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Abstract 

The research in this thesis covers three fields of control theory; identification, control 

design, and real-time control applied to activated sludge wastewater treatment plants. 

The study is carfied out using simulation and a full-scale implementation in Swinstie 

wastewater treatment plant from Scottish Water. 

Subspace algorithms are explored to obtain adequate models for dissolved oxygen and 

nutrient dynamics. Results presented in this area are the outcome of a number of simu- 

lations and full-scale plant experiments, which have lead to the formulation of standard 

recommendations to the identification of linear models for the activated sludge process. 

Part of the work has also provided an evaluation of a number of subspace identification 

algorithms, although this has not been an objective within the thesis. The thesis also 

contains some insight into the modelling of the activated sludge for an intermittent 

aeration process. 

The control design part of the thesis employs a two level hierarchical control approach. 

The low level control is usually a proportional integral derivative controller (PID) type. 

This thesis presents the development of three new tuning algorithms for PID type con- 

trollers: iterative feedback tuning (IFT), linear quadratic gaussian (LQG) and data- 

driven. The first two methods are developed for continuous time systems, while the 

last is a discrete time data-driven method which uses subspace identification. The sec- 

ond control level employs linear model predictive control (MPQ. MPC is used for 

dissolved oxygen and nitrogen removal in a simulation level. Linear models of nutri- 

ent removal obtained by identification and by model reduction are used to implement 

controllers for continuous aeration and intermittent aeration plants. 

Real-time control is implemented by developing a software platform. The software 

platform contains algorithms for subspace identification, MPC control design and exe- 

cution and process monitoring. The software is developed using LabVEEW and MAT- 

LAB. The user frontend and the communication with the PLC are implemented in Lab- 
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VIEW. The PLC communication employs OPC tehcnology. Many of the algorithms 

required for identification, control design, and process monitoring are programmed in 

MATLAB and linked to LabVIEW by using several technologies as: Activex and Dy- 

namic Link Libraries (DLL). The thesis finally presents results obtained by real-time 

execution of the identification and control algorithms. 
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Nomenclature 

ASM Activated sludge model 

CVA Canonical variate analysis 

DDWF Daily dry weather flow 

DO Dissolved oxygen 

DLL Dynamic link library 

ERAS External return activated sludge 

EFT Iterative feedback tuning 

LQG Linear quadratic gaussian 

MIMO Multiple-input, multiple- output 

MLSS Mixed liquor suspended solids 

MOESP Multivariable output-error state space 

MPC Model predictive control 

N4SID Numerical algorithms for subspace state-space identification 

OPC OLE for process control 

PID Proportional intergral derivative 

PLC Programmable logic controller 

PRBS Pseudo random binary signal 

RAS Return activated sludge 

SCADA Supervisory control and data acquisition 

SISO Single-input, single-output 

SS Suspended solids 

STAR Superior tuning and reporting 

Sv Singular value 

svd Singular value decomposition 

vaf Variance accounted for 

WWTP Wastewater Treatment Plant 
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Chapter I 

Introduction 

The construction and operation of water drainage and wastewater treatment has his- 

torically served two main purposes: (a) to avoid flooding and (b) to maintain public 

hygiene. It is just recently that pollution has became important due to environmental 

awareness. Therefore, the treatment of wastewater before discharging is a necessity 

as a way of reducing pollutant loading into biological active water bodies. Since then, 

the science and engineering of wastewater treatment has evolved considerably with 

different technologies and methods developed over the years. 

The activated sludge treatment process is probably one of the most common processes 

employed for urban sewage. The treatment process consists in the bio-degradation 

of organic material, and bio-chemical decomposition of nutrients. The biochemical 

processes involved are complex and until recently the mechanics involved have not 

been clearly defined. It is not until the late 80s, with the work of Henze et al. (1987) that 

a more scientific understanding has been achieved by the development of mathematical 

models. 

Modelling of the activated sludge process has not only provided a wider understand- 

ing; but has also provided scientists and engineers with a powerful tool which can be 

used to optimise and even predict the behaviour of the system under certain conditions. 

Although these models represent the state of the art in the mathematical understanding 
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of the treatment process, their applicability is limited due to assumptions of ideal con- 

ditions, which are not achievable in practice. On the other hand, the development of 

sophisticated mathematical tools, such as identification and advanced process control, 

can provide a wider set of tools for possible process improvement which are not nec- 

essarily dependent on a detailed process knowledge, as in the activated sludge model 

(ASM) case. 

From the point of view of the wastewater industry, process optimisation, and therefore 

the efficient control of the treatment process, has become a necessity with the imple- 

mentation of more stringent environmental regulations around the globe. Operational 

costs of treatment plants has also contributed to increase investment in the implementa- 

tion of advanced control technologies. In some countries, governmental policies have 

lead to a link between environmental concerns and responsibility in the efficient treat- 

ment of sewage. Denmark, for example, charges wastewater companies a tax over 

the amount of pollutants discharged. Therefore, treatment plants are also required to 

monitor their process so pollutant loads can be accurately estimated. 

On the other hand, the multivariable nature and complexity of the process presents a 

challenge for process control engineers and scientists. The use of advanced process 

control algorithms like model predictive control (MPQ combined with identification 

are alternatives which have been successfully exploited in other industries like the 

petrochemical, and whose application in the wastewater industry has been very limited. 

Due to the nonlinearity of the process, and continuous changing conditions, it might be 

necessary also to have well proven and understood control laws which can be easily re- 

adjusted. Even more, the use of historical data, which is usually recorded and almost 

never used, might provide sufficient information to adjust controllers in an optimal 

way. 

In summary, the wastewater industry has been led into a process of change to improve 

its operation on two fronts: the environmental and the economical, for which the use of 
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advanced process control can be beneficial. This thesis explores the use of identifica- 

tion, model predictive control and controller tuning applied to the wastewater industry. 

The work presented in the thesis conveys the results of three years of research in theo- 

retical and real-time control design. The two 'faces' of this thesis are complementary, 

and in many cases theoretical results and experience gained by simulation have been 

corroborated in practice. 

All the research in this thesis has been developed within a bigger project framework 

called the SMArt Control of Wastewater Treatment Systems (SMAC), which is sum- 

marised in the following section. 

1.1 Project summary 

The SMAC project is European Commission funded project under the Fifth Framework 

for research, technological development and demonstration activities. The SMAC 

project aims at expanding the control functions to become a smart and all-embracing 

control as presented in Figure (1.1) . 

1.1.1 Objectives 

Wastewater systems, meaning sewer network and wastewater treatment plants, are sub- 

ject to large fluctuations in flow and concentrations of the wastewater. During stormwa- 

ter situations large amounts of pollution are diverted untreated to the receiving waters 

and sudden changes in load deteriorate the removal of nitrogen and phosphorus. 

Biological wastewater treatment relies on micro-organisms. New knowledge on the 

potentials and limitations of these still needs to be put into action in the wastewater 

systems. Also, most systems are designed for peaks, thus a spare capacity is available 

in normal conditions, which is frequently not exploited. 
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Figure 1.1: SMAC all-embracing control. 

Today the control of wastewater systems is performed in local sub-optimal units. Due 

to the SISO control structures, the results of one control action affect other loops and 

there is usually no mechanism to counteract this interaction. Also, the sewer system 

and the treatment plant maintenance and control is normally not co-ordinated. There- 

fore, the overall objective of the project is to optimise the wastewater system operation 

by 

1. Maximising the system capacity and availability dynamically. 

2. Reducing the operational costs by improving the control system. 

3. Minimising the pollutant load to the receiving waters. 
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4. Increasing the reliability by monitoring the risk linked to uncertainty. 

To put system spare capacity into use, an innovative all-embracing control system with 

continuous on-line overview of the state of the whole system needs to be developed. 

The system should integrate control of wastewater collection and treatment. The con- 

trol system incorporates functions for the most disturbing event in the wastewater sys- 

tem, the stormwater situation and also a long term performance plan to maintain the 

nutrient removal processes cost efficiency with a better sustainability. 

1.1.2 The consortium 

The consortium consists of a research, a consulting and an end-user group as shown 

in Figure (1.2). This primary organisation is to ensure an 'open pipeline' all the way 

from basic research to exploitation. The way from research to market is thus open 

through the consortium. The expertise of different universities, designers, constructors 

and end-users of the developed technology covers the 'vertical scale' from research to 

demonstration and commercialisation in this project. 

1.1.3 Project description 

The first part of the project is to describe the needs of the end-users seen in the light 

of possible control actions in the wastewater system. Wastewater systems have to be 

defined according to their design, the type of wastewater they handle, the disturbances 

and their dynamic behaviour under dry and wet weather and other disturbing condi- 

tions. The control systems and variables available or currently implemented have also 

to be identified, along with the constraints and limitations relative to the available tech- 

nology and instrumentation. 

The second part is to scrutinise the whole data management procedure. The opti- 

mal distribution of intelligence which is a part of 'smart control' assures a constant 
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data quality control. Multivariable cross check will be a new approach to assure that 

measurements are valid for control purposes. The location of sensors in relation to 

information dynamics and delays of the signal are also of importance. 

The third part concerns the development of the controls. The overall state assessment 

is the basis of an overall performance plan deciding which operational situation will 

be in focus for the forthcoming minutes and hours. In dry weather situations a long 

term plan will assure the best conditions for the micro-organisms development and 

economic operation. The development of prediction and preparation algorithms for 

the stormwater situation, both in sewers and at the plant, are also an important part for 

the implementation of disturbance rejection mechanisms. 

In order to implement such a controller, a hierarchical control structure has been de- 

vised by the SMAC consortium. Due to the different time scales at which processes 

University of 
Strathclyde 
UK 
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and events occur, it is sensible to look at the entire system in three time frames: slow, 

medium and fast. The slow control layer has the purpose of maintaining the plant sus- 

tainability by assuring long-ten-n sludge inventories in a weeks to months time scale. 

The medium control layer's purpose is to optimise the pollutant removal by calculating 

optimal setpoints and has a time scale of several hours to days. Finally, the fast control 

layer main functions is to ensure effective plant operation by assessing the low-level 

control loops and trying to achieve the desired setpoints in an efficient way; this has 

a time frame of minutes to hours. Figure (1.3) presents an schematic diagram of the 

SMAC control system. The work presented in this thesis has been primarly developed 

for the Fast Control Layer; however, nutrient removal has also been the subject of a 

limited study. 

The fourth part is the implementation of the results in four end-user wastewater sys- 

terns. In Denmark the integrated control of wastewater collection and treatment during 

stormwater situations will be the focus. In Poland co-ordinated control will be de- 
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veloped to assure the quality of the discharge of treated wastewater before drinking 

water intakes to a large city. In Germany the integrated management of sewer system 

and wastewater treatment plant including optimisation of energy and chemicals will be 

investigated. Finally, in Scotland the efficient control of dissolved oxygen levels and 

on-line process monitoring will be the focus of implementation. 

1.2 Motivation of the thesis research 

As described in the previous sections, the research contained in this thesis is part of 

a more complete and all-embracing control architecture whose major objectives have 

been enumerated in section 1.1.1. The main motivation for the work developed in this 

thesis is synthesised in the following statements, 

1. The use of subspace identification methods appears as good alternative to deter- 

ministic models. Detern-iinistic models of the activated sludge process are only 

valid under very specific conditions, which are usually very difficult to achieve. 

In addition, they contain a high degree of uncertainty and unidentifiable terms, 

which can only be approximated by laboratory experiments. The calibration of 

these models can take a long period of time, which in practice is not useful, 

since the wastewater composition can change on a day to day basis. Wastewater 

treatment is a multivariable process, in which different sub-processes have dif- 

ferent time scales, therefore the use of a multivariable identification technique is 

a straightforward choice. Also, the existence of large amounts of historical data 

in supervisory control and data acquisition (SCADA) databases can be exploited, 

as means to provide the sufficient data for the identification routines under cer- 

tain circumstances. In this context subspace identification methods appear to be 

an interesting choice. 

2. Due to the multivariable nature of the process, it will be beneficial to investigate 
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the possible improvements of adopting a multivariable control technique. If it 

is possible to obtain simple models for the process, then these can be used in a 

model predictive control structure. Different processes operate in different time 

scales, therefore the use of a hierarchical predictive control structure seems to be 

a good approach to pursue. 

3. In most cases it is impossible or expensive to replace a control algorithm which 

has been programmed in a programmable logic controller (PLC). Therefore, the 

use of a second level of control implemented on a more computationally efficient 

machine, can increase the performance without sacrificing system integrity, se- 

curity and reducing implementation costs. This type of architecture will also 

allow operators to have a plant wide perspective and monitor the complex inter- 

actions within the treatment process employing advanced multivariate statistical 

tools like principal component analysis (PCA). 

4. The operation of many low level control loops, usually proportional-integral- 

derivative (PID) type, can significantly benefit from a simple re-tuning, when 

the plant is operating in a different condition. Moreover, a significat improve- 

ment in the higher control levels can only be achieved if the low level control 

systems are operating in an efficient and healthy way. The paradigm of tuning 

has been a subject of research for many years, and many methods have been 

developed. Within the work presented in this thesis three new tuning algorithms 

for PID-type controllers have been developed. Depending on the necessity and 

the application, these algorithms allow the calculation of the parameters either 

by a model-free approach, employing subspace identification, or with an optimal 

approach. Two of these methods have been extended to multivariable systems, 

therefore covering a wider spectrum of problems and achieving one of the main 

objectives of the project. 

5. Another, important issue which has motivated some of the research presented in 
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this thesis, is the assessment of control loops. One of the most accepted methods 

to assess the performance of control loops, is by comparison with a theoretically 

optimal (or suboptimal depending the case), benchmark. Benchmarking can be 

used for many purposes. In particular, it could give indication of when is it 

necessary to re-tune controllers. Benchmarking is a complex issue for which 

much research has been performed. However, much of it has been left as an 

off-line approach; with very few exceptions. This thesis presents some initial 

work in this area applied to SISO continuous-time control structures, which can 

be used in an online approach. 

6. Much of the work in the literature refering to the use of advanced process con- 

trol methods has been left in simulation. One of the main aims of this thesis 

is to bridge the gap between theory and practice by presenting experiences in 

the implementation, design and operation of such controllers in real-time. The 

implementation of such controllers on an industrial scale conveys the use of 

sophisticated communication protocols and robust hardware and software archi- 

tectures, within other issues, to maintain reliability in the operation of the plant. 

This thesis explores the implementation, design and operation of advanced con- 

trol systems in real-time in a full-scale wastewater treatment plant (WNVTP). 

1.3 Outline of the thesis 

The thesis is composed of eight chapters covering identification, control design, tuning 

and real-time implementation. The thesis is organised in the following way: 

Chapter 2 provides a brief introduction to the activated sludge treatment process by 

describing the unit operations and their functions. Then, the chapter includes a de- 

scription of the WWTP simulation plant employed including the modifications and 

assumptions used in the thesis. In addition, the chapter provides a description of the 
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two full scale WWTPs where the implementation of the control and analysis of data 

has been performed. A summary of the topics covered and developments presented in 

the chapter are included at the end. 

Chapter 3, covers models and identification of the activated sludge wastewater. Two 

objectives drive the content of this chapter: (a) finding appropriate models for dis- 

solved oxygen and nitrogen removal (nutrients) which can be later used in a model 

predictive control structure, and (b) exploring the suitability of different subspace al- 

gorithms for the identification of the activated sludge process. For the case of dissolved 

oxygen, only the use of subspace identification is explored; however, for the nutrients 

case, deterministic modelling and subspace identification are employed. The determin- 

istic model has been developed only for the special case of an alternating wastewater 

treatment plant (intermittent aeration). The chapter also contains a section on identi- 

fication of dissolved oxygen and nutrients with a posteriori analysis of data from the 

Helsingor WWTP (Denmark). This study has yielded interesting results which corrob- 

orate with the simulation results from the previous sections. The chapter ends with a 

brief summary of the chapter content and its results. 

Chapter 4, concerns the design of model predictive controllers using the models de- 

veloped in the previous chapter. The content of the chapter begins with a brief review 

of a standard formulation of model predictive control, which is used throughout the 

chapter. Later, the design of model predictive controllers for dissolved oxygen in a 

SISO and MIMO control structure are presented, followed by the design of MPCs for 

nitrogen removal. This last section, covers two control strategies: intermittent and con- 

tinuous aeration. The first employs a deterministic model and the second uses a black 

box model both developed and identified in the previous chapter. Finally, the chapter 

ends with a summary conveying the main topics presented and the obtained results. 

Chapter 5, presents the development of two continuous-time tuning techniques for 

PID-type controllers. The first part of the chapter presents a deterministic continuous 

time formulation for iterative feedback tuning (IFIF). The section begins by introducing 
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a SISO formulation of the method, and then an extension to MIMO systems, which is 

the main contribution. The second part of the chapter presents the formulation of an 

optimal LQG tuning method for SISO type control systems. The development of the 

method is presented using a polynomial approach for the solution of the optimisation 

problem. This leads into an explicit solution of the optimal problem. Also, an algo- 

rithm for real-time monitoring of control systems using an optimal restricted structure 

LQG benchmark is developed. The algorithm is specially designed to use input-output 

information from the control system and perform an on-line assessment for possible 

re-tuning. Both methods covered in the chapter include several simulation case studies. 

The chapter finalises with a summary compiling the main results. 

In Chapter 6a new method for tuning of multivariable restricted-structure control sys- 

tems is presented. The method is developed within a subspace framework, thus pro- 

viding a transparent approach from the identification to the parameter calculation. The 

chapter begins by giving an introduction into the subspace framework employed. Later, 

the SISO case is examined and later the method is extended to a more general MIN40 

formulation. Several case simulation studies are presented towards the end of the chap- 

ter, and finishing with a summary of the main results. 

Chapter 7 presents the real-time implementation of identification algorithms, con- 

trollers and monitoring algorithms in Swinstie WWTP. The chapter begins by pre- 

senting the development and operation of a software platform which allows the imple- 

mentation of these advanced process control techniques. Some of the most important 

features developed include, (a) an identification module which allows the design of a 

real-time experiment, and the subsequent identification using two subspace algorithms. 

This module also allows the analysis, simulation and validation of the obtained models, 

(b) an MPC control module, which allows the design of an observer and a constrained 

or unconstrained MPC controller. The module has the advantage of allowing the user to 

fine-tune the parameters while operating on-line, and (c) a process monitoring module 

which allows a statistical process analysis to be performed in real-time by using recur- 
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sive principal component analysis (RPCA). Later in the chapter, the platform is used 

to perform identification, control design and real-time control, of dissolved oxygen in 

Swinstie WWTP. The chapter ends with a summary of the achieved results. 

Finally, the thesis ends with conclusions from the work of the thesis and a future work 

programme is outlined in Chapter 8. 

1.4 Main contributions in the thesis 

The research study presented in the thesis covers a wide range of topics aimed at de- 

veloping a data-driven approach to modelling, and control design, by using subspace 

identification, model predictive control, several tuning methods, and real-time imple- 

mentation and experimentation in two full-scale wastewater treatment plants and sim- 

ulation. The work also contains new developments in tuning of restricted-structure 

controllers. The following list gives the main contributions presented in this thesis 

organised by areas: 

1. Modelling and identification: 

(a) A comprehensive study by simulation assessment of three subspace algo- 

rithms used to identify dissolved oxygen and nutrients was undertaken. The 

results are obtained: 

i. by simulation using the COST WWTP simulation benchmark (Copp, 

2002), and 

ii. by using real plant data from historical SCADA archives. 

(b) The development of a systematic procedure for the identification of models 

suitable for use in the design of a model predictive controller. 

(c) The development of a model for an alternating activated sludge wastewater 

treatment plant, which can be used for the design of a model predictive 

controller. 
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2. MPC control design: 

(a) A comprehensive study by simulation of the behaviour of a standard model 

predictive controller for dissolved oxygen under different weather condi- 

tions was conducted. The study includes SISO and MIN40 MPCs. 

(b) An MPC for nitrogen removal evaluated under dry weather conditions was 

designed. 

(c) The design of an MPC for nitrogen removal for an intermittent aeration 

control approach was performed. 

3. Ilining: 

(a) The extension of the iterative feedback tuning (IFIF) algorithm to multivari- 

able deterministic systems in continuous-time, and its application to tuning 

of dissolved oxygen controllers. 

(b) An explicit solution of the restricted- structure optimal LQG problem for a 

SISO control system by using a first order model representation of the plant 

and its application to tuning of dissolved oxygen controllers. 

(c) A data-driven tuning algorithm for multivariable restricted- structure con- 

trollers using a subspace identification framework. The developed algo- 

rithm provides a tool for a direct calculation of a multivariable controller 

from closed-loop input-output data, without the need of calculating the sys- 

tem, matrices. 

4. Benchmarking: 

The formulation of a monitoring algorithm for the performance assessment of 

SISO restricted structure controllers using a restricted LQG benchmark. The 

LQG benchmark is calculated by assuming a first order model of the plant. 

5. Software: 

The development of a software platform, programmed using LabVIIEW, for the 
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testing of advanced process control and data quality management in real-time 

which includes the following features: 

(a) Identification module with options for: 

i. On-line experiment setup. 

Two identification algorithms: robust N4SID 'SV' and robust N4SID 

'CVA!. 

iii. Model analysis, simulation and validation. 

(b) MPC control module with options for: 

i. Observer design by pole-placement. 

ii. Constrained/unconstrained MPC design using a standard formulation. 

(c) Data quality management and process monitoring 

i. Multivariate statistical process monitoring using recursive principal 

component analysis (RPCA). 

ii. Diagnosis and process analysis. 

6. Real-time implementation: 

The real-time implementation of subspace identification, MPC control and mon- 

itoring tools. The thesis conveys results obtained from the real-time testing in 

Swinstie WWTP of: 

(a) System identification using subspace identification for dissolved oxygen. 

(b) The design of a MPC for dissolved oxygen control. 

1.5 Publications arising from the research 

This section presents a listing of scientific papers and project reports published and 

written by the author, which have been the results of the work presented in this the- 

sis. The section is divided into two parts: public documents and project reports which 
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are confidential due to intellectual property rights and possible future commercial ex- 

ploitation. 

1.5.1 Public 

1.5.1.1 Book chapters 

A. Sanchez and M. R. Katebi. Chapter 10 Tuning of multivariable restricted structure 

controllers using subspace identification. In M. A. Johnson and M. H. Moradi, Eds. 

(2004). PID Control. Springer Verlag London. 

Journal 

A. Sanchez, M. R. Katebi and M. A. Johnson (2004). A tuning algorithm for multivari- 

able restricted structure control systems using subspace identification. Int. J. Adapt. 

Control Signal Process. Accepted for publication in special issue on subspace identi- 

fication. 

A. Sanchez, MT Wade and M. R. Katebi (2004). On real-time control and process 

monitoring of wastewater treatment plants: real-time control. Submitted to Trans. 

Inst. of Measurement and Control. 

M. J. Wade, A. Sanchez, and M. R. Katebi (2004). On real-time control and process 

monitoring of wastewater treatment plants: real-time process monitoring. Submitted 

to Trans. Inst. of Measurement and Control. 

1.5.1.3 Conference 

A. Sanchez, M. R. Katebi and M. A. Johnson (2003). Subspace Identification Based 

PID Control Tuning. In Proc. of the 13 th IFAC Symposium on System Identification. 

27-29 August. Rotterdam - The Netherlands. 
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A. Sanchez and M. R. Katebi (2003). Predictive Control of Dissolved Oxygen in an 

Activated Sludge Wastewater Treatment Plant. In Proc. of the European Control Con- 

ference ECC 2003.1-4 September. Cambridge - UK. 

A. Sanchez, M. R. Katebi and M. A. Johnson (2003). Design and Implementation of a 

Control Platform for the Testing of Advanced Control Systems and Data Quality Man- 

agement in the Wastewater Industry. In Proc. of the 4 th IEEE International Conference 

on Control & Automation ICCA'03.10-12 June. Montreal - Canada. pp. 68-74. 

M. A. Johnson and A. Sanchez (2003). Process Control Loop Tuning and Monitoring 

using LQG Optimality with Applications in Wastewater Treatment Plant. In Proc. of 

the 4th IEEE International Conference on Control & Automation ICCA'03.10-12 June. 

Montreal - Canada. pp. 84-90 

A. Sanchez, M. R. Katebi and M. A. Johnson (2002). Optimal Control of an Alternat- 

ing Aerobic-Anoxic Wastewater Treatment Plant. In Proc. of the 15th IFAC World 

Congress. Vol Q: Modelling and Control of Agricultural, Biological and Chemical 

Systems. 21-26 July. Barcelona - Spain. 

K. Mahathanakiet, M. A. Johnson, A. Sanchez and M. Wade (2002). Iterative Feedback 

Tuning and an Application to Wastewater Treatment Plant. Asian Control Conference. 

25- 27 September. Singapore. 

Boo reviews 

T. L. Blevins, G. K. McMillan, W. K. Wojsznis and M. W. Brown (2003). Advanced 

Control Unleashed: Plant Performance Management for Optimum Benefit. The In- 

strumentation Systems and Automation Society. Reviewed by Michael Johnson and 

Alberto Sdnchez in IEEE Control Systems Magazine, 23(6), p. p. 88-89. 
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1.5.2 Project reports contributions 

M. Wade and A. Sanchez (2004). Deliverable 17: Prototype Participant - Scottish Wa- 

ter. SMAC - Smart Control of Wastewater Treatment Systems. http: //www. smac. dk. 

A. Sanchez, Editor (2003c). Deliverable 13: SMArt Control System Design, Algo- 

rithm and Software Report. SMAC - Smart Control of Wastewater Treatment Systems. 

http: //www. smac. dk. 

A. Sanchez, (2003b). Chapter 3 Data-based loop controller tuning and multivariable 

dissolved oxygen control. In Deliverable 12: External WWTP Flow Rate Control 

Functions, Algorithm, Design. SMAC - Smart Control of Wastewater Treatment Sys- 

tems. http: //www. smac. dk 

A. Sanchez, (2003a) Development of a MPC for the Fast Control Layer (several sec- 

tions of the report). In Deliverable 11: Internal 'VVWTP Flow Rate Control Func- 

tions, Algorithms, Design. SMAC - Smart Control of Wastewater Treatment Systems. 

http: //www. smac. dk 

A. Sanchez, (2004). Chapter 4 Operational planning procedures at the Swinsite test 

site. In Deliverable 10: Report on Operational Planning Procedures. SMAC - Smart 

Control of Wastewater Treatment Systems. http: //www. smac. dk 

A. Sanchez, (2002c). Chapter 5 Fast Control Layer. In Deliverable 9: Coordination 

Control System Architecture and Design. SMAC - Smart Control of Wastewater Treat- 

ment Systems. http: //www. smac. dk. 

A. Sanchez, (2002b). Chapter 5 Situation Assessment at Fast Control Layer. In Deliv- 

erable 7: Report on measures and algorithms for risk and situation assessment. SMAC 

- Smart Control of Wastewater Treatment Systems. http: //www. smac. dk. 

A. Sanchez, (2002a). Section 2.1 Models for estimation and control: Models for Fast 

Layer. In Deliverable 6: Algorithms for System Monitoring. SMAC - Smart Control 

of Wastewater Treatment Systems. http: //www. smac. dk. 
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A. Sanchez, (2001). Chapter 3 Fast Control Layer. In Deliverable 5: Definition of 

System Performance Assessment Criteria, and Selection of Models for Monitoring and 

Control. SMAC - Smart Control of Wastewater Treatment Systems. http: //www. smac. dk. 
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Chapter 2 

The activated sludge treatment process 

and plant descriptions 

An urban wastewater treatment system is comprised of three main components: a 

sewer network, a treatment plant and a receiving water body. The sewage produced 

by each household is placed into the sewer network which transports the wastewater 

into the treatment plant so it can be later discharged into the receiving waters, as in 

Figure (2.1). 

Urban activated sludge wastewater treatment plants (W)VTPs) are facilities which pro- 

cess sewage almost entirely by biological means before discharging it into a receiving 

water body. The main mechanism to achieve pollutant reduction is to maintain the ac- 

tive sludge suspended in the wastewater by stirring or aeration. The suspended solids 

are composed of living biomass and organic and inorganic particles. The biomass will 

feed from the organic particles by using oxygen or other oxidation agents, thus remov- 

ing the organic material from the wastewater. Even though this simple explanation 

provides a basic knowledge of the mechanics involved, the real processes are complex 

biological systems that are difficult to describe mathematically. 

This chapter introduces some basic knowledge of activated sludge wastewater treat- 
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Figure 2.1: Wastewater treatment system 

ment plants configurations and describes how they work. To do so, a brief description 

on modelling of activated sludge treatment plants is given in section 2.1. Later the 

COST simulation benchmark model for activated sludge wastewater treatment plants 

(Copp, 2002) is briefly introduced in section 2.2. Additionally two full scale treatment 

plants operating in Scotland and Denmark are described in sections 2.3 and 2.4. 

Most of the work performed throughout the thesis employs the COST simulation 

benchmark model; however, real data from Helsingor WWTP (Denmark) is analysed 

and real-time experiments are performed at Swinstie WWTP (Scotland). Finally, the 

chapter ends with a brief summary of the contents previously discussed. 

2.1 Generalities of activated sludge wastewater treat- 

ment plants 

Modem activated sludge WWTP are normally composed of the following treatment 

stages (Metcalf and Eddy, 1991), 
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-, Preliminary treatment: Initially, the waste-water enters the treatment plant 

and passes through mechanical screens to remove coarse material and solid de- 

bris. Grit removal by sedimentation or flocculation reduces potentially damaging 

large and heavy particles such as sand and gravel, for example. Other prelimi- 

nary treatment operations include grease removal and flow equalisation. In gen- 

eral, preliminary treatment is a pre-treatment stage that ensures the wastewater 

passing to the subsequent stages is free from material that could disrupt the plant 

operation. 

Primary treatment: Organic material is partially removed by passing the wastew- 

ater through primary sedimentation tanks or primary clarifiers. Sedimentation 

occurs when solids that have a higher specific gravity than the liquid settle to 

the base of the tank, where the settled solids are removed for sludge treatment. 

Design of the clarifiers must account for the flow velocity and load. If the ve- 

locity of the flow is too high, the solids retention time (SRT) will be less than 

desirable, resulting in excess solids passing to the secondary treatment phase and 

exerting an increased demand on the process. Typically, 30-40% of the influent 

biological oxygen demand (BOD5) and 60-75% of the influent suspended solids 

(S S) is removed prior to secondary treatment, Wilson (198 1). 

e Secondary treatment: The driving process of wastewater treatment occurs in 

the secondary treatment stage. The major biological unit operations are imple- 

mented to provide removal of organic waste and nutrients. The three biological 

processes that can be employed during this phase are: 

- Aerobic processes: Aeration of the wastewater results in oxidation of the 

carbonaceous and nutrient material (substrate) by chemical reactions initi- 

ated when the biomass utilise these components for biological growth. The 

carbonaceous material is oxidised to C02 and the nutrients to more benign 

forms of the compound. The chemical expressions for oxidisation of or- 
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ganic matter by micro-organisms, with (2.1) and without (2.2) nitrification, 

are presented as follows, Henze (1997): 

C18HI909N+ 19.502 --+18CO2+9H20+H+ +N03 (2.1) 

C18HI909N+ 17.502+H+ --A8CO2+8H20+NH4+ (2.2) 

- Anaerobic processes: In the absence of free oxygen or nitrate, micro- 

organisms breakdo'wn the complex organic material by hydrolysis to smaller 

molecules. Acid-forming bacteria break these fat, protein and carbohy- 

drate molecules into long-chained fatty acids and amino acid, amongst oth- 

ers. The products of this process are acetic acid, formic acid, ethanol and 

methanol, which are further broken down into hydrogen, carbon dioxide 

W02) and methane (CH4). This process requires a number of different 

types of bacteria to perform the different degradation stages, all of which 

are sensitive to factors such as pH, temperature, toxicity or even the pres- 

ence of oxygen. Hence, design of anaerobic treatment processes requires 

careful selection of conditions to enable the appropriate operational per- 

formance. One benefit of anaerobic digestion is the production of biogas 

(CH4), which can be used as a source of energy, on-site or supplied to the 

national electricity grid, if the quantity is large. 

- Anoxic processes: In anoxic conditions, free oxygen is absent, but nitrate is 

present, providing a source of oxygen for denitrifying bacteria. The process 

of denitrification may be written as, Metcalf and Eddy (1991): 

6N03 + 5CH30H ---ý 5CO2 + 3N2 + 7H20 + 60H (2.3) 

The principle of the activated sludge plant is that mass flow of wastewater is 
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in kept in continuous motion through the plant by gravity, pumping, mix- 

ing and aeration. In this way, treatment is performed in an effective and 

controllable manner. However, it is necessary to maintain the biology in 

the secondary phase long enough for biomass growth through contact with 

the substrate and the subsequent associated reactions. The length of time, 

or mean cell residence time, that the biomass remains in the secondary 

treatment stage is known as the sludge age. The hydraulic retention time 

(HRT) and sludge age must be balanced so that the process kinetics can take 

place. The Return Activated Sludge (RAS) feedback loop recycles sludge 

from the secondary clarifier to the aeration tank in order to maintain the 

sludge concentration. Excess sludge is wasted from the secondary clarifier 

and is treated separately with sludge collected from the primary clarifiers. 

An internal nitrate recycle may also be used in secondary treatment to sup- 

plement the nitrate concentration in the anoxic zone. Typically, the anoxic 

(denitrification) zone is situated prior to the aeration (nitrification) tank and 

the internal nitrate recycle is a loop between the end of the aeration tank 

and the inlet to the anoxic zone. However, it is possible to have different 

configurations based on the design criteria and treatment objective. 

Tertiary treatment: After the secondary stage, additional treatment may be 

required to remove and remaining undesirable substances, such as suspended 

solids, inorganic ions, heavy metals and synthetic organic matter. The last three 

items may be particularly pertinent where the wastewater contains effluent from 

industrial manufacturing such as pharmaceutical production, pulp mills or the 

metals industry, for example. Common advanced wastewater operations include 

filtration, microstraining, air stripping and reverse osmosis. 

Figure (2.2) presents a summary of the treatment stages by means of a flow-chart. 
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Preliminary treatment: 
(a) Screens 

(b) Grit removal 
(c) Flow equalisation 
(d) Other 

Primary treatment: 
Primary Sedimentation 

Secondary treatment: 
(a) Denitrification 
(b) Nitrification 
(c) Bio-P removal 
(d) Sedimentation 

Tertiary treatment: 
(a) Filtration 
(b) Microstraining 
(c) Other 

Figure 2.2: Treatment stages. 

Most of the control priorities are centred in the secondary treatment, which is where 

most of the biological treatment occurs. The secondary treatment is as well the most 

sensitive part of the treatment process. As discussed before, the main objective in the 

secondary treatment is to keep an acceptable concentration of suspended solids in the 

wastewater. This however, might be difficult to achieve under certain conditions. For 

example, if the plant receives a high hydraulic load, the SRT might be sharply de- 

creased, thus not allowing enough time for treatment. An even worst scenario would 

be that the hydraulic load would drag a large quantity of suspended solids with it, leav- 

ing the plant with reduced treatment capability, which can take up to weeks to restore. 
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This type of effects caused by external disturbances can be somehow mitigated by us- 

ing some ingenious control strategies as step-feed or aeration tank settling (Nielsen et 

al., 2000,1996). It is argued that by using these types of control strategies, it is pos- 

sible to increase significantly the plant capacity without any risk to solids loss. This 

claim is however still under research. 

Under normal operating conditions, that is the operation of the plant under normal 

daily influent flows, other control objectives might be more important. About 10% of a 

plant operating costs is spent in energy (electricity), from which a considerable amount 

is employed for aeration. Most Plants employ a constant aeration, trying to keep dis- 

solved oxygen at a concentration of 2 mg/l. This however, has been demonstrated in 

practice to be unnecessary. Plants like Helsingor in Denmark, aerate the sludge in a 

cyclic manner and only when required (high NH4 concentration). In addition, the oxy- 

gen setpoint is also calculated accordingly to the ammonia level, thus providing further 

savings. However, this might still leave for improvement since the setpoint is calculate 

only on present information and not using models which can somehow predict future 

plant behaviour. The use of chemicals for phosphorus release is also a heavy burden in 

the operation budget of a plant. Therefore the minimisation of chemical expenditure 

by improving biological phosphorus (Bio-P) release is an active research topic nowa- 

days, specially because the process seems to be very sensitive and unstable(Nielsen et 

al., 2002). 

Many of these problems to improve efficiency in the use of resources in the control 

and operation of wastewater treatment plants has lead to the use of advanced process 

control and monitoring techniques. Among the advanced process control techniques, 

model predictive control (MPQ has been a strategy which has been very successful in 

several process industries. However, as pointed out by Yuan et al. (2001), this method 

is still in its infancy in the area of wastewater treatment. One of the reasons for its 

lack of use, amongst others, is the lack of simple models which can be easy employed. 

Normally, the scientific community has been attracted to the use of well established 
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models like the Activated Sludge Model No. I (ASM 1) Henze et al. (1987). 

The ASM I model describes the degradation of carbonaceous material as well as nutri- 

ent removal. Mathematically, the model is composed of a set of 13 non-linear differ- 

ential equations with 19 parameters (in its original version), most of them with a high 

degree of uncertainty. Extensions to the original ASMI model, have appeared in time 

to include more complex phenomena like phosphorus precipitation and Bio-P (Henze 

et al., 1995,1999; Gujer et al., 1999). However, complexity has also increased consid- 

erably. Due to these characteristics the applicability of the ASM models is restricted 

to benchmarking for simpler models and research. 

Several researchers have tried to derive simpler models based on the ASM models. 

Jeppsson (1995) derived a set of reduced order non-linear models based on the orig- 

inal ASMI with the purpose of nutrient control. However, parameter estimation still 

required a great amount of effort. Later, Anderson et al. (2000) obtained a linear re- 

duced order model from ASM1, for an alternating aerobic-anoxic process also with 

the purpose of nutrient control. Lindberg (1997) used simple models extracted from 

ASM1 for dissolved oxygen control, and begun studying the possibility of black-box 

parametric identification of models for nutrient control by using subspace identifica- 

tion. A similar work has been recently reported by Sotomayor et al. (2003). 

Other attempts to model activated sludge wastewater treatment process are grey-box 

models. These models employ part of the deterministic structure of the ASM models, 

and use special techniques to model the remaining uncertain parts as in (Carstensen, 

1996; Bechmann, 1999). These models however, will still suffer from identifiability 

problems in the parameter estimation. 

This thesis adopts a linear black box identification approach for dissolved oxygen and 

nutrient removal. Much of the effort is concentrated in demonstrating that, for many 

purposes, the use of sophisticated and complex identification algorithms and parameter 

estimation using Kalman filtering is unnecessary and time consuming for this applica- 
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Thh171 SAncnrs 
Variable Sensor 

Level Bubblers 
Sonic, ultrasonic and microwave 
Capacitance and impedance probes 
Float level instruments 

Flow Weirs 
Parshall flume 
Magnetic meters 
Sonic meters 
Turbine meters 
Venturi tubes and flow tubes 
Vortex shedding 

Wastewater bio-chemical characteristics Dissolved oxygen sensor 
pH sensor 
Suspended solids sensor 
Turbidity sensor 
Ammonia analyser (NH4 - N) 
Nitrate analyser (N03 - N) 
Phosphate analyser (P04) 

Chemical oxygen demand (COD) sensor 

tion. Subspace identification techniques are very powerful algorithms, numerically 

stable and extremely easy to use. Modelling and control of alternating wastewater 

treatment plants is also discussed. 

2.1.1 Sensors and actuators 

One of the main limiting factors for the implementation of any control technology is 

the availability of accurate on-line sensors. Sensor technology for bio-processes have 

evolved considerably in the past few years, therefore providing a wider scope of on- 

line measurements. The instruments employed in wastewater treatment systems are 

many and varied. Table (2.1) summarises some of the most useful variables and the 

type of sensors employed to measure them (Metcalf and Eddy, 1991; Marinaki and 

Papageorgiou, 2002). 

Another limiting factor for control implementation is the number of available control 

handles. Unfortunately, wastewater treatment plants have a very limited number of 
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Tnhlf-, ?, 7- Artiintnrc 
Variable Sensor 

Control valves Globe valves 
Butterfly valves 
Ball valves 
Diaphragm valves 
Plug valves 
Diffusers 

Pumps Fans 
Blowers 
Compressors 

Motors Induction electric motors 
DC electric motors 
Combustion engines 

control handles which are driven by actuators. Table (2.2) summarises some of the 

most common actuators employed (Metcalf and Eddy, 1991; Marinaki and Papageor- 

giou, 2002). Additionally, Figure (2.3) presents a sensor and actuator distribution in a 

generalised WVvITP, according to the processes and control loops. 

2.2 The COST simulation benchmark wastewater treat- 

ment plant 

The WWTP simulation benchmark was developed by the COST actions 624 & 682 re- 

search group Copp (2002). COST was founded in 1971 as an intergovernmental frame- 

work for European Co-operation in the field of Scientific and Technical Research. The 

goal of COST is to ensure that Europe holds a strong position in the field of scientific 

and technical research for peaceful purposes, by increasing European co-operation and 

interaction in this field. COST action 682 'Integrated Wastewater Management' (1992- 

1998) focused on biological wastewater treatment processes and the optimisation of 

the design and operation based of dynamic process models. Action 624 was dedicated 

to the optimisation of performance and cost-effectiveness of wastewater management 

systems. 
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Figure 2.3: Sensor and actuator distribution according to processes and control loop. 

The simulation benchmark is a fully defined simulation protocol and was developed 

as a tool for evaluating activated sludge wastewater treatment control strategies. The 

simulation benchmark is by itself platform independent and has been tested in several 

programming languages and simulation packages as MATLAB/SfMULINK, Fortran, 

SIMBA, STOAT, WEST, EFOR, GPS-X and BioWin. The Simba implementation of 

the simulation benchmark has been used in this thesis. 

This section provides a brief summary of the COST simulation benchmark, focusing in 

the parts which have been modified with the purpose of the development of this thesis. 

Not all of the original definitions and indexes used to evaluate the control strategies 

have been employed since they were not of particular interest for this thesis. 

2.2.1 Plant layout 

The benchmark is composed of five cascade biological reactors and a 10-layer non- 

reactive secondary settling tank. The plant layout is presented in Figure (2.4). The 
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plant is fully defined and has the following characteristic features: 

4,5 biological cascade tanks with a secondary settler 

s Total biological volume of 5999 m3. 

- Tanks I and 2, each of 1000 m3 . 

- Tanks 3,4 and 5 each of 1333 m3. 

- Tanks I and 2 un-aerated, but fully mixed. 

- Aeration of tanks 3,4 and 5 achieved using a maximum of KLa of 360 d- 1. 

- DO saturation level of 8 mg/l. 

- Non-reactive secondary settler with a volume of 6000 m3. 

- Area of 1500 m2. 

- Depth of 4m2. 

- Subdivided into 10 layers. 

- Feed point to the settler at 2.2 m from the bottom. 

o2 internal recycles: 

- Nitrate recycle from the 5 th to the I't tank at a default flow rate of 55338 

3 

- RAS recycle from the underflow of the secondary settler to the front end of 

the plant at a default flow rate of 18446 M3d-1. 

e WAS is continously pumped from the secondary settler underflow at a default 

rate of 385 m3 d- 1. 
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Figure 2.4: COST Simulation Benchmark - Plant Layout. 

2.2.2 Process models 

The biological tanks (aerated and un-aerated) are modelled using ASM 1 (Henze et al., 

1987). The settler is modelled using a double-exponential settling velocity function 

(Takcs et al., 199 1). 

The first two reactors are anoxic, while the last three are aerobic. The model also has 

a recirculation flow and a return sludge flow. 

The dissolved oxygen sensor utilised in the simulations has a I-minute time delay 

and I minute sampling time. Actuators have been modelled as physical limitations in 

the air supply equivalent to a maximum oxygen transfer (kLa) of 360 [day-']. The 

simulation benchmark also provides three files of dynamic influent data for dry, rain 

and storm conditions, and a file of constant influent data used to stabilise the plant. 

2.2.3 Influent composition 

There are three influent disturbances and each is meant to be representative of a differ- 

ent weather condition: dry, rain and storm. A constant influent condition has also been 

assumed for certain tests and simulations. 

2.2.4 Sensors and actuators 

The original definition of the COST benchmark was somehow explicit concerning dif- 

ferent sensors; however, there is no definition of actuators. Table (2.3) and (2.4) sum- 
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Table 7- A- qf-n-, nr. -P. in the COST bf-nchmqrk- 

sensor Time delay (min) Sampling time (min) Units 
Dissolved oxygen (DO) 0 _ 1 Mg11 

Nitrate (N03) 10 15 Mgli 
Ammonia (NH4) 10 15 Mgli 

Total Nitrogen (TN) 10 15 Mgli 
Flow (F) 0 15 103 M3 Id 

Table 2-4- Artuators, in the COST benchmark 
Actuator Input Range Output Range Units 

- - - Blowers 
Pumps 

Normalised capacity fraction 
Normalised capacity fraction 

1-10 
1-10 

Airflow 
Flow rate 

0-99975 
0-10000 

m3 d -T 
m3d-1 

marise the sensors and actuators characteristics employed throughout the thesis. 

2.2.5 Dissolved oxygen controllers 

Most of the identification exercises and control designs presented through this thesis, 

assume that there is an existing control level operating in the plant. As originally 

presented, the benchmark considered only a single continuous PI controller in the last 

aeration basin, while the other two basins were considered to be uncontrolled and with 

a fixed oxygen transfer rate (kLa) of 10 hour-1. This approach has been modified in 

order to include more advanced problems of identification and control. All the possible 

configuration used throughout the thesis are listed in Table (2.5). 

Table 2.5: Dissolved oxv2en PI control configurations 
No. Type Reactors kp (x 104 ki(x 1 04) TS 

I discrete 5 1 0.93055 1 minute 
2 discrete 3,4 and 5 1 0.93055 1 minute 
3 continuous 5 1 50 

2.3 Swinstie wastewater treatment plant 

Swinstie Wastewater Treatment Plant is located close to the town of Cleland, about 

25km south-east of the City of Glasgow. The plant was commissioned in 1998 and has 
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a capacity of 20075 p. e. but the actual load on the plant is typically 13000 p. e. The 

influent wastewater is predominantly household effluent and very little is industrial 

discharge. 

Following a process review by Scottish Water in May, 2003, a revised plant configura- 

tion was implemented for Swinstie WWTP due to over sizing of the main unit opera- 

tions at the plant. The details of the actual plant configuration are provided below. 

2.3.1 Sewer network 

The sewer network serves a number of small communities close to Swinstie and the 

main trunk sewer enters the plant by gravity alone. At present there is no control on the 

volume of influent to the plant, it passes immediately into a channel that incorporates 

a control flume to limit the flow to the works in periods of high hydraulic loading. 

2.3.2 Plant configuration 

The plant inlet has no control mechanism for regulating and distributing the influent. 

All flows in excess of 4 daily dry weather flow (DDVvT) bypasses the plant and is 

discharged into the River Calder at the south side of the site after passing through a 

6mm mechanical screen. 

Pra 
I -teliminary treatment consists of 6mm screening provided by duty standby mechanical 

raked screens. A hand-raked emergency bypass screen is also provided. 

Grit removal is provided by 2 detritors downstream of the screens. There is no fat or 

grease removal in this unit due to the low amounts observed in the influent, although 

the primary tanks do have scum traps that remove the small amount of fatty material 

and debris that passes to the primary treatment stage. 

Primary treatment consists of 2 primary settling tanks. Excess return activated sludge 

(ERAS) is returned to the primary tanks for co-settling. Scum and settled solids are re- 
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Figure 2.5: Swinstie WWTP plant layout 

Secondary 
Settlers 

moved to a sludge holding tank and the wastewater is passed to a pre-treatment channel 

prior to the secondary treatment stage. 

A flume in the channel leading to secondary treatment limits the flow to full treatment 

to 2 DDWR Settled sewage in excess of this passes to the river via 6mm mechanical 

screens. The aeration is preceded with an anoxic zone (1 anoxic tank) for denitrifica- 

tion and sludge conditioning. Secondary treatment consists of 2 parallel aeration tanks. 

Aeration is provided by fine bubble diffused aerators (FBDA) situated in three zones 

down the length of each tank. This provides a stepped oxygen supply along the length 

of the aeration tank. 

Mixed liquor from the aeration tank is dosed with ferric sulphate to remove phosphate 

prior to final clarification. An internal recycle facility is also provided within the aera- 

tion tanks. 

Final clarification is provided by 2 final settlement tanks with equal distribution of the 

influent. A proportion of the settled solids is returned to the secondary treatment stage 
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as return activated sludge (RAS). The clarified water passes through a micro-strainer 

for polishing before discharge to the river. The residue is returned to the primary 

settling tanks for co-settling. All sludge is removed by tanker and treated off-site. 

Improvement of the control system relies on knowledge of the existing structure of the 

wastewater systems. Figure (2.5) presents the layout configuration of Swinsite WWTR 

2.3.3 Instrumentation and Control 

The current available data acquisition and control system at Swinstie consists of an 

IC2000 SCADA unit with process and measurement visualisation capacity. 

The works is controlled by a Siemens TI-565 PLC located in the power distribution 

house. The system contains all the algorithms for the control of the plant. 

The SCADA software provides a limited amount of control by allowing set points to 

be altered and communicates with the user via mimic screens and associated alarms. 

The system has one workstation for user input located in the main control room. This 

comprises a VDU, keyboard, mouse and two printers. 

There is no control provided except that the set points for the controlling parameters, 

e. g. desludging times, detritor operating times, DO levels, can be altered within design 

set limits. 

The aeration control system employs 4 measurements of DO, 2 in each lane (inlet and 

outlet). The measurements are averaged and this value is compared with a high and 

low DO range. If the mean is above the range, the controller will decrease the blower 

speed by 10% every I minute for the high capacity blowers and 10 minutes for the low 

capacity blowers. Similarly, a 10% speed increase will occur if the DO mean is below 

the established range. This is not an ideal control system as there is no account for 

variation in DO between lanes and percentage speed variation is a very imprecise form 

of control. 
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A certain amount of aeration is required to maintain an appropriate mixture and over- 

load the blowers. This however results in a very limited range of speed to which the 

blowers can actuate to perform control actions. 

The anoxic zone has one DO measurement that is controlled independently. When the 

DO is above a set limit, the output penstocks to the aeration tanks will close fraction- 

ally, which will increase the hydraulic retention time and mean cell residence time in 

the anoxic zone, thus reducing the DO in this section. 

ERAS is controlled in a simple manner. When the level of ERAS in the chamber 

reaches a set level, the pumps switch on and transports the ERAS to the primary set- 

tlement tanks until the ERAS level reduces to a set minimum. 

There is currently no control structure in place for the RAS flow, although the screw 

pumps can be switched on or off depending on requirements. 

2.4 Helsingor WWTP 

Helsingor municipality is in the north of Zealand in Denmark. The treatment plant is a 

recirculating biological nutrient removal (BNR) plant with pre-clarification and sludge 

digestion, and with a capacity of 26000 pe. 

The plant has three aeration tanks and five secondary settlers in parallel. Each aeration 

lane has three banks of fully controllable diffusers and three dissolved oxygen mea- 

surements. The plant also performs Bio-P removal by using anaerobic tanks. There is 

also access to flow meters and pumping information from the sewer network. 

Helsingor uses an alternating aeration scheme. Dissolved oxygen setpoints, recircu- 

lation rates, carbon dosing, chemical dosing, and phase length are all controlled by 

STAR. STAR is the acronym for Superior Tuning and Reporting, which is a sophisti- 

cated control system and reporting machine. STAR is able to archive historical data 
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Figure 2.6: Helsingor WWTP layout. (taken from www. smac. dk/strardb/) 

from several years which has been useful in this work to analyse and perform identifi- 

cation experiments. The plant layout is presented in Figure (2.6). 

2.5 Summary 

This chapter has provided a brief introduction into the activated sludge process, the 

COST simulation benchmark and a brief description of two-full scale treatment plants 

in Denmark and Scotland. 

The treatment of wastewater using activated sludge is the most common process used 

to treat sewage. The treatment can be divided into four stages: preliminary, primary, 

secondary and tertiary. Most of the biochemical processes occur in the secondary treat- 

ment, where the primary objective is to keep a sustained concentration of suspended 

solids either by stirring or aeration. 

The treatment process conveys several complex bio-chemical reactions from which 

three type of processes are relevant: anaerobic, anoxic and aerobic. An anaerobic 
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condition is achieved when there is no free oxygen of nitrate compounds, whereas an 

anoxic condition happens when there is no free oxygen and an acceptable concentra- 

tion of nitrate. The aerobic condition occurs when free oxygen is available. 

All these three conditions provide an appropriate environment for different type of bio- 

chemical reactions to occur. In anaerobic conditions, big molecules are decomposed 

into smaller ones by hydrolysis. Under anoxic conditions, nitrate is decomposed and 

nitrogen gas is liberated; therefore producing a denitrification process. In aerobic con- 

ditions, mainly nitrate is produced; however ammonia is also produced in less quan- 

tity. The simultaneous control of all these three conditions allow the degradation of 

carbonaceous material and the removal of nitrogen (nutrients) for the wastewater. 

The description of the two plants in Scotland and Denmark is given in the chapter. 

The description provides information about several characteristics of both plants, in 

particular their instrumentation and control handles. The knowledge of this informa- 

tion is important for several reasons: (a) Chapter 3 uses historical data collected from 

Helsingor V; V-ITP for identification and therefore the plant configuration is of vital 

importance. (b) A software platform developed for the real-time implementation of 

advanced process control uses Swinstie WWTP as its main target, thus precise infor- 

mation about plant layout, instrumentation and handles are important. 
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Chapter 3 

Models and identification 

The first model for the activated sludge process widely accepted by the scientific com- 

munity, was the Activated Sludge Model No. I (ASM 1) developed by Henze et al. in 

1987. The model is comprised of 13 non-linear differential equations and 19 param- 

eters. ASMI describes, among others, three important processes: (a) degradation of 

carbonaceous material (b) nitrification and (c) denitrification. 

Further developments in the understanding of the internal processes and also the ne- 

cessity of explaining more complex phenomena like phosphorus removal, either by 

precipitation or by biological means, lead to the development of ASM2 (Henze et al., 

1995) and ASM2d (Henze et al., 1999), and later ASM3 (Gujer et al., 1999) to solve 

some numerical problems which arose from the initial assumptions used in ASM I and 

propagated to the ASM2 models. ASM3, however, does not consider the biological 

release of phosphorus; and special extensions are necessary to model this process. As 

the models grew to include more processes, so did their complexity. It has been inter- 

nationally accepted that some of the ASM models parameters are unidentifiable, see 

for example Jeppsson (1996). Therefore, they can only be calibrated to represent the 

process up to a certain limit of accuracy. Also, many of the processes described in the 

model cannot be measured, as for example concentration of bacteria. This has limited 

the direct use of ASM models for the purpose of control, where simple models with a 
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reasonably good accuracy are required. 

The main purpose of this chapter is to explore the possibility of obtaining linear time- 

invariant models for control of dissolved oxygen and nitrogen removal, either by para- 

metric identification or model reduction and simplification. 

The first approach is called black-box modelling, since the obtained model only rep- 

resents the input-output characteristics of the system; thus its internal structure has no 

physical or chemical meaning. The second approach is called deterministic modelling, 

and is achieved by simplifying and reducing the ASM models according to the appli- 

cation. The use of the term 'deterministic' to denote these type of models is a common 

process engineer terminology which means that the model possesses some internal 

structure which has a physical or chemical meaning. This should not be interpreted as 

the more general case of a deterministic model in systems and control theory. 

There is also a third possibility, which makes use of the system structure (knowledge 

of the process) but also includes some black-box identification. A model with such 

characteristics is called a grey-box model. A very limited amount of research has been 

performed in this area and it is still left to prove its suitability for control purposes due 

to the amount of on-line measurements required, see for example Carstensen (1996) or 

Bechmann (1999). 

As described in previous chapters, the activated sludge process is inherently multivari- 

able, and one of the main objectives, as outlined in the SMAC project description, was 

to try to counteract undesirable effects due to these couplings. Therefore, the use of a 

multivariable control technique was one of the main objectives. The aim of this chapter 

is to obtain simple models which can be used to design a multivariable control tech- 

nique, as model predictive control. To obtain such models a multivariable identification 

method is preferred. 

Probably one of the most successful class of identification algorithms for multivariable 

systems are the subspace identification methods. The main success of these algorithms 
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is that they transform a non-linear optimisation problem, which is the main bottle- 

neck in other algorithms, into a linear optimisation with excellent numerical proper- 

ties; which make them fast and robust. There are still however many open issues in 

the development of these algorithms, especially regarding accuracy. This is probably 

the major drawback, since in contrast with prediction error methods (PEMs), subspace 

identification does not work in an iterative way over an error tolerance; therefore input- 

output uncertainty cannot be directly measured or minimised during the identification 

procedure. This however, has not limited its now extensive use, specially for multi- 

variable systems; where PEMs considerably increase their numerical complexity with 

a relatively small number of input-output signals. 

Regarding model reduction and simplification, there is a considerable amount of work 

performed in this area, as for example the work of Jeppsson (1995); Anderson et al. 

(2000); Huang and Hao (1996). The approach consists basically in reducing and sim- 

plifying the original ASM model by eliminating unmeasurable or unimportant vari- 

ables depending on the application. 

In summary, subspace identification and model reduction are employed to obtain ad- 

equate models for control of dissolved oxygen and nitrogen removal. The chapter 

employs data generated by the COST simulation model and real data collected from 

Helsingor VVV-ITP. Thus, another of the objectives of this chapter is to cross-validate 

model characteristics obtained by simulation with their counterparts obtained from real 

data. This study has however been restricted to the dissolved oxygen case, and with a 

limited scope into nitrification and denitrification processes. 

In addition, open-loop and closed-loop algorithms are employed to identify models of 

dissolved oxygen and nitrogen removal which can later be embedded in a more com- 

plex system structure; with the objective of including actuator and controller dynamics 

which can be used to design a MPC controller with the inclusion of constraints over 

particular signals. 
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The model reduction approach is used to obtain a model which can be used to control 

an intermittent aeration system using model predictive control, as will be described 

in the following chapter. The model has the characteristic of combining two model 

simplifications for anoxic and aerobic conditions. Therefore, the obtained model uni- 

fies both conditions seamlessly and simplifies the design of the controller in the next 

chapter. 

Also, due to the large number of subspace algorithms available, this thesis has adopted 

a comparative approach in order to perform a qualitative assessment of three open- 

loop algorithms: N4SID, robust N4SID 'SV' type, robust N4SID 'CVX type, and two 

closed-loop algorithms MOESP type and CVA. The significance of this abbreviations 

will be left to the next section. 

The chapter is organised in the following manner: the first section presents a brief 

introduction to subspace identification algorithms, which are employed throughout this 

chapter. The next section, explores the identification of dissolved oxygen considering 

the univariate and the multivariable case. Both cases make use of the COST Simulation 

Benchmark introduced in Chapter 2. 

In section 3.3 the identification and modelling of nutrients is discussed. A model for 

alternating aeration in a plug-flow single reactor is developed, as well as continuous 

aeration model based on the COST Benchmark. For this last case, only open-loop 

subspace algorithms are employed. 

Section 3.4, explores the use of real data for the identification of dissolved oxygen and 

for nutrients in a limited scope. Several month of data are employed to obtain a more 

general perspective of the behaviour of the plant and the type of models expected. The 

results produced from this section are to be compared with the results obtained in the 

previous sections in which data from simulation was employed. 

Finally, the chapter ends with a summary of the main results and conclusions. 
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3.1 Subspace identification 

The beginning of the 90s experienced the birth of a new type of identification algo- 

rithms now known as subspace identification. These methods have their origin in state- 

space realisation theory, however the literature related to this method can be traced as 

far back to 1933 to principal component factor analysis (Hotelling, 1933). Seminal 

papers on the recovery of system matrices from impulse responses came later with 

contributions by Ho and Kalman (1966), and subsequent improvements by Zieger and 

McEwen (1974), and Kung (1978) who introduced the singular value decomposition 

to reduce the sensitivity to errors in the measured impulse response. These methods, 

however, required special inputs as impulse or white noise signals. 

Methods to determine the system matrices directly from data without explicitly form- 

ing impulse responses were developed by De Moor et al. (1988), Moonen et al. (1989) 

and Verhaegen (199 1) and called in the literature as direct subspace state-space system 

identification methods (4SID). These methods only give consistent estimates of the 

system matrices under certain restrictions on the noise characteristics. 

Further developments using instrumental variables have been suggested to overcome 

this last drawback (Larimore, 1990; Viberg et al., 1993; Verhaegen, 1994; van Over- 

schee and De Moor, 1994). Later on, van Overschee and De Moor (1995) proved 

that the algorithms by Larimore (1990) (canonical variate analysis - CVA), Verhae- 

gen (1994) (multivariable output-error state space - MOESP) and van Overschee and 

De Moor (1994) (numerical algorithms for subspace state-space system identification 

- N4SID) can all be formulated in one unifying framework and therefore are special 

cases of a single general algorithm. 

The following section provides some background on the basic concepts involved in 

subspace system identification based on the work of van Overschee and De Moor 

(1995,1996b). 
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3.1.1 Combined deterministic-stochastic identification 

Three of the most commonly used subspace identification algorithms are CVA, MOESP 

and N4SID. CVA developed by Larimore (1990), makes an extensive use of principal 

angles and directions, while MOESP (Verhaegen, 1994) and N4SID (van Overschee 

and De Moor, 1994) are based on geometrical and linear algebra concepts. As demon- 

strated in (van Overschee and De Moor, 1995), all three algorithms are special cases 

of one general algorithm which is described in this section. 

The subspace identification problem is formulated as follows. Let u(k) E R' and 

y(k) E R1 be the observed input and output signals from the unknown system: 

x(k+l) = Ax(k)+Bu(k)+w(k) 

y(k) = Cx(k)+Du(k)+v(k) 

with 

E 
w(k) 

wT (1) VT 
QS ON 

-ýý* 
0 

v(k) 

)( 

ST R) 

(3.1) 

(3.2) 

(3.3) 

and A, QE Rnxn, BE Rnxm, CE Rlxn, DE Rlxm, SE Rnxl, RE Rlxl, and 3ki the 

Kronecker delta. The signals v(k) E R1 and w(k) E R' are unobserved, uncorrelated, 

Gaussian distributed, zero mean, white noise vector sequences. It is also assumed that 

the pair A, C is observable and A, 
IB 

Q112 
I 

is controllable and the 

input u(k) is persistently exciting (Ljung, 1987). Then, the problem is stated as: given 

a sufficiently large number of measurements of the input fu(k) I and output fy(k) I 

generated by the unknown system described by equations (3.1), (3.2) and (3.3), find A, 

B, C, D, Q, R and S to within a similarity transformation. 

The matrix input-output equation for the system can be obtained by recursive substitu- 
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tion of equations (3.1) and (3.2). 

Yf 

where: 

dUf FiXi + Hj' + HiMf + Nf 

- Fj is the extended observability matrix (i > n) 

T 
C CA CA2 ... CA'-' 

I 

- Hid is the deterministic lower block triangular Toeplitz matrix 

D00 

d 
CB D ... 0 

Hi' 

CAi-2B CA'-3B ... D 

- H; ' is the stochastic lower block triangular Toeplitz matrix 

H 

000 

c0... 0 

CA c ... 0 

CAi-2 CAi-3 ... 0 

- The input and output block Hankel matrices 

U0 Ul ... ui-I 

Ul U2 ui 
U012i-l 

V/ j 

L 
l12i- I U2i U2i+j-2 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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Yo Yi Yj- I 

YI Y2 yj Y012i-l 

X/3 
(3.9) 

Y2i- I Y2i Y2i+j-2 

where it is assumed for statistical reasons that the number of columns i --+ co. As 

a shorthand notation, the following are employed throughout the thesis: Up _4 

-4 UOIj-1, and Yf _! 
ý_ Uil2i-I. The subscripts p and f UOji-1, Uf Uil2i-1, Yp 

denote the past and the future respectively. An additional definition required is 

the past input-output matrix: 

w 
yp 

p (3.10) 
UP 

Li 

- The block Hankel matrices formed by the process and measurement noises are 

defined in a similar way as the input-output Hankel matrices and employ the 

same shorthand notation: Mp Np -Aý Noli-1, and Nf ! ý_ MOji-1, Mf Mil2i-l, 
) 

Nil2i-l- 

VO VI ... Vi- 1 

M012i-1 
Vl V2 vi 

L 
V2i- 1 V2i V2i+j-2 

WO WI ... wi_i 

WI W2 wi 
No12i-1 

W2i- 1 W2i W2i+j-2 

(3.11) 

(3.12) 
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9 Xi is the state sequence 

xi A 
I 

Xi Xi+1 Xi+2 ,*, Xi+j-l 

I 
(3.13) 

All subspace algorithms comprise two basic steps. The first step involves the weighted 

projection of the row space of the previously defined data Hankel matrices. Using 

this projection and the observability matrix ri an estimate of the state sequence ii 

can be calculated. The second step consists in calculating the systems matrices A, B, 

C, D, Q, R and S. The first step is common to all algorithms while the second step 

can be different. Some algorithms use the observability matrix to calculate the system 

matrices, while others use the state sequence estimate; here only the methods using the 

state sequence are described. 

3.1.1.1 Projection 

Let Oi be the oblique projection of the row space of Yf along the row space of Uf over 

the row space of Wp, defined as in equation (3.14). 

6i A Yf / Uf Wp 

and the singular value decomposition: 

Wl 6iW2 = Ul U2 
si 0 VIT 

00 V2T 
LJL 

T 
= ulsivi 

(3.14) 

(3.15) 

Then the following statements hold (van Overschee and De Moor, 1995,1996b): 

1. The matrix Oi is equal to: 

Fixi (3.16) 
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2. The extended observability matrix is equal to: 

ri 
_ 

WýJUJS112 T 

where T is a similarity transformation. 

3. The state sequence 9i is equal to: 

xi = Fit ei 

Two important observations which are specific to identification problems are: 

(3.17) 

(3.18) 

1. Optimal prediction: It is possible to obtain an optimal prediction of the future 

outputs by a linear combination of the past inputs and outputs and future in- 

puts by using equation (3.19). The quality of the prediction is measured in the 

Frobenius norm presented in equation (3.20). 

Yf = LWp + L,, Uf 

min Yf -(L,, L,,, L,, 

2 
WP 

LU 
Uf 

(3.19) 

(3.20) 

22 
where the Frobenius norm of a matrix A is defined as I JA IIF : "::: 

ýEjEj I aij I. 

2. Complexity reduction: This is achieved by reducing the subspace dimension to 

n (the order of the resulting system). The weighting matrices W, and W2 help 

to determine what information of Oi is important, by examining the rank (R), 

where R is defined as in equation (3.21). 

Tw WCIUISIVi I (3.21) 

49 



The correct selection of weights W, and W2 allows the algorithm to collapse into CVA, 

MOESP or N4SID as shown in Table (3.1). It is also possible to define other algorithms 

using this approach, see van Overschee and De Moor (1995); Favoreel et al. (2000) for 

more details. Also, for a particular choice of W2, it is shown by van Overschee and De 

Moor (I 996b) that 9i is a Kalman filter estimate of Xi. 

Table 3.1: Algorithms accordiniz to weight selection 
Acronym W, W2 

CVA 
(y -1/2 

f ýU-L) . 
(y 

_L) 
T] 

f uy UIT 
(UIUIT) 

Ul 
ffff 

MOESP UIT (UIU-LT) Ul ffff 
N4SID ii 

System matrices calculation 

For those methods which use the state sequence (CVA, N4SID), the system matrices 

can be obtained by solving the over determined system of equation (3.22) in a least- 

squares sense. 

Xi+i AB xi 
+ 

PW 
(3.22) 

L 
Yiji 

-i LCDJL 
Uili 

J L- 
PV 

-j 

QS PW TT>0 (3.23) 
sT 

-1( PW PS 
) 

Pv 

) 

where p are the residuals produced due to the approximation. van Overschee and 

De Moor (I 996b, p. 13 1), present a robust algorithm which has been tested in several 

indsutrial applications. As indicated in the reference, much of the symmetry and sim- 

plicity of the procedure described before is unfortunately lost, however, the algorithm 

gives excellent results in several practical situations. 
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An important feature desired in these methods is the stability of the A matrix. It is 

possible to obtain stable matrices from the extended observability matrix Fi, how- 

ever, guaranteed stability methods such as the one presented by Chui and Maciejowski 

(1996) should be used carefully, since even unstable systems will be identified as sta- 

ble. 

The robust algorithm of van Overschee and De Moor (I 996b, p. 13 1), and its MATLAB 

implementation provided in a toolbox with the book has been used for many of the case 

studies examined in this thesis. Also, a stand-alone module, based on this toolbox, has 

been developed to run as a dynamic link library and will be presented in Chapter 7. 

The following is a summary of the algorithm. 

Algorithm 3.1.1. Robust combined algorithm 

1. Calculate the oblique projection: 

Oi = Yf luf Wp 

2. Calculate the weighted singular value decomposition 

Wl Oi W2 Ul SI VIT 

3. Calculate the extended observability matrix 

Fi = Wf'UJS 1/2 
1 

4. Compute the state sequence 
-=t xi ri 

5. Solve the following set of equations in the least square sense to find the system 

matnces, 
Xi+i AB xi Pw 

Yili CD Uili PV 

QS Pw TT>0 

ST R-j 
-( 

Pv 

)( 

PW PS 
) 
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3.2 Identification of dissolved oxygen 

This work employs subspace identification as the method to generate models for pre- 

diction and estimation for dissolved oxygen control. These algorithms allow the iden- 

tification of multivariable systems, therefore the use of subspace identification for the 

identification of dissolved oxygen dynamics for univariate and multivariable cases is 

explored throughly. The COST Simulation Benchmark is employed throughout this 

section, as described in Chapter 2. 

3.2.1 Univariate identification 

For this study assume that only the last reactor of the simulation benchmark allows 

manipulation of the air compressor. Figure (3.1) shows a diagram of the control struc- 

ture in the last aeration tank. As described in section 3.1.1, in order to obtain a rep- 

resentative model of the dynamics, it is necessary to persistently excite the system. 

Pseudo-random binary sequences (PRBS) is a common signal employed to excite sys- 

tems. This type of signal switches between two levels at random discrete points in 

time. Several authors point out that PRBS might have some shortcomings for particu- 

lar applications. Tulleken (1990) demonstrates that PRBS gives more emphasis to high 

frequency components when used in conjuction with prediction error methods (PEMs), 

and proposes the use of a generalised binary noise signal (GBN). In Godfrey (1993), 

it is stated that large magnitude PRBS signals applied to non-linear systems may bias 

the estimation of the linear kernel, therefore a multi-level sequence (m-level) might be 

more suitable. 

Some examples of the use of PRBS and m-level sequences applied to wastewater treat- 

ment plants prior to a subspace identification routine can be found in (Lindberg, 1997) 

and in (Sotomayor et al., 2003) respectively. Both works report the excitation of the 

treatment plant by probing dissolved oxygen and other variables to identify nutrient 

dynamics (nitrate and ammonia). Given that the research of this work will investigate 
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ri 

Figure 3.1: Dissolved oxygen control loop. 

practical experimentation, excitation via PRBS, which has already been proven to be 

effective for industrial purposes, is employed. 

Data collection 

For the univariate case, the last reactor of the simulation benchmark was excited with 

a PRBS signal of I [mg/1] amplitude around an operating point of 2 [mg/1] during I 

day. All sensors and actuators are modelled as described in section 2.2. 

Initially three models were identified using the algorithms in (van Overschee and De 

Moor, 1996a) and (van Overschee and De Moor, 1996b, p. 13 1). The first model is an 

open-loop model (from u(k) to y(k)) identified from closed-loop data using the first al- 

gorithm presented in (van Overschee and De Moor, 1996a). The following two models 

are closed-loop models, identified from r(k) to y(k) using the SV and the CVA options 

of the combined detern-iinistic-stochastic robust identification algorithm presented in 

van Overschee and De Moor (1996b). Table (3.2) presents a summary of the three 

identified models. 

Tnl)lt-, '; 7- Mentified Moclet-, 

No. Model Order Algorithm Notes 
I openloop 2 (van Overschee and De Moor, 1996a) I st algorithm 
2 closed-loop 3 (van Overschee and De Moor, 1996b, p. 13 1) SV 
3 closed-loop 3 (van Overschee and De Moor, 1996b, p. 13 1) CVA 
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Figure 3.2: Pole location for the open-loop model (No. 1) and closed-loop models 
(No. 2 and 3). 

The order of the models was chosen by examining at the singular values (SV case) 

and the principal angles (CVA case). This way of selecting the model order however, 

does not guarantee that the model will be stable. Therefore, it is necessary to check 

the eigenvalues of matrix A for modelling stability. There has been some work on how 

to generate stable systems. For example, Chui and Maciejowski (1996) propose an 

algorithm which generates either an asymptotic or a marginally stable system. The 

method consists of a data augmentation procedure to find stable approximations to 

least-squares problems. This method however will only be consistent if the process is 

known to be stable. Figure (3.2), shows the pole locations to be within the unit circle 

for the three models. 
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3.2.1.2 Actuator and disturbance models 

None of the previously identified models include the actuator output signal u(k). In 

order to include the physical limitations of the aeration system it is necessary to in- 

corporate this signal into the model. Additionally, to compensate for the plant-model 

mismatch and un-modelled disturbances given by the changing influent load (daily 

variations and weather effects), it is necessary to introduce a disturbance model. This 

section discusses some ways in which it is possible include the actuator (controller) 

dynamics. This leads to the formulation of three new models which will be denoted as 

composite for the open-loop case and augmented for the closed-loop cases. 

Composite and augmented models 

Let the loop-controller be described by equation (3.24) and the plant model No. 1 by 

equation (3.25). The loop-controller is of PID type controller represented in state- 

space. 

xc(k+l) = Acxc(k)+Bce(k) (3.24) 

u(k) = Ccxc(k)+Dce(k) 

x, (k+l) = A, x, (k)+B, u(k) (3.25) 

y(k) = Cx, (k)+D, u(k) 

where e(k) is the error between the oxygen measurement y(k) and the reference signal 

r(k). Closing the loop and rearranging the matrices the following composite system is 

found: 

X(k+l) = A. X(k)+B. r(k) 

Y(k) = C. X(k)+D. r(k) 

(3.26) 
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where, 

X (k) = (3.27) 

L x, (k) 
i 

y(k) Y (k) = (3.28) 
u(k) 

A,, - B, MD,, C, B, MC, 
A= (3.29) 

B, D,, MD, C, - B, C,, A, - B, D, MC, 

B, MD, 
B= (3.30) 

L 
B, - B, D, MD, 

i 

C,, - D, MD, C, D,, MC, 
c= (3.31) 

-MD, C, MCC 

D,, MDc 
D= (3.32) 

MDc 

M= (I + DcD, ) (3.33) 

For the case of the closed-loop models No. 2 and 3, the controller dynamics and there- 

fore the actuators limits are included in a different way. Considering the same loop- 

controller state-space representation and the closed-loop model of equation (3.34), and 

using the error definition it is possible to define an augmented model described by 

equations (3.35) to (3.41). 

xcl(k+l) = A, lx, l(k)+B, lr(k) (3.34) 

y(k) = Clxl(k)+D, lr(k) 

X(k+l) = A. X(k)+B. r(k) (3.35) 

Y(k) = C. X(k)+D. r(k) 

56 



where, 

xcl (k) 
X (k) = (3.36) 

L xc(k) i 

y(k) Y (k) = (3.37) 
u(k) 

L 
Ac, 0 

A= (3.38) 
-BcT2Cci Ac 

L 
Bcl 

B= (3.39) 
Bc (TI - T2Dcl) 

L 
Cci 0 

c= (3.40) 
-BcT2Cc, 

Cc 
L 

Dcl 
D= (3.41) 

L 
Dc (Tj - T2Dcl) 

The matrices T, and T2 are chosen such that they map the output of the plant into the 

input of the controller so e (k) = Tj r(k) - T2Y (k), where e (k) is a vector of error signals. 

Validation of these models is performed by measuring the percentage variance ac- 

countedfor (vaf) between the measured and predicted signals and defined in equation 

(3.42). The vaf coefficient is only a measure of the degree of similarity between the 

two signals and does not measure biases. Table (3.3) presents a summary of the ob- 

tained vaf coefficients for the oxygen concentration and actuator output predictions. 

Figures (3.3) and (3.4) show the signals of the three models validated against the DO 

measurement generated from the plant model. 

_ 
A) 

vaf% 
var (y y 100 (3.42) 

var (y) 
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Table 3.3: VAF coefficients for composite and auamented models 
Model y vaf u^ vaf (%) 

composite 96.809 81.9695 
augmented 1 99.95716 86.55406 
augmented 2 99.95720 86.55406 

Unmeasurable disturbance model 

There are two important reasons to include an unmeasurable disturbance model in the 

DO dynamics model: (a) To compensate for changing load conditions due to influent 

concentrations and flow variations during the day and in meteorological events as rain 

or storm. (b) The models which are being used have been recovered from an identifi- 

cation procedure. Therefore, they are just an approximation to the real plant dynamics. 

Due to this plant-model mismatch, the augmented and the composite models can give 

significant errors in the prediction of the actuator (controller) output, as can be seen in 

Figure (3.4) for the augmented models. 

Notice in Figure (3.4) that the measurement and the prediction of both identified mod- 

els differ mainly in a bias. This bias is produced by the amplification of the small error 

of the prediction of y(k) by the integrating effect of the controller. 

In general, disturbance models have to be chosen accordingly to the expected load. It 

could be argued that in the case of WWTPs, the most common disturbance will have 

a cyclic daily fluctuation. However, the prediction horizon of a variable like dissolved 

oxygen is in the range of fractions of an hour. Therefore it is more realistic to assume 

either a constant disturbance or a slowly decaying model (Lindberg, 1997). 

To introduce the disturbance effect into the composite and the augmented model for- 

mulations it is only necessary to redefine the state and output equation as in equations 

(3.43) to (3.49). 

Ad4(k)+Bdr(k) 

Y(k) = Cdg(k)+Ddr(k) 

(3.43) 
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where, 

X(k) 
(k) (3.44) 

L 
d(k) 

i 
d (k) Y(k) - (CX(k) +Dr(k)) (3.45) 

A0 
Ad (3.46) 

01 

L 

B 
Bd (3.47) 

0 

L 
Cd =[c (3.48) 

Dd =D (3.49) 

Notice however, that this approach can only be implemented in conjunction with a 

state-observer which provides the initial plant-model mismatch with which it is pos- 

sible to calculate the predictions. Therefore in order to evaluate these models it is 

necessary to implement them through state observers or estimators. 

3.2.1.3 State observers 

A fundamental part of the design of a MPC controller involves the design of a state 

observer or estimator. In the case of deterministic systems the most common approach 

is to design a state observer if the system is observable. If the system is of stochastic 

nature, the optimal solution would be a Kalman filter. However, in this process as in 

many industrial processes the noise characteristics are not known. Due the lack of 

this information it might be time consuming and difficult to calibrate a Kalman filter 

compared to a state observer. Therefore, this thesis does not address the advantages or 

disadvantages of using Kalman filtering. Instead state observers designed using pole 

placement are employed. Due to the high similarity between the augmented models, 

the CVA case model will be used as default throughout the rest of this section. 
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State observers can be described, in a general way, by equations (3.50) and (3.5 1). 

^(k + 1) [A - LC] x^(k) +B- LD L- 
u(k) 

x- 
y(k) 

(3.50) 

L -i 
Y^(k) c 

xi (k) +D0 
u(k) 

(3.51) 
xi(k) 100 y(k) 

Table (3.4), presents the chosen observer gains for the augmented and composite cases 

with the inclusion of the disturbance models. These gains were chosen such that the 

slowest pole of the observer was at least 5 times faster than the slowest pole of the 

model. These are not necessarily the most effective gains, but they have produced 

satisfactory results. 

Table 3.4: Observer gains 
Model L 

composite 
augmented 

0.0 0.66 0.55 0.59 0.60 
0.80 0.77 0.81 0.85 0.60 0.50 

The response of these observers are presented in Figures (3.5) and (3.6). As can be 

seen the bias in the augmented model is corrected, and the observations of the outputs 

converge very fast to the measured signals. Table (3.5) contains the vaf coefficients of 

the observed signals for the composite and augmented models with disturbance. 

Table 3.5: vaf coefficients of observed signals 
Model y vaf(%) U^ vaf(%) 

composite w. disturbance 
augmented w. disturbance 

96.51 
99.42 

70.61 
82.18 

3.2.2 Multivariable identification 

Consider that the plant has three independent PI controllers regulating the dissolved 

oxygen concentration in reactors 3,4, and 5 as presented in Figure (3.7). Each control 
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loop has the same structure as previously presented in Figure (3.1). This section fol- 

lows the same approach and sequence as the previous with some differences due to the 

multivariable nature of the problem. Open-loop and closed-loop models are identified 

using CVA, MOESP and N4SID algorithms. Table (3.6), summarises the algorithms 

employed for the closed-loop and open-loop identification. 

Table 3.6: Subspace algorithms for multivariable DO identification 
Model No. Algorithm Acronym Model type 

composite I van Overschee and De Moor (1996a) N4SID open-loop 
composite 2 Verhaegen (1993) MOESP open-loop 
augmented 1 van Overschee and De Moor (1996b) Robust N4SID closed-loop 

'SV' based 
augmented 2 van Overschee and De Moor (1 996b) Robust N4SID closed-loop 

'CVA: based 

3.2.2.1 Data collection 

The data required for the identification of the multivariable model for dissolved oxygen 

is performed by persistently exciting the inputs simultaneously with three different 

PRBS signals with the characteristics presented in Table (3.7). 

Table 3.7: PRBS input signals characteristics 
Reactor Mean (mg/1) Amplitude (mg/1) 

3 1.5 1 
4 1.5 1 
5 2 1 

The mean value of the PRBS signal applied to the 5 th reactor is higher than that of 
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Table 3.8: Multivariable DO model validation (vaf coefficients) 
Model Order D03 D04 D05 Q3 Q4 Q5 

vaf % vaf % vaf % vaf % vaf % vaf % 
composite 1 4(l) 41.89 73.93 82.53 63.76 82.19 78.26 

5(2) 43.68 76.56 97.55 62.20 82.59 82.47 
composite 2 4(l) 39.77 75.34 84.04 2.90 -37.61 -58.09 

5(2) 48.99 81.10 96.04 64.27 85.35 84.59 
augmented 1 9(6) 96.81 98.57 99.47 56.58 81.96 86.28 

6(3) 83.36 93.60 97.30 54.84 70.20 -39.40 
13(10) 99.89 99.18 99.70 60.78 83.21 77.23 

augmented 2 9(6) 95.31 98.16 99.42 47.76 78.56 81.33 
6(3) 84.53 93.40 97.53 40.46 - 1.06 x 102 

- 1.72 x 102 

15(12) 99.89 99.18 99.75 61.03 83.74 88.54 
Note: The number in brackets is the order of the identified model, thus the order ot the 
full system is that of the identified model plus the controller order (3). 

the others. This is because a larger amount of air is required to be pumped into the 

first reactors to achieve the same oxygen concentration, and therefore more energy 

is required. This effect is caused by the oxygen-free wastewater incoming from the 

anoxic zone of the process. This extra effort by the aeration can lead to saturation of 

the actuators, and therefore the system would be operating in a non-linear region. 

The system is excited over a period of 2 days (2880 data points) under constant influent 

conditions. Of the 2880 data points only those corresponding to the last day are em- 

ployed for the identification. The remaining 1440 data points are used for validation. 

Several tests were carried out to find an appropriate number of block rows in the Hankel 

matrices with the purpose of finding a good model without unnecessarily increasing the 

computation burden. It was found that the best number of block rows was 30. Table 

(3.8) gives a summary of some of the most significant results of several identification 

runs with the same data and with the listed algorithms. Note as well that composite 

and augmented models follow the same description as in section 3.2.1.2. 

Results presented in Table (3.8), provide some interesting insight into the algorithms 

and their behaviour. The open-loop models (No. 1 and No. 2), could not be approx- 

imated to a higher order than 2, without producing an unstable realization. For the 
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Tahle, A Q- Mntiplq fnr i-nntrn] 
Model Order Acronym 

composite 1 5(2) compl-5 
composite 2 5(2) comp2-5 
augmented 1 9(6) 

13(10) 
augl-9 
augl-13 

augmented 2 9(6) 
15(12) 

aug2-9 
aug2-15 

composite model No. 2, if a first order model was employed, a bias was produced in 

the airflow signals. In general composite models No. 1 and No. 2 do not produce a good 

approximation of the DO signals (very low vaf coefficients). 

With respect to the augmented models, as the order increased so did the vaf coef- 
ficients, therefore giving a better approximation. Figures (3.8) to (3.11), show the 

signals trends for all the identified models as presented in Table (3.8). 

It is evident that only certain composite and augmented models produce a sufficiently 

good approximation to the system dynamics in order to be used in a model predictive 

control scheme. Therefore, only the selected models listed in Table (3.9) will be used 

in the following sections. 

3.2.2.2 State observers 

The design of the state observers is based on the models identified in the previous 

section. Additionally, the constant disturbance model introduced in section 3.2.1.2 has 

also been used for each of the cases. Therefore, a total of 12 observers (one for each 

model) have been designed by conventional pole placement. In addition, this section 

also examines the behaviour of the designed observers when the influent flow is of a 

dry weather type, instead of a constant influent as has been assumed so far. This will 

provide a more realistic assessment of the performance of the observers. 

To simplify the presentation of results, the acronyms for the models defined in Table 

(3.9) are used. When the model also includes a disturbance model, then ad will be 
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added to the acronym. For example, composite model No. 1, which is of fifth order, 

will be abbreviated as comp 1-5. 

Table 3.10: Multivariable DO observers verformance (constant influent) 
Model D03 D04 D05 Q3 Q4 Q5 Overall 

Observer vaf % vaf % vaf % vaf % vaf % vaf % vaf % 
compl-5 65.139 64.008 67.428 55.536 80.636 67.435 66-697 
compl-5d 60.359 81.834 97.444 63.734 85.528 85.492 79.065 
comp2-5 69.289 72.253 86.499 39.506 75.271 75.059 69-646 
comp2-5d 66.804 86.768 97.086 55.018 84.634 82.721 78.838 

augl-9 95.880 98.929 99.617 43.499 77.098 82.711 82.956 
aug I -9d 97.988 99.412 99.800 40.025 77.715 82.807 82.958 
aug 1- 13 39.944 73.734 55.937 34.749 71.373 73.931 58.278 
aug I- 13d 78.477 97.375 98.993 53-662 80.880 83.201 82.099 
aug2-9 95.420 98.234 99.511 44.990 77.147 83.113 83.0696 
aug2-9d 97.522 98.892 99.631 42.881 77.335 83.888 83.358 
aug2-15 66.068 -74.171 276.699 32.195 39.532 -101.754 - 
aug2-15d 82.532 62.258 34.386 39.918 75.173 70.542 60.802 

According to the results presented in Table (3.10), note that the composite model ob- 

servers with a disturbance correction improve their performance significantly. The 

augmented model observers with disturbance correction also show improvement over 

their counterpart without disturbance correction; however, it is not as significant as in 

the composite case. The observers for higher order models do not show a significant 

improvement over their lower order versions. 

Table 3.11: Multivariable DO observers -performance (dry weather influent) 
Model D03 D04 D05 Q3 Q4 Q5 Overall 

Observer vaf % vaf % vaf % vaf % vaf % vaf % vaf % 
augl-9 96.067 98.247 99.169 64.382 89.952 93.093 90.152 

augl-9d 98.036 99.027 99.353 62.165 90.183 93.089 90.308 

augl-13 28.514 61.705 38.887 34.749 86.960 90.413 60.764 
aug I- 13d 80.294 96.249 98.287 70.746 91.636 93.314 88.421 

aug2-9 93.603 94.324 97.048 65.097 89.767 93.005 88.808 
aug2-9d 97.402 98.245 98.955 63.950 89.988 93.456 90.335 

Table (3.11) presents results of the state observers but working under dry-weather in- 

fluent. The table however, only presents results for the 6 best observers from the con- 

stant influent case. In general, it appears that the observers with disturbance correction 
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ap ear to perform even better under dry-weather conditions, achieving in some cases IT 

vaf coefficients over 90%. Figures (3.12) and (3.13) present the responses for the ob- 

servers augl-9d and aug2-9d compared with the measurement for aI day simulation 

time. 

This section has addressed the model identification of a multivariable DO model, and 

it has achieved the same conclusion as in the univariate case. Augmented models per- 

form better than composite models identified using closed-loop subspace identification 

algorithms, for prediction and state observation. Therefore, these models, in particular 

the one identified with the robust N4SID using CVA, will be employed in Chapter 4, 

for the design of model predictive controllers. 

3.3 Modelling and identification of nitrogen 

This section focuses on the modelling and identification of nitrogen in an activated 

sludge wastewater treatment Plant. The first task is the the development of a model for 

an alternating aeration plug-flow treatment plant under constant influent conditions. 

This case has been simplified to a single bioreactor modelled by the full ASM No. 1. 

The second task considers the identification of nutrients (N03, NH4 and total N) in the 

COST Simulation Benchmark, under dry-weather conditions. 

Subspace algorithms continue to be the preferred choice for the identification of nu- 

trient dynamics. However, only open-loop algorithms are employed. This is because 

there is usually no common control algorithm employed for nutrient control, apart from 

probably nitrate recirculation if the plant is properly equipped for this facility. Most 

commonly nutrient sensors, if available, are used only for monitoring. 
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3.3.1 Alternating aeration modelling 

In an activated sludge process, different biochemical reactions occur. These processes 

can be classified into two different categories: aerobic and anoxic reactions. Aerobic 

reactions make use of the oxygen dissolved in the water body and the two main bio- 

chemical phenomena are the oxidation of the carbonaceous material and nitrification. 

Under anoxic conditions, denitrification reactions are predominant. These reactions 

make use of nitrate as the oxidation agent, instead of oxygen, to produce free nitrogen 

and other compounds. 

Anderson et al. (2000) presented two linear approximations to the ASM No. 1, one for 

each phase: aerobic and anoxic. These models were obtained by approximating the 

half saturation non-linear terms to linear terms. The model is also of reduced order, 

which is accomplished by omitting: soluble inert organic matter (SI) and particulate 

inert organic matter (XI), (which are decoupled from the system); dissolved oxygen 

(S, ), (which is assumed to be controlled); alkalinity (Salk), (since denitrification can 

partially recover some alkalinity consumed through nitrification); and the growth of 

particulate products (Xp), which does not interact with the other variables. In addition, 

dissolved oxygen is not considered to be a limiting factor during the aerobic process 

and to be totally absent during the anoxic phase. The final system is composed of 

two state space representations, one for each phase, of eighth order, with the following 

form: 

-t(t) = A, x(t) +D, xif (3.52) 

. ý(t) = A,, x(t) +D,, xi, f 

In equation (3.52), Ae and De denote the system matrix representation for the aero- 

bic phase and, A,, and D,, are the system matrix representations for the anoxic phase. 

The variable x(t) is the state vector of the system whose components are specified in 

equation (3.53), and xif is the corresponding vector of influent characteristics (con- 
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centrations) into the system, for each state variable. The last term in equation (3.52) 

should be considered as a measurable disturbance, since there is no possible control 

over the influent characteristics. 

T 

X(t) x (3.53) 
1 

Ss 
s 

XB, H XB, A SN, H SNO SND XND 
I 

Since the control principle of this type of structure demands the switching between the 

two models at a given frequency and duty cycle, an appropriate model representation 

for the system behaviour over the entire time domain is required. Equation (3.54) 

shows the proposed model representation. 

, t(t) = [9(t, 6)-Ae+(l-g(t, 3))-A,, ]x(t) 

D, + (1 -g (t, 3)) - D,, ] xif 

(3.54) 

The switching function g(t, 3) represents a train of width modulated pulses of unit 

amplitude as shown in Figure (3.14). When the switching function is unity, the aerobic 

phase is said to be ON, and when it is zero the aerobic phase is said to be OFF. The 

switching function depends on time and duty cycle '3', which is defined as the relation 

between the time the aerobic phase is ON (TON), and the switching period (Tjthj, g), 

as presented in equation (3.55). 

TON 

Twitching 
(3.55) 

For mathematical simulation, g(t, 3) can be expanded into a finite Fourier series, where 

the Gibbs phenomenon is eliminated by the use of a saturation function in the conver- 

gence point of the discontinuities. Equation (3.56) denotes the truncated Fourier Series 

expansion of g(t, 3). 
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Figure 3.14: Switching Function. 

N1 

g(t, 5+ [sin(2n7r6) - cos(2n7rfot) 
n7r n=l 

+(I - cos(2n7r3)) - sin(2n7rfot)] 

Equation (3.54) can be rearranged to give equation (3.57). 

[Al. g(t, 3)+A2]X(t)+ 

[D I-g (t, 3) + D21 xinf 

(3.56) 

(3.57) 

where AI= Ae - Aa, A2 = Aa, D1= De - Da and D2 = Da. By substituting equation 

(3.56) into (3.57) and considering that the expressions contained within the brackets 

are time dependent, equation (3.57) can be rewritten as a time variant system presented 

in (3.58). This equation is an approximation, since g(t, 5) is a truncated series. 

, t(t) -r-I A(t, o5). x(t)+D(t, 3)-xi, f 

Y(t) =c- X(t) 

(3.58) 
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Figure 3.15: Linear Time-Variant model and ASM No. 1. 

3.3.1.1 Model validation 

In order to verify this model, simulations have been performed using the parameter 

data presented in the original paper of Anderson et al. (2000), and comparing it with 

a simulation of the full ASM No. I also using the Anderson et al. parameter data. The 

simulations were performed using MATLAB for a switching period of 3 hours and a 

duty cycle of 50 % (3=0.5). Results of these two simulations are presented in Figure 

(3.15). In the linear model, the number of terms used for equation (3.56) was of N=5. 

The simulations presented in Figure (3.15) are identical to those presented in Anderson 

et al. (2000). It can be clearly observed that there is a model mismatch, but the trends 

are the same. The model mismatch could be corrected by using an off-line or on-line 

parameter estimation as in Jeppsson (1996); however, there are several limitations over 

the applicability of estimators for ASM No. I reduced-order models due to absence of 

enough on-line measurements. 
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3.3.2 Continuous aeration identification 

This section focuses on the identification of a dynamic model for nutrients in an ac- 

tivated sludge wastewater treatment plant. Due to the high cost of nutrient sensors, 

most plants possess only a reduced number. Therefore, the location of the sensors is of 

crucial importance, and depends on many factors related to the control strategy, see for 

example (Ingildsen, 2002) for a brief discussion on nutrient sensor locations and their 

effects on the control strategy. 

Experience shows that in a nitrification-denitrification plant with recirculation it is pos- 

sible to control the effluent concentrations of ammonia (NH4), nitrate (N03) and total 

nitrogen (TN) by manipulating the oxygen concentration in the aerated zones. Ad- 

ditionally, the nitrate concentration in the anoxic zone can be controlled using the 

internal recirculation flow rate, with the purpose of providing sufficient nitrate for the 

denitrification process. It is also of common experience, that the influent flow and 

concentration of ammonia (plant load) will have a significant impact over the process. 

Therefore, to improve the identifiability and controllability of the system, the use of a 

flow meter and an ammonia meter in the influent is encouraged. 

There are two previous studies in identifying black-box models for nutrient control 

using subspace identification. In (Lindberg, 1997), a state-space model is identified 

with the purpose of controlling nitrate and ammonia in the effluent by manipulating the 

dissolved oxygen setpoint, the internal recirculation flow and an external carbon source 

flow rate. The exercise includes an ammonia and nitrate sensor at the effluent; and 

ammonia, flow and biodegradable substrate meters at the influent. The simulation plant 

employed differs in size (capacity) with the COST simulation benchmark employed in 

this study. A similar identification exercise is reported in (Sotomayor et al., 2003). It 

differs, from the previous work, in using the model to control nitrate in the anoxic zone 

and in the effluent by manipulating the recirculation rate and an external carbon source 

dosing. Similarly, it measures flow, ammonia and biodegradable substrate in the inflow 
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and uses them as measurable disturbances. 

Both of these previous works look at two complementary control problems. Lindberg, 

identifies the model with the purpose of effluent control of nitrate and ammonia con- 

centrations, while Sotomayor et al., identifies the model with the purpose of nitrate 

control in the anoxic zone and at the effluent. In both cases, as well, the assumption of 

an influent substrate measure is unrealistic in practice, since chemical oxygen demand 

(COD) meters are very unreliable, at the present time, to be used in an on-line control 

scheme. The fact that both plants use an external carbon source is also very unlikely. 

An international survey by Ingildsen (2002), revealed that only I treatment plant out 

of 36 plants in 10 different countries employ an external carbon source. 

In this study, a model for effluent ammonia, nitrate, total nitrogen and nitrate in the 

anoxic zone is identified with the primary objective of controlling the effluent discharge 

of ammonia and total nitrogen. To achieve this purpose, the plant is assumed to have 

sensors located as in Figure (3.16). It is also assumed that the only control handles 

are the oxygen setpoints in the three aerated zones and the internal recirculation flow 

rate. Therefore the results presented in this study are considered to be of much more 

practical value, since they do not include the unrealistic possibility of having a COD 

meter in the inlet flow, and an unlikely external carbon dosing. Also, a deterministic 

model for prediction of influent flow and influent ammonia is also presented at the end 

of the section. 

3.3.2.1 Identification 

The measurements of the nutrient sensors located at the end of the aeration tanks and 

the nitrate sensor at the end of the anoxic zone are employed as outputs for the identifi- 

cation. The inputs are the dissolved oxygen measurements in the aerobic reactors, and 

the internal recirculation flow rate. Influent flow and ammonia are considered as mea- 

surable disturbances. The signals used for the identification procedure are summarised 
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Figure 3.16: Sensor location in the COST Benchmark. 

in Figure (3.17). 

There are several differences between this approach and the identification of dissolved 

oxygen (DO). The DO layer is considered to be totally controlled, which implies that 

there is at least one level of control over the DO regulation. The actual DO control 

implementation has two layers, first a PID control for each reactor, and then a multi- 

variable model predictive controller (MPQ guiding all of the three reactors. In addition 

to the DO controllers, there is the internal recirculation controller, which is assumed 

to be instantaneous. Therefore, from the point of view of the nutrient control level, 

all the input signals are controlled or controllable. A second difference is that there is 

information of influent disturbances, thus providing the capability of implementing a 

feedforward control strategy. 

Since there is actually no possibility of control over the influent flow and influent am- 

monia, these signals have to be considered as measurable disturbances, and can be 

included in the system state-space description as in equations (3.59) and (3.60). 

x(k+l) = A. x(k)+B. u(k)+Bddm(k) 

y(k) = C. x(k)+D. u(k)+Dddm(k) 

(3.59) 

(3.60) 
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where 

y(k) = 

u(k) 

d,,, (k) 

TN N03 N03,, 
ý,,., j, 

NH4 
]T 

DOreac3 DOreac4 DOreac5 Recirculation 

T 
Flow NH4influent 

I 

Note, that the flow measurement must be appropriately scaled in order to numerically 

balance the model. The model can be re-arranged in the following manner: 

x(k + 1) =A- x(k) +B Bd 
u(k) 

(3.61) 
d,, (k) 

Li 

y(k) = C-x(k)+ D Dd 
u(k) 

(3.62) 
11-d,, 

(k) 
- 

Data collection 

Data has been collected for a period of 7 days under a semi-constant flow. The oxygen 

setpoints in the three reactors were excited with adequate PRBS signals so they could 

excite the nutrient variables in their time scale. Samples were taken every 15 minutes, 
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with the sensors modelled as described in Chapter 2. 

Three open-loop subspace identification algorithms are employed. These are the Ro- 

bust N4SID 'CVN, and 'SV' algorithms, and the common N4SID algorithm. Table 

(3.12) presents the results obtained by using these algorithms. Additionally, Figures 

(3.18), (3.19), and (3.20) show the response of the models for a period of 7 days com- 

pared to the measurement from the plant. Note that, as in the dissolved oxygen identi- 

fication case, the Robust N4SID algorithms perform considerably better than the con- 

ventiona N4SID. 

T. qble, '1 17- Nntrient idetntified mofiffl. -, 
Model Order Algorithm TN N03effluen, N03anoxic NH4 Overall 

vaf % vaf % vaf % vaf % vaf % 
model 1 4 Robust 'SV' 69.66 94.94 95.96 82.83 85.85 
model 2 3 Robust'CVN - 50.57 70.45 70.27 - 
model 3 4 N4SID 40.49 84.17 93.68 72.98 72.83 

Tab] e -1 - 
13 - Nutri en t ob. -servers 

Model Algorithm TN N03, ffl.,,,, 
N03,, 

ýoý, j, NH4 Overall 

vaf % vaf % vaf % vaf % vaf % 
Observer 1 Robust 'SV' 71.60 78.77 98.04 94.29 85.68 
Observer 2 Robust 'CVA! 73.15 57.25 92.52 82.62 76.39 
Observer 3 N4SID 73.01 80.16 98.28 92.46 85.98 

3.3.2.2 Observer design 

Observers for these three models have been designed by following again the prescrip- 

tion of section 3.2.1.3 and including the unmeasurable disturbance correction as in 

section 3.2.1.2. Thus, this section will only present the results obtained by simula- 

tion of the designed observers. Table (3.13) shows the relative performance of each 

observer. 
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Model validation for robust WSID "SV" 
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Figure 3.18: Nutrient model identified using Robust N4SID 'SV' algorithm 

3.3.2.3 Influent flow and ammonia prediction model 

The model developed in this section, has assumed that the influent flow and ammonia 

concentration are measurable disturbances. Since the purpose of this model is to be 

used in a MPC controller structure, it might of interest to have some additional infor- 

mation about these disturbances for prediction. In (Nielsen, 2001,2002), a method 

to approximate the influent flow by a truncated Fourier series (FS) with three compo- 

nents: a mean value and the first two harmonics, is proposed. However, for simulation, 

it might be useful to expand this series to include higher frequency components, as 

follows, 

Flow(k) ao+alcos(wi-Ts. k)+blsin(wi-Ts. k)+.. - 

+anc0s(wn - Ts - k) + bnsin(wn - Ts - k) 

(3.63) 
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Model validation for robust WSID "CVA" 
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Figure 3.19: Nutrient model identified using Robust N4SID 'CVA! algorithm 
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Figure 3.20: Nutrient model identified using N4SID 
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Figure 3.21: Frequency spectrum of influent flow 

where, T, is the sampling period, and equal to 15 minutes for this case. The coeffi- 

cients and frequency components of the series are determined by performing a Dis- 

crete Fourier Transform (DFT) over the historical influent flow, and influent ammonia 

concentration data. The DFIF is defined as in equation (3.64), where the data set is of 

length N and sampled at a frequency of f, =: I/ T, 

N 
*2 (k- 1)(n- 1) 

Fn Flow(k) - e-J 
7C N (3.64) 

k=l 

Figure (3.21) shows the magnitude spectrum for the influent flow. From this figure 

it is possible to determine the harmonic frequencies by simple inspection; however, 

the series coefficients are obtained by employing the following relationships between 

coefficients of the DFT and the FS, 

Frequency spectrum of influent flow 
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For this case, the series has been truncated to eight harmonic components. A similar 

procedure has been performed for influent NH4, but with only six harmonic terms and 

the mean value. Figure (3.23) shows the original time series, and its approximation for 

influent ammonia. 
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Figure 3.23: Time series of influent NH4. 

3.4 Identification with data from Helsingor WWTP 

This section aims at cross-validating the identification results obtained by simulation 

in the previous sections. To achieve this, historical data from several months from 

Helsingor WWTP has been carefully selected in order to be representative of a variety 

of operating conditions of the treatment plant. Later, several identification exercises 

were performed with the purpose of finding some common properties within the mod- 

els (i. e. order, poles, and zeros). 

3.4.1 Data Selection 

Dissolved oxygen data has been collected from Helsingor WWTP The data is from 

several months of 2002. The selection of data was based on the following considera- 
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tions: 

1. Representative data set for the period (e. g. low and high hydraulic load). 

2. Free of nonlinear effects (e. g. actuator saturation, sensor faults) . 

For example, Figure (3.24) shows a data set from March-2002 in which the model can 

be easily identified since the system is operating in a linear region (i. e. no actuator 

saturation). Figure (3.25) shows a period in which the actuators are saturated conse- 

quently the system is operating in a nonlinear region and therefore the data set is not 

valid for identification. 

Figure (3.26) shows a case in which the plant is operating in a low load condition 

(e. g. before noon and with low hydraulic load). It is clear in this figure that there are 

oscillations produced by the aggressiveness of the controller, which continuously runs 

between saturation levels, especially in the initial overshoot. It is very probable that 

the control system has entered a limit cycle, since the oscillation frequency is constant 

(about 20 cycles/day). This effect is very common in mis-tuned control loops with 

saturation type nonlinearities. 

Regarding the influence of the load (i. e. nutrient + hydraulic) in the DO control loops, 

two clear cases can be distinguished from the online data from the Helsingor plant. 

The first case is when there is a rain/storm event, in which the hydraulic load increases. 

Under this condition, it is possible that the inflow could be composed of a high nutrient 

load. 

Figure (3.27) is a good example of this case. The system tries to aerate as much as 

possible, since N03 is decreasing to very low levels, and NH4 increases dramatically. 

Also, the return sludge (qret) follows a pattern almost identically as the incoming flow 

and the recirculation flow increases to try to accelerate the denitrification rate. 

A second case, is when the system is subjected to a high nutrient load, but not nec- 

essarily a high hydraulic load, as in Figure (3.28). Notice that up to this point, the 
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nutrient concentration is the major factor that limits the oxygen transfer. 

In Figure (3.29), the case is totally the opposite of the ones presented before. The 

hydraulic load increases due to a short rain, but there is no significant increase in 

ammonia or nitrate, though the DO loop is still unable to regulate around the setpoint. 

It is evident, in this example, that rain is the cause of this behaviour. 

Given all this case examples of possible scenarios, it is clear that the data necessary to 

build up the model database has to be chosen carefully, so the models are representative 

of the process working in the adequate conditions. The following, gives an example 

of how to build up these data-based models. Some characteristics are exemplified and 

some conclusions drawn. 

3.4.2 Dissolved Oxygen model identification 

Due to large amount of data and models identified, this section only provides a sum- 

mary of six data subsets from one day in May-2002. The final results are however, 

representative of more than 80 identification exercises with data from different months 

in 2002. Due to the cyclic aeration of Helsingor WWTP and the delays found in the 

data (approximately two sample times) the data has been pre-treated in four different 

ways and four models identified. With these models, simulations were performed and 

the models evaluated. 

For each data subset, the following four cases are considered: 

- Full cycle data subset with delay. 

- Full cycle data subset without delay. 

- Truncated cycle data subset with delay. 

e Truncated cycle data subset without delay. 
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Figure 3.28: Normal hydraulic load with high nutrient composition in the Helsingor 
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Table 114- Icif-ntifit-. d with riqtn frnm ?1 /0,5/? 00? 
Data set Transfer function Zeros Poles 

Full c cle data 0.02306z'-O. 1295z+0.2054 
- - 2 80± l 0109 65± 0 O 21 y 7 . . j . j . z - l. 3O4z+0.4705 

subset with delay 
Full c cle data 0.06101z? -0.142z+O. 195 1 16 ± l 35 0 61 ± O 24 y 2 j . . j . . -1.233z+0.4376 z 

subset without delay 
Truncated cycle data 0.1096z-0.1316 

-0 6062 -1.20 0.60 
subset with delay 

z . 

Truncated cycle data 0.2643z+0.0823 
-0 6977 0.31 0.69 

subset without delay 
z . 

I II I 

The term truncated data describes a data set in which only the positive transition in the 

aeration cycle of the setpoint was considered. The negative transition was dismissed to 

observe the effect of data truncation in the resulting model. 

Identification example 

This section describes just one example of the numerous tests performed with data 

from Helsingor V; Vv'TP. The data employed in this example is from the 21 May 2002. 

Figures (3.30), (3.3 1), and (3.32) show some identification results. Table (3.14), presents 

the transfer functions and their respective zero-pole locations. 

Identical simulations have been performed over the five remaining data subsets. In 

general the second order model for the dissolved oxygen closed-loop system achieved 

the best fitting. Figure (3.33) shows the pole-zero map of the six cycles identified and 

described before, whereas Figure (3.34) shows the pole-zero map for another six cycles 

identified in the same month. It is evident that data from the same day displays similar 

behaviour (i. e. poles are very closed to each other); however, if compared with models 

from another day, there is a slight variation. Regarding the zeros, in both cases, they 

seem to vary significantly. 

The frequency response of the 12 identified models is plotted in Figure (3.35). The 

plot shows that the models are contained within a gap 10 dBs at low frequencies, 

20 dBs in the medium frequency range, and they are totally uncorrelated for the high 
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Figure 3.33: Pole-zero map for 6 models identified with data from 21 st of May 2002 
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frequency range. The responses in the low and medium frequency ranges are important 

to determine the steady-state and stability properties of the systems; whereas the high 

frequency has to do mainly with the noise rejection and robustness characteristics of 

the models. 

3.4.3 Identification of medium scale variables based on fast vari- 

ables 

In this section the possibility of identifying models for medium scale variables (i. e. 

N03, NH4, P04) is investigated. Medium scale variables are such that their dynam- 

ics are in the range of hours. Finding adequate models, which can predict medium 

scale variable dynamics, can deliver a potential tool which can be useful in special 

circumstances in which upper control layers fail. 

The possible control scheme investigated here, for which the models will be identified, 

follows the one presented in Figure (3.36). 

The knowledge of nitrate dynamics can help in the scheduling of the recirculation rate. 

Even though results have proven, to some extent, that nitrate dynamics can be identified 

from data (i. e. DO, Qret, Qrec), this does not mean that this is the best approach to 

getting a good prediction. So far, this method can only be used within a prediction 

horizon of only some hours, and when there are no strong nonlinearities (i. e. nitrate is 

only a function of the inputs). 

Models for ammonia can also be identified, but with higher restrictions than for nitrate. 

The reason for this is that, when the system is subjected to big nutrient loads (i. e. 

Figure (3.27) and Figure (3.28)), dissolved oxygen actuators saturate and therefore the 

closed-loop models are no longer valid. An example case when it is possible to identify 

these models is when the actuators are not saturated as shown in Figure (3.29). In fact, 

this figure presents a case in which the alternating scheme (i. e. aerobic/anoxic) is 
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Figure 3.36: Control scheme for nutrient removal control. 

evident, due to the increase of nitrate in the aerobic phase and its subsequent decrease 

during the anoxic phase. Ammonia presents the opposite behaviour. 

As an example, using DO in a first case and DO, Qret and Qrec in a second case two 

models have been identified for nitrate. Figure (3.37) and (3.38) show the responses 

obtained by these models. The minimum value that concentrations can reach is 0 mg/l; 

however as seen in Figure (3.38) the model does give a response beyond the physical 

reality. This physical restriction introduces limitations in the identification, and it is 

evident that the data should not include nonlinear effects as this. 
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3.5 Summary 

This chapter has presented a comprehensive study into the identification of models for 

dissolved oxygen and nitrogen removal for control purposes. Also, an ASM model 

reduction for an intermittent aeration plant has been developed. Harmonic prediction 

models for influent flow and ammonia have been briefly discussed as well. The study 

has employed simulation based data and real-data from Helsingor WWTP 

Subspace algorithms have been used due to their multivariable nature and robust nu- 

merical characteristics. A qualitative assessment study of several open-loop and closed- 

loop identification algorithms has been performed in order to obtain accurate models. 

This has unveiled some interesting properties of subspace algorithms; and the neces- 

sity of developing new methods to measure and minimise prediction errors within the 

identification algorithm. 

Also, the process of dissolved oxygen identification has followed a systematic proce- 

dure throughout the chapter by using the same excitation signals and conditions. Many 

of the recommendation and experience gained through these identification exercises 

will be required in Chapter 7, in full-scale plant experimentation. 

A section on identification employing real data from several months in 2002 from 

Helsingor WWTP has also been presented. The section presents different possible 

loading situations and their effect in the performance of the dissolved-oxygen loops. 

This study has provided a deeper understanding of some of the most common problems 

in WWTPs as: (a) un-tuned dissolved-oxygen control loops. (b) Loading effects on the 

dissolved-oxygen control loops. 

In summary, the following models have been obtained by simulation: 

1. Three univariate DO models, 

2. A multivariable DO model, 
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3. A nitrogen removal model for a continuous aeration plant, 

4. A nitrogen removal model for an intermittent aeration plant, 

5. An influent flow prediction model, 

6. An influent ammonia prediction model. 

All these models will be used in the following chapter for the design of model predic- 

tive controllers. 

One of the main conclusions arising from the comparison of results between simula- 

tion and real-data identification results is that it is possible to model dissolved oxygen 

as a linear system. Even further, this model might not change significantly in time. 

This will reduce the need for periodic identification experiments to just sporadic tests, 

and only when there is a significant reduction in control performance that cannot be 

compensated by controller re-tuning. Also, a dissolved oxygen control loop can be ac- 

curately modelled by 2d or Yd order linear models, even though the plant is inherently 

non-linear. 
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Chapter 4 

Dissolved oxygen and nutrient control 

The efficiency and economics of wastewater treatment have become an important issue 

for water companies in the UK and in the rest of Europe due to new, more stringent 

EU directives for environmental protection. The most common wastewater treatment 

process is the activated sludge technology. The costs of wastewater treatment using 

this technology include chemicals, energy, and human resources for the process and its 

operation. In order to minimise these costs, the wastewater industry has been led into 

the development and use of sophisticated strategies for process control. For example 

the use of intermittent aeration to minimise energy consumption has been reported 

in several publications Puta et al. (1999); Kim et al. (2000); Sanchez et al. (2002), 

strategies to increase hydraulic capacity to cope with rain or storm events as reported 

in Nielsen et al. (2000), or improved optimisation by efficient handling of information 

collected by the control system as reported in (Yuan et al., 2001). 

Common problems in wastewater treatment plants have to do with the maintenance and 

poor effluent quality in many treatment facilities due to poor control approaches. For 

example, a recent study of four treatment plants in Scotland, Denmark, Germany, and 

Poland, reported in Sanchez (2002a, SMAC project report), concluded, among other, 

that dissolved oxygen control loops contained P or PI controllers, which were usually 

mis-tuned and performed poorly. Some side, effects of poor tuning are instability and 
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limit cycles, which in turn lead to blower and valve saturation, wear and tear. 

Also, wastewater treatment plants can be located near cities or in remote locations near 

small towns, thus being either of easy access or very isolated. If a treatment plant is in a 

remote location, the cost of mobilising human resources and giving maintenance to the 

plant could represent a significative percentage of the operation budget (estimated at 

40% for Scottish Water). Therefore, reducing these operation costs has a high priority 

in certain situations. 

Energy consumption is estimated as about 10% of the total operation budget of a plant. 

However, depending on the country this could be a higher percentage. In countries like 

Germany, the cost of energy is totally de-regularised, thus the energy cost can change 

from period to period. In particular, electricity costs are lower during night, when 

energy demands are lower. So it might make more sense to optimise the plant to treat 

the higher loads during the night as in (Puta et al., 1999). 

On the other hand, depending on the legislation, operating costs will not be the only 

source of heavy budgetary burdens. Countries like Denmark, have a taxing scheme 

over effluent quality. Therefore wastewater companies in Denmark pay a tax per kg. 

of nitrogen and phosphorus in the effluent. 

Given these reasons, it is of prime importance that not only operation costs should be 

reduced, but also treatment efficiency increased. With the development of advanced 

process control, many process industries have benefited from a reduction in operating 

costs without sacrifying plant performance and rather increasing it in most cases. This 

chapter investigates the design of model predictive controllers (MPQ with the purpose 

of increasing effluent standards. 

The design of MPC controllers for activated sludge WWTP is subject, within other 

factors, to finding suitable models for prediction and estimation of dissolved oxygen 

and nutrients. This has been the subject of discussion in Chapter 3, where models 

have been determined by using subspace identification and deterministic model reduc- 
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tions and linearisation. This chapter examines the performance of MPC controllers for 

dissolved oxygen, and nutrient control. 

The chapter is organised in the following way: the fist section gives a brief review of 

model predictive control. In this review only the most necessary equations for the de- 

velopment of this thesis are presented. It is not the objective of this chapter to discuss 

on the several possible MPC algorithms available, but rather use a simple a reliable 

MPC controller to examine its advantages for the control of this process. Section 4.2 

presents the design and evaluation of univariate and multivariable MPCs for DO con- 

trol. Finally, section 4.3 presents two approaches to control of nutrients in an activated 

sludge WWTP. The first employs linear black box models identified using subspace 

identification techniques for a recirculating plant, while the second approach employs 

a reduced linear approximation of ASM1 model, for an alternating aeration plug-flow 

plant. For this last case, a special formulation for MPC has been developed, in order to 

handle the alternating model control structure. The chapter finalises with a summary 

of the results produced. 

4.1 Review of model predictive control 

Consider a discrete-time sampled system described by the state-space model of equa- 

tions (4.1) and (4.2), where the matrices have the following dimension: AE R"', 

Rnxm, CE Rlxn , and D C- Rlx' 

x(k + 1) = Ax(k) + Br(k) (4.1) 

y(k) = Cx(k) +Dr(k) (4.2) 

Consider as well that the system has 171 restrictions over the outputs y(k), 172 reStriC- 

tions over the inputs r(k), and 173 restrictions over the change in the inputs Ar(k). These 
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restrictions can be written as in equations (4.3) to (4.5) for each case respectively. 

Gg 
y(k) 

<0 (4.3) 
1 

Li 

Ff 
r(k) 

<0 (4.4) 

Ee 
Ar(k) 

<0 (4.5) 

where the matrices have the following dimensions: GE R71 ", gE R771 ' 1, F (E R172 X M, 

fE R172x I, Ec R'73xm and eE 
R773 X1. The following sections explain how to calculate 

the optimal control input r(k) at each sampling instant using model predictive control. 

4.1.1 Model predictions 

The predictions over an output horizon Hp with control horizon H,, can be calculated 

using equation (4.6). 

0'(k) = Yi(k)+Tr(k-l)+OAR(k) 

where: 

CA 

T CAH,, 

CAHp 

(4.6) 

(4.7) 

105 



E) = 

CB+D 

Eýlu 
, 1=0 

CAT +D 

H '-ICA'B+D i=O 

CB 0 

CAB + CB ... 0 

H-1 
i='u CAT ... CB 

H 
i='u CAT ... CAB + CB 

HH -H Y, i. 'u CAT ... Yi=", u CAT =0 =0 

I 

D D 0 

D D D 

D D D 

D D D 

D D D 

(4.8) 

(4.9) 

The matrices dimensions are YC R'Hp", YE R'Hp" and 0C R'Hp"H-. Notice 

that unless direct access to the system states x(k) is available, there will be need for a 

mechanism to observe or estimate the states denoted as x^(k). 

4.1.2 Constraints 

If any restrictions of the type described by equations (4.3) to (4.5) exist, then the opti- 

misation problem needs to be subjected to constraints. To include constraints in the op- 

timisation problem the aforementioned restrictions must be written in terms of A. R(k). 

The constraints mathematical formulation is described next. 

Constraints on y(k) 

Considering the prediction horizon of length Hp, the restrictions over the whole hori- 

zon are defined by the matrix inequality in equation (4.10). 

106 



G0g 
Y(k) 

<0 (4.10) 

0 ... Gg 

Therefore, if V and v are defined as in equations (4.11) and (4.12), the output con- 

straints can be written as in equation (4.13) by using the prediction model defined in 

(4.6). 

V 

V= 

VOAR(k) 

4.1.2.2 Constraints on r(k) 

G"" 0 

(4.11) 

O""G 

9 

(4.12) 

9 

-VTr(k - 1) - VYi(k) -v (4.13) 

The input constraints over the whole control horizon are described by the inequality in 

equation (4.14). 

R(k) 

0 ... FLi 

<0 (4.14) 
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Similarly to the case before, allow the following definitions: 

N'= 

77 = 

F ... 0 

O """ F 

The matrix N' can then be divided into H,, sub-matrices such that: 

Nl' 

(4.15) 

(4.16) 

(4.17) 

Therefore, the inequality constraint of equation (4.14) can be rewritten as in (4.18). 

H,, 
YNi'r^(k+i-Ilk)+i7 <0 (4.18) 

Furthermore, since r^(k+i- l1k) = Y, '-1 Ar^(k+jlk) +r(k- 1), (4.18) can be written j=0 

as 

H,, H,, 

jrr (4.19) Y NAP(klk) + 1: NjAP(k +1 lk) +---+ 
j=1 j=2 

H,, 

NH',, Ar^(k+Hu- Ilk)+ Njr(k- 1)+ij <0 
j=1 

Finally, let Ni = E'! IiNj' and N Ni ... NHU 
] 

so (4.19) can be written as in 
J= 

(4.20). 

NAR(k) < -Nlr(k-l)-i7 (4.20) 
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4.1.2.3 Constraints on Ar(k) 

Considering the restrictions in (4.5) over the control horizon, it is simple to prove that 

the constraints can be written as: 

(ýAR (k) 

where, 

(E = 

c 

E "" O 

O """ E 

e 

e 

(4.21) 

(4.22) 

(4.23) 

Finally, all the above mentioned cases can be collected in one inequality constraint as 

in (4.24). 

WAR(k) :! ý wir(k-l)+W2X-(k)+W3 

where, 

vo 

N 

Wl 

-VT 

-Ni 

0 
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W2 

W3 

-VT 

0 

0 

-V 

(4.27) 

(4.28) 

The matrices dimensions are WE R('7'Hp+712Hu+173Hu) X (MHu), W, c R('7'Hp+172Hu+773Hu) X (M), 

W2 E R('7lHp+172Hu+173Hu) X (n) 
and W3 E R('7lHp+772Hu+173Hu) X (1). 

4.1.3 Cost function 

The increment of the control inputs over the prediction horizon are calculated by min- 

imising the quadratic cost function of equation (4.29). In this cost functional, S(k) is a 

vector of future setpoints to be applied to the process, and is usually considered to be 

constant over the prediction horizon unless there is information of its future trajectory. 

J (k) 3((k) -S (k) 112 + IIAR(k) 112 (4.29) 
-9 14 

Define then the following expression: 

S(k) = S(k)-Ti(k)-Yr(k-1) (4.30) 

By substituting (4.6) and (4.30) into (4.29), the cost function can be written as: 

2 112 J(k) jJOAR(k)-e(k)jj2+jjAR(k) q (4.31) 

Since -9 and , 9ze, are positive definite or at least positive semi-definite then it is possible 

to decompose them as a= S_OST 
_q = SýVST. 

-9 
and ,M 

AR(k) can then be calculated as 
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the least-squares solution to (4.32) subject to the inequality constraint in (4.24). 

S_QE) 
AR (k) 

S. 9 6' (k) 

S-4 0 

4.1.4 Measurable disturbance and feedforward 

(4.32) 

There might be some cases in which the effects of disturbances can be anticipated 

and approximately cancelled out by suitable control actions. An approach of this type 

is called feedforward control. In order to anticipate the effect of the disturbance it 

is necessary to have some measurements that will indicate that the effect is about to 

happen. The effect of the disturbance can only be fully cancelled if there is an exact 

model of the disturbance to output transfer function. 

U- 
Ireedforward can be easily incorporated into predictive control, it is just a matter of in- 

cluding the effects of the disturbance into the output predictions. The following section 

presents a brief summary of the basic changes required in the equations introduced in 

the previous sections. 

Plant model with measured disturbance 

A plant model with 1 outputs, m inputs, q measured disturbances, and n states can be 

described by the following set of equations, 

x(k+l) = Ax(k)+Br(k)+Bddm(k) 

y(k) = Cx(k)+Dr(k)+Dddm(k) 

The model output prediction will now become 

Y(k) = IF, ý(k)+Tr(k-l)+OAR(k)+04D,, (k) 

(4.33) 

(4.34) 

(4.35) 

III 



where all the matrices hold their previous definitions and, 

CBd 

CABd 

L 
CAHP-'Bd 

-V 

W3 -77 

-C 

Dd 00 

CBd ... 00 

CAHp-2Bd CBd Dd 

(4.36) 

(4.37) 

The matrices have the following dimensions: E cz R(IHP) xq(Hp+ 1) and D,, c Rq(Hp+I)X(I). 

The state observer has to be designed using the model of equations (4.33) and (4.34). 

Common practice is to assume that the measured disturbance will remain constant at 

the last measured value d,, (k). However, if there is a better model of the disturbance 

this can be incorporated. 

4.2 Control of dissolved oxygen 

This section presents the design and evaluation of MPC controllers for dissolved oxy- 

gen. The section is divided into two parts. The first part presents the univariate case, 

while the second part considers the multivariable case. 

The purpose of the controllers designed and tested in this section is to improve the sys- 

tem performance for setpoint manoeuvring and compensate for external disturbances 

like load changes due to daily variations in influent composition or weather changes 

such as rain events. In this context, the proposed controller structure would have a 

hierarchical architecture such as that presented in Figure (4.1). 

This controller structure also reduces implementation costs and provides a high versa- 

tility in the tuning of the MPC controller. By placing the MPC controller as a second 
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Figure 4.1: Predictive control scheme. 

Y(k) 

level controller, the implementation could be performed over a more advanced software 

platform and computationally effective computer. The development of such software 

platform has been described in chapter 2 and reported in (Sanchez et al., 2003a). This 

structure will also reduce costs, since it can be implemented over an existing controller, 

usually programmed in a PLC, without need of major modifications. Even more, all 

the process of implementation can be performed while the plant is operating. 

4.2.1 Univariate model predictive control 

Several subspace predictive control methods have been developed within the last few 

years. The technique itself is considered to be fairly new and it has been just recently 

that some possibilities of implementing model predictive controllers (MPCs) directly 

from a subspace framework are being explored as for example in (Favoreel and De 

Moor, 1998; Kadah et al., 2003; Ruscio, 1997b). The work of this thesis, however, 

does not approach the implementation of the MPC controllers in this way, but uses a 

state space formulation as described in section 4.1. 

In this section, three predictive controllers are designed. The predictor is formulated 

for the composite, composite with disturbance model and augmented with disturbance 

models which were described in section 3.2.1.2. For the augmented model, only the 

CVA case is considered since results are very similar to the produced by the SV algo- 

rithm. 
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4.2.1.1 Controller design 

The tuning and design of predictive controllers relies in adjusting parameters like: 

weights, disturbance models and observer dynamics, reference trajectories, and hori- 

zons. Due to the number of degrees of freedom introduced by the quantity of tunable 

parameters, the design of a predictive controller is mainly subject to a number of rules 

of thumb, and to several simulations until the required performance is achieved. Only 

in the special case of having a linear plant, and the MPC controller operating in the 

linear region (no active constraints), the analysis and design of the controller can be 

easily integrated into the linear systems theory. 

Traditionally, controller performance has been assessed by measuring the time domain 

responses to several, probing input signals. This, however, might not be always a good 

indication of the real advantages, or disadvantages, that the controller behaviour might 

exhibit under certain circumstances. From the practical point of view, simulations are 

usually not possible; however, the experience gained by these previous exercises might 

give a more valuable insight than expected. In general, the rules for tuning a MPC 

can be deduced by observing the effect that each parameter has over the closed-loop 

performance. A comprehensive review of these effects can be found in (Maciejowski, 

2001). 

The design of the controllers in this chapter has therefore been performed by trial 

and error, thus the controller parameters values obtained are the result of number a 

of simulations. The models employed are the ones described in section 3.2.1. In this 

section three models were proposed by using different identification algorithms and re- 

arranging them to include the airflow signal, and a constant unmeasurable disturbance 

model. These three models were classified as composite, composite w. disturbance, 

and augmented with disturbance. Only the first of these three models does not include 

a disturbance compensation, and as will be presented, this will affect its performance 

under different weather conditions, even though its transient response is better. 
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Table (4.1) surnmarises the values for the prediction horizon (Hp), control horizon (H,, ) 

and weightings -9 and -IIW that produced the best results. 

Table 4.1: Controller narameters- 
Model 
- 

Hp H,, R 
com posite 50 10 102 diag[15 IF51 

comp. & dist. 50 10 103 diag[15 10-5] 

aug. & dist. 50 7 30 diag[15 10-5] 

comp. & clist.: composite model with disturbance estimation 
aug. & dist.: augmented model with disturbance estimation 

4.2.1.2 Constraints 

The inclusion of constraints is fundamental in this problem. It is in this way that the 

physical limitations arising from the actuators (air compressors) are included when 

solving the optimisation. Constraints also allow the inclusion of operation conditions 

that are necessary for the process to work. For example, in many WWTPs it is neces- 

sary to keep a minimum aeration regardless of the oxygen concentration, just to keep 

the reactors fully mixed. It is also evident that constraints allow limits to be imposed 

over variables which in practice cannot go under or over certain limits, as for example 

the oxygen concentration cannot be less than zero. To implement such restrictions, 

all the variables must be written as a function of the optimisation variable, that is in 

this case AR(k). For the optimisation problem, inequality constraints have the form of 

equation (4.24). For this study, the physical limits are tabulated in Table (4.2). 

Table 4.2: Physical Limits 
Limit/variable Q (%) r (mg/1) 
Lower limit 
Upper limit 

0.001 
90 

0.001 
9 

4.2.1.3 Simulation results 

This section presents and discusses the simulation results for the three MPC controllers 

designed for the SISO models identified in the previous chapter. Simulations are also 
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carried out for the system with only the original PI controller, which lies in the first 

control level and described in section 2.2, where the COST benchmark is introduced. 

The simulation scenarios include constant influent, dry weather influent, rain influent, 

and storm influent as defined in (Copp, 2002). Within the simulations, the constant in- 

fluent is utilised to assess the transient response to changes in setpoint and disturbance 

rejection, while the dynamic influent files are used to provide a statistical evaluation of 

the performance in the long term. Tables (4.3-4.4) show the results for setpoint track- 

ing and disturbance rejection, while Tables (4.5-4.7) show the statistics for dynamic 

performance under the specified weather conditions. 

Results show that even though the performance of the composite model with distur- 

bance estimation is acceptable in the transient analysis, its performance is significant 

lower when the simulation is run for dynamic influent. Also, notice the large settling 

time of the composite model. This excessively large number indicates that there is a 

sustained offset in the model, give by the absence of a correction for the unmeasurable 

disturbance at the output. These results also show the benefit of including a second 

level of control over a PI control loop, since the PI performance is poorer than when 

combined with a MPC. 

4.2.2 Multivariable model predictive control 

The use of a multivariable controller for dissolved oxygen can provide several advan- 

tages over using single decoupled PI controllers for each aeration basin. When using a 

decoupled controller, the control system will try to follow the setpoint by having only 

information from its own basin DO measurement, thus unable to preview the effects of 

a setpoint change in the other basins. By introducing a multivariable controller on top 

of the existing PI controllers, it is possible to reject much easier any condition change 

that propagates through the system. A multivariable MPC controller for dissolved oxy- 

gen will also introduce the advantage of predicting the future behaviour of the system 
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Table 4.3- Dvnnmic ni-. rfnrrnnni-P 
Case Overshoot Settling 

(%) Time (min) 
composite 0 >360 

composite w. disturbance 2.11 55 
augmented w. disturbance 1.277 27 

PI 0.99 74 

Table 4.4: Disturbance reiection 
Case Peak Rejection 

M Time (min) 
composite -43.78 >360 

composite w. disturbance -34.72 55 
augmented w. disturbance -35.58 44 

PI -37.92 98 

Table 4.5: Drv weather statistics 
Case Max Min Mean Var St. Dev. 

composite 2.71 1.37 2.00 0.087 0.295 
comp. & dist. 2.04 1.91 1.99 3.2x 10-4 0.018 
aug. & dist. 2.24 1.67 1.99 0.007 0.086 

PI 2.49 1.40 1.99 0.030 0.174 
comp. & dist.: composite model with disturbance estimation 
aug. & dist.: augmented model with disturbance estimation 

Table 4.6: Rainy weather statistics 
Case Max Min Mean Var St. Dev. 

composite 2.70 1.38 2.02 0.070 0.265 

comp. & dist. 2.04 1.89 1.99 2.4xIO-4 0.015 

aug. & dist. 2.24 1.68 1.99 0.006 0.075 
PI 2.49 1.42 2.00 0.024 0.153 

comp. & dist.: composite model witti clistumance estimation 
aug. & dist.: augmented model with disturbance estimation 

Tnhli-, l 7-. C%tnrm wf-. nthe. r Ontivztir. p, 

Case Max Min Mean Var St. Dev. 

composite 2.70 1.38 1.99 0.080 0.282 

comp. & dist. 2.05 1.91 1.99 3. Ox 10-4 0.017 

aug. & dist. 2.24 1.67 1.99 0.007 0.086 
PI 2.49 1.41 1.99 0.027 0.165 

comp. & clist.: composite mocLei witnCUSTUrDance estimation 
aug. & dist.: augmented model with disturbance estimation 

by having information of the cross coupling dynamics. Also, by being able to con- 

trol all three basin at the same time, global control will be coordinated to achieve the 

desired setpoints or performance. 
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This section presents the design and evaluation of such a controller. The design proce- 
dure is similar to the univariate case, but with some obvious differences. However, the 

performance assessment will not be limited to the last aeration tank, but to the global 
interaction between basins. 

As explained before, the system is composed of three aerated and controllable basins, 

commanded by three identical decoupled PI controllers as described in section 2.2 and 

previously shown in Figure (3.7). 

4.2.2.1 Controller design 

The design of a multivariable MPC controller is very similar to the univariate case. The 

difference relies in weight selection, which are square, positive semi-definite matrices 

of appropriate sizes, depending on the number of inputs, outputs and horizons. The 

easiest approach to tune the weights is to begin with all of them with the same value. 

After a cycle of simulations, each should be adjusted to eliminate undesirable features 

in the system response. 

In section 3.2.2, it was concluded that the models, which best predicted the system 

behaviour, were identified using the robust N4SID SV and CVA algorithms. In partic- 

ular, the models with unmeasurable output disturbance of gth order (i. e. augl-9d and 

aug2_9d). Both models responses are almost identical, so there is no need to perform 

simulations with both models since any of them will give similar results. Further, a 

close analysis into their pole locations, reveals that their corresponding poles are very 

close to each other as in Figure (4.2). Therefore, the controller has been designed using 

the model identified with the robust N4SID 'SV' algorithm. Table (4.8) summarises 

the controller parameters which revealed a sufficiently good performance after several 

simulations. 

Table 4.8: Multivariable MPC controller varameters. 
Model Hp A, I R1 -9 

augl-9d 50 71 diag[I 1 111 diag[I 11 10-3 10-3 10 
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Figure 4.2: Pole map for MIMO DO augmented models. 

4.2.2.2 Constraints 

The constraints for the multivariable case are the same for the univariate case, as in 

Table (4.2), but repeated for each input and output. 

4.2.2.3 Simulation results 

The evaluation of the performance of the multivariable MPC controller follows that 

used in the univariate case, with the addition of observations over the couplings be- 

tween the basins. A simple experiment of setpoint changes and output disturbances 

is presented in Figure (4.3). The setpoint change in each basin occurs at 0.5,1.5 and 

2.5 days respectively. Additionally, an external constant output disturbance of 10% 

of the blower capacity occurs at 1,2 and 3 days respectively for each aeration tank. 

The figure also shows the airflow into the basin measured in terms of the total capacity 
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Figure 4.3: Controller dynamic performance: setpoint change and disturbance rejec- 
tion 

of the blower. Notice how the controller tries to compensate for the setpoint changes 

and disturbances propagated through the system. These effects are quantified in Tables 

(4.9) and (4.10), while Tables (4.11) to (4.13) present the evaluation of the statistical 

performance of the controller for different weather conditions. A close examination of 

these tables for the last aeration basin, reveal that the multivariable controller is much 

more aggressive in its dynamical performance in a setpoint change, but it will also 

reduce the effect of a disturbance propagating through the system much faster. 

4.3 Nitrogen removal control 

One of the main objectives of wastewater treatment is the removal of nutrients in the 

form of nitrogen and phosphorus from the wastewater. The bio-chemical processes 
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Table 4.9: Dvnamir nt-rfnrmnnrp 
DO) rneasuuremmentt 

Overshoot Settling 
M Time (min) 

tI Aeration tank 1 2.54 18 
Aeration tank 2 6.09 25 
Aeration tank 3 9.49 35 

Table 4.10: Disturbance reiertion 
DO measurement 

Peak - Rejection 
(%) Time (min) 

Aeration tank 1 -21.51 21.99 
Aeration tank 2 -17.26 14 
Aeration tank 31 -14.56 13 

Table 4.11: Drv weather statistics 
DO measurement Max Min Mean Var St. Dev. 
Aeration tank 1 1.52 1.44 1.49 0.0001 0.012 
Aeration tank 2. 1.54 1.42 1.49 0.0003 0.016 
Aeration tank 3 2.07 1 1.88_ 1.99 1 0.0007 1 0.025 

Table 4.12: Rainv weather statistics 
DO measurement Max Min Mean Var St. Dev. 
Aeration tank 1 1.52 1.44 1.49 0.0001 0.011 
Aeration tank 2 1.54 1.43 1.49 0.0001 0.013 
Aeration tank 3 2.07 1.89 1.99 0.0004 0.022 

Table 4-13- Storm weather statistics 
DO measurement Max Min Mean Var St. Dev. 
Aeration tank 1 1.54 1.44 1.49 0.0001 0.012 
Aeration tank 2 1.54 1.42 1.49 0.0002 0.015 
Aeration tank 3 2.06 1.88 1.99 0.0006 0.024 

involved in nutrient removal are complex, thus their mathematical description. Chapter 

2 briefly discussed the complexity of the ASM models (Henze et al., 1987,1995,1999; 

Gujer et al., 1999)1) which are the most accepted models for activated sludge in the 

scientific community. 

Several publications have reported the use of reduced order modifications of these 

models for different purposes. For example the model developed by Jeppsson (1995) 

with the purpose of control, or Huang and Hao (1996) for alternating aerobic-anoxic 

process evaluation, are all derived from the original ASM 1. 

The main problem of using reduced order models directly derived from the full ASM 1 
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is that, in general, they have poor parameter identifiability characteristics; which in turn 

requires the use of sophisticated estimation techniques as Kalman filtering (Jeppsson, 

1996; Arnold and Dietze, 2001), or H. (Katebi, 2001). The use of these techniques 
however will introduce a higher degree of complexity to the control of the system. 

At the moment, most plants rely on classical control methods as PI, or simple operation 

rules gained from past experience and some process knowledge. Very few publications 

report the use of advanced process control methods for nitrogen removal, as predictive 

control, basically due to the highly nonlinear behaviour and constant changing condi- 

tions. 

A close search within the literature reveals that wastewater process engineers, control 

engineers, and scientist have been unable to successfully provide a clear understanding 

of which is the best 'road' to follow when trying to improve nitrogen removal. Ap- 

parently, the only concensus appears to be for the need of a feedforward-feedback ap- 

proach. For example, Vrecko et al. (2003) proposes the use of a feedforward-feedback 

PI controller achieving reasonably good results. 

Sometime earlier, Lindberg (1997) employed an optimal LQ feedforward-feedback 

approach to control nitrogen removal using a linear model identified using subspace 

identification. It is interesting to find that one of the author's main conclusions is that 

the controller performance will highly depend on the quality of the model, thus making 

the identification procedure of critical importance. 

More recently, Alex et al. (2002) and Sotomayor and Garcia (2002), have reported on 

the design of MPC controllers. Both control structures employ a feedforward-feedback 

control strategy; however, Alex et al. (2002) employs a non-linear model, while So- 

tomayor and Garcia (2002) employ a linear approach. Vrecko et al. (2003) and Alex et 

al. (2002) have employed the same simulation benchmark; therefore making it possi- 

ble to compare the performance of both controllers. Even though the non-linear MPC 

strategy is more sophisticated than the feedforward-feedback PI controller, the latter 
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achieves a higher nutrient removal rate with less effluent standards violations. Unfor- 
tunately, the linear MPC of Sotomayor and Garcia (2002) did not employ the COST 

simulation benchmark; therefore, making it impossible to compare with the other two 

strategies. 

Another important concern in nutrient removal is the optimisation of the resources em- 

ployed. Most plants work with fixed DO setpoints and continuous aeration, probably 

only slightly varying the setpoint in accordance with the seasons. This approach is 

however rather inefficient in energy terms. Due to the cyclic nature of the influent 

load, there are periods of time in which it is even possible to turn off the aeration, or 
decrease just to provide adequate mixing, without violating the effluent standards. It is 

estimated that it is possible to save around 10% of energy costs by using intermittent 

aeration. The optimal use of this type control approach is the subject of major research 

at the moment. Several authors have reported different approaches to implement this 

type of control structure achieving some degree of success. Kim et al. (2000) presents 

a predictive approach used in an experimental test-bench. The method determines the 

aeration time (phase length) by minimising the monetary cost subject to constraints 

representing the effluent standards. Puta et al. (1999), minimises a similar cost func- 

tion, but using the full ASM1 model. 

This section presents the development and design of two predictive control strate- 

gies for nitrogen removal. The first approach considers an alternating aeration con- 

trol scheme. The switching model developed in section 3.3.1 has been used, and the 

predictive controller designed to operate over the mean prediction of the effluent (zero 

frequency component), thus being more consistent with ASMI limitations. The sec- 

ond part of the section, explores the design of a MPC with continuous aeration using 

the model identified in section 3.3.2. The MPC controller incorporates an influent 

prediction model as a feedforward component to improve control actions. 
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Figure 4.4: Controller Architecture. 

4.3.1 Alternating aeration predictive control 

One of the most recent control structures under research is the alternating aerobic- 

anoxic approach. Under this control scheme, switching the aeration system ON and 
OFF indirectly controls the effluent characteristics. 

Some theoretical and experimental studies developed by Kim et al. (2000) and Puta et 

al. (1999) find the optimal switching times in the sense of minimising a monetary cost 

function using a mathematical model of the plant. In particular in (Kim et al., 2000) 

the optimisation is performed once per day assuming constant influent conditions. The 

results indicate, that the level of prediction is very limited, and is therefore giving a 

poor control performance. Also, the controller kept the aeration ON most of the time 

without considering periods of time in which aeration was unnecessary. 

The control approach discussed in this section, uses a linear time-variant modification 

of the model developed by Anderson et al. (2000) and finds the optimal switching time 

under zero frequency signal tracking. This is approach is considered to be more con- 

sistent with the limitations originally drafted in the development of ASMI regarding 

average operating conditions. 

Controller architecture 

The controller architecture follows the line of traditional MPC, with some modifica- 

tions due to the cyclic nature of the embedded model. A block diagram of the controller 

is presented in Figure (4.4). 
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4.3.1.2 Prediction. 

The alternating aerobic-anoxic (AAA) wastewater time variant system, described by 

equation (3.58), can be sampled at a specific frequency, and therefore be transformed 
into a discrete system as presented in equation (4.38). 

x[k+l] = A[k, 3]. x[k]+D[k, 3]'Xinf 

y[k] = C. x[k] 

(4.38) 

Using a recursive approach to calculate the predicted state of the system based on mea- 

surements of the state at sampling time k, it can be easily shown that the predictions at 

any future sampling instant k+n and up to the prediction horizon Hp can be calculated 

as in equation (4.39). It should be clear, that full state measurement is assumed. This 

is an assumption which is difficult to overcome in practice. Possible solutions to this 

problem are the use of soft-sensors using estimation algorithms. Some research work 

has been carried out in this field, which usually concludes that the main limitation is the 

identifiability of the process (model). Some examples of proposed estimators can be 

found in Katebi (200 1); Jeppsson (1995); Arnold and Dietze (200 1); Lindberg (1997). 

X-[k +1 k] =A [k, 3] - x[k] +D [k, 8] - xif (4.39) 

x[k+ 2 k] = A[k+ 1,3] -X^[k+ II k] +D[k+ 11 3] xif 

= A[k+113]-A[k, 31-x[k]+(A[k+113]-D[k]+D[k+ll)-Xinf 

nn n-j 

X-[k+n I k] rIA[k+n-il -x[k] +Y (rlA[k+n-il -D[k- 1 +jl). Xinf 
j=l i=l 

Hp Hp Hp-j 

xi[k+Hp I k] fIA[k + HP - i] - X[k] + 1: ( fl A[k + HP - i] - D[k -1+ j]) - Xinf 
i=l j=l i=l 
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Equation (4.39) can be arranged into a matrix representation, and output predictions 

can be calculated as presented in equations (4.40-4.41). 

X-[k+ II k] 

X^[k + n] I k] 

X-[k + Hp I k] 

A [k, 3] 

fln 
i=, A[k+n 

r, Hp 
i_ _I IA[k+Hp 

x[k] 

D[k, 3) 

Y^[k+ II k] 

Y-[k+n I k] 

Y-[k+Hp I k] 

n-jA[k+n- i] -D[k- I +j] 

Fýp [fHp-jA[k+Hp-i]-D[k- I+ j] 

c0 

0c 

00 

(4.40) 

- Xinf 

X^[k+ II k] 

X^[k+n I k] 

X-[k+Hp I k] 

(4.41) 

This, in an abbreviated notation, can be written as in equation (4.42), where n varies 

between I and Hp, and denotes the row element numbering. 

