The work explored millions of tweets from more than 25,000 common users that were

manually tagged, reported and suspended as a result of their involvement with extremist

movements by Twitter and another sample of tweets was obtained randomly from 25, 000

common users who are open to extremist content. All the information was used for the

forecasting tasks. Eventually, the performance of the framework revealed a 93% success

rate for extremist user detection and an 80% rate for predicting content adopters. Another

method used in sentiment analysis for the classification of a text document is semantic

orientation. This operates by depending on a method that utilised a corpus annotated for

18

sentiment or a sentiment value derived from a dictionary of words in classifying text

documents [34]. Many studies have explored a hybrid of both data mining algorithm and

semantic orientation (a lexical approach) in classifying or identifying extremism on Web

pages, such as [5] [13] [35].

An authorship analysis framework was implemented on the linguistic features extracted

from online messages in [35]. The result was evaluated to determine the stylistic features

of terrorist communications. A multilingual model comprising a set of algorithms and

related features was used to detect Arabic messages and their language's unique

peculiarities on an Arabic and English Web forum associated with radical groups. Two

classifiers namely, C4.5 and Support Vector Machine were used on the features. The

results from their model indicated that SVM out-performed C4.5, and a high degree of

success in identifying the communication pattern was produced.

Twenty thousand Webpages were collected with the aid of a WebCrawler to assess

differences in five sentiment classes namely: anti-extremist sites, radical Islamic sites,

radical right sites, sites that did not discuss extremism and news source sites discussing

extremism [13]. That is, pages that relate to extremism or not. 198 frequently used

keywords were identified through the aid of POS tagging. These keywords were used to

calculate sentiment values for each page through sentiment analysis. The result obtained

showed that the radical Islamic text class was classified at a much higher rate of success

than the radical right text class. A WebCrawler called TENE-WebCrawler was designed

to make a decision on each Web page it downloaded whether the page is pro-extremist,

anti-extremist or neutral [5]. The process was achieved through the use of frequently used

keywords as linguistic markers to pinpoint the sentiment on each page. The method was

achieved through the combination of semantic orientation and data mining techniques to

produce their classification.

19

Sentiment and social analysis were combined as a technique used to survey the agenda of

a radical group on YouTube [36]. The polarity for each topic discussed within the group

was obtained and explored to model individuals’ behaviour. Eventually, it was spotted

that extremism and intolerance were prominent among female users. Hierarchical

clustering was applied to divide extremist Web pages into politics and religion categories

[37]. Data retrieved from the Dark Web Portal Project was used to conduct the first

proposed method to detect cyber recruitment efforts [38]. A sentiment-based

classification method was employed for Twitter analysis classification [39]. Web Forums

were used for opinion classification [40]. Twenty-eight (28) different extremist religion

forum discussions translated from Arabic to English were compiled for annotation.

Thereafter, the authors used a set of textual features and Bayesian criteria to classify the

corpus. An accurate result was obtained, and the most predictive terms were highlighted

[41]. Machine learning algorithms such as Naïve Bayes and Support Vector Machine

were used to classify positive and negative features in given data [42].

The intensity of the sentiments of extremism was unraveled through sentiment analysis

of social media multilingual textual data [43]. The research proposed a method that

classifies textual views into four groups such as high extreme, low extreme, moderate,

and neutral with respect to the degree of their extremism. A multilingual lexicon that was

endorsed by domain experts which scored 88% precision was explored for the

classification. Linear Support Vector Classifier and Multinomial Naïve Bayes algorithms

were applied to the multilingual dataset. Eventually, Linear Support Vector Classifier

produced better accuracy than Multinomial Naïve Bayes with an accuracy of 82%.

The semantic composition problems such as negative reversing and intensification

associated with the use of conventional methods of annotating the sentiment of

unlabelled documents which are based on sentiment lexicons or machine learning were

discussed [44]. The research developed a sentiment-based classification method using

negative and intensive sentiment added information to obtain the linguistic feature of

20

negative and intensive words as well as the topic information [44]. The method was

applied to two datasets namely, a Movie Review and Stanford Sentiment Treebank.

Eventually, the method was able to solve the domain-specific problem without depending

on the external sentiment lexicons

Temporal sentiment analysis involves the findings of the sentiment pattern within a given

period, a means for investigating the temporal patterns were proposed with the use of

keywords in the comments [45]. A keyword based temporal sentiment analysis was

developed, which comprises a sentiment classification technique and keyword clustering,

in relating a few major events that happened during the period of investigation (19

November –20 December 2014). The results obtained in the experiment showed that

temporal sentiment analysis with the use of keyword clustering can be explored to create

the changes in opinions from the public relating to situation-events in a historically major

election campaign in a developing country. The result revealed crucial information about

the difference in the opinions during the election campaign which is difficult to discover

by other means.

2.1.5 Posit-Based Classification Method

The proposed method presented in this thesis is an underpinning of Posit textual analysis

that generates syntactic features of textual content from a Web page which are useful

input for classification models. Existing studies on the Posit method are discussed in this

section.

The Posit textual analysis toolset is a program written mainly in UNIX script and is

capable of generating a detailed syntactic and frequency analysis of a textual corpus

[46]. Posit outputs quantitative data from any text, including, word count, number of

characters and sentences, number of tokens and types, n-gram frequencies and finally,

part-of-speech tagging (POS) [47]. By default, the Posit produces data on 27 features.

The features include noun types, possessive pronoun, personal pronouns, average

21

sentence length, determiners, adverbs values for total words (tokens), total unique words

(types), type/token ratio, number of sentences, number of characters, average word

length, verb types, adjective types, adverb types, preposition types, personal pronoun

types, determiner types, types, interjection types, particle types, nouns, verbs,

prepositions, adjectives and interjections. Posit extracts syntactic and quantitative values

for textual data using part of speech tagging. It uses frequencies of syntactic features to

characterise the given text. Posit textual analysis has been deployed for a diachronic

analysis of English textbooks used in Japan. Posit was employed for the analysis and

categorisation of a Scottish newspaper corpus [47].

Two different techniques were used for the automatic classification of extremist Web

pages were collected from the Terrorism and Extremism Network Extractor (TENE)

Web-crawler, a custom-built piece of software that browses the World Wide Web,

gathering a large volume of data, retrieving the pages it visits, analysing them, and

recursively following the links out of those pages. The techniques were contrasted [14].

The research aimed to determine the best automated classification system among the two

approaches that can efficiently place each Webpage into the appropriate classes. The two

approaches are Posit-textual analysis and a Sentiment classification rule-based technique

that utilises top-k noun keywords to obtain the sentiment around each Webpage [5].

These techniques were applied separately on the extremist Web pages. A classification

model was then developed on the features generated by each technique, using the J48

decision tree as the classifier algorithm. Eventually, the results obtained indicated that

Posit-based classification results outperformed the results obtained from the sentiment-

based classification method.

A machine learning algorithm was applied to the features which are numerical

representation of texts generated from three different data sets through a tool known as

Posit [48]. The tool generates features, such as parts-of-speech types and tokens

instances and average sentence length. In addition to the aforementioned features, the bi-

gram features were also included as the proposed added features. The effectiveness of

22

the method was tested on three datasets namely, drug, extremism-related texts and

DBpedia text data. The objective of the research was to test the classification accuracy of

the combination of Posit and n-gram features when a machine algorithm is applied.

Then, the classification model was conducted on the datasets including 2-gram features.

The results from the research indicated that the proposed added features (2-gram

features) combined with the Posit features gave a limited improvement on the overall

classification. In addition, the DBpedia dataset revealed that classifying a text corpus

with numerous topics is inappropriate with the feature sets produced. The study also

showed that transforming a text corpus to its numerical information produced by Posit is

effective for classifying big datasets when a machine learning algorithm is applied.

A Posit tool was proposed that will allow agencies to separate and identify distrustful

social network content. Posit analysis showed 99.8% precision in classifying fake news.

Using Posit improves the possibility of achieving this aim, although it is still under

research [49].

Three million social media posts were utilised for an automated classification system

[15]. The posts were labelled by Russia’s Internet Research Agency into fake or real

news. TENE-WebCrawler developed at the International Cyber Crime Research Centre

(ICCRC), Posit Toolkit, an improved version of Posit [46] and TensorFlow were the

techniques employed for identifying hostile disinformation activities in the Cloud. The

posts were classified with a slight increase in performance of Posit toolkits against the

TensorFlow approach. The new Posit toolkit extends the basic word-level features to

generate more 44 character features for each case of text data. The aforementioned

features contain information on alphanumeric characters, and a subset of special

characters, such as questions marks, exclamation marks, asterisks, periods and dollar

signs. The augmentation of Posit to embrace character-level as well as word-level data

produces the domain-neutral complexion of Posit analysis. Consequently, each data item

(tweet) in the extended Posit analysis was represented by a set of 72 features. Each

feature set from the techniques was fed into WEKA where J48 and Random Forest

23

classifiers were applied. The result from their study indicated that the upgraded version

of Posit outperformed the result obtained from the TensorFlow implementation at a

success rate of 90.1%.

2.1.6 Deep Neural Network Classification Method

Existing studies on the Deep Neural Network classification method are discussed in this

section.

An overview of character-level Convolutional Networks as a method for text

classification was described [50]. In the studies, the authors developed character-level

convolutional networks for text classification. From their experiment, it was shown that

a convolutional network could be implemented directly to a unique set of words in the

absence of any information on the syntactic or semantic structures of the languages.

Different datasets were explored to show that a character-level convolutional network

could attain competitive results.

Users’ posts on Twitter were classified into extremist and non-extremist groups using

deep learning sentiment analysis techniques to detect and combat the spreading of bad

ideology among different social media users [51]. The research proposed long short-term

memory with Convolutional Neural Network (CNN-LSTM) model to achieve the

research objective. The users’ sentiments from the Twitter posts were classified based on

their emotional affiliation such as positive or negative emotions with respect to extremist

content. However, the proposed model lacks the automatic means of storing Twitter

content, context-aware features, proper visual display and investigating other extremists.

The authors recommend that using context-aware features and advanced techniques like

an attention-based mechanism for extremist affiliation detection with multi-class labels

will improve the performance of the system [51].

24

An approach to detecting terrorism based on sentiment analysis of users’ posts on

Twitter was developed [52]. According to the study, users’ sentences on the Twitter

platform are analysed and categorised into three areas namely positive, negative and

neutral about the sentiment opinion of users leading to an act of terrorism. To achieve

this, the Naïve Bayes algorithm was improved and used to predict the categories in

which any given Twitter post belonged. This is done by looking for certain keywords

which the users have used in the post, assigning a score to it concerning terrorism,

comparing it with the previous posts, and ranking the value obtained to know their

influence on the subject. This however does not only provide benefits as terrorist

detection but also helps to determine the categories of text especially in combating

digital issues.

The multiclass event classification from texts on social media about the Urdu language

text was examined [53]. Deep learning techniques such as the convolutional neural

network (CNN), recurrence neural network (RNN) and the deep neural network (DNN)

were applied. However, the DNN classifier outclassed other algorithms with 84%

accuracy in the extraction and classification of text. Sentiment analysis on the opinion of

people expressed on Facebook as regards the COVID-19 pandemic in low-resource

languages with a special inclination to the Albanian language was conducted [54]. Three

neural networks including the 1D-CNN, BiLSTM and the 1D-CNN + BiLSTM models

were deployed revealing that the optimal combination of the BiLSTM with an attention

model yielded the best performance at 72.09%. Supervised machine learning techniques

were compared for sentiment analysis of Covid-19 tweets [55]. The LSTM model was

compared with the Vader sentiment analysis and the GloVe feature extraction approach

and it was discovered that the LSTM has more accuracy than other techniques at 93%

accuracy.

A framework was developed using a Recurrent-Convolutional Neural Network, based on

pre-trained word embedding to address the problem of the automatic classification of the

extremist activities on Twitter, most especially the Islamic State of Iraq and al-Sham

25

(ISIS) activities [56]. The method was implemented on 15,684 ISIS propaganda tweets, a

mix of neutral tweets, connected to ISIS, and random ones, creating imbalances up to 1%.

The proposed method was compared with other methods such as, a character-based CNN

model, a RCNN, merged with max-pooling (based on pre-trained FastText word

embeddings) and SVM trained on bag-of-character and bag-of-word n-grams. The

method was evaluated based on varying the training schemes and the test conditions. The

result obtained from the research was able to demonstrate that the proposed framework

attained a F1 score as high as 0.9 when trained with the same imbalance.

2.2 Imputation Methods

This section describes imputation approaches used to compensate for missing values.

A critical issue in the classification task is the missing values found in some datasets.

Missing data is defined as values or data for some variables in a dataset that is not

recorded (or non-existent) [1]. Most classifiers cannot cope with null entries which could

be missing data. Missing data, in this case could impair the accuracy of data analysis or

when classification algorithms are applied, as the value of the data has degraded. A

classifier learns from data and misrepresentation of facts in data will lead to wrong

information learned and hence incorrect or biased classification occurs. A better approach

to the missing data is the imputation method. Listed below are some of the widely used

imputation methods.

2.2.1 MICE Imputation

Multiple or Multivariate Imputation by Chained Reactions also known as MICE

imputation is a means of handling non-response bias which occurs when certain

respondents do not respond to a survey leading to the presence of missing data [57].

Therefore, the MICE or multiple imputation is a method used to replace missing data

values in a data set given the conditions that the data is missing completely at random

(MCAR), non-ignorable missing or missing at random (MAR) [58]. In simple terms, the

26

MICE imputation points to an approach where missing values in a dataset are replaced

with probable data which are sourced from the distribution but modelled for each

missing value through the use of chained equations [17].

Meanwhile, the MICE imputation has been preferred by statisticians because of its

flexibility in handling varying nature of data such as the continuous or binary data and

other simulation studies while it also addresses intricacies emanating from bounds or

survey skip patterns [57], [59], [60]. In other words, the algorithm can correspondingly,

[61] noted that although there are various means of handling missing data, the complete

case analysis though simple to adopt is not as efficient as the MICE imputation because

it requires more missing data assumptions which may rare to come by in real life

computations and as such lead to being biased. Furthermore, the single imputation

method has also been discovered to fall short on the grounds of accounting for

uncertainty which will also lead to inaccurate results [61], [62]. Therefore, the MICE

imputation is more beneficial on the grounds of flexibility as it can be applied to a

different range of the dataset. Also, because it multiple times fills in the missing values

by creating multiple and seemingly complete datasets, the missing values are filled in

premised on the observed values while it further accommodates and handles uncertainty

by providing accurate standard errors [57]. MICE imputation model is advantageous

because it can account for the data creation system as well as the preservation of the

uncertainty that pertains to the dataset [61]. Furthermore, the MICE approach was

developed to address the problems that are associated with the multivariate imputation

approach which was noted by [17]. These problems include the circular dependence that

can occur in the dataset as the imputed data values may lose their specific independence

because they may indirectly depend on other values used to model them.

27

Fig 2.0: MICE Imputation Framework Source: [64]

2.2.2 K-Nearest Neighbors (KNN) Imputation

The KNN imputation approach seeks to fill in missing data by most similar values or the

nearest neighbors of the instance of interest. As such, the similarity between the instance

of interest and the missing data is determined by a distance function algorithm [65]. The

KNN imputation has been considered advantageous because quantitative and qualitative

values can be predicted by the approach and it does not equally have to provide a model

to predict each missing data [65]. Also, this approach can retain the variance-covariance

structure of the dataset as far as the k=1 condition is satisfied [66]. In addition, the

approach is less susceptible to model misspecification due to its non-parametric nature

which does not require models in relating datasets [67]. In precis, the KNN is good on

the basis of simplicity, comprehensibility and scalability [68].

On the other hand, the limitations of the KNN include its high cost of computation which

makes it difficult for it to be applied to real-time situations, high storage prerequisite and

responsiveness to noise [68] In addition, it involves several pre-processing procedures

like the screening or data splitting among others which is time consuming. Also, [68]

28

noted that noise tend to cause issues related to difficulties in convergence and accuracy

of classification.

2.2.3 MEAN Imputation

The Mean imputation is a method where the missing value in a dataset is filled in by the

mean value of the available or non-missing data values [69]. That is, it is a single

imputation approach where some mean values of ascertained data is used to replace

missing slots in a data set [70]. One advantage of this approach is the absence of

complexity that is associated with its calculation. Furthermore, the approach preserves

the mean value of the observed data especially when data is missing at random, as such

the mean value still remains unbiased [70]. Furthermore, the use of the mean imputation

also guarantees a complete sample size as the approach ensures that the full sample size

is kept and as such will not lead to problem in parameter estimates [61]. However, the

size of the covariance and correlation tends to reduce and as such tends to cause bias in

estimation especially when the relationship between variables is to be considered [71].

Furthermore, this tends to reduce the standard error of the mean and consequently, the

probability values attached to the variables under consideration will equally be reduced

leading to another major bias in estimation [69], [72].

2.2.4 MissForest Imputation

The MissForest imputation is a non-parametric approach premised on the random forest

algorithm that can handle any kind of data whether they are characterized by mixed

variables, high dimensionality or non-linear relations [73]. However, the only requisite

for the execution of the approach is that the observation must be pairwise independent

[73]. The approach presents an estimate of the imputation error which [73] assumes that

it is accurate to a very large degree. MissForest imputation outperformed other

imputation methods explored in their study [73]. The approach is centered on random

forest-based iterations which occur after the mean/median imputation has been done to

predict a transformed dataset to fill in the missing data [74]. Also, contrary to the

29

provisions of the KNN technique, this approach does not require pre-processing

activities while it also efficiently handles noise and multi-collinearity in the dataset. In

addition, the approach is not subject to the curse of dimensionality and requires no

tuning because of its non-parametric approach [74]. However, the approach has some

limitations which include its nature as an algorithm rather than a model object. As such,

it cannot be stored and therefore requires fresh processing each time there is a need for

missing data imputation which may not be comfortable in some quarters [75].

Furthermore, it wastes more imputation time because it increases the number of

predictors and observations in a bid to fill missing values while it equally subjects the

dataset to the lack of interpretability of random forests [75].

2.3 Research Gaps

This section describes the gaps in the published research.

Textual classification methods such as Machine Learning, Semantic Orientation [34],

Topic modelling [26-27], Posit [14 48, 49, 15], the linguistic maker (keyword) model are

used in the Sentiment analysis 45[5, 13, 75], a bag of words [11, 21] and vector space

model [12, 23] have been reported in the literature. However, conventional methods such

as a bag of words and vector space model are faced with many limitations such as high

dimensional feature vector encountered due to large size of vocabulary, the model

disregards semantics of the word (the word ‘automobile’ and ‘car’ could be used in the

same context) [11]. Also, highly sparse vectors occur when there is a nonzero value in the

dimensions related to the words that appear in the sentence [11]. Moreover, a vector space

model also suffers from synonym and polysemy. The model is semantically insensitive

(documents with similar context but different term vocabulary cannot be connected).

Hence, a negative match occurs. It theoretically assumes that terms are statistically

independent. Lastly, long documents do have poor similarity values [12].

In recent times, methods such as Sentiment [5] [13] and Posit analysis, both at word-

level [14] and character-level [15], to mention a few, have been explored to characterise

30

a set of text for use in a classification model which is the focus of this research because

they are hot-trend methods useful in market and scientific research in the area of

Machine Learning and Natural Language Processing. However, the use of the linguistic

marker technique in some sentiment analysis (i.e. the use of frequently used keywords)

such as [5] [13], relies on the use of keywords to obtain sentiment around each Web page

and reducing the number of keywords to top k-nouns (which often carry the sentiment)

will reduce the dimension and matrix sparseness, this poses another challenge as chances

are there that a fraction of the Webpages in each class has few or none of the selected

keywords thereby leading to non-capture of sentiment values of such Webpage, this may

impair classification accuracy of such Webpages.

However, the aforementioned are the knowledge gaps observed in the literature and the

focus of this research is the means of analysing text to extract useful feature information

that would enhance automated classification.

31

Chapter 3: Methodology

This chapter contains the description of the data and the methods adopted in the thesis.

3.1 Experimental Design

The experiments conducted in this research are developed on the foundation or

justification of research questions that could be evaluated to determine if the assertions

are correct or not. Sections 1.3 detailed our research questions. However, it is important

to sustain a consistent experimental setup to achieve valid conclusions. The effectiveness

of the methods explored in the study is analysed and tested on ICCRC extremist data. The

Web data retrieved from Nigerian domain sources would be used to test the validity of a

trained dataset obtained from ICCRC. The six different text feature representations

considered in this thesis for the various classification tasks are Sentiment (KNN, MICE

and MissForest Imputation), Posit, Extended Posit-based analysis and the proposed

method, a Composite-based analysis. The concepts and the design of the methods carried

out in the study are described in Figure 3.1. The descriptions of the datasets, data

preparation and data pre-processing phases of the model development for the experiments

are given below.

32

Figure 3.1: The Architecture of the Research Methods

3.2 DATA SOURCES

In the following, two manually classified datasets are presented. The origin of each

dataset differs and this produced a broad range of texts with similar topics. These datasets

have been employed to test the effectiveness of the frameworks for efficient text

classification. General descriptions of the dataset are given below:

(i) Extremism dataset (referred to as ‘ICCRC dataset’): The Webpages were obtained

from extremist Websites using the TENE-WebCrawler. The TENE-WebCrawler is a

software developed at the International Cyber Crime Research Centre (ICCRC), Simon

33

Fraser University, Canada. This crawler follows links based upon keyword searches

through the Internet, extracts Web pages and analyses each page visited [5]. One set of

such Web pages was initially subjected to manual classification by ICCRC personnel,

whereby each Webpage was grouped as "pro-extremist", "neutral" or "anti-extremist"

based on its contents. The data retrieved for this manual classification process comprised

7500 Web pages manually classified as indicated above.

The Webpages were classified with respect to their content. For example, the neutral

group reflects content from the media/news that reports impartially on terrorist events. In

the neutral class, 2500 Web pages were derived from 30 Websites. The anti-extremist

class contains Web content that reports the countering of terrorism and operations of

intelligence agencies. The anti-extremist class consists of 2500 Webpages from 10

Websites. Pro-extremist pages express extremist content from extremist and jihadi

organisation Websites. Examples of such Web sources are white supremacist forums and

America-based neo-Nazi forums. In this class, 2500 Webpages were obtained from 11

different Websites. However, a balanced dataset in ICCRC Extremism Web-data (2500

Web pages in each category) is used, this is to create unbiased results among each class.

(ii) Nigerian Extremism Dataset: Websites with extremism topics were retrieved from

Nigerian Websites with the aid of the Beautiful Soup framework [18]. This is a Python

library used to download Web page content, automatically scrape HTML data from a

Webpage and present it in a plain text format. This software was used to retrieve

Nigerian domain Websites with extremist topics. The retrieved data comprised 210

Webpages from ten different extremist Websites. These data were later classified

manually with the aid of a qualitative research tool, NVivo [19] which permits future

analysis of the data. The Webpages are categorised based on its content into three

classes; pro-extremist, anti-extremist and neutral, with 70 Web text documents in each

class. Examples in the pro-extremist class include content retrieved from recognised

extremist websites such as radio-Biafra (Website for the agitation for Biafra nation),

Boko-Haram (website for a group of terrorists in the Northern part of Nigeria) IPOB

34

(website for a group of people in the Eastern part of Nigeria agitating for Biafra nation),

and Niger-Delta Avengers (Websites for a group of militants in South-Southern part of

Nigeria who feel they are being exploited). The forums consist of content discussing a

referendum for independence, agitation for independence, war, opposition to the

government, hate speeches, killings, vandalising of oil wells and pipelines and religious

radicals (Boko-Haram). This category of Web page content consists of 70 Web pages

that were obtained from 10 different Websites. The neutral content was obtained from

media sources that could be expected to report generally on terrorist occurrences from a

more unbiased, journalistic perspective, including sites such as lindaikeji (blog) and

Nairaland (blog). In this neutral class, 70 Web pages were retrieved from 11 Websites.

Finally, the anti-extremist category contains 70 Web pages obtained from 9 different

Websites. The anti-extremist content reveals opposition to violence, for example,

counter-terrorism Websites such as the Nigerian police, and Economic and Financial

Crime Commission (EFCC) forums.

3.2.1 The Dataset’s Complexion

Complexion analysis unravels any discrepancies in characteristics between the data

items to be classified. There might be a situation where a unique feature might

excessively influence the automated classification process. However, the complexion

analysis helps to make the subsequent examination of key attributes of the data to have

knowledge of the likelihood of such influential factors such as number of words, number

of characters, number of special characters, as well as maximum, minimum and average

values for each of these features. Table 3.1 revealed different distributions within the

features such as Total Words, Number of Sentences Type/Token Type and Average

Sentence Length in the datasets. Posit analysis is explored to shed light on the

complexion analysis of the datasets. The complexion’s components are described below

such as the data points, spread, skewness and the coefficient of variance.

35

Data points

The middle of the data set is regarded as the central location which is described by mean,

median or mode. Mean is regarded as an average value of the data points, the value in

the dataset that appears most is regarded as a mode while the mid number when the data

point is placed from low to high is known as the median

Spread or Dispersion

The extent to which a distribution is expanded or compressed is known as dispersion,

also known as the spread. Examples of statistical dispersion metrics are mean, variance

and standard deviation. For example, when the variance of data in a collection is high,

the data is well dispersed. When the variance is at modest (low), however, the data in the

set is clustered [76].

Coefficient of variance

A fraction of the standard deviation to the mean is regarded as the coefficient of

variation. The coefficient of variation is a statistical measure of the dispersion of data

points around the mean (relative standard deviation). When comparing data dispersion

between distinct data sets, this metric is widely utilized. The coefficient of variation,

unlike the standard deviation, which must always be assessed about the data's mean, is a

simple and quick way to compare different data sets. [76]

Skewness

Skewness estimates the asymmetry of a real-valued random variable's probability

distribution around its mean. Positive, zero, negative or undefined skewness are possible

values in skewness. The tail on the left side of a unimodal distribution is indicated as

negative skew while positive skew shows that the tail is on the right-side [77]. Skewness

does not follow a general rule when one tail is long and the other is big. A zero value

36

indicates that the tails on both sides of the mean balance out in the overall distribution,

for example, this is true for both symmetric and asymmetric distributions with one long

and small tail [77].

3.2.2 Attributes of the Dataset

The ICCRC Extremist data has a mean of the number of total words of 1955 in a text

with a maximum of 75127 (illustrated in Figure 3.2). The standard deviation for

total_words is far above the mean and above zero, making the data points spread away

from the mean showing a lot of variation. With a skewness value of 7.28302, the

distribution is skewed right with a tail, also showing a spread of variation towards the

increasing positive x-axis- indicating data points/outliers that are greater than the mode,

showing some variation. The coefficient of variation is also >1, showing high variance of

data points. From the plotted histogram, the x-axis is the range of values while the y-axis

is the frequency for the value ranges.

Figure 3.2: Total words for the Extremism (ICCRC) Data

The number of sentences in the ICCRC Extremist set contains 59.9. The highest number

of sentences for the ICCRC data is 2450, but the plot shows that bulk of the data

contains less than 408 sentences. This is shown in Figure 3.3. The standard deviation for

number_of_sentences is above the mean and far above zero as well, making the data

37

points spread away from the mean showing a lot of variation. With a skewness value of

8.18498, the distribution is skewed right with a tail, also showing a spread of variation

towards the increasing positive x-axis- indicating data points/outliers that are greater

than the mode, showing some variation. The coefficient of variation is also >1, showing

a high variance of data points. From the plotted histogram, the x-axis is the range of

values while the y-axis is the frequency for the value ranges.

Figure 3.3: Number of sentences for Extremism (ICCRC) data

For the ICCRC extremist data, the mean average sentence length is 48.086, and the

maximum is 1716, both of which are doubtful to be actual sentences because the data's

maximum is still extremely high (displayed in Figure 3.4). However, the data average

sentence length values suggest that the datasets may contain numerous texts that are not

structured in sentences. The ICCRC extremist data has compressed plot, with only a few

texts around 250. The standard deviation for average sentence length is close to but still

above the mean and far above zero as well, making the data points spread away from the

mean showing a lot of variation. With a skewness value of 11.5183, the distribution is

skewed right with a tail, also showing a spread of variation towards the increasing

positive x-axis- indicating data points/outliers that are greater than the mode, showing

some variation. Coefficient of variation is also >1, showing high variance of data points.

From the plotted histogram, the x-axis is the range of values while the y-axis is the

frequency for the value ranges.

38

Figure 3.4: Average sentence length for the Extremism (ICCRC) data

The standard deviation for average word length (awl) is well below the mean and close

to zero, making the data points spread towards the mean showing less variation. With a

skewness value of 3.17162, the distribution is skewed right with a tail, also showing a

spread of variation towards the increasing positive x-axis- indicating data points/outliers

that are greater than the mode, showing some variation. The coefficient of variation is

also <<<1, showing less variance of data points. From the plotted histogram, the x-axis

is the range of values while the y-axis is the frequency for the value ranges. There is

little variation in this column of the feature. This is shown in Figure 3.5

Figure 3.5: Average Word Length for the Extremism (ICCRC) data

39

The standard deviation for the type/token ratio is below the mean but still above zero,

still making the data points spread away from the mean showing a lot of variation. With

a skewness value of 1.56646, the distribution is unimodal but has peaking outliers as

multiple peaks, also showing a spread of variation towards both positive and negative x-

axes- showing some variation. From the plotted histogram, the x-axis is the range of

values while the y-axis is the frequency for the value ranges. The low coefficient of

variation (0.33667) suggests a low level of variation. This is shown in Figure 3.6. Table

3.1 shows the summary of the complexion analysis of the Extremist (ICCRC) dataset.

Figure 3.6: Type/Token Ratio for the Extremism (ICCRC) data

Table 3.1: Complexion Analysis of Extremist (ICCRC) Dataset

Features Min Max Mean Std Dev.

Total Words 0 75127 1955 2672

Number of Sentences 0 2450 59.962 95.69

Average Sentence length 0 1716 44.086 45.717

Type/Token Ratio 0 2 0.48 0.16

Average Word Length 0 37 7.12 1.51

40

From this analysis, we can see a series of variances on the data’s distributions of some of

the features in the ICCRC extremist dataset. The same situation was observed in

Nigerian data. To avoid tautology, the discussion in Section 3.2.2 is valid for Nigerian

data. Hence, both datasets were scaled to avoid situations in which a unique feature may

excessively influence the automated classification process. Consequently, a version of

each dataset was normalised and the second was standardised to know which scaling

technique works best on individual data in each framework. The scaling techniques are

further explained in Section 3.3.

3.3 Data Preparation

This section describes the process of transforming and cleaning of raw data before the

classification process. The process improves data quality, increases efficient analysis,

reduces error and inaccuracies that can occur to data during processing.

 Data Cleaning

Raw data containing noise is unclean, such data degrade the quality of the classification

result. However, pre-processing helps to process noisy data to enhance machine learning

algorithm’s performance. To enhance classification accuracy, dataset is pre-processed

before being fed into machine learning. The pre-processing steps include noise

cleansing, dealing with missing values and scaling the data. The detailed process is

described below:

Corpus linguistics entails analysis executed on a text corpus. Therefore, analysing text in

terms of frequency distribution of keywords requires the text to be cleaned from

unwanted information, this is an important processing step when using machine learning

algorithms. However, the text documents retrieved from the extremist Websites were

loaded into Python which was scanned as strings of text. Cleaning was performed with

41

the NLTK (Natural Language Toolkit) and SciKit library. NLTK and SciKit roles

include the transforming of all words to lower case to enhance accuracy in the analysis

and stop word deletion. Examples of stop words are “the”, “a”, and word length of one

or two characters that contain less meaning in large texts.

 A Porter Stemmer algorithm is employed to reduce all words to their stem or root. A

stemmer converts words such as “Twitter” and “Twitting” to “twit”. Stemmer improves

the accuracy of a linguistic analysis and helps to avoid missing potential sentiment in a

textual corpus and helps to remove some URL’s in the textual files. A model’s

prediction accuracy could be drastically reduced with invalid or missing data and needs

to be prevented. However, the data generated for Posit analysis does not return any

missing values but returned zero or -1 values for an instance where text was not correctly

encoded or not in the English language. However, these erroneous instances were

amended by correcting the language and the encoding in the pre-processing stage and the

file format explored is a csv file format. In addition to the pre-processing approach, the

dataset was standardized and normalised.

Normalisation of the Datasets

Sklearn library is explored in this thesis which is a pre-processing library, it

contains functions to normalize and standardize the data [78]. Data was normalised by

importing the MinMax method and applying it to our train dataset. The method takes an

array as an input and normalizes its values between 0 and 1. It then returns an output

array with the same dimensions as the input.

Standardization of the Datasets

Subtracting the mean of each observation and then dividing by the standard deviation is

the procedure of standard deviation [78]. The features are rescaled to have the attributes

of a typical normal distribution with standard deviations:

42

μ=0 and σ=1 where x denotes the observation, σ is the standard deviation from the mean

which is set to zero and μ is the mean set to 1. The sci-kit-learn StandardScaler library is

explored for this task and scales the data to unit variance. Hence, all the variable values

fall within the same range

3.4 TOOLS

The tools employed for concepts and the design of the methods carried out in this study

include Google Colab GPU, and Python with its packages (Pandas, Sklearn and

TensorFlow) were used to implement the classification models. A description of each

tool is detailed in later Chapters of this thesis. Figure 3.7 describes the tools explored for

the study.

Figure 3.7: The Tools Process

Python Pandas

Package

Python Sklearn

Package

Data

Preprocessing

Feature Set

Google

Colaboratory
Python

TensorFlow

RNN
MLP

Scikit Learn

J48
Random Forest

KNN

Classification

Model

43

In the setup for the Sentiment analysis experiment, one set of extremist Web pages

obtained from ICCRC was split into three folders representing the categories anti-

extremist, pro-extremist and neutral, with 2500 Web text files in each folder. In the

experiment, a part-of-speech (POS) tagger in Posit analysis was applied to each folder

(pro-extremist, anti-extremist and neutral) to tag keywords in their parts of speech.

3.5.1 Feature Extraction Process.

Part-of-speech (POS) tagging in Posit analysis [8] was applied of the extremist Web text

where top ten most occurring nouns (keywords) were chosen from each class and later

aggregated into one list, after disregarding duplicates, symbols, stop words and non-

words, we arrived using 26 keywords across the three categories (pro-extremist, anti-

extremist and neutral). Table 3.2 presents the list of the keywords. The noun keywords

were utilized to find terms on each page that showed a high level of sentiment. This is

because the context around noun keywords contains more sentiment [5], [13].

Additionally, each page had a scope of five words on either side of each term, and the

output was input into Sentistrength to generate each page's sentiment value, which was

taken from Sentistrength's General Inquirer lexicon. Sentistrength has a high accuracy

level for brief non-political Web texts in English [16], hence scope of five words was

used.

Consequently, the feature set is contained in a csv format where each page comprises

noun keywords with their corresponding sentiment scores and the manual label.

SentiStrength can also produce outcomes that are binary (positive/negative), trinary

(positive/negative/neutral), or single-scale (-4 to +4) [16]. However, this study explored

single scale (-4 to +4) results. The aforementioned approach explained how we converted

the Web text obtained to numeric for the machine learning model. Figure 3.8 shows the

sentiment feature extraction process.

44

1. Syria

2. Counter

3. terrorism

4. Program

5. Affairs

6. Court

7. Ebola

8. Facebook

9. Islam

10. Jihad

11. Military

12. Muslim

13. News

14. Policy

15. Politics

16. President

17. Press

18. Rights

19. Safeguards

20. Syria

21.Trial

22. Twitter

23. CNN

24. Crime

25. Victims

26. War

27. Security

Table 3.2: Noun Keyword List

Figure 3.8: Sentiment Feature Extraction Process

45

The technique considered in this sentiment analysis approach uses top-k noun keywords

to obtain the sentiment around each Webpage. However, reducing the number of

keywords to top k-noun keywords poses a challenge because there were some of the

Webpages in each class have few or none of the selected keywords thereby leading to

data sparseness and non-capture of sentiment of such webpage(s). This set of Webpages

that have no associated sentiment value(s) are sometimes encoded as blank or NaNs

(missing values) which cannot be denoted by 0 as zero represents neutral sentiment in

this experiment.

Consequently, we got a data missing completely at random (MCAR). Figure 3.9 displays

the data frame of the dataset. Missing data can cause an disparity in the dataset, leading

to poor model analysis, regardless of the type of the missingness either (the data is

missing at random (MAR) or missing completely at random (MCAR) or missing not at

random (MNAR). Missing not at random (MNAR) refers to a circumstance in which the

missingness cannot be explained by the observed variables. Missing completely at

random (MCAR) describes a condition in which the missing values are unrelated to any

other values, whereas data missing at random (MAR) describes the opposite [17].

46

Figure 3.9: Data Frame of the Dataset

The easiest approach to a missing data problem would have been dropping the missing

data but this is dangerous because the deleted data can be informative [60]. A better

approach to the missing data is the imputation method. Imputation is a method for

replacing missing data with an approximation based on other available data [17]. In the

process of the imputation, a value according to the accessible data is calculated and later

preceded into the substitution process [17].

There is no ideal or accurate technique to make up for missing values in a dataset. For

some datasets and missing data types, each strategy may perform better, but for others, it

may perform substantially worse [57]. However, how to calculate value from the

accessible data led to the different imputation methods explored in this thesis to handle

missing data. Machine learning imputation-based techniques are adopted because of their

better performance compared to statistical-based imputation [59],[65],[67]. Eventually,

the implementation of imputations methods on a sentiment-based approach (the

procedure that utilises top-k noun keywords to obtain sentiment values from text corpus

47

before being fed into machine learning) generates different three versions of ICCRC

datasets namely; KNN, MissForest and MICE dataset. Each process is described below.

3.5.2 Imputation Methods

K-Nearest Neighbor Imputation

The missing values in the ICCRC dataset were filled in using the scikit-learn class

KNNimputer. The approach employs the core KNN algorithm which is more beneficial

than the oversimplified approach of replacing all values with the mean or median. In the

experiment, the K parameter, also referred to as the distance from the missing data is

supplied. The mean of the neighbors was used to predict the missing number. The

KNNimputer() library actualizes this and takes the following arguments:

n_neighbors: this refers to the number of data points that should be included that are

closest to the missing value.

Metric: By default, nan_euclidean is used as the distance metric when finding values

Weights: by default uniform is used to evaluate the basis on which neighboring values

should be handled, values such as {uniform , distance, callable}.

Multivariate Imputation by Chained Equation (MICE)

One of the effective method of addressing missing data in a set of data is multiple

imputations by chained equations. In this study, the following steps were actualised to

obtain the MICE imputation based dataset:

1. All features are imputed using a simple type of imputation, such as Mean Imputation.

2. A feature's values are reverted to missing.

48

3. a regression analysis is implemented on the seen values from the target variable in the

above step of the approach by exploring other variables in the imputation model

4. The missing values in the column were replaced by regression model predictions

(imputations).

5. For each variable for which there are missing data, steps 2-4 are repeated.

6. steps 2-4 were conducted simultaneously while updating the imputed values each

time.

5 The cycles were performed for the experiment where the optimum performance was

reached (the coefficients in the regression models converged hence the model became

stable). The final imputations are kept at the end of these cycles, creating a single

imputed dataset.

Missforest Imputation

In the MissForest version of the dataset, the study explored the mean to impute all

missing data, then fits a random forest on the seen portion and forecasts the missing part

for each variable with missing values (i.e. the training set is the observed observations,

while the prediction set is the missing values). This training and prediction approach is

iterated until a stopping criterion is met or a user-specified maximum number of

iterations is reached. Once all variables with missing data are filled in, one imputation

cycle is completed. Consequently, in this experiment, the imputation process is repeated

several times. The reason for the numerous iterations is that, beginning with iteration 2,

the random forests that perform the imputation are trained on higher and better quality

data that has been predictively imputed. Consequently, the optimum performance was

achieved after 4 iterations.

49

3.6 Posit Experimental Set-up

A Posit API was developed and employed in the experiment so that, when applied to the

dataset, Posit produced data on word-level features. The Posit API is an extension of the

actual Posit system, built using Django, Python Shell and the AWS Elastic Beanstalk

framework. The Posit API has two endpoints: api_posit and result_name, where

result_name is a unique id auto-generated for a particular Posit call. The api_posit

endpoint receives an http POST request from any services with a zipped input file of key

"file_input". The request call triggers an inner function that performs the Posit analysis

and returns a zipped output of the result. The result_name endpoint receives a GET

request to download the result of a particular api_posit call. When it receives a request

call, it triggers an internal function that searches the AWS Linux file system for the

result of the <result_name>. Once it finds it, it returns the zipped file back to the request

call. The API has some language binding in Unix Shell, Ruby, Python and Java. Details

of the implementation are presented in Appendice B1.

3.6.1 Posit Textual Analysis (Word-Level Feature)

This section describes the second text feature representation framework. In the following,

the syntactic feature extraction process using Posit textual analytic tool is discussed.

The Posit textual analysis toolset is a program written mainly in UNIX scripts and is

capable of generating a detailed frequency-based syntactic analysis of a textual corpus

[14]. Recently, Posit was implemented in an integrated full-featured Posit-API version

[79]. The Posit-API version provides the full scope of the Posit application in the

analysis of text data sets.

When the Posit API was applied to the dataset, it generates quantitative data from any

text. The output provides word-level features and associated values. The features include

word count, number of characters and sentences, number of token and types, n-gram

50

frequencies and statistics based upon parts-of-speech (POS) [14]. By default, Posit

produces data on 27 features. Figure 3.10 and 3.11 show the procedural role of Posit. The

resultant feature set from Posit can be fed into a classifier for Web page classification.

The output from Posit analysis produces three different levels of detail, a summary level,

the intermediate (aggregate) part-of-speech analysis and the detailed word types together

with the part-of-speech analysis. The summary level includes the total number of verbs,

nouns, adverbs, etc. In addition, frequency data is produced in the intermediate level for

the contents of the text analysed in terms of particular parts of speech. For example, it

generates analysis of different forms of verb such as, the base type of verbs, the gerund,

the past tense, the past participle, the 3rd person present, the present tense (non-3rd

person) form and the 3 modal auxiliary forms. In the fine detail level, frequency data for

each word in terms of part-of-speech type is provided, such as the number of occurrences

of every word that are in the past participle form, etc. The three different levels of Posit

analysis details are shown in Appendix.

Figure 3.10 Word-level Feature Extraction Process using Posit Analysis

51

Figure 3.11 Processed Features using Posit

Posit word-level features, together with the manual classification, produced 28 features

to be fed into a classifier for Web page classification. On the basis of chosen classifiers

and the target manual classification, this provided a measure of how many of the pages

were successfully classified on the basis of the Posit features.

3.6.2 Extended-Posit Analysis

For this third text feature representation framework, Posit was improved to include

character-level content. This upgraded the convectional word-level statistics to provide

an additional 44 character-level features for each instance of text data. The extension of

Posit to adopt character-level as well as word-level data preserves the domain-neutral

nature of Posit analysis. This extended-Posit technique was implemented on the extremist

The features include noun types, possessive pronoun,

personal pronouns, average sentence length, determiners,

adverbs values for total words (tokens), total unique words

(types), type/token ratio, number of sentences, number of

characters, average word length, verb types, adjective

types, adverb types, preposition types, personal pronoun

types, determiner types, types, interjection types, particle

P PRO

P
ANTI NEU

POSIT TOOL SET

52

Web pages through the API facility, to output both word-level and character-level

features. The character-level features contain quantitative information on individual

alphanumeric characters, and a subset of special characters, questions marks,

exclamation marks, asterisks, periods and dollar signs. Following this analysis, each data

item of the extremism Webpage is represented by a set of 72 features – 27 word-level, 44

character-level features and the manual classification. Thereafter, this list of page

features comprises 72-Posit features, including the manual classification for a direct

entry into a classifier for Webpage classification.

3.7 The Composite Analysis

This section describes the fourth text feature representation framework (the proposed

framework).

This framework is designed to utilise the combination of sentiment and syntactic features

in textual content as a basis for text features which are fed as input into machine learning

algorithms to build a classification system. The proposed composite framework operates

through a custom-written Python script that merges together sentiment features derived

from a lexical approach in sentiment analysis and the frequency of syntactic word-level

features obtained from Posit. The rationale behind the hybrid features in the composite

approach is to apply the richer features of the textual corpora that could be fed into the

classification model. Both sentiment and syntactic features have proven to be significant

and useful input in developing a classification model [5,13,14]. Figure 3.12 below

illustrates the composite feature extraction process. The generated output data comprises

54 features including the manual classification for a direct entry into classifiers, this is to

generate a measure of how well each page can be classified into their appropriate classes.

.

53

Figure 3.12: Composite Feature Extraction Process

The details of the classification models explored in this thesis are further explained in the

next chapters of which include, Machine Learning algorithms (such as, J48, Random

Forest (RF) and KNN)) and Neural Networks, (Multilayer Perceptron (MLP) and

Recurrent Neural Network (RNN)) which are implemented using both Scikit-learn and

TensorFlow API respectively.

https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory

54

Chapter Four: Machine Learning

This chapter describes the implementations of the Machine Learning Models and the

results obtained on different classification frameworks explored in this thesis. As a

reminder, the classification frameworks in question, are Sentiment (MICE, Missforest

and KNN imputation), Posit (features on the basis of word-level information), and the

Extended Posit (features on the basis of both word and character-level information) and

the proposed framework, Composite-based classification method.

4.1 Machine Learning

Machine learning is a branch of Artificial Intelligence that provides systems the capacity

to automatically learn from data and explore knowledge from the experience for future

predictions without being programmed for each specific case. An algorithm builds a

model using example input and applies the model to make decisions or predictions [20].

The aim is to develop models that learn without any help or human intervention.

Machine learning builds algorithms that can learn from data in contrast to static

programming that instructs a computer what to do in the case of specific data. In

machine learning, the computer derives its model based on the data available. There are

two categories of machine learning: supervised learning and unsupervised learning. The

supervised learning algorithm learns from a function that converts input to output

depending on the sample input-output sets [80]. It deduces a function from pre-classified

(labelled) training data comprising a set of training instances. In supervised learning, a

pre-classified dataset is involved. Examples of supervised machine learning algorithms

are Support Vector Machine, Neural Network, J48, Random Forest algorithm, etc.

Unsupervised learning is a form of machine learning that searches for previously

unnoticed patterns in a data set without pre-classified labels and with no supervision

such as a k-means clustering algorithm, apriori algorithm, etc. [80].

55

4.2. ALGORITHMS

The classification algorithms employed in this thesis are J48, Random Forest Decision Tree

algorithms, and K-Nearest Neighbours. The details are further explained below:

i. J48 Decision Tree

The J48 decision tree is a predictive machine-learning model that creates a classification

or regression model in a tree-shaped structure on the attribute values of the available

training data with the purpose of classifying a new item [80]. Whenever J48 comes

across a training set, it spots the attributes that distinguish various instances distinctly

(i.e. the features with the highest information gain) within the available values of these

features, if there is no confusion, then that branch is terminated, and the target value

obtained is allocated to it. J48 operates by determining the dependent variable, that is,

the target value of a new sample using the various attribute values in a given data set.

The branches between the nodes of the decision trees show the possible values of the

attributes in a given sample; the internal nodes indicate the different attributes and the

terminal nodes produce the final value, (i.e. the classification of the dependent variable)

[80]. The dependent variable is the attribute to be predicted while other attributes that aid

in predicting the worth of the dependent variable are referred to as independent variables

in the dataset.

The different types of decision tree include ID3, (CART) and C4.5 [80]. The J48

decision tree algorithm is adopted because it gives a better understanding of how the

algorithm makes decisions. In addition, it contains an algorithm that enhances text

classification and a rule-building process [80].

ii. K-Nearest Neighbor

One of the most basic machine learning algorithms is the K-Nearest Neighbour

algorithm, which is a supervised learning method. The K-NN approach assumes that new

56

data and current instances are comparable and assigns the new instance to the category

that is closest to the existing categories [81]. The K-NN method stores all accessible data

and classifies a new data point based on its resemblance to the existing data [81]. Both

regression and classification problems can be solved with the K-NN approach, but are

commonly used for classification tasks. A kind of non-parametric algorithm is the K-NN

algorithm, this implies that it doesn't assume anything about the data. K-NN algorithm is

regarded as a weak learner algorithm since it doesn't instinctively learn from the training

set; alternatively, it reserves the dataset and during the classification, it acts on the

training set [81]. During the training stage, the KNN algorithm simply keeps the

information, and when it receives new data, it classifies it into a category that is quite

similar to the new data [81].

KNN method starts with determining the number of neighbors; there is no specific way

to discover the ideal value for "K," therefore we must fine-tune the parameters to get the

best results. It estimates the Euclidean distance between K neighbors. If the input

variables are similar in Euclidean, Euclidean is an appropriate distance metric to utilize.

Euclidean distance is estimated by using the square root of the sum of the squared

differences between a new point (x) and an existing point (xi) across all input

characteristics j.

sqrt(sum((xj – xij)2) Distance(x, xi) = sqrt(sum((xj – xij)2)

Thereafter, the approach takes the K nearest neighbors based on the Euclidean distance

obtained. Then, compute the number of data points in each class among these k

neighbors. The algorithm eventually allocates the new data points to the class with the

greatest number of neighbors [81]. KNN algorithm is easy to set up and resistant to noisy

training data.

iii. Random Forest Algorithm

57

This algorithm starts by selecting random samples from a given dataset and then forms a

decision tree which the algorithm then separates/ split each class in the tree using their

features, a new random sample of features is selected for every single split, and the

algorithm only chooses one of the random samples as the prediction. It uses entropy and

information gain for calculation [82]. It’s also worthy of note that the random forest is a

more advanced application of a decision tree, based on its voting and weighting functions

between multiple decision trees, which makes it act as a stacked ensemble [82]. It

employs ensemble learning, a method for addressing complex problems by merging

many classifiers.

4.3 MODEL METRICS

The metrics described in this section were used consistently across all classification

models.

4.3.1 Validation

Model validation refers to a process where a trained model is gauged with testing set in

machine learning. The testing data set is a subset of data that is not part of the training

set. The main function of the testing set is to determine the generalisation power of a

training model [83].

Training a model on a subset of data and testing it on the remaining samples is a primary

approach to validating a learning model. Dividing the data into two raises a challenge of

what proportion should test and training set be chosen. It is substantiated that 80:20 or

70:30 are acceptable ratios [83], while [84] suggested 75:25 as a common choice for

some particular classification problems. However, it is necessary for both subsets to be

represented well with a sufficient amount of data. Otherwise, the model will not have

adequate information about a category, and testing the model using the testing set might

not yield a good result [84]. The train set is used to make machines learn the pattern

58

and create a model for future prediction. The test dataset is used to test model

performance such that it considers this data as unseen data. Another better option is to

explore cross-validation. When we use cross-validation, even the train set is divided

into N partitions to make sure that our model is not overfitting [84].

Cross-validation estimates how the outcome of a statistical analysis will behave on a new

data set. The most popular among the cross-validation type is the K-fold Cross-

Validation. Other types of cross validation include Leave-One-Out and Leave-p-Out but

they are computationally expensive [48]. K-fold Cross-Validation is mostly used in

machine learning for a given predictive modelling problem because it is easy to

comprehend, and produces a result with a lower bias than other methods [85]. The

method has one parameter known as k which describes the number of categories into

which a given data sample is to be divided. K-fold Cross-Validation entails randomly

splitting the set of samples into k categories, or folds of the same size [85]. The first fold

is used as a validation set, and the method is fitted on the remaining k −1 folds. A

specific value for k can be chosen, such as k=5 or 10.

4.3.2 Evaluation Metrics

A machine learning algorithm’s performance on a dataset could be evaluated using

various metrics. Such metrics include root-mean-square or mean absolute error, true

positive (TP), false negative (FN), false positive (FP), true negative (TN), accuracy,

recall, precision, f-measure, confusion matrix etc. These metrics will be explained in

more detail later in this chapter. In addition, there are two cases in classification which

include the binary and multi-class categories. Binary classification deals with two

definite categories: one positive and one negative towards an objective while the multi-

class category deals with classifying instances into one of three or more classes. Many

performance measures can be drawn from a confusion matrix. The row of confusion

indicates the actual classes while the columns show the predicted classes. One class is

59

indicated to be a positive class (yes) while the other is the negative class (no) for the

other. Table 4.1 below shows a 2x2 matrix.

 Predicted

Yes No

Yes

Class

No

True Positive (TP) False Negative (FN)

False Positive (FP) True Negative (TN)

Table 4.1: Confusion Matrix 2x2

False negative means an instance predicted to be negative which is positive and false

positive vice versa. True Positive is an instance predicted to be yes and the actual

outcome is also yes. True Negative is an instance predicted to be no and the actual

outcome is also no. The accuracy is defined as the proportion of the number of correct

predictions to the total number of input samples.

Accuracy = (True Positive + True Negative) / (True Positive + True Negative + False

Positive + False Negative).

Recall reveals a number of true positive entities recognised by the classifier out of all

entities identified as positive while precision shows the degree of the accuracy (i.e. The

algorithm returns most of the relevant items).

Precision = True Positive / (True Positive + False Positive).

The recall is the ratio of the total amount of relevant occurrences that were retrieved.

Recall = True Positive/ (True Positive + False Negative).

60

In a perfect classification, precision and recall have a value of1. Specificity evaluates the

number of times the negative class is actually classified as negative [86].

Specificity = True Negative / True Negative +False Positive

The F-measure, also known as F1, is defined as the harmonic mean of recall and

precision [86]. F-measure = 2*Precision*Recall / Precision + Recall

4.4 Machine Learning Set-Up

The feature sets considered in this section are (i) the ‘default’ 27 Posit features, (ii) the

extension of Posit to include 44 character features (referred to as extended-Posit

features), (iii) sentiment features (KNN, MF and MICE imputation) and Composite

features (a mix of sentiment and syntactic features derived from the textual data). All of

the features in these different sets were extracted from the three predefined categories of

extremist Websites (with 2500 Webpages in each category). Each feature set was

employed to determine its degree of effectiveness in classification, via three algorithms,

the J48 decision tree, Random Forest and KNN. After the data preprocessing and

preparation each machine learning algorithm was implemented on each feature set. In

addition, each model explored was tweaked to obtain optimal performance. Again,

feature selection techniques such as embedded and wrapper methods were applied to

obtain useful features for excellent performance. In this case, J48 and Random Forest

algorithms were explored for feature selection operations. Further explanations are

detailed below.

4.4.1. Hyper parameter Turning

The task of selecting a set of ideal hyperparameters for a machine learning algorithm is

regarded as hyperparameter tuning. A model argument known as a hyperparameter has a

61

value established before the learning process even begins [87]. Hyperparameter tweaking

is the cornerstone of machine learning algorithms [87]. Data is used to learn model

parameters, and hyper-parameters are tweaked to achieve the best fit. A decision tree, for

example, has hyperparameters such as maximum depth and the minimum number of

observations in the leaf, whereas a KNN model has hyperparameters such as weight,

n_neigbour and leaf size. Because finding the ideal hyper-parameter can be complex,

search algorithms such as grid search and random search are often used. Grid search is a

task in the model selection package of Scikit-learn. This method is useful for looping

over predetermined hyperparameters and fitting the estimator (model) to the training

data, then the best parameters are chosen from the hyperparameters presented [87].

Grid search selects a grid of hyperparameter values and compares them all. The min and

max values for each hyperparameter must be specified by guesswork (an assumption

gauged as a result of the behaviour of the initially unturned baseline model) [87]. Having

examined its behaviour, one could be informed on what feasible range the model could

begin to better generalise. RandomsearchCV is efficient and saves a lot of time but this

thesis, on the other hand, adopted GridSearchCV. GridSearchCV is preferred over

RandomSearchCV because it ensures the best model results within the test values by

testing each and every one of the variables supplied, as opposed to Randomized Search,

which chooses combinations at random. GridsearchCV's processing time increases as the

number of combinations increases. As a result, only a few hyperparameters were

employed in the GridsearchCV implementation in order to improve processing speed.

Each of the model's parameters is explained in Table 4.2 below.

Model HyperParameters Range

J48 Decision Tree Criterion

max_depth

min_samples_leaf

entropy

1 – 21

2-5

62

Random Forest Criterion

max_depth

min_samples_leaf

gini,entropy

1 – 21

2-5

KNN Leaf_size

'n_neighbors

Weight

1- 10

1, 3, 5, 7, 9, 11, 13

Uniform

Table 4.2: The Model Parameters

Hyperparameters regulate the model's over-fitting and under-fitting. Different datasets

have different optimal hyperparameters. The following steps are taken to obtain the best

hyperparameters:

• We pick the models to be used; we check the model's parameters; we select the

techniques for searching the hyperparameter; and finally, we instantiate the

GridSearchCV method.

• An evaluation criterion for scoring the model is defined. Here we made use of

the accuracy score

• The concept of nested cross validation was used. 5-fold cross-validation was used

for both the outer and inner loops.

• Fit the search to the data (X train and y train) and run it.

GridSearch CV uses the Cross-Validation method to test all possible combinations of the

values supplied in the dictionary and assesses the model for each one. As a result, after

employing this function, we can obtain the accuracy for any combination of

hyperparameters and select the one that performs the best.

Decision Tree Algorithms (J48 and Random Forest) Parameters

63

The criterion

The criterion for measuring or evaluating the quality of each decision tree split is the

‘entropy’. The entropy simply means that if a sample (row) is randomly selected from a

split, what is the possibility that it would be incorrect [88]. The goal of the entropy is to

ensure that there is near 1 entropy (i.e. near-balance of each class so that if a certain

target variable class is picked, the probability of selecting the right class and ensuring the

purity of that split is high).

A minimum sample leaf

A minimum sample leaf specifies the minimum number of samples that must be present

at a leaf node before a split occurs [88]. The least number of samples necessary to be at a

leaf node is denoted by the minimum sample leaf. In the minimum sample leaf

parameter, a split point at any depth will only be evaluated if it leaves at least the

minimal amount of samples in each of the left and right branches for training samples

[88].

Max_depth

This parameter denotes the maximum depth of the tree the model should support. It

accepts an integer as a parameter but defaults to none, which enables the nodes to

increase until all leaves are pure or contain less than the minimum number of samples

required [88].

K-Nearest Neighbor Algorithms Parameters

The parameters explored are leaf_size, 'n_neighbors and weight. The leaf size is a

parameter in a KD tree or KD ball tree algorithm in KNN that helps to partition, allocate

or organize data points in a multi-dimension (multi-feature) space by calculating the

64

distances between each data point. So, the larger the leaf_size, the slower the

classification of these data points and vice versa [89]. The n_neighbors are the total

number of data points closest to a selected data point [89]. The weight function is

utilised in predicting likely values. It is set to a default value uniform, this enables all

points in each neighborhood to be weighted equally [89].

4.4.2 Feature Selection

To increase classifier accuracy and save runtime in high-dimensional datasets, features

must be reduced to an acceptable subset [48]. Choosing a subset of important features for

use in model creation, feature selection improves accuracy and run-time. The

fundamental goal of feature selection is to improve predictors. Filters, wrappers, and

embedding methods are the three types of feature selection methods. Wrappers and

embedded methods are explored in this thesis because the filter method only provides a

ranking of relevant features using univariate statistics and no training is involved for

filter method while the wrapper and embedded method provide subset of feature after

training [90]. The two methods explored are discussed below.

Wrapper Method:

Feature selection can impact a machine learning model’s performance by defining a

significant feature subset for increasing the performance and identifying the variability

[90]. The wrapper method evaluates the "usefulness" of features subject to the

performance of the classifier [90]. The wrapper techniques evaluate a set of features

using a machine learning algorithm that uses a systematic review to scan over the range

of possible feature subsets, rating each subset based on the strength of the algorithm's

performance. This algorithm is known as a greedy algorithm because it tries to discover

the finest feasible combination of features that results in the best performance model

[90]. Examples of the Wrapper method include Recursive Feature Elimination,

sequential feature selection algorithms, forward and backward elimination passes, best-

first search, etc. Recursive Feature Elimination would be explored in this thesis and its

description is detailed below.

65

Recursive Feature Elimination (RFE): This algorithm is effective for determining

which features in a training set are essential in predicting the target variable. RFE

generates a rating of features as well as candidate subsets, as well as the related

accuracy. The subsets with the most accuracy are often used as the final subset [91].

RFE works using the supplied machine learning method, prioritizing features by

relevance, deleting the least important features, and fitting the model again. This

procedure is done until only a certain amount of features are left [91].

Embedded method: Embedded method investigates the connection of features in the

same way that wrapper methods do. It built the search for the best subset of features into

the classifier construction [92]. To begin, this technique is used to train a machine

learning model and then use it to calculate feature importance, a measure of how relevant

a feature is when generating a prediction. Finally, it uses the derived feature importance

to delete non-important characteristics [92]. The relevance features tells us which factors

are more significant in predicting the target class accurately. The difference between

embedded and wrapper approaches is that during learning, an internal model building

metric is applied [92].

4.5 Classification Result

After executing all experiments and the analysis on the available feature sets, this section

presents the result of the experiments for each framework. Thereby, a clear position of

each research question can be considered. The results interpreted in this section are the

performance of the overall Webpage classification; pro-extremist, anti-extremist and

neutral class. Precision, recall, f-measure, and accuracy are the metrics used for the

performance evaluation of the model, in the graph presented, y-axis is the f1-score and

the x-axis is the parameter value and 5-fold cross validation was explored to provide a

degree of validation.

66

4.5.1 Random Forest Classification Result

Each feature set from Sentiment, Posit, Extended-Posit and Composite analysis were

deployed into Scitlean API, where Random Forest was applied with GridsearchCV for

optimum performance. The process aims to generate measures that show how the system

assigns each page to its appropriate classes. Table 4.3 below described the parameters

used in the Random Forest model. The details of each classification framework results

are detailed below:

 Parameter Parameter Values

Random Forest Criterion

max_depth

min_samples_leaf

Entropy

1 – 21

2-5

Table 4.3: The Random Forest Model Parameters

4.5.2 Sentiment-Based Framework using 27 features (MF Imputation)

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation. The details are shown in Table 4.4.

Folds Criterion max_depth' min_samples_leaf

1 Entropy 19 2

2 Entropy 17 2

3 Entropy 19 2

4 Entropy 18 2

5 Entropy 18 2

Table 4.4: Grid Search Best Parameters for MF Imputation

67

From the above parameters, we can see that our sentiment analysis framework (MF

imputation) demands a maximum depth not less than 19 in order to attain the best

performance. Max depth is simply the longest path that each tree has from its root right

down to its last leaf. A minimum sample leaf specifies the minimum number of samples

that must be present at a leaf node before a split occurs. A min_sample_leaf as low as 2

means that we have simpler and less complicated tree structures within the forest, trees

comprising of just 2 branches before arriving at a decision hence, lesser computation

time and lesser hardware utilization are achieved.

Below is the graph showing the performance of all the 5 folds in relationship to its

maximum depth in Figure 4.1. All the training scores for each fold converged at above

80%, and all the cross-validation scores likewise also did converge above the 80% mark

but a notable gap could be noticed between all the training scores and their cross-

validation counterparts, but the overfitting is minimal in the model. From above Figure

4.1, we can clearly see that as the max depth of the decision tree increases, the

performance of the model over the training set increases continuously. From the graph,

the y-axis is the f1-score and the x-axis is the parameter value. Fold 5 finished highest in

overall accuracy. MF Imputation model gave 86% of extremist Webpages overall

classification. Coming down to the final evaluation in the confusion matrix in Figure 4.2,

the pro-extremist class had the highest cases at 94%. The results of other categories are

shown in Table 4.5.

68

Figure 4.1: Validation Curve-MF Imputation

FP Rate Precision Recall F-score

0.056 0.894 0.946 0.92 Pro-extremist

0.113 0.8 0.903 0.848 Anti-extremist

0.036 0.912 0.741 0.818 Neutral

Table 4.5: MF Classification Result using Random Forest

69

Figure 4.2: MF Imputation Confusion Matrix

4.5.3 Sentiment-Based Framework using 27 features (KNN Imputation)

Below are the best parameters after grid search on 5 folds within the KNN imputation

data and the details are described in Table 4.6.

Folds Criterion max_depth' min_samples_leaf

1 Entropy 20 2

2 Entropy 17 2

3 Entropy 20 2

4 Entropy 20 2

5 Entropy 19 2

Table 4.6: Gridsearch Best Parameters for KNN Imputation

For the KNN data, the above parameters showed that the model required a 20 max depth

levels to accomplish the best performance, with a constant minimum sample leaf of 2.

70

The variance between the training and validation scores in KNN imputation is lesser as

compared to MF as shown in Figure 4.3. The classification model in KNN imputation is

well fitted than what is obtainable in MF imputation but the accuracy is lower than the

MF imputation. The model produced an overall classification of 85%. In KNN

imputation, Figure 4.4 displayed the confusion matrix and Table 4.7 detailed the

classification results of the three categories. From the confusion matrix, the pro-

extremist category was the most correctly identified case at 87%.

Figure 4.3: Validation Curve-KNN Imputation

71

FP Rate Precision Recall F-score Class

0.077 0.849 0.872 0.86 Pro-extremist

0.048 0.898 0.842 0.87 Anti-extremist

0.09 0.826 0.856 0.84 Neutral

Table 4.7: KNN Classification Result using Random Forest

Figure 4.4: KNN Imputation Confusion Matrix

4.5.4 Sentiment-Based Framework using 27 features (Mice Imputation)

72

Below are the best parameters after grid search on 5 folds within the MICE imputation

data and the details are shown in Table 4.8.

Folds Criterion max_depth' min_samples_leaf

1 Entropy 20 2

2 Entropy 18 2

3 Entropy 18 2

4 Entropy 19 2

5 Entropy 20 2

Table 4.8: Gridsearch Best Parameters for MICE Imputation

The best parameters for max_depth are still between 18-20, with fold 1 and fold 5 having

the best curve as they not only turned out to be the highest but the both(training curves)

converged at the end of the max_depth iterations. Still, we can also notice the same

positive relationship between the score and the max_depth meaning that as its value is

increased, the accuracy increased. Nonetheless, in the validation curve in Figure 4.5, the

variance (difference in both the validation and training set scores) is smaller compared to

MF Imputation but a little bigger than the KNN. None of the training or validation sets

decreases rapidly and hence the model is a well-fit model. Random Forest gave 88% in

classifying overall Webpages into their respective classes.

The MICE imputation data has a much higher overall accuracy compared to MF and

KNN imputation. The anti-extremist group still maintained a higher accuracy, F1-score

and precision just like in the KNN imputation. The pro-extremist class also maintained

the highest recall score as well. For precision, this means that for the MICE data, the

random forest easily and more accurately predicts positively the anti-extremist group

much more than the other classes. While for recall, in the MICE data, the model is more

sensitive to the pro-extremist class. But coming down to the F1 score which is a

73

combination of both recall and precision, we can see that the anti-extremist group still

has the best performance in the MICE data. This can be seen in the classification result

and confusion matrix in Table 4.9 and Figure 4.6 respectively.

FP Rate Precision Recall F-score Class

0.069 0.864

0.881 0.87 Pro-extremist

0.037 0.921 0.877 0.89 Anti-extremist

0.075 0.855 0.879 0.86 Neutral

Table 4.9: Mice Imputation Classification Result using Random Forest

74

Figure 4.5: Validation Curve-MICE Imputation

Figure 4.6: Mice Imputation Confusion Matrix

4.5.5 Feature Selection: Mice Imputation Features

For the MICE Imputation, the wrapper method was applied and we noticed that as the

features were applied in measured percentages through time, we noticed that the

performance of the model improved as the features were added meaning and the best

performance so far was achieved when the whole features were applied. Hence, this

means that every feature has its own level of importance within the data and must be

included to get the best performance of the model. The best accuracy is 88.2% obtained

at the 100 percentile of the feature subset at runtime of 3.2sec. Below is the graphic

representation of the wrapper method in Figure 4.7. The embedded method was also

applied and this time, it performed poorly compared to the wrapper method. So, it gave

79.8% at the 75th percentile of the subset of relevant features but reduced to 79.4% when

100% of the features subsets were applied. See the graphic representation below in

Figure 4.8

75

Figure 4.7: The Wrapper Method in MICE Imputation using Random Forest

Figure 4.8: The Embedded Method in MICE Imputation using Random Forest

76

4.5.6 Posit-Based Classification Framework

Below are the best parameters after grid search on 5 folds within the Posit data and the

details are shown in Table 4.10.

Folds Criterion max_depth' min_samples_leaf

1 Entropy 16 2

2 Entropy 15 2

3 Entropy 18 2

4 Entropy 15 2

5 Entropy 20 2

Table 4.10: Gridsearch Best Parameters for Posit Data

The grid search results for Posit indicated that the model required a range of 15-20 max

depth levels in order to accomplish best performance, with a constant minimum sample

leaf of 2. Figure 4.9 shows the training and validation curves. The model’s over-fitness is

minimal as the variance in both training and the validation scores is low. Random Forest

gave overall accuracy of 93%. From the confusion matrix in Figure 4.10, pro-extremist

cases were mostly identified with a higher precision rate compared with other categories

at the rate of 94% and 96% respectively. Table 4.11 details the classification results.

77

Figure 4.9: Validation Curve- Posit

FP Rate Precision Recall F-score Class

0.018 0.96 0.94 0.95 Pro-extremist

0.05 0.90 0.91 0.92 Anti-extremist

0.03 0.938 0.94 0.92 Neutral

78

Table 4.11: Posit Classification Result using Random Forest

Figure 4.10: Posit Confusion Matrix

4.5.7 Feature Selection: Posit Features

As part of the model construction, wrapper and embedded are the two different filter

algorithms employed for the subset evaluation of standard default 27-Posit features. The

results from the model indicated that each feature of Posit data has its own level of

importance within the data to attain better classification in the wrapper method. The

wrapper method gave the best accuracy, at 93.9% when 100 percentile of the feature

subset were utilized. The algorithm attained a processing speed of 9.6sec against the

embedded method that gave 93.3% at 8.8sec. The embedded method produced its

optimum performance at the best 45 percentile of the features. Below is the graphic

representation of the wrapper method and embedded method in Figures 4.11 and 4.12

respectively.

79

Figure 4.11: The Wrapper Method in Posit using Random Forest

80

Figure 4.12: The Embedded Method in Posit using Random Forest

4.5.8 Extended-Posit Feature Set (71 features) Classification Framework

Below are the best parameters after grid search on 5 folds within the Extended-Posit data

and the details are shown in Table 4.12.

Folds Criterion max_depth' min_samples_leaf

1 Entropy 18 2

2 Entropy 19 2

3 Entropy 17 2

4 Entropy 19 2

5 Entropy 19 2

Table 4.12: Gridsearch Best Parameters for Extended-Posit Data

81

For the Extended-Posit data, the above parameters showed that the model required a

range of 17-19 max depth levels in order to accomplish the best performance, with a

constant minimum sample leaf of 2. Random Forest classified the total extremist

Webpages at the rate of 95%. This is an improved result over what was obtainable in

Posit. The pro-extremist category had the most identified cases and highest precision

when compared with other categories. This is an indication that the framework is

effective in discerning pro-extremist category. Tables 4.13 and Figure 4.14 detail the

results. The model is healthy with a minimal overfitting rate considering the variance

between both training and validation scores. The validation curve is displayed in Figure

4.13

Figure 4.13: Validation Curve-Extended Posit

82

FP Rate Precision Recall F-score Class

0.007 0.98 0.97 0.97 Pro-extremist

0.041 0.92 0.97 0.94 Anti-extremist

0.018 0.96 0.92 0.94 Neutral

Table 4.13: Extended- Posit Classification Result using Random Forest

Figure 4.14: Extended Posit Confusion Matrix

83

4.5.9 Feature Selection: Extended-Posit Features

For the extended-Posit, both the wrapper and embedded methods were applied to 71

extended-Posit features. As the features were applied in measured percentages through

time in the wrapper method, we noticed the model improved best when the 75 percentile

of best features were applied. The method gave a 96.1% degree of accuracy. The

execution time was 165sec. Below is the graphic representation of the wrapper method

in Figure 4.15. The embedded feature selection was also applied, it underperformed

when compared to the wrapper method. So, it had 95.4% at the 75th percentile of the

features but reduced to 95.1% when 100% of the features were applied. The execution

time was 14.5sec. See the graphic representation below in Figure 4.16.

Figure 4.15: The Wrapper Method in Extended-Posit using Random Forest

84

Figure 4.16: The Embedded Method in Extended-Posit using Random Forest

4.5.10 Composite Classification Framework

Below are the best parameters after grid search on 5 folds within the Composite data and

the details are presented in Table 4.14.

Folds Criterion max_depth' min_samples_leaf

1 Entropy 19 2

2 Entropy 16 2

3 Entropy 18 2

4 Entropy 18 2

5 Entropy 17 2

Table 4.14: Gridsearch Best Parameters for Composite Data

The grid search results for Composite indicated that the model required a range of 16-19

max depth levels in order to accomplish the best performance, with a constant minimum

85

sample leaf of 2. Random Forest classified the total extremist Webpages at the rate of

95.8%. This is an improved result over what was obtainable in all frameworks. The pro-

extremist category had the most identified cases and highest precision when compared

with other categories and all frameworks. This is an indication that the framework is the

most effective in classifying the pro-extremist category. Table 4.15 and the confusion

matrix in Figure 4.18 detail the results. The model has a minimal overfitting rate

considering the variance between both training and validation scores. The validation

curve is displayed in Figure 4.17.

Figure 4.17: Validation Curve- Composite

86

FP Rate Precision Recall F-score Class

0.011 0.97 0.97 0.97 Pro-extremist

0.032 0.937 0.94 0.95 Anti-extremist

0.02 0.96 0.96 0.95 Neutral

Table 4.15: Composite-Based Classification Result using Random Forest

Figure 4.18: Composite Confusion Matrix

4.5.11 Feature Selection: Composite Features

The feature selection algorithms explored are embedded and wrapper algorithms. The

wrapper method outperformed the embedded method in terms of classification accuracy

87

but the embedded did well better in terms of processing speed as both almost arrived at

almost the same accuracy. The result from the wrapper method indicated that the model

yielded significant performance in terms of classification accuracy, at 95.9% when all

the subset features were used with a processing time of 9.08sec. Optimum performance

is noticed at the 45 percentile of the subset features to produce 95.1% at 8.76sec speed

time. Both embedded and wrapper method results are detailed in Figures 4.19 and 4.20

respectively.

Figure 4.19: The Wrapper Method in Composite using Random Forest

88

Figure 4.20: The Embedded Method in Composite using Random Forest

4.6 J48 Decision Tree Classification Results

Again, each feature set from Sentiment, Posit, Extended-Posit and Composite analysis

were deployed into Scitlean API, where the J48 decision tree algorithm was applied with

GridsearchCV for optimum performance. We implemented our classifier, the J48

decision tree algorithm to create a rule-building process for the automated classification

system. The aim of this process is to generate measures that show how the system

assigns each page to its appropriate classes. Table 4.16 below presented the parameters

used in the J48 model. The details of each classification framework results are detailed

below:

89

 Parameter Parameter Values

Random Forest Criterion

max_depth

min_samples_leaf

Entropy

1 – 21

2-5

Table 4.16: The J48 Model Parameters

4.6.1 Sentiment-Based Framework using 27 features (MF Imputation)

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation for MF in Table 4.17.

Folds criterion max_depth’ min_samples_leaf

1 entropy 19 2

2 entropy 17 3

3 entropy 19 3

4 entropy 20 2

5 entropy 20 2

Table 4.17: Gridsearch Best Parameters for MF Imputation

The max depth for each of the 5 folds is between 17-20, and the min_sample_leaf has a

value of 2 and 3 throughout the fold. The implication is that it takes just a minimum of 2

samples for a leaf node to split. Though small, it’s usually preferable for a small dataset.

An average Max depth of 19 means that the decision tree model took up to 19 splits to

achieve best the performance and it was at the 19th split that the final class classification

decision was taken. Hence, it took the model 19 splits to perfectly distinguish each class

in pure splits with low impurity. So, in general, the hyperparameter demands a quite low

90

for an overall accuracy score of 83%. . Pro-extremist category is the most identified case

when compared with other categories at the rate of 92.3%. The results of other categories

are presented in Table 4.18 and Figure 4.22 respectively. The data plot of both the

validation and training scores in each of the five folds in respect to their max depth is

presented in Figure 4.21.

Figure 4.21: Validation Curve-MF Imputation

91

False

Positives

Rate

Recall Precision F1 Class

0.127

0.060

 0.066

0.842

0.729

0.923

0.768

0.858

0.875

0.804

0.788

0.898

Anti-Extremist

Neutral

Pro-Extremist

Table 4.18: MF Imputation Classification Result

Figure 4.22: MF Imputation Confusion Matrix

92

4.6.2 Sentiment-Based Framework using 27 features (KNN Imputation)

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation for KNN in Table 4.19.

Folds Criterion max_depth’ min_samples_leaf

1 Entropy 20 2

2 Entropy 20 2

3 Entropy 20 2

4 Entropy 20 2

5 Entropy 19 3

Table 4.19: Gridsearch Best Parameters for KNN Imputation

KNN imputation has a general max_depth range between 19-20 which is higher than the

MF range. Here, the min_sample_leaf also has a range of 2-3. On average, the max depth

demand 20 branches before the best score is achieved on the KNN imputation. For this

fact, this increase has a positive effect on the overall classification accuracy to a credit of

84.3%. The model correctly identified pro-extremist cases at 88.6%, more than other

categories. The results are detailed in Table 4.20 and the confusion matrix in Figure

4.24. The variance between each validation and training score indicates minimal

overfitting. The data plot showing the performance of all the 5 folds about their

maximum depth is presented in Figure 4.23.

93

Figure 4.23: Validation Curve-KNN Imputation

False Positives

Rate
Recall Precision F1

0.045

0.818

0.113

0.824

0.818

0.8861

0.901

0.841

0.797

0.861

0.829

0.839

Anti-Extremist

Neutral

Pro-Extremist

Table 4.20: KNN Imputation Classification Result

94

Figure 4.24: KNN Imputation Confusion Matrix

4.6.3 Sentiment-Based Framework using 27 features (Mice Imputation)

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation for Mice in Table 4.21.

Folds criterion max_depth’ min_samples_leaf

1 entropy 19 2

2 entropy 19 2

3 entropy 19 2

4 entropy 19 2

5 entropy 20 2

Table 4.21: Gridsearch Best Parameters for Mice Imputation

For the mice, the max depth demand increased again with the same range as KNN

having 19-20 but a lower average of 19. The min_sample_leaf remained at a constant of

95

2. The J48 gave an overall accuracy of 86.5%. The pro-extremist category had the most

correctly classified cases at 86.5%. The classification results were detailed in Table 4.22

and the confusion matrix in Figure 4.26 The training and validation plot for the model is

presented in Figure 4.25. The low variance between the curves indicated that the model

does not overfit.

Figure 4.25: Validation Curve-Mice Imputation

96

False

Positives

Rate

Recall Precision F1 Class

0.051

0.081

0.071

0.865

0.864

0.865

0.895

0.842

0.858

0.88

0.853

0.862

Anti-Extremist

Neutral

Pro-Extremist

Table 4.22: Mice Imputation Classification Result

Figure 4.26: Mice Imputation Confusion Matrix

4.6.4 Feature Selection: Mice Imputation Features

In the classification model, the wrapper method and the embedded algorithms were

applied. The embedded method underperformed the wrapper method, it had an early

climax where it achieved its best score of 75.8% with just 30% of the features at a speed

of 0.21sec while the wrapper method achieved its best score using all 90% of features

97

with an accuracy of 87.0% at 0.34 sec runtime. These results are detailed in Figures 4.27

and 4.28 respectively.

Figure 4.27: Wrapper Feature Selection Method –Mice Imputation

98

Figure 4.28: Embedded Method Feature selection Mice Imputation

4.6.5 Extended Posit

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation for Extended Posit in Table 4.23 below.

Folds Criterion max_depth’ min_samples_leaf

1 Entropy 15 2

2 Entropy 18 4

3 Entropy 20 2

4 Entropy 17 4

5 Entropy 16 3

Table 4.23: Gridsearch Best Parameters for Extended Posit

99

In the Extended Posit case, we noticed a drastic reduction in the max depth demands to a

range of 15-20, with an average of 17. The min_sample_leaf increased to a range of 2-4

and an average of 3. It’s okay to say that the Extended Posit dataset places lower

max_depth demands on the decision tree but generally increases the min_sample_leaf for

the best performance to be achieved. Eventually, J48 gave 89.6% of correctly classified

instances of overall Webpages. The pro-extremist category had the most correctly

identified pages, at 92.9%. The detailed results are shown in Table 4.24 and the

confusion matrix in Figure 4.30. Below is the graph showing the performance of all the 5

folds in relationship to their maximum depth in Figure 4.29.

Figure 4.29: Validation Curve-Extended POSIT Imputation

100

False

Positives

Rate

Recall Precision F1 Class

0.065

0.062

0.029

0.88

 0.879

0.929

0.872

0.876

 0.942

0.876

0.877

0.936

Anti-Extremist

Neutral

Pro-Extremist

Table 4.24: Extended POSIT Imputation Classification Result

Figure 4.30: Extended POSIT Imputation Confusion Matrix

101

4.6.6 Feature Selection: Extended-Posit

Again, feature selection algorithms were implemented on Extended Posit of which the

wrapper method slightly outperformed the embedded method by achieving a higher

accuracy with just 45% of its feature subset and achieved an accuracy of 90% at a

processing speed of 9.3sec while the embedded method achieved its highest accuracy of

89.9% at 1.2sec with just 30% of its feature subsets. Unarguably based on performance

the wrapper method had a higher accuracy but as far as cost is concerned, the embedded

method achieved nearly the same accuracy with just 30% of its features. The results are

presented in Figures 4.31 and 4.32 respectively.

Figure 4.31: Wrapper Method–Extended Posit

102

Figure 4.32: Embedded Method for Extended-POSIT

4.6.7 Posit

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation for Posit in Table 4.25 below

Folds Criterion max_depth’ min_samples_leaf

1 Entropy 15 2

2 Entropy 15 3

3 Entropy 13 2

4 Entropy 14 2

5 Entropy 14 3

Table 4.25: Gridsearch Best Parameters for Posit

103

Here in the posit, we have a lower max depth demand of 13-15 with an average of 14,

and a min_sample_leaf of 2-3 with an average of 2. The decision tree finished with an

overall classification accuracy of 89.4% with the pro-extremist category classified at

91%, higher than the other three categories. The results are presented in Table 4.26 and

the confusion matrix in Figure 4.34. Again, the validation and training curves displayed

in Figure 4.33 indicates a low level variance and hence the model does not overfit.

Figure 4.33: Validation Curve Posit Imputation

104

F P Rate Recall Precision F1 Class

0.066

0.874

0.037

0.898

0.874

0.911

0.872

0.886

0.925

0.885

0.88

0.918

Anti-Extremist

Neutral

Pro-Extremist

Table 4.26: Posit-Based Classification Result

Figure 4.34: Posit Imputation Confusion Matrix

4.6.8 Feature Selection: Posit

In the Posit classification framework, the wrapper method outperforms the embedded

with a better result of 89.6% with just 60% of the feature subsets after which the

performance of the model began to deplete as more features were added. This is

achieved at a speed of 9.33sec. The results of both wrapper and embedded results are

presented in Figures 4.35 and 4.36 respectively.

105

Figure 4.35: Wrapper Method Feature Selection – Posit

Figure 4.36: Embedded Method Feature selection Posit

106

4.6.9 Composite Based Classification Framework

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation for Composite in Table 4.27 below.

Folds Criterion max_depth’ min_samples_leaf

1 Entropy 17 3

2 Entropy 14 4

3 Entropy 17 2

4 Entropy 15 2

5 Entropy 12 2

Table 4.27: Gridsearch Best Parameters for Composite

The Composite demands a max_depth range of 12-17, with an average of 15, which is a

unit higher than the previous Posit from Table 4.34 above. The J48 decision tree

maintained min_sample_leaf between 2-4 with an average of 3. These achieved an

overall accuracy of 91.5% with excellent individual performances of each class with

accuracies over 91.5%. The pro-extremist category had the highest level of correctly

identified pages, at 93.2%. The classification result and the confusion matrix are

presented in Tables 4.28 and Figure 4.38 below. Figure 4.37 shows the validation and

training curves which indicate the model is well fitted.

107

Figure 4.37: Validation Curve Posit Mice Imputation

F P Rate Recall Precision F1 Class

0.052

0.047

0.028

0.909

0.906

0.932

0.898

0.906

0.943

0.903

0.906

0.938

Anti-Extremist

Neutral

Pro-Extremist

Table 4.28: Composite-Based Classification Result

108

Figure 4.38: Composite-Based Confusion Matrix

4.6.10 Feature Selection: Composite-based classification framework

In the composite based classification framework, the wrapper method outperforms the

embedded method with just 60% of its features utilized which achieved a high accuracy

of 91.3% at 8.04sec while the embedded method achieved its highest of 89.8% with all

90% of its feature hence making the wrapper method more cost effective. The results are

detailed in Figures 4.39 and 4.40 respectively.

109

Figure 4.39: Wrapper Method for Composite

Figure 4.40: Embedded Method for Composite

110

4.7 KNN CLASSIFICATION RESULTS

This section presents the result of each framework using KNN. Table 4.29 below

presented the parameters used in the KNN model across the frameworks.

KNN leaf_size,

'n_neighbors

'weights

1- 10

1, 3, 5, 7, 9, 11, 13

Uniform

Table 4.29: The KNN Model Parameters

4.7.1 MF Imputation

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation of MF Imputation using KNN in Table 4.30 below.

Folds leaf_size n_neighbors weights

1 1 1 uniform

2 1 3 uniform

3 4 5 uniform

4 1 3 uniform

5 4 3 uniform

Table 4.30: Gridsearch Best Parameters for MF Imputation

111

After the application of grid search through 5-fold cross-validation, the leaf_size

parameter which was initially set between the range of 1-10, could only iterate between

1-4, no fold exceeded a leaf_size of 4 while the least leaf_size a fold attained is 1. This

tells us that in general, our model is expected to perform best and best fit the MF

imputation data if our leaf_sizes are set between 1-4. It’s also observed that for the MF

imputation data, our best performance was found within the n_neighbors range of 1-5

against an initial range of 1-13. The leaf size is a parameter in a KD tree or KD ball tree

algorithm in KNN that helps to partition, allocate or organize data points in a multi-

dimension (multi-feature) space by calculating the distances between each data point. So,

the larger the leaf_size, the slower the classification of these data points and vice versa.

The n_neighbors are the total number of data points closest to a selected data point. We

observed that the MF only needed an average of 3 n_neighbors to attain the best

performance. Another key observation is how the n_neighbors keeps increasing each

time the leaf_size increases as we go down the 5 folds except for the 5th fold. This means

that the n_neighbors is very sensitive to the leaf_size and must be more than the

leaf_size and with a range 1-5 if the best performance must be attained within the MF

imputation.

112

Figure 4.41: Validation Curve-MF Imputation

From Figure 4.41 above showing the training and test curves, a behavior is noticed that

is consistent with both curves is the fact that the performance of the model reduces every

time the n_neighbors increase. This confirms our initial findings within the grid search

folds iterations that optimal performance for the MF imputation can only be found at

n_neighbors ranges between 1-5. If we are to be a bit specific, the optimal performance

can be found at an n_neighbor value of 3 because that is where most of the convergences

between each folds occurred. In actuality, the over-fitting tendencies get to reduce

(because both training and test folds get to converge better) as we increase the

n_neighbors but we’d have to sacrifice performance to reduce over-fitting tendencies.

113

KNN gave an overall classification of 82.1%. The results of other categories are shown

in Table 4.31. The model correctly identified pro-extremist cases more than other

categories in the confusion matrix presented in Figure 4.42.

False

Positives Rate
Recall Precision F1 Class

0.118

0.051

 0.098

0.827

0.715

0.922

 0.777

0.875

0.824

0.801

0.787

0.87

Anti-Extremist

Neutral

Pro-Extremist

Table 4.31: MF Imputation Classification Result using KNN

Figure 4.42: MF Imputation Confusion Matrix

114

4.7.2 KNN Imputation

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation of MF Imputation using KNN in Table 4.32 below.

Folds leaf_size n_neighbors Weights

1 2 9 Uniform

2 2 11 Uniform

3 2 7 Uniform

4 8 9 Uniform

5 1 9 Uniform

Table 4.32: Gridsearch Best Parameters for KNN Imputation

In the KNN imputation, we have a more complex scenario where the expected leaf_size

range for optimal performance has increased to a range of 1-8 unlike MF which had 1-4,

likewise the n_neighbors which also increased to a range of 7-11. On average, the

optimal leaf_size is 3 and the optimal n_neighbors is 8 but this rather didn’t reflect on

the accuracy as we rather had a little lower performance, 81% against 82% we had in the

MF case. Again, this boils down to the uniqueness of the dataset via the method of

imputation. In the KNN imputation, the KNN algorithms needed a higher leaf_size for

its processing as the KNN data may be a more complex and demanding dataset such that

the KNN algorithm finds it difficult to establish a classification or decision boundaries

within the multi-dimensional spatial regions hence, needing more leaf_size number and

more n_neighbors.

115

Figure 4.43: Validation Curve-KNN Imputation

From the training curves above in Figure 4.43, we can see that the model is a bit

healthier than the previous MF such that there were little or no changes in accuracy after

n_neighbors is above 4 in the graph except for the fact that there was increased

convergence (reduced overfitting), which explains why it was necessary for the

algorithm to increases the n_neighbors to as high as 9 and 11 to get the best

performance, it was trying to curb overfitting. This places the KNN imputation as a

better candidate model than the MF imputation. The results of other categories are

116

shown in Table 4.33. The KNN model correctly identified pro-extremist cases more than

other categories in the confusion matrix presented in Figure 4.44.

False Positives

Rate
Recall Precision F1 Class

0.059

0.021

0.189

0.821

0.689

0.949

0.873

0.941

0.715

0.846

0.796

0.815

Anti-Extremist

Neutral

Pro-Extremist

Table 4.33: KNN Imputation Classification Result using KNN

Figure 4.44: KNN Imputation Confusion Matrix

117

4.7.3 Mice Imputation

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation of Mice Imputation using KNN in Table 4.34 below.

Folds leaf_size n_neighbors weights

1 2 9 uniform

2 1 5 uniform

3 4 7 uniform

4 2 9 uniform

5 1 7 uniform

Table 4.34: Gridsearch Best Parameters for MICE Imputation

In the case of the Mice, we have less demanding parameters where the leaf_size has an

average of 2 while the n_neighbors has an average of 7. Previously in the KNN, we had

n_neighbors reaching a max of 11 whereas in MICE we have a max of 9.

118

Figure 4.45: Validation Curve-Mice Imputation

Again, looking at the training curves above in Figure 4.45, just like KNN, the model

accuracy stopped increasing when the n_neighbors attains 3 but after which it began to

fight overfitting by increasing the n_neighbors to 9 where it hit its optimal performance.

For the Mice, we even had an increased overall performance of 83% which turns out to

have outperformed both MF and KNN. So, as soon as the model reached n_neighbors

attains 9, it stopped converging and stopped improving hence making iterations of

119

n_neighbors>9 redundant to our experimentation. The remaining results of other

categories are detailed in Table 4.35 and the confusion matrix is presented in Figure 4.46

False Positives Rate Recall Precision F1 Class

0.062

0.028

0.152

0.858

0.704

0.951

0.872

0.925

0.758

0.865

0.799

0.844}

Anti-Extremist

Neutral

Pro-Extremist

Table 4.35: Mice Imputation Classification Result using KNN

Figure 4.46: Mice Imputation Confusion Matrix

120

4.7.4 Extended- Posit Classification

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation of Extended- Posit using KNN in Table 4.36 below.

Folds leaf_size n_neighbors weights

1 1 3 uniform

2 1 5 uniform

3 1 3 uniform

4 1 5 uniform

5 1 7 uniform

Table 4.36: Gridsearch Best Parameters for Extended-Posit

For the Extended-Posit, we have a very interesting observation where on average

leaf_size=1 and n_neighbors=5. This is a way less demanding set of parameters

compared to the MF, MICE and KNN. For the Extended-Posit, the algorithm only

needed a small leaf size to accurately establish a classification boundary within the

spatial space. We observed that for each leaf_size=1, there is an increasing n_neighbors

value from 3 to 7.

121

Figure 4.47: Validation Curve-Extended Posit

From the training and test curves above in Figure 4.47, you would notice that the same

habit that occurred in mice and KNN imputations happened again, where the accuracy

stalled after an early n_neighbors value (3 in this Extended-Posit case) and then

continued to rather increase to higher values. Here, after n_neighbors attains 3 the

accuracy stopped increasing hence the model stopped generalizing and afterward sought

to deal with overfitting tendencies and increased the n_neighbors to 7 where it finished

converging hence every other iteration afterward either didn't improve performance or

122

reduce overfitting. The Extended-Posit has outperformed every other framework

explained above so far with very much less demanding parameters and computational

resources, having an overall accuracy of 90.3%. The most correctly identified category is

pro-extremist, at the rate of 97%, with the highest precision rate when compared with

other categories in the confusion matrix table shown in Figure 4.48. The details of the

results are presented in Table 4.37. The validation curve in Figure 4.47 indicates a very

low variance between both validation and training scores and consequently the model is

well fitted.

False Positives

Rate
Recall Precision F1 Class

0.0717

0.0377

0.0348

0.906

0.848

0.958

0.863

0.918

0.932

0.884

0.881

0.945

Anti-Extremist

Neutral

Pro-Extremist

Table 4.37: Extended Posit Classification Result using KNN

Figure 4.48: Extended Posit Confusion Matrix

123

 4.7.5 Posit-Based Classification

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation of Posit using KNN in Table 4.38 below.

Folds leaf_size n_neighbors Weights

1 1 5 Uniform

2 1 5 Uniform

3 1 5 Uniform

4 1 3 Uniform

5 1 1 Uniform

Table 4.38: Gridsearch Best Parameters for Posit

The posit dataset also maintained a similar optimal range and average for the leaf_size

and n_neighbors where leaf_size didn’t exceed 1 but most importantly, the n_neighbors

had a lesser range of 1-5 compared to Extended-Posit having 1-7. In general, the

n_neighbors increased through each fold as leaf_size is 1. The small leaf_size is

indicative of the fact that the dataset is less complicated and easily fits the KNN model

allowing the classification boundaries to be easily established. So, if one looks at how

the boundaries are formed, you would see a clean a contour neatly separating each class

without much complexity.

124

Figure 4.49: Validation Curve- Posit

The above curve in Figure 4.49 shows how the accuracy/performance of the training

curve keeps reducing as the n_neighbors increases. The test curve maintained a steady

performance and didn’t change while the training curve went ahead to deal with some

overfitting tendencies while it reduced to 5. After n_neighbors is equal to 5, the model

stopped learning and reached its optimal performance. The overall performance accuracy

turned out to be lower by a few decimals than the Extended-Posit, KNN gave 89%,

leaving it as an underperforming model compared to the Extended-Posit but better than

the KNN, mice and MF imputation data. The details of the results are shown in Table

125

4.39 and Figure 4.50. The validation curve in Figure 4.49 indicates a very low variance

between both validation and training scores and consequently the model is well fitted

False Positives

Rate
Recall Precision F1 Class

0.067

0.054

0.033

 0.900

0.870

0.919

0.869

0.889

0.932

0.884

0.880

0.925

Anti-Extremist

Neutral

Pro-Extremist

Table 4.39: Posit Classification Result using KNN

Figure 4.50: Posit Confusion Matrix

126

4.7.6 Composite Based Classification

The application of grid search yielded the following best parameter sets for 5 separate

folds used for the validation of Composite using KNN in Table 4.40 below.

Folds leaf_size n_neighbors Weights

1 1 3 Uniform

2 1 5 Uniform

3 1 5 Uniform

4 1 3 Uniform

5 1 5 Uniform

Table 4.40: Gridsearch Best Parameters for Composite

Here, the range of the leaf_size remained at 1, leaving our optimal n_neighbors range at

3-5 and an average of 4. We had our optimal value at n_neighbors is equal to 5, where

some of the overfitting tendencies had been removed by the model after generalization

stopped at n_neighbors is 4.

127

Figure 4.51: Validation Curve-Composite

The training and test curve above in Figure 4.51 rather confirms our initial observations,

such that both curves seem to have different trajectories: The training curves show the

decreasing accuracy and model performance as the n_neighbors increases while the

test/validation accuracy shows an increasing model performance as the n_neighbors

increases. But the scenario for the validation curve is only valid up to n_neighbors is 5

after which the model stops improving and remains steady. The Composite, having a

little higher n_neighbors range compared to Posit and Extended-Posit has proven to

128

outperform every other model by reaching an overall performance of 92%. Details of

the results are presented in Table 4.41 and Figure 4.52 respectively

False Positives

Rate
Recall Precision F1 Class

 0.056

 0.036

 0.031

 0.916

0.88

0.956

 0.891

0.924

0.938

 0.904

 0.901

0.947

Anti-Extremist

Neutral

Pro-Extremist

Table 4.41: Composite-Based Classification Result using KNN

Figure 4.52: Composite Confusion Matrix

4.8 The Validation of Nigerian Extremism Dataset

Each of the textual analysis technique was applied on the Nigerian extremist Webpages,

where Posit produces a 27- item feature list for each category of Webpage, Sentiment

129

analysis generates 26, Composite produces 53 and Extended Posit produces 71 - items

features. We used the whole ICCRC dataset as a training dataset while the Nigeria

dataset as a validation set. We utilised sklearn’s GridSearchCV to perform an exhaustive

search over specified parameter values for an estimator. The estimators are the classifier

algorithms. The CV option was set to 7 for the gridsearchCV. The grid parameters used

are presented in Table 4.42 below:

Model HyperParameters Range

J48 Decision Tree Criterion

max_depth

min_samples_leaf

Entropy

1 – 21

2-10

Random Forest Criterion

max_depth

min_samples_leaf

Entropy

1 – 21

2-10

Table 4.42: The Model Parameters

ICCRC dataset was supplied as the training dataset for the fit method. The fit method is

to perform model fitting using the set of parameters supplied. The Nigeria dataset was

supplied for the prediction (Model validation). The prediction will use the best

parameters from the gridsearchCV to predict the class. The classification results are

presented below:

4.9 J48 Classification Results

4.9.1 Posit-Based classification Results

The application of grid search yielded the following best parameter sets used for the

validation of Posit using J48 ('criterion': 'entropy', 'max_depth': 16, 'min_samples_leaf':

130

2). J48 gave overall classification accuracy of 48.5%. Pro-extremist Webpages were

correctly identified at the rate of 31%. The results of other categories are detailed in

Table 4.43 and Figure 4.54. The data plots of the training are displayed in Figure 4.53.

Figure 4.53: Validation Curve-Posit

False Positives

Rate
Recall Precision F1 Class

0.371

0.220

0.183

0.529

0.566

0.316

0.416

0.627

0.391

0.465

0.513

0.350

Anti-Extremist

Neutral

Pro-Extremist

Table 4.43: Posit-Based Classification Result using J48

131

Figure 4.54: Posit Confusion Matrix

4.9.2 Extended-Posit Based Classification

The application of grid search yielded the following best parameter sets used for the

validation of Posit using J48 (criterion': 'entropy', 'max_depth': 12, 'min_samples_leaf':

3). The J48 decision tree finished with an overall classification accuracy of 49% with the

pro-extremist category classified at 41%. The validation curve is displayed in Figure

4.55. The results are detailed in Table 4.44 and Figure 4.56 respectively.

132

Figure 4.55: Validation Curve-Extended Posit

False Positives

Rate
Recall Precision F1 Class

0.158

0.410

0.190

0.423

0.652

0.411

0.577

0.422

0.536

0.488

0.512

0.465

Anti-Extremist

Neutral

Pro-Extremist

Table 4.44: Extended Posit-Based Classification Result using J48

133

Figure 4.56: Extended-Posit Confusion Matrix

4.10 Random Forest Classification Results

4.10.1 Posit Classification Based Results

The optimal performance for the Posit can only be found at (criterion': 'entropy',

'max_depth': 17, 'min_samples_leaf': 2) with the application of gridsearchcv. Random

forest gave 53% overall classification accuracy in validating Nigerian data. The model

correctly identified pro-extremist cases at 41%. The results are detailed in Table 4.45 and

the confusion matrix in Figure 4.58. The variance between each validation and training

score indicates minimal overfitting. The data plot showing the performance is presented

in Figure 4.57

134

Figure 4.57: Validation Curve- Posit

False Positives

Rate
Recall Precision F1 Class

0.199

0.336

0.170

0.338

0.836

0.413

0.481

0.570

0.510

0.397

0.678

0.456

Anti-Extremist

Neutral

Pro-Extremist

Table 4.45: Posit-Based Classification Result using Random Forest

135

Figure 4.58: Posit Confusion Matrix

4.10.2 Extended Posit-Based Classification Result

The grid search results for Extended Posit-Based indicated that the model required a

range of 17 max depth levels in order to accomplish the best performance, with a

constant minimum sample leaf of 2. The Random forest gave 53% overall Webpages

matching with Nigerian data. Pro-extremist cases were identified at the rate of 48.6%.

The classification result and the confusion matrix are presented in Tables 4.46 and

Figure 4.60 below. Figure 4.59 presented the validation and training curves which

indicate the model is well fitted.

136

Figure 4.59: Validation Curve-Extended Posit

False Positives

Rate
Recall Precision F1 Class

0.146

0.448

0.101

0.411

0.716

0.486

0.600

0.429

0.708

0.488

0.536

0.576

Anti-Extremist

Neutral

Pro-Extremist

Table 4.46: Extended Posit-Based Classification Result using J48

137

Figure 4.60: Extended-Posit Confusion Matrix

138

Chapter 5: Neural Networks

This chapter details the implementation of different Neural Network models explored in

this thesis

5.1 Neural Network

Neural networks are a form of a machine learning algorithm that mimics how the brain

operates, which is regarded as artificial neural networks. Learning can be semi-

supervised, unsupervised or supervised [93]. Initially, neural networks were made up of

three layers which consisted of input, output and hidden layers. However, once the hidden

layer is greater than one, it becomes a deep-learning network unlike a traditional neural

network such as the first perceptron comprising of one input and one output layer, and

one hidden layer in between. This is a significant factor in distinguishing it from other

single-hidden-layer neural networks [94]. Figure 5.1 shows a typical Neural Network.

The algorithm is trained to learn and identify the pattern of features automatically by

reconstructing samples from labelled data. In the process, the neural networks learn to

identify correlations between specific relevant features and best results. It brings out

relationships between feature signals and their representation. This is then applied to

unstructured or unlabelled data, giving it access to use the same pattern on it for higher

performance [93]. The neural network models considered in this work are Multilayer

perceptron (MLP) and the Recurrent Neural Networks (RNN), they are explored due to

their capabilities for complex classification tasks.

https://skymind.ai/wiki/multilayer-perceptron

139

Figure 5.1: A Neural Network with 2 Hidden Layers

5.1.1 Multilayer perceptron (MLP)

The multilayer perceptron (MLP) consists of an input layer that receives the signal, an

output layer that decides or predicts based on the input, and any number of hidden layers

in between that act as the MLP's true computational engine [95]. Any continuous

function can be approximated by MLPs with one hidden layer. In supervised learning

problems, multilayer perceptrons are widely utilised. They have the ability to predict the

correlations (or dependencies) between the inputs and outputs after being trained on a

collection of input-output pairings [96]. In order to reduce error, the model's parameters,

or weights and biases, are modified over the course of training. Backpropagation is

utilized to perform the weight and bias modifications linked to the error [97]. To reduce

the loss, inputs are multiplied by weights before being transmitted to the activation

function, where they are modified in back propagation. The machine-learned values from

neural networks are used as weights [96]. They self-adjust based on the difference

between training inputs and projected outputs. After nonlinear activation functions,

Softmax is used as an output layer activation function [98].

140

5.1.2 Recurrent Neural Network (RNN)

Recurrent neural networks (RNNs) are a form of neural network which simulate or

forecast time series or sequence data [99]. RNN behavior is similar to human brain

activity. Convolutional and feedforward neural networks (CNNs), like recurrent neural

networks (RNNs), learn from training data [99]. Recurrent networks differ from other

types of networks in that all of their layers share the same properties. Recurrent neural

networks use the same weight parameter in each layer, as opposed to feedforward neural

networks, which use different weights for each node [100]. To aid reinforcement

learning, these weights are adjusted using gradient descent and backpropagation

techniques [100]. Backpropagation through time (BPTT) is a technique used by recurrent

neural networks to estimate gradients because it is specialized in sequence data, and it

differs significantly from regular backpropagation [100].

Convectional backpropagation, a technique similar to BPTT [99], is used to train the

model by computing errors from its output unit to its input layer. Using these

computations, we can adjust and fit the model's parameters. Whereas feedforward

networks do not, BPTT accumulates faults at each time step in contrast to the standard

method. RNN frequently encounter exploding gradients and vanishing gradients during

this process. The gradient, is the slope of the loss function along the error curve,

determines the magnitude of these challenges. When the gradient becomes too small, it

drops even further, updating the weight parameters until they are irrelevant or zero [100].

Hence, the algorithm then halts learning when this happens. Exploding gradients, which

happen when a gradient is too large, lead to an unstable model. The model weights in

this instance grow out of control and eventually take the form of NaN. One solution to

address these issues is to reduce the number of hidden layers in the neural network [99].

When the gradient values are too small, vanishing gradients occur, which causes learning

to stop or take too long. This was a major issue in the 1990s, and it was far more difficult

to solve than the problem of exploding gradients.

141

Fortunately, the problem is resolved by utilising the LSTM idea [100]. The information

flow differences between an RNN and a feed-forward neural network are shown in Figure

5.2 below.

Figure 5.2: Recurrent Neural Network and a Feed-Forward Neural Network [100]

The Variant of RNN Architectures

In this thesis, LSTMs are used as the building blocks for the layers of an RNN [100].

LSTMs assign data "weights" that help RNNs decide whether to accept new information,

ignore it, or give it enough relevance to improve the output. Furthermore, the LSTM

model exhibits significantly more volatility throughout its gradient descent than the GRU

model [101]. This could be because there are more gates for the gradients to pass

through after a certain number of epochs, making constant progress more difficult to

achieve. GRU uses fewer training parameters, requiring less memory and implementing

faster than LSTM. Contrarily, LSTM is more accurate, particularly for larger datasets

[102].

Long Short-Term Memory (LSTM)

The short-term memory problem in RNN models can be fixed with the use of an RNN

architecture called LSTM. Input, forget, and output gates are the components of an

142

LSTM. These gates regulate the data flow to forecast the network's output. These gates

determine whether additional input is allowed (input gate) if the information is removed

(forget gate) and whether the output at the current time step is affected [102]. Figure 5.4

below displays an RNN with its three gates in place. The LSTM's analog gates have

sigmoidal shapes and range from zero to one. They are analog, therefore they may

conduct backpropagation. . The problem of disappearing gradients is overcome by LSTM

since it keeps the gradients steep enough, resulting in a fast training time and good

accuracy [101].

Figure 5.4: An illustration of a RNN with its three gates [99]

5.2 Optimisation Algorithm

The most popular method for optimizing neural networks is gradient descent, a first-

order iterative optimization technique that identifies the parameters that minimize the

loss function (prediction error) and uses a backpropagation of error process to update the

weights [96]. The gradient descent algorithm tries to modify the weights to reduce the

likelihood of an error in the evaluation that comes after (this implies that the

143

optimisation algorithm is going down the slope of error). Figure 5.5 below shows how

the gradient descent method descends the derivative to produce the minimum.

Figure 5.5: Gradient Descent Algorithm [103]

The limitation of using gradient descent is their hyper parameters that needed to be

specified in advance, which depend greatly on the type of model and problem. Another

disadvantage of gradient descent is that a similar learning rate is applied to all parameter

updates, this may affect a situation of having sparse data, where it might be important to

update the parameters in an unusual extent instead [104]. However, adaptive gradient

descent algorithms such as Adagrad, Adadelta, RMSprop and Adam, produce a better

alternative to traditional gradient descent. They contain per-parameter learning rate

techniques, which provide a heuristic method without the need for the costly task of

tuning hyperparameters for the learning rate arranged manually. Both Adagrad and Adam

provide better results than gradient descent, but Adam is faster than Adagrad [104]. For

this reason, the Adaptive Moment Optimisation algorithm is discussed further below.

5.2.1 ADAM

144

The Adaptive Moment Optimisation algorithm combines the methods of both Momentum

and RMSProp [98]. The equations are stated below:

Vt = β1 * Vt – 1 – (1 - β1) * gt Equation 1

St = β2 * St – 1 – (1 – β2) * gt
2 Equation 2

∆ωt = –ὴ * gt Equation 3

ωt+1 = ωt + ∆ωt Equation 4

ὴ : Initial Learning rate

gt: Gradient at time t along ωj

Vt : Exponential Average of gradients along ωj

St : Exponential Average of squares of gradients along ωj

β1, β2: Hyperparameters.

From the equation stated above, the exponential average of the gradient with the squares

of the gradient for each parameter is calculated in (Equations 1 and 2) [104]. To arrive at

the learning step, the average of the gradient is multiplied by the learning rates and

divided by the root mean square of the exponential average of the square of gradients in

equation 3. Then, an update is added. The threshold for hyperparameter beta1 is 0.9

while beta2 is at 0.99. Epsilon is generally taken to be 1e-10.

5.3 Loss Function

In the context of an optimization algorithm, a loss function rates the results of a machine

learning algorithm. The loss function estimates the error for one training set while

the cost function is the average of the loss functions for the training set [104]. Whenever

145

an optimization method is used, the value assessed by the loss function is known as

"loss" [105]. As a result, a loss function must be selected when estimating the model's

error throughout the optimisation phase [106]. To determine what functions to use can be

challenging, it is expected that the function should faithfully represent the design goals.

The maximum likelihood estimation is a widely used method in the field of machine

learning to determine the error of a set of weights in a neural network [107].

However, under the maximum likelihood framework, the error between two probability

distributions is computed using cross-entropy [108]. Cross-entropy is employed as the

loss function between the training data and the model's predictions when the selected

parametric models specify a distribution p (y|x); [36]. Cross-entropy evaluates the

variance between estimated and predicted probability distributions in a given

classification problem, while in regression problems, mean squared error (MSE) is used

as the loss function [106]. The data distribution and the model distribution are frequently

compared using cross-entropy [108]. The cross-entropy function is determined by the

method used to describe the result. Under a framework of maximum likelihood, the

default activation for the output layer is the softmax activation function while the lost

function is Cross-Entropy (also referred to as Logarithmic) [108].

5.4 Activation Function

The activation function's job is to put values back into a controllable, acceptable range as

they are transferred to the next layer. The activation function is linked to the signal's

forward propagation across the network [109].

The input layer node does not carry the activation function; only the hidden and output

layer nodes do [109]. For a certain input to produce a certain output or to activate a node,

an activation function is necessary. It helps to determine and activate the nodes that

contribute immensely to the required outcome depending on the final summation

assigned. There are several types of activation functions some of which include but not

limited to linear activation function (Sigmoid and hyperbolic tangent activation

146

functions), and nonlinear activation function such as, Relu. The activation function in a

neural network transforms the node's summed weighted input into the activation of the

output for that input [109]. The activation function keeps the values passed on to the next

layers within an acceptable and practical range and passes the output [110].

5.5 Regularisation

A model that performs exceptionally well on training data yet poorly predicts test data is

said to be overfit. During the training of a large network which could be challenging,

there is a particular point during training at which the model end generalising and begins

to learn statistical noise in the training data, hence overfitting sets in and creates an

increase generalisation errors and makes the model inefficient at making predictions on

the new data. Underfitting occurs when machine learning algorithms are unable to

contain a basic pattern in the data or adequately fit the data. Avoiding overfitting can

lead to improvement in a model’s performance. Figure 5.6 below shows the structures of

underfitting, overfitting and a good fitting in a neural network.

Figure 5.6: Structure of different training sets [39]

147

Exploring a regularisation technique is one solution to this problem. Regularisation is a

method that modifies the learning algorithm to improve the model's generalisation and

performance on new data [111].

5.5.1 Dropout

This is an interesting regularisation technique that is mostly studied in the field of deep

learning. At a learning phase of a neural network, weights of neurons usually search for

specific features providing some specialisation. The nearest neurons rely on this

specialisation of which if considered too far can lead to a fragile model that specialises

excess on training data. However, dropout is applied to avoid this drawback, randomly

chosen neurons are disregarded during learning. As a result of this, they do not

contribution whatsoever to the activating neurons. At the first phase of the system, the

downstream neurons will be temporarily removed whilst the weight will no longer be

considered for an update during the backward pass. Whenever the neuron is randomly

dropped out of the network in the course of training, other neurons take the duty of

handling the representation needed to make predictions for the missing neurons. This

allows the networks to learn multiple independent internal representations, be less

sensitivity to specific neuron weights, and better generalisation that minimises the rate of

overfit [112].

Figure 5.7: (a) Normal Neural Network (b) After Applying Dropout [112]

148

Figure 5.7 (a) depicts a standard neural net with two hidden layers, whereas Figure (b)

depicts a thinned net formed after applying dropout to the network.

Dropout can be employed in both the input and hidden layers, as shown in the aforementioned

diagrams. This is done by arbitrarily choosing some nodes and removing them along with their

incoming and outgoing connections, as shown in the schematics above. This section entails a

distinct set of nodes leading to a different set of output since the nodes were randomly chosen.

The dropout function's hyperparameter is the likelihood of selecting the number of nodes to be

dropped

5.5.2 Early Stopping

Early stopping is a form of the regularisation method that enables a random large

number of training epochs to be defined and stop the training when the model

performance degenerates on a validation dataset. A trigger could be initiated, and the

training process will stop. The Early Stopping callback is triggered when instantiated

through arguments. The performance of the model can be detected during training by

setting out the evaluation metrics to be used on a choice of a dataset. It is usual practice

to divide the dataset and utilize a subset as a validation dataset, which is not used to train

the model but is used to evaluate the model's performance during training. This is

achieved by using the loss on a validation dataset, which is popularly used as a metric or

as a performance measure to monitor the performance during training. Part of the

training procedure includes the loss of the model on the training dataset and other

metrics can be evaluated and monitored on the training dataset. At the end of each epoch,

the performance of the model is calculated on the validation set. The performance of the

model on the validation set, such as loss is used to determine when a trigger is decided

concerning when to stop training in the early stopping trigger method [113]. The Early

Stopping callback will halt the training when activated.

149

Figure 5.8: Training Set Accuracy Source [113]

5.6 Google Colaboratory

Google Colaboratory is an open-source cloud service tool for machine learning with

Jupyter notebook settings which requires no setup to use. Google Colaboratory allows

sharing Jupyter notebooks without the stress of downloading, or installing anything on

your computer, using only a browser. In addition, it comprises most of the libraries such

as Scikit-learn, TensorFlow, Matplotlib and dependencies already installed. The

advantage of Google Colab is its open-source GPU service. Google Colaboratory

provides a runtime completely developed for deep learning and open access to a robust

GPU. On a free Tesla K80 GPU, deep learning applications can be designed with Google

Colaboratory using Tensorflow, Keras and PyTorch [114].

5.7 TensorFlow

TensorFlow is a Python library developed and released by Google, it enhances quick

numerical computing. It is a primary library that explores data flow graphs to develop

deep learning models directly or by using wrapper libraries that resolve the process

https://scikit-learn.org/
https://matplotlib.org/

150

developed on top of TensorFlow [115]. TensorFlow is employed for classification, and

the learning algorithms are designed for pattern recognition and knowledge-based

prediction using sensory data and an artificial network structure of nodes and weights.

The network structure is commonly constructed with an input layer, one or more hidden

layers, and an output layer, with each layer consisting of many nodes linked together

[116].

5.8 Validation Metric

The error rates of the machine learning model are obtained through the validation

technique. When setting up a classification model, over-fitting of the training set is one of

the common problems to avoid. Over-fitting means there is a good level of accuracy in

the training set but this drop significantly in a given new dataset. To avoid over-fitting, a

train, test and validation split technique is used. Hence, a split of 70% for the training set,

30% for the test set and 33% for the test set is used to evaluate our model. This

distribution helped to know how well the model will perform on any new given inputs, to

avoid the model being biased. The training set refers to a sample of data used to fit the

model and the testing set means a sample of data used to produce an unbiased judgment

of a final model fit on the training set. A validation dataset is a portion of data kept off

from training a model which gives an assessment of model performance while tweaking

the model’s hyperparameters.

Another approach to consider would be to apply k-folds cross-validation but it is seldom

used for evaluation in the Neutral Network model due to its larger computational expense;

it involves number of models to be constructed and evaluated, which substantially adds to

the evaluation time of the model [117]. In order to assess the performance of this

classification, the metrics considered are precision, recall, f-measure and accuracy.

151

5.9 TensorFlow Implementation

This section describes the implementation of the experimental setup of each

classification framework described in the previous chapter. As a reminder, the

classification frameworks in question, are Sentiment, Posit (features on the basis of

word-level information), Extended Posit (features on the basis of both word and

character-level information) and the proposed framework, composite-based classification

method. The feature sets considered in this section are (i) the ‘default’ 27 Posit features,

(ii) the extension of Posit to include 44 character features (referred to as extended-Posit

features), (iii) sentiment features and composite features (a mix of sentiment and

syntactic features derived from the textual data). All of the features in these different sets

were extracted from the three predefined categories of extremist Websites (with 2500

Webpages in each category). Each feature set was employed to determine their degree of

effectiveness in classification, via two Neural Network Models algorithms such as the

MLP and RNN.

In our approach, we decided to build the Neural Network model in each framework’s

output data based on the content of the 7500 Webpages, without any further pre-

processing. TensorFlow is employed to implement the Neural Network classifiers.

TensorFlow is a machine learning library [115]. The data set was loaded into

TensorFlow to run Neural Network classification models and utilised each model to

predict the category for each Webpage. A big data collection of 7500 Webpages was

used to develop the classification models in order to build the TensorFlow model. The

greater the amount of data collected for training a model, the higher the accuracy should

be. The manual data sets were merged into the excel, after which a class label column

“category” was defined, denoting whether the data represented “pro-extremist” or “anti-

extremist” or “neutral” Webpages. The model was tested for its accuracy in identifying

class values for the “pro-extremist” or “anti-extremist” or “neutral” Webpages category.

152

However, a class of anti-extremist is labelled as 0, neutral as 1 and pro-extremist as 2. To

make the training process well behave, the features were scaled using SciKit learn

StandardScaler. TensorFlow was used in the experiment with various settings for the

parameters relevant to the number of partitions, epochs, layers, learning rate, and

regularisation. In respect to regularisation as a measure to avoid over-fitting, a dropout

technique was employed. This is the probability of choosing number of nodes to be

dropped in the dropout layer.

Dropout is incorporated in the model to perform back propagation and regularisation

functions. Cross-entropy was employed to calculate the loss and the ADAM for the

optimiser used in updating the model. During the training of the model, too many epochs

can lead to overfitting and fewer epochs can led to underfitting of the model. However,

early stopping is a part of the regularisation method explored that permits an arbitrary

huge number of training epochs to be specified and halt the training once the model

performance stops improving on a validation dataset.

We start by feeding a data point into the input layer using our dataset. The data is then

routed through the hidden layer or layers, where weights and biases are added. Then the

output layer classifies the result from the hidden layer, which eventually produces the

output of extremist Web data. The architecture of the each model consists of hidden

layer, an input layer which represent the number of each framework’s features (for

example, input shape size is 27 in Posit, 71 in Extended-Posit, 26 in sentiment and 53 in

Composite features) and an output layer of 3, which represent anti-extremist, neutral and

pro-extremist (the prediction class). The hidden layers transform inputs to output size

using activation functions. Further architecture and hyperparameters of each model is

detailed below.

5.9.1 The MLP (multi-layer perceptron)

153

Our MLP comprises of 3 dense layers, with each having 512 hidden neurons each with a

relu activation function. Each dense layer has a follow-up dropout layer with rate of 0.3

to tackle overfitting tendencies. The final output layer is armed with a softmax activation

function to process outputs between 0 and 1. Our final layer in the compilation layer

which hosts the loss (categorical cross entropy) function, metric and the optimizer

(adams).

5.9.2 RNN

The RNN is built to receive data in both sequential and vectorised format hence our data

which was originally in a sequential format after acquisition was vectorised in the data

pre-processing stage where text feature representation was implemented. Our RNN

topology comprises of 2 LSTM layers, one which is the input layer with 26 nodes to

receive the features. The other layer contains 150 hidden units for cycle/loop processing

within the network. The tanh activation function is used to received the outputs from one

of the LSTM layers which serves as input. The following linear activation functions are

used for complex function mapping, they include the ‘sigmoid’ (maps inputs to outputs

between 0.0 and 1.0) function and the hyperbolic tangent or tanh function (maps inputs

into outputs between -1 and 1) while the ReLu maps continuous outputs as in the cases

of regression modelling and analysis. The ‘adam’ optimizer was selected specifically for

the sake of gradient descent and backpropagation which updates the weights and reduces

the loss as accuracy and learning improves. Our loss choice is the ‘sparse categorical

cross-entropy”. The tunable dropout layer is simply meant to reduce overfitting

tendencies during modellling.

5.9.3 Early Stopping

Two different Neural Network models were used to predict the category of each

Webpage in each of the framework. During the implementation each Neural Network

model on each feature sets, early stopping is applied to avoid overfitting by preventing

154

many iterations. The early stopping is designed to cease the training at the point when

validation loss starts to plateau but the initial indication of no more improvement may

not be the perfect time to end training because the model may perhaps get worse before

substantially getting better. However, a modification is done by setting a delay to the

trigger for the number of epochs after which no progress is expected. This is achieved by

setting the “patience” argument callback to 3, instructing the system not to stop till it

reaches certain epoch threshold once a validation loss of a given test dataset degenerated

(after three different plateau) and no point in continuing training. “Baseline” argument

is set up to achieve this task and the epoch threshold was set to 20. Hence, if there are no

changes to performance after 3 runs then it will stop. Eventually, an additional callback,

known as ModelCheckpoint takes the snapshot of the system at each epoch and saves the

best model observed during training. The training was done on GPU using Google Colab

platform.

5.10 Classification Results

This section describes the results obtained from the TensorFlow implementation on Posit,

Extended-Posit, Sentiment and Composite feature sets of the extremist Webpages. The

results interpreted in this section are largely focused on the overall classification and

particularly, the pro-extremist class. The results generated from the TensorFlow

implementation are the different parameters for the number of partitions, epochs, layers,

learning rate, and regularisation which were tested for optimum accuracy for each model

and the best epoch were reported in the result classification section. The regularisation

process envisioned with data plots is also presented. The parameters of each run and the

corresponding results are also presented.

5.11 RNN Classification Results

This section describes the results obtained from Posit, Extended-Posit, Sentiment and

Composite feature sets of the extremist Webpages using RNN Model

155

5.11.1 Sentiment-Based Framework (MF Imputation)

One of the most important traits of a healthy training curve is convergence, we achieved

many convergences where the model produced the best generalisation performance on

both test and training sets at epoch 20. The data plot of the learning process of the model

indicated that the model does not overfit as the loss in both validation and training

decreases significantly at 0.48 and 0.45 respectively at epoch 20. Figures 5.9-5.10

illustrate the data plots on the graphs. Overall classification of Webpages is recorded at

79.5%. Table 5.1 details the results of other classes. From the confusion matrix in Figure

5.11, the pro-extremist category had the highest level of correctly classified cases. The

class produces the lowest false positive rate, at 89% and 6% respectively.

Figure 5.9: Model Accuracy Curve-MF Figure 5.10: Model loss Curve-MF

Imputation Imputation

False

Positives

Rate

Recall Precision F1 Class

156

False

Positives

Rate

Recall Precision F1 Class

0.187

0.062

0.06

0.858

0.634

0.89

0.703

0.833

0.88

0.773

0.72

0.885

Anti-extremist

Normal

Pro-extremist

Table 5.1: MF Imputation Classification Result using RNN

Figure 5.11: MF Imputation Confusion Matrix

5.11.2 KNN Imputation

The result obtained from KNN imputation is an improvement of MF imputation as we

achieved an early convergence on the training curve. These can be seen in Figures 5.12

and 5.13 which are also reflected in the loss. The best performance of the model was

recorded at epoch 20. The data plot indicated a good fit model as both validation and

training loss decrease to 0.41 and 0.39 respectively at epoch 20. The model was able to

157

classify 81% of the extremist Webpages across the three categories. Pro-extremist had

the highest correctly classified cases at 84% with the lowest false positive rate of 10 %

compared to other categories in the confusion matrix, Figure 5.14. The result of applying

this model is shown in Table 5.2 below.

Figure 5.12: Model accuracy Curve-KNN Figure 5.13: Model Loss Curve-

Imputation KNN Imputation

False

Positives

Rate

Recall Precision F1 Class

0.068

0.115

0.100

0.780

0.807

0.849

0.856

0.775

0.808

0.816

0.791

0.828

Anti-|Extremist

Neutral

Pro-extremist

Table 5.2: KNN Imputation Classification Result using RNN

158

Figure 5.14: KNN Imputation Confusion Matrix

5.11.3 MICE Imputation

The performance of the model indicated that both the validation and training set

performed well at epoch 20. At the aforementioned epoch, we could observe both

validation and training loss decreases to 0.84 and 0.38 respectively. This shows that the

model makes small errors and does not overfit. The regularisation process was visualised

with data plots on graphs, model accuracy is detailed in Figure 5.15 while the model loss

in Figure 5.16. The model was able to classify 83% of the extremist Webpages across

the three categories. The result of applying this model is presented in Table 5.3 below.

From the confusion matrix in Figure 5.17, the classifier correctly identified pro-extremist

Webpages with the highest rate of 85%.

159

Figure 5.15: Model accuracy Curve-MICE Figure 5.16: Model loss Curve-

 Imputation MICE Imputation

False

Positives

Rate

Recall Precision F1 Class

0.049

0.113

0.087

0.803

0.851

0.847

0.894

0.787

0.828

0.846

0.818

0.837

Anti-

extremist

Neutral

Pro-extremist

Table 5.3: MICE Imputation Classification Result using RNN

160

Figure 5.17: MICE Imputation Confusion Matrix

5.11.4 Posit Classification Frameworks

When Tensorflow was implemented on Posit features (27 features), the early stopping

function was triggered based on the callback set-up to oversee the performance measure

of the training at a point where the accuracy of the validation set degenerated to a level

where there was no need to continue the training or when the model loss began to

increase on the validation set. At this point, training was terminated and the

ModelCheckpoint callback finally overwrote previously saved best models and indicated

the optimum at epoch 20. The regularisation process was illustrated graphically using

data plots and the performance, as visualised in Figures 5.18-5.19. The model loss error

is shown in Figure 5.19, it clearly shows how the error decreases in validation and

training set to 0.9 and 0.30 respectively at epoch 20. This showed that both the validation

and training set performed well on the model and well fit. The RNN model performance

showed that 86% of the whole set of Webpages was classified into the three categories,

while the pro-extremist category gave the highest level of correctly classified cases and

the lowest false positive rate at, 89% and 2.8% respectively. The classification result is

presented in Table 5.4 and the confusion matrix in Figure 5.20 below.

161

Figure 5.18: Model Accuracy Curve-Posit Figure 5.19: Model Loss Curve-

Imputation Posit Imputation

False

Positives

Rate

Recall Precision F1 Class

0.127

0.046

0.028

0.907

0.801

0.891

0.787

0.895

0.94

0.843

0.845

0.915

Anti-Extremist

Neutral

Pro-Extremist

Table 5.4: Posit Classification Result using RNN

162

Figure 5.20: Posit Imputation Confusion Matrix

5.11.5 Extended Posit Classification Framework

In addition, the same RNN implementation was performed on a set of extended-Posit

features (71 features). The optimum performance of the model was shown at epoch 20

when the classifier gave 91% overall correctly classified instances. The highest correctly

classified instance of Webpages was recorded in the pro-extremist category at 96 %, and

this category also had the least false positive rate, at 2.3%. The regularisation processes

are illustrated in Figures 5.21-5.22. Figure 5.22 shows how the model loss decreases

significantly in both validation and training. At epoch 20, loss was decreased to 0.18 in

training while 0.25 in validation. This indicates a well fit model. The classification

results and the confusion matrix are presented in Table 5.5 and Figure 5.23 respectively.

163

Figure 5.21: Model Accuracy Figure 5.22: Model Loss Curve-

Curve-Extended Posit Extended Posit

False

Positives

Rate

Recall Precision F1 Class

0.089

0.019

0.023

0.952

0.834

0.955

0.841

0.958

0.954

0.893

0.892

0.955

Anti-

Extremist

Neutral

Pro-Extremist

Table 5.5: Extended Posit Imputation Classification Result using RNN

164

Figure 5.23: Extended Posit Imputation Confusion Matrix

5.11.6 Composite Classification Framework

The regularisation process was illustrated graphically using data plots and the

performance, which are visualised in Figures 5.24 and 5.25. Both the validation and

training set performed well on the model. Again, at epoch 20, the model loss error in

both validation and training decreased significantly to 0.19 and 0.16 respectively (this

indicates a low level of error rate), which is described in model the loss curve in Figure

5.25. The RNN model performance showed that 92% of the whole set of Webpages was

classified into the three categories, while the pro-extremist category gave the highest

level of correctly classified cases and the lowest false positive rate at, 98% and 3.2%

respectively. The classification result is presented in Table 5.6 and the confusion matrix

in Figure 5.26.

165

Figure 5.24: Model Accuracy Curve-Composite Figure 5.25: Model Loss Curve-

 Composite

False

Positives

Rate

Recall Precision F1

0.056

0.031

0.032

0.919

0.862

0.984

0.89

0.935

0.938

0.905

0.897

0.96

Anti-extremist

Neutral

Pro-extremist

Table 5.6: Composite-Based Classification (Posit-Mice) Result using RNN

166

Figure 5.26: Composite-Based (Posit MICE) Confusion Matrix

5.12 MLP CLASSIFICATION RESULT

This section presents the result of each framework using MLP.

5.12.1 Sentiment-Based Framework: (MF, KNN and MICE Imputation)

When the MLP model was applied to the sentiment features (MF, KNN and MICE

Imputation sets), the model recorded an optimum performance at epoch 20 each. At

epoch 20, the training in each feature set produced the best generalisation performance

on both test and training sets. This process is achieved through the aid of performance

monitoring callbacks, early stopping and ModelCheckpoint. The regularisation process

was visualised with a data plot on the graph in each imputation set, for example MF was

depicted in Figures 5.27 and 5.28. The model was able to classify 82% of the extremist

Webpages across the three categories in MF. The classification result is presented in

Table 5.7 and the confusion matrix in Figure 5.33.

167

The overall classification result obtained in KNN is 82.3%. The model accuracy and

model loss are shown in Figure 5.29 and 5.30 respectively. The classification result is

presented in Table 5.8. Mice Imputation produced 85.7% of the overall classification of

extremist Webpages. The classification results are presented in Table 5.9 and confusion

matrix in Figure 5.35. Both the model accuracy and model loss are shown in Figure 5.31

and 5.32 respectively. The loss errors in each imputation set (sentiment-rule based

feature) decrease significantly, this indicates a low level of error rate in each imputation

set and hence each imputation doesn’t overfit. The classifier correctly identified pro-

extremist Webpages with the highest rate in each imputation set. For example, the pro-

extremist category in MF produced 91.9% of identified cases. In Mice imputation, the

pro-extremist cases were correctly identified at 95.4%. This is also applicable in KNN

imputation where the pro-extremist cases were correctly identified at 84.5 %.

Figure 5.27: Model Accuracy Curve-MF Figure 5.28: Model Loss Curve-MF

Imputation Imputation

168

Figure 5.29: Model Accuracy Curve-KNN Figure 5.30: Model Loss Curve-KNN

Imputation Imputation

Figure 5.31: Model Accuracy Curve-Mice Figure 5.32: Model Loss Curve-MICE

Imputation Imputation

169

False

Positives

Rate

Recall Precision F1 Class

0.079

0.125

0.066

0.731

0.803

0.919

0.816

0.76

0.881

0.771

0.781

0.9

Anti-extremist

Neutral

Pro-extremist

Table 5.7: MF Imputation Classification Result using MLP

False

Positives

Rate

Recall Precision F1 Class

0.093

0.069

0.105

0.785

0.84

0.845

0.813

0.853

0.805

0.799

0.846

0.824

Anti-extremist

Neutral

Pro-extremist

Table 5.8: KNN Imputation Classification Result using MLP

170

False

Positives

Rate

Recall Precision F1 Class

0.032

0.058

0.124

0.776

0.843

0.954

0.924

0.882

0.789

0.843

0.862

0.864

Anti-extremist

Neutral

Pro-extremist

Table 5.9: Mice Imputation Classification Result using MLP

Figure 5.33: MF Imputation Confusion Matrix Figure 5.34: KNN Imputation

 Confusion Matrix

171

Table 5.35: Mice Imputation Confusion Matrix

5.12.2 Composite-Based Classification Framework

In the Composite (53 features), the MLP model classifies the category for each webpage

and the overall classification of extremist Webpages was recorded at 95%. From the

confusion matrix in Figure 5.38, the pro-extremist category had the highest level of

correctly classified cases at 98.2%. The results are presented in Table 5.10. The

performance of the model indicated that both the validation and training set performed

well at epoch 20. Figures 5.36 and 5.37 detailed both the validation and training curves.

Figure 5.37 shows how the model loss decreases significantly in validation and training

at epoch 20, the loss was decreased to 0.13 in training while 0.18 in validation. This

indicates a well-fit model.

172

Figure 5.36: Model Accuracy Curve- Figure 5.37: Model Loss Curve-

Composite Composite

False

Positives

Rate

Recall Precision F1 Class

0.042

0.02

0.013

0.948

0.921

0.982

0.915

0.96

0.975

0.931

0.941

0.978

Anti-extremist

Neutral

Pro-extremist

Table 5.10: The Composite Classification Result using MLP

173

Figure 5.38: Composite Confusion Matrix

5.12.3 Posit-Based Classification Results

When Tensorflow was implemented on Posit features (27 features), the early stopping

function was triggered based on the callback set up to oversee the performance measure

of the training set. Eventually, the best model indicated its optimum performance at

epoch 20. The regularisation process was illustrated graphically using data plots and the

performance, as visualised in Figures 5.39 and 5.40, showed that both the validation and

training set performed well on the model. The MLP gave 88% of the whole set of

Webpages being classified into the three categories, while the pro-extremist category

produced the highest level of correctly classified cases at, 90.9%. The classification

result is presented in Table 5.11 and the confusion matrix in Figure 5.41. The little

variances between the validation and training losses score indicate that the model doesn’t

overfit. The model error decreases from 0.86 to 0.32 in training while 0.62 to 0.29 in the

validation set. The model loss is plotted in a graph displayed in Figure 5.40.

174

Figure 5.39: Model Accuracy Curve-Posit Figure 5.40: Model Loss Curve-

 Posit

False

Positives

Rate

Recall Precision F1 Class

0.056

0.072

0.05

0.849

0.885

0.909

0.881

0.86

0.904

0.865

0.872

0.906

Anti-extremist

Neutral

Pro-extremist

Table 5.11: Posit Classification Result

175

Figure 5.41: Posit Confusion Matrix

5.12.4 Extended Posit Classification Results

The implementation of MLP on Extended Posit (71 features) successfully achieved many

convergences and gave optimum result at the 20th epoch. In addition, low loss error was

recorded on both the validation and training set, this indicates that the model is fit.

Figures 5.42 and5.43 illustrate the regularisation process envisioned with data plots on

the graphs. The model classifies the category for each webpage and the overall

classification of extremist Webpages was recorded at 93.9%. The pro-extremist category

had the most identified cases and the lowest false positive rate, at 95.4% and 2.1%

respectively. Table 5.12 and Figure 5.44 detailed the results.

176

False

Positives

Rate

Recall Precision F1 Class

0.033

0.037

0.021

0.929

0.934

 0.954

0.934

0.925

0.958

0.932

0.929

0.956

Anti-extremist

Neutral

Pro-extremist

Table 5.12: Extended-Posit Classification Result

Figure 5.42: Extended Posit Confusion Matrix

177

Chapter 6: Results Analysis and Evaluations

As a reminder, the classification methods in question, are Sentiment (KNN, Missforest

and MICE Imputation), Posit (features on the basis of word-level information), the

Extended Posit (features on the basis of both word and character-level information) and

the proposed framework, Composite-based classification method. The classification

algorithms considered in this thesis are KNN, Random Forest, J48, RNN and MLP. The

results described in this chapter reveal the classifier and classification framework that

works best in classifying extremist content. The results also revealed the advantages of

feature selection against hyperparameters turning on classification accuracy.

6.1 Sentiment-based Classification Framework

Research Question 1: Can the imputation method efficiently compensate for missing

values faced by feature set obtained via sentiment analysis (a procedure that utilises top-

k noun keywords to obtain sentiment values from text corpus) before being fed into

machine learning for the classification task?

Missingness of data is inevitable in the sentiment analysis method developed in this

thesis because utilizing top-k noun keywords to obtain sentiment values from text corpus

will create a situation where some Webpages have few or none of the selected noun

keywords and hence lead to missing data. However, the best approach to replace the

missing data for the particular feature set led to many imputation techniques explored.

Mice imputation technique was able to compensate efficiently for the missing values

obtained in the sentiment analysis. Among the machine learning algorithms considered,

the result showed Random Forest gave the best performance. Random Forest gave

Missforest a classification accuracy of 86%, while 85% for KNN and MICE at 88%

respectively. Table 6.1 shows the frameworks result comparison. However, the result

from the classification algorithms employed showed that multivariate imputation

approach (MICE) outperformed other imputation approaches such as, KNN and

178

Missforest. Hence, MICE imputation approach came out to be the best method to handle

missing values in keyword-based sentiment feature set (a given data set with the

conditions that the data is missing at random (MAR)) before being feed into machine

learning algorithm. Multiple imputation by chain equations (MICE) approach has

demonstrated flexibility in handling missing data nature of data better than other

approaches.

6.2. Composite-Based Classification Framework

Research Question 2: Can the Composite approach (the combination of sentiment and

syntactic features in textual content as a basis for text features) be effective to create a

well working machine learning model?

The essence of this research question is to test the effectiveness of the classification

methods with their various feature sets when classifiers are applied. Out of the deployed

models on each feature set, composite feature set (a proposed framework that deployed a

hybrid of both sentiment and syntactic features of texts) outperformed other

classification frameworks with Random Forest as the best performing model, at 95.8%.

In addition, the proposed framework showed the highest proportion of correctly

identified pages across all three classes, compared to other frameworks. This is an

indication that the composite-based classification method is more effective in discerning

content that expresses extremism than other frameworks. Table 6.1 shows the result

comparison of the classification frameworks. A likely reason for the greater

effectiveness of composite features is that they afford a wider coverage of more useful

features, both sentiment and syntactic, in a Web text. In addition, pro-extremist category

had the most identified cases and highest precision in composite framework when

compared with other categories in other classification frameworks.

179

 RF J48 KNN RNN MLP

MF 86 83 82.1 79.5 82

KNN 85 84.3 81 81 82.3

MICE 88 86.5 83 83 85.7

Posit 93 89.4 89 86 88

Ext-Posit 95 89.6 90.3 91 93

COMPOSITE 95.8 91.5 92 92 95

Table 6.1: Comparison of the Classification Methods

6.3 Feature Selection vs Model Optimisation

Research Question 3: What is the cost of model optimisation (hyperparameter turning)

over feature selection when creating a machine learning model?

Hyperparameter turning is a stopping criterion explored to achieve optimum values and

minimize overfitting. In an attempt to minimize overfitting and enhance the optimal

output of the model, hyperparameter tuning was employed using GridsearchCV. By fine-

tuning the models, we obtained the best parameters across the different feature sets used

in each model which also revealed how the different parameter values affect our final

score (performance metrics). While feature selection operates by selecting a subset of

relevant features for use in model construction to improve accuracy and run-time most

especially in model construction where there are numerous features and comparatively

few samples (or data points). Enhancing the prediction performance of the predictors to

produce efficient and effective predictors is the main objective of feature selection.

However, when both wrapper method (feature selection) and the GridesearchCV method

(model optimisation) were applied to each feature set, the results obtained from Random

Forest, the wrapper method outperformed the GridsearchCV method in each framework.

The same trends apply to J48. The results obtained from the J48 model indicated that the

180

Wrapper method outperformed the GridesearchCV method in all the classification

methods except in composite where the GridesearchCV method gave better accuracy at,

91.5% against the wrapper method which achieved 91.3%. Table 6.2 and 6.3 below

detailed the comparison of the results between the feature selection and hyperparameter

turning.

s/n Frameworks % of

feature

subsets

Runtime

For

Wrapper

Method

(sec)

Accuracy of

Wrapper

Method (%)

Grid

searchCV

Accuracy

(%)

1 Sentiment(Mice) 90 3.4 86.9 86.4

2 Posit 60 3.54 89.4 89.4

3 Composite 60 8.04 91.3 91.5

4 Ext Posit 45 9.32 90 89.6

Table 6.2: Result Comparison between Wrapper and GridsearchCV Methods using

J48

s/n Frameworks % of

feature

subsets

Runtime for

Wrapper

Method

(sec)

Accuracy of

Wrapper

Method (%)

Grid

searchCV

Accuracy

(%)

1 Sentiment(Mice) 100 3.2 88.2 88%

2 Posit 100 9.6 93.9 93%

3 Composite 100 9.08 95.9 95.8%

4 Ext Posit 75 165 95.9 95%

Table 6.3: Result Comparison between Wrapper and GridsearchCV Methods using

Random Forest

181

The results shown from both feature selection and model optimization (hyperparameter

turning) when creating a machine learning model showed that hyperparameter tuning

takes time and is computationally expensive. This isn't to suggest that hyperparameter

tuning isn't vital; rather, when it comes to increasing a model's performance, it's a top

priority. It takes a long time to cycle different hyperparameter combinations in order to

obtain a tiny improvement. Even worse, if you have a large amount of data and a

complicated model, each iteration consumes a lot of resources. As a result, performing

feature selection to represent the problem well enough for models to learn and predict

accurately is a more intelligent approach for achieving great results with quantum leaps

of improvement in a shorter time frame. If time allows, we can investigate tweaking

hyperparameters after we have great features, therefore feature selection should come

first and hyperparameter tuning should follow second. Hence, great features are still

important in determining a model's success and cost effectiveness for machine learning

tasks. Taking cost into account, feature selection improves classification accuracy and

saves time better than hyperparameter turning.

6.4 Machine Learning and Neural Network Algorithms

Research Question 4: Considering the selected Machine Learning and Neural Network

algorithms (such as RNN, MLP, KNN, J48 and Random Forest) on a pre-processed

feature, which model produce the best classification accuracy on extremist Web textual

data?

6.4.1. Overall Classification Results

Based upon the outcomes of the experiments, Random Forest gave the best classification

performance on the Posit-based classification framework when compared with other

classifiers. The model was able to classify 93% of the Webpages into their various

categories. Again, Radom Forest earned the extension of Posit (word level data with

character-level information) with topmost accuracy when compared with other classifiers

explored, it enhanced Extended-Posit performance to a creditable 95% correctly classified

182

instances of the overall Webpages. Table 6.1 shows the frameworks’ results comparison.

Clearly, the extension of Posit textual analysis to include both word and character-level

features, outperformed word-level feature alone in the classification. Notably, the Posit

approach to language analysis relied entirely upon the frequency of syntactic features.

Taking the overall parameters into account, when deployed with RNN and MLP

classifiers, the composite-based classification framework outperformed the other

frameworks. The results showed that the composite features gave the best classification

accuracy of 95% with MLP as a better model when compared with RNN. In addition,

among all the deployed models, composite feature set (a proposed framework that

deployed a hybrid of both sentiment and syntactic features of texts), Random Forest gave

the best performing model, at 95.8%. Hence, composite features are preferable to solely

syntactic or sentiment features and can offer improved classification accuracy when used

with machine learning algorithms. Conclusively, there was a noticeably better

performance among the six frameworks when the Random Forest classifier was applied

compared to the results obtained in other algorithm, at 95.8%. Table 6.1 presents the

detailed results.

6.5 Validation of Nigerian Extremism Webpages

Research Question 5: Can a model based on the dataset used for these experiments be

validated on another dataset of a similar domain but different source?

The objective of this task is to test the efficiency of a classifier on two different set of

data, with similar topics and predefined classification. Then, if the result provides a good

degree of match in the classification result, the latter could be taken as a validation set

for the other dataset. With this in mind, the two datasets considered to test this research

question are (i) a set of Nigerian extremist Webpages and (ii) a set of extremist web

pages previously obtained by the TENE Web-crawler [5]. Both datasets had the same

predefined categories of Webpages such as pro-extremist, anti-extremist and neutral.

183

After applying the classifiers, Random Forest outperformed J48 to produce 53% of

correctly classified instances of overall Webpages into their respective categories in the

Extended-Posit based classification framework. Again, Extended-Posit outperformed

Posit in both Random Forest and J48. In Extended-Posit, J48 produced 49% overall

accuracy better than 48% obtained in Posit. In addition, all the five classifiers were

applied in the experiment to ascertain the best classification model but similar trends of

the results stated above were observed but we reported the two best performing models

to avoid tautology following the explicit presentation of the aforementioned analysis and

results. Sentiment and composite feature sets could not be used as validation because of

the difference and unrelated feature each possessed.

Considering, the training curves from sections 4.10-4.10.2, we could see that the training

curves were healthy, well-fitted models. This indicates that a model based on the dataset

used for these experiments can be validated on another dataset of a similar domain and

different source provided that both datasets possess related features. However, the low

overall accuracy recorded can be traced to the small dataset used for the validation

process.

6.6. Results comparison with the literature

Our proposed approach in sentiment analysis outperformed the method explored in [5].

The method improved the sentiment-based classification method better than what was

obtainable in the literature which also explore the same sentiment analysis approach and

dataset [5]. J48 gave a classification accuracy of 86.5% unlike the 80.6% overall

classification performance obtained in [5]. Table 6.5 below detailed the result

comparison.

Moreover, the textual content classification method was improved further with a

composite classification framework that deployed a hybrid of both sentiment and

syntactic features of texts, the J48 algorithm gave 91.5% correctly classified instances of

184

the Webpages using J48. The pro-extremist category had the highest degree of correctly

identified pages, at 93.2%. The hybrid method showed the highest proportion of

correctly identified pages across all three classes, compared to the ICCRC sentiment

analysis method in the literature [5]. Taking into account the overall evaluation

parameters such as precision, recall and f-score in the analysis, the results show that the

composite method is more effective in discerning content that expresses extremism than

the ICCRC sentiment analysis method in the literature [5]. Table 6.4 detailed the

comparison of our results with the literature.

6.7 Human-Verification of Manually Labelled Data

We have three manual categories, anti, pro-extremist and neutral. According to how the

pages were manually classified, all pages from extremist Websites were all gathered into

the pro-extremist class. However, not all pages in this category might have 100%

extremist content. Some Webpages crawled from this domain may have neutral contents

such contact us, about us for example. This is an error that automated classification was

able to correct by putting such content in the category where it belongs. Although this

situation was minimal as human verification was done randomly on the manual labelled

Classification

Frameworks

Overall

Accuracy

Pro Anti Neu

Mice Imputation

(Sentiment

Analysis)

86.5 86.5 86.5 86.4

ICCRC Method

[5] (Sentiment

Analysis)

80.51 92.7 88 68

Composite Method 91.5 93.2 90.9 90.6

Table 6.4: Results comparison with the literature

185

data. Out of one hundred pages manually checked, only five pages were found to be

mismatched.

However, conducting our automated classification on such will not deter the efficiency

of our models. The mismatched cases won't affect classification accuracy significantly

because it makes up only a minute percentage of the extracted webpages wherein the

correctly classified cases are much more, if we factor this into a percentage, about 90%

of the webpages were correctly classified, on which our model is trained on. In addition,

we carried out the validation process for each hold-out dataset giving us the validation

performance rate, metric and accuracies. We also paid further attention to the precision,

recall and f-score.

186

Chapter Seven: Conclusions and Future Work

This chapter details the conclusion of the studies carried out in the research reported in

this thesis.

7.1 Conclusions

The rapid increase of extremist documents online has created the need for efficient

automated systems for the classification and identification of such Webpages. This ability

will assist in the triage and further investigation on the particular Web pages that are

likely to relate to terrorism or extremism. Additionally, this will aid in countering

extremist activities such as recruitment and radicalisation on the Internet. In this thesis,

six different classification frameworks were developed, specifically, Sentiment-based

(Mice, KNN and MissForest imputation), Posit-textual, Extended-Posit and Composite-

based classification frameworks. The machine learning algorithms explored are MLP,

RNN, Random Forest, J48 and KNN.

CNN is another interesting neural network algorithm but it was not explored because we

do not necessarily need to perform convolutions on text-based datasets as they have been

known to be inefficient in such applications but better applications are in MLP, RNN or

LSTM wherein a better representation of words and vectors are established as well as the

context vectors. As an approach to overcome overfitting or underfitting, we performed

overfitting analysis using the learning curve. This is done using hyperparameters turning

in each model over a range of values. A plot of the test and train accuracy at each

hyperparameter value was drawn. The curve was observed. Then, the first peak of test

set performance was recorded as the best generalisation performance. Taking all the

classification models and evaluation metrics into account, the standardised data produced

better results than normalised data and we presented standardization results in the thesis

only. The normalised data’s results were not presented to avoid unnecessary details.

Lastly, the effectiveness of the models was compared and the conclusions were drawn.

187

7.1.2 The Contributions from the Thesis

The study evaluated the application of different classification frameworks; this is to

establish their effectiveness as a basis of text features used in building a classification

model. The frameworks are:

i. Sentiment analysis-based method. The thesis evaluated different types of imputation

methods applied to compensate for missing values faced by the sentiment analysis

method that relies on the use of top-k noun keywords to obtain sentiment around each

Web page,

ii. Posit (on the basis of word-level information),

iii. Extension of Posit (with an additional 44 character features) on textual data and

iv. a novel framework, a composite-based (a computational framework that explores the

combination of both sentiment and syntactic features of textual contents as a basis for

text features which enhances textual data classification model). The reason behind the

hybrid features in the composite approach is to use the substantial feature set that feeds

into building a classification model,

The thesis analysed the performance of Neural Network algorithms (such as RNN and

MLP) and traditional machine learning algorithms (such as the J48 decision tree, K-

Nearest Neighbor and Random Forest) on text corpora, extremist Web text, this is to

determine the best model for such text content classification.

The thesis also evaluated the cost of hyperparameter turning over feature selection in

creating a machine learning model.

188

Models based on the dataset used for these experiments were validated on the Nigerian

dataset (a dataset of a similar domain but different source) this is to check if it can be

taken as validation for the approach since it would seem to work well across differently

sourced data sets (for the same classification tasks).

The thesis concluded by giving the summary of the outcome of each research question

respectively. The results are given below:

i. The composite features are preferable to solely syntactic or sentiment features and can

offer improved classification accuracy when used with machine learning algorithms.

Consequently, there was a noticeably better performance among the six frameworks

when the Random Forest classifier was applied compared to the results obtained in other

algorithms, at 95.8%. The extension of Posit textual analysis to include both word and

character-level features outperformed word-level features alone in the classification.

ii. Imputation approach can compensate for the missing values on a dataset when a

machine learning algorithm is applied. Among all the imputation methods considered,

the MICE imputation approach came out to be the best method to handle missing values

faced by sentiment feature obtained via sentiment analysis (a sentiment analysis

procedure that utilises top-k noun keywords to obtain sentiment values from text corpus)

before being fed into machine learning for the classification task. The multivariate

imputation (MICE) approach has demonstrated flexibility in handling varying nature of

data such as the continuous or binary data better than other approaches.

iii. Taking cost into account, feature selection improves classification accuracy and saves

time better than hyperparameter turning

vi. Considering the selected machine learning and neural network algorithms (such as

RNN, MLP, KNN, J48 and Random Forest) on a pre-processed feature, Random Forest

offered the best classification accuracy on extremist Web textual data.

189

v. A model based on the dataset used for these experiments can be validated on another

dataset of a similar domain and different source provided that both datasets possess

related features.

7.2 Future Work

The BERT algorithm (Bidirectional Encoder Representations from Transformers) is a

deep learning algorithm for natural language processing. This is another algorithm that

was considered for inclusion in this thesis but BERT is a very sophisticated algorithm

that demands time and more hardware resources in terms of Ram and GPU which would

be costly. Hence we decided to focus on more comfortable ML algorithms that can

handle our data size but yet be very accurate hence eliminating heavy training costs. This

algorithm will be considered in future work.

In addition, a future study on textual analysis and classification would be projected

toward the exploration and investigation of security threats through cyber-attacks on the

Internet. We would be exploring the dynamics of the composite-based model that utilizes

a vast range of sentiment and syntactic features contained within a text block. This

would further stretch the boundaries of the composite-based model as we would be

employing a much larger variety of datasets from various sources including job relaying

sites, public business offer sites, social media sites and a lot more. This data would be

based on fake job listings, false ROI for business opportunities, and fake SMS from

fraudsters posing to represent the customer’s bank thereby asking for salient banking

details and others. The composite-based model will be utilised for identifying text

contents that have fraudulent motives.

190

Bibliography

[1] A. N. Awan, A. Hoskins, and B. Loughlin, “Radicalisation and Media: Connectivity

and Terrorism in the New Media Ecology”, New York: Routledge, pp154, 2011. ISBN:

978-0-415-64199.

[2] L. Bowman-Grieve, “Exploring “Stormfront”: A Virtual Community of the Radical

Right”, Studies in Conflict & Terrorism, Vol 32, pp 989-1007,

2009. DOI: 10.1080/10576100903259951

[3] M. Midlarsky, “Origins of political extremism. Mass violence in the twentieth

century and Beyond”, Cambridge: University Press, 2011.

[4] R. Rogers, “Digital Methods. Cambridge”, MIT Press, 2013.

[5] J. Mei and R. Frank, "Sentiment crawling: Extremist Content Collection through a

Sentiment Analysis Guided Web-Crawler," in Proceedings of the 2015 IEEE/ACM

International Conference on Advances in Social.

[6] Q. Schiermeier, "Terrorism: Terror prediction hits limits." Nature, vol. 517, no. 7535,

p. 419, 2015.

[7] L. Eric, "Bin Laden Chose 9/11 Targets, Al Qaeda Leader Says" in the New York

Times, 2003.

[8] G. Birchall, W. Chrismas and P.Harper, “TERROR IN THE CAPITAL,” in the Sun

News Paper, Retrieved from: https://www.thesun.co.uk/news/3151868/london-

westminster-terror-attack-bridge-victims-about/

https://www.tandfonline.com/doi/full/10.1080/09546553.2015.1006102?src=recsys
https://www.tandfonline.com/doi/full/10.1080/09546553.2015.1006102?src=recsys
https://www.tandfonline.com/doi/full/10.1080/09546553.2015.1006102?src=recsys
https://doi.org/10.1080/10576100903259951
https://query.nytimes.com/gst/fullpage.html?res=9404E7DF1031F933A15750C0A9659C8B63
https://www.thesun.co.uk/news/3151868/london-westminster-terror-attack-bridge-victims-about/
https://www.thesun.co.uk/news/3151868/london-westminster-terror-attack-bridge-victims-about/

191

[9] J. S. Rivinius, “START Background Report,” published in Department of Homeland

Security Center of Excellence, University of Maryland. Retrieved from:

http://www.start.umd.edu/news/proportion-terrorist-attacks-religious-and-right-wing-

extremists-rise-united-states, November 2017.

[10] A. Geron, Hands-On Machine Learning With Scikit-Learn and Tensor-Flow:

Concepts Tools and Techniques to Build Intelligent Systems, Sebastopol, CA,

USA:O’Reilly Media, pp. 543, 2017, [online] Available:

http://shop.oreilly.com/product/0636920052289.do

[11] J. Wang, P.Liu, M. F.H.She, S. Nahavandi, A. Kouzani, “Bag-of-words

representation for biomedical time series classification”, Biomedical Signal Processing

and Control, Volume 8, Issue 6, pp 634-644, November 2013.

[12] Y. Xia, L. Wang, K. F. Wong, M. Xu, “Lyric-based Song Sentiment Classification

with Sentiment Vector Space Model”, in Proceedings of ACL-08: HLT, Short Papers

(Companion Volume), pages 133–136, 2008.

[13] R. Scrivens and R. Frank, "Sentiment-Base Classification of Radical Texts on the

Web," in Proceeding of the European Intelligence and Security Informatics Conference,

2016, pp 104–107.

[14] G. R. S. Weir, E. D Santos, B. Cartwright and R.Frank, “Positing The Problem:

Enhancing Classification of Extremist Web Content Through Textual Analysis,” in

Proceedings of the 4th International Conference on Cybercrime and Computer Forensics

(ICCCF), Simon Fraser University, Vancouver, Canada. 2016.

http://www.start.umd.edu/news/proportion-terrorist-attacks-religious-and-right-wing-extremists-rise-united-states
http://www.start.umd.edu/news/proportion-terrorist-attacks-religious-and-right-wing-extremists-rise-united-states
https://www.sciencedirect.com/science/journal/17468094/8/6

192

[15] B. Cartwright, G. R. S. Weir, and R. Frank, Fighting Disinformation Warfare with

Artificial Intelligence, Tenth International Conference on Cloud Computing, GRIDs, and

Virtualisation, 2019.

[16] M. Thelwall and K. Buckley, "Topic-based sentiment analysis for the social Web:

The role of mood and issue-related words," Journal of the American Society for

Information Science and Technology, vol. 64, pp. 1608-1617, 2013.

[17] S. Buuren, & K. G. Groothuis-Oudshoorn, “MICE: Multivariate imputation by

chained equations in R”, Journal of Statistical Software, Vol. 45, pp1-67, 2011.

[18] M. Nosrati, “Python: An appropriate language for real world programming”, World

Applied Programming, Vol. 1, 2011. pp110-117.

[19] T. Richards, “An intellectual history of NUD*IST and NVivo”, International

Journal of Social Research Methodology, Vol 5, pp199-214,

2002. DOI: 10.1080/13645570210146267.

[20] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, C.J. Lin, "LIBLINEAR: A library

for large linear classification," Journal of Machine Learning Research. Vol.9, 2008,

pp1871–1874.

[21] S. Deepu, P. Raj and S. Rajaraajeswari, "A Framework for Text Analytics using the

Bag of Words (BoW) Model for Prediction", in proc. 1st International Conference on

Innovations in Computing & Networking (ICICN16) CSE RRCE ISSN: 0975–0282.

https://doi.org/10.1080/13645570210146267
https://en.wikipedia.org/wiki/Journal_of_Machine_Learning_Research

193

[22] B. Heap, M. Bain, W. Wobcke, A. Krzywicki, and S. Schmeidl, “Word vector

enrichment of low frequency words in the bag-of-words model for short text multi-class

classification problems”, CoRR, abs/1709.05778, 2017.

[23] J. Sang, S. Pang, Y. Zha, Y, and F. Yang, “ Design and analysis of a general vector

space model for data classification in Internet of Things”, J Wireless Com Network, Vol

263, 2019. https://doi.org/10.1186/s13638-019-1581-3

[24] J. Ababneh, O. Almomani, W. Hadi, N.K.T. El-Omari, A. Al-Ibrahim, “Vector

space models to classify Arabic text”, Int. J. Comput. Trends Technol. (IJCTT), Vol 7,

pp. 219-223, 2014.

[25] A. Törnberg and P.Törnberg, “Muslims in social media discourse: Combining topic

modeling and critical discourse analysis”, Discourse, Context & Media, Volume 13, pp

132-142, September 2016.

[26] D. Zha & C. Li, “Multi-label dataless text classification with topic modeling”,

Knowledge and Information Systems volume 61, pages137–160, 2019

[27] D. M. Blei, A.Y. Ng, & M.I. Jordan, “Latent Dirichlet Allocation.”, Journal of

Machine Learning Research, Vol. 3, pp993–1022, 2003.

[28] L. Yang, F. Liu, J. Kizza and R. Ege, “Discovering topics from dark websites”, in

Computational Intelligence in Cyber Security, CICS ’09. IEEE Symposium. pp 175 –

179, 2009.

[29] D. Inkpen and A. H. Razavi, “Topic Classification using Latent Dirichlet

Allocation at Multiple Levels”, IJCLA VOL. 5, NO. 1, PP. 43–55, 2014.

https://doi.org/10.1186/s13638-019-1581-3
https://www.sciencedirect.com/science/journal/22116958/13/part/PB
https://link.springer.com/article/10.1007/s10115-018-1280-0#auth-1
https://link.springer.com/article/10.1007/s10115-018-1280-0#auth-2
https://link.springer.com/journal/10115

194

[30] T. A. Rana1 and Y. Cheah,"Aspect extraction in sentiment analysis: comparative

analysis and survey," in Artif Intell Rev, Springer vol. 46 pp459–483. 2016. DOI

10.1007/s10462-016-9472-z

[31] J. Andoh, L. Asiedu, A. Lotsi, C. Chapman-Wendy, “Statistical analysis of public

sentiment on the Ghanaian government: A machine learning approach”, Hindawi

Advances in Human-Computer Interaction, vol.1, pp1-7, 2021.

[32] R. Strimaitis, P. Stefanovic, S. Ramanauskaite, & A. Slotkiene, “Financial context

news sentiment analysis for the Lithuanian language”, Applied Sciences, vol.11,

pp1-13, 2021.

[33] M. S. Basarslan, & F. Kayaalp, “Sentiment analysis with machine learning methods

on social media”, Advances in Distributed Computing and Artificial Intelligence

Journal Regular Issue, vol. 3, pp5-15, 2020.

[34] R. Feldman, "Techniques and applications for sentiment analysis" in

Communications of the ACM, 56(4), pp. 82-88, 2013.

[35] A. Abbasi and H. Chen, "Applying authorship analysis to extremist group Web

forum messages," in Intelligent Systems, 20(5), pp. 67-75, 2005.

[36] A. Bermingham, M. Conway, L. McInerney, N. O’Hare, and A. F. Smeaton,

“Combining Social Network Analysis and Sentiment Analysis to Explore the Potential

195

for Online Radicalisation,” in 2009 International Conference on Advances in Social

Network Analysis and Mining (ASONAM). IEEE, pp. 231–236, 2009.

[37] X. Qi, K. Christensen, R. Duval, E. Fuller, A. Spahiu, Q. Wu, and C.-Q. Zhang, “A

Hierarchical Algorithm for Clustering Extremist Web Pages,” in 2010 International

Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp.

458–463, 2010.

[38] J. R. Scanlon and M. S. Gerber, “Automatic Detection of Cyber Recruitment by

Violent Extremists,” Security Informatics, vol. 3, no. 1, pp. 1–10, 2014.

[39] A. Agarwal, B. Xie, I. Vovsha, O. Rambow and R. Passonneau, “Sentiment

Analysis of Twitter Data,” Inproceedings of the Workshop on Language in Social Media

(LSM 2011), Portland, Oregon, pages 30–38, 2011.

[40] A. Abbasi, H. Chen and A. Salem, “Sentiment Analysis in Multiple Languages:

Feature Selection for Opinion Classification in Web Forums,” ACM Transactions on

Information Systems, Vol. 26, pp 1-34, 2008.

[41] H. Chen, W. Chung, J. Qin, E. Reid, M. Sageman, and G. Weimann, “Uncovering

the Dark Web: A Case Study of Jihad on the Web,” Journal of the American Society for

Information Science and Technology, vol. 59, no. 8, pp. 1347–1359, 2008.

[42] Z. Kechaou, M. Ammar, and A. Alimi, “A Mutli-Agent Based System for

Sentiment Analysis of User-Generated Content,”. International Journal on Artificial

Intelligence Tools, Vol 22, 2013. Doi: 10.1142/S0218213013500048.

196

[43] M. Asif, A. Ishtiaq, H. Ahmad, H. Aljuaid and J. Shah, "Sentiment analysis of

extremism in social media from textual information", Telematics Informat., vol. 48, May

2020.

[44] X. Chen et al., "Sentiment Classification Using Negative and Intensive Sentiment

Supplement Information", Data Sci. Eng., vol. 4, no. 2, pp. 109-118, 2019.

[45] N. Medagoda, S. Shanmuganathan, "Keywords based temporal sentiment

analysis", Proc. 12th Int. Conf. Fuzzy Syst. Knowl. Discovery (FSKD), pp. 1418-1425,

Aug. 2015.

[46] G. R. S. Weir and T. Ozasa, "Learning from Analysis of Japanese EFL Texts."

Educational Perspectives, Journal of the College of Education/University of Hawaii at

Manoa, vol. 43, pp. 56-66, 2010.

[47] G. R. S. Weir and N. K. Anagnostou, "Exploring Newspapers: A Case Study in

Corpus Analysis," in ICTATLL Workshop 2007, International Education Centre,

Hiroshima International University, Japan, 2007.

[48] A. Oberacker, “Textual Analysis for Document Forensics”, an MSc dissertation

submitted to the department of Computer and Information Sciences, University of

Strathclyde, United Kingdom, August, 2017.

[49] B. Cartwright, L. Nahar, G. R. S. Weir, L. Nahar, K. Padda and R. Frank, “The

Weaponisation of Cloud-based Social Media: Prospects for Legislation and Regulation”,

Tenth International Conference on Cloud Computing, GRIDs, and Virtualisation, 2019.

https://scholar.google.com/citations?user=SBDcS-sAAAAJ&hl=en&oi=sra

197

[50] X. Zhang, J. Zhao, Y. LeCun, “Character-level convolutional networks for text

classification”, arXiv preprint arXiv:1509.01626. 2015.

[51] S. Ahmad M. Z. Asghar F. M. Alotaibi I. Awan, "Detection and classification of

social media-based extremist affiliations using sentiment analysis techniques", Human-

centric Computing and Information Sciences vol. 9, pp. 24, 2019.

[52] S. A. Azizan and I. A. Aziz, “Terrorism Detection Based on Sentiment Analysis

Using Machine Learning’, Journal of Engineering and Applied Sciences. Vol 12, pp 691-

698, 2017.

[53] D. Ali, M. M. S. Missen, and M. Husnain, “Multiclass event classification from

text,” Scientific Programming, vol. 2021, Article ID 6660651, 15 pages, 2021.

[54] Z. Kastrati, L. Ahmed., A. Kurti, F. Kadriu, D. Murtezaj, & F. Gashi, “A deep

learning sentiment analyzer for social media comments in low-resource

languages”, Electronics, Vol.10, 1-19, 2021.

[55] F. Rustam, M. Khalid, W. Aslam, V. Rupapara, A. Mehmood and G. S. Choi, "A

performance comparison of supervised machine learning models for COVID-19

tweets sentiment analysis", PLoS ONE, vol. 16, no. 2, Feb. 2021

[56] L Nizzoli, M Avvenuti, S Cresci, M Tesconi, “Extremist Propaganda Tweet

Classification with Deep Learning in Realistic Scenarios”, In 11th ACM Conference on

Web Science (WebSci ’19), 2019.

https://scholar.google.com/citations?user=n4QjVfoAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=8ipao8MAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=O3ZyFD4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=4vGDqVsAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=Jsd83JgAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=uTY9nhoAAAAJ&hl=en&oi=sra

198

[57] M. J. Azur, E. A. Stuart, C. Frangakis, and P. J. Leaf, “Multiple imputation by

chained equations: what is it and how does it work”, International Journal of Methods in

Psychiatric Research, Vol. 20, pp40-49, 2011.

[58] I. B. Helenowski, “Advantages and advancements of multiple imputation”,

Biometrics and Biostatistics International Journal, Vol.2, pp93-94, 2015.

[59] N. J. Horton & S. R. Lipsitz, “Multiple imputation in practice: Comparison of

software packages for regression models with missing variables”, The American

Statistician, Vol. 55, 244-254, 2001.

[60] D. Schunk, “A Markov Chain Monte Carlo algorithm for multiple imputation in

large surveys”, Advances in Statistical Analysis, Vol.92, pp101-114, 2008.

[61] J. W. Graham, “Missing data analysis: Making it work in the real world”, Annual

Review of Psychology, Vol.60, pp549-576, 2009.

[62] J. I. Schafer, “Multiple imputation: a primer”, Statistical Methods in Medical

Research, Vol. 8, pp3-15, 1999.

[63] D. B. Rubin, “Multiple imputations for nonresponse in surveys”, New York: John

Wiley and Sons, 1987.

[64] C. M Salgado, C. Azevedo, H. Proenca, S. M. Vieira, “Missing data”, Secondary

Analysis of Electronic Health Records, Vol. 1, pp143-162, 2016.

199

[65] R. Samant, & S. Rao, “Effects of missing data imputation on classifier accuracy”,

International Journal of Engineering Research and Technology, Vol.2, pp264-266,

2013.

[66] M. Moeur, & A. R. Stage, “Most similar neighbor: An improved sampling inference

procedure for natural resource planning”, Forest Science, Vol.41, pp337-359,

1995.

[67] L. Beretta, & A. Santaniello, “Nearest neighbor imputation algorithms: a critical

evaluation”, BMC medical Informatics and Decision Making, Vol.16, pp197-208,

2016.

[68] S. Bhattacharya, “Nearest neighbor classifiers with improved accuracy and

efficiency”, [M.Sc. Thesis]. University of Texas, USA, 2017.

[69] K. Grace-Martin, “Missing data: Two big problems with mean imputation”,

Retrieved from https://www.theanalysisfactor.com/mean-imputation/,17th March, 2021.

[70] M. Jamshidian, & M. Mata, “Advances in analysis of mean and covariance structure

when data are incomplete in Handbook of Latent Variable and Related Models”,

Handbook of Computing and Statistics with Applications, Vol.1, pp21-44, 2007.

[71] C. K Enders, “ Applied missing data analysis”, New York: The Guilford Press,

2010.

https://www.theanalysisfactor.com/mean-imputation/

200

[72] M. Jamshidian, & P. M. Bentler, “ML estimation of mean and covariance structures

with missing data using complete data routines”, Journal of Educational and

Behavioral Statistics, 24[1], 21-41, 1999.

[73] D. J. Stekhoven, & P. Buhlmann, “MissForest – nonparametric missing value

imputation for mixed type data”, Bioinformatics, Vol.28, pp112-118, 2011.

[74] Y. Andre, “Imputation algorithm? Say goodbye to KNN-Impute. Assessed at

https://towardsdatascience.com/missforest-the-best-missing-data-imputation-

algorithm-4d01182aed3 [March 17, 2021]

[75] L. Morgan, “MissForest – missing data imputation using iterated random forests”,

Assessed at

https://rpubs.com/lmorgan95/MissForest#:~:text=Disadvantages%3A,object%20yo

u%20can%20store%20somewhere. [March 17, 2021]

 [76] D. T. A. Eisenberg, "Telomere length measurement validity: the coefficient of

variation is invalid and cannot be used to compare quantitative polymerase chain

reaction and Southern blot telomere length measurement technique". International

Journal of Epidemiology. Vol.45 , pp. 1295–1298,

2016. doi:10.1093/ije/dyw191. ISSN 0300-5771. PMID 27581804.

[77] D. P. Doane and L E. Seward, "Measuring skewness: a forgotten statistic", Journal

of Statistics Education, Vol 19, pp1-18, 2011

https://towardsdatascience.com/missforest-the-best-missing-data-imputation-algorithm-4d01182aed3
https://towardsdatascience.com/missforest-the-best-missing-data-imputation-algorithm-4d01182aed3
https://rpubs.com/lmorgan95/MissForest#:~:text=Disadvantages%3A,object%20you%20can%20store%20somewhere
https://rpubs.com/lmorgan95/MissForest#:~:text=Disadvantages%3A,object%20you%20can%20store%20somewhere
https://doi.org/10.1093%2Fije%2Fdyw191
https://doi.org/10.1093%2Fije%2Fdyw191
https://doi.org/10.1093%2Fije%2Fdyw191
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1093%2Fije%2Fdyw191
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0300-5771
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/27581804
http://ww2.amstat.org/publications/jse/v19n2/doane.pdf

201

[78] M. Shanker, M.Y Hu, M.S Hung, “Effect of Data Standardisation on Neural

Network Training”, Omega, Int. J. Mgmt Sci. Vol 24. No.4, pp 385-397, 1996.

[79] G. Weir, K. Owoeye, A. Oberacker and H. Alshahrani, “Cloud-based textual

analysis as a basis for document classification”, International Conference on High

Performance Computing & Simulation (HPCS), pp. 672-676, July 2018

[80] J. R. Quinlan," C4.5 Programs for Machine Learning", Morgan Kaufmann, San

Mateo, 1993.

[81] KK Hiran, RK Jain, K Lakhwani, R Doshi, “Machine Learning: Master Supervised

and Unsupervised Learning Algorithms with Real Examples (English Edition")”, BPB

Publications, pp146-147, 2021.

[82] SJ Buckley, RJ Harvey, Z Shan, “Application of the random forest algorithm to

Streptococcus pyogenes response regulator allele variation: from machine learning to

evolutionary models”, Sci Rep 11, 12687 (2021). https://doi.org/10.1038/s41598-021-

91941-6

[83] S. Suthaharan, “Machine Learning Models and Algorithms for Big Data

Classification: Thinking with Examples for Effective Learning”, Springer Publishing

Company, Incorporated, 1st edition, 2015.

[84] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, “ Data Mining: Practical Machine

Learning tools and techniques”, Morgan Kaufmann, 2011.

[85] G. Forman, “An Extensive Empirical Study of Feature Selection Metrics for Text

Classification”, Journal of Machine Learning Research, 2003. Vol.3, pp1289-1305.

https://scholar.google.com/citations?user=N9OM6zwAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=hJthxe8AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=RzyHW2sAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=lYhmZdEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=n4VTfDYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=T4nc00sAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=HOvDPx4AAAAJ&hl=en&oi=sra

202

[86] K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan, “ Data Mining: A

Knowledge Discovery Approach”, Springer-Verlag New York, Inc.,Secaucus, NJ, USA,

2007.

[87] E. Elgeldawi, A. Sayed, A. R Galal, A.M. Zaki, A, “Hyperparameter Tuning for

Machine Learning Algorithms Used for Arabic Sentiment Analysis”, in Informatics,

In Informatics, vol. 8, no. 4, pp. 79. Multidisciplinary Digital Publishing Institute, 2021.

[88] P. Probst, M. N. Wright and A. L. Boulesteix, "Hyperparameters and tuning

strategies for random forest", Wiley Interdisciplinary Rev. Data Mining Knowl. Discov.,

vol. 9, no. 3, pp. 1-15, 2019.

[89] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, "Scikit-learn: Machine learning in Python." the Journal of machine Learning

research Vol.12, pp. 2825-2830, 2011.

[90] D Elavarasan, DR Vincent PM, K Srinivasan, and C.Y. Chang, “ A hybrid CFS

filter and RF-RFE wrapper-based feature extraction for enhanced agricultural crop yield

prediction modeling”, Agriculture, Vol.10, pp.400, 2020.

[91] Q. Chen, Z. Meng, X. Liu, Q Jin, R. Su, “Decision variants for the automatic

determination of optimal feature subset in RF-RFE”, Genes, Vol.9, pp.301, 2018.

[92] X. W. Chen, and J. C Jeong, “Enhanced recursive feature elimination”, In Sixth

International Conference on Machine Learning and Applications (ICMLA 2007), pp.

429-435. IEEE. 2007, December.

https://scholar.google.com/citations?user=PJQNw9oAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=OGGu384AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=fhxshS0AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=KLAuopsAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=pY3jLUkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=USoKG48AAAAJ&hl=en&oi=sra

203

[93] Y. Bengio, A. Courville and P. Vincent "Representation Learning: A Review and

New Perspectives", IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2013. pp 1798–1828, Vol. 35.

[94] Y. Bengio, “Learning Deep Architectures for AI”, Foundation and Trends in

Machine Learning, vol 2, no 1, pp 1–127, 2009.

[95] D. Hof, Robert, “Is Artificial Intelligence Finally Coming into Its Own?” MIT

Technology Review, MIT Technology Review, 29 Mar. 2016,

www.technologyreview.com/s/513696/deep-learning/.

[96] J. Schmidhuber "Deep Learning in Neural Networks: An Overview", Neural

Networks, 2015. Pp 85-117, Vol.61.

[97] T. Pejman, H. Ardeshir, "Application of a Modular Feedforward Neural Network

for Grade Estimation", Natural Resources Research, 2011. Vol.20, pp25–

32. doi:10.1007/s11053-011-9135-3.

[98] S.E Dreyfus, "Artificial Neural Networks, Back Propagation, and the Kelley-

Bryson Gradient Procedure", Journal of Guidance, Control, and Dynamics,

1990. Vol.13,pp 926–928

[99] Niklas Donges, “A Guide to RNN: Understanding Recurrent Neural

Networks and LSTM Networks”, Builtin Expert Contributor,

July 29, 2021. Retrieved from: https://builtin.com/data-science/recurrent-neural-

networks-and-lstm.

http://www.technologyreview.com/s/513696/deep-learning/
https://www.researchgate.net/publication/225535280
https://www.researchgate.net/publication/225535280
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2Fs11053-011-9135-3
https://builtin.com/data-science/recurrent-neural-networks-and-lstm
https://builtin.com/data-science/recurrent-neural-networks-and-lstm

204

[100] IBM Cloud Education, “Recurrent Neural Networks”, 14 September 2020.

Retrieved from: https://www.ibm.com/cloud/learn/recurrent-neural-networks.

[101] B.C. Mateus, M. Mendes, J.T. Farinha, R. Assis, A.M. Cardoso, “Comparing

LSTM and GRU Models to Predict the Condition of a Pulp Paper Press”, Energies,

Vol.14, pp.6958, 2021. https://doi.org/10.3390/en14216958.

[102] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural

Computation, Vol. 9, pp1735–1780, 1997.

[103] O’Reilly Media, Retrieved from: https://www.oreilly.com/library/view/learn-

arcore /9781788830409/e24a657a-a5c6-4ff2-b9ea-9418a7a5d24c.xhtml, 2020.

[104] D. Kingma and J. Ba, “Adam: A method for stochastic optimisation”, ICLR, arXiv

preprint arXiv:1412.6980, 2015. URL http://arxiv.org/abs/1412.6980.

[105] K. Janocha and W. M. Czarnecki, “On Loss Functions for Deep Neural Networks

in Classification”, arXiv preprint arXiv:1702.05659, 2017.

[106] R. Reed and R. Marks, Neural Smithing: Supervised Learning in Feed-forward

Artificial Neural Networks, (Cambridge, Massachusetts, MIT Press, 1999).

[107] C. M. Bishop, “Neural networks for pattern recognition”, Oxford university press,

1995.

[108] G. Ian, B. Yoshua, and C. Aaron,” Deep Learning”, 2016. MIT Press.

https://www.ibm.com/cloud/learn/education
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://www.oreilly.com/library/view/learn-arcore%20/9781788830409/e24a657a-a5c6-4ff2-b9ea-9418a7a5d24c.xhtml
https://www.oreilly.com/library/view/learn-arcore%20/9781788830409/e24a657a-a5c6-4ff2-b9ea-9418a7a5d24c.xhtml
http://arxiv.org/abs/1412.6980

205

[109] A. Moujahid, “A Practical Introduction to Deep Learning with Caffe and Python”,

Retrieved from adilmoujahid: http://adilmoujahid.com/posts/2016/06/introduction-deep-

learning-python-caffe/, February 19, 2018.

[110] A. F. Agarap, “Deep learning using rectified linear units (ReLU)”, arXiv preprint

arXiv:1803.08375, 2018.

[111] S. Jain,” An Overview of Regularisation Techniques in Deep Learning (with

Python code)”, Retrieved from:

https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-

regularisation-techniques/, April 19, 2018.

[112] S. Nitish, H. Geoffrey, K. Alex, S. Ilya, S.Ruslan ,” Dropout: A simple way to

prevent neural networks from overfitting”, in J. Mach. Learn. Res. Vol.15, pp1929–

1958, January 2014.

[113] L. Prechelt, “Early stopping - but when?“ Neural Networks”, in Tricks of the

Trade - Second Edition 2012, pp. 53-67.

[114] T. Carneiro, R. V. M. Da Nóbrega, T. Nepomuceno, G.-B. Bian, V. H. C. De

Albuquerque, P. P. R. Filho, "Performance analysis of google colaboratory as a tool for

accelerating deep learning applications", IEEE Access, vol. 6, pp. 61 677-61 685, 2018.

[115] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,J. Dean, M. Devin, S.

Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.

Murray, B. Steiner, P. Tucker,V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X.

Zheng, “TensorFlow: A system for large-scale machine learning,” 12th USENIX

Symposium on Operating, 2016.

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
https://www.analyticsvidhya.com/blog/author/shubham-jain/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

206

[116] T. C. Kietzmann, P. McClure, and N. Kriegeskorte, “Deep neural networks in

computational neuroscience,” bioRxiv, pp.133504-133527, 2018.

[117] J. Brownlee, “Evaluate the Performance of Deep Learning Models in Keras”

Retrieved from: https://machinelearningmastery.com/evaluate-performance-deep-

learning-models-keras/ , May 26, 2016.

https://machinelearningmastery.com/author/jasonb/
https://machinelearningmastery.com/evaluate-performance-deep-learning-models-keras/
https://machinelearningmastery.com/evaluate-performance-deep-learning-models-keras/

207

Appendices

The details of all the implementations for this thesis can be found in the following.

Appendice A.1: Implementations for the Sentiment Analysis

Numbering the Webpages

Numbering the Webpages Implementation

from __future__ import division

from collections import Counter

import nltk, re, pprint,os

import re

#regex = r"(?i)((?:\S+\s+){0,3})\bSmartphone\b((?:\S+\s+){0,3})"

208

#test_str = "Nokia Lumia 930 Smartphone, Display 5 pollici, Fotocamera 20 MP, 2GB

RAM, Processore Quad-Core 2,2GHz, Memoria 32GB, Windows Phone 8.1, Bianco

[Germania]"

#matches = re.finditer(regex, test_str)

#for matchNum, match in enumerate(matches):

matchNum = matchNum + 1

print ("Match {matchNum} was found at {start}-{end}: {match}".format(matchNum

= matchNum, start = match.start(), end = match.end(), match = match.group()))

for groupNum in range(0, len(match.groups())):

groupNum = groupNum + 1

print ("Group {groupNum} found at {start}-{end}: {group}".format(groupNum =

groupNum, start = match.start(groupNum), end = match.end(groupNum), group =

match.group(groupNum)))

indir = '//ds.strath.ac.uk/hdrive/21/kqb16121/cis/windows/Desktop/ICCRC'

#usedWords =

['war','terrorist','weapon','bomb','jihad','attacker','violence','gun','News','ridiculist','progra

m','party','Officer','security','police','nato','safeguard','council','support','cnn','celebrity','ph

oto','peace','islam','america']

#wordfound = []

#word_frequencies = []

#print('==

=====================================')

i = 0

for subdir, dirs, files in os.walk(indir): #loop sub directory in a folder

 for file in files: #loop files in a folder

 #print os.path.join(subdir, file)

filepath = subdir + os.sep + file #get the file path

 #content = open(filepath,'rU',encoding="utf-8") #open a file read, Universal

 #print(filepath) #display the full path of the file

i += 1

os.rename(filepath,subdir + os.sep+"webapge{}.txt".format(i))

print('===

====================================')

for line in content: # loop throught the content of the file

text1 = line.strip() # get the string content of the file

noofwords = nltk.word_tokenize(text1.lower()) #conver content to list of

words

209

#print(nltk.pos_tag(noofwords))

print('words found')

print(noofwords) #Display the list of words

cnt = 0

for word in noofwords: #loop through the list of words to get

frequently used words

if word in usedWords: #if a word match frequently used word

wordfound += [word] # create a list containing the frequencies

from each files

for occ in wordfound: # loop through the frequency list

print('{} position at {}'.format(occ,noofwords.index(occ))) #position of

keyword in the content of the file

#noofwords[noofwords.index(occ)] = "###" + occ + "###" #mark the

keyword in the content

print('{} five words after at {}'.format(occ,noofwords[21:5]))

if occ not in word_frequencies: #get distinct word from the frequency

list

word_frequencies +=[occ] #create another list containing distinct

word from the frequency list

#for Z in word_frequencies: #loop through the distinct frequency list

to get the no of occurence from the frequency list

print('{} occurs {}'.format(Z,wordfound.count(Z))) #print the word and the

frequency

print('Words after {}'.format(noofwords[noofwords.index(occ):6]))

print("New Words")

print(" ".join(str(x) for x in noofwords))

#text_file = open(indir+"output/"+file, "w")

#text_file.write(" ".join(str(x) for x in noofwords))

#text_file.close()

wordfound = []

word_frequencies = []

content.close()

Sentistrength Implementation

from __future__ import division

from collections import Counter

import re, pprint,os

import re

indir = '//ds.strath.ac.uk/hdrive/21/kqb16121/cis/windows/Desktop/ICCRC'

outdir = '//ds.strath.ac.uk/hdrive/21/kqb16121/cis/windows/Desktop/output/'

210

#usedWords =

['dead','war','prison','violence','terrorist','security','enemies','jihad','islamic','sahaba','territo

ry','saint','civilian','counterterrorism','kingdom','taxes','science','president','weapon','cnn','i

sis','police','fighters','soldiers','politics','militants','twitter','memorandum','narcostic']

usedWords =

['islam','war','muslims','news','government','politics','military','jihad','court','rights','affairs'

,'program','security','policy','press','safeguards','president','ebola','crime','twitter','family','s

yria','victims','facebook','trial','cnn']

wordfound = []

output = ""

print('===

====================================')

print("Program Starting...")

for words in usedWords:

regex = r'(?i)((?:\S+\s+){0,5})\b'+words+r'\b((?:\S+\s+){0,5})'

 for subdir, dirs, files in os.walk(indir): #loop sub directory in a folder

 for file in files: #loop files in a folder

 #print os.path.join(subdir, file)

filepath = subdir + os.sep + file #get the file path

 content = open(filepath,'rU',encoding="utf-8") #open a file read, Universal

 print('Searching for word {}'.format(words))

 print(filepath)

print('===

====================================')

 for line in content: # loop through the content of the file

 text1 = line.strip()

 text1 = re.sub(r'[^\w]', ' ', text1)

 text1 = text1.replace(" ", ", ")

 #print(text1+"\n")

 #print(text1)

 matches = re.finditer(regex, text1.lower())

 for matchNum, match in enumerate(matches):

matchNum = matchNum + 1

 word = match.group().replace("," , " ").replace(" " , " ").replace(" " , " ")

 #wordfound.append(word)

 #print('{} {}'.format(filename,word))

text_file = open(outdir+words+".txt", "a",encoding="utf-8")

text_file.write(file +"-"+word+"\n")

211

 # for wrd in wordfound:

 # output += file + " " +wrd+"\n"

 #text_file = open(outdir+words+".txt", "a",encoding="utf-8")

 #text_file.write(output)

 # #text_file.close()

 #wordfound = []

 #output = ""

10 words Around Keyword to Pinpoint Sentiment Implementation

from __future__ import division

from collections import Counter

import re, pprint,os

import re

indir = '//ds.strath.ac.uk/hdrive/21/kqb16121/cis/windows/Desktop/ICCRC'

outdir = '//ds.strath.ac.uk/hdrive/21/kqb16121/cis/windows/Desktop/output/'

#usedWords =

['islam','muslims','allah','war','america','right','politics','democracy','europe','cnn','isis','afri

ca','news','video','sport','asia','program','official','security','affairs','media','officer','policy','

government','politics','militants','twitter','memorandum','narcostic']

usedWords = ['taliban','islam','al-

rahman','abdullah','bomber','usama','president','program','govermnent','blood','radio','desi

gner','news','politics','twitter','soldier','attackers','family']

wordfound = []

output = ""

print('===

====================================')

print("Program Starting...")

for words in usedWords:

regex = r'(?i)((?:\S+\s+){0,10})\b'+words+r'\b((?:\S+\s+){0,10})'

 for subdir, dirs, files in os.walk(indir): #loop sub directory in a folder

 for file in files: #loop files in a folder

 #print os.path.join(subdir, file)

filepath = subdir + os.sep + file #get the file path

 content = open(filepath,'rU',encoding="utf-8") #open a file read, Universal

 print('Searching for word {}'.format(words))

 print(filepath)

print('===

212

====================================')

 for line in content: # loop through the content of the file

 text1 = line.strip()

 text1 = re.sub(r'[^\w]', ' ', text1)

 text1 = text1.replace(" ", ", ")

 #print(text1+"\n")

 #print(text1)

 matches = re.finditer(regex, text1.lower())

 for matchNum, match in enumerate(matches):

matchNum = matchNum + 1

 word = match.group().replace("," , " ").replace(" " , " ").replace(" " , " ")

 #wordfound.append(word)

 #print('{} {}'.format(filename,word))

text_file = open(outdir+words+".txt", "a",encoding="utf-8")

text_file.write(file +"-"+word+"\n")

 # for wrd in wordfound:

 # output += file + " " +wrd+"\n"

 #text_file = open(outdir+words+".txt", "a",encoding="utf-8")

 #text_file.write(output)

 # #text_file.close()

 #wordfound = []

 #output = ""

 Implementation of Imputation

213

Appendice A.2: Sentiment Analysis Output

A Sample of Different Level of Details of SentiStrength

214

A Sample of the Keywords List

215

A Sample of Sentiment Scores across the Keywords

Imputation Implementation for MICE, KNN and MF

-*- coding: utf-8 -*-

"""Imputations Dataset Complexion.ipynb

Automatically generated by Colaboratory.

Original file is located at

https://colab.research.google.com/drive/1ilEOqGekPqpLRe_45ZkBOCksMMZD6OCE

"""

216

Commented out IPython magic to ensure Python compatibility.

from scipy.io import arff

from scipy.io.arff import loadarff

import pandas as pd

import numpy as np

import math

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

import warnings

warnings.filterwarnings("ignore")

data1 = arff.loadarff('KNN_Imputation.arff')

knn = pd.DataFrame(data1[0])

data2 = arff.loadarff('MF_Imputation.arff')

mf = pd.DataFrame(data2[0])

data3 = arff.loadarff('MICE_Imputation.arff')

mice = pd.DataFrame(data3[0])

data4 = arff.loadarff('POSIT.arff')

posit = pd.DataFrame(data4[0])

knn.head()

mf.head()

217

mice.head()

posit.head()

def do_hist(df, series):

 x = df.iloc[series].to_list()

 n = len(x)

 r = max(x) - min(x)

 root = math.sqrt(n)

 b = int(root + 1)

 plt.hist(x, bins = b)

 plt.show()

descriptions = []

num_feature_words = len(list(knn.columns))-1

knn_desc = knn.describe()

print("Statistical summary of KNN Imputation dataset", '\n')

display(knn_desc)

descriptions.append(knn_desc)

#visualizations

ind = 0

for i in list(knn_desc.index.values):

 print('\n'*2, "Histogram for ", i, " across all features in KNN Imputation dataset")

 do_hist(knn_desc, ind)

 print('\n'*2)

 ind+=1

218

mf_desc = mf.describe()

print("Statistical summary of MF Imputation dataset", '\n')

display(mf_desc)

descriptions.append(mf_desc)

#visualizations

ind = 0

for i in list(mf_desc.index.values):

 print('\n'*2, "Histogram for ", i, " across all features in MF Imputation dataset")

 do_hist(mf_desc, ind)

 print('\n'*2)

 ind+=1

mice_desc = mice.describe()

print("Statistical summary of MICE Imputation dataset", '\n')

display(mice_desc)

descriptions.append(mice_desc)

#visualizations

ind = 0

for i in list(mice_desc.index.values):

 print('\n'*2, "Histogram for ", i, " across all features in MICE Imputation dataset")

 do_hist(mice_desc, ind)

 print('\n'*2)

 ind+=1

c_knn = descriptions[0]

old = list(c_knn.columns)

219

new = []

for i in old:

 i = "knn_" + i

 new.append(i)

c_knn.columns = new

#display(c_knn)

c_mf = descriptions[1]

old = list(c_mf.columns)

new = []

for i in old:

 i = "mf_" + i

 new.append(i)

c_mf.columns = new

#display(c_mf)

c_mice = descriptions[2]

old = list(c_mice.columns)

new = []

for i in old:

 i = "mice_" + i

 new.append(i)

c_mice.columns = new

#display(c_mice)

all_dfs = pd.concat([c_knn, c_mf, c_mice], axis = 1)

display(all_dfs)

#visualizations

220

ind = 0

for i in list(all_dfs.index.values):

 print('\n'*2, "Histogram for ", i, " across all features in All datasets")

 do_hist(all_dfs, ind)

 print('\n'*2)

 ind+=1

Appendice B1

Posit Analysis Output Data

221

The Posit-API version

Different Level of Details of Posit Analysis for Each Webpage

222

A Sample of Aggregates for a Webpage

A Sample of Adjective Types for Each Webpage

223

A Sample of POS-Types for Each Webpage

A Sample of Common Nouns for a Web page

A Sample Pos-Tokens for a Web page

224

A Sample of POS-Totals for a Webpage

225

A Sample of Summary generated for a Web page

A Sample of a Tagged text

226

Appendice C1

Neural Network and Machine Learning Model Implementations

K-Nearest Neighbors Implementation

-*- coding: utf-8 -*-

"""KNN-StandardScaler.ipynb

Automatically generated by Colaboratory.

