

Indoor Navigation Efficiency Improvement in Intelligent Assistive

Systems (IAS) Using Neural Networks

by

Amlan Basu

(Registration Number: 201765106)

Under the guidance of

Dr. Lykourgos Petropoulakis
(Primary Supervisor)

&

Dr. Gaetano Di Caterina
(Second Supervisor)

Neuromorphic Lab for AI and Deep Learning Systems

Centre for Signal and Image Processing (CeSIP)

Department of Electronic and Electrical Engineering

University of Strathclyde, Glasgow G1 1XQ, U.K.

This thesis is submitted for the award of the degree of

Doctor of Philosophy

2022

Gitanjali, Poem 35

Where the mind is without fear and the head is held high;

Where knowledge is free;

Where the world has not been broken up into fragments by

narrow domestic walls;

Where words come out from the depth of truth;

Where tireless striving stretches its arms towards perfection;

Where the clear stream of reason has not lost its way into the

dreary desert sand of dead habit;

Where the mind is led forward by thee into ever-widening

thought and action –

Into that heaven of freedom, my Father, let my country awake.

~ Rabindranath Tagore (Nobel Prize, 1913)

i

Declaration

This thesis is the result of author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of the thesis belongs to the author under the terms of

the United Kingdom Copyright Acts as qualified by University of

Strathclyde Regulation 3.50. Due acknowledgment must be made of

the use of any material contained in, or derived from, this thesis.

 Amlan Basu

2022

ii

Acknowledgments

Doctor of Philosophy (Ph.D.) is a degree that many people dream of, but very few get the

opportunity to pursue and complete it. I have been one of those fortunate persons who got this

opportunity. Ph.D. of any individual is always intriguing because of its nature of sinuousness.

The same remained in my case as well. My experience being a Ph.D. student is ineffable. In

this anfractuous ineffable journey, there have been many people who continuously espoused

me at every moment. Acknowledging or thanking them will never be enough to describe their

contributions. Still, I would like to take this opportunity to acknowledge as that would

somewhat give me a sense of satisfaction.

First and foremost, I would like to show my highest level of obeisance to my primary

supervisor, Dr. Lykourgos Petropoulakis. He is the person who accepted my application for

Ph.D. and showed his trust and confidence in me. Even during the journey of my Ph.D., he

stood by my side whenever I needed him. Sir always kept a close eye on whatever I was doing

and used to meet at least once every week to know where I was in my work. He did the same

during the pandemic lockdown through Skype.

Further, how can I forget his meticulous observations that he made on my work and

especially the way I presented my work in writing. Being a supervisor, he bothered about what

I did, but he also tried to provide many inputs that can help to achieve the aims and objectives.

Dr. Petropoulakis, apart from being professional, has always been an amicable person. Even

during the pandemic, whenever we used to have a skype meeting, he always made sure that

everything with me is fine after the discussion on work so that I can keep my focus on my

work.

The second person being significant is my second supervisor, Dr. Gaetano Di Caterina. I am

grateful to him as well for becoming my secondary supervisor and putting his trust in me. More

than being a supervisor, he always behaved like our friend. Dr. Di Caterina has always helped

with reviewing my research writings and provided me valuable feedback to make them better.

He also made sure that I participate in various group discussions and presentations related to

the work I am doing in my research.

I want to extend my sincere thanks and gratitude to Dr. John J. Soraghan. I remember the

first meeting with him when he asked me about my whereabouts, connected with me, and

discussed what I would like to do in my Ph.D. He was the person who suggested me to look

into Assistive Technologies after Dr. Petropoulakis encouraged and motivated me to take Deep

iii

Learning in Artificial Intelligence as the main focus of my work. Apart from topic selections,

he made sure that I get all the necessary resources necessary for my work. Even he helped to

me review some of my works. The best part I liked about Dr. Soraghan is that he used to bring

different experts from different companies and made me present my work. That helped me to

get some valuable feedback and saved much time because that helped me to know what may

work and what may not work. Dr. Soraghan has always been very friendly and his smiling face

used to fill me with all positivity.

My special thanks to my friend and colleague in CeSIP, Keerati Kaewrak. She had been

with me in most of the works. We together have done some of the best works and achieved

some remarkable success. Working together has helped us to develop a sound knowledge base

that will also help in our future careers. I am also grateful to my colleague Dr. Paul Kirkland

who recently defended his Ph.D. thesis successfully, for always helping to set up the required

resources appropriately so that the work can be carried out smoothly. Weijie Ke has also been

generous support as he was the only other student pursuing his Ph.D. under Dr. Petropoulakis

and Dr. Gaetano Di Caterina's guidance. I thank all other colleagues with whom I shared RC351

laboratory over the last couple of years, which directly or indirectly helped me in some way or

the other.

I am also grateful to my annual reviewers, Dr. Stephan Weiss and Dr. Paul Murray. They,

with the most sincerity, did the review and observed the presentation. Both of them provided

essential feedbacks regarding work and presentation. I would like to specially mention Dr.

Weiss for providing me his feedback during my first annual review that he attended through

video calling from Australia. That proved how much he values anyone’s time and work. He

also provided me some material on writing literature reviews in a much better way, which

helped me.

I would like to extend my sincere gratitude to the University of Strathclyde’s administration

that supported me everywhere, from my accommodation to my laboratory. I have been

fortunate enough to study, research and walk through the corridors of the world-class institution

that has, over its history of more than 200 years has witnessed some genius luminaries like

John Logie Baird, Thomas Graham, James Young, Andrew Ure, etc. working in its abode and

walking through the same corridor that led them to the path of some unforgettable success.

I, with folded hands, would like to thank my parents, who sacrificed everything to see their

son earn a doctoral degree from one of the world’s finest institutions. I would also like to offer

my appreciation to all my school, UG and PG teachers who helped me to gain proper

iv

knowledge. At last, I thank the almighty God for being so kind to me that I met such wonderful

people in my journey of life till now. Thanks to everyone once again. Please forgive me if I

forgot to mention someone here. If I forgot someone, please remember that you have been

equally responsible for my success.

Many thanks and greetings to everyone once again and I dedicate this thesis to everyone

responsible for helping me to reach this juncture. My kind regards to all. I pray to God to bless

each and everyone.

v

Abstract

This thesis addresses the fundamental issue of indoor home navigation in Intelligent

Assistive Systems (IAS). The issue of inefficient indoor home navigation exists in IAS because

of the inefficient indoor home scene and object recognition. The problem is therefore addressed

by developing different novel methods using neural networks in this thesis. Apart from

addressing the mentioned problem, the developed novel methods also focus on addressing the

problems associated with neural networks. The issues related to neural networks addressed in

this thesis are the high total number of trainable parameters and the inability of neural networks

to produce good accuracy on smaller datasets.

A traditional Capsule Neural Network (CapsNet) is first used to implement indoor homes

scene recognition for the first time. The CapsNet produced good accuracy, but it had a very

high total number of trainable parameters. This led to the proposed development of

NoSquashCapsNet. In NoSquashCapsNet, the squash function is removed from capsules

(Capsules are the backbone of CapsNet that helps to acquire orientation of features in vector

form), and Max Pool layers are introduced in the architecture. These modifications help to

reduce the total number of parameters and remove the restriction of not changing the direction

of vectors in capsules. The accuracies produced by both CapsNet and NoSquashCapsNet were

lower but comparable with other networks and remained the same in both cases. The accuracies

produced were on small datasets. Therefore, from the knowledge gained from implementing

CapsNets for indoor home scene recognition, more efficient indoor object recognition networks

were developed with more capabilities by restructuring and improving the initial designs

The proposed CapsNets developed for indoor object recognition are 1D CapsNetA and 1D

CapsNetB. 1D CapsNets are developed to recognise 3D objects. The use of 3D object datasets

makes it easier for CapsNets to capture the orientation of the objects. This will enable an IAS

to recognise the objects from any viewpoint. Therefore, this method does not require the

conversion of the 3D point cloud dataset to 3D voxel grids. Developing 1D CapsNets and using

3D datasets in 1D array format helps to reduce the total number of trainable parameters and

produce comparable accuracy on smaller datasets. Therefore, an efficient system for

recognising indoor objects present in any orientation is developed for IAS, enabling an IAS to

handle any object when required. However, even if an IAS can now recognize any object

present in any orientation, it will never be very useful if it cannot also recognise indoor home

scenes properly.

vi

NoSquashCapsNet has produced an accuracy that is adequate for many tasks. However, it

is not enough for an IAS expected to perform indoor home assistance for elderly or infirm

people. Therefore, Convolutional Neural Networks (CNN) combinations were used to develop

efficient indoor home scene recognition. The reason behind using the CNN combination is to

perform indoor home scene recognition through multiple object detection. Multiple object

detection is performed using transfer learning of a pre-trained Mask-RCNN (Mask-Region

based Convolutional Neural Network) because of the instance segmentation performed by

Mask-RCNN. Pre-trained Mask-RCNN helps to produce different object combinations for

different indoor home scenes. Another CNN is also developed, which could be trained on

object combinations produced by the pre-trained Mask-RCNN. The pre-trained Mask-RCNN’s

output is connected to the newly developed CNN to perform the indoor home scene

recognition. The connection produced the Mask-RCNN+CNN combination. Despite being

trained on a very small dataset, this uniquely developed CNN combination surpassed all

currently available techniques in terms of overall accuracy.

vii

List of Figures

Figure 2.1. Fall related mortality world-wide…………………………………………………..9

Figure 2.2. Alpha-2 Robot……………………………………………………………………11

Figure 2.3. Pillo Robot for Health Assistance………………………………………………...11

Figure 2.4. Wakamaru mobile robot developed by Mitsubishi Heavy Industries……………12

Figure 2.5. CareBot P37 S65…………………………………………………………………13

Figure 2.6. Carrie CareBot robot for indoor assistance………………………………………13

Figure 2.7. BIRON robot for indoor assistance……………………………………………….14

Figure 2.8. COGNRON robot for indoor assistance………………………………………….14

Figure 2.9. PERS system working……………………………………………………………15

Figure 2.10. Flow chart of algorithm proposed by Yin et al…………………………………17

Figure 2.11. Pearl robot for nursing assistance……………………………………………….18

Figure 2.12. Schematic diagram of RESIMA system…………………………………………19

Figure 2.13. Schematic of AssistMote System……………………………………………….20

Figure 2.14. Schematic diagram of working of Wizard-of-Oz system………………………..20

Figure 2.15. Schematic diagram ISANA navigation system…………………………………21

Figure 2.16. Architecture for indoor navigation using RFID and PDA……………………….21

Figure 2.17. Wheelesly used by a user……………………………………………………….22

Figure 2.18. RFID or BLE components for visually impaired……………………………….23

Figure 2.19. Seeker Jr. Robot by Adept MobileRobots……………………………………….23

Figure 2.20. Humanoid used by Wenjie et al………………………………………………….24

Figure 2.21. Robot implemented using deep reinforcement learning…………………………24

Figure 3.1. Block diagram is portraying the basic CNN architecture to understand the CNN

properly. This architecture contains two convolutional layers, two max-pooling layers, and

fully connected layers………………………………………………………………………...29

Figure 3.2. Architecture of LeNet-5 CNN……………………………………………………31

viii

Figure 3.3. Architecture of AlexNet CNN……………………………………………………32

Figure 3.4. Basic architecture of SqueezeNet CNN…………………………………………..32

Figure 3.5. Architecture of ZF Net CNN……………………………………………………...33

Figure 3.6. Architecture of VGG-16 CNN……………………………………………………34

Figure 3.7. Architecture of VGG-19 CNN……………………………………………………34

Figure 3.8. Architecture of GoogLeNet CNN………………………………………………...35

Figure 3.9. Architecture of RCNN……………………………………………………………35

Figure 3.10. Architecture of ResNet 34 layers………………………………………………..37

Figure 3.11. Architecture of NIN CNN………………………………………………………38

Figure 3.12. Architecture of mlpconv layer…………………………………………………..38

Figure 3.13. Addition of Fast RCNN and RPN to form Faster RCNN, (a) block diagram of the

basic architecture of Fast RCNN, (b) Block diagram of the basic architecture of RPN, (c) Block

diagram of the basic architecture of Faster RCNN……………………………………………40

Figure 3.14. The block diagram of the architecture of Mask RCNN that is almost similar to that

of Faster RCNN but with an additional feature of Mask Branch that provides the power of

instantaneous segmentation…………………………………………………………………..41

Figure 3.15. Architecture of Unified Convolutional Neural Network………………………...42

Figure 3.16. Architecture of Multi-Resolution CNN…………………………………………43

Figure 3.17. RotationNet working……………………………………………………………45

Figure 3.18. PointNet CNN Architecture……………………………………………………..46

Figure 3.19. PointNet Architecture…………………………………………………………...46

Figure 3.20. SO-Net Architecture…………………………………………………………….47

Figure 3.21. The basic block diagram of Capsule Neural Network (CapsNet)………………49

Figure 3.21. CapsNet Architecture 1…………………………………………………………51

Figure 3.22. CapsNet Architecture 2…………………………………………………………51

Figure 3.23. CapsNet Architecture 3…………………………………………………………52

Figure 3.24. CapsNet Architecture 4…………………………………………………………52

ix

Figure 3.25. CapsNet Architecture 5…………………………………………………………52

Figure 3.26. 3D Capsule Architecture………………………………………………………...53

Figure 4.1. Capsule Neural Network (CapsNet) architecture…………………………………57

Figure 4.2. Schematic diagram of a capsule………………………………………………….59

Figure 4.3. Capsule Neural Network (CapsNet) used for scene recognition…………………62

Figure 4.4. Images tested for image classification. (a) The bedroom scene (image not used in

the training set) was tested in which the trained neural network was able to predict it correctly

(b) A kitchen scene (image used in the training set), which the neural network was unable to

recognize……………………………………………………………………………………..65

Figure 4.5. The conversion of 256x256 (RGB) image to 128x128 (Grayscale) image………68

Figure 4.6. A modified capsule without squash function……………………………………..69

Figure 4.7. Modified Capsule Neural Network (NoSquashCapsNet)………………………...70

Figure 5.1. An object presented in point cloud format……………………………………….76

Figure 5.2. (a) An animal shown in point cloud data and (b) The same animal shown in voxel

grids…………………………………………………………………………………………..77

Figure 5.3. T-Net Architecture……………………………………………………………….78

Figure 5.4. PointCapsNet (Point Capsule Neural Network) Architecture……………………78

Figure 5.5. Architectures of One-dimensional Capsule Neural Networks (1D CapsNets) with

Max-Pool (a)1D CapsNetA, (b) 1D CapsNetB……………………………………………….80

Figure 5.6. Transfer of information from Primary Capsule to Digit Capsule…………………81

Figure 6.1. An image of a water bottle and a living room……………………………………89

Figure 6.2. Mask-RCNN Architecture………………………………………………………..90

Figure 6.3. A dining room scene showing instance segmentation……………………………91

Figure 6.4. Objects in kitchen recognised by Mask-RCNN………………………………….91

Figure 6.5. Training process for indoor home scene recognition using object detection……...92

Figure 6.6. CNN developed for Scene Recognition…………………………………………..93

Figure 6.7. Working of Mask-RCNN and CNN………………………………………………93

x

Figure 6.8. Scene recognition through object recognition in living room……………………96

Figure 6.9. Scene recognition through object recognition in bedroom………………………96

Figure 6.10 Scene recognition through object recognition in bathroom………………………97

Figure 6.11. Scene recognition through object recognition in the dining room………………97

Figure 6.12. Scene recognition through object recognition in kitchen……………………….98

Figure D.1. Flow chart for conjunction of proposed technique (Mask R-CNN + CNN) and 1D

CapsNet……………………………………………………………………………………..136

xi

List of Tables

Table 3.1. Different datasets used for image classification…………………………………..53

Table 3.2. Different datasets used for object recognition…………………………………….53

Table 3.2. Different datasets used for scene recognition…………………………………….54

Algorithm 4.1. Dynamic Routing Procedure Steps…………………………………………..61

Table 4.1. Specifications for CapsNet………………………………………………………..62

Table 4.2. The validation and testing accuracy for different deployed neural network using

20,000 images for training and 5000 images for testing……………………………................63

Table 4.3. The validation and testing accuracy for different deployed neural networks using

5000 images for training and 1250 images for testing………………………………………...64

Table 4.4. Confusion matrix for traditional CapsNet………………………………………...65

Table 4.5. Confusion Matrix for Faster RCNN………………………………………………66

Table 4.6. Confusion Matrix for Fast RCNN………………………………………………...67

Table 4.7. Confusion Matrix for Mask RCNN……………………………………………….67

Table 4.8. NoSquashCapsNet specification table……………………………………………71

Table 4.9. Validation and Testing accuracy of CapsNets..…………………………………..72

Table 4.10. Confusion matrix for NoSquashCapsNet………………………………………..74

Table 5.1. Complete specifications of 1D CapsNetA and 1D CapsNetB……………………82

Table 5.2. Comparison of different architectures using ModelNet-40 and ModelNet-10

datasets……………………………………………………………………………………….85

Table 5.3. Confusion matrix for 1D CapsNetA on ModelNet-10 (values are in %)…………86

Table 5.4. Confusion matrix for 1D CapsNetB on ModelNet-10 (values are in %)…………86

Table 6.1. CNN architecture specifications…………………………………………………..93

xii

Table 6.2. Comparison of accuracies of different neural networks used for scene

recognition……………………………………………………………………………………94

Table 6.3. Confusion matrix for indoor home scene recognition by designed CNN………...95

xiii

List of Abbreviations

AI – Artificial Intelligence

DL – Deep Learning

MLP - Multi-Layer Perceptron

ANN – Artificial Neural Network

DNN – Deep Neural Network

CNN – Convolutional Neural Network

FC Layer – Fully Connected Layer

Conv Layer – Convolutional Layer

RNN – Recurrent Neural Network

MLVCNN - Multi-loop view CNN

RGB – Red, Green and Blue

ReLU - Rectified Linear Unit

PReLU - Parametric Rectified Linear Unit

SVM – Support Vector Machine

1D – One Dimensional

2D – Two Dimensional

3D – Three Dimensional

FCN – Fully Convolutional Network

ILSVRC - ImageNet Large Scale Visual Recognition Challenge

PCA - Principal Component Analysis

RCNN - Region based Convolutional Neural Network

PReLUNet - Parametric Linear Unit Network

xiv

ResNet - Residual Neural Network

NIN - Network In Network

GLM - Generalised Linear Model

CCCP - Cascaded Cross Channel Pooling

BN - Batch Normalization

FPN - Feature Pyramid Network

PSPNet - Pyramid Scene Parsing Network

G-FRNet - Gated Feedback Refinement Network

GAN - Generative Adversarial Network

RoI - Region of Interest

SPPnet - Spatial Pyramid Pooling Network

IoU - Intersection over Union

bbox – Bounding Box

GPU - Graphics Processing Unit

SIFT - Scale-Invariant Features Transform

SURF - Speed Up Robust Features

CLM - CodeBookless Model

MBConv - Mobile Bottleneck Convolution

SON - Self-Organizing Network

SOM - Self-Organizing Map

AE - Auto-Encoder

r-GAN – raw Generative Adversarial Network

l-GAN - latent space Generative Adversarial Network

EMD - Earth’s Mover Distance

xv

CD - Chamfer Distance

GMM - Gaussian Mixture Models

CapsNets - Capsule Neural Networks

COOR - Co-occurring frequency of object-to-object relation

SOOR - Sequential representation of object-to-object relation

xvi

Contents

Declaration……………………………………………………………………………………. i

Acknowledgments……………………………………………………………………………. ii

Abstract………………………………………………………………………………………. v

List of Figures………………………………………………………………………………. vii

List of Tables………………………………………………………………………………… xi

List of Abbreviations………………………………………………………………………...xiii

1. Introduction……………………………………………………………………………….1

1.1. Preface………………………………………………………………………………...1

1.2. Research Motivation…………………………………………………………………..2

1.3. Research Aims………………………………………………………………………...4

1.4. Original Contributions………………………………………………………………...5

1.5. Thesis Outline…………………………………………………………………………5

1.6. List of Publications……………………………………………………………………6

2. Indoor Assistive Technology for Elderly and Infirmly People…………………………8

2.1. Introduction…………………………………………………………………………...8

2.2. Why Assistive Systems are Required?..8

2.3. Indoor Systems………………………………………………………………………10

2.3.1. Mobile Robots for Indoor Assistance…………………………………….12

2.3.2. Applications of fall detection and prevention…………………………….14

2.3.3. Indoor Navigation Assistive Systems…………………………………….18

2.4. Conclusion…………………………………………………………………………...26

xvii

3. Application of Deep Learning for Scene and Object Recognition……………………27

3.1. Introduction………………………………………………………………………….27

3.2. Deep Learning (DL)………………………………………………………………….27

3.3. Convolutional Neural Network (CNN)………………………………………………28

3.3.1. CNN Architecture………………………………………………………...29

3.3.2. Different CNNs (Convolutional Neural Networks) for image

recognition………………………………………………………………..31

3.3.3. Fast R-CNN and Faster RCNN…………………………………………...39

3.3.4. Mask R-CNN……………………………………………………………..41

3.3.5. Different Scene Recognition Tasks………………………………………42

3.3.6. 3D Object Detection Works………………………………………………45

3.4. Capsule Neural Network (CapsNet)…………………………………………………48

3.4.1. Basic CapsNet Architecture………………………………………………49

3.4.2. Different CapsNets (Capsule Neural Networks)…………………………50

3.5. Dataset Summarisation………………………………………………………………53

3.6. Conclusion…………………………………………………………………………...54

4. Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition…55

4.1. Introduction………………………………………………………………………….55

4.2. Traditional CapsNet for Indoor Home Scene Recognition………………………….56

4.2.1. CapsNet…………………………………………………………………..56

4.2.2. Capsules: The backbone of CapsNets……………………………………57

4.2.3. Basic Capsule Architecture………………………………………………58

4.2.4. Dynamic Routing in Capsules……………………………………………60

4.2.5. Traditional CapsNet architecture…………………………………………61

4.2.6. Results for traditional CapsNet…………………………………………...63

xviii

4.3. NoSquashCapsNet: A Modified CapsNet……………………………………………67

4.3.1. NoSquashCapsNet Architecture………………………………………….69

4.3.2. Results for NoSquashCapsNet……………………………………………72

4.4. Conclusion…………………………………………………………………………...74

5. 1D CapsNets for 3D Indoor Home Object Recognition………………………………...75

5.1. Introduction………………………………………………………………………….75

5.2. PointCapsNet Architecture…………………………………………………………..76

5.3. 1D CapsNet Architectures: 1D CapsNetA and 1D CapsNetB………………………79

5.4. Results……………………………………………………………………………….83

5.5. Conclusion…………………………………………………………………………...87

6. A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for

General Object Detection………………………………………………………………..88

6.1. Introduction………………………………………………………………………….88

6.2. Reason behind using object recognition for indoor home scene recognition…………88

6.3. Pretrained Mask-RCNN and CNN combination……………………………………..90

6.4. Results for Mask-RCNN + CNN combination………………………………………94

6.5. Conclusion…………………………………………………………………………...99

7. Conclusion and Future Work…………………………………………………………..100

7.1. Conclusion………………………………………………………………………….100

7.2. Future Works……………………………………………………………………….104

Appendix…………………………………………………………………………………...106

Appendix A – Python Code for NoSquashCapsNet (Referred to Chapter 4)…………...106

A. I. NoSquashCapsNet………………………………………………………………...106

A. II. Capsule without squash function…………………………………………………112

xix

Appendix B – Python Code for 1D CapsNet, 1D Capsule and PointCapsNet (Referred to

