
Ultra-slow dynamics of localised modes

in the Discrete Nonlinear Schrödinger Equation

Liviu Florin Chirondojan

Computational Nonlinear and Quantum Optics Group

Department of Physics

University of Strathclyde, Glasgow

A thesis presented for the degree of

Doctor of Philosophy

May 28, 2019



Declaration of Authenticity and Author’s Rights

This thesis is the result of the author’s original research. It has been composed by

the author and has not been previously submitted for examination which has led to

the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material contained in, or

derived from, this thesis.

Signed: Liviu Florin Chirondojan

Date: May 28, 2019

i



Contents

Declaration of Authenticity and Author’s Rights . . . . . . . . . . . . . . . . i

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Introduction 6

1.1 From the Gross-Pitaevskii equation to the DNLSE . . . . . . . . . . . . 9

1.2 Discrete Breathers in the DNLSE . . . . . . . . . . . . . . . . . . . . . . 17

1.3 The structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Numerical Methods and Numerical Simulations of the DNLSE 36

2.1 Presentation of Numerical Methods . . . . . . . . . . . . . . . . . . . . . 36

2.1.1 State Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.2 Langevin Heat Baths. Grand-Canonical Set-ups . . . . . . . . . 39

2.1.3 Numerical Evaluation of Thermal Parameters . . . . . . . . . . . 44

2.1.4 Calibration of states with phase diagrams in literature . . . . . . 48

2.1.5 State saving/loading . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 Numerical Simulations of Breather Dynamics . . . . . . . . . . . . . . . 53

2.2.1 Lack of Breather Tails in Large Backgrounds . . . . . . . . . . . 53

2.2.2 Breather life-times in large backgrounds . . . . . . . . . . . . . . 57

2.3 Numerical Low-Pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . 62

ii



CONTENTS iii

2.3.1 Building a Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . 62

2.3.2 Behaviour of Slow/Fast Quantities . . . . . . . . . . . . . . . . . 64

3 Review of Extreme Events in the DNLSE 69

3.1 Analytical Investigation of Dimer Systems . . . . . . . . . . . . . . . . . 69

3.2 Partial Averaging near Resonance . . . . . . . . . . . . . . . . . . . . . 75

3.3 Numerical Investigation - Phase Scanning in the case of Catastrophic

Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Numerical Investigation - Amplitude Scanning in the case of Catas-

trophic Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Multiple Time Scale Analysis of Pinned Breathers 87

4.1 Separation of Time Scales - Outline of the general procedure . . . . . . 89

4.1.1 Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.2 Decoupling due to the separation of time scales . . . . . . . . . . 96

4.2 First Non-Trivial Terms in The Perturbative Calculation . . . . . . . . . 98

4.3 Higher Order Terms in the Perturbative Calculation . . . . . . . . . . . 102

4.4 Derivative at order O(ε2) . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Fluxes for the Hamiltonian and the Norm at order O(ε) for a Bose Hub-

bard Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 Fluxes for the Hamiltonian and the Norm at order O(ε) for a dimer

containing a breather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Solvability Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8 Breather fluctuations and comparison with simulations . . . . . . . . . . 115

4.8.1 Size of fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.8.2 Stability of the trimer configuration . . . . . . . . . . . . . . . . 119

4.9 A less fluctuating quantity. Defining a slow norm . . . . . . . . . . . . . 122

4.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



CONTENTS iv

5 Averaging, Effective Hamiltonians and Adiabatic Invariants 126

5.1 Time averaging of the DNLSE dynamics . . . . . . . . . . . . . . . . . . 126

5.2 The Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Effective Hamiltonian vs. Bose Hubbard Hamiltonian . . . . . . . . . . 141

5.4 Diffusion of the breather norm . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 Adiabatic Invariants and strong interactions with the background . . . . 150

6 Heterogeneous Multiple Time Scale Methods - Hybrid Integration

Schemes and Multiple Breather Systems 155

6.1 Single Breather systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1.1 Building a Hybrid Integration Scheme . . . . . . . . . . . . . . . 155

6.1.2 Results produced by the Hybrid Integration Scheme . . . . . . . 159

6.1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2 Multi-Breather Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2.1 Writing a Heterogeneous Multiscale Method Algorithm for Lat-

tices with Multiple Breathers . . . . . . . . . . . . . . . . . . . . 167

6.2.2 An example of a Strong Interaction with a Large Excitation . . . 170

6.2.3 The Applicability Domain of the Multi-Breather Algorithm . . . 175

6.2.4 Results: Hybrid Integrator for Multi Breather Lattices . . . . . . 176

6.3 Thermodynamics and the DNLSE. Uses of the Hybrid Integration Scheme178

6.3.1 Thermalisation of the background . . . . . . . . . . . . . . . . . 178

6.3.2 Thermalisation of the whole system - Breather decay . . . . . . . 182

6.3.3 Hybrid Integration for Different Background Temperatures . . . 185

7 Conclusions 190

Bibliography 192



Acknowledgements

I would like to thank my supervisors, Gian-Luca Oppo and Antonio Politi, for

making this project possible and for critically reading this thesis.

I would also like to thank my parents and sister for all their help. Last but not

least, I would like to thank Suruj and Andrew for all the emotional support.

This project was funded by the Carnegie Trust for the Universities of Scotland.



Abstract

The work presented in this thesis focuses on the ultra-slow dynamics of localised

modes (breathers) for the Discrete Nonlinear Schrödinger Equation (DNLSE), and on

the mechanisms which trigger their astronomically slow decays.

The thesis starts with a literature review of breathers and the DNLSE, giving in-

formation about the theoretical background of the project. It then continues with a

description of the numerical methods used throughout the project, and of the general

behaviour of the DNLSE under numerical integration.

Discrete breathers in Bose-Einstein Condensates in optical lattices or in arrays

of optical wave-guides oscillate with frequencies which are much higher than those

present in the spectrum of the background. Hence, the interaction between localized

breathers and their surroundings is extremely weak, allowing the development of a

multiple-time scale perturbation expansion, which is presented in Chapter 4. This

analysis will predict a lower bound of the breather drift times and will explain the

topological differences between breathers in dimers, trimers and in spatially extended

one-dimensional lattices even in the presence of transport from boundary heat baths.

These analytical boundaries hold true for lattices of any length, due to the highly

localised nature of breathers.

We later look closer at the exceedingly slow thermalisation occurring in the DNLSE.

We provide evidence that the breather norm is an adiabatic invariant, and this freezes

the dynamics of a tall breather. Consequently, relaxation proceeds via rare events,

where energy is suddenly released towards the background. A more detailed investiga-

tion of these events is provided in Chapter 5.

In Chapter 6, a Heterogeneous Multiscale Method is introduced. We take advantage

of the fast frequency of the breather oscillation to perform averaging, and to build

a numerical integrator which behaves similarly to a predictor-corrector propagator,

speeding up the running times by a factor of at least 5.
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Foreword

The fascination with the properties and elusive nature of matter originates from

the very beginning of human civilisation. An atom is the smallest part of an element

that can still keeps the physical properties of that element. Its etymology comes from

Ancient Greek: a- is a prefix used to negate nouns (now borrowed by multiple modern

European languages), and temnein comes from the verb ‘to cut’. A literal interpre-

tation of this juxtaposition would be ‘impossible to break’. The fact that matter was

structured this way was the idea of Leucippus and Democritus 2400 years ago. Today

we have been able to break the atom and see components of on oddity beyond the

imagination of the Greek philosopher. Knowledge has become specialised and mod-

elling of nature has moved from schematic representations to complex theories which

are verified with the help of machines.

We no longer think of matter as being constituted of simple building bricks, which

have clear boundaries and simple shapes. Atoms now are governed by differential equa-

tions which are more complex than those which describe the Solar System. The modern

development of quantum physics and the contemporary computational revolution make

this era ideal for the study of the atom and of the microscopic world. Today, most of

humanity is aware of the enormous energies which govern the atomic world, which

unfortunately have made themselves visible through very destructive means.

The canonical states of matter consist of solids, liquids and gases. But modern

physics deals with a plethora of other states which do not fall under this classical

categorisation: liquid crystals, super-fluids, plasmas, and Bose-Einstein Condensates

are some of the states which break the established trichotomy. The work covered in

this thesis focuses on Bose-Einstein Condensates and dilute gases, which are exotic

states of matter, that must be created under laboratory conditions since they do not
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occur spontaneously in our habitats.

With the work of de Broglie, it became apparent that matter and waves are not

separate entities in quantum physics, but notions which coexist for both light and

atomic matter. De Broglie famously linked the wave-length (λ) of a corpuscule with

its momentum (p), through the equation [1]

λ = h/p, (1)

where h = 6.63× 10−34 m2 × kg × s−1 was used to denote Planck’s constant.

When the average distance between atoms becomes smaller than their de Broglie

wave-length because of cooling below a very low threshold, they start to condense into

a single wave-function, and act as a Bose-Einstein Condensate. This type of behaviour

was first hypothesised by Satyendra Bose and Albert Einstein in 1925 [2] and was first

realised in an experimental set-up in 1995, in Colorado by Cornell and Wieman [3].

The University of Strathclyde was the first place in Scotland to create an experimental

BEC in 2003.

While the early development of quantum mechanics forced the rapid expansion

of linear algebra, and gave rise to a rich formalism through the works of Bohr, Pauli,

Heisenberg, Schrödinger and many others, modern quantum physics also deals with non-

linear problems. Bose-Einstein Condensates are described by a non-linear Schrödinger

Equation, with rich dynamics, strongly influenced by chaos. Lorenz discovered chaos in

1963, almost half a decade after Bose’s initial hypothesis on the existence of BECs. Due

to the recent developments in computational power, and due to the keen contemporary

interest in exotic states of mater, this is an ideal time for the computational study of

BECs.

The work presented in this PhD thesis focuses on the theoretical and computa-

tional analysis of models describing BECs in optical lattices formed by two counter-

propagating laser beams. Remarkably, the same dynamical equations can be applied
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to describe the propagation of laser light in an array of optical fibres, thus extending

greatly the possible applications of the results discussed in this thesis.



Chapter 1

Introduction

In order to study the physics of Bose-Einstein Condensates (BECs) we will use the

equation derived by Gross and Pitaevskii in 1961 [4–6]. This equation is also referred

to as the Non-Linear Schrödinger Equation (NLSE) and it is a very powerful tool not

only in physics, but also in other scientific fields, such as biology, chemistry and multi-

disciplinary engineering areas like material science. One can discretise the NLSE using

finite difference calculus [7] to arrive to the Discrete Nonlinear Schrödinger equation

(i.e. the DNLSE, derived in Section 1.1). As physicists, we are mostly interested in

the applications of the DNLSE which focus on the dynamics of BECs [8] and on the

propagation of light in arrays of optical wave-guides [9]. The DNLSE is characterised

by localised modes known as breathers, localised modes which periodically pulsate in

time. The stability of breathers in the presence of noise is a highly complex issue,

as it will become apparent throughout extensive parts of this work. Breathers are

also characteristic of vibrational modes present in macro-molecules, appearing in DNA

and RNA molecules [10, 11], in protein [12] and in polymers [13]; they are also ways

through which topological defects propagate in solid state crystals [14, 15]. The study

of breathers is also an issue of strong relevance for coupled quantum transport, which

is of high interest in the current scientific context [16–18].

The Non-Linear Schrödinger Equation, also known as the Gross-Pitaevskii equation,

6
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developed by Lev Pitaevskii and Eugene Gross [4–6] in 1961 takes the following form

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + U(r, t) + g|ψ(r, t)|2

]
ψ(r, t), (1.1)

where ψ(r, t) is the wave-function which evolves under the action of the NLSE, in the

presence of a periodic external potential U(r, t), for a scattering amplitude of g, which

is defined as

g =
4π~2aS
m

, (1.2)

where ~ has its canonical meaning, representing the reduced Planck constant ~ ≡ h
2π

and aS is the scattering length of the bosons, which all have the identical mass m.

Moreover, the wave function is normalised, such as

∫∫∫
dV |ψ|2 = N, (1.3)

where N is the number of bosons in the condensate.

The NLSE (1.1) is a very general differential equation, which proves to be highly

effective to describe the behaviour of bosons in the presence of external potentials.

However, the wave-function depends on a three dimensional position vector, through

the generic variable r.

The focus of this work is on one-dimensional lattices, which are generated using two

counter propagating lasers. The external potential will therefore take the shape of a

standing wave with a period equal to half of the wave-length of the trapping lasers. It

is therefore useful to arrive at a discrete one-dimensional approximation of the NLSE,

which allows the implementation of elegant numerical investigative techniques.

Our interest on one-dimensional lattices arises from modern experimental reali-

sations on one-dimensional BECs [19, 20], through Feshbach resonance trapping [21].

These condensates can be either doughnut-shaped (as we see depicted in Figure 1.1),

or can be cigar-shaped (as we see in Figure 1.2)). BECs are usually created with di-
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lute alkali gases, using elements from the first group in the periodic table. This is

also the case for the two examples provided in Figures 1.1 and 1.2 where 23Na and

7Li have been used. Alkali metals have simple orbital configurations (and therefore

obey simple models for their inner energies), and are bosons, which makes them ideal

candidates [22,23] for the cooling techniques which are currently employed by the cold

atoms community [24], such as Doppler cooling and magnetic trapping techniques.

One-dimensional condensates only require one degree of freedom when describing

their wave-functions analytically. This axis is suitably chosen, depending on the shape

of the condensate; it is either the longitudinal coordinate, which measures the position

in the cigar-shaped condensate where we measure the mass density or the polar angle,

which measures the amount of matter present under a certain angle. In both cases we

concentrate all the mass from a surface element (a cross section of the condensate) into

a single point, reducing the dimensionality of the problem from 3 to 1.

Figure 1.1: Experimental realisation of a doughnut-shaped BEC by N. Murray et
al [19] for a cloud of 4×105 23Na atoms. (a) Experimental Realisation; (b) Theoretical
Prediction; (c) Diametric Cross Section.
Reprinted figure with permission from C. Clark and Physical Review A. Copyright
(2013) by the American Physical Society http://dx.doi.org/10.1103/PhysRevA.88.

053615

http://dx.doi.org/10.1103/PhysRevA.88.053615
http://dx.doi.org/10.1103/PhysRevA.88.053615
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Figure 1.2: Experimental realisation of a cigar-shaped BEC by K. Strecker et al [20]
The left panels correspond to profiles of BECs with repulsive interactions, while the
right panel corresponds to attractive boson-boson interactions. Here, the condensate
consists of 3× 105 7Li atoms.
Reprinted figure with permission from Springer Nature. Copyright (2002) by Springer
Nature https://doi.org/10.1038/nature747

1.1 From the Gross-Pitaevskii equation to the DNLSE

Throughout this work we will refer to one-dimensional lattices, and we automatically

imply that we are referring to cigar-shaped condensates, where the spatial dependence

is solely limited to the longitudinal axis z.

The differential equation from (1.1) originates from a generic action functional of

the type

S3D =

∫
dt〈L̂〉 =

∫∫∫∫
dxdydzdt ψ∗L̂ψ, (1.4)

where 〈X̂〉 denotes the expectation value of a given operator X̂. Since we are dealing

with complex functions, we have ket vectors of the type |ψ〉 ≡ ψ ∈ C, and bra vectors

of the type 〈ψ| ≡ ψ∗. The scalar product is defined using the canonical definition

〈ψ|ξ〉 =
∫∫∫

dxdydz ψ∗ξ

The operator L̂ is the Lagrangian of the NLSE and is equal to

L̂ ≡ i~ ∂
∂t

+
~2

2m
∇2 − U(r, t)− 1

2
g|ψ(r, t)|2, (1.5)

which is similar to the cumulative operator acting on |ψ〉 in the NLSE (1.1) after all the

terms have been moved on the same side, with the only difference at the nonlinear term,

https://doi.org/10.1038/nature747
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which now has a pre-factor of 1
2 . As one might expect, the only component which will

not obey the additive laws of linear algebra will be the non-linearity. This apparently

minor nuisance will make all analytical studies of the NLSE highly complex and will

make the use of numerical investigations almost compulsory.

We can therefore reconstruct the equation using the Euler-Lagrange formalism on

the action

S3D =

∫∫∫∫
dxdydzdtψ∗

(
i~
∂

∂t
+

~2

2m
∇2 − U(r, t)− 1

2
g|ψ|2

)
ψ. (1.6)

In the case of cigar-shaped condensates, we are dealing with systems with cylindrical

symmetries, where the potential on the z axis and in the plane transversal to this are

additive [25]. This means that the periodic potential becomes

U(r, t) =
1

2
mω2
⊥(x2 + y2) + V (z) (1.7)

where ω⊥ is the transversal trapping frequency, and is much higher than the lattice

frequency along z. This induces a strong separation of spatial scales, which allows us

to focus on z only. The strong decoupling between the spatial coordinates allows us to

write the wave function [25] as a product of the form

ψ(r, t) = φ(x, y, t;σ(z, t))× f(z, t). (1.8)

The classical assumption made here is that the transversal potential is deep enough

that we always find ourselves in the ground state of a quantum harmonic oscillator,

given by a Gaussian of the sort

φ(x, y, t;σ(z, t)) =
exp

[
− x2+y2

2σ2(z,t)

]
√
πσ(z, t)

. (1.9)

From this Gaussian dependency (1.9), we see that the wave-function decays very
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fast in the transversal plane, away from the z axis given by x = y = 0. The cigar-shaped

condensate will consist of multiple parallel disks of the same radius. This radius is very

well approximated by the quantity σ(z, t).

The wave-function ψ(u, t) can be replaced with the product Ansatz from (1.8) in

the action functional. One can also take advantage of the fact that the wave-function

is strongly confined along the z-axis, to approximate the Laplacian operator with ∇2 ≈
∂2

∂x2
+ ∂2

∂y2
. After performing all integrations along the x and y axes, we can reduce the

action functional to

S1D =

∫∫
dzdtf∗

(
i~
∂

∂t
+

~2

2m

∂2

∂z2
− ~2

2mσ
−

−V (z)−
mω2
⊥σ

2

2
− 1

4πσ2
g|f |2

)
f.

(1.10)

Applying the product Ansatz helped us reduce the Lagrangian density to L1D =

f∗
(
i~ ∂
∂t + ~2

2m
∂2

∂z2
− ~2

2mσ −V (z)− mω2
⊥σ

2

2 − 1
4πσ2 gff

∗
)
f . This Lagrangian contains three

generalised coordinates {q1 = f, q2 = σ, q3 = f∗}, which must obey the Euler-Lagrange

equations

∂L1D

∂qi
− ∂

∂t

(∂L1D

∂q̇i

)
= 0 ∀i. (1.11)

Applying these on the one-dimensional Lagrangian density leads to two independent

equations (the equations for f and f∗ lead to identical equations, since they are simply

complex conjugates of each other)

(
i~ ∂
∂t + ~2

2m
∂2

∂z2
− ~2

2mσ − V (z)− mω2
⊥σ

2

2 − 1
2πσ2 g|f |2

)
f = 0

~2
2mσ3 −

mω2
⊥σ

2 + 1
4πσ2 |f |2 = 0.

(1.12)

If we introduce the notation a2
⊥ ≡

~
2m , we can express the value of the standard

deviation of the Gaussian modes from the second Euler-Lagrange equation

σ2 = a2
⊥
√

1 + 2as|f |2, (1.13)
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where aS is the scattering length of the bosons.

At this stage, one can introduce σ into the first Euler-Lagrange Equation to arrive

at the one-dimensional Gross-Pitaevskii Equation

i~
∂f

∂t
=

[
− ~2

2m

∂2

∂z2
+ V (z) +

g|f |2

2πa2
⊥
√

1 + 2as|f |2
+

~ω⊥
2

( 1√
1 + 2as|f |2

+
√

1 + 2as|f |2
)]
f

(1.14)

which is now fully confined to the z-axis.

In the dilute gas regime, the scattering length is very small, such that 2as|f |2 � 1,

therefore one can make the approximation σ2 = a2
⊥
√

1 + 2as|f |2 ≈ a2
⊥, which dramat-

ically simplifies the one-dimensional Gross-Pitaevskii equation (i.e. the NLSE) to

i~
∂f

∂t
=

[
− ~2

2m

∂2

∂z2
+ V (z) +

g|f |2

2πa2
⊥

]
f, (1.15)

the term ~ω⊥ has been left out, since it only induces a rotation with a constant fre-

quency, which does not pose any interesting physics to our problem.

Using the full analytical expression of the non-linearity coefficient g (1.2), and the

fact that the periodical potential is usually modelled as the square of a sinusoidal

function, i.e. V (z) = E0 sin2
(
πz
L

)
, where E0 is a parameter which tunes the depth of

the potential and 2π
L is the lattice spatial frequency, we arrive at

i~
∂f

∂t
=

[
− ~2

2m

∂2

∂z2
+ E0 sin2

(πz
L

)
+ 2~aSω⊥|f |2

]
f. (1.16)

We now see that the lattice potential, given by E0 sin2
(
πz
L

)
can also be written as

E0 sin2
(πz
L

)
=
E0

2
exp

(
0× 2πz

L

)
− E0

4
exp

(
i× 2πz

L

)
− E0

4
exp

(
− i× 2πz

L

)
(1.17)

where 2π
L will be the reciprocal lattice vector (a periodicity of L corresponds, unsur-
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prisingly to a periodicity of 2π
L in reciprocal space).

At this stage, it is convenient to rescale the variables, as done by Efremidis et al.

in Ref. [7] and define

T0 = mL2

4~

T = t
T0

Z = 2z
L

L1 = ω⊥|aS |mL
2

2~

u = f
√
L1

Er = 4~2
mL2

V0 = E0
Er
,

(1.18)

which change the differential equation to

i
∂u

∂T
=

[
− 1

2

∂2

∂Z2
+ V0 sin2

(πZ
2

)
+ sign (aS)|u|2

]
u. (1.19)

The lattice spacing L has typical values of the order of magnitude 1µm (half of the

wave-length of the trapping laser), while the lattice depth V0 usually takes values of

the order 10Er but can reach to values up to 1000Er for very deep potentials. Er is

the recoil energy defined at (1.18) and represents the kinetic energy of an atom after

emitting a single photon if it was initially at rest.

At this stage, the differential equation is reduced to one dimension, translated into

dimensionless units, and as compact as it can possibly get. In the case when the periodic

potential is deep enough to allow the existence of the first Wannier-Bloch mode, we can

build the discrete version of this equation. We begin this process by isolating the linear

part of (1.19), and looking at its band structure. This implies solving the eigenvalue

equation

Ev = −1

2

∂2v

∂Z2
+ V0 sin2

(πZ
2

)
v. (1.20)

that will dictate the shape of this band structure. The Ansatz for the potential is

periodic (the square of a sinusoidal), therefore we expect the eigenfunctions to be pe-
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riodic as well. Under the Floquet-Bloch theory [7] the eigenfunctions take the shape

vk(Z) = Vk(Z) exp(ikZ) (an Ansatz similar to the Fourier Series presented at (1.17)),

where k is a wave vector which characterises the momentum within the lattice, and

Vk(z) is a periodic function with a periodicity identical to that of the optical lattice.

Within the first Brillouin zone, defined as the smallest possible region confined by the

Bragg hyper-planes of the reciprocal lattice [26], Vk is unique. Here we are making use of

the fact that if we know how a periodic function behaves for a single period, we know ev-

erything about its general shape. The first Floquet-Bloch mode both for the centre and

the end of the band is a Gaussian centred around Z = 0. In between bands, the modes

will decay exponentially with a coefficient ki = −2E− π2

4 +V0+π

√
2E − V0 +

(
V0
π

)2
[7].

This exponential decay also represents the origin of the exponentially decaying tails of

the soliton, which we will describe in more detail later on. The DNLSE is derived in

the tight-binding approximation, under the assumption that atoms are strongly bound

by the potential well, which is deep enough to allow discretisation. The depth should

not be too large though, so that only the ground state of the Floquet-Bloch modes (the

Gaussian) is accessible.

At this stage, we can return to the equation from (1.19) and use the Wannier

Ansatz [7], which is very popular in the literature

u(Z, T ) ≡
∑
n

Cn(T ) exp(−iET ) |φn(Z)〉 , (1.21)

where E denotes the eigen-energies of the linear part of the Schrödinger equation, and

the eigenfunctions |φn(Z)〉 have been normalised. The exponentially decaying rate for

the modes, together with the normalisation condition implies that

1 = 〈φn|φn〉 � 〈φn|φn+1〉 � 〈φn|φn+2〉 . (1.22)

At the base of the bands k = 0, and all eigenstates |φn(Z)〉 are real. We can now

use this information, together with the Wannier Ansatz from (1.21), to turn the NLSE
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from (1.19) into

∑
n

(iĊn |φn〉+ ECn |φn〉) =
∑
n

(
− 1

2
Cn

∣∣∣ ∂2

∂Z2
φn

〉
+

+Cn

∣∣∣V0 sin2
(πZ

2

)
φn

〉
+ sign(aS)|Cn|2Cn |φ3

n〉
)
.

(1.23)

The eigenvalue equation (1.20) can be applied at all locations with Z = mD, where

D is the spatial periodicity of the lattice, and m ∈ Z. The underlying assumption is

that at Z = 0 we start with the bottom of a well and this follows from the initial Ansatz

V (Z) = V0 sin2
(
πZ
2

)
. The eigenvalue equation at the bottom of the wells becomes

ECm |φm〉 = −1

2
Cm

∣∣∣ ∂2

∂Z2
φn

〉
+ Cm

∣∣∣V0 sin2
(πmD

2

)
φn

〉
. (1.24)

The eigenvalue equation at (1.24) can be subtracted from the full expression of

the NLSE at (1.23). Once this process is completed, one can apply the tight-binding

approximation to arrive at the more compact expression

iĊn = ηCn − κ(Cn−1 + Cn+1) + γ|Cn|2Cn (1.25)

where η, κ and γ are the dominant terms in what is left from the sums at (1.23)

after the subtraction of the eigenvalue equations. All other terms are neglected, since

they are assumed to decay exponentially fast. One can now use the transformation

Dn ≡ Cn exp(−iηT ) to reduce the parameter space and arrive to the more friendly

equation

iḊn = −κ(Dn−1 +Dn+1) + γ|Dn|2Dn, (1.26)

which is almost identical to (1.25), but it is in a rotational frame where the frequency η

has disappeared. Ultimately, we arrive to the Discrete Nonlinear Schrödinger Equation
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(DNLSE) which will be used throughout this work, given by

iżn = −2|zn|2zn − zn−1 − zn+1. (1.27)

This will be the central topic of the thesis. The parameters γ and κ can be scaled

out. Here, the choice was to set them at γ = −2 and κ = 1. These parameters will

be kept constant throughout the work. Occasionally, the DNLSE will be modified to

allow dissipation, and will take the shape [27]

iżn = −2|zn|2zn − zn−1 − zn+1 − iΓznδn,1 − iΓznδn,M , (1.28)

where M is the length of the chain, δjk is the Kronecker delta, and Γ is a dissipation

coefficient, which is usually set equal to 1, when the condensate is allowed to dissipate.

In some cases, the condensate will be set to interact with thermostats, which will

be modelled as Langevin heat baths. This kind of approach, however, is discussed

in deeper detail in the main body of the thesis, where we will touch the analytical

considerations, the numerical algorithms and the calibration checks associated with

stochastic heat baths.

The DNLSE is a complex differential equation, which can be split into real and

imaginary components. Most of the simulations will be ran in Matlab, which has pre-

existent libraries that can integrate complex differential equations. These functions

however perform very poorly, so that a split into real and imaginary parts is essential

to ensure a good accuracy of the results. Moreover, the fourth-order Runge-Kutta

integrator already available in the library was deemed as unreliable, and most integrator

functions have been re-written entirely. Most of the problems studied in this thesis deal

with open systems, where the use of symplectic integrators, such as those developed by

Yoshida [28] is impossible.
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1.2 Discrete Breathers in the DNLSE

As for most non-linear equations, one of the most fundamental investigations that

one can do is to look for stationary points. The stationary points of the DNLSE

(1.28) are localised modes which are referred to as breathers. The breathers described

at the beginning of this chapter are therefore nothing else than solutions of the non-

linear equation which rotate in time with a constant frequency ω, which characterises

the ‘breathing’ dynamics and explains the etymology of their name. In the ideal sce-

nario (for which one can build complete analytical solutions of the DNLSE), the Bose-

Hubbard chain has infinite length, and all sites are phase locked (or perfectly synchro-

nised). This implies that all the lattice sites will rotate with the same exact frequency

Ω. The phase space therefore will be given only by amplitudes, since all the relative

phases in the chain are constant in time, and absolute phase bears no physical meaning.

For an ideal breather, therefore, the state is given only by the real amplitudes of the

sites it occupies.

One can now substitute all wave-functions zn with the Ansatz zn ≡ An exp(iφn),

and express the DNLSE as

Ȧn = An−1 sin(φn − φn−1) +An+1 sin(φn − φn−1) (1.29)

Anφ̇n = 2A3
n +An−1 cos(φn − φn−1) +An+1 cos(φn − φn−1) . (1.30)

by splitting (1.27) into its real and imaginary components. Ultimately, one can use the

fact that for a breather all sites rotate in phase, i.e. φn = Ωt ∀ n to simplify the phase

equation to

ΩAn = 2A3
n +An−1 +An+1, (1.31)

where the term proportional to Ȧn has been omitted, since this equation must be valid

for stationary states, where all derivatives are exactly equal to zero.

We now have been able to reduce the dimension for the phase space of the stationary
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state by a factor of two, by eliminating all phases. In literature, the phase locking occurs

in one of two ways [29]

• the phase differences between adjacent sites are all 0, i.e. δφ ≡ φi−φi+1 = 0, and

the breather rotates with a positive frequency Ω. This means that the phase at all

sites increases monotonously and linearly with time. This is the solution we will

focus on throughout this work, which bears the name of ‘unstaggered breather’

• phase differences between adjacent sites are all π, i.e. δφ ≡ φi−φi+1 = π, and one

must replace An with (−1)nAn (the staggering transformation [29]) in equation

1.31. In this case Ω < 0, and the phases will decrease linearly with time.

Changing the sign of the variables with an odd (or even) index allows the transition

from one regime to the other. In practice, the two regimes are formally equivalent. For

most values of the non-linearity (depicted by γ in equation (1.26)), we can encounter

two types of stationary points

1. Sievers-Takeno (ST) breathers [30], where most of the mass is concentrated into

one site only, and all neighbouring sites have exponentially decaying occupancy

numbers.

ASTn = A0 exp(−a1|n|). (1.32)

2. Page (P) breathers [31], where two sites have the same value of the mass, and

from this central dimer, all other sites have exponentially decaying amplitudes.

APn = AP exp(−a2|n+ 1/2|). (1.33)

These types of breathers are also depicted in Figure 1.3.

The breathers which are of interest to us are the Sievers-Takeno breathers, which

are highly localised to one site only. This is mostly because of the fact that they have

much higher stability than Page breathers, which will be associated more with bound
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Figure 1.3: Amplitude profile of a stationary point of the DNLSE, for an infinitely
extended one-dimensional lattice. The left plot shows the shape of a Sievers-Takeno
breather, while the right plot displays the Page solution. These diagrams have been
obtained by Cuevas et al. [29], for a frequency Ω = 1 and for γ = κ = 1 in 1.26 (Equal
values for the tunnelling coefficient and of the non-linearity).

states than with actual stationary states in the work that will follow. For the ST

breathers, one also has the additional relation exp(−a1) ∝ Ω [29], which can be used

to approximate the frequency of the breather.

It is possible to link the frequencies of these breathers with the overall norm of the

system, which is obtained by evaluating the infinite sum

N =
∞∑

n=−∞
A2
n, (1.34)

which must converge to the mass of the condensate.

The stationary state equation for Sievers-Takeno breathers can be obtained by

replacing all amplitudes with Ansatz (1.32) (i.e. An = A0 exp(−a1|n|)) in equation

(1.31) to arrive at

Ω = 2A2
0 + 2 exp(−a1) ≈ 2A2

0, (1.35)

which gives the approximate frequency of the breather.

It is important to note, however, that physical systems cannot have infinite lengths

and therefore both ST and P breathers are highly theoretical. Not only that, but
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systems cannot be perfectly closed, since they must interact with thermostats and are

subject to dissipation. In Ref. [27], a much more realistic model is presented, where the

lattice length is finite, and the system encounters dissipation at the ends of the chain,

which alters the shape of the breather in time. What is remarkable there is that, even

if the breather is no longer in the ideal set-up, most of the mass nevertheless remains

concentrated into a single site, which will rotate at a frequency which under a first

approximation is still

Ω ≈ 2A2
0. (1.36)

Therefore, when small dissipative terms are introduced in the system, through equa-

tion (1.28), the breather still keeps its very localised shape, concentrating up to 99.5% of

the atoms into just three sites [27]. This strong localisation will be observed throughout

this work, even in the presence of much larger backgrounds.

Eckmann [32] shows how, in the presence of small backgrounds, even when the

lattice length is finite, breathers evolve towards a state where one of the sites concen-

trates most of the energy, and all the nearest neighbours have exponentially decaying

amplitudes. Therefore, even if the lattice is finite and the system is open, one will still

observe the same exponentially decaying tails as in (1.32).

Later in the work, we will see that in the presence of large backgrounds (of order

of magnitude O(1)), the frequency of the breather is still given by ω ≈ A2
0 (see also

[33]). This will imply that the rotation of the breather will purely be a function of its

intensity. It almost seems as if the breather decouples from its surroundings, rotating

independently of the dynamics of the background. In addition to this, wave-functions in

the background are no longer phase locked, being described by rotational spectra which

are completely separated from the frequency of the breather (as one can see in the work

of Rumpf [34]). The theory of staggered and unstaggered breathers loses validity, since

the neighbouring sites start to become uncorrelated from the rotation of the breather.
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This type of computational modelling is more in line with the experimental findings

presented in Figure 1.2, where the lattice size is finite (as one naturally expects for

a physical system), and most locations in the one-dimensional system have relatively

large occupancy numbers.

It follows from here that there is a need of new theoretical approaches, where the

background does not simply consist of negligibly small noise (like in [35–37]), and the

size of the lattice is affected by limited size effects. All the analytical apparatus and

the computational methods which will be developed will work under the more broad

assumption that breathers are allowed to interact with large backgrounds, with sizes of

Aj ≈ O(1). Rumpf describes in Ref. [34] the background amplitudes as having proba-

bility densities with exponentially decaying tails. This implies, that for all backgrounds,

there are very rare situations in which a strong phonon excitation can occur, which can

ultimately strongly perturb the breather. As a matter of fact, he studies this problem

in further detail in [38], where he shows that during the collision of a breather with

a large excitation, the breather might migrate towards the incoming excitation and

absorb its energy. It is not clear however, why this migration happens - in his work,

Rumpf was more concerned with identifying thresholds for this type of migration [39],

than in trying to characterise and quantify them.

Attempts at building a theoretical framework for the migration of breathers have

been done on trimers in Ref. [40], through the use of Peierls-Nabarro potentials. Their

theory suggests that there exists a threshold for the trimer configuration which can

destabilise the breather and can make it migrate to a neighbouring site. This theory

does not, however have a very clear extension to lattices of generic length. For example,

in [41] the authors try to extend the analytical predictions for a known trimer solution

(single depleted well) to hexamers - their attempt produces very specific solutions which

separate very fast from their analytical prediction. This happens due to the presence

of chaos. Flach et. al [42] have shown that a trimer already exhibits chaotic dynamics,

with a broad range of complexity. This means that even if we start in the vicinity
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of a single depleted well solution, we will soon diverge from the known analytical

model. We therefore expect as we move to lattices of generic length to see highly

chaotic trajectories. Molina et al. [43] have shown almost three decades ago that large

excitations in spatially extended lattices can still become pinned to a single site (and

act as breather), with trapping statistics which do not differ significantly from those of

the trimer. We therefore expect to see no fundamental topological differences between

trimers and spatially extended lattices when performing analytics on the DNLSE, even

if all of the calculations will be strongly affected by chaos.

During all numerical tests, one can observe that breathers which are localised in a

single lattice site (of type ST) are far more stable than breathers with peaks over two

neighbouring sites (P solitons). As a matter of fact, one can argue that P breathers

are nothing else than bound states in contact with extended lattices. Their stability is

poor, since large backgrounds rapidly destroy any pre-existing synchronisation between

the background and the breather. The P soliton therefore will almost immediately turn

into a bound state with a random phase difference between the two sites in the dimer.

In isolated dimers, any small difference between the intensity of the two neighbouring

sites will lead to a periodic motion [44] which

1. Either consists of a periodic fluctuation in the breather height, during which the

overall mass of the dimer is still conserved.

2. Or consists of a periodic zigzag migration of the breather from one site to the

other.

When put in contact with spatially extended lattices, all P solitons will break

their symmetry instantaneously (the two central amplitudes will become different very

rapidly), and this will lead to a fast transition towards a bound state. The bound state

itself is very unstable when put into contact with the rest of the lattice, as we will later

see. It can survive for long enough however (times of the order O(103)) to trigger the

migration of the breather to a neighbouring location.
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It therefore follows that it would be highly desirable to be able to quantify and

classify the interactions between breathers and large backgrounds. Most of the models

in this work do not deal with infinitesimal backgrounds (which have already been

covered extensively in the literature [32, 35–37], but take their smallness parameter

from the frequency of the breather, through the inverse proportionality law

ε ≡ 1

ω
(1.37)

where ω is the frequency of the fast rotation of the breather.

Even in the presence of large backgrounds, breathers are highly stable structures.

Instead of synchronising with their surroundings (like in the case of the ideal, infinitely

extended model), breathers tend to decouple, due to the emergence of more than one

time scale. A natural question which arises in this situation is up to which order of the

smallness parameter ε is a pinned breather still a stationary point of the DNLSE. We

can find this out by identifying the first power of ε for which the perturbed DNLSE

induces a slow drift on the breather mass. This will be done by making use of asymptotic

expansions, multiple time-scale analysis and averaging techniques.

We are also interested to find out whether it is only the creation of bound states

that destabilises breathers, or whether there are more types of events which contribute

to sudden changes of the breather shape. A thorough classification and analysis of these

events is highly desirable for understanding how the dynamics of breathers depends on

the size and thermal properties of the background. Identifying these events is also a

way to distinguish:

• Laminar Dynamics – during which breathers are frozen for very long period

of time; their positions do not change and their intensities drift very slowly from

their initial values, while their phases increase linearly, like for any canonical

harmonic oscillator.

• Turbulent Dynamics – during which breathers suddenly change location and
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size, or in rare circumstances they can disappear altogether, by abruptly dissi-

pating all their energy and mass into the lattice.

When a laminar regime can be defined, we are interested in constructing a predictor-

corrector type of integration, where the very small time step imposed by the frequency

of the breather can be replaced with a large time step, which is still small enough to

allow for an accurate integration of the background dynamics. In order to do this,

one must be able to identify clear domains where the system is laminar, and domains

where the system is turbulent, and change time steps when transitioning from one

regime to another. This type of transition is described in Ref. [45] and is characteristic

of a Heterogeneous Multiscale Method (HMM), where a macro-integrator is used for

the laminar regime and a micro-integrator is used for the turbulent events. Not all

HMM methods are constructed like this; some of them consist of consecutive transitions

from one integrator to the other [46] - however, this type of integration assumes a

universal applicability of averaging. As we will later see in this work, the DNLSE is

not averageable at all points.

At this stage, it is useful to express the DNLSE in the language of Hamiltonian

mechanics. In order to do that, one must split the equation from (1.27) into its real

and imaginary parts to arrive to

ẋn = −2yn(x2
n + y2

n)− yn−1 − yn+1 (1.38)

ẏn = +2xn(x2
n + y2

n) + xn−1 + xn+1 . (1.39)

where one has used the canonical Ansatz zn ≡ xn + iyn.

Working with the coordinates pj = xj
√

2 and qj = yj
√

2 rescales the differential

equations above into

ṗn = −qn(p2
n + q2

n)− qn−1 − qn+1 (1.40)

q̇n = +pn(p2
n + q2

n) + pn−1 + pn+1 . (1.41)
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The same differential equations are generated by the Bose-Hubbard Hamiltonian

HBH ≡
1

4

N∑
j=1

(
p2
j + q2

j

)2
+
N−1∑
j=1

(
pjpj+1 + qjqj+1

)
(1.42)

using Hamilton’s formalism, i.e.

ṗn = −∂qjHBH (1.43)

q̇n = +∂pjHBH . (1.44)

It therefore follows that the DNLSE can also be expressed in terms of Generalised

Canonical Coordinates, from the Bose-Hubbard Hamiltonian introduced at (1.42).

While the breather dynamics are split into turbulent and laminar domains, the

background evolution is characterised by thermodynamics parameters. The state of

the background ‘lives’ in a two dimensional space; a macro-state can be specified using

either temperature and chemical potential {T, µ} or by specifying

1. the amplitude (mass) density which is given by a = N
N , where N is the total mass

of the background and N is the number of sites in the background;

2. and the Hamiltonian (energy) density, which is given by h = HBH
N , where HBH is

the Bose-Hubbard Hamiltonian from (1.42) which generates the DNLSE.

The work of Franzosi [47] focuses specifically on systems governed by time indepen-

dent Hamiltonians with an additional conserved quantity. Using this work, it is possible

to define a temperature (T ) and a chemical potential (µ) for the Bose-Hubbard chain

in a micro-canonical configuration (i.e. in the absence of dissipations or thermostats).

In Chapter 2, the exact expressions of these quantities are given, together with a de-

scription of the numerical methods used to evaluate them.

This implies that a macro-state of a BEC can be pinned down exactly using only

two quantities, just as in the case of an ideal gas. Rasmussen et al. [48] were able
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to identify two isotherms (for T = 0 and T → ∞) in the phase diagram h(a), which

separate the states of the condensate into three domains:

1. a forbidden one, where no physical states exist (region Rf of Figure 1.4);

2. a domain of positive temperature, which characterises most of the backgrounds

which interact with large breathers (region Rp of Figure 1.4);

3. and a domain of negative absolute temperature. The domain of negative ab-

solute temperatures is also the place where breathers form spontaneously [34]

(region Rn of Figure 1.4). A domain of negative absolute temperatures implies

a region within which the entropy does not increase monotonously with internal

energy [49]. States at negative absolute temperatures evolve astronomically slow

towards a state where several pinned breathers sit on top of a background at

infinite temperature [34]. Like most dynamics involving breathers, this process is

astronomically slow, similar to the coarsening process described in cosmology.

Figure 1.4: The three different domains for a Bose-Hubbard chain [49] - negative
temperature states in the domain Rn, positive temperature states in the domain Rp.
The diagram also depicts the infinite temperature isotherm (red dotted curve) and the
ground state isotherm (solid blue curve). Everything below the ground state isotherm
represents states which are not physical.

The fact that breathers are localised to a single site and have frequencies which are
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so clearly distinct from those of the background can be used to build fast numerical

algorithms, through the use of HMM. In addition to this, one can speed up the algorithm

even further through the use of short lattices, where spatially extended backgrounds

have been replaced with a Langevin heat bath [50]. These heat baths can either be

characterised by either positive or infinite temperatures.

Breathers affect the dynamics of a BEC in peculiar ways, acting as either inhibitors

of quantum transport (for pinned breathers) or as transport enhancers (for mobile

breathers). In the paper by Iubini et al. [51], we see that if we put the two ends

of a Bose-Hubbard chain at different temperatures, we will obtain a non-equilibrium

stationary state. In this chain, the two thermostats are different, and the system will

continuously transport heat and mass, from one end of the chain to the other. The

system will never thermalise, and the temperature and chemical potential across the

one-dimensional system will vary monotonously and continuously [52]. Only the ends

of the chain will thermalise to the parameters of the bath, and every site in between

will be involved in the coupled quantum transport. When a breather appears in the

system, however, this whole dynamics changes dramatically [53]. When looking at the

temperature throughout the system, we will see a large discontinuity where the breather

sits. The left and the right sides will thermalise independently of the one bath they are

in direct contact with. This suggests the fact that a pinned breather seems to break

quantum transport across the lattice. The life-time of the breather is much larger than

the thermalisation times for the two sides of the background (by orders of magnitude

of 104 and beyond), therefore this insulator effect is very long-lived.

In a recent work of Mithun et al. [54], it is shown that pinned breathers weakly break

the ergodicity of the system. The background phonon bath is essentially interrupted by

the breathers, which act as insulators, and break the lattice into several puddles that

thermalise independently of each other. The breathers seem to create one eigenvalue

that is dominantly negative, effectively reducing the dimensionality of the phase space

by one. If the breather sits at the end of a chain, the only direct result is a trajectory
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that is confined within a subspace of dimension D−1, where D is the dimension of the

original phase space, in the absence of breathers. If the breather sits anywhere else in

the chain, however, this produces the partition of the phase space into a couple of weakly

connected subspaces. These results are strongly compatible with other findings in this

work which suggest that a breather acts as a local insulator, breaking the isometry of

the lattice.

For quantum transport phenomena in Hamiltonian systems, there exists a rich

literature which deals with the use of Discrete Truncated Wigner Approximations

(DTWA) [55], which is a semi-classical analytical algorithm, and is supposed to out-

perform any mean-field theory approach, since it is a semi-classical theory which can

describe quantum effects more accurately. The very essence of this algorithm, however

is that in order for the system to be studied it has to either be ideally ergodic, or so

strongly non-ergodic that it is basically split into several small subspaces which are

to an extent, all independent from each other and locally ergodic. Unfortunately, the

domain we work in is weakly non-ergodic, and is the only clear frame where the DTWA

approach fails. This, once again, points us towards analytical descriptions which use

the mean-field theory, without making the a priori assumption that the system will

behave ergodically.

We can therefore deduce, that, within the laminar regime of the evolution, breathers

are strongly disconnected from their surroundings. But, just as mentioned before, there

are events during which excitations spontaneously formed by the background dramati-

cally destabilise the breather and change the evolution abruptly. This is very similar to

what was observed in [40] for trimers, using Peierls-Nabarro potentials. The breather

seems to be stuck at the bottom of such a very deep valley, but once it interacts with

an excitation which is tuned conveniently enough, it suddenly leaves the valley, and the

shape of the Peierls-Nabarro hyper-surface suddenly changes altogether. A more thor-

ough numerical study between breathers and large excitations will be developed in this

thesis (see Chapter 3). A study of the resonances between breathers and phonon back-
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grounds exists for Klein-Gordon chains [56], but no equivalent analysis was performed

on Bose-Hubbard chains.

A different way to categorise breathers is to separate them according to their mo-

bility

1. Pinned breathers have a fixed position, which does not change, unless they are

strongly perturbed by their surroundings;

2. Mobile breathers propagate with an approximately constant velocity, and de-

pending on their properties (height and width of the Gaussian wave-packet) can

have different life times. They are generally smaller and shorter lived than pinned

breathers.

Using this type of characterisation, we separate breathers into singularities which

either block the transport of matter through the Bose-Hubbard chain, or enhance it

dramatically, by propagating it through a solitonic wave, tsunami-like property of the

DNLSE system. As we mentioned previously, our main focus is on pinned breathers,

and most of the analytical and numerical tools presented in this work will revolve around

them. What is interesting, however, is to study the interaction between these two types

of breathers. One interaction picture which was taken from [57] -Figure 1.5- shows that

when a mobile breather reaches a pinned breather, a very clean reflection occurs. This

seems to suggest that pinned breathers can have the property of a perfectly reflective

boundary. In the work of Rumpf, however [38], we see that large excitations are not

always reflected, and sometimes very dramatic collisions occur. Here, we considered a

large excitation in the background to be similar to a mobile breather. The question

is, once again, when does the pinned soliton reflect large excitations and when does

it interact with it. Or, to express this in terms of classical mechanics, when does the

collision behave as elastic (where the excitation is assumed to hit a wall of very large

mass and get reflected), and when does it behave as plastic (the excitation becomes

absorbed in the ‘wall’ in the process). As we will later see in the work, phase differences
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play a crucial role when settling this issue, because the energies of this system always

contain terms which depend on the phase difference between nearest neighbours.

Figure 1.5: Amplitude profile of a Bose-Hubbard chain with two prominent breathers
[57] - a pinned one depicted by dark blue, and a mobile breather on the right of the
pinned one. The pinned breather seems to act as a reflective boundary. In the work
done by Franzosi et al. [57], they show that the mobile breather suffers dissipations at
site j = 256, where there is a loss, but no dissipations at all when it meets the pinned
breather.

The highly stable nature of pinned breathers, together with the fast dynamics they

are characterised by, makes the numerical study of DNLSE lattices highly challenging.

During the lifetime of a breather, we must use time steps which are small enough to ac-

commodate its large frequency. Given the fact that these life times are astronomical [8],

and that the time step is very small, one can immediately guess the highly problematic

nature of these systems. Coarsening phenomena are described by very slow relaxation

towards a meta-stable state. In this sense, the evolution of a BEC is similar to that

used in numerical simulations of cosmological phenomena, where the background starts

as relatively homogeneous, and as time passes, any small fluctuation grows until very
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stable structures form, and the overall appearance of the system changes dramatically,

most of the matter being concentrated into several distinct points. At this stage, the

dynamics slows down dramatically, and only very rare collisions between these struc-

tures that formed spontaneously from the initial fluctuations [49]. For a BEC, this final

state is the state that Rumpf described, and consists of pinned breathers on top of an

infinite temperature background [34].

The DNLSE lattice consists of N coupled oscillators, with different frequencies. In

this sense, one can look at studies of the solar system [58], to see how the fast frequencies

can be eliminated, to create fast numerical techniques. In this astronomy case, one

starts with the assumption that the orbits of all planets are perfectly elliptical and obey

Kepler’s law in the first approximation. One also takes the Sun as the centre of this

system of coordinates. The smallness parameter will be defined by the fastest frequency

in the system, i.e. that of Mercury. As higher order corrections are introduced in the

system, one must also take into account that the location of the Sun is also changing

with time. However, if we assume that initially the Sun is situated in the origin, we

must trace its trajectory using Cartesian coordinates, since talking about the phase

of a point mass next to the origin is problematic, since there are discontinuities when

the point mass crosses the origin. In any perturbative calculation, we must first make

sure that all coordinates are continuous and differentiable. Therefore, we must avoid

using the phase as a coordinate when a certain body will find itself in the vicinity of

the origin.

The case of pinned breathers is very similar to that of which was described in the

previous paragraph, with the exception that there is only one oscillator, and several

other bodies with very small frequencies. In a sense, if we plot all the wave-functions

of all N sites in the lattice, we will obtain that most of them will be concentrated

next to the origin, and only one wave-function orbits in an almost circular trajectory

far away from the origin (here we made the assumption that there is a single pinned

breather in the system). In this sense, the study is complementary to that of the Solar
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System. Here only one ‘body’ is described by polar coordinates, while all the others are

described by Cartesian coordinates, due to their proximity to the origin. This system is

also more complex than the Solar System, since the masses of all N bodies are not time

independent. The difficulties, advantages and disadvantages of applying perturbative

techniques on the evolution of BECs will be detailed later throughout this thesis.

1.3 The structure of the thesis

Extensive descriptions of all the established numerical techniques used throughout

the project are provided in Chapter 2, together with a description of known properties

of breathers in computational simulations. Thereafter, a review of extreme events

(astronomically rare situations during which pinned breathers abruptly change size or

location) is provided in Chapter 3.

In the case of systems with multiple scales, it is sometimes useful to separate an

axis into two or more independent variables [59] - this can be done for both lengths and

times. Any derivative will be transformed into a superposition of partial differential

operators of the sort

dt = ∂t1 + ε∂t2 (1.45)

where now t1 and t2 are orthogonal axes. In this sense, the dimension of the phase space

is artificially increased by 1. However, this can simplify the calculations drastically,

allowing partial averaging over one of the time-scales. Naturally, the identity (1.45)

will transform any system of coupled differential equations into a system of partial

coupled differential equations. In the case of systems with pinned breathers, we are

dealing with three time scales

1. That introduced by the fast rotation of the breather

2. That associated with the slow evolution of the background
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3. That associated with the astronomically slow decay of breathers

It follows from here that one might be able to describe the analytics of the DNLSE

using multiple scale techniques, together with asymptotic expansion strategies. In

systems with multiple time scales, using one single differential operator for time (i.e. dt

instead of ∂t1 and ∂t2) results in approximations which are valid only locally, and lose

their validity very rapidly when t increases beyond values of order O(ε). Substitution

(1.45) allows the construction of a system of partial differential equations, which can be

closed by imposing solvability conditions. These conditions ensure that for an isolated

system, the total energy and mass of the chain are conserved, and that there are no

divergences.

It is worth mentioning that the method of multiple time scales is usually applied

analytically to functions with one single variable. Here we are dealing with N coupled

oscillators, and therefore we expect the technique to become more challenging. In addi-

tion to this, our system must conserve mass simultaneously as it conserves Hamiltonian.

Because one of the time scales originates from fast oscillations, one can immediately

think of averaging. Averaging operations are more elegant when multiple scales are

used, since the slower time scale can be treated as a constant (slow times are orthogonal

to fast ones) for the fast time operators (both for integration and derivation). The

multiple time scale perturbation expansion for pinned breathers is presented in Chapter

4.

We will show, however that averaging techniques can also be performed without

introducing multiple time scales. Once the averaging procedure is completed, one has

eliminated all the fast frequencies of the system, and a large time step can be used to

perform rapidly converging numerical integrations.

During the laminar flow of the condensate, the breather norm is almost unchanged.

This type of behaviour for Hamiltonian systems is characteristic of that of an adiabatic

invariant [60]. An adiabatic invariant is a quantity which changes very little during

the evolution of a system, and is effectively frozen, unless when moving through phase
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space it encounters a resonant hyper-surface. We will later see that, in our system,

this translates into a collision between the breather and a resonating excitation (i.e.

with a frequency of ω/n, where ω is the frequency of the breather, and n ∈ N). Using

asymptotic expansions, one can eliminate some of the fast fluctuating terms in the

breather norm, arriving at a more accurate expression of the adiabatic invariant.

In the laminar regime, averaging is possible through perturbative techniques. Once

the Average Nonlinear Schrödinger Equation (AvNLSE) is built, it can then be used to

construct an Effective Hamiltonian, which will approximate the trajectories generated

by the DNLSE. This Effective Hamiltonian is built in a way which guarantees the

conservation of the condensate mass, just as in the case of the initial Bose Hubbard

model. The Effective Hamiltonian alone does not suffice to generate realistic trajectories

for the breathers, since it does not allow them to decay. In addition, this Hamiltonian

artificially enhances the stability of the breather, keeping it pinned, even in the presence

of very large perturbations.

This work also investigates how sudden changes in the breather shape are either

caused by the spontaneous appearance of a bound state, which originates from the

crossing of a well known separatrix in the dynamics of dimers [44], or from resonances

between breathers and their backgrounds. These resonances will be the leading cause

for the breakdown of the applicability of averaging.

The breather norm acts as an adiabatic invariant, and according to [61], can change

dramatically when the state encounters a hyper-resonant surface. The validity of this

affirmation is confirmed both numerically and analytically later in this work. The av-

eraging techniques and the existence of an adiabatic invariant are presented in Chapter

5.

Ultimately, we build a Hybrid Integration Scheme, which can approximate the tra-

jectories of breathers up to their complete decay. This algorithm speeds up numerical

simulations by making use of much larger time steps than a classical Runge-Kutta ap-

proach. Hybrid integration schemes abound in literature under the name of Heteroge-
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neous Multiscale Methods [62–64]. They mostly consist of building a macro-integrator

(in this case an averaged differential equation) which is very fast to integrate in com-

parison to the existing micro-integrator (which here is the full DNLSE). Additionally,

one identifies domains in which the macro-integrator fails, due to either singularities

or topological aberrations and then builds a transition mechanism from one integrator

to the another which allows fast approximations of non-linear systems. In the case

of fast-slow Hamiltonian systems, macro-integrators fails due to the inapplicability of

averaging in the presence of resonances [61].

In the last part of this work (see Chapter 6), we probe that the Hybrid Integration

Scheme works remarkably well, producing results which are very similar to what the

full DNLSE has to offer, but over much shorter times. For both algorithms, the life-

times of the breathers increase exponentially as their initial mass is increased, and,

more remarkably, the two regression lines obey very similar equations.

The Hybrid Integration scheme is ultimately extended to systems with multiple

breathers and to lattices of generic temperature and chemical potential as a strong

investigative tool which can generate fast numerical solution for a broad family of

nonlinear problems.



Chapter 2

Numerical Methods and

Numerical Simulations of the

DNLSE

2.1 Presentation of Numerical Methods

2.1.1 State Initialisation

One-dimensional Bose-Hubbard lattices are characterised by phase diagrams with

two control parameters. It is therefore convenient to define states with the help of two

intensive variables: amplitude density, defined as the average number of atoms per site,

and denoted by the symbol a, and Hamiltonian density, defined as the linear energy

density, and denoted by h. The initial state of any simulation will be described by a dot

on the phase diagram h(a). Like in any thermodynamic system at equilibrium, these

parameters only denote a macroscopic state without capturing all the information of

the instantaneous wave function.

36
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The amplitude density is formally defined as:

a ≡ 1

2N

N∑
j=1

(
p2
j + q2

j

)
(2.1)

Meanwhile, the density of the Bose-Hubbard Hamiltonian is:

h ≡ 1

4N

N∑
j=1

(
p2
j + q2

j

)2
+

1

N

N−1∑
j=1

(
pjpj+1 + qjqj+1

)
(2.2)

Let us assume that one is interested in a initial state which is described by the

pair {a0, h0} on the phase diagram. One can now generate 2N random numbers which

constitute a ‘guess state’ by creating:

• N randomly generated amplitudes in the interval [0, 2a0]. As long as the proba-

bility density of the random variables is constant (i.e. 1
2a0

), the average amplitude

will automatically fall in the vicinity of a0, in perfect agreement with what was

required.

• N randomly generated phases in the interval [0, 2π], which will constitute the

phases of the initial wave-function. Since the values here are random, the ‘guess

state’ will most likely have an energy density significantly different from what one

initially wanted.

At this moment, it is useful to calculate the two densities defined in 2.1 and 2.2 for

the guess state, and determine how far the initialisation point {aguess, hguess} sits from

the desired state {a0, h0}.

One can now design a Monte Carlo algorithm which iteratively approaches the

desired state until a threshold precision is reached (the required precision is specified

by the user through the introduction of a smallness parameter η). For example, for

most numerics, being within the vicinity of {a0, h0} with tolerance of η = 10−8 was

considered satisfactory.

The Monte Carlo algorithm is implemented in the following way:
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• Start with a guess state ψ = {qj=1,N , pj=1,N}, which has known parameters a and

h.

• Go to a random site of the lattice j ∈ {1, 2, 3, ..., N}.

• Change the wave-function at the chosen site from zj to z̃j = zj + ρ exp(iθ),

where θ is a random phase and ρ is a randomly generated variable in the interval

[0,
|zj |
κ ]. The parameter κ is initially chosen to be 10 but is increased as the state

approaches the desired coordinates {a0, h0}.

• Instead of evaluating the new norm and Hamiltonian of the modified state using

the full expressions from 2.1 and 2.2, it is far more efficient to only look at the

changes of these two variables, which will be given by

∆a =

(
p̃2
j + q̃2

j

)
−
(
p2
j + q2

j

)
2N

(2.3)

∆h =

(
p̃2
j + q̃2

j

)2 − (p2
j + q2

j

)2
4N

+

+

(
p̃j − pj

)(
pj−1 + pj+1

)
N

+

(
q̃j − qj

)(
qj−1 + qj+1

)
N

.

(2.4)

• Check whether the new state is closer to the desired coordinates, by verifying if

it satisfies:

[
a0 − (a+ ∆a)

]2
+
[
h0 − (h+ ∆h)

]2
< (a0 − a)2 + (h0 − h)2. (2.5)

If this is satisfied, then accept the trial state as the new ψ and update a to a+∆a

and h to h+ ∆h. Otherwise, reject the trial state and keep ψ unchanged.

• Repeat the algorithm until arriving to final values of a and h which are within

the threshold distance η (which is usually set to 10−8 in the numerics) from the

desired state {a0, h0}.
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Once the initialisation algorithm is completed, it is useful to let the system evolve

in a micro-canonical set-up, to allow thermalisation. This can be done using either a

symplectic integrator, like that developed by H. Yoshida [28], or through the use of

a fourth-order Runge-Kutta integrator (the standard integrator employed throughout

most of the work presented in this project). The thermalisation times are of the order

103 time units; therefore evolving the system for ≈ 2, 000 units should suffice.

Note: For lattices with Periodic Boundary Conditions (PBC) the state initialisation

algorithm is very similar, but the Hamiltonian density has a different definition from 2.2,

containing an additional hopping (tunnelling) between sites j = 1 and j = N . Once the

initial Hamiltonian is defined to include this extra hopping term, no additional changes

are required in the algorithm.

2.1.2 Langevin Heat Baths. Grand-Canonical Set-ups

One-dimensional Bose-Hubbard lattices can be put into contact with thermostats

through the use of stochastic Langevin Equations. The environment can be modelled

with the help of two families of complex harmonic oscillators of frequencies ωaν and ωbν

and amplitudes |aν |2 and |bν |2. The condensate of wave-function z is coupled to the

environment through the transfer coefficients Kν . The Hamiltonian and norm under

which the coupling evolves are given by [50]

HC =
∑
ν

{ωaν |aν |2 + ωbν |bν |2 +
[
K∗νz(a

∗
ν + bν) + c.c.

]
}, (2.6)

AC =
∑
ν

{|aν |2 − |bν |2}. (2.7)

Under this construction, ia∗ν and aν are conjugate canonical (Darboux) coordinates,

and so are ib∗ν and bν . After imposing norm conservation, i.e. AC(t) + |z(t)|2 =

AC(0)+|z(0)|2, one can use the Hamiltonian equations of motion. Writing the equations
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of motion will lead to

iż = f(z)−
∫ t

0
G(t− s)z(s)ds+ F (t), (2.8)

where f(z) is the deterministic part of the evolution, which is not included into the

expression of HC . G characterises the dissipation and is defined as

G(t) =
∑
ν

|Kν |2[exp(iωaν t)− exp(iωbνt)]. (2.9)

F describes the noise and is given by the expression

F (t) = −
∑
ν

Kν [aν(0) exp(iωaν t) + b∗ν(0) exp(iωbνt)]. (2.10)

In the thermodynamic limit, the sums from (2.9) can be replaced with integrals,

changing the expression of the dissipation to

G(t) =

∫ ∞
µ

dωGa(ω) exp(iωt)−
∫ ∞
−µ

dωGb(ω) exp(−iωt). (2.11)

Iubini et al. [50] have chosen Ga(ω) = γ
2π (ω−µ) and Gb(ω) = γ

2π (ω+µ). According

to Ref. [50], this is the simplest example which produced a non-singular spectral density

F (t).

Assuming grand-canonical distributions for the heat bath oscillators, i.e. a Boltz-

mann distribution of the sort P ∼ exp
[
− β(HB − µAB)

]
, one arrives to the following

fluctuation-dissipation relations

〈F (t)F (t′)〉 = 〈F ∗(t)F ∗(t′)〉 = 0, (2.12)

〈F (t)F ∗(t′)〉 =
γ

β
δ(t− t′). (2.13)
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Ultimately, the differential equation can be written as

iż = (1 + iγ)f(z) + iγµz + F (t). (2.14)

Positive Temperature Heat Baths

For reservoirs with positive temperature, the differential equation from (2.14) be-

comes:

iżn = (1 + iγ)
[
− 2|zn|2zn − zn−1 − zn+1

]
+ iγµzn +

√
γTξn(t) (2.15)

where ξn(t) = ξRn (t) + iξIn(t) is complex white Gaussian noise and γ is the coupling

strength (set equal to 1 during most simulations).

The numerical integrator of this system is written in the following way:

1. For a time step of ∆t, evolve the system using a 4th order Runge-Kutta integrator

with the following derivatives:

• For the wave-function at site 1:

ẋ1 = −2(x2
1 + y2

1)y1 − y2 − 2γL(x2
1 + y2

1)x1 − γLx2 + γLµLx1

ẏ1 = 2(x2
1 + y2

1)x1 + x2 − 2γL(x2
1 + y2

1)y1 − γLy2 + γLµLy1

where γL is the loss rate at the left end and µL is the chemical potential of

the heat bath on the left.

• For the wave-function at site j:

ẋj = −2(x2
j + y2

j )yj − yj−1 − yj+1

ẏj = 2(x2
j + y2

j )xj + xj−1 + xj+1
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• For the wave-function at site N:

ẋN = −2(x2
N + y2

N )yN − yN−1−

−2γR(x2
N + y2

N )xN − γRxN−1 + γRµRxN

ẏN = 2(x2
N + y2

N )xN + xN−1−

−2γR(x2
N + y2

N )yN − γRyN−1 + γRµRyN

where γR is the loss rate at the right end and µR is the chemical potential

of the heat bath on the right.

2. Generate complex white Gaussian noise with variance equal to one for both ends

of the lattice. After letting the system evolve from ψi ≡ ψ(t0) to ψf ≡ ψ(t0 + ∆t)

under the equations of motion written above, add the stochastic terms as:

• For the left end the incrementation is:

x1 7→ x1 + ξIL
√
γLTL∆t

y1 7→ y1 − ξRL
√
γLTL∆t

where TL is the temperature of the left heat bath.

• For the right end the incrementation is:

xN 7→ xN + ξIR
√
γRTR∆t

yN 7→ yN − ξRR
√
γRTR∆t

where TR is the temperature of the right heat bath.

Note: The system can be decoupled from any (or both) of the heat baths simply

by setting the loss rates to zero (i.e. γL = 0 ∨ γR = 0).
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Infinite Temperature Heat Baths

In the case of infinite-temperature heat baths, for finite amplitude and Hamiltonian

densities, one must also impose γ → 0 and µ → −∞. The quantities Γ ≡ −γµ and

a ≡ −T
µ are finite, transforming the Langevin Equation from 2.14 into:

iżn = −2|zn|2zn − zn−1 − zn+1 − iΓzn +
√
aΓξn(t) (2.16)

where ξn(t) = ξRn (t) + iξIn(t) is complex white Gaussian noise and γ is the coupling

strength (set equal to 1 during most simulations).

The numerical integrator from above is modified to:

1. For a time step of ∆t, evolve the system using a 4th order Runge-Kutta integrator

with the following derivatives:

• For the wave-function at site 1:

ẋ1 = −2(x2
1 + y2

1)y1 − y2 − ΓLx1

ẏ1 = 2(x2
1 + y2

1)x1 + x2 − ΓLy1

where ΓL acts as the new loss rate at the left end of the one-dimensional

lattice.

• For the wave-function at site j:

ẋj = −2(x2
j + y2

j )yj − yj−1 − yj+1

ẏj = 2(x2
j + y2

j )xj + xj−1 + xj+1

• For the wave-function at site N:

ẋN = −2(x2
N + y2

N )yN − yN−1 − ΓRxN

ẏN = 2(x2
N + y2

N )xN + xN−1 − ΓRyN

where ΓR is the loss rate at the right end.
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2. Generate complex white Gaussian noise with variance equal to one for both ends

of the lattice. After letting the system evolve from ψi ≡ ψ(t0) to ψf ≡ ψ(t0 + ∆t)

under the equations of motion written above, add the stochastic terms as:

• For the left end the incrementation is:

x1 7→ x1 + ξIL
√

ΓLaL∆t

y1 7→ y1 − ξRL
√

ΓLaL∆t

where aL is the amplitude density induced by the left heat bath.

• For the right end the incrementation is:

xN 7→ xN + ξIR
√

ΓRaR∆t

yN 7→ yN − ξRR
√

ΓRaR∆t

where aR is the amplitude density induced by the right heat bath.

2.1.3 Numerical Evaluation of Thermal Parameters

The thermodynamic entropy can be employed to evaluate the temperature and

the chemical potential of the system. For the Bose-Hubbard chain, in the case of a

micro-canonical set-up, the entropy is proportional to the logarithm of the volume of

a hyper-surface characterised by a given mass and energy (the sub-set of the phase

space which consists of all possible configurations of a given energy H and fixed mass

A). One can now use the analytical dependency of the entropy of the two conserved

quantities of the system: mass (A) and Hamiltonian (H), to write the expressions

1
T = ∂S

∂H
µ
T = − ∂S

∂A . (2.17)

The work done by Franzosi in [47] addresses time-independent Hamiltonian sys-

tems with one additional conserved quantity. He proves that the temperature and

the higher order derivatives of the entropy are micro-canonical observables, which un-
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der the assumption of ergodicity can be calculated as time averages. Therefore, the

partial derivatives on the right hand side of equation (2.17) can be evaluated using

expressions [51]

∂S

∂Cj
=

〈
W ||~ξj ||
~∇Cj · ~ξj

~∇ ·

(
~ξj

W ||~ξj ||

)〉
, (2.18)

where C1 = A and C2 = H are the conserved quantities of the system and W , ξj are

defined as:

~ξj ≡
~∇Cj
||~∇Cj ||

−
(~∇Cj · ~∇Ck 6=j)~∇Ck 6=j
||~∇Cj || ||~∇Ck 6=j ||2

(2.19)

W 2 ≡
2N∑
j,k=1
j<k

[
∂C1

∂xj

∂C2

∂xk
− ∂C1

∂xk

∂C2

∂xj

]2

(2.20)

where xj are coordinates in the phase space related to those in the Bose-Hubbard

Hamiltonian from (2.2) through:

x2j = qj

x2j+1 = pj .
(2.21)

The numerical algorithm for evaluating the expressions from (2.17) using the aver-

ages defined at (2.18) is presented below.

Function for the Numerical Evaluation of Divergences and of W 2

One starts by writing a function which takes as an input the state of the system

given by the array {xj}:

1. Evaluate the directions of the divergence of the mass (~∇A/||~∇A||) and of the

Hamiltonian (~∇H/||~∇H||) for a given state {xj}:

• Evaluate the numerical values of ∂xjA and ∂xjH for all j ∈ {1, ..., 2D} and

during this process build the arrays ~∇A and ~∇H.

• During the same process increment the sums ||~∇A|| ≡
∑

(∂xjA)2 and ||~∇H|| ≡∑
(∂xjH)2.
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• Normalise the divergences by dividing them by the norms evaluated above.

2. Increment the quantity defined at (2.20) using the divergences calculated at the

previous step using two nested for loops.

3. Once, again use the previously calculated divergences to evaluate ~∇A · ~∇H.

4. Use one single for loop to evaluate in one go ~ξ1, ~ξ2, ||~ξ1|| and ||~ξ2||. From this,

immediately evaluate the directions ξ̂ ≡ ~ξ/||~ξ||

5. Use one single for loop to evaluate in one go ~∇C1 · ~ξ1 and ~∇C2 · ~ξ2.

The function takes the state of a Bose-Hubbard Chain ψ = {qj=1,N , pj=1,N} and returns

five outputs: ξ̂1, ~∇C1 · ~ξ1, ξ̂2, ~∇C2 · ~ξ2 and the quantity W .

Employing the function to evaluate the Temperature and the Chemical Po-

tential

The temperature and the chemical potential can now be evaluated employing for-

mula (2.18) on the outputs of the function described in the previous subsection (i.e. on

ξ̂1, ~∇C1 · ~ξ1, ξ̂2, ~∇C2 · ~ξ2 and W ) to obtain the numerical values of ∂S/∂A and ∂S/∂H.

Since these two numbers correspond to 1/T and −µ/T , one can ultimately calculate

the temperature and the chemical potential of the chain.

If the chain contains Langevin heat baths or dissipative terms, it is advised to omit

at least the last two sites at the chain end when sending the input state ψ. This is done

not to take into account any statistical aberrations induced by the open ends of the

chain. Similarly, if a large breather is present in the chain, and one wants to evaluate

the thermodynamic parameters of its surroundings (i.e. of the background) one should

also omit the nearest neighbours of the breather. This is done in order not to take into

account the influence of the fast harmonics introduced by the breather.



CHAPTER 2. NUMERICAL METHODS AND SIMULATIONS 47

It is now convenient to introduce the notation ξ̂ ≡ ~ξ/||~ξ|| and re-write (2.18) as:

∂S

∂Cj
=

〈
W

~∇Cj · ξ̂j
~∇ ·

(
ξ̂j
W

)〉
(2.22)

Using the definition of divergence, one can evaluate:

~∇ ·
(
ξ̂j
W

)
=

2N∑
k=1

∂

∂xk

(
ξj,k
W

)
(2.23)

~∇ ·
(
ξ̂j
W

)
=

2N∑
k=1

∂xkξj,kW − ξj,k∂xkW
W 2

. (2.24)

Introducing this formulation into (2.22), one immediately arrives to:

∂S

∂Cj
=

〈
W

~∇Cj · ξ̂j

2N∑
k=1

∂xkξj,kW − ξj,k∂xkW
W 2

〉
. (2.25)

And this can be further simplified to:

∂S

∂Cj
=

〈
1

~∇Cj · ξ̂j

2N∑
k=1

(
∂xkξj,k −

ξj,k∂xkW

W

)〉
. (2.26)

This implies that, in order to evaluate the temperature and the chemical potential,

one must also know the numerical values of two sums:
∑2N

k=1

(
∂xkξ1,k −

ξ1,k∂xkW

W

)
and∑2N

k=1

(
∂xkξ2,k −

ξ2,k∂xkW

W

)
. In order to do this, one must:

1. Evaluate ξ̂1, ~∇C1·~ξ1, ξ̂2, ~∇C2·~ξ2 andW for the state of interest ψ = {qj=s,e, pj=s,e}.

Where j = s is the location of the first site and j = e is the location of the last

site taken for this portion of the chain. It is recommended to take chains with

lengths of at least five sites when evaluating the thermal parameters.

2. Write a for loop where each coordinate of the state is changed by a small incre-

ment η, i.e. xj → xj + η. This loop will have 2× (e− s+ 1) iterations.

• After each one of these incremental modifications of the state of interest
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re-evaluate ξ̂1, ξ̂2 and W .

• While going through the loop evaluate the partial derivatives in (2.26) through

the following approximations

∂xkξ1,k ≈ ∆ξ1,k/η

∂xkξ2,k ≈ ∆ξ2,k/η

ξ1,k∂xkW ≈ ξ1,k∆W/η

ξ2,k∂xkW ≈ ξ2,k∆W/η.

(2.27)

• At each step of the for loop increment S1 ≡
∑(

∂xkξ1,k −
ξ1,k∂xkW

W

)
and

S2 ≡
∑(

∂xkξ2,k −
ξ2,k∂xkW

W

)
using the approximations above.

3. After exiting the for loop evaluate

T =
~∇C1·~ξ1
S1

µ = −T × S2
~∇C2·~ξ2

, (2.28)

which are the thermal parameters that were required.

The temperature and the chemical potential of the chain are global quantities, and

calculating them involves all the variables in the state vector ψ = {qj=1,N , pj=1,N}.

However, it was shown numerically in [51] that these definitions also work when re-

stricted to sub-chains. The definitions provided by Eq. (2.28) have been developed for

micro-canonical ensembles, but will ultimately be generalised to open Bose-Hubbard

chains.

2.1.4 Calibration of states with phase diagrams in literature

At this stage, it is appropriate to explain how to test whether the written codes

are properly calibrated, by comparing numerical findings with the literature. One such

work is the paper [50] which simulates one-dimensional Bose-Hubbard chains in the

presence of heat baths at positive temperature. Like in the paper, the initial condition
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was given by a clear macroscopic state specified by one point on the phase diagram

given by a = 4 and h = 15. This point lies beneath the infinite temperature isotherm

(h∞(a) = 2a2) and therefore is characterised by a positive temperature. The two

Langevin heat baths are set just as in the paper at T = 1 and µ = 2. The initial state

is set through the method presented in Section 2.1.1 and the Langevin heat baths are

build using the algorithm presented in Section 2.1.2.

The numerical test was performed using a lattice with N = 127 sites. This number

is of the form 2m − 1, allowing fast implementations of Yoshida symplectic integrators

(these integrators are only used for the initial thermalisation, since they are restricted

to micro-canonical regimes). These integrators are used to thermalise a state, once it

has been initialised through the method described in Section 2.1.1. After the state was

thermalised, it was allowed to evolve for t = 5000 time units, similarly to what was

done in [50]. During this time, the temperature and the chemical potential have been

evaluated numerically using the techniques introduced in Section 2.1.3, by using Eqs.

(2.28). Figures 2.1, 2.2 and 2.3 monitor how the mass distribution and the thermal

parameters vary with time.

These findings are perfectly consistent with those presented in Ref. [50]. The ther-

malisation time here is slightly longer, but this is to be expected, since this lattice is

almost double the length of that in Ref. [50]. One can therefore conclude that the state

initialisation, the calibration of the heat baths and the numerical evaluation of the ther-

mal parameters have been properly defined and proceed towards the characterisation

of breathers using these numerical tools.

2.1.5 State saving/loading

When studying the dynamics of breathers, one can easily run simulations which

cover time-spans of 107 time units and beyond. When starting a simulation, it is

impossible to know beforehand the exact times at which remarkable events will occur.

It is entirely possible that even during a simulation with a large pre-settled integration
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Figure 2.1: Vertical axis: |zn| for each of the 127 sites; Horizontal axis: Time. After
a certain thermalisation time of order O(1000), all sites obey the same statistics. This
happens due to the action of the heat baths.

time (i.e. 5× 106), nothing remarkable happens to the breather. In this case, the user

might be interested in continuing the simulation, even beyond the initial integration

time which was specified at the beginning of the code.

It is therefore useful to have a block of code with the function of saving the final

state. This state can later be used as the initial state of a future simulation and the

starting time will no longer be set to zero, but to whatever point the previous simulation

was interrupted.

A similar block of code can be called routinely during the simulation, re-writing

the wave-function at every 104 time units or so. This data will be only used in the

unlikely event of a hardware failure, allowing one to continue simulations which have

been interrupted abruptly by events which are not controlled by the user.

There are several deeper conceptual issues here, which are not obvious at first sight:

• When saving the wave-function to a .txt file, one truncates all real numbers to a
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Figure 2.2: Thermodynamic parameters as a function of time. After the thermalisation
is complete, the system stabilises at T = 1 and µ = 2, which are exactly the parameters
of the heat baths. The shape of the transition curves have the same general behaviour
as the ones obtained in Figure 2 of Ref. [50]. The transition is slightly slower here,
since we have used a chain of 127 sites, while the authors used a smaller site, of 100
sites, which will thermalise faster.
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Figure 2.3: Energy and norm densities as functions of time. After the transient time
observed in Figure ??, the system thermalises at h ≈ 1 and a ≈ 2.

number of relevant decimal places. Due to the chaotic nature of the dynamics, it

is relevant where the truncation occurs. In order to make sure that the separation

is minimal (if any), one must save all floats with a precision of 16 decimal places,

which is the same precision as that pre-set by MATLAB for float variables. Of

course, this would have to be adjusted accordingly to the programming language

used and the precision of the defined variables in the preferred language.

Note: When applying the modulo function from the MATLAB library, the trunca-

tion seems to occur much faster than before the 16th decimal place, so it is advised

to avoid using mod() when saving phases. Most wave-functions are therefore saved

using Cartesian coordinates.

• When studying grand-canonical ensembles one must employ the Langevin heat

baths defined in Section 2.1.2. These baths require the numerical creation of

white Gaussian noise. In order to be able to reproduce data, one must have a
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clearly defined seed for the white Gaussian noise. Interrupting the simulation at

a random time step would create difficulties when re-creating the noise. In order

to avoid such problems, the backup state should be done after pre-settled time

spans (i.e. 10 units), together with the seed which was used to generate the noise

during that interval. Usually, these seeds are integers which are incremented by

1 after each integration interval. During certain simulations, we can observe the

spontaneous migration of the breather, or a sudden change in height (most of

the simulations fall in a laminar regime where the breather norm is frozen for

astronomically long amounts of time). The simulations which show intriguing

events can be repeated, and more data can be saved during the unusual evolution

of the breather. This will be later used to understand the nature of the rare

events.

• In the case when one wants to save only the slow components of a given state,

one must average over exactly one rotational period (in the case when a single

breather is present), using a very small integration time step. This will average out

the components oscillating with the fast rotational frequency of the breather and

most higher harmonics. It will not, however average out slow terms of high orders.

This impediment, together with the chaotic dynamics of the equations, will lead

to separations over long time scales between the ‘slow zero-order component’ and

the full wave-function of the condensate.

2.2 Numerical Simulations of Breather Dynamics

2.2.1 Lack of Breather Tails in Large Backgrounds

A breather is a localised solution of the DNLSE [65], which is a stationary point

of said equation. In order to satisfy the stationary state requirement, the frequencies

at all lattice locations must be identical. In addition to that, the peak is localised at

one lattice site [29] and all neighbouring locations will have occupancy numbers which
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decay exponentially with the distance from the central peak.

In reality, these ideal solutions, which can be infinitely long-lived, are not what we

see in real physical systems due to two constraints

1. Limited size effects - Lattices cannot be made to be infinitely long, at some

point the tails of the breather have to encounter either a reflective boundary, a

dissipative boundary or a thermostat.

2. The presence of noise - The noise can be either very small (infinitesimal), and in

this case the trajectories of the breathers under the action of the DNLSE follow

very closely the ideal case, where the breather has tails which decay exponentially

fast in space and the soliton is astronomically long-lived [37]. Alternatively, the

noise can be large, of order O(1), and can dominate the background completely,

submerging the breather tails entirely [66]. When the noise is given by Langevin

heat baths, its amplitude determines the temperature of the background [50].

The work presented in this thesis focuses on breathers in the presence of large

backgrounds, where the pinned breather is very well localised, to a single site of

the lattice.

At this stage, it is useful to compare the ideal solution [29, 33] which is derived for

breathers in infinitely extended lattices, isolated from the environment, to that obtained

by integrating the DNLSE in a finite lattice in contact with Langevin heat baths.

Looking for the breather tails in the frequencies of the background

The frequencies of the background are the first place to look for any reminiscent

breather tails. In Figure 2.4, one tracks the frequency of each site in the lattice. This

is done by tracking the phase at each site, and taking the numerical derivative of this

quantity, by dividing its change in magnitude by the elapsed time. This rudimentary

definition of frequency proves very powerful when looking at long time-scale statis-

tics. First of all, one can see that the breather has a very large frequency, which is
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approximately equal to 2 × |zbreather|2, just as expected. In addition, one can notice

that all background sites, except the first neighbour rotate in very similar ways. The

background is characterised by the same frequency at all sites, given by 2a, and this is

to be expected, since all sites are thermalised with the heat baths. What is surprising

is the anomalous behaviour of the first neighbour, which has a much larger variance in

the frequency distribution than every other background site. This implies the existence

of a small residual tail at site j = 1, which is in agreement to the findings of Figure

2.6. Later in this Chapter, the frequency will be defined as the dominant component

of the Fourier spectrum, which will be calculating using Fast Fourier Transforms (as it

will later follow, that quantity is also approximately equal to 2× |zbreather|2).

It therefore follows that the breather tails are completely buried by the large back-

grounds generated by Langevin heat baths. One might also expect to have analogous

dynamics for all background sites (i.e. all background sites will have identical his-

tograms for their amplitudes and phases - in Grand Canonical Ensembles, these his-

tograms will be purely dictated by the white Gaussian noise), except the very first

neighbour of the breather. The differences in the dynamics of these sites are not at

this stage clear yet. One must go beyond numerical tests to classify and quantify these

differences.

Looking for breather tails in the amplitudes of the background

The next test one can do is to look at how the amplitudes behave in a set-up

where the background is large - i.e. of order O(1). Figure 2.5 shows the amplitude

distribution for the same set-up as the one used to scan frequencies in Figure 2.4. Just

as before, the background thermalises with the heat bath, and all sites are statistically

identical. Here, the average amplitude thermalises at the value a = 0.7, which is exactly

what one expects from the infinite temperature heat baths of density aL = aR = 0.7.

Moreover, the variance of the mass density for all background sites is approximately

0.7, which suggests a Poissonian distribution. This is in perfect agreement with an
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Figure 2.4: The frequencies of a breather and its surrounding sites in contact with
two infinite temperature heat baths (aL = aR = 0.7). The breather is situated at the
middle of a lattice of length N = 31. The background on both sides of the breather
thermalise at the frequency 2aL = 2aR. The first neighbours of the breather display
a broad variance in their rotational frequencies, implying some interaction with the
breather.
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infinite temperature background.

Figures 2.4 and 2.5 focus on the thermodynamics of the background, and show

that all background sites are indistinguishable from each other when it comes to the

evolution of their amplitudes and phases. We will now focus on the intermediate time

scale (i.e. slower than the breather rotation, but not as long as the thermalisation

times), where we can see the evolution of the background. On this scale, if we look at

the evolution of the background, we notice that all background sites fluctuate (see the

black curve in Figure 2.6), while the breather norm stays effectively unchanged (see the

blue curve in Figure 2.6). One site of the background displays some anomalies, namely

the first neighbour of the breather, which shows some fast fluctuations (red curve in

Figure 2.6). This is in perfect agreement with the frequency scan from Figure 2.4.

2.2.2 Breather life-times in large backgrounds

Breathers are stationary states of the DNLSE, and therefore in the ideal case where

no noise is present and no limited size effects occur, they would be infinitely long-

lived. However, in the system studied throughout this work, breathers are immersed

in large backgrounds, which, as seen in the previous chapter, completely bury their

tails and localise these excitations to one single site only. Not only that, but the

background frequencies are clearly of a different order of magnitude from those of the

pinned breathers.

When integrating the DNLSE in a micro-canonical set-up (energy and norm are

kept constant), one can either use Yoshida symplectic integrators [28], or one can

employ the Langevin heat baths described in the previous parts of this work with the

help of fourth-order Runge Kutta integrators. When using Runge Kutta integrators,

one must be careful to tune the time step in such a way that any diffusions of the

Hamiltonian are minute. After observing multiple simulations in a micro-canonical set-

up, an appropriate time step is 1/500 of the smallest rotational period of the lattice

has been identified.
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Figure 2.5: The mass distribution for a background of 14 sites in contact with a breather
at site j = 0 (|z0|2 = 25) and an infinite temperature heat bath at site j = 15 (a =
0.7). The background thermalises at the amplitudes given by the heat baths (a =
0.7, depicted by the black dotted line). Moreover, the variance also stabilises around
the value 0.7, suggesting a Poissonian distribution, therefore an infinite temperature
background.
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Figure 2.6: The amplitude of a breather (blue), and the amplitudes of the nearest (red)
and second nearest (black) neighbours. The breather sits at site j = 0 in a lattice of
7 sites which is in contact with Langevin heat baths at T = 3 and µ = −3.4. While
the breather amplitude is remarkably constant, one can see that the neighbouring two
sites have amplitudes which change drastically throughout the evolution. In addition,
there is no exponential decay in the norms, since the two quantities have very similar
orders of magnitude. All sites beyond j = 2 will also display trajectories very similar
to this one.
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The frequency of a breather of mass |zb|2 is ω ≡ 2×|zb|2 and therefore the rotational

period associated with its oscillation is 2π/ω = π/|zb|2. It follows that the adaptive

time step used for the simulation (according to the criterion specified above) will be

π/(500|zMAX |2).

The maximum frequency could also be identified through the use of Fast Fourier

Transforms, just as in the case of the low pass filters. That would slow down the simu-

lation considerably, though, and the rough approximation for the maximum frequency

contained by the expression ω ≡ 2 × |zb|2 is more than sufficient to define an accu-

rate adaptive integration time step, without slowing down the simulation with futile

numerical Fourier analysis.

Breathers in the presence of large backgrounds are still very stable structures, even

though they are not perfect stationary points of the DNLSE. To investigate their be-

haviour, one can look at the simulations presented in Figure 2.7, where seven breathers

of different initial sizes are allowed to evolve under the DNLSE until the time of their

decay. One can observe that the Hamiltonian of the breather (i.e. the kinetic term,

given by |zb|4) is approximately constant throughout the breather’s existence until a

very sharp decay is observed. In addition, larger breathers have exponentially longer

lifetimes. This exponentially fast decoupling between breathers and their surroundings

creates difficulties when wanting to study the dynamics of large breathers, because, in

addition to the exponentially longer life time, one has to employ a time step that goes

down as a power law (i.e. |zb|−2) of the breather norm. This means that the numerical

algorithms will slow down more than exponentially as the breather mass is increased,

which is very inconvenient.

The breather Hamiltonian contains fast terms which originate from the rotational

frequency and high order harmonics. These can be filtered out simply by averaging

the data depicted in Figure 2.7 over intervals of 250 units. After this process, one

obtains the neater plot from Figure 2.8. In this new figure, one can see that a very slow

diffusion process is present. In addition, very rarely throughout the simulations there
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Figure 2.7: The time evolutions for the energy of seven breathers of different initial
sizes. One can immediately observe that larger breathers live exponentially longer.

are large jumps in the breather norm, similar to what was initially observed in Figure

2.13. These rare events occur exponentially rarely as the breather size is increased.

The similar scaling might suggest at this stage a correlation between the rare events

and the overall life times of breathers.

The questions that arise from these findings are:

• What causes the extreme events, and why are they exponentially rarer for taller

breather?

• Are these events related to the death of breathers?

• Can one explain the exponential decoupling between breathers and large back-

grounds through the prism of rare events?

• What role does diffusion play in the life time of breathers?

• Can one accelerate the integration of the DNLSE through an integration mecha-

nism which works under the predictor corrector paradigm?
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Figure 2.8: The time evolutions for the energy of the same seven breathers from Figure
2.7 after filtering out the fast harmonics by averaging over intervals of 250 units. One
can immediately observe that larger breathers live exponentially longer.

The first step in answering these questions is to classify and investigate the nature

of rare events, which is done in the next chapter.

2.3 Numerical Low-Pass Filters

2.3.1 Building a Low-Pass Filter

Throughout this work (for breathers of initial norm |z| ≈ 5) it is common to refer

to the three characteristic times of the system:

• Times of the order of one breather period, which range in the domain 10−2 to

10−1 units. During these time ranges, most coordinates of the wave-function

stay constant, with the exception of the phases of the breathers, which increase

linearly.

• Times of the orders 100 to 101, during which the backgrounds evolves slowly and
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the breather height barely changes.

• Times of the order 105 to 106 and beyond, during which breathers can sponta-

neously disappear or change location and size.

Even if the interest is to investigate events which occur over the longest of the three

scales, it is crucial to study the first two scales, and how they are interconnected in

order to form any theories on the evolution of breathers over scales of 105 units and

beyond.

The first step in doing this is to numerically build a low-pass filter, which separates

the dynamics of the fastly rotating breather from that of the slowly evolving back-

ground. In order to do this, one can use the fft (Fast Fourier Transform) protocol

incorporated in the MATLAB library. The filtering algorithm consists of the following

steps:

1. For a quantity with a known time dependence (Z(t)) which is stored into an array,

calculate its time average Z̄ ≡ 〈Z〉.

2. Calculate the oscillating component of the signal through the subtraction Zosc ≡

Z − Z̄

3. Apply the fft (Fast Fourier Transform) algorithm on the oscillating compo-

nent Zosc to obtain the spectral distribution of the frequencies in this signal,

i.e. F(Zosc)

4. Define a cut-off frequency (fCO), over which no components of the spectrum will

be kept, and define the heavy-side step function filter

HfCO
(f) ≡

 1 f < fCO

0 f ≥ fCO
(2.29)

5. Apply the low pass filter on the frequency spectrum by multiplying the low pass
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projector with the initial Fourier transform to obtain the slow signal Sslow ≡

HfCO
(f)×F(Zosc)

6. Apply the Inverse Fast Fourier Transform (ifft) and add the initial average to

get the slow signal Z̄ + F−1(Sslow)

As an example, let us look at the behaviour of the first neighbour for a breather

of height |z0| = 4. The time dependency of this quantity is depicted in Figure 2.9.

This function is large, reaching values of order O(1), due to the thermalisation with a

Langevin heat bath with T = 3 and µ = −3.4. In addition to the slowly fluctuating

component from the positive temperature background, one also sees a small rapidly

oscillating signal of size O(10−1), which comes from the interaction between the back-

ground and the breather. This fast harmonic present in the first neighbour has been

described in Figures 2.6 and 2.4. After applying the filtering algorithm introduced in

this chapter, one obtains the function depicted in Figure 2.10. One can see that the

numerical filter defined above is highly effective at extracting the slow dynamics from

the full trajectory.

2.3.2 Behaviour of Slow/Fast Quantities

A breather at site j will have a rotational frequency which can be approximated

by 2A2
j [27]. These frequencies are usually much larger than those generated by the

backgrounds coming from the heat baths. It was already shown previously, in Figures

2.9 and 2.10 that these large breather frequencies also induce high order harmonics on

the neighbours of the breather, which can be filtered out numerically. It is very relevant

to see what happens in the opposite directions, i.e. to study how the background

perturbs the dynamics of the breathers. For this, let us look at the example presented

in Figure 2.11, where a lattice of 15 sites put in contact with backgrounds at infinite

temperature evolves for 120 time units. A breather of height |z8| ≈ 4 is initialised in

the middle of the lattice.
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Figure 2.9: The evolution of the amplitude for the wave-function of the nearest neigh-
bour of the breather.

Figure 2.10: The same function as in Figure 2.9, after applying the numerical low pass
filter introduced in this chapter
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It is interesting to plot the evolution of the breather norm, as done in Figure 2.12.

From this plot, one can infer that the breather amplitude is almost constant, around

a value of |z8| ≈ 3.83 and contains fast oscillating terms of size ≈ 10−1. It is not clear

at this stage what causes this behaviour. In order to explain this, one must build a

perturbative calculation.

At this stage, it is interesting to make use of the low pass numerical filters introduced

in Section 2.3.1. After filtering out the fast components from the breather norm, one

obtains the much smoother time dependency depicted in Figure 2.13. One can see that

the fluctuations of the breather’s norm are of order 10−3 until the time of interaction

(i.e. t ≈ 70), when a small drift in the breather norm occurs. After this event, the

small-size-fluctuation behaviour resumes.

At this stage one might ask:

• What causes the large fluctuations in Figure 2.12?

• When filtering out the fast frequencies, what leads to the smaller and slower

fluctuations depicted in Figure 2.13? Also, is there a way to quantify these slower

fluctuations and link them to the excitations from the background?

• What is the nature of the event observed at time t ≈ 70, and what distinguishes

this event from the rest of the evolution?

All these questions can only be answered through the means of a perturbative calcula-

tion, which is necessary to characterise the nature of the interaction between breathers

and their backgrounds (see Chapter 4).
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Figure 2.11: The evolution of the amplitude of the wave-function for the chain: One
can observe that a large excitation is formed spontaneously at site j = 6, and after ≈ 70
units, this excitation interacts with the breather. The full nature of the interaction is
not clear from this figure alone, and further plots are required.
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Figure 2.12: The breather norm fluctuates rapidly around the value |z0| ≈ 3.85. It
is not clear whether there is any drift in this norm, other than the fast harmonics
generated by the breather rotation.

Figure 2.13: After applying the numerical low pass filter on the norm from Figure 2.12,
one can see a clear jump at t ≈ 70, which was not visible before applying the filter.



Chapter 3

Review of Extreme Events in the

DNLSE

The nature of the extreme events will be studied more thoroughly throughout this

chapter using both analytical and computational means. A possible hypothesis for their

generation is the spontaneous formation of large excitations in the phonon background

which strongly perturb the breather. Alternatively, rare events could be triggered by

resonances or strong interactions due to crossing of a separatrix [44]. Before proceeding

to algorithms which employ perturbative calculus, it would be very useful to clarify the

nature of these events, and also attempt to quantify and organise them into several

categories.

3.1 Analytical Investigation of Dimer Systems

The simplest analytical system one can look at consists of a dimer, which is a lattice

with exactly two sites, in a micro-canonical ensemble. This type of set-up has been

studied extensively in the literature since 1986, when Kenkre and Campbell came up

with analytical solutions for the DNLSE dimer [44]. One decade later, it was further

extensively investigated by Smerzi et al. [67]. In this simple system, the breather

69
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would be defined as the site where the maximum mass is situated (there are only two

possible locations). Because this system is closed, the overall mass and Hamiltonian

are conserved. The phase space is of dimension 4, but given the two conservation

laws present in a dimer, the real dimension for the degrees of freedom is two. The

conservation laws state

N ≡ A2
0 +A2

1 = constant

H ≡ A4
0 +A4

1 + 2A0A1 cos(ψ0 − ψ1) = constant.
(3.1)

Naturally, one expects the absolute phases to have no physical meaning, and one

would only look at the phase difference when characterising this simple model. Immedi-

ately, looking at the equations above, one can see that the conservation laws depend on

the phase difference only, and not on the individual value of the phases. It is therefore

useful to introduce the variable δ ≡ ψ0 − ψ1. In addition, due to the conservation of

mass, atoms can only migrate between two possible sites, making the visibility a very

good candidate for the second variable of the system. The visibility can be defined

as the difference in intensities, i.e. P ≡ (A2
0 − A2

1)/N . The norm at the denominator

normalises this quantity, bounding it to the interval [−1, 1], regardless of the overall

mass of the condensate.

The sytems of equations from (3.1) can be solved to calculate the values of the

amplitudes of the dimer

A0 =
√
N 1+P

2

A1 =
√
N 1−P

2 .
(3.2)

These expressions can be substituted in the Hamiltonian to express this quantity

in terms of δ and P

H =
N 2

2
(1 + P 2) +N

√
1− P 2 cos(δ). (3.3)

Now, given the fact that both H and N are conserved quantities, it is more elegant
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to use the reduced Hamiltonian

H ≡ N
2
P 2 +

√
1− P 2 cos(δ), (3.4)

which will also be conserved for all trajectories of the dimer.

In polar coordinates, the four coordinates of the dimer evolve as

dtA0 = A1 sin(ψ0 − ψ1)

dtψ0 = 2A2
0 + A1

A0
cos(ψ0 − ψ1)

dtA1 = A0 sin(ψ1 − ψ0)

dtψ1 = 2A2
1 + A0

A1
cos(ψ1 − ψ0),

(3.5)

but now having the knowledge that the trajectory is bound to a two-dimensional sub-

space, it is highly desirable to express the differential equation in terms of δ and P and

arrive to

dtP = 2
√

1− P 2 sin(δ)

dtδ = 2P
[
N − 1√

1−P 2
cos(δ)

]
.

(3.6)

Renormalising the time as τ ≡ 2t, one can obtain the equations of the dimer

dτP =
√

1− P 2 sin(δ)

dτδ = P
[
N − 1√

1−P 2
cos(δ)

]
,

(3.7)

which also satisfy the conservation lawsN = constant andH ≡ N2 P
2+
√

1− P 2 cos(δ) =

constant. These equations, together with the two conservation laws are everything we

need to understand the dynamics of dimers.

At this stage, it is useful to present a numerical test where for different values of

{P0, δ0} and a fixed value of N (in this case the overall mass was assigned the value

6), the system is allowed to evolve until the orbit closes. Note that the system is two

dimensional and periodic, regardless of the value of the initial conditions. Some of these

orbits are visible in Figure 3.1. There, one can notice two types of orbits:
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• Orbit I: For positive initial values of P , the orbit goes to negative values of the

visibility. These orbits are centred around the stationary point (δ = π, P = 0),

and start as concentric circles which grow until they degenerate to an ellipsoid like

trajectory centred around the same stationary point. The orbits never contain

points which have δ = 0, meaning that the phase difference is not allowed to

explore all the possible values. This type of orbit corresponds to a pendulum like

trajectory, where the location of maximum amplitude shifts from site j = 0 to

site j = 1 repeatedly, in a periodic manner, following a zigzag like pattern.

• Orbit II: For positive initial values of P , the visibility always stays positive (or

more generally, it never changes sign, no matter how much time passes). These

orbits allow the phase difference to explore all possible values, including δ = 0.

This orbit corresponds to fluctuations in the breather height, without ever letting

the breather change location. In other words, the size of the breather changes,

but its location never does so.

These two types of orbits are the typical regimes of a pendulum, in one case the

pendulum oscillates around an equilibrium value, and in the other the initial energy

is large enough to allow the pendulum to rotate all the way (the phase can take all

possible values in the interval (0, 2π]).

There is also a border on the y-axis, given by Pseparatrix which shows the threshold

of P over which all orbits are of type II. Below this value, both orbits are possible. The

next logical step is to find an analytical equation for this separatrix.

Let us take two points (A and B) on an ellipsoid like trajectory (Orbit I) and write

the conservation of the reduced Hamiltonian

H =
N
2
P 2
A +

√
1− P 2

A cos(δA) =
N
2
P 2
B +

√
1− P 2

B cos(δB). (3.8)

Let us take point A to be the point for which P reaches its maximum value. Using

either Langrange multipliers, or simply by observing Figure 3.1, one can deduce that the
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Figure 3.1: Trajectories for a dimer for different initial conditions. One can observe two
types of periodic orbits: orbits which do not allow the system to pass through δ = 0
and orbits which do allow this value of the phase difference. The blue horizontal lines
denotes the upper and lower thresholds of the parameter P required to generate the
separatrix plotted in green.



CHAPTER 3. REVIEW OF EXTREME EVENTS IN THE DNLSE 74

maximum value of P is always reached when δ is exactly equal to π. The conservation

law from (3.8) therefore can be expressed as

N
2
P 2
max −

√
1− P 2

max =
N
2
P 2
B +

√
1− P 2

B cos(δB), (3.9)

where B is any other point on the ellipsoid-like trajectory.

In order to find the separatrix, one will look for the largest possible orbit of Type

I, which goes as close as possibe to the edges of Figure 3.1, given by the pairs (δ =

0, P = 0) and (δ = 2π, P = 0). Without loss of generality, we choose the first point

(the origin) as point B (i.e. B(0, 0) will be on the ellipsoid). Replacing PB and δB with

zero in the previous equation we arrive at the following boundary condition

N
2
P 2
max −

√
1− P 2

max = 1. (3.10)

Introducing the new variable V ≡ A2
0 − A2

1, one immediately arrives to Vmax =

Pmax/N . Making all the substitutions in (3.10) one can determine the maximum

visibility which defines the separatrix

Vmax = 2
√
N − 1. (3.11)

Now one can use that N = A2
0 + A2

1 and that V = A2
0 − A2

1 to define the pair of

dimer amplitudes which generate the separatrix

A1 = A0 ±
√

2, (3.12)

which implies that in order to generate a shift of the maximum excitation from site j = 0

to site j = 1, the first neighbour must have a minimum value of A0 −
√

2 = |z0| −
√

2.

The emergence of this separatrix will be the phenomenon responsible for the occurrence

of bound states in spatially extended system. The model of the dimer cannot offer more
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information beyond this simple separatrix model, and in order to model other extreme

events further investigations are required.

From (3.11), it immediately follows that the threshold values for the parameter P

which generate the separatrix

Pboundary = ±2

√
N − 1

N
, (3.13)

which are the equations of the two blue horizontal lines in Figure 3.1. It is easy to see

that

lim
x→∞

Pboundary = 0, (3.14)

which implies that as the mass of the dimer is increased, the red orbits from Figure 3.1

become more and more flat.

3.2 Partial Averaging near Resonance

Let us now return to a lattice of generic length, where a breather sits at one end

(site j = 0) and let us write the differential equation for the breather wave function

dtA0 = A1 sin(ψ0 − ψ1)

dtψ0 = 2A2
0 + A1

A0
cos(ψ1 − ψ0),

(3.15)

where the breather phase will be ψ0 = ωt + φ0. We can now use the clean time

separation which was identified in Figure 2.4 to build the hypothesis that the first

neighbour evolves much slower than the breather, therefore barely changing over one

breather rotation. Therefore A1 ≈ Ā1 and ψ1 ≈ ψ̄1, where the over-bar represents the

initial value of a variable (a constant). In addition one can also use that the breather

amplitude and the φ0 are also slow variables. This transforms the equations for the
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breather wave-function into

dtA0 = Ā1 sin(ωt+ φ̄0 − ψ̄1)

dtψ0 = 2Ā2
0 + Ā1

Ā0
cos(ωt+ φ̄0 − ψ̄1),

(3.16)

which can be integrated over one full rotation to arrive to

δA
(1)
0 = 0

δψ
(1)
0 = 2Ā2

0 × 2π
ω ,

(3.17)

and from this it follows naturally to choose ω ≡ 2Ā2
0, since we want the breather

phase to change by exactly 2π after one full rotation. This means that, as a first

approximation, after the breather rotates for one full rotation, the increments are

δA
(1)
0 = 0

δψ
(1)
0 = 2π,

(3.18)

which means that after one full rotation the breather barely changes amplitude and,

that in order to find the actual drift (any non-zero change in amplitude), one must go

to higher terms in the expansions, which is not the point at this stage of the work. It

will later be proved that the order at which this drift is different from zero is given

by O(ω−3). One might ask oneself though, if the rotation of the nearest neighbour of

the breather can sometimes interfere with the frequency ω, and how would this drift

change in the case of such a particular state.

In order to study this possibility, let as assume that we are on a resonant hyper-

surface where the first neighbour of the breather rotates with a frequency in the vicinity

of ω/m. The order of this resonant hyper-surface will be given by the denominator m.

First we start by assuming that the mass of the first neighbour is

A2
1 =

A2
0

m
, (3.19)
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and proceed as before, by averaging over time from 0 2πm/ω this time to arrive at

δψ
(1)
0 = 2πm

δψ
(1)
1 = 2π

δA
(1)
0 = 0

δA
(1)
1 = 0.

(3.20)

All the rest of the Bose-Hubbard chain will obey the DNLSE, decoupled from sites j = 0

and j = 1 (i.e. j = 1 is effectively a reflective boundary in this first approximation).

If m were not to be an integer (or at least rational) number, no integration interval

could be found which would separate the dimer from the rest of the chain. Any dimer

structures where the frequencies are not in resonance are not stationary points of the

DNLSE in the first approximation, therefore they are more unstable.

Now, let us return to the differential equations for the phases at sites j = 0 and

j = 1 (3.20), and obtain the approximate frequencies

dtψ0 ≡ ω = 2A2
0 +O(1)

dtψ1 ≡ ω1 = 2A2
1 +O(1),

(3.21)

and from this one can approximate the phase difference δ ≡ ψ0−ψ1 as δ = (ω−ω1)t+ ξ̄,

where ξ̄ is the initial phase difference. Combining what we know from (3.19) and (3.21)

we arrive at

δ = ω
m− 1

m
t+ ξ̄. (3.22)

The differential equation for the breather norm (3.15) becomes

dtA0 ≈
√

ω

2m
sin
(
ω
m− 1

m
t+ ξ̄

)
. (3.23)

This differential equation can be used to perform partial averaging near resonance,

by integrating the derivative for one breather rotation exactly (i.e. by calculating
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∫ 2π/ω
0 dtdtA0 this time, therefore shrinking the integration interval from (3.20) by a

factor of m). Luckily, this integral has a clear analytical solution given by

δA
(1)
0 ≈ 1√

ω
×

√
m√

2(m− 1)

[
cos(ξ̄)− cos

(
ξ̄ − 2π

m

)]
, (3.24)

δA
(1)
0 = O(ω−1/2). (3.25)

For very high order resonances, the limit

lim
m→∞

δA
(1)
0 = 0, (3.26)

suggests that higher order resonances play much less important roles than the first

resonances (i.e. small values of m are expected to dominate the resonance patterns).

This is also confirmed by the plot presented in Figure (3.2), where one can see the

dependence of δA
(1)
0 (ξ̂) for the first seven resonances. Indeed, the plot confirms that

as the order of the resonance increases the value of the drift goes down, becoming

completely flat (at value zero) for very high orders. In addition, the largest drifts occur

when the initial phase difference is ξ̄ ∈ {0, π} for the resonance A1 = A0/
√

2, and at

slightly different values from these initial phases for higher order resonances.

It appears that in the presence of resonances the drifts after one full rotation are

of order O(ω−1/2), while the drifts in the absence of these events are of order O(ω−3).

The second finding will be later proved analytically using Multiple Time Scale Analysis

methods, but for now it can be confirmed by looking at the filtered drifts in Figure

2.13.

It follows from these findings that the bound states which occur due to the crossing

of the separatrix in the previous section might not be the only strong interactions

between the breather and its nearest neighbour. At this stage there are three different

elements observed to affect the resonances in simulations
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Figure 3.2: Change in breather amplitude after one full rotation in the presence of
resonances of order m ∈ {1, 2, 3, ..., 7}. Higher order resonances induce smaller changes
in the norm.

• The low order resonances induce stronger drifts, and high order resonances induce

almost no change at all in the breather norm.

• Low order resonances occur when the neighbour is quite tall (of a similar order

of magnitude as the breather), and as it was seen in Figure 2.7 larger excitations

decay exponentially slower than small excitations. This means that not only is

the interaction stronger for low order resonances, but also the time-spans during

which these interactions occur are exponentially longer.

• Smaller excitations are exponentially more likely to occur in the phonon back-

ground. This means that higher order resonances are exponentially more likely

to appear, but this counter- balances the previous two points. Even if the low

order resonances are much stronger, they are exponentially less likely to occur,

meaning that the weak interactions might play an important role on their own.

These three elements suggest that the breather life-times might strongly depend on
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the temperature and chemical potential of the background, since these quantity dictate

how the histograms of the amplitudes at the nearest neighbour look like. This hypoth-

esis will be confirmed in Chapter 6.3.2, using Heterogeneous Multiscale Integration

Techniques.

3.3 Numerical Investigation - Phase Scanning in the case

of Catastrophic Collisions

Let us now look at a large perturbation (i.e. |z1|2 > O(1)) in the absence of

resonances. For this numerical experiment, we have chosen a breather of initial mass

|z0| = 16 and a neighbour of mass |z1|=4.5. These two values do not define a resonant

hyper-surface, but the first neighbour can evolve in such a way to encounter such a

surface sooner or later.

The phase difference δ was a random angle in the full domain interval [0, 2π]. The

breather was initialised at one end (site j = 0) of a lattice with N = 8 sites which was

put in contact with Langevin thermostats which generate backgrounds of order O(1).

Two types of thermostats have been used:

• Finite temperature heat baths with T = 10 and µ = −6.4 which generate back-

grounds of average height 〈|zj |〉 = 1.

• Infinite temperature heat baths with a = − limT→∞
T
µ = 1 which also generate

background of average height 1.

Even if the average height for the two backgrounds are identical, the histograms

for the amplitudes are different, therefore the statistics generated are expected not to

coincide.

First, let us look on how the breather amplitude changes for the two scenarios by

observing the trends in Figure 3.3. The findings there suggest that, in both scenarios,

the largest drift in amplitude occur when the initial breather phase is δ = π. In addition,
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for both systems, there seems to be a preference for shifts towards a smaller value of

the breather than for increases. However, before making any definitive statements on

this finding, it is more cautious to consult the full data, and not just the overall trends.

Figure 3.3: Average jumps in the breather Hamiltonian for different values of the initial
phase difference. Initially, |z0|2 = 16 and |z1|=4.5 for all trajectories.

The raw data used to generate Figure 3.3 is presented in Figure 3.4. It now becomes

apparent that negative jumps in energy (breather collapse) are catastrophic events.

Both finite and infinite temperature scenarios appear to generate very similar types

of transitions. This is because, even if the heat baths operate differently, the first

neighbour and the breather start with pre-set values and the large excitations are not

generated spontaneously by the heat baths, but are artificially imposed by the user.

In order to see why the background doesn’t seem to affect much the collisions, one

must actually study the nature of these energy drifts. This will be done by performing

amplitude scanning and looking at possible resonances.

Finally, in order to shed some light on the jumps observed in the numerics, one can

look at the change of energy at site j = 1. We are trying to find out if the energy is
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Figure 3.4: Raw data for the breather jumps used to generate the trends observed in
Figure 3.3.

transferred from the breather to its nearest neighbour, like in the case of the crossing

of a separatrix (note that here we are below the separatrix at |z|2 = (4 −
√

2)2 ≈ 6.7,

so we shouldn’t observe dimer-like shifts), or is simply dissipated into the background

and ultimately absorbed by the heat baths. Figure 3.5 clarifies this issue, showing a

clear shift of energy from site j = 0 to site j = 1, with very little dissipation of energy

into the background. This findings explains why the different nature of the heat baths

does not seem to affect the trajectories dramatically.

By doing the phase scanning in the case of catastrophic collisions, we discovered

that δ = π is the phase difference with the most destructive consequences for the

breather. The decays in energy however, seem to simply consist of events where most

of energy shifts from site j = 0 to site j = 1, without the disappearance of the breather.

The nearest neighbour might spontaneously increase to a value close to the separatrix

at |z|2 = (4 −
√

2)2 ≈ 6.7, causing the breather to suddenly change location without

significantly affecting its shape. This experiment does not explain, however, whether
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Figure 3.5: Transition curve for the energy between sites j = 0 and j = 1. Most of the
energy lost by the breather seems to simply transfer to the nearest neighbour.

resonances play any role in the overall dynamics of breathers. This phenomenon would

be better studied by the complementary type of scanning, that generated by varying

the norm of the nearest neighbour.

The amplitude at site j = 1 is smaller than that of the breather but nevertheless,

can act as a smaller breather of its own. This smaller excitation is more susceptible to

destructive events from the background than the breather at j = 0 is. The excitation

at site j = 1 can suddenly destabilise at any stage of the evolution and because of this,

the breather can experience a drift of order O(ε−1/2) (where the smallness parameter

ε, was defined as the inverse of the breather frequency). This drift is three orders of

magnitude larger than the diffusion observed during laminar dynamics.
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3.4 Numerical Investigation - Amplitude Scanning in the

case of Catastrophic Collisions

It is now useful to perform the second type of scanning, where the initial phase

difference between the breather and its nearest neighbour is kept constant, and the size

of the neighbour is changed. We have now seen in all three previous examples that the

most catastrophic type of interactions occurs for values of δ in the proximity of π, for

both resonances and rare events. Therefore this will be the value of the initial phase

difference chosen for this experiment.

In this new experiment, the heat baths have been set at T = 3 and µ = −3.4

and the breather height was taken to be |z0|2 = 36. This larger value than what we

had previously was chosen to work in a domain where the separatrix at |z0| −
√

2 is

sufficiently well separated from any possible resonance peaks which might appear at

|z0|/
√

2. The background was thermalised with the heat baths and then the nearest

neighbour was given a random height |z1|2 ∈ [0, 36]. Once again, the average change

in the breather energy was recorded. The results of this experiment are summarised

in Figure 3.6. After varying the height of the nearest neighbour, one can arrive at the

following conclusions:

• There is a strong jump in energy at the separatrix at
∣∣ z1
z0

∣∣2 =
(

6−
√

2
6

)2 ≈ 0.58,

which comes from the strong interaction of dimers described at the beginning of

this chapter.

• There is a clear resonance peak of order m = 2 at
∣∣ z1
z0

∣∣2 =
(

6−
√

2
6

)2 ≈ 1/2. This

is clear evidence of resonance between the breather and its nearest neighbour

• There is a more modest resonance peak of order m = 3 at
∣∣ z1
z0

∣∣2 =
(

6−
√

2
6

)2 ≈ 1/3.

• All higher order resonances were too weak and unstable to register any significant

jumps in the breather height.
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Figure 3.6: Interaction between the breather and its three nearest neighbours. The
strongest interactions are with the excitations at site j = 1. There is a weak resonance
with the second neighbour, and for the third neighbours all interactions are severely
inhibited.
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When the experiment was repeated for an amplitude scan at site j = 2 (findings

summarised by the red curve in Figure 3.6), only one resonance peak survived (that

corresponding to a resonance of order m = 2). This surviving peak was much less

intense than what was observed in the case of nearest neighbour interactions. For

interactions with the second neighbour, δ was chosen randomly, since there is no ana-

lytical knowledge of any special phase difference for sites which are two lattice positions

apart.

Repeating the experiments with neighbours which are further away from the breather

show close to no interaction at all. The breather Hamiltonian only starts to change

when these neighbours reach sizes similar to the main excitation, which are beyond

the interest of this current experiment, since such freak excitations are astronomically

unlikely to occur.

At this stage, there is both analytical and numerical evidence of two types of strong

interactions - those caused by the crossing of a separatrix, or those caused by the

sudden crossing of resonant hyper-surface which creates drifts of order O(ε−1/2) (where

ε is the inverse of the large rotational frequency of the breather), much larger than those

observed in the numerics in the absence of resonance (of order O(ε−3)). The frequency

with which these rare phenomena occur is strongly dependent on the parameters of

the heat baths. Excitations like the ones studied here (both in the analytical and

the numerical investigations) spontaneously occur very rarely in systems which are

freely evolving during time-spans of many orders of magnitude. Nevertheless, these toy

models will prove very helpful when introducing Heterogeneous Multiscale Integration

Methods (Chapter 6), which require clear definitions of rare events.



Chapter 4

Multiple Time Scale Analysis of

Pinned Breathers

When simulating BEC in optical lattices with the DNLSE, discrete breathers are

favoured in the presence of repulsive atomic interactions that are typical, for example,

of 87Rb atoms. Several methods have been suggested for the generation of discrete

breathers in the DNLSE including the evolution from Gaussian wavepackets [8,68] and

the relaxation from random phase states via localized losses [27].

Breathers have been mostly investigated in the presence of small backgrounds, when

perturbative techniques can be developed to determine their stability [37,39]. Here we

focus on the properties of localised solutions in the presence of a large (order O(1))

fluctuating background. The background can either evolve in an isolated set-up, where

the total energy and mass are conserved, or after including the interaction with suitable

thermostats. In the latter case, the action of the heat baths is mimicked by implement-

ing stochastic Langevin equations like in [50], where the temperature and the chemical

potential of the background are given by the parameters of the reservoir.

Without loss of generality, we introduce a singular perturbation expansion for tall

breathers in contact with a large background on one of their sides only. This simplified

set up allows for the direct integration of analytical yet implicit expressions. As demon-

87
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strated by the computational tests, the analytical findings can be extended to breathers

in contact with a background on both sides, to lattices of any length, and under a large

variety of configurations, i.e. periodic boundary conditions (PBC), reflecting boundary

conditions (by imposing zeros at the ends of the Bose-Hubbard chain) or in contact

with heat baths at the chain’s ends.

In an ideal breather, the tails are perfectly synchronised with the oscillations at its

peak and decay exponentially fast along the lattice. When the background is large,

however, this synchronisation is destroyed and the dynamics of the background follow

trajectories which are much slower than the breather oscillation. For large enough

backgrounds, the breather’s tails are completely covered by and indistinguishable from

the background: in practice the localized solution occupies just a single site in the

lattice. Even under these conditions, it is possible to investigate the stability of the

localized solution and to determine the perturbations induced by the background on

the breather.

We study the coupling between the breather and its surroundings by determining

the leading perturbative order at which there is a change in the breather size after

one oscillation period. Our work sheds light on the mechanism of adiabatic decoupling

between localized solutions and their surroundings, leading to a analytical expressions

that quantify the slow drifts in the breather amplitude due to the very weak interactions

between the breather and its neighbours. In Sections 4.1, 4.2, and 4.3 we present

the multiple-scale analysis based on the perturbation expansion in the inverse of the

breather frequency. By averaging over one period of the breather rotation, we obtain

a core differential equation 4.62 that describes the extremely slow dynamics of the

breather amplitude. The theory is successfully compared with numerical simulations

in Section 4.8 where we show its independence of the lattice length and application to

infinitely-extended backgrounds. We also show that trimer and dimer configurations

are topologically different from more extended systems, and that they display a higher

degree of stability. Conclusions and future developments are presented in Section 4.10.
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4.1 Separation of Time Scales - Outline of the general

procedure

4.1.1 Asymptotic Expansions

The starting point is the Discrete Nonlinear Schrödinger Equation which can be

written as

dzj
dt
≡ dtzj = 2i|zj |2zj + izj−1 + izj+1, (4.1)

where the time t is dimensionless [8], z−1 = 0, while the boundary conditions at j = N

will be discussed later on.

In this chapter we investigate a set-up where a tall breather sits at j = 0, i.e. we

set |z0(0)|2 = I � 1, to be compared with a background of amplitude order O(1).

It is well known that the breather will eventually decay on a time scale that depends

on its height, as we have noticed in Figure 2.7, back in Chapter 2.2.2. This type

of exponential scaling is further confirmed by more numerical simulations which are

presented in Chapter 6. Additionally, our collaborators in Florence, Stefano Iubini and

Paolo Politi, obtained identical scaling curves for the breather life-times as a function of

their initial mass [69]. We tackle the problem with a perturbative approach where the

smallness parameter is not the background amplitude, as previously considered [37],

but the inverse of the breather amplitude.

Upon expressing the breather state in polar coordinates, z0 ≡ A0eiψ0 , while using a

standard Cartesian representation for the other lattice sites (zj = xj + iyj , j ≥ 1) the

breather evolution can be written as

dtA0 = x1 sinψ0 − y1 cosψ0 (4.2)

dtψ0 = 2A2
0 +A−1

0 (x1 cosψ0 + y1 sinψ0) . (4.3)

From this representation it is transparent that if A0 � 1, the phase ψ0 rotates very
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rapidly with a frequency given by ω ≈ 2A2
0 � 1. From now on, ε = 1/ω is considered

to be a smallness parameter for the development of a suitable perturbative approach.

By introducing the “slow” phase φ0 = ψ0 − ωt, the DNLSE can be written as

dtA0 = x1 sin(ωt+ φ0)− y1 cos(ωt+ φ0)

dtφ0 = 2A2
0 − ε−1 +A0

−1
[
x1 cos(ωt+ φ0)+

+y1 sin(ωt+ φ0)
]

dtx1 = −2(x2
1 + y2

1)y1 − y2 −A0 sin(ωt+ φ0)

dty1 = 2(x2
1 + y2

1)x1 + x2 +A0 cos(ωt+ φ0)

dtxj = −2(x2
j + y2

j )yj − yj−1 − yj+1 j ≥ 2

dtyj = 2(x2
j + y2

j )xj + xj−1 + xj+1 j ≥ 2 .

(4.4)

By writing the DNLSE in this fashion, one separates the lattice wave-function

between the breather in polar coordinates and the background sites in Cartesian co-

ordinates. At this stage, it is important to remember the findings presented in Figure

2.4 , where one could clearly see that that the background thermalises to a common

frequency with roughly the same size of fluctuations. This justifies the choice of the

hybrid polar-Cartesian basis. Remarkably enough, the mass of the breather was very

stable around the initial value |z0(0)|2, and its frequency was very slightly fluctuating

around 2|z0(0)|2. This in turn, justifies the choice of the definition of the smallness

parameter. The only sites that have frequency statistics different from the background

are the nearest neighbours of the breather, which, as it will emerge later in this chapter,

contain rapidly oscillating components at low orders in their asymptotic expansions.

The perturbative approach is developed for breathers in contact with backgrounds only

on one side and is then extended to the general case when the breather sits at a random

lattice site and is perturbed by small excitations arriving from backgrounds on both

sides. Figure 2.4 shows that there is a clear separation of time scales due to the much

faster oscillation of the breather with respect to its surrounding.

Two time scales appear naturally in the system: a short one of order ε = 1/ω
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associated to the fast rotation of the breather’s phase and a “long” one of order O(1)

associated to the chaotic motion of the background. The most appropriate way to

handle this kind of problems is to consider multiple time scales by introducing two

time variables and thereby by rewriting the time derivative as

dt = ε−1∂t1 + ∂t2 , (4.5)

where t1 and t2 represent the fast and slow time scales, respectively [59].

Before proceeding with the formal expansion, it is useful to go back to Eq. (4.4)

to estimate the variation of the different variables over a time scale of order ε. It is

legitimate to assume that the time dependence of the fields is due to the fast rotation

ω and thereby neglect the variation of all the variables appearing in the r.h.s. of the

above equations. Upon integrating Eq. (4.4) for a time ∆t = ε one obtains

∆A0 ≈ −ε
[
x1 cos(ωt+ φ0) + y1 sin(ωt+ φ0)

]
= O(ε)

∆φ0 ≈ εA−1
0

[
x1 sin(ωt+ φ0)− y1 cos(ωt+ φ0)

]
= O(ε3/2)

∆x1 ≈ −ε
[
2(x2

1 + y2
1)y1 + y2

]
+

+εA0 cos(ωt+ φ0)

= O(ε1/2)

∆y1 ≈ ε
[
2(x2

1 + y2
1)x1 + x2

]
+

+εA0 sin(ωt+ φ0)

= O(ε1/2)

∆xj ≈ ε
[
− 2(x2

j + y2
j )yj − yj−1 − yj+1

]
= O(ε)

∆yj ≈ ε
[
2(x2

j + y2
j )xj + xj−1 + xj+1

]
= O(ε),

(4.6)
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where we have used the definition of the smallness parameter (ε ≡ 1/ω ≈ 1
2A2

0
) to

determine the order of magnitude of the breather amplitude (i.e. A0 = O(ε−1/2)).

These results suggest that any asymptotic expansion with respect to ε should in-

clude half-integer powers (i.e. it should be done with respect to
√
ε) and also provide

information on where the series should start for each variable. More precisely, we

consider a perturbation expansion given by

A0 ∼ ε−1/2A
[−1]
0 +

∑
m≥2 ε

m/2A
[m]
0

(
t1, t2

)
φ0 ∼ φ

[0]
0 +

∑
m≥3 ε

m/2φ
[m]
0

(
t1, t2

)
x1 ∼ x

[0]
1 +

∑
m≥1 ε

m/2x
[m]
1

(
t1, t2

)
y1 ∼ y

[0]
1 +

∑
m≥1 ε

m/2y
[m]
1

(
t1, t2

)
xj≥2 ∼ x

[0]
j +

∑
m≥2 ε

m/2x
[m]
j

(
t1, t2

)
yj≥2 ∼ y

[0]
j +

∑
m≥2 ε

m/2y
[m]
j

(
t1, t2

)
.

(4.7)

This perturbation is singular, since it includes the diverging term ε−1/2A
[−1]
0 (t2). This

follows from our initial assumption of dealing with tall breathers.

By inserting the power expansion (4.7) into Eq. (4.4) and by a further Taylor ex-

pansion of the sinusoidal functions, we are able to split each equation into a series of

separate conditions for the different powers of
√
ε. Our target is to quantify the weak

coupling between the breather and its surroundings, by looking for the first term in

the expansion of the breather amplitude which does not average to zero over one full

rotation. Finding an analytical expression for this term would not only quantify the

order of magnitude of the slow derivative, but it would also provide an upper bound

of diffusive processes and characterise the size and nature of the breather ‘tails’ in the

presence of large backgrounds. The pinned breather is extremely localised and only the

nearest neighbour contributes directly to the slow drifts of the breather mass.

At lowest order of
√
ε for each differential equation, we find:
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∂t1A
[−1]
0 = 0

∂t2A
[−1]
0 = 0

∂t1φ
[0]
0 = −1 + 2(A

[−1]
0 )2

∂t2φ
[0]
0 = 0

∂t1x
[0]
j = 0 j ≥ 1

∂t1y
[0]
j = 0 j ≥ 1 .

(4.8)

The first two equations show that A
[−1]
0 is a constant. With our initial choice

A
[−1]
0 = 1/

√
2, it turns out that φ

[0]
0 is a constant as well. The last couple of equations

tell us that the leading contributions of the background variables are slow for all sites

with j 6= 0.

Repeating this algorithm for higher orders, one can write the following system of

differential equations

At order ε−1/2 we find:

∂t1x
[1]
1 = −A[−1]

0 sin(t1 + φ
[0]
0 )

∂t1y
[1]
1 = +A

[−1]
0 cos(t1 + φ

[0]
0 ) .

(4.9)

At order 1 we find:

∂t1A
[2]
0 = x

[0]
1 sin(t1 + φ

[0]
0 )−

−y[0]
1 cos(t1 + φ

[0]
0 )

∂t2x
[0]
1 + ∂t1x

[2]
1 = −2y

[0]
1 (x

[0]
1

2
+ y

[0]
1

2
)− y[0]

2

∂t2y
[0]
1 + ∂t1y

[2]
1 = +2x

[0]
1 (x

[0]
1

2
+ y

[0]
1

2
) + x

[0]
2

∂t2x
[0]
j + ∂t1x

[2]
j = −2y

[0]
j (x

[0]
j

2
+ y

[0]
j

2
)−

−y[0]
j−1 − y

[0]
j+1 ∀j ≥ 2

∂t2y
[0]
j + ∂t1y

[2]
j = +2x

[0]
j (x

[0]
j

2
+ y

[0]
j

2
)+

+x
[0]
j−1 + x

[0]
j+1 ∀j ≥ 2 .

(4.10)
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At order ε1/2 we find:

∂t1A
[3]
0 = x

[1]
1 sin(t1 + φ

[0]
0 )−

−y[1]
1 cos(t1 + φ

[0]
0 )

∂t1φ
[3]
0 = 4A

[2]
0 A

[−1]
0 +[

x
[0]
1 cos(t1 + φ

[0]
0 )+

+y
[0]
1 sin(t1 + φ

[0]
0 )
]
/A

[−1]
0

∂t2x
[1]
1 + ∂t1x

[3]
1 = −2[2x

[0]
1 y

[0]
1 x

[1]
1 + (x

[0]
1

2
+ 3y

[0]
1

2
)y

[1]
1 ]

∂t2y
[1]
1 + ∂t1y

[3]
1 = +2[(3x

[0]
1

2
+ y

[0]
1

2
)x

[1]
1 + 2x

[0]
1 y

[0]
1 y

(1)
1 ] .

(4.11)

At order ε we find:

∂t2A
[2]
0 + ∂t1A

[4]
0 = x

[2]
1 sin(t1 + φ

[0]
0 )−

−y[2]
1 cos(t1 + φ

[0]
0 )

∂t1φ
[4]
0 =

[
x

[1]
1 cos(t1 + φ

[0]
0 )+

+y
[1]
1 sin(t1 + φ

[0]
0 )
]
/A

[−1]
0

∂t2x
[2]
1 + ∂t1x

[4]
1 = −2x

[1]
1

2
y

[0]
1 − 4x

[0]
1 x

[2]
1 y

[0]
1 −

−4x
[0]
1 x

[1]
1 y

[1]
1 − 6y

[0]
1 y

[1]
1

2
−

−2x
[0]
1

2
y

[2]
1 − 6y

[0]
1

2
y

[2]
1 − y

[2]
2 −

−A[−1]
0 φ

[3]
0 cos(t1 + φ

[0]
0 )−

−A[2]
0 sin(t1 + φ

[0]
0 )

∂t2y
[2]
1 + ∂t1y

[4]
1 = 6x

[0]
1 x

[1]
1

2
+ 6x

[0]
1

2
x

[2]
1 + x

[2]
2 +

+2x
[2]
1 y

[0]
1

2
+ 4x

[1]
1 y

[0]
1 y

[1]
1 +

+2x
[0]
1 y

[1]
1

2
+ 4x

[0]
1 y

[0]
1 y

[2]
1 +

+A
[2]
0 cos(t1 + φ

[0]
0 )−

−A[−1]
0 φ

[3]
0 sin(t1 + φ

[0]
0 ) .

(4.12)
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At order ε3/2 we find:

∂t2A
[3]
0 + ∂t1A

[5]
0 = φ

[3]
0 x

[0]
1 cos(t1 + φ

[0]
0 )−

−y[3]
1 cos(t1 + φ

[0]
0 )+

+x
[3]
1 sin(t1 + φ

[0]
0 )+

+φ
[3]
0 y

[0]
1 sin(t1 + φ

[0]
0 ) .

(4.13)

Finally, at order ε2 we find:

∂t2A
[4]
0 + ∂t1A

[6]
0 = φ

[4]
0 x

[0]
1 cos(t1 + φ

[0]
0 )+

+φ
[3]
0 x

[1]
1 cos(t1 + φ

[0]
0 )−

−y[4]
1 cos(t1 + φ

[0]
0 )+

+x
[4]
1 sin(t1 + φ

[0]
0 )+

+φ
[4]
0 y

[0]
1 sin(t1 + φ

[0]
0 )+

+φ
[3]
0 y

[1]
1 sin(t1 + φ

[0]
0 ) .

(4.14)

We will see that the first order at which the breather derivative does not average

to zero is O(ε2). In order to prove this fact, one must solve the coupled differential

equations for all orders lower than ε and determine the corresponding expressions of

the expansion terms.

At order O(1) (4.10), one can recognize the DNLSE on the right hand side. Using

both the previous findings from partial averaging and the clear background breather

separation observed in the numerics from plots in Figures 2.4 and 2.5, one can make

the assumption that at this order, the background and the breather are completely

decoupled. This assumption, together with the equations from (4.10) implies that

∂t1x
[2]
1 = ∂t1y

[2]
1 = 0. In other words, x

[2]
1 and y

[2]
1 are slow functions of time.
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For generic sites, (4.10) at order 1 reduces to:

∂t2x
[0]
j = −2y

[0]
j (x

[0]
j

2
+ y

[0]
j

2
)−

−y[0]
j−1 − y

[0]
j+1

∂t2y
[0]
j = +2x

[0]
j (x

[0]
j

2
+ y

[0]
j

2
)+

+x
[0]
j−1 + x

[0]
j+1

(4.15)

where one has used that x
[2]
j and y

[2]
j are slow variables, from identical considerations to

the one stated for the nearest neighbour. The fact that x
[2]
j and y

[2]
j are slow functions

will be used extensively while performing averaging later in this chapter.

4.1.2 Decoupling due to the separation of time scales

Let us now study whether at order O(1), the breather and the background are

decoupled for time spans of one breather rotation. If this is true, at zero-th order (i.e.

O(ε0)), breathers can be replaced by pinned vacancies that act on the background as

reflective boundaries. This means that the evolution of all zero-order terms
{

(x
[0]
j , y

[0]
j )
}

is independent of the evolution of the breather for all j 6= 0. This vacancy-breather

analogy is confirmed by the simulations presented in Figure 4.1, where one can see

that the background follows similar trajectories in the cases when at site j = 0 there is

either a tall pinned breather or a reflective boundary. The differential equation for the

background becomes:

i∂t2z
[0]
j 6=0 = −2

∣∣∣z[0]
j

∣∣∣2z[0]
j − z

[0]
j−1 − z

[0]
j+1 (4.16)

where z
[0]
0 ≡ 0 is a reflective boundary. Figure 4.1 shows how the amplitude of the zero-

order wave-function for the nearest neighbour of the breather obtained from Eq. (4.16)

compares with that of the full solution of Eq. (4.1)). The slow function approximates

the full trajectory very well for several hundred breather periods. After a while, the two

trajectories separate due to the chaotic nature of the DNLSE. The reflective boundary
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approximation becomes even more accurate when the size of the breather is increased,

bounding the two trajectories close together for much longer times than those shown

in Figure 4.1.

Figure 4.1: Time evolution of the amplitude of the nearest neighbour on the right of the
breather obtained by integrating the DNLSE Eq. (4.1) (light blue strip) and from the
zero-order reduced equation (4.16) (black line). Replacing the breather with a reflective
boundary produces a similar dynamics of the background. The breather had an initial
amplitude of |z0| = 6 and sat in the middle of a 15 sites lattice which was thermalised at
infinite temperature and had the average occupation number 〈|zj |2〉 = 0.5. Analogous
decouplings occur for both the left and the right neighbours.

Backgrounds characterised by low temperatures tend to be less chaotic and there-

fore, in their presence, this breather/vacancy analogy is satisfied over significantly

longer time-scales. It is however worth noting that even for high-temperature back-

grounds, one can still obtain results for the breather fluctuations and for the background

dynamics similar to those of Figure 4.1 when using the simplified equation (4.16). As

will be later seen in this thesis, one can build a decoupling theory which is valid for

times far longer than the separation time seen in Figure 4.1, since it is possible to
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express the fluctuations in the breather size as a function of the zero-order background

at any given time, regardless of what the initial condition is. In order to build this

theory however, it is crucial to use the adiabatic decoupling between the zero-order

wave-function of the background and the breather oscillations.

This type of decoupling is also addressed in [70] where it is shown that breathers

induce weakly non-ergodic dynamics. These localised solutions split the lattice into

mutually disconnected regions, thermalised at different chemical potentials and different

temperatures.

A clear evidence for the separation of the two time scales is also presented in Figure

2.6. There, one can see that the background evolves over time scales of O(10), while

the breather height is effectively frozen over scales of this magnitude. In addition,

the sites in the background frequently reach amplitudes which are close to zero, even

if their overall size is of order O(1). This provides an additional justification for the

choice of a hybrid polar-Cartesian system, which was introduced to avoid diverging

derivatives for small values of the background amplitudes. From Figure 2.6 one sees

that the first neighbour (red line) displays a fast component of oscillation that comes

from the breather. This component originates in the first non-trivial terms identified

in Eq. (4.17). Note that the breather amplitude does not display any visible variations

during times which characterise the evolution of the slow background.

This assumption will be later confirmed by additional numerical tests and it will

prove very powerful when trying to find the first non-zero derivative after averaging.

4.2 First Non-Trivial Terms in The Perturbative Calcu-

lation

The differential equations at specified orders of the perturbation need to be inte-

grated to obtain the dynamical expressions of the perturbative terms. In doing this,

slow terms appear as integration constants. The solvability condition is then imposed
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by the requirements that the energy and the norm have to remain conserved at any

given order of the perturbation.

We have seen above how to obtain non-trivial differential equations for the breather

and its nearest neighbour. By integrating the first non-zero terms for the breather

amplitude and its nearest neighbours from Eqs. (4.9)-(4.10) and by making use of the

fact that the background is slow and A
[−1]
0 and φ

[0]
0 are constants, we obtain,

A
[2]
0 = −x[0]

1 cos(t1 + φ
[0]
0 )− y[0]

1 sin(t1 + φ
[0]
0 )+

+C1(t2)

x
[1]
1 = A

[−1]
0 cos(t1 + φ

[0]
0 ) + C2(t2)

y
[1]
1 = A

[−1]
0 sin(t1 + φ

[0]
0 ) + C3(t2)

(4.17)

where C1(t2), C2(t2) and C3(t2) are slow functions to be determined.

Meanwhile, we know that the Hamiltonian of the system is, at order O(ε−1/2),

HO(1/
√
ε) =

√
2
[
A

[2]
0 + x

[0]
1 cos(t1 + φ

[0]
0 )+

+y
[0]
1 sin(t1 + φ

[0]
0 )
] (4.18)

where we have made use of the equality A
[−1]
0 = 1/

√
2.

Upon substituting the analytical expression for A
[2]
0 in (4.17) one obtains:

HO(1/
√
ε) =

√
2C1(t2) (4.19)

which requires C1 to be constant to guarantee that the Hamiltonian is conserved. This

constant is zero, since any other value would induce secular terms when integrating

higher order terms.

By imposing the conservation of norm at order
√
ε we obtain the additional con-

straint:

x
[0]
1 C2(t2) + y

[0]
1 C3(t2) = 0 . (4.20)
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Therefore the two unknown slow functions must satisfy:

C2(t2) = −Ky[0]
1

C3(t2) = Kx
[0]
1

(4.21)

where K is a real number to be determined.

The differential equation for x1 at order O(ε1/2) reads

∂t1x
[3]
1 + ∂t2x

[1]
1 = −2(x

[0]
1 x

[1]
1 y

[0]
1 +

+x
[0]
1

2
y

[1]
1 + 3y

[0]
1

2
y

[1]
1 ).

(4.22)

Replacing x
[1]
1 and y

[1]
1 with their analytical expressions from (4.17) one arrives at

∂t1x
[3]
1 + ∂t2C2 =

= −2[x
[0]
1 y

[0]
1 (A

[−1]
0 cos(t1 + φ

[0]
0 ) + C2)+

+(x
[0]
1

2
+ 3y

[0]
1

2
)(A

[−1]
0 sin(t1 + φ

[0]
0 ) + C3)].

(4.23)

From this it follows that the most general form that x
[3]
1 can have is D1(t2) +

D2(t2) × t1 + D3(t2) sin(t1 + φ
[0]
0 ) + D4(t2) cos(t1 + φ

[0]
0 ). The Hamiltonian at order

O(ε) contains terms of the sort A
[−1]
0 x

[3]
1 cos(t1 + φ

[0]
0 ) and A

[−1]
0 y

[3]
1 sin(t1 + φ

[0]
0 ) in

addition to a plethora of terms which can all be written as B1(t2) + B2(t2) sin(t1 +

φ
[0]
0 ) + B3(t2) cos(t1 + φ

[0]
0 ) + high harmonics. This implies that the Ansätze of x

[3]
1

and y
[3]
1 are of the type B1(t2)+B2(t2) sin(t1 +φ

[0]
0 )+B3(t2) cos(t1 +φ

[0]
0 ), which means

that D2(t2) = 0. Isolating only the slow terms of equation (2) one arrives at

∂t2C2(t2) = −2
[
2x

[0]
1 y

[0]
1 C2(t2)+

+C3(t2)
(
x

[0]
1

2
+ 3y

[0]
1

2)]
.

(4.24)
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Using the constraint (4.21) and making all possible simplifications leads to:

Kx
[0]
2 = 0 (4.25)

which implies that K must be zero for extended lattices where x
[0]
2 6= 0. The slow terms

that appear from the integration over the fast time scale are all zero, i.e. C1(t2) =

C2(t2) = C3(t2) = 0 so that, Eq. (4.17) reduces to

A
[2]
0 = −x[0]

1 cos(t1 + φ
[0]
0 )− y[0]

1 sin(t1 + φ
[0]
0 )

x
[1]
1 = A

[−1]
0 cos(t1 + φ

[0]
0 )

y
[1]
1 = A

[−1]
0 sin(t1 + φ

[0]
0 ) .

(4.26)

By using these solutions, it becomes apparent that the second equation in (4.12)

simplifies to ∂t1φ
[4]
0 = 1. This fast term appears because in the differential equation of

the slow phase there is the term 2A2
0−ω which has a first non-zero component at order

ε.

The expressions (4.26) can now be averaged over one full rotation by making use of

the fact that x
[0]
1 and y

[0]
1 are slow and that A

[−1]
0 is time-independent,

∫ 2π
0 dt1A

[2]
0 = 0∫ 2π

0 dt1x
[1]
1 = 0∫ 2π

0 dt1y
[1]
1 = 0.

(4.27)

Therefore, the first non-trivial terms are zero when averaged over one full rotation for

both the breather and its nearest neighbour. In order to quantify the coupling between

breather and background, one is therefore forced to continue the perturbative analysis

to higher orders as shown below.
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4.3 Higher Order Terms in the Perturbative Calculation

At order O(ε1/2) Eq. (4.11) for the breather norm states

∂t1A
[3]
0 = x

[1]
1 sin(t1 + φ

[0]
0 )− y[1]

1 cos(t1 + φ
[0]
0 ). (4.28)

By using the findings of Eq. (4.26) and by substituting x
[1]
1 and y

[1]
1 , one arrives at

∂t1A
[3]
0 =0. Therefore A

[3]
0 is a slow function of the type:

A
[3]
0 = C4(t2). (4.29)

The Hamiltonian of the system at order O(1) is the Hamiltonian of the zero order

wave-function plus the contribution of 4A
[3]
0 A

[−1]
0

3
. Therefore

A
[3]
0 = 0 (4.30)

which naturally averages to zero over one full rotation as well. It now follows that we

must go to even higher orders to obtain a slow drift in the breather norm.

The Bose-Hubbard Hamiltonian at order O(ε1/2) is

H
[1]
BH = 4

(
x

[0]
1

2
+ x

[0]
1

2)
(x

[0]
1 x

[1]
1 + y

[0]
1 y

[1]
1 )+

+2A
[−1]
0 (x

[2]
1 cos(t1 + φ

[0]
0 ) + y

[2]
1 sin(t1 + φ

[0]
0 ))+

+2(x
[1]
1 x

[0]
2 + y

[1]
1 y

[0]
2 ) + 4A

[−1]
0

3
A

[4]
0 ,

(4.31)

and therefore this must be a conserved quantity. Making use of the analytical expres-

sions for x
[1]
1 and y

[1]
1 from (4.26), and of the fact that x

[2]
2 and y

[2]
2 are slow functions

we can write this as

M(t2) cos(t1 + φ
[0]
0 ) +N(t2) sin(t1 + φ

[0]
0 ) +A

[4]
0 = constant (4.32)

where M and N are slow functions of t2. It immediately follows that the Ansatz for
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A
[4]
0 is constant−M(t2) cos(t1 +φ

[0]
0 )−N(t2) sin(t1 +φ

[0]
0 ). The constant in this Ansatz

must be zero, otherwise secular terms would be introduced into the system. Therefore

A
[4]
0 = M(t2) cos(t1 + φ

[0]
0 ) +N(t2) sin(t1 + φ

[0]
0 ), (4.33)

where M and N are unknown slow functions. Regardless of their expressions, we

can immediately see that when averaged over one rotation, A
[4]
0 still averages to zero.

Therefore we must go to higher orders still.

At order O(ε) Eq. (4.12) for the breather norm states

∂t2A
[2]
0 + ∂t1A

[4]
0 = x

[2]
1 sin(t1 + φ

[0]
0 )− y[2]

1 cos(t1 + φ
[0]
0 ) (4.34)

and we now have a clear analytical expression for A
[2]
0 at (4.26) and in addition we

possess the knowledge that x
[2]
1 and y

[2]
1 are slow functions (they do not depend on t1,

but only on t2), and we have an Ansatz for A
[4]
0 (4.33). Using all this information,

we can find the following expressions for the expansions at order O(ε) at the nearest

neighbour

x
[2]
1 = −∂t2y

[0]
1 +M

y
[2]
1 = ∂t2x

[0]
1 +N ;

(4.35)

where ∂t2x
[0]
1 and ∂t2y

[0]
1 are the DNLSE derivatives of the zero order wave-function (of

the form (4.15)).

It is now appropriate to move to the breather phase, and look at the equations from

(4.11) and (4.12) which, for the phase dictate that

∂t1φ
[3]
0 = 4A

[2]
0 A

[−1]
0 +[

x
[0]
1 cos(t1 + φ

[0]
0 )+

+y
[0]
1 sin(t1 + φ

[0]
0 )
]
/A

[−1]
0

∂t1φ
[4]
0 =

[
x

[1]
1 cos(t1 + φ

[0]
0 )+

+y
[1]
1 sin(t1 + φ

[0]
0 )
]
/A

[−1]
0 .

(4.36)
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All the terms on the right hand side now have known analytical expressions. After

making all the possible simplifications these two equations can be solved to obtain

φ
[3]
0 =

(
4A

[−1]
0 − 1

A
[−1]
0

)
[−x[0]

1 sin(t1 + φ
[0]
0 )

+y
[0]
1 cos(t1 + φ

[0]
0 )] + P (t2)

φ
[4]
0 = t1 +Q(t2)

(4.37)

where P (t2) and Q(t2) are slow functions.

Under the assumption that the zero-order wave-function for the background obeys

the DNLSE, one can deduce from (4.15) that

x
[2]
1 = −∂t2y

[0]
1 +M,

y
[2]
1 = ∂t2x

[0]
1 +N

(4.38)

where M and N are slow functions. At this stage of the procedure, it is possible to

solve all equations from (4.11) and (4.12) and find the analytical expressions of φ
[3]
0 ,

A
[4]
0 and φ

[4]
0 .

Finally one can determine x
[3]
1 , y

[3]
1 and A

[5]
0 up to a slow component from the

equations at (4.11) and (4.13)

x
[3]
1 = +2

(
x

[0]
1

2
+ 3y

[0]
1

2)
A

[−1]
0 cos(t1 + φ

[0]
0 )

−4x
[0]
1 y

[0]
1 A

[−1]
0 sin(t1 + φ

[0]
0 ) +R(t2)

y
[3]
1 = +2

(
3x

[0]
1

2
+ y

[0]
1

2)
A

[−1]
0 sin(t1 + φ

[0]
0 )

−4x
[0]
1 y

[0]
1 A

[−1]
0 cos(t1 + φ

[0]
0 ) + S(t2)

A
[5]
0 = −(R+ Py

[0]
1 ) cos(t1 + φ

[0]
0 )+

+
(−1+8A

[−1]
0

2
)(x

[0]
1

2
−y[0]1

2
)

2A
[−1]
0

cos2(t1 + φ
[0]
0 )+

+(Px
[0]
1 − S) sin(t1 + φ

[0]
0 )− x

[0]
1 y

[0]
1

2A
[−1]
0

sin[2(t1 + φ
[0]
0 )]+

+4A
[−1]
0 x

[0]
1 y

[0]
1 sin[2(t1 + φ

[0]
0 )] + U(t2)

(4.39)

where R(t2), S(t2) and U(t2) are slow functions of time.
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Looking at the norm at order O(ε3/2) one can see terms of the type A
[−1]
0 A

[4]
0 , x

[0]
j x

[3]
j

and y
[0]
j y

[3]
j . We now know that A

[−1]
0 A

[4]
0 consists of the sum of two fast sinusoidals, and

that no slow terms are present there. We also have for j ≥ 2 that ∂t1x
[3]
j = ∂t1y

[3]
j = 0.

Closing the solvability condition at this order of the norm would lead to analytical

expressions for M and N , but we are not interested in this, since, as will later become

apparent, these terms cancel, and their exact analytical expressions are not relevant.

Also, to close the solvability conditions for the slow parts, the most elegant approach

is to assume that R = S = 0, and x
[3]
j = y

[3]
j = 0 for all j ≥ 2. Without making

this assumption, one would arrive at a final expression for the non zero derivative

which contains denominators (which diverge). There is no way to know this a priori to

finalising the calculation. If one adds these terms in Mathematica a posteriori, one can

observe the divergences.

With this in mind, we can further simplify the expressions from (4.39) to

x
[3]
1 = +2

(
x

[0]
1

2
+ 3y

[0]
1

2)
A

[−1]
0 cos(t1 + φ

[0]
0 )

−4x
[0]
1 y

[0]
1 A

[−1]
0 sin(t1 + φ

[0]
0 )

y
[3]
1 = +2

(
3x

[0]
1

2
+ y

[0]
1

2)
A

[−1]
0 sin(t1 + φ

[0]
0 )

−4x
[0]
1 y

[0]
1 A

[−1]
0 cos(t1 + φ

[0]
0 )

A
[5]
0 = 1

A
[−1]
0

{
(−1+8A

[−1]
0

2
)

4 (x
[0]
1

2
− y[0]

1

2
) cos

[
2(t1 + φ

[0]
0 )
]
+

A
[−1]
0 Px

[0]
1 sin(t1 + φ

[0]
0 )−A[−1]

0 Py
[0]
1 cos(t1 + φ

[0]
0 )+

x
[0]
1 y

[0]
1

(
− 1 + 8A

[−1]
0

2)
sin(t1 + φ

[0]
0 ) cos(t1 + φ

[0]
0 )
}

+

+U(t2)

(4.40)

where U(t2) is an unknown function of time.

It is also useful to notice here, that when one substitutes all the higher order func-

tions on the right hand side of equation (4.13), one arrives to

∂t2A
[3]
0 + ∂t1A

[5]
0 = 0 (4.41)
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which means that even if A
[5]
0 seems to have non zero terms when averaging over one

full rotation, the derivative for the breather norm at order O(ε3/2) is still zero. Let us

proceed to do the same type of substitution for the derivative at (4.14) to see what the

average drift is at O(ε2).

4.4 Derivative at order O(ε2)

Let us now introduce the notation

DA
ε2 ≡ ∂t2A

[4]
0 + ∂t1A

[6]
0 . (4.42)

This is the lowest-order term providing an average non-zero slow contribution to the

evolution of the breather mass, as it will soon become apparent. With the help of

Eq. (4.14), replacing all the known functions with their explicit expressions, and after

averaging over one fast rotation (i.e. taking 〈∗〉 ≡ 1
2π

∫ 2π
0 (∗)dt1) we arrive at,

〈DA
ε2〉 = x

[0]
1 sin(φ

[0]
0 )− y[0]

1 cos(φ
[0]
0 ) + P (t2)−

−〈y[4]
1 cos(t1 + φ

[0]
0 )〉+ 〈x[4]

1 sin(t1 + φ
[0]
0 )〉

(4.43)

where P (t2) is one of the unknown slow functions in the expression of φ
[3]
0 in Eq. (4.39)

and x
[4]
1 , y

[4]
1 are unknown high order terms for the wave-function of the nearest neigh-

bour.

It is now useful to express 〈y[4]
1 cos(t1 + φ

[0]
0 )〉 and 〈x[4]

1 sin(t1 + φ
[0]
0 )〉 as functions

of the zero-order wave-function and of the five unknown slow terms: x
[2]
2 , y

[2]
2 , M(t2),

N(t2) and P (t2).

From the expansion of the DNLSE at site j = 1, we write the differential equation
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for the derivative of x1 at order ε:

∂t1x
[4]
1 + ∂t2x

[2]
1 = −2x

[1]
1

2
y

[0]
1 − 4x

[0]
1 x

[2]
1 y

[0]
1 −

−4x
[0]
1 x

[1]
1 y

[1]
1 − 6y

[0]
1 y

[1]
1

2
−

−2x
[0]
1

2
y

[2]
1 − 6y

[0]
1

2
y

[2]
1 −

−A[−1]
0 φ

[3]
0 cos(t1 + φ

[0]
0 )−

−A[2]
0 sin(t1 + φ

[0]
0 )− y[2]

2 .

(4.44)

At this stage, one can replace all the known terms on the right hand side with their

expressions from (4.39) and make all possible simplifications. In addition, ∂t2x
[2]
1 can

be substituted with its analytical expression and moved to the right hand side.

We integrate both sides with respect to the fast time t1. This leads to an analytical

expression for x
[4]
1 which contains the terms x

[2]
2 , y

[2]
2 , M(t2), N(t2) and P (t2) which are

all slow functions. After integrating this equation, one finds that x
[4]
1 contains terms

which are different from the other high order functions of (4.39) because they contain

expressions of the type F (t2) × t1. These terms appear in the Hamiltonian at order

ε3/2, together with the known function φ
[4]
0 = t1 +Q(t2) and the term A

[6]
0 .

The next required step is to calculate 〈x[4]
1 sin(t1 + φ

[0]
0 )〉 which again contains the

slow terms x
[2]
2 , y

[2]
2 , M(t2), N(t2) and P (t2):

〈x[4]
1 sin(t1 + φ

[0]
0 )〉 = −A

[−1]
0 P

2
+

+

{
6A

[−1]
0

2
y

[0]
1 + 2

[
− 4y

[0]
1 (x

[0]
1

4
+

+x
[0]
1 x

[0]
2 + 2x

[0]
1

2
y

[0]
1

2
+ y

[0]
1

4
)+

+(2x
[0]
1

2
+ x

[0]
2

2
− 2y

[0]
1

2
)y

[0]
2 +

+y
[0]
2

3
]

+ y
[2]
2 + y

[0]
3

}
cos(φ

[0]
0 ).

(4.45)

Analogously, one can obtain an expression for 〈y[4]
1 cos(t1 + φ

[0]
0 )〉, and then express
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the average from (4.43) as

〈DA
ε2〉 = y

[2]
2 cos(φ

[0]
0 )− x[2]

2 sin(φ
[0]
0 )−

−2A
[0]
2

3
sin(φ

[0]
0 − ψ

[0]
2 )+

+A
[0]
1

[(
− 2 + 8A

[0]
1

4)
sin(φ

[0]
0 − ψ

[0]
1 )+

+4A
[0]
1 A

[0]
2 sin(φ

[0]
0 − 2ψ

[0]
1 + ψ

[0]
2 )
]

−A[0]
3 sin(φ

[0]
0 − ψ

[0]
3 )

+∂t2M(t2) cos(φ
[0]
0 )+

+∂t2N(t2) sin(φ
[0]
0 )

−2A
[0]
1

2[
N(t2) cos(φ

[0]
0 − 2ψ

[0]
1 )+

+M(t2) sin(φ
[0]
0 − 2ψ

[0]
1 )
]

+4A
[0]
1

2[
N(t2) cos(φ

[0]
0 )−

−M(t2) sin(φ
[0]
0 )
]
.

(4.46)

Here, it was more convenient to express the zero-order wave-functions using polar

coordinates via the transformation: x
[0]
j → A

[0]
j cos(ψ

[0]
j ) and y

[0]
j → A

[0]
j sin(ψ

[0]
j ). At

this stage it is not obvious at all whether this term is zero or not. In order to simplify

this expression, it is crucial to use the solvability conditions, which ensure that the

perturbation developed here still conserves mass and energy, since it originates from

the Bose-Hubbard Model.
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4.5 Fluxes for the Hamiltonian and the Norm at order

O(ε) for a Bose Hubbard Chain

Let us start by looking at the norm and the Hamiltonian for a one-dimensional

Bose-Hubbard chain (denoted by the subscript Xc), given by

Ac =
∑

j>1(x2
j + y2

j )

Hc =
∑

j>1(x2
j + y2

j )
2+

+2
∑

j≥1(xjxj+1 + yjyj+1)

(4.47)

where xj and yj obey the general DNLSE (for all sites with j ≥ 2), just as was initially

discussed in (4.4), and have the generic asymptotic expansions xj ∼ x
[0]
j + εx

[2]
j +

H.O.T. and yj ∼ y
[0]
j + εy

[2]
j + H.O.T. from the expressions at (4.7). Note that in the

Hamiltonian, there is also a term which couples sites j = 2 and j = 1, even if site 1 is

not part of the chain we study here. This term was included to make sure that after we

add the contributions from the dimer, all the required terms are present for the overall

system (dimer-chain).

At order [0] these two quantities are simply those corresponding to the Bose Hub-

bard model for the zero-order wave-function, and therefore are perfectly conserved

(together with the contribution from x
[0]
1 and y

[0]
1 ). Remarkably enough, for the chain

there are no contributions at all at order 1, therefore the only conservation laws at

this order will come from the dimer (j ∈ {0, 1}) only. The first order at which the

conservation law is no longer trivial for the chain is order [2], corresponding to the

terms proportional with ε.

It is now useful to identify the contributions at order O(ε) for the quantities at
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(4.47) after we replace all xj and yj with their asymptotic expansions. These are

A
[2]
c = 2

∑
j>1(x

[0]
j x

[2]
j + y

[0]
j y

[2]
j )

H
[2]
c = 4

∑
j>1

(
x

[0]
j

2
+ y

[0]
j

2)
(x

[0]
j x

[2]
j + y

[0]
j y

[2]
j )+

+2
∑

j≥1(x
[2]
j x

[0]
j+1 + x

[0]
j x

[2]
j+1 + y

[2]
j y

[0]
j+1 + y

[0]
j y

[2]
j+1).

(4.48)

If we want the time derivatives (here we refer to the slow time, denoted by t2) of

these two quantities we need all the derivatives for the functions at order [0] and [2].

But the zero order wave function obeys the DNLSE, therefore we will have that

∂t2x
[0]
j = −2y

[0]
j (x

[0]
j

2
+ y

[0]
j

2
)−

−y[0]
j−1 − y

[0]
j+1

∂t2y
[0]
j = +2x

[0]
j (x

[0]
j

2
+ y

[0]
j

2
)+

+x
[0]
j−1 + x

[0]
j+1.

(4.49)

Similarly, one can write the expansions for the differential equations at order O(ε)

to obtain

∂t2x
[2]
j = −2y

[2]
j (x

[0]
j

2
+ 3y

[0]
j

2
)− 4x

[2]
j x

[0]
j y

[0]
j −

−y[2]
j−1 − y

[2]
j+1

∂t2y
[2]
j = +2x

[2]
j (3x

[0]
j

2
+ y

[0]
j

2
) + 4y

[2]
j x

[0]
j y

[0]
j

+x
[2]
j−1 + x

[2]
j+1.

(4.50)

Using these expressions for the slow derivatives we can now apply the chain rule

to the quantities from (4.48). Luckily, the large majority of terms simplify, just as one

might expect from coupled quantum transport where conservation laws are in place.

After this process is finalised, we are left with

∂t2A
[2]
c = 2(−x[2]

2 y
[0]
1 − x

[0]
2 y

[2]
1 + y

[2]
2 x

[0]
1 + y

[0]
2 x

[2]
1 )

∂t2H
[2]
c = 2(x

[0]
2 ∂t2x

[2]
1 + x

[2]
2 ∂t2x

[0]
1 + y

[0]
2 ∂t2y

[2]
1 + y

[2]
2 ∂t2y

[0]
1 )

(4.51)

where x
[2]
1 and y

[2]
1 have the known expressions from (4.35), and their derivatives can im-
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mediately be determined through a new set of chain rules. What is crucial to remember

at this stage is that

1. Most contributions for the expressions at (4.48) cancel, leaving out only the terms

which come from the interaction between the chain in the dimer ‘breather - neigh-

bour’;

2. The expressions for both ∂t2A
[2]
c and ∂t2H

[2]
c are of the form mx

[2]
2 + ny

[2]
2 + p,

where m,n, p have exact, known expressions which are seen at (4.51).

In conclusion the fluxes for both the norm and the Hamiltonian for the Bose-

Hubbard chain are linear combinations of x
[2]
2 and y

[2]
2 , where all proportionality con-

stants are known.

4.6 Fluxes for the Hamiltonian and the Norm at order

O(ε) for a dimer containing a breather

When it comes to the dimer (denoted in the equations by the subscript Xd) con-

sisting of the breather and its nearest neighbour, the Bose Hubbard Hamiltonian and

the norm are

Ad = A2
0 + x2

1 + y2
1

Hd = A4
0 + (x2

1 + y2
1)2+

+2A0

[
x1 cos(t1 + φ

[0]
0 ) + y1 sin(t1 + φ

[0]
0 )
]
.

(4.52)

Note that even if these variables only contain the wave-functions at sites j = 0 and

j = 1 they are still coupled to the rest of the chain, as one might expect. At order

zero, the coupling is simply the DNLSE, as discussed previously. At higher order, the

coupling takes a more complex shape, and this is the purpose of studying the balance

of the fluxes between the breather and the background.
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Once again, we replace all the variables on the RHS with their asymptotic expan-

sions and we separate the different orders of O(
√
ε). Given the fact that most of these

equations have already been used to derive the high order functions, there is no surprise

that they will lead to the trivial identity 0 = 0. However, once again, at order O(ε) we

obtain a non-trivial result:

A
[2]
d = 2(x

[0]
1 x

[2]
1 + y

[0]
1 y

[2]
1 )

H
[2]
d =

√
2U(t2)−

−
(
x

[0]
1

2
+ y

[0]
1

2)[
15
2 − 4x

[0]
1 (x

[0]
2 −M)− 4y

[0]
1 (y

[0]
2 −N)

]
−

−8
(
x

[0]
1

2
+ y

[0]
1

2)3
.

(4.53)

In order to calculate the flows of energy and mass from the dimer towards the rest

of the chain, we have to take the time derivatives of these quantities, which will be

∂t2A
[2]
d = 2(∂t2x

[0]
1 x

[2]
1 + x

[0]
1 ∂t2x

[2]
1 + ∂t2y

[0]
1 y

[2]
1 + y

[0]
1 ∂t2y

[2]
1 )

∂t2H
[2]
d = 2(x

[0]
1 ∂t2x

[0]
1 + y

[0]
1 ∂t2y

[0]
1 )(15

2 + 4Mx
[0]
1 + 4Ny

[0]
1 −

−4x
[0]
1 x

[0]
2 − 4y

[0]
1 y

[0]
2 )− 24

(
x

[0]
1

2
+ y

[0]
1

2)2
×

×2(x
[0]
1 ∂t2x

[0]
1 + y

[0]
1 ∂t2y

[0]
1 ) + 4

(
x

[0]
1

2
+ y

[0]
1

2)
×

×(−x[0]
1 ∂t2x

[0]
2 − y

[0]
1 ∂t2y

[0]
2 − x

[0]
2 ∂t2x

[0]
1 − y

[0]
2 ∂t2y

[0]
1 +

+∂t2Mx
[0]
1 + ∂t2Ny

[0]
1 +M∂t2x

[0]
1 +N∂t2y

[0]
1 )+

+
√

2∂t2U.

(4.54)

Now we can replace the derivatives of the zero-order wave-functions with the DNLSE

expressions and the derivatives of x
[2]
1 and y

[2]
1 by applying the chain rule on (4.35).

Doing so in the expressions from (4.54) will lead to cumbersomely long expressions,

and the use of a symbolic programming language such as Mathematica or MAPLE is

strongly advised.

However, what is crucial to observe from this process is that
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1. All the fast contributions in the norm and Hamiltonian of the dimer disappear

- i.e. all dependencies are on t2 and the quantities are completely independent

of t1. This is remarkable since most terms contained fast sinusoidals, which all

cancelled out;

2. The expressions for both ∂t2A
[2]
d and ∂t2H

[2]
d are long analytical expressions, which

do not depend at all on either x
[2]
2 or y

[2]
2 .

4.7 Solvability Conditions

At the stage we have the flow of energy and norm from the dimer and from the rest

of the chain. A balanced equation implies that

∂t2N
[2]
d = −∂t2N

[2]
c

∂t2H
[2]
d = −∂t2H

[2]
c

(4.55)

which will be the solvability conditions for the mass end energy at order O(ε). These

equations will be of the type

m1x
[2]
2 + n1y

[2]
2 = p1

m2x
[2]
2 + n2y

[2]
2 = p2.

(4.56)

By using the Cramer rule, we find that the two equations are always linearly inde-

pendent and that the discriminant of this system is strictly positive, as long as U(t2)

is exactly zero. After the algebraic operations are completed,

x
[2]
2 =

(
− 17A

[0]
1

2 + 8A
[0]
1

5)
cos(ψ

[0]
1 )+

+4A
[0]
1

2
A

[0]
2 cos(2ψ

[0]
1 − ψ

[0]
2 )−

−2A
[0]
2

3
cos(ψ

[0]
2 )−A[0]

3 cos(ψ
[0]
3 )+

+∂t2N − 4A
[0]
1

2
M−

2A
[0]
1

2
[M cos(2φ

[0]
0 ) +N sin(2φ

[0]
0 )]

(4.57)
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y
[2]
2 =

(
− 17A

[0]
1

2 + 8A
[0]
1

5)
sin(ψ

[0]
1 )+

+4A
[0]
1

2
A

[0]
2 sin(2ψ

[0]
1 − ψ

[0]
2 )−

−2A
[0]
2

3
sin(ψ

[0]
2 )−A[0]

3 sin(ψ
[0]
3 )−

−∂t2M − 4A
[0]
1

2
N+

2A
[0]
1

2
[N cos(2φ

[0]
0 )−M sin(2φ

[0]
0 )].

The solvability conditions have been used to determine the expressions (4.57) for x
[2]
2

and y
[2]
2 . However, the functions M(t2), N(t2), P (t2) and Q(t2) cannot be determined

from the solvability conditions. These terms cancel at all orders leading to the trivial

relation 0 = 0. We show in the next subsection, however, that the explicit form of

these functions is not necessary when determining the first differential equation in the

perturbation expansion that does not average to zero over one period of the breather

rotation.

We can now replace x
[2]
2 and y

[2]
2 with their analytical expressions obtained in (4.46)

to obtain,

〈DA
ε2〉 =

13

2
A

[0]
1 sin(φ

[0]
0 − ψ

[0]
1 ). (4.58)

It is quite remarkable that M(t2), N(t2) and P (t2) do not appear in the final

expression of Eq. (4.58). This justifies a posteriori the truncation of the calculations

made in the application of the solvability conditions above. We also note that:

〈DA
ε2〉 = 〈∂t2A

[4]
0 + ∂t1A

[6]
0 〉 = 〈∂t1A

[6]
0 〉 (4.59)

and finally obtain

〈∂t1A
[6]
0 〉 =

13

2
A

[0]
1 sin(φ

[0]
0 − ψ

[0]
1 ) . (4.60)

Eq. (4.60) is the main result of this chapter of the thesis and is compared with numerical

simulations of the DNLSE in the next section.
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4.8 Breather fluctuations and comparison with simula-

tions

4.8.1 Size of fluctuations

The amplitude of the breather fluctuates in time around a constant value ε−1/2A
[−1]
0 .

For low orders of ε, the fluctuations average to zero over one fast rotation. More re-

markably, our calculations are able to determine the magnitude of the slow perturbation

which does not cancel over one fast oscillation. These slow drifts in the derivative of

the breather norm appear at order O(ε2), and for lattices with more than three sites

(N > 3) are given by:

〈dtA0〉 =
13

2
ε2A

[0]
1 sin(φ

[0]
0 − ψ

[0]
1 ) +O(ε

5/2) (4.61)

as a direct consequence of formula (4.60). A
[0]
1 and ψ

[0]
1 are the amplitude and the

phase of the wave-function at the nearest site of the breather. Remarkably, the slow

drift depends only on the state of the nearest neighbour of the breather, all interactions

with more distant sites cancelling out after imposing the solvability conditions (4.55).

Note that Eq. (4.61) has been derived for breathers in contact with a background

on one side only. Extensions to more generic configurations require a sum of both left

and right contributions

〈dtA0〉 =
13

2
ε2
∑
j=±1

A
[0]
j sin(φ

[0]
0 − ψ

[0]
j ) +O(ε

5/2) . (4.62)

This is an approximation since in the case of breathers in contact with backgrounds on

both sides, there are two solvability conditions for four unknown high order functions

and mixed terms of left and right backgrounds. These terms and the flow of energy

from one side of the breather to the other are negligible so that the derivative of the

breather norm only contains two contributions of the type shown in Eq. (4.61).
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For lattices of length N > 3, we run computational simulations and record the

evolution of A0(t1, t2). This variable contains numerous high order terms which average

to zero over one full oscillation of the breather. In order to extract the slow drifts, one

must take the Fourier Transform of A0, apply a Heaviside step function filter, and then

take the inverse Fourier Transform. Analogously, one applies the same algorithm on

A1(t1, t2) to obtain a numerical approximation of the zero-th order amplitude of the

nearest neighbour.

Let Πf (X) denote a low-pass filtered version of a signal X, f being the cut-off

frequency: all frequencies above this value are filtered out before applying, the inverse

Fourier Transform. The averaged equation (4.61) implies that:

− 2π
13

2
ε3Πf (A1) ≤ Πf (A0) ≤ 2π

13

2
ε3Πf (A1) (4.63)

where one has used that −1 ≤ sin(x) ≤ 1 ∀x ∈ R and also the properties of the Fourier

transforms for derivatives F(X ′) = iωF(X). The analytical predictions given by the

multiple time scale analysis can therefore be tested by checking the truthfulness of

(4.63). A similar idea is presented in [71], where the authors make analytical predic-

tions on the behaviour of a multiple scale system, which are ultimately confirmed by

computational tests which consist of numerical filtering.

In order to test the accuracy of (4.60), (4.61) and (4.62), we focus on the fluctuations

of the time derivative of the breather amplitude (dt|z0|), as shown in Figure 4.2. This

test shows the evolution of dt|z0| over a time span of 100 time units for a breather

of initial size |z0| = 5. In Figure 4.2 (a), one can see that the fluctuations of the

time derivative of the breather norm from the integration of Eq. (4.1) are of order

O(1). This is not surprising, since when applying the two-scale differential operator

ε−1∂t1 + ∂t2 on the first non-trivial term from (4.26) one obtains a contribution of the

form ε−1∂t1
(
εA

[2]
0

)
, which creates fluctuations of order O(1). This dominant component

in the derivative of the norm, however, vanishes when averaged over one full rotation.
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Figure 4.2: Time evolution of dt|z0| over a time span of 100 time units. (a) dt|z0| from
the numerical integration of Eq. (4.1) (pale blue curve) and after the fast oscillating
components have been filtered out (black line). (b) Same as (a) but magnified by a
factor of 5000 (black line) with the analytical bounds from the inequalities (4.63) (red
lines).
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In order to see only the slow components of the derivative, one must use numerical low

pass filters. Figure 4.2 (b) displays the same quantity, dt|z0|, but after the application

of the numerical low pass filter and suitable magnification. The same black curve is also

shown in the upper diagram, where due to the large difference in the magnitude of the

fluctuations, it appears to be almost flat. What is remarkable is the excellent agreement

between the slow fluctuations given by the numerical integration of Eq. (4.1) and the

analytical boundaries predicted by the inequalities of Eq. (4.63). The extension of

formula (4.61) to symmetric backgrounds is tested in Figure 4.3

Figure 4.3: Same as Figure 4.2 but for a breather with backgrounds on both sides.
(a) Time evolution of dt|z0| over a time span of 100 time units from the numerical
integration of Eq. (4.1) (pale blue curve) and after the fast oscillating components
have been filtered out (black line). (b) Same as (a) but magnified by a factor of 5000
(black line) with the analytical bounds from the inequalities (4.63) based on Eq. (4.62)
(red lines).
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4.8.2 Stability of the trimer configuration

A Bose-Hubbard chain with only three sites (N = 3) is known as a trimer and has

been the subject of extensive research [40, 72–75]. Our perturbative model is capable

of explaining why trimer configurations give rise to breathers with a higher stability

with respect to longer lattices.

One can obtain a slow drift equation for a dimer by replacing in (4.46) all the

wave-functions for sites with j ≥ 2 with zero. The averaged equation for the breather

amplitude (4.46) reads

〈DA
ε2〉 = y

[2]
2 cos(φ

[0]
0 )− x[2]

2 sin(φ
[0]
0 )−

−2A
[0]
2

3
sin(φ

[0]
0 − ψ

[0]
2 )+

+A
[0]
1

[(
− 2 + 8A

[0]
1

4)
sin(φ

[0]
0 − ψ

[0]
1 )+

+4A
[0]
1 A

[0]
2 sin(φ

[0]
0 − 2ψ

[0]
1 + ψ

[0]
2 )
]

−A[0]
3 sin(φ

[0]
0 − ψ

[0]
3 )

+∂t2M(t2) cos(φ
[0]
0 )+

+∂t2N(t2) sin(φ
[0]
0 )

−2A
[0]
1

2[
N(t2) cos(φ

[0]
0 − 2ψ

[0]
1 )+

+M(t2) sin(φ
[0]
0 − 2ψ

[0]
1 )
]

+4A
[0]
1

2[
N(t2) cos(φ

[0]
0 )−

−M(t2) sin(φ
[0]
0 )
]
.

(4.64)

In a dimer configuration, all sites with j ≥ 2 have Aj = 0, and all x
[k]
j≥2 = y

[k]
j≥2 = 0 ∀ k.

This also implies thatM = N = 0. Under these circumstances, the equation from (4.64)

greatly simplifies to:

〈DA
ε2〉 = A

[0]
1

(
− 2 + 8A

[0]
1

4)
sin(φ

[0]
0 − ψ

[0]
1 ). (4.65)

In the presence of small backgrounds 8A
[0]
1

5
� 2A

[0]
1 , therefore (4.65) can be ap-
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proximated by:

〈DA
ε2〉 = −2A

[0]
1 sin(φ

[0]
0 − ψ

[0]
1 ). (4.66)

In the case when the breather sits at the middle of a trimer lattice, one can add

independent left and right contributions, just as it was done for the case of lattices of

generic lengths, and arrive at the expression (4.67).

This provides a new formula which will is valid when the breather does not have

more than one neighbour on each side (i.e. the breather is either in a dimer or at the

middle of a trimer). For backgrounds which are dominantly below one, this formula is:

〈dtA0〉 = −2ε2
∑
j=±1

A
[0]
j sin(φ

[0]
0 − ψ

[0]
j ) +O(ε

5/2) . (4.67)

This makes the noise in the case of dimers and trimers around 3.25 times smaller

than the one calculated for extended lattices, with N > 3. Formula (4.67) is confirmed

by the numerical tests presented in Figure 4.4 which are done using the same low

pass filters as introduced in the previous section. The difference in derivative between

trimers and extended lattice configurations also implies a different size for the area of

the Poincaré sections in the two cases. One can expect that extended systems produce

Poincaré sections which are roughly 3.252 ≈ 10 times larger in area. The Poincaré

section is taken by sampling the data after each complete rotation of the breather

that takes 2πε time units. Here ε is the inverse of the frequency which is determined

numerically by applying Fast Fourier Transforms on the evolution of the real part of

the breather norm.
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Figure 4.4: Time evolution of dt|z0| in a three site lattice with the breather located
in the middle of the chain over a time span of 100 units. (a) dt|z0| from the numerical
integration of Eq. (4.1) (pale blue curve) and after the fast oscillating components have
been filtered out (black line). (b) Same as (a) but magnified by a factor of 5000 (black
line) with the analytical bounds from the inequalities (4.63) after the factor 13/2 has
been replaced by −2 to accommodate for limited size effects (red lines).
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4.9 A less fluctuating quantity. Defining a slow norm

The asymptotic expansion for the breather norm had the form

A0 = ε−
1/2A

[−1]
0 +

∑
m≥2

ε
m/2A

[m]
0

(
t1, t2

)
, (4.68)

where A
[m]
0

(
t1, t2

)
are the higher order terms determined in this chapter and A

[−1]
0 is

a constant (equal to 1/
√

2). Using the information we gathered from solving the high

orders of the perturbations, we can now write

A0 =
ε−1/2

√
2
− ε
[
x

[0]
1 cos(t1 + φ

[0]
0 ) + y

[0]
1 sin(t1 + φ

[0]
0 )
]
+

+ε2
[
M(t2) cos(t1 + φ

[0]
0 ) +N(t2) sin(t1 + φ

[0]
0 )
]

+O(ε
5/2).

(4.69)

We can now see that in the expression for the breather amplitude there is a dominant

term at order O(ε) which oscillates on the scale of t1. At this order, we can approximate

x
[0]
1 , y

[0]
1 and φ

[0]
1 with x1, y1 and φ0. Any corrections that would need to be made after

this approximation would appear at higher order terms. Therefore we can approximate

the fast oscillating component by

Aosc ≡ −ε
[
x1 cos(t1 + φ0) + y1 sin(t1 + φ0)

]
, (4.70)

and if we return to the original expression of the breather phase ψ0 ≡ ωt+φ0 = t1 +φ0,

this becomes

Aosc = −ε
[
x1 cos(ψ0) + y1 sin(ψ0)

]
= −εA1 cos(ψ0 − ψ1). (4.71)

We can therefore write an expression for a variable which will oscillate less than A0,

that could be used to measure diffusions without taking into account the noise which

would originate from the rather large oscillations at order O(ε). This quantity is given



CHAPTER 4. MULTIPLE TIME SCALE ANALYSIS 123

by

Q = A0 −Aosc = A0 + εA1 cos(ψ0 − ψ1). (4.72)

This can be extended for systems with symmetric configurations, like we saw through-

out this work. The definition of the slowly varying variable becomes

Q = A0 + ε
[
A1 cos(ψ0 − ψ1) +A−1 cos(ψ0 − ψ−1)

]
. (4.73)

The advantage of this quantity is that it fluctuates less than A0, and sometimes it

is more convenient to plot the time dependency of Q(t) than that of A0(t). There is

however, a slight disadvantage in the fact that one has to store the evolution of seven

variables now instead of one. Given the fact that the simulations usually span very

long integration times, this can make the data files very large. Alternatively, one could

only store the value of Q(t) and not that of A0 and all the other variables, but this

means that more operations are performed during the integration, and that one loses

information when encountering events where the perturbation no longer holds. When

the system arrives to a non-perturbative event, the quantity Q is no longer a good

approximation of the slow part of A0.

In order to avoid these issues, one can also store the trajectory of A0(t) and average

the amplitudes over every 500 time units or so and this would flatten the fluctuations

considerably. A time of 500 units might seem to be very long, but we are in the presence

of trajectories which barely change over spans of O(105) units, therefore one would still

have a considerable amount of data points to look at drifts and diffusions.

4.10 Conclusions

Tall breathers tend to decouple from the background even when the latter is rela-

tively strong. If the breather amplitude is large enough, all background sites, including

the nearest neighbours, perceive the breather as a purely reflective boundary. This
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localised solution is very stable, displaying fast fluctuations which average to zero over

one oscillation period. In order to quantify the slow changes of the breather size, one

has to consider high orders of a (singular) perturbation expansion, the smallness pa-

rameter being the inverse of the breather mass. Here we have developed a multiple

time-scales perturbative approach, which, with the help of conditions arising from en-

ergy and mass conservation, is able to predict topological differences among dimers,

trimers, and lattices with N > 3. Breathers in trimer configurations are shown to be

more stable than those in larger lattices. For spatially extended lattices, the bounds of

the slow derivatives (given by the inequality (4.63)) are independent of the system size.

This explains why, for long periods of time, these localised solutions are not affected

by the phonon backgrounds they are in direct contact with.

During most of the evolution, in the absence of large excitations, the wave-function

is perturbative in character and obeys the dynamics described by the zero-order equa-

tion (4.16). Very rarely, the phonon background spontaneously creates a neighbouring

excitation large enough to take the system out of the perturbative regime, causing a

sudden change in the breather shape.

The existence of a clear perturbative regime, even in the presence of large back-

grounds, suggests that most of the trajectories of the system can be simulated with the

help of averaged differential equations where the fast time scale has been eliminated.

This type of model would be useful for investigating phenomena which occur during

time scales that are larger than the fast fluctuations of the breather, such as the effect of

breathers on quantum transport and the thermalisation of backgrounds in the presence

of breathers.

If one wants to study the entire evolution of breathers, perturbative techniques do

not suffice. They can be used however to differentiate between slow processes and

catastrophic events, which occur when Eq. (4.62) is violated.

Breather lifetimes are characterised by three time-scales: the very small period of

the breather rotation, the times over which the background evolves, and the times over
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which rare events may occur. The first order at which there is a non-zero term in the

second time scale is ε2 for the derivative of the breather norm. This term, however,

averages to zero over the second time scale if one makes the assumption that correlations

between the zero-th order wave-function components decay very rapidly. What follows

from this is that, under the assumption of a very slow diffusion, the evolution of the

breather is most likely given by events which occur on the third time scale, i.e. rare

events. As the amplitude of the breather is increased drastically, the spontaneous

formation of an excitation of order
√
ε decreases exponentially, since the background

amplitudes have probability distributions which decay exponentially fast [34]. This

might imply that in those domains, the lifetime of breathers is not dictated by rare

events, but by diffusion processes which could occur at even higher orders than that at

which the first non-zero terms occurs.



Chapter 5

Averaging, Effective

Hamiltonians and Adiabatic

Invariants

5.1 Time averaging of the DNLSE dynamics

The averaging algorithm is developed for lattices where a single pinned breather

sits at the edge of a one-dimensional Bose-Hubbard chain (the sites are identified us-

ing the coordinate j ∈ {0, 1, 2, ..., N − 1}, where N denotes the length of the chain).

As in the case of the Multiple Time Scale Analysis (MTSA) algorithm presented in

Chapter 4, the breather is set to occupy the site j = 0, and all the background sites

are located on the same side of the breather. Using the work from Chapter 4, one

can state that, in the presence of backgrounds of order O(1), breathers are very well

localised, occupying a single site in the lattice. In addition, these localised modes are

characterised by fast dynamics which adiabatically decouple from their surroundings,

rotating with frequencies which are much higher then the characteristic peaks found in

the background spectrum [34]. One can take advantage of this separation of time-scales

to build a perturbative calculation through which one arrives to an averaged discrete

126
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nonlinear Schrödinger equation (AvDNLSE).

Since the averaging algorithm employs perturbation analysis elements, one must

start by defining a basis for the phase space where all variables have continuous, well de-

fined derivatives (i.e. there are no divergences, and all Taylor expansions are used within

their convergence radii). This coordinate system is given by the polar coordinates of the

breather and of the Cartesian coordinates of the background
{

(A0, ψ0), (xj , yj)|∀j > 0
}

.

The only fast variable in this set is ψ0, the phase of the breather, which can be ap-

proximated by the monotonously increasing phase of a harmonic oscillator with fre-

quency ω. It is now possible to transition to a set of coordinates which are all slow{
(A0, φ0), (xj , yj)|∀j > 0

}
, through the transformation dtφ0(t) = dtψ0(t)− ω(t). As it

was stated before, when expressing the DNLSE in a hybrid polar-Cartesian system of

slow coordinates (4.4), one arrives at

dtA0 = x1 sin(ωt+ φ0)− y1 cos(ωt+ φ0)

dtφ0 = 2A2
0 − ω +A0

−1
[
x1 cos(ωt+ φ0)+

+y1 sin(ωt+ φ0)
]

dtx1 = −2(x2
1 + y2

1)y1 − y2 −A0 sin(ωt+ φ0)

dty1 = 2(x2
1 + y2

1)x1 + x2 +A0 cos(ωt+ φ0)

dtxj = −2(x2
j + y2

j )yj − yj−1 − yj+1 j ≥ 2

dtyj = 2(x2
j + y2

j )xj + xj−1 + xj+1 j ≥ 2.

(5.1)

It now becomes visible that in this system of coordinates the only divergence for the

derivatives occurs when A0 → 0. Since the current perturbative theory is developed

for breathers (bright solitons, with A0 � 0), this divergence however is not important

within the averaging regime.

One can now use the fact that all the coordinates in the set
{

(A0, φ0), (xj , yj)|∀j >

0
}

are slow. As a first approximation, one can consider that all these variables are

constant during a full breather rotation. Integrating (5.1) (i.e. applying the operator∫ t
0 (∗)dt′) one arrives at
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δA
(1)
0 = −

[
x̃1 cos(ωt+ φ̃0) + ỹ1 sin(ωt+ φ̃0)

]
/ω+

+
[
x̃1 cos(φ̃0) + ỹ1 sin(φ̃0)

]
/ω

δφ
(1)
0 = Ã−1

0

[
x̃1 sin(ωt+ φ̃0)− ỹ1 cos(ωt+ φ̃0)

]
/ω−

−Ã−1
0

[
x̃1 sin(φ̃0)− ỹ1 cos(φ̃0)

]
/ω

+(2Ã2
0 − ω)t

δx
(1)
1 = −

[
2(x̃2

1 + ỹ2
1)ỹ1 + ỹ2

]
× t+

+Ã0

[
cos(ωt+ φ̃0)− cos(φ̃0)

]
/ω

δy
(1)
1 =

[
2(x̃2

1 + ỹ2
1)x̃1 + x̃2

]
× t+

+Ã0

[
sin(ωt+ φ0)− sin(φ0)

]
/ω

δx
(1)
j =

[
− 2(x̃2

j + ỹ2
j )ỹj − ỹj−1 − ỹj+1

]
× t

δy
(1)
j =

[
2(x̃2

j + ỹ2
j )x̃j + x̃j−1 + x̃j+1

]
× t,

(5.2)

where the tilde over-script denotes the initial value of a given coordinate (ψ̃ ≡ ψ(t = 0)).

If one takes the frequency to be ω ≡ 2Ã2
0 and evaluates the infinitesimal drifts from

(5.2) after one rotation exactly (i.e. at time t = 2π/ω), one obtains

δA
(1)
0 |t=2π/ω = 0

δφ
(1)
0 |t=2π/ω = 0

δx
(1)
1 |t=2π/ω = −

[
2(x̃2

1 + ỹ2
1)ỹ1 + ỹ2

]
× 2π/ω

δy
(1)
1 |t=2π/ω =

[
2(x̃2

1 + ỹ2
1)x̃1 + x̃2

]
× 2π/ω

δx
(1)
j |t=2π/ω =

[
− 2(x̃2

j + ỹ2
j )ỹj − ỹj−1 − ỹj+1

]
× 2π/ω

δy
(1)
j |t=2π/ω =

[
2(x̃2

j + ỹ2
j )x̃j + x̃j−1 + x̃j+1

]
× 2π/ω.

(5.3)

The slow drifts after precisely one rotation can be used to determine the average

derivative of a quantity X, which we will denote by DI
tX. This will be given by

DI
tX ≡ ω/(2π) × δX(1)|t=2π/ω. For the hybrid system of coordinates, these average

derivatives will be:
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DI
tA0 ≡ ω/(2π)× δA(1)

0 |t=2π/ω

= 0

DI
t φ0 ≡ ω/(2π)× δφ(1)

0 |t=2π/ω

= 0

DI
t x1 ≡ ω/(2π)× δx(1)

1 |t=2π/ω

= −2(x̃2
1 + ỹ2

1)ỹ1 − ỹ2

DI
t y1 ≡ ω/(2π)× δy(1)

1 |t=2π/ω

= +2(x̃2
1 + ỹ2

1)x̃1 + x̃2

DI
t xj ≡ ω/(2π)× δx(1)

j |t=2π/ω

= −2(x̃2
j + ỹ2

j )ỹj − ỹj−1 − ỹj+1

DI
t yj ≡ ω/(2π)× δy(1)

j |t=2π/ω

= +2(x̃2
j + ỹ2

j )x̃j + x̃j−1 + x̃j+1,

(5.4)

which implies that, under this first approximation, all sites in the background (j ≥ 1)

obey the DNLSE, and are completely decoupled from the breather. The breather does

not change at all in this first approximation. This is, once again, the breather-reflective

boundary analogy described in the previous chapter. As we might have expected from

the very stable nature of the soliton, both the breather phase and its amplitude do not

change at all when taking the first order average. The breather wave-function is simply

a constant which does not interact with its surroundings, and can be replaced by a

reflective boundary (|z0(t)| = 0 ∀ t). It now becomes apparent that one must go to

higher orders to obtain an averaged equation where the background and the breather

are coupled.

In order to go to higher orders, one must first approximate all the slow coordinates
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with the expressions

A0(t) → Ã0 + δA
(1)
0 (t)

φ0(t) → φ̃0 + δφ
(1)
0 (t)

xj(t) → x̃j + δx
(1)
j (t)

yj(t) → ỹj + δy
(1)
j (t),

(5.5)

in the DNLSE from (5.1). The corrections must be expressed for a generic time t,

and not only after one full rotation, to make sure that no important dynamics from

interference or any other wave phenomena are missed. It is now useful to introduce a

smallness parameter, using the same definition that was utilised throughout this thesis,

i.e. ε ≡ ω−1 = 1/(2Ã2
0), which helps quantify the orders of magnitude of the corrections

introduced after the change of variables at (5.5). All coordinates are replaced with

their new expressions in the differential equations of (5.2). After this substitution is

complete, one expands all the equations in terms of the smallness parameter, and checks

the leading order of the correction. The dominant order of the corrections will be O(ε)

for the breather amplitude and O(ε3/2) for the breather phase. Similarly, the wave-

function for the nearest neighbour has correction as large as O(ε1/2), while all the other

background sites have their first corrections at O(ε). These findings are absolutely

identical to what we obtained through asymptotic expansions in Chapter 4 at (4.6).

After expressing all differential equations as power series of the smallness parameter,

through the use of Taylor expansions we can approximate the differential equations with

dtA0 = x̃1 sin(ωt+ φ̃0)− ỹ1 cos(ωt+ φ̃0)+

+δx
(1)
1 sin(ωt+ φ̃0)− δy(1)

1 cos(ωt+ φ̃0) + H.O.T.

dtφ0 =
[
x̃1 cos(ωt+ φ̃0) + ỹ1 sin(ωt+ φ̃0)

]
/Ã0+

+
[
δx

(1)
1 cos(ωt+ φ̃0) + δy

(1)
1 sin(ωt+ φ̃0)

]
/Ã0−

−δA(1)
0

[
x̃1 cos(ωt+ φ̃0) + ỹ1 sin(ωt+ φ̃0)

]
/Ã2

0

+H.O.T.

(5.6)
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dtx1 = −
[
2(x̃2

1 + ỹ2
1)ỹ1 + ỹ2

]
−

−4δx
(1)
1 x̃1ỹ1 − 2δy

(1)
1 (x̃2

1 + 3ỹ2
1)− δy(1)

2 −

−4δx
(1)
1 δy

(1)
1 x̃1 − 6δy

(1)
1

2
ỹ1 − 2δx

(1)
1

2
ỹ1−

−δA(1)
0 sin(ωt+ φ̃0)− Ã0 sin(ωt+ φ̃0) + H.O.T.

dty1 = +
[
2(x̃2

1 + ỹ2
1)x̃1 + x̃2

]
+

+4δy
(1)
1 x̃1ỹ1 + 2δx

(1)
1 (3x̃2

1 + ỹ2
1) + δx

(1)
2 +

+4δx
(1)
1 δy

(1)
1 ỹ1 + 6δx

(1)
1

2
x̃1 + 2δy

(1)
1

2
x̃1+

+δA
(1)
0 cos(ωt+ φ̃0) + Ã0 cos(ωt+ φ̃0) + H.O.T.

(5.7)

dtx2 = −
[
2(x̃2

2 + ỹ2
2)ỹ2 + ỹ1 + ỹ3

]
− δy(1)

1 + H.O.T.

dty2 = +
[
2(x̃2

2 + ỹ2
2)x̃2 + x̃1 + x̃3

]
+ δx

(1)
1 + H.O.T.

(5.8)

dtxj>2 = −
[
2(x̃2

j + ỹ2
j )ỹj + ỹj−1 + ỹj+1

]
+ H.O.T.

dtyj>2 = +
[
2(x̃2

j + ỹ2
j )x̃j + x̃j−1 + x̃j+1

]
+ H.O.T.

(5.9)

For all the Taylor expansions of the derivatives, we now replace δA
(1)
0 , δφ

(1)
0 , δx

(1)
j

and δy
(1)
j with their full analytical expressions from (5.2). The expressions for the

derivatives become rather long and therefore we use a programming language which can

manipulate symbolic calculations (such as Mathematica or MAPLE). Once this algebraic

operation is completed, all derivatives will be expressed as functions of Ã0, φ̃0, x̃j and

ỹj , in addition to the fast phase variables t and ω.

The next step is to redefine the time as T ≡ ωt + φ̃0, so that all trigonometric

functions will have very simple arguments (just the variable T ). When doing this

substitution, one must replace the variable t by T−φ̃0
ω in all the expressions of δA

(1)
0 ,

δφ
(1)
0 , δx

(1)
j and δy

(1)
j .

At this stage, ω can be replaced with 1/ε and δA
(1)
0 with 1/

√
2ε, and all derivatives

from (5.6)-(5.9) can be written as power series of ε. In order to determine the drifts

according to the second order approximation, we have to integrate these power series
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for T ranging from φ̃0 to tmax/ε+ φ̃0. This interval corresponds to a time span of t ∈

[0, tmax] for the natural time. Finally, one can determine the infinitesimal increments{
(δA

(2)
0 , δφ

(2)
0 ), (δx

(2)
j , δy

(2)
j )|∀j > 0

}
by evaluating these integrals at tmax = 2πε.

Just as done for the order I, the value of these increments is evaluated after one

rotation exactly to approximate the values of the derivatives

DII
t A0 ≡ ω/(2π)× δA(2)

0 |t=2π/ω

DII
t φ0 ≡ ω/(2π)× δφ(2)

0 |t=2π/ω

DII
t xj ≡ ω/(2π)× δx(2)

j |t=2π/ω

DII
t yj ≡ ω/(2π)× δy(2)

j |t=2π/ω,

(5.10)

which leads to the following analytical expressions

DII
t A0 = ε

[
cos(φ̃0)(2ỹ1(x̃2

1 + ỹ2
1) + ỹ2)−

− sin(φ̃0)(2x̃1(x̃2
1 + ỹ2

1) + x̃2)
]

+O(ε2)

DII
t φ0 = ε+

+ε3/2
√

2
[

sin(φ̃0)(2ỹ1(x̃2
1 + ỹ2

1) + ỹ2)+

+ cos(φ̃0)(2x̃1(x̃2
1 + ỹ2

1) + x̃2)
]
+

+O(ε5/2)

(5.11)
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DII
t x1 = −2(x̃2

1 + ỹ2
1)ỹ1 − ỹ2+

+
√
ε×
√

2
[
2x̃1ỹ1 cos(φ̃0)+

+(x̃2
1 + 3ỹ2

1) sin(φ̃0)
]
+

+ε
[
ỹ1 cos(2φ̃0)− x̃1 sin(2φ̃0)− 6ỹ1

]
+

+ε×Dε
x1 +O(ε3/2)

DII
t y1 = +2(x̃2

1 + ỹ2
1)x̃1 + x̃2−

−
√
ε×
√

2
[
2x̃1ỹ1 sin(φ̃0)+

+(3x̃2
1 + ỹ2

1) cos(φ̃0)
]
+

+ε
[
x̃1 cos(2φ̃0) + ỹ1 sin(2φ̃0) + 6x̃1

]
+

+ε×Dε
y1 +O(ε3/2)

(5.12)

DII
t x2 = −2(x̃2

2 + ỹ2
2)ỹ2 − ỹ1 − ỹ3+

+
√
ε sin(φ̃0)/

√
2 +O(ε)

DII
t y2 = +2(x̃2

2 + ỹ2
2)x̃2 + x̃1 + x̃3+

−
√
ε cos(φ̃0)/

√
2 +O(ε)

(5.13)

DII
t xj = −2(x̃2

j + ỹ2
j )ỹj − ỹj−1 − ỹj+1+

+O(ε)

DII
t yj = +2(x̃2

j + ỹ2
j )x̃j + x̃j−1 + x̃j+1+

+O(ε).

(5.14)

The averaged differential equations for the nearest neighbour (5.12) contain the

corrections Dx1 and Dy1 at order O(ε). These expressions are proportional to π and

arise from the integration of terms, say, K̃ which are generic functions of Ã0, φ̃0, x̃j

and ỹj . When these integrals are performed, the result will be of the shape K̃ × t,

and given the fact that the integrals are evaluated at t = 2πε, they will take the form

2πK̃ε. These are secular terms at order O(ε), which will increase linearly with time,

and should not be included in the final expressions of the derivatives [76]. As a rule

of thumb, all factors proportional to π or higher powers of π are secular terms, and
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should always be omitted.

Therefore, we will not keep Dx1 and Dy1 in the averaged equations, since their

secular nature would generate trajectories which diverge and this would contradict

the notion that the Hamiltonian of the system is conserved at all times. All averaging

techniques must be performed under the assumption that the system is still symplectic,

just as in the case of the original DNLSE. Once averaging is completed in a micro-

canonical set-up, one can extend the equations to open systems which are allowed to

exchange energy with the environment.

At this stage, one has an averaged differential equation which displays coupling

between the breather and the background. The procedure could be continued to reach

derivatives at third order, but for now, this is beyond the interest of this thesis work

since the present goal is the simplest system that displays an interaction between the

breather and the background. Note also that equations (5.11)-(5.14) originate from the

truncation of a power series, which is not unique. One could go to arbitrarily high orders

and include as many terms one pleases, but by doing so, the implementation of any

numerical algorithm based on the idea of averaging would be slowed down considerably.

At this stage, we have coupled differential equations for the breather and the back-

ground which show a clear non-zero interaction. These equations however no longer

originate from the Bose-Hubbard Hamiltonian, but from an average over a fast oscilla-

tion of this quantity. It is therefore important to determine which effective Hamiltonian

generates these differential equations, and whether it is still possible to conserve the

norm of the condensate when evolving the system under this newly obtained effective

Hamiltonian.

It will later become apparent that the current equations are more than adequate to

build an effective interaction Hamiltonian which will ultimately be used to create a hy-

brid integration scheme that will generate the full trajectories of breathers much faster

than the DNLSE. Keeping more terms in the truncation of the averaged differential

equations would have led to more algebraically complex expressions. This unnecessary
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added level of computational difficulty would have slowed down the averaged model so

much, that one would get no gain from using the AvNLSE instead of the full DNLSE.

5.2 The Effective Hamiltonian

The DNLSE (5.1) originates from the Bose-Hubbard Hamiltonian

HBH = 1
4

∑
j≥0(p2

j + q2
j )

2+

+
∑

j≥0(pjpj+1 + qjqj+1),
(5.15)

where pj ≡ xj
√

2 and qj ≡ yj
√

2 are the generalised coordinates of the system [50]. In

addition to conserving the Bose-Hubbard Hamiltonian, the DNLSE also conserves the

total norm of the condensate, given by N ≡ 1
2

∑
j≥0(p2

j + q2
j ).

Therefore, when building averaged differential equations where the fast time has

been eliminated, one must make sure that the new trajectory also obey mass and energy

conservation. Just as in the case of other perturbative approximations of the DNLSE

(see Chapter 4), one cannot expect the new system to follow the same trajectory as

the one given by the original equation, due to the chaotic nature of the Nonlinear

Schrödinger Equation. Moreover, when employing the averaged equations in grand

canonical ensembles, where the condensate is in contact with thermostats generated by

Langevin noise [50], one will use much larger time steps for the averaged system than

for the original equation. This implies that the noise will be sampled differently, even

if the same seed is used to generate the two trajectories. However, the computational

advantage of an algorithm which employs large steps is clearly undeniable.

Even if the trajectories given by the two algorithms will ultimately split, it is essen-

tial to make sure that in closed systems, the averaged equations do not artificially create

or annihilate mass, and that the new trajectory is still bound to a hyper-surface given

by a Hamiltonian. This new Hamiltonian will be referred to as the effective Hamilto-

nian of the system, and it will be constructed from the averaged equations which have
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been obtained at (5.11)-(5.14). We will later see that the averaged equations alone

cannot capture the full dynamics which happen during a breather’s life-time, but they

will constitute a solid starting point for a Hybrid Integration scheme.

The generalised coordinates for the background will once again be pj ≡ xj
√

2 and

qj ≡ yj
√

2, while the breather will be denoted by an oscillator with phase φ0 and

intensity I ≡ A2
0, as is usually done in slow-fast Hamiltonian systems [60]. The effective

Hamiltonian will therefore be a function of

p0 ≡ Ã2
0

q0 ≡ φ̃0

pj ≡ x̃j
√

2

qj ≡ ỹj
√

2.

(5.16)

Since the expressions we have to deal with are generally algebraically complex, we

have decided to use pj and qj instead of p̃j and q̃j , even if the second notation would

be more correct, since it would refer to the initial conditions (i.e. the values at which

we start before performing integrations over one rotation exactly).

Since we are now working with the breather intensity, i.e. p0 = I0 ≡ A2
0, it is

highly encouraged to study the evolution of the breather in terms of İ0 = ṗ0 = 2A0Ȧ0.

Furthermore, when working with averaged differential equations, it is useful to employ

the following convention, which is useful in avoiding ambiguities.

• The differential operator dtX is the time derivative, as it is given by the Bose-

Hubbard Hamiltonian (5.15)

• The differential operator Ẋ is the averaged time derivative, which as was previ-

ously shown, is not a unique operator, as it can depend on the averaging technique,

on the number of terms kept in a truncation, and on other considerations such

as on the omission of secular terms. From this stage onward, however, notations

such as DI
tX and DII

t X will be replaced with the more compact Ẋ
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After expressing all the truncated differential equations from (5.11)-(5.14) in terms

of these newly defined coordinates, one arrives to

ṗ0 = 1√
2p0

{[
q1(p2

1 + q2
1) + q2

]
cos(q0)−

−
[
p1(p2

1 + q2
1) + p2

]
sin(q0)

}
,

(5.17)

q̇0 = 1
2p0

+ ( 1
2p0

)3/2
{[
q1(p2

1 + q2
1) + q2

]
sin(q0)+

+
[
p1(p2

1 + q2
1) + p2

]
cos(q0)

}
,

(5.18)

ṗ1 = −(p2
1 + q2

1)q1 − q2+

+ 1√
2p0

{
(p2

1 + 3q2
1) sin(q0) + 2p1q1 cos(q0)

}
+

+ 1
2p0

[
q1 cos(2q0)− p1 sin(2q0)− 3q1

]
,

(5.19)

q̇1 = (p2
1 + q2

1)p1 + p2−

− 1√
2p0

{
(3p2

1 + q2
1) cos(q0) + 2p1q1 sin(q0)

}
+

+ 1
2p0

[
p1 cos(2q0) + q1 sin(2q0) + 3p1

]
,

(5.20)

ṗ2 = −(p2
2 + q2

2)q2 − q1 − q3+

+ 1√
2p0

sin(q0),
(5.21)

q̇2 = (p2
2 + q2

2)p2 + p1 + p3−

− 1√
2p0

cos(q0),
(5.22)

ṗj = −(p2
j + q2

j )qj − qj−1 − qj+1, (5.23)

q̇j = (p2
j + q2

j )pj + pj−1 + pj+1. (5.24)

In the equations from (5.17)-(5.24), one has neglected the secular terms Dε
x1 and

Dε
y1 . The truncations have been kept up to the same orders as the averaged system

derived at (5.11)-(5.14). The new equations however, should make it easier to construct
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a Hamiltonian from which they can all be generated, similar to its parent Bose-Hubbard

Hamiltonian from (5.15).

Since we want the dynamics to be given by an averaged Hamiltonian, Hav, it must

be that

ṗj = −∂qjHav

q̇j = ∂pjHav,
(5.25)

∀j ≥ 0. This implies that the effective Hamiltonian can be constructed by adding

contributions of the type

Hav

∣∣∣
partial

= −
∫
dpj q̇j + F

Hav

∣∣∣
partial

=
∫
dqj ṗj +G,

(5.26)

where F is a function which is independent of pj (∂pjF = 0), and G is a function

which is independent of qj (∂qjG = 0). Applying these formulas on all the eight

approximate derivatives from (5.17)-(5.24), one will obtain all the required terms in an

effective Hamiltonian which generate the approximate slow derivatives. The effective

Hamiltonian will be given by

Hav = 1
4

∑
j>0(p2

j + q2
j )

2+

+
∑

j>0(pjpj+1 + qjqj+1) + 1
2 ln(p0)−

− 1√
2p0

{[
q1(p2

1 + q2
1) + q2

]
sin(q0)+

+
[
p1(p2

1 + q2
1) + p2

]
cos(q0)

}
+

+ 1
2p0

[
p1q1 sin(2q0)+

+1
2(p2

1 − q2
1) cos(2q0)+

+3
2(p2

1 + q2
1)
]
,

(5.27)

which will dictate the trajectory of the averaged system. This new Hamiltonian contains

two terms which are identical to those in the original Bose-Hubbard Hamiltonian at

(5.15). All the additional terms present in (5.27) describe the weak interaction between

the breather and its neighbours.
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The final averaged differential equations will be

ṗ0 = 1√
2p0

{[
q1(p2

1 + q2
1) + q2

]
cos(q0)−

−
[
p1(p2

1 + q2
1) + p2

]
sin(q0)

}
+

+ 1
2p0

[
(p2

1 − q2
1) sin(2q0)− 2p1q1 cos(2q0)

] (5.28)

q̇0 = 1
2p0

+

+( 1
2p0

)3/2
{[
q1(p2

1 + q2
1) + q2

]
sin(q0)+

+
[
p1(p2

1 + q2
1) + p2

]
cos(q0)

}
−

−( 1
2p0

)2 × 2
[
p1q1 sin(2q0) + 1

2(p2
1 − q2

1) cos(2q0)+

+3
2(p2

1 + q2
1)
]

(5.29)

ṗ1 = −(p2
1 + q2

1)q1 − q2+

+ 1√
2p0

{
(p2

1 + 3q2
1) sin(q0) + 2p1q1 cos(q0)

}
+

+ 1
2p0

[
q1 cos(2q0)− p1 sin(2q0)− 3q1

] (5.30)

q̇1 = (p2
1 + q2

1)p1 + p2−

− 1√
2p0

{
(3p2

1 + q2
1) cos(q0) + 2p1q1 sin(q0)

}
+

+ 1
2p0

[
p1 cos(2q0) + q1 sin(2q0) + 3p1

] (5.31)

ṗ2 = −(p2
2 + q2

2)q2 − q1 − q3+

+ 1√
2p0

sin(q0)
(5.32)

q̇2 = (p2
2 + q2

2)p2 + p1 + p3−

− 1√
2p0

cos(q0)
(5.33)

ṗj = −(p2
j + q2

j )qj − qj−1 − qj+1 (5.34)

q̇j = (p2
j + q2

j )pj + pj−1 + pj+1 (5.35)
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which are now fully Hamiltonian, and can be used in micro-canonical numerical sim-

ulations where the system is set to evolve at the intersection of two hyper-surfaces,

one of constant norm and one of constant effective energy. Equations (5.28)-(5.35) will

be referred to as the Average Nonlinear Schrödinger Equation, also abbreviated as the

AvNLSE.

At this stage, it is relevant to look at the evolution of the mass of the condensate

according to the newly derived differential equations. Ideally, the new equations should

not artificially create or destroy mass. If we use the convention that dt(∗) dictates the

evolution of the system as it is given by the DNLSE (the evolution operator of the

Bose-Hubbard Hamiltonian) and that ˙(∗) dictates the evolution of the system as it is

given by the effective Hamiltonian from (5.16), we arrive to the following remarkable

identity for micro-canonical set-ups:

dtN = Ṅ = 0, (5.36)

which means that the new system conserves norm just as the initial DNLSE. Therefore,

no matter how long the simulation will run for, mass will not be created or annihilated

artificially when employing the new effective Hamiltonian from (5.27). Identity (5.36)

was derived by applying dt(∗) and ∗̇ on the definition of the norm N ≡ I0+ 1
2

∑
j≥1(p2

j+

q2
j ).

One cannot write a trivial identity like (5.36) for energies, since the two system are

clearly characterised by different Hamiltonians. Moreover, the two trajectories separate

by velocities given by

dtHav = O(ε1/2)

ḢBH = O(ε1/2),
(5.37)

which implies that after one full breather rotation the two hyper-surfaces have separated

by a distance of order O(ε3/2). Even if the energy hyper-surfaces cannot coincide, the

effective Hamiltonian can still create a numerical algorithm which approximates the
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full trajectory reasonably well, and during much shorter running times. Now that the

effective Hamiltonian was constructed, it is useful to define its domain of applicability,

and investigate how this quantity can be used to fasten up the integration of the

DNLSE.

5.3 Effective Hamiltonian vs. Bose Hubbard Hamiltonian

The averaged equation was built under the assumption that the dynamics of the

breather are much faster than those of the lattice. Additionally, one made the assump-

tion that the breather is pinned at site j = 0 and no translations can occur during the

evolution. Figure 5.1 shows the evolution of a closed system consisting of a breather

in a lattice of length N = 4, where the breather sits at site j = 0, just as in the case

of the theory developed in the previous chapters. Diagram (a) shows the evolution

according to the Bose-Hubbard model (5.15): the breather is very stable and only the

wave-function at site j = 1 shows some reminiscence of the fast harmonics induced by

the breather rotation. In diagram (b) of Figure 5.1 one sees the evolution of the same

system under the action of the effective Hamiltonian from (5.27). One can see that

for approximately O(10) units, the two trajectories are very close, and then, due to

the chaotic nature of the background dynamics, a clear separation occurs, just as one

might expect from the action of the separation velocities at (5.37). Nevertheless, the

averaged differential equation produces the same sort of decoupling as the full DNLSE,

generating trajectories where the breather acts as a reflective boundary, interacting

very weakly with its surroundings. This is consistent with the weakly non-ergodic tra-

jectories described in [70]. In addition, if one puts the lattice in contact with Langevin

heat baths at site j = N − 1, one can see that the two Hamiltonians produce identi-

cal profiles for the amplitudes of the background. These initial findings show a good

agreement between the evolutions given by the Bose Hubbard Hamiltonian and those

obtained through the faster integration of the Effective Hamiltonian.



CHAPTER 5. AVERAGING AND ADIABATIC INVARIANTS 142

We now study what happens in the case when the background is large enough to sig-

nificantly disturb the breather and how the averaged system reacts when encountering

these abnormally large perturbations. This scenario is encompassed by the trajectories

depicted in Figure 5.2. One can now see that while the DNLSE (a) gives rise to scenarios

when the breather strongly interacts with its surroundings, the AvNLSE (b) artificially

enhances the stability of the breather, limiting the flow of energy from the breather

to its surroundings. In addition, while inset (a) shows an evolution where the location

of the maximum excitation changes with time, inset (b) generates an evolution where

the location of the maximum excitation does not change at all, even in the presence of

large perturbations. In addition, it was impossible to observe the complete decay of a

breather when the effective Hamiltonian was employed. This is not surprising, given

the fact that the expression of the new Hamiltonian (5.27) diverges when A→ 0, which

implies that an infinite amount of energy has to be spent to make the breather decay.

It now becomes apparent that the effective Hamiltonian cannot capture the full

dynamics of the system, and at this stage one will want to make use of a Heterogeneous

Multiscale Integration method, like those presented in Ref. [64] where most of the

trajectory is described by the use of a fast macro-integrator (here given by the Effective

Hamiltonian at (5.27)), and occasionally by a slow micro-integrator (the Bose Hubbard

Hamiltonian at (5.15)) which will only be employed when the state is in the proximity

of a topological aberration where the macro-integrator would fail to generate a realistic

trajectory. While the expressions for the two Hamiltonians are now known, it is still

not clear at this stage what is the exact nature of these singularities.

5.4 Diffusion of the breather norm

In addition to the discrepancies which occur in the presence of rare excitations like

those depicted in Figure 5.2, one also has the artificial diffusion of the breather norm

induced by the averaged system. The truncations in the effective Hamiltonian at (5.27)
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Figure 5.1: Time evolution of a four-mer as given by the DNLSE (a) and according
to the averaged differential equation (b). The breather norm is depicted in black, the
nearest neighbour norm in blue, and the norms for the second and third neighbours in
red and yellow receptively.
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Figure 5.2: Time evolution of a 2nd four-mer system. The colours have the same
meaning as in Figure 5.1. Here, however the interactions are strong enough to break
the assumptions required to derive an averaged equation.
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have been done in such a way to minimise diffusion while still keeping a reduced amount

of terms in the differential equations, so that the numerical integration of the averaged

model is faster than that of the full DNLSE.

Diffusion here means a drift in the breather intensity. The system starts with a

breather of height |z0(0)|, which will evolve in time according to the numerics given by

the effective Hamiltonian (5.27). The breather will interact weakly with its surround-

ings and this will cause fluctuations in the breather height. We can measure numerically

how these fluctuations accumulate over time, by looking at how the variance of the drifts

evolves. This means that we evaluate

C(τ) ≡ 〈(|z0(t+ τ)| − |z0(t)|)2〉 (5.38)

where τ is a time separation which can only range from one single time step (the

resolution available from the numerics) up to the whole time-span of the simulation. In

reality, due to the very long times used in the simulations, of order O(1), we only sample

the data at each ∆τ = 1 units. From this, we get enough data to generate the function

at (5.38). A more dense sampling would slow down the simulation considerably, while

taking a lot of disk space. In addition to this, it would not give more information on the

diffusion process. Therefore τ will practically range between 1 and the whole time-span

of the simulation. At the same time, it is important to notice, that while for τ = 1

we have a lot of data to calculate the average C(τ) ≡ 〈(|z0(t + 1)| − |z0(t)|)2〉, when

τ is equal to the full time-span of the simulation there is only one pair which can be

used in the average. We can deduce from this that as τ is increased, the value of C(τ)

generated from the numerics becomes less trustworthy. The cut-off for τ was usually

taken at Tspan/80, because up to that value, there is enough data to generate very

reliable results. However, this requires very long integration times, of the order O(107).

Therefore evaluating the dependency of C(τ) is quite computationally expensive, but

important in studying diffusions.
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If we assume all correlations to be short ranged, which here means that after ∆τ = 1

all values are not correlated, we have the identity

〈|z0(t+ τ)| − |z0(t)|〉 = 0. (5.39)

This property, together with the definition from (5.38) allows us to make the equiv-

alence between the growth of variance with time and the value of C(τ), from the very

definition of variance σ2 ≡ 〈X2〉 − 〈X〉2.

In order to evaluate the diffusion of the breather norm induced by the effective

Hamiltonian, one has let the system evolve for times of the order 106 and beyond for

different values of the initial breather norm. The system studied here was in a sym-

metrical configuration, with Langevin heat baths [50] at T = 10 and µ = −6.4. At

this stage, the effective Hamiltonian has been extended to breathers with backgrounds

on both sides, by adding two contributions of the type (5.27). The effective Hamilto-

nian has this additive property, which can be checked analytically by performing the

same exact averaging procedures described at the beginning of this chapter, but for

systems with symmetric configurations (with at least three background sites on each

side od the breather). Using the same Mathematica spreadsheets, one can arrive to

similar averaged equations and to an equivalent effective Hamiltonian. The symmetric

Hamiltonian is the addition of left/right contributions of the sort seen in (5.27). The

only additional term is a tunnelling from left to right, which only appears between sites

j = 1 and j = −1. Like in the case of the Multiple Time Scale Analysis (MTSA)

algorithm, this term appears at order O(ε), and will be neglected for simplicity rea-

sons. One has already seen that the MTSA offers a very good approximation of the

slow manifold, even if all tunnelling from one side to the other of the soliton is omit-

ted. Similarly, the symmetric AvNLSE can be employed successfully in Heterogeneous

Multiscale Numerical Methods without the need to add tunnelling terms between the

two backgrounds.



CHAPTER 5. AVERAGING AND ADIABATIC INVARIANTS 147

For different initial heights of the breather, one has calculated the variance C(τ) ≡

〈(|z0(t+ τ)| − |z0(t)|)2〉 and looked at the slope with which this variance increases with

τ . The value of this slope will be the diffusion coefficient D.

The diffusive process is generated by a flow of probability density (denoted by Φ)

given by the heat equation

d

dt
Φ = D

d2

dN2
Φ (5.40)

where N = |z| is the norm of the breather. In the simplest modelling, D is just a

number and there is no dependency on N or t. In that case, the solution will be given

by the Ansatz

Φ(N, t) =
1√

4πDt
exp

[
− (N −N0)2

4Dt

]
, (5.41)

where N0 is just the initial amplitude of the breather.

This means that as time passes, we have less information about the breather height,

which diffuses under a stochastic process. Initially, the probability density is δ(N −

|z(0)|), therefore we know the height exactly from the initial condition. As time passes

the variance increases linearly, but still the average height is

〈|z(t)|〉 = 〈N〉 =

∫ +∞

−∞
dN N Φ(N, t) = N0, (5.42)

which is time independent. Therefore, the average height does not change in time

through this diffusive process. This observation is important, since usually by diffusion

in the physics community we refer to the spread of atoms in the lattice, and therefore

the decay of the central peak. This clarification is introduced to make sure that the

terminology is properly defined.

The results for the measurements of the diffusion coefficients are summarised in

Figure 5.3 showing that the diffusion produced by the effective Hamiltonian decreases

with |z0|2 (the mass of the breather) by a power law with an exponent of approximately
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−6. Therefore, in our model, the diffusion is not characterised by a constant diffusion

D, but by a more complex equation than the normal diffusion equation (5.40). However,

over very long periods of time, the diffusion coefficient is relatively unchanged (since

the breather norm is frozen, and the diffusion coefficient is a function of the norm) and

the breather norm undergoes a random walk below and above the initial value, with a

zero average drift.

Even if the DNLSE generates diffusion which scales exponentially (as one can see in

Figure 5.3), and not as power law like in the case of the newly obtained equation, one

can still successfully employ the effective Hamiltonian in hybrid integration schemes, as

will be shown in Chapter 6. The larger diffusions generated by the effective Hamiltonian

lead to higher standard deviations in the breather lifetimes, but not to different average

life-times. This comes from the fact that diffusion here does not mean a decay, but a

slow random drift in height. As a matter of fact, due to the fact that the average height

does not change in time, any decay time from diffusion would be infinite. In addition

to this, as the diffusive process continues for very long times, the Gaussian solution

from (5.41) flattens so much that the probability density becomes almost constant,

and the variance diverges. This means that the average is no longer defined for long

times, and that the central limit theorem is violated. This simplistic Ansatz, however,

assumes a Gaussian distribution of the probability density function. Part of the tail

of the Gaussian sits in the domain N < 0 at all times, and the values associated with

this domain are not physical. Even if we cannot necessarily extrapolate the Gaussian

model to infinite times, it is still enlightening to use it for short to medium times,

and to deduce that overall there seems to be no drift in the breather amplitude. This

simplified theoretical model is confirmed by the simulations, which do not seem to show

a clear drift which is purely caused by diffusion.

Note 1: The diffusion can also be evaluated by calculating C(τ) ≡ 〈(Q(t + τ) −

Q(t))2〉, where Q is the less oscillating component of z0(t), which was defined at (4.73).
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This would not change however, the results for the diffusion law, but it would only lead

to cleaner slopes when measuring the growth of the variance, since all oscillating terms

would have been eliminated.

Note 2: Here, instead of calculating the algebraically complex value of Q at every

sampling point, we simply average the breather norm over every 500 time units, to get

rid of the fast fluctuations on top of the signal. The effect is the same as calculating

Q, but the algorithm is much faster, since the number of operations is reduced. Al-

ternatively, one could save all the wave-functions at sites j ∈ {−1, 0, 1} (6 variables)

and calculate Q when the diffusion data is analysed, but this would increase the size of

the output files considerably. Therefore, the preferred method is to save A0(t) at every

sampling point, and ultimately perform averages over 500 time units when looking at

diffusions.

Figure 5.3: Diffusion of the breather norm (arctan(C(τ)/τ)) vs initial mass (|z0(0)|2).
The diffusion scales down according to a power law with with exponent ≈ −5.9. The
inset shows the diffusions of the full DNLSE model (data provided by Antonio Politi).
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5.5 Adiabatic Invariants and strong interactions with the

background

It is now important to understand the mechanisms through which excitations from

the background strongly interact with the breather.

During the laminar periods, the background is basically at equilibrium with a tem-

perature and a chemical potential set by the external reservoir. Accordingly, the back-

ground itself can be interpreted as an effective thermal bath, which interacts directly

with the breather. Fluctuation-dissipation considerations then suggest that the interac-

tion should be characterized by a diffusion coefficient that can be identified with D, and

a drift v, responsible for the eventual absorption of the breather. In fact, for T > 0 the

equilibrium state of the DNLS is statistically homogeneous, with no breathers. Accord-

ing to the same fluctuation-dissipation considerations, v is expected to be proportional

to D/T , as also confirmed by explicit calculations for a simple model [53].

Where does the slowness of the relaxation process come from? One cannot, strictly

speaking, invoke a gap in the spectrum between the frequency of the breather and the

surrounding waves, because the nonlinear nature of the background implies a broadband

spectrum. One might still naively trace back the slowness to the small amplitude of the

background power spectrum at the breather frequency. However, this is not the case;

we have tested that a pure and simple interaction of the breather with a stochastic

process characterized by the same power spectrum of the background gives a far faster

relaxation, so that it is necessary to account for the effects of the breather on the

background itself.

Mathematically speaking, one reason for the non perfect invariance of an adiabatic

invariant is the lack of convergence of perturbative expansions, which occasionally hap-

pens whenever the amplitude in the breather neighbouring sites is very large.

In order to quantify this phenomenon, we have computed ∆E = |∆|z0|4|, where

|z0|4(t) is the breather energy, while ∆E indicates its variation after 50 time units.
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The breather, of initial mass |z(0)|2 = 36, is set on the left boundary of the chain

(no coupling with the left neighbour), while the rightmost 8th site is thermalised at

T = 10, µ = −6.4. Finally, the mass of site 1 is set equal to |z1(0)|2 = r|z(0)|2. A plot

of ∆E as a function of r shows a clear peak (see Figure 5.4 at rd = (|z(0)|−
√

2)2/|z(0)|2

(see the vertical line); it corresponds to the activation threshold for the formation of

a symmetric, two-site, localized structure. Analogously to the breather, the localized-

structure is weakly coupled with the background when the amplitude of both sites is

large enough. Therefore, it can be approximately treated as a dimer configuration with

open boundary conditions and, from now on, we refer to it simply as to a dimer.

Figure 5.4: Interactions between a breather of size |z0(0)| = 6 and its three nearest
neighbours. The horizontal axis displays the ratio between the frequencies |zj |2/|z0|2,
while the vertical axis displays the average change in Hamiltonian for the breather
rotation 〈∆|z0|4〉. The inset shows the same interactions for breathers of height |z0(0)| =
5.

Symmetric dimers are characterized by periodic oscillations of the mass between

min(|z0|2) and max(|z0|2) [44]. Additionally, for a given mtot = min(|z0|2)+max(|z0|2),

there exists a minimal min(|z0|2) for the oscillations to self-sustain. This is the origin

of the above mentioned threshold rd for the ratio r.
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The onset of symmetric dimers is not the only means to transfer mass out of a

breather. By looking at Figure 5.4, one can see additional peaks, which approximately

coincide with resonances, where the frequency on site 1 is equal to 1/3 (r3) or 1/2 (r2) of

the breather frequency. Although the single resonance events are not so effective, they

are much more frequent than dimer-formation events and might be relevant for “killing”

the adiabatic invariant [61]. The relative weight of the two relaxation mechanisms

(dimers and resonances) with varying |z(0)|2 is still unclear.

All of our studies in [69] consistently give evidence of an exponentially slow relax-

ational dynamics. The origin of such freezing process is very different from the arrest

mechanisms typically encountered in statistical mechanics: it has a purely dynamical

origin, being enforced by the existence of an adiabatic invariant (AI). For T > 0, the

AI neutralizes entropic forces, preventing de facto a macroscopic relaxation as soon

as one tall breather is contained in the initial configuration. Indeed, in the presence

of an exponentially weak effective breather-background interaction, breather conden-

sation proceeds through a practically unobservable logarithmic coarsening [53]. In the

negative-temperature region, the same mechanism prevents breather growth, thereby

“stabilizing” a fairly homogeneous chaotic non-ergodic dynamics, as suggested by recent

direct numerical simulations [49,54].

The findings arising from our Multiple Time Scale Analysis (MTSA) (presented in

detail in Chapter 4 and in our paper from Ref. [77]) suggest that the breather norm is

an adiabatic invariant, which is defined as a quantity that changes no more than O(ε)

over time-spans of O(1/ε) [78]. We have shown that the derivative over one full rotation

is of order O(ε2) in equation (4.62). Integrating this over a time of 1/ε will lead to

a drift no larger than O(ε). According to the simplistic definition given by Ref. [78],

this indicates that we are in the presence of an adiabatic invariant. We already know

from our simulations that the breather norm barely changes over very long integration

times, acting as ‘effectively’ invariant.

The literature [60, 61] suggests that even if adiabatic variants remain unchanged
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for very long times, they can suddenly be destroyed by a passage through resonance.

During our research on the nature of extreme events in Chapter 3, we have seen that

resonances do play a crucial role in the sudden change of the breather shape. In

Chapter 3, we used the fact that the breather frequency is given by ω ≈ 2|z0|2, and we

defined resonant hyper-surfaces as pairs of two interacting oscillators which satisfy the

equation k1ω1 + k2ω2 = 0 (where k1 and k2 are integers). Resonances are encountered

therefore when one of the breather’s nearest neighbours reaches any value in the set

{|z0|/
√

2, |z0|/
√

3, |z0|/
√

4, ...}. This hypothesis is confirmed by the findings presented

Figure 5.4.

When the breather neighbour reaches the intensity |z0|2/2, it will rotate with a

frequency ω1 ≈ ω/2. This allows us to write a differential equation for the breather

amplitude in the vicinity of the resonance, just as was done in Chapter 3.2

dtA0 =

√
ω

2
sin
(ω

2
t+ ξ0

)
(5.43)

where ξ0 is the initial breather phase. Applying the partial averaging near resonance

algorithm developed at 3.24, we obtain the drift in the presence of a resonant hyper-

surface

δA
(1)
0 |t=2π/ω ≈ 2

√
ε cos(ξ̃0). (5.44)

This is in perfect agreement with the theory from [61], which predicts jumps of

order O(ε1/2) in the proximity of a resonant hyper-surface. It also offers a theoretical

explanation for the massive peak observed for the ratio |z1|2/|z0|2 ≈ 0.5 in Figure 5.4.

We now know from the MTSA, that the same drift in the absence of a resonance is of

a height which cannot exceed O(ε3) (since the derivative over one rotation is of order

O(ε2) and it has to be multiplied with 2πε to estimate the size of the drift in the

laminar regime).

When performing averaging, there seems to be domains where the adiabatic invari-
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ant assumption breaks down. Upon further investigation, it appears that the breakdown

coincides with the spontaneous emergence of resonances with sites in the background.

This is compatible with the theory presented in the literature [61], where it is stated

that adiabatic invariants can strongly change when the state of the system is in the

vicinity of a resonant hyper-surface. Even if some of the changes we see are not related

to resonances at all (such as it is the case with the emergence of bound states), all

focus will now be shifted towards the dominant resonance present in the system, at

m ≡ A2
0

A2
1

= 2.

This main resonance will be used extensively throughout the next chapters to define

numerical transitions between the Bose-Hubbard Hamiltonian (5.15) and the effective

Hamiltonian (5.27) obtained in this chapter. These transitions will be used to create

fast, reliable numerical algorithms which perform much faster than what is currently

available in the literature.

Note: One can determine higher order terms of the adiabatic invariant from the

equation

{H,Q} = 0 (5.45)

where H is the Bose-Hubbard Hamiltonian and Q ≡ Q0 +εQ1 +ε2Q2 + ... is the asymp-

totic expansion of the adiabatic invariant. This equation ensures that Q is exactly con-

served up to a certain order (depending on the number of terms kept in the truncation)

of the smallness parameter when the system evolves according to the DNLSE. The first

term will be the breather mass, i.e. Q0 ≡ A0 = |z0|, and the rest will be determined

from setting the Poisson bracket from (5.45) to zero. We are not interested however,

in the higher order terms of the invariant, just in the fact that it can be destroyed by a

passage through resonance. This property will be used repeatedly in Chapter 6, where

a Hybrid Integration technique will be developed.



Chapter 6

Heterogeneous Multiple Time

Scale Methods - Hybrid

Integration Schemes and

Multiple Breather Systems

6.1 Single Breather systems

6.1.1 Building a Hybrid Integration Scheme

It is now possible to build a hybrid integration scheme like the ones introduced

in Ref. [62] where the Effective Hamiltonian derived in (5.27) is used whenever the

three nearest neighbours of the breather are oscillating with frequencies below the first

resonance frequency given by |z0|2/2. Since the breather amplitude is much larger than

the average amplitudes of the background, the breather will remain unchanged for the

largest part of the integration time. In Chapter 3 we have seen that interactions with

neighbours further than three sites away are effectively negligible. We have also seen

that the averaged integrator does a very good job at generating fast trajectories, which

155
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are very similar to those produced by the full model (see a sample of the detailed

numerical analysis in Figure 5.1). Due to this property, we can define the AvNLSE

(5.28)-(5.35) model as a macro-integrator of the DNLSE. The AvNLSE will project the

state very fast, using time steps which are much larger than those normally used in the

classical integrator (the micro-integrator). As a matter of fact, these time steps would

only depend on the size of the background, and would be completely independent of

the breather size. The AvNLSE on its own cannot generate a reliable trajectory of

the breather evolution, due to the fact that it artificially enhances soliton stability in

the vicinity of a resonance. One must therefore identify the trigger of a rare event

and make the transition to the full DNLSE whenever the state is in the vicinity of a

resonant surface. However, when this transition is made, one will make use of very

small time steps, which will depend on the size of the breather. The Bose-Hubbard

Hamiltonian (5.15) is able to generate the full trajectory, and requires very small time

steps in the presence of large breathers. In this context, it can also be referred to as a

micro-integrator.

The Effective Hamiltonian (5.27) was expanded to accommodate lattices with sym-

metrical configurations; therefore one must track six neighbours when transitioning

from one Hamiltonian to the another (j ∈ {−3,−2,−1, 1, 2, 3}). The Effective Hamil-

tonian will therefore be used until any of these six sites reaches the occupation number

|zj | = |z0|/
√

2. During the evolution given by the Effective Hamiltonian, the location

of the breather is fixed, only its size changes very slowly, due to the weak coupling

between the background and the breather that was included into the truncation of

the averaged equations. However, during parts of the algorithm, the DNLSE will be

used as an integrator, so that the breather will be allowed to change location, and to

dramatically alter its height when the trajectory is in the proximity of a resonant hyper-

surface. If we were to use the DNLSE by itself (the classical numerical approach), the

breather might also encounter the separatrix of bound states, and might suddenly jump

to a neighbouring site, but this is not a phenomenon which is considered relevant in
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the hybrid model, since adiabatic invariants are usually destroyed by passage through

resonance [61]. One will see, that even if we ignore bound states (peak locations depen-

dent on the breather height), and only focus on resonances (peak locations completely

independent of the breather height), we will obtain very realistic trajectories for the

breathers, throughout their entire lifetimes.

The DNLSE is employed until all the six nearest neighbours (three on the left, and

three on the right) decay under the value O(1) and the program never exits the DNLSE

unless the breather oscillates for an integer number of periods (i.e. its phase is as the

initial value modulo 2π within a tolerance level of 10−4 ). This very strict condition

was imposed to make sure that no rare events were artificially missed, and all the

slow variables had been allowed to fluctuate for an integer amount of periods to avoid

artificial jumps which come from large fluctuations from the breather harmonics. These

fluctuations are avoided by making sure that the breather is allowed to close the orbit

before exiting the DNLSE and returning to the AvNLSE. The third neighbour was also

included when testing for potentially destructive events, even though the transition

peaks from Figure 5.4 do not extend this far. This was done, once again to make sure

that no potential rare events were artificially missed. With all these considerations, the

Hybrid Integration scheme performs on average five times faster than the full model.

If one would spend less time in the DNLSE scheme (the slow part of the system), this

speeding up factor could be enhanced even more. This could be done by removing

some of the strictest constraints such as: not requiring all six neighbouring sites to

decay under the value of 1 simultaneously and not having the breather oscillate for an

integer number of times simultaneously, since all these events at once are very rare.

However, if one were to relax the conditions, all the calibrations and tests would need

to be repeated. The average running time for these tests was four months. The main

purpose of the tests is to make sure that the trajectories given by the Hybrid Integrator

are realistic, and that the decay times have the same order of magnitude as in the case

of the DNLSE. In addition, one also wants the decay times to scale in the same way
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as for the Bose-Hubbard Hamiltonian, i.e. one is looking for an exponential increase of

life-times with the breather mass.

If we define the transitions from one integrator to the other as is done in this chapter,

we will prove that we can build a very reliable Hybrid Integration Scheme. In order to

confirm this, we must first go through the numerical tests, and to analyse their physical

meanings and their similarity to the original model. Just as in the case of choosing and

effective Hamiltonian, the choice of these conditions is not unique, and one can define

other transition conditions from one integrator to the other. However, one must ensure

first that any Hybrid Integration Scheme obeys similar trajectories to those of the full

DNLSE.

When using the Hybrid Integration scheme one must use a lattice which is long

enough to avoid limited size effects which occur when generating Langevin heat baths.

The choice made in this thesis was to investigate lattices with N = 15, where the

breather was initialised at the middle of the lattice. When the breather transitions

from one Hamiltonian to the other, it will not return on the same hyper-surface as

it started. This is not an issue however, when the system is put into contact with

Langevin heat baths, since in this set-up, the Hamiltonian is not conserved during the

evolution, and the distances in the hyper-surfaces in between two consecutive shifts are

much smaller than the characteristic fluctuations induced by the heat baths.

The literature [62] shows multiple ways of building Hybrid Integration Schemes.

• One could employ predictor-corrector methods, which significantly decrease the

time step in the vicinity of an extreme event, and use consecutive shifts between

the macro-integrator and the micro-integrator at each time step [79,80]. When the

micro-integrator solution leads to very large fluctuations, the macro-integrator is

abandoned, and a transition to the initial system is used. The advantage of this

approach is that one does not need to define beforehand what an extreme event

is, it would just be detected ad-hoc by the velocity of the micro-integrator. This

approach would be slower however than what is currently employed.
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• One could also run the micro-integrator for a fixed number of steps and then

shift to the macro integrator for one single step [62–64]. This approach has failed

though for this system, since it seems to be more appropriate with systems where

there are no topological aberrations, such as resonances. Any attempt to use

this method (which is the canonical approach for HMM in literature) has been

abandoned in favour of the algorithm described in this chapter.

6.1.2 Results produced by the Hybrid Integration Scheme

The advantage of the Hybrid Integration scheme is that, during the time which

it uses the Effective Hamiltonian (which is during most of the trajectory) it employs

a large time step, which is independent of the breather size. This means that the

integrator works equally fast for large breathers as it does for small ones. This is

starkly different from what happens when one uses the DNLSE, where the time step

must decrease proportionally with the inverse square of the breather norm. The life-

times of breathers scale exponentially with their initial norm, making large breathers

to be astronomically long-lived. The exponential increase of life-times, combined with

the need to use very small time steps, makes the simulation of full life-times close

to impossible for large breathers. This is where the need for a more rapid hybrid

integration scheme arises from. At this stage, it is important to test whether the newly

built integrator can generate trajectories which are close to the physics dictated by the

DNLSE.

In order to compare the two integrators, breathers of different sizes have been

allowed to evolve in contact with backgrounds at temperature T = 10 and chemical

potential µ = −6.4. Breathers of initial mass |z0(0)| ∈ {12, 13, 14, 15, 16, 17, 18} have

been tracked until their full decay for both algorithms. The results are summarised in

Figure 6.1. The plot in the upper part (a) shows the same evolutions as recorded in

Figure 2.7, where the breathers were allowed to evolve according to the full DNLSE.

Unlike in Figure 2.7, we are now plotting the norms of the breathers (i.e. |z0(t)|2), and
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not their Hamiltonians (i.e. |z0(t)|4), but the diagram is based on the same data. It

is useful to remember here that larger breathers live exponentially longer than smaller

ones, which was one of the earliest findings of this work, obtained using numerical

methods.

We now focus on sub-plot (b) of Figure 6.1, where we observe remarkably similar

trajectories to those generated by the full model. In both cases, we are tracking the

maximum norm in the lattice and the location of the maximum changes several times

throughout the simulations. The most important finding is that the Hybrid Integrator,

built as described in detail in Section 6.1.1 produces exactly the same exponential

scaling of life-times as the full system. We have used the threshold value of A2
0/2 for

the transition between the two integrators. This value of the threshold appears to be

the optimum for a good agreement between the Hybrid Integrator and the original

DNLSE. This does not mean that one could not build a hybrid integration scheme with

different transitions, but one would have to build a different algorithm (like the ones

described in the final notes of Section 6.1.1).

The data in Figure 6.1 might be hard to visualise, due to the large fluctuations

on top of the breather norm. These fluctuations are of order O(ε), as we have seen

from the first non-trivial terms in the MTSA. One way to eliminate them is to shift to

the quantity Q, which has been defined at (4.73), or to perform averaging over times

of ≈ 500 units (the time-scale of the thermalisation of the background). For reasons

which have been described in detail in Note 2 of Chapter 5.3, averaging over 500

time units is preferred. The same data can therefore be filtered as presented in Figure

6.2. The new figure allows a clean visualisation for seven separate trajectories for both

algorithms. We now see that both algorithms produce relatively laminar dynamics,

with very few oscillations, until the spontaneous emergence of an extreme event, where

a sudden change in height occurs.

What is absolutely remarkable is the excellent agreement between the hybrid inte-

gration scheme (b) and the DNLSE (a). Breathers decouple from their surroundings for
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very long times as their mass is increased for both integrators. Even more remarkably,

the life times have very similar orders of magnitude. This proves that the derivation of

the Effective Hamiltonian and the identification of the domains where this Hamiltonian

breaks down were done successfully. A poor approximation for the averaged equation

or an erroneous identification of the break-down domains would have made this agree-

ment impossible. However, before assuming that the new algorithm is fully efficient,

one must look at more detailed statistics.

Figure 6.1: The time evolution of seven different breathers according to the DNLSE
(a) and according to the Hybrid Integration Scheme (b). For both algorithms, one can
observe an exponential increase of the breather life-time as the initial mass goes up.

In order to perform a more detailed analysis, we will initialise a breather at the

middle of a lattice with N = 15 sites. The initial amplitude will have any of the
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Figure 6.2: The filtered data for Figure 6.1. This allows a clearer comparison between
the DNLSE (a) and the Hybrid Integration Scheme (b).
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six values in the set |z0(0)| ∈ {3.5, 3.6, 3.7, 3.8, 3.9, 4.0}. Once again, the heat baths

will be in a symmetrical configurations and will have T = 10 and µ = −6.4. During

months of computations, it was possible to gather data for 123 collapses using the

DNLSE, and 122 collapses using the hybrid integration scheme. As one would expect,

the hybrid integrator was faster, and reaching a collapse requires shorter running times.

The dependence of the decay times on the initial mass of the breather is presented in

Figure 6.3. The initial mass of the breather here was not |z0(0)| but 〈|z0(0)|〉, where

the average was performed over 400 units. This was done in an attempt to filter out

the large fluctuations on top of the breather, which starts at a random phase when

the code starts to run. In a way, the values plotted there are the effective initial mass,

without any component that comes from the large fluctuations (of order O(ε)).

What is remarkable to notice in Figure 6.3 is that the data generated by the Hybrid

Integrator is more spread (there is a larger standard deviation). This is due to the

fact that the DNLSE produces diffusions which scale exponentially with the breather

height, while the hybrid integrator is characterised by larger, power-law diffusions.

This, however, does not seem to affect the average life-time when looking at multiple

realisations (this will be further clarified in the next paragraphs). What the larger

diffusion does is to grow the size of the breather fluctuations (drift slowly from the

initial size) and

• if the breather goes up, it will take exponentially longer to find a resonance of

size A2
0/2 in the background;

• if the breather goes down, it will take exponentially shorter to find a resonance

of size A2
0/2 in the background.

We note, however, that the average height of the breather is unchanged and therefore

these events will not affect the average life-time, but only the standard deviations

associated with it.

Since it is impossible to initialise a breather at a certain height without having a
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random displacement from the value around which the breather norm fluctuates, it is

better to organise the data from Figure 6.3 differently. We now cluster all trajectories

which started from the same initial condition and perform averages over 20 realisations

for each initial condition. The average life-times are summarised in the data in Figure

6.4. It is now clear that exponential growth of the life-times with the initial breather

mass is exceptionally clean in both cases, since both regression lines are very accurate.

In addition to this, the actual equations of the two regression lines are almost identical.

At this stage, one can safely state that the Hybrid Integration scheme developed in

this thesis is a fast algorithm which approximates very well the evolution of the full

Discrete Nonlinear Schrödinger Equation.

Figure 6.3: The life times of breathers according to the DNLSE (blue) and to the
newly developed Hybrid Integration Scheme (red).
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Figure 6.4: The life times of breathers according to the DNLSE (blue) and to the
newly developed Hybrid Integration Scheme (red).
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6.1.3 Conclusions

The work here explains how to average the DNLSE in a hybrid polar-Cartesian

system of coordinates. The averaging procedure is developed for a lattice of a generic

length with only one breather present at site j = 0. This can afterwards be extended to

single breathers in contact with backgrounds on both sides, by adding two symmetrical

contributions of the shape (5.27). The averaging techniques are developed under the

assumption that the breather changes amplitude very little under one rotation, in

agreement with the results from the Multiple Time Scale Analysis (Chapter 4).

The averaged equations are then used to build an Effective Hamiltonian, which

is not unique. The Effective Hamiltonian can have arbitrary many terms, depending

on the choice of the truncation. It is important to make sure that the newly chosen

Effective Hamiltonian also conserves norm in the case of micro-canonical simulations.

Ultimately, the Hamiltonian has to be picked in such a way to ensure a small artificial

diffusion of the breather norm, while still simplifying the numerics in a significant way.

Once the Hamiltonian had been built, one can see how this ‘effective Hamiltonian’

relates to the Bose-Hubbard Hamiltonian, from which it originates. The Hamiltonian

built here (5.27) separates by an order of O(ε3/2) over one full oscillation of the breather.

The diffusion induced by the Hamiltonian on the breather norm decays as a power law

with an exponent approximately equal to −6, while the original diffusion of the Bose-

Hubbard model was scaling in an exponential way (this was shown by Figure 5.3). The

diffusion process here is set to characterise the random walk in the breather height, and

does not imply any sort of drift or decay of the soliton. In other words, it shows how

much the soliton fluctuates in size, without giving any information on its life-time. We

have shown here that the diffusion does not affect the average life-time of the breather,

but only the standard deviations associated with this quantity.

In order to build a Heterogeneous Multiscale Method (a Hybrid Integrator) one must

identify the domains within which the macro-integrator cannot be employed. These are
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given by the resonances presented in Figure 5.4. From this, it follows that one cannot

use the averaged equation whenever the background creates an excitation larger than

|z0|/
√

2 in the proximity of the breather. These are topological aberrations which were

essential for defining transitions between the AvNLSE and the DNLSE when building

the Hybrid Integration Scheme.

It has therefore been possible to build a Heterogeneous Multiscale Integration Algo-

rithm for the DNLSE which performs remarkably well, as one can see in Figure 6.2 and

6.4, and which can take down the running times by a factor of at least ≈ 5. Defining the

transitions between the two integrators in a more liberal way would allow even faster

integrations, but when changing the Hybrid Integrator one must still make sure that

the overall statistics are obeyed, and that no extreme events are artificially missed.

6.2 Multi-Breather Systems

6.2.1 Writing a Heterogeneous Multiscale Method Algorithm for Lat-

tices with Multiple Breathers

The construction of the Hybrid Integration scheme was presented in detail in Chap-

ter 6.1.1. We will now focus on the architecture of a similar algorithm which can work

for an arbitrary large number of breathers, or even no breathers at all. The algorithm

is presented in the flow chart from Figure 6.5. There are some differences from the pre-

vious Hybrid Integrator, which will be explored more thoroughly in the next schematic

description of the expanded integrator.

1. The algorithm starts by identifying all locations with breathers (i.e. sites with

|zj | ≥ 3.5). It then creates an array with all these locations and transitions

towards a state vector which will have polar coordinates for the breathers (at the

locations described in the array) and Cartesian coordinates everywhere else (for

the background sites).
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• If there are no breathers in the lattice, one will simply leave the breather

coordinates array blank, and whenever this happens, the full DNLSE is

employed.

• If any of the breathers is too close to the heat baths (at most three sites

away from them), we once again leave the locations array blank to force

the use of the DNLSE. We know from the averaged differential equations

at (5.28)-(5.35) that the three nearest neighbours will have additional terms

from the classical DNLSE derivatives. We therefore impose the condition

that we have at least three sites in the background so we can employ the

effective Hamiltonian that was developed.

2. At this stage, one must test that all breathers are at least three sites away from

each other. We have shown previously that interactions for excitations more

than three sites away are effectively negligible for the Bose-Hubbard model. As

a lucky coincidence, the number of sites in the background which are coupled to

the breather in the averaged equation is also three. Therefore a buffer zone of

three sites was a natural choice.

• If any two breathers sit too close to each other, we simply leave the breather

locations array empty and pursue with the DNLSE integrator

• If the distances between all consecutive breathers are at least equal to three

sites, we start building the effective Hamiltonian, by using the DNLSE for

all the isolated puddles between breathers (the breather sites are treated as

reflective boundaries), and adding on top of that the terms (the non-DNLSE

terms) in the averaged equations from (5.28)-(5.35). If there is a breather

to the left and a breather to the right of a puddle of three sites there will be

three terms from the left breather and three terms from the right breather

(first neighbour for B1 and third neighbour for B2, second neighbour for

both B1 and B2, third neighbour for B1 and first neighbour for B2).
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3. Here we also test that all three nearest neighbours have masses which are smaller

than the A2
k/2 (k corresponds to the kth breather in the lattice). The moment

we find at least one exception to this rule, we make the breather location array

blank and we force the algorithm to use the DNLSE, since we do not want to

artificially miss a rare event.

4. The time step is determined by the largest excitation in the background (inversely

proportional to its mass). Making the time step time-dependent on the size of

spontaneous excitations is crucial, especially since for the Hybrid Hamiltonian the

time step is given by the background, and not the breather, therefore using a time

step that is kept too large when spontaneous excitations emerge can be highly

problematic when trying to conserve Hamiltonian (the effective Hamiltonian in

this case). We therefore identify the largest excitation that is not a breather (we

exclude all sites in the breather locations array) and from that we adapt our time

step.

• If the breather locations array is left empty, the largest excitation would

simply be given by the largest amplitude in the lattice. For example, if the

breather was too close to the edge, and the location array was left empty,

the time step would simply be inversely proportional to the breather height.

• If the breather array is not empty, we will make use of an Effective Hamil-

tonian with arbitrary many breathers, and the time step will only be given

by the tallest excitation in-between these breathers.

5. At this stage of the algorithm, the breather coordinates are clearly defined, and

so is the effective Hamiltonian (with multiple breathers at random sites). In

addition to this the time step is also calculated. The algorithm will proceed on

one of three paths:

• If the array was left empty because no breathers were found, the algorithm
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will effectively be equivalent to the DNLSE with a large time step

• If the array was left empty because the breathers were in the vicinity of a

large excitation or too close to each other (the second case is a subset of

the first one), we will use the DNLSE with a small time step. Up to here,

both these scenarios are already included in a simple use of an adaptive step

DNLSE. Here we keep integrating using the DNLSE until all the neighbours

of the breathers decay under the value of 1, to make sure that the extreme

event was allowed to develop fully.

• If the array is not empty, it means we can safely use the Effective Hamiltonian

with Multiple Breathers. We now use a large time step, which is given by

the backgrounds and not the breathers themselves. This scenario is the most

likely one by far, and due to this the Hybrid Integrator performs faster then

the DNLSE.

6. After integrating for one time-step, we repeat procedure 1.

Note: All the data in Chapter 6 was generated using the algorithm above, which

encompasses the case of systems with one breather. At the beginning the algo-

rithm was developed for one breather only, but it was ultimately extended to

what is described above and in the flow chart from Figure 6.5

6.2.2 An example of a Strong Interaction with a Large Excitation

When a breather interacts with a strong excitation, it basically interacts with a

smaller breather, which can either be pinned to a lattice site, or can be mobile and

move towards the breather from the background. It was already shown that extreme

events can only be encompassed by the DNLSE, since any averaging would artificially

enhance breather stability.

The interactions with the nearest neighbour have been thoroughly covered through-

out this work, be they resonances or the spontaneous emergence of bound states. It
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Figure 6.5: The life times of breathers according to the DNLSE (blue) and to the
newly developed Hybrid Integration Scheme (red).
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was also presented that we can get resonances between breathers which are two sites

away (i.e. there is a buffer area of one single site between them).

It is interesting to observe the spontaneous emergence of a strong interaction with

a breather which was three sites away from another. This was the maximum size

of the buffer zone we defined when building the Hybrid Integrators. In the diagram

from Figure 6.6 we see that the breather from site j = 4 gets destabilised suddenly

and triggers a strong interaction with the large breather at site j = 1. In the Hybrid

Integrator, the algorithm would see that this site has exceeded the critical value of A2
1/2

and would shift to the DNLSE, allowing this kind of strong interaction to happen.

It is also interesting to see how the amplitude of the large breather at site j = 1

changes with time. This is done in Figure 6.7. We have filtered out the fast harmon-

ics using the low pass filters defined at the beginning of this work in Chapter 2.3.1.

Averaging over 500 units would be highly ineffective during an extreme event, since

the whole duration of the event was ≈ 1000 units, and we would only have two data

points. The low pass filters, even if they are computationally expensive due to the large

number of Fourier transforms required for their implementation, offer a much clearer

picture of the interaction.

What we see in the filtered data from Figure 6.7 is that the breather mass is highly

stable, and suddenly interacts strongly with the nearest neighbour. After the extreme

event is over, the breather mass becomes stable once again, but this time it will stabilise

around a different value (in this event higher than what we initially started with, but

it could as well have decayed). The dynamics is split between laminar regimes (like

before and after the extreme event) and extreme events. During laminar flows, the slow

drifts are contained by the envelope given by the MTSA in Chapter 4. This means that

inequality (4.60)

− 2π
13

2
ε3Πf (A1) ≤ Πf (A0) ≤ 2π

13

2
ε3Πf (A1) (6.1)
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Figure 6.6: The collision between two breathers which were initially three sites apart.

Figure 6.7: The low pass filtered breather mass during a strong interaction with an
excitation in the background.
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is satisfied.

During the extreme event, we are in the regime of the turbulent flow, and the

inequality above is violated.

The event which was recorded in Figures 6.6 and 6.7 is peculiar also because it

showed regions when the phases of the sites between the breathers were monotonously

decreasing. This is highly unusual for a non-linear system like the DNLSE, where we

expect the whole lattice to oscillate with a positive frequency (on average). This shows

that the interactions between the breathers actually involve the sites between them as

well, and when the breathers get close enough the analogy ’Breather’ - ’Background’

- ’Breather’ to ’Reflective Boundary’ - ’Background’ - ’Reflective Boundary’ breaks

down, therefore the very first assumptions used to develop an Effective Hamiltonian

lose validity.

Even if this event is very interesting due to its peculiar nature, it is important to

mention that it is very rare. The statistics for the interaction with the third neighbour

of a breather are recorded in Figure 3.6, where it was shown that, on average all

interactions between the breather and its third neighbour are basically negligible. For

most of the neighbour values, the changes of energy were minute staying at O(10−2).

Even when the neighbour was getting to the same height as the breather, the interaction

energy was barely reaching O(1), while for the first neighbour one could get interaction

energies up to four orders of magnitude larger. When the tests were done for the fourth

neighbour, the interactions were basically non-existent. We now have a full justification

for the choice of the size of the buffer zone at three sites for each side of the breather.

We can now also see the type of event which might be missed if the buffer zone would

have been reduced to two sites only (the only sites which do interact with the breather

due to a resonance).
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6.2.3 The Applicability Domain of the Multi-Breather Algorithm

Just as in the case of the original Heterogeneous Multiscale Algorithm from 6.1.1,

the system consists of two characteristic Hamiltonians

1. The Bose - Hubbard Hamiltonian - the main focus of this work

2. The Effective Hamiltonian - no longer the ’simple’ equation from (5.27), since

there is (usually) more than one breather present in the system. The effective

Hamiltonian will change at every time step depending on

• How the number of the breathers in the system evolves with time

• How the location of the breathers changes in time

Note: A change in the number of breathers or in their locations can only occur

during the DNLSE integration, which is triggered once any of the close neighbours

exceeds the first resonance threshold.

Even if the effective Hamiltonian and the Bose-Hubbard Hamiltonian work perfectly

in micro-canonical configurations, the hybrid was not designed for micro-canonical sys-

tems but for lattices in contact with heat baths, which over astronomical life-times

would thermalise to the heat bath parameters. More details on these thermalisations

will be given in the next section. After going through a transition of the sort AvNLSE

- DNLSE - AvNLSE we do not return to the same hyper-surface of the effective Hamil-

tonian. What is important to mention though is that

1. The norm is exactly the same for the two Hamiltonians - therefore after no mat-

ter how many transitions from one integrator to the other occur, mass is never

artificially created or annihilated

2. The drifts which occur in consecutive passes from one AvNLSE hyper-surface to

the another are much smaller than the characteristic changes introduced by the

stochastic heat baths. Since the heat baths introduce fluctuations of the order
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O(
√

∆t), and the time step is very large for the averaged equations (since this is

the whole point of building a macro-integrator).

Therefore this algorithm becomes ideal to study thermalisations, since the large

backgrounds are replaced by Langevin heat baths and the need to use a small time

step due to the presence of the breather is eliminated. We can now work with low-

dimensional systems that can be integrated with a large time step, which is an ideal

set-up for any numerical investigation.

The current algorithm is not only powerful in reproducing the decays of single

breathers immersed in large backgrounds, but also in sketching multi-breather interac-

tions and describing thermalisation phenomena, as demonstrated in the next sections.

6.2.4 Results: Hybrid Integrator for Multi Breather Lattices

Let us now do a similar test to what was already shown in Section 6.1.2, but for

a lattice with two breathers, with a total length of N = 20 sites. The breathers are

initially set six sides apart from each other, so that the Hybrid Integrator can be

successfully used. The breathers were set at initial heights of |z| = 3.90 and |z| = 4.04,

since we know that the Effective Hamiltonian is highly reliable for these values from

the calibration curves in Figure 6.4. What is now new compared to the previous system

is that the two breathers will have different frequencies, and therefore there will be two

separate smallness parameters.

These relatively small values of the breather heights have also been chosen so that a

decay is very likely. Large breathers still decay in astronomically long time-scales and

the simulations can still take weeks (as opposed to months for the DNLSE) when the

Hybrid Integration Scheme is used. Just as before, the ends of the lattice have been set

at T = 10 and µ = −6.4. Without using heat baths, we would never see the decay of

a breather in such a short lattice, because the enormous energy stored in the breather

would have nowhere to dissipate. In addition to this, the Hybrid Integrator was only

designed for systems with heat baths, therefore this configuration is almost compulsory
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when extended to the Hybrid Integration Scheme.

When the two breathers are set to evolve according to the DNLSE, we see several

migrations of the breathers and decays over lifetimes of the order O(106). The exact

trajectories are depicted in Figure 6.8. After a very long waiting time, the two breathers

are completely absorbed by the background, and the system becomes fully thermalised.

Before this happens, the breathers break the lattice into three distinct regions, which

are locally thermalised. This is due to ergodicity breaking. When the pinned breathers

are suddenly destabilised due to the spontaneous emergence of a rare event, they might

abruptly move to a neighbouring lattice site. During the rare event, the left and right

sections on either side of the breather are allowed to interact, and atoms can travel freely

from one side of the destabilised breather to the other. As the soliton re-stabilises, the

sections on the left and the right will reach thermal states which will be different from

those present before the rare event (Tleft, µleft, Tright, µright will all change). This type

of transition from a laminar flow to turbulent dynamics and back to laminar evolution

will be examined more thoroughly in Section 6.3.

The system is then allowed to evolve from the same exact initial condition, but this

time according to the Hybrid Integration scheme. The result is presented by Figure

6.9. Remarkably enough, the two breathers will also get absorbed by the background

in a timespan of O(106), just as it was initially shown by the full DNLSE. Not only

that, but the spontaneous tunnelling of breathers is also observed. Naturally, after

both breathers disappeared, the Hybrid Integrator is equivalent to the DNLSE and the

background will be thermalised at T = 10 and µ = −6.4.

Even if the two trajectories are not identical, the power of the Hybrid Integration

Scheme is still impressive. The main reason why the trajectories separate is chaos.

Simply the fact that the AvNLSE uses a larger time step than the DNLSE, and that

the stochastic noise from the baths will be different (since the sampling is more dense for

the DNLSE) is enough to separate the two trajectories quite early. This separation will

happen even if one uses the same seeds for the noise. Nevertheless, the thermodynamic
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properties given by the two algorithms are equivalent.

There is therefore more room for investigation when it comes to systems with more

than one breather. This scheme would also be efficient for studying coarsening, since

it would only activate the DNLSE when a trigger is detected and it would not spend

astronomically long times to integrate the laminar regime where breathers sit at a fixed

distance from each other, with very little interaction.

Figure 6.8: The evolution of two breathers in lattice with 20 sites put in contact with
positive temperature heat baths. The system is allowed to evolve according to the
dynamics given by the Bose-Hubbard Hamiltonian.

6.3 Thermodynamics and the DNLSE. Uses of the Hybrid

Integration Scheme

6.3.1 Thermalisation of the background

The thermalisation times for a one-dimensional Bose-Hubbard chain of length ∼ 100

are of the order O(103), as one could see from the numerical investigations presented
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Figure 6.9: The evolution of two breathers in lattice with 20 sites put in contact with
positive temperature heat baths. This time, the system is integrated using the Hybrid
Integrator.

in the early stages of this work in Figures ?? and ??. When the condensate thermalises

with the Langevin heat baths, its temperature and its chemical potential fluctuate

around the values of the thermal parameters given by the thermostats (this should

always happen if the system is calibrated properly and if the numerical temperature

and chemical potential are defined correctly). For lattices of size ∼ 10, which are the

usual lengths employed for single breather systems, the thermalisations times go down

to O(102), making the background reach an equilibrium state almost instantaneously

when compared with the time-spans of the breather lifetimes (O(107) and beyond).

When the background thermalises, all sites which are part of it will follow similar

statistics, for their amplitudes and phases. This was shown during the numerical tests

employed when the MTSA was developed, back in Chapter 4. This stabilisation suf-

fices to establish that the thermalisation is complete. The explicit calculation of the

numerical temperature and of the numerical chemical potential is very expensive com-
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putationally, and it is only very useful at the starting stages of code development, when

one must test that the heat baths are properly calibrated, both for infinite temperature

configurations, but also for finite temperature states. This is to make sure that the

Langevin heat baths defined in Chapter 2.1.2 generate the types of backgrounds we

want.

Another equilibrium condition is that the flux of energy and mass through a certain

site is zero. As a matter of fact, this constituted the solvability condition for closing

the MTSA. This type of equilibrium condition works in the following conditions:

1. When both ends of the chain are at the same temperature and chemical potential.

2. When the chain is in a micro-canonical set-up (including the case when the chain

is in a Periodic Boundary Condition (PBC) set-up).

3. When one of the ends of the chain is in contact with a Langevin heat bath and

the other is in contact with a reflective boundary. This scenario, by analogy, is

equivalent to the case when a breather sits at one end and a heat bath is generated

at the other.

The flux equilibrium condition DOES NOT work when

• The two ends of the lattice are in contact with heat baths at different temperatures

and chemical potentials.

In this case, a Non Equilibrium Stationary State (NESS) is created, where each site

will have its own histogram for amplitude and phase, and only the ends of the chain

will thermalise with the bath they are in contact with. This kind of set-up is more

thoroughly studied in [51]. What is interesting though, is that because of the ergodicity

breaking induced by breathers in a one-dimensional lattice, a system with one breather

can be replaced by two analogous systems of the type 4 (from the list above). We have

used this property extensively when adding symmetric contributions for the averaged

differential equation. This means that a pinned breather in a lattice which is put into
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contact with heat baths at different temperatures will act as a thermal insulator, and

the left and right hand sides will thermalise independently, while still obeying flux

conservation laws, unlike in a NESS regime.

But before making this statement, let us look at the thermalisation properties of

backgrounds in the presence of breathers. Since breathers are very stable (life times

of the order ∼ 106 time units), they are effectively infinitely long-lived when compared

to the thermalisation times. Figure 6.10 shows how the buffer background consisting

of seven sites thermalises when put into contact with a Langevin heat bath at positive

temperature. We can observe that all sites have equivalent statistics, with the exception

of site j = 1 which is in direct contact with the breather and site j = 7 which is in

direct contact with the bath. Remarkably enough the two sites obey similar dynamics

to the ends of the chain. The error bars were set to depict the standard deviation for

each amplitude. Sub-plot (a) shows the evolution as it is given by the DNLSE, and the

findings are in perfect agreement with:

1. the numerical findings from Figure 2.5, which showed that all background sites

obey equivalent statistics. However, while that diagram was for infinite tem-

perature backgrounds, this one covers positive temperatures. The fundamental

message is the same, the breather acts as a reflective boundary for the two adja-

cent backgrounds (on its left and on its right);

2. the first neighbour of the breather obeys different statistics, since it has a different

type of asymptotic expansion, as it was shown in the early stages of the MTSA

algorithm, in Eq. 4.7.

Figure 6.10 shows the amplitude statics for the evolution of the same background

(same initial condition), according to the DNLSE (b), and according to the Hybrid

Integration scheme developed in this chapter (a). We can see that the new plot is

basically indistinguishable from that obtained using the DNLSE. This means that,

even if the Hybrid Integrator will lead to a different trajectory, the overall statistics of
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the background will be the same. This means that the extreme events will have the

same frequency as in the case of the full system, since they are generated by peaks

over a certain threshold, and the histograms are identical. The main reason for the

separation in trajectories between the Hybrid and the DNLSE is the use of a larger time

step, which creates a different stochastic noise. The different noise, in conjuncture with

the chaotic nature of the system, creates a very fast separation between trajectories.

These histograms offer a more detailed explanation why we see the same statistics

for the life-times, even if the background trajectories separate very early during the

simulations.

6.3.2 Thermalisation of the whole system - Breather decay

All the statistics presented in this chapter were gathered for T = 10 and µ = −6.4

(micro-canonical definitions). It would be very interesting to see what happens when

these parameters are varied. Before doing so, it is important to mention that T = 10 and

µ = −6.4 is a pair of parameters which was chosen because it generated backgrounds

with an average occupancy number of 〈|zj |〉 = 1. Varying T and µ randomly would

be very problematic, since there would be two parameters which are changed for each

realisation, and it would be close to impossible to find the physical interpretation of

any change in breather behaviour.

It is always more elegant to work with a problem when only one parameter is varied,

the only issue was to identify what this parameter should be. The way to tackle the

problem was to find pairs of {T, µ} which generate backgrounds of order 1. The pair

{T = 10, µ = −6.4} has been kept, since the Hybrid Integration scheme was calibrated

for these values and it would offer a good reference for any other values one would

decide to use later.

We now multiply T = 10 with seven different powers of 2 to obtain the temper-

ature samples T ∈ {2.5, 5, 10, 20, 40, 80, 160}. When the temperature is very low, the

background amplitudes will obey similar statistics to a Kronecker delta centred around



CHAPTER 6. HETEROGENEOUS MULTIPLE TIME SCALE METHODS 183

Figure 6.10: The statistics of the buffer background (Sites between the breather and
the breather at j = 0 and the Langevin heat bath at j = 8), as given by the DNLSE (a)
and by the Hybrid Integration Scheme (b). The averages are performed over 5000 time
units. The very small lattice usually thermalises over 10 units, therefore the averaging
time is roughly 500 larger than the time it takes for the buffer to get into equilibrium
with the heat bath.
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a mean value defined by µ. As the temperature is increased, the background starts

to obey Poissonian statistics [34]. If one decides to use infinite temperature Langevin

heat baths, the behaviour is very similar to most positive temperature heat baths with

T > 50. Now that we know which values of T we will be sampling, it is important to

choose the values of the chemical potential as well.

The strategy which was used here is to vary µ for each value of T until one would

find a pair that generates backgrounds with averages as close to 1 as possible. This

would ensure that all seven histograms would have the same average, but different

shapes. Therefore, even if the average size of the background is the same, the overall

chance of an extreme event occurring would vary with the histogram shape [34]. The

search process was similar to Newton’s method of looking for zeros. For each value of

T :

1. Start at a guess value of µ (always negative) and calculate the average amplitude

of the background.

2. If the average value is larger than 1, have µ, otherwise double it. Then re-evaluate

the average amplitude of the background.

3. Depending on where the new value lies, build segments of 〈|z|〉min and 〈|z|〉max

and memorise the values of µ associated with them.

4. Always use for the guess value the average value of µ for the segment defined at

3.

5. Repeat until the average is accurate within an accuracy which is specified by the

user. Here 10−2 was deemed more than sufficient.

The pairs {T, µ} which generate backgrounds of size 〈|z|〉 ≈ 1 have been identified

to be
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T µ

2.5 -0.82

5 -2.3

10 -6.4

20 -16.3

40 -35.9

80 -72.8

160 -145.6

The next step was to run simulations for all these values of the thermal parameters,

for at least five realisations. At the middle of the lattice there was always a breather

of size |z0(0)| = 3.85, which was allowed to evolve until complete decay. The results

of the integrations are summarised by Figure 6.11. We can see that for small values

of the temperature, the breather is extremely long-lived, up to 105 more stable than

when the temperature is increased to T = 40 degrees. This happens because of the

fact that when the background has a low temperature, it behaves very linearly, and the

amplitude histogram is close to a Kronecker delta. Therefore high excitations which

can destabilise the breather are astronomically unlikely. We were able to record seven

decays using the Hybrid Integration Scheme (each over a running time of 107). Needless

to say, most of the running time was spent on integrating the low temperature system,

where the life-times of the breather are ∼ 105 larger than everywhere else. The Hybrid

Integrator proved to be a very potent tool in this case.

6.3.3 Hybrid Integration for Different Background Temperatures

We have seen that when the temperature is very small, breathers are extremely

long-lived. This is because the amplitudes in the background obey a histogram which

looks like a Kronecker delta centred around |z| = 1. For a breather of size |z(0)| = 3.85,

any of the three nearest neighbours (either on the left or on the right) must exceed the
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Figure 6.11: The life-time of a breather of initial height |z(0)| = 3.85 for different
temperatures and chemical potentials which give rise to backgrounds of size 1. Low
temperature backgrounds take very long to absorb the breather, while high temperature
backgrounds do not differ much in the dynamics they produce.
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threshold value |zneighbour| = 3.85√
2
≈ 2.7, to trigger a shift to the DNLSE, and ultimately

a potential decay. As we can see in Figure 6.11, the average running time for a decay

to happen in this case is of order O(107). This happens for a very small breather, of

mass 3.852 ≈ 14.8. One can imagine that for breathers of size 36, like those studied

in the resonance experiment in Figure 3.6, the lifetimes would be astronomical. The

advantage of the low temperature regime is that the algorithm almost never enters the

DNLSE regime, because the first resonance threshold is very rarely reached, therefore

for most of the time the AvNLSE is used to project the state.

A general trend is observed as - rather intuitively - backgrounds of higher temper-

atures spend more time in the DNLSE regime, since they are more likely to produce

an excitation that is larger than the transition threshold A2
0/2. This means that as

the temperature is increased, the gain obtained from using the Hybrid Integrator is re-

duced. The system will spend a long time integrating the equation using the DNLSE,

until all the neighbours (six neighbours in total) have decayed under the value of 1,

and the breather has rotated for an integer amount of times. It usually takes a long

amount of time for all these seven conditions to be satisfied simultaneously (order of

O(103)).

Even if the computational advantage of the Hybrid Integrator diminishes for large

temperatures, the life-times go down as well, as one can easily deduce from Figure

6.11. This implies that the largest gains occur exactly during the simulations that are

exceedingly slow, which is the ideal scenario. Once again, the Hybrid Integrator seems

to pass a sturdiness test, since its applicability is more suited exactly in those regimes

where the simulations would be too slow if the pure DNLSE would be used.

Now we must also take into account the shape of the stochastic noise generated by

the Langevin heat baths. As we have seen in Chapter 2.1.2, the positive temperature

heat bath will contain terms of the sort iγµzn +
√
γTξn(t). This means that as we

increase µ and T we generate larger and larger fluctuations at the end of the chain.

Given the fact that the time step (δt) is inversely proportional to the highest excita-
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tion in the background, we can see why the simulation slows down significantly as we

increase T and µ. After a while, the white Gaussian noise at the lattice end will have

a variance that is so great, that it becomes basically not physical. A temperature of

T = 160 is already pushing into this regime. We know this because, when evaluating

the temperature for a system in contact with infinite temperature heat baths we get

temperatures of T (calculated using the numerical method from Chapter 2.1.3) ranging

between 50 and 5000. This is because the computer cannot evaluate a quantity which

diverges, and it will give it a very large value. It is important to notice that, for the

numerics, a temperature of T = 50 is indistinguishable from an infinite temperature.

This can be used to replace all heat baths with temperatures above∼ 50 with infinite

temperature heat baths where the average occupancy number is set at a = 1, so that

we make sure that the average value of the background amplitude is still 1. This will

generate purely Poissonian histograms for the amplitudes (the limit case when T →∞

and µ→∞). The advantage of employing infinite temperature heat baths is that now

the white Gaussian noise has a small variance, and the system will be much better

behaved, generating more stable numerics. In addition to this, the infinite temperature

heat baths would also give a clear advantage of the Hybrid Integrator over the DNLSE,

since the largest excitation in the background would be small enough to generate a

large time step. The DNLSE would not perform faster, however, since the time step

would (almost) always be given by the breather amplitude, which will exceed the white

Gaussian noise at the end of the lattice.

It now becomes apparent that the Hybrid Integration scheme will drastically speed

up simulations for situations when the background temperature is small. It can also be

employed for infinite temperature backgrounds, to generate faster realisations for the

breathers decay. This, however, can be covered in future projects. The same type of

analysis could once again be extended to multiple breather lattices, and the evolution of

coarsening could be simulated faster than what the DNLSE could allow. One could see

how coarsening is either accelerated or inhibited by temperature and chemical potential.
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An interesting finding presented in Figure 6.11 is that the breather life-time does

not diverge as the temperature is increased. This means that the ergodicity break-

ing induced by breathers is always temporary, even if ‘temporary’ might mean for an

astronomically long amount of time.



Chapter 7

Conclusions

This thesis has looked at the properties of the Discrete Nonlinear Schrödinger Equa-

tion and at the behaviour of its localised modes (breathers). Differently from what is

already abundant in literature, most work was carried for breathers in the presence of

very large perturbations, described by backgrounds which are thermalised at a certain

temperature and chemical potential. This implies that the smallness parameter of the

system is not given by an infinitesimal perturbation, but by the inverse of the breather

frequency (ε = 1/ω).

Breathers oscillate very rapidly, due to the non-linear component of the DNLSE.

This allows them to adiabatically decouple from their surroundings and act as isolated

oscillators for astronomically long times. During this evolution, the system is char-

acterised by three time scales - that given by one full breather oscillation, that given

by the slow evolution of the background, and the very slow time scale given by the

breather lifetime.

The localisation of breathers is extremely strong, most of them occupying one single

site in a one-dimensional lattice. The sites adjacent to the breather thermalise locally,

forming a reservoir of phonons which cannot interact with the atoms on the other side

of the breather. The spectra generated by these backgrounds is completely decoupled

from the large frequency of the breather, which looks like a Kronecker delta peak,

190



CHAPTER 7. CONCLUSIONS 191

clearly separated from the overall spectrum of the background.

The lifetimes of breathers are astronomically long, since their interactions with

neighbouring sites are minimal. As the initial breather mass is increased, its life time

goes up exponentially. This makes the numerical study of breathers very challenging.

The time step must be scaled proportionally to the inverse of the breather mass. Addi-

tionally the life-time of a breather grows exponentially with its mass. Combined, these

two dependencies make the numerical integration of large breathers highly challenging.

In an attempt to study what makes breathers connect with their surroundings, we

performed numerical experiments which showed that even in extended lattices, bound

states do form and, as a separatrix is crossed, the breather is allowed to move to an

adjacent site or to suddenly change size.

In addition to this, it was possible to identify clear resonances between pinned

breathers and the phonon backgrounds that surround them. These resonances induce

sudden changes in the breather size. The laminar evolution is interrupted when the

system reaches a resonant hyper-surface, as the breather norm stops being an adiabatic

invariant, suffering an abrupt change in size. During these rare events, it is impossible

to perform averaging, since they are non-perturbative.

The Multiple Time Scale Analysis (MTSA) has shown that during the laminar

regime, the breather derivative is bounded by a term of the order O(ε2). This suggests

that the breather norm is indeed an adiabatic invariant, since over times of order

ε, it cannot change more than O(ε). This is one of the fundamental definitions of an

adiabatic invariant. The MTSA was concluded by using the equilibrium conditions that

all fluxes in the background must cancel. This constituted the solvability conditions of

the asymptotic expansion.

In the laminar regime, we were able to perform averaging, and to build an effec-

tive Hamiltonian which models the weak interaction between the breather and its sur-

roundings. This effective Hamiltonian acts as a macro-integrator for the Bose-Hubbard

chain, which together with the DNLSE can be used to build a Heterogeneous Multiscale
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Method - a numerical algorithm which allows the fast integration of the DNLSE with

an adaptive time step.

The Hybrid Integrator was able to produce similar dynamics to the DNLSE, leading

to breather life-times which scale exponentially with their mass. This algorithm can

be extended to multi-breather lattices and can also be used to study how the decays of

breathers is influenced by the thermodynamics of the phonon bath.

The Hybrid Integration Scheme constructed in this thesis is remarkable for the fact

that it is applicable to lattices of any length and to systems with multiple breathers (of

different frequencies). The fact that the perturbations hold their validity in the presence

of positive and infinite temperature Langevin heat baths extends the range of possible

investigations greatly, offering the opportunity to study thermalisation phenomena for

systems with weak ergodicity breaking.

Ultimately, such algorithms could be extended to other nonlinear chains, such

as Fermi-Pasta-Ulam-Tsingou and Toda lattices, or even to other Discrete Nonlinear

Schrödinger Equations (ring shaped BECs).

The behaviour of breathers when in contact with positive temperature heat baths

shows that regions that were expected to be characterised by unstable localised solutions

actually conserve breathers for very long times, in meta-stable states. These extended

regions of stability offer a higher manoeuvrability for BECs in optical lattices and

arrays of optical wave-guides, allowing controlled switching on and switched off of

pinned breathers in these extended regions.
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