X A[k, n]. x[k]+D[k, n]*Xinf 
A 

y c-X 

(4.42) 
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4.3.1.3 Cost Function and Optimisation 

The selection of an appropriate cost function depends on many factors. However, the 
approach developed in this paper makes use of the quadratic error of the average value 
(zero frequency component) of the predictions over a complete aerobic-anoxic cycle 
and the set point or a reference trajectory to approach the set point. Also, only the 

unconstrained case is analysed. 

In order to calculate the output predictions of the AAA system the algorithm described 
by equation (4.40) is used. The average value of each state variable arranged in the 

vector representation presented in equation (3.53) is calculated by the average of the 

predictions over the horizon Hp. Equation (4.43) shows how the average (zero fre- 

quency component) of a discrete vector signal is calculated. 

I Hp 

y= -Ey^[k+i I k] (4.43) 
Hp i=l 

where ^[k+i] and yE 918 y Therefore, using equation (4.43) the cost function is defined 

as follows. 

(4.44) 

where y could be a reference trajectory to approach the set point, which is updated on 

each prediction cycle, or the set point; and Q is a weights matrix of adequate dimen- 

sions which can be time dependent and used to include penalising functions. For this 

case Q has been considered to be the identity matrix L 

An additional term can be added to equation (4.44), to penalise steep changes in the 

control input, and represent a minimum energy consumption approach. The final cost 

function is as presented in equation (4.45). In this equation 3 is the parameter to be 

optimised at prediction cycle k+l, while 3k is the optimal 6 value found at prediction 

cycle k. 
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j == (y _ 7) T. (y_ 7) + (3 _ ak)2 (4.45) 

Finally, the search for the optimum value of the duty cycle 6 that minimises equation 
(4.45) can be done using several numerical methods, since it is difficult to find a closed 

analytical representation for the gradient. 

Additionally the model obtained contains state-dependent nonlinearities for which 

other predictive control formulations have been proposed as in (Grimble and Ordys, 

2001; Ordys and Grimble, 2001). 

4.3.1.4 Simulation results 

Two types of simulations have been performed. The first one considers a reference 

trajectory to approach the set point, and the second uses the set point directly. For the 

reference trajectory case, a time constant of 12 hours with a sampling time of 3 hours 

has been chosen. The prediction horizon is of one cycle (3 hours) for both cases. The 

reference trajectory at cycle n can then be calculated as in Maciejowski (2001): 

- (n+ O'TT' 

, yn+l s-e ef - ek (4.46) 

where ek is the error between the plant output and the set point s at prediction instant 

k. The set point for SNH and SNO are presented in Table 4.14. The system initial 

conditions are the influent characteristics, presented in Anderson et al. (2000). 

Simulation results, for the case in which a reference trajectory is used are presented in 

Table 4.14: Controller setpoints 

SNH SNO 

1.26 [mg/1] 5.31 [mg/1] 
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Figure (4-5), and Figure (4.6) shows simulations for the case in which the set point is 

used directly. 

It is interesting to observe that in the case in which a reference trajectory is used, the 

optimal control input 5 begins with a lower value than in the case of the use of the set 

point directly. The cost function also seems to converge to the minimal value faster 

when using the reference trajectory. The presented simulations also show that once 

the system is near the setpoint, the control input begins to oscillate around the optimal 

value. A possible explanation for this behaviour is that the control system (optimiser) 

is not able to keep both controlled variables at the same time in the exact setpoints, but 

in a near neighbourhood. 

An important limitation of this method is that the maximum output magnitude cannot 

be controlled directly. This means that at certain periods of time the output concentra- 

tions are higher than the permissible. Some possible formulations to solve this problem 

can be the use of constraints to limit the effluent concentrations and the calculation of 

an adequate set point. 

There are several ways in which constraints can be included, but probably the use of 

the weight matrix Q, which in this case has been assumed to be the identity matrix (I ), 

is the easiest. This matrix could include time-dependent penalisation functions, which 

include the constraints in the quadratic cost function. 
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4.3.2 Continuous aeration model predictive control 

The use of model Predictive control for nutrient control has been very limited due to 
the complexity of the ASM models. Even though ASM models represent the state of 
the art in activated sludge understanding, they are far from being acceptable for control 

purposes due to their complexity and un-identifiability. Several authors have suggested 

simplifications these models, in particular ASMI for control purposes. However, they 

still exhibit some rather peculiar nonlinear behaviours. As remarked in the original 
ASMI report, the model could produce invalid calculations compared to the actual 

process, due to the heavy uncertainty in its parameters and unmodelled dynamics. 

Therefore some other ways of obtaining more numerically efficient models which pro- 

vide reliable predictions of the actual state of the plant would be of great help. Further, 

if this model is linear, then it would be possible to simplify even more the control 

problem. This is, however, not always possible and actually rather difficult. Sec- 

tion 3.3.2, presented a possibility in which a 4th order model was identified for the 

prediction of total nitrogen (TN), nitrate (N03), ammonia (NH4) in the effluent and ni- 

trate (N03,,,,,, i, ) in the anoxic zone, using the internal recirculation and three dissolved 

oxygen (DO) measurements in the three aerated basins of the COST simulation bench- 

mark. The model considers as well, the influent flow (F) and ammonia (NH4,,, fI,,,,,, ) are 

measured, and incorporated into the prediction by using the harmonic model approxi- 

mation presented in the same section. This is a new strategy, which has been reported 

in Nielsen (2001), and has been under research to estimate weather conditions (influent 

flow) for Aeration Tank Settling (ATS). The modelling of the processes in ATS con- 

veys a wide scope of process knowledge, involving a redistribution of the suspended 

solids within the plant. This is however a subject beyond the scope of this thesis. 

The section is organised in a similar way to the MPC design for DO control. The con- 

troller design is the first part to be discussed, followed by the formulation of constraints 

based on the effluent standards and control system limitations. Finally simulations re- 
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sults are presented and discussed. 

4.3.2.1 Controller design 

The design of the controller is considerably more complicated than for the case of 
dissolved oxygen. However, most of the effort has been demanded in obtaining the 

model. Much effort has also been placed in calibrating the controller; thus the design 

presented in this section is the result of a number of simulations. 

The model obtained is composed by four control inputs: the dissolved oxygen concen- 

trations in the las three aeration basins, and the recirculation flow rate. The outputs 

of the model are: total nitrogen in the effluent, nitrate in the effluent, ammonia in the 

effluent, and nitrate at the end of the anoxic zone. Additionally, two disturbances are 

measured: influent flow and influent ammonia concentration. The controller will then 

be a feedforward-feedback type; where the influent flow and ammonia are the feedfor- 

ward signals. 

One of the most limiting factors in the design of the controller is the determination 

of the constraints for the optimisation problem. Given the effluent standards, one ap- 

proach would be to impose hard constraints on the effluent concentrations. This is 

however impractical, since there will be many times in which the optimisation prob- 

lem will be un-feasible. The simplest approach would just be of using a setpoint and 

weighting the most important signals higher. This will not assure that the effluent 

standards will not be violated; however, it will provide a feasible solution for most 

conditions. 

Also, the important factor to analyse in this situation is not the number of violation; 

but the total amount of nutrients discharged over a period of time. Therefore, even if 

there is an effluent violation at a certain time, the might be other times in which the 

effluent concentration is also very low. Thus, the total amount of nutrients discharged 

will not be as high as supposed. 
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Table 4.15: Nutrient MPC 
Hp H,, 
40 40 1 diag[2 1.5 10.81 diag[l. 5 0.10.1 1.5] 

Table 4.16: Controller setpoints 

TN 

- 
N03e 

f fluent 
N03anoxic NH 4e f fluent 

5 [myLN: /71] T 10 [mg N/11 3 [mg N/1] 2.5 [mg N/1] 

Given these reasons, the nutrient MPC controller parameter are presented in Table 

(4.15), and the setpoints for the different concentrations are presented in Table (4-16). 

4.3.2.2 Simulation results 

As described previously, simulations are only run for the case of dry weather flow. 

Figures (4.7) and (4.8) show the manipulated variables over a half day period and the 

effluent nutrient concentrations over a7 day period. Notice, that the effluent concen- 

tration of total nitrogen (TN) is most of the time kept under an 18 (mg/1) and only with 

a limited amount of violations. Similarly ammonia (NH4), is also kept at a low level 

most of the time, except for sporadic periods of time. In general, there will be seven 

ammonia peaks per week in dry weather conditions, due to the cyclic behaviour of the 

influent. 
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Manipulated Variables 6 
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4.4 Summary 

This chapter has presented the design of model predictive controllers for dissolved 

oxygen and nutrient removal. The controllers have been designed employing linear 

models obtained in Chapter 3 

results presented in this chapter: 

Dissolved oxygen control 

The following is a summary of the simulation study 

For dissolved oxygen, two cases are examined: (a) a univariate case and (b) a multi- 

variable case. The designed controllers have been assessed by using their dynamical 

response to setpoint changes and their ability to reject disturbances. Also, a statistical 

assessment is performed by using different weather influent conditions: dry, rain, and 

storm. 

The use of augmented models, as defined in Chapter 3, has proven to be the most 

adequate type of model by the results obtained. Also, a close comparison between the 

results obtained in the univariate case and in the multivariable case, demonstrates that 

a multivariable approach can be more beneficial to the system, since loop coordination 

helps to improve setpoint achievement in a more efficient and fast way. Disturbance 

rejection also presents a significant improvement. 

Nutrient removal control 

For the nutrient case two types of controller have been designed: one for continuous 

aeration and a second for an alternating plant. The performance of the controller is 

assessed only for the dry weather case due to the highly nonlinear behaviour. 

For the continuous aeration nutrient controller, the major difficulty presented is in 

obtaining a reasonably good model. The design of a model predictive controller, as 
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formulated in this chapter, requires that the model should give good predictions; oth- 
erwise the performance of the controller is severely deteriorated. Simulations indicate 

nutrient control using a linear model is possible under dry weather flow. Other type of 
disturbances have not been simulated due to (a) the high non-linearity of the system (b) 

the control objective in a plant under these disturbances is not to reduce only pollutant 
load, but to maintain sludge inventories in order to preserve the treatment capability 

of the plant. Therefore, any simulation under these conditions would be unrealistic for 

the operation of a plant. 

In the intermittent aeration case, the formulation of a model predictive control algo- 

rithm using a switching model structure has been the main aim. The controller cal- 

culates a duty factor which indicates the relationship between the ON and the OFF 

aeration period. By controlling the aeration cycles, it is possible to indirectly control 

the level of nitrate and ammonia in the effluent of the reactor. 
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Chapter 5 

IFT and LQG tuning and process loop 

monitoring 

Much of the process industry's tuning paradigm originated with the two Ziegler-Nichols 

design methods (Ziegler and Nichols, 1942), which were developed for simple and ef- 

fective PID controller tuning. The step-response method assumes a first order plus 

time delay (FOPTD) system model, which is a common type of response found in 

the process industries. The step response is used to identify implicitly this parametric 

model from which design rules are deduced. The second of the Ziegler-Nichols meth- 

ods is the sustained oscillation method. In this method the critical stability point on 

the process's Nyquist frequency response is found and the PID design rules then use 

the ultimate period and ultimate gain as data. This second method is an example of a 

non-parametric model based design. 

Some of the more recent parametric model based design techniques use the idea of 

trying to make the PID response as close as possible to that obtainable from more so- 

phisticated methods based on models (Katebi and Moradi, 2001; Moradi et al., 2002; 

Uduehi et al., 2002). Other parametric methods approach the design of PID controllers 

by using the method of optimal restricted- structure controllers. In this route a linear 

quadratic gaussian (LQG) controller design is restricted to one of limited parameters 
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as for example as in (Johnson and Sanchez, 2003), which is the method presented in 
the second part of this chapter. The approach considers some prior modelling or iden- 

tification experience, and uses the key assumption that the process could be described 

using a simple first order stochastic model. This assumption is shown to lead to explicit 
formula for optimal LQG controllers and cost function values used in benchmarking. 

Furthermore, the resulting controllers are shown to be of PID-type. 

By way of complete contrast perhaps the only genuinely known model-free method 

currently available is that of iterative feedback tuning(IFT) (Hjalmarsson et al., 1994, 

1995,1998; Hjalmarsson, 1999; Mahathanakiet et al., 2002; Ho et al., 2003). This 

method uses the system directly to generate all the data responses needed to perform 

an online optimisation of the restricted structure controller parameters. Recently, con- 

troller parameter cycling (CPQ has been presented as a new way of implementing the 

model-free optimisation scheme of IFT (Crowe et al., 2003). 

As exemplified in previous chapters, the control problems arising in modem activated 

sludge wastewater treatment plants include unknown process models, noisy measure- 

ments, highly unpredictable process disturbance inputs and a corrosive measurement 

environment leading to slow sensor degradation and failure. The control loops, are 

usually of PID-type. Consequently, the prudent control approach is to encourage the 

development and use of reliable equipment and to support control loops with tuning 

and monitoring software algorithms able to indicate when controller settings and mea- 

surement devices should be examined for possible readjustment. 

This chapter presents two methods with direct application to wastewater treatment 

plants. The first section considers a deterministic, continuous-time formulation for 

IFI' and the development of adequate algorithms for simulation and implementation. 

The second introduces a LQG approach for tuning PID controllers based in optimal 

polynomial theory. Both cases assume a single input - single output process model. 

Finally a process loop monitoring algorithm, based on an LQG criterion, is developed. 

This algorithm allows the implementation of a monitoring scheme to assess the perfor- 
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mance of running loops in real-time in a wastewater treatment plant. 

5.1 Iterative feedback tuning (IFT) 

Much recent research in the control community has focused on finding viable ap- 
proaches for using nonlinear control in industrial applications. Most of this work as- 

sumes that some form of mathematical model will be available, and therein is the real 

applications difficulty; nonlinear models are often hard to derive and can be expensive 

to develop. If a model is available, the use of nonlinear model based predictive control 
is one method in particular vogue at present (Mayne et al., 2000; Mayne, 2001). 

A different approach to generating routine controllers for industrial plant is to use only 

a little model information and rely on the robustness of the controller for success. The 

0 online relay experiment method of Astr6m and Hdgglund (1985) was particularly suc- 

cessful in industrial applications. At the heart of the relay method is a non-parametric 

identification principle. It was the simplicity of this approach which inspired others to 

develop extensions (Yu, 1999) and alternative non-parametric methods for automated 

industrial three term controller design (Crowe and Johnson, 1998,1999,2000). 

In 1994, Hjalmarsson et al. published the first in a series of papers on a model-free 

an roach to restricted complexity controller design (Hjalmarsson et al., 1994). The 
rp 

method was termed the Iterative Feedback Tuning (IFIF) method of controller design. 

The principle behind this approach is to use a set of specific process experiments to 

produce data which could be used in a stochastic optimisation routine to optimise a 

simple loop. 

The seminal papers for the Iterative Feedback Tuning method due to Hjalmarsson et 

al. (1994,1998) adopt a fairly general formulation that incorporates the following fea- 

tures: 

1. A system description involving a stochastic process output disturbance. 
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r, 
-+ 

2 e, Controller U, Process Y. 41 
C(s, p) G. (s) 4 

Figure 5.1: Control system with unity feedback and parametrised controller. 

2. A two degrees of freedom control law. 

I Use of a stochastic optimisation approach (Robbins and Munro, 1951). 

4. A restricted structure control law. 

Consequently this level of generality obscures the simplicity of the method, and makes 

it difficult to investigate some of the issues relevant to industrial or practical implemen- 

tation. A much easier approach to the method is to formulate a deterministic version 

of Iterative Feedback Tuning for the case of simple PI control. This section focuses 

on this case, and provides an algorithm which can be used for iterative tuning of a PI 

controller. The section also investigates the use and implementation of this algorithm 

via simulation for the case of a PI controller. 

This section is composed of two parts. The first part presents a detenrninistic formu- 

lation for a SISO system. The section includes the iterative optimisation problem and 

the development of the main IFT algorithm for the calculation of the gradient. Also, 

a variant to the recursive update of the parameters by using the Hessian is discussed. 

The second part, develops the theory for a MIMO deterministic IFIF tuning algorithm, 

and contains similar topics as the first part extended to the multivariable case. Finally, 

simulations results for several case studies are presented in section 5.1.3. 

5.1.1 IFT formulation for SISO systems 

Consider a single input, single output system driven by a single degree of freedom con- 

trol law, as presented in Figure (5.1), where the reference, reference error, controller 

output and the system output signals are denoted by r, e, u, and y, respectively. 
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Based on this system description, the following lemmas develop the theory necessary 

for a deterministic continuous-time IFT algorithm for single input, single output sys- 

tems. 

Notation 

The notation for the time domain signals is rt, et, ut and yt respectively. The subscript t 

denotes the time dependence of these signals. The notation for the Laplace transforms 

of these signals is r, =Yf rt 1, e, =Yf et 1, u, = Yf ut I and y, =Yf yt I. 

Lemma 5.1.1. Closed-loop relationships 

Given the previous definitions for the system depicted in Figure (5.1), the following 

relations between the system signals hold: 

YS (P) = To (S) rs (5.1) 

e, (p) = So (s) rs (5.2) 

us(p) = SO(S)C(S, P)rs (5.3) 

where, 

TO (S) = 
Go (s) C (s, P) (5.4) [I+ 

Go (s) C (s, P) 

so (S) = (5.5) 
1+ Go (s)C(s, P) 

Proof. From the diagram, the vector of outputs (y, (p)) can be calculated from the vec- 

tor of errors (e, (p)) as in equation (5.6), and the error signal is defined as in equation 

(5.7). 

y, (p) = G, (s) C (s, p) e, (p) (5.6) 

e, (p) = r, (s) - Ys (P) (5.7) 
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Therefore, by replacing the output signal into the error definition and reorganising 

gives equation (5.2). Similarly, replacing the error signal into the output signal and 

reorganising gives equation (5.1). Likewise, the control output can be calculated from 

the error signal as in equation (5.8), and using equation (5.2) gives equation (5.3). 

us(p) = C(s, p)e, (p) 

Remarks: 

(5.8) 

El 

,, The transfer functions S, and T, are known as the sensitivity and complementary 

sensitivity respectively. 

-A PI controller, C(s, p) can be paraineterised as follows, 

, 
Ki 

C(s, p) = Kp +- (5.9) 
s 

and pi Kp, P2::::::::::: Ki, thUS PER2. 

5.1.1.1 Optimisation problem 

Consider the cost functional of equation (5.10), where L, and L,, are weighting filters 

and A is a scalar weight. 

jTf ý (L, et )2 +, ý (L,, ut )21 dt (5.10) 
0 

J(P) 2 Tf 0 

The IFT optimisation problem can then be formulated as, 

mini(p) 
p 
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subject to p>0 and C(p) stabilising the closed loop. This problem is known to be 

the fixed structure (restricted structure) LQ optimal control problem with weighted 

error and control signals. Incorporating a limit process Tf --ý 00 will yield the steady 

state version of the optimisation problem. The condition p>0 is to ensure that the PI 

controller parameters are positive. To simplify the subsequent analysis, the weighting 
filters are set to Le =I and L,, =L 

Lemma 5.1.2. Cost gradient 

The gradient of the cost functional of equation (5.10) with respect to the controller 

parameter vector p is given by, 

di(p) 1f Tf 
e, 

det 
+ý ut 

d ut dt dp Tf 0 dp dp 

Proof. The gradient of the cost functional is found by using Leibniz's Theorem for the 

differentiation of an integral (Abramowitz and Stegun, 1972), 

d b(c) 
f (x, c)dx = 

b(c) df 
(x, c)dx +f (b, c) 

db 
-f (a, c) 

da 
(5.13) 

dc 
la la 

- 
(c) (c) dc dc dc 

Using this theorem in equation (5.12) proves the lemma. El 

The optimisation of the cost functional follows an iterative gradient algorithm, which 

can be surnmarised as follows: 

Algorithm 5.1.1. IFT numerical optimisation 

1. Initialisation 

Choose weighting ý.. 

Choose costing time interval Tf. 

Choose convergence tolerance E. 

Set loop counter k=0. 

Choose initial controller parameter vector p (0) = p,. 
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Gradient calculation 

di f det 
+ ý. ut 

dut (k) 
JT 

et (k) (k) dt 
0 dp Tf 0 dp dp 

3. Check convergence 

If II '3j (k) <E then stop. -j-P 

4. Update parameter vector 

Select or calculate the update parameters yk and Rk 

Compute p (k + 1) =p (k) - ykR- 1 Oj (k) -J-P 

Some important remarks about this algorithm are: 

1. A selection of yk is necessary. This can be fixed step or line search step selection. 

2. Setting R-I gives an algorithm from the steepest descent family of optimisation 

routines. 

3. Setting R= H(p (k)) where H is the Hessian matrix, produces a Newton iteration 

for the optimisation; in this case Hij = 
d2j 

pipj 

IFT implementation 

The challenge of implementing IFT relies in calculating the necessary signals for the 

gradient calculation, directly from the closed-loop system. These signals are et, det 
jp 

ut, and The necessary steps to achieve this are provided through the following 
TP 

Lemmas. 

Lemma 5.1.3. Sub-gradient calculation 

The partial derivatives of e, and u, are, 

de, 
=. -(I)() Te, (5.14) 

dp c(p) dp 
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du, 
S�e, ap 

( 
dp 

) 
(5.15) 

Proof. Equations (5.14) and (5.15) are found by differentiating equations (5-2) and 

(5.3). 

By using this lemma, the error signal e, can be used in a closed-loop identification step 

to generate the gradient expressions as follows. 

Lemma 5.1.4. Signal recording 

Let the error signal e, be used as a reference signal to the closed-loop system, then two 

response signals can be defined as, y(1) and u(I). Thus, the gradient signals (5.14) and 

(5.15) can be calculated as, 

de, 
- -Ggrad(SiP)Y(l) (5.16) dp 

du, 
- 

Ggrad(SiP)U(l) (5.17) 
dp 

where, 

Ggrad (S 
i P) ýý 

[(C('p)) ( 
dp 

)] 
(5.18) 

Proof. Consider the block diagram in Figure (5.1). If the error signal e, is used as a 

reference signal to the closed-loop system, then two response signals can be defined as 

y(1) = Te, and u(1) = SC(s, p)es. Replacing this two responses into equations (5.14) 

and (5.15) proves the lemma. 0 

This lemma can be interpreted as in Figure (5-2) and used for the purpose of simulation. 

If the controller is a PI with a parametrisation as in equation (5.9), then equation (5.18) 

can e wntten as, 

s1 (5.19) Ggrad(S7P) Kps+Ki Kps+Ki 

I 
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r 

Figure 5.2: Signal generation for gradient calculation. 

y 

I 

Lemmas 5.1.3 and 5.1.4 have been derived in the Laplace domain, but they indicate 

how the gradient of equation (5.12) is to be calculated. This requires one set of system 

responses due to the reference r, and a second set of system responses due to the input 

e. Therefore, the algorithm for the gradient computation at iteration step k th is as 

follows. 

Algorithm 5.1.2. Gradient computation, kth step 

1. Setup controller using p (k) 

2. Responses 

Run closed-loop system with reference input r. 

Record signals, et and ut. 

Run closed-loop system with reference input et 
(1) (1) Record signals yt and ut 

3. Processing responses 
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n__ 

Process the recorded signals using, 

de, (1) 
dp 

Ggrad (S 
i P)Ys 

dus (1) 
dp 

Ggrad(SiP)Us 

4. Use time domain formula to compute gradient, 

di 
(k) = -1 

Tf 

et 
det 

(k) +X utd 
ut (k) 

I 
dt T f dp 0 dp dp 

In practice, careful data collection procedures can automate the processing required to 

generate the gradient. This requires routine running in parallel with the data collection. 

In general, a set of two consecutive experiments are required. 

Hessian calculation 

The Hessian can be used during the parameter update to obtain an optimisation algo- 

rithm of the Newton type. The Hessian involves the calculation of second order partial 

derivatives of the cost function and is defined in equation (5.20). The following lenuna 

provides a method to calculate the Hessian. 

d1i d2j d2j 

dpi dpi TP-1 -ý 7 -P2 dpi dp, 
d2j d2j d2j 

JF PI -ýP2 3P2 dP2dP, 

d2j d2j d2j 

dPndpl 3Pn P2 TP 
n 
AN 

Lemma 5.1.5. Hessian calculation 

(5.20) 

Let the Hessian be noted as H(p) and defined as in equation (5.20). Each element of 

the Hessian is calculated by using equation (5.21). 
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d( 9j )f [et d( det 
+ 

det det 1 IT 
äpi dpj 0 Tf 0 dpi dpj dpi 

( 
dpj 

+Ä ut 
a du, 

+ 
du, d ut )]1 

dt dpi dpi 
( 

dpj 

where, 

d (de, ý 
api ýä-pi) 
a (du, ý 

api ýdpj) 

dy(1) 
api 

du0) 
dpi 

d (Ggrad)j 

Y(I) - 
(Ggrad)j dy(1) 

dpi dpi 

d (Ggrad) 
j 
u(1) + (Ggrad )j du(') 

api dpj 

(Ggrad) 
i 

ly (1) 
_2y 

(2) 

(Ggrad) 
i 

[U(l) 
- 2u (2) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

and (Ggrad)j is the jth element of Ggrad as defined previously in equation (5.18). 

Proof. Differentiating the cost gradient with respect to a controller parameter pi gives, 

d( dJ) IT( det )+ det det )] 
-f 

f [et d 
(5.26) dpi dpj Tf 0 dpi dpj dpi 

(dpj 

Ut 
d dut 

+ 
dut ( dut )] 

dt dpi 
( 

dpj 
) 

dpi dpj 

To calculate the second partial derivatives coefficients, differentiate equations (5.16) 

and (5.17), thus giving, 

d ýde, ý d (Ggrad )j 

Y(I) - 
(Ggrad dy(l) 

(5.27) dpi ý dpj ) dpi dpi 

d (du, ) 
_ 

d(Ggrad) 
j 

U(j) + (Ggrad) 
j 

du(l) 
(5.28) 

dpi dPi dpi dpi 
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d (1) (1) 
- To calculate v' recall that y, Te, , thus -rp-i 

dy(1) To 
- S- es + To. 

des 
dpj -ip-i api 

dc 
-2 T 

des Go (l+GoC)-1-GoC(l+GOC) GodCles+ 0 dpj api dpj 
1 dc 

T2] 
c 

[T 
00-T ä-P-i es o 

(Ggrad) 
i 
To es 

= (Ggrad) 
i 
To (1 - 2T0) es 

(G (1) 
grad) i Te, -2 

(Ggrad) 
i ToYs 

(Ggrad), ly (1) 
_2y 

(2) 1 

d 0) U, Similarly for recall that u, SCe,, thus 

(1) dus dSo dC des 
- -Ce +S -es + SoC dpi pi S0 dpi dpi 

2 dC dC (1) (1 + G, C) - G, dpi Ce, + S,, dpi e, - 
SoC (Ggrad) 

i Ys 

(I 
-(Ggrad)iT,, SCes+(Ggrad)iSCes-SoC(Ggrad)iYs) 

(Ggrad) 
i 

[u (1) 
- 2u (2) 1 

Clearly, y(2) = T, (s)y(l) and U(2) = So (s)C(s, p)y(l), thus proving the lemma. El 

Remark: The Hessian is symmetric, therefore only half of its elements need to be 

calculated. 

Notice that the result of the last lemma, implies that there is need for a third experiment 

in which the input reference is the output of the second experiment. The following 

algorithm summarises the IFIF implementation when calculating the Hessian. 

Algorithm 5.1.3. Gradient and Hessian computation, k1h step 

1. Setup controller using p (k) 
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2. Responses 

Run closed-loop system with reference input r. 

Record signals, et and ut. 

Run closed-loop system with reference input et 

Record signals y(1) and u(1) tt 
Run closed-loop system with reference input yt 

Record signals u 
(2) 

and y 
(2) 

tt 

3. Processing responses 

Process the recorded signals using, 

de, (1) 
dp = -Ggra4d (Si P)Ys 

dus (1) 
dp = Ggrad (S 

7 P) Us 

2 d es d dys 
dpidpj =- dpi 

(Ggrad) 
j Ys (Ggrad) 

j dpi 
d2Us 

(1) 
d dus 

dpidpj dpi 
(Ggrad) 

j Us + (Ggrad) 
j dpi 

4. Calculate gradient and Hessian 

Use time domain formula to compute gradient, 

0 

di 
(k) =11 

Tf 
et 

det 
(k) + Äut 

dut 
(k) dt 

dp Tf 0 ap dp 
1 

Use time domain formula to compute Hessian components, 

dý dJ ý= Tf [et 
-d( 

det )+ det ( det 

dpi ýj-pj) 
J. 

Wp-i dpj dpi dpj Tf 
[ut d( dut )+ dut ( dut dt 

dpi ý-Pj wpi jpj 
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Figure 5.3: MIMO IFT system 

5.1.2 IFT formulation for MIMO systems 

Y 

The formulation presented in section 5.1.1 is applicable to SISO systems only. For 

the case of MIN40 systems, the procedure will follow a similar pattern with some 

differences. This section presents the development of the deterministic formulation of 

IFIF for MIN40 continuous systems. As will be demonstrated, the algorithm shows a 

high similarity to the discrete stochastic case developed by Hjalmarsson (1999), in the 

way in which the experiments over the plant are conducted. 

Let the system in Figure (5.3) be a MIN40 square system, which means that the system 

has same number of inputs and outputs. Then, the system vector signals will have the 

following dimensions: yt(p) E RI, et(p) c R', ut(p) E RI, and the systems: G, E 

Rlxm, and C(s, p) E R'xl; so G, C(s, p) E R'x'. 

The Laplace transforms of the vector signals will have the same dimensions as their 

time counterparts. Additionally the parameter vector will be of the following dimen- 

sion pC Rnp. 

Lemma 5.1.6. Closed-loop relationships. 

Given the previous definitions for the system depicted in Figure (5.3), the following 

relations between the system signals hold: 

YS(p) = S(p)G, C(s, p)R, (5.29) 

Es(p) = S(p)Rs (5.30) 

Us(p) = C(s, p)S(p)R, (5.31) 
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where, 

S(P) = [I+G,, C(s, p)]-l (5.32) 

Proof. From the diagram the vector of outputs (Y, (p)) can be calculated from the vec- 
tor of errors (E, (p)) as in equation (5.33), and the error signal is defined as in equation 
(5.34). 

Ys(P) = GC(s, p)E, (p) (5.33) 

Es (p) =R-Y ss (p) (5.34) 

Therefore, replacing the output signal into the error definition and reorganising gives 

equation (5.30). Similarly, replacing the error signal into the output signal and reor- 

ganising gives equation (5.29). Likewise, the control output can be calculated from the 

error signal as in equation (5.35), and using equation (5.30) gives equation (5.3 1). 

Us(p) = C(s, p)Es(p) (5.35) 

r-l 

5.1.2.1 Cost function and cost gradient 

The cost function will be scalar function to be minimised with respect to controller 

parameter vector p. Due to the multivariable structure, the internal signals are now 

vectors, however the Leibniz differentiation theorem still holds, and the gradient can 

be found using Lemma 5.1.7. The gradient however, requires the calculation of sub- 

gradients of the error and control signal. Even though the procedure seems very similar 

to the scalar case, the calculation of these sub-gradients will provide different results. 

Lemma 5.1.8 provides these results and is considered to be the core to the implemen- 
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tation of the algorithm. 

Lemma 5.1.7. The gradient of the scalar cost functional of equation (5.36) can be cal- 

culated with respect to pi using equation (5.37), where pi is the ith controller parameter. 

T 
J(P) 

fT 
et + XUTUt 

2 Tf 0 
et t dt (5.36) 

di(p) I Tf 

eT 
det 

+, jUT 19Ut 
dt (5.37) tt dpi Tf 0 opi dpi 

Proof. Applying Leibniz theorem to equation (5.36) gives, 

di(p) fd [e T 
et] +A 

0 [UTUt] (5.38) 
I 

dt 
I IT 

tt djo 2 Tf 0 opi dpj 

For the partial differentiation of the multiplication of two vectors the following prop- 

erty holds: _ý_ [XTQX] = 2XTQ. Thus using the last property and the chain rule gives dx 

equation (5.37). El 

Lemma 5.1.8. The sub-gradients for et and ut with respect to controller parameter pi 

are calculated in the Laplace domain, and are equal to: 

dE, (p) 
-S(p)G,, Ei (5.39) 

dpi 
dUs(p) fi-C(p)S(p)G, fi (5.40) 

dpi 

where, 

dC(p) 
, 
ei = dpi E, (p) (5.41) 

Proof. The partial derivative of et (p) with respect to any controller parameter pi can 

be calculated in the Laplace domain using equation (5.30) as follows, 
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dE, (p) d; 
fS(p)R, l (5.42) dpi jdp--j- 

- 
ý[I+G,, C(p)j-lR, j (5.43) dpi 

The derivative of the inverse of a matrix with respect to a scalar parameter is calculated 
using the following property, 

a [Y-1(X)] = -y-1 (x) Y-1 (x) (5.44) dx dx 

Thus, differentiating the inner part of equation (5.43) gives, 

dE, (p) 
-S(P)G,, S(p)R, (5.45) dpi dpi 

Then, using equation (5.30) again and definingfi as in equation (5.41) gives equation 
(5.39). Similarly, to obtain the partial derivative of U (s, 

dus(p) 
dpi 

df 
C(p)S(p)R, l (5.46) dpi 

dC(p) 
S(p)Rs - C(p)S(p)G, - (5.47) dpi 

dC(p) 
S(p)R, dpi 

&-C(p)S(p)G, Pj (5.48) 

11 

5.1.2.2 Signal recording 

The problem now is how to calculate the sub-gradients using the system closed-loop 

signals. In the SISO case, the sub-gradients were calculated by using the error signal, 

of a step response experiment, as new reference for the system. Notice however, that in 
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Figure 5.4: MIN40 IFT signal recording. 

Y 

the multivariable case (equations (5.39) and (5.40)), the sub-gradients are a function of 

a known signal (Pi) passing through a particular system filter. The following lemma, 

describes how to calculate the sub-gradients by performing a new experiment as in the 

SISO case, but in a different manner. 

Lemma 5.1.9. Considering the system configuration in Figure (5.4), the partial deriva- 

tives of E, (p) and U, (p) with respect to a parameter pi are equal to, 

dE, (p) 
= Ej(l) (5.49) 

dpi 
d Us (p) 

+ Uip) (5.50) 
dpi 

Proof. From the block diagram in Figure (5.4), the error signal E, (1) is equal to, 

E(l) O-G, U, +C(p)E, (') (5.51) 
sII 

-[I+G, C(p)]-'G, U, (5.52) 

= -S(p)G, U, (5.53) 

and, 

(1) C (p) E, (5.54) 

- -C(p)S(p)G, U, (5.55) 

If U, == Ej, then equations (5.53) and (5.39) are equivalent, thus proving equation 
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Figure 5.5: MIMO IFT simulation implementation. 

(5.49). Similarly, using equation (5.55) in equation (5.40) proves equation (5.50). 0 

5.1.2.3 Algorithm implementation 

Finally, the tuning algorithm follows the same numerical implementation as in the 

SISO case (Algorithm 5.1.1), but the gradient computation is replaced with the fol- 

lowing algorithm for which an equivalent simulation diagram is presented in Figure 

(5.5). 

Algorithm 5.1.4. Gradient computation, k th step 

1. Setup controller using p (k) 

2. Responses 

Run closed-loop system with reference input r. 

Record signal et. 

Calculate& == '3C(s'IO)E(s, p) TP-i 

Run closed-loop system with reference input r=0 and u, = ji 

(1) and uj(1), Record signals ei 
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3. Process the recorded signals using, 

dE (s, p) E, (') (S) 
dpi 

du(SIP) 
fi(s) +UI . 

(I)(S) 
dpi 

4. Use time domain formula to compute gradient, 

di f Tdet +XUTdut 
T fftt 

T 
(k) =e (k) (k) 

I 
dt dpi 0 dpi dpi 

5.1.3 Simulation case studies 

This section presents three case studies of PI tuning in an activated sludge wastewater 

treatment plant. The COST Simulation Benchmark (Copp, 2002) is used to illustrate 

the use of the IFIF algorithm. The first two case studies consider that the DO loop in 

the last aerobic reactor is to be tuned, assuming that the plant will be receive a constant 

influent flow with constant component concentrations. The DO loop in reactor 5 is 

depicted in Figure (3.1). The last example considers the tuning of the fourth and the 

fifth reactor employing the multivariable formulation of the algorithm. 

5.1.3.1 Simulation case study No. 1 

Consider that the PI controller driving the aeration in the last aerobic reactor of the 

COST simulation benchmark is to be tuned. Table (5.1) summarises the algorithm set 

up. 

The simulations were performed by using a step change in the setpoint input from 2 

(mg/1) to 3 (mg/1). Two values of X have been used to demonstrate its effect in the 

algorithm. The step size was kept constant, however it might be possible to use a line 

search to update this parameter at each step; however, since the system is non-linear, 
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the optimisation problem might not be convex and therefore the optimisation algorithm 

might not always reach the global minimum. 

Figures (5.6) and (5.7) show the step responses of the system for the various settings, 

and Table (5.2) shows the obtained parameters. Figure (5.8) and (5.9) show contour 

level plots of the PI controller parameters approach to the minimum of the cost func- 

tion. 

Table 5.1: IFT alvorithm and simulation setuD 
Parameter Value Notes 

Time period, Tf I Achieve steady state 
convergence tol. E machine accuracy 
initial controller 

parameter vector, p (0) 
1.00025 50.0125 

R steepest descent 
10-3 

10-5 

A Fixed size 

T. qhlp 'i ?- IFT 
X Iterations Kp Ki 

10--5--- 
10-3 

3 
2 

4.5580 
4.8148 

150.0686 
50.21813 

5.1.3.2 Simulation case study No. 2 

Consider the same problem as in the previous case; however in this case the Hessian 

will be calculated and use in the parameter update step. Table (5.3) resumes the algo- 

rithm set-up and Table (5.4) the obtained results. Finally, Figure (5.10) presents the 

simulation results. 

The use of the Hessian requires that the step size y and the weighting ý. be reduced and 

augmented respectively. Also, the effect of the change of weight is considerable in the 

obtained responses. Thus, the use of the Hessian in the parameter makes the algorithm 

more sensitive, and therefore special care should be taken in their calibration. 

158 



3.2 
IFT tuning of DO PI controller p_10-5 Y=1 04) 

3 

2.8 

:: Z- 
cm 
92.6 
0 
e2 

2.4 

2.2 

I 
Initial 
iteration 1 
Iteration 2 
Iteration 3 

2 
0 

3.2 

Time (days) 

Figure 5.6: Step responses for 10-5. 
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Figure 5.7: Step responses for X= 10-3. 
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Figure 5.8: Contour level plot for X= 10-5. 
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Table 5.3: IFT algoritbm and --, imulqtion setun 
Parameter Value Notes 

Time period, T f Achieve steady state 
convergence tol. E machine accuracy 
initial controller 

parameter vector, p (0) 
1.00025 50.0125 

R H-1 Newton iteration 

5 
A Fixed size 

T, qhlf-, '5 4- IFT 
Iterations Kp Ki 

5 
3 
3 

10.55 
5.18 

52.38 
50.80 

3.2 

3 

2.8 

2.6 
0 
0 

IFT tuning using Hessian 

Initial response 

X-- 5 

2.4 

2.2 

200.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 
Time (days) 

Figure 5.10: Step responses when controller tuned using a Hessian update. 
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Figure 5.11: Process setup for MIMO IFT. 

5.1.3.3 Simulation case study No. 3 

Wastage 

The problem is now to tune two PI controllers driving the 4 th and 5th aeration tanks 

in the COST WWTP simulation benchmark, as presented in Figure (5.11). Thus, the 

multivariable controller structure is diagonal, and is presented in equation (5.56). The 

parameter vector is defined in equation (5.57). 

ki 

C(si p) 
kp, +S10 

0 kp 2+ 

kp, 

kil 

kP2 

k i2 

(5.56) 

(5.57) 

Table (5.5) summarises the problem setup and Table (5.6) the obtained results. Finally, 

Figures (5.12) and (5.13) present the simulation results. 

From the figures, several conclusions can be drawn. First, for example, the effect of 

the change in X is to make the controller more aggressive. In Figure (5.12), which has 

the smallest Avalue, the response of the tuned PI controller is much more aggressive 

in the sense of producing an overshoot for the DO in the 4 th reactor and making the 

response in the 5th reactor faster, compared to the responses in Figure (5.13). 

Notice as well, the disparity of the response in the 5 th reactor compared with the one 

of the 4 th reactor. Apparently, the optimisation would benefit from different weights 
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for both reactors. However, with the current formulation of the optimisation problem, 
it is not possible to produce this effect. 

If the responses are compared with the obtained in cases I and 2, it appears that the 

MIMO optimisation problem provides better results in sense of being less aggressive. 
This effect could be attributed to the couplings between the two tanks, by the knowl- 

edge of the system during the optimisation. Therefore, the multivariable case performs 

better than the SISO case. 

Table 5.5: 97 alizorithm and simulation setui) 
Parameter Value Notes 

Time period, Tf I Achieve steady state 
convergence tol. e machine accuracy 
initial controller 

parameter vector, p (0) 
1.00025 50.0125 

R I steepest descent 
10-4 

10-5 

Fixed size 

Tnhlip, '5 6- IFT 
Iterations Kpj Ki 

I 
KP2 Ki2 

10-- 
10-5 

5 
5 

3.26 
5.18 

50.13 
50.24 

0.70 
0.99 

49.70 
50.00 
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Figure 5.12: Process response 10-5. 
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5.2 LQG tuning and process control loop monitoring 

The modem treatment of urban wastewater takes places in large-process plant con- 
ditions. Control loops are few, but critical, to the success of unit operations like the 

activated sludge process in the secondary treatment stage. The control problems found 

in this process usually have noisy measurements, unpredictable disturbances and a 

corrosive environment leading to sensor degradation, among others. Therefore it is 

convenient to encourage the development and use of reliable equipment and to sup- 

port control loops with tuning and monitoring software algorithms able to indicate 

when controller settings and measurement devices should be examined for possible 

re-adjustment. 

This section introduces a method which allows the calculation (tuning) of PID type 

controllers for SISO systems. The method employs optimal LQG polynomial theory, 

nevertheless giving simple explicit formulas. The polynomial approach leads to op- 

timal LQG controllers in transfer function form and therefore can be related to PID 

structures. 

The method has been developed assuming that the process can be described by a simple 

first order stochastic process model. This simple process model is introduced for two 

reasons; many key low level processes in wastewater can be described by a first order 

process description; and a first order model introduces significant simplification into 

the formulas of the full LQG procedure described in this chapter. In particular, the 

control law retrieved can be found as PID and explicit formulas can be given for cost 

function values. The fact that the control law is of PID type is particularly useful since 

most wastewater control loops are in fact PID-type controllers. 

Additionally, to achieve an element of reliability, it might be appropriate to use control 

loop monitors in conjunction with the controller devices. One possible architecture is 

to have a loop monitor embedded in the higher levels of the SCADA system running 

the wastewater treatment works, as in Figure (5.14). However, wastewater treatment 
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Figure 5.14: The SCADA system control loop monitoring. 
Loop Monitor 
User Interface 
Compare & 

Decide 
H Cost Filter 
Calculation Wd(s) 

Idenflcf3letir 

n 

n2(t) ............. ;"...... ...... ... .............. Y(t) Controller Y(t) 

Vf ) K(s) ý (S) 

Figure 5.15: The loop-controller-based monitoring. 

plant for smaller urban areas and isolated townships tend to be self-contained with 

PLC based control systems. In this case, an alternative architecture is to have the loop 

monitor embedded within the local controller hardware level, as in Figure (5.15). It is 

also possible that new internet and telemetry technology makes the remote monitoring 

of loops in small treatment plants a possibility, and in this case an extended version 

of the SCADA architecture of Figure (5.14) could be envisaged. Motivated by the 

requirement for simple embedded software algorithms to implement a loop monitor 

that can be used at any level in the process control hierarchy, this thesis reports some 

simple formulas based on scalar polynomial optimal control theory. 

The main content of this section is in subsections 5.2.2 and 5.2.3. The theoretical 

contribution on LQG optimal control is given in subsection 5.2.3. These theoretical 

results are captured as some prototype loop monitor algorithms. Implementation is 

166 



discussed in subsection 5.2.4 where simulation results are presented. 

5.2.1 Benchmarking literature review 

One approach to loop controller assessment uses a benchmark index through which 

actual loop performance is compared with a possible optimised performance bench- 

mark value. Harris and colleagues (Harris, 1989) initiated this conceptual approach 

using the performance achievable through minimum variance control as the bench- 

mark value. The minimum variance approach has been developed extensively over the 

last decade or so (Huang and Shah, 1999; Grimble, 2002). The great strength of the 

minimum variance algorithm is its ability to use online data directly. But, for some 

time there has been a considerable effort to move away from the minimum variance 

criterion and use the full Linear Quadratic Gaussian (LQG) optimal cost value as a 

benchmark index. This study contributes to these research directions. 

5.2.2 Process model description 

Using the first order system state-space model, the following analysis yields a system 

configuration for regulation in the presence of a constant (zero) reference input. 

I 
x+bu+blnl (5.58) 

Ir 
CX (5.59) 

In transfer function form 

X (S) -- 
b 

U(S) + 
bi 

Ni (s) (5.60) 
S+ T S+ 

Therefore, by using the output equation, the system model is given as, 

Y(S) W(S)U(S)+Wd(s)Nl(s) (5.61) 
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Figure 5.16: LQG system description 

where the system transfer functions are given by, 

y(t) 

W (S) = (5.62) 
Ts+ 

Wd (S) KI 
(5.63) 

, rs+ 

and the process noise input is nj E N(O, 1). The polynomial system structure used in 

the derivations is shown in Figure (5.16). 

5.2.3 LQG optimal control analysis 

One finding in wastewater control is that some key low level loops can be modelled 

by simple common process models, as has been explored in Chapter 3. A second con- 

sideration is that most wastewater control loops are PID. The third issue concerns the 

idea that a simple test is needed to be able to compare actual control loop performance 

with an optimal benchmark value. Some theoretical results which can be considered as 

possible solutions for these problems can be derived from the use of a Linear Quadratic 

Gaussian cost formulation. In this section it is shown that if a scalar polynomial sys- 

tems formulation for the LQG optimal control problem is assumed for the first order 

system description, then explicit solutions for the optimal controllers and cost function 

values can be found. Furthermore the optimal controllers designed all belong to the 

PID class of controllers. Thus a benchmark value based on optimal PID controllers 

can be compared against actual industrial PID cost function performance. 
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This section presents three theorems and a corollary which allow the calculation of the 

optimal gain for aP controller, PID controller, and a PI controller, as well as the optimal 

cost. The theorems to be given are derived using the usual steps in the LQG optimal 

control polynomial system methods (Grimble and Johnson, 1988). These standard 

steps are: 

1. Problem and cost function weight definition 

Cost function: 

QAee + Rc(Duu 1 ds (5.64) 
7rj ' 

Weights: 

QC Qcn (5.65) 
Aoq 

Rc 
Rcn (5.66) 

A*A rr 

2. Common denominator model 

IW 
(S) Wd (S) Wr (S) 

I= 
A-' 

IB 
Cd E1 (5.67) 

3. Filter spectral factor 

DfD* CdCd* + EE* (5.68) 
f 

4. Control spectral factor 

D*Dc = B*A*QcnArB+A*A*RcnAqA (5.69) 
crq 

169 



5. Diophantine equation solution 

D*G, + FoAAq c 

D*Ho - FoBAr c 

B*A*QcnDf r 

A*A*RcnDf q 

6. Optimal controller formula and closed-loop relationships 

K= (HAq) -1 GA, 

p, l (s) = D, (s)Df (s) 

7. Optimal cost function values 

Jo 7:::::: Jl + J2 

where 

il =Ij ds 
27rj DT D*D, 

c 
ID D* 

J2 =-ff QcnRcn ds 
27rj 

JD 

D*Dc 
cI 

8. Non-optimal cost function values 

Jee + Juu 

where 

Jee =1fQ, TeTe*ds 
27rj DT 

If 
RcT Juu = uTu*ds 27rj D 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

(5.76) 

(5.77) 

(5.78) 

(5.79) 
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and 

Te = Kd (AKd + BKn) - 1 Df (5.80) 

Tu - Kn (AKd + BK, ) - 1 Df 

Common denominator process description 

A regulation, not a reference tracking, formulation is assumed. Thus benchmarking 

will occur when the system is in steady conditions and not changing over to a new 

reference level, hence set, W, (s) = 0. The common denominator system form for the 

simple system assumptions used in this study is, 

IW 
(S) Wd (S) Wr (S) 

I 
(rs +I )-I 

IK 
Ki 0 

A-' 
IB 

Cd EI 

(5.82) 

Thus, giving the following equivalences 

(rs + 1) 

B=K 

Cd = Ki 

E=O 

Theorem 5.2.1. Optimal P controller 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

Given the following LQG cost function J= : 25r-i fD I QAýee + Rc(D. I ds, where Qc I 

I 
Qcn and Rc = 

Rcn 
; with Qcn = 1, Rcn P2 and Aq = A, = 1, the optimal control gain 

AýAq A*A, r 

can be calculated as, 

Kopt 
aK (5.87) 
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where, 

2 
1+ 

2 (5.88) 
p 

and the optimal cost function value, J, is given by, 

2K2 (CC 
_ 1) 2 K12 

Jo 
pI+ 

(5.89) 2aK2 2a 

Proof. Given the system defined in common denominator form, and setting Q, =I and 
R, = 1, therefore giving Q, = Rcn = Aq = Ar = 1. Replacing the respective values in 

the filter polynomial spectral factor of equation (5.68), gives: 

Df = KI (5.90) 

Replacing the equivalent values into the control spectral factor of equation (5.69) gives: 

D*Dc = p2 -T 
2s2+I+ K2 

(5.91) 
cp2 

Therefore giving, 

Dc =p(, rs + a) (5.92) 

where, 

+ 
K2 

(5.93) 
r 

10 
2 

Evaluating the Diophantine equations (5.70) and (5.7 1) gives equations (5.94) and 
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(5-95). 

P(-TS+O09o+fo(-Ts+l) = KKI (5.94) 

P(-Ts+a)ho-foK = (-, rS+I)p2K, (5.95) 

The three unknown factors in these equations (g, f, and h, ) are found by equating 
each term of each side of both equations, thus giving the overdetermined system of 
equations (5.96) through (5.99). 

si -Prg, + f,, r =0 (5.96) 

so P ag,, + f, = KKI (5.97) 

si -Prho = _Tp2KI (5.98) 

so p aho - foK - p2KI (5.99) 

Using equations (5.96), (5.98) and (5.99) yields the following solution to the system: 

ho = pKI (5.100) 
KI(a-1) 2 fo =Kp (5.101) 

K, (a - 1) 
go =K -P (5.102) 

The remaining equation (5.97) is evaluated in the solution giving the same result on 

both sides of the equation, thus proving uniqueness of the solution. The optimal gain is 

then calculated by evaluating equation (5.72) in the solution of the implied Diophantine 

system, thus proving the first part of the theorem. 

The second part of the theorem consists of obtaining the optimal cost function value. 

To do so, replace the appropriate values into equations (5.75) and (5.76) and evaluate 

as follows for JI: 
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2 2(CC )2 
J1 p Ki ds 

(5.103) 27rK2j 
JD 

(-rS + 1) (TS + 1) 

expanding the integral into partial fractions and using the residue theorem gives, 

ý2 2 (a 
- 1)2 KI 

(5.104) 2aK2 

Similarly for J2, 

k-2 
J2 - 

1" (5.105) 
2a 

Thus, making JO = J1 + J2 proves the second part of this theorem. 11 

Theorem 5.2.2. Optimal PID controller 

Given the following LQG cost function J= -L 27rj 
fDI Qc(Dee + Rc(D,,,,, Ids, where Qc 

Qcn and Rc = Rcn ; with Q, = 1, R, = p2, Aq= s, and A, == (, rs + 1); the optimal AýAq A*A, 
r 

control gains can be calculated as 

Kp = 
(go +gI rr) (5.106) 

ho 

Ki = 
91 (5.107) 
ho 

Kd = 
go Tr (5.108) 
ho 

where 

2, rKIp 
go = (5.109) 

p (I + b) + KTr 

gi = Kj (5.110) 

ho = Klp p (I + b) - Krr (5.111) 
[p 

(I + b) + KTrl 

b=+2, rK + 
Krr )2 

(5.112) ýIp(p 
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Proof. Given the system defined in common denominator form, and setting Q, =I and 
R, = 1, therefore giving Qcn = Rcn == Aq = A, == I- Replacing the respective values in 

the filter polynomial spectral factor of equation (5.68), gives: 

Df = KI (5.113) 

Replacing the equivalent values into the control spectral factor of equation (5.69) gives: 

D*D, = K2 (_, r r S+ 1) (, r rS+I)+, 02(_S2)(_, rS+I)(_, rS+I) (5.114) c 

Reorganising equation (5.114) and grouping terms gives: 

D*Dc = p2(, rS2-bs+c) (rS2 + bs + c) (5.115) 
c 

where 

0 
b Vf 1+ 

ýTK 
+( 

jTr )2 
(5.116) 

lo to 
K 

c= (5.117) 
p 

Evaluating the Diophantine equations (5.70) and (5.7 1) gives equations (5.118) and 

(5.119). 

.0(, 
rS2 -bs+c)g(s)+f(s)(Ts+l)s = K(-Ts+I)KI (5.118) 

, 0(, rS2- bs+c)h(s)-f(s)K('rrs+l) = (_, rS + 1) (_S) 
'02K, 

(5.119) 

By selecting the strUCtUre f (s) = fs + fl, g(s) = g, s +gI and h(s) = h, equations 

(5.118) and (5.119) yield, 
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OS + fl) (TS2 + S) 
(TS 2_ bs + c) (goS + gl) + (f KKI (- Ts + 1) (5.120) 

p (rS2 
-bs+c)ho-K(fos+fl)(, rs+l) p2K, ( , rS2_S) (5.121) 

Equating powers of s in equations (5.120) and (5.121) give respectively: 

s3: PTgo +foT -0 (5.122) 

s2: PTgl -pbgo+fo+flr=0 (5.123) 

si : -pbgl + pcgo + f, == -KKI T, (5.124) 

so : pcgi = KKI (5.125) 

s2: prh,, - f,, Kr, =p2 Klr (5.126) 

si: -pbh, - fK - f, Kr, = _p 
2KI (5.127) 

so : pcho - Kfj =0 (5.128) 

The resulting system yields 7 equations and 5 unknowns (f, fl, g, gj, and h, ). The 

solution of this overdetermined system is unique, and gives the following solution: 

h, = Ki pp 
(I + b) - Kr, 

(5.129) 
[p 

(I + b) + Krr] 

fo = -Pgo (5.130) 

f, = ho (5.131) 

go 
2, rK, p (5.132) 

p (1 + b) + Krr 

g1 Ki (5.133) 
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Therefore, the optimal controller gains are: 

K, pt (s) GoAr 
(5.134) HoAq 

(gos+gl)(, rrs+l) 
(5.135) h, s 

Finally giving: 

Kopt (s) go + glrr I Tr )+ (gl) 
+ 

(go )s 
(5.136) ho ho s ho 

p= 
9o+9ITr, K, = rMus, K and Kd - 90r. ho ho -h0 

For the case of PI controller, the controller gains can be determined by using the fol- 

lowing corollary from the previous theorem. 

Corollary 5.2.1. Optimal PI controller 

If the parameterr, is set to zero, then the results of Theorem 5.2.2 are those for optimal 

proportional and integral control. 

The corollary shows that with r, = 0, the optimal PI occurs, and hence increasing the 

value of r, slowly introduces the D term in the controller. 

Theorem 5.2.3. Optimal PID control cost 

For the optimal controller of theorem 5.2.2, the optimal cost value is given by, 

Jo 
----7 

JI + J2 

with, 

(5.137) 

Al 
(5.138) 

p2 
2A2 (5.139) J2 K, 
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and, 

22 
Al 

Cfoe +fi T 

2bcT 
T 

A2 
2bc 

Proof. The closed-loop poles of the PID optimal system are given by, 

pci(s) = Dc(s)Df(s) 

= KIp (Ts2 + bs + c) 

(5.140) 

(5.141) 

(5.142) 

(5.143) 

where b and c have been defined in the previous theorem in equations (5.117) and 

(5.116) respectively. Complex poles occur if: 

2, r2 2KT Kr 

pp 
(5.144) 

To determine the cost function values, it will be necessary to perform a partial function 

expansion of the kernel prior to the use of the residue theorem to evaluate any of the 

two integrals in J, and J2. Examining first JI, 

ii =I 
f*f 

ds (5.145) 
27rj 

fD 

D*Dc 
c 

Therefore performing a partial fraction expansion over the kernel, 

Pf (-fos + fl) (fos + fl) (5.146) 
D*D, p2(. rS2 - bs + C) (, rS2 + bs + c) c 

I -As+B +-As+B (5.147) 
p2 TS2 - bs +c Ts 2+ bs +c 
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Hence, 

(-fos + fi) (fos + fl) (-As + B) (, rS2 + bs + c) (5.148) 

+ (As + B) (, rs 2- bs + c) 

Equating coefficients of powers of s: 

2 
s 2 

-f, ' = 2(-Ab + Br) (5.149) 

s0 f12 = 2Bc (5.150) 

Hence, 

B 
fi 

(5.151) 
2c 

( 
2+ f 

12, r 

0 
(5.152) A fl 

2b c 

Thus using the notation A, = -A and BI == B yields, 

il 
-1(1) 

Ir Als + Bi 
ds (5.153) 

27rj p2 D (, rS2 - bs + c) 

Examining the second term Q2), 

I DfD* 
Q J2 f 

cnRcn ds (5.154) 
27ri 

JD 
DC*Dc 

K12 
2 

ds 
2+ bs + C) 

(5.155) 
27rj 

fD 
(TS - bs + C) (Ts 

Doing partial fractions over the kernel, 

I'- -As +B-+ 
___ 

As+B 
(5.156) 

(, rS2 - bs + C) (rS2 + bs + c) - (TS2 - bs + c) (rS2 + bs + c) 
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Equating coefficients of powers of s: 

s2 

s0: 

0=2 (-Ab + Br) (5.157) 

I= 2Bc (5.158) 

Therefore, B= -I- and A= Finally, use the notation A2 = -A, and B2 = B, which 2c 2bc 

yields, 

1 2) A2S + B2 
J2 

27rj 
(K 

I 
fD 

(, rS2 - bs + c) 
ds (5.159) 

This concludes the proof of the theorem. 0 

Loop monitoring 

To conclude with this section, the loop monitoring algorithm is presented, with the 

purpose of providing a summarised guideline for aa real-time implementation. 

A benchmark index is created using the optimal cost value. The cost will satisfy the 

relation, 0< Jpt :! ý J,,, t and this can be used in the form, 

0< BILQG 
-< 

I (5.160) 

with benchmark index BILQG = Jpt1J,,, t. Hence, the installed PID controller can be 

considered to be operating with near optimal PID control performance if BILQG is close 

to unity. A small value of BILQG would indicate re-tuning of the installed controller 

advisable. The actual plant cost to be calculated on-line would be, 

J�, t lim E 
Tf [(Qe(t) )2+ (Ru(t) )2 ] dt 

Tf -+00 
(5.161) 

The generic loop monitor algorithm for this type of LQG loop assessment can be given 

in terms of the following steps. 
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Algorithm 5.2.1. Loop monitoring algorithm 

1. Process estimation 

On-line data used to estimate K^ KI, and T. 

2. Optimal LQG cost calculation for the particular P, PI, PID controller. 

3. Process PID cost (equation (5.161)) is calculated with on-line data. 

4. Assessment and decision by computing the benchmark index (BILQG) and com- 

panng to unity to quantify performance achieved. 

5.2.4 Case studies 

Three case studies are presented in order to exemplify the use of this tuning method and 

monitoring technique. The first two examples compare the optimal LQG tuning with 

the sustained oscillation version of the Ziegler-Nichols methods, and then compares 

their responses. The third case, is an example of the loop monitoring algorithm. 

All three examples employ a linear continuous model, which can be representative 

of a wastewater treatment process. In particular, as discussed in Chapter 3 and in 

(Mahathanakiet et al., 2002), dissolved oxygen can easily approximated to a first or 

second order linear model. Therefore this case studies assume that dissolved-oxygen 

can be modelled by a first order system for the controller design, and the plant process 

is of third order. 

5.2.4.1 Process model 

The test system is chosen to illustrate some features of interest. The design plant is, 

4 
G.. 3s+l 
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The noise process is, 

Gd 0.5 
3s+l 

The simulated plant includes some model mismatch, 

Gp = 
4 

(3s+ 1)(0.2s+ 1)2 

The LQG optimal control uses W (s) == G,,, (s), Wd (s) = Gd (s) and W, (s) = 0. Thus, 

the design studies uses the models, G,, (s) and Gd(S), but the simulation trials use the 

mismatched model, Gp(s). 

5.2.4.2 Ziegler-Nichols design 

A sustained oscillation experiment was performed and PID controls designed using 

the Quarter Amplitude decay rules. The ultimate gain and period were identified as, 

8.5 and P,, = 1.2. The calculated PID-type controller gains and time constants 

are presented in Table (5.7). 

Table 5.7: Ziealer-Nichols design 
Controller Kr ri Td 

p 4.250 - 
Pi 3.825 0.9996 - 

PID 5.100 0.600 0.15 

5.2.4.3 LQG PID control 

The model data was used with the theory of Theorems 5.2.1 and 5.2.2 to find the op- 

timal gains. Very little design data is required: the model parameters K-4, K, = 0.5 

and r=3 are needed and Table (5.8) shows the interpretations of the design param- 

eters. Table (5.9) presents the calculated parameters for a set of values of p and r,. 
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Finally Figures (5.17), (5.18) and (5.19) show the step response simulation results of 
the designed controllers. 

Table 5.8- LOGFPIT) iipqion irnipe 
Controller Notes 4.;, 

The relative speed of response, and the amount of DC offset 
P is given by p>0. Smaller p values give faster responses 

and smaller DC offsets but increases the overshoot. 
PI The relative speed of response is given by p>0. Smaller p 

values give faster responses. Set r, = 0. 
The relative speed of response is given by p>0. Smaller p 

PID values give faster responses. Parameter r, >0 increases the 
amount of derivative control introduced. 

Table 5.9: LQG PID control desijzn 
Tr Kp Ti Td 

p 0.4 N/A 2.2625 - - 
0.7 N/A 1.2003 - - 

Pl 0.4 0 1.7026 0.6810 - 
0.7 0 1.2350 0.8645 - 

PID 0.7 0.2 1.8475 0.9324 0.1571 
0.7 0.6 4.1187 1.1316 

, 
0.2819 

5.2.4.4 Loop monitoring 

The Loop Monitor concept depends on being able to compute benchmark cost values. 

Recall the online cost function to be computed as equation (5.161). Then the theoreti- 

cal value of Jpt is used to find the Benchmark index BILQG- Steady system regulation 

conditions are necessary for a valid comparison to be made across different control 

designs. Table (5.10) shows some selected cost and benchmark calculations obtained 

from 10 independent trials with PI control and different noise sequences. The ZN PI 

control is only 56% as effective as the LQG PI optimal control and re-tuning is strongly 

advisable. Figure (5.20) shows the cost computation traces for the two controllers for 

one of the ten trials made. The clear separation shows significant difference in ZN and 

optimal PI control performance. 
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1.5 
ZN and optimal P responses 
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Figure 5.17: ZN and optimal P responses 
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Figure 5.18: ZN and optimal PI responses 
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Figure 5.19: Optimal PID designs 
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Table 5.10- Benchmark mmmitntinn, f,,, VT 

Cost Computation fbrZiegier-Nichols PI Design 

Cost Computation for Optimal LQG PI Design 

0.14- 

0.12- 

0.1 - 
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0.02 

L 
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Figure 5.20: Process and optimal cost 

5.3 Summary 

Some loops in process control and in wastewater treatment plant can be modelled by 

simple first order stochastic system processes. However in certain conditions it will 

not always be possible to identify directly the system. Also, the controllers on such 

loops are almost always of PID form. This chapter has presented the development of 

two methods to tune PID type controllers: IFT and LQG, and process loop monitoring 

algorithm. This section surnmarises the results and contributions Presented throughout 

the chapter. 

Degree of mismatch=Jpt (design model)/Jpt (actual plant)=0.5727 

Design model Mismatched model 
Jopt JZN Jopt JZN 

Estimated cost 0.0126 0.0222 0.0220 0.0951 
Theoretical cost 0.0126 - - - BILQG 1 0.5676 - - Estimated values - - 1 0.2313 
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IFT tuning 

The first section of this chapter is the development of a continuous-time deterrnin- 

istic formulation of Iterative Feedback Tuning (IFT) for SISO and MIN40 systems, 

which was originally introduced by Hjalmarsson et al. (1994); Hjalmarsson (1999) 

for discrete stochastic systems and for SISO deterministic continuous systems by Ma- 

hathanakiet et al. (2002). Therefore the main contribution of this section is the devel- 

opment of the MIMO continuous deterministic formulation. 

EFT does not require explicit models, but a set of experiments to be performed over the 

plant. A cost function is minimised by implicitly calculating the gradient using signals 

recorded from the experiments. 

For the SISO case, two case studies are presented: (a) steepest descent optimisation 

(b) Newton type update. The Newton type update requires the calculation of the Hes- 

sian matrix. The calculation of the Hessian matrix is performed by an additional ex- 

periment. Simulation results of both approach demonstrate that the use of Hessian 

produces an optimisation procedure which is more sensitive than the standard formu- 

lation. The calculation of the Hessian is however considerably more complex than for 

the standard formulation. 

Simulation results of the MIN40 formulation show the versatility of the method. How- 

ever, the method showed some limitations in the degrees of freedom to improve the 

optimisation routine for each individual loop. Also, there is a considerable amount of 

experiments required. The number of experiments depends on the number of parame- 

ters to tune. 

LQG tuning and process loop monitoring 

The second method presented in this chapter employs simple models which lead to 

explicit solutions of a LQG polynomial system optimal control problem. An original 
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theoretical contribution of this chapter was to show that the optimal LQG controller 

belongs to the PID family. Resorting to a benchmark framework then enables optimal 

LQG-PID controllers and corresponding benchmark values to be compared with actual 

PID controller performance. 

The method developed provides very simple equations for the design of a PID type con- 

troller. The simulation results corraborate the theoretical results. Further, the method 

development also gives explicit equations for the calculation of the cost function, and 

therefore a simple to use benchmark is easy to derive. 

Simulation results present the comparative effects of changing the tuning parameters 

and also a comparison with the sustained oscillation Ziegler-Nichols method. 
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Chapter 6 

Data-driven design of restricted 

structure controllers 

Restricted-structure controllers are those whose structure has been fixed independently 

of the plant order. Even further, in some cases the controller parameters are fixed to a 

certain range of allowed values. In general, these controllers are of a lower order than 

the plant they control. Typical examples of such controllers, commonly employed in 

industry, are phase lead, phase lag, phase lead-lag and PID type controllers. 

Design methods for these controllers use a wide range of control theory and com- 

putational approaches. Therefore, it is quite difficult to provide a classification of 

all the design techniques developed. This chapter will consider the broad classifica- 

tions of model-based and model-free methods. Model based methods can be further 

categorised into parametric model methods and non-parametric model methods. The 

parametric model methods can use either transfer function models, state-space models 

or, as in this section, data-based identified subspace models. Non-parametric methods 

usually use one or two frequency response data points on which to base the controller 

design. On the other hand, model-free methods manage to use plant responses directly 

without the need for an intervening model description. 

188 



The general problem presented in this chapter is the tuning of conventional determin- 

istic controllers, for example of PID type, such that their performance is as close as 

possible to that obtainable from a full order LQG controller. The solution procedure 
involves optimised restricted structure multivariable controllers and models from the 

subspace identification paradigm. The restriction of the multivariable structure of the 

process controller allows: (a) the controller input-output structure, (b) the number of 

controller parameters within the individual controller elements and (c) the numerical 

range of the controller parameters all to be defined. The subspace identification part 

of the method involves the use of closed loop plant data and subspace identification 

techniques to develop a linear process model in matrix form. 

The chapter is organised in the following way: first, the subspace framework employed 

to develop the method is briefly introduced in section 6.1. Section 6.2 discusses the 

characterisation of a univariate control system. Section 6.3, extends the univariate 

results to the multivariable case thus providing a more general perspective. Later, 

in section 6.4 the method and its conditions are developed. Several simulation case 

studies are presented in section 6.5. The chapter ends with a brief summary of the 

main results achieved. 

6.1 A subspace framework 

This section presents a subspace framework necessary for the development of the tun- 

ing method in the following sections. This framework is the intermediate system rep- 

resentation between the input-output equations and the full state-space matrix repre- 

sentation as presented in Chapter 3. 

Consider a plant described by the set of equations (6.1-6.2), operating in closed-loop 

driven by a controller described by equations (6.3-6.4), as in Figure (6.1). 
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--------------------------------------- 

Multivariable 
Sampled-data System: 

r(k) 
khý 

e(k) Multivariable u(k) 
P_ Digital Plant 

Controller 

------------------------------ 

yiý 

-------- I 

Figure 6.1: Closed-Loop System 

x(k+l) = Ax(k)+Bu(k)+Kv(k) 

y(k) = Cx(k)+Du(k)+v(k) 

xc(k+l) = Acxc(k)+Bc[r(k)-y(k)] 

u(k) == Cx, (k)+D, [r(k)-y(k)] 

y(k) 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

where u (k) G RI, y(k) E R', x(k) c Rn and x, (k) E R1 are the process inputs, outputs, 

states and controller states respectively. K is the the Kalman filter gain and v(k) is an 

unknown innovation sequence with covariance equal to: 

E [v (k) J (k) ]- (6.5) 

The problem can then be formulated as how to identify the plant parameters using 

closed-loop data and knowledge from the controller. There are several ways of solving 

this problem as for example the method presented by Verhaegen (1993) using MOESP. 

The method presented in (Favoreel et al., 1998; van Overschee and De Moor, 1996a) 

has been adopted in this study, and is described below. 

Consider a sufficiently large amount of data fu (k) I and fy (k) I and knowledge of the 

controller parameters so the past and future block Hankel matrices for u(k) and y(k) 

can be constructed by considering a backward and future horizon of dimension N, as 

in equations (6.6) and (6.7) for the case of u(k), wherej is the number of columns. 
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UO Ul ... Uj- I 

UP I Ul U2 ui 

UN-1 UN UN+j-2 

UN UN+l UN+j-1 

U f 
UN+ I UN+2 UN+j 

U2N- I U2N U2N+j-2 

(6.6) 

(6.7) 

The factor has been added for statistical purposes. In general, subspace identifica- 

tion assumes that there are long time series of data (j --+ oo), and the data is ergodic. 

Due to this, the expectation operator E (average over a finite number of experiments) 

can be replaced with a different operator Ej applied to the sum of variables. This oper- 

ator can therefore be defined as in equation (6.8). Thus, the factor -L has the function VY 

of preprocessing the data matrices. 

Ej lim 
I. 

i +mi 
(6.8) 

The matrix input-output equation for the plant, (equation (6.9)) and for the controller 

(equation (6.10)) can be obtained by recursive substitution of equations (6.1-6.2) and 

(6.3-6.4) respectively. 

Yf I FN Xf + HN Uf + HN' Ef 

Uf rN Xy + HNC (R 
f- Yf ) 

(6.9) 

(6.10) 

The matrices HN, FN, HNI and rNc are the lower block triangular Toeplitz matrices and 
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the extended observability matrices for the process and the controller respectively, and 

are defined as in equations (6.11) and (6.12) for the process in (6.1) and (6.2). 

D00 

CB D ... 0 
HN 

CAN-2 B CAN-3 B ... D 

]FN C CA CA2 ... CAN-1 
] 

(6.12) 

Substituting equation (6.10) in (6.9), gives the expression for the system operating in 

closed-loop as presented in equation (6.13). 

Yf ::::: ý TNIFNXf + TNHNNf + HNEf (6.13) 

where Tý71 =I+ HNHý and Nf = IINXý + HýRf . Additionally from equation (6.10) it 

is evident that equation (6.14) holds, and Nf is uncorrelated to Ef since XfE T-0 and f- 

RfEfT = 

Nf == Uf +HkYf 

Therefore, the output prediction Yf can be estimated when j --+ oo, as: 

Yf = L, ',, Wp +4 Nf 

where 

WP 

yp 

UP 

L -i 

(6.14) 

(6.15) 

The term 4Wp, is a bank of Kalman filters, as proven in (van Overschee and De 
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A 
Y Moor, 1996b, p. 69-72), therefore f is considered to be the best possible prediction 

(estimate) of Yf. The matrices L' and LI,, are calculated by minimising the Frobenius w 
norm as in (6.16). 

2 

min Yf - 
WP 

(6.16) 
Lc Lc 

L C. L, C. 
] 

wuI Nf 
JF 

The numerical implementation to find LI and L' is a RQ decomposition as defined in WU 
equation (6.17). Using this decomposition it is possible to prove that Lc and Eu can be W 
calculated as in equation (6.18), where t denotes the Moore-Penrose pseudo inverse 

(van Overschee and De Moor, 1996b; Ruscio, 2000). 

WP Ril 0 0 QT I 

Uf R21 R22 QT 02 (6.17) 

Yf R31 R32 R33 QT 3 

- t 

R11 0 
L. C LC. R31 R32 

1 
(6.18) 

R21 R22 

The closed-loop matrices L, ',, and LI,, are related to the open-loop matrices L,, and L,, 

by equations (6.19) and (6.20), which are derived by comparing the closed-loop model 

with its equivalent in open-loop. 

Lc= (6.19) 'U- TNLu 

Lc = TNLw (6.20) 
w 

Finally, the open-loop matrices L,, and L,, can be found by using equations (6.21) 

and (6.22), which are obtained by substituting the expression for TN into (6.19-6.20) 

and rearranging. L,, must be approximated to a rank-n deficient matrix, where 'n' is 

estimated by a Singular Value Decomposition, as in (6.23). 
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Lu = Lu (I - HNLu) -1 (6.21) 

Lw = (I+LuHN)L,, (6.22) 

LW = Ul U2 
Sn 0 VIT 

(6.23) 
00 vT 2 

The plant prediction model is then given as a function of the future input vector fif 

and the past input-output vector wp as in equation (6.24). Note that the identification 

method is valid even if the signals are generated by purely deterministic systems. This, 

however, can lead to rank deficient Hankel matrices, which can produce numerical 

problems depending on the decomposition algorithm employed. This phenomenon 

is produced when a straightforward implementation of the Schur algorithm is used 

to compute the R factor in a fast RQ decomposition using the Hankel structure. As 

stated in(van Overschee and De Moor, 1996b, p. 163), this is not often the case in 

practice, however systems with many outputs or with heavily coloured input signals 

can generate Hankel matrices that are nearly rank deficient. 

yf wp + L,, u^f 

where 

T 
A 

Uf = Ul ... UN 

T 

WP = Y-N+l YO U-N+l UO 

I 

Incremental subspace representation 

(6.24) 

Equation (6.24) gives the best prediction of the output ^ given the future inputs U^f and Yf 

past output-inputs wp. However, it is sometimes more useful to have a model defined 
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in terms of the changes in the control signal rather than the signal itself. To do such 
a modification, several approaches have been suggested in the literature as in Ruscio 

(1997a) and Kadali et al. (2003). Both approaches yield the same formulas; however, 

they consider different signal frameworks. In Ruscio (I 997a), a deterministic approach 
is considered, while in Kadali et al. (2003) a stochastic framework is employed. The 

two approaches are presented in this section. 

6.1.1.1 Deterministic case 

Consider the process described by equations (6.1) and (6.2), where v(k) has been set 

to zero to assume a deterministic system. Define then a new state variable z(k) such 

that z(k) = x(k) - x(k - 1). Then, the system equations can be transformed into equa- 

tions (6.25) and (6.26), and therefore the process matrix input-output equation is as 

presented in (6.27). Note, that the extended observability matrix and the block lower 

triangular Toeplitz matrix have not changed since the system matrices are the same. 

z(k+l) Az(k)+BAu(k) (6.25) 

Ay(k) Cz(k)+DAu(k) (6.26) 

Ayf ll'NZf+HNAUf (6.27) 

Using equations (6.25) and (6.26) recursively it is possible to calculate the output pre- 

diction ^ at instant k+N, as presented in equation (6.28). Y 

Y^(k + N) = y(k) + (CAN- I+--- +C)z(k+ 1) + 

(CAN-2 B+ -- . +CB+D)Au(k+ 1) + 

---+ (CB+D)Au(k+N- 1) +DAu(k+N) 

(6.28) 
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Therefore the output prediction is: 

where 

A AA 
A 

Yf =: yt + rNz(k + 1) +H uf N 

c 

TNA 
CA+C 

cAN-1 +... +C 

H N"ý' = 

D00 

CB+D D ... 0 

CAB+CB+D CB+D ... 0 

CAN-2B+--. +D CAN-3B+... +D ... D 

(6.29) 

(6.30) 

(6.31) 

A By comparing 11-ý and u'ý' with IFN and HN, it is simple to verify the relations in (6.32) N 

and (6.33), where 1,,, is the gh row block of dimension W of L,. Therefore, the 

incremental form of the system is presented in equation (6.34). 

IMN 00 

IMN IMN 0 
(6.32) 

L 
ImN ImN IMN 

lw, 

LAW 
1W2 + lwl 

(6.33) 

IN Ei= 
l "Wi 

Yf = Yt + LýWAW, + lýmif (6.34) 
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Stochastic case 

Assuming the process defined by equations (6.1) and (6.2), using an integrating white 
noise model as in equations (6.35) and (6.36), and making the same change of variable 
as in the previous case, the incremental stochastic process model is then described by 

equations (6.37) and (6.38). Consequently, the input-output matrix equation is pre- 
sented in (6.39). 

v(k + 1) v(k) + a(k) 

v (k) a(k) 
A 

z(k+l) = Az(k)+BAu(k)+Ka(k) 

Ay (k) = Cz (k) + DAu (k) +a (k) 

Ayf ::::::::: ll'NZf + HNAUf + HkAf 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

The output prediction at sampling instant k+N can then be calculated as in (6.40). 

Y^(k+N) = y(k)+(CAN-I+. -. +C)z(k+l)+ 

(CAN-2 B+-. . +CB+D)Au(k+ 1) +.. - 

+ (CB + D) Au(k +N- 1) + DAu(k + N) 

+ (a(k) +--- +a(k+N)) 

(6.40) 

This can be written in the same way as in equation (6.34); therefore the best output 

prediction can be calculated in the same manner as in the deterministic case. 
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------------------------------------- 

Sampled-dafa Sysfem! 
r(k) e(k) u(k): y(k) Digifal 

Planf Confroller 

------------------------------------- 

Figure 6.2: Closed-loop SISO system 

6.2 Univariate restricted structure controller charac- 

terisation 

This section presents an introduction to the problem of the parameterisation and defi- 

nition of the structure for a single input - single output (SISO) plant. First the param- 

eterisation of a typical PID type discrete controller is presented. Later, the controller 

structure for a SISO type system is introduced. A more complete and general descrip- 

tion of both of these topics is given for the multivariable controller characterisation. 

6.2.1 Controller parameterisation 

Consider the SISO closed-loop system in Figure (6.2), with plant model described 

by equation (6.34). Assume a sufficiently extensive database of the signals r, y and 

u. A discrete PID controller can be defined by equation (6.41), and the incremental 

control action by equation (6.42), where kp, ki and kd are the proportional, integral and 

Ap 
derivative gains respectively. 

k 

u(k) = kp - e(k) + ki L e(n) + kd [e(k) - e(k - 1)] (6.41) 
n=I 

AU^(k) = u(k)-u(k-1) (6.42) 
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From equations (6.41) and (6.42), it is easy to find the time expression for the control 

action increment as in equation (6.43). 

Au^ (k) == p (1) e (k) +p (2) 
e(k- 1) +p (3) 

e(k - 2) (6.43) 

where: p (1) = kp + ki + kd, p (2) = -kp - 2kd and p (3) =kd. 

Equation (6.43) can be parameterised as in equation (6.44). 

AU^ (k) =1 e(k) e(k-1) e(k-2) 
1p 

(2) (6.44) 

-p 

(3) 

- 

Which in compact notation can be written as: 

AUO eo e-I e-2 (6.45) 

To comply with a digital PID structure the controller parameter vector p must comply 

with the following linear constraints: 

000 

oiop0 (6.46) 

00 -1 0 

or equivalently: 

(P. p<0 (6.47) 

The future increment control action can then be written as in equation (6.48) and in 

compact form in equations (6.49): 
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ei eo e-i 

Uf e2 ei eo 
p (6.48) 

eN eN- eN-2 

Mf (p) -p (6.49) 

where 

-C 
(P) =1 41 1 92 1 43 

1 
(6.50) 

6.2.2 Univariate controller structure 

In equation (6.49) it is still necessary to calculate the matrix of closed-loop errors E (p). 

This matrix can be directly derived from the error definition. Since rf has been set to 

zero, it is evident that the matrix E is equal to: 

41 92 1 ý3 

T 
Af 

fl. y Th *yf Th 'yf 

TP 
I- YP TP2 * YP TP3 * YP 

I 

where: 

Tf 
1= 

IN 

00 

00 
Th 

010 

(6.51) 

(6.52) 

(6.53) 
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O" 000 

Th 

00 

00 (6.54) 

00 
TP 1= 

ON 

00 

00 
TP2 

L00 

00 

00 
TP3 

00 
L 

(6.55) 

(6.56) 

(6.57) 

As will be discussed in a later section, the matrices Tf and Tp can be directly calculated 

from the controller structure. At present, these matrices do not show the controller 

structure by simple inspection. The discussion in this section will be limited to say 

that a SISO controller of this type will have a structure as presented in equation (6.58). 

Later in the chapter, a complete discussion regarding the controller structure and its 

importance in the controller design is presented. 

A= (f 11) (6.58) 

By using equations (6.34) , (6.49), (6.5 1), and defining 4> = rf - yt - L; wAAwpg the 

following set of equations are obtained: 
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92 (0 

43 

where 

(1) Luý p (2 
u 

IN +P )L, 6' 

p (, )TjýA I +p(2)T fuN f2 LAU 

up 
(2) Tf u 

P(I)TfJ'ý A 

(1) 

Cl) =-T Th 41) P2YP 

Th (1) - TP3 YP 

p (3) LIU" 

(3) Tu p f2 Lý 

(3) T LA IN +P f3 u 

(6.59) 

(6.60) 

(6.61) 

It is interesting to see that the left hand side of (6.59) are signals to be predicted over the 

forward horizon (i. e. future), while the right hand side are signals previously recorded 

in the past. 

6.3 Multivariable restricted-structure controller charac- 

terisation 

The following section is divided into two parts. The first part considers the characteri- 

sation of a restricted- structure controller in terms of a finite number of parameters and 

an incremental control action. The second part concerns the definition of the multivari- 

able controller structure by establishing the interactions between inputs and outputs. 
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6.3.1 Controller parameterisation 

The method assumes that the controllers can be parameterised and expressed in an 
incremental form. A general form for this type of parameterisation is presented in 

equation (6.62), where p is a vector containing the controller parameters. 

M Aü (k) =ý (6.62) 

This situation is very common and many industrial controllers can be written in this 

way. Since the plant has m inputs and outputs, let AU^i, j (k + 1) represent the incremental 

control action i, due to the error sequence of outputj, where i andj vary between 1 and 

m. Then, the effective incremental control action for input i (i. e. Au^ i (k + 1)) can be 

calculated as the sum of each partial contribution, as in (6.63). 

AU^j (k + 1) = 
m 
1: Au-i, j (k + 1) 
j=l 

(6.63) 

By assuming the parameterisation in (6.62), the incremental control actions for all the 

plant inputs at sampling instant k+I can be written as in (6.64), which has the general 

form presented in (6.62). 

AU^(k+l) - 

where: 

(1) (2) (3) 
... 

(1) (2) (3) 
p pi'l pi'l pi'l PI'm Pi'm Pi'm 

p 
(1) (2) (3) 

... 
(1) (2) (3) 

M, I Pm, I Pm, I pm, m Pm, m Pm, m 

(6.64) 
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E(k+ 1) ... 0 

9(k+ 1) 

0 ... E(k+ 1) 

and 

E(k+ 1) 
I 

el(k+l) el(k) el(k-1) e,, (k+l) e,,, (k) e,, (k-1) 
I 

The indices in the notation to 
ýk) indicate that the coefficient is the eh parameter of Ij 

the controller acting over input i using the error sequence from outputj. Notice that 

in general pE R(P"), 9(k+ 1) E R"(P*") and E(k+ 1) E R"(P") where p is the 

number of parameters of each individual controller. For the specific case of a PID 

controller, p=3. 

6.3.2 Multivariable controller structure 

The controller characterisation leads to the definition of the structure of the multi- 

variable controller. The definition of the multivariable controller structure allows the 

specification of the output errors which are used to compute each input. The following 

definition in conjuction with the parameterisation completely defines the controller. 

Definition 6.3.1. Let a controller structure be defined by a matrix A C- M,,, as in (6.65), 

which links the output error of the plant to its inputs through a restricted- structure 

multivariable controller. In matrix A, any aij E A, ai, j =1 implies an interconnection 

between the input i and the outputj; aij =0 implies no interconnection. 

aij ... 
A aij E f0j 11 (6.65) 

The matrix A can then be decomposed into the sum off matrices, wheref is the number 
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of non-zero elements in A as in equations (6.66) and (6.67). 

aij ... 00... 0 
A (6.66) 

0 ... 00... a,,,,, 

A= Al, l+-.. +A ...... (6.67) 

Therefore, it is also possible to characterise the controller structure by the set enumer- 

ated in (6.68). This definition allows the description of any multivariable controller 

structure. 

A= (fAl,,, Al, 21*** iAm, ml) (6.68) 

6.4 Parameter calculation 

The approach developed in this thesis calculates a set of controllers by minimising a 

finite horizon LQG cost index. The algorithm uses the plant model described by equa- 

tion (6.34) and the controller characterised by (6.64) and a subset, ý, R C A. The method 

ensures that if the plant is linear, the controller is well characterised (no uncontrollable 

modes), and assuming that the optimisation converges, the solution of the problem is 

a controller which stabilises the plant when operating in closed-loop. The following 

section focuses in developing the method and the conditions to comply with the prior 

statement. 

6.4.1 Cost index 

Consider the closed-loop system in Figure (6.1), with plant model described by equa- 

tion (6.34). Assume sufficient knowledge of the signals r, y and u. The problem is 
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to find a set of controller parameters such that the cost function of equation (6.69) is 

minimised. 

(rf 
--)T -9 (rf -^)+A, 2fT, q-Au^f Yf Yf (6.69) 

To simplify the numerical problem, it is assumed that the system is regulated around 

an operating point and all the signals are normalised. By using equation (6.64), the 

future incremental control output can be written as in (6.70). 

Aý Uf - (PP 

where 

9(k+ 1) 

e(k + N) 

(6.70) 

U. By The dimensions of the matrices and vectors are A ^f E R(N) and 9E R(N) ' (P' 2) 

<p LA replacing equation (6.70) in (6.34) and in (6.69) and defining rf - yt - wAwp 
it 

is possible to obtain an equivalent expression for the cost function given by (6.71). 

P, 
((P, Li. "-QLý. (P+(P, -q(p)p (6.71) 

pT T L'ýT a4ý 

-2 u 
( 
(P 

+(DT_9(D 

Equation (6.7 1) has the quadratic form x TAx + XT b+c, which can be minimised either 

using efficient numerical methods or by directly computing the derivative of J with 

respect to p. However, the problem is not straightforward. There is still the problem 

of computing matrix ýp, and also the provision of conditions so that the computed 
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multivariable controller gives a closed-loop stable system. 

6.4.2 Formulation as a least-squares problem 

The matrices T and L6' are usually large and ill-conditioned, therefore the choice of a U 
robust numerical algorithm to calculate the minimum of J in equation (6.7 1) is of vital 
importance. An efficient solution to this problem is to use a least-squares approach. 
Since -9 and R are positive-definite or at least positive-semidefinite, it is possible to 

find matrices S_q and S_o such that: 

ST S_ 9 

2=S, 2T S, 9 

(6.72) 

It is relatively simple to prove that the minimisation of (6.7 1) is equivalent to the min- 

imisation of the norm of the vector of equation (6.73). 

min 
S-Q f OPP - 4>1 

(6.73) 
pL sm (P p 

So, p is the least-squares solution to: 

s 
-9 

L, 
Uýl (p 

p 
S. 94) (6.74) 

sm (P 0 

6.4.3 Closed-loop condition 

In equation (6.74) the problem of how to calculate the Hankel matrix of errors (p such 

that the system is stable remains to be considered. A solution to this problem is to 

calculate the future errors based on past data by satisfying the closed-loop equations. 

To do so the matrix (p can be decomposed into pM2 column vectors as in (6.75), where 
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the indices hold the same meaning as in p, ý*). 
Ij 

(1) 4 (2) 4 (3) 
... 

g(p-2) 4(p-1) g(p) I ... (6.75) 
I'l I'l I'l I'm I'm 

(1) (2) (3) 
... 

ý(p-2) ý(p-l) 
M, M M, M m M'I M'I M, I 

gmý 
I 

(k) 
Each error vector 4j, j can be calculated by solving equation (6.76) using (6-75) for 

i=I... M, j=I... m and k=I... p. 

UC _(, )ý_T(k)yp ýk) k) 
r. 0 4IJ -Tfýlj pij 

(6.76) 

The resulting system of equations is: 

a (P) v= (o 

where 

I+pl, 

I. Lfl, 
lAýu 

(2 )T (')Lý 
... Pi'l fl'i u 

(P) 
pmj(')Lý I 

fi'l u 

(1) r (2) 
p +p 

(2) (2) 0 
... u 

(2)0 
p(p) T M, M 

(I)T (P) Lý u lf pi (2) T (P) Lý ... Pi'l fm mu 
I+ p(p) T(P) Lý M, m fm, m u 

m, m ' L , 

(2) 
i'l 

L M, M 
(P) 

T(l)(D - Týj, jyp fi l ' 
T (2)(1) 

-T 
(2) 

yp 
l Pi'l fi ' 

(P) T(P) (D Tým, 
myp f m, m 

(6.77) 
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The problem now relies on determining the matrices T (k) 
and T (k) The construction of fij Pili I 

these matrices is simple and comes as an immediate result from the controller structure 

definition. The controller structure is defined as a combination of the matrices of the 
(k) (k) 

set (or a subset) (6.68). The following Lemma states how the matrices T and Tp'i, j fij 

are constructed based on the controller structure. 

Lemma 6.4.1. Let A be the set that generates all the possible combinations of con- 

troller structures of order m. Let -4 a multivariable controller structure defined as a 

subset of A (ý4 C A), such that Bij E -4. 

(k) 
1. The matnx T can be calculated as: fij 

T (k) 
fij 

where 

Bij ... 0 

0 ... Bij 
m(N-k+l) 

(k) 
2. The matrices Týj, j can be calculated as: 

(k) 
pij 
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where 

Bij ... 

0 ... Bij 

om 

for k=2 

for 

(k) Proof. This lemma can be verified by constructing the error vectors ýj, j , from the 
definition, 

ýk) k) ý_ (k)yp 
Yf T p Tfý, 

j, ij (6.78) 

F71 

6.4.4 Stability condition 

The problem of stability can be addressed by using a result presented by Giovanini 

and Marchetti (1999). This paper presents a proof that to assure exponential stability 

of restricted- structure digital controllers it is sufficient to comply with the following 

condition: 

JAU^(k+N)il <a for i=Im (6.79) 

This condition transforms into the constraint (6.80). The constraint in (6.80) has to be 

solved simultaneously with the closed-loop condition of equation (6.77). 

r_% 
Op (6.80) 
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where 

g(k+N) 

-9(k+N) 

a 

The use of this condition in the optimisation will produce a controller with which the 

system is closed-loop stable; however, it might be possible that this condition cannot 
be met and in that case the optimisation will be infeasible. Some suggestions to avoid 

infeasible optimisations are to enlarge either the horizon N or the domain of attraction 

cT, or both. 

Algorithm 6.4.1. Subspace multivariable restricted structure tuning algorithm 

1. Record sufficient data of y(k) and u(k), and normalise the data around the oper- 

ating point. 

2. Estimate the forward-backward horizon (N) based on the settling time required. 

3. Construct the data Hankel matrices and the controller Toeplitz matrix Hý. 

4. Calculate Nf. 

5. Calculate Lu and 4 by performing the RQ-decomposition and then use equation 

(6.18). 

6. Calculate L,, and L,, using equations (6.21) and (6.22). 

7. Calculate Lu' and Lw" using equations (6.32) and (6.33). 

8. Define the number of parameters 
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9. Define the controller structure. 

10. Define the parameters range and express as an inequality constraint. 

11. Calculate the matrices Tf and Tp, using Lemma 6.4.1. 

12. Estimate initial values for the weight matrices -9 and q. 

13. Estimate the stability condition (a). 

14. Estimate initial values for the controller parameters (p). 

15. Solve 
S 

-9 
L. ' (P 

P 
S_Q(D 

in the least squares sense, subject to Op <T 
S, AD 0 

I LL 

(stability condition) and 92 (p) v (o (closed-loop condition), and any additional 

restrictions over the parameters range. 

6.5 Simulation case studies 

This section examines four controller structures which are used as examples of the 

method developed in this chapter. The examples comprise the control of dissolved 

oxygen in a simulation benchmark for an activated sludge wastewater treatment plant 

introduced in section 2.2. Air is pumped into the reactors through blowers (actuators) 

which are commanded by a PID type controller. 

The case studies examine the design of four possible controller configurations for the 

treatment plant. The examples present simulation results that have been obtained using 

MATLAB/SIMLTLINK RI 1. 

6.5.1 Univariate controller structure 

The following simulation exemplifies the use of the tuning algorithm for SISO type 

plant. The simulation benchmark is used by considering that only the last aerated 
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Table 6.1: Optimisation Specifications 

-N 
M R Q 

100 100 8 5- 0.01 

T51 '61 
I'k 

AI- rf%" +"ý] I- ll)ý 
-. ý4. - 

L4JLJLJL%, L%ll 0 

(3) 

- 
P 

P 
Initial parameters 1 0.9308 0 

Optimal parameters 8.2673 -12.2142 4.5825 

reactor is controlled. The input to the model is the airflow rate scaled to a base of 
10 and the output is the oxygen concentration in the reactor. The airflow is pumped 
into the reactor through blowers (actuators) which are commanded by a PID controller. 

Figure (3.1) shows details of the control loop in the fifth aerobic reactor. The control 
loop also accounts for unmeasured disturbances as changes in the plant load. These 

disturbances are included in the form of the signal d(k). The identification considers 

a1 minute sampling rate with an oxygen sensor with I minute time delay. The initial 

controller, with which the plant was identified in closed-loop, is a PI with parameters 

shown in Table (6.2). 

For the identification, 1200 points of data have been collected with the system excited 

by a pseudo random binary signal (PRBS) of zero mean and 0.5 [mg/1] amplitude 

around aI [mg/1] setpoint. The forward and backward horizon have been set to a 

length of 100. The system is approximated by the first five singular values (n = 5) in 

the singular value decomposition of the identification algorithm. The algorithm was 

implemented in MATLAB, and the solution takes around 10 to 20 iterations depending 

on how stringent the stability constraints are, as shown in Figure (6.3). Figure (6.4) 

shows the response of the obtained controller for a unit step when designed with the 

specifications in Table (6.1), while Table (6.2) shows the initial and optimal controller 

parameters. 
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Figure 6.3: Cost minimisation trajectory. 
PID Controllers Responses 
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Figure 6.4: Comparison between initial PID response and tuned PID response. 
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6.5.2 Control of two reactors with a lower triangular controller 

structure 

The following example illustrates the design of a controller for the last two aerated 

reactors (4 and 5). Therefore, input-output data from reactors 4 and 5 is required, as 

well as knowledge from their PID controllers. One day of input-output data has been 

collected at a sampling rate of I minute (1440 samples). The system has been excited 

with a pseudo random binary signal (PRBS) around the setpoint (2 ±I mg/1). The 

initial PID controllers for all three reactors have been considered to be the same, and 

their parameters are presented in Table 6.2. 

The controller structure has been considered to be of a lower-triangular type, as pre- 

sented in equation (6.8 1). 

This structure defines an interaction between the effor signal in the 4th reactor and 

the control signal in the 5th reactor. Simulation results have been performed for three 

different cases as presented in Table (6.3), where n is the order approximation in the 

SVD. Figures (6.5) and (6.6) present the simulation results. 

1 0 

1 1 

Tahle 6.3- Oi3timisation wecifications 
N nj Cr 

case I diag(IO 10) diag(IO 10) 60 5 0.01 

case 2 diag(IO 10) diag(IO 20) 60 5 0.01 

case 3 diag(IO 20) diag(IO 20) 60 5 0.01 

(6.81) 

Notice that the response in case I is much faster and with an acceptable overshoot 

compared to case 2 and 3. However, the effect of the coupling controller produces a 

much more aggressive response in the oxygen concentration in reactor 5. 
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Figure 6.5: Effects of a setpoint change in reactor No. 4. 
Setpoint change in reactor No. 5 
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case 2 
case 3 
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Time (days) 

Figure 6.6: Effects of a setpoint change in reactor No. 5. 
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6.5.3 Control of three reactors with a diagonal controller structure 

This example considers the tuning of the three PID controllers with a diagonal con- 

troller structure. The same amount of data has been collected as in the previous case, 

and using the same procedure. The controller structure in this case is defined by equa- 

tion (6.82). In this example however, simulations have been performed for a prediction 

horizon of 40 and 60. For each horizon, four cases of different weights are considered. 

Table 6.4 summarises the different cases, where the weight matrices -9 and M have 

been chosen such that all their elements are the same. Simulation results are presented 

in Figures (6.7) to (6.9) for N= 40 and in Figures (6.10) to (6.12) for N= 60. 

0 0 

0 1 0 

0 0 1 

Table 6.4: 0-ptimisation specifications 
n CY 

case 1 1 1 5 0.01 
case 2 1 3 5 0.01 
case 3 3 1 5 0.01 
case 4 10 10 5 0.01 

(6.82) 

The most significant observation in this example is that there was no major difference 

between the simulations with different horizons. This suggests that bigger horizons do 

not contribute significantly to the optimality of the solution, however they will increase 

the computation requirements. 
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Figure 6.7: Effects of a setpoint change in reactor No. 3, with N=40. 
Setpoint change in reactor No. 4 (N=40) 
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6.5.4 Control of three reactors with a lower triangular controller 

structure 

This last example examines the design of a lower triangular controller, similar to the 

first example, but considering all three reactors. The controller structure is shown in 

equation (6.83). Two simulations for different sets of weights are presented as shown 
in Table 6.5. Both simulations assume a horizon of N= 40 and are presented in Figures 

(6.13), (6.14) and (6.15). 
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6.6 Summary 

This chapter presents a new algorithm which allows the design of a restricted- structure 

multivariable controllers within a subspace identification framework. The algorithm 

can be divided in two steps: identification of the plant model using closed-loop data 

followed by the controller parameter calculation. 

The controller parameters are calculated as the result of minimising a LQG criterion 

over a finite forward horizon. The method ensures that the resulting control system 

response will be asymptotically stable over the horizon. 

The chapter begins presenting the framework in which the method is developed. The 

chapter then presents the characterisation of the controller structure for SISO and 

MIN40 systems. The characterisation for MIN40 systems is developed as a general- 

isation of the SISO case. 

Section 6.4 presents the main formulation of the method. In this section the algorithm 

to calculate the controller parameters and the optimisation is presented. Finally, several 

simulation case studies are presented at the end of the chapter. Results demonstrate the 

versatility of the method towards the design of different possible configurations. 

Even though there is a high mathematical complexity in the implementation, the use 

of the algorithm is easy and allows a number of degrees of freedom for the individual 

calculation of the parameters. 

The main advantage of the method, is that it allows the direct calculation the parameters 

from data, therefore giving a direct data-driven approach to the problem solution. 
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Chapter 7 

Real-time control in Swinstie WWTP 

In Chapter 3 simulation data from the COST benchmark and real-data from Helsingor 

WWTP where employed to identify models of dissolved-oxygen and nutrient removal. 
Later, Chapter 4 studied the design of MPC controllers for the same process variables, 
by using a hierarchical control structure. This control structure allowed to improve per- 
formance of the system without modifying the low-level control loops (programmed 

in the PLC). This performance increase however is limited by the performance of the 

low-level control loops; which can in general benefit from a re-tuning, if the parame- 

ters are accessible. Therefore, Chapters 5 and 6 contributed with the development of 

three tuning algorithms, two for multivariable systems, and one for SISO systems with 

the purpose of performance assessment. 

All these developments however would be incomplete if left in a simulation level. 

Therefore, this chapter presents the development of a software platform and the imple- 

mentation of identification, control and monitoring algorithms for real-time execution 

in Swinstie WWTP. 

The development of software for industrial use has to comply with several charac- 

teristics in order to be reliable, and robust. In addition, such a software should be 

implemented in such a way that costs are minimised. Due to the numerical complexity 

of some algorithms, the use of a computationaly efficient machines should be pursued. 
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Almost every industrial facility employ programable logic controllers (PLCs) to con- 
trol their operations and machines. PLCs are industrial computers which allow the 
implementation of basic control functions and with limited numerical precision. This 

controllers appeared as the microcontroller era predecessors of relay-contactor indus- 
trial control, and they usually work in a sequential-deterministic manner. Nowadays, 
PLCs have increased considerably their performance by using faster and robust pro- 
cessors and incorporating more options and modules (e. g. PID control modules, fuzzy 

control modules). However, the programming of any new function or algorithm is dif- 

ficult, thus expensive and extreme caution should be exercised if performing it on-line. 

In addition, most industries are operated by a network of PLCs commanding espe- 

cific areas or processes of a plant, due to the large amount of control loops and input- 

outputs. Due to this reason, most industrial plants employ a supervisory control and 

data acquisiton system (SCADA), which collects some of the most important informa- 

tion into a database in a computer (or cluster of computers) and allows very limited 

control modification. 

In the case of the wastewater industry, the introduction of SCADA systems has facil- 

itated the control and monitoring of processes with several hundreds and even thou- 

sands of control loops. However, it is only in the last decade or so, with effluent qual- 

ity standards becoming increasingly stringent, that large-scale urban wastewater treat- 

ment plants have been equipped with similar supervisory control systems. Some of 

the principal characteristics of these systems are the human-machine interface (HMI), 

which allows the operator to have a plant-wide perspective of the operation of the plant 

and large databases to collect important plant information such as alarms, events and 

process variables. However, due to security and time constraints, control actions in 

SCADA systems are often limited to very simple functions such as pump and valve 

scheduling and modifying some parameter settings as setpoints, with the more sophis- 

ticated control algorithms being in the field hardware such as PLCs or temperature 

controllers (Katebi et al., 1999). 
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Time constraints appear because of the necessity of maintaining real-time operation. In 

most cases, communication between the high-level control and low-level hardware is 

slow and performed by polling due to the high channel density so direct real-time con- 
trol is difficult and unreliable from this point of view. Security issues appear when the 

upper-level control operates over unreliable operating systems. In some cases, where 

security is life critical, upper-level control systems operate over industrial hardware 

and software, which improves reliability and reduces long term costs. 

In the case of the wastewater treatment industry, many of the processes and variables 

are very slow and high-level security is not imperative. However, since in activated 

sludge wastewater treatment plants, biological processes and chemical reactions are 

involved, the system performance and operation is susceptible to external disturbances. 

Disturbances can come in the form of increased influent flow, and nutrient or chemical 

loading due to weather conditions or industry discharges. Erroneous handling of the 

plant can produce total inhibition or even death of the plant biological components 

and therefore halt operation for weeks or even months until sludge inventories are 

recovered. Therefore in these types of processes, it is very important to have plant 

wide information in order to assess the operation and take appropriate control actions 

to avoid plant mismanagement. 

This chapter presents the development and implementation of advanced process con- 

trol and process monitoring in real-time. Much of the chapter is concentrated in the 

development of the software and its interfacing with the industrial plant. The soft- 

ware has been developed employing two commercial software packages: Matlab with 

Simulink (Mathworks) and LabVl1EW with the Datalogging supervisory control mod- 

ule plus some additional toolkits (National Instruments). Matlab has been employed to 

write the code of many of the algorithms and controllers. This code has been compiled 

into dynamic link libraries (DLLs) and included in the LabVIIEW schematics. The 

interfaces with the PLC and the user, have been programmed in LabVIIEW. 

The chapter is organised in the following manner: The software-hardware architec- 
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ture is first presented. This section introduces the reader into some of the basics of 
the software and the hardware integration and the communication protocols and in- 

terfaces. Section 7.2 presents a detailed description of the available modules, their 

programming, and their interfacing within the software. Sections 7.3 and 7.4 present 

results obtained by executing the algorithms in real-time in the plant, for identifica- 

tion and control respectively. Finally, the chapter ends with a summary of the main 

achievements and conclusions from the chapter. 

7.1 Software platform architecture 

The wastewater process industry has been the focus of intensive research and develop- 

ment in the last 20 years. The state-of-the-art in sensor technology to acquire online 

measurements of nutrients as for example ammonia, nitrate, phosphate, and physical 

variables such as dissolved oxygen or suspended solids, has reached a state in which 

advanced data quality management and control strategies can be used to improve pro- 

cess performance. It is claimed in (Yuan et al., 2001) that innovative process design 

and optimised process control is the solution to many of the problems involving nu- 

trient removal. However, the use of sophisticated control algorithms and data quality 

management is still not widely used. For example, as concluded by Yuan et al. (200 1), 

the use of model based on-line control is still in its infancy, and it is just in the past 

15 years that on-line monitoring and data acquisition has helped to generate and verify 

mathematical process models which can be used for control. Data monitoring and vali- 

dation is a significant area of research. Its use has helped to improve plant performance 

by improving plant design and operation. Many new approaches such as Aeration Tank 

Settling (ATS) (Nielsen et al., 2000) or step-feed to increase hydraulic capacity to cope 

with large weather disturbances have arisen from detailed data monitoring and analy- 

sis. 

Research in integrated wastewater treatment systems (sewer and treatment plant) are 
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also now of great interest (Nielsen et al., 1996), and data monitoring plays a very 
important role, since by analysing plant data it is possible, for example, to identify 

influent flow models (Nielsen, 2002, SMAC project report). Plant monitoring can also 
be used for knowledge extraction, which allows the assessment of plant operation by 

identifying deviations from the normal operation conditions (Nielsen, 2002, SMAC 

project report). 

In this context, a supervisory control system for a wastewater treatment plant would 

not only allow the collection of data and its analysis but also allow the use of the ac- 

quired knowledge to improve plant performance. It would be expected that under this 

scheme it will be possible to implement more sophisticated control algorithms and not 

only be limited to conventional SCADA control functions. The platform introduced 

in this chapter provides an alternative solution to the lack of versatility for computa- 

tional requirements in existing SCADA systems. The platform has tools that can be 

interfaced with an existing SCADA or used independently, since for security reasons a 

plant can usually operate without the SCADA. This solution can only be implemented 

when the plant time constants of the specific loops are larger than the polling time of 

the existing SCADA as is the case of the activated sludge wastewater treatment pro- 

cess. The platform is conceived to work in parallel with the existing SCADA. This 

might however not be always possible, depending on the functionalities of the existing 

supervisory system. 

The platform architecture comprises four units, the plant wide process monitoring unit, 

the identification unit, the process control unit and the database; these are shown in 

Figure (7.1). Each of these units is supported by a set of mathematical tools to assist 

in the implementation of control algorithms, data analysis and plant operation. 

A direct link with the PLC uses an OLE for Process Control Server (OPC). OPC servers 

are commercially available and are usually supplied by the PLC manufacturer. 

The following section gives a more detailed explanation of the software development 
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Figure 7.1: Control platform architecture 

and interfaces as well as the tools that have been incorporated and are to be tested in 

the plant. 

7.2 Software platform implementation 

Due to the large number of commercially available SCADA systems in the market, it 

is nowadays very difficult to implement a system that is compatible with purchased 

proprietary software. The main problem within the architecture of the system is to 

interface in an adequate manner with the existing software and hardware. 

Some SCADAs are designed in a closed way that only provides communication pro- 

tocols with software from the same manufacturer. Even if the manufacturer provides 

some type of well-known industry standard communication protocol, the allowed func- 

tions are usually very limited. 

The software developed employs OPC technology to interface with the PLC. An OPC 

server allows direct access to the PLC registries and all events, alarms, and variables 
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Table 7.1: Lab-VIIEW and MATLAR inti-. rfqi-. ino, t, -t-hnnIncripc 
Algorithm Technology Unit 

RPCA MATLAB script node (Activex) Process monitoring 
PRBS Simulation Interface Toolkit (DLL) Identification 

Subspace Id. MATLAB Compiler (DLL) Identification 
Observer design MATLAB script node (Activex) Control 

MPC design MATLAB compiler (DLL) Control 

are then directly accessible. 

The software is programmed over LabVIIEW and makes use of the Datalogging and 

Supervisory Control (DSC) module to interface with the OPC server. Some of the 

algorithms have been programmed over MATLAB and compiled into C shared libraries 

(DLLs) using the MATLAB compiler and some additional C code to interface with 

common C standards and not particular to MATLAB. All of the routines have been 

tested in simulation exercises to ensure their correct execution. Appendix A contains 

a HOW- TO guide for the compilation of MATLAB functions into DLLs to be used in 

LabVIIEW. 

Other modules have been implemented in SIMULINK and integrated into LabVIIEW 

employing the Simulation Interface toolkit. Table (7.1), gives a summary of the tech- 

nologies employed to implement different algorithms from MATLAB into LabVIIEW. 

The following sections give a detailed description of the system interfacing and a dis- 

cussion on the implementation of each unit. 

7.2.1 System interfacing and database population 

The interfacing of the system with the PLC or PLC network is perfomed through a 

communication protocol known as OPC. OPC stands for OLE for Process Control, and 

OLE for Object Linking and Embedding. OLE is a Microsoft component which allows 

the automation of certain processes and applications like communication servers. OPC 

was designed for industrial application purposes. 
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The software platform interfaces with PLC by registering with an OPC server which 
handles the communication flow. Each type of PLC requires a particular OPC server, 

which is usually provided by the manufaturer. In the case of Swinstie WWTP, the 
PLC is TI 565 which communicates using a Tiway protocol. Therefore the selected 
OPC server should support this protocol, and the communication interface, which in 

the case of Swinstie is a RS-232. If a network were present, then the interface would 
be through a ethernet link in most cases. 

With the OPC server correctly configured and running, the next step is to populate the 

database. PLCs contain memory registers from where they read or save information 

which is to be used by the internal program. In general, each input-output of the PLC 

is also mapped into a memory location (or register). The access to these memory 

locations is inmmediate using the OPC server, however, it is important to map it into 

the database, so the information read or written to the register is miffored in the client. 

LabVEEW and the DSC module employ a tag engine concept. A tag is a variable 

associated to a register, however it is already located in the client and not in the PLC, 

therefore providing faster access. The tag engine assures that the register is accessed 

at the required sampling times or when the program requires. This helps the system 

to have a deterministic access to the variables of the process, and therefore perform 

operations in real-time. 

7.2.2 Process monitoring unit 

This unit monitors the process state in real-time using on-line measurements and histor- 

ical information stored in the database. By monitoring the state of the plant in real-time 

it is possible to detect faults and even provide a diagnosis. Process monitoring for fault 

detection and diagnosis is a complex area of study with continuous developments, see 

for example Wade (2004). 

The unit retrieves data from the database and on-line measurements, and processes it 
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with the purpose of extracting knowledge of the process behaviour and plant operation. 
Process knowledge extraction accumulates information from expert knowledge of the 

plant (plant operator), on-line data and historical data, to find possible ways of globally 
optimising the plant by a better scheduling of actuators or by enhancing set-points 
by identifying current or future operating states. It also provides means by which 

abnormal plant conditions can be predicted and alarms raised. Therefore this unit 

comprises software algorithms to perform the following tasks: 

1. recursive statistical process monitoring 

2. Fault detection and diagnosis 

Recursive statistical process monitoring employs a recursive formulation of principal 

component analysis (PCA). PCA is a multivariate statistical tool, which allows the 

comprension of data and examination of its statistical properties, employing geomet- 

rical tools. The recursive principal component method employed in the software is 

the algorithm proposed by Li et al. (2000) for the recursive update of the correlation 

matrix Rk at each sampling time. The algorithm is summarised in Appendix B. 

Using the recursive update of the correlation matrix it is possible to perform the fol- 

lowing: 

1. Statistics monitoring, by calculating the Q and Hotteling's T2 statistics of the 

compressed data set (Chiang et al., 2001). 

2. Fault detection, by comparing the statistics with limits within a 95 and 99 per- 

centile confidence interval. 

3. Diagnosis, by observing the loads and scores from the data set decomposition. 

The recursive update of the correlation matrix has been implemented in Matlab and is 

passed into LabVIIEW by using a script node. Figure (7.2), shows a block diagram of 

the execution of the algorithm. 
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Figure 7.2: RPCA execution. 

The first step is to feed data into an initial data block set, by looking into the database 

and selecting appropriate data. This data must representative of the process operation 

and must not contain important failures in the process operation. Once the variables 

and the data have been retrieved and fed into the initial data-block set, the recursive 

update of the correlation matrix begins. 

Once the correlation matrix Rk and a normalised data block matrix Xk are calculated, 

they are used in the fault diagnosis module to identify the system state and detect where 

and what type of fault is occuring. 

Fault detection is performed by calculating Hotteling's T2 statistic and the Q statis- 

tic using the normalised data matrix Xk and the correlation matrix Rk (see (Chiang et 

al., 2001) for the definition of the statistics). The calculation of these statistics is per- 

fomed by decomposing the correlation matrix. Two decomposition methods have been 

implemented: (a) singular value decomposition (SVD) (b) Lanczos tridiagonalisation. 

The choice of the decomposition matrix depends on the amount of data and type 

of process. Lanczos tridiagonalisation allows the the SVD decomposition in large 

sparse data matrices. The reason for implementing both methods is to investigate their 

suitability for the activated sludge process. The Lanczos algorithm has been imple- 

mented using a freeware toolbox for Matlab called LANPRO ver. 1.0 available at 

(http: //soi. stanford. edu/-rmunk/PROPACK/index. html). 

The detection of faults is performed by comparing the value of the statistics with a 

confidence interval of 95 and 99 percentile. The decomposition of the correlation 
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Figure 7.3: User interface of the data quality assessment unit. 

matrix also provides the loads and scores. The examination of these vectors allows 

to recover information regarding which measurement in the process is contributing 

more extensively to the fault. Even more, by using more advanced algorithms not 

implemented in this software, it is possible to identify the type of fault. 

Finally, Figure (7.3) gives a view of the graphical user frontend of the unit. 

7.2.3 Identification unit 

The identification unit allows to perform the following functions, 

1. Experiment design and real-time execution 

2. Subspace identification 

3. Model analysis and simulation 
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Experiment design and real-time execution 

Subspace identification requires that the data employed shows the system persistently 
excited. In order to obtain such data, it is necessary to excite the system by performing 
an experiment. The design of the experiment consists in selecting the control variables 

of interest to which probing signals will be applied. PRBS has been implemented as 

a probing signal, which can be modified in amplitude, mean and time-step. The time- 

step is selected according to the response time of the process to be identified. Fast 

variables require a faster time-step, whereas slow variables require a higher time-step. 

In the activated sludge process, oxygen is a fast variable which ranges in the minute 

time horizon, therefore a time step of about 2-3 minutes is usually adequate. The 

module also allows to simulate the probing signals in real-time before applying them 

to the process. 

With the probing signals ready, the experiment can be run in real-time. The software 

database will automatically record all the signals (inputs and outputs). Once sufficient 

data has been collected, the data is exported from the database into a normal text file. 

This is not an automatic process, since there might be the need to select only a subset of 

the recorded data. Usually these experiments can take up to 15 hours in fast variables 

as oxygen, time during which many unexpected events can occur. Therefore the need 

of manually selecting ap *ropriate data. p 

Subspace identification 

Two subspace identification methods have been implemented: (a) robust N4SID 'SV' 

(b) robust N4SID 'CVA!. Both algorithms have been programmed in MATLAB and 

compiled into C shared libraries (DLLs). The process of identifying a model is per- 

formed by following the next steps: 

1. Select data file 
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Figure 7.4: Subspace identification implementation 

2. Choose subspace algorithm: SV or CVA 

3. Select number of block-rows in Hankel matrices 

4. Perform data decomposition 

5. Estimate system order 

6. Identify model 

The original implementation code of the two subspace identification algorithms is from 

the toolbox provided in (van Overschee and De Moor, 1996b) and freely available in 

the following ftp server: 

. c- 

iLp: //ftp. esat. kuleuven. ac. be/pub/SISTA/vanoverscheelbook/subfun/ 

Some modifications to the code have been necessary in order to correctly interface the 

algorithm into LabVIIEW. The core of the implementation of this module consists of 

two software blocks executed in sequence, as presented in Figure (7.4). 

The blocks orderdll. dll and idendll. dll are dynamic link libraries compiled from MAT- 

LAB. The first library receives data read from the text file, and performs the decompo- 

sition step necessary in subspace identification algorithms. The library output are the 

singular values if the selected algorithm is SV, and the principal angles if the selected 

algorithm is CVA. The LabVIIEW implementation then gives a graphical representa- 

tion of the singular values or the principal angles. The user is then able to estimate the 

order of the model to identify. This is passed into the second dll which calculates the 

model. 
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Figure 7.5: User interface of the identification screen. 

Model analysis and simulation 

Once the order is selected and the model identified, the module will give an indication 

concerning the stability. The three possible indications are: (a) stable, (b) unstable (c) 

marginally stable. 

The model simulation is performed using the same data used for the identification. The 

response of the model is presented in a graph which also includes the input and output 

signals used in the identification. Also, the vaf coefficient is calculated to give an 

indication of the quality of the model. These functions are totally implemented using 

LabVIEW function blocks. Figure (7.5) presents the graphical user frontend of this 

unit. 
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MPC control 

This unit implements a hierarchical MPC controller. The unit comprises the design of 
the MPC controller given a model identified using the identification unit. The unit has 
the following modules: 

I- Observer design 

2. Predictor design 

3. Constraint specifications 

4. MPC controller execution control and monitoring 

The observer is designed by pole placement, and is implemented using the MATLAB 

script node. Also an output disturbance model is employed to account for plant-model 

mismatch. This method has been described in Chapter 3. 

The predictor module calculates the matrices Y, IF, and 0 of the standard MPC formu- 

lation presented in Chapter 4. The module also allows the inclusion of constraints if 

required. This modules is implemented using a DLL compiled from MATLAB. 

Once the observer and the predictor have been designed, the unit allows the real-time 

exection of the controller in the plant. During the real-time execution the system allows 

the fine tuning of the MPC controller, by modifying horizons, and weights. 

The numerical implementation of the on-line optimisation employs a least-square ap- 

proach as formulated in Chapter 4. 

Figure (7.6) shows the user graphical frontend of the MPC unit. 

7.2.4 The HMI unit 

Even though, in itself the FIN41 is not something really new, the original contribution 

made by this reported research is to synthesise all the complex information from the 
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Figure 7.6: User interface of the MPC controller. 

data assessment and control units in a way that can be readily understood by wastewater 

technical staff; staff who may not be control engineering experts. Figure (7.7) shows a 

schematic from a HMI designed specifically for the test plant at Scottish Water. 

7.3 Real-time identification of dissolved oxygen 

This section shows results obtained by the real-time execution of the identification 

module. Some of the results obtained demonstrate that dissolved-oxygen can be mod- 

elled by low-order models, and that this model can be used in a model predictive con- 

troller. 

Several identification runs where performed at Swinstie, by exciting the plant with 

a PRBS signal to identify a closed-loop model. To do so, several limitations had to 

be overcome to make the experiments possible. First of all, the aeration capacity in 
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Figure 7.7: Swinstie plant HMI screen. 

Swinstie is over designed. The aeration system is composed by 4 blowers: two of low 

capacity and two of high capacity. The plant normally requires a small blower to pump 

sufficient air into the system. However, since the plant is configured to operate only at 

half its design load, even the small blower at its slowest speed over-aerates the plant. 

The effect of this over-aeration is that the dissolved oxygen levels are almost always 

over the specified range of 1.8 - 2.2 mg/l. 

A second limitation in the blower actuator system has to do with the blower update 

speed. The small blowers update their speed (increase or decrease) at a rate of 10 

minutes, and the big blowers at a rate of I minute. 

Due to these two limitations, the only possible solution, which did not demand the 

high cost of PLC re-programming, was to perform all the experiments at a high dis- 

solved oxygen level using a big blower. This approach, however, does not invalidate 

the results, since as proposed in chapters before and as will be demonstrated in the 
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following section, dissolved oxygen can be modelled accurately with low order linear 

models within almost the whole range. Additionally, to reduce the effect of the dead- 

band introduced by the control algorithm programmed in the PLC, the high-low range 
has been reduced to a minimum of I mg/l. The subspace identification methods used 

were robust-N4SID SV and CVA. 

The result of these tests lead to the 2nd order linear model of equations (7.1) and (7.2). 

Figure (7.8) shows the trends used for the identification. Notice that just after sample 

800, there is a switch between blowers, and the update time of the smaller blower 

produces a significant change of behaviour in the system response. Due to this reason, 

this part of the data set is not to be used in the identification. Figure (7.9) shows 

the response of the identified model compared to the actual system response, where 

the high-low range has been averaged for better illustration. Notice there is an offset 

between the signals, thus a disturbance model should be used to correct the offset when 

designing the predictor. 

0.97788 -0.04357 -0.04629 
x(k+ 1) = x(k) + r(k) (7.1) 

0.03658 0.84292 0.1124 

y (k) = -0.38536 -0.18981 
1 

x(k) + [-0.00067] r(k) (7.2) 

7.4 MPC control of dissolved oxygen in Swinstie WWTP 

The design and evaluation of a MPC controller for dissolved oxygen in Swinstie WWTP 

is presented in this section. The MPC controller is designed using the model identi- 

fied in the previous section. The controller uses the state-space formulation reviewed 

in Chapter 4. The obtained results show a degree of improvement compared with the 

controller implemented in the plant PLC. The section is organised in such a way that 
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Figure 7.9: Dissolved oxygen model validation in Swinstie. 
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Table 7-2: Prediction and optimisation parameters. 
H,, 

50 20 3 0.5 

the design of the MPC controller is presented first, followed by results showing the 
improvement gained using the MPC controller. 

7.4.1 MPC design 

The first component to be designed for the MPC is the observer. The state observer 
follows the same formulation as in Chapter 3. A constant output correction has been 

introduced to compensate for unmeasured disturbances and plant-model mismatch. 

The observer was designed by placing the closed-loop poles as follows, 

Poles 0.7 0.6 0.5 (7.3) 

Figure (7.10) shows the observer response when initialised. It can be seen that the 

observer requires around 25 minutes to converge to the actual measurement. Also, due 

to its large overshoot, it is of vital importance to allow sufficient time for the observer 

to converge before activating the MPC controller. This is just a precaution to avoid the 

controller producing unnecessary large control actions. 

Figure (7.11) presents an interesting result regarding the linearity of dissolved oxygen. 

Notice in this figure that even though the oxygen level drops sharply, the observer is 

still able to track reasonably well the trajectory. 

The predictor and optimisation parameters are presented in Table (7.2). These values 

have been obtained by carefully tuning the controller in real-time operation. 

One of the main advantages of using a predictive controller is the facility to include 

constraints in the optimisation process. It is in this way that the physical limitations 

arising from the actuators (air compressors) are included when solving the optimisa- 
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Figure 7.11: Dissolved oxygen observer response in Swinstie WWTP. 
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tion. Constraints also allow the inclusion of operation conditions that are necessary 
for the process to work. Thus constraints allow limits to be imposed over variables 
which in practice cannot go under or over certain limits, as for example the oxygen 
concentration cannot be less than zero. 

The optimisation algorithm employed in the implementation of the MPC controller 
is a constrained least-squares. The use of this algorithm to solve the QP problem 

guarantees a robust numerical implementation. The implemented code also contains a 

protection mechanisms for infeasible problems, by using the last known optimisation 

solution. 

7.4.2 Dissolved Oxygen control 

The MPC controller implemented in Swinstie WWTP presents some degree of im- 

provement over the existing controller. More tests are required in order to adequately 

tune the system and obtain a significant benefit. In general, the use of the MPC con- 

troller in Swinstie is limited to the plant actuators, since there is no possibility of 

performing this control at acceptable oxygen levels of around 2-3 mg/l. This limitation 

arises from the limited speed range of the blowers and the absence of a more sophis- 

ticated control structure (e. g. pressure loop, and motorised valves). However, just for 

the purpose of demonstration, the MPC has been set to run with high dissolved oxygen 

setpoints. 

Figure (7.12) shows a step response of the system operating with the MPC. Notice as 

well in this figure, that the MPC is activated only after the observer has converged. 

Figure (7.13) shows a comparison between the control algorithm in the PLC operating 

by its own, and the system operating with the MPC. 
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7.5 Summary 

This chapter has presented the development and implementation of a control software 

platform, by the author, for advanced process control and process monitoring. The 

development of the software has used several tehcnologies to implement the different 

algorithms. MATLAB and LabVIEW have been employed to develop the software. 
The integration of code with the two software has been possible using: dynamic link 

libraries (DLLs) and Activex. 

The interfacing of the software with the PLC in the plant has been implemented using 

OPC technology. OPC technology allows a fast, and efficient communication with the 

PLC. 

The platform has been succesfully tested in full-scale in Swinstie WWTP. The test 

performed in real-time are: (a) Subspace identification, (b) MPC controller design 

(c) Process monitoring. The tests results have also corraborated previous obtained by 

simulation. Some of the most important convey the linearity of dissolved oxygen under 

the saturation level; therefore allowing the assumption of simple first or second order 

model approximations consistent for the rest of the work presented in this thesis. 

On the control side, the chapter contains results which show the design of a real-time 

model predictive controller for dissolved oxygen in Swinstie WWTR The results ob- 

tained show a considerable improvement over the existing controller. Further, the real- 

time implementation of this hierarchical control structure has proven valid for the pur- 

pose of performance improvement and cost reduction. 

In conclusion, the development of the software tool, and the execution in real-time of 

identification, MPC control and process monitoring has added a very consistent com- 

ponent to the studies presented in the previous chapters. Moreover, much of the results 

presented have corroborated previous results obtained by simulation. Also, the soft- 

ware is open for more process industry applications and not limited to the wastewater 

treatment industry. The integration of MATLAB programmed algorithms into Lab- 
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VIEW has been performed using several technologies so the code could be executed in 

real-time. Some disadvantages of this approach is that MATLAB requires additional 

high-level programming (C), so it can be interfaced by standard C types. The code 

executions is however much faster than in the MATLAB environment. 

248 



Chapter 8 

Conclusions and further work 

The aim of the SMAC project is to design a system which is capable of embracing all 

possible conditions in a wastewater treatment plant by, 

1. Integrating information from the different processes in the plant and the sewer 

system. 

2. Utilizing the multivariable nature of the process. 

3. Employing models to predict plant behaviour. 

4. Efficiently rejecting disturbances. 

5. Using advanced process control. 

Therefore the main objective of this thesis has been to use a data-driven approach to: 

1. Obtain simple linear models of dissolved-oxygen and nutrient removal for con- 

trol purposes. 

2. Explore the use model predictive control for the control of dissolved oxygen and 

nutnents. 
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3. Enhance the performance of low-level control systems by developing model-free 
and data-driven approaches for tuning. 

4. Measure the performance of control-loops for tuning. 

5. The use of identification algorithms, and model predictive control in real-time in 

a full-scale wastewater treatment plant. 

The work presented in this thesis has achieved all these objectives. The obtained re- 

sults indicate that there are potential applications in the use of data-driven algorithms 
for identification and control in wastewater treatment. However, it has also revealed 

that the problem can become complex, especially in the case of nutrients. Nutrients 

exhibit a non-linear behaviour, which leads to a difficult control problem to solve. This 

thesis has provided some initial insight into the potential of using linear-models for the 

prediction of nutrient dynamics with reasonably good results; however, the problem is 

far from solved. 

The use of advanced process control strategies in a hierarchical structure would not 

be efficient if the low level control-loops do not perform well. This thesis has also 

explored the use of data-driven methods and model-free techniques to tune PID-type 

controllers. A new data-driven tuning algorithm for multivariable restricted- structure 

control systems, based in subspace identification has been one of the main achivements 

of this research. 

The study of an LQG tuning method for PID controllers, lead also to a simple and 

efficient algorithm to tune SISO control loop. Further, the development of this method 

lead to explicit equations which could be used for loop performance monitoring. 

One of the main contributions of this thesis has been the implementation of subspace 

identification, model predictive control and process monitoring algorithms in real-time 

in a full-scale wastewater treatment plant. The implementation of these algorithms 

has been possible through the design of a software platform in LabVIIEW. Most of 
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the algorithms were originally programmed in MATLAB, and extensively used in the 
thesis for simulation. The software developed has raised interest for industrial use by 
Scottish Water, with possibilities of commercial exploitation. 

In summary, this thesis has presented a comprehensive study in the fields of identifica- 

tion, control design, tuning of controllers and real-time implementation applied to the 

activated sludge wastewater treatment process. Further, the thesis covers a wide spec- 

trum of results including theoretical, simulation and full-scale plant implementation 

and testing. 

The following sections will discuss the results obtained in this thesis and will provide 
future lines of work. 

8.1 Summary of achievements from the research 

The main aims and achievements of the research of this thesis are discussed below: 

1. Identification of models for control purposes of dissolved oxygen and ni- 

trogen removal in an activated sludge wastewater treatment plant under 

continuous aeration. A comprehensive study of identification of suitable mod- 

els for dissolved oxygen and nitrogen removal has been performed. The study 

has been performed employing a WWTP simulation model and real-plant data. 

Simulations results convey that dissolved oxygen exhibits a linear behaviour in 

almost all the range below the saturation point. The linear behaviour of dis- 

solved oxygen has been corroborated by performing several identification exer- 

cises over data compiled from a full-scale WWTP in Denmark (Helsingor Kom- 

mune), and by performing on-line experiments in a WWTP in Scotland (Swin- 

stie). This work has been published as Sanchez and Katebi (2003); Sanchez 

(2002a, 2001). 
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2. Development of a model for control purposes for nitrogen removal in an 
alternating aerobic-anoxic wastewater treatment plant. A linear model for 

nitrogen removal in an alternating aerobic-anoxic treatment plant has been de- 

veloped. The model has been obtained by simplification and reduction of the 
ASM No. I model. The novel feature, embedded in this model is its switching 

characteristic between the anoxic and aerobic phase. The model input is only the 

switching duty cycle and the output are mainly the nitrate and ammonia concen- 

trations in the basin. This work has been published as Sanchez et A (2002). 

I MPC controller design for dissolved-oxygen and nutrient removal under 

continuous aeration. The design of a hierarchical controller for nitrogen re- 

moval has been fully developed. The controller is composed of three control 

levels composed of: single SISO PI control loops for dissolved oxygen, a multi- 

variable MPC driving the PI controllers in the three aeration basins, and a multi- 

variable MPC controller, driving the dissolved oxygen setpoints and the internal 

recirculation flow to control nitrogen concentrations in the effluent and in the 

anoxic zone. The method improves nitrogen removal by controlling different 

processes in different time-scales. This work has been published as Sanchez 

and Katebi (2003); Sanchez (2003c); Sanchez (2003a); Sanchez (2003b); Sanchez 

(2002c). 

4. MPC controller formulation for alternating aerobic-anoxic wastewater treat- 

ment plant. A new MPC controller formulation for the control of alternating 

aerobic-anoxic treatment plant has been developed. The formulation employs a 

switching model derived from the ASM model for the anoxic and aerobic phase. 

The controller employs the zero frequency component of the predicted outputs 

to calculate the optimal switching point. This work has been published as 

Sanchez et aL (2002). 

5. Implementation of advanced process control in real-time in a full-scale WWTP. 
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The design and testing of a MPC controller in a full-scale wastewater treatment 

plant has been presented in this thesis. The design has been performed em- 

ploying a software tool developed in LabVl1EW and MATLAB\SIMULINK, and 

which allows the tuning of a MPC controller in real-time. It is shown in this 

thesis that the use of a MPC controller, in a hierarchical structure, improves 

considerably the performance of the system. Due to the hierarchical structure, 
its implementation can be performed in a more efficient computational machine 
(i. e. PC), without any risk to system integrity and producing a significant eco- 

nomical benefit. In addition, subspace identification algorithms have also been 

implemented for their use in this real-time environment. This work has been 

published as Wade and Sanchez (2004); Sanchez et A (2004a); Wade et al. 

(2004). 

6. A new formulation for IFT and explicit solution of an optimal restricted 

structure LQG problem with applications to loop monitoring. A new formu- 

lation for continuous-time deterministic systems of EFT has been developed in 

this thesis. The method allows the calculation of the parameters of a multivari- 

able PID control system, by performing a series of successive experiments over 

the process and without carrying any explicit identification. A novel solution to 

a restricted structure LQG control problem is also presented. The solution of the 

problem leads to explicit formulas for the calculation of a controller parameter 

which is of the PID type. The value of the cost function can also be explic- 

itly calculated, thus a restricted structure LQG benchmark is proposed for loop 

monitoring purposes. This work has been published as Johnson and Sanchez 

(2003); Mahathanakiet et A (2002); Sanchez (2004,2002b). 

7. A new tuning algorithm for multivariable restricted structure controllers. 

A new tuning algorithm for multivariable restricted structure controllers using 

subspace identification is developed. The method employs input-output data 
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and initial knowledge of the controller structure and parameters to calculate the 

new optimal parameters based on a finite horizon LQG criterion minimisation. 
The method guarantees that the resulting closed-loop system will be stable if 

the optimisation converges. This work has been published as Sanchez et A 

(2004b, 2003b). 

8. The development of a software platform for the testing of advanced process 

control and data quality management. A software to test advanced process 

control algorithms as MPC and data quality management has been fully devel- 

oped. The software is programmed using LabVIIEW and MATLAMSIMULINK. 

The main interface employs LabVEEW to communicate with the user and the 

PLC or SCADA. MATLAB has been used as programming language to imple- 

ment the different algorithms. This code has later been compiled into C shared 

libraries, which are called by the main program in LabVIIEW. All the experimen- 

tal work performed in Swinstie WWTP has employed this software platform. 

This work has been published as Sanchez et A (2003a). 

8.2 Future work 

Future work can be divided in the following areas: 

- Identification 

- Switching MPC control 

9 Multivariable loop-monitoring 

- Convergence of optimisation problems 
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Identification 

The problem of identification of models for nutrients is still an open issue. This thesis 
has presented a possible alternative to obtain a model for nutrients by employing sub- 

space identification. The major problem however, lies in the highly non-linear charac- 

teristics of the processes. The identification of multiple models could be an alternative. 
Another important consideration is the excitation of the system for identification. From 

the results provided in this thesis, it appears that it is very difficult to sufficiently excite 

the process by just using dissolved oxygen levels and the recirculation flow rate. These 

are however, the main control handles in any activated sludge treatment process. Con- 

sequently, a more exhaustive study to determine the most efficient ways of exciting the 

process for identification purposes is a good line of research. 

Switching MPC control 

Intermittent aeration is a control approach which has demonstrated to be efficient in 

economical terms. Many of the treatment plants operating with this scheme (i. e. 

Helsingor WWTP) calculate the phase lengths only based on nutrient levels in a subop- 

timal way and employing a feedback structure only. This thesis has presented a control 

approach in which the influent flow is used as a feedforward signal; however, many 

assumptions have been made such as the number of available measurements. Also, 

the control methodology is only based on the mean of the predictions of the switch- 

ing model. Consequently, research focusing on the design of filters which can provide 

accurate estimates of the state variables for a switching model and considerations to 

include maximum effluent concentrations in the predictions is strongly recommended. 
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Multivariable loop-monitoring 

The measure of optimal performance is a subject of major research. Finding out when a 
process needs to be re-tuned has been a question difficult to answer, specially in multi- 
variable processes. It is common in industry to employ rules of thumb and well known 
indexes (i. e. ISE, ITAE) which can give some indication of performance degradation. 

These however, are usually misleading due to unfair comparisons or because they only 
indicate local optimality and do not consider the multivariable nature of the process. 
The problem with the existent multivariable benchmarks is their high degree of com- 

plexity. Therefore, the development of simple numerically easy to use and understand 
benchmarks for multivariable processes is an interesting field. 

Convergence of optimisation algorithms 

This thesis has presented the development of several tuning algorithms with different 

characteristics. The most novel method however, is presented in Chapter 6, where a 

subspace identification framework is employed to calculate the parameters of a multi- 

variable restricted- structure controller based only on closed-data and knowledge of the 

operating controller. The algorithm drives the process directly and seamlessly from 

the data collection towards the optimal parameters. However, the method employs 

a numerical optimisation of a nonlinear constrained function, for which there is no 

guarantee of convergence. Therefore an interesting line of research could be the deter- 

mination of necessary and sufficient conditions to guarantee convergence. 
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Appendix A 

How to generate a DLL from a 

MATLAB function script to run in 

LabVIEW 

1. Basic Requirements 

(a) Make sure you have: 

i. MATLAB compiler 

ii. C/C++ compiler. Most people can afford to buy MS Visual C/C++ so 

why not try (eg: Open Watcom http: //www. openwatcom. org/) 

(b) Make sure your MATLAB compiler and C/C++ compiler are running: Try 

mathworks technical note 1621 (http: //www. mathworks. com/support/tech- 

notes/ 1600/162 1. shtml). This note should give you enough information 

about how to setup your MATLAB compiler and CIC++ compiler. au 

2. A simple example: 

The problem of generating a dll from MATLAB to work in LabVIDEW is that the 

MATLAB compiler requires special data types (e. g. mxArray). It is therefore 
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required to write a special 'wrapper function' which interfaces the MATLAB 

generated source code with a more 'standard' ANSI C code. The following 

example illustrates the procedure. The code following has been implemented 

using MATLAB 5.3, MATLAB Compiler 2.0, Open Watcom 1.0, and LabVIIEW 

6.1. 

(a) Write the following m-code function and save as foo. m: 

function y= foo(x) 

y= 2*x 

(b) Compile into 'C' code: Type the following command in the MATLAB 

prompt: 

>mcc -t -L C -W lib: foolib -h foo. m 

This will generate the following files: 

foo. c: contains the implementation of foo (Mfoo) and the interfacing func- 

tions (mlfFoo, mIxFoo) 

foo. h: contains the prototypes of mIfFoo and mIxFoo 

foolib. c: contains the implementations of foolibInitialize and foolibTer- 

mintate, necessary to initialize and terminate mIfFoo 

foolib. h: contains the prototypes of mIxFoo, foolibInitialize and foolibTer- 

minate. 

Foolib. exports: contains the symbols to export in the d1l. 

(c) Create foo_wrapper. c. This is the wrapper function which will allow the 

use of the C implementation of foo. m. The code is listed and commented 

below. 

/* This file foo-wrapper-c */ 

#include "matlab. h" 

#include "foodll. h" 

#include "matrix. h" 
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//main wrapper function definition 

double wrapper-main(double *in I) I 

//declare variable to deliver result double out; 

//Create two pointers of mxArray type to store inputs and outputs 

mxArray *inl-ptr, *outl-ptr; 

//Allocate input pointer to a1 by I double, real matrix 

in I 
-ptr = mxCreateDoubleMatrix(1,1, mxREAL); 

//Move the data from the input to the pointer 

fill(mxGetPr(in 1 
-ptr), 

in 1,1); 

//Initialise foo implementation 

fooliblnitializeo; 

//Pass values to mIfFoo and receive in mxArray type variable 

outl-ptr = mIfFoo(inl-ptr); 

HTerminate foo implementation 

foolibTerminateO; 

//Move from mxArray type to double type 

fill(in l, mxGetPr(out I -ptr), 
1); 

Hmove data to output variable 

out = *in l; 

//Retum value 

retum(out); I 

void fill(double *out, double *in, int size) I 

HThis function moves data from one type to another 

int i; 

for(i=O; i<size; i++) 

out[i] = in[i]; I 

(d) Create foodll. h which contains prototypes of functions in foo-wrapper. c. 

The code is listed below. 
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//This file foodll. h 

double wrapper-main(double *inl); 

void fill(double *out, double *in, int size); 

(e) Add entry point to foolib. exports: add the following line to the file foolib. exports: 

wrapper-main 

(f) Build using the following command in MATLAB: 

>mbuild -link shared foo-wrapper. c foo. c foolib. c foolib. exports 

(g) You have now generated a file called foo-wrapper. dll, which contains the 

function wrapper-mainx among others. Use this function making sure the 

input (arguments) and output (return value) are of 8-bit double type. Also, 

notice that you should pass a pointer to the value and not the value itself to 

the function. 
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Appendix B 

Recursive principal component 

analysis 

BA Recursive correlation matrix update 

The following algorithm is taken from Li et al. (2000). Let XO E R71 " be a matrix of 

raw data, where m is the number of measured variables, 77, is an initial data block size. 

Also qjj is the standard deviation of column j of the initial data block. The recursive 

update of the correlation matrix algorithm with forgetting factor p can be summarised 

as follows, 

1. Initialisation 

bi = 
(Xo) T. 1171 

1 

El = diag (al 1, ---, Ulm) 

0-1 T E-1 XI = 
[Xi 

171b, ]I 

Rl =I XTXI 
171-1 1 

2. Recursive update 

YO 
Xk'o' 

-"'k+1 0 

L 
X17k+ 

I 
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bk+l = pbk + (1 0 
+J)T Ilk+ I 

(Xllk 

17k+l 

16Lbk+ I bk+ I- bk 

2 
l'i p(2+ Ab2 (i) P) 17k+l 

ub2 k+l 170 -! 
X 

ýýXIU+l 

l7k+ I k+ IW +(I 

F-k+ I diag (Cyk+ 
1,1 Uk+ I, m) 

X77k+l 
[XI07k+l 

- 
lllk+, bT ýý 11 

Ilk+ 1]1: 
ý+ 

Xky-kE-ll - IkAbT E-1 
Xk+ I 

k+ k+l k+l 

L 
Xllk+l 

Rk+ I Y-k-+l 
I 

(Y-kRky-k + Abk+ 1 AbT T k+I)Y'k+l+(1-1') 
! 

+I lk+lXl7k+l Ilk- 
XII 

B. 2 Hotelling's T2 statistic 

Let XE R"' be a data training set consisting of m variables and n measurements for 

each variable. The covariance matrix of the training set is, 

R=1 XTX 
n-I 

An elgenvalue decomposition of the matrix R, 

R= VAVT 

Let, 

A- 112VTX 

The Hotelling's T2 statistic is given by, 

ZT z 
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B. 3 Q statistic 

The Q statistic is defined as, 

rTr 

where, 

r= (I _ ppT)X 

and P is the loading vector of the SVD decomposition. 
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Appendix C 

Tag mapping in Swinstie WWTP 

Table C. 1: Tag mapping 
Tag Register Description Tag Register Description 
DOI V568 DO meter 1 DOH V1057 DO high setpoint 
D02 V665 DO meter 2 DOL V1058 DO low setpoint 
D03 V569 DO meter 3 DOerror% V1059 DO error % allowance 
D04 V666 DO meter 4 BLOWupdate V1068 Blower update time 
D05 V570 DO meter 5 BLOWIrun C00873 Blower 1 status 
D06 V667 DO meter 6 BLOW2run C00951 Blower 2 status 
D07 V571 DO meter 7 BLOW3run C00876 Blower 3 status 
D08 V668 DO meter 8 BLOW4run C00954 Blower 4 status 
D09 V572 DO meter 9 MLRPIrun C0855 Recirculation pump I 

DOW V573 DO meter 10 MLRP2run C0858 Recirculation pump 2 
MLSS1 V574 MLSS meter I MLRP3run C0861 Recirculation pump 3 
MLSS2 V669 MLSS meter 2 MLRP4run C0864 Recirculation pump 4 
MLSS3 V575 MLSS meter 3 FMI V503 Flow meter I 
MLSS4 V670 MLSS meter 4 FM2 V504 Flow meter 2 
MLSS5 V576 MLSS meter 5 FM3 V564 Flow meter 3 

MLSS6 V671 MLSS meter 6 FM4 V662 Flow meter 4 

BLOVvrER1 V560 Blower I speed FM5 V663 Flow meter 5 

BLOVvrER2 V660 Blower 2 speed RASI C0963 Return sludge pump I 

BLOVvTR3 V561 Blower 3 speed RAS2 C0966 Return sludge pump 2 

BLOVVER4 V661 Blower 4 speed 
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