Chapter 5)…………………………………………………………………………………..116

B. I. 1D CapsNet………………………………………………………………………..116

B. II. 1D Capsule……………………………………………………………………….120

B. III. PointCapsNet……………………………………………………………………124

Appendix C - Python Code for Mask-RCNN+CNN Combination (Referred to Chapter

6)…………………………………………………………………………………………….129

C. I. Mask-RCNN+CNN combination for indoor home scene recognition using object

detection…………………………………………………………………………….129

Appendix D - Conjunction of proposed approaches (Mask R-CNN + CNN) with an 1D

CapsNet for IAS generic object detection………………………………………………...135

References………………………………………………………………………………….138

1

Chapter - 1

Introduction

1.1. Preface

This thesis addresses the issue of navigation and object recognition for intelligent assistive

systems designed to help elderly and infirm people. Reports on population by the United

Nations suggest that by 2050 the population of elderly people across the globe will have

expanded substantially (people aged 60 or more and 85 or above are going to be 21.4% and

4.2% respectively) [1, 2]. Similarly, many reports and surveys show that many elderly people

prefer to live alone in their own homes rather than use care homes [3]. It is also known that

with the increase in age, there is a corresponding increase in various physical ailments that

restrict people's mobility. Therefore, taking care of the elderly and infirm citizens becomes

very important. In the United Kingdom alone, 2 million people (as of 2021) aged 75 or over

live alone at home [4]. Hence, it is clear that alternative solutions must be found for assisting

elderly people, especially those with physical ailments, who opt to live alone.

The best alternative solution for assisting elderly people and helping them to avoid

unwanted indoor accidents are assistive systems. Assistive systems can help to mitigate many

problems faced by elderly people who live alone and have little or no other assistance. From

helping to navigate in indoor environments to assisting them in finding different things at home,

assistive systems can potentially change the living conditions of elderly and infirm people.

However, the level of assistance which can be provided depends on the capability of assistive

systems.

As mentioned earlier, current assistive systems have navigational issues owing to inefficient

approaches to indoor home scenes [9, 104-115]. In addition, current object recognition

procedures are not as efficient as could be. These inefficiencies, mainly (a) inability of systems

to recognise objects which may be in various orientations [116-123, 137, 138] and (b)

confusing one indoor home scene for another, have been improved in this thesis by developing

a number of techniques based on neural network technology.

Several neural networks have been developed to improve the indoor home scene and object

recognition in recent years because neural networks have shown good performance in computer

vision tasks. Therefore, the prime focus in this thesis is to develop neural networks that are

Chapter 1 Introduction

2

easy to construct, sufficiently robust, easy to train, able to utilise modern practices in data

handling procedures and can produce good accuracy for indoor home scene and object

recognition. In this way, the aim is to improve the autonomy of Intelligent Assistive Systems

(IAS). As needs and requirements increase, indoor assistive systems need to improve their

capabilities in order to provide a reliable and efficient service. Many assistive systems are

already available like Alpha-2 [20] and Pillo [21], which can assist people in different ways,

such as in receiving medication, other health assistance and entertainment. The available

assistive systems are termed Intelligent Assistive Systems because they can act and make

decisions on their own using the input they receive. Currently available assistive systems can

assist in different ways, but they have limited scope and are not of general-purpose.

 The importance of the issues discussed in the above paragraphs can be understood by the

existing works, for example, by researchers at the University of Salford [23]. They have created

CareBots for indoor assistance, which can carry objects from one room to another, and

Mitsubishi’s Wakamaru robot [22], which can assist people in receiving their medicine on time.

Further, Microsoft has developed an imitation learning process for indoor assistive systems,

which learns different activities from people and then reproduces them when required [5].

Microsoft is using AI concepts in developing advanced assistive systems for assisting people

with disability [6]. Moreover, the importance of the aforementioned challenges can be easily

understood by the initiatives taken by Facebook Artificial Intelligence Research (FAIR). FAIR

has shown interest in making robots learn different home indoor tasks like cleaning fridges,

cleaning the house, setting up furniture, etc. This is achieved through the introduction of a

platform called Habitat 2.0, where robots could be virtually trained for such tasks [7].

Furthermore, in collaboration with Matterport, FAIR has made a large dataset available for

academic research [8], which contains 3D indoor home scenes. This clearly shows the intention

to expand research in assistive systems using Artificial Intelligence. Therefore, these examples

further endorse the need for improving the IAS capability, which is the aim of this thesis.

1.2. Research Motivation

There is an obvious need to increase the navigational capabilities in IAS. Increasing

navigation capability will help IAS to increase their scope and autonomy. Increasing scope and

autonomy of IAS will further help IAS to offer more and better services to elderly and infirm

people. Offering more and better services like bringing a glass of water from kitchen to

bedroom, currently is not possible owing to the drawbacks that the available IAS have. The

most important drawback is simultaneous recognition of indoor scenes and associated objects.

Chapter 1 Introduction

3

Both the indoor scene and object recognition tasks are vital for IAS. An indoor IAS is expected

to assist a person staying indoors in multiple ways like bringing different objects from one

indoor home area to another or letting the person know where an object is kept. Therefore, if

the person asks the IAS to acquire an object, the IAS must react to the demand by first

recognising the normal environment where the object is expected to be and then recognising

and acquiring the object which may not be in its expected orientation.

The problems of IAS in not being able to recognize the scenes is usually due to some of the

following reasons:

• It is observed that the accuracy of scene recognition is greater for outdoor scenes than

it is for indoor scenes [9]. This can be attributed to the presence of similar objects in

different indoor home scenes. For example, a table can be present in many different

room scenes within a house. This can give rise to confusion in neural networks when

attempting, during the learning process, to differentiate between rooms.

• Having lower accuracy on indoor home recognition is also due to a general lack of

large datasets for indoor home scenes. In general, more research emphasis has been

given to outdoor scenes and objects. Hence the relatively small size of datasets for

indoor objects does not allow for adequate training of neural networks.

• There is also an absence of systems that can produce good accuracy when trained on

smaller datasets.

• Currently available systems require multiple views of the same object to recognise the

object from any angle. This can lead to very large datasets which are not necessarily

easy to process and possible to obtain.

• There is a lack of proper extraction of information on the relationship between

different elements in one image. The problem exists because neural networks, when

trained for indoor home scene recognition, instead of extracting the information of

only important objects present in the scene and the relationship between them, they

learn the scene as a whole pattern. For example, if a room scene contains a window,

the neural network also learns the pattern of the window. As a window can be present

in any room, the neural network may easily get confused between room scenes. This

results in false positive outputs.

• Absence of systems with a lesser total number of trainable parameters that can

produce better accuracy using smaller datasets. The total number of trainable

Chapter 1 Introduction

4

parameters must be as low as possible so that the training process of a neural network

is faster and easier.

The aforementioned issues are the primary motivation points that initiated this research and

the techniques and capabilities presented in this thesis.

1.3. Research Aims

Neural networks have been chosen for accomplishing the indoor home scene and object

recognition tasks in this thesis because neural networks have produced better results on

computer vision tasks. Neural networks performing the indoor home scene and object

recognition can help to expand the IAS navigation capabilities and operation range. Moreover,

they will also improve IAS efficiency by making them learn faster and have better accuracy on

limited resources (e.g., availability of smaller datasets). Therefore, the following are the aims

of this research:

• To implement Capsule Neural Network (CapsNet) for indoor home scene recognition.

In indoor home scenes, the arrangement of objects matters as it helps to understand the

scene. However, these arrangements could change, but the scene remains the same.

CapsNet could help to solve this problem as they are designed to capture object

orientation from any viewpoint. This may also help to produce good accuracy on a

smaller dataset as the requirement for multiple views may be reduced or eliminated.

• To make neural networks compatible with current dataset structure concepts.

Developing such neural networks, or modifying existing ones, might help to learn the

orientation of objects and lower the total number of trainable parameters so that the

training process gets faster. Orientation extraction may address the issue of data

augmentation, which occurs due to taking the images of single objects from different

viewpoints (taking images of an object from its every possible viewpoint is also not

possible). Further, this may also help in achieving good accuracy on a smaller dataset.

• To develop indoor home scene recognition through object recognition using a

combination of neural networks. So that neural networks are enabled to learn only the

necessary items or objects that constitute an indoor home scene. Moreover, such a

technique could also help to achieve lower trainable parameters with good accuracy on

smaller datasets.

• To deploy different suitable Deep Neural Networks (DNN) for training and testing and

compare their performance to reach the highest precision level.

Chapter 1 Introduction

5

1.4. Original Contributions

The work presented in this thesis has led to the following knowledge contribution towards

indoor home scene recognition,

i. Implementation of CapsNet for the first time to recognise indoor home scenes (Chapter

4).

ii. The development of a different type of CapsNet structure that contains a capsule without

a squash function (Chapter 4) and has Max Pool layer with a convolutional layer for

indoor home scene recognition. Motive behind developing such CapsNet architecture is

to retain more information and reduce total number of trainable parameters.

iii. Development of two one-dimensional (1D) CapsNets (1-D CapsNetA and 1-D

CapsNetB) (Chapter 5). Development of such CapsNet architecture helps in lowering

even further the total number of trainable parameters. Even though these are one-

dimensional neural network architectures, they are capable of recognizing

3-dimensional (3D) objects. They can also be trained directly on the point cloud form of

3D datasets instead of first converting the 3D datasets to 3D voxel grids. This makes

these Neural Networks compatible with current dataset structure concepts.

iv. Development of a combination of neural networks, Mask-RCNN and CNN, to make

possible object-assisted indoor home scene recognition using only neural networks. In

the developed combinational neural network, a pre-trained Mask-RCNN on COCO

dataset is responsible for object detection which produces object combinations. The

other part of this combination consists of a CNN which is connected to the Mask-RCNN

and which recognises the indoor home scenes from the identified objects. The CNN is

one-dimensional. (Chapter 6)

1.5. Thesis Outline

There are 7 chapters in this thesis. The first chapter is the introduction which gives a

complete overview of the work presented in this thesis and it explains the aims and knowledge

contribution of the presented research. Chapter 2 and 3 contain the review of the related works.

Chapter 2 explains why there is a need for assistive systems and provides details on different

indoor assistive systems that exist presently. The review helps to understand the different

Chapter 1 Introduction

6

abilities and deficiencies present in the existing assistive systems. Chapter 3 reviews CapsNet

and CNN in detail. The chapter also discusses the different available CapsNets and CNNs

available for scene and object recognition. Furthermore, review in the chapter also helps to

know why deep learning is the best approach to make assistive systems more efficient and

ready for future challenges.

Chapters 4 to 6 present the novelties that help in knowledge contribution. Chapter 4 shows

the CapsNet implementation for indoor home scene recognition for the first time. It helps to

understand the behaviour of CapsNet on indoor home scene data. The performance of CapsNet

is also compared with the performance of Faster RCNN, Fast RCNN and Mask RCNN on the

same dataset. The performance of CapsNet on the reduced size of the dataset is also analysed.

Further, in Chapter 4, NoSquashCapsNet (Capsule Neural Network with no squash function)

is developed which helps in overcoming the discrepancy found in CapsNet for indoor home

scene recognition. The NoSquashCapsNet helps to increase the training efficiency by

drastically reducing the total number of trainable parameters without decreasing the accuracy.

Chapter 5 presents three 1-Dimensional CapsNets which can recognise 3-D objects. The three

proposed neural networks are PointCapsNet, 1-D CapsNetA and 1-D CapsNetB. The 3-D

dataset is converted into the 1-D array so that the 1-D neural networks can be trained on the

point cloud dataset and keep trainable parameters less with improved accuracy.

Chapter 6 presents the implementation of object detection-assisted indoor home scene

recognition using a combination of neural networks. The indoor home scene recognition

through object detection using neural networks, which till now has remained unexplored, is

presented in this chapter. The proposed method in this chapter has shown state-of-the-art

performance. The combination of Mask-RCNN and CNN is developed in this chapter, where

the Mask-RCNN produces the combination of detected objects in the indoor home scene, and

the CNN performs the indoor home scene recognition. The Mask-RCNN and the CNN are

interconnected. Chapter-7 presents the conclusions and future scope of the presented work in

this thesis.

1.6. List of Publications

i. Amlan Basu, Lykourgos Petropoulakis, Gaetano Di Caterina and John Soraghan,

“Assistive Technology Evolving as Intelligent System.” New Trends in

Computational Vision and Bio-inspired Computing, Springer, 2020, pp. 289-303.

Chapter 1 Introduction

7

ii. Amlan Basu, Lykourgos Petropoulakis, Gaetano Di Caterina and John Soraghan,

“Indoor home scene recognition using capsule neural networks.” Elsevier Procedia

Computer Science. January 2020, no. 167, pp. 440-448.

iii. Amlan Basu, Lykourgos Petropoulakis, Gaetano Di Caterina and John Soraghan,

“Modified Capsule Neural Network (Mod-CapsNet) for Indoor Home Scene

Recognition.” IEEE International Joint Conference on Neural Networks, July 2020,

pp. 1-6.

iv. Amlan Basu, Keerati Kaewrak, Lykourgos Petropoulakis, Gaetano Di Caterina and

John Soraghan, “3-Dimensional object recognition using 1-dimensional capsule

neural networks.” IEEE International Conference on Emerging Techniques in

Computational Intelligence.

v. Amlan Basu, Keerati Kaewrak, Lykourgos Petropoulakis, Gaetano Di Caterina and

John Soraghan, “Indoor home scene recognition through instance segmentation

using a combination of neural networks.” IEEE World Conference on Applied

Intelligence and Computing.

8

Chapter - 2

Indoor Assistive Technology for Elderly

and Infirm People

2.1. Introduction

The work that the chapter presents is specifically for indoor assistive systems. In this

chapter, various assistive technologies which are associated explicitly with indoor

environments are discussed. Current assistive systems, specifically developed for elderly

people to help them in indoor environments, are still very basic and purpose specific. They also

have too many requirements which include wearable devices that have to be manually operated,

non-wearable devices having too much complexity, long installation processes, user input is

required for almost every task to be performed, require substantial time to complete tasks and

sometimes the systems are not even affordable. To increase the autonomy, range and reliability

of such systems, several navigational approaches have been developed comprising different

technologies. This will allow assistive robots to extend the scope and purpose of their

operations.

This section provides a literature review of the most important of these assistive systems

and some of the approaches that have been used to impart intelligence and increase their

autonomy. Hence, section 2.2 discusses the challenges that people face currently and will face

in future which justifies why there will be a requirement for assistive systems. Section 2.3

discusses available indoor systems, different advanced mobile robots available for indoor

assistance are discussed, some fall detection systems currently available and systems used for

indoor navigation. Section 2.4 concludes about what future requirements are needed for

increasing their intelligence and autonomy.

2.2. Why Assistive Systems are Required?

The world will witness a rapid expansion in the percentage of senior citizens. According to

estimates and surveys, it is predicted that by 2050 the people aged 60 or more are going to be

21.4%, and people aged 85 or above will be 4.2% [1, 2]. Both the estimates are double and

quadruple of the present percentages, respectively. Physical ailments increase with increase in

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

9

age. Even the flexibility to move also decreases in most people because of body composition

changes leading to muscle loss and lean body mass, known as sarcopenia. With an increase in

age, the bones also become fragile. This makes a person more prone to fractures because people

are more vulnerable to physical falls leading to hip fractures. Millions of elderly people having

age more than 65 years face falls, as Centres for Disease Control and Prevention reported [10].

It is also reported that one in every three elderly people suffer fall incidents. An elderly person

who suffers a fall once is more vulnerable to falling again [11]. Around 2.5 million elderly

people worldwide have been treated for fall injuries and the numbers are increasing every day

[12]. In Figure 2.1, global mortality due to falls is shown in detail [13].

Figure 2.1. Fall related mortality world-wide [13]

Arthritis is another problem that is a prevalent disease among senior citizens. According to

WHO (World Health Organisation), 9.6% of men and 18% of women above 60 have a very

high tendency to be affected by Osteoarthritis [14]. Osteoarthritis is a disease in which 25% of

the people suffering from it cannot perform daily life tasks and 80% of the people suffering

from it develop limits in movement [14].

Another prevalent disability among senior citizens is some form of cognitive impairment.

In the world, 3% to 19% of the people above 65 have some cognitive impairment [15]. In

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

10

cognitive impairment, a person loses the power to think and make decisions for everyday tasks.

One of the most rapidly increasing cognitive impairment diseases in the world is Alzheimer's.

Worldwide there are 44 million affected by Alzheimer's, as per the report by Alzheimer’s News

Today [16]. Further, there are approximately 415 million people who have diabetes which is

an incurable disease [17]. The complications of diabetes lead to disabilities in a variety of ways,

like decline in mobility. Such diseases further increase the risk of fall.

These estimates indicate that there would be a rapid increase in the demand for different

indoor assistive systems because an increased number of people choose to live alone.

Moreover, it will be difficult to have enough carers for people opting for such service because

by 2025 there will be shortage of 1 million carers [18]. Therefore, it becomes important that

assistive systems must be appropriately developed with all necessary innovations which can be

implemented to solve the problems and drawbacks present in existing IAS (Intelligent Assistive

Systems). Moreover, there is a need to make such systems more intelligent and reliable so that

the people relying on IAS systems do not require to follow complex instructions to operate

them.

2.3. Indoor Systems

Intelligent Assistive Systems (IAS) have a significant role to play in assisting humans in

different ways. Indeed, development of IAS have been very slow for many years because of

the unavailability of specific firmware and software required for their operations. However,

this picture is changing rapidly and it will help the future development of IAS.

An IAS is a system that can use its intelligence and experience to make a particular decision

that is expected of it. IAS intelligence and experience are acquired through training using

machine learning or deep learning concepts. There are also many systems developed using the

concepts of fuzzy logic, fractional calculus, expert system, genetic algorithms, particle swarm

optimization and evolutionary computation [141].

There are some IAS present as commercial products for indoor purposes which are also

known as Social Assistive Robots (SAR) [19] that help people in academic and commercial

exercises, lifestyle improvement, lowering stress, socialization and social sign recognition.

These are systems like Pillo, Aido, Alpha-2, Morebot and Miko. For instance, Alpha-2 [20]

shown in Figure 2.2, is considered to be one of the most advanced IAS robots. It can mimic

different human movements, assists in doing fax and calls, stores voice calls, interact with

different people, have general knowledge and it can even be used for purposes like advising on

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

11

plumbing solving problems, helps in reminding different tasks, and also assists with the

weather forecast and precautionary measures when a person is moving out of the house.

Figure 2.2. Alpha-2 Robot [20]

Another good example to understand IAS is Pillo [21] shown in Figure 2.3. It is an IAS

robot that dispenses medicines. It can recognize any person and keep track of medicine timings

to be taken by the patient. Also, whenever the medicines go out of stock, it automatically

notifies for a refill. It further helps in providing different diet charts, exercise schedules, and

advice related to different sicknesses. It quickly can be connected to any smart device. It

enables the person to monitor physical activities by providing related information like how

many calories the person has burnt and how much more must be burnt. All these works done

by an IAS make a person's life a lot easier and, at the same time, make it safer and more

prolonged. Pillo is a stationary robot, requiring that the patient needs to be near the robot at the

time it dispenses the medication.

Figure 2.3. Pillo Robot for Health Assistance [21]

IAS have many other issues that need proper solutions so their designs can improve in

precision and efficiency. At the moment, IAS have the deficiency of the most fundamental

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

12

quality of recognizing indoor home scenes and objects. IAS available need to be provided with

maps of the indoor area where they are deployed. This increases the time and cost of

deployment. Providing maps with coordinates restricts the movement of an IAS because then

the IAS can only move to the location for which the coordinates are provided. It is also not

practical to provide the coordinates of each and every object of a house because of the dynamic

nature of location of objects. Therefore, IAS that can perform scene and object recognition

without the use of maps are desirable.

2.3.1. Mobile Robots for Indoor Assistance

Mitsubishi Heavy Industries developed the Wakamaru robot [22] shown in Figure 2.4. It is

a mobile robot that can shake hand and interact with humans. Reminding humans about

medicines is the crucial task that it performs. However, it cannot dispense medicine like Pillo.

For navigation it needs to follow the concerned human.

Figure 2.4. Wakamaru mobile robot developed by Mitsubishi Heavy Industries [22]

There are two CareBots developed by researchers at the University of Salford, U.K. In 2013,

CareBot P37 S65 shown in Figure 2.5, was developed by Antonio Espigardeiro. The robot is

capable of assisting elderly persons staying indoors. It can remind people about medications

and it can even remember the medication by storing a person’s face, can recognise the face,

and list all the person's requirements. It can create a link between person and doctor through

video calling. The robot can carry a meal to the person as it has a navigation map. People

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

13

having dementia problems can be assisted using this robot as it can also be programmed with

speech therapy and object recognition [23].

Figure 2.5. CareBot P37 S65 [23]

Dr. Theo Theodoridis developed another robot for indoor assistance for elderly people. The

robot, Carrie, introduced in 2018 is shown in Figure 2.6. The robot is capable of recognising

and grabbing objects that are shown to it. Carrie is capable of mapping a room and can follow

complex commands. It can detect falls, remind people of medicine and even if the gas is left

on. The robot is able to navigate using sensors. The robot is fitted with many sensors and

actuators to carry out the tasks [24].

Figure 2.6. Carrie CareBot robot for indoor assistance [24]

BIRON (Bielefeld Robot Companion), shown in Figure 2.7, is another mobile robot for

indoor assistance which is developed by modifying PeopleBot of ActiveMedia [25], created in

the University of Bielefeld [26]. It can interact with humans and also learns everything from

their various inputs, and identify different objects. However, when asked to look for a specific

object then it searches for it in the whole house until it finds it [26]. This also implies that

BIRON is incapable of performing indoor scene recognition.

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

14

COGNRON (Cognitive Robot Companion) [27], shown in Figure 2.8, is a mobile assistive

robot that can interact and learn from humans. When required it can fetch the required object

to the human. However, it has not been made clear if the fetching can be done from one

particular location (say kitchen) to another (say bedroom).

Figure 2.7. BIRON robot for indoor assistance [26]

Figure 2.8. COGNRON robot for indoor assistance [28]

Further, CareBots Carrie [24] and P37 S65 [23], are the most advanced indoor assistive

systems which are commercialised despite lacking the basic capability. For example, the Carrie

CareBot can grab the objects only when the objects are shown to it in a specific way, but it

cannot grab the objects by recognizing them in any orientation on its own. This shows that

continuous user input is required. For performing complex works within a room, Carrie has to

map the room. So, it takes time to get deployed and start navigating, which indicates that it is

incapable of navigating based on indoor scene recognition. P37 S65 CareBot requires more

user inputs as compared to Currie. BIRON [26] and COGNRON [28] are also very advanced

indoor assistive robots. However, they are still incapable of indoor home scene recognition

which increases the time taken to complete tasks. Minimising the time taken to navigate and

complete tasks by IAS for assisting elderly and infirm people will help to minimise the

movement of people which will ultimately mitigate the cases of falls.

2.3.2. Applications of fall detection and prevention

PERS (Personal Emergency Response System) [29, 30] is an intervention to mitigate and

protect elderly people from falls. It provides an emergency button that helps elderly persons to

contact emergency services when they experience a fall directly. However, PERS is of no use

if a person loses consciousness because of the fall. In fact, Fleming et al. [14] showed, by

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

15

conducting a PERS study, that 80% of elderly people who used PERS were unable to use the

emergency button when they experienced a fall [31, 32]. The PERS system is shown in Figure

2.9.

Figure 2.9. PERS system working

To overcome the PERS deficiencies, other monitoring systems, which detect falls and

automatically contact the emergency services, have been proposed. Such systems have helped

to develop a sense of security among users [29]. This also enables users to stay at home longer.

Some of the devices that provide such solutions are smartwatches, devices attached to clothing,

cameras installed in indoor homes, microphones and pressure sensors on the floor [29, 31].

The fall detection devices can be categorised into two sections, (i) wearable devices and (ii)

non-wearable devices. Some of the wearable devices placed on the main body, like the chest,

waist and thorax, have accelerometers to detect the changes in speed of movement of elderly

people and the motion planes for falls identifications [31].

Elderly people also wear some devices on the head, arms, hands, or feet. Even smartphones

have sensing devices like gyroscopes, accelerometers and magnetic field sensors. Therefore,

smartphones can also be considered as wearable devices. In smartphones, tri-axial

accelerometers are mostly used for fall detection [31].

Non-wearable devices for fall detection are broadly classified into two categories: (i) camera

and vision-based devices and (ii) ambient sensor-based devices. Cameras and vision-based

devices may include a single camera or multiple cameras. In contrast, ambient sensor-based

devices may consist of motion detection sensors like infrared (IR) sensors, pressure sensors,

and acoustic sensors to measure various parameters that may help fall detection [31].

Based on data gathered through sensors, artificial intelligence (AI) based algorithms are

developed. The falls are detected through body positions like sleeping, sitting and standing.

The detection is done using motion analysis, posture analysis, proximity analysis, inactivity,

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

16

body shape, and 3D motion analysis of the head [31]. According to Yu et al. [33], to address

fall detection, fused with different sensory data is needed so that fall detection can be done

accurately.

Fixed or adaptive threshold-based techniques and machine learning (ML) techniques

capable of people activity recognition are very much used for fall detection techniques.

Threshold techniques can be found in smartphones [34]. Machine learning techniques include

support vector machines (SVM), one-class K-nearest neighbour, supervised, semi-supervised

and unsupervised ML techniques [34].

In thresholding technique systems, fall detection is done by comparing the sensor data with

single or multiple threshold values. Sposaro et al. [35] developed iFall system capable of

detecting falls. The system has a smartphone accelerometer and uses adaptive threshold as a

detection technique. The system tries to analyse the difference between the data received before

and after the suspected fall event. Lopes et al. [36] developed Sensorfall mobile application.

This application also uses the accelerometer of the smartphone. Real-time fall detection

techniques that perform detection through the measurement of accelerometers are assumed by

[36] to be good. Positioning of sensors on the correct part of the body affects the accuracy of

fall detection [37]. If the sensor is placed on the hand, which moves quiet frequently, this may

lead to false alarms whereas if it is placed on the chest, it will provide alarms when real falls

take place. Training data related to falls is required for most fall detection techniques that

perform threshold computation using either data analysis techniques or domain knowledge.

Some of the future techniques could be developed to prevent falling injuries by calculating the

pre-impact of falls and inflating airbags [38, 39]. For fall detection, Zhang et al. [40] use SVM

of one-call, trained on non-fall ADL (Activities of Daily Living) outliers.

Further, Hidden Markov Model (HMM) is trained on the static classifiers' probability to

improve the person’s activity recognition system. This is based on the ADL, creating a

sequence and developing sequential classification algorithms. This technique helps to predict

present activity using recent history [41]. Tong et al. [42] trained the HMM on events that occur

just before a fall to predict falls for bettering the accuracy. The computation of two thresholds

is performed. The data for this purpose is collected using a tri-axial accelerometer which is

based on human fall sequences time series.

The tri-axial accelerometer that works on hierarchical HMM methods helps to detect falls

and human activities [43]. The same method is improved by placing the accelerometer at the

waist or a trouser pocket. The method helped to make the accelerometer independent by

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

17

reducing its dependence on the sensor’s orientation. Arbitrary sensor placements help to record

the signals. Despite this, for sensor orientation, the inputs are made invariant for the

classification algorithm [31].

Due to lack of data, some systems predict falls as abnormal activity. Therefore, this is an

area of further research as falls are infrequent activities. Yin et al. [44] used one-class SVM

trained on different human activities. The abnormal activities are then filtered out in an

unsupervised manner. This makes the method a two-stage system. Based on the threshold,

abnormal activities are detected by iterating the two-stage method. The method helps to detect

abnormal activities and also the false alarms without using labelled data. Falls and slipping

simulation in different positions was done to collect the necessary data [44]. The proposed

algorithm is shown in Figure 2.10.

Figure 2.10. Flow chart of algorithm proposed by Yin et al. [44]

Yu et al. [45] used the fall region technique to detect falls using video-based systems. The

system identifies if an instance is in the defined fall region or not. To distinguish fall from

normal activities like walking, standing, sitting and sleeping. For accomplishing the task, a

one-class classification technique is used. Wang et al. [46] developed WiFall to detect falls in

the indoor environment. WiFall uses advanced wireless technologies. Wireless technologies

help in time variability deployment and CSI’s (Channel State Information) special diversity for

human activities identification.

Zhang et al. [47] developed Anti-Fall. This is a real-time fall detection system which uses

CSI as an indicator for human activities. CSI phase difference of two antennas helps in

detecting the falls. Fall-like activities are separated from fall by increasing the accuracy using

both phase and amplitude of the system.

Khan et al. [48] try to distinguish falls and non-falls activities using SVM. Normal sound

samples are used to extract the required features, which are the data. For fall detection, a

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

18

suppressed interference unsupervised acoustic system is developed. The method proves to

tackle the unwanted interferences using only two microphones. Parisi et al. [49], through

unsupervised learning, try to make a fall detection system by making the system learn about

human behaviour. For this purpose, a hierarchical-based self-organising maps (SOM)

architecture is developed.

Different assistive systems of different technologies have been presented. In fall detection

assistive systems, the most common problem is that the assistive systems react only after a fall

has occurred. This shows that these systems do not do anything to protect or minimize the

probability of falls. Different fall detection systems also require too many user inputs to react

to any situation and keep track of them. Some fall detection techniques even involve multiple

cameras, which may be unaffordable.

2.3.3. Indoor Navigation Assistive Systems

A system cannot navigate until it knows where it is and which places are present nearer to

it. These two pieces of information cannot be known without the system being able to

understand what the environment is like and how it is structured. According to Barber et al.

[50], representation of the environment’s abstraction influences the navigation system.

Geometric, topological and semantic based methods considered as the three main techniques

for navigation. In the geometric technique the environment’s geometric representation helps

sensors and actuators to perform local navigation. In the topological technique the

environment’s modelling is done using graphs and helps in wider navigation. The semantic

technique helps to create information on different elements of an environment using a

representative map.

Figure 2.11. Pearl robot for nursing assistance [51]

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

19

 Further, a robot to determine its current location uses three approaches. These three

approaches are, relative position method, absolute position method and environment mapping

method. Relative position method is implemented using gyro, accelerometer, or e-compass.

The absolute positioning method uses laser, radio waves and beacons to determine the robot's

current position. Environment mapping uses a layout of an environment and a camera to

determine the location of a robot.

The Pearl robot is a nursebot that helps a person to navigate in hospitals or nursing facilities

[51]. Developed by Carnegie Mellon University, it can interact with people by providing advice

related to health when required and cognitive support to elderly. Figure 2.11 shows the Pearl

robot.

Ando et al. have developed an indoor navigation system called RESIMA [52]. The system

specifically helps people with sensory disabilities staying indoors (especially visually

impaired). RESIMA assists by using a smart multi-sensor that keeps track of a user's position

and deep inertia (psychological state between sleep and wakefulness). RESIMA is a

combination of smart paradigms and a network of wireless sensors. The schematic diagram of

RESIMA system is shown in Figure 2.12.

Figure 2.12. Schematic diagram of RESIMA system [52]

Chang et al. [53] developed AssistMote, a wireless sensor network that helps to find ways

indoors for any individual. Different components used in AssistMote are the navigation routing

engine and user interface called PDAs (Personal Digital Assistance), which help to detect the

ambient condition. Dijkstra’s shortest path technique is used to develop a navigation algorithm

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

20

that also takes ambient intelligence into account. This helps to detect various conditions,

including wet floors, while finding the appropriate path to travel. The AssistMote system is

shown in Figure 2.13.

Figure 2.13. Schematic of AssistMote System [53]

Liu et al. [54] developed an indoor wayfinding technology using the Wizard-of-Oz

technique. The technique was experimental on many guidance strategies and interface

modalities. Accuracy of route completion, completion time and user preference were

configured based on various user inputs evaluation. Different routes and modalities like

images, texts and audio are included in a counterbalanced design. The working of Wizard-of-

Oz techniques is shown through the schematic diagram in Figure 2.14.

Figure 2.14. Schematic diagram of working of Wizard-of-Oz system [54]

Li et al. [55] developed ISANA (Intelligent Situation Awareness and Navigation Aid) for

indoor navigation and obstacle detection for the blind which is shown in Figure 2.15. The

indoor map can be edited on the system, whereas different modules are installed in Tango

devices. Depth sensors are used to detect different obstacles and is a separate module. ISANA

establishes the safest path to the destination for the person. For input and output, a speech-

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

21

audio interface is used. The complete system tries to reduce the cognitive load of the concerned

person.

Figure 2.15. Schematic diagram ISANA navigation system [55]

Further, Chang et al. [56] using passive RFID (Radio Frequency Identification) indoor

navigation system is developed for people with cognitive impairment. The system developed

is for people with Alzheimer’s, trauma, cerebral palsy, schizophrenia and mental retardation.

The RFID tags have coordinates of different indoor areas and obstacles (x, y, floor). PDAs help

to navigate which is connected to all the RFID tags. The RFID tags are placed in different areas

and objects indoors. The system is a complete human-computer interface that helps in assisting

humans. The complete system architecture is shown in Figure 2.16 which also shows how the

system works.

Figure 2.16. Architecture for indoor navigation using RFID and PDA [56]

Holly A. Yanco introduced Wheelesly that is an automatic wheelchair system [57]. The

wheelchair consists of a joystick that helps the user to navigate and has a customizable onboard

computer and GUI (Graphic User Interface). The device is entirely dependent on the input

provided by the user to operate and navigate. Figure 2.17 shows Wheelesly used by a user.

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

22

Figure 2.17. Wheelesly used by a user [57]

Caffo et al. [58] developed orientation-based strategies for indoor navigation for people with

Alzheimer’s disease. The two strategies are Assistive Technology (AT) program and the

Backward Chaining (BC) procedure. AT program proved to be more efficient in accomplishing

the required task. The AT program involves the use of sound or light devices that are remotely

controlled, whereas the BC procedure involves verbal instructions. In the AT program, a source

with sound and light is placed at different places controlled by a person using a transmitter.

The AT operator provides input to the person needing navigation instructions. In this

procedure, the person is expected to move to the location from where the sound and light are

emitted. This makes indoor navigation possible.

Kahraman et al. [59] developed an intelligent system for visually impaired people for indoor

navigation and guidance. For complex indoor environments, a software prototype is developed

with RFID or BLE (Bluetooth Low Energy) infrastructure. In this system, the user provides a

specific location input using a special interface which becomes the destination for the system.

The system based on destination provides navigation instructions to the user using path

optimization procedures like the traveling salesman problem and instantaneous real-time

instructions. Figure 2.18 shows the different components installed for indoor navigation of

visually impaired.

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

23

Figure 2.18. RFID or BLE components for visually impaired [59]

Ballestin et al. [60] developed an indoor navigation robot that uses different sensors like

laser, scanner and camera. to perform environment mapping. The robot works on three

principles to navigate; (i) creating maps of the environment using a fusion of sensors, (ii)

obstacle avoidance to reach the goal location and (iii) avoiding obstacles by performing

obstacle detection during navigation. The technique tries to map an environment in three-

dimension using the Seeker Jr. robot by Adept MobileRobots, shown in Figure 2.19.

Figure 2.19. Seeker Jr. Robot by Adept MobileRobots [60]

Yen et al. [61] implemented a technique in a humanoid that tries to learn spatial knowledge

using a mounted cameras. The mounted camera captures the navigation pattern of a human

within a room and the humanoid learns the navigation from captured information. The system

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

24

can also detect objects. However, as demonstrated, the system is confined to small area of

operation.

Figure 2.20. Humanoid used by Wenjie et al. [61]

Surmann et al. [62] used deep reinforcement learning in a robot for indoor home navigation.

The deep reinforcement learning helps the robot to learn on its own about navigation in an

unknown indoor environment. The robot does not have any map or planner. A two-dimensional

laser and an RGB-D (Red Green Blue-Depth) camera are used to get the required inputs. Linear

and angular velocities of the robot is the Asynchronous Advantage Actor-Critic (GA3C)

output. Pre-trained navigator/controller is used to speed up the process and to avoid overfitting

problems; random Gaussian noise is used in the inputs acquired from two-dimensional laser to

train small networks. The robot needs to navigate in several different environments to acquire

the highest level of precision.

Figure 2.21. Robot implemented using deep reinforcement learning [62]

The indoor navigation systems discussed appear to have issues with creating indoor maps.

Such systems need to be provided with new maps every time, which increases the deployment

and installation time. Some systems (especially for Alzheimer’s assistance) require a person to

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

25

continuously operate the system, which, for an Alzheimer’s patient, is not an easy task. For

many of these assistive systems, people are expected to wear a device and sometimes, use their

smartphones to access or control the assisting devices. This becomes very impractical because

while indoors, a person cannot be expected to always wear a device or keep the smartphone

always with them. Even machine learning techniques, such as SVM, have only been able to

detect falls but not stopping them from happening.

None of the systems discussed have been found to be generally able to mitigate the accidents

that elderly people staying indoors may face. Most of the systems installed react only after

accidents have taken place. Even the systems that try to provide safe navigation to elderly

people indoors need continuous user input. This makes the handling of these systems somewhat

complex and also a time-consuming process. Such systems can even become a reason for user

frustration, which again is a problem that may negatively affect the user’s health.

Therefore, devices which can assist the elderly indoors with a minimum number of

commands (preferably voice commands) and complete the commands with no further user

input are required. Such technology is not in existence because there are no systems displaying

good performance in indoor home scene and object recognition. Without indoor home scene

and object recognition, a complete indoor assistance system cannot function adequately and

efficiently. If an assistive device can perform scene recognition, then indoor navigation

becomes easier. Such systems will never require unique coordinate maps of indoor areas to

navigate. Therefore, this will make assistive systems capable of getting deployed anywhere in

the minimum of time. Such navigation capability in assistive systems can further help to reduce

fall rates by cutting down the unnecessary movement of elderly people indoors. Object

detection is also required to easily recognise any object that can be present in any orientation.

Without proper object detection, an assistive system cannot be expected to assist elderly people

indoors efficiently.

As pointed out in [63, 64], the best way to develop scene and object recognition is by using

Deep Neural Network (DNN). The reason behind using DNN for this task is because of their

proven efficiency on image, scene and object recognition tasks. DNN also help to develop

higher intelligent systems and work on minimum user commands. Many different types of

DNN have been developed over time specifically for scene and object recognition. Currently

the performance accuracy of DNN is high for external scenes but very low for indoor scenes,

which is the most common problem found in DNN in this particular context. This is because

of the similarity between different indoor home scenes. The similarity is created because of the

Chapter 2 Indoor Assistive Technology for Elderly and Infirm People

26

presence of similar objects in, for example, different locations of a house. This can be

understood from an example of a chair which can be found in the dining room, living room and

bedroom of a house. This phenomenon makes it difficult for any DNN system to learn the

different locations of indoor homes. There is also a lack of availability of large indoor home

scenes datasets. Hence, training of DNN on smaller datasets result in low accuracy.

2.4. Conclusion

In this chapter, different indoor assistive systems like mobile robots, indoor navigation

system and different fall detection systems were reviewed. The improvements required in

techniques/technologies associated with systems were also discussed in this chapter. In the next

chapter, different deep neural networks are explored to find solutions to the navigation issues

discussed in this chapter. Deep Neural Networks will be explored as they are supposed to have

performed the best among all available techniques in case of scene and object recognition tasks.

27

Chapter - 3

Application of Deep Learning for Scene

and Object Recognition

3.1. Introduction

In this chapter, Machine Learning (ML) approaches focusing on deep neural networks, are

examined for scene and object recognition. This chapter concentrates on some general outline

concepts relating to some Deep Neural Networks (DNN) and in particular Convolutional

Neural Networks (CNN) and CapsNets. The literature review of DNNs is applied to image

recognition is also evaluated. Hence, section 3.2 discusses Deep Learning (DL). Section 3.3 is

about architecture of CNN and different functions involved in it, different CNN developed and

implemented for image recognition, Fast and Faster RCNN and Mask-RCNN are discussed,

different scene recognition tasks are discussed that involves both CNN and non-CNN way of

implementation and different 3D object detection works using different CNN. Section 3.4 is

about Capsule Neural Network (CapsNet), the basic architecture of CapsNet and different

CapsNet architectures used in 3D object recognition. Section 3.5 summarises the datasets and

Section 3.6 is the conclusions.

3.2. Deep Learning (DL)

Deep Learning (DL) is a sub-category of Machine Learning (ML). Before the introduction

of DL machine learning required pre-processing of the data so as to extract features which then

can be used to teach a system to classify the raw data as for example to learn about the objects

present in an image [65, 66]. DL eased this process considerably as it incorporates

representation learning as part of its structure. Deep learning also helps to represent very

complex functions. Both these properties, can happen because of the presence of multiple levels

of representation, developed using simple yet non-linear modules, which help to transform the

representation at a lower level to a representation at a higher level.

The higher-level representation is responsible for reflecting the exact form of input by using

all the information acquired from the lower levels. The higher level helps to magnify the

important properties and discard the insignificant properties to make the classification task

Chapter 3 Deep Learning for Scene and Object Recognition

28

easier. For instance, in an image, which is an array of pixel values, the first layer tries to learn

about the edges present in different parts of the image. The second layer learns about the

patterns of edges by identifying them. The third layer combines all the patterns to form a similar

input image. Then the subsequent layers are responsible for the detection of objects using the

already learned patterns. The interesting point in deep learning is that a developer does not

need to design the feature extracting layers. Instead, these are learned using a procedure of

general-purpose learning [65, 66].

DL has helped to solve some of major problems which were not possible previously. It has

helped to find out complex features present in high-dimensional data. Therefore, it has shown

remarkably good performance compared to other ML methods in areas such as image and

speech recognition, prediction of the effects of mutation in non-coded DNA on disease and

gene expression, prediction of drug molecule activities, natural language processing,

sentimental analysis and language translation [65, 66].

3.3. Convolutional Neural Network (CNN)

CNN can be defined as a kind of neural network responsible for processing data with grid

topology, like an image. The different applications of CNN are image and video recognition,

image classification, image segmentation, natural language processing, financial time series

and medical image analysis. CNNs are widely used because the CNNs treat data as spatial

information [67]. It is also known for its ability to reduce the trainable parameters because of

the presence of three essential features:

1. Sparse Interaction: In CNN, sparse interaction is established by having smaller kernel size

than the input image. This helps to extract meaningful information from tens and thousands of

pixels of an image that has millions of pixels. This helps to improve the statistical efficiency

of CNN.

2. Parameter Sharing: It is a way in which using a particular weighted feature maps are shared.

It is done using local connectivity, which helps to connect kernels/filters to all inputs but in

sliding manner. Parameter sharing is also called weight sharing.

3. Equivariant Representation: Let us say there is an image x. Convolutional operation is

represented as f, and translation operation is represented as g. Now, it is known that convolution

is equivariant to translation. Therefore, the result obtained by first convolving x and then

translating it is similar to the result obtained by first translating x and then convolving it.

Mathematically it can be represented as, 𝑓(𝑔(𝑥)) = 𝑔(𝑓(𝑥)). Across different data, the

Chapter 3 Deep Learning for Scene and Object Recognition

29

equivariance in convolution with respect to translation in sharing parameters is used. For

example, during the training CNN using an image, the first convolutional layer extracts the

features. However, the image may have the same feature in different areas on it. One parameter

is used to represent extracted features that are similar, which makes the representation of

extracted similar features simple for CNN [67].

3.3.1. CNN Architecture

The CNN layers can be broadly classified into four parts: convolutional layers, activation

layers, pooling layers and Fully Connected (FC) layers. The vital part of CNN is the

convolutional layer, as it uses filters to convolve the data. As the word suggests, convolution

is responsible for the filtering process and is always the first CNN layer. It helps in extracting

the features from the input. In CNN architecture, the layers closer to the input layer are

responsible for simple feature extraction from the images like the edges, curves and lines. In

contrast, the layers closer to the output layer are responsible for gathering the information

generated by a deeper layer and combining them to extract the high-level features [67].

Figure 3.1. Block diagram is portraying the basic CNN architecture to understand the CNN properly. This

architecture contains two convolutional layers, two max-pooling layers, and fully connected layers.

Figure 3.1 shows the block diagram of basic CNN architecture with a convolutional layer

with the ReLU (Rectified Linear Unit) activation function [68], the pooling layer, followed by

another convolutional layer with the ReLU activation function and pooling layer and the FC

(Fully Connected) layers.

The convolutional layer is considered the core block of any CNN. It has some filters applied

to the given input image and then creates different activation features in that input image. The

parameter of the input is w(width) x h(height) x depth(d). For grayscale image the depth is 1

and for RGB image the depth is 3. The convolutional layer has kernels/ filters of any dimension

with the same depth as that of input. Across the data, filters are applied using sliding window.

Filter depth is the same as input, i.e., RGB format data with filter depth 3 (for RGB image, for

grayscale image it will be 1) is applied to data. The images and filters' product performs

Chapter 3 Deep Learning for Scene and Object Recognition

30

element-wise, whose values are summed up for performing the sliding operation in

convolution. 2D matrix is produced as an output of convolution with 3D filter processing RGB

image. From image data, there is an input tensor of multi-dimension, which requires kernel

tensor of multi-dimension. To understand this, consider an image input 𝐼 and kernel ℎ. The

convolution of 𝐼 and ℎ is written as [69],

 (𝐼 ∗ ℎ)(𝑥, 𝑦) = ∫ ∫ 𝐼(𝑖, 𝑗). ℎ(𝑥 − 𝑖, 𝑦 − 𝑗)
𝑦

0

𝑥

0
 (1)

 (ℎ ∗ 𝐼)(𝑥, 𝑦) = ∫ ∫ 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗). ℎ(𝑖, 𝑗)
𝑦

0

𝑥

0
 (2)

The convolution equation shown in equation (1) helps to perform the convolution by sliding

the image over the kernel. In contrast, equation (2) performs the convolution by sliding the

kernel over the image. There are more values of x and y in the image as compared to the kernel.

Therefore, the convolution equation (2) is used. The resultant is a scalar output. The

convolution process is repeated for each value of x and y present in the image [69].

Then, the convolutional layer has activation function. Convolutional layers process the input

and give an output with spatial dimension. The output size from convolutional layer is

calculated using the following mathematical formula,

 𝑂 =
(𝑊−𝐾+2𝑃)

𝑆
+ 1 (3)

In equation (3), 𝑂 is height/length output, 𝑊 is the height/length input, 𝐾 is the filter, 𝑃 is

padding and 𝑆 is stride. The way of processing the pixels depends on strides. Stride value

controls the way filters slide on input for scanning pixels. If stride is 1 then filter slides 1 pixel

at a time and if stride is 2 then filter slides 2 pixels at a time and so on. Activation function

used is non-linear. This is because the linear functions are not capable of helping neural

network in the learning process. To understand this, let us say that A1 and A2 are two

subsequent convolutional layers applied on X in the absence of a non-linear activation function.

This can be understood mathematically by equation (4) [69],

 𝐴1 ∗ (𝐴2 ∗ 𝑋) = (𝐴1 ∗ 𝐴2) ∗ 𝑋 = 𝐴 ∗ 𝑋 (4)

Convolution’s associative property makes two subsequent layers on convolution act as

single. This also is the same in the case of ANN (Artificial Neural Network). ANN with 100

hidden layers, but without activation, the function is equivalent to an ANN with a single layer.

Chapter 3 Deep Learning for Scene and Object Recognition

31

3.3.2. Different CNN (Convolutional Neural Networks) for image recognition

Once the DNN were unable to process larger dataset and also became slow then the

researchers proposed several CNN architectures for different tasks. Image recognition task

using CNN is discussed in this subsection so that the CNN’s behaviour on capturing the

information from images is understood.

The first CNN was proposed by Yann LeCun [70]. The architecture proposed is known as

LeNet-5 and is shown in Figure 3.2. The development of such architecture was for recognizing

the handwritten digits and converting them into typed computer numbers. It was specifically

for the cheques deposited in banks. The architecture had 60,000 parameters. The architecture

of LeNet-5 consisted of 7 layers.

Figure 3.2. Architecture of LeNet-5 CNN [70]

However, after the invention of LeNet-5, the development became slow in this particular

field until AlexNet appeared [71]. It is a CNN architecture with eight layers. In ILSVRC

(ImageNet Large Scale Visual Recognition Challenge) 2012, it showed exemplary

performance and secured the first position with top five error rate of 15.3%. The accuracy

shown by AlexNet was astonishing for the people associated with computer vision, and this

became the turning point from where CNN became the most commonly used architecture for

different deep learning purposes. In Alexnet, to solve the problem of overfitting, the dropout

techniques and data augmentation are used. The augmentation is performed to adjust two

things; (a) the image intensity using PCA (Principal Component Analysis) and (b) to extract

the 224x224 patch from the original image of 256x256 and also from its upside-down

orientation (This process is also known as cropping). The five patches are extracted from the

four corners and centre of the image. Further, the softmax average is deduced.

Chapter 3 Deep Learning for Scene and Object Recognition

32

Figure 3.3. Architecture of AlexNet CNN [71]

The same accuracy of AlexNet was achieved by SqueezeNet [72] CNN architecture, shown

in Figure 3.4, which claimed to be three times faster than AlexNet and also claimed to have 50

times lesser parameters and model size less than 0.5MB as compared to AlexNet. The

squeezenet architecture uses 1x1 pointwise filters instead of 3x3 filters. Using 1x1 filters reduce

the depth and computation. Also, to attain a large feature map, there is a huge delay in down-

sample. The backbone of SqueezeNet is the fire module that has two layers in it, squeeze layer

and expand layer.

Figure 3.4. Basic architecture of SqueezeNet CNN [72]

In SqueezeNet architecture, there is the stacking of a bunch of fire modules along with

pooling layers. The fire module helps in keeping the feature map size intact. The feature map

size remains intact because the squeeze layer in fire module first reduces the depth and the

expand layer again increases it. The squeezing and expansion mechanism in neural architectures

are common. Also, the depth increases with reduction in feature map size to achieve abstract of

a higher level. The squeeze module contains only 1x1 filters which indicate that it works like

Chapter 3 Deep Learning for Scene and Object Recognition

33

the FC layers that focuses on same position feature points. SqueezeNet reduces the feature map’s

depth which enables the expansion layer with 3x3 size filter to less computation, and this

increases the speed of 3x3 filter by nine times as compared to the 1x1 filter. However, if

squeezing is done on a large scale, then that reduces the amount of information flow and also

use of fewer numbers of 3x3 filters affect the spatial resolution by reducing it [72].

A modified AlexNet architecture called ZF Net appeared [73], shown in Figure 3.5. It

participated in ILSVRC 2013. The proposed architecture achieved top 5 error rate of 11.2%

and placed itself in the first position. The ZF Net architecture is very similar to the architecture

of AlexNet. However, ZF Net still has some modifications like the filters used in AlexNet’s

first layer, the size of the filter is 11x11 whereas in ZF Net it is 7x7. The motivation behind the

reduction of filter size was to loose the least amount of pixel information as the 11x11 sized

filter lost many relevant pixels information. The first convolutional layer is considered the most

important in acquiring the first information on any data [73].

Figure 3.5. Architecture of ZF Net CNN [73]

Moreover, AlexNet showed lesser accuracy even after getting trained with a dataset of 15

million images. Still, ZF Net showed better performance than AlexNet even after getting

trained on a dataset of 1.3 million images which is lesser than the dataset used for AlexNet.

This also helped to develop the technique of deconvnet (Deconvolutional Network), which

helps to map the feature information with the pixel values and is the opposite mechanism to

that of CNN. ZF Net helped to provide the real information behind the mechanism of

visualization using CNN. The information helped in understanding the architecture and also

the further development that is possible in CNN architectures [73].

Further to improve CNN accuracy in image recognition, three CNN architectures proposed

are VGG-16, VGG-19, and GoogLeNet. VGG-16 and VGG-19 are the CNNs with 16 and 19

layers, respectively. The architecture of VGG-16 and VGG-19 are shown in Figure 3.6 and

Figure 3.7, respectively. The VGG stands for Visual Geometry Group of the University of

Oxford. The VGG was able to achieve an error rate of 7.3% [74].

Chapter 3 Deep Learning for Scene and Object Recognition

34

Figure 3.6. Architecture of VGG-16 CNN [74]

Figure 3.7. Architecture of VGG-19 CNN [74]

However, it achieved the second position in ILSVRC 2014. It has a very simple architecture.

In the proposed CNN, there are 3x3 filters with 2x2 max-pooling layers that have stride 2. The

use of 3x3 filters in the first layer is for achieving a 5x5 receptive field, which is very effective.

Also, the number of parameters decrease, and using two convolutional layers helps to utilize

two ReLU activation functions instead of only one. Using three convolutional layers, one after

the other, also created a receptive field of 7x7. Spatial dimension shrinks in this network

architecture with growing depth because, after every max-pooling layer, the filters double in

number. Since there is an increase in the filter size, the volume depth of input increases and the

input volume's spatial size decreases. The network performed very accurately in both image

classification and localization. While training, the VGG network scale jittering technique was

used for data augmentation. The data augmentation done in VGG is the same as it is in AlexNet.

However, it also performs image-scaling [74].

GoogLeNet is the CNN architecture with 22 layers [75], shown in Figure 3.8. This 22-layer

architecture consists of 9 inception modules (Inception module enables to parallelly perform

multiple convolution and pooling operations with different filter sizes). The FC layers are

absent in this architecture and to save the parameters, average pooling, linear and softmax are

used. For the detection purpose, RCNN (Region based Convolutional Neural Network) concept

Chapter 3 Deep Learning for Scene and Object Recognition

35

is implemented [76], whose architecture in shown in Figure 3.9. In ILSVRC 2014, it achieved

the first rank and had a top 5 error rate of 6.67%.

Figure 3.8. Architecture of GoogLeNet CNN [75]

Figure 3.9. Architecture of RCNN [76]

RCNN architecture is partially parallel. The parallel processing in the network is because of

the implementation of the inception module. The advantage of having an inception module in

a network is that unlike the sequential network, whether to have a pooling layer or

convolutional layer is not important because these operations occur in parallel in such

networks. However, this kind of implementation was not efficient enough because the parallel

process produces many outputs, which leads to a larger channel depth for output size. The first

layer uses the filter of size 1x1, which reduces the input size. Thus, the subsequent layers of

size 3x3 and 5x5 do not have to deal with larger size inputs. This architecture can extract even

minute details of the data and covers a larger area of the data. Furthermore, it solves the

problem of overfitting and spatial sizes using the pooling layers easily. Moreover, even after

so many operations, the network does not face any problem in its computational performance

[75].

Chapter 3 Deep Learning for Scene and Object Recognition

36

PReLUNet (Parametric Linear Unit Network) became the first CNN to surpass the human

error rate of 5.1%. It registered top-5 error rate of 4.94% [77]. PReLU used in the CNN is to

have a robust initialization method to improve the learning in a deep rectifier network. As

initialization is one of the main factors of implementing proper learning, while using PReLU

in the neural network, it can be observed that the first convolutional layer has a coefficient

which is larger than zero as PReLU helped in acquiring both positive and negative values.

Moreover, the value of coefficient descends with the increase in layers in channel-wise

observation. This means that the focus on discernment increase with an increase in the layers,

rather than focusing on larger information as it is in the first layer. Weight initialization earlier

was done using the Gaussian Distribution. If a fixed standard deviation value is used in a deep

neural network with layers of more than eight, then the convergence might not happen properly.

The VGG net tried to solve the initialization problem by first making a small network learn

and then transfer its learned weights to the larger network. However, this strategy also gave

rise to local optima's problem because of increased learning time. GoogLeNet tried weight

initialization by constructing a network that converges the auxiliary classifiers in addition to

the softmax layer. Further, the Xavier initialization method was proposed, which according to

the number of neurons, scales the value [78]. However, since it was designed only for linear

activation, it is not suitable for networks using ReLU activation to produce non-linear

functions. Therefore, in [77], Kaiming initialization was introduced such that it works in

networks with ReLU activation and reports good convergence in networks with more than 30

layers.

 Another CNN that came into existence is ResNet (Residual Neural Network) [79]. This

architecture has advanced modules of inception. The ResNet contains many batch-

normalization and skip connections (grated units or grated recurrent units). Also, residual

blocks help in the gradient's smooth flow during the backward pass of backpropagation as other

operations are executing at the same time and the gradient is distributed. The interesting fact

about the architecture is that the reduction of an image's spatial size takes place only after the

first two layers, i.e., from 224x224 to 56x56. In ResNet, there is a residual block in which input

goes through a convolution-ReLU-convolution series and the result from convolution-ReLU-

convolution series is added to the input. Therefore, unlike traditional CNNs, it also keeps

information of the original input and the output that it received. ResNet in 2015 was introduced

using the concept of 4 different sizes (in terms of the number of layers), 34 (shown in Figure

3.10), 50, 101, and 152.

Chapter 3 Deep Learning for Scene and Object Recognition

37

Figure 3.10. Architecture of ResNet 34 layers [79]

The layers in ResNet were further increased to 200 and 1001 [82]. The inception v3 and v4

were modified so that they can be used in ResNet architecture [80, 81]. During the development

of deeper CNNs, it is noticed that after some point of deepening of the network, the accuracy

levels get saturated. Thus, giving rise to the problem called degradation, for which overfitting

is not the reason; rather, it occurs from the time of training. However, the problem of

degradation is solved using the deep residual learning that is present in ResNet. ResNet-152

produced the highest accuracy with an error rate of only 3.6%, and because of this, it acquired

the first position in ILSVRC 2015. However, no other ResNet architecture has been able to

show such accuracy. ResNet-200 registered 5.79% for top 5 error rate in ImageNet 1-crop and

4.93% for top 5 error rate in ImageNet 10-crop. Whereas ResNet-1001 showed an error rate of

4.62% on CIFAR-10, it did not perform well on CIFAR-100 [79, 82].

CNN architecture called Network In Network (NIN) was developed by Lin et al. [83], shown

in Figure 3.11. NIN did not have an impressive accuracy as compared to other proposed CNNs.

However, the innovative architecture of NIN and its capability of having a better local

Chapter 3 Deep Learning for Scene and Object Recognition

38

abstraction attracted the attention of computer vision society. It has a very simple architecture

that consists of three mlpconv (multi-layer perceptron convolution shown in Figure 3.12) layers

stacked one after the other and then followed by an average pooling layer. However, like

traditional networks, to obtain subsamples a pooling layer can be used between the mlpconv

layers. Lin et al. argue that convolution filter is Generalized Linear Model (GLM) which has

lower level of abstraction ability. Therefore, GLM is replaced with Multi-Layer Perceptron

(MLP) for improving the local model’s ability of abstraction [83].

Figure 3.11. Architecture of NIN CNN [83]

Figure 3.12. Architecture of mlpconv layer [83]

Using average pooling layer, the NIN architecture has also addressed the problem of an

increase in the number of parameters in the FC layer (explained in VGG Net) [83]. The use of

the average pooling layer also helps to sort out overfitting. The average pooling layer is

responsible for creating the feature maps required and then calculates the average of each

feature map created. The calculated average is then passed to the softmax layer. Therefore, the

advantages of having an average pooling layer are that it helps to not only in keeping the

information of the extracted features but also develops the relationship between the features

and classification solves the overfitting problem and the spatial conversion of input image is

robust as it sums up the spatial information received for all the input images. The well-known

universal approximators are the MLP (Multi-Layer Perceptron) and radial basis networks and

are used when the distribution is not known and to extract the features’ universal function.

Also, MLP is a deep structure and can be trained using backpropagation. Furthermore, in NIN

architecture Cascaded Cross Channel Pooling (CCCP) is implemented along with a

convolutional layer. The CCCP method is equivalent to that of the 1x1 convolutional layer

Chapter 3 Deep Learning for Scene and Object Recognition

39

(i.e. if there are three layers of MLP in mlpconv layer then the output from the convolutional

layer goes through three 1x1 convolutional layers having ReLU activation) [83].

The other CNNs developed by keeping Fully Convolutional Network (FCN) [84] as their

foundation are FPN (Feature Pyramid Network) [85], U-Net [86] and V-Net [87] on

Biomedical image dataset, SegNet [88], LinkNet [89], Fully Convolutional DenseNet [90],

PSPNet (Pyramid Scene Parsing Network) [91], RefineNet [92], G-FRNet (Gated Feedback

Refinement Network) [93], DecoupledNet [94] and GAN (Generative Adversarial Network)

[95]. All these networks are for semantic segmentation and object detection and have registered

good performance on datasets like Biomedical images, CamVid [154. 155], Cityscapes [156],

MS COCO [102], SUN RGB-D [150, 151], PASCAL VOC [145] and ImageNet [143].

All the discussed neural network architectures have different logics and also have addressed

different problems associated with ANNs. Considering the logic used in forming discussed

neural network architectures, a new methodology for forming a new neural network

architecture becomes feasible.

3.3.3. Fast R-CNN and Faster RCNN

Before understanding Fast and Faster RCNN, it is important to look the R-CNN (Region

based Convolutional Neural Network) that first helped to develop the object detection

capability in CNN. The object detection using R-CNN generally has two steps to follow, the

first is the region proposal, and the second is the classification step. Selective search is the heart

of R-CNN as it helps to find different regions that may contain objects. This helps to form the

region's proposal, combined as image size and fed into CNN. Then each region’s feature vector

is extracted by CNN. Then the trained linear SVM (support vector machines) are fed with the

region vectors as input. The region vectors are also provided to the bounding boxes regressor

so that the exact coordinates are obtained for bounding boxes. Bounding boxes having overlap

problems with each other are dealt with using the non-maxima suppression. When the region

proposal and classification step is applied to FCN (Fully Convolutional Network), then that

architecture becomes R-FCN (Region based Fully Convolutional Network), which is also

effectively used for object detection purpose. The mechanism in R-FCN for object detection

remains the same as that of R-CNN [96].

Fast RCNN is dependent on external region proposal methods like the selective search [97].

It, along with CNN, has the proposed regions layer and classifier and box regressor layer. In

the Fast RCNN architecture shown in Figure 3.13(a), the CNN processes the images first and

sends them as an input to the RoI (region of interest) pooling layer. In this layer, the input

Chapter 3 Deep Learning for Scene and Object Recognition

40

image is resized according to the concerned regions. Then the output from the RoI pooling

layer is sent to the FC layers as an input, and then using the softmax layer, the possible outcome

is found out, and using the bbox (bounding box) regressor, the boxes on the objects are created

to point out the features detected in the image by the trained neural network. The Fast RCNN

reports that it is nine times faster than R-CNN in training the VGG-16 and is 213 times faster

in testing time [97]. On comparing Fast RCNN with SPPnet (Spatial Pyramid Pooling

Network) [98], the Fast RCNN reported that it is more accurate [97]. It trains VGG-16 three

time faster and is ten times faster in testing [97].

Figure 3.13. Addition of Fast RCNN and RPN to form Faster RCNN, (a) block diagram of the basic architecture

of Fast RCNN, (b) Block diagram of the basic architecture of RPN, (c) Block diagram of the basic architecture

of Faster RCNN.

RPN (Region Proposal Network) [99], shown in Figure 3.13(b), has CNN, feature map, and

proposed regions. In this architecture, the anchor mechanism is used to judge if the particular

area on the image contains an object or not. To judge it, the following formula is used,

 𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 {

> 0.3 𝑜𝑏𝑗𝑒𝑐𝑡
 < 0.3 𝑛𝑜 𝑜𝑏𝑗𝑒𝑐𝑡

 (5)

where,

IoU – Intersection over union

If the value of IoU is greater than 0.3, then that anchor contains the object, and if the IoU

value is less than 0.3, then that anchor does not have any object [100]. Ren et al. [100] propose

two kinds of anchors with positive labels, (a) anchors with the highest overlap of IoU with the

ground-truth box and (b) with any ground-truth-box, the IoU overlap is higher than 0.7.

According to [100], proposal (b) is sufficient in determining positive labels. However, the

Chapter 3 Deep Learning for Scene and Object Recognition

41

proposal (a) is adopted because in case of proposal (b), sometimes no positive result could be

found. Therefore, IoU with value more than 0.3 is assigned positive anchor.

The Faster RCNN is the amalgamation of Fast RCNN and RPN [100]. In its architecture,

shown in Figure 3.13(c), there is a CNN, feature map, proposed regions and classifier, and

bbox regressor [100]. Thus, making the neural network better than Fast RCNN by giving it the

power of RPN, which Fast R-CNN does not have. Faster RCNN reported speed of 5 fps with

a single GPU (Graphics Processing Unit) while training VGG-16 and reported exceptional

accuracy for object detection performed on PASCAL VOC 2007, 2012 [101] and MS COCO

datasets [102]. They only had 300 proposals per image.

3.3.4. Mask R-CNN

In the existing neural networks, there is the presence of object detection and semantic

segmentation. However, the existing neural networks are not capable of instance segmentation.

The Mask R-CNN using mask fulfills the criteria of instance segmentation [103]. The Mask R-

CNN is the combination of Faster R-CNN and FCN. Fast and Faster R-CNN have classifiers

and bbox. However, Mask R-CNN, in addition to these two, has a mask. Mask R-CNN uses

RoI Align that helps in storing spatial features without any loss of information.

Figure 3.14. The block diagram of the architecture of Mask RCNN that is almost similar to that of Faster RCNN

but with an additional feature of Mask Branch that provides the power of instantaneous segmentation.

Figure 3.14 shows the block diagram of the Mask RCNN architecture with the property of

instantaneous segmentation until the invention of Mask RCNN lacked in other neural networks.

From the block diagram, it is clear that the architecture is very much similar to that of Faster

RCNN. However, the only difference between Mask RCNN and Faster RCNN is the mask

branch which appears in the Mask RCNN architecture, responsible for providing the neural

networks the power of instant segmentation. The architecture of Mask RCNN contains CNN

followed by RPN and feature map. The feature map is then connected to the fixed-sized feature

map where the RoI Align is also in it. The output from the fixed-size feature map is split and

Chapter 3 Deep Learning for Scene and Object Recognition

42

fed as input to the FCN and mask branch. From the mask branch again, the bounding box

regressor helps in object detection. The classifier layer classifies different features learned, and

mask branch, on the other hand, performs instantaneous segmentation simultaneously. The

architecture reported a speed of 5 fps and was the winner of the COCO challenge 2016. The

architecture was trained using the MS COCO dataset for COCO challenge. Mask RCNN is also

utilized for estimating the different human poses and has reported a satisfactory result.

3.3.5. Different Scene Recognition Tasks

Sun et al. [104] developed Unified Convolutional Neural Network, shown in Figure 3.15,

that can parallelly perform scene and object detection. The dataset used for the task is the SUN

RGB-D dataset [150, 151]. The dataset is used for both scenes and object recognition. The

input images are parallelly trained on both CNN architecture, i.e., the scene data is trained

using Scene Recognition Network (SRN) and object data is trained using RPN (Region

Proposal Network) parallelly. The output from the SRN and RPN are fused (concatenated) and

sent to a common FC layer. Before undergoing fusion, the information meant for scene

information goes through the RoI pooling layer that helps to extract global scene features. The

object-related information goes through the regional object features layer. It is then installed in

a robot operating system (ROS) for semantic mapping and grasp detection (It helps to

accomplish the complex task of manipulation). To accomplish the installation in a robot

system, the authors proposed an update system that can convert CNN's predictions to actual

robot beliefs. The algorithm that can process point cloud dataset is developed to detect 2-

Dimensional images in a 3-Dimensional world. Sun et al. [104] to have developed a system

with low latency in the presence of limited resources.

Figure 3.15. Architecture of Unified Convolutional Neural Network [104]

Chapter 3 Deep Learning for Scene and Object Recognition

43

Zhou et al. [105] created a scene dataset that consists of 10 million images categorised under

365 different categories and named it as Places365 dataset. For comparison, a dataset of 2.5

million scenes categorised under 205 different categories is also used which is called Places205

dataset. The whole scene dataset has both internal and external scenes. The Places365 and

Places205 datasets are used to train different CNNs and hence after the training are named as

Places365 and Places205 AlexNet, Places365 and Places205 GoogLeNet, Places365 and

Places205 VGG and Hybrid1365-VGG. Hybrid1365 is the dataset formed using the 1000

classes of ImageNet dataset and 365 classes of Places dataset. Then it is used in training VGG.

All the trained CNNs are tested on different datasets like MIT67 [9], SUN397 [147, 148],

Scene15 [152], SUN Attribute [149], Caltech 101&256 [157, 158], and Event8 [153]. VGG,

on average, produced higher accuracy as compared to AlexNet and GoogLeNet. Therefore, it

was also trained using Hybrid1365 [105]. Hybrid1365-VGG produced the highest average

accuracy on all datasets used for testing.

Figure 3.16. Architecture of Multi-Resolution CNN [106]

Wang et al. [106] introduced Multi-Resolution CNN, shown in Figure 3.16. This CNN

specifically improves CNN’s scene recognition capabilities by addressing the issues like

differences in the large intra-class variations (local objects, global layout and background

environment present in a scene) present in the dataset and label uncertainty because of the

proliferation in the number of categories in the scene. Multi-Resolution CNN consists of coarse

and fine resolution such that it can at multiple levels extract content and structure of different

regions. To solve label uncertainty, a confusion matrix of validation data is used to create a

super category by merging the similar classes and creating soft labels for each image using the

extra network. In the Multi-Resolution CNN, Inception with batch normalization is

implemented. The inception part is responsible for multi-scale processing. This helps in the

proper development of a network that can perform scene recognition. The coarse-resolution

Chapter 3 Deep Learning for Scene and Object Recognition

44

part of Multi-Resolution CNN has the first two layers of convolution with Max Pool which

transform input image with dimension 224x224 into feature maps of dimension 28x28. The

transform helps in faster processing of information in later layers. Then there are 10 inception

layers. At last, it has an average pool layer. For the activation of the convolutional layer, batch

normalisation is used, followed by ReLU activation. The fine resolution part has the first two

layers of the convolutional layer with Max Pool, just like the coarse part. Then it is followed

by ten inception layers, two convolutional layers. However, without Max Pool and average

pooling at last.

Afif et al. [115] proposed EfficientNet specifically for indoor scene recognition tasks.

Convolutional layers and Mobile Bottleneck Convolution layer (MBConv) combination helps

in developing the EfficientNet. Convolutional layers are responsible for feature extraction,

whereas to make computation less complex, MBConv encodes the lower-dimensional

subspace’s feature maps. The transfer learning process is used to train the neural network. The

neural network is tested on indoor home scene datasets with bathroom, bedroom, kitchen and

living room scenes. The higher accuracy produced by the proposed EfficientNet makes it a

state-of-the-art method.

Espinace et al. [107, 108] introduced the concept of performing scene recognition using

object detection. The method tries to detect the objects in a scene and using the information

produces the scenes’ probability. For example, if the system detects a projector screen and a

clock, it gives the conference room the highest probability. The concept is applied for detecting

only four different scenes, namely, conference room, hall, office and bathroom. The method

uses the generative probabilistic hierarchical model. This is done specifically for

accomplishing the semantic segmentation. The Monte Carlo sampling method [109] is also

used to fit in the improved object classification using real-time 3D range sensors that generate

refined geometrical information of objects. This method is not at all based on neural networks

and is embedded in a mobile robot.

Scale-Invariant Features Transform (SIFT) [110] and Speed Up Robust Features (SURF)

[111] are some other scene recognition techniques that do not involve neural networks. In Li

et al. [112] and Sudderth et al. [113], a scene recognition task is performed based on object

recognition, which does not involve neural networks. Indoor scene recognition is also done

using technique that does not involve neural networks, CodeBookless Model (CLM) [112].

This method reported 20% more accuracy than any other traditional codebook construction.

Scene 15 [114] is the dataset used in the CLM method.

Chapter 3 Deep Learning for Scene and Object Recognition

45

3.3.6. 3D Object Detection Methods

Kanezaki et al. [116] propose a new CNN, RotationNet to recognize 3D objects. The dataset

used are ModelNet-10 and ModelNet-40 [117]. RotationNet not exactly uses the raw 3D data

to learn. However, the images are taken from one or more different angles of a 3D image. Those

images are used to train the CNN. Ultimately making the complete process based on 2D. This

increases the size of the dataset, which is ideal for CNN to produce higher accuracy. In

RotationNet, the dataset so formed after taking images of 3D objects from three different angles

becomes larger to that of the original dataset. RotationNet is a further advancement of multi-

view CNN (MVCNN) [118]. The working of RotationNet is further shown in Figure 3.17.

RotationNet, till now, registered the highest accuracy of ModelNet-10 and ModelNet-40

datasets.

Figure 3.17. RotationNet working [116]

Garcia-Garcia et al. [119] introduced PointNet Convolutional Neural Network (PointNet

CNN), shown in Figure 3.18. The developed CNN is to directly use the point cloud dataset

instead of converting it first to 3D voxel grids and then training the CNN. The conversion of

the point cloud dataset to a 3D voxel grid is required for other neural networks because of the

geometrical irregularities present in the point cloud. The geometric irregularities are no proper

edges, lines and curves. Therefore, this makes the information extraction difficult from the

point cloud dataset. The dataset used for training is ModelNet-10. The CNN has a point cloud

data layer where the specifications of each image are specified. The specifications include the

voxel grid size and leaf size. Then the architecture has two convolutional layers with Max Pool

layers. There are two fully connected layers with a softmax layer at last.

Chapter 3 Deep Learning for Scene and Object Recognition

46

Figure 3.18. PointNet CNN Architecture [119]

Qi et al. [120] introduced PointNet, shown in Figure 3.19. PointNet architecture can be

directly trained using the point cloud dataset, just like PointNet CNN. It can recognize the 3D

objects even after being trained on a 1D array dataset. The dataset used to train PointNet is

ModelNet-40. The number of points specified is taken as input n, during the network’s training

[120]. The backbone of PointNet is MLP (Multi-Layer Perceptron) [121]. The PointNet has

two parts, the first part is the classification network and the second part is the segmentation

network. The classification part takes the number of points as input, which is applied with input

and feature transformation. The input and feature transform are nothing but the T-Nets shown

in Figure 3.19, which helps in predicting affine transform [120]. Then aggregation of data is

processed using the Max Pooling layer. For k number of classes, classification scores are

generated. After this, the segmentation layer is responsible for concatenating the local features,

per point scores of output, and global features. ReLU activation function and batch

normalization are used in every layer. The last layer, which is MLP is equipped with dropout.

Figure 3.19. PointNet Architecture [120]

Self-Organizing Network (SO-Net), shown in Figure 3.20, developed by Li et al. [122] is

also a deep neural network that is directly trained using a point cloud dataset. SO-Net builds a

Self-Organising Map (SOM) by forming a model for the point cloud’s spatial distribution. Then

feature extraction from SOM nodes and individual points is performed. A single feature vector

represents the information. In SO-Net, the encoder part normalization of input points with k-

Chapter 3 Deep Learning for Scene and Object Recognition

47

nearest SOM nodes. Later, using the Max Pooling, the normalized resultants are max pooled.

The Max Pooling is based on kNN (k-Nearest Neighbour) search (point to node) on SOM. The

field overlaps receptive is determined by k. In the segmentation part of SO-Net, following the

kNN association technique, the normalized kN points are concatenated with M node features.

At last, using the average pooling, the aggregated N features are obtained from kN features.

Figure 3.20. SO-Net Architecture [122]

Achlioptas et al. [123] introduced a new architecture of Auto-Encoder (AE) called deep AE.

The AE is specifically developed for point cloud dataset. EMD (Earth’s Mover Distance) and

CD (Chamfer Distance) loss functions are used during AE training. Further, Achlioptas et al.

[123] develop two different Generative Adversarial Networks (GAN), namely, raw-GAN (r-

GAN) and latent space GAN (l-GAN).

In r-GAN, AE is used as a discriminator which has leaky-ReLU activation function. The

last part of r-GAN has 5 fully connected layers with the ReLU activation function, which is fed

to a sigmoid function that produces the final result [123]. Whereas in l-GAN, a pre-trained AE

(EMD (Earth’s Mover Distance) or CD (Chamfer Distance) loss functions are used during AE

training on each object class separately) is used from which the data is passed [123]. Further,

in l-GAN, a single-layered MLP is used as a generator and a double hidden layered MLP as a

discriminator [123].

Separately, a group of GMM (Gaussian Mixture Models) is used for generating point clouds.

This is accomplished using fitted distribution sampling and also by using pre-trained AE as a

decoder. CD loss function proved to be better for l-GAN as it helped in producing better

Chapter 3 Deep Learning for Scene and Object Recognition

48

accuracy. The performance of GAN improved after being trained in the fixed latent space of

AE and GMM.

Apart from aforementioned works, there are some other neural networks that are

implemented for the same work like PointNet++ [124], PointConv [125], PointCNN [126],

MLVCNN (multi-loop view CNN) [127] and LDGCNN (Linked Dynamic Graph CNN) [128].

They are either trained and tested only on ModelNet-40 or on ModelNet-10 dataset and are

known for their accuracy.

3.4. Capsule Neural Network (CapsNet)

Scene and object recognition are currently performed using CNNs. Discriminatively trained

multiple layers of feature detectors are used by CNNs. In layers close to input, feature layers’

spatial domains get bigger. All these points are advantageous for recognition tasks. However,

the subsampling layers that can be interleaved with feature extraction layers help to achieve

local invariance by obtaining outputs from the feature detectors nearer to them. This leads to

the loss of information on the positions of different things present in an image. Moreover,

CNNs do not have the ability to retain the relationship between the extracted features. This

leads to confusion when the trained CNN is asked to identify the same object or scene but in

different orientations. This is very vital for any developed IAS. Inside home any object can be

present in any other orientation. For example, a knife in the kitchen can be found lying on

platform, can be found in a knife stand or sometimes even on a vegetable cutter plate. In all the

cases the appearance of the knife will be different. For indoor home scenes also, it is applicable.

Suppose in a living room, table is kept on the right side and a sofa left side. The IAS learnt that

this is living room. After sometime the sofa is moved to right side and table on left side. Still,

it remains a living room. An IAS is expected to recognize the knife and the living room

correctly in each case. Therefore, to solve this problem, the Capsule Neural Network (CapsNet)

is introduced. CapsNet not only focuses on extracting feature of any object but also the

orientation. This helps the CapsNet to recognize any object or scene presented to it in any

orientation.

Sabour et al. [129] first proposed the idea of CapsNet. To understand CapsNet, first, some

basic things are needed to be understood. In computer graphics, the rendering process is

followed in which to capture an image, the abstract of that image is first studied (the XY

coordinates, angle, etc.), and then using the rendering process, the image is created. Whereas

the human brain does just the opposite of what the computer graphics do, and the process is

called inverse graphics or inverse rendering, i.e., it first takes the image and then tries to find

Chapter 3 Deep Learning for Scene and Object Recognition

49

out the abstract of that image. In CapsNet, the technique of inverse graphics or inverse

rendering is the fundamental principle, and therefore the neural network that performs inverse

graphics is a CapsNet. CapsNets are the neural networks with Capsules to perform some

complicated and important functions (like affine transformation and squash function) on inputs

provided to them. The outputs from the capsules are encapsulated in small vectors.

3.4.1. Basic CapsNet Architecture

The first CapsNet with dynamic routing was proposed by Sabour et al. [129], which was

trained on the MNIST dataset. Figure 3.21 shows the basic architecture of CapsNet. The

architecture of the CapsNet has six layers,

i. The Convolutional layer

ii. The PrimaryCaps (Primary Capsule) layer

iii. The ClassCaps (Class Capsule) layer

iv. Fully connected layer 1

v. Fully connected layer 2

vi. Fully connected layer 3

Figure 3.21. The basic block diagram of Capsule Neural Network (CapsNet)

The first three layers (convolutional layer, PrimaryCaps and ClassCaps) of the architecture

are categorized under as encoder part and the rest three layers (FC layers) are the decoder part.

The convolutional layer helps to extract the important features from the two-dimensional

images. This process may involve blurring, embossing, outlining, and sharpening the image.

This layer is also equipped with a ReLU activation function, ReLU function is max(0,x) for all

values minus infinity to infinity. The PrimaryCaps layer is the combination of capsules present

in the architecture which receives the extracted features from the convolutional layer and tries

to learn the orientation of the features. The PrimaryCaps layer is able to do it by using the affine

transformation, weighted sum and squash function. Further, in PrimaryCaps layer, output is in

Chapter 3 Deep Learning for Scene and Object Recognition

50

vector form that contains probability of the presence of an entity and also the set of instantiation

parameter [142]. The PrimaryCaps are further discussed in detail in Chapter 4, section 4.2.3.

The PrimaryCaps are connected with ClassCaps using dynamic routing (Chapter 4, section

4.2.4). The number of ClassCaps is decided as per the number of classes the dataset used for

training has. In case of MNIST dataset, there are 10 classes. Therefore, the number of

ClassCaps were 10. The orientation of features learnt by PrimaryCaps are sent to the respective

ClassCaps. An agreement is reached between the PrimaryCaps and the ClassCaps using

dynamic routing that the feature belongs to a particular class of ClassCaps, this is also called

routing by agreement (Chapter 5, section 5.3, Figure 5.5). For example, in case of MNIST

dataset, the 10 ClassCaps are from 0 to 9. So, if the PrimaryCaps reach an agreement with

ClassCaps that the learnt feature is of digit 9, then the features will be sent to ClassCap

responsible for taking the features of digit 9. Then it is followed by fully connected layer 1,

layer 2, and layer 3. The fully connected layers can be used with a choice of the activation

function.

The loss occurring in the CapsNet is calculated using the following mathematical equation,

 𝐿𝑐 = 𝑇𝑐 max(0, 𝑚+ − ||𝑣𝑐||)2 + 𝜆 (1 − 𝑇𝑐) max (0, ||𝑣𝑐|| − 𝑚−)2 (4)

Where,

𝐿𝑐 – Loss term for each ClassCaps.

𝑇𝑐 - Loss function of target ClassCaps class/layer, c – class capsule class/layer.

Λ – coefficient used for numerical stability, and its value are fixed at 0.5.

𝑇𝑐 max(0, 𝑚+ − ||𝑣𝑐||)2 calculates the loss for correct digitcap, i.e., when , 𝑇𝑐 is 1.

𝜆 (1 − 𝑇𝑐) max (0, ||𝑣𝑐|| − 𝑚−)2 calculates the loss for incorrect digitcap, i.e., when , 𝑇𝑐 is 0.

The values of 𝜆, 𝑚+ and 𝑚− are 0.5, 0.9 and 0.1 respectively [129].

3.4.2. Different CapsNets (Capsule Neural Networks)

Lambert et al. [130] performed an investigative analysis on traditional CapsNet’s

performance of ModelNet-10 and ModelNet-40 datasets. For this purpose, the traditional

CapsNet is completely converted into a 3D neural network. The datasets are used in 3D voxel

grid form instead of raw point cloud dataset. Lambert et al. [130] also focused on how much

CapsNet is efficient in retrieving a 3D model. The accuracies produced by 3D-CapsNet on

ModelNet-10 and ModelNet-40 datasets, are 93.08% and 82.73% respectively.

Ahmad et al. [131] developed 5 different CapsNets. All the CapsNets were trained on

ModelNet-10 and ModelNet-40 datasets in the form of 3D voxel grids. All the CapsNet

Chapter 3 Deep Learning for Scene and Object Recognition

51

architectures are of 3D. Architecture 1, shown in Figure 3.21, has two convolutional layers,

primary capsule, digit capsule and two FC layers. The first convolutional layer has leaky ReLU

activation function with batch normalization. Second convolutional layer has Max Pooling with

batch normalization. Architecture 2, shown in Figure 3.22, has one convolutional layer with

batch normalization and leaky ReLU activation function. Further it has primary capsule, digit

capsule and two FC layers. Architecture 3, shown in Figure 3.23, is similar to that of

Architecture 1. However, in Architecture 3, second convolutional layer has batch normalization

with leaky ReLU instead of Max Pooling. Architecture 4, shown in Figure 3.24, is similar to

Architecture 2 but it has only one FC layer unlike Architecture 2. Architecture 5, shown in

Figure 3.25, has one convolutional layer with batch normalization and leaky ReLU activation

function followed by two primary capsule layers. Then there is a digit capsule layer and two

FC layers. Architecture 1 produced the highest accuracy of 91.48% on ModelNet-10 dataset

and Architecture 2 produced the highest accuracy of 89.66% on ModelNet-40 dataset.

Figure 3.21. CapsNet Architecture 1 [131]

Figure 3.22. CapsNet Architecture 2 [131]

Chapter 3 Deep Learning for Scene and Object Recognition

52

Figure 3.23. CapsNet Architecture 3 [131]

Figure 3.24. CapsNet Architecture 4 [131]

Figure 3.25. CapsNet Architecture 5 [131]

Chapter 3 Deep Learning for Scene and Object Recognition

53

Cheraghian et al. [132] developed a CapsNet in 3D which can be directly trained on point

cloud dataset. The CapsNet architecture is inspired from PointNet architecture. The capsule

used in the architecture is of 3D. The architecture has feature extraction layer, aggregation

layer, feature vector, 3D primary capsule and digit capsule and at last the reconstruction layer

which is subsequently attached with a reconstruction loss function. The accuracy produced by

the proposed architecture on ModelNet-10 and ModelNet-40 datasets are 94.7% and 92.7%

respectively.

Figure 3.26. 3D Capsule Architecture [132]

3.5. Dataset Summarisation

In this section, the different datasets mentioned in the previous sections of this chapter are

summarised in Table 3.1, 3.2 and 3.3. The Tables also summarise the datasets that are used to

accomplish the research in this thesis.

Table 3.1. Different datasets used for image classification

Dataset Name Type Number of Images

ImageNet [143] 2D RGB Image data with 5247 classes 3.2 million images

ILSVRC [144] 2D RGB Image data with 1000 classes 1.4 million images

PASCAL VOC [145]

2D RGB Image data with 20 classes

11530 images (27450

annotated objects and 6929

segmentations)

Caltech 101 [157] 2D RGB Image data with 101 classes 9146 images

Caltech 256 [158] 2D RGB Image data with 256 classes 30607 images

Table 3.2. Different datasets used for object recognition

Dataset Name Type Number of Images

ModelNet-10 [117] 3D RGB Object data with 10 classes 4907 images

ModelNet-40 [117] 3D RGB Object data with 40 classes 12432 images

ADE20K/SUN Database [146] 2D RGB annotated objects with 3169 classes 25210 images

MS COCO [102] 2D RGB annotated objects with 80 classes 330K images with 1.5

million object instances

Chapter 3 Deep Learning for Scene and Object Recognition

54

Table 3.3. Different datasets used for scene recognition

Dataset Name Type Number of Images

Places365 [105] 2D RGB scenes with 365 classes 10 million images

Places205 [105] 2D RGB scenes with 205 classes 2.5 million images

Hybrid1365 [105] 2D RGB scenes with 1365 classes 11 million images

MIT67 [9] 2D RGB Indoor scenes with 67 classes 15620 images

SUN397 [147, 148] 2D RGB scenes with 397 classes 108573 images

SUN Attribute [149] 2D RGB scenes with 700 classes 14000 images

SUN RGB-D [150, 151]

2D and 3D RGB-D scene (47 classes) and object (800

classes)

10335 images

Scene 15 [152] 2D RGB scenes with 15 classes 4485 images

Event 8 [153] 2D RGB scenes with 8 classes 1579 images

CamVid [154, 155] RGB scene videos with object class semantic labels (32

classes)

-

Cityscapes [156] 2D RGB scenes with 30 classes 25000 images

3.6. Conclusion

In this chapter, CNN and its basic concepts were discussed. From the information provided

on CNNs, it is clear that for many reasons, as, for example, reducing the total trainable

parameters, CNNs prove to be the best choice. They have good performance on tasks,

especially related to recognizing objects. However, there are many serious problems associated

with CNNs. One of the most common problems is the requirement of very large datasets. Large

datasets for every purpose are not always readily available. The other problem associated with

CNN is its inability to extract the information regarding the orientation of different objects.

This chapter also discussed all the aspects of CapsNet and its components. The description

given on CapsNet helps to understand that it overcomes many disadvantages present in CNNs.

The biggest problem that it solves is the loss of orientation information of any image. Routing

by agreement present in a dynamic routing algorithm helps in proper information transfer

between neurons. The most crucial aspect of CapsNet is that it is capable of recognizing entities

from any viewpoint. CapsNet also focuses on properly capturing an entity's complete

orientation instead of only focusing on its shape. Therefore, these properties also make CapsNet

perform well even on smaller datasets. All these properties make CapsNet one of the most

capable neural networks for accomplishing the aims mentioned in this thesis.

CapsNet properties theoretically are the best option for implementing an object recognition

system in an indoor environment. However, all the discussed properties need practical

Chapter 3 Deep Learning for Scene and Object Recognition

55

verification. Therefore, the same is done by implementing CapsNet in different ways to make

the tasks possible in this thesis.

Nonetheless, the total number of trainable parameters in CapsNets is always very large, and

this is an issue which needs to be addressed. Higher total number of trainable parameters in

neural networks complicates the neural network’s training process. This adversely effects the

training speed of the neural networks. To speed up learning for large total number of

parameters, higher hardware resources are required which cannot always be readily available.

In case of three-dimensional datasets, training of a neural network becomes very difficult

because of even higher total number of trainable parameters. However, a 3D dataset is

generally very small because the representation of each object from different angles is not

required. Some research do use three-dimensional datasets, but the trainable parameters of

neural networks are too many. Unlike three-dimensional datasets, two-dimensional datasets

usually require large number of images because, in such cases, several images of a single object

are needed depicting different angles/views in order to train the neural networks adequately.

However, there are not many databases available with such large numbers of indoor images.

Alternatively, neural networks which can train accurately with relatively small size datasets

could provide solutions to assist indoor navigation and object location. Furthermore, additional

problems exist in different deep neural networks used till now for scene and object recognition,

and they are:

1. All the state-of-the-art CNNs developed along with different functions like batch

normalization and inception are trained on large datasets. Therefore, there are no neural

networks that can offer state-of-the-art performance on smaller datasets like those

existing for indoor scenes and objects.

2. There are no neural networks specifically trained and explicitly tested on indoor home

scene recognition. All the neural networks implemented for scene recognition are trained

on mixed scene categories (that involves both internal and external scenes).

3. The best performing neural networks have a very complicated architecture. For example,

ResNet-152 [79] which has 152 layers along with techniques like batch normalisation

and inception. This becomes very complicated for those working with limited resources

or on a very small scale.

4. There are research related to scene recognition using object detection. However, they

are not implemented using neural networks. It can be said that such research are partially

an example of expert systems.

Chapter 3 Deep Learning for Scene and Object Recognition

56

Different CapsNets discussed do have good accuracy but are not efficient because of higher

trainable parameters. Moreover, CapsNets have not yet been deployed for scene recognition

tasks. In the next chapter, CapsNets for indoor home scene recognition will be implemented

and their performance results will be discussed. A new CapsNet, named NoSquashCapsNet is

also developed for performing indoor home scene recognition.

55

Chapter - 4

Traditional CapsNet and

NoSquashCapsNet for Indoor Home

Scene Recognition

4.1. Introduction

In this chapter, a traditional Capsule Neural Network (CapsNet) is implemented for indoor

home scene recognition. This implementation is done for the first time as traditional CapsNet

has never been used for this purpose before. This is done because the orientation of objects in

indoor scenes is very important and must be properly captured. The aim therefore is to examine

the suitability of CapsNet, which is already known to provide object orientation advantages, to

be used for indoor home scenes recognition and thus provide a unique tool for IAS systems.

Outdoor scene and interior scene classification (not necessarily indoor home scene) tasks have

been done using many Convolutional Neural Networks (CNNs). However, since there is an

absence of large home scene datasets, there is no CNN that is trained, validated and tested only

on indoor home scenes.

Nonetheless, it is important to train systems that are capable of working within a home

environment, using correct relevant data. Ideally then a different type of neural network which

is not very deep and can achieve comparable accuracy to CNNs using smaller datasets is

required.

Further in this chapter, a new CapsNet structure (NoSquashCapsNet) which has capsules

but no squash function and also has Max Pool layers is proposed to perform indoor home scene

recognition to mitigate the problem of high total number of trainable parameters associated

with traditional CapsNet. Hence, the reasons behind developing this new network are to: a)

achieve higher accuracy on smaller datasets since, as already mentioned, there is a lack of

larger indoor home scene datasets and b) to reduce the total number of trainable parameters.

For training and testing, 20000 and 5000 images were used respectively. The dimensions of

the images are 128x128. The images were also converted to grayscale.

In this chapter, therefore, section 4.2 is about the traditional CapsNet’s implementation for

indoor home scene recognition. This section briefly examines the CapsNet and the capsule.

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

56

Further, it examines the basic architecture of a capsule, looks at the dynamic routing algorithm

which is used to connect the capsules, discusses the process of implementation and also

discusses various results obtained from traditional CapsNet. Section 4.3 is about the novel

NoSquashCapsNet for indoor home scene recognition. This section explains the complete

development and implementation of NoSquashCapsNet. The result produced by

NoSquashCapsNet is also discussed. Section 4.4 concludes the chapter.

4.2. Traditional CapsNet for Indoor Home Scene Recognition

Various scene recognition tasks carried out so far have already been discussed in Chapter 3,

subsection 3.3.5. These scene recognition tasks are not entirely trained and tested on indoor

home scene data. This becomes problematic for IAS developed explicitly for indoor home

tasks. An IAS, with no proper ability to recognise indoor home scenes, is of no particular use

since they may not be able to assist the person staying indoors.

Currently there are very few datasets with indoor home-specific images available. An indoor

home-specific scene set for living room, dining room, kitchen, bathroom, and bedroom is the

Places365 dataset [105] which was used in this research. Each of the scenes has 5000 images.

Hence, the total number of images in this dataset is 25000. Out of 25000 images, 20000 images

are used for training (4000 from each scene) and 5000 for testing (1000 from each scene).

However, this is significantly less when compared to other available datasets to train neural

networks and thus produce better accuracies. The indoor home scene dataset is also used on

Mask RCNN, Fast RCNN, and Faster RCNN. This also helps in analysing the performance of

CNNs on smaller datasets and compare them to CapsNet. Furthermore, all the neural networks’

performances are also analysed on a reduced indoor home scene dataset. The reduced dataset

size was 5000 images for training and 1250 for testing, evenly distributed over the 5 categories

or scenes.

4.2.1. CapsNet

Figure 4.1 shows the CapsNet architecture proposed by Sabour et al. [125]. The basic

CapsNet architecture has already been discussed in Chapter 3, subsection 3.4.1. The first layer

of the CapsNet has one convolutional layer with ReLU activation function. This is the same as

that in CNN, which has been explained in Chapter 3, section 3.3.1. The second layer is the

primary capsule (PrimaryCaps) which is the backbone of any CapsNet. The primary capsule is

responsible for extracting the spatial relationships. Before the information from the

convolutional layer is fed to primary capsule layer, the information is first converted from

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

57

matrix to vector. This is done because capsules accept vector inputs and produce vector outputs.

The next layer, i.e., Class/Digit Capsule (ClassCaps/DigitCaps) takes the information from a

primary capsule using the dynamic routing method. Each DigitCaps is responsible for

accumulating the information of each class. Finally, the fully connected (FC) layers work as a

decoder, i.e. they try to reconstruct the image from acquired information. The final FC layer

has a sigmoid activation function so that the output probabilities for each class is produced.

The class having highest probability is the required output.

Figure 4.1. Capsule Neural Network (CapsNet) architecture [129]

4.2.2. Capsules: The backbone of CapsNets

Geoffrey Hinton first proposed Capsules [133]. Capsules are responsible for extracting

different entities’ instantiation parameters, along with their presence. An object or part of an

object is detected by a capsule, termed as a visual pathway. There are two types of outputs

produced by a capsule,

1. Probability of the presence of a particular kind of object.

2. Orientation, scale, elongation, shear, and position in the receptive field.

There cannot be more than one entity representation in a capsule’s receptive field. Therefore,

the binding problem (problem of segregating features especially which are of same image) gets

solved. Capsules capture similar entities’ different properties. This is because of the presence

of only one entity at a time. So, when there are identical entities, there are very few chances of

having wrong perceptions. This prevents the phenomenon of crowding, which happens when

flankers are placed closed to a recognisable object. For recognizing things from different

viewpoints, one of the approaches is having extensive data for training the neural network,

which is generally practiced in CNN. Another approach is taking images of the same shape and

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

58

then change its viewpoint while recognizing it. When the image is shown from a different

viewpoint while training, then just averaging the same image from different viewpoints cannot

provide an intermediate viewpoint. This is because of non-linearity. If the two images (same

image from different viewpoints) are averaged, then two new images are different.

To recognize the image from a different viewpoint, linear space (vector space) with linear

images (raw format) is required. Linear space coordinates of identified features’ space are

acquired by transforming feature space to linear space. This can be done through the following

equations,

 𝑀 = [
𝑎 𝑏
𝑐 𝑑

] (1)

Where, M is a matrix that represent feature space where a, b, c and d are the numbers that

represent the features. The size of the matrix depends on the size of the filter. This has to be

transformed to linear space TM. Now,

 𝑇𝑀(𝑣) = 𝑀𝑣 (2)

Where, v is a vector, v represents the position vector of point (x, y).

Therefore,

 𝑇𝑀(𝑣) = 𝑇𝑀 ([
𝑥
𝑦]) = 𝑀 [

𝑥
𝑦] = [

𝑎 𝑏
𝑐 𝑑

] [
𝑥
𝑦] = [

𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦

] (3)

Equation (3) can also be written as,

 𝑇𝑀(𝑥, 𝑦) = (𝑎𝑥 + 𝑏𝑦, 𝑐𝑥 + 𝑑𝑦) (4)

The other forms of transformation are, rotation, scaling, identity, reflection and shearing

[159]. Moreover, it must be clear that blending images (mixing similar images taken from

different viewpoints) will not make any difference to the learning process. Instead, the mixing

of coordinates must be done by recognizing the relevant parts of images. The complete

mathematical process presented is done before the information enters the capsule in vector

form. Therefore, from different viewpoints, extrapolation of the recognition of shapes is

possible using a capsule.

4.2.3. Basic Capsule Architecture

Figure 4.2 shows the basic working of a capsule [129]. Capsules in the CapsNet are the key

for inverse graphics and are inspired by mini-column. They are nothing but functions that help

in predicting the different parameters of an image or object. A capsule always takes inputs in

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

59

vector form and produces outputs in vector form. It does three basic functions to capture an

image; the first function is the affine transformation responsible for capturing the points,

straight lines, and planes. The four different types of affine transformations are translation,

scale, shear, and rotation.

Figure 4.2. Schematic diagram of a capsule

Using these four types, the images' distortions can be easily rectified, and their orientation

can be made more explicit. The second function is the sum of weighted input vectors. The

combination of inputs is represented in vector form, and the vector addition is performed. The

third function is the non-linear activation where the squashing and scaling of the captured

image are done. The length does not exceed one, and the direction of the image's orientation

remains the same or unchanged because the direction of the vectors remains undisturbed.

The mathematical formulae for the processes involved in the capsule is as follows [135, 136],

For affine transformation,

 𝑢̂𝑖|𝑗 = 𝑊𝑖𝑗 𝑢𝑖 (5)

where,

• 𝑢̂𝑖|𝑗 – Prediction vectors

• 𝑊𝑖𝑗 – weight matrix

• 𝑢𝑖 – output of a convolutional layer

For Sum of weights,

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

60

 𝑠𝑗 = ∑ 𝑐𝑖𝑗 𝑢̂𝑗|𝑖𝑖 (6)

where,

• 𝑐𝑖𝑗 – Coupling coefficient, 𝑐𝑖𝑗 = 𝑒𝑥𝑝(𝑏𝑖𝑗) ∑ 𝑒𝑥𝑝(𝑏𝑖𝑘)𝑘⁄ (7)

In equation (7), 𝑒𝑥𝑝(𝑏𝑖𝑗) and 𝑒𝑥𝑝(𝑏𝑖𝑘) are the standard exponential function of input vector,

where 𝑘 in 𝑏𝑖𝑘is the number of classes in multi-class classifier. Each 𝑐𝑖𝑗 is a non-negative

scalar. When all 𝑐𝑖𝑗 are summed up, then the resultant is 1 for each capsule i at lower-level.

The number of higher-level capsules is equal to the number of 𝑐𝑖𝑗 for each capsule i at lower-

level. The iteration process of dynamic routing determines the value of 𝑐𝑖𝑗.

For Non-Linear Activation (Squashing),

 𝑣𝑗 =
||𝑠𝑗||2

1+ ||𝑠𝑗||2
𝑠𝑗

||𝑠𝑗||
 (8)

Where,

• 𝑣𝑗 - output vector of capsule 𝑗.

• 𝑠𝑗 – total input of capsule 𝑗.

•
||𝑠𝑗||2

1+ ||𝑠𝑗||2 – squashing and
𝑠𝑗

||𝑠𝑗||
 - unit scaling

4.2.4. Dynamic Routing in Capsules

Dynamic routing in capsules is used to establish a connection between lower-level capsules

and higher-level capsules. This helps to develop the capability of generalization in neural

networks and the concept of routing by agreement. Routing by agreement means that the

higher-level capsule must agree with the output of the lower-level capsule i.e., the lower-level

features (like fingers, eyes and mouth) present in lower-level capsules must match the higher-

level features (like face and hand) present in higher level capsules. Only then the output

becomes the input for the higher-level capsule [129].

Moreover, dynamic routing in capsules helps in the effective use of the information

available in capsules. Therefore, the data organization in capsules is in vector form such that

the existing probabilities and properties of entities are represented by the length and orientation

of capsule neurons. Dynamic routing also helps to find the accurate coupling coefficient

(equation 7) by adjusting it between the higher-level capsule and predictive vector. This helps

in establishing proper communication between the capsules. Coupling does not directly encode

the image; instead encodes the entities present in the image. This makes it clearer for a neural

network what exactly it needs to learn [134].

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

61

Algorithm 4.1. Dynamic Routing Procedure Steps [129]

Dynamic Routing Algorithm

1: procedure Routing (𝑢𝑖|𝑗̂, 𝑟, 𝑙)

2: for all capsule i in layer l and capsule j in layer (l + 1): bij ← 0

3: for r iterations do

4: for all capsule i in layer l: ci ← softmax (𝑏𝑖) softmax computes Eq. 7

5: for all capsule j in layer (l + 1): sj ← ∑ 𝑐𝑖𝑗𝒖𝑖|𝑗̂𝑖

6: for all capsule j in layer (l + 1): vj ← squash (𝑠𝑗) squash computes Eq. 8

7: for all capsule i in layer l and capsule j in layer (l + 1): bij ← 𝑏𝑖𝑗 + 𝑢𝑖|𝑗̂. 𝑣𝑗

 return vj

Algorithm 4.1 indicates how dynamic routing functions. From line 1 and line 7, it is clear

that the procedure calculates the neural network’s forward pass. In line 1, the output vectors

𝑢𝑖|𝑗̂ (which are inputs for the capsule), the number of routings r and all capsules at lower-level

l have to be considered before starting the procedure.

Line 2 is to initialize bij as zero before starting the iteration. In Algorithm 4.1, 𝑏𝑖𝑗 is a

temporary value that is updated iteratively; 𝑐𝑖𝑗 is responsible for storing the final value of bij

after iteration is over. Line 3 indicates that line 4 to 7 have to be repeated r times, where r is

the number of routings, which is generally three as it is considered ideal to avoid overfitting

problems [129]. Line 4 involves calculating ci, a vector representing all the routing weights of

lower-level capsule i. Softmax is used to keep cij positive and also to make its nature

probabilistic.

Line 7 does weight updating. As per the formula bij ← 𝑏𝑖𝑗 + 𝑢𝑖|𝑗̂. 𝑣𝑗 , each input is examined,

and bij, which is the corresponding weight, is also updated. This is done by considering capsule

j, the higher-level capsules. The formula 𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + 𝑢𝑖|𝑗̂. 𝑣𝑗 , indicates that the new value of bij

is the sum of the old value of 𝑏𝑖𝑗 and the dot product of input of capsule j and the output of

capsule i. The dot product examines the input and output similarity of the capsule. After r

number of iterations, the outputs from higher-level capsules are produced, and routing weights

are also updated. This is then used by the next subsequent layer of the neural network.

4.2.5 Traditional CapsNet architecture

The indoor home scene images in the dataset (indoor home scene extracted from Places365

dataset [105]) are of dimension 256x256. All the images are of RGB scale. So, the depth of the

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

62

images is 3. Since using a dimension of 256x256 leads to a very high total number (approx.

200 million+) of trainable parameters, the images are converted to a 128x128 dimension. The

conversion is performed using the shrinking process (a group of pixels which are spatially

adjacent are mapped as one pixel) in Digital Image Processing [159]. The conversion of

dimension reduces the total number of trainable parameters, which further helps in the faster

training process of neural networks.

Figure 4.3. Capsule Neural Network (CapsNet) used for scene recognition

Table 4.1. Specifications for CapsNet

Layer

Specifications

Strides

Activation Function

Input

Image size: 128x128

(RGB scale)

-

ReLU

Convolutional Layer

Filters: 256

Channel Size: 9x9

Padding: Same

1

ReLU

Primary capsule

Number of capsules: 32

Number of channels: 64

Channel Size: 10x10

Padding: Valid

4

ReLU

Class Capsule

Number of capsules: 5

Number of channels: 16

Routings: 3

-

-

FC Layer -1

Number of Neurons: 512

-

ReLU

FC Layer-2

Number of Neurons: 1024

-

ReLU

FC Layer-3

Number of Neurons: 728

-

Sigmoid

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

63

The CapsNet (Chapter 3, section 3.4.1) is used first. The CapsNet has 6 layers. The

convolutional layer is equipped with the ReLU activation function along with 256 filters,

channel size of 9x9, and stride of 1. Keeping a stride of one increases the training time, but

since the scene images have too many details, every pixel must be scanned. There are 32

capsules in the primary capsule layer used with 64 channels. The channels are used to distribute

the capsules evenly. The channel size of the primary capsule is 10x10 with stride 4. There are

5-digit capsules in the digit capsule layer because there are only 5 classes in the indoor home

scene dataset. There are 512 and 1024 neurons in the first and second FC layers, respectively

and they both have a ReLU activation function. The last FC layer has 728 neurons with a

sigmoid activation function. Figure 4.3 shows the discussed architecture of CapsNet used for

implementing indoor home scene recognition and Table 4.1 shows the discussed parameters or

specifications of CapsNet.

4.2.6. Results for traditional CapsNet

Table 4.2. The validation and testing accuracy for different deployed neural networks

 using 20,000 images (RGB) for training and 5000 images (RGB) for testing

Neural

Network

Validation

Accuracy

(%)

Testing

Accuracy

(%)

Total

Trainable

Parameters

Testing

Accuracy

(%)

Training

Time

(hours)

CapsNet 71 70 160 million+ 92.4 38 (approx.)

Faster RCNN 76.9 74.2 138 million+ 96.31 28 (approx.)

Fast RCNN 75.3 73.6 140 million+ 94.17 29 (approx.)

Mask RCNN 68.6 67.6 60 million+ 93.22 12 (approx.)

After training the neural networks for scene recognition, different accuracies were produced.

CapsNet produced a validation and testing accuracy of 71% and 70%, respectively. All the

results are acquired on 20000 training images and 5000 testing images, which are evenly

distributed in 5 different indoor home scenes. As per the obtained results shown in Table 4.2,

it is clear that Faster RCNN produced the highest accuracy. CapsNet produced a comparable

accuracy, which is the third-highest after Fast RCNN. Nonetheless, CapsNet has the highest

total trainable parameters because the CapsNet appears to retain all information and does not

just focus only on important features. Further, Mask RCNN took the least time to train and

CapsNet took the highest time to train. VGG-16, VGG-19 and ResNet-152 were used as the

CNN in Faster RCNN, Fast RCNN and Mask RCNN respectively. Moreover, the bounding

box in Fast RCNN and Faster RCNN was not used, whereas, in Mask RCNN both bounding

box and mask were not used because the task was not associated with object detection or

recognition. Number of epochs used to train the mentioned neural networks is 100 with each

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

64

epoch having 100 iterations. In case of CapsNet, Faster RCNN, Fast RCNN and Mask RCNN,

the mentioned accuracy was produced in 79th, 82nd, 75th and 77th epoch and after that the

accuracy did not improve.

Table 4.3. The validation and testing accuracy for different deployed neural networks

using 5000 images (RGB) for training and 1250 images (RGB) for testing

Neural Network Validation Accuracy (%) Testing Accuracy (%) Testing Accuracy (%)

CapsNet 71 70 91.99

Faster RCNN 69.1 68.2 95.43

Fast RCNN 67 66 95.32

Mask RCNN 66.2 64.4 94.23

To analyse the performance of CapsNet on smaller datasets compared to other neural

networks, the CapsNet and other neural networks were trained on just 5000 images and tested

on 1250 images. It must be noted that all the images, in this case, are distributed evenly among

the 5 classes of indoor home scenes. CapsNet produced the same accuracy of 71%. In contrast,

the accuracy of Faster RCNN, Fast RCNN, and Mask RCNN dropped to 69.1%, 67%, and

66.2%, respectively. The results are shown in Table 4.3. This indicates that CapsNet does not

require large datasets to train to a reasonable standard. This is important in cases where large

data sets are not readily available. The performance of CapsNet drastically dropped when the

number of images was reduced to 1500. The reason behind this reduction is the lack of presence

of minimum required information for information extraction.

CapsNet produced comparable results despite having less deep architecture than the CNN-

based architecture which has many layers and special techniques like batch normalization. The

lower accuracy produced by CapsNet is because of the higher number of total parameters

resulting in gradient explosion or vanishing and dying ReLU. The same does not happen in

Faster RCNN because it has a relatively smaller total number of trainable parameters.

The total number of trainable parameters of CapsNet was found to be too high, 160 million+

(approx.). Therefore, training the CapsNet becomes difficult. The reduction in trainable

parameters became therefore necessary. The images' dimension was changed from 256x256

(RGB) to 128x128 (grayscale) so as to reduce the trainable parameters. But when CapsNet was

trained and tested on the changed image dimension, the accuracy of CapsNet also reduced.

This led to the development of a new CapsNet structure called NoSquashCapsNet.

For a detailed illustration of how the CapsNet recognizes the indoor home scenes, we must

refer to Figure 4.4. The bedroom scene shown in Figure 4.4(a) is the one that was not used in

the training set. The CapsNet correctly recognized it. The kitchen scene, shown in Figure

4.4(b), was used for the training set. The CapsNet was unable to recognize this. In this case, a

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

65

threshold value of 65% was set and imposed using ROC (Receiver Operating Characteristic)

[160]. This helps to indicate the CapsNet’s minimum value of classification confidence. Any

value of classification with less than 65% shows the message “don’t know.” This is important

so that there is no confusion created by IAS that may directly or indirectly negatively impact

the person getting assisted by it. The threshold value 65% indicates that a neural network is

expected to produce an accuracy of at least 65%. In other words, this threshold value helps to

reduce the number of false positive outputs.

Figure 4.4. Images tested for image classification. (a) The bedroom scene (image not used in the training set)

was tested in which the trained neural network was able to predict it correctly (b) A kitchen scene (image used

in the training set), which the neural network was unable to recognize.

Table 4.4. Confusion matrix for traditional CapsNet

 Predicted

Scenes

Bathroom

Bedroom

Dining

Room

Living

Room

Kitchen

Actual

Bathroom

87.1%

2.3%

0.7%

0.75%

9.15%

Bedroom

0%

86.3%

1%

10.6%

2.1%

Dining Room

6.2%

15.2%

39%

31.5%

8.1%

Living Room

1.8%

7.8%

28.9%

53.4%

8.1%

Kitchen

2.8%

0.1%

10.6%

2.3%

84.2%

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

66

A confusion matrix obtained for CapsNet performance of indoor home scene is shown in

Table 4.4. The green cells show the true-positive results and the red cells show the false-

positive results. CapsNet produces best results when predicting the bathroom scene, in this case

in 87.1% cases this was identified correctly. CapsNet has an accuracy of 86.3% and 84.2% for

the bedroom and the kitchen scenes respectively. However, it does not perform well in the

cases of the dining room and the living room. CapsNet accurately predicts only 39% of dining

room scenes and it confuses the dining room with the living room in 31.5% of the cases,

whereas the living room is confused with the dining room in 28.9% of the cases. This shows

that the high similarity between scenes becomes a hinderance for CapsNet to learn subtle scene

differences. It is also interesting to note that the kitchen is confused with the dining room in

10.6% of the kitchen images. This also shows that the presence of objects which can belong to

both areas confuse the CapsNet. So, the presence of plates, spoons, bowls, etc., in the kitchen,

which could also belong to a dining room presents difficulties for the network. In this case,

CapsNet has not shown a good performance in learning the main objects associated with dining

room scenes. CapsNet successfully differentiated between bathroom and bedroom scenes with

only 2.3% of the bathroom scenes confused for bedroom scenes.

Table 4.5. Confusion Matrix for Faster RCNN
 Predicted

Scenes

Bathroom

Bedroom

Dining

Room

Living

Room

Kitchen

Actual

Bathroom

96.2%

3.37%

0.33%

0.1%

0%

Bedroom

0%

94.7%

0.43%

4.87%

0%

Dining Room

0.48%

0.93%

20.67%

15.94%

61.98%

Living Room

0%

23.59%

6.47%

66.53%

3.41%

Kitchen

0%

0%

6.92%

0.18%

92.9%

The confusion matrix of Faster RCNN, Fast RCNN and Mask RCNN are shown in Table

4.5, 4.6 and 4.7 respectively. When compared to traditional CapsNet all three have predicted

the scenes much better. Faster RCNN, Fast RCNN and Mask RCNN predicted bathroom,

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

67

bedroom and kitchen scenes more accurately. However, traditional CapsNet has the best

accuracy for predicting the dining room and the second-best accuracy, after Faster RCNN, for

predicting living room scenes. From the confusion matrices it is also clear that all four

architectures have failed in properly predicting with reasonable accuracy the dining room and

living room scenes. This indicates a general lack of overall good performance in indoor

environments which can be because all networks have confused objects in one scene with

objects in the other, since the objects in both dining room and living room are closely related,

e.g., tables and chairs.

Table 4.6. Confusion Matrix for Fast RCNN

 Predicted

Scenes

Bathroom

Bedroom

Dining

Room

Living

Room

Kitchen

Actual

Bathroom

97.57%

2.19%

0.04%

0.2%

0%

Bedroom

0%

91.79%

0.21%

7.88%

0.12%

Dining Room

0.2%

0.55%

35.04%

12.09%

52.12%

Living Room

0.83%

40.33%

4.07%

50.95%

3.82%

Kitchen

0%

0.04%

6.31%

1%

92.65%

Table 4.7. Confusion Matrix for Mask RCNN

 Predicted

Scenes

Bathroom

Bedroom

Dining

Room

Living

Room

Kitchen

Actual

Bathroom

95.4%

2.78%

0.42%

0.52%

0.88%

Bedroom

0%

96.85%

0.55%

2.55%

0.05%

Dining Room

0%

19.82%

20.92%

52.4%

6.86%

Living Room

9.11%

31.36%

25.89%

31.62%

2.02%

Kitchen

0%

0.51%

5.99%

0.29%

93.21%

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

68

4.3. NoSquashCapsNet: A Modified CapsNet

In the indoor home scene recognition using the CapsNet task, it is observed that the CapsNet

has a higher number of total trainable parameters of around 160 million. This is too high and

unacceptable because of the added training time taken by CapsNet when compared to CNNs.

The indoor home scene images with dimensions 128x128 in the RGB scale were converted to

grayscale images to reduce the total number of trainable parameters. However, when CapsNet

was trained on grayscale images, the accuracy dropped to an unacceptable level. Higher

trainable parameters also require much higher resources, which are not always readily

available. Therefore, it became necessary to develop a new CapsNet architecture with fewer

trainable parameters.

A new CapsNet architecture is developed and named NoSquashCapsNet.

NoSquashCapsNet is an architecture formed using the concepts of CNNs and CapsNet. The

main components of NoSquashCapsNet are the convolutional layers, Max Pooling layer, and

a capsule layer without a squash function. The performance of NoSquashCapsNet is compared

with CapsNet and CapsNet+ (the architecture of CapsNet+ is similar to NoSquashCapsNet but,

in CapsNet+, the capsule retains the squash function). In training and testing the

NoSquashCapsNet, the dataset is kept the same as that of the CapsNet.

The other main difference between NoSquashCapsNet and traditional CapsNet is that

NoSquashCapsNet is deeper than traditional CapsNet. In traditional CapsNet, there is only one

convolutional layer with ReLU activation for extracting all the required features from data

whereas in NoSquashCapsNet there are multiple convolutional layers. This is to extract the

maximum information from data so that the capsules do not find it difficult to learn the

orientation of extracted features. Hence in NoSquashCapsNet, Max Pool layers are used to

select the most prominent features of the data.

Figure 4.5. The conversion of 256x256 (RGB) image to 128x128 (Grayscale) image

For implementing the work, the same dataset of 20000 training images and 5000 testing

images taken from the Places365 dataset [105] are used. The images are evenly distributed over

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

69

the five different scenes of indoor home. The scene categories are also the same, bedroom,

bathroom, living room, kitchen, and dining room. The RGB images with dimension 256x256

are converted to RGB images with dimension 128x128 using shrinking process [159]. Then

the RGB images with dimension 128x128 are converted to grayscale images of the same

dimension. The RGB to Grayscale conversion is performed using weighted method or

luminosity method (Grayscale image = 0.21R + 0.72G + 0.07B, where, R, G and B are red,

green and blue respectively) [159]. All this is done to reduce the total number of trainable

parameters. The complete process of conversion of images is shown in figure 4.5. The

converted images are used for training and testing the developed NoSquashCapsNet

architecture.

4.3.1. Proposed NoSquashCapsNet Architecture

As discussed, the capsule i.e., the main unit for CapsNet, has three basic functions: affine

transformation, the sum of weights, and squash function. The affine transformation and sum of

weights are essential functions of capsules. These two functions serve the primary purpose of

capturing the orientation of images. The squash function is responsible for performing the unit

scaling of images. The squash function reduces the information vector to between 0 and 1 but

it retains all the information and therefore the CapsNet architecture is cumbersome to train with

too many parameters. CapsNet does not appear to have the means to allow the learning

parameters to concentrate on fewer but the most prominent features of the presented

information.

Figure 4.6. A modified capsule without squash function

Moreover, the squash function keeps the direction of the vectors undisturbed which appears

not to be the best possible way for learning indoor home scenes. Therefore, the squash function

was removed. Introducing Max Pool layers in CapsNet helps in acquiring the important

information and discarding information which is not significant, thus making the training faster

and less complicated. Hence, the squash function was removed and the Max-Pool function was

introduced. The architecture of the capsule without squash is shown in Figure 4.6. The

combination of using both the Max-Pool layer and the squash function is also tested (this is the

CapsNet+ architecture).

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

70

Figure 4.7. Modified Capsule Neural Network (NoSquashCapsNet)

 The NoSquashCapsNet architecture has 14 layers. There are five layers (layers one, three,

five, seven, and nine of NoSquashCapsNet) of three concatenated convolutional layers. Each

concatenated convolutional layer is connected to a subsequent Max Pooling layer (layers two,

four, six, and eight of NoSquashCapsNet). Only the concatenated convolutional layer in the

ninth layer of NoSquashCapsNet is not connected to a Max Pool layer. The ninth layer, the

concatenated convolutional layer, is directly connected to the primary capsule layer. The

eleventh layer of NoSquashCapsNet is the digit capsule. The twelfth and thirteenth layers are

the FC layers. The last layer of NoSquashCapsNet is the classifier layer. The classifier here is

a sigmoid function. The explained architecture is shown in Figure 4.7.

Table 4.8 provides information on different hyperparameters of different layers of

NoSquashCapsNet architecture. Cov1_1, Conv1_2, Conv1_3…...Conv5_1, Conv5_2, Con5_3

are concatenated convolutional layers in the first, third, fifth, seventh and ninth layers of

NoSquashCapsNet, respectively. The reason behind having three convolutional layers in each

layer with same dimension, is to establish feature extraction from whole data parallelly (Each

convolution extracts feature from whole data in every layer). This helps to extract the features

properly from large and complex data. The clearer the features are, the better is the learning

capacity of any neural network.

Keeping a stride of 1 helps in the proper acquisition of information by every convolutional

layer. The padding of each convolutional layer is kept unchanged. The motivation behind

keeping the padding unchanged is to keep the dimension of input and output equal. All the Max

Pooling layers have 2x2 channel size with padding unchanged and stride of 2. Max Pool is here

for the down-sampling of input representation. Both convolutional layers and Max Pooling

layers have a smaller channel size to capture complex and smaller features from the data. This

is because of the higher amount of minute information present in the indoor home scene

recognition. Max pool layer also helps in extracting only the relevant information. The

irrelevant information is discarded. This prevents the neural network from getting

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

71

overwhelmed with information and helps the capsule to extract the relationship between the

extracted features without any confusion.

Table 4.8. NoSquashCapsNet specification table

Layer Name Specifications Strides

Input Image size: 128x128

(Grayscale)

-

Layer-1 Conv 1_1

Conv 1_2

Conv 1_3

Output Concatenated

Filters: 64

Channel Size: 3x3

Padding: Same

1

Layer-2 Max-Pool Channel Size: 2x2

Padding: Same

2

Layer-3 Conv 2_1

Conv 2_2

Conv 2_3

Output Concatenated

Filters: 128

Channel Size: 3x3

Padding: Same

1

Layer-4 Max-Pool Channel Size: 2x2

Padding: Same

2

Layer-5 Conv 3_1

Conv 3_2

Conv 3_3

Output Concatenated

Filters:256

Channel Size: 3x3

Padding: Same

1

Layer-6 Max-Pool Channel Size: 2x2

Padding: Same

2

Layer-7 Conv 4_1

Conv 4_2

Conv 4_3

Output Concatenated

Filters: 512

Channel Size: 3x3

Padding: Same

1

Layer-8 Max-Pool Channel Size: 2x2

Padding: Same

2

Layer-9 Conv 5_1

Conv 5_2

Conv 5_3

Output Concatenated

Filters: 512

Channel Size: 3x3

Padding: Same

1

Layer-10 Primary capsule Number of capsules: 32

Number of channels: 16

Padding: Valid

2

Layer-11 Digit Capsule Number of capsules: 5

Number of channels: 16

Routings: 3

-

Layer-12 FC Layer -1 Number of Neurons: 4096

-

Layer-13 FC Layer-2 Number of Neurons: 4096

-

Layer-14 FC Layer-3 Number of Neurons: 5

Layer-15 Sigmoid Function -

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

72

The primary capsule is on the tenth layer of NoSquashCapsNet. In the primary capsule layer,

there are 5 capsules with 16 channels. The stride in the primary capsule is 2, with padding being

valid. The eleventh layer is the digit capsule layer. The number of primary capsules is also

decided based on the complexity of information. A higher level of complexity in information

requires more capsules. However, it must be noted that a higher number of capsules increase

the total number of training parameters that directly impacts the training/learning by making it

slow and also by decreasing the efficiency of the neural network.

There are 5 digital capsules because there are 5 different indoor home scenes with channel

size 16. The number of iterations of routing is 3. The twelfth, thirteenth, and fourteenth layers

are the fully connected layers. FC layers in the twelfth and thirteenth layers have 4096 neurons,

and the FC layer in the fourteenth layer has 5 neurons. The feature space helps in deciding the

number of neurons in the FC layers. However, the exact number of neurons depends mostly on

thorough experimental analysis to help neural networks work efficiently. The last layer, i.e.,

the fifteenth layer, is the sigmoid function, which is the classifier.

4.3.2. Results for NoSquashCapsNet

As per the analysis, it is clear that NoSquashCapsNet performed better and more efficiently

in learning and recognising indoor home scenes. The accuracy of CapsNet on grayscale images

shows that it ultimately failed to extract any information on the dataset. The accuracy of

NoSquashCapsNet increased significantly as compared to CapsNet performance on grayscale

images, shown in Table 4.9. Number of epochs used to train the mentioned neural networks is

100 with each epoch having 100 iterations. For CapsNet+ and NoSquashCapsNet, the

mentioned accuracy was produced in 81st and 85th epoch respectively and after that the

accuracy did not improve.

Table 4.9. Validation and Testing accuracy of CapsNets

Neural Network

Validation

Accuracy

(%)

Testing

Accuracy

(%)

Trainable

Parameters

(approx.)

Testing

Accuracy

(%)

Testing

Time

(hours)

CapsNet on grayscale images 20 17.2 53 million+ 72.11 10 (approx..)

CapsNet on RGB scale images 71 70 160 million+ 92.4 36 (approx..)

CapsNet+ on grayscale images 64.7 64 30 million+ 93.1 4 (approx.)

NoSquashCapsNet on

grayscale images

70.8 70 30 million+ 94.18 4 (approx.)

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

73

This shows that the Max Pool helps in the acquisition of significant relevant information.

Therefore, it can be concluded that the information processed by convolutional layers and Max-

Pooling layers help the affine transformation and weighted sum to work better. Removing the

squash function restricts the capsule from doing the unit scaling and keeping the direction of

information unchanged. The NoSquashCapsNet and the CapsNet+ were also trained and tested

on RGB images of dimension 256x256 and 128x128. However, the total number of trainable

parameters remained very high (50 million+ approx.) and the accuracy produced in both these

cases remained low (50% approx. in both cases).

According to Table 4.9, CapsNet registered validation and testing accuracy of 20% and

17.2%, respectively, on grayscale indoor home scene images with dimension 128x128. The

total trainable parameters, in this case, were reduced to 53 million+ (approx.). The same

CapsNet produced validation and testing accuracy of 71% and 70%, respectively, on RGB

scale indoor home scene images with dimension 256x256. However, its efficiency remained

low because of the higher total number of trainable parameters, i.e., 160 million+ (approx.).

When used with CapsNet+, the grayscale indoor home scene images produced validation

and testing accuracy of 64.7% and 64%, respectively. The validation and testing accuracy of

NoSquashCapsNet is 70.8% and 70%, respectively. In both cases, the total number of trainable

parameters was around 30 million+ (approx.). Therefore, the difference between the validation

accuracies of CapsNet on RGB scale images and NoSquashCapsNet on grayscale images is

just 0.2%, where the testing accuracy remains the same. However, the efficiency of

NoSquashCapsNet is much higher than the CapsNet’s efficiency (trained and tested on RGB

scale images). This is because NoSquashCapsNet produces the same accuracy with fewer

trainable parameters.

The confusion matrix for NoSquashCapsNet that shows the accuracy for each class is shown

in Table 4.10. NoSquashCapsNet is able to predict the maximum number of bedroom scenes

as it has the highest true-positive percentage of 85.9%. Like traditional CapsNet,

NoSquashCapsNet also does not confuse any bedroom scene with bathroom. In addition to

this, NoSquashCapsNet also does not confuse any living room scene with bathroom. However,

NoSquashCapsNet confused 5.25% of bathroom scenes with bedroom and 3.05% of bathroom

scenes with living room. NoSquashCapsNet confuses the living room scenes with dining room

as 47.2% of living room scenes were wrongly predicted as dining room. Furthermore,

NoSquashCapsNet confuses dining room with living room and kitchen. NoSquashCapsNet

also confuses 10.1% of Bedroom and 15.2 % of kitchen scenes are confused with dining room.

Chapter 4 Traditional CapsNet and NoSquashCapsNet for Indoor Home Scene Recognition

74

However, the important thing to note from the confusion matrix presented in Table 4.10 is that

true-positive outputs for both the dining room and living room increased as compared to

CapsNet. There is a dip in true-positive percentage in bathroom, bedroom and kitchen but is

very minimal.

Table 4.10. Confusion matrix for NoSquashCapsNet

 Predicted

Scenes

Bathroom

Bedroom

Dining Room

Living

Room

Kitchen

Actual

Bathroom

80.1%

5.25%

1.7%

3.05%

9.9%

Bedroom

0%

85.9%

10.1%

0.2%

3.8%

Dining Room

0.15%

0.85%

50.1%

26.6%

22.3%

Living Room

0%

0.5%

47.2%

52.3%

0%

Kitchen

0.35%

0.75%

15.2%

2.1%

81.6%

4.4. Conclusion

Overall, in this chapter, a traditional CapsNet architecture is implemented for indoor home

scene recognition. Further, to improving CapsNet, especially in terms of reducing the total

number of parameters, a new CapsNet called NoSquashCapsNet was developed. During testing

it was found that, even though the overall accuracy of the NoSquashCapsNet remained below

other network structures, this was still a comparable performance and the proposed neural

network does have the advantages of an overall simpler architecture, fewer parameters and

requiring less training data to reach comparable overall accuracy.

In the next chapter, the CapsNet architecture is applied to performing object recognition.

Armed with the already acquired knowledge on CapsNet and NoSquashCapsNet performances,

improvements are made using two new CapsNets architectures, namely 1D-CapsNetA and 1D-

CapsNetB which are developed and tested on 3D object datasets.

75

Chapter - 5

1D CapsNets for Efficient 3D Indoor

Home Object Recognition

5.1. Introduction

In this chapter, CapsNets are used to single 3D object recognition since these types of

networks are good in learning the orientation of 3D objects – a vital process for indoor IAS

applications. For object detection and recognition, the methods used for most neural networks

involve neural network architectures trained on 2D image datasets. This process, however,

appears to have two main limitations. The first limitation is `that there is no guarantee that a

neural network will recognize an object in an orientation other than the orientation which was

presented to the network during training. The second limitation arises because of the first

limitation. To produce higher accuracy, very large datasets of 2D images are required of the

same object in the same condition but in different orientations must exist. However, large

datasets with 2D images with multi-views are not always possible to obtain or easy to handle.

CapsNets require less data to learn about objects because they do not require images with

multiple views of objects. Therefore, efficient training using smaller datasets becomes possible.

Labelling objects in an image using annotations is another problem associated with datasets.

This problem leads to confusion in the neural network during training because of background

inclusion in the annotated objects. Background overlap can happen when multiple objects are

labelled using annotation in the same image. This background overlap which can appear under

different labels can confuse a neural network during training. So, when a system looks at an

object to recognize it from different angles then, anything else falling in the background of the

object creates a problem in proper recognition. For better efficiency a requirement to have

neural networks which can extract feature information and proper orientation from 3D image

datasets are proposed in different research. In the 3D representation of objects, each image

consists of nothing else except one object. This helps the system to understand the object by

looking at it from any view point without having the background issues mentioned above.

In this chapter, CapsNets are developed that are capable of efficiently recognizing 3D indoor

home objects from 3D indoor images, so as to assist indoor robotic devices in performing home

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

76

tasks. Three CapsNet architectures involved are, PointCapsNet, 1D CapsNetA and 1D

CapsNetB. In this chapter therefore, section 5.2 is about PointCapsNet. Section 5.3 introduces

the developed 1D CapsNet A and 1D CapsNetB architectures for 3D indoor home object

recognition. Section 5.4 discusses all the results produced by the developed techniques and

section 5.5 concludes the chapter.

5.2. Proposed PointCapsNet Architecture

PointCapsNet is inspired by the PointNet architecture. The PointNet architecture is

discussed in Chapter-3, section 3.3.6. The original design was developed to recognise 3D

objects after getting trained on point cloud datasets in a 1D array [120]. Point cloud dataset can

be described as a raw 3D dataset that represents any object using a collection of points. Visual

representation of point cloud data of a torus object is shown in Figure 5.1, where each point is

used to represent the surface of the object.

Figure 5.1. An object presented in point cloud format

The point cloud form of the dataset needs to be converted to 3D voxel grids in most cases

in order to train any neural network on 3D datasets — this conversion however results in

increased trainable parameters. A 3D voxel grid is the representation of objects in 3D so that

its x, y, and z coordinates could be known. It is also termed as a counterpart of pixels in 2D

images. Figure 5.2 (a) is the point cloud representation of a toy. The point cloud data is

converted into 3D voxel grid format, shown in Figure 5.2 (b). It can be clearly seen that there

are different voxels in form of cubes that are used to represent the toy. These cubes have x, y

and z coordinates.

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

77

Figure 5.2. (a) An animal shown in point cloud data and (b) The same animal shown in voxel grids

Therefore, the reasons behind using point cloud data are to have lower trainable parameters

and to make the learning process of neural network faster without affecting the overall

accuracy. Point cloud data formats are also used in metrology, modelling of manufacturing

parts, quality inspection, mass customisation and animation. because point cloud data are

supposed to carry the very minimum information of any image which makes the task of

analysing and implementing different tasks easier.

ModelNet-10 and ModelNet-40 datasets are used in this research [117], and both the

datasets are in point cloud form. ModelNet-10 and ModelNet-40 datasets are first converted

from 3D datasets to 1D array datasets. ModelNet-10 is a subset of ModelNet-40 and has all ten

categories of indoor home objects. ModelNet-40 has forty categories of 3D objects, but these

categories represent other objects too - not just indoor home objects, like car, airplane and tent.

ModelNet-40 is not directly related to this work but it is being used here so that comparisons

with other works can easily be made.

In case of PointNet, the point cloud data conversion is not required. Therefore, PointNet

became the base of further development. However, the PointNet architecture is very

complicated because the complete architecture is combination of different neural networks.

The input transformation and feature transformation in Figure 5.4 are performed using T-Net

which is shown in Figure 5.3. T-Net is a regression network [161] which is implemented in

PointNet to predict 3x3 transform matrix [120]. This further helps to predict the affine

transformation matrix at input and feature transform layers by applying coordinates of the input

points. Only predicting affine transformation is not enough to acquire the orientation

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

78

information of 3D objects and also it does not help in acquiring information of an object from

different viewpoints. Further, MLP which itself is a feedforward ANN is also used in different

layers of the PointNet architecture (Chapter-3, section 3.3.6, Figure 3.19). The overall accuracy

produced by PointNet is also low (77.6% & 89.2% on ModelNet-10 and ModelNet-40 datasets

respectively).

Figure 5.3. T-Net Architecture [120]

This led to the development of PointCapsNet shown in Figure 5.4, which is a modified

PointNet architecture enhanced with 1D capsule (primary capsule and digit capsule discussed

in Chapter 4, section 4.2.1), so that it can be directly trained on point cloud data. The conversion

to a 1D array of 3D data (in point cloud form) happens before the data enters the first layer of

neural network for the training process. Therefore, the number of specified points required to

be trained at once for all architectures presented in this chapter is 1024, which is represented

as n in Figure 5.3 and 5.4. This helps in substantially decreasing the trainable parameters

because there is no need to specify the data's input dimension. MLP block in Figure 5.4 is for

identically mapping the higher-dimensional space to input points [120].

Figure 5.4. PointCapsNet (Point Capsule Neural Network) Architecture

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

79

 Max-Pool layer in Figure 5.4 is used to extract the most relevant features and encode the

global feature vectors [120]. Furthermore, the integration of the 1D capsules is done to properly

acquire the orientation information of 3D objects from different viewpoints. During testing, the

performance of PointCapsNet showed significant improvement over the PointNet architecture

for the relevant ModelNet-10 dataset but also a drop in accuracy for the ModelNet-40 (89.43%

and 83.4% respectively). Despite this improvement and change in architecture, PointCapsNet

retained some of the problems that existed in PointNet like capturing of orientation of objects

using T-Nets and presence of combination of different neural networks which did not help with

either training or further performance improvement. Therefore, this led to the development of

different CapsNet architectures that have simpler architecture and improved performance.

5.3. Proposed 1D CapsNet Architectures: 1D CapsNetA and 1D CapsNetB

Despite the improvement shown by the PointCapsNet architecture, it was felt that by

modifying the CapsNet architecture outlined in Chapter 4, a simpler architecture with better

accuracy and less trainable parameters could be achieved. The decision was also taken because

of the limitations or issues associated with PointCapsNet architecture, outlined in the previous

section.

The CapsNet architecture with Max-Pool layer was introduced in Chapter 4 which indicated

superior efficiency in indoor scene recognition. It was therefore decided to use the same

approach to accomplish an efficiency improvement using CapsNet for indoor object

recognition. Furthermore, it was decided to also use some of the methods utilised in the

PointCapsNet architecture which helped to significantly improve performance in indoor object

datasets as shown in the previous section.

A large number of trainable parameters are inevitable in 3D neural networks. The

conversion of the 3D data to 1D array helped to partly mitigate the problem of having many

trainable parameters. Therefore, a similar conversion of 3D data in 1D array format is used in

this case to train the neural networks on the 3D datasets. The CapsNet architectures are,

therefore, also converted to 1D to use the information from 1D array datasets and process it

accordingly.

Two CapsNet architectures, 1D CapsNetA, and 1D CapsNetB were developed, which are

shown in Figure 5.5(a) and 5.5(b) respectively. The position of the Max-Pool layer used is

different in these architectures, which is the only difference between the two 1D CapsNets.

The conversion of CapsNet to accommodate the 1D data meant that a 1D convolutional layer,

a 1D Max-Pool layer, and a 1D capsule combination are used for both the 1D CapsNet

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

80

architectures. With reference to Figure 5.5(a), which shows the schematic diagram of the 1D

CapsNetA architecture, each of the first four layers of this architecture, comprises two

convolutional layers which have concatenated outputs. The input to the subsequent two

convolutional layers is the concatenated output from the previous convolutional layer. The

number of filters in convolutional layers in the first, second, third and fourth layers are 64, 128,

256, and 512, respectively. The filter size of all convolutional layers is 3. The initial

convolutional layers help in extracting the low-level features (like curves, edges and lines). In

the later convolutional layers, the higher-level features (like semicircle, squares and circle) are

extracted using the already extracted low-level features. The Max-Pool layer extracts the most

prominent features and forwards the data to the capsules. The motivation behind placing the

Max-Pool layer after all the concatenated convolutional layers and just before the capsule in

this architecture, is to extract the prominent information only after the higher-level features are

obtained and thus test the accuracy of this architecture in this scenario.

Figure 5.5. Architectures of One-dimensional Capsule Neural Networks (1D CapsNets) with Max-Pool

(a) 1D CapsNetA, (b) 1D CapsNetB

The primary capsule layer is responsible for extracting the orientation of the features and

then resize them. There are 32 capsules in the primary capsule layer, and the channel size is 16

(the working of capsules is discussed in Chapter 4, section 4.2.3 and section 4.2.4). The primary

capsules are equally distributed over the channels. In other words, each channel has two

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

81

primary capsules. The overall arrangement was achieved empirically after trying and testing

several different structures. Before finalising 1D CapsNetA and 1D CapsNetB, the different

arrangements implemented included the integration of Max-Pool layer after every concatenated

convolutional layer, integration of Max-Pool layer after layer 1 and layer 3 and use of three

concatenated convolutional layers in every layer instead of 2. However, the accuracy remained

between 30% to 40%. The acquired information by the primary capsule layer is then sent to

digit capsules using the dynamic routing process (Chapter 4, Section 4.2.4).

The information received by the digit capsules is stored as per the class. The same can be

understood from Figure 5.6, which shows that the lower-level features present in lower-level

capsules (primary capsule layer) are transferred to the higher-level capsules (Digit Capsule

layer) which stores higher-level features using routing by agreement. The number of cells in

DigitCaps is 10 and 40 for ModelNet-10 and ModelNet-40, respectively. This is because

ModeNet-10 has ten classes, and ModelNet-40 has forty classes. The channel size of DigitCaps

is also 16.

Figure 5.6. Transfer of information from Primary Capsule to Digit Capsule

Subsequently, the Fully Connected (FC) layers receive all the information from DigitCaps.

There are 4096 neurons in the first and second FC layers. There are five neurons in the third

FC layer. ReLU activation function is used in all convolutional layers and FC layers. For a

proper output, the softmax layer is incorporated in the architecture so that the output of the

neural networks is probability distribution.

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

82

Table 5.1. Complete specifications of 1D CapsNetA and 1D CapsNetB

Name Specifications 1D CapsNetA

Layers

1D CapsNetB

Layers

Strides

Input

1D ModelNet-10 and

ModelNet-40 dataset

Yes

Yes

-

Conv 1_1

Conv 1_2

Output Concatenated

Filters: 64

Channel Size: 3

Yes, Layer-1

Yes, Layer-1

1

Conv 2_1

Conv 2_2

Output Concatenated

Filters: 128

Channel Size: 3

Yes, Layer-2

Yes, Layer-2

1

Max-Pool

Channel Size: 2

Padding: Same

No

Yes, Layer-3

1

Conv 3_1

Conv 3_2

Output Concatenated

Filters: 256

Channel Size: 3

Yes, Layer-3

Yes, Layer-4

1

Conv 4_1

Conv 4_2

Output Concatenated

Filters: 512

Channel Size: 3

Yes, Layer-4

Yes, Layer-5

1

Max-Pool

Channel Size: 2

Padding: Same

Yes, Layer-5

No

1

Primary capsule

Number of capsules: 32

Number of channels: 16

Channel Size: 3

Padding: Same

Yes, Layer-6

Yes, Layer-6

1

Digit Capsule

Number of capsules: 10&40

Number of channels: 16

Routings: 3

Yes, Layer-7

Yes, Layer-7

-

FC Layer -1

Number of Neurons: 4096

Yes, Layer-8

Yes, Layer-8

-

FC Layer-2

Number of Neurons: 4096

Yes, Layer-9

Yes, Layer-9

-

FC layer - 3

Number of Neurons: 5

Yes, Layer-10

Yes, Layer-10

-

Softmax Function

-

Yes, Layer-11

Yes, Layer-11

-

The work and testing carried out for the 1D CapsNetA architecture helps to form a

hypothesis that low-level features are considerably more than higher-level features. Hence, if

instead of propagating all the low-level features (many of which are duplicated in different

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

83

orientations) to the stages of the higher-level feature extraction, the prominent low-level

features are acquired earlier in the process, which is then likely to make the extraction of

higher-level features easier and far more efficient. On this basis therefore, the second

architecture proposed is the 1D CapsNetB shown in Figure 5.4(b). In Figure 5.4(b) then, the

Max-Pool layer is placed earlier in the overall structure and just after the concatenated

convolutional layers of the second layer. In this case, the prominent features are extracted only

after the first two sets of concatenated convolutional layers. So, the important low-level

features are pooled at an earlier stage. The next two concatenated convolutional layers extract

the higher-level features and send the extracted features to capsules. Here the higher-level

features are less and therefore, the Max-Pool layer is not required after the 5th layer and also

because all the high-level features are needed to properly learn the orientation of each object.

In layers 1, 2, 3 and 4 of 1D CapsNetA, (Conv1_1 and Conv1_2), (Conv2_1 and Conv2_2),

(Conv3_1 and Conv3_2) and (Conv4_1 and Conv4_2) are the concatenated convolutional

layers respectively presented in Table 5.1. The same concatenated convolutional layers in 1D

CapsNetB are in layers 1, 2, 4, and 5, respectively. The dimension of all convolutional layers,

Max-Pool layer, and capsules are of 1D. 1D CapsNetA and 1D CapsNetB have the same

technical specifications. Padding in technical term is kept ‘same’ so that in Max-Pool layer the

input has dimension equal to the output dimension. This is done to utilize the information

acquired from convolutional layers in their original form.

5.4. Results

The presented neural networks’ architectures have fewer trainable parameters than other

available neural networks, i.e., each 1D CapsNet has just over 1 million trainable parameters

to train. On both ModelNet-10 and ModelNet-40 datasets, the best accuracy was produced by

1D CapsNetB. This proves that applying the Max-Pool layer works better when applied earlier

in the process. Notably, comparable outputs have also been produced by PointCapsNet.

However, on the ModelNet-40 dataset, the accuracy PointCapsNet produced was rather low by

comparison. The use of MLP in the initial layers of architecture instead of convolutional layers

for feature extraction can be attributed to the reason behind the lower accuracy level, in this

case.

The performance of many state-of-the-art architectures have been surpassed by the

architectures presented in this chapter in terms of accuracy. However, there are some other

architectures [124-128] that have slightly better accuracy than the proposed 1D CapsNets

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

84

architectures developed in this chapter. Comparing these architectures, it should be noted that

better performance is achieved at considerable cost for a number of reasons.

These reasons include: a) a very high number of training parameters which is between 2 to

250 times the number of parameters present in the 1D CapsNets architectures; b) the

requirement of converting point cloud data into 3D voxel grids, which is one of the main causes

of increased number of trainable parameters; and c) using multiple 2D images (from different

angles) for accurately describing 3D objects which also leads to increase in data and

parameters. Thus, despite slightly higher accuracies, there are problems present on efficiency

grounds for these architectures.

Table 5.2 shows different neural networks’ benchmark accuracies on ModelNet-10 and

ModelNet-40 datasets, the accuracy of the architectures presented in this chapter, the total

number of parameters for each network, and whether multi-view images and point cloud to 3D

voxel conversions are required. 1D CapsNetA, 1D CapsNetB and PointCapsNet produced

accuracies of 92.03%, 91.48% and 89.43% respectively on ModelNet-10, whilst on ModelNet-

40 the accuracies produced are 91.04%, 89.97% and 83.4% respectively. 1D CapsNetA and

1D CapsNetB are developed and trained directly on point cloud datasets, which can perform

3D object recognition tasks. It must be noted that 1D CapsNets architectures have been based

on entirely different concepts in order to develop neural networks with good accuracies and far

better efficiency.

From Table 5.2 it is seen that RotationNet (discussed in Chapter-3, section 3.3.6) displays

the highest accuracