UNIVERSITY OF STRATHCLYDE

WINDOW OPTIMISATION FOR IRAQI HOUSES

MIQDAD HAYDAR AL-JAWADI, BSc.

A THESIS SUBMITTED TO
THE DEPARTMENT OF
ARCHITECTURE AND BUILDING SCIENCE
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

To my wife, Sabah Yehya Al-Mallah, from whom I received so much encouragement.

ACKMNOJLEDGEMENTS

The author would like to express sincere thanks to his superuisors Professor Thomas Markus and Dr. Paul Yaneske for their continual assistance and inspiring aduice during this study.

Thanks are also due to Dr. Alan Bridges and to other members of the department; Mr. Jim Fleming, Mr. Donald Stearn and Mr. Harvey sussock for their help and assistance in the computer programming; Mr. Jack Ruxton for help during the wind tunnel etudy; Mre Archie Macdougall, Mr. Jim Porter and Mr. Charles Brown for their practical assistance.

The author would also like to express his gratitude to Mr. Don Evans from the Computer Advisory Section In the University of Strathelyde, who contributed and helped in every stage of the construction of the computer programs.

I should like to thank Dr. Simon Fraser for his advice and remarks during the work on the ventilation section; and thanks also to Dr. Fraser's PhD, student, Mr. Ahmad Mustafa for his help. Many thanks to Dr. Crowther for his assistance and aduice during the wind tunnel experiment.

The author would like to express his thanks to the Iraqi Building Research Centre and The lraqi Scientific Research Council for giving him the study leave and to the British Council for the scholarship enabling him to carry out this research.

Grateful thanks to The Slovak Academy of Science for their kind invitation and the hospitality they extended during my stay in Bratislava to discuss the daylighting section with Dr . Richard Kittler, for whose his aduice and remarks 1 am grateful.

The author would also like to thank Professor John Gero For his aduice and remarks; Dr. Antony Radford for providing the author with a copy of his thesis and with some of his papers on optimisation.

Many thanks to Miss Marlice Ashmead; my colleagues Othman Nabas, Mohamad Abo-almajd, for their assistance.

Grateful thanks are due to my father for his strong support, my mother for being patient and to my brother Kadhim and all the family in lraq for their help.

Finally the author, would like to thank his wife, Sabah Yehya Al-liallah for her continual support all the time and his daughter, Warqaa, for always being so patient and loving.

ABSTRACT

This work was carried out for latitude 33 deg. north longitude 45 deg. east (Baghdad region), but the procedure can be applied for any region in order to find optimum window sizes and proportions.

The study was concerned with the housing sector, and was chosen because most people are keen to search fon lower energy expenditure in their own houses, but contribute little to energy efficiency in offices.

Although the study was for housing; it could be used to a limited extent to cover other types of building.

For this study a housing survey was carried out in Baghdad in a middle-income region. An estate model was designed, and experiments were carried out on the estate and on individual houses under an artificial sun to determine sun exposure times on the external walls for sixteen orientations. Small scale measurements were carried out for daylight under a Baghdad clear sky on a room model to be used in verifying the mathematical formulae and findings. A wind tunnel was used for natural ventilation and wind distribution studies.

For direct sunlight-control computer programs were written to compute room sun patch areas in summer and winter, sun patches
per unit window area and the yearly efficiency of seventy seven different windows for about two thousand cases of wall position, wall thickness, interhouse distance, wall orientation and obstruction height. The program produced the results in graphic and tabular forms. For daylight, computer programs were written to compute the daylight level formed by forty four types of windows for one thousand two hundred and eighty cases of wall position, interhouse distance, wall orientation, and obstruction height, for two types of external wall reflection. Lighting level were computed at a fixed distance from the outer side of the fenestration.

Computed results were prepared in tabular form accompanied by British IES recommended daylight ievels for various domestic activities in order to allow designers to make their own decisions on the degree to which they wished to fulfil the requirements.

For natural ventilation a limited number of windows was studied in the wind tunnel to generate a sample set of results on the effect of window dimensions on natural ventilation and wind distribution. The study was limited to forty four cases.

The results produced by the computer programs for direct sunlight control and daylight together with the experimental wind tunnel results were combined for optimization and selecting the best group of windows. Pareto optimisation techniques were used for selecting and recommending windows having the capability of providing good control of direct
sunlight, sufficient amount of daylighting, and the highest possible wind velocities for body cooling.

Although the study is incomplete in at least one aspect - the optimisation of natural ventilation for room and body cooling it yields a significant set of results and demonstrate the potential of computation, experimental work and Pareto optimisation as a techniques which yield usable ressults.

The recommendations for the whole set of 4968 cases are presented in graphic and tabular forms in a way that gives a designer a clear picture of the capability of each of the recommended windows in fulfilling functional requirements.

TABLE OF CONTENTS

Acknowledgments i
Abstract iii
Contents Ui
Volume
Introduction 1
1- Housing and house and window design in lraq 3
2- Climate 67
3- The design model 119
4- Sunlight 166
5- Windows for daylighting 206
6- Natural ventilation 249
7- Optimisation and recommendations 290
Conclusion 323
References 328
Appendix 1 363
Volume 2
Appendix 2 377
Volume 3
Appendix 3 896
Appendix 4 1168
Volume 4
Appendix 5 1270

INTRODUCTION

INTRODUCTI ON

Through my work in the Iraqi Scientific Research Council in providing designers with useful information to help them to contribute in the programe of energy conservation, and through the negotiation with and visits to a large number of architects during the formation of research plans in the field of architecture during years '81-'85, it was found that designers were asking for work to be done on window dimensions for direct sunlight control, and natural lighting, and on the effect of window sizes and proportions for natural ventilation. They also sought optimum window sizes and proportions covering direct sunlight control, natural lighting, and natural ventilation.

Responding to these desires 1 took it as my job to provide answers to these questions, and to concentrate my efforts on trying to prepare useful data, in the expectation that 1 could produce something useful for designers and at the same time respond to the worldwide call for relying on natural and clean energy .

1.1 THE PAST

1.1.1 The founding of the cities

As the study is concerned with the city of Baghdad and the result generalized to cover most parts of Iraq, it has been decided to take Baghdad as the example especially since it is located almost in the centre of the urban area of Iraq. Baghdad was founded by the Kalief Abu Jafar Al-Mansour in 762 A.D. on the west side of the river Tigris [Ref.88] and its location was chosen after research was done to find the best fresh and unpolluted area near the river Tigris. It is said that the place was investigated by hanging several pieces of sheep's legs in different places in the area. The period of decomposition of these legs was watched and the result determined the place and the orientation of the Kalief's palace as well as of the city itself. Baghdad was constructed with a high level of defence in the form of walls and gates \{see figure 1.1\}. As is mentioned by Dr.Mustafa Jawad et.al. [Ref. 88] the main roads were about 25m and the alleys about 8 m . in width. The city was designed in a circular form by Abu Arttaa who was one of

No. 1 Circular Baghdad as investigated by Dr. M. Jawad \& Dr. A. Susa.
No. 2 Kurassan Gate.
No. 3 Basrah Gate.
No. 4 Kufa Gate.
No. 5 Al-Sham Gate.
No. 6 The Walls of the City.
No. 7 The Estates.
No. 8 Alleyways.
No. 9 Government Administration Blocks.
No. 10 The Palaces of the Kalief's Sons.
No. 11 The Palace of the Kalief.
the most famous planners of the time, and some other engineers and builders.

Baghdad was expanded in 768 A.D. onto the left side of the river, though later Baghdad, like other cities, expanded more and more and many agricultural lands were divided and converted into residential areas by the agreement of the local Governor and sometimes even without the agreement of the higher authorities. It would seem that the city expanded in a way which, although it did not affect the inhabitants through the location of their houses or through the general expansion of the city, it did apparently change completely the original plan of Baghdad in that it no longer existed in the form of a circle nor is there now any indication of its original form. Although Professor Strange [Ref.88] has located the circular Baghdad on his map of present day Baghdad, the investigation of Dr. Susa shows that he is not correct and that the Circular Baghdad has to be located further north of the location given by him \{see Figure 1.23.

1.1.1.1 Baghdad : The Old City

When one looks at an old Baghdad plan one can see that the lanes and alleys are mostly narrow <mainly between 1 to $4 m$ wide), and winding in shape (see Figure 1.3\}. Many of these little lanes are cul-de-sacs, which run off the main thoroughfares.

Figure 1.2 Dr. Susa's location of circular Baghdad.

Figure 1.3 An ariel view of old Baghdad.

It was considered that the winding lanes were more secure from a defence point of view. Moreover these curves and bends increase the general shading of the lane, thus achieving a layer of cooler air at the lower level of the lanes. Most of the lanes are overhung to about 0.7 m by projections from most of the first floors of the houses, not to mention the further projections by the roofs \{ see Figure 1.43. Therefore both projections play a major part in improving the internal environment of the houses on both sides. Moreover the courtyard is heated by the sun, and there is a quite significant temperature difference between these lanes and the main roads - although the records of a small experiment carried out by the author to discover the difference between the main roads and the narrow and curved lanes and the courtyards \{see Figure 1.5 \} using the whirling psychrometer have been lost. (The author remembers that the difference was between $4^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ in summer when the meteorological record was around $45^{\circ} \mathrm{C}$; in the past the difference would be expected to be more, since at the time when the author was carrying out the experiment, most of the houses were occupied by poor people who did not wash the lanes and keep them as clean as people used to do. When these houses were first built, each householder used to wash the front of his house daily in summer, which reduced the temperature of the lane further. As the lane was expected to supply the houses with cold air, the householders would leave their main doors and lower

Figure 1.4 Typical lane in Baghdad.

Figure 1.5 Measurements taken by the Author in a courtyard.

windows, which looked onto the lane, open at noon in order to obtain the benefit of the breeze and allow the cool air to enter the courtyards as a result of the 'stack' effect.
1.1.2 Types of Houses

Now, if one looks at any of the areas in old Baghdad one will see that, the traditional courtyard houses are the only type that exist there and they vary, from luxury to simple types. Moreover when one considers them more closely, one can see a distinct likeness between some of them and the houses found in Ur in the south of lraq, which which built during the period 2025-1763B.C.[Ref. 54]. In other words the plan form is very ancient. Small courtyard houses are mainly built on plots between 40-100m2 whereas the 1 arger houses are built on plots of an area greater than 150 m 2

1.1.2.1 High Income Houses (The Typical Baghdady Houses)

Most of the high income houses are built on plots of over 150 m 2 in size, and usually consist of two stories. The rooms are generally built around three sides of the courtyard. This type of house has a verandah running around the courtyard, contributing to the shading of the courtyard, decorating the house and protecting walls and windows from winter rain $\{s e e$ Figure 1.6\}. The house usually consists of two reception rooms, one for males and one for females, several bedrooms, a large kitchen, toilets

$1.12)+$ If Naforghasfing aatgrkats ace ubeti lo stop ground

Figure 1.6 Courtyard Verandah.
\qquad
\qquad
and bathrooms. The courtyard is paved with light yellow brick tiles, and as no waterproof substances are used under the brick, the heat created by the sun patches formed in the courtyard i.s either absorbed by the ground or causes evaporation through the bricks which are always wet either from the earth underneath or from the daily washing of the courtyard. These houses usually have basements, one or more terraces, galleries \{see Figure 1.7$\}$ and a small garden \{see Figure 1.8\}. Wind catchers are one of the dominant characteristics of the Baghdady courtyard houses. Wind catchers $\{a s$ seen in Figures 1.9 and 1.10$\}$ trap the prevailing wind coming over the roof and push it down through a vertical tunnel \{see Figure 1.11\}, so that the air is cooled by the time it reaches the lowest part of the house. This type of wind catcher works on three principles. First, the wind pressure forces the air downwards. Second, the cool room air moves to the warm courtyard and rises, thus creating a downward air movement from the wind catcher. Third, the presence of moisture in the walls and floors causes evaporative cooling \{see Figure 1.123. If waterproofing materials are used to stop ground water from moistening the walls and floor neither the wind catcher nor the Baghdady courtyard house would function. In the courtyard house one can also find many architectural treatments for climatic adaptation and energy conservation. Roofs, for example, are cavity constructions made of large tree trunks, covered from inside with wood or

Figure 1.7 Courtyard Gallery.
Howntyatd Garden.

Figure 1.8 Courtyard Garden.

Figure 1.9 Wind Catchers.

Figure 1.10 Wind Catchers.

Figure 1.11 Wind Catchers.

gillopies focktod in the shade cuot figuet 1.163.

Figure 1.1
Efflorescent salts deposited by moisture evaporation on brick walls and vaults.
metal sheets and from outside with reed carpets paved with mud and brick tiles \{see Figure 1.13\}; the total roof thickness is about 500 mm . The first floor wall is usually constructed of a timber framework, \{see Figure 1.143 to reduce the load on the foundation and to give good thermal insulation in winter, as well as to help project the wooden-walled trellises \{see Figure 1.15\}; in order to increase the first floor area, to shade the alley from the summer sun and to protect any pedestrians, as well as the windows and walls at ground floor level from the winter rain.

Windows on most of the first floors and some of those on the ground floors are designed to be multifunctional to control direct sunlight, provide the room with suitable daylight and natural ventilation and to maintain a high level of privacy (see 1.1.3 for details). In some houses natural lighting is increased by using mirrors on the roof to maintain the lighting levels inside the rooms $\{s e e$ Figures 1.16 and 1.173.

Decorative mirror panels were used in some houses to increase the lighting levels on the opposite walls or galleries located in the shade \{see Figure 1.18$\}.$

In summer some householders cover the courtyard with heavy and light coloured hangings to prevent excessive direct sunlight penetration, especially in large courtyards such as those used as an assembly area for daily visitors $\{s e e$ Figures 1.19 and 1.203.
sqaous tezarn to poom
sqadres pary
pnW

Figure 1.14 Timber first floor wall.

Figure 1.15
Timber Trellis.

Figure 1.16 Ceiling mirrors acting as light reflectors.

Figure 1.17 Ceiling mirrors acting as light reflectors.

Figure 1.18 Wall mirrors acting as light reflectors.

Figure 1.19 Fabric shading devices.

Figure 1.20 Fabric shading devices.
\qquad
\qquad
\qquad
1.1.2.2 Middle Income Houses

In this category houses are built on land between 100 to 150 m 2 and each house has several rooms, a kitchen, toilets and a small bathroom. Such houses have wooden facades for use especially on the first floor $\{5 e e$ Figure 1.21\}. The walls of ground floors are usually made of bricks with ordinary or simple multifunctional windows.

A basement might exist but with most of these houses the basement often becomes damp because of the ineffective treatments used to stop underground water. Very often therefore most of the basements were filled with broken bricks and earth and closed. up completely. Wind catchers also exist in these houses which can be considered as typical Baghdady houses since they possess most of the climatic, social and security needs required by their occupants.

1.1.2.3 Low Income Houses

Houses in this category (the $40-100 \mathrm{~m} 2$) tend to be very simple in style with one to three rooms and a small courtyard and no friezes, wooden facades or multifunctional windows. The thermal environment cannot be controlled adequately in such types of houses and the only benefit of the design is the reduction of exposed walls $\{$ see figure 1.223.

Figure 1.21
First floor wooden facades.

Figure 1.22

The traditional design of windows varied from the very simple type mainly for ventilation purposes to the complex multifunctional type.

The vertical form of window is the dominant shape in the Baghdady house. Horizontal, circular, and hexagonal windows are rarely found except in the form of ventilators.

1.1.3.2 The Luxury Multifunctional Window

This type of window was designed to be capable of providing rooms with an acceptable level of natural ventilation, controlling direct sunlight, providing the room with varying and controllable levels of natural lighting, thermal insulation and a high level of privacy.

Usually it is of an arched shape, 0.5 m to 1.0 m in width and 1.0 m to 2.5 m height.

Most of the short and medium height windows \{see figure 1.233 were not designed to meet all these functions, only the taller types, especially those found as a part of complete timber walls or oriels, were capable of doing so \{see Figures 1.24A and 1.24B\}.

The multifunctional window consists of three parts \{see Figure 1.253:

A - The lower part of the window consists of a hollow space covered from the outside with a wooden panel and from the inside with either a timber shutter or brick wall. This

Figure 1.23 Short Windows.

Figure 1.24b
Tall Windows

Plan

Figure 1.25 shows the structure of the multifunctional window.
space is designed to store glazed window frames, wooden shutters and a louvered or arabesque wooden shutter. Each of these shutters can be slid up into position when required, either half-way or to operate fully as the user desires.
B - The middle part is an open area, which can be easily glazed by sliding a glazed frame from the lower part of the window up when insolation is needed and no cool air is required to flow into the room $\{$ see Figure 1.24B\}.

In summer the glazed frame or both the glazed frame and the louvered shutter can slide up together to cut off any direct sunlight, exclude hot air from the room and allow a certain amount of diffused light to penetrate at the same time providing the room with a high level of privacy \{see Figure 1.243. In spring and autumn when cool air is preferred, the glazed window frame can slide down into the cavity, keeping the louvered shutter in position to cut out direct sunlight and allow cool air to flow into the room \{see Figure 1.26\}.

C - The upper section of the window consists of two parts, the arched part and the oblong part.

The oblong part is a colourless, glazed area which receives direct sunlight in winter because of the low sun angles during that season and is almost shaded in summer either by the frieze, verandah or trellises.

The arched part is usually glazed with coloured glass. Since this part is very near to the ceiling, it is usually shaded in summer, and this allows diffused light to

Figure 1.26 Window Louvre.
penetrate and relieve the dark when the wooden shutters block the clear glass areas, as well as providing the house with a pleasent decorative feature.

In some windows the arched part is glazed with clear glass.

1.1.3.2 Simple Multifunctional Windows

This type of window is widely used in Baghdady courtyard houses and it sometimes has similarities to the arched type, but without the arched part and without the coloured glass. The shutter cavity part is similar in principle to that of the arched type \{see Figure 1.26\}. As has been mentioned the majority of these windows, are longitudinal. Moreover during observations carried out by the author in the old Baghdady courtyard areas established before the implimentation of the the (I) steel beam lintols in building no large horizontal windows were found.

1.1.3.1 Windows for ventilation

Circular, hexagonal and sometimes horizontal windows are used for ventilation and lighting Kitchens, bathrooms and toilets; they are usually considered more as fenestration rather than as windows because most of them are not even glazed and those that are glazed are not designed to open. Circular and hexagonal unglazed windows are often used over the main door of the houses to allow the breeze and cold wind to move in summer from the alleyway into the courtyard when the main door of the house is closed.
1.2 THE PRESENT
1.2.1 The Establishment of Cities and Estates
 law and any expansion or change which requires any land from agricultural areas being used for residential purposes has to be acquired under an explicit law and certain regulations have to be obeyed.

1.2.1.1 Baghdad City Plan and Plot Sizes

After the first World War, the inuasion of Iraq and the import of cars in to Baghdad resulted in an expansion different from any carried out before. The land distributed to the middle income group was in plots greater than 200m2, narrow alleys disappeared in the new areas and were replaced with wider roads. This first happened under the British Governor and the pattern was followed by Iraqi and other foreign experts. Todays the master plan for Greater Baghdad is carried out by the Municipality of Baghdad and a Japanese consulting firm.

From the 'fifties to the 'seventies the Government distributed residential land in plots mainly between 300 m 2 to 800 m 2 . During the last ten years however the Government decided not to distribute any plots of greater than 400 m 2 . The Government policy of reducing plots was the result of the rapid and extensive horizontal expansion of Baghdad,
since it was known that lraqi people do not like living in flats \{see Figure 3.29\}.

1.2.1.2 Factors Affecting Road Widths

One of the most important factors in modern society is the presence of the motor car which affected urban planning in hot tropical countries as it did in cold European ones. It is difficult in modern cities to continue to use curved and narrow lanes and alleys in the same way as was the case in the old cities, because the minimum width required for cars and the need for pedestrian walkways. Therefore the minimum road width is now be defined as that required for safe and efficient driving and for pedestrians safety. Following these changes, people have to accept change, live with the new types of road, search for suitable landscape and architectural treatments and adapt to life in a modern, car-using society.
1.2.1.3 The Breakaway from the Traditional Courtyard House

The effect of road widths and the import of modern building materials, the influence of modern architecture and the desire for change had a significant influence on the people of Baghdad. Many enjoyed being "modernized", desired to own cars and built houses which had a shelter for their vehicles. All these factors, along with tradition related culture and religion, were reflected in the new designs, which however for the most part, retained some of the older
principles in the design of the interior layout but with some modifications.

Most of these houses were constructed in the south of the old city (Battawiyien and Al-Sadoon place), in the north of Baghdad in Adhamiyah place and in the west of Baghdad in Al-Salihiyah \{see Figure 1.27\}.

This type of house is a new version of the traditional courtyard house, in which the courtyard has been replaced with a covered central hall, mainly used as a living area as well as the main circulation area for all the rooms located around it. An open area similar to the courtyard is found at the back, where the kitchen and servants quarters are located. This space in some houses is a garden surrounded with high walls or servants' accommodation. Roofs were built with jack arching techniques to allow a brick balcony wall to be constructed \{see Figure 1.28\}. This type was considered as the first departure from the traditional courtyard house. However when detached houses were constructed, although basements were often still included, wind-catchers disappeared completely.

When this type of house first appeared it was owned by high income groups. Now these houses are under multihousehold occupation by low income groups. The original householders, who built the detached houses in the new suburbs of Baghdad have either sold or rented the houses, while others have

Figure 1.27 Non-traditional home in Al-Salihiyah

Figure 1.28
been converted into printing presses or small factories for light industry.
1.2.2 Actual and Most Common House Types in Urban Area

Apart from the courtyard houses found in the low income areas, semi-detached and detached houses are the most common types in the areas occupied by the middle and upper middle income groups.

1.2.2.1 Detached Houses

In urban areas in iraq, detached houses are usually built on plot areas larger than 400 m 2 , and it was found from the large number of plans collected by the author (Ref.15] from the municipal offices and other sources that people with 600 m 2 plot areas cover an average bullt ground area of 170 m 2 and those having 500 m 2 plot areas cover an average built ground area of 164 m 2 , the rest being left as garden, walkways and garage. This gives a clear indication that the ratio of builtiunbuilt area is about $1: 3$.

The 1 raqi building regulations and some municipal rules allowed bullders in these areas to have one side of the house built on one edge of the plot, two sldes to be at least one metre distant from the edge of the plot and the facade had to be at least four meters in from the front edge (see flgure (.29).

Plost people do not attach their houses to their neighbour's, although they know that the regulations would

Figure 1.29
allow them to do so. In some places one also finds that, although the houses are detached, people sometimes form a direct attachment by linking kitchens and garages across the two adjacent plots, which is not considered as affecting the "detached" status of the two houses.

Figure 1.30 show some shapes and layouts representing the built area in proportion to the total plot area and block plans of different types of houses on the plot and the types of attachment and detachment usually found.

1.2.2.2 Semi-detached Houses

These houses are usually found in the middle and lower midde income categories, and the plot sizes vary between 200 m 2 to 400 m 2 .

In such areas it is usual for one or two rooms of the houses to be attached to the neighbour's walls, leaving at least one metre from the back boundary as a walkway and four metres from the front as a garden \{see Figure 1.31\}.

1.2.2.3 Terraced Houses

This type of house is normally found in the low income areas \{see Figure 1.32\}, where plot areas are between 120 m 2 and 200 m 2 . In such places most houses are attached on two or three sides leaving a small area in one or two places near the side or the middle for ventilation, lighting and

Figure 1.30

Figure 1.31 4 m front set-back.

Figure 1.32 Terrace House Facade
for installing water heaters, gas cylinders and sometimes air coolers \{see Figure 1.5$\}.$
1.2.3 Modern Types of Windows in Iraq
1.2.3.1 General View

In the early twentieth century when Iraq began to import I-section steel beams, designers started to change window types from the traditional narrow vertical type to the wide, horizontal one without taking into account the effect this would have on the internal environment of the house. Figure 1.33 shows one of these houses and the contradiction between the beautiful and efficient windows on the first floor and the ugly and inefficient windows on the ground floor which are a failure both from the privacy and environmental points of view.

After reinforced concrete was introduced to lraq, architects qualified in Europe started to transfer European styles, to hot, dry countries such as Iraq. Some architects attempted to compromise between function, tradition and modern architecture \{see Figure 1.34\}. The majority, however, just introduced a touch of the old traditional style into their designs, leaving other factors out of consideration . The author suggests that this problem arose partly as a result of lack of adequate information and data.

Figure 1.33 Conflict between traditional first floor and modern ground floor windows.

Figure 1.34 Modern interpretation of traditional window.

1.2.3.2 Existing Window Types

Wooden windows were the only type used in lraqi buildings until the year 1935 [Ref 195]. In that year and for the first time steel windows were imported from the United Kingdom and used in the building of the Royal Hospital (now The Republic Hospital). Since that time the use of steel windows has increased to such an extent that today wooden windows have almost completely disappeared. Glazed areas have also increased, horizontal windows have grown in usage and the use of the wall thickness for shading was discarded.

Figure 1.35 shows common types of windows in houses built after the sixties; while Figure 1.36 shows the window types in existence and widely used before 1960.

In generaly windows currently used in lraq can be classified as follows.

A - Horizontal oblong windows(the most popular type). B - Vertical oblong windows (less popular).

C - The arched type

1.2.3.2.1 Horizontal Oblong Windows

This type of window is found in most housing and is 0.60 m to 3.0 m in width and 0.30 m to 2.10 m in height.

Figure 1.35 . Post-1960 window types.

Note:- $1,2,3,84$ were used in houses built in the sixties. a. Larger sizes were most popular especially in middle and higher income areas.
b. The line on 182 shows the possibility of other proportions.

1.2.3.2.2 Vertical Oblong Windows

This type is less common and is normally of 0.30 m to 1.50 m in width and 0.60 m to 2.10 m in height

1.2.3.2.3 Arched Type of Windows

This type has reappeared in modern architecture in Iraq. When it was first used twenty years ago it seemed an obtrusive and ugly patch on the building .

In the last decade the government encouraged architects to add a touch of tradition to their designs and, in response, a few succeeded in demonstrating their ability to marry the old with the new in a harmonious way.
1.3 Requirements and Needs for New House Designs
1.3.1 Users' Needs

Householders require:
A - Houses suitable to their standard of living.
B - Better designs to cope with the climatic environment, their tradition and culture and to fulfil their psychological needs.

1.3.2 What Designers Need

Following from a knowledge of the plot size, types and number of rooms, the approximate sizes of each room and the users' requirements in order of priority, the designer needs to have thorough knowledge of:

A - The climate
B - The extremes of climatic conditions C - Ways of preventing buildings from admitting excessive direct sunlight in summer and how to enable them admit as much direct sunlight as possible in winter.

D - Ways of selecting windows and openings so as to achieve a balance between controlling direct sunlight, the need for ventilation, the need for daylight and psychological / aesthetic needs .
1.3.3 The Regulations

Constraints come from urban design regulations issued by the Ministry of Planning and the Building Regulations, drawn up by the municipalities, which have to be followed by the designer.

1.3.4 The Conservation of Energy

A concern about conservation of energy is not merely a question of reduction of energy costs, of immediate concern to most building owners and users, but also a concern for the worldwide shortage of fossil fuels and for the
reduction of pollution. Therefore the designer has to take into consideration:

A -The reduction of energy costs and, at the same time the improvement of the internal house environment. B -Reduced reliance on artificial mechanisms and means. C-The possible contribution to the control of environmental pollution.
1.3.5 Psychological Needs

Although the importance of energy conservation and cost reduction in buildings is widely discussed, it must be stated here that, houses and shelters; and indeed all human activity, are almed primarily at the enjoyment of life on this planet. Therefore people do not wish only to be provided with energy conservation or cost reduction, but in addition they seek a more comfortable and enjoyable existence.

Accordingly, the designer has to act sensibly and treat the psychological needs as having an equal priority to those for energy conservation and cost reduction. Consequently the following factors should be catered for in any design and above all in houses:

A - The importance of a satisfactory relation between the occupant and the external environment.

B - The importance of privacy and family customs.
C - The importance of light and sunlight admission.

From the author's experience, arrived at through discussion with designers and with occupants during the housing survey \{see chapter 3\}, it is evident that, although the intensity and penetration of solar radiation is the main factor in raising the internal house temperature it is the area of a room's surfaces which are insolated which is the perceived phenomenon, which correlates, subjectively, with people's experience of solar energy gain. Occupants have a widespread desire to minimise this insolated area ("sunpatch") in summer and maximise it in winter. Since total sunpatch area is, in any case a useful approximate measure of solar energy gain and since its psychological siqnificance seems so potent in terms of the perceived environment, this study makes the important assumption that the "sunpatch area" is the most relevant single measure for evaluating the shape and size of windows for direct sunlight control.
1.3.6 Ways of Achieving Users' and Designers' Needs

It is common knowledge that designers try their best to tackle energy conservation in design, but when they find that much of their time has to be spent on calculations, there is a tendency for them to transfer their efforts more to the aesthetic issues and to leave the environmental control side unresolved, especially when they believe that there are no firm standards laid down or any reliable information to which they may refer. On the other hand, it
also appears that when designers find information which is quite clear, practical and easy to use this is implemented in the design.

Thus it is clear that the designer needs as much information as it is possible to provide for easy and ready use.

During discussions and interviews with architects on energy conservation in buildings in both the private and public sectors, when the possibility of contributing to this project was raised, the author found that the architects called for more research on various aspects and they expressed a desire to be provided with:

A - Data on the effect of building shapes and orientation on energy conservation.

B - Data on sunbreaker types and dimensions for different window sizes for different building orientations.

C - Data on window sizes and proportions for better direct sunlight control.

D - Data on window sizes and proportions for better natural lighting.

E - Data on window sizes and proportions and the positioning of windows for better ventilation and air distribution for cooling purposes.

F - Some methods for optimizing window sizes and proportions to obtain cuerall good performance in controlling direct sunlight, providing a sufficient amount of daylighting, and cooling ventilation.
1.4 The Author's Contribution

Responding to this call
A - Joint work was carried out between the author and an other researcher on plot and house proportions, and orientations for 1 raq and for other countries lying between 30 to 36 degrees north and south. The paper was published twice by the International Association of Housing Science in the U.S.A. [Ref.15]. Nevertheless further work is needed,and the author hopes to make it a part of his future work.

B - Work has already been done by the author on the dimensions of sun-breakers for windows and fenestrations for buildings in lraq and for other countries on latitudes 30 to 36 degrees north . (A handbook was published by the Iraqi Scientific Research Council 1982 [Ref.19]).

C - Within the present research the author has set out to produce useful data concerning the optimization of window design, which, it is hoped, will help to prouide lraqi designers with some of the window design guidance which they need..

Abstract

1.4.1 An Effective Way of Tackling the Problem of Window Design for Housing

It is believed that the problem of window design for housing has to be studied and recommendations made whithin the following framework:

A - For real situations in housing areas and not only for scattered, individual houses.

B -For the most common windows found in design practice (square and oblong windows); these are the only shapes included in this study.

C - Recommendations on window sizes and proportions have to be made in such a manner that they allow the designer freedom to choose a suitable window according to his or her own evaluation between the recommendations set out and other, possibly conflicting, factors in the field of economics, aesthetics or psychology. Accordingly such a study has to present an optimization method which gives a clear and wide range of information on window efficiency covering each parameter separately as well as jointly. D - For a hot country such as Iraq, direct sunlight is the principle and most important factor affecting internal enuironmental control. Therefore the first factor which has to be considered is the careful evaluation of windows so that they are capable of reducing or eliminating the penetration of summer sun, while allowing desirable winter sun to enter. Moreover the ratio of winter sun penetration
to summer sun penetration adopted has to follow the ratio of the summer period to the winter period. The designer has to be provided with a set of results and recommendations regarding this aspect of the problem separately, to provide a clear picture concerning the capability of different window sizes and proportions, for control of direct sunlight for all wall orientations <16 orientations were chosen), for the most common housing shapes and layouts. Thus this important factor should be considered as number one priority.

E - As for daylight, the same group of windows studied for direct sunlight has to be studied to show their capabilities for providing certain levels of lighting, with the sky and the external surfaces as the light sources for the same 16 wall orientations for a range of interhouse distances. Internal room reflection should not be taken into account because of the wide variation of internal colours used in practice and the presence of furniture. The author has chosen, for practical reasons; to consider the internal colour as black and calculate the lighting level from the sky and the external obstructions at a point representing the centre of the room at a working level (0.75m height). Naturally designers know that, with walls having any actually used colour the lighting levels will be higher and allowing for this condition is a part of their design responsibility . However, designers will also be provided with the reflection factors of paints and material
surface colours and a general design aid concerning the effects of reflection from floor, ceiling and walls. The designer has also to be provided with the international recommended levels of lighting for every type of room so that a rational choice of a window, or a number of windows which reach the required lighting levels, can be made, F - As for ventilation, its main purpose in hot dry countries is for body cooling. Windows therefore have to be studied to give the designer information on the effects of size, proportions, numbers and positioning to give adequate air distribution in rooms of different orientations with regard to air distribution and velocity, for the various building shapes and layouts in common use. G - It should be normal practice for the designer to know the window sizes and proportions which can serve criteria based on combinations of any two of the three criteria of sunlight control, daylight provision and ventilation and, further, a combination of all three.

Thus it is the aim of the study to prouide the designer with optimal solutions for all the above requirements.

CHAPTER 2

```
CHAPTER-2-
CLIMATE
```


2.1 General View

Before an architect designs any kind of building he or she requires some information about the climate of the place where the building will be constructed. For the present study, climate has to be defined in a manner which allows the designer to be provided with clear information and can help to lay the foundation for recommendations on the optimization of window design.

Consequently the analysis of climate has to serve building design requirements.
2.2 The Climatic Elements

For building design requirements, the basic climatic elements are air temperature, humidity, wind speed, wind direction, solar radiation, sunshine duration, precipitation and sky condition.
2.2.1 Air Temperature

Air temperature varies according to the latitude, the height above sea level, and the geographical character of the location.

Most of lraq is located between latitudes of 29° and 37° north and the main eities are situated between 30° and 36° north. The south of Iraq is 2 m above sea level. The middle
area is 34 m above the sea level, while in the mountain area the level varies between 200 m to more than 1000 m above sea level. The main cities do not exceed 350 m above sea level. Since Iraq borders on all sides with other countries \{see Figure 2.13 and has only a very small opening on to the Arabian Gulf, the sea does not make a major contribution to its climate, and consequently Iraq tends to be hot and dry, which means that the sky is mostly clear and the incoming solar radiation is minimally obstructed during day-time and the long wave radiation to the sky during night-time, as a result of which there are large diurnal and annual temperature differences . Figures 2.2 to 2.13 show the diurnal temperature variations in Baghdad in winter and summer.

2.2.2 Humidity

It is well known that water vapour exists in the atmosphere even if it is not raining. Relative humidity is the term used to express in practice the amount of water vapour in the air. It is defined as the ratio of the pressure of the water vapour actually present in the atmosphere to the pressure of the saturated atmosphere at the same temperature. Humidity is an important factor in the assessment of climatic stress \{see Figure 2.14\}. The mean relative humidity records for thirty years for Baghdad are plotted and illustrated in Figures 2.2 to 2.13 . These Figures give a clear picture on how temperature and humidity behave in a hot-dry climate.

Figure 2.1 Map of Iraq

Figure 2.2 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY BAGHDAD JANUARY 19ム1-1970

Figure 2.3 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY

Figure 2.4 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY
MARCH 1941-1970

Figure 2.5 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY

Figure 2.6 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY
BAGHDAD
MAY 1941-1970

Figure 2.7 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY

Figure 2.8 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY

Figure 2.9 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY BAGHDAD

AUGUST 1941-1970

Figure 2.10 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY

Figure 2.11 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY

Figure 2.12 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY

Figure 2.13 AVERAGE AR TEMPERATURE AND RELATIVE HUMIDITY BAGHDAD DECEMBER 1941-1970

Thermal comfort
2.2.3 Solar Radiation and Sunshine

Solar radiation is the most important factor affecting and determining the climate at any location on the earth's surface. The amount of solar radiation received depends on the latitude, height above sea level, sky turbidity <dust, water vapour, smoke) and sunshine hours. Due to the low relative humidity and the long sun duration, Iraq receives a large amount of direct solar irradiation. The average minimum total solar radiation on a horizontal surface is about $10 \mathrm{MJ} / \mathrm{m} 2 /$ day in winter and the average maximum of about $25 \mathrm{MJ} / \mathrm{m} 2 /$ day $i n$ summer. $\{s e e$ figures 2.15 and 2.16] [Ref 4].

The maximum sun altitude in Baghdad at noon in summer is 80° and the minimum at noon in winter is 34°, while the maximum sun altitude in the far north of Iraq at noon in summer is 77° and the minimum at noon in winter is 31°. In the far south the maximum sun altitude at noon in summer is 83° and the minimum at noon in winter is 37°.

2.2.4 Wind

Wind epeed varies with location, topography and height. It is important to assess the direction and speed of the prevailing wind in the underheated and overheated periods and use this data to decide the correct orientation, size and proportion of window opening heights and ventilators.

Figure 2.15
A map of Iraq showing isolines of total irradiation for December ($\mathrm{MJ} / \mathrm{M}^{2}$ day)

Figure 2.16
A map of Iraq showing isolines of total irradiation for June ($\mathrm{MJ} / \mathrm{M}^{2}$ day)

Wind is most welcome in hot humid regions at all times in summer, spring and autumn to help infiltrate the building to produce cooling effects on both the building and the body, while in hot dry climates wind is preferred for cooling purposes both day and night during spring and autumn and only at night-time during summer, because in summer day-time the ambient temperature (Ta) is higher than the skin temperature (Tsk) but it is lower than (Tsk) at night-time.

In hot, dry countries like lraq the use of wind plays a major part in the control process of the outdoor and indoor climatic environment and on the degree of comfort that occurs due to the fact that wind movement increases body sweating which in turn causes cooling by a reduction of skin temperature. Air velocity affects both the convective heat transfer and the rate of evaporation from the body; if Ta > Tsk, whilst there will an increase of evaporation with velocity, there will also be an in convective heat gain. The body cooling will be a resultant of the convective heat gain and the heat loss by evaporation. If the ambient temperature is much higher than the skin temperature, the cooling caused by evaporation will be more than off set by the convective heat gain and no cooling benefit can be obtained from air movement. If Tsk > Ta increase in wind velocity affects positively both the convective heat loss and the rate of evaporative cooling of the body.

In Baghdad the prevailing wind direction is north west and the mean wind speed varies between 2.5 to $4.5 \mathrm{~m} / \mathrm{s}$. \{see Table 2.13

2.2.5 Rain

Rainfall in Baghdad is relatively low. The total mean annual rain fall is 148 mm , the maximum amount is in January and there is no rainfall at all during July and August. The heaviest rainfall occurs in April and tends to be sporadic heauy showers accompanied by thunder-storms (see Table 2.23.
2.3 The Analysis of the Climate of Baghdad

For the purpose of this study the analysis of the climate of Baghdad has been carried out in a manner such that it serves the designer's needs and at the same time is orientated towards determining the factors affecting the internal building environment. Therefore, this section does not cover a wide analysis of the Baghdady climate but rather focuses on the factors related to the internal building environment .

As is well known, Baghdad is located in a hot dry region, with very short, cold winters and very long, hot summers. Thus, for our "present study the analysis will be concerned with determining :

A- Day and night comfort.
Table 2.1a Mean Surface-wind Direction \% for Baghdad (1941-1970)
Table 2.1b Mean Surface-wind Speed m / s for Baghdad (1941-1970)

Month	0.0	0300	Hours 0600	Observa 0900	1200	Time 1500	1800	2100	Mean
January	2.4	2.3	2.3	2.7	4.2	4.3	2.6	2.4	2.9
February	2.7	2.7	2.8	3.3	4.5	4.9	3.1	2.7	3.4
March	3.3	3.0	2.9	3.6	4.7	5.0	3.7	2.9	3.6
April	2.8	2.9	2.9	3.8	4.6	4.6	3.9	2.3	3.4
May	3.0	2.9	2.7	3.8	4.8	4.8	4.0	2.8	3.6
June	3.1	3.2	3.2	4.8	5.7	5.8	4.6	2.7	4.2
July	3.1	3.5	3.7	3.7	6.3	6.2	4.9	2.8	4.5
August	2.9	3.1	3.3	4.9	5.7	5.9	4.1 .	2.5	4.0
September	2.7	3.0	2.7	3.7	5.0	5.0	3.0	2.2	3.4
October	2.4	2.5	2.4	3.0	4.2	4.2	2.1	2.2	2.9
November	2.1	2.0	2.1	2.5	3.7	3.5	2.0	2.1	2.5
December	2.1	2.3	2.1	2.6	3.8	3.9	2.1	2.2	2.6
Annual	2.5	2.8	2.8	3.5	4.8	4.8	3.3	2.5	3.4

Month	Mean Monthly	extremes			
		Highest	Year	Lowest	Year
January	25.4	78.9	70	0.6	41
February	24.2	85.5	51	0.7	65
March	23.7	69.5	54	0.6	62
April	22.3	148.4	68	tr.	68
May	8.1	73.8	59	0.0	70
June	0.1	2.5	55	0.0	70
July	tr.	tr.	50	0.0	70
August	tr.	tr.	42	0.0	70
September	0.3	6.2	65	0.0	70
October	3.7	25.6	66	0.0	64
November	17.2	77.8	57	tr.	66
December	22.9	90.1	54	1.8	65
Total	147.9	336.0	57	72.9	52

Table 2.2 Precipitation (mm) Baghdad (1941-1970)
B - The period when direct sunlight is required and the period when it should be excluded.

C- Sun duration time
D- Wind direction and speed
E- General weather phenomena and sky condition
For the purpose of the analysis the latest climatic data released in 1979 by the Iraqi meteorological organization was used [Ref. 201]. The procedure was that carried out in a previous work by the author, which was published by the Iraqi Building Research Centre in 1973 [Ref 191]. At that time the recorded data used was published by the Iraqi meteorological organization and covered the period 1931-1960.

The present discussion can therefore be considered as an updating of the previous work
2.3.1 Day and Night Comfort

It is clear that people want direct sunlight for heating purposes when it is cold and no direct sunlight when it is moderate or hot. Therefore designers need to know the period when heating is needed, when neither heating nor cooling is required as well as those when cooling is esential.

To determine the comfort state in each month of the year and to determine the number of cold, moderate and hot months is one of the most important factors in enuironmental design as well as being one of the essential
pieces of data required for this research. Initially thermal comfort has to be defined.

Thermal comfort is that condition when people desire neither cooling nor heating. The thermal comfort state depends not only on air temperature but on the combination of air temperature, mean radiant temperature, air velocity, relative humidity, activity level and clothing.

Often it is found that in a space with constant air temperature and velocity the atmosphere is judged to be hot, moderate or even cold depending upon the humidity. There is a substantial body of research on comfort limits with respect to all the variables affecting it. Much of it has been carried out, or supported by, those working on air conditioning. Architects later used these results and applied them in buildings having natural ventilation. The work of Bedford, Gagge and Fanger is widely accepted and Markus and Morris [Ref. 129] have proposed thermal comfort charts based on this work. They enable one to find comfort limits for most kinds of activities, clothing and practical wind velocities using Gagge's DISC comfort scale, which runs from -5 to +5 , with thermal neutrality at 0 , isee Figures 2.18 and 2.193. They specified two comfort zones \{see Figure 2.17\}. The first, between -0.5 to +0.5 , is the zone which meets the comfort judgement of 80% of the population and the second z one between -1.0 to +1.0 is that for 70% of the population.

Key chart

Thermal comfort

Figure 2.18

Thermal comfort

A much simpler method was adopted by Mahoney who in his work, first published in 1971 by the United Nations [Ref. 212], introduced a Table for comfort limits which was based on the annual mean temperature of three different climatic regions, assuming low air velocity. Although Mahoney does not describe the basis on which his Table is constructed, when the author applied both methods, the DISC method introduced in the charts by Markus and Morris and the Table introduced by Mahoney for the Baghdad climate \{see Table 2.33, he found that the thermal stress found by using the Mahoney Table is a little closer to his subjective experience of Baghdad than the result found by the DISC method. Therefore, until further work on determining the comfort limits for the Iraqi climate can be carried out, the Mahoney Tables are used as indicators of comfort for a climatic region with an annual mean temperature which is over 20 C.

Table 2.4 represents the result found from both the DISC charts \{Figures 2.18 and 2.19$\}$ and the Mahoney Table \{Table 2.43. For the former, the charts used were for 0.9 clo , to determine day time comfort and for 0.bclo to determine night comfort \{see figures 2.18 and 2.19$\}.$

Table 2.4 represents the Mahoney comfort limits and distinguishes between day comfort and night comfort. These limits are categorized according to the annual mean temperature of a region, and are presented in three categories.
LIST OF APREVIATIONS

Average R.H.$\%$	H.G	AMT. over $20^{\circ} \mathrm{C}$		AMT. $15^{\circ}-20^{\circ} \mathrm{C}$		AMT. under. $15^{\circ} \mathrm{C}$	
		Day	Night	Day	Night	Day	Night
0-30	1	26-34	17-25	23-32	14-23	21-30	12-21
30-50	2	25-31	17-24	22-30	14-22	20-70	12-19
50-70	3	23-29	17-23	21-28	14-21	19-26	12-19
70-100	4	22-27	17-21	20-25	14-20	18-24	12-18

Table 2.3 MAHONEY COMFORT LIMITS TABLE

Month	Air Temperature ${ }^{\circ} \mathrm{C}$		Relative Humidity Average \%	DISC Value		Thermal Stress		Thermal Stress Mahoney\qquad	
	Max.	Min.		Day	Night	Day	Night	Day	Night
January	15.4	5.8	67	-3	-3.8	C	C	c	C
February	17.8	7.4	59	-1	-3.6	C	C	C	C
March	22	10.8	52	-0.3	-2.8	M	C	C	C
April	27.9	15.8	46	+0.7	-1.7	M	C	M	C
May	35.1	21.3	34	+2	-0.6	H	M	H	M
June	40.4	25.0	24	+2.2	0.0	H	M	H	M
July	42.9	26.7	23	+2.5	+0.1	H	M	H	H
August	42.9	26.1	24	+2.5	+0. 1	H	M	H	H
September	39.2	22.3	28	+2.5	-0.5	H	M	H	M
October	32.5	17.3	39	+1.6	-1.8	H	C	H	M
November	23.8	11.6	55	+0. 4	-2.8	M	C	M	C
December	17	6.7	67	-1	-3.8	C	C	C	C

[^0]A- A region where the annual mean temperature is under $15^{\circ} \mathrm{C}$.

B- A region where the annual mean temperature is between $15^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$.

C- A region where the annual mean temperature is over $20^{\circ} \mathrm{C}$.

The Mahoney method was used in this study to determine the thermal stress of each month for the three major cities in Iraq, which are located at latitude $30^{\circ}, 33^{\circ}$ and 36° north respectively \{see Table 2.5, 2.6, 2.7\}. Table 2.5C, which represents the south of Iraq; indicates that seven months are hot, two months are moderate and three months are cold.

Table 2.6C represents the midde area, Baghdad, and indicates six months are hot, two months are moderate and four months are cold.

Table 2.7C represents the north of Iraq, and indicates that seven months are hot to moderate and five are cold.
2.3.2 Periods When Direct Sunlight is Welcomed

From the information obtained from the implimentation of the Mahoney Tables, the months when sunlight has to be excluded, when no direct sun light is required and months when direct sunlight is most welcome were determined. For direct sunlight control, moderate months are considered as the months where no direct sunlight is required, and hot months are the months where shading is essential. It was

| | J | F | M | A | M | J | J | A | S | O | N | D |
| :--- | :---: |
| Monthly mean max. | 17.7 | 20.2 | 24.2 | 29.5 | 35 | 38.0 | 39.7 | 40.5 | 38.6 | 34 | 25.7 | 19.1 |
| Monthly mean min. | 8.3 | 9.9 | 13.8 | 18.8 | 24.5 | 27.7 | 28.3 | 27 | 23.0 | 19.1 | 14.1 | 9.4 |
| Monthly mean range | 9.4 | 10.3 | 10.4 | 10.7 | 10.5 | 10.3 | 11.4 | 13.5 | 15.6 | 14.9 | 11.6 | 9.7 |

Table 2.5a MAHONEY TABLE AIR TEMPERATURE ${ }^{\circ} \mathrm{C}$
BASRAH

RH (percentage)	J	F	M	A	M	J	J	A	S	0	N	D
Monthly mean max. a.m	89	85	79	74	66	60	59	59	62	70	81	88
Monthly mean min. p.m	57	50	46	42	38	37	36	33	32	35	49	49
Average	77	71	64	59	53	50	49	48	50	55	68	78
Humidity group	4	4	3	3	3	2	2	2	2	3	3	4
E Average of 30 days	22.5	13.8	20.2	20.4	7.8	0.0	0.1	0.0	0.0	1.0	22.8	30.3
- max. In 24 hts	38.7	27.6	50.9	87.5	35.6	0.6	3.2	0.0	0.3	5.0	57.5	57.0
Wind \quad Prevailin	NW											
	W	W	N	N	N	N	W	W	W	N	W	W

BASRAH

Table 2.5c MAHONEY TABLE DIAGNOSIS

$$
\begin{array}{ll}
H=\text { Above comfort limits (HOT) } \\
M=\text { Within comfort limits (COMFORTABLE) } \\
C=\text { Below comfort limits (COLD) }
\end{array}
$$

	J	F	M	A	M	J	J	A	S	O	N	D
Monthly mean max.	15.4	17.8	22.0	27.9	35.1	40.4	42.9	42.9	39.2	32.5	23.8	17.0
Monthly mean min.	5.8	7.4	10.8	15.8	21.3	25	26.0	26.1	22.3	17.3	11.6	6.7
Monthly mean range	9.6	10.4	11.2	12.1	13.8	15.4	16.2	16.8	16.9	15.2	12.2	10.3

RH (percentage)	J	F	M	A	M	J	J	A	S	0	N	D
Monthly moan max. a.m	84	77	70	63	48	34	32	35	40	50	71	83
Monthly mean min. p.m	50	40	34	29	19	13	12	13	15	22	38	51
Average	70	61	53	45	33	23	23	24	28	37	56	70
Humidity group	4	3	3	2	2	1	1	1	1	2	3	4
E Average of 30 days	25.4	24.2	23.7	22.3	8.1	0.1	0.0	0.0	0.3	3.7	17.2	22.9
(tax. In 24 hrs	52	47	50	71	65	2.5	0.0	0.0	6.2	22.3	48.9	40.0
Wind Prevailing	NW											
Secondary	SE	SE	SE	N	N	N	W	W	N	N	N	SE

Table 2.6b MAHONEY TABLE HUMIDITY, RAIN AND WIND
BAGHDAD

	J	F	M	A	M	J	J	A	S	0	N	D
Humidity group	4	3	3	2	2	1	1	1	1	2	3	4
AMT	22.9											
Monthly mean max.	15.4	17.8	22.0	27.9	35.1	40.4	42.9	42.9	39.2	32.5	23.8	17.0
Day comfort \quad Max	27	29	29	31	31	34	34	34	34	31	29	27
	22	23	23	25	25	26	26	26	26	25	23	22
Monthly mean min.	5.8	7.4	10.8	15.8	21.3	25	26.7	26.1	22.3	17.3	11.6	6.7
Night comfort Max.	21	23	23	24	24	25	25	25	25	24	23	21
Min.	17	17	17	17	17	17	17	17	17	17	17	17
Thermal stress												
Day	C	C	C	M	H	H	H	H	H	H	M	C
Night	C	C	C	C	M	M	H	H	M	M	C	C

[^1]\[

$$
\begin{array}{ll}
H=\text { Above comfort limits } & \text { (HOT) } \\
M=\text { Within comfort limits (COMFORTABLE) } \\
C=\text { Bolow } & \text { comfort limits } \text { (COLD) }
\end{array}
$$
\]

		J	F	M	A	M	J	J	A	S	O	N
Monthly mean max.	12.0	14.2	18.0	24.1	31.8	38.8	42.6	42.4	37.7	30.1	21.4	14.2
Monthly mean min.	3.8	4.5	7.3	11.2	16.6	21.6	24.7	23.2	17.7	12.5	8.1	4.5
Monthly mean range	8.2	9.7	10.7	12.9	15.2	17.2	17.9	19.2	20	17.6	13.3	9.7

Table 2.7b MAHONEY TABLE HUMIDITY, RAIN AND WIND
MOSUL

	J	F	M	A	M	J	J	A	S	0	N	D
Humidity group	4	4	4	3	2	2	1	1	2	2	3	4
AMT	20											
Monthly mean max.	12	14.2	18.0	24.1	31.8	38.8	42.6	42.4	37.7	30.0	21.4	14.2
Day comfort $\quad \frac{\text { Ma }}{}$	27	27	27	29	31	31	34	34	31	31	29	29
	22	22	22	23	25	25	26	26	25	25	23	23
Monthly mean min.	3.8	4.5	7.3	11.2	16.6	21.6	24.7	23.2	17.7	12.5	8.1	4.5
Night comfort Max.	21	21	21	23	24	24	25	25	24	24	23	25
Min.	17	17	17	17	17	17	17	17	17	17	1717	
Thermal stress												
Day	C	C	C	M	H	H	H	H	H	M	C	C
Night	C	C	C	C	C	M	M	M	M	C	C	C

Table 2.7c MAHONEY TABLE DIAGNOSIS
decided to treat hot and moderate months as being equivalent periods, when direct sunlight control is necessary.

Referring to Tables 2.5, 2.6, 2.7 cold months in the southern area of Iraq (Basrah) amount to 3 , for the middle (Baghdad) 4 and for the north (Mosul) 5. For the purpose of the present study, and taking into account the relatively small climatic difference between the north and the middle of Iraq and between the south and the middle, which amounts to just one cold month, and in order to generalize this work to cover the major part of Iraq, the middle area (Baghdad climate) was taken as being the reference climate. Accordingly direct sunlight is welcome inside houses for four months of the year, while protection from direct sunlight is required for the the remaining eight months. Therefore, the "summer" period is shown to be twice the "winter" period and this ratio will be considered as a tool in the process of direct sunlight control.
2.3.3 Sun Duration Time

In summer most parts of lraq have a sun duration time of about 14 hours.

In spring and autumn the sun duration time is 12 hours. In winter-time, because of the presence of varied amount of cloud, the sun duration time is not the same in all regions, though, one can enjoy at least 4 hours of sun-shine in this season, especially since it is only 3.4 days a month that the sky is completely cloudy. For almost

10 days a month there is a clear sky and for the remainder of the month the sky is partially cloudy.

The present study provides designers with a Table of sun angles and sun exposure times on each of the 16 major orientations, so that they are free to decide and select the most suitable orientation for their building, windows and openings \{see Table 2.8\}.

2.3.4
 Wind Speed and Direction

Wind plays an important part in the body cooling process as well as for the cooling the building fabric. Thus, knowing the direction and speed of the wind helps in the process of choosing and obtaining the maximum benefit from this natural cooling facility.

Referring to the Table of analysis \{Tables 2.5, 2.6, 2.7\} the prevailing wind direction for the south and the midde of Iraq is north-west, while in the north it deviates slightly to become west especially during spring and autumn when natural ventilation is necessary for cooling in day-time and for the summer season when natural ventilation for cooling purposes is also needed at night. In the winter period in the northern part of Iraq the prevailing wind shifts its direction from west to east and occasionally it is north. In this study, and because natural ventilation is considered for body cooling purposes only, winter shifts in wind direction will not be considered

Latitudes 33.0
CECLINATICN: 20.0
108:33T

									. 01		7.51			ORs 11												$0 R: 2$ HS	$\begin{aligned} & 7.5 P R: 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.010 R: 2 \\ & \text { YS IHS } \end{aligned}$	$\begin{aligned} & 2,510 \mathrm{O}: 31 \\ & \text { VS IHS. } \end{aligned}$	$\begin{aligned} & 5.010 \mathrm{R}: 3 \\ & \text { vS } 1 \mathrm{HS} \end{aligned}$	$\begin{aligned} & 1.51 \\ & 151 \end{aligned}$
IIMEI	HRI	21	41	- ORIENT:	vol				51	HS	is 1	15	vs	HS		HS	vs	HS	15	HS	V	HS									
HR I	ANGI	1	1	HS	v 1	HS	v 1	HS	51	HS		H																1	1	1	
61	901	331	111	73	331	31	171	28	121	-6	111	-17		-39 -32					631		I		1		,		1	1	1	I	
71	751	801	211	80	681	58	391	35	271	13	231	-10	231	-32 -25			${ }^{3} 461$		E41		I		,				1	I	1	,	
81	601	881	391	88	811	65	601	43	441	20	371	-2	351	-25 -16	491		551	-61	661	-84	861		1				I	,	;	1	
91	451	9811	481		1	86	761	51	761	41	321	18	621	-4	sol	-21	631	-69	701	-12	001		84					1	I	1	
101	301	1081	601		!	86	88	83	881	63	811	40	161	18	121	-5	. 711	-27	711	- 50	731	-72		-45	811	-68	85i-90	9 cl		1	
111	151	1301	711				,	83	${ }^{\circ}$	6	1	90	901	68	851	45	81	23	781	50	711	-23	731	-45	311	-18	121-40	761-63	811-85	881	
121	01	1801	111		1		,		1		-							12	841	50	781	27	731	27	631	-18	$601-18$	$621-41$	671-63	761-86	381 761
131	- 151	2301	111		1		1		1		1		1		1		,			12	801	69	681	39	551	16	$491 .-6$	431-29	521-51	611-76	761 601
141	-301	2521	601		1		1		1		1		1		1					8	84	10	641	47	461	25	3812	351-20	371-43	44 211	
151	-451	2641	481	-08	81		1		1		1		I		1							17	621	55	361	12	27110	$23 i-13$ 111	291-33	121-51	
161	-601	2721 2801	331	-80	681		1		1		I		1		1		1		1		1	04	631	62	221	39	14117	$11{ }^{-6}$	11 -2a		
181	-901	2871	111	-73	331		1		1																						
		HR	NG	IIMEIMR	MINI																										

$\sim: \begin{gathered}1 \\ 1 \\ 0 \\ \sim\end{gathered}$

MR ANG
-104
-104

104
-104
※~~

DECLIMATIOLI 15.0

LAEITUDE:

13.0

DECLINATTOM: 10.0
date: bapril or il sept

[^2]
OECLIMATICN: -10.0
LATITUDE:
33.0
CATE: 23 FEB OR $2 C O C T$

 $\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & 1 \\ i & i & 1 & 1 & 1 & i\end{array}$ | 1 | |
| :--- | :--- |
| 1 | 76 |
| 7 | |
| 16 | |
| 14 | |
| 14 | |

品

Table 2.8 h

DECLINATION: -23.4

Table 2.8k

Therefore for the prevailing wind a north west direction has been used for the natural ventilation part of the present study

As shown in Table 2.9 the highest mean surface wind speed in the north of $1 r a q$ is $2.8 \mathrm{~m} / \mathrm{s}$ and the lowest mean is $1.6 \mathrm{~m} / \mathrm{s}$

Table 2.1 shows that the highest surface wind speed in Baghdad is $4.5 \mathrm{~m} / \mathrm{s}$ and the lowest is $2.5 \mathrm{~m} / \mathrm{s}$ The maximum surface wind speed in the south of Iraq indicated in Table 2.10 is $4.1 \mathrm{~m} / \mathrm{s}$ and the lowest is 2.5 In spring and autumn, when open, shaded spaces are comfortable, natural ventilation is nevertheless required inside buildings during daytime to cool the internal spaces which are heated by the impact of solar radiation. Therefore the averages of the mean 24 -hour wind speeds during these months in the three regions were found and the value of $2.7 \mathrm{~m} / \mathrm{s}$ was considered to represent a reasonable one for the measurements and calculations in this study.

2.3.5 Baghdad SKy Condition

Table 2.11 indicates that 205 days in the year have clear skies, 22 days cloudy and 20 days are dusty. The remainder of the year has semi-clear skies either because of the existence of some clouds or due to moderate levels of dust particles. Therefore, on average, the Baghdad sky has been considered as clear.
Table 2.9 Mean Surface-wind Speed ${ }^{m} / \mathrm{s}$ for Mosul (1941-1970)

Month	0.0	0300	Hours 0600	$\begin{gathered} \text { bserva } \\ 0900 \end{gathered}$	1200	Time 1500	1800	2100	Mean
January	1.6	1.5	1.5	1.9	2.9	2.9	1.9	1.8	2.0
February	1.8	1.7	1.6	2.2	3.4	3.4	2.4	2.0	2.3
March	1.7	1.4	1.7	2.2	3.1	3.3	2.7	2.1	2.3
April	1.9	1.5	1.5	2.3	3.4	3.6	3.0	2.2	2.4
May	1.9	1.7	1.7	2.7	3.5	4.0	3.5	2.4	2.7
June	2.1	1.8	1.8	2.9	3.5	4.0	3.5	2.8	2.8
July	2.2	2.1	1.9	3.1	3.3	3.5	3.0	2.8	2.7
August	2.0	1.7	1.6	2.9	3.1	3.5	2.9	2.9	2.6
September	1.5	1.4	1.2	2.4	3.0	3.4	2.4	2.4	2.2
October	1.3	1.2	1.3	2.0	2.5	2.8	1.8	1.7	1.8
November	1.1	1.1	1.3	1.8	2.3	2.5	1.5	1.3	1.6
December	1.1	1.2	1.3	1.6	2.5	2.5	1.5	1.3	1.6
Annual	1.7	1.5	1.5	2.3	3.0	3.3	2.5	2.1	2.2

Hours of Observation - Local Time									
Month	0.0	0300	0600	0900	1200	1500	1800	2100	Mean
January	$2 \cdot 3$	2.2	2.2	2.7	3.9	3.8	2.6	2.5	2.8
February	2.5	2.4	$2 \cdot 3$	3.0	4.5	4.6	3.1	2.7	3.1
March	2.8	2.6	2.7	3.5	4.7	4.9	3.4	2.9	3.4
April	2.8	2.5	2.3	3.4	4.4	4.8	3.3	2.8	3.3
May	3.0	2.8	2.5	3.5	4.6	4.7	3.0	2.7	3.4
June	3.9	3.5	$3 \cdot 3$	$4 \cdot 5$	5.3	$5 \cdot 3$	3.5	3.6	4.1
July	3.4	3.1	2.9	4.0	4.6	4.7	3.3	3.5	3.7
August	3.1	2.7	2.5	3.5	4.5	4.6	2.9	3.2	3.4
September	2.6	2.5	2.2	2.9	3.9	4.2	2.3	2.5	2.9
October	$2 \cdot 3$	2.3	2.0	2.3	$3 \cdot 3$	3.3	2.2	$2 \cdot 3$	2.5
November	2.3	2.1	2.0	2.4	3.3	$3 \cdot 3$	2.4	2.2	2.5
December	2.2	1.9	1.9	2.4	3.5	3.4	2.3	2.2	2.5
Annual	2.8	2.6	2.4	3.2	4.2	4.3	2.9	2.8	3.1

Table 2.10 Mean Surface-wind Speed m / s for Basrah (1941-1970)

mosul					BAGHDAD				BASRAH			
Month	$\begin{array}{r} \text { SKY } \\ \text { Clear } \end{array}$	Cloudy	$\begin{gathered} \text { DUST } \\ \text { Storm } \end{gathered}$	Rising	SKY Clear	Cloudy	DUST Storm	Rising	SKY Clear	Cloudy	DUST Storm	Rising
January	5.7	9.3	0.1	0.5	10.0	3.4	1.2	2.3	12.0	3.0	0.3	1.4
February	6.1	7.5	0.1	0.4	9.6	3.1	2.1	3.1	12.3	2.2	0.7	2.3
March	4.4	7.4	0.4	1.5	8.2	3.7	2.4	4.8	11.8	2.7	1.3	5.3
April	5.7	5.2	0.3	1.5	9.0	2.8	2.4	4.5	10.6	2.6	1.6	4.3
May	9.7	2.3	0.8	3.9	12.7	1.7	2.6	5.7	17.8	1.1	1.7	4.3
June	24.6	0.03	0.3	5.2	27.6	0.03	1.7	6.4	27.4	0.0	2.6	7.2
July	28.1	0.03	0.3	5.3	29.6	0.03	3.1	9.3	27.3	0.1	3.1	6.1
August	28.0	0.0	0.3	5.7	29.7	0.0	1.3	6.1	28.9	0.0	1.5	4.3
September	25.4	0.0	0.2	0.3	27.7	0.0	0.7	3.5	28.3	0.0	1.3	3.5
October	15.6	1.5	0.5	1.6	18.2	0.9	1.2	2.0	22.4	0.2	0.6	2.2
November	9.3	4.5	0.1	0.7	11.2	2.5	0.9	1.5	12.9	2.3	0.2	1.0
December	7.6	8.1	0.0	0.6	11.4	3.8	0.7	2.1	12.0	3.3	0.2	0.9
Annual	170.2	45.9	. 4	30.2	204.9	22.0	20.3	51.3	223.7	17.5	15.1	42.8

CHAPTER 3

CHAPTER-3-

THE DESIGNMODEL

3.1 Estate Mode

In order to put the researcher into the position of an urban designer and face the same restrictions and regulations, an estate model was designed.
3.1.1 The Residential Areas of Baghdad

From the land use map for Baghdad an unused residential area was chosen for the location of the model design <see Figure 3.1). It is widely believed that the selected area will be nominated for distribution in the near future and indeed might already be distributed during the period of this project. It is the author's hope to contact some of the house-holders in that particular area and persuade them to allow their houses to be used during the construction as an experimental site to verify the findings.
3.1.2 Urban Design Regulation for Baghdad

In the design of the model estate the urban design regulations issued by the Ministry of Planning <The Foundations and Norms for Urban Planning, Baghdad, 1977) were implemented. These lay down plot sizes and proportions, road widths, walkway widths, fence heights, and various types and numbers of service buildings. These

regulations and restrictions will be stated and explained during the discussion the design process used for the model estate.
3.1.3 Basic Elements Used in Designing the Estate
3.1.3.1 Plot Sizes

As a result of the extensive horizontal expansion of Baghdad, the government announced a new land distribution Echeme which stated that plots for citizens of Baghdad have to be between 200 to 400m2. Therefore the site in the model has been divided into plots of 400 m 2 for each house, to meet this government programme.

3.1.3.2 Road Widths

According to the regulations for this type of estate roads have to be 10 m wide. If one looks at the road widths used in this model, from an energy consumption point of view, one might think that reducing the width will cause a lower solar energy load on the building in summer. However, Figure 3.2 makes it clear that, in the age of the motor car, with any road with a width sufficient for cars there can be no valuable shading provided from the houses opposite in locations with high summer sun altitudes. Therefore as long as the road width is four metres or more the difference is negligible especially when pavement width and the 4 met back required by the regulations as a minimum distance between the building and the boundary are added.

Figure 3.2

Showing the difference between road widths following road regulations and those using shading principles.

3.1.3.3 Pavements

From the pedestrian safety point of view the regulations recommend pavements to be 2 m .

So pavements in the model were designed to meet this recommendation

3.1.3.4 Services and Public Centres

The model contains most of the required services for this type of estate \{see Figure 3.3\}. The estate contains the following:

A- Two small markets serving the two sides of the estate
B- Primary school, Kindergarten and nursery
C- Two grocery shops located near the children's play places

D-Clinic
E- Mosque. The mosque was positioned so that strangers are clearly guided to it remembering also that mosques are usually built with a minaret of 15 to 35 m height (see Figure 3.43. which is clearly visible from a distance so that one can refer to it and to the mosque location in directing visitors

F- Sewage Pumping Station.
This station was located to the far south of the estate to serve the estate without affecting the residents.

G- petrol Station.

Figure 3.3 The Model Estate

Figure 3.4 The Mosque

The station was located beside the sewage pumping station on one of the main roads on the boundary of the estate in order to protect the site from traffic noise and to maintain safety .

H- Traffic Safety
This was taken into account in the design - the number of cul-de-sacs existing in the model emphasizes this point, and also reduces traffic noise within the estate. One main street which links the estate to the surounding areas cuts the estate into two parts, and to avoid irresponsible driving, the police station was located on that street. I- Noise Control

Since the estate is located in an area surrounded by a highway and busy dual carriage-way \{see Figure 3.1\}, some green planted areas are created around the estate to decrease the noise load. Although trees are not considered as effective noise barriers or noise absorbers, both trees and grass will have some effect especially near the ground and when the the house is set back a conslderable distance from the source \{see Figure 3.5\}. The estate was set back a distance of more than 50 m from both the dual carriageway and the highway.

Accordingly the noise level calculated for the house nearest to the dual carriage was reduced by 12 dBA \{see Figure 3.5, Ref. 343 and the noise level calculated for the house nearest to the highway was reduced by 15dBA (see Figure 3.6, Ref. 433. A noise level of 80 dBA was found on

- Fig3.5 Propagation over grassland: correction in $d B(A)$ as a function of horizontal distance from edge of nearside carriageway (d) and height above ground (h) (Ref. 35)
(After Ref. 34)

Height above and
below road in

Distance from barrier in metres
Figure 3. 6 Reduction of L_{10} by 1 m barrier positioned 25 m from centre of carriageway.
roads similar to those which surround the estate, during the survey carried out by the author and one of his colleagues in 1981 when they evaluated traffic noise on Baghdad streets \{see Figure 3.7, Ref. 20\}. Therefore the noise level predicted at the houses nearest to the dual carriage way is about $68 d B A$ and at the ones nearest to the highway about 65dBA.

Houses located on the main road south of the estate are back-to-back with shops and the sewage pumping station as a solid barrier to decrease traffic noise.

3.1.3.5 The Layout of the Estate and the Climate

The most important factor in indoor thermal control is the thermal load on the building surfaces in summer. Therefore house facades in the model were orientated towards the north and the south on which summer incident radiation is low. East and west sides were designed to be shaded by adjacent houses. Although houses orientated south and north receive almost an equally small amount of direct radiation in summer, they receive a different amount in winter, the ones facing north receiving no direct radiation, while those facing south receive a very large amount. As each house has the north and south walls exposed to the sun in winter, though receiving different levels of radiation, it is considered the responsibility of the designer to reduce the shading effect of the surrounding houses on the south wall of the north facing

FIG. 3.7 IMPACT OF TRAFFIC NOISE.
house and this has been done in the model design suggested by the author \{see Figure 3.8 \}

As described the prevailing wind in Baghdad is from the north west, and as been found by Givoni [Ref. 73] that the maximum wind speed in a room with two windows is when the wind direction is at 45° from the normal to the window. Moreover since the houses in the estate have a north- south orientation, the prevailing wind, which is at 45° on windows on the north and west orientated walls, will provide the rooms with a better wind flow for cooling. In addition, since the west walls receive an excessive amount of direct sunlight, the prevailing wind will also reduce the heat load due to the west wall. Further because of the narrow walkways between adjacent houses the space between pairs of houses functions as a tunnel, which helps to provide reasonable ventilation even from the east wall windows.

3.2 House Model

For the reasons explained in 3.1 models for houses were also designed. These designs were based on a questionnaire survey carried in east Baghdad 1979 by the author and Miss Azhar Jawad from the Iraqi Building Research Centre as one of a series of surveys carried out by the author as a preparation for this study and for his other research.

3.2.1 Housing survey

As the model has to reflect the existing house style the survey was carried out in a middle income area.

3.2.1.1 The Location of the Survey

The author, who is a Baghdad resident, decided to select the"14th July place" (Hai Arbata-ash Tammouze) and "Al-Muatansiryah place" to represent the middle income estates in Baghdad \{see Figure 3.9\}. This particular area chosen is located five kilometres east of the centre of Baghdad, and the estate consists of about 1000 houses.
3.2.1.2 The Questionnaire

The questionnaire Figure 3.10 was designed by the author in consultation with the Iraqi Educational and Psychological Research Centre to cover most of the topics required for this research and also to serve the objectives of future work.

The questionnaire contains 28 open-ended questions, each containing more than one sub-question. The box tick type method was used to make the process easy and to reduce the apparent length of the questionnaire and the time taken to answer it. The form was selected after four types of questionnaire were designed and tested on friends from different social and educational levels in order to find that which required the least amount of time. The one shown in Figure 3.10 was selected and applied since all the questions could be answered in 20 to 25 minutes

Figure 3.9 A 14 th. July Place-- Area surveyed.

Figure $3.9 b$ Area surveyed

(B) (B)

As the questionnaire contains many questions, only these which relate directly to the present study will be deali with in this chapter. The reminder will be analysed and used for other work in the future.

3.2.1.2.1 The Questions

The questions related to the present study are 3a- How many rooms do you have in your house?

3b- How many bedrooms do you have in your present house ? This question was asked in order that the design model should reflect the majority of preferences on the number of bedrooms required.

4- What is the dimension and the function of each room in your house ?

This question was asked to obtain data on the type of rooms in the houses.

6- At what time do you use each room daily in summer?
7- At what time do you use each room daily in winter?
Question 6 and 7 were asked to discover the morning and afternoon use of each room in the hope that the designer can try to orientate each room so that rooms will be protected from direct sunlight in summer during hours of occupation and so that the room will be provided with as much direct sunlight as possible during hours of occupation in winter.

8- Which rooms do you prefer to be close to each other?

This question was asked in order to provide designers with the occupants' opinion on the location of each room, and their general preferences on the relationships between them.

9- Which window size do you prefer for each room: small, medium or large?.

This question was to help the designer in the process of window selection.

11- Where do you prefer to live, in flats, terraced houses, or detached houses?

This question was asked to give information for the design mode 1.

16a- Do you use the kitchen for daily meals ?
16b- Do you consider the existence of the dining room as important?

17- Do you prefer your house to be one storey or two stories?

18- If sun-breakers are used on your windows, do you prefer the horizontal or the vertical type?

20a- Do you consider the window to be important for daylight, ventilation or simply to view the outside?

20b- What colour do you prefer the opposite house to have?
Due to the clear sky conditions, externally reflected light plays a major part in the level of daylight inside houses. This question was asked in order to give results which could be used in the calculation of natural lighting.

28- Do you consider the use of the roof for sleeping at night in summer as very important, important, not necessary?
3.2.1.3 People's Responses and Contributions

People's response was encouraging and most of them welcomed the survey team and spent more time with them, after completing the questionaire giving their opinions on other aspects not included in it. From the one hundred and thirty houses visited only one person refused to fill in the form. Missing forms were due to the absence of the occupants during the visit to collect them .

3.2.1.4 Analysis of the Questionnaire

After the forms were collected the results were analysed and the preference percentages, the arithmetic mean and the standard deviation for the existing room sizes were found, and the results, which are shown below, were produced either in tables, graphs or diagrams.

Question No.3a was analysed and the results showed that, most of the houses have the following type of rooms: bedrooms, living room, visitors' room, dining room, kitchen, storage room, bathrooms, toilets and some have a study.

Question No3b showed that 22% have only one bedroom, 31% of the houses have two bedrooms, 27% have three bedrooms and 20% have four to five bedrooms.

Question No4 dealt with room sizes. This Question was analysed and the arithmetic mean of each room type and the standard deviation was found . The normal distribution curve was drawn and is presented in Figures 3.11 to 3.19 . Question Nob dealt with the daily time when each room is used in summer. The findings are plotted in the histograms shown in Figures 3.20 to 3.24 .

Question No.7, was similar to Question Nob, dealing this time with winter, and the findings are plotted in Figures 3.25 to 3.29 .

Question No. 8 was analysed and gave a clear guide on the location of each room and the preferred relationship between the different domestic activities, which reflects the influence of religion, customs, culture and tradition. The preferences are presented in a diagram showing the percentages of the preferred relationships \{see figure 3.303.

Question No. 9 was asked to find the opinion of house holders on the size of windows for each type of room. These preferences are plotted in Figure 3.31.

Question No. 11 was concerned with the type of home people preferred \{see Figure 3.32\}. As was expected 3% of the people preferred living in flats, 14% preferred to live in terraced houses and 83\% prefered independent detached or semidetached houses.

Question No.16a was used to obtain the percentage of people who use the kitchen for daily meals. The analysis of this

ROOMS
Figure 3.30

Fig. 3.32 Histogram of house type preferences.

question shows that 80% do so. In this Question the author was anxious to let people rethink, indirectly, the necessity of a dining room, in order to give opportunities for reductions in building cost, since some comments had been made which referred to the dining room as being unimportant \{see Figure 3.33\}.

Question No.16b. Although this question came after the one asking about the use of the kitchen for daily meals, the analysis showed that 64% considered the dining room as important, despite the fact that 80% of those interviewed used the kitchen for daily meals.

The explanation of why people wished to have both a dining room and a large kitchen was because one of the social activities which occurs in most of the houses in the Muslim and Arab world is visits by relatives or friends, and often these visits are accompanied with a meal. Therefore the dining room is essential on those occasions.

The result obtained from this question was supported by the result from question No. 10 which indicated that 58% of the householders use the dining room daily to entertain guests. \{see Figure 3.34\}.

Question No. 17 was asked to find the preferences of people in the midde income group on house heights, (single or two storey). The result showed that 66% preferred two storey houses and 34\% preferred single storey houses. Question No. 18 asked about the type of sun-breaker people prefer and these results are analysed and plotted in Figure 3.35A.

Fig. 3.35 a
Fig. 3.35 b

Question No.20a was designed to find people's views on window function. 100% of the occupants considered windows very important for lighting, 97% for ventilation and 74% for enjoyment of the view outside. These opinions are plotted in Figure 3.35B.

Question No.20b was asked to obtain people's opinions on the colours they prefer in order to decide on the external reflection so that the daylight level inside rooms could if possible be increased. The results showed that 85% preferred light colours, 61% white, 14% preferred light blue and 10% light green.

Question No28 was asked to discover the tendency to the use of the roof for sleeping in summer, especially since the introduction of artificial cooling systems. The results showed that 61% considered sleeping on the roof as very important, 36% considered it important and just 3% considered it not important.
3.2.2 Design of the Model Houses

In order to bring together the preferences and the requirements of the regulations into a practical situation the design model was adapted and the range of windows used in this study were applied.

3.2.2.1 Basic Requirements

3.2.2.1.1 Plot Sizes

Plots distributed by the government under the new scheme are between 200 m 2 and 400 m 2 . The goverment stops 600 m 2 plots being distributed in the public sector, but they allow people to build "independent" houses in the urban areas on plots of not more than 800 m 2 . Therefore since this study is firstly aimed to serve housing projects and secondly "independent" houses, the plots used in the model are 400 m 2

3.2.2.1.2 The Module of the Wall Construction Material

The most common building material in Baghdad is brick; other building materials are concrete blocks and stone which are available but people tend to dislike conerete blocks because of their high thermal conductivity, and the difficulties encountered when installing electric wires and fittings, and as they cannot afford to build in stone, it was found that for the most part people preferred to build in brick. Therefore the brick module was used as a basis for window sizes and proportions.

The dimension of the Iraqi brick according to the Iraqi Standard No. 25-1969 is 240 mm in length, 115 mm in width and 75m in height. Each side of the brick has a 5mm half mortar joint, therefore the effective length becomes 250 mm and the effective width becomes $125 m$ \{see Figure 3.36\}.

Accordingly, 250 mm (the brick module) was considered as the unit measurement for window widths and heights and 125 mm was considered as the unit measurement for room width and length.

Wall thickness in practice is usually $120 \mathrm{~mm}, 240 \mathrm{~mm}$ and 360 mm

3.2.2.1.3 The Building Regulations

Building Regulations are revised according to the expansion of the city, and research on environmental control and improvements. Presently new Building Regulations for Baghdad are about to be announced. Nevertheless for the purpose of this research the Baghdad Building Regulations No.44-1935 as amended <English publication 1982) were used [Ref. 21]. As mentioned in Chapter 1 , the Regulations allow one side of the house to be on one edge of any plot of a 400 m 2 area and more, and require two sides to be at least one metre in distance from the edges of the plot and the facade to be at least four metres from the front edge.

If the plot is less than 400 m 2 the facade has to be at least 2.5 m from the front edge.

These regulations were followed in the design model.
The author received in January 1986 an unofficial letter from lraq informing him that according to the new scheme of plot distribution, the Baghdad municipality has issued new Regulations, which state that plots with an area of 240
to 600 m 2 must have the facade not less than 2.5 m from the front edge and plots with area of 601 to 800 m 2 not less than 4 m .

3.2.2.1.4 Common House Elements

Referring to the housing survey, the house model designed to reflect houses in the middle income category. Therefore the model was designed with the following spaces: A- a visitors' room with an average floor area of 21.7 m 2 B- a living room with an average floor area of 21.4 m 2 C- Several bedrooms, the bedrooms are different in size according to their category. The master bedroom is larger than the children's. Therefore bedrooms are found on different floors in the same house.

D- a kitchen with an average floor area of 17.4m2; which follows the results of the survey, according to which 80% of the occupants take their meals in the kitchen. Accordingly they require a large kitchen

E- a dining room. Although people usually use the kitchen for their meals, they still consider dining rooms to be important. The average area found from the survey was 15.4 m 2.

F- a study. Only 16% of the houses covered by the survey had a study and the average area of the study obtained from the survey was 15.4 m 2 .

G- Storage room. The average area required of the storage room was 6.9m2

H- Several bathrooms, the average bathroom area required for each was 5.1 m 2

I- Several toilets. Although sometimes toilets were found in the bathroom, most people wanted separate toilets. The average area for the toilet was found from the survey to be 1.5 m 2

J-A small garden. As the plot sizes were reduced under the new government scheme on plot distribution, the garden area is now determined after the inner space requirements have been fulfilled.

3.2.3 The Model Plan

A model plan of a one and a half storey house, for plot sizes 400 m 2 was designed, following the findings from the survey, and the regulations \{see Figures 3.37A and 37.B\}. As for room sizes, widths and lengths are determined in multiples of 125 mm in order to follow the brick module (see paragraph 3.2.2.1.2). Sizes were achieved as close as possible to the average area determined from the survey. Rooms and all other domestic activities were located according to required relationships between house spaces; as indicated in the survey. The number of bathrooms and toilets were also decided according to people's wishes. The author attempted to make the plan fulfil all the necessary requirements and preferences found in the survey.

Figure 3.38 Space structure map

The plan was checked by drawing a space structure map to verify the ease with which it could be used $\{s e e$ Figure 3.383.

CHAPTER 4

```
CHAPTER-4-
    SUNLIGHT
```

4.1

Direct Sunlight Control

Direct sunlight is considered as the most important factor to be controlled in hot regions like Baghdad which is located at Latitude 33° degree north, not only for reducing summer solar effects but to obtain as much useful winter energy as possible.

Controlling direct sunlight can be achieved by a number of methods but all of them have the same aim: to protect inner spaces of the building from direct sunlight penetration in summer and to allow as much winter sun as possible to penetrate. Direct sunlight control can be achieved mainly by the use of shading devices but these have disaduantages and the designer might not wish to depend on them considering them as ugly objects on the facade unless they are in corporated into the architectural design.

In order to let the designer obtain the maximum benefit of such devices, with least restriction, some useful data has to be presented to serve as guidelines to windows having the capability of controlling direct sunlight with as little reliance as possible on external shading devices.
4.2 The Geometry of Direct Sunlight

To understand methods of direct sunlight control, as well to prouide designers and users with more information on sun
movement and solar geametry inside and outside the house, information about sun and shade has to be explained so as to enable the designer to contribute, with a reasonable level of understanding, to the selection of suitable windows from the recommended range.
4.2.1 General View

As the earth moves once a year around the sun in an elliptical orbit, the axis of the earth is tilted about 23.4° from the ecliptic, so the north and south hemisphere tilt towards and away from the sun \{see Figure 4.1\}. The observer is unaware of the increased angle between the earth's axis and the ecliptic plane as the cause for the low winter solar altitude in the northern hemisphere. The obverse applies to the southern hemisphere.

Thus variations in sun angles depend on the latitude, the season declination and time of day.
4.2.2 Fixing Sun Position
4.2.2.1 Graphically sun position can be found from the geometric projection of a gnomon on the ground \{Figure 4.2\}. Sun position be defined with two angles azimuth angle (2) and altitude angle (A)
4.2.2.2 Mathematically sun position can be found by using the
following formulae: $A=\operatorname{Sin}-1(\operatorname{Sin} L \operatorname{Sin} D+\operatorname{Cos} L \cos D \operatorname{Cos} T) \quad \ldots 4.1$ $z=\operatorname{Sin}-1(\operatorname{Sin} T \operatorname{Cos} D \operatorname{Sec} A) \quad . . .4 .2$

Where :

```
A = Sun Altitude angle
Z = Sun Azimuth angle
L = Latitude
D = Declination (seasons) in degrees
T = Time (hour angles in degrees)
```

4.3 Sunlight in Relation to Building

4.3.1 Shadow Angles

For a building or any solid object the shade formed cannot be calculated directly from azimuth and altitude angles \{see Figure 4.3 \}; for this another set of angles has to be derived, the Vertical Shadow Angle (U.S.) and Horizontal Shadow Angle (H.S.)

As is explained clearly in Figure 4.3 U.S. is the value of A when projected on to the vertical plane of a given orientation. H.S.is the azimuth angle with respect to wall orientation angle.
U.S. and H.S. can be calculated as below:
U.S. $=$ Tan-1 (Tan A Sec H.S.)4.3
H.S. $=2$ - Wa

Where : Wa is wall orientation
$0.0^{\circ}=$ U.S. $\left\langle=90.0^{\circ}\right.$
$-90.0^{\circ}=$ S H.S. $<=90.0^{\circ}$

Figure 4.3 Solar angles
4.3.2 Sun Arrival and Departure

Insolation duration and time on any wall of the building are affected by: wall orientation , date, time, and presence of obstructions and clouds. For unobstructed walls sun arrival time is either at sunrise or when H.S. $=-90^{\circ}$ and the departure is either at sunset or when H.S. $=90^{\circ}$.

In the presence of obstructions sun arrival and departure and sun duration time has to be found either by calculation or experimentally.
4.3.3 Direct Sunlight Penetration Through a Window

The amount of direct sunlight or sunpatches formed in a room for a fixed orientation is affected by the value of vertical and horizontal shadow angle \{see Figure 4.4\}, wall thickness $\{s e e$ Figure 4.5\}, window size and proportion \{see Figure 4.6 \} and external obstructions.
4.3.4 Sun Patches and Solar Radiation

Although the intensity of solar radiation is the main factor in raising the temperature in a building, the area of a room's surfaces which are insolated is an approximate means of evaluating solar energy gain and, moreover, it is a phenomenon which people experience directly. Thus it was found from the survey that people consider sun patches significant; they are welcome in winter and unwelcome in

Figure 4.4

Figure 4.6 shows the effect of window proportions.
summer. knowing that the area of sunpatches on room surfaces is directly related to the solar heat load, the use of the phrase "sunpatch areas", which the user experiences daily, was preferred. So for direct sunlight control, the availability of the largest sun patches in winter and smallest in summer were considered as the norm for determining the shape and size of windows.
4.4 Shading

One of the ways of controlling direct sunlight is by using shading devices. Generally speaking, they are divided into three kinds, the vertical, the horizontal and the combined. Further classifications distinguish between external and internal, and between fixed and movable devices.
4.4.1 Horizontal Shading Devices

As shown in Figure 4.7 this type of sun breaker is recommended when the value of vertical shadow angle is large and the value of horizontal shadow angle is small. Shade formed by this type of sun breaker might not cover the whole window unless a side extension is added feee Figure 4.8). Horizontal sun breaker depth ($5 x$) and side extension ($T x$) to give 100% shading can be calculated as follows:

Sx = window height * Cot(V.S.)4.5
$T x=S x$ * $\operatorname{Tan}(H . S$.

Figure 4.7

Figure 4.8

Extension of horizontal shading device to give 100% window shading.

4.4.2 Vertical shading devices

As seen in Figure 4.9 this type of sun breaker is recommended when the vertical shadow angle is low and horizontal shadow angle is large.

Shade formed by this type of sun breaker might not cover the whole window unless an upper extension is added \{see Figure 4.10\}. Vertical sun breaker depth $\langle S y$) and side extension (Ty) to give 100% shading (Ty) can be calculated as follows

Sy $=$ window width $*$ Cot(H.S.)4.7
Ty $=$ Sy * $\operatorname{Tan}($ U.S. $) \quad4 .8$
4.4.3 Combined Shading Devices

Figure 4.11 shows a type of sun breaker which is a combination of vertical and horizontal sun breakers. This type works, if properly designed, without the need of side extensions. But it always has some "redundancy" - that is it shields portions of sky (and hence daylight) from which the sun never shines.

The combined sun breaker is formed by a vertical shading component and a horizontal shading component and they have to be identical in depth if 100% shading is required. Figure 4.12 shows the extension of a horizontal sun breaker which would be required and how, alternatively, the shade formed by this extension can be achieved by adding any

Figure 4.9

Figure 4.10
Extension of vertical shading device to give 100% window shading.

Figure 4.12

Figure 4.13

Combined shading device
to give 100% window shading.
vertical sun breaker with a depth similar to that of the horizontal. The reverse procedure can be applied if the vertical sun breaker is designed first \{see Figure 4.13\}. Finding the optimum depth of a combined sun breaker can be achieved by:

1- finding the depth of the horizontal sun breaker
2- finding the depth of the vertical sun breaker
3- finding the smallest identical dimensions found from the above two dimensions for both vertical and horizontal components \{see Figure 4.11\}.

Using the largest common values of dimensions causes shading of the window and part of the wall to a degree which may be greater than that sought by the designer and may reduce daylight excessively \{see Figure 4.14\}.

4.4.4 The Effect of Overshading by Adjacent Buildings

The surrounding buildings have a significant effect on the efficiency of, and need for, shading devices. By predicting the effect of the surroundings one may decrease dependence on shading devices.

So before recommending any shading device, the overshading effect has to be known for all and relevant hours and dates. The planning of the layout for a group of buildings, such as a housing estate, can, in part, be determind by a deliberate policy to utilise mutual, beneficial, overshading.

4.5 The Window as a "Shading Device"
4.5.1 Wall Thickness

The wall thickness in any fenestration acts as a combined shading device, and has a great effect on the penetration of direct sunlight, especially in small widows (see Figure 4.53
4.5.2 Wall Orientation

As shown in Figure 4.3 wall orientation is a basic determinant of the amount of direct sunlight in summer and winter. As an example a north facing wall in Baghdad receives some summer sun, but no sun at all during autumn, winter and spring while a south facing wall receives only a little direct sun in summer and a substantial amount in winter.
4.5.3 Inter-house Distances

As explained above adjacent buildings work as external obstructions and cause overshading on other buildings. As obstruction height decreases so does the shading effect. The critical ratio is that of obstruction height to inter-house distance and this ratio, on same orientations, gives favourable performance both summer and winter, whilst on other orientations it may impede useful winter sunshine but still give good summer shading.

Window Proportions

Obviously large windows allow a greater amount of sunlight to penetrate than small windows on the same day and same orientation, but apart from size, different proportions for the same window size act differently from the point of view of direct sunlight penetration and this difference is substantial when wall thickness is relatively large $\{s e e$ Figure 4.63.

If the wall thickness is negligible different shapes and proportions for a fixed size allow the same amount of sun patches to be formed.
4.6 Windows for Direct Sunlight Control

The window dimensions used in the entire study ranged from 0.5 m to 3.0 m in width and from 1.0 m to 1.75 m in height, in increments of $0.25 m$ this gives 44 combinations of window sizes and proportions. These dimensions were based on the housing survey carried out in Baghdad as a part of this study, discussed earlier, but in this part of the study (direct sunlight control) some more data were included to cover windows of heights from 0.5 m to 2.0 m . which brought the total number to 77 windows. Time did not allow this extension of numbers to be examined for daylight $\{s e e$ Chapter 53.

4.6.2 Laboratory Experiments

In order to calculate sun patch areas formed by each of the windows, the effect of over shading by adjacent houses has to be known. For this purpose the computer program ESP; developed by ABACUS [Ref. 40] was initially used. However, as the program was not fully capable of handling the overshading problem at that time, the author decided to rely on experimental work, by the use of sun movement simulating equipment (the Heliodon). This equipment is for the study of shading on buildings for any latitude for any season, and for any houre $\{s e e$ Figure 4.153. The lamp represents the sun, and can slide up and down on the vertical post to simulate the required month, the rotating and tilting table simulates the latitude and the time at which the shading is to be found.

Models at a scale $1 / 200$, representing the house described earlier and fourteen surrounding houses were studied on the Heliodon with varying inter house distances representing most of the real cases (see Figure 4.16).

The experiment was carried out for the summer solstice on 22nd June and the winter solstice on 21st December, for sixteen house orientations.

Each of the ground and first floor walls was divided into three parts: left, right and centre $\{s e e$ Figure 4.17). For rear walls for both ground and first floors the left and right side can be considered as one case because of the
łuəułsn!pe yłuow

Figure 4.16 Scale model on the Heliodon

Side walls $1 \frac{1}{2}$ storey
u 0
Figure 4.17 shows the model wall used to determine sun exposure time.
symmetry. However, the side walls, as seen in Figure 4.18, have considerable obstructions, from the closeness of the houses to the rear and smaller obstructions from those situated at the front, which are a considerable distance away, thus resulting in an asymmetrical situation. Accordingly the ground floor and the first floor level were again divided into three parts; left, right and centre and these side walls were treated individually. On most orientations overshading effects on the left side wall of the house are different from those on the right side wall due to the L-shaped side elevations of the houses \{see Figures 4.17c and 4.183. From the results of the experiments carried out on the Heliodon, it was found that for various pairs of orientations, as shown in Table 4.1 and Figure 4.19, the same type of over shading occurred. On account of this, and in order to reduce the volume of the output, common orientations were presented in one graph or table.

4.6.3 The Mathematical Formulae

4.6.3.1 Sunpatch Equation

In order to calculate the sun patch area formed by a window or fenestration the following equation was derived $A=W * H \operatorname{cotV} . S .-W * K-K * H \operatorname{CotV} .5 . * T a n H . S .+K \times 2 *$ TanH.S. .. .4 .9

Where:

Figure 4.18 Scale model on the Heliodon

HOUSE ORIENTATION (Side 1)	WALL ORIENTATION Side 2	HOUSE ORIENTATION (Side 1)	WALL ORIENTATION Side 4
0.0	90	0.0	270
22.5	112.5	337.5	247.5
45	135	315	225
67.5	157.5	292.5	202.5
90	180	270	180
112.5	202.5	247.5	157.5
135	225	225	135
157.5	247.5	247.5	112.5
180	270	180	90
202	292.5	157.5	67.5
225	3.5	135	45
247.5	337.5	112.5	22.5
270	0.0	90	0.0
292.5	22.5	67.5	337.5
315	45	45	315
337.5	67.5	22.5	292.5

Table 4.1
Pairs of angles for the house orientation (Side 1) with associated angles for the orientation of sides 2 and 4 giving equal shading on sides 2 and 4.

Figure 4.19 House orientations shown in table 4.1.
$A=$ sun patch area
$\omega=$ window width
$H=$ window height
$K=$ wall thickness
For the derivation of formula see Appendix 1
4.6.3.2 Sun Exposure Time and Sun Angles Data Files
Total sun patch areas formed by a window depend on the number of hours when no overshading from adjacent houses occurs. Accordingly values of H.S. and U.S. at each of those hours are needed.
By using the formulae given in 4.3.1, vertical shadow angles and horizontal shadow angles were found for summer and winter extremes for the period between an hour after sunrise to one hour before sunset. These angles were prepared as data files for the main computer program isee Appendix 1 which uses the formulae described above for calculating sun patch areas.
From the experiments carried out on the Heliodon data files were prepared representing 41 different cases of interhouse distances, obstruction heights and window positions .
4.6.4 Method of Selecting and Recommending Windows
4.6.4.1 The Yearly Efficiency
According to the analysis of the climate of Baghdad seven to eight months are considered hot to moderate months at
which sun is to be excluded from rooms or minimised while four months were considered cold months in which sun patches are welcome as an additional energy source for internal space which decreases fuel expenditure. So it was considered that an efficient window is one with the capability of allowing an amount of winter sun penetration at least twice as high as that in summer. This was assumed to result in an approximate optimisation of the annual energy expenditure for cooling and heating.

So the ratio of the sun patches formed in winter (w) to twice the sun patches formed in summer (S) is used as the measure for yearly efficiency.

The most efficient window is that window with the highest numerical value of the ratio.

Any window with a value of the ratio $W / 2 S$ less than one is not considered.

When none of the 77 windows lie on the yearly efficiency scale, in other words if on certain orientations none of the 77 windows has a value of one or more, windows on that orientation are selected and recommended on the summer efficiency scale only.

4.6.4.2 Summer Efficiency

Obuiously a small window allows a small amount of direct sunlight to penetrate which is less than the quantity allowed by larger window. As shown in table 4.2, a window of 0.5 m width by 0.5 m height allows 0.1 m 2 sun patch to

	x	Y	A1	SA	SA/fil	
	. 50	- 50.	. 25	. 10	: 33	
	. 50	. 75	. 33	.27	. 77	
	. 50	1.00	. 50	. 50	. 99	
	. 50	1.25	. 53	. 70	1.12	
	.50	1.50	. 75	. 91	1.21	
	- 50	1.75	. 33	1.12	1.28	
	.50	2.00	1.03	1.33	1.33	
	.75	. 50	. 3.3	. 42	1.07	
	.75	. 75	. 56	. 92	1.64	
	. 75	1.00	. 75	1.46	1.94	
	.75	1.25	. 94	1.99	2.13	
	.75	1.50	1.13	2.33	2.25	
	. 75	1.75	1.31	3.07	2.84	
	. 75	2.00	1.50	3.51	2.41	
	1.00	. 30	. 50	. 73	1. 4t	
	1.00	. 75	.75	1.57	2.69	
	1.00	1.00	1.00	2.44	2.44	
	1.00	1.25	1.25	3.32	2.65	
	1.00	1.50	1.50	4.19	2.79	
	1.00	1.75	1.75	5.06	2.35	
	1.00	2.05	2.00	5.34	2.97	
	1.25	. 50	. 63	1.05	1.32	
	1.25	. 75	. 94	2.22	2.37	
	1.25	1.00	1.25	3.43	2.74	
	1.25	1.25	1.56	4.54	2.97	
	1.25	1.50	:. S $^{\text {c }}$	5.35	3.12	
	1.25	1.75	2.19	7.06	3.23	
	1.25	2.00	2.50	2.25	2.31	
	1.50	. 50	. 73	1.37	1.83	
	1.50	. 75	1.13	2.37	2.55	
	1.50	1.00	1.50	4. 42	2.94	
	1.50	1.25	1.93	5.98	3.18	
	1.50	1.50	2.25	7.51	3.54	
	1.50	1.75	2.53	9.06	3.15	
	1.50	2.00	3.00	10.61	3.54	
	1.75	. 50	. 83	1.69	1.94	
	1.75	. 75	1.31	3.52	2.63	
	1.75	1.00	1.75	3.40	3.09	
	1.75	1.25	2.19	7.29	3.33	
	1.75	1.50	2.63	9.17	3.49	.
	1.75	1.73	3.06	11.05	3.61	
	1.75	2.00	3.50	12.94	3.70	
	2.00	. 50	1.00	2.02	2.02	
	2.00	. 75	1.50	4.17	2.79	
	2.00	1.00	2.00	6.39	3.19	$X=$ window width
	2.00 2.00	1.25 1.50	2.30 3.00	8.61 10.83	3.44	$\mathrm{Y}=$ window height
	2.00	1.75	3.50	13.05	3.73	
	2.00	2.00	4.00	13.28	3.82	Al= window area
	2.25	. 50	1.13	2.34	2.03	
	2.25	. 75	1.69	4.92	2.36	SA= Summer sun-patch area
	2.25	1.00	2.25	7.33	3.28	
	2.25	1.25 1.50	2.81 3.38	9.93 12.49	3.53 3.70	SA/AI= Yearly efficiency
	2.25	1.50	3.33	12.49	3.70	
	2.25	2.00	4.50	17.61	3.91	
	2.50	. 50	1.25	2.56	2.13	
	2.50	. 75	1.83	5.47	2.92	
	2.30	1.00	2.50	8.36	3.35	
	2.30	1.25	3.13	11.26	3.30	
	2.50	1.30	3.75	14.15	S.77.	
	2.50	1.75	4.38	17.04	3.90	
	2.50	2.00	5.00	19.95	3.95	
	2.75	. 50	1.38	2.98	2.17	
	2.75	5.75	2.06	6.12	2.97	
	2.75	1.00	2.75	9.35	3.40	
	2.73	1.25	3.44	12.58	3.66	-
	2.75	1.50	4.13	13.81	3.83	
	2.75	1.75	4.81	17.04	3.96	
	2.75	2.00	5.50	22.23	4.05	
	3.00	. 50	1.50	3.30	2.20	
	3.00	-75	2.25	6.77	3.01	
	3.00	1.00	3.00	10.34	3.45	
	3.00	- 1.25	3.75	13.90	3.71	
Table 4.2	3.00	1 1.50	4.50	17.47	3.63	
	3.00 3.00	1.75 2.00	5.25 6.00	21.03	4.91	
	3.00	2.00	6.00	24.61	9.10	

penetrate, while a 3.0 m width by 2.0 m height window allows 24.61 m 2 .

Although the $3 m \times 2 m$ window equals in area 24 windows of the $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$ size, the area of sun patches formed by 24 windows of $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$ is 2.4 m 2 while the area of sun patch formed by the $3 \mathrm{~m} \times 2 \mathrm{~m}$ window is 24.61 m 2 a difference of a factor of ten. So if windows are now to be considered with respect to their ability to prevent summer direct sunlight penetration, the area of sun patches per unit window area has to be used as the measure for summer efficiency. This scale seems to be a useful one for architects who prefer large area of window without excessive summer sun penetration.

Accordingly the most efficient window fram the summer point of view is that which has a small numerical ratio of area of summer sun patches to area of window.

4.6.5 Computer Program

A series of computer programs were written by the author with the help of Mr. Jim Fleming and Mr. Don Euans to compute, tabulate, draw, and recommend the appropriate window or group of windows having the ability to allow the smallest amount of summer sun and, at the same time, the largest amount of winter sun to penetrate.
4.6.5.1 The first program was to compute the area of sun patches formed in a room with an infinite floor area $\{$ see Appendix

13, with three wall thicknesses, for sixteen room orientations, during the exposure hours, for 77 different windows, varied from 0.5 m height and 0.5 m width to 2.0 m height by 3.0 m width in increments of 0.25 m .

In the computation a room with an infinite floor area was used in order to avoid the complication of computing sunpatches on walls since the radiant energy, though not the area of sun patches entering a room is the same whether it falls on the floor or a wall.

The computer program was designed to find the total area of sun patches formed by the window in summer, total area of sun patch areas formed in winter, summer sun patches per unit window area, winter sun patches per unit window area, the ratio between winter sun patch area to summer sun patch area and the yearly efficiency which was previously defined with respect to the analyses of the climate of Baghdad. Table 4.3 shows the typical output where: X is window width, Y is window height, A is window area ($m 2$), $S A$ is the sun patch area formed ($m 2$) in summer, WA is the sun patch area (m2) formed in winter, SA/A1 is the ratio of summer sun patch area per unit window area, WA/A1 is winter sun patch per unit window area, WA/SA is the ratio of winter sun patch area to summer sun patch area and WA/2SA is the yearly efficiency as earlier defined.
4.6.5.2 The second program \{see Appendix 1$\}$ was designed to pick out and present the output from the first program - the sun

patches formed by the 77 types of windows - in graphic form, from which a clearer picture could be obtained with regard to the effect of sizes and proportional changes. Due to the huge number of results produced and in order to reduce that volume, a version of the program was written to handle six sets of results and plot them on one graph. Each graph represents three sets of results lone for each zone, left, centre and right) for ground floor and three for the first floor level for a defined side of the house; for a fixed inter-house distance. All the graphs represent the yearly efficiency of the 77 windows. Moreover, if for some orientations none of the 77 windows has a value of one or more, then the summer efficiency graph is introduced to serve that orientation. This type of graph gives a clear picture to the users enabling a distinction to be made between the effects of sizes for a given wall thickness and orientation.

Figure 4.20 shows a graph prepared by this program. Curves 1, 2 and 3 are for ground floor windows representing the left, right and midde parts of the wall respectively. Curves 4,5 and 6 are for first floor windows again representing left, right and middle parts of the wall respectively. The X axis is divided into two divisions, the lower part representing window heights and the upper part representing window widths for each constant height; the upper X-axis contains seven sets of eleven divisions, each

$W D=4 M \quad H D 1=4 M \quad H D 2=4 M$ HOUSE $T .=2.0 \mathrm{ST}$.
Figure 4.20 Summer efficiency sample graph.
division representing one of eleven window widths from 0.5 m to 3.0 m in increments of 0.25 m .

An overlay was prepared and attached to each volume to make reading the graphs easier.
\{see Appendix 2$\}$
4.6.5.3 The third program \{see Appendix 1$\}$ handles the output formed by the first program and selects those windows which allow at least twice the amount of winter as summer sun and ranks them in order of performance and presents them in tabular form.

Because of overshading effects or sun declination, winter sun never appears on some orientations or appears at angles at which no window has the ability of allowing winter sun penetration at least twice as great as summer; for such orientations yearly efficiency cannot be used as a norm of selection, so minimisation of summer sun is used as a criterion and the program selects only on the basis of summer sun data. It then ranks all windows in order of performance. The program ranks the 77 windows in order of efficiency and presents them in tabular form. The user is then provided by the means of a further program, with another set of tables showing the 20% highest rank windows.

```
4.7 The Output Results and Recommendations
4.7.1 The Tables
4.7.1.1 Detailed Tables
```

This type of table is an output of the first program which gives a guideline for the represention of the results. Table 4.3 gives useful information about the behaviour of each type of window in summer, in winter, the changes in the amount of sun patches per unit window area <summer efficiency $S A / A$ and winter efficiency $W A / A$), the ratio of winter sun patches to summer sun patches WA/SA and the yearly efficiency $W A / 2 S A$. These tables are not included in this thesis since their inclusion would increase the volume by 1968 pages. So an alternative and abbreviated set of tables was developed which are described in 4.7.1.2 fsee Appendix 33.

4.7.1.2 The General Tables

Since it was not possible to include the 1968 tables just for direct sunlight as an Appendix, and in order to present as much useful data as possible another program was written to form a summary of the most important information from the first and to lay out the results for each of the sixteen orientations in one table; the number of tables was thus reduced to 123. Each gives the window efficiency in rank order according to either the yearly or the summer
4.5 The Window as a "Shading Device"
4.5.1 Wall Thickness

The wall thickness in any fenestration acts as a combined shading device, and has a great effect on the penetration of direct sunlight, especially in small windows s see Figure 4.53
4.5.2 Wall Orientation

As shown in Figure 4.3 wall orientation is a basic determinant of the amount of direct sunlight in summer and winter. As an example a north facing wall in Baghdad receives some summer sun, but no sun at all during autumn, winter and spring while a south facing wall receives only a little direct sun in summer and a substantial amount in winter.
4.5.3 Inter-house Distances

As explained above adjacent buildings work as external obstructions and cause overshading on other buildings. As obstruction height decreases so does the shading effect. The critical ratio is that of obstruction height to inter-house distance and this ratio, on same orientations, gives favourable performance both summer and winter, whilst on other orientations it may impede useful winter sunshine but still give good summer shading.
tables and graphs as possible extensive work will have to be undertaken on:

1- establishing a technique to generalize any shape of building in order to group the recommendations to a limited number of sets representing most common building shapes.

2- developing a computer program to predict over-shading by adjacent buildings in order to replace the experimental work which preceded the computer calculations and which is both tedious and slightly inaccurate due to the inbuilt geometrical errors resulting from the use of the Heliodon.

CHAPTER-5-

WINDOWS FOR DAYLIGHTING

5.1 Daylighting

It was found from the housing survey, that 100% of the population in the housing area interviewed considered windows very important for lighting purposes . Although wishing to eliminate excessive direct sunlight in summer, they wanted to enjoy natural light. Therefore it is necessary to provide building designers with as much as useful information as possible on how both these demands of the users can be met.
5.2 Sky Condition in Baghdad

It was noted previously that, an average of over 22 days in the year the sky in Baghdad is over-cast, for 20 days the days are dusty days and 205 days enjoy a clear sky, the remaining days are mixed condition \{see Figure 2.11\}. Accordingly the typical Baghdad sky was considered as a clear sky.
5.3 Sky llluminance

As no measurements have been carried out on sky luminance distribution in Baghdad which would enable design recomendations to be based on empirical data, this study

Abstract

depends on a theoretical model of sky luminance to calculate the absolute outdoor illuminance on a horizontal plane, as well as for the indoor daylight levels.

5.4 Factors Affecting the Sky Illuminance Level

By introducing a value for sky luminance in order to represent the outdoor illuminance for any type of building, one must bear in mind that it can be affected by more than one factor. Moreover before recommending any value, these factors and other relevant investigation will have to be carried out as follows.

5.4.1 Working Hours

Usually the value of the design sky is that luminance which occurs at the lowest illuminance level during working hours. However for houses, since there is no fixed time for house-work, as the housing survey illustrated, the whole day will be considered as "working hours". Moreover if one accepts the notion of designing for low sky illuminance levels one would have to recommend, for housing purposes; a light level based on zero sun altitude (sunrise or sunset) as working hours at home are unlimited. This would in practice be unacceptable especially when one considers that lighting according to zero sun altitude would result in extremely large windows in order to provide a sufficient amount of daylight at times of such low external illuminance. Since this would have a totally unacceptable
effect on summer heat gain, winter heating and other design considerations another rule for recommending the lighting levels has to be used.
5.4.2 House Orientation Effect

For housing purposes it was decided that it was not practical to consider a fixed sky illuminance level for all house orientations because in clear sky conditions external reflection plays an important part in the level of lighting inside buildings.

It is clear that when a wall receives direct sunlight the wall opposite is in the shade, and while the window on the shaded wall receives sky light and a large quantity of reflected light from the wall opposite, the window on the wall facing the sun does not face a sunlit wall. Therefore the two rooms behind the two windows will have different sky and external reflected components, with that behind the sunlit wall having the lower one. Accordingly under identical, simultaneous sky conditions the daylight levels from similar windows facing different orientations are different. However if the outdoor sky luminance is considered when the sun is parallel to both facing walls, the sky and external reflected components resulting from the two identical windows will be the same, as long as the external walls have the same reflection factors, and thus at least two orientations will share one standard outdoor sky luminance.

5.4.3 The Basis for Recommending Outdoor Illuminance

Any norm survives if it proves useful and has the ability of being applied without negative influences on other factors.

Therefore with regard to daylight in hot regions the norm has to take into account that, although daylighting is important from the psychological and energy conservation points of view, excessive daylight in summer is not acceptable and people prefer to pay for lighting rather than for the greater cost of summer cooling. Consequently, a low level of outdoor illuminance has to be considered objectively in order to make acceptable design decisions.

Thus one has to define:
1 - That sun direction azimuth values on each orientation which gives an equally low external reflection effect on two parallel neighbouring walls.

2 - The sun altitude values for each of the selected azimuth values, which yield standard sky luminance values to be used in the calculation of outdoor daylight.

5.4.3.1 Sun Direction

It is well-known that under clear skies the illuminance of the blue sky is quite low and as external reflection plays a major part in the lighting of indoor spaces, the lowest value of the indoor lighting is when the sun is lateral and
the direct beam is tangential to the wall. Therefore the outdoor lighting level will be considered only when the solar wall azimuth $=+90^{\circ}$ or -90°

5.4.3.2 Sun Altitude

In order to find usable values for sun altitudes and recommend them for each orientation the sun altitudes in extreme summer and extreme winter were found for each of the 16 orientations, when the solar wall azimuth (horizontal shadow angle) was $+90^{\circ}$ or - 90° (see Figure 5.13.

The average value between the summer sun altitude and the winter sun altitude for each orientation was taken as the recomended value for calculating and estimating the outdoor sky luminance for purpose of indoor daylight calculations.
5.5 Daylight Levels
5.5.1 The Number of Outdoor Values

As has already been said the study is concerned with houses having 16 orientations, starting in a clockwise direction from the north, 0.0°, and moving in increments of 22.5°.

Estimating sun altitudes for horizontal shadow angles at $-1+90.0^{\circ}$ shows some values to be common for more than one orientation, consequentiy the number of values to be used

Figure 5.1 Stereographic projection with superimposed axonometric of one pair of houses, showing solar azimuth parallel to side walls.
is reduced \{see Figure 5.1\}. Accordingly only 5 values are required for the following groups of orientations:

1 - North and South (0.0° and 180.0°)
2- 22.5° and 157.5° and 202.5° and 337.5°
$3-45.0^{\circ}$ and 135.0° and 225.5° and 315.5°
4- 67.5° and 112.5° and 247.5° and 292.5°
5-East and West (90.0 and 270.0)
5.5 .2

Experimental Basis

Clearly, this study has inuolved a substantial investigation and tackled an. enormous number of cases. This type of work would take an excessive time if carried out experimentally, and therefore it was decided to make use of the computer. Nevertheless, reliance on a mathematical model developed for clear sky conditions in places with almost overcast sky condition or even for clear sky conditions with a very low percentage of dust contents may not have been suitable for the clear sky conditions prevailing in Baghdad. Therefore the author in preparation for his Ph.D. research carried out small seale experiments in Baghdad on the unobstructed roof on the building of the Building Research Centre in Baghdad in order to assess and select the nearest model which met the reqirements for sky conditions in Baghdad especially where the absolute outdoor illuminance is concerned.

A $1 / 10$ scale model representing room dimensions of $4 \mathrm{~m} *$ 5m * 2.8 m high with two windows of 1 m * 1 m with and 0.8 m high window sill and 0.25 m wall thickness was constructed $\{$ see Figure 5.23.

The model was covered inside and out with black cloth swith a 3.31 \% reflection factor) to keep out any inter-reflection. A black piece of cloth was fitted on each of the two windows so that the windows may be open or closed at any time.

A base for the outer cells was constructed and attached to the window opening in such a way that the cell could be placed horizontally to measure half sky illuminance just outside the threshold of the window, presuming that the external wall reflection from the black walls is zero.

The model represents a room $4 \mathrm{~m} * 5 \mathrm{~m}$ and measurements were recorded for each grid of 0.25 m 2 . It was decided to use three cells, two of them were placed outside the room and the third was placed on a mobile ruler at a working level, heights of 0.8 m and 0.5 m . The ruler is moved on a groove in the middle of the base which is situated on the floor of the room \{see Figure 5.3\}. The base was divided to represent a 0.25 m 2 grid. The ruler moves in the direction of the room depth, while the room was designed to move on the base grid in a direction perpendicular to the cell path, to enable sky components to be recorded at 0.5 m metre

Figure 5.2 Experimental model on roof of Building Research Centre, Baghdad.

Figure 5.3 Floor of model room
intervals within the depth and width of the room. Using this technique the cell remained horizontal. It was chosen to speed up the recording of the results in order to minimize changes in the outdoor illuminance.
5.5.4 The Measuring Instrument

The experiments were carried out with a Megatron Architectural Model Lux Metre. The apparatus consists of twelve cells with an ability to measure a maximum of 10 kilolux. Three cells out of the 12 were selected as it was found that their responses were sufficiently similar whilst somewhat different from the remaining 9.

Since the maximum recording scale of the apparatus was only 10 kilolux, to use the apparatus for measuring absolute outdoor illuminance the cell was covered with a Kodak grey filter to enable the scale to be used by keeping measurements within the instrument's range \{see Figure 5.33.

Although the transmission factor of the grey filter was unknown at the time experiment was carried out, it was the intention that the filter factor would be measured in the future.

During the author's visit to the Slouak Academy of Sciences to discuss the natural lighting part of his work with Dr. Kittler, the filter was calibrated under an artificial clear sky and a reduction factor of 31 was found as the filter power (ie. 3.23\% transmittance).

5.5.5 Experimental Reasoning

As explained the experiment was carried out in Baghdad on an unobstructed roof of the Building Research Centre during the period between the 30 th of May and the 16 th of June 1982 between 7 am . and $10 \mathrm{am} .$, for the following purposes:

1- To find the illuminance level on the working plane given by the sky component in order to check mathematical models. 2- To discover the effect of a combination of a window to the front and one to the side on the illuminance given by the sky component.

3- To obtain an estimate of the absolute outdoor sky illuminance for Baghdad, in order to guide the author on the selection of suitable mathematical models.

Unfortunately experiments on external reflected components were not able to be carried out at the same time for a variety of unavoidable resons.
5.5.5.1 Sky Component Experiment

As described the floor of the room was divided into a $0.25 m 2$ grid as seen in Figure 5.3 to enable measurements to be made of the illuminance at the centre line from each of the two windows and also the line across the two sides of both windows. They were carried out with both one window and two windows uncovered. The windows were oriented south and west to avoid direct sunlight penetration during the experiment. For each row of measurements, one
corresponding record for an external cell was recorded. To avoid any time lag between pairs of measurements a tape recorder was used to take the recording. A row of 7 points took up to 1.5 minutes to completion.

The sky component for each point was found and the results were tabulated and prepared for mathematical comparison. A difference of about 16% was found between the measurements and the theoretical results \{see Table 5.1 \} in part because the study is concerned with the mid point of the room and the curve was plotted only for those points falling on the line joining the midpoint of the lower edge of the window with the midpoint of the room.

5.5.5.2 Absolute Sky Illuminance

It will be seen later that predicting the illuminance inside a room requires one to determine the value of the absolute sky illuminance and this value can be found experimentally and mathematically. As the scope of the the present study is rather large, it was decided that mathematical formulae were the most suitable tool to be used.

Accordingly a few of the records taken in Baghdad on the 2nd of June 1982 between 7.45 am . and 8.05 am. , when the sun altitude was between 30° and 35° were compared with corresponding values from some of the internationally supported formulae [Ref. 110] \{see Figure 5.4\}. From this Figure it is clear that Krochmann's formula is near enough

Sky Component
Theoretical
0.54
0.39
0.24
0.16
0.10
0.07

50•0
-13%
13%
16%
19%
20%
14%
20%

Illuminance on a horizontal plane from clear sky.
$x x x x \times x$ Experiment (by the Author)

- Dxaxx Dogniaux, Killer
-- - Dogmiaux, Gusev
—— Krochmann (eqn.5.2)
-. - Chroscicki (eqn.5.1)
a $T=7.0$
b $T=3.0$.

$$
T=\text { Turbidity }
$$

to meet the requirements of the Baghdad sky condition, and in the subsequant calculations it was used for estimating the absolute sky illumination (Ea)

5.5.5.2.1 The Formulae

1- Chroscicki formula [Ref.110]
$E a=[3+0.17 *$ A/degree $]$ kilolux5.1

2- Krochmann formula [Re. 110]
$E a=\left[1.1+15.5 \operatorname{Sin}^{\wedge} 1 / 2(A)\right]$
5.2

3- The American l.E.S (Dec.. 1983)
For Half Sky Illuminance [Ref. 97]
$E a h=8.2(\sin (A)) * 0.5+6.9(\sin (A)) * 1.3 * \cos A * \operatorname{Cos} H . S$.5. 3

Where:

Ea :The illuminance on horizontal plane
Eah :Half sky illuminance on horizontal plane
A :Sun altitude
H.S.:Solar wall azimuth

5.5.5.2.2 The Recommended Levels

Using Krochmann's formula as illustrated above, for the calculation of absolute value of illuminance on the horizontal plane from a clear sky, the following values
were found and recommended for the five groups of orientations :

1- Group 1 = 12838 LUX
2- Group $2=14133$ LUX
3- Group $3=14514$ LUX
4- Group $4=15128$ LIX
5-Group $5=15294$ LUX
5.6 Theory and Formulae
5.6.1 Background

It is well known that the multiple diffusion and reflection of sunlight on and through the gas and aerosol particles in the actual turbid environment of the atmosphere affects the spectral distribution of the radiation of the clear sky. Rayleigh (1899) [Ref.l03] stated that, the relative diffusion of light caused by gas molecules in a so-called ideally clear atmosphere obeys:
$f(G)=1+[\operatorname{Cos}(G)]^{\wedge} 2$
Wirere (G) is the arbitrary diffusion angular distance of the considered sky element from the sun.

After Rayleigh, Schonberg (1929) [Ref. 103] published his formula for a foggy condition by introducing some coefficients.

In 1929 Pokrowski submitted his formula for calculating the luminance distribution for clear skies, which was considerd at that time as a good approximation to the measured luminance distribution.

In 1961 Bareteneva found that neither Schonberg's nor Pokrowski's formulae corresponded fully to the measured average. According to Bareteneva, Pokrowski's formula could no longer be considered for the calculation of luminance distribution for clear skies.

Between 1929 and 1961 a number of scientists carried out many measurements and introduced further parameters and coefficients which they added to Rayleigh's formula to better represent actual sky conditions.

In 1964 Kittler [Ref. 103] proposed to the International Commission on lllumination (CIE) that the atmospheric condition for a CIE standard clear sky could be satisfactorily defined by the diffusion indicatrix within a tolerance zone between the curves:

A - For clear atmospheric air is, $f(G)=0.955+5 \exp (-3 G)+0.8[\operatorname{Cos}(G)]^{\wedge} 2 \quad . . .5 .5$ B - For polluted atmosphere in idustirial area is, $f(G)=0.865+15 \exp (-3 G)+0.33[\operatorname{Cos}(G)]^{\wedge} 2 \quad . . .5 .6$ The standared indicatrix: $f(G)=0.9+10 \exp (-3 G)+0.45[\operatorname{Cos}(G)]^{\wedge} 2 \quad \ldots .5 .7$ would corresponed to the ideal luminance distribution, which would serve as a basis for the calculation of daylight factor under clear sky.

From 1964 to 1967 the CIE expert committee encouraged all experts and scientists to carry out the necessary measurements on the formula before the CIE committee adapted it.

In June 1967 Kittler's formula was approved and Dongniaux, Professor Gusev and Dr. Kittler were asked to to provide an additional indicatrix characterizing the clear sky luminance distribution in idustrial areas.

The intersessional meeting of the expert conmittee held in Bratislava September 1969 accepted Professor Gusev's proposal to define the indicatrix by a second twin formulae \{see 5.6.2.\}.

In 1973 after graphs and tables were derived from the standared formula to ease its application in general practice CIE published CIE No.22(TC-4.2)1973, "Standardization of Luminance Distribution on Clear Skies" and recommended to adoption of Kittler's model.
5.6.2 CIE Standard Formula (Kittler's Formula)

The relative luminance distribution on clear skies is expressed by the following general formula

$f(G) \varphi(C)$	
- = -------------	... 5.8
$L z \quad f(20) \varphi(0)$	
Where:	
$f(20)=0.91+10 \exp (-320)+0.45[\operatorname{Cos}(20)]^{\wedge} 2 \quad5 .10$	
$\varphi(0)=1-\exp (0.32 \mathrm{sec} \mathrm{c}) \quad$....5.11	
$\varphi(0)=1-\exp (-0.32)=0.27385$....5.12	
$\operatorname{Cos}(6)=\operatorname{Cos}(20) \operatorname{Cos}(0)+\operatorname{Sin}(20) \operatorname{Sin}(0$	(H.S.). 5

```
Zo = Zenithal sun angle
LCa = Luminance of an arbitrary sky element
Lz = Luminance at the zenith
C = Angular distance of the sky element from the zenith
H.S. = Azimouthal angle of the sky element from the sun
meridian
    In the above terms all angular dimensions are in angular
    coordinates {see Figure 5.5}.
```

5.7
Daylight Level Calculation Inside Buildings
Illuminance levels in a room are the summation of direct
daylight reaching the point from the sky and any light
reflected into the room through the window from external
obstructions, and the light, having once entered the room,
reflected and interreflected at room surfaces before it
reaches the reference point.
This can be expressed either in Lux or as a Daylight
Factor.

5.7.1 The Daylight Factor

The daylight factor is the ratio of daylight illuminance at a point on a given plane due to the light received directly and indirectly from a sky of assumed or known luminance distribution, to the simultaneous illuminance on a horizontal plane due to the unobstructed hemisphere of this sky.

Figure 5.5

Direct sunlight is excluded for both values of illuminance [Ref.78].

```
Daylight Factor = Sky component + External Reflected
Component + Internal Reflected Component
```

5.7.1.1 Sky Component Formula and Calculation
$S c=(E p / E a) * 100 \%$....5.14
Ep = the illuminance at a point inside the room at a point 'P'

Ea the external illuminance on a horizontal plane Referring to Figure 5.8 Ep can be found [Ref.109] from:
$E p=K \int_{W f}^{0} L p \cdot T i \cdot d w \cdot \operatorname{Cos} h$
Where:
K : Maintenence factor
Lp : Luminance of the sky for a given direction cd/m2
Ti : Transmission factor of glass
Wf : Solid angle of the glass area
h : Angle of incidence of light on the plane

Referring to CIE standard formula
$L(h a)=L p$ is the sky illuminance and is $f(h, r)$

```
    Cos h: is the correction for projection on to the
        horizontal plane
        Ti is f(h,r)
        Rivero [Ref. 78] found an approximation for glass
        transmission as f(B) {see Figure 5.6}
        Ti(B)=1.018To (Cos B +(Sin B)^ 3*Cos B) ....5.17
        Ti(B)= Transmission of glass at angle B to the normal of
        the window
        To : transmission at normal incidence
        h2 r2
Sc=K/Ea < < < Lp(h,r)(1.018To(Cos B+(Sin B)^ 3*Cos B))Cosh Sinh dh dr . . . . 5. 18
                Fram CIE Formula
                Lp}=Lz*f(a)*\varphi(q)/f(Za)*\varphi(0) ...5.17
                Lz, f(Zo) and }\varphi(0)\mathrm{ are independent of t. and r
                so they can be moved out of the integration.
                    Sc= =-018T0.K.Lz E..f(20).f(0)}\mp@subsup{\int}{h1}{h2}\mp@subsup{\int}{r2}{r2}f(q)(h)(\operatorname{Cos}B+(\operatorname{Sin}B\mp@subsup{)}{}{\wedge}3*\operatorname{Cos}B)\operatorname{Cosh}\operatorname{Sinh}dhdr . ...5.2
        Lz/Ea .f( ZO) Y(O) can be calculated independently and treated as
        constant values.
        Lz can be found from Dogniaux's formula [Ref.110]
        Lz =[(1.234T-0.252)Tan q +0.112T -0.0169] Kcd/m2 . ...5.21
        For clear skies T = 2.25
        Ea canbe found from Krochmann Formula [Ref.110]
        Ea=(1.1 + 15.5 (Sin q) 0.5) Kilaiux . . . 5. 22
        f(Z0)\varphi(0)=0.274(0.91 + 10 exp(-3*Z0)+0.45(Cos Zo)) . . .5.23
```


Fig. 5.6 The variation of the transmittance of ordinary clear window glass with angle of incidence.
(After ref.78)

Lawrance Berkeley Laboratory, Univ. of California calculated $L z /[E a * f(Z 0) * \varphi(0)]$ [Ref.34]5.24
and presented it in table form for each 10 degree sun altitudes, and called it Normalization Factor Nse

With the present work the normalization factor is presented in graphical form \{see Figure 5.7 \} for the range 30 to 70 sun altitude

For the purpose of integration and to unify the angles, q and h are expressed in term of angle Gir \{see Figure 5.3\}[Ref. 36].