Original file is located at

 https://colab.research.google.com/drive/1p0OzG5zQfUiLdwGh9A7LPZ6czYVj8Eeb

"""

!pip install pycm

!pip install liac-arff

from sklearn import preprocessing, svm

import pandas as pd

import numpy as np

from keras.utils import np_utils

from keras.wrappers.scikit_learn import KerasClassifier

from keras.preprocessing.text import Tokenizer

from keras.models import Sequential

from keras.layers import Activation, Dense, Dropout

from sklearn.preprocessing import MultiLabelBinarizer ,LabelEncoder

import sklearn.datasets as skds

from pathlib import Path

from scipy.io import arff

from sklearn.preprocessing import MinMaxScaler,StandardScaler

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

from keras.callbacks import EarlyStopping

from sklearn.metrics import plot_confusion_matrix

from pycm import *

import os.path

from sklearn.metrics import mean_squared_error

from sklearn.neighbors import KNeighborsClassifier

227

from sklearn.model_selection import GridSearchCV

from IPython.display import display

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.model_selection import validation_curve

from google.colab import drive

drive.mount('/content/drive')

DATA_DIR = "drive/MyDrive/dataset/"

all_metric = []

all_features = []

all_accuracy = []

embedded_features = []

runtimes=[]

embedded_runtimes =[]

from numpy import mean

from numpy import std

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.feature_selection import RFE

from sklearn.pipeline import Pipeline

from sklearn.feature_selection import SelectFromModel

from time import time

import itertools

from sklearn.linear_model import LassoCV

def splitData(FEATURES_COUNT,dt):

 classMapping = {label: idx for idx, label in enumerate(np.unique(dt["CLASS"]))}

 dt["CLASS"] = dt["CLASS"].map(classMapping)

 dt_label_class = dt['CLASS'].astype(float)

 dt_features = dt.iloc[:, 0:FEATURES_COUNT].apply(np.ceil)

 RANDOM_SEED = 7

 #train_x, test_x, y_train, y_test = train_test_split(dt_features, dt_label_class,

test_size=0.3, shuffle=True, random_state=RANDOM_SEED)

 scaler = StandardScaler()

 scaler.fit(dt_features)

 X = scaler.transform(dt_features)

 y = dt_label_class

 return (X,y,classMapping)

def roundUp(test_dict):

228

 K = 3

 res = dict()

 for key in test_dict:

 # rounding to K using round()

 res[str(key)] = round(test_dict[key], K)

 return res

def generate_confusion_matrix(cnf_matrix, classes, normalize=False, title='Confusion

matrix'):

 if normalize:

 cnf_matrix = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis]

 print("Normalized confusion matrix")

 else:

 print('Confusion matrix, without normalization')

 plt.imshow(cnf_matrix, interpolation='nearest', cmap=plt.get_cmap('Blues'))

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

 fmt = '.2f' if normalize else 'd'

 thresh = cnf_matrix.max() / 2.

 for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])):

 plt.text(j, i, format(cnf_matrix[i, j], fmt), horizontalalignment="center",

 color="white" if cnf_matrix[i, j] > thresh else "black")

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

 return cnf_matrix

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names):

 cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list)

 np.set_printoptions(precision=2)

 # Plot non-normalized confusion matrix

 plt.figure()

 generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +'

Confusion matrix')

229

 plt.show()

def evaluate_model(data_x, data_y):

 cv_outer = KFold(5, shuffle=True, random_state=7)

 param_name = "n_neighbors"

 predicted_targets = np.array([])

 actual_targets = np.array([])

 gridSearch = {"mean_train_score":[], "mean_test_score":[], "param_ranges": []}

 gridSearch_df = {}

 param_range = [i for i in range(1, 15, 2)]

 param_grid = {

 'n_neighbors': param_range,

 'weights': ['uniform'],

 'leaf_size': range(1,10),

 }

 index = 0

 for train_ix, test_ix in cv_outer.split(data_x):

 train_x, train_y, test_x, test_y = data_x[train_ix], data_y[train_ix], data_x[test_ix],

data_y[test_ix]

 # define the model

 model = KNeighborsClassifier()

 # configure the cross-validation procedure

 cv_inner = KFold(3, shuffle=True, random_state=7) # execute search

 # define search

 search = GridSearchCV(model, param_grid, scoring='accuracy', n_jobs=-1,

cv=cv_inner, refit=True, return_train_score=True)

 result = search.fit(train_x, train_y)

 # get the best performing model fit on the whole training set

 best_model = result.best_estimator_

 # evaluate model on the hold out dataset

 predicted_labels = best_model.predict(test_x)

 #train_scores, test_scores = validation_curve(search, train_x, train_y,

param_name="n_neighbors", param_range=param_range,scoring="accuracy", n_jobs=1)

 #print("test_scores", train_scores, test_scores)

 predicted_targets = np.append(predicted_targets, predicted_labels)

 actual_targets = np.append(actual_targets, test_y)

 print("Best Parameter %s :" %search.best_params_)

 cv_results = search.cv_results_

 scores_df = pd.DataFrame(cv_results).sort_values(by='rank_test_score')

 gridSearch_df[index] = search

230

 index = index + 1

 plot_grid_search_validation_curve(gridSearch_df, param_name)

 plot_grid_search_validation_curve(gridSearch_df, 'leaf_size')

 return predicted_targets, actual_targets

def plot_grid_search_validation_curve(grids, param_to_vary,

 title='Validation Curve', ylim=None,

 xlim=None, log=None):

 """Plots train and cross-validation scores from a GridSearchCV instance's

 best params while varying one of those params."""

 plt.clf()

 plt.figure(figsize=(16, 16))

 plot_fn = plt.plot

 if log:

 plot_fn = plt.semilogx

 plt.title(title)

 plt.xlabel(param_to_vary)

 plt.ylabel('Score')

 if (ylim is None):

 plt.ylim(0.0, 1.1)

 else:

 plt.ylim(*ylim)

 if (not (xlim is None)):

 plt.xlim(*xlim)

 lw = 1

 fold = 1

 for index in grids.keys():

 grid = grids[index]

 df_cv_results = pd.DataFrame(grid.cv_results_)

 train_scores_mean = df_cv_results['mean_train_score']

 valid_scores_mean = df_cv_results['mean_test_score']

 train_scores_std = df_cv_results['std_train_score']

 valid_scores_std = df_cv_results['std_test_score']

 param_cols = [c for c in df_cv_results.columns if c[:6] == 'param_']

 param_ranges = [grid.param_grid[p[6:]] for p in param_cols]

231

 param_ranges_lengths = [len(pr) for pr in param_ranges]

 train_scores_mean = np.array(train_scores_mean).reshape(*param_ranges_lengths)

 valid_scores_mean = np.array(valid_scores_mean).reshape(*param_ranges_lengths)

 train_scores_std = np.array(train_scores_std).reshape(*param_ranges_lengths)

 valid_scores_std = np.array(valid_scores_std).reshape(*param_ranges_lengths)

 param_to_vary_idx = param_cols.index('param_{}'.format(param_to_vary))

 slices = []

 for idx, param in enumerate(grid.best_params_):

 if (idx == param_to_vary_idx):

 slices.append(slice(None))

 continue

 best_param_val = grid.best_params_[param]

 idx_of_best_param = 0

 if isinstance(param_ranges[idx], np.ndarray):

 idx_of_best_param = param_ranges[idx].tolist().index(best_param_val)

 else:

 idx_of_best_param = param_ranges[idx].index(best_param_val)

 slices.append(idx_of_best_param)

 train_scores_mean = train_scores_mean[tuple(slices)]

 valid_scores_mean = valid_scores_mean[tuple(slices)]

 train_scores_std = train_scores_std[tuple(slices)]

 valid_scores_std = valid_scores_std[tuple(slices)]

 param_range = param_ranges[param_to_vary_idx]

 print("slices",slices, param_ranges, param_to_vary_idx)

 plot_fn(param_range, train_scores_mean, label= "(Fold - {} Training score

)".format(fold), lw=lw)

 '''plt.fill_between(param_range, train_scores_mean -

train_scores_std,train_scores_mean + train_scores_std, alpha=0.1,

 color='r', lw=lw)'''

 plot_fn(param_range, valid_scores_mean, label= "(Fold - {} Cross-validation score

)".format(fold), lw=lw)

 '''plt.fill_between(param_range, valid_scores_mean - valid_scores_std,

 valid_scores_mean + valid_scores_std, alpha=0.1,

 color='b', lw=lw) '''

 fold = fold + 1

 '''if (not isinstance(param_range[0], numbers.Number)):

232

 param_range = [str(x) for x in param_range]'''

 plt.legend(loc='lower right')

 plt.show()

def classfier(imputation, X, y, class_names):

 print("==")

 #print(imputation)

 #print("==-----------

------------")

 predicted_target, actual_target = evaluate_model(X, y)

 plot_confusion_matrix(predicted_target, actual_target, imputation, class_names)

 cm = ConfusionMatrix(actual_vector=actual_target,

predict_vector=predicted_target)

 test_acc = accuracy_score(actual_target, predicted_target)

 # print("\n Overall Accuracy Score \t", "%.3f" %(test_acc))

 all_accuracy.append({"score": test_acc, "imputation": imputation})

 metric = [{"Dataset": imputation,

 "Overall Accuracy":test_acc,

 "Accuracy": roundUp(cm.ACC),

 'F1': roundUp(cm.F1),

 'True Positives': cm.TP,

 'False Positives':cm.FP,

 'False Positives Rate':cm.FPR,

 'Recall': roundUp(cm.TPR) ,

 'Precision':roundUp(cm.PPV)}]

 display(pd.DataFrame(metric))

 all_metric.append(metric)

 #GridSearch_table_plot(model, "max_depth", negative=False)

#print("===

===============")

def plotAccuracy(all_accuracy):

 label = []

 scores = []

 for accuracy in all_accuracy:

233

 label.append(accuracy.get("imputation"))

 scores.append(round(accuracy.get("score"), 3))

 plt.figure(figsize=(10, 10))

 plt.bar(label, scores)

 plt.title("Compare accuracy for all datasets")

 plt.xlabel("Dataset")

 plt.ylabel("Accuracy")

 plt.legend()

 plt.show()

all_metric = []

all_accuracy = []

for subdir, dirs, files in os.walk("./"+DATA_DIR) :

 for file in files:

 data = arff.loadarff("./"+DATA_DIR + file)

 dt = pd.DataFrame(data[0])

 percentages = values = [i/100 for i in range(15, 115, 15)]

 if file =="MICE_Imputation.arff":

 imputation = "Mice Imputation"

 print("\n ===========================" + imputation+

"===========================")

 FEATURES_COUNT = 26

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 classfier(imputation, X, y, classMapping)

 elif file == "MF_Imputation.arff":

 imputation = "MF Imputation"

 print("\n===========================" + imputation+

"===========================")

 FEATURES_COUNT = 26

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 classfier(imputation, X, y, classMapping)

 elif file == "KNN_Imputation.arff":

 FEATURES_COUNT = 26

 imputation = "KNN Imputation"

 print("\n===========================" + imputation+

"===========================")

 FEATURES_COUNT = 26

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 classfier(imputation, X, y, classMapping)

 elif file == "combine-posit.arff":

 FEATURES_COUNT = 53

234

 imputation = "POSIT + MICE"

 print("\n ===========================" + imputation+

"===========================")

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 classfier(imputation, X, y, classMapping)

 elif file == "combine-postchar.arff":

 FEATURES_COUNT = 71

 imputation = "POSIT + CHAR"

 print("\n ===========================" + imputation+

"===========================")

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 classfier(imputation, X, y, classMapping)

 if file == "POSIT.arff":

 FEATURES_COUNT = 27

 imputation = "POSIT"

 print("\n ===========================" + imputation+

"===========================")

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 classfier(imputation, X, y, classMapping)

df = pd.DataFrame(all_metric)

print(df.to_string())

plotAccuracy(all_accuracy)

Random Forest Implementation

-*- coding: utf-8 -*-

"""Random Forest - Standardscaler.ipynb

Automatically generated by Colaboratory.

Original file is located at

235

 https://colab.research.google.com/drive/1ahv49zfuYxknj3KNLGNZ8P25xjNqmt20

"""

!pip install pycm

!pip install liac-arff

from sklearn import preprocessing, svm

import pandas as pd

import numpy as np

from keras.utils import np_utils

from keras.wrappers.scikit_learn import KerasClassifier

from keras.preprocessing.text import Tokenizer

from keras.models import Sequential

from keras.layers import Activation, Dense, Dropout

from sklearn.preprocessing import MultiLabelBinarizer ,LabelEncoder

import sklearn.datasets as skds

from pathlib import Path

from scipy.io import arff

from sklearn.preprocessing import MinMaxScaler,StandardScaler

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

from keras.callbacks import EarlyStopping

from sklearn.metrics import plot_confusion_matrix

from pycm import *

import os.path

from sklearn.metrics import mean_squared_error

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import GridSearchCV

from IPython.display import display

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from google.colab import drive

drive.mount('/content/drive')

DATA_DIR = "drive/MyDrive/dataset/"

all_metric = []

all_features = []

all_accuracy = []

embedded_features = []

runtimes=[]

236

embedded_runtimes =[]

from numpy import mean

from numpy import std

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.feature_selection import RFE

from sklearn.pipeline import Pipeline

from sklearn.feature_selection import SelectFromModel

from time import time

import itertools

from sklearn.linear_model import LassoCV

def splitData(FEATURES_COUNT,dt):

 classMapping = {label: idx for idx, label in enumerate(np.unique(dt["CLASS"]))}

 dt["CLASS"] = dt["CLASS"].map(classMapping)

 dt_label_class = dt['CLASS'].astype(float)

 dt_features = dt.iloc[:, 0:FEATURES_COUNT].apply(np.ceil)

 RANDOM_SEED = 7

 #train_x, test_x, y_train, y_test = train_test_split(dt_features, dt_label_class,

test_size=0.3, shuffle=True, random_state=RANDOM_SEED)

 scaler = StandardScaler()

 scaler.fit(dt_features)

 X = scaler.transform(dt_features)

 y = dt_label_class

 return (X,y,classMapping)

def featureSelection(imputation, percentage, X, y, noOfFeatures):

 # X = X_train.append(X_test)

 #y = y_train.append(y_test)

 start = time()

 rfe = RFE(estimator=RandomForestClassifier(), n_features_to_select=noOfFeatures)

 model = RandomForestClassifier()

 pipeline = Pipeline(steps=[('s',rfe),('m',model)])

 # evaluate model

 cv = KFold(n_splits=5, shuffle=True, random_state=7) # execute search

 n_scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1,

error_score='raise')

 stop = round(time() - start, 3);

 # report performance

 test_acc = mean(n_scores)

 #print('MAE: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))

 # report performance

237

 all_features.append(round(test_acc, 3))

 runtimes.append(stop)

def EmbeddedfeatureSelection(imputation, percentage,X, y, noOfFeatures):

 # X = X_train.append(X_test)

 #y = y_train.append(y_test)

 model = None

 start = time()

 # execute search

 fs = SelectFromModel(RandomForestClassifier(), max_features=noOfFeatures)

 model = RandomForestClassifier()

 pipeline = Pipeline(steps=[('s',fs),('m',model)])

 # evaluate model

 cv = KFold(n_splits=5, shuffle=True, random_state=7) # execute search

 n_scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1,

error_score='raise')

 stop = round(time() - start, 3);

 test_acc = mean(n_scores)

 # report performance

 embedded_features.append(test_acc)

 embedded_runtimes.append(stop)

def roundUp(test_dict):

 K = 3

 res = dict()

 for key in test_dict:

 # rounding to K using round()

 res[str(key)] = round(test_dict[key], K)

 return res

def generate_confusion_matrix(cnf_matrix, classes, normalize=False, title='Confusion

matrix'):

 if normalize:

 cnf_matrix = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis]

 print("Normalized confusion matrix")

 else:

 print('Confusion matrix, without normalization')

 plt.imshow(cnf_matrix, interpolation='nearest', cmap=plt.get_cmap('Blues'))

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(classes))

238

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

 fmt = '.2f' if normalize else 'd'

 thresh = cnf_matrix.max() / 2.

 for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])):

 plt.text(j, i, format(cnf_matrix[i, j], fmt), horizontalalignment="center",

 color="white" if cnf_matrix[i, j] > thresh else "black")

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

 return cnf_matrix

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names):

 cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list)

 np.set_printoptions(precision=2)

 # Plot non-normalized confusion matrix

 plt.figure()

 generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +'

Confusion matrix')

 plt.show()

def evaluate_model(data_x, data_y, imputation):

 cv_outer = KFold(5, shuffle=True, random_state=7)

 param_name = "max_depth"

 predicted_targets = np.array([])

 actual_targets = np.array([])

 gridSearch = {"mean_train_score":[], "mean_test_score":[], "param_ranges": []}

 gridSearch_df = {}

 param_grid = {

 "criterion":["entropy"],

 "max_depth": [i for i in np.arange(1, 21)],

 "min_samples_leaf": range(2,5)

 }

 index = 0

 for train_ix, test_ix in cv_outer.split(data_x):

 train_x, train_y, test_x, test_y = data_x[train_ix], data_y[train_ix], data_x[test_ix],

data_y[test_ix]

 # define the model

 model = RandomForestClassifier()

239

 # configure the cross-validation procedure

 cv_inner = KFold(3, shuffle=True, random_state=7) # execute search

 # define search

 search = GridSearchCV(model, param_grid, scoring='accuracy', n_jobs=1,

cv=cv_inner, refit=True, return_train_score=True)

 result = search.fit(train_x, train_y)

 # get the best performing model fit on the whole training set

 best_model = result.best_estimator_

 # evaluate model on the hold out dataset

 predicted_labels = best_model.predict(test_x)

 predicted_targets = np.append(predicted_targets, predicted_labels)

 actual_targets = np.append(actual_targets, test_y)

 print("Best Parameter %s :" %search.best_params_)

 cv_results = search.cv_results_

 scores_df = pd.DataFrame(cv_results).sort_values(by='rank_test_score')

 gridSearch_df[index] = search

 index = index + 1

 plot_grid_search_validation_curve(gridSearch_df, param_name, title="Validation

Curve - "+imputation)

 return predicted_targets, actual_targets

def plot_grid_search_validation_curve(grids, param_to_vary,

 title='Validation Curve', ylim=None,

 xlim=None, log=None):

 """Plots train and cross-validation scores from a GridSearchCV instance's

 best params while varying one of those params."""

 plt.clf()

 plt.figure(figsize=(16, 16))

 plot_fn = plt.plot

 if log:

 plot_fn = plt.semilogx

 plt.title(title)

 plt.xlabel(param_to_vary)

 plt.ylabel('Score')

 if (ylim is None):

 plt.ylim(0.0, 1.1)

 else:

240

 plt.ylim(*ylim)

 if (not (xlim is None)):

 plt.xlim(*xlim)

 lw = 1

 fold = 1

 for index in grids.keys():

 grid = grids[index]

 df_cv_results = pd.DataFrame(grid.cv_results_)

 train_scores_mean = df_cv_results['mean_train_score']

 valid_scores_mean = df_cv_results['mean_test_score']

 train_scores_std = df_cv_results['std_train_score']

 valid_scores_std = df_cv_results['std_test_score']

 param_cols = [c for c in df_cv_results.columns if c[:6] == 'param_']

 param_ranges = [grid.param_grid[p[6:]] for p in param_cols]

 param_ranges_lengths = [len(pr) for pr in param_ranges]

 train_scores_mean = np.array(train_scores_mean).reshape(*param_ranges_lengths)

 valid_scores_mean = np.array(valid_scores_mean).reshape(*param_ranges_lengths)

 train_scores_std = np.array(train_scores_std).reshape(*param_ranges_lengths)

 valid_scores_std = np.array(valid_scores_std).reshape(*param_ranges_lengths)

 param_to_vary_idx = param_cols.index('param_{}'.format(param_to_vary))

 slices = []

 for idx, param in enumerate(grid.best_params_):

 if (idx == param_to_vary_idx):

 slices.append(slice(None))

 continue

 best_param_val = grid.best_params_[param]

 idx_of_best_param = 0

 if isinstance(param_ranges[idx], np.ndarray):

 idx_of_best_param = param_ranges[idx].tolist().index(best_param_val)

 else:

 idx_of_best_param = param_ranges[idx].index(best_param_val)

 slices.append(idx_of_best_param)

 train_scores_mean = train_scores_mean[tuple(slices)]

 valid_scores_mean = valid_scores_mean[tuple(slices)]

 train_scores_std = train_scores_std[tuple(slices)]

241

 valid_scores_std = valid_scores_std[tuple(slices)]

 param_range = param_ranges[param_to_vary_idx]

 plot_fn(param_range, train_scores_mean, label= "(Fold - {} Training score

)".format(fold), lw=lw)

 '''plt.fill_between(param_range, train_scores_mean -

train_scores_std,train_scores_mean + train_scores_std, alpha=0.1,

 color='r', lw=lw)'''

 plot_fn(param_range, valid_scores_mean, label= "(Fold - {} Cross-validation score

)".format(fold), lw=lw)

 '''plt.fill_between(param_range, valid_scores_mean - valid_scores_std,

 valid_scores_mean + valid_scores_std, alpha=0.1,

 color='b', lw=lw) '''

 fold = fold + 1

 '''if (not isinstance(param_range[0], numbers.Number)):

 param_range = [str(x) for x in param_range]'''

 plt.legend(loc='lower right')

 plt.show()

 #plt.savefig(title+'.eps', format='eps')

def classfier(imputation, X, y, class_names):

 print("==")

 #print(imputation)

 #print("==-----------

------------")

 predicted_target, actual_target = evaluate_model(X, y, imputation)

 plot_confusion_matrix(predicted_target, actual_target, imputation, class_names)

 cm = ConfusionMatrix(actual_vector=actual_target,

predict_vector=predicted_target)

 test_acc = accuracy_score(actual_target, predicted_target)

 # print("\n Overall Accuracy Score \t", "%.3f" %(test_acc))

 all_accuracy.append({"score": test_acc, "imputation": imputation})

 metric = [{"Dataset": imputation,

 "Overall Accuracy":test_acc,

 "Accuracy": roundUp(cm.ACC),

242

 'F1': roundUp(cm.F1),

 'True Positives': cm.TP,

 'False Positives':cm.FP,

 'False Positives Rate':roundUp(cm.FPR),

 'Recall': roundUp(cm.TPR) ,

 'Precision':roundUp(cm.PPV)}]

 display(pd.DataFrame(metric))

 all_metric.append(metric)

 #GridSearch_table_plot(model, "max_depth", negative=False)

#print("===

===============")

def plotAccuracy(all_accuracy):

 label = []

 scores = []

 for accuracy in all_accuracy:

 label.append(accuracy.get("imputation"))

 scores.append(round(accuracy.get("score"), 3))

 plt.figure(figsize=(10, 10))

 plt.bar(label, scores)

 plt.title("Compare accuracy for all datasets")

 plt.xlabel("Dataset")

 plt.ylabel("Accuracy")

 plt.legend()

 plt.show()

def plotFeatureSelection(all_features, percentages, imputation, method, runtimes):

 plt.figure(figsize=(11, 11))

 plt.plot(percentages, all_features, '-o', label='accuracy')

 plt.plot(percentages, runtimes, '-o', label='time')

 for x,y in zip(percentages,runtimes):

 label = "({:.3f}, {:.3f})".format(y,x)

 plt.annotate(label, # this is the text

 (x,y), # these are the coordinates to position the label

 textcoords="offset points", # how to position the text

 xytext=(0,10), # distance from text to points (x,y)

 ha='center') # horizontal alignment can be left, right or center

 for x,y in zip(percentages,all_features):

243

 label = "({:.3f}, {:.3f})".format(y,x)

 plt.annotate(label, # this is the text

 (x,y), # these are the coordinates to position the label

 textcoords="offset points", # how to position the text

 xytext=(0,10), # distance from text to points (x,y)

 ha='center') # horizontal alignment can be left, right or center

 plt.title(method + " Feature Selection " + imputation)

 plt.xlabel("Percentage of Features")

 plt.ylabel("Accuracy")

 plt.legend()

 plt.show()

all_metric = []

all_accuracy = []

for subdir, dirs, files in os.walk("./"+DATA_DIR) :

 for file in files:

 data = arff.loadarff("./"+DATA_DIR + file)

 dt = pd.DataFrame(data[0])

 percentages = values = [i/100 for i in range(15, 115, 15)]

 if file =="MICE_Imputation.arff":

 imputation = "Mice Imputation"

 print("\n ===========================" + imputation+

"===========================")

 all_features = []

 embedded_features = []

 runtimes=[]

 embedded_runtimes =[]

 FEATURES_COUNT = 26

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 for index, p in enumerate(percentages):

 if p > 1:

 percentages[index] = 1

 p = 1

 nf = int(p * FEATURES_COUNT)

 #print("\n===========================Wrapper Feature Selection

==================")

 featureSelection(imputation, p, X, y, nf)

 #print("\n===========================Embedded Feature Selection

==================")

 EmbeddedfeatureSelection(imputation, p, X, y, nf)

244

 plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method",

runtimes)

 plotFeatureSelection(embedded_features, percentages, imputation, "Embedded

Method", embedded_runtimes)

 classfier(imputation, X, y, classMapping)

 elif file == "MF_Imputation.arff":

 imputation = "MF Imputation"

 print("\n===========================" + imputation+

"===========================")

 FEATURES_COUNT = 26

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 classfier(imputation, X, y, classMapping)

 elif file == "KNN_Imputation.arff":

 FEATURES_COUNT = 26

 imputation = "KNN Imputation"

 print("\n===========================" + imputation+

"===========================")

 FEATURES_COUNT = 26

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 classfier(imputation, X, y, classMapping)

 elif file == "combine-posit.arff":

 FEATURES_COUNT = 53

 imputation = "POSIT + MICE"

 print("\n ===========================" + imputation+

"===========================")

 all_features = []

 embedded_features = []

 runtimes=[]

 embedded_runtimes =[]

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 for index, p in enumerate(percentages):

 if p > 1:

 percentages[index] = 1

 p = 1

 nf = int(p * FEATURES_COUNT)

 #print("\n===========================Wrapper Feature Selection

==================")

 featureSelection(imputation, p, X, y, nf)

 #print("\n===========================Embedded Feature Selection

245

==================")

 EmbeddedfeatureSelection(imputation, p, X, y, nf)

 plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method",

runtimes)

 plotFeatureSelection(embedded_features, percentages, imputation, "Embedded

Method", embedded_runtimes)

 classfier(imputation, X, y, classMapping)

 elif file == "combine-postchar.arff":

 FEATURES_COUNT = 71

 imputation = "POSIT + CHAR"

 print("\n ===========================" + imputation+

"===========================")

 all_features = []

 embedded_features = []

 runtimes=[]

 embedded_runtimes =[]

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 for index, p in enumerate(percentages):

 if p > 1:

 percentages[index] = 1

 p = 1

 nf = int(p * FEATURES_COUNT)

 #print("\n===========================Wrapper Feature Selection

==================")

 featureSelection(imputation, p, X, y, nf)

 #print("\n===========================Embedded Feature Selection

==================")

 EmbeddedfeatureSelection(imputation, p, X, y, nf)

 plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method",

runtimes)

 plotFeatureSelection(embedded_features, percentages, imputation, "Embedded

Method", embedded_runtimes)

 classfier(imputation, X, y, classMapping)

 if file == "POSIT.arff":

 FEATURES_COUNT = 27

 imputation = "POSIT"

 print("\n ===========================" + imputation+

"===========================")

 all_features = []

 embedded_features = []

246

 runtimes=[]

 embedded_runtimes =[]

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 for index, p in enumerate(percentages):

 if p > 1:

 percentages[index] = 1

 p = 1

 nf = int(p * FEATURES_COUNT)

 #print("\n===========================Wrapper Feature Selection

==================")

 featureSelection(imputation, p, X, y, nf)

 #print("\n===========================Embedded Feature Selection

==================")

 EmbeddedfeatureSelection(imputation, p, X, y, nf)

 plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method",

runtimes)

 plotFeatureSelection(embedded_features, percentages, imputation, "Embedded

Method", embedded_runtimes)

 classfier(imputation, X, y, classMapping)

df = pd.DataFrame(all_metric)

print(df.to_string())

plotAccuracy(all_accuracy)

247

J48 Implementation

!pip install pycm

!pip install liac-arff

from sklearn import preprocessing, svm

import pandas as pd

import numpy as np

from keras.utils import np_utils

from keras.wrappers.scikit_learn import KerasClassifier

from keras.preprocessing.text import Tokenizer

from keras.models import Sequential

from keras.layers import Activation, Dense, Dropout

from sklearn.preprocessing import MultiLabelBinarizer ,LabelEncoder

import sklearn.datasets as skds

from pathlib import Path

from scipy.io import arff

from sklearn.preprocessing import MinMaxScaler,StandardScaler

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

from keras.callbacks import EarlyStopping

from sklearn.metrics import plot_confusion_matrix

from pycm import *

import os.path

from sklearn.metrics import mean_squared_error

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import GridSearchCV

from IPython.display import display

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from google.colab import drive

drive.mount('/content/drive')

DATA_DIR = "drive/MyDrive/dataset/"

all_metric = []

all_features = []

all_accuracy = []

embedded_features = []

runtimes=[]

embedded_runtimes =[]

248

from numpy import mean

from numpy import std

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.feature_selection import RFE

from sklearn.pipeline import Pipeline

from sklearn.feature_selection import SelectFromModel

from time import time

import itertools

from sklearn.linear_model import LassoCV

def splitData(FEATURES_COUNT,dt):

 classMapping = {label: idx for idx, label in enumerate(np.unique(dt["CLASS"]))}

 dt["CLASS"] = dt["CLASS"].map(classMapping)

 dt_label_class = dt['CLASS'].astype(float)

 dt_features = dt.iloc[:, 0:FEATURES_COUNT].apply(np.ceil)

 RANDOM_SEED = 7

 #train_x, test_x, y_train, y_test = train_test_split(dt_features, dt_label_class,

test_size=0.3, shuffle=True, random_state=RANDOM_SEED)

 scaler = StandardScaler()

 scaler.fit(dt_features)

 X = scaler.transform(dt_features)

 y = dt_label_class

 return (X,y,classMapping)

def featureSelection(imputation, percentage, X, y, noOfFeatures):

 # X = X_train.append(X_test)

 #y = y_train.append(y_test)

 start = time()

 rfe = RFE(estimator=DecisionTreeClassifier(), n_features_to_select=noOfFeatures)

 model = DecisionTreeClassifier()

 pipeline = Pipeline(steps=[('s',rfe),('m',model)])

 # evaluate model

 cv = KFold(n_splits=5, shuffle=True, random_state=1) # execute search

 n_scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1,

error_score='raise')

 stop = round(time() - start, 3);

 # report performance

 test_acc = mean(n_scores)

 #print('MAE: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))

 # report performance

 all_features.append(round(test_acc, 3))

249

 runtimes.append(stop)

def EmbeddedfeatureSelection(imputation, percentage,X, y, noOfFeatures):

 # X = X_train.append(X_test)

 #y = y_train.append(y_test)

 model = None

 start = time()

 # execute search

 fs = SelectFromModel(DecisionTreeClassifier(), max_features=noOfFeatures)

 model = DecisionTreeClassifier()

 pipeline = Pipeline(steps=[('s',fs),('m',model)])

 # evaluate model

 cv = KFold(n_splits=5, shuffle=True, random_state=1) # execute search

 n_scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1,

error_score='raise')

 stop = round(time() - start, 3);

 test_acc = mean(n_scores)

 # report performance

 embedded_features.append(test_acc)

 embedded_runtimes.append(stop)

def roundUp(test_dict):

 K = 3

 res = dict()

 for key in test_dict:

 # rounding to K using round()

 res[str(key)] = round(test_dict[key], K)

 return res

def generate_confusion_matrix(cnf_matrix, classes, normalize=False, title='Confusion

matrix'):

 if normalize:

 cnf_matrix = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis]

 print("Normalized confusion matrix")

 else:

 print('Confusion matrix, without normalization')

 plt.imshow(cnf_matrix, interpolation='nearest', cmap=plt.get_cmap('Blues'))

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

250

 plt.yticks(tick_marks, classes)

 fmt = '.2f' if normalize else 'd'

 thresh = cnf_matrix.max() / 2.

 for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])):

 plt.text(j, i, format(cnf_matrix[i, j], fmt), horizontalalignment="center",

 color="white" if cnf_matrix[i, j] > thresh else "black")

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

 return cnf_matrix

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names):

 cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list)

 np.set_printoptions(precision=2)

 # Plot non-normalized confusion matrix

 plt.figure()

 generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +'

Confusion matrix')

 plt.show()

def evaluate_model(data_x, data_y, imputation):

 cv_outer = KFold(5, shuffle=True, random_state=7)

 param_name = "max_depth"

 predicted_targets = np.array([])

 actual_targets = np.array([])

 gridSearch = {"mean_train_score":[], "mean_test_score":[], "param_ranges": []}

 gridSearch_df = {}

 param_grid = {

 "criterion":["entropy"],

 "max_depth": [i for i in np.arange(1, 21)],

 "min_samples_leaf": range(2,5)

 }

 index = 0

 for train_ix, test_ix in cv_outer.split(data_x):

 train_x, train_y, test_x, test_y = data_x[train_ix], data_y[train_ix], data_x[test_ix],

data_y[test_ix]

 # define the model

 model = DecisionTreeClassifier(random_state=7)

 cv_inner = KFold(n_splits=3, shuffle=True, random_state=7) # execute search

251

 # define search

 search = GridSearchCV(model, param_grid, scoring='accuracy', n_jobs=1,

cv=cv_inner, refit=True, return_train_score=True)

 # configure the cross-validation procedure

 result = search.fit(train_x, train_y)

 # get the best performing model fit on the whole training set

 best_model = result.best_estimator_

 # evaluate model on the hold out dataset

 predicted_labels = best_model.predict(test_x)

 predicted_targets = np.append(predicted_targets, predicted_labels)

 actual_targets = np.append(actual_targets, test_y)

 print("Best Parameter %s :" %search.best_params_)

 cv_results = search.cv_results_

 scores_df = pd.DataFrame(cv_results).sort_values(by='rank_test_score')

 gridSearch_df[index] = search

 index = index + 1

 plot_grid_search_validation_curve(gridSearch_df, param_name, title="Validation

Curve - "+imputation)

 return predicted_targets, actual_targets

def plot_grid_search_validation_curve(grids, param_to_vary,

 title='Validation Curve', ylim=None,

 xlim=None, log=None):

 """Plots train and cross-validation scores from a GridSearchCV instance's

 best params while varying one of those params."""

 plt.clf()

 plt.figure(figsize=(16, 16))

 plot_fn = plt.plot

 if log:

 plot_fn = plt.semilogx

 plt.title(title)

 plt.xlabel(param_to_vary)

 plt.ylabel('Score')

 if (ylim is None):

 plt.ylim(0.0, 1.1)

 else:

 plt.ylim(*ylim)

252

 if (not (xlim is None)):

 plt.xlim(*xlim)

 lw = 1

 fold = 1

 for index in grids.keys():

 grid = grids[index]

 df_cv_results = pd.DataFrame(grid.cv_results_)

 train_scores_mean = df_cv_results['mean_train_score']

 valid_scores_mean = df_cv_results['mean_test_score']

 train_scores_std = df_cv_results['std_train_score']

 valid_scores_std = df_cv_results['std_test_score']

 param_cols = [c for c in df_cv_results.columns if c[:6] == 'param_']

 param_ranges = [grid.param_grid[p[6:]] for p in param_cols]

 param_ranges_lengths = [len(pr) for pr in param_ranges]

 train_scores_mean = np.array(train_scores_mean).reshape(*param_ranges_lengths)

 valid_scores_mean = np.array(valid_scores_mean).reshape(*param_ranges_lengths)

 train_scores_std = np.array(train_scores_std).reshape(*param_ranges_lengths)

 valid_scores_std = np.array(valid_scores_std).reshape(*param_ranges_lengths)

 param_to_vary_idx = param_cols.index('param_{}'.format(param_to_vary))

 slices = []

 for idx, param in enumerate(grid.best_params_):

 if (idx == param_to_vary_idx):

 slices.append(slice(None))

 continue

 best_param_val = grid.best_params_[param]

 idx_of_best_param = 0

 if isinstance(param_ranges[idx], np.ndarray):

 idx_of_best_param = param_ranges[idx].tolist().index(best_param_val)

 else:

 idx_of_best_param = param_ranges[idx].index(best_param_val)

 slices.append(idx_of_best_param)

 train_scores_mean = train_scores_mean[tuple(slices)]

 valid_scores_mean = valid_scores_mean[tuple(slices)]

 train_scores_std = train_scores_std[tuple(slices)]

 valid_scores_std = valid_scores_std[tuple(slices)]

 param_range = param_ranges[param_to_vary_idx]

253

 plot_fn(param_range, train_scores_mean, label= "(Fold - {} Training score

)".format(fold), lw=lw)

 '''plt.fill_between(param_range, train_scores_mean -

train_scores_std,train_scores_mean + train_scores_std, alpha=0.1,

 color='r', lw=lw)'''

 plot_fn(param_range, valid_scores_mean, label= "(Fold - {} Cross-validation score

)".format(fold), lw=lw)

 '''plt.fill_between(param_range, valid_scores_mean - valid_scores_std,

 valid_scores_mean + valid_scores_std, alpha=0.1,

 color='b', lw=lw) '''

 fold = fold + 1

 '''if (not isinstance(param_range[0], numbers.Number)):

 param_range = [str(x) for x in param_range]'''

 plt.legend(loc='lower right')

 plt.show()

def classfier(imputation, X, y, class_names):

 print("==")

 #print(imputation)

 #print("==-----------

------------")

 predicted_target, actual_target = evaluate_model(X, y, imputation)

 plot_confusion_matrix(predicted_target, actual_target, imputation, class_names)

 cm = ConfusionMatrix(actual_vector=actual_target,

predict_vector=predicted_target)

 test_acc = accuracy_score(actual_target, predicted_target)

 # print("\n Overall Accuracy Score \t", "%.3f" %(test_acc))

 all_accuracy.append({"score": test_acc, "imputation": imputation})

 metric = [{"Dataset": imputation,

 "Overall Accuracy":test_acc,

 "Accuracy": roundUp(cm.ACC),

 'F1': roundUp(cm.F1),

 'True Positives': cm.TP,

 'False Positives':cm.FP,

 'False Positives Rate':cm.FPR,

 'Recall': roundUp(cm.TPR) ,

254

 'Precision':roundUp(cm.PPV)}]

 display(pd.DataFrame(metric))

 all_metric.append(metric)

 #GridSearch_table_plot(model, "max_depth", negative=False)

#print("===

===============")

def plot_gridSearch(gridSearch, param_name):

 plt.figure(figsize=(8, 8))

 plot_fn = plt.plot

 train_scores_mean = gridSearch['mean_train_score']

 valid_scores_mean = gridSearch['mean_test_score']

 param_ranges = gridSearch['param_ranges']

 param_ranges_lengths = len(param_ranges)

 train_scores_mean = np.array(train_scores_mean).reshape(*param_ranges_lengths)

 valid_scores_mean = np.array(valid_scores_mean).reshape(*param_ranges_lengths)

 lw = 2

 #param_range = [i for i in np.arange(1, 22)]

 '''if (not isinstance(param_range[0], numbers.Number)):

 param_range = [str(x) for x in param_range]'''

 plot_fn(param_ranges, train_scores_mean, label='Training score', color='r',lw=lw)

 plt.fill_between(param_ranges, train_scores_mean, alpha=0.1,color='r', lw=lw)

 plot_fn(param_ranges, valid_scores_mean, label='Cross-validation score', color='b',

lw=lw)

 plt.fill_between(param_ranges, valid_scores_mean, alpha=0.1, color='b', lw=lw)

 plt.legend(loc='lower right')

 plt.show()

def plotAccuracy(all_accuracy):

 label = []

 scores = []

 for accuracy in all_accuracy:

 label.append(accuracy.get("imputation"))

 scores.append(round(accuracy.get("score"), 3))

 plt.figure(figsize=(10, 10))

 plt.bar(label, scores)

 plt.title("Compare accuracy for all datasets")

255

 plt.xlabel("Dataset")

 plt.ylabel("Accuracy")

 plt.legend()

 plt.show()

def plotFeatureSelection(all_features, percentages, imputation, method, runtimes):

 plt.figure(figsize=(11, 11))

 plt.plot(percentages, all_features, '-o', label='accuracy')

 plt.plot(percentages, runtimes, '-o', label='time')

 for x,y in zip(percentages,runtimes):

 label = "({:.3f}, {:.3f})".format(y,x)

 plt.annotate(label, # this is the text

 (x,y), # these are the coordinates to position the label

 textcoords="offset points", # how to position the text

 xytext=(0,10), # distance from text to points (x,y)

 ha='center') # horizontal alignment can be left, right or center

 for x,y in zip(percentages,all_features):

 label = "({:.3f}, {:.3f})".format(y,x)

 plt.annotate(label, # this is the text

 (x,y), # these are the coordinates to position the label

 textcoords="offset points", # how to position the text

 xytext=(0,10), # distance from text to points (x,y)

 ha='center') # horizontal alignment can be left, right or center

 plt.title(method + " Feature Selection " + imputation)

 plt.xlabel("Percentage of Features")

 plt.ylabel("Accuracy")

 plt.legend()

 plt.show()

all_metric = []

all_accuracy = []

for subdir, dirs, files in os.walk("./"+DATA_DIR) :

 for file in files:

 data = arff.loadarff("./"+DATA_DIR + file)

 dt = pd.DataFrame(data[0])

 percentages = values = [i/100 for i in range(15, 115, 15)]

 if file =="MICE_Imputation.arff":

 imputation = "Mice Imputation"

256

 print("\n ===========================" + imputation+

"===========================")

 all_features = []

 embedded_features = []

 runtimes=[]

 embedded_runtimes =[]

 FEATURES_COUNT = 26

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 for index, p in enumerate(percentages):

 if p > 1:

 percentages[index] = 1

 p = 1

 nf = int(p * FEATURES_COUNT)

 #print("\n===========================Wrapper Feature Selection

==================")

 featureSelection(imputation, p, X, y, nf)

 #print("\n===========================Embedded Feature Selection

==================")

 EmbeddedfeatureSelection(imputation, p, X, y, nf)

 plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method",

runtimes)

 plotFeatureSelection(embedded_features, percentages, imputation, "Embedded

Method", embedded_runtimes)

 classfier(imputation, X, y, classMapping)

 elif file == "MF_Imputation.arff":

 imputation = "MF Imputation"

 print("\n===========================" + imputation+

"===========================")

 FEATURES_COUNT = 26

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 classfier(imputation, X, y, classMapping)

 elif file == "KNN_Imputation.arff":

 FEATURES_COUNT = 26

 imputation = "KNN Imputation"

 print("\n===========================" + imputation+

"===========================")

 FEATURES_COUNT = 26

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 classfier(imputation, X, y, classMapping)

 elif file == "combine-posit.arff":

257

 FEATURES_COUNT = 53

 imputation = "POSIT + MICE"

 print("\n ===========================" + imputation+

"===========================")

 all_features = []

 embedded_features = []

 runtimes=[]

 embedded_runtimes =[]

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 for index, p in enumerate(percentages):

 if p > 1:

 percentages[index] = 1

 p = 1

 nf = int(p * FEATURES_COUNT)

 #print("\n===========================Wrapper Feature Selection

==================")

 featureSelection(imputation, p, X, y, nf)

 #print("\n===========================Embedded Feature Selection

==================")

 EmbeddedfeatureSelection(imputation, p, X, y, nf)

 plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method",

runtimes)

 plotFeatureSelection(embedded_features, percentages, imputation, "Embedded

Method", embedded_runtimes)

 classfier(imputation, X, y, classMapping)

 elif file == "combine-postchar.arff":

 FEATURES_COUNT = 71

 imputation = "POSIT + CHAR"

 print("\n ===========================" + imputation+

"===========================")

 all_features = []

 embedded_features = []

 runtimes=[]

 embedded_runtimes =[]

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 for index, p in enumerate(percentages):

 if p > 1:

 percentages[index] = 1

 p = 1

258

 nf = int(p * FEATURES_COUNT)

 #print("\n===========================Wrapper Feature Selection

==================")

 featureSelection(imputation, p, X, y, nf)

 #print("\n===========================Embedded Feature Selection

==================")

 EmbeddedfeatureSelection(imputation, p, X, y, nf)

 plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method",

runtimes)

 plotFeatureSelection(embedded_features, percentages, imputation, "Embedded

Method", embedded_runtimes)

 classfier(imputation, X, y, classMapping)

 if file == "POSIT.arff":

 FEATURES_COUNT = 27

 imputation = "POSIT"

 print("\n ===========================" + imputation+

"===========================")

 all_features = []

 embedded_features = []

 runtimes=[]

 embedded_runtimes =[]

 X, y, classMapping = splitData(FEATURES_COUNT,dt)

 for index, p in enumerate(percentages):

 if p > 1:

 percentages[index] = 1

 p = 1

 nf = int(p * FEATURES_COUNT)

 #print("\n===========================Wrapper Feature Selection

==================")

 featureSelection(imputation, p, X, y, nf)

 #print("\n===========================Embedded Feature Selection

==================")

 EmbeddedfeatureSelection(imputation, p, X, y, nf)

 plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method",

runtimes)

 plotFeatureSelection(embedded_features, percentages, imputation, "Embedded

Method", embedded_runtimes)

 classfier(imputation, X, y, classMapping)

259

df = pd.DataFrame(all_metric)

print(df.to_string())

plotAccuracy(all_accuracy)

RNN Implementation

-*- coding: utf-8 -*-

"""RNN.ipynb

Automatically generated by Colaboratory.

Original file is located at

 https://colab.research.google.com/drive/1aHkvuP3PBDMGdsZwGIf-NVfHJySfZXl4

"""

!pip install pycm

from google.colab import drive

drive.mount('/content/drive')

FEATURES_COUNT = 0

INPUT_SHAPE = 0

DATA_DIR = "drive/MyDrive/dataset/"

timing = []

all_metric = []

all_accuracy = []

260

from sklearn import preprocessing, svm

import pandas as pd

import numpy as np

from keras.utils import np_utils

from keras.wrappers.scikit_learn import KerasClassifier

from keras.preprocessing.text import Tokenizer

from keras.models import Sequential

from keras.layers import Dense, Dropout, Embedding, LSTM, Lambda,

Activation,GlobalMaxPooling1D, SpatialDropout1D

from sklearn.preprocessing import MultiLabelBinarizer ,LabelEncoder

import sklearn.datasets as skds

from pathlib import Path

from scipy.io import arff

from sklearn.preprocessing import MinMaxScaler,StandardScaler

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

from keras.callbacks import EarlyStopping

from sklearn.metrics import plot_confusion_matrix

import keras

import tensorflow as tf

from time import time

import os.path

from pycm import *

from sklearn.model_selection import GridSearchCV

from IPython.display import display

import itertools

class TimingCallback(keras.callbacks.Callback):

 def __init__(self):

 self.logs=[]

 def on_epoch_begin(self, epoch, logs={}):

 self.starttime=time()

 def on_epoch_end(self, epoch, logs={}):

 self.logs.append(time()-self.starttime)

def baseline_model():

 rnn_model=Sequential()

 rnn_model.add(LSTM(150,return_sequences=True,input_shape=(INPUT_SHAPE,1)))

261

#input layer

 rnn_model.add(tf.keras.layers.LSTM(units=26, activation='tanh'))

 rnn_model.add(Dropout(0.5))

 rnn_model.add(tf.keras.layers.Dense(units=3, activation='sigmoid')) #output layer

 rnn_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',

metrics=['accuracy']) #compiling the model

 rnn_model.summary()

 return rnn_model

def splitData(FEATURES_COUNT,dt):

 classMapping = {label: idx for idx, label in enumerate(np.unique(dt["CLASS"]))}

 dt["CLASS"] = dt["CLASS"].map(classMapping)

 dt_label_class = dt['CLASS'].astype(float)

 dt_features = dt.iloc[:, 0:FEATURES_COUNT].apply(np.ceil)

 RANDOM_SEED = 7

 train_x, test_x, y_train, y_test = train_test_split(dt_features, dt_label_class,

test_size=0.3, shuffle=True, random_state=RANDOM_SEED)

 X_train = np.array(train_x)

 X_test = np.array(test_x)

 y_train = np.array(y_train)

 y_test = np.array(y_test)

 X_train =X_train.reshape(X_train.shape[0],X_train.shape[1] , 1)

 X_test = X_test.reshape(X_test.shape[0],X_test.shape[1] , 1)

 return (X_train, X_test, y_test,y_train, classMapping)

def GridSearch_table_plot(grid_clf, param_name,

 num_results=15,

 negative=True,

 graph=True,

 display_all_params=False):

 '''Display grid search results

 Arguments

 grid_clf the estimator resulting from a grid search

 for example: grid_clf = GridSearchCV(...

 param_name a string with the name of the parameter being tested

 num_results an integer indicating the number of results to display

262

 Default: 15

 negative boolean: should the sign of the score be reversed?

 scoring = 'neg_log_loss', for instance

 Default: True

 graph boolean: should a graph be produced?

 non-numeric parameters (True/False, None) don't graph well

 Default: True

 display_all_params boolean: should we print out all of the parameters, not just the

ones searched for?

 Default: True

 Usage

 GridSearch_table_plot(grid_clf, "min_samples_leaf")

 '''

 clf = grid_clf.best_estimator_

 clf_params = grid_clf.best_params_

 if negative:

 clf_score = -grid_clf.best_score_

 else:

 clf_score = grid_clf.best_score_

 clf_stdev = grid_clf.cv_results_['std_test_score'][grid_clf.best_index_]

 cv_results = grid_clf.cv_results_

 #print("best parameters: {}".format(clf_params))

 #print("best score: {:0.5f} (+/-{:0.5f})".format(clf_score, clf_stdev))

 if display_all_params:

 import pprint

 pprint.pprint(clf.get_params())

 # pick out the best results

 # =========================

 scores_df = pd.DataFrame(cv_results).sort_values(by='rank_test_score')

 best_row = scores_df.iloc[0, :]

 if negative:

 best_mean = -best_row['mean_test_score']

263

 else:

 best_mean = best_row['mean_test_score']

 best_stdev = best_row['std_test_score']

 best_param = best_row['param_' + param_name]

 # display the top 'num_results' results

 # =====================================

#display(pd.DataFrame(cv_results).sort_values(by='rank_test_score').head(num_results)

)

 # plot the results

 # ================

 scores_df = scores_df.sort_values(by='param_' + param_name)

 if negative:

 means = -scores_df['mean_test_score']

 else:

 means = scores_df['mean_test_score']

 stds = scores_df['std_test_score']

 params = scores_df['param_' + param_name]

 # plot

 if graph:

 plt.figure(figsize=(8, 8))

 plt.errorbar(params, means, yerr=stds)

 plt.axhline(y=best_mean + best_stdev, color='red')

 plt.axhline(y=best_mean - best_stdev, color='blue')

 plt.plot(best_param, best_mean, 'or')

 plt.title(param_name + " vs Score\nBest Score {:0.5f}".format(clf_score))

 plt.xlabel(param_name)

 plt.ylabel('Score')

 plt.show()

def roundUp(test_dict):

 K = 3

 res = dict()

 for key in test_dict:

 # rounding to K using round()

 res[str(key)] = round(test_dict[key], K)

 return res

264

def plotAccuracy(all_accuracy):

 label = []

 scores = []

 for accuracy in all_accuracy:

 label.append(accuracy.get("imputation"))

 scores.append(round(accuracy.get("score"), 3))

 plt.figure(figsize=(10, 10))

 plt.bar(label, scores)

 plt.title("Compare accuracy for all datasets")

 plt.xlabel("Dataset")

 plt.ylabel("Accuracy")

 plt.legend()

 plt.show()

def classfier(imputation, max_depth,X_train,y_train,X_test, y_test, class_names):

 print("==")

 print(imputation)

 print("==")

 model = None

 cb = TimingCallback()

 es =

EarlyStopping(monitor="loss",min_delta=0,patience=3,verbose=1,mode="auto",baseline

=None,restore_best_weights=False)

 estimator = KerasClassifier(build_fn=baseline_model, batch_size=5, verbose=0)

 #history = model.fit(X_train,

y_train,validation_split=0.33,epochs=1,verbose=1,callbacks=[cb, es])

 #predictions = model.predict(X_test)

 history = estimator.fit(X_train,

y_train,validation_split=0.33,epochs=20,verbose=1,callbacks=[cb, es])

 predictions = estimator.predict(X_test)

 timing.append(cb.logs)

 # list all data in history

 test_acc = accuracy_score(y_test, predictions)

 test_predictions = estimator.predict(X_test)

 cm = ConfusionMatrix(actual_vector=y_test, predict_vector=test_predictions)

 plot_confusion_matrix(predictions, y_test, imputation, class_names)

 print("\n Overall Accuracy Score \t", "%.3f" %(test_acc))

 all_accuracy.append({"score": test_acc, "imputation": imputation})

 metric = [{"Dataset": imputation,

 "Overall Accuracy":test_acc,

265

 "Accuracy": roundUp(cm.ACC),

 'F1': roundUp(cm.F1),

 'True Positives': cm.TP,

 'False Positives':cm.FP,

 'False Positives Rate':roundUp(cm.FPR),

 'Recall': roundUp(cm.TPR) ,

 'Precision':roundUp(cm.PPV)}]

 all_metric.append(metric)

 display(pd.DataFrame(metric))

print("==

==============")

 epoch_range = range(1,len(history.history['loss']) + 1)

 plt.plot(epoch_range, history.history['accuracy'])

 plt.plot(epoch_range, history.history['val_accuracy'])

 plt.title('Model_accuracy')

 plt.ylabel('Accuracy')

 plt.xlabel('Epoch')

 plt.legend(['Train','val'], loc='upper left')

 plt.show()

 #plot training and validation loss values

 plt.plot(epoch_range, history.history['loss'])

 plt.plot(epoch_range, history.history['val_loss'])

 plt.title('Model loss')

 plt.ylabel('Loss')

 plt.xlabel('Epoch')

 plt.legend(['Train','val'], loc='upper left')

 plt.show()

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names):

 cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list)

 np.set_printoptions(precision=2)

 # Plot non-normalized confusion matrix

 plt.figure()

 generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +'

Confusion matrix')

 plt.show()

def generate_confusion_matrix(cnf_matrix, classes, normalize=False, title='Confusion

matrix'):

266

 if normalize:

 cnf_matrix = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis]

 print("Normalized confusion matrix")

 else:

 print('Confusion matrix, without normalization')

 plt.imshow(cnf_matrix, interpolation='nearest', cmap=plt.get_cmap('Blues'))

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

 fmt = '.2f' if normalize else 'd'

 thresh = cnf_matrix.max() / 2.

 for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])):

 plt.text(j, i, format(cnf_matrix[i, j], fmt), horizontalalignment="center",

 color="white" if cnf_matrix[i, j] > thresh else "black")

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

 return cnf_matrix

all_metric = []

all_accuracy = []

for subdir, dirs, files in os.walk("./"+DATA_DIR) :

 for file in files:

 data = arff.loadarff("./"+DATA_DIR + file)

 dt = pd.DataFrame(data[0])

 if file =="MICE_Imputation.arff":

 FEATURES_COUNT = 26

 imputation = "Mice Imputation"

 X_train, X_test, y_test,y_train, classMapping =

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 1, X_train,y_train, X_test, y_test, classMapping)

 elif file == "MF_Imputation.arff":

 FEATURES_COUNT = 26

267

 imputation = "MF Imputation"

 X_train, X_test, y_test,y_train, classMapping =

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 10, X_train,y_train, X_test, y_test,classMapping)

 elif file == "KNN_Imputation.arff":

 FEATURES_COUNT = 26

 imputation = "KNN Imputation"

 X_train, X_test, y_test,y_train, classMapping =

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 1, X_train,y_train, X_test, y_test, classMapping)

 elif file == "combine-postchar.arff":

 FEATURES_COUNT = 71

 imputation = "POSIT + MICE"

 X_train, X_test, y_test,y_train, classMapping =

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 1, X_train,y_train, X_test, y_test,classMapping)

 elif file == "combine-posit.arff":

 FEATURES_COUNT = 53

 imputation = "POSIT + CHAR"

 X_train, X_test, y_test,y_train, classMapping =

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 14, X_train,y_train, X_test, y_test,classMapping)

 elif file == "POSIT.arff":

 FEATURES_COUNT = 27

 imputation = "POSIT"

 X_train, X_test, y_test,y_train, classMapping =

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 1, X_train,y_train, X_test, y_test,classMapping)

df = pd.DataFrame(all_metric)

print(df.to_string())

268

plotAccuracy(all_accuracy)

MLP Implementation

-*- coding: utf-8 -*-

"""MLP -Better model.ipynb

Automatically generated by Colaboratory.

Original file is located at

 https://colab.research.google.com/drive/1EcN1XvG0Kj375UvVe6Q0I5AznIByz86k

"""

!pip install pycm

!pip install keras-tuner

!pip install -U imbalanced-learn

from sklearn import preprocessing, svm

import pandas as pd

import numpy as np

from keras.utils import np_utils

from keras.wrappers.scikit_learn import KerasClassifier

from keras.preprocessing.text import Tokenizer

from keras.models import Sequential

from keras.layers import Activation, Dense, Dropout

from sklearn.preprocessing import MultiLabelBinarizer ,LabelEncoder

import sklearn.datasets as skds

from pathlib import Path

from scipy.io import arff

from sklearn.preprocessing import MinMaxScaler,StandardScaler

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

269

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

from keras.callbacks import EarlyStopping

from sklearn.metrics import plot_confusion_matrix

import tensorflow as tf

from tensorflow import keras

from time import time

import os.path

from pycm import *

import keras_tuner as kt

from kerastuner import HyperModel

import itertools

from tensorflow.keras import models, layers

from sklearn.model_selection import validation_curve

"""MLP Implementation"""

from google.colab import drive

drive.mount('/content/drive')

timing = []

DATA_DIR = "drive/MyDrive/dataset/"

all_metric = []

all_accuracy = []

FEATURES_COUNT = 0

class_names={}

class TimingCallback(keras.callbacks.Callback):

 def __init__(self):

 self.logs=[]

 def on_epoch_begin(self, epoch, logs={}):

 self.starttime=time()

 def on_epoch_end(self, epoch, logs={}):

 self.logs.append(time()-self.starttime)

def baseline_model():

 num_labels = 3

 input_shape = (FEATURES_COUNT,)

 model = keras.Sequential()

 model = keras.Sequential()

 model.add(Dense(30, input_shape=(FEATURES_COUNT,)))

 model.add(Activation('relu'))

270

 model.add(Dropout(0.2))

 model.add(Dense(20))

 model.add(Activation('relu'))

 model.add(Dropout(0.2))

 model.add(Dense(num_labels))

 model.add(Activation('softmax'))

 #model.summary()

 # Compile model

 model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

 return model

def splitData(FEATURES_COUNT,dt):

 classMapping = {label: idx for idx, label in enumerate(np.unique(dt["CLASS"]))}

 dt["CLASS"] = dt["CLASS"].map(classMapping)

 dt_label_class = dt['CLASS'].astype(float)

 dt_features = dt.iloc[:, 0:FEATURES_COUNT].apply(np.ceil)

 train_x, test_x, y_train, y_test = train_test_split(dt_features, dt_label_class,

test_size=0.3)

 scaler = StandardScaler()

 scaler.fit(train_x)

 X_train = scaler.transform(train_x)

 X_test = scaler.transform(test_x)

 class_names = classMapping

 return (X_train, X_test, y_test,y_train, classMapping)

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names):

 cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list)

 np.set_printoptions(precision=2)

 # Plot non-normalized confusion matrix

 plt.figure()

 generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +'

Confusion matrix')

 plt.show()

def generate_confusion_matrix(cnf_matrix, classes, normalize=False, title='Confusion

matrix'):

 if normalize:

 cnf_matrix = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis]

 print("Normalized confusion matrix")

271

 else:

 print('Confusion matrix, without normalization')

 plt.imshow(cnf_matrix, interpolation='nearest', cmap=plt.get_cmap('Blues'))

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

 fmt = '.2f' if normalize else 'd'

 thresh = cnf_matrix.max() / 2.

 for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])):

 plt.text(j, i, format(cnf_matrix[i, j], fmt), horizontalalignment="center",

 color="white" if cnf_matrix[i, j] > thresh else "black")

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

 return cnf_matrix

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names):

 cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list)

 np.set_printoptions(precision=2)

 # Plot non-normalized confusion matrix

 plt.figure()

 generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +'

Confusion matrix')

 plt.show()

def classfier(imputation, max_depth,X_train,y_train,X_test, y_test, class_names):

 print("==-------------

----------")

 print(imputation)

 print("==-------------

----------")

 model = None

 cb = TimingCallback()

 es =

EarlyStopping(monitor="loss",min_delta=0,patience=3,verbose=1,mode="auto",baseline

272

=None,restore_best_weights=False)

 estimator = KerasClassifier(build_fn=baseline_model, batch_size=7, verbose=0)

 #history = model.fit(X_train,

y_train,validation_split=0.33,epochs=1,verbose=1,callbacks=[cb, es])

 #predictions = model.predict(X_test)

 history = estimator.fit(X_train,

y_train,validation_split=0.33,epochs=20,verbose=1,callbacks=[cb, es])

 predictions = estimator.predict(X_test)

 timing.append(cb.logs)

 # list all data in history

 test_acc = accuracy_score(y_test, predictions)

 test_predictions = estimator.predict(X_test)

 plot_confusion_matrix(test_predictions, y_test, imputation, class_names)

 cm = ConfusionMatrix(actual_vector=y_test.values,

predict_vector=test_predictions)

 print("\n Overall Accuracy Score \t", "%.3f" %(test_acc))

 all_accuracy.append({"score": test_acc, "imputation": imputation})

 metric = [{"Dataset": imputation,

 "Overall Accuracy":test_acc,

 "Accuracy": roundUp(cm.ACC),

 'F1': roundUp(cm.F1),

 'True Positives': cm.TP,

 'False Positives':cm.FP,

 'False Positives Rate':roundUp(cm.FPR),

 'Recall': roundUp(cm.TPR) ,

 'Precision':roundUp(cm.PPV)}]

 all_metric.append(metric)

 display(pd.DataFrame(metric))

print("==

==============")

 epoch_range = range(1,len(history.history['loss']) + 1)

 plt.plot(epoch_range, history.history['accuracy'])

 plt.plot(epoch_range, history.history['val_accuracy'])

 plt.title('Model_accuracy')

 plt.ylabel('Accuracy')

 plt.xlabel('Epoch')

 plt.legend(['Train','val'], loc='upper left')

 plt.show()

273

 #plot training and validation loss values

 plt.plot(epoch_range, history.history['loss'])

 plt.plot(epoch_range, history.history['val_loss'])

 plt.title('Model loss')

 plt.ylabel('Loss')

 plt.xlabel('Epoch')

 plt.legend(['Train','val'], loc='upper left')

 plt.show()

def plotAccuracy(all_accuracy):

 label = []

 scores = []

 for accuracy in all_accuracy:

 label.append(accuracy.get("imputation"))

 scores.append(round(accuracy.get("score"), 3))

 plt.figure(figsize=(10, 10))

 plt.bar(label, scores)

 plt.title("Compare accuracy for all datasets")

 plt.xlabel("Dataset")

 plt.ylabel("Accuracy")

 plt.legend()

 plt.show()

def roundUp(test_dict):

 K = 3

 res = dict()

 for key in test_dict:

 # rounding to K using round()

 res[str(key)] = round(test_dict[key], K)

 return res

all_metric = []

all_accuracy = []

for subdir, dirs, files in os.walk("./"+DATA_DIR) :

 for file in files:

 data = arff.loadarff("./"+DATA_DIR + file)

 dt = pd.DataFrame(data[0])

 if file =="MICE_Imputation.arff":

 FEATURES_COUNT = 26

 imputation = "Mice Imputation"

 X_train, X_test, y_test,y_train, classMapping =

274

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 1, X_train,y_train, X_test, y_test, classMapping)

 elif file == "MF_Imputation.arff":

 FEATURES_COUNT = 26

 imputation = "MF Imputation"

 X_train, X_test, y_test,y_train, classMapping =

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 10, X_train,y_train, X_test, y_test,classMapping)

 elif file == "KNN_Imputation.arff":

 FEATURES_COUNT = 26

 imputation = "KNN Imputation"

 X_train, X_test, y_test,y_train, classMapping =

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 1, X_train,y_train, X_test, y_test, classMapping)

 elif file == "combine-postchar.arff":

 FEATURES_COUNT = 71

 imputation = "POSIT + MICE"

 X_train, X_test, y_test,y_train, classMapping =

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 1, X_train,y_train, X_test, y_test,classMapping)

 elif file == "combine-posit.arff":

 FEATURES_COUNT = 53

 imputation = "POSIT + CHAR"

 X_train, X_test, y_test,y_train, classMapping =

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 14, X_train,y_train, X_test, y_test,classMapping)

 elif file == "POSIT.arff":

 FEATURES_COUNT = 27

 imputation = "POSIT"

 X_train, X_test, y_test,y_train, classMapping =

splitData(FEATURES_COUNT,dt)

 INPUT_SHAPE = X_train.shape[0]

 classfier(imputation, 1, X_train,y_train, X_test, y_test,classMapping)

275

df = pd.DataFrame(all_metric)

print(df.to_string())

plotAccuracy(all_accuracy)