In terms of G and r the value of $\operatorname{Cos} B, \operatorname{Sin} B, \operatorname{Cos} h, \operatorname{Sin} h$ and ot are derived and expressed as follows, (The derivation is in Appendix 1)

```
Cos B= Cosr*Sin G / {[ (CosG)^2*(Cosr)^2 + (Sin G)^2 J`0.5 }. .5.25
    (Sin G)^2 +(Cos r)^2[ (CosG)^2 - (SinG)^2 ] ^0.5
Sin B=
    {[(CosG) `2* (Cos r) `2 + (SinG) `2 ] `0.5}
Cosh = Cos r*Cos G / {[ (CosG)^2*(Cos r)^2 + (SinG)^2 ]` 0.5 }..5.27
Sinh=Sin G / {[ (CosG)^2*(Cos r)^2 + (Sin G)^2 ]^0.5} . . . . 5. 28
dh = Cosr.dG
                                    ....5.29
As given in [Ref.37]
f(q)=0.91 + 10 exp(-3*q) +0.45 (Cos q) ^2
\varphi(h)=1-\operatorname{exp}(-0.32 Sec h)
                                    ....5.31
    f(ZO)=0.91 + 10 exp (-3*20)+0.45 (Cos ZO) *2 ....5. 32
\varphi(0)=1-\operatorname{exp}(-0.32)=0.27335
....5.33
```



```
a = r +rw-rs
5.35
\(r\) : Angle representing two corners of the window. \{see Figure


Figure 5.8
rw : Angular azimouthal distance of the window normal from the north
rs: Angular sun azimouth from the north
\(q=\operatorname{Cos}^{*}-1[\operatorname{Cos} 20 * \operatorname{Cos} h+\operatorname{Sin} 20 * \operatorname{Sin} h * \operatorname{Cos}(r+r w-r 5)] \cdot .5 .36\)

Let \((X)=(\operatorname{Cos} G) \wedge 2 *(\operatorname{Cos} r) \wedge 2+(\operatorname{Sin} G) \wedge 2\)
\(\mathrm{q}=\operatorname{Cos}^{\wedge}-1\left[\left(1 /\left(X^{*} 0.5\right)\right)(\operatorname{Cos} \mathrm{G} * \operatorname{Cos} \mathrm{~S} * \operatorname{Cos} \mathrm{r}+\operatorname{Sin} \operatorname{Zo} * \operatorname{Sin} G *\right.\)
\(\operatorname{Cos}(r+r w-r s))]\)
....5. 38
\((h)=1-\exp \left(\left(-0.32 * X^{\wedge} 0.5\right) /(\operatorname{Cos} G * \operatorname{Cos} r) \quad \ldots .5 .39\right.\)

\(\left[1+\left[(\operatorname{Sin} G)^{\wedge} 2+(\operatorname{Cos} r)^{\wedge} 2\left((\operatorname{Cos} G)^{\wedge} 2-(\operatorname{Sin} G)^{\wedge} 2\right)^{\wedge} 1.5\right]\left[1-\exp -\frac{(-0.32 * X \wedge 0.5)}{(\operatorname{Cos} G * \operatorname{Cos} r)}\right.\right.\)
[ X ]
* [0.91+10exp(-3q) +0.45(Cos q)^2].dr. \(d G\) ....5. 40
5.7.1.2 Extermal Reflected Component
\(E R c=T * K * e v /(W 0) * f(h, A, r w-r s) \int_{W V}^{0} d W * \operatorname{Cosh} \quad[R e f .109] . .5 .41\)
T: transmittance of glass
K : maintenance factor of the window
WV : solid angle of the obstruction within the glass area (see
Figure 5.93
rw : window azimouth
rs: sun azimouth

Figure 5.9

A : sun altitude angle
\(h\) : angle of incidence
Rv: reflectance of the obstruction
\(E R c=(T * K * R V / * W O) F \int_{G 1}^{G 2}[\operatorname{Sin} G / X * 0.5] *[\operatorname{Cos} r / X] d G . d r \cdots . .5 .42\)
\[
E R c=(T * K * R v / * W 0) F \int_{G 1}^{G 2} \int_{r 1}^{r 2}[(\operatorname{Sin} G * \operatorname{Cos} r) / X * 1.5] d G . d r \quad \ldots .5 .43
\]

F :Window factor
\(F=F H+F V+F B\)
FH: Luminous flux incident from the sky
FV : Luminaus flux incident from obstruction
FB: Luminous flux incident from ground
Krochmann presents FH in three graphs: Sun behind,
Sun lateral \{see Figure 5.10\} and Sun frontal.
\(F V=L v / E a \int_{0}^{a} d W \cdot \cos V \quad \ldots .5 .44\)
\(F V=(L V / E a)(\pi / 2)(\operatorname{Sina} * W 0)\) 5.45

The integral of the projected solid angle of this equation is taken for an infinitely extended obstruction from the horizontal to the angle (a) of obstruction
\(V\) : Angle refers to the vertical plane

Component \(f_{H}\) of the window factor
Figure 5.10
\(F V \simeq(R v / 2) *((\operatorname{Sin} a) /(1-R v *(S i n a \quad(F H / F H))) *(F H+(\pi\) *LB*Wo/2*Eal) ....5.46
\(F B=\left(T_{*} L B * W_{0}\right) / 2 E a \quad\)....5.47
The American recommended practice for the calculation of daylight availability (US. IES 1984 Ref. 79) is
\(L B=E d H=E d n * \operatorname{Sin} A \quad\)....5.48
\(E d n=E x t * \exp (-C * M) \quad\)....5.49
C : Atmospheric extinction coefficient= 0.21 for clear sky
M : Optical air mass = \(1 / \operatorname{Sin} A\)
EdH: Direct normal solar illuminance
Esc: Solar illumination constant
J : Julian date (1 < J < 365)
Ext : The Extraterrestrial solar illuminance
Extraterrestrial Solar Illuminance : Since the earth does not move in a circle around the sun, but in an ellipse, thus on any day of the year, the extraterrestrial solar illuminance has a value corresponding to that day
\(E x t=E s c[1+0.034 \operatorname{Cos}((2 \pi / 365)(\mathrm{J}-2))] \quad\)...5.50
\(L B=127.5[1+0.034 \operatorname{Cos}((2 \pi / 365)(J-2))] * \operatorname{Sin} A * \exp (-C / \operatorname{Sin} A) \cdot .5 .51\)
5.7.1.3 Internal Reflected Component
\(\operatorname{IRc}=T * K *(A f / A O) *(1 /(1-E m))(F O * R b w+F B * R d W) \quad[R e f .109] .5 .52\)
Af : Glass area
Ao : Room surface area
Em : Mean reflectance of the room
\(F O: F H+F V=\) Window factor due to luminous flux incident from the upper hemisphere

Rbw : Mean reflectance of floor and lower parts of walls excluding the window wall
Rdw : Mean reflectance of ceiling and upper parts of walls excluding window wall
5.8 Window Sizes and Outdoor and Indoor Condition
5.8.1 Window Dimensions

As already stated the window sizes studied are 44 in total with widths of 0.5 m to 3.0 m in increments of 0.25 m and with heights of 1.0 m to 1.75 m in increments of 0.25 m
5.8.2 Surrounding Houses

House surroundings and interhouse distances in the natural lighting part of the study remain as they were for the direct sunlight control study \(\{\) see Figure 4.18\}.
5.8.3 External Walls

Referring to the housing survey \(61 \%\) prefer the external walls to be painted white and \(24 \%\) prefer other light colours. Thus in order to satisfy the majority isee Figures 5.11 and 5.123 and encourage those people working in the housing sector to choose white or light colours for the external walls, it was assumed for the purpose of this study that the external walls will be either


Figure 5.11


Figure 5.12
white with \(70 \%\) reflection or in brick colour (yellow) with \(25 \%\) reflection. The results are presented for both reflection factors.
5.8.4 Internal Wall Colour

People's colour preferences for interiors are highly idiosyncratic and in any case the presence of furniture inside a room changes all asumptions and results. It was therefore decided :

1- To neglect the internal reflected component and consider the colour of the room as black.

2- Instead of calculating the daylight factor near the corners and rear walls of the room it was decided to choose the centre of the room as the reference point for recommended lighting levels, resulting from the sky component and the external reflected component only. Obviously painting the room would add the inter-reflected component which would increase the lighting levels, especially in the parts of the room with low lighting levels. This approach is supported by BSCP 3 and British IES Code 1968 section 14.2 according to which 'It is not intended that the fenestration should be designed to give these factors (Daylight Factor) over the whole room area. The daylight factor recommendations can be satisfied over a greater portion of the working space in the room'.

\section*{5.8 .5 \\ Windows and Reference Point Positions}

The study is concernd with windows positioned at a sill height of 0.75 m which in general is equal to the working plane in the room and the window is considered as sharing the window-wall centre line.

In 5.8.4 it was stated that the centre of the room was considered as the reference point and the necessary computation was done to find the daylight level at this point. During the optimisation analysis \{section 7.3.1.23, it was found that the window types selected as being Pareto-optimal, were independant of the real distance from the window-wall to the room centre. On this basis it was decided to standardise on a distance of 2.50 m , irrespective of the real distance to the room centre.
5.8.6 Lighting Levels for Domestic Purposes

The British IES code 1968 was found to be a useful tool for good internal lighting recommendations for different room types \{see Table 5.2\}.
5.9 The Computer Program

A computer program [for clear sky conditions in Baghdad] was written to give the sky component and external reflected component, expressed both in Lux and as a modified Daylight Factor FA\%, which excludes the Internal Reflected Component. It is for windows of 0.5 m to 3.0 m in width and 1.0 m to 1.75 m height, at 0.25 m increments in
\begin{tabular}{ll} 
Standard & \begin{tabular}{l} 
Postion of \\
service \\
illuminance
\end{tabular} \\
measurement
\end{tabular}

Homes
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Homes} \\
\hline \multicolumn{4}{|l|}{Living rooms} \\
\hline general & 50 & Working plane & In all home areas, attention should be given to the lighting of room \\
\hline casual reading & 150 & Task & surfaces. Luminaires should be \\
\hline sewing and darning & 300 & . & selected and positioned to give \\
\hline Studies & & & occupants a compromise between \\
\hline desk and prolonged reading & 300 & \(\cdots\) & attractive 'sparkle' and unwanted \\
\hline Bedrooms & & & glare. Dimming is uselul for \\
\hline general & 50 & Floor & changing atmosphere. Additional \\
\hline bedliead & 150 & Bed & mirror lighting required in bed- \\
\hline Kitchens & & & rooms \\
\hline working areas & 300 & Working surfacs & \\
\hline Bathrooms & 100 & Floor & Additional mirror lighting required. Enclosed luminaires should be used \\
\hline & & & \\
\hline Halls and landings & 150 & Floor & High luminances should be scresned \\
\hline Stairs & 100 & Treads & from view when ascending or descending stairs \\
\hline Workshops & 300 & Bench & \\
\hline Garages & 50 & Floor & \\
\hline
\end{tabular}

Homes (old people's) Illuminances must be increased 50-100 per cent abova recommendations for Homes. Particular attention must be paid to avoiding glare and to revealing steps and obstructions. Two-way switches should be installed for through-ways. stairs. atc

> Figure 5.2a
\begin{tabular}{lcll}
\hline Ceilings & 0.8 & White emulsion paint on plain plaster surface \\
& .0 .7 & White emulsion paint on acoustic tile \\
& 0.6 & White emulsion paint on no-fines concrete \\
& 0.5 & White emulsion paint on wood-wool slab \\
\hline Walls & 0.8 & White emulsion paint on plain plaster surface; white glazed tiles \\
& 0.4 & White asbestos cement sheet; concrete, light grey; Portland cement, smooth \\
& 0.3 & Bricks, fletton \\
& 0.25 & Concrete, light grey; Portland cement, rough (as board marked) \\
& Timber panelling: light oak, mahogany, gaboon \\
& 0.2 & Timber panelling: teak, afromosia, medium oak \\
& 0.15 & Brick, blue engineering \\
\hline & 0.3 \\
\hline Floors & 0.35 & Timber: birch, beech, maple \\
& 0.25 & Timber: oak \\
& 0.2 & Timber: iroko, kerning \\
0.1 & Quarry tiles: red, heather brown \\
\hline
\end{tabular}

Figure 5.2b Approximate reflectances of typical building finishes
An excerpt from the IES code 1968
height and width, for sixteen house orientations and any interhouse distances for two house types and for two types of external wall colour.

The program was built on the formulae described in (5.6.) and(5.7) derived from the CIE standard formula for ciear sky conditions, \{see Appendix No. 1 for computer listing \(\}\). The program produces results in tabural form \{see Table 5.33 in such a way that designers can make comparisons between windows and discover the effects of window shape, of window width and height, window area and of obstructions.
5.9.1 Tables

It will be seen from Table 5.3 that each Table presents two or more window orientations for one type of obstruction height, stated in the first two lines of the title of the Table. Each Table covers four sets of results representing four interhouse distances. Within each set are results for two types of external wall reflection and the results are expressed in Lux and \(F A \%\), (FA\% = Sky Component+External Reflected Component).
5.10 Results and Recommendations

The results are presented in Tables according to obstruction height and width and the location and level of the room in the building.

\section*{IHTER-HOUSE DIST. \(=4 . M\)}
INTER-HOUSE DIST.E 3.M
SKY +EXTERNAL REFLECTIOH

岂

 | \(\dot{\sim}\)

 INTER-HOUSE DIST.E \(2 . M\)
SKY+EXTERNAL FEFLECTION










Under each of the above titles a set of five Tables follow representing all the 16 window orientations It was decided that, instead of presenting the results, according to room type and function, merely as a list of windows which satisfy the standard daylight levels recommended in the Codes and Standards, and thus prevent the user from exploring the degree of inadequancy of other windows, the designer ought to be provided with Tables giving daylight levels found by each of the 44 windows, accompanied by a list of IES recommended lighting levels for each type of room \{see Table 5.3\}. Thus the designer can choose a window or a combination of windows to provide an adequate lighting level and choose from the same Table for different types of room. The sets of tables are attached in Appendix No. 4.
5.11 Future Work

Experimental work has to continue for the following reasons.

1 - To verify the formulae used for the external reflected components and produce suitable corrections to fit Baghdad sky condition.

2 - If these corrections to the external reflected component cause a difference greater than \(5 \%\) from the results found in this study a correction factor will have to be introdueed.
```

3 - More work has to be carried out, using the same
procedures, to cover most of the building shapes found in
practice.
4 - Finally to establish a generalized technique in which
allows any shape to be represented and thus allows the
grouping of recommendations in a limited number of sets,
each representing a common building shape.

```

\section*{CHAPTER 6}

CHAPTER-6-
NATURAL UENTILATION
6.1 The Need For Ventilation

Natural ventilation in general is needed to expel polluted air from a building and replace it with fresh air. In warm conditions, ventilation is required not only for air changes: it is very important for body cooling in facilitating sweat evaporation and for convective cooling when air temperature ( \(T a\) ) is below skin temperature (Tsk). It is normal in hot countries for people to provide their rooms with fans to increase air movement inside their house, and, in addition, they sometimes rely on artificial aids to cool the space.

As the aim is to encourage people to rely as far as possible on clean and natural energy; this study aims to provide those who wish to depend mainly on clean and natural energy with some of the information they require. The study however is not as broad as the author initially intended, since it was found impossible to handle all the variables with equal rigour within the confines of a Doctoral dissertation. The work will be continued at the Iraqi Building Research Centre. Therefore the ventilation component of the study should be considered as the first stage of an investigation which forms part of window design optimisation strategy. Since the object has been to
develop a window optimisation method suitable for further development in lraq it has been necessary to generate as much comprehansive data as possible and, in other areas, to generate sample data only, suitable to test the overall method but capable of being enlarged in the future. It was decided that two complete data sets - on sunlight and daylight - and one sample set - on ventilation - adequately demonstrate the methodology for these variables. In yet other areas no data has been generated, but, since the method is capable of handling up to nine variables, further complete data sets can be added in the future.

Windows and Ventilation

Although the rate of wind flow increases in proportion to the increase of the size of openings, two rooms with the same opening area can have different ventilation rates. In fact this occurs when the same area is divided into more than one window and situated in different locations, levels or orientations.

Window dimension, proportion and location play not only a major part in the rate of air change, but also in the air flow pattern, which has significant effect on thermal comfort \{see Figure 6.1 to Figure 6.8\}. These Figures are from experimental work carried out by Robert F. White [Ref.159]. They give a clear illustration on how window position and direction affect air flow patterns and distribution and these are useful visualisations which


Figure 6.1


Figure 6.2

Air flow patterns for various windows and combinations.


Figure 6.3


Figure 6.4

Air flow patterns for various windows and combinations.


Figure 6.5


Figure 6.6

Air flow patterns for various windows and combinations.


Figure 6.7


Figure 6.8

Air flow patterns for various windows and combinations.
represent numerical values arrived at theoretically or experimentally.
6.2.1 The Study of Windows for Natural Ventilation

Allowing for the importance of window position, size, orientation and partitioning of wind distribution inside buildings; an adequate study should comprise the following steps:

A- study the wind flow direction within low rise residential areas, with houses surrounded by gardens with large trees, in relation to the wind directions recorded by the local meteorological station.

B- Study the effect of different window sizes located on two adjacent walls of a room on the air flow pattern at working level; in order to find sets of window combinations for good air flow distribution.

C- Study the effect of window positioning and divisions on one and two walls on the uniformity of air flow distribution.

D- Study air flow distribution in relation to window and door sizes and positions in rooms with one exposed wall.

\subsection*{6.2.2 The Present Stage}

Since ventilation studies were to be limited to a small sample, it was decided to investigate the most useful and reliable methods for predicting air flow patterns, both as a base for future detailed studies in lraq and as a means
of generating the limited data necessary for optimisation on three variables.
6.3

Wind Direction

As has been mentioned earlier in paragraphs 2.2.4 and 2.3.4, the prevailing wind in the south and the middle of Iraq is mainly north-west, while in the north it is either north or west. Thus north-west wind was chosen to represent the prevailing wind for the ventilation study.
6.4 Wind Speed

Referring to the analysis of the climate of Iraq, the lowest mean surface wind speed in Baghdad is \(2.5 \mathrm{~m} / \mathrm{s}\) and the highest is \(4.5 \mathrm{~m} / \mathrm{s}\) which usually occurs in July. The meteorological records show that the highest wind speed in July occurs between 12.00 and 15.00 at a time when the air temperature is around 43 C and people usually close their windows and rely on mechanical devices for cooling the inner spaces, since opening windows at these temperatures would increase the thermal stress both on the house and on the body. At night the average velocity is about \(3 \mathrm{~m} / \mathrm{s}\). In the periods when wind is feasible for cooling both the structure and the people (spring and autumn) the wind speed is quite low averaging \(3 \mathrm{~m} / \mathrm{s}\) \{see Table 2.1\}.

In the north of Iraq the highest day/night mean surface wind speed is \(2.8 \mathrm{~m} / \mathrm{s}\) (in June) the lowest is \(1.6 \mathrm{~m} / \mathrm{s}\) (in

November and December), and the average in spring and autumn is 2.1m/s \{see Table 2.10\}.

In the south of Iraq the highest day/night surface wind speed is \(4.1 \mathrm{~m} / \mathrm{s}\) in June and the lowest is \(2.5 \mathrm{~m} / \mathrm{s}\) in October, November and December. The average surface wind speed in spring and autumn is \(3 \mathrm{~m} / \mathrm{s}\) \{see Table 2.11\}. The mean of the average day/night surface wind speed in spring and autumn for the three regions in Iraq is \(2.7 \mathrm{~m} / \mathrm{s}\) and this was chosen as a design value.
6.5 Auailable Methods

The complexity of predicting wind direction and speed around and inside the building, as well as the changes in inside/outside pressure differences, which is always affected by a range of external and internal factors, make it necessary to investigate alternative methods to understand their problems and capabilities.

The methods available are:
A- Wind tunnel experimental methods.
B- Computer simulation methods based on theoretical aerodynamic models.
6.5.1 Wind Tunnel Experimental Methods

These methods have been widely used in architectural aerodynamics to find the behaviour of the wind around and inside buildings on the assumption that air temperature inside and outside is uniform. All the wind tunnel research
in architectural aerodynamics has been carried out in low speed wind tunnels, and in this type of tunnel one cannot achieve a realistic Reynolds number due to the limitation on wind speed. Moreover many low speed wind tunnels have not been designed to simulate wind velocity profiles, nor temperature gradients; this makes it impossible to simulate the effect of temperature differences caused by surrounding gardens, heated external walls and internal space temperature gradients. Thus even with the best low speed wind tunnels there is substantial error.
6.5.1.1 The Model Law (Reynolds Law)

Reynolds Law is that used when the natural fluid flow studied in connection with actual bodies has to be studied with models of reduced scale in wind tunnel. Provided the velocity is lower than the velocity of sound, the Reynolds number can be relied upon for model studies.

The Reynolds number is:
\(\operatorname{Re}=\left(V_{u} * d\right) / v\)
Where Vu is the undisturbed velocitys o is a reference length \(v\) is the kinematic viscosity.

According to the above equation, if a building is to be studied in a wind tunnel, and represented by a \(1 / 50\) scale model, the wind velocity has to be 50 times the natural velocity if the viscosity is to remain the same; (i.e. a natural wind of \(4 \mathrm{~m} / \mathrm{s}\) has to be substituted by a wind of \(200 \mathrm{~m} / \mathrm{s}\) in the wind tunnel to achieve the same Reynolds number).

The Reynolds number was introduced as the principle of similarity in representing the full scale body by a model scale in the presence of boundary layer which is caused by the viscosity of the fluid and the shearing stress between the body and the fluid in the case when the fluid is in the form of laminar flow.

The fluid flow round cylinders and spheres may change its character completely if the Reynolds number is altered due to the fact that the point of separation may move some distance over the curved surface and the place of separation will depend on the condition of the boundary layer on the body. Therefore a model law has to be applied to achieve similarity in results.

Nevertheless in the case of buildings, with walls forming bluff bodies with sharp edges, even if the air blows in a state of laminar flow, the flow will change to turbulent flow because of the type of separation taking place due to the presence of the sharp edges \{see Figures 6.9, 6.10 and 6.113.

In this case when separation occurs and vorteces form re-attachement is unpredictable and therefore the Reynolds number (scale factor) will lose its importance. Moreover, the wind flow around a building is naturally turbulent, so that in dealing with architectural surfaces in wind tunnel testing the Reynolds number can be ignored as its effect will be small on the overall result.


Figure 6.9


Figure 6.10
(After Ref.159)


Figure 6.11
(A.Mustafa)

Wind flow around bluff bodies
6.5.1.2 Wind Velocity Profiles

The difference between air speed in the free atmosphere and flow near the ground is due to the friction and roughness of the ground and its topography (natural and artificial). The velocity profile is a function of height and roughness \{see Figure 6.12\}. Simulation of the velocity profile in a wind tunnel is necessary when the wind velocity is greater than \(10 \mathrm{~m} / \mathrm{s}\), which is the case for load impact studies on building structures.

For the use of natural ventilation for cooling purposes, wind velocity is less than \(10 \mathrm{~m} / \mathrm{s}\), accordingly the velocity gradient is weak and may be ignored (Ref.42). The velocity gradient is also necessary for tall buildings while for houses up to a height 7.5 m , with which this study is concerned, the wind velocity profile simulation in the wind tunnel can usually be ignored.
6.5.1.3 The Reliablity of Wind Tunnel Studies for Ventilation

Although the temperature gradient around the model and the temperature inside the model spaces cannot be controlled in low speed wind tunnels, it has been found that wind tunnels can provide designers with a more or less a clear idea concerning the general air movement around and inside the building and can help in the prediction of what one can be

done to increase air velocity or to improve distribution inside rooms for better ventilation.

Accurate prediction on how the natural wind behaves inside the building cannot be achieved, even if the wind tunnel is capable of simulating the thermal gradient, the internal space temperature and the velocity gradient. This is realized when one examines wind behaviour in reality and the changes in wind direction and velocity which occur all the time \{see Table 2.1A and Table 2.1B\}. Therefore wind tunnel studies are limited to giving general predictions of the effects of shape, height, layout and window opening patterns on internal velocity patterns rather than accurate velocity data.

\subsection*{6.5.2 Computer Simulation Methods}

From the modest knowledge the author had on types of computer programs dealing with wind behaviour in relation to buildings, it was believed that they all dealt with wind flow around buildings.

As mentioned before the ventilation part of the study has been mainly carried out to prepare a sample set of data on wind flow behaviour from the same 44 types of windows used for the direct sunlight control and the daylight studies. Accordingly, with this sample data, it is not possible to make comprehensive recommendations on dimensions, sizes and locations of windows for better wind flow for body cooling purposes. It was therefore decided to spend no further
time searching for and evaluating computer simulations, especially after it was found that the thermal simulation available in the Department of Architecture and Building SciPnce, (ESP) [Ref.40], was not designed to handle data for recommending window shapes, sizes and positions for improved ventilation. At this stage the author decided to use an experimental model test in the wind tunnel, for 44 different types of windows on the model house. The experiment was performed for one of the ground floor rooms of the house, which was surrounded by five houses, and the measurements were made by using hot wire probe techniques. Details are reported in section 6.6.2.

The author is intending to undertake further ventilation studies in Baghdad and he has contacted companies manufacturing aerodynamic measuring equipment in order to discover more about the capability of their apparatus so that he can make well-founded recommendations to the Iraqi Building Research Centre, since it become clear that, to fulfil the demands of this experiment, very expensive wind tunnel and measuring equipment is required.

During the search for a suitable tool for future research work the author discovered a powerful computer program developed by Professor Spalding called PHOENICS; [Ref.177], which is avallable in the Department of Thermodynamics and Mechanics of Fluids in the University of Strathelyde, Glasgow. Though at this point in the author's research this peogram it could not yet be run in that Department since many problems remained to be resolved, it was found to possess real potential in solving probems of internal alr
movement that it has been considered worthwhile to describe it here, so that its use might form part of a future research programe. Whilst finding out more about this program the author was inuited by the holding Department to work on the package and although he was impressed with its capabilities, as indicated by the manual, he found that considerable development remained to be carried out. When it is, the program will have a promising future and indeed might be the tool for the work on which he has embarked experimentally.

\subsection*{6.5.2.1 PHOENICS Capabilities}

The package can perform the following:
A-It can represent processes involving the flow of single or two phase fluids, whether steady or unsteady, in one, two or three dimensional space.

B-PHOENICS does this by soluing equations governing the distribution through space and time of pressure, and of three velocity components \(x, y, z\) for each phase.

C-It also computes the temperature distributions of the two fluids, and of an optional third fluid by way of their enthalpies.

D-It can represent the composition of the fluid mixture at any location by way of two volume fractions ffor the two distinct phases) and of four concentrations, and it solves equations for all these variables, when required to do so.

E-It can represent the turbulence characteristics of one of the fluids by way of its local turbulence-energy dissipation, for beth of which it solves the releuant balance equations.

F-It can also be called upon to solve additional equations of the same general type, for example those for electric potential in a conducting medium, or for particle size. It is for the user to determine which variables he wishes to solve and each equation contains the terms below, which can be used or rejected by typing in the SOLUAR array the word 'TRUE' or 'FALSE' respectively.

The terms are:
a- Time dependence
b- Mass transport ( convection )
c- Laminar or turbulent diffusion, conduction or viscous action (as appropiate)
d-Sources and sinks.
e- Density and its dependence on pressure and temperature
f- Specific heat capacity.
g- Diffusion coefficients
h-Viscosity
i- Chemical Kinetic data
\(j\) - Absorption and scattering coefficients for radiation.

PHOENICS can deal with fluids which interact with the solid walls which enclose them and with the obstacles placed within the flow domain, and it does so if the friction factors and heat transfer coefficients are supplied.

The package can handle any type of buiding geometry and one can construct walls, windows, insect screens, overhangs, lounres or sun-breakers, by choosing the proper porosity, which varies between one for solid walls and zero for openings.

The real flow processes are three dimensional and unsteady, so in PHOENICS one can state the direction of wind and determine if it is steady or unsteady.

For heat transfer purposes PHOENICS can handle two phases if present simultaneously, such as hot air and cold air, steam bubbles rising through water or carbon particles burning in air.

Moreover, the manual states a number of other capabilities PHOENICS can handle which are not in the area of this study. Therefore if the claims of the manual are borne out in practice, PHOENICS is the ideal tool to carry out future work on window dimensions for ventilation and wind distribution.

\subsection*{6.5.2.2 The Output}

As stated in the manual; PHOENICS has a built in output capability, which allows printing, with a frequency sin terms of 'sweeps as well as of 'time steps') and in which the user can select from:

A- Values of all variables at selected 'monitoring' locations in the grid

B-Values of all grid point values of whichever variables the user determines.

C- Values of residuals (ie. remaining errors) in the finite domain equations for any variable.

D-Line printer plot of contours representing the distributions of fluid variables, or residuals.

E- Although these output facilities are sufficient for many purposes, users may have special needs which are not included. So PHOENICS allows users to provide their own subroutines and attach them in a manner described in the manual.

F- Furthermore, because the graphical representation of three dimensional flows makes them easier to understand, provisions have been made to connect the GRAFFIC program with PHOENICS. This facility permits the PHOENICS output to be represented by way of a perspective view of stream lines, vector plots and contour diagrams.

\subsection*{6.5.2.3 Pictures and Jllustrations Using PHOENICS}

The PHOENICS manual presents many graphic demonstrations covering most of the capabilities of the package. In this paragraph the author is going to demonstrate the one related to buildings.

1- As the study of wind flow inside buildings is a combination of the wind flow around buildings, the temperature gradient outside the building, the wall temperature and the heat created inside the building they
can all be represented by smoke movement and temperaturetime histery as seen in fire spread \{see Figure 6.13\} and smoke movement velocity as represented by vectors and streamlines \{see Figures 6.13, 6.14 and 6.15\}. 2- For the study of wind flow around buildings the manual does not give an illustration, but it gives an illustration of the wind flow around a car and a van and demonstrates this with graphic illustrations in vector form or contour lines. In order to add to this chapter some illustrations related directly to buildings, Dr . Simon Fraser and his Ph.D. student Mr. Ahmad Mustafa kindly agreed to provide the author with some of the available results.

They are:.
Figure 6.16 and Figure 6.17 showing the wind pattern and vortex which occured between two buildings in stream line and vector form (vertical section).

Figure 6.18 and Figure 6.19 showing the wind pattern on a single building in stream line and vectors <uertical section).

Figure 6.10 showing the wind pattern around the building and the effect of sharp edges on the creation of vorteces when the wind is perpendicular to the bluff and sharp edge walls.

Figure 6.20 showing the wind pattern around a sharp edge building where the wind is at 45 to the wall. This Figure supports the author's assumption as stated in Chapter 3 on the decision to orientate the houses in the housing estate


Figure 6.13

(a) With screen: Maximum velocity is \(3.96 \mathrm{~m} / \mathrm{s}\)

(b) Hithout Screen: Maximum velocity is \(4.40 \mathrm{~m} / \mathrm{s}\)

SIDE YIE!. OF VELOCITY VECTORS ( \(x=0.8\), normalised)


Ma\%imum velocity is \(5.6 \mathrm{~m} / \mathrm{s}\)

FROBiT YIE!! OF VELDCITY YECTORS ( \(z=0.1\), normalised)
in SC?EE:


Figure 6.14

(a) Velocity vectors at two \(x-2\) planes ( \(y=0.15\) and 0.8 , normalised)

(b) Streamlines starting at (0.5, 0.1, 0.99) and finishing at (0.99, 0.1, 0.99)

THE SC?EE: lil PLACE


Figure 6.15
(After Ref. 177)
(A.Mustafa)

\section*{STREAM LINE AT \(X=.5\)}

Figure 6.16

GRAFFIC: CHAM COPYRIGHT 1991


Figure 6.17
(A. Mustafa)

VECTOR VELO.AT X=. 5

Wind patterns and various building configurations.

(A. Mustafa)

\author{
STREAM LINES AT X=.5
}

Figure 6.18

GRAFFIC: CHAM CDPYRIGHT 1981



Figure 6.19
(A. Mustafa)

\section*{VECTOR NEAR THE SIDE(X=.454)}

Wind patterns and various building configurations.


(A. Mustafa)

Figure 6.20 Wind patterns and various building configurations.
at 45 to the prevailing wind proving that the wind runs off very fast creating two vorteces (negative pressure), which help to increase wind velocity inside the house.
6.6 The Data Preparation
6.6.1 The Wind Tunnel Experiment

\subsection*{6.6.1.1 The Model}

In order to make the experiment represent the actual situation a \(1: 50\) scale wooden model of the house and six of the surrounding houses was made and placed in the wind tunnel in the same orientation as the design estate model suggested in Chapter 3. The visitor's room in the house under study was selected for the experiment. This room has two external walls; one orientated to the west and the other to the south \{see Figure 6.21\}.

As 44 window dimensions were chosen for the study, the room in the model was designed with no external walls csee Figure 6.223.

44 wall panels were prepared, each one representing a wall with one of the 44 windows. The window openings were cut from each wall panel to simulate one of these windows isee Figure 6.23\}. Two sets of 44 panels were prepared for the two room walls. The walls were fixed in position by using two sided Sellotape stuck to the external edge of the slab of the room.


Figure 6.21 Scale model of a group of houses in wind tunnel.


Figure 6.22 Scale model of a group of houses in wind tunnel showing visitors-room with no
external walls.


Figure 6.23 Measuring apparatus and Sets of window walls.

\subsection*{6.6.2.2 The Testing Equipment}

\begin{abstract}
As the scale of the model is small and any measuring cell has to be as tiny as possible, so that its volume cannot be considered as an obstruction, it was found that the hot wire anemometre was the ideal tool. For such a study three types of hot wire anemometer are recommended; Triple-sensor probe, Dual-sensor probe and Single-sensor probe (see Figure 6.243. All three probes are essential in the study of wind speed and wind direction measurements, but in this study the available probes were the single-sensor probe and these probes were placed in the direction perpendicular to the wind flow.

The air speed was measured by a DISA anemometry system which contains the DISA 55D31 Digital Voltmeter, the DISA55M14 Temperature Compensator (Probe Selector), the 55M12 CTA Symmetrical Bridge and the DISA 55M01 Main Unit and Prosser Air Velocity Metere AUM501TC Ssee Figure 6.233. The probes used in this experiment were DISA product 55p11.
\end{abstract}

\subsection*{6.6.2.3 The Experiment}

The experiment was carried out in the low speed wind tunnel of the Department of Architecture and Building Science at the University of Strathelyde.

The working section of the wind tunnel is 1.0 m . in width and 2.0 m . length \(\{\) see Figure 6.25\(\}\).

Triple-Sensor


Dual-Sensor


Figure 6.24

Variety of Probes for Velocity

Measurements.


Single-Sensor

\section*{Wind Tunnel Layout}


The wind tunnel,
Department of Architecture \& Bullding Sclence , University of.Strathclyde

The model was designed to be 100 mm above the working level and the hot wire probes were placed inside the room at 16 mm from the room floor to represent a working level of 80 cm . As the probe's height is \(35 \mathrm{~mm} . ;\) holes were drilled in the model floor and filled with rubber tubes to hold the probes and the probe supports and to assist in adjusting the probe height for measurement at different working levels, as well as to stop any air penetration through the floor.

As stated the experiment was carried out in the visitor's room, and the other rooms were merely blocked off in order to eliminate any unwanted air flow or any deviation in direction. Three probes were fixed in the model; one on the west side walk-way, the second in the middle of the visitor's room and the third in the front walk-way ssee Figure 6.263.

Referring to paragraph 6.5.1.1, which shows that the Reynolds number is not very significant, the wind speed used during the experiment was \(2.7 \mathrm{~m} / \mathrm{s}\), which represented the average wind speed during spring and autumn.

In order to find the type of window combinations which offer good air distribution inside the room, the window dimension ( \(1 \mathrm{~m} \times 1 \mathrm{~m}\) ) in the south side wall was kept unchanged and the windows on the west side of the room were changed 44 times; for each of these the wind speeds outside the room and at the centre of the room were measured.


Figure 6.26 Position of probes

For a fully combinatorial experiment of this one room \(44 X\) 44 measurements would have been necessary for the whole range of windows on both walls. In fact limitation of time allowed only one set of 44 measurements to be made i.e. the full range of windows on one wall examined with a single, fixed-size, window on the other. If dual sensor probes had been avaialable one could have measured the speed and direction simultaneously.

The Results

The recorded measurements were rectified by using the corresponding probe calibration chart.

As the study is concerned with the highest wind speed that can be provided at the centre of the room by a set of two windows, located in different walls, the best combination is the combination which can provide the highest ratio between the wind outside the room to the wind at the centre point of the room. Accordingly, the wind speed ratio was found and the results were ploted in two graphs. The first is for wind speed ratio changes with respect to window heights \{see Figure 6.27\}, and the second for wind speed ratio changes with respect to window widths \(\{\) see Figure 6.283.

The two graphs showed that wind speed increased sharply for all window heights between 0.5 m to 1.0 m width and this can be clearly seen in Figure 6.28. Looking at Figure 6.27 one can see that the wind speed increases as window height

increases for the narrower widths but when the window width is 2.25 m increase in height increases wind speed only slightly whilst with a window width of 2.5 m there is no change in wind speed as the window height increases. It was also found that a window of 2.75 m width \(\times 1.0 \mathrm{~m}\) height and a window of 3.0 m width \(x 1.0 \mathrm{~m}\) height provide the room with a wind speed lower than that provided by a window of \(2.25 m\) width \(x 1.0 \mathrm{~m}\) height and a window of 2.5 m width \(\times 1.0 \mathrm{~m}\) height. This changed when the height became \(1.25 m\) or more. No firm recommendation can be drawn on the basis of these results because of the limited size of the experiment. But the results do enable realistic data to be used for the three-criteria Pareto optimisation technique described in Chapter 7.

\section*{CHAPTER 7}

OPTIMIZATION AND RECOMMENDATIONS
7.1 The Designer and the Recommendations

In window design the designer needs to know what are the best and the worst situations and what is the performance given by windows lying between these extremes.

In practice architects are faced with a large number of criteria, preferences and constraints and therefore it is more convenient for them to to be provided with information on the consequences of alternative window choices and on the energy penalties resulting from rejecting the most energy-efficient window in favour of another to fulfil psychological requirements or to harmonise with the facade. Designers constantly need information on all window requirements and it is unacceptable for the information to be limited when they are asked to produce a beautiful, efficient and integrated design. Therefore any design tool has to posess a degree of flexibility enabling the designer to achieve a balance between function, aesthetic considerations, cost and energy conservation. Also designers prefer any such guide to give clear design orientations without involving too many calculations. Thus, as the aim of this research is, ultimately, to prepare a useful tool for designers, the author belleves that the recommendations should be organized as follows:

A- They must deal with window sizes and proportions lying within the domain of common sizes in practice. B- They must display the best as well as the worst window sizes and proportions.

C- They must show the degree to which each of other commonly available windows satisfy a range of criteria so that the designer has the choice of balancing the degrees of performance and satisfaction.
7.2 The Designer's Requirements

As mentioned in chapter one, designers in Iraq have expressed a need for data on window sizes, proportions and positions for:

A - Direct sunlight control.
B - Natural lighting.
C - Ventilation and air distribution for cooling purposes.
D - Optimisation between any pair of these variables and between the set of three variables.
7.3 Optimization Technique
7.3.1 Optimum Window Sizes for a Single Criterion

In the case of a single criterion, such as direct sunlight control, daylight or wind distribution, for each eriterion there is an appropriate set of individual values, and a stated performance objective, which are used to find the
optimum window or group of windows for meeting that particular objective.

In order to find the requirements stated in \(A, B\) and \(C\) of 7.2 the following techniques are used .
7.3.1.1 Optimization and Recommendation Techniques for Window Sizes for Direct Sunlight Control

For this single eriterion the recommendations are based on a specified weighting between summer and winter performance. The weighting as diescribed in chapters two and four specifies that the window is considered efficient if the amount of winter sun patches allowed to enter the room is at least twice that allowed to enter in summer. This is referred to as the yearly efficiency. Therefore a range of optimum windows will be considered efficient if they prove to have a yearly efficiency value equal to or greater than one. This value, as explained in chapter two, was based on the number of cold months compared with the number of moderate and hot months, during which direct sunlight is a disaduantage.

On some orientations no direct sunlight appears in winter and for such orientations the yearly efficiency weighting cannot be applied. In these cases it is difficult to specify a range of optimum windows, and the only windows that can be considered optimum are those which allow no sun to enter. However if none of the windows cuts out summer direct sunlight completely, it is considered there is no
```

optimum window and a new measure has to be introduced to
help the designer to select a suitable window, or a
number of smaller windows have to be substituted instead of
one large window in order to obtain better direct summer
sunlight control. This measure is called the summer
efficiency value which is defined as the sum of hourly
direct sunlight patches <excluding the first hour after
sunrise and the last hour before sunset) per unit window
area. Thus recommended windows for controlling summer
direct sunlight are those which have the capability of
reducing direct sunlight, the optimum being the one with
the least summer efficiency.
Although the best window for summer is that with zero
summer efficiency - which rarely occurs - there is no
definable range for other windows' summer efficiency values
and the only recommendation that can be made is that on any
orientation the best window is that with the lowest summer
efficiency value <ie the one with the lowest ratio of
summer sunpatch areas per unit window area). The following
data are provided to enable the designer to make a rational
selection.
A- Graphs showing yearly efficiency (Appendix 2) for 77
windows.
B- As explained in Chapter four (4.7.2) for cases where at
least one yearly efficiency curve falls entirely below 1.0,
graphs of summer efficiency for 77 windows <Appendix 2 and
sample in Figure 7.1).
C- Tables representing the window efficiency in rank order
{see Appendix 3 and sample in Table 7.1}.

```
LOG10

(





م:








\footnotetext{




}

D- Tables representing windows with the top \(20 \%\) of window efficiency values taken from the complete rank ordered values for all the windows \(\{s e e\) Appendix 3 and sample in Table 7.23. The designer has a part to play in the selection of windows if direct sunlight control is the only factor of concern.

Appendix 2 contains the yearly efficiency and the summer efficiency graphs for approximately 2000 design cases for each of 77 windows.

Appendix 3 contains tables representing window efficiency rank order for direct sunlight control.

Appendix 3 also contains tables representing windows with the top \(20 \%\) of window efficiency values for all windows

\subsection*{7.3.1.2 \\ Recommendations on Windows for Daylighting}

As required daylight levels depend on the function of the room, and in order to make the study capable of being used as widely as possible and cover as many cases as possible, the designer is provided with tables giving lighting levels formed by each of the 44 windows for each room, accompanied by a table of standard lighting levels required for each type of room in the house \(\{\) see Appendix 4\(\}\).

By referring to Table 7-3, the designer can select one window or a number of different windows to achieve the required lighting level for a room.

The lighting level achieved by each of the 44 windows is represented in the form of tables which give for each

        0
0
0
A
        \(n\)
N
d

            1
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
                1111111111
\(\pm\)
\(r\)
\(n!\)
\(\sim\)
\(\sim\)
111
\(e!\)
21
\(\infty\)
\(\infty\)

0

宸

 SKY＋EXTERNAL这肴



 j


 INTER－HOUSE DIST．\(=\)
SKY + EXTERNAL REFLEC
 SKY PEXTERNAL
25YWALLREFL．




茑
 SKY＋EXTERNAL



combination of house orientationg external obstruetion height and width, inter-house distance and external wall reflection the level in Lux and as the FA factor \&FA is equal to Sky Component plus External Reflected Component). The results are valid for levels at a distance of 2.5 m from the external edge of the fenestration measured perpendicularly to the window on a working height of 0.8 m . Due to the fact that decoration in the house cannot be controlled once the house is in use, the Internal Reflected Component has been excluded from the computation.

\subsection*{7.3.1.3 Natural Ventilation as a Single Criterion} This has not been explained in detail, only on a small sample of cases used in later triple-criterion optimisation.
7.3.2

Optimum Window Sizes for More Than One Criterion

The designer wishes to make a house as comfortable as possible by taking into account all relevant criterias so that the design will have the attribute of integrity. Thus, for instance, cost reduction must not affect the occupants' level of comfort. When the designer has two or more objectives a solution which satisfies all of them must be found. This is not easy, or even possible, to achieve when one bears in mind the vast number of combinations to consider. According to the aim of this research, which is to provide designers with as much useful and direct information as possible, one useful set of results relates
to performance on single criteria, such as sunlight control or daylight admission. But the study is also concerned with providing the user with recommendations on windows which can satisfy more than one criterion allowing the designer the opportunity to select from the wide range without having to examine solutions that are inefficient. Thus the requirement is for a technique which identifies the set of solutions, from the individual criterion sets of solutions, such that, for example, improved performance in direct sunlight control is always obtained with maximum daylight performance. Such a set allows the designer to select the solution which is based on the degree of relative importance of the eriteria .. Such a method is found in the Pareto optimization technique.

\subsection*{7.3.2.1 The Pareto Optimization Method}

As stated by Gero and Balachandran 1985 [Ref. 62] Pareto optimization is a methodology for solving multicriteria decision problems. The problems deal with two or more objectives. Pareto is a major concept in multiple objective decision-making and is defined formally as follows:
"A feasible solution to a multicriteria optimization problem is Pareto optimal (or non-inferior) if there exists no other feasible solution that will yield an improvement in one criterion without causing a decrease in at least one other criterion".

Pareto Optimality has been defined mathematically by Balachandran and Gero [Ref. 26 ] as:

Letting \(\operatorname{Max}[Z 1(x), Z 2(x) \ldots . . .2 p(x)]\) represents \(x\)
the multicriteria problem subject to
\(g K(x)<=G K\) for \(k=1,2, \ldots \ldots, m\) Where \(x\) is an \(N\)-component vector consisting of design variables gk(x), \(k=1,2, \ldots . . M\) are \(M\) constraints and \(Z 1(x), 22(x), \ldots Z p(x)\) are \(p\) objective functions.

A feasible solution \(x^{*}\) is a Pareto optimal solution to the problem if no other feasible solution \(x\) exists for which \(Z i(x) \geqslant Z i(x *)\) for some \(i=1,2,,,, p\) and \(Z j(x) \geqslant Z j(x *)\) for all j not \(=\mathbf{i}\).

The Computer Application Research Unit in the Department of Architectural Science at the University of Sydney found that this technique is quite applicable to architectural problems, and they have put much effort in to testing this optimization technique and applying it to a range of architectural problems. It has designed computer programs for handing a large number of solutions and dealing with many eriteria. The author found these programs were suitable for his needs for recommendations on window optimization. They met his aim of to providing designers with a set of window solutions which has the capability of fulfilling all the objectives that contribute to optimization, without causing any one criterion to be dominant over another.

\subsection*{7.3.2.2 Computer Programs Using Pareto}

Computer programs in several languages have been developed by the Department of Architectural Science, University of Sydney - FORTRAN, PASCAL, PROLOG, LIPS [Ref. 62].

For this work the author used a program designed by Stephen Taylor from that Department [Ref. 199].

This package can handle 200 solutions and has the capability of carrying out the optimization on a maximum of nine eriteria.

Although the package can handle two to nine criteria in the representation of optimal solutions it also has the ability to draw graphs for each pair of criteria and to list the pairs of results ranked according to the solution number rather than according to the solution order \(\{\) see Table 7-4a\}. The package, even when representing the results ranked according to solution number, can list the results but cannot store the results in files. The database also has to be typed in as the package has no facility to read from a data file. However, since the author wanted to use this package to cover the optimization of more than 30,000 solutions for each of the two objectives (daylight and direct sunlight control) and as it was impossible for him to type in all that data without the risk of error; he decided to make some modifications to the package and provide it with:

A- The facility of reading data files.
\begin{tabular}{|c|c|c|}
\hline Window & Sunlight & Daylight \\
\hline No. & Y efficiency & lux \\
\hline 1. & 249.60 & 73.00. \\
\hline 5. & 89.860 & 108.00 \\
\hline 9. & 54.260 & 143.00 \\
\hline 13. & 42.390 & 176.00 \\
\hline 17. & 35.140 & 208.00 \\
\hline 21. & 30.420 & 239.00 \\
\hline 25. & 27.730 & 263.00 \\
\hline 29. & 25.990 & 295.00 \\
\hline 33. & 24.780 & 321.00 \\
\hline 34. & 1.6 .080 & 384.00 \\
\hline 35. & 13.010 & 446.00 \\
\hline 37. & 23.880 & 345.00 \\
\hline 38. & 15.580 & 413.00 \\
\hline 39. & 12.620 & 480.00 \\
\hline 40. & 10.840 & 544.00 \\
\hline 41.' & 23.200 & 367.00 \\
\hline 42. & 15.130 & 440.00 \\
\hline 43. & 12.320 & 513.00 \\
\hline 44. & 10.590 & 582.00 \\
\hline
\end{tabular}

Table 7.4a Ranking by solution number
\begin{tabular}{ccc} 
Window & Sunlight & Daylight \\
No. & Y efficiency & \multicolumn{1}{l}{\begin{tabular}{l} 
lux
\end{tabular}} \\
1, & 249.60, & 73.00, \\
5, & 99.36, & 108.00, \\
0, & 54.26, & 143.00, \\
13, & 42.39, & 176.00, \\
17, & 35.14, & 208.00, \\
21, & 30.42, & 239.00, \\
25, & 27.73, & 268.00, \\
29, & 25.99, & 295.00, \\
33, & 24.78, & 321.00, \\
37, & 23.88, & 345.00, \\
41, & 23.20, & 367.00, \\
34, & 16.08, & 384.00, \\
38, & 15.58, & 413.00, \\
42, & 15.18, & 440.00, \\
35, & 13.01, & 446.00, \\
39, & 12.62, & 480.00, \\
43, & 12.32, & 513.00, \\
40, & 10.84, & 544.00, \\
44, & 10.59, & 582.00, \\
& & \\
Table 7.4b Ranking by solution order
\end{tabular}

B- The facility of representing the optimal solutions ranked according to solution order \{see table 7-4b\}.

C- The facility of storing the results in files.
With the help of Harvey Sussock of ABACUS <Department of Architecture and Building Science) and Don Euans of the Computer Advisory Sectiong Strathclyde University, the modifications were made and the package can now be easily operated. Further, since the package had to be transferred from the University of Edinburgh computer to the Strathclyde University VAX computer, due to the closing down of Edinburgh's DECIO, and it was written in FORTRAN IU Extended which is not useable on the VAX, it had to re-written into FORTRAN 77, which was carried out with the help of Don Stearn of ABACUS.

The graphic representation is compressed and hence not clear; sometimes the solutions cannot even be recognized due to the overlap in the printing of the solution numbers \{see Figure 7.2\(\}\), and even in cases when the solution numbers can be read the graph will not help the designer to realize how the non-Pareto optimal values lie under the Pareto optimal solutions. Consequently the designer loses the benefit of seeing the values of the non-Pareto optimal solutions. The author therefore decided not to rely on the graphic system provided by the package but to construct a new computer program which would be able to read the solutions found by the package and draw them in a new form. The new form is listed below.


Figure 7.2 Pareto optimal solutions as printed by original graphic program.
a - All the solutions (Pareto and non-Pareto) were categorized and plotted according to the window heights so that the results could be easily read and would give more information to the designer about the effect of window heights and widths on the performance of the windows with regard to direct sunlight control and daylight provision. \(b\) - All Pareto-optimal solutions were joined together with continuous lines; so that the user can distinguish between the optimal solutions and others \{see Figure 7.3\}. By joining the Pareto-optimal solutions together the graph demonstrates clearly the domination of the Pareto solutions on the non-Pareto solutions \{see Figure 7.3\}. The author decided not to replace the original graphic system within the Taylor package with the above new graphic system. It is intended that this development will be carried out in the future in Iraq jointly with the Computer Application Research Unit, Sydney University.

\subsection*{7.3.2.3 The Selection of Pareto-Optimal Solutions}

In order to let a designer see how this technique finds and selects optimal solutions and to give confidence in the results which this project has produced, the following illustrations demonstrate examples of two criteria and three criteria problems to show how the Pareto optimization package finds Pareto optimal solutions.

Direct. Sunli.ght (S. S. )


7.3.2.3.1 The Two Criteria Problem

Figure 7.4 represents a two criteria problem and the Pareto optimal solutions chosen by the computer program.

The first column in the figure represents the solution number (window number), the second column is the direct sunlight control yearly efficiency and the third column is the amount of natural lighting (in Lux) provided by each window for the conditions stated in chapter five.

The requirement in window selection in this case is to find windows which have the capability of providing the room with as much daylight as possible and the ability to provide the room with as much winter and as little summer sun as possible (i.e.high yearly efficiency).

From the 44 windows, the Pareto program has selected 19 as Pareto optimal solutions. The selection was carried out as follows:

A- There is a search for the solution number having the highest direct sunlight yearly efficiency which also has a high daylighting performance.

B- There is a selection of the solution number with the second highest value of yearly efficiency and a daylight performance higher than that of the first window selected. This process is clarified when one observes the selection of solution 1 (window number 1 ) and solution number 2
(window number 5). Pareto has looked at the highest yearly efficiency and selected that with the highest value

(249.60) and with the coresponding daylight performance (73.00). If two windows have the same yearly efficiency but different daylight performance the program selects that with the higher daylight value. Solution number 2, as is clearly seen (window number 5 ), came second in yearly efficiency and its daylight value is the highest value in the domain between the two yearly efficiency selected solutions. In observing how solution number 11 (window number 41) and solution number 12 (window number 34) were selected, the picture becomes clearer, since here the line linking choice moves upwords for the first time.

Figure 7.5 is another representation of the method. Here the program was instructed to select from the same set used in Figure 7.4, the inefficient windows which provide rooms with as little daylight as possible and have the lowest yearly efficiencies in controlling direct sunlight (i.e.high summer sun and little winter sun). Figure 7.4 lllustrates that the first choice in Figure 7.4 has become the last in Figure 7.5 and most of the windows selected in Figure 7.4 have not appeared. The only ones to appear in common are these lying at the extremites 《ie. the window ranked as number one now appears last and the window ranked last is now listed first).

The two examples give a clear demonstration of the method. The windows that disappear are those which are less qualified than any of the selected windows.

The two sets represented in Figures 7.4 and 7.5 are demonstrated again by using the graphic representation
\begin{tabular}{|c|c|c|c|}
\hline 1. & Efficiency
\[
249.60
\] & 17 & 73.00 \\
\hline 2 & 85.80 & 16 & 86.00 \\
\hline 3 & 5\%\%76 & 15 13 & \(9 \% .00\) \\
\hline 4 & 41.06 & 14 14-3 & 112.00 \\
\hline 5 & 99.86 & \(\xrightarrow{+}\) & 109.00 \\
\hline 6 & 44.45 & & 128.00 \\
\hline 7 * & 30,73 & 13 23 & 1.A8.00 \\
\hline 8 & 9656 & 12 - & 167.00 \\
\hline \(\%\) & 54, 406 & & 143.00 \\
\hline 10 & 30.61 & & 1.69 .00 \\
\hline 1.1. & 93, 50 & 12 & 1.76 .00 \\
\hline 15 * & 19.11 & 10 10, & 90.00 \\
\hline 13 & 42.39 & & 1.76.00 \\
\hline 14 & 25.56 & & 207.00 \\
\hline 15 & 1.9.76 & & \({ }_{2}^{42} 4.00\) \\
\hline 1.6* & 16.37 & \(\xrightarrow{\bullet}\) & 975.00 \\
\hline 1.7 & E3in 14 & \(\xrightarrow{+}\) & co83.00 \\
\hline 18 & 21.67 & - & 249.00 \\
\hline 1.7 & 17.1.83 & & 206.00 \\
\hline 90 & 14.42 & \(8 \xrightarrow{\square}\) & 3\%300 \\
\hline 21 & 30.42 & & 237.00 \\
\hline 22 & 17.1\% & & 285.00 \\
\hline 23 & 1.5n 5 & & 309.00 \\
\hline 号4* & 13.00 & \({ }^{6}\) & 372.00 \\
\hline 25 & 27.73 & C- & c68.00 \\
\hline 26 & 17.73 & & 390.00 \\
\hline 27* & 1. \(4 \times 6\) & 7 & 370.00 \\
\hline 980 & 1.504 & 5 C & 418.00 \\
\hline \(2 \%\) & 25.79 & & 285.00 \\
\hline 30 & 16.77 & & 353.00 \\
\hline 31 & 1.3.53 & & \(40 \% .00\) \\
\hline 3\%. & 11.56 & & 463.00 \\
\hline 33 &  & & 3 m .00 \\
\hline 54 & 16.08 & & 384.00 \\
\hline 35 & 13.01 & & 446.00 \\
\hline 36 & 11.15 & & 505.00 \\
\hline 37 & 23.88 & & \(3 \pi^{4} 5000\) \\
\hline 36 & 15.58 & & 41.3 .00 \\
\hline \(3 \%\) & \(19 \%\) & , & 480.00 \\
\hline 40. & 1.0.8. 9 & 2 & 54.100 \\
\hline 41. & 23n 0 & & 367.00 \\
\hline 42 & 16.18 & & - 4.70 .00 \\
\hline 473 & \(1{ }^{1} 08\) & & \(5 \pm 3000\) \\
\hline 40 & \(10.0 \%\) & 1 1-3 & 58900 \\
\hline
\end{tabular}
method introduced by the author \{see Figures 7.6\}, which gives a better picture on how the windows listed as efficient windows shown in Figure 7.4 dominate all the others which lie under the line joining the Pareto optimal solutions. While in Figure 7.7 the windows listed as extremely inefficient solutions, are dominated by all other solutions which lie over the line joining the solutions found by Pareto as inefficent.

However, although each of the selected windows has its own ability in contolling direct sunlight and providing the room with daylight, the responsibility still remains with the designer to balance out the relative priorities.

By setting out the result in this way, the designer has the choice of how to achieve the desired combination of enviromental conditions.
7.3.2.3.2 Three Criteria Problem

In this optimization example the data prepared is for three objectives, natural ventilation, direct sunlight control and daylighting. The set was handled by the computer package and as shown in Figures 7.8 to 7.11 the package selected the results as follows:

A- There is the optimization between the first two objectives (ventilation and direct sunlight control) and a determination of the Pareto optimal solutions for these two eriteria \{see Figure 7.8\(\}.\)

B-Next there is the optimization between the first and the third objective in the set (ventilation and daylight) and a



Figure 7.7 Low Performance

Graphic Representation of Pareto Optimal and Non-Optimal Solutions.

\section*{\(\stackrel{\rightharpoonup}{0}\)}





莀
determination of the Pareto-optimal solutions for these two criteria \{see Figure 7.9\}.

C- There is then the optimization between the second and the third objectives edirect sunlight control and daylighting) and the determination of the Pareto-optimal solutions for these critera \{see Figure 7.10\(\}.\)

D- Finally the combination of the three sets of Pareto-optimal solutions \(A, B\) and \(C\) are brought together to represent the Pareto-optimal solutions for the three criteria set \{see Figure 7.11\}.

From the process set out above, the Pareto computer package proved to be capable of handling more than two criteria and demonstrated that it will be. a useful tool for the author's future work when ventilation and other data on window performance will be generated.

\subsection*{7.3.2.4 Recommendations on Two Criteria Problems}

It has been shown that the Pareto optimal solutions are the best in the whole set and all of them are recommended to fulfil the requirements for controlling direct sunlight and providing the room with a certain amount of daylight. But it is left to the designer now to select that window which can meet the level of required lighting for a specified space and balance that with the degree of direct sunlight control required. The graphs demonstrating the Pareto optimal solutions give a clear picture for the performance of each window from the objective points of

\section*{7पб!TKEd \\ 

}

\begin{abstract}

 ज
\end{abstract}


88888888888888888888888888588888888888888888



\section*{范}
 ,
view, and because the graph is divided into four sub-graphs according to window height \{see Figure 7.3\(\}\) representing heights of \(1.0 \mathrm{~m}, 1.25 \mathrm{~m}, 1.50 \mathrm{~m}\) and 1.75 m , the designer \(c\) an also take into account the subjective effect of changing window height and window width.

If the designer wishes to achieve a minimum daylight level with as little summer sunlight as possible, this can be obtained by referring to the tables showing the window numbers (Pareto optimal solutions), and their corresponding direct sunlight efficiency <either summer efficiency or yearly) and daylight levels provided by each. The following example indicates how such a decision would be made.

\subsection*{7.3.2.4.1 Example}

If Table \(7-5\) is for a certain orientation and room position and if this room required a lighting level of 510 Lux, the designer can decide either to use a group of five windows of type number \(4 \quad(0.50 \mathrm{~m}\) width \(X 1.75 \mathrm{~m}\) height) which would allow zero summer sun or face the penalty of using one of type number 44 ( 3.0 m width \(\times 1.75 \mathrm{~m}\) height) which would allow summer sun of 13.9 times the window size, which means that the sun patch formed by this window on a summer day is equal to about 73m2. Any other window can be selected which meets the total performance and architectural requirements of the design. For example, if the minimum window width suitable to the design is 1.0 m the

(INTER-HOUSE DISTANCE=


DAYLI

(INTER HDUSE DISTANCE=


M

CIMTER-HOUSE DISTAMCE \(=\)

designer can use three windows of window number 11 <1.0m width \(\times 1.50 \mathrm{~m}\) height).

CONCLUSION
As the Conclusion to this study it is necessary to evaluate the importance of the work, the way the problem was tackled, the practical usefulness of the results, the role of this kind of work in the age of the computer, in which computer simulation models or expert system packages are capable of producing a wide range of results and the directions of future research.

1- The Importance of Optimisation of Window Design

Since the window is a means of communication between the world outside buildings and the occupants and it has great environmental consequences it can work as one of the major factors in determining comfort, the activities inside the building, the level of energy consumption and psychological satisfaction. With this in mind, occupants expect the designer to design this element according to the function and the type of the building, environmental control and the psychological needs. But, due to many the demands made on designers in facing all the problems raised during design, they cannot afford the time to carry out all the calculations and measurements required for the selection of a good window in a specific situation. However, they can manage to find time to select what they need if the information is readily available. Consequently, carrying out any work on such an important element of the building will release pressure on designers and allow them to invest more time on the overall improvement of internal environment of the building, so
that the global goal of giving pleasure as well as economical running cost can be achieved. Therefore this study can be considered as a modest contribution aimed to provide the designer with much wider information base, which for, the time being, not only fills a gap but forms a base for further study. It also can be used on a trial basis to observe the response of designers on the usefulness of this information before this further study is undertaken. It is intended to publish a condensed and practical document based on this study with the aim of immediately starting to obtain this feedback.

2- The Way the Problem Was Tackled

Many years before the author started this study the problem began to occupy his mind through his discussion with a large number of designers in Iraq and his involvement with the activity of the International Association of Housing Science. He realized that, to tackle such a problem one has to be involved from the early stage of the design in order to foresee all the later consequences of window design decisions. Therefore, although the author wanted to provide designers with data on window dimensions, prepared on the basis of calculations, in order to produce results having practical value as well as a sound theoretical base, he had to start the study from consideration of the early design stages before he could decide what type of data to produce. Originally, it was the author's intention to discuss the results of this study with window manufacturers and the people in the building industry
before selecting a method for presenting the results and recommendations. However, since such a task was impossible at this stage, the results have been produced and presented in the hope that, with the future simplification, it will meet the present requirements and with a view to future discussions with window manufacturers and building designers before the: proposed future work, mentioned in chapter 4,5,6 and 7, is carried out.

3- The Practical Usefulness of the Results

The recommendations give groups of windows and have not been restricted to single or very limited solutions. Thus the designer is free to select a window on the basis of whatever balance of performance is chosen.

Since all constructions depend on brick module, the builder will find that, any window selected by the designer or produced by the window manufacturer, if this dimensional range is adopted, will fit without difficulty.

4- The Value of this Work in the Age of the Computer

Computer simulation models, as well as being enumerative and rigorous, are capable of tackling many problems. Nevertheless, it is clear that most of these systems, apart from being expensive to buy and needing sophisticated software and hardware, also require training and sometimes even an expert on hand to run them. Moreover, with a large number of alternative solutions, it is time consuming to digitalize building plans and input relevant data to create usable files.

Although most designers are now aware of the powerful capabilities of the computer, they are unwilling and unable to tackle tasks regarding this amount of labour in formating and inputting design, climatic and other data, especially when these tasks have to be carried out iteratively. Until such time as expert and interactive system become available, handbooks and design guides, based on studies such as this one, will continue to be used. Once these new systems are available; studies of this type can become the basis of the new data banks. It is the author's hope to become involvedin this future work.

5- Future Research.

At the conclusion of Chapter \(4,5,6\) and 7 sumaries of future work are presented.

\section*{REFERENCES}
\begin{tabular}{ll} 
Abdin, Ahmed Reda & A Bio-Climatic Approach to House Design \\
& for Semi-Desert and Hot Climates, PhD. \\
& Thesis, 1982, University of Strathclyde, \\
& Glasgow, U.K.
\end{tabular}

2 Abdul-Majeed, et. al. The Eualuation of the Internal Thermal Environment in the Baghdady Houses, Dept of Building and Construction, University of Technology, Baghdad, Iraq, 1976. A study of Diffuse radiation in Baghdad, R.P. May, 1981, Solar Energy Research Centre, Baghdad, Iraq.

Solar Radiation Maps for Iraq, Solar Energy Research Centre, Scientific Research Council, Baghdad, Iraq.

Section 8: Heating Installations, Mechanical Ventilation and Air-Conditioning, The Architects' Journal, Architects' Journal Information Library, April-May 1969.

Section 5: Sound, The Architects' Journal, Architects' Journal Information Library, April-May 1969.

Section 4: Thermal Properties, The Architects' Journal, Architects' Journal Information Library, December 1968.
\begin{tabular}{|c|c|c|}
\hline 8 & AJ Handbook & \begin{tabular}{l}
Section 1: Climate and Topography, The \\
Architects' Journal, Architects' Journal
\end{tabular} \\
\hline & & Information Library, October 1968. \\
\hline 9 & AJ Handbook & Information Flow in Architectural Design, \\
\hline & & The Architects' Journal, The Architects' \\
\hline & & Journal Information Library, May 1969. \\
\hline 10 & AJ Handbook & Section 2: Sunlight: Direct and Diffused, \\
\hline & & The Architects' Journal, Architects' \\
\hline & & Journal Information Library, October 1968. \\
\hline 11 & AJ Handbook & Section 3: Air Movement and Natural \\
\hline & & Ventilation, The Architects' Journal, \\
\hline & & Architects' Journal Information Library 4, December 1968. \\
\hline 12 & Al-Azzawi, Subhi & Oriental Houses in Baghdad: Part 1 \\
\hline & & Concepts and Types, UR The International \\
\hline & & Magazine of Arab Culture, No. 1-1985, \\
\hline & & pp.2-14, The Iraqi Cultural Centre, \\
\hline & & 177-178 Tottenham Court Road, London WIP \\
\hline & & 9LF. \\
\hline 13 & Al-Azzawi, Subhi & Oriental Houses in Baghdad: Part 2 \\
\hline & & Categories, UR The International Magazine \\
\hline & & Of Arab Culture No. 2 - 1985, pp30-41, The \\
\hline & & Iraqi Cultural Centre, 177-178 Tottenham \\
\hline & & Court Road, London W1P 9LF. \\
\hline 14 & Al-Azzawi, Subhi & Oriental Houses in Baghdad: Part 3 Social \\
\hline & & Factors, Analogy with ancient Houses, \\
\hline & & Conservation and Conclusions, UR The \\
\hline
\end{tabular}

International Magazine of Arab Culture No 3 - 1985, pp7-21, The Iraqi Cultural Centre, 177-178 Tottenham Court Road, London W1P \(9 L F\).

Al-Samerrai H. \&
Al-Jawadi, M.

Traffic Noise Levels and Annoyance in Baghdad, International Conference on Noise Control Engineering, 6th. October 1981, The Netherlands, Proceedings Page 537.

Amanat Al-Assima

ASHRAE

Aydinli, Sirri

Aynsley, R. et. al.

Balachandran, M. \& Gero, J.

Excerpts from the Roads and Buildings Regulations No (44) of 1935 as Amended, English Translation, Baghdad 1982.

ASHRAE Handbook, The American Society of Heating Refrigerating and Air Conditioning Engineers lnc, 1982 USA.

Auailability of Solar Radiation and Daylight, 1983 International Daylight Conference, General Proceedings, Phoenix, Arizona, USA.

Characteristics of Mean Wind Speed Profiles and their Reproduction in a Wind Tunnel, MR12-1974, Dept. of Architectural Science, University of Sydney, Australia. Comparison of three Methods for Generating the Pareto Optimal Set, Engineering Optimizaion, 1984, Vol 7,pp319-336, UK.

Balachandran \(M\) \& Gero J. The noninferior Set Estimation (NISE) Method for the Three Objective Problem, Dept of Architectural Science, University of Sydney, Australia, 1985.

Climatic Design Data and The Effect of Climate on the Indoor Environment, Australian Refrigeration, Air Conditioning and Heating, Vol29, No 1, pp20-30, 1975.

Baxter, A.J.

Comfort Equation, Build International Vol 8, No 5, 1975.

29 Beckmann, W.et. al.
Units and Symbols in Solar Energy, Solar Energy, Vol ,No. ,pp , Pergamon Press Ltd, 1978.

30 Bell, R.I.
A Method for the Calculation of Direct Illuminance Due to Area Sources of Various Distributions, Lighting Research and Technology, Vol 5, No 2, pp99-102, 1973, UK,

31 Brackett, W.et. al.
Interior Point-by-Point, Calculations in Obstructed Spaces, Journal of the Illuminating Engineering Society, Vol 13, No 1, pp14-25, October 1983, USA.

33 Bryan H.et. al.
Quicklite 1, A Daylighting Program for the T1-59 Calculator, Lighting Design and Application, Vol 11, Part 6, pp1-25, June 1981.

34 BRE
Prediction of Traffic Noise: Part 1, Digest 185, Building Research Station, UK, 1976 Prediction of Traffic Noise: Part 2, Digest 186, Building Research Station, UK 1976.

CIE

37
CIE

38 Calendar, John Hancock

39 Chen C. \& Krokosky E. Clarke, J.A.

Calculating Interior Daylight Illumination with a Programmable Hand Calculator, Lawrence Berkeley Laboratory, University of California, Berkeley, April 1983, USA. Standardization of Luminance Distribution on Clear Skies, International Commission on Illumination, Publication CIE 22(TC-4.2) 1973, Bureau Central de la CIE 4 Au, Du Recteur Poincare' 75782 Paris, Cedex 16, France.

International Recommendations for the Calculation of Natural Daylight, International Commission on lllumination, Publication CIE No 16 (E - 3.2) 1970, Bureau Central de la CIE 4 Av. Du Recteur Poincare' 75782 Paris, Cedex 16, France.

Time Saver Standards, Fourth Edition, McGraw-Hill Book Company, New York, 1966. Optimal Multifunctional Composite Materials System, Building and Environment, Vol 11, pp153-165, Pergamon Press 1976, UK.

ESPSHD program manual, ABACUS, University of Strathclyde, January 1982, Department of Architecture and Building Science, Glasgow, UK.

Cook, N.J. Wind Tunnel Simulation of the Adiabatic Atmospheric Boundary Layer by Roughness, Barrier and Mixing Device Methods, Journal of Industrial Aerodynamics 3, pp157-176, 1978.

43 Dept. of the Environment New Housing and Road Traffic Noise 《A Design Guide for Architects) Department of the Environment, London, HMSO, 1972.

44 Dilaura, David

Dogniaux, R. The Relation Between Building Orientation Daylight lllumination of Rooms and their Heat Balance, Proceeding of the CIE Intersessional Conference, University of Newcastle-upon-Tyne, 1965.

47 Dogniaux, R.\& Lemoine, M. Classification of Radiation Sites in Terms of Different Indices of Atmospheric
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & Transparency, 1983 International Daylight \\
\hline & & Conference, General proceedings, Phoenix, \\
\hline & & Arizona, USA. \\
\hline \multirow[t]{3}{*}{48} & Dresler, \(A\) & Availability of Daylight at Various \\
\hline & & Latitudes, Light and Lighting, pp289-290, \\
\hline & & October 1962. \\
\hline \multirow[t]{3}{*}{49} & Durrant, D.W. & Interior Lighting Design, Lighting \\
\hline & & Industry Federation Ltd. and The \\
\hline & & Electricity Council, London, U.K., 1973. \\
\hline \multirow[t]{2}{*}{50} & Egan, M & Concepts in Thermal Comfort, Prentice-Hall \\
\hline & & Inc.s Englewood Cliffs, New Jersey, 1975. \\
\hline \multirow[t]{4}{*}{51} & Eggar, Wolfgang & Influence of objects in Rooms on \\
\hline & & Illuminance and Luminance Distribution, \\
\hline & & Journal of the Illuminating Engineering \\
\hline & & Society, Vol 13, No 3, April 1984; USA. \\
\hline \multirow[t]{4}{*}{52} & Emswiller, J. et. al. & Pressure Difference Across Windows in \\
\hline & & Relation to Wind Velocity, The American \\
\hline & & Society of Heating and Ventilation \\
\hline & & Engineers; USA, 1930. \\
\hline \multirow[t]{4}{*}{53} & Etheridge, D.\& Nolan, & Ventilation Measurements \({ }^{\text {a }}\) ( Model Scale in \\
\hline & & a Turbulent Flow, Building and \\
\hline & & Environment, Vol.14, pp53-64, Pergamon \\
\hline & & Press, 1979, UK. \\
\hline \multirow[t]{3}{*}{54} & Farman, Abdul-Salam & Urban Housing in Iraq with Special \\
\hline & & Reference to Baghdad, PhD. Thesis, \\
\hline & & University of Sheffield, June 1977, UK. \\
\hline \multirow[t]{2}{*}{55} & Farrell, R. & The Use of the Perspective Techniques in \\
\hline & & the Calculation of Illumination from Clear \\
\hline
\end{tabular}

Skies, Journal of the llluminating Engineering Society, Vol 3 , No 2, pp153-156, January 1974, USA.

56 Gale, B.

57 Gero, J. The Application of Operations Research to Engineering Design, Architectural Science Review, pp67-76, September 1969, UK. The application of sequential decision-making in Optimization Problems in Architecture, CR23-1973, Department of Architectural Science, University of Sydney, Australia.

59 Gero, J.
Dynamic Programming in Architecture, CR26-1975, Department of Architectural Science, University of Sydney, Australia, 1975.

60 Gero, J.\& Radford, A. A Dynamic Programming Approach to the Optimum Lighting Probilem, Engineering Optimization, 1978, Vol 3, pp71-82. The Place of Multi_Criteria Optimization in Design, Department of Architectural Science, University of Sydney, Australia, 1984.

62 Gero, J.\& A comparison of Procedural and Declarative Balachandran, M. Programming Languages for the Computation of Pareto Optimal Solution, Department of

Architectural Science, University of Syndey, Australia, 1985.

63 Gero, J.et. al.
Energy in Context: A Multicriteria Model for Building Design, Building and Environment, 1983, Vol 18, No 3, pp99-107, UK.

64 Gero, J.et. al.
Postoptimality Analysis for Multi-Attributive Objective Functions in Dynamic Programming, Engineering Optimization, 1979, Vol 4, pp65-72, UK.

67 Gilleard, Get. al.

68 Gillette, G.et. al.

A Dynamic Programming Approach to the Optimum Lighting Problem, Engineering Optimization, 1978, Vol 3, pp71-82, UK. The Determination of Illumination at a Point in Interior Spaces-Part 1-Direct Component, Journal of the Iluminating Engineering Society, Vol 3 , No 2, pp170-192, January 1974, USA.

The Determination of Illumination at a Point in Interior Spaces-Part 2-Direct Component, Journal of the lluminating Engineering Society, January 1974, Vol 3, No 2, pp193-201, USA.

A General llluminance Model for Daylight Availability, Journal of the llluminating Engineering Society, Vol 13, No 4, pp330-340, July 1984, USA.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{69} & \multirow[t]{3}{*}{Givoni, B.} & Basic Study of Ventilation Problems in \\
\hline & & Housing in Hot Countries, Building \\
\hline & & Research Station, Haifa, 1962. \\
\hline \multirow[t]{3}{*}{70} & Givoni, B. & Man, Climate and Architecture, Elsivier \\
\hline & & Publishing Company Limited, Amsterdam, \\
\hline & & London, New York, 1981. \\
\hline \multirow[t]{2}{*}{71} & Givoni, B. & Ventilation Problems in Hot Countries, \\
\hline & & Institute of Technology, Haifa, 1968. \\
\hline \multirow[t]{4}{*}{72} & Givoni, B \& Belding, H . & The clothing Efficiency of Sweat \\
\hline & & Evaporation (reprint), Biometerology, \\
\hline & & 1962, pp305-314, Pergamon Press, Oxford, \\
\hline & & London, New York, Paris. \\
\hline \multirow[t]{4}{*}{73} & Givoni, B. \& & Expected Sweat Rate as Function of \\
\hline & Berner-Nir, E. & Metabolism Enuironmental Factors and \\
\hline & & Clothing, Haifa Institute of Technology, \\
\hline & & Haifa, 1967. \\
\hline \multirow[t]{5}{*}{74} & Hauser, Gregg & On the Analysis of Equivalent Sphere \\
\hline & & Illumination (ESI) for Arbitrary Target \\
\hline & & Orientation, Journal of the llluminating \\
\hline & & Engineering Society, Vol \({ }^{-1}\), No 2, pp69-76, \\
\hline & & January 1980, USA. \\
\hline \multirow[t]{4}{*}{75} & Hawkes, D. & Models and Systems in Architecture and \\
\hline & & Building, LUBFS Conference Proceedings No \\
\hline & & 2, The construction Press Ltd, Lancaster, \\
\hline & & England, 1975. \\
\hline 76 & Helwig, H.\& & Review of Methods for Measuring the \\
\hline
\end{tabular}

Krochmann, J. A. Reflectance and Transmittance of Lighting Materials, Lighting Research and Technology, Vol 3, No 3, pp211-218, 1971.

Hillier, W.\& Hanson, J. The Social Logic of Space, Cambridge University Press, 1984, UK.

79 IES (American)

IES (British)

81
IES (British)

82 IES (British)

Daylighting, W. Heinemann Ltd, 1966,
London.

Recommended Practice for the Calculation of Daylight Availability, Journal of the Illuminating Engineering Society, Vol 13,

No 4, pp381-392, July 1984; USA.
Daytime Lighting in Buildings; Technical Report No 4, The Illuminating Engineering Society, York House 199 Westminster Bridge Road, London, July 1972.

Depreciation and Maintenance of Interior Lighting, Technical Report No 9 , The Illuminating Engineering Society, York House, 199 Westminster Bridge Road, London SE1, May 1967.

The Calculation of Direct lllumination From Linear Sources, Technical Report No 11, The llluminating Engineering Society, York House, 199 Westminster Bridge Road, London SE1, May 1968.

IES (British)

85 IES (British)

IHVE


Jensen, Martin

Jobson, Barry

Jones, M.

Jones, Vincent

Keighley, E. C.

Jones, P. M. et. al.

Karayel, M. et. al.

The Model Law for Phenomena in Natural Wind, Ingenioren-International Edition Vol 2; No 2, November 1958; Denmark. The Luminance Distribution of Clear Skies, Proceedings of Daylighting and Energy Conservation, University of New South Wales, Australia, August 1982.

Wind Turbulence and Buildings, BRS CP 85/68 Building Research Station, Ministry of Public Building and Works, UK, December, 1968.

The Urban Wind Velocity Profile, Atmospheric Environment, Pergamon Press, 1971, Vol 6, pp89-102, UK.

Very, Very Simple Hand Calculations for Daylighting, Lighting Research Laboratory, P.O. Box 6193 Orange, CA 92667, 1983.

Ernst Neufert Architects' Data, Second Edition, Granada, London, 1980.

Zenith Luminance for Daylighting Calculation, 1983 International Daylight Conference, General Proceedings, Phoenix, Arizona, USA.

Visual Requirements and Reduced Fenestration in Office Buildings,

A Study of Window Shape, Building Science,

Vol 8, pp 331-320, Pergamon Press, 1973, UK.

97 Keighley, E.C.
Visual Requirements and Reduced Fenestration in Offices - A Study of Multiple Aperture and Window area, Building Science, Vol 8, No 4, pp321-331, Pergamon Press, 1973, UK.

98 Kendrick, J.D.
Daylight Variability in Rooms with Different Orientations, 1983 International

Daylight Conference, General Proceedings, Phoenix, Arizona; USA.

99 Kittler, R.\& Ruck, N. Definition of Typical and Average Exterior Daylight Conditions in Different Climatic zones and Time Periods, 1983 International Daylight Conference, General Proceedings, Pheonix Arizona, USA.

Luminance Distribution Characteristics of Homogeneous Skies: A Measurement and Prediction Strategy, Lighting Research and Technology, Vol 17, No 4; pp183-189, 1985, UK.

A Universal Calculation Method for Simple Predetermination of Natural Radiation on Building Surfaces and Solar Collectors, Building and Environment, Vol 16, No 3, pp177-182, 1981.

A Simple Method of Measuring and Evaluating the Atmospheric Diffusion of
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{7}{*}{}} & Sunlight when Seeking the Typical \\
\hline & & Luminance Patterris of the clear Sky, \\
\hline & & Proceedings of the Symposium on \\
\hline & & Environmental Physics as Applied to \\
\hline & & Buildings in the Tropics, February 1969, \\
\hline & & Central Building Research Institute, \\
\hline & & Roorkee, India. \\
\hline \multirow[t]{5}{*}{103} & Kittler, Richard & Standardization of Outdoor Conditions for \\
\hline & & the Calculation of Daylight Factor with \\
\hline & & Clear Skies, Proceedings of the CIE \\
\hline & & Intersessional Conference, University of \\
\hline & & Newcastle-upon-tyne, 1965, UK. \\
\hline \multirow[t]{5}{*}{104} & Kittler, Richard & A Provisional Consistent Model Defining \\
\hline & & Variable Exterior Daylight Illuminances, \\
\hline & & Proceedings of Daylighting and Energy \\
\hline & & Conservation, University of New South \\
\hline & & Wales, Australia, August 1982. \\
\hline \multirow[t]{5}{*}{105} & Kittler, Richard & Definitions of Characteristic Daylight \\
\hline & & Climates in Various Climatic zones, \\
\hline & & Proceedings of Daylighting and Energy \\
\hline & & Conservation, University of New South \\
\hline & & Wales, Australia, August 1982. \\
\hline \multirow[t]{3}{*}{106} & Kittler, Richard & Quicklite, 1.0 Program for Daylighting on \\
\hline & & Obstructed Sites, Lighting Design and \\
\hline & & Application, Vol 14, pp25-28, March 1982. \\
\hline \multirow[t]{2}{*}{107} & Koenigsberger et. al. & Manual of Tropical Housing and Building, \\
\hline & & Part 1, Longman Group Ltd, London 1974. \\
\hline \multirow[t]{3}{*}{108} & Kristensen, H. & Hot-Wire Measurements in Turbulent Flow, \\
\hline & & DISA Documentation Department DK-2740 \\
\hline & & Skoulunde, Denmark, 1981. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{Krochmann, J.} & The Calculation of Daylight Factor for \\
\hline & & Clear Sky Conditions, Sunlight in \\
\hline & & Buildings, Proceedings of the CIE \\
\hline & & Intersessional Conference, University of \\
\hline & & Newcastle-upon-Tyne, 1965. \\
\hline \multirow[t]{4}{*}{110} & \multirow[t]{4}{*}{Korchmann, J.} & Quantitative Data on Daylight for \\
\hline & & Illuminating, Lighting Research and \\
\hline & & Technology, Vol 6, No 3, pp165-171, 1974, \\
\hline & & UK. \\
\hline \multirow[t]{4}{*}{111} & \multirow[t]{4}{*}{Levin, Robert} & Illumination Due to Area Sources Expressed \\
\hline & & on angular Coordinates, Journal of the \\
\hline & & Illuminating Engineering Society, Vol 1, \\
\hline & & No 1, pp 60-61, Oetober 1971, USA. \\
\hline \multirow[t]{3}{*}{112} & \multirow[t]{3}{*}{Lifshitz, G.} & Diffusion of Light in the Atmosphere, \\
\hline & & (Russian Book) Published by Nauka Science, \\
\hline & & Alma Ata, 1965. \\
\hline \multirow[t]{3}{*}{113} & \multirow[t]{3}{*}{Littlefair, Paul J.} & The Luminous Efficacy of Daylight: a \\
\hline & & Review, Lighting Research and Technology, \\
\hline & & Vol 17, No 4, ppl62-182, 1985, UK. \\
\hline \multirow[t]{3}{*}{114} & \multirow[t]{3}{*}{Littlefair, Paul J.} & The Luminance Distribution of an Average \\
\hline & & Sky, Lighting Research and Technology, Vol \\
\hline & & 13, No 4, 1981, UK. \\
\hline \multirow[t]{3}{*}{} & Lynes J. A. & The window as a commmunication channel, \\
\hline & & Plymouth School of Architecture, \\
\hline & & Plymouth, Polytechnic U.K. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{116} & \multirow[t]{4}{*}{Maitreya V .} & Fenestrations for Daylighting in the \\
\hline & & Tropics Part 2 the Reflected component, \\
\hline & & Building Digest 13 , Central Building \\
\hline & & Research Institute, India. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{117 Maitreya V.*Narasimhan U.}} & Estimation of the Inter-Reflected \\
\hline & & Component in Daylighting Design, (Reprint) \\
\hline & & Building International, January/February \\
\hline & & 1969. pp 32-38. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{118 Maytreya U.\&Narasimhan U.}} & A Dome Type Artificial Sky for Daylight \\
\hline & & studies, ( Reprint ) Indian Journal of \\
\hline & & Technology, Vol. 10 July, 1972, \\
\hline & & pp . 269-271. \\
\hline \multirow[t]{3}{*}{119} & Markus, Thomas & Optimization by Eualuation in the \\
\hline & & Appraisal of Buildings , Part 1, Building, \\
\hline & & Vol. 34, pp 51-59, 21 Aug. 1970, U.K. \\
\hline \multirow[t]{3}{*}{120} & Markus, Thomas & Optimization by Eualuation in the \\
\hline & & Appraisal of Buildings, Part 2, Building, \\
\hline & & Vol 38, pp91-94, 18 Sept. 1970, U.K. \\
\hline \multirow[t]{2}{*}{121} & Markus, Thomas & Sereens, Louures, Blinds and Awnings of \\
\hline & & Buildings, PP 195-199 14 June 1968, U.K. \\
\hline \multirow[t]{3}{*}{122} & Markus, Thomas & The Function of windows - A Reappraisal, \\
\hline & & Building Science, Vol. 2 No. 2 pp97-121, \\
\hline & & Pergamon Press 1967. \\
\hline
\end{tabular}


Sunshine, Daylight, View, and Visual
Privacy, C.I.E. Istanbul Conference of
Windows, October 1973.

129 Markus T. \& Morris E. Buildings, Climate and Energy, Pitman Publishing Limited, London, 1980.
130 Melaragno, Michele \begin{tabular}{l} 
Wind Design concepts For Small Scale \\
Buildings, Build International, Vol. 8 No. \\
\(5, \operatorname{pp} 391-4241975\).
\end{tabular}

131 Mirza R. \& Al-Jawadi M. Computed graphs for Prediction of Natural Illumination in Architectural Spaces, Proceedings. of the 3rd ASTM/CIB/RILEM, Symposium on the Performance Concept in Building, March 1982, Libson, Portugal.

132 Ministry of Housing Housing Plans for People, General Foundation of Housing, June 1980, Baghdad, Iraq.

133 Ministry of Municipalitie The Master Plan of Al-baker City, Baghdad, Iraq 1973.

134 Ministry of Planning-Iraq Foundations and Norms of Urban Planning Ministry of Planning, Baghdad, Iraq 1976.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{135} & \multirow[t]{4}{*}{Modest, Michael} & Dayligh & ing Ca & \multicolumn{2}{|l|}{Calculations} & \multirow[t]{2}{*}{\begin{tabular}{l}
for \\
with
\end{tabular}} \\
\hline & & Non-Rect & gular In & rior Sp & & \\
\hline & & Shading & Devices, & Journal & Of & the \\
\hline & & \multicolumn{5}{|l|}{Illuminating Engineering Society, Vol. 12,} \\
\hline & & No. 4 pp & -241 July & 983 U.S.A & & \\
\hline
\end{tabular} Inc., Kendall Square, Cambridge 42 mass. 1948 U.S.A.

137 Moon,P. \& Spencer, D. An Empirical Representation of Reflection from Rough Surfaces - Part 1 and 2, Journal of the Illuminating Engineering Society, Vol. 9, No. 2 pp 88-101 January 1980 U.S.A.

138 Moroney, M. J. Facts from figures, Third Edition 1962, Penguin Books Ltd., Harmondsworth, Middlesex. .

139 Murdoch, Joseph B. Extension of the Configuration Factor Method to Strip Sources, (Reprint) Journal of the Illuminating Engineering Society, Vol. 13, No. 3 pp 290-295 April 1984 U.S.A.

140 Nakamura, Hiroshi Calculation of Daylight factor Dominated by Intermediate Sky, Nagoya Institute of technology, Department of Architecture, Nagoya, Japan.

141 Narasimhan, U. - The Clear Design Sky for Daylighting in India, International Meeting of the Daylight Subcommittee of the C.I.E., Berlin, September 1970
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{142} & \multirow[t]{4}{*}{Narasimhan, U.} & Clear Skies for Daylight Design \\
\hline & & Proceedings, Symposium of Architecture and \\
\hline & & Climatic Environment in Iraq, June, 1975, \\
\hline & & Building Research Centre Baghdad, Iraq. \\
\hline \multirow[t]{4}{*}{143} & \multirow[t]{4}{*}{Narasimhan, U.} & Fenestrations for Daylighting in the \\
\hline & & tropics Part 1 The Sky Component, Building \\
\hline & & Digest 40, Central Building Research \\
\hline & & Institute, India, April 1966. \\
\hline \multirow[t]{4}{*}{144} & \multirow[t]{4}{*}{Narasimhan, U, \& Saxena, B.} & Measurement of The Luminance Distribution \\
\hline & & of the Clear Blue Sky in India, Indian \\
\hline & & Journal of Pure and Applied Physics, 1967, \\
\hline & & Vol. 5 No. 3, pp83-86, \\
\hline \multirow[t]{3}{*}{145} & \multirow[t]{3}{*}{Narasimhan, U. et. al.} & External Reflected Daylight in the \\
\hline & & tropics, Build International, \\
\hline & & September 1970 \\
\hline \multirow[t]{5}{*}{146} & \multirow[t]{5}{*}{Narasimhan, \({ }^{\text {U }}\). et. al.} & The Internal Reflected Component of \\
\hline & & Daylight: A Finite Different Approach to \\
\hline & & the Split flux Method, Indian Journal of \\
\hline & & Pure and Applied Physics, 1968, Vol. 6 No. \\
\hline & & 2, PP. 100-101 \\
\hline \multirow[t]{5}{*}{147} & \multirow[t]{5}{*}{Narasimhan U.et. al.} & Pre-assessment of Daylight Availability \\
\hline & & Inside Factories with North Openings in \\
\hline & & the tropics, Civil engineering , \\
\hline & & Construction and Public Works Journal \\
\hline & & March-April , 1969 (Reprint). \\
\hline
\end{tabular}


153 Ne’Eman, E.\& Hopkinson R. Critical Minimum Acceptable Window Size:a Study of a Window Design and Provision of a view, Lighting Research and

Technology, Vol 2, No. 1 pp. 177-27,1970, U.K.

154 Nettleton J.\& Murdock J. Determination of Total External Illuminance on a sloped Surface from Sunlight and Skylight, Journal of the Illuminating Engineering Society,Vol. 12, No. 4, pp. 260-267, July 1983, U.S.A.

155 Neville D'Cruz et. al. A Pareto Optimization Problem Formulation for Building Performance and Design, Engineering Optimization, 1983, Vol. 7 pp. 17-33 U.K.

156 Newberry,C.
Significant Features of Wind Loading in Relation to the Design of Structures, BRS CP 49/69 Building Research Station Ministry of Public Building and Works, December 1969 U.K:

157 Newberry,C.et. al.
Wind Loading of a Tall Building in an Urban Environment, BRS Current Paper 59/68, Building Research Station, Ministry Of Public Building and Works , U.K. August 1968.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{158} & \multirow[t]{3}{*}{Nuckolls, James} & Interior Lighting For Environmental \\
\hline & & Design, John Wiley and sons, New York, \\
\hline & & 1976. \\
\hline \multirow[t]{2}{*}{159} & Olgyay, victor & Design with Climate, Princeton University \\
\hline & & Press, New Jersey 1967. \\
\hline \multirow[t]{3}{*}{160} & Pagon w. & Wind-Tunnel Studies Reveal Pressure \\
\hline & & Distribution on buildings, ( Reprint ) \\
\hline & & Engineering News record, 27th. Dec. 1934. \\
\hline \multirow[t]{6}{*}{161} & Pacicfic Consultant & Preliminary Survey Report on The Regional \\
\hline & International \& & Framework Structure Plan of Greater \\
\hline & Associating Consultants & Baghdad and the Comprehensive Development \\
\hline & & Plan of the City of Baghdad, Amanat \\
\hline & & Al-Assima August 1981, Baghdad, Iraq, \\
\hline & & 1981. \\
\hline \multirow[t]{3}{*}{162} & Patherbridge ,P. \& & Solid Angles Applied to Visual Comfort \\
\hline & Longmore, J. & Problems, Light and Lighting, Pp. 174-176, \\
\hline & & June 1951 U.K. \\
\hline \multirow[t]{2}{*}{163} & Phillips, Derek & Lighting in Architectural Design, Megraw- \\
\hline & & Hill Book Company, New York 1964. \\
\hline \multirow[t]{4}{*}{164} & Pierpoint, W.\& Hopkins, J. & . The derivation of The New Area-Source \\
\hline & & Equation, Journal of the llluminating \\
\hline & & Engineering Society, Vol. 13, No. 3 pp. \\
\hline & & 314-316 April, 1984 U.S.A. \\
\hline
\end{tabular}

165 Pierpoint, William
A Simple Sky Model for Daylighting
Calculations, 1983 International Daylight
Conference, General Proceedings, Phoenix,
Arizona U.S.A.

166 Polservice \& Dar Al-Imarah General Housing Programme For Iraq, Aug. 1977 Dar Al-Imarah, Baghdad , Iraq.

167 Porges, John Hand-Book of Heating, Ventilation, and Airconditioning, Sixth Edition, Newnes-Butterworth 1971 London.

168 Radford,A. \& Gero,J. Trade off Diagrams for the Integrated design of the Physical Environment in buildings, Department of Architectural Science, University of Sydney, Australia, 1979.

169 Radford, Antony

170 Radford, Antony Environmental Design using Optimization Concept: A Dynamic Programming Approach, Department of Architectural Science University of Sydney, Australia,1977.

171 Radford, Antony et. al. Energy Conservative Design in Context: the Use of Multi-Criteria Decision Method,
```

Department of Architectural Science
University of Sydney, 1984.

```

172 Rajagopalan,P. \& Rao,K. Analogue Model studies on some aspects of Natural Ventilation in Buildings, Central Building Research Institute, Roorkee; India.

173 Raouf, Layth Tradition and continuity in the Modern Iraqi House, UR The International Magazine of Arab Culture, No. 1-1985 pp. 15-24, The Iraqi Cultural Centre, 177-178 Tottenham Court Road, London W1P 9LF.

174 Robertson,R.
Measurments of Diffuse Solar Radiation and its Distribution over the Sky Hemisphere,

Proceeding of C.I.E. International Conference, University of Newcastle-Upon-Tyne, 1965 U.K.

175 Robinson,N. Solar Radiation, Elsivier Publishing Co. Amsterdam, 1966.

176 Rosenman,M. \& Gero,J. Reducing the Pareto Optimal Set in Multi-Criteria Optimization, engineering Optimization, 1984, U.K.

177 Rosten, Spalding\&Tatchell PHOENICS An Instruction Manual, CHAM Concentration Heat and Momentum Limited, Bakery House, 40 High Street, Wimbledon, London SW19, U.K. 1982.

178 Roux, A. \& Van Straaten,J. Some Practical Aspects of the Thermal and Ventilation Conditions in Dwellings, CSIR 70, Bulletin 6, South African Council for Scientific and Industrial Research, 1970.

179 Saxena, B. Fenestrations for Daylighting for Side-Lit Rooms: A Simplified Approach, Building digest 82, Central Building Research Institute, India.

180 Saxena, B. Design for Daylighting, Central Building Research Institute, March 1972, Roorkee, India.

181 Saxena,B. \& Maitreya, U. Sky Component Protractors, Indian journal of Technology, 1972, Vol. 10, No. 5 pp. 198-199.

182 Saxena, B. \& Narasimhan, U. Flux Density at a Point due to an Inclined Plane Diffuser of Infinite Length, Indian Journal of Technology, 1965 Vol. 3 No. 11, India.

183 Saxena, B, \& Narasimhan, U. Variation of the Luminance of the Clear Blue Skies with Solar Altitude, Indian Journal of Technology Vol. 7, December 1969 pp. 337-378.

184 Saxena,B. \& Narasimhan, V.Precise Values of Sky Components Due to a Clear Blue Sky for vertical Rectangular Aperture, Indian Journal of Technology , 1967, Vol. 5 No. 10, pp. 329-331.

185 Saxena,B.et. al.
An Artificial Sky for Model Studies on Daylighting in the Tropics, Indian Journal of Techno, logy, 1967, Vol. 5 No. 11 pp. 366367.

186 Saxena,B. et. al.
Daylighting of Multistoried Buildings in the Tropics, Indian Journal Of Technology, Vol. 7, September 1969, pp. 293-296.

187 Schlichting, Hermann
Boundary Layer Theory, Seventh Edition 1979, McGraw-Hill Book Company, New York, London.

188 Sehgal J. \& Tewari U. Natural Ventilation and Thermal Comfort, Indian Construction News, India.

189 Sexton, D. Building Aerodynamics, BRS Current Paper 64/68 Building Research Station, Ministry of Public Building and Works. U.K. August 1968.

190 Sexton,D.\& Mech, E.A.' Design and Performance of a Wind Tunnel for Building Research, Research Series 18, Building Research Station, U.K.

191 Shabaan A. \& Al-jawadi, M. Analysis of The Climate of Iraq- Its Impact on Buildings, The 7th Arab Science Congress, Cairo, Sept. 1973.

192 Shabaan, A. \& Al-jawadi, M. Sunlight Control In Buildings, Part 1: The Design of Shading Devices for Baghdad Zone, Proceedings Symposium of Architecture and Climatic Environment in Iraq, June, 1975, Building Research Centre, Baghdad, Iraq.

193 Shabaan,A. \& Al-jawadi,M. Sunlight Control in Buildings, Part 2,Geometry and Behaviour of sunlight on Buildings, Second Scientific Conference, Scientific Research Council, Dec. 1975, Baghdad, Iraq.

194 Shubber, Adnnan
Preliminary Reporter in the Standardization of Doors and Windows for Government Buildings, The Building Research Centre, Baghdad 2 Iraq, 1974.

195 Siegel, Sydney Nonparametric Statistics for the Behavioural Sciences, McGraw-Hill Book Company Inc. New York, 1956.

196 Smith,F. \& Wilson,C.B. A Parametric Study of Airflow within Rectangular Walled Enclosures, Building and Environment 12, pp. 223-230, 1977.

197 Sorensen, K.et.al. Method for the Calculation of Contrast, Journal of the Illuminating Engineering Society, Vol. 3 No. 2 pp. 277-285 January 1974,U.S.A.

198 Spencer, D. \& Gaston, E. Numerical ranges of the Diffuse and Specular Reflectances, Journal of Illuminating Engineering Society, Vol. 2,No. 4,pp.400-410, July 1973,U.S.A.

199 Stanger, Dan Monte Carlo Procedures in lighting Design, Journal of Illuminating Engineering Society, Vol. 13, No. 4, pp. 368-371,July 1984,U.S.A.

200 Taylor, Stephen PARETO Optimal Solution Database System (User,s Manual) , Department of Architectural Science, University of Sydney.

201 The Iraqi Meteorological Climatological Normals Publication Organization No15-1979,Baghdad, Iraq.

202 Tregenza,P.\& Waters,l. Daylight Coefficients, Daylighting Research and Technology, Vol. 15 No. 2 1983.

203 Tregenza, Peter Predicting Daylight from Skies of Random Condition, 1983 International Daylight
\begin{tabular}{|c|c|c|}
\hline & & Conference, General Proceedings, Phoenix, Arizona,U.S.A. \\
\hline \multirow[t]{4}{*}{204} & Unk, E. & Natural Daylighting for Interiors in \\
\hline & & Hot-Dry Desert Climates, National Centre \\
\hline & & for Engineering and Architectural \\
\hline & & Consultancy, 1967, Baghdad, Iraq. \\
\hline \multirow[t]{3}{*}{205} & Van straatan, J. & An Experimental Classroom for Ventilation \\
\hline & & and lighting studies, Public works of \\
\hline & & South Africa, December 1959. \\
\hline \multirow[t]{3}{*}{206} & Van Straatan J. F. & Thermal Performance of Buildings, Elsevier \\
\hline & & publishing Company, Amsterdam, London, New \\
\hline & & York 1967. \\
\hline \multirow[t]{6}{*}{207} & Warren, John & The Traditional Houses of Baghdad, U.R. \\
\hline & & The International Magazine of Arab Culture \\
\hline & & No. 1-1983, pp. 5-11, The Iraqi Cultural \\
\hline & & Centre, 177-178 Tottenham Court Road, \\
\hline & & London W1P 9LF. \\
\hline & & - \\
\hline \multirow[t]{4}{*}{208} & Waters,J.\& Ritchardson, D. & - Solar Heat Gain through Unshaded Glass, \\
\hline & & Proceedings of C.I.E. Intersessional \\
\hline & & Conference, University of \\
\hline & - & Newcastle-Upon-Tyne, 1965 U.K. \\
\hline \multirow[t]{2}{*}{209} & Webb, C. G. & Natural Ventilation in Low Latitude \\
\hline & & Building, R.I.B.A. Journal, November 1957. \\
\hline
\end{tabular}

210 Wilson,A,\& Templeman,A. An Approach to the Optimum Thermal Design of Office Buildings, Building and Environment, Vol. 11, No.1, pp. 39-50, Pergamon Press 1976, U.K.
211 Young, Hugh \begin{tabular}{ll} 
Statistical Treatment of Experimental \\
& Data, McGraw-Hill Book Company Inc., New \\
York, San Francisco, Toronto, London, \\
& 1962.
\end{tabular}
212 United Nations \begin{tabular}{ll} 
Climate \& House Design, Department of \\
& Economic and Social Affairs, New York, \\
& 1971.
\end{tabular}

\section*{APPENDIX 1}

1- Derivation of Sunpatch Calculation Formula 4.9
```

looking at Figure Al.1
W = Window width
H = Window height
K = Wall thickness

```
V.s. \(=\) Vertical shadow angle
H.S.= Horizontal shadow angle
If wall thickness \(=0\)
\(X=H \operatorname{Cot}\) U.S.
Then sunpatch area \(=W * H\) Cot U.S.
If the wall thickness \(=K\)
Then the effective window height
\(\mathrm{H}^{\prime \prime}=\mathrm{H}-\mathrm{H}^{\prime}\)
and the effective window width is
\(W^{\prime \prime}=W-W^{\prime}\)
\(H^{\prime}=K \operatorname{Tan}\) U.S.
\(H^{\prime \prime}=H-K T a n\) V.s.
\(W^{\prime}=K \operatorname{Tan}\) H.S.
\(W^{W}=\mathbf{W}-K \operatorname{Tan}\) H.S.
The sumpatch area A is:
\(A=W^{\prime \prime} * H^{\prime \prime} \operatorname{Cot}\) U.S.
Or
\(A=(W-K \operatorname{Tan} H . S).(H-K \operatorname{Tan}\) U.S.)(Cot V.S.)
\(A=W * H * \operatorname{Cot}\) U.S. \(-W * K-K * H * C o t\) U.S.* Tan H.S. \(+K \times 2 * T a n(H . S\).

II- The Derivation of ( \(\operatorname{Cos} h, \operatorname{Sin} h, \operatorname{Cos} B, \operatorname{Sin} B\) and \(d h\) ) used in the calculation of sky component and external reflected component equation 5.25 to 5.51 in terms of angles \(G, r\).

1-
```

Cosh=H/N = H/(R^2 + H^2)*0.5
= (H*K/S*R)/((R^2*K^2/S^2*R^2)+(H^ 2*K^2/S` 2*R^2))}0. = ((H/S)(K/R))/(((H^2/S`2)(K^2/R^2))+(K^2/S`2))`0.5
Cosh=(\operatorname{Cos G * Cos r)/(((Cos G)*2)(Cos r)+(Sin G)* 2)*0.5}
2-
R = (((Cos G)* 2)((Cos r)`2)+((Sin G)`2)-((\operatorname{Cos G)`2)(Cos}

```
r) \(\left.{ }^{2}\right)^{\wedge} 0.5\)
    \(R=\sin G\)

Let \(X=(((\operatorname{Cos} G) * 2)((\operatorname{Cos} r) * 2)+((\operatorname{Sin} G) * 2)) \star 0.5\)

Then
```

Cosh = (\operatorname{Cos}G*\operatorname{Cos r)/ x*0.5}
Sin h = (Sin G)/ X*0.5
3-
Cos B}=\textrm{K}/
As N=X*0.5, K=R*\operatorname{Cos }r\mathrm{ and }R=\operatorname{Sin}G
Cos B = (Cos r)(Sin G)/X`0.5

```
4-
\(\sin B=D / N\)
    \(N^{*} 2=D^{\wedge} 2+K^{\wedge} 2\)
    \(D^{\wedge} 2=N^{\wedge} 2-K \wedge 2\)

```

 D^2 = (((Cos G)*2)((Cos r)^2))+((Sin G)^2)-((Cos r)^2)((Sin
 G)*2)

```

```

 [((Sin G)^2)+((\operatorname{Cos r)^2)(((\operatorname{Cos}G)*2)-((Sin G)^2))]^0.5}
 Sin B = --
5-
Cos G* Cos r
Cosh = ---------------------------------
dCosh
d }\quad\operatorname{Cos}G*\operatorname{Cos}
-- ---
If X = (((Cos G)`2)((Cos r)`2)+((Sin G)`2)) Then d CosG * Cos r - Sin G * Cos r = - Sin a * Cos X`0.5
1 (CosG * Cos r(-2CosG * Sin G*((COS r)*2)+2(Sin G)(Cos G))
2* ---
2
x^1.5
- Cos r
= --------- *[(Sin G)((CosG)`2)((Cos r)*2)+(((Sin G)*3)- X`1.5
(((Cos G)*2)(Sin G)((Cos r)*2)+((Sin G)(Cos G)`2))]
= - - Cosr* SinG [((SinG)^2)+((\operatorname{CosG)*2)]}

```
```

As ((SinG)*2) + ((\operatorname{Cos}G)^2) = 1 Then,

- Cosr* Sin G dh
= -------------- =- Sinh ---
x*1.5
dh = - <os r sing

```


III- The Computer Programs

1- The Computation of Sunpatch Areas

This program calculates the sunpatch area formed by 77 different windows as mentioned in Chapter 4 in a room with an infinite floor area and presents the results in tabular form. The program reads in the data or can read a data file consisting of the horizontal and vertical shadow angles, which simulate the overshading. The data files were constructed according to the findings from the experiment on the Heliodon. SThe language: BASIC)

2- This program reads the result from a program similar to the first, but with the capability of reading six data files, and presents them in graphic form. (The language: FORTRAN)

3- This program calculates the Sky Component and the External Reflected Component formed by 44 different windows as explained in Chapter 5. The data required are: wall thickness, wall obstruction heights and widths, sun altitudes, external reflection factors, interhouse distance and \(f H\) values. The program has no comment or remark statements and this needs to be done in the future to make it available for use by others. (The language: FORTRAN)

4- This program is to read four output files of the Pareto optimal solutions formed by Stephen Taylor computer program
(PARETO Optimal Solution Database System Ref.200) and all the remaining solutions and prepares them to be read by another program which plots them in four graphs in one page. 〔The language: BASIC)

5- This program handles the information prepared by program No. 4 and draws it in garaphic form. (The language: FORTRAN)

\section*{Computer Program No. 1}
```

 10 DIM J1(13.16).S1(13.16),01(13.16).D1(13.15)
 20 DIM J2(13,16),S2(13.16),02(13,16),D2(13,116),T(3)
 30 P=3.14159
 40 FOR I = 1 T0` 3
 SO READ T(I)
 6O NEXT I
 7O FOR I = 1 TO 13
 80 FOR J = 1 TO 16
 90 READ JI(I.J).J2(I.J)
 100 J2(I.J)=J2(I.J)*P/180.0
 110 JI(I,J)=JI(I,J)*P/180.0
 120 NEXT
 130 NEXT I
 140 FOR I = 1 TO 13
 150 FOR J = 1 TO 16
 160 READ D1(I.J),D2(I,J)
 170 DI(I,J)=DI(I.J)*P/180.0
 190 D2(I.J)=D2(I.J)*P/180.0
 190 NEXT J
 200 NEXT I
 210 FOR I = 1 TO 13
 220 FOR J=1 TO 16
 230 SI(I.J)=SI(I.J)*P/180.0
 E40 S2(I.J)=S2(I.J)*P/180.0
 250 NEXT J
 260 NEXT I
270 FOR I=1 T0 13
280 FOR J = 1 T0 16
29001(I,J)=01(I,J)*P/180.0
300 02(I.J)=02(I.J)*P/180.0
310 NEXT J
220 NEXT I
330 FOR K=1 TO 16
340 D=22. 3*(K-1)
350 FOR J= \& TO 2
360 PRINT "ORIEITTATION = ";D,"LALL THICKNESS = ":TEJ%
370 PRINT
390 PRINT m M Y S SA SA/A1 WA NA/AI M
400 PRINT "WA/SA WA/2SA"
4 1 0 ~ P R I N T
420 FOR X=0.5 TO 3.0 STEP 0.25
430 FOR Y=0.5 TO 2.0 STEP 0.2S
440 59=0
450 W:=0
460 FOR I=1 TO 13
470 IF j2(I.K)>0 GOTO 500
480 IF JI(I.K) < 0 GOTO 500
490 60 TO 380
500 AS=Y*COT(J2(I.K))-T(J)
E10 IF AS <= 0 GOTO 580
S20 Ab=X-T(J)*TAN(JI(I,K))

- 530 IF AG <=0 GOTO 580
- 540 S=AS*A6
530 IF S J= 0 GO TO 570
560 GOTO 390
570 59=59+5
Eg0 IF D2(I.K) e> 0 GOTO 610
5 9 0 ~ I F ~ D I (I . K) ~ @ ~ O ~ G O T O ~ 6 1 0 ~
600 GD TO 690
610 AT=Y*COT(O2(I.K))-T(J)
620 IF AT <= 0 GOTO 690
630 AR=X-T(J)*TAN(DI(I,K))
640 IF AB <m 0 GOT0690
C50 H=A7*AB
660 IF U >= O GOTO 680
670 60 T0 690
680 WS=W9+L
690 NEXT I
700 A1=X*Y
710 SI=59/A1
720 W1=W9/A1
730 IF 59 \& O GOTO }75

```
```

740 59=0.01
750 R1=W9/59
760 R2=W9/(2*S9)
770 IF S9 << 0.01 GOTTD }79
780 59=0
790 PRINT USंING 800,X,Y,A1,S9,51,H9,W1,R1,R2

```

```

810 NEXT Y
E20 NEXT X
B30 PRINT
840 PRINT
ESO PRINT
860 NEXT J
g70 NEXT K
880 DATA 0.12,0.24,0.36
B90 DATA 0,0,48,18,0,0,0,0,0,0,42,17,55,28,87,79,0,0,0,0,0,0,0,0,0,0,0
9 0 0 ~ D A T A ~ 0 . 0 . 0 . 0 . 0 ~
910 DATA 0,0,55,38,0,0,0,0,0,0,0,0,58,41,80,70,0,0,0,0,0,0,0,0
9 2 0 ~ D A T A ~ 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 ~
930 DATA 84, 52,61,58,39,44,0,0,0,0,0,0,51,50,74,69
9 4 0 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0.0.0
550 DATA 0,0,69,73,47,60,0,0,0,0,0,0,0,0,66,71,88,89
960 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0
970 DATA 0.0,80, 85,57,74,0,0.0,0,0,0,0,0,0,0,78,84
9 9 0 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0
990 DATA 0,0,0,0,77,86,55,80,32,76,0,0,0,0,0,0,56,81,80,87
1000 LATA 0.0,0.0.0,0.0.0.0.0.0.0
1010 DATA 0,0,0,0,0,0,0.0.0,0.68,86,45, 83, 23, 81,0,0
1020 DATA 23,01,45,83,68,86,0,0,0,0,0,0,0,0
1 0 3 0 DATTA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,87,56,81
1040 DATA 0,0,0,0.10,74.32,76,53,30,77.86.0.0
1050 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,78,84
1060 DATA 0,0,0,0,0,0,0.0,35,66,57.74,80, E5
1070 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8e,89,0,0,0,0,0,0,0,0,0,0
1080 DATA 0.0.69.73
1 0 9 0 DATA 84, 82,0,0.0.0,0.0,0,0,0,0,0.0.0.0.0.0
1100 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0
1 1 1 0 ~ D A T A ~ 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 , 0 . 0 . 0 . 0 . 0
1120 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0
1130 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1140 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0
1150 DATA 0,0,0,0,81,48,39,18,0,0,0,0,0,0,0,0,54,16,76,36,0,0,0,0,0
1160 DATA 0.0.0.0.0,0,0
1170 DATA 0,0,0,0,0,0,69,44,0,0,0,0,0,0,0,0,0,0,66,40,88,85,0,0
1 1 1 8 0 ~ D A T A ~ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
1190 DATA 0,0,0,0,0,0,82,74,0,0,0,0,0,0,0,0,0,0,53,40,76,64,0,0
1200 DATA 0.0.0.0.0.0.0.0
1210 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1220 DATA 0,0,61,52.84,80,0,0,0,0,0,0,0,0
1230 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
.. 1240 DATA 0,0,0,0,68,60,0,0,0,0,0,0,0,0
1250 DATA 0,0,0,0,0,0,0,0,0,0,84,80,0,0,0,0,0,0,0,0
1260 DATA 0.0.31.45.74.66.0.0.0.0.0.0
1270 DATA 0,0
1220 DATA 37.32.59,44,82,74,0,0.0.0
1290 DATA 0,0
1300 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0.0
1310 DATA 0.0,0.0,0,0,0,0,0,0,0,0,0,0,81,48,0.0
1320 DATA 0,0,0,0,0,0.0,0,0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0.0,0.0.0.0.0
1330 DATA 0,0
1340 DATA 0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0.0,0,0,0,0,0.0.0.0.0,0.0
1350 DATA 0,0

```

\section*{Computer Program No. 2}
```

10*HRUN=(ULIE)LIBRARY/GINO/GINOLIB
20 DIMENSION E(77,3,16,6),EMAX(16),XX(77),THICK(3)
30 INTEGER WD,HD1,HD2
40 DATA EMAिX/900.0.900.0.900.0.900.0.900.0.900.0.900.0.3000.0.
s0 \$3000.0.3000.0,900.0,900.0,900.0,900.0.900.0,
60 2900.0/
70 DATA THICK/0.12,0.24,0.36/
80 CALL ATTACH(B, "XMAS:",1,0,IIII,)
100 READ,WD,HD1, HD2
110 DO 8 IY=1.7
120 DO 8 IX=1.11
130 X=(IX-1)/44.0
140 Y=1Y/4.0+0.25
150 E XX((IY-1)*11+IX)=X+Y
160 DO 1 IDIST=1.6
170 DO 1 IORIEN=1.16
180 DO 1 ITHICK=1.3
190 DO 1 IX=1.11
200 DO 1 IY=1.7
210 IXY=(IY-I)*11+IX
220 PEAD(S.100)X,Y,EE
230 IF(EE.LE.O.1)EE=0.1
240 1E(IXY,ITHICK.IORIEN,IDIST)=EE
250 100 FORMAT(U)
260 CALL RCOSIZ(8000)
270 CALL RCO(10,'PFILE;')
200 CALL CHASIZ(2.6.2.6)
290 DO 2 ITHICK=1.3
300 DO 2 IORIEN=1,16
310 CALL AXISCA(4,10,0.1,EMAX(IORIEN),2)
220 CALL AXIPOS(1,20.0,20.0.120.0.1)
350 CALL AXIPDS(1,20.0,20.0,100.0.2)
360 CALL AXISCA(3,7,0.5,2.23,1)
370 CALL AXIDRA(-2,-1.2)
380 CALL AXIDRA(1,1,1)
400 CALL MDUTO2(20.0.1.0)
410 CALL CHAHOL('WD=*.'')
4 2 0 ~ C A L L ~ C H A I N T (W D . 2) ~
430 CALL CHGHOL('M HDI = *.')
440 CALL CHAINT(HD1,2)
450 CALL CHAHOL(MM, HD2% *.')
450 EALL CHAINT(HD2.2)
470 CALL CHAHOL('M HOUSE T. =2.0 ST.*.')
475 CALL MDUTOZ(5.0.10.0)
480 CALL CHAHOL('Y. EFFICIENCY H. THICKNESS=*.')
490 CALL CHAFIX(THIEX(ITHIEK).6.2)
500 CALL CHAHOL('M W. ORIENTATION=*:')
S10 ORIENT = 22.3*(IDRIEN-1)
520 CALL CHAFIX (ORIENT,6,2)
530 DD 3 IDIST=1,6
540 SALL GRAPOL(XX, E(i.ITHICK,IORIEN,IDIST),T7)
g50 EaLL LINEY2(1.0,-1.1)
560 CALL CHAINT(IDIST, 2)
570 3 CONTINUE
580 TIEKS 1=1.1
500 TICKS 2=1.5
600 DO 4 IY=1.7
610 DO 5 IX=1.11
620 CALL GRAMOU(XX((IY-1)*11+IX),0.1)
630 CALL LINBY2(0.0.TICKS1)
640 CALL GRAMOU(XX((IY-1)*11+IX),EMAX(IORIEN))
650 CALL LINBY2(0.0.TICKSI)
650 5 CONTINLE
670 CALL LINEY2(O.0.TIEKS2)
600 4 CONTINUE
690 2 CALL PICCLE'
700 EALL. DEUEND
:10 STOP
T20 END

```
```

10*\#RUN=(ULIB)LIERARY/NAG/LIB
2O SUBROUTINE INTEGR (OMGLOW.OMGHIH.RHO1.RHD2.ANS.F)
30 IMPLICIT REAL*B(A-H,O-I)
4O EXTERNAL F,P1,F2
5O SOMMON THETAS,PI,R1,R2,ITHETA
60 CALL FXOPT(89,1,1,0)
70 PI= ATAN(1.000)*4.0DO
BO ABSACC=1.OE-6
90 IFAIL=0
100 R1=RHO1
110 RE=RHO2
120 100 FORMAT(1X.'ANSWEF=',F20.10)
130 CALL DO1 DAF(OMGLOW,OMGHIH,P1,P2,F,AgSACC, ANS,NFTS.IFAIL)
140 RETURN
150 END
160 FUNCTION PI(OMG)
170 IMPLICIT REAL*O(A-H.O-Z)
190 COMMON THETAS,PI.RI,R2,ITHETA
190 P1=R1
200 RETURN
210 END
220 FUNCTION P2(OMG)
230 IMPLICIT REAL*8(A-H.O-Z)
240 COMMON THETAS,PI,R1,R2,ITHETA . . !
250 PE=R2
280 RETURN
270 END
280 FLINETION G(R.OMG)
290 IMPLICIT REAL*8(4-H,D-Z)
300 COMMON THETAS,PI,R1, R2.ITHETA
310G=SIN(OMG)*COS(R)**2*COS(OHGG)/(COS(OMG)**2*COS(R)**2+(SIN(OHIG)**2))**2.0
320 RETUPN
330 END
340 FUNETION F(R,OMG)
330 IMPLICIT REAL*E(A-H,O-Z)
360 COMMON THETAS,PI,P1,R2.ITHETA
370 DIMENSION P.S(5).RW(5)
320 DATA PS/ 3.141000. 2.7499000. 2.356000. 1.963000, 1.5707000/
3PO DATA RW.'-1.57070D0,-1.178000,-.7853000,-0.3526000,0.0000/
400 X=COS(OMG?**2*COS(R)**2+SIN(OMG)**2
410 DELTA=ACOS((1/(X)**O.S)*(SIN(OMG)*SIN(THETAS)*COS(R+RU(ITHETA)+RS(ITHETA))\&
4208 COS(OMG)*COS(THETAS)*FOS(R)))
430 AA=SIN(OMG)**2*COS(OMG)*COS(R)**3/X**2.S
440 BE=(SIM(OMG)**2+CDS(R)**2*(COS(OMG)**2-SIN(DMG)**2))/X
450 CC=EXP(-(0. S2*SERT(X)/(COS(OMG)*COS(R))))
4\&0 D[%=0.91+10*EXP(-3.0*DELTA)+0.45*COS(DELTA)**2
470 FEAA*(1+BB**1.5)*(1-CC)*DD
480 P.ETURN
4 9 0 ~ E T 1 D ~
5 0 0 ~ I H P L I C I T ~ R E A L * B (G - H , O - Z)
510 DIMENSION THETAX(5),FH(4,3),RW(5),PS(5),ANORM(5).DIS(1).DFDF(4),DFDF1(4),SLUXI(4),SLUX2(4),RD1(4)
520 COMMON THETAS,PI,P1,R2. ITHETA
S30 DATA THETAX/EE.000.43.000,41.5000, 35.000,33.000/
E.40 DATA FH/O.020D0,0.020DO.0.020D0.0.020D0.0.020D0.
5502 0.0500D0.0.05000.0.05000,0.05000,0.05000.
560% 0.1000,0.01000,0.01000,0.01000.0.01000.
5702 0.15000.0.15000.0.15000,0.15000,0.15000/
580 PI=ATAN(1.ODO)*4.0DO
500 DATA ANORM/2.G30DO,2.7%%0DO0,2.g030D0,2.855000,2.883000/
600 DATA DIS/2.500DO/
610 DATA RDI/1.0000.2.0000.3.0000.4.00DO/
\&20 DO 20 IDIS=1.1
630 DO 20 ITHETA=1.5 .
6 4 0 ~ C A L L ~ F P A R A M (1 , 1 8 0) ~
650 WRITE(6,80)
660 80 FORMAT(1X,////////)
670 THETAS:=THETAX (ITHETA)*PI/1BO.0
690 IF(ITHETA.EQ.I)WRITE(6.301)
690 IF(ITHETA.EN. 2)WFITE(E,302)
700 IF(ITHETA.EQ.3)WRITE(6.303)
710 IF (ITHETA.EN.4)WP.ITE (6,304)
720 IF(ITHETA.EN.5)WRITE(6.305)
730 URITE(6,170)
740 170 FORMAT(4OX.' STAIREASE THE HINDOW ON THE SIDE WALL -FIRSTD FLOOR')
750 H0=4.5
760 D=DIS(IDIS)
770 EMLL FPARAM(1.180)
7 9 0 ~ W F I T E (6 . 1 0 1) H O . 0 ~
7OO WRITE(6, E1)(RDI(ID1),IDI=1,4)
80O WRITE(6.400)
810 WRITE(6, 101)
220 WRITE(6,402)
E30 WRITE(6,403)
BAO EXTERNAL F.G

```
```

E50 00 20 IU=1.11
860 W=FLDAT (IW+I)/8.0
870 DO 20 IH=1,4
\varepsilonघ0 H=FLOAT (IH+3)/4.0
E90 DO 51 IDI=1,4
900 D1=RD1(ID1)
910 E1 FORMAT(18X,A('INTER-HOUSE DIET.E'.F4.O. 'M'.7X))
S20G WI=OESTRACTION WIDTH RIGHT HAND SIDE
930 W{=1.0
Q4DE W2xOSSTRACTION WIDTH LEFT HAND SIDE
550 W2=-5.0
960 HC=HO-1.75
970 WIDTH=2*W
980 PI=ATAN(1.000)*4.000
990 OMGLDU=ATAN2(D,(H+1.75))
1000 OMG1 =OMGLOW
1010 OMEHIH =0.96007
1020 RHO1=ATAN2(-W,D)
1030 RHO2=ATAN2(W,D)
1040 RHI=RHO1
1050 RH2=RHO2
1060 CALL INTEGR (OMGLOL.OMGHIH, PHO1, PHO2.SC1,F)
1070 OMGLOW=ATAN2(D+D1.HC)
1080 IF (OMGLOL.GT.ATAN(D/(H+1.75)))GOTO 1
1090 OMGLOW=ATANQ2(D,(H+1.75))
1100 1 RHOI=ATAN2(W2,D+D1)
1110 IF ((RHO1).GT. (ATAN(-W/D))) GOTO 2
1120 RHO1=fTAN(-W/D)
1130 2 RHD2= ATAN2(W1.D+D1)
1140 IF(RHOZ.LT.ATAN(W/D))GOTO
1130 RHOL=ATAN(W/D)
11E5 IF(OMGLOW`OMGHIH)ONGLOU=DHGHIH 1160 OMG2*OMGLOW 1170 RH3=RHO1 1180 RH4=RHO2 1190 CONSTA=ANORM(ITHETA) 1200 3 GALL INTEGR (OMGLOW, OHGHIH, RHO1, PHC2,OSE1, F) 1210 FINAL=(SC1-0SC1)*1.018*0.E5*0.8/CONSTA 1220 CALL IHTEGR(OMGLOW.OMGHIH, PHOL, RHO2,GG,G) 1230. DA=ATAII2(HO,D1). 1240 IF(OA .LT.PI/12)GOTO 71 1250 GOTO }7 1260 71 FS=0.783゙*(1-1.48*SIN(PI/2-THETAS)) 1270 FG=0.05 1280 GOTO 8 1290 -2 E1=AEOS((1/TAN(DA))*TAN(PI/:2)) 1300 EE=ATAN(TAN(R1)*COE(OA)) 1310 F5:.723+.1845*SIN(81)-. S8*ALOG10((1+SIN(E2))/EOS(E2))-.738*(1.57-E2)*SIN(OA) 1E20 FG1%.5234+.7E73*(E1)-.3&天*ASIN(SIN(OA*EIN(B1))) 1230 FG=FG1-1.159*(1-COS(DA)+0.037*B2*COS(OA)) 1340 8 GFINAL=((GG)*0. E5*0.8*0. 25*(FH(IDI,ITHETA)*FS+FG)) 1250 EGFINAL=((GG)*0. E5*0.8*0.7*(FH(IDI.ITHETA)+FS+FG)) 1360 FIMAL=FINAL*100.0 1370 GFINAL=GFINAL*100.0 1320 EGFINAL=EGFINAL*100.0 1390 DF=FINAL+GFINAL 1400 E[1.1.1+15.5*SIN((0.5*PI)-THETAS)**0.5 1410 SLUXO2=ER*DF*10.0 1420 DFI=EGFINAL +FINAL 1430 SLUXO7=ED*DF1*10.0 1440 DFDF(ID1)=DF 1450 DFDF1(IDI)=DF1 1400 SLUX1(ID1)=SLUXO2 1470 SLUX2(ID1)=SLUX07 1430 101 FORMAT(45X.' OBST.HIGHT',F5.2.' POINT DIST.',F7.4////) 1490 51 EONTINUE 1500 WRITE(6,100)WIDTH,H, (DFDF(ID1),SLUX1(ID1),DFDFI(ID1),SLUX`2(ID1),ID1=1, 4)
1510 100 FORMAT (IX.2FE.2,4(4X,F3.2.2X,FS.0,2X,FS.2,2X,FE.0))
1520 301 FORMAT(//CEX,'NORTH \& SOUTH'//)
1530 302 FORMAT(///43X, '22.5 \& 157.5 \& 202.5 \& 337.5///)
1540 303 FORMAT(///43X, '45.0 \& 135.0 \& 225.0 \& 313.0%//)
1550 304 FORMGT(///45X, '67.5 \& 112.3 \& 247.5 \& 252.5./1)
15\&0 305 FORMAT (///EEX,. EAST \& WEST ///)
1370 AOO FORMAT (IX,'WI ND O W', SX,A('SKY+EXTERNAL REFLEETION', TX))
15B0 401 FORMFT(1X,'WIDTH HEIGHT',3X,4('2E%WALLREFL. 70%HALLREFL.',4X))
1590 102 FORMMT(ITX,4('FA % LUX FAZ LUX',GX))
1000 403 FORMAT(1X,' LUN 2 LUX FA\&, LUX ,EX))
10́10 20 EONTINUE
1620 STOP
1630 END

```

Computer Program No. 4
```

1C FILES ?M?DA: ?M?.R1:?M?.R2:?M?.R3;?M?.R4;MOUT
2O DIM D(44,4),S(44,4),C(44,4),X(44),Y(44),H(4),L(44)
3) SCRATCH\#G
40 FOR I=1 TO 4A
50 INPUT\#I,L,X1,X2,S(I,1),D(I,1),S(I,2),D(I,2),S(I,3),D(I,3),S(I,4),D(I,4).
6 0 ~ N E X T ~ I ~ I ~
65 PRINT"TYPÉ MAX. VALUE FOR X-AXIS DAYLIGHT FOR GRAPH I MI="
70 INPUT M1
75 PRINT"TYPE MAX. VALUE FOR X-AXIS DAYLIGHT FOR GRAPH 2 M3="
30 INPUT M3
8S PRINT"TYPE HAX. VALUE FOR X-AXIS DAYLIGHT FOR GRAPH 3 MS="
90 INPUT MS
O5 PRINT"TYPE MAX. VALUE FDR X-AXIS DAYLIGHT FOR GRAPH 4 M7="
100 INPUT MT
105 PRINT "TYPE 'MAX. VALUE FOR Y-AXIS DIRECT SUNLIGHT FOR GRAPH I M2="
110 INPUT M2
115 PRINT"TYPE MAX.VALUE FOR Y-AXIS DIRECT SUNLIGHT FOR GRAPH 2 M4="
120 INPUT M4
125 PRINT"TYFE MAX.VALUE FOR Y-AXIS DIRECT SUNLIGHT FOR GRAPH 3 MG="
130 INPUT MG
135 PRINT"TYPE MAX.VALUE FOR Y-AXIS DIRECT SUNLIGHT FOR GRAPH 4 MB="
140 INPUT M8
150 FOR I=1 TO 4
160 J=I+1
170 INPUTHJ,N(I)
190 FOR K=1 TO N(I)
190 INPUTHI,C(K,I),X1,X2
200 NEXT K
210 NEXT I
220 FOR P= 1TO 4
230 IF P=1 THEN 270*
240 IF P =2 THEN 300
250 IF P=3 THEN 330
260 IF P=4 THEN 360
270 T=M1
280 R=M2
290 GOTO 380
300 T=M3
310 R=M4
320 GOTO 380
330 T=M5
340 R=M6
350 GOTO 380
360 T=M7
370 R=MS
380 K=-1
390 PRIHT\#6,7,T,R,999
400 PRINTH6,4,999,999,999
410 FOR I=1 TO 44
420 K=K+1
430 X(I)=(K)*2.5+D(I,P)/T*2.3
440 Y(I)=S(I,P)/R*6.9
450 IF I=5 THEN 670..
460 IF I=6 THEN 670
470 IF I=7 THEN 670
480 IF I=8 THEN }67
490 IF I=13 THEN 670
500 IF I=14 THEN 670
510 IF I=15 THEN 670
520 IF I=16 THEN }67
530 IF I=21 THEN }67
540 IF I=22 THEN 670
550 IF I=23 THEN 670
560 IF I=24 THEN 670
570 IF I=29 THEN 670
5S0 IF I=30 THEN }67
590 IF I=31 THEN 670
600 IF I=32 THEN 670
610 IF I=37 THEN 670
620 IF I=38 THEN 670
630 IF I=39 THEN 670.
640 IF I=40 THEN 670
650 PRINT\#G.I,I,X(I),Y(I)
660 GOTO 680
670 PRINTHG,G,I,\dot{X}(I),Y(I)
650 IF K``3 THEN }70
690 K=-1
7 0 0 ~ N E X T ~ I ~ I
710 L=C(1,P)
720 PRINT\#6,2,X(L),Y(L).999
730 FOR I=2 TO N(P)
740 L=C(I,P)
750 PRIMTH6,3,X(L),Y(L).999
7 6 0 ~ N E X T ~ I ~
7 7 0 ~ N E X T ~ P ~
780 PRINTH6,5,999,999,999
790 STOP
800 END

```

Computer Program No. 5
```

10*\#RUN=(ULIE)LIBRARY/GINO/GINOLIB
20 CALL ATTACH(12,"MOUT;",1,0,IREP,)
30 EALL RCO(IO.'PFILE;')
40 CALL UNITS(10.0)
SO CALL DEUPAP (50.0.40.0.0)
60 CHEZ=0.252/2.0
70 EALL BROKEN(1)
BO CALL MOUTO2(0.0.1.0)
90 CALL LINTO2(0.0.22.0)
100 CALL MOUTO2(0.0.22.0)
110 CALL LINTO2(30.0.22.0)
120 CALL MDUTO2(0.0,1.0)
130 CALL LINTO2(30.0.1.0)
140 CALL MOUTO2(30.0.1.0)
150 CALL LINTO2(30.0.22.0)
160 CALL MOUTO2(0.0.7.0)
170 CALL LINTC2(1.50.7.0)
180 CALL MOUTC2(1.50.7.0)
190 CALL LINTO2(1.50.1.0)
200 CALL MOUTO2(1.0.7.0)
210 CALL CHAANG(-90.0)
290 CALL CHASIZ(CHSZ*3.0.0.CHSZ*3.0)
230 CALL CHAHOL'' 1 :F:HIEE:SI1 *.')
240 CALL BROKEN(O)
250 CALL CHASIZ(CHSI*1.5.CHSZ*1.5)
260 CALL EHAANG(0.0)
270 CALL MOUTO2(3.50.19.0)
280 CALL CHAHOL('H= 1.0OM*.')
290 CALL MOUTOL(6.0,19.0)
300 EALL CHAHOL ('H= 1.25K*.')
310 CALL MOUTO2(8.5,19.0)
320 CALL CHAHOL('H= 1.50M*.')
S30 CALL MOUTO2(11.0,19.0)
34O CALL CHAHOL ('H= 1.75M*.')
350 CALL MOUTO2(17.50.19.0)
360 CALL CHAHOLP'H= 1.00M*.')
370 CALLL MOUTO2(20.0.19.0)
380 CALL CHAHOL('H= 1.2EM*.')
390 CALL MOUTO2(22.50.19.0)
400 CALL EHAHOLS'H= 1.SOK*.')
410 CALL MOUTO2(25.0.19.0)

```

```

430 CALL MOUTO2(3.5.10.0)
440 CALL CHAHOL('H= 1.OOM*:')
45O CALL MOUTO2(6.0,10.0)
460 CALL CHAHDL('H= 1.25M**')
4 7 0 ~ C A L L ~ M O U T O 2 (8 . 5 , 1 0 . 0) ~
400 CALL CHAHOL('H= 1.50M*.')
4 9 0 CALL MOUTO2(11.0.10.0)
500 CALL CHAHOL('HE 1.75M*.')
510 CALL MOUTO2(17.50,10.0)
520 CALL CHAHOL('H=. 1.0OM*.')
530 CALL MOUTO2(20.0.10.0)
540 CALL EHAHOL('H=1.25M*.')
350 GALL MOUTO2(22.30,10.0)
560 EALL EHAHIOL('H=1.50M*.')
5 7 0 ~ C A L L ~ M O U T O 2 (2 5 . 0 . 1 0 . 0) ~
530 CALL CHAHOL ('H= 1.73M*.')
5 9 0 ~ C A L L ~ M O U T O 2 (1 0 . 5 0 . 1 1 . 5 0) ~
600 CALL CHAHOL(" Daviight -LUX-*.')
E1O CALL MDUTO2(3.0.11.0)
620 EALL CHAHOL(' I NTE RHDUSE D I ST ANGE 22M (2S).-**.*)
630 EALL MOUTO2(24.30.11.50)
640 CALL CHAHOL(' Daylight -LUX-*.')
650 CALL MOUTO2(17.0.11.0)
60 CALL CHAHOL(' I NT E R H OUSE D I STA N C E 38M (15). -*.')
670 CALL MOUTC2(10.50.2.50)
\epsilon80 CALL CHAHOLP" Daylight -LUX-*.')
600 CALL MOUTO2(3.0.2.0)
7OO EALL CHAHOLR' I NT ER.HOUSE DISST ANCE 3OOM G\&F-*.")
710 EALL MOUTO2(24.50.2.50)
720 CALL CHAHOL('Daylight -LUY-*.')
730 CALL MOUTO2(17.0.2.0)
70 CALL CHAHOL'' I NTER HEUSE DISTTANCE 38M (1S) STAIREFGE -*.')
75 CALL CHAAING(90.0)
760 CALL MOUTO2(2.10.14.0)
70 EALL EHAHDL('Direct Suniight ()*.')
780 CALL MOUTC2(16.10.14.0)
790 CALL EHAHOL('Direst Sunjight ()*.')
800 EALL MOUTO2(2.10,3.0)
310 EALL EHAHOL('Direet Sunlight ()*.')
E20 CALL MOUTO2(16.10.3.0)
a30 EflLL CHAHOL('Direct Surilight ()*.')
840 EALL CHAAING:0.0)

```
```

E50 CALL CHASIZ(CHSZ,CHSZ)
B60 IDIAG=1
870 \& READ(12,i00)KODE, X, Y,Z
050 100 FORMAT(U)
890 IF(KODE.LT.1.OR.KODE.GT.7)GOTO 959
900 GOTD(51,52,53,54,55,56,57),KODE
910 51 NUM=X
s20 X=Y
930 Y=Z
940 CALL MOUTO2(X,Y)
950 CALL SYMBOL(3)
960 CALL MOVEY2(.5,0.0)
970 CALL CHAINT(NUM.2)
980 GOTO I
990 56 NUM=X *;
1000 X=Y.
1010 Y=Z
1020 CALL MOUTO2(X.Y)
1030 CALL SYMBOL(2)
1040 CALL MOVBYZ(-.5,0.0)
1030 CALL CHAINT (NUM, 2)
1060 GOTD I
1070 S2 CALL MOUUTO2(X,Y)
1080 GOTO-1
1090 E3 CALL LINTO2(X.Y)
1100 GOTO 1
1110 34 CDNTINUE:
1120 IF(IDIAE.EE.1)GOTO 200
1130 IF(IDIAG.EQ.2)GDTO 470
1140 IF(IDIAG.EO.3)GDTO 490
1150 IF(IDIAG.ER.4)GOTO 510
1160 IF(IDIAG.ER.5)GOTO 55
1170 200 CALL SHIFT2(3.0,12.0)
1180 1000 CALL AXIPOS(1,0.0,0.0.6.9,2)
1190 CALL AXISCA(3.8,0.0,R,2)
1200 CALL AXIDRA(-1,-1,2)
1210 XU=0.0
1220 DO 10 I=1.4
1230 CALL AXIPOS(1,XV,0.0.2.5,1)
1240 CALL AXISCA(3,5,0.0.T,1)
1250 EALL AXIDRA(1,1,1)
1260 XV=XU+2.3
1270 IF(I.ER.4)GOTO 9
1280 GALL BRDKEN(2)
1290 CALL MOUTO2(XU.0.0)
1300 CALL LINTOZ(XU,6.9)
1310 CALL BROKEN(O)
1320 9 CDNTINUE
1330 10 EONTINUE
1340 GOTO 900
1350 470 CALL SHIFT2(14.0,0.0)
1330 GOTO 1000
1370 490 CALL SHIḞT2(-14.0.-9.0)
1380 GOTO 1000
1390 E10 CALL SHIF̈T2(14.0.0.0)
1400 GOTO 1000
1410 900 IDIAG=IDIAG+1
420 GOTO !
1430 55 CALLL DĖVEND
1440 STOP
1450 57 R=Y
1460 T=X
1470 60TO 1
1480 999 PRINT, 'MIRSIM.
14PO STOP
1500 END

```
```


[^0]: Table 2.4 Comparison of DISC and Mahoney.

[^1]: Table 2.6c MAHONEY TABLE DIAGNOSIS

[^2]:

 Sum Risf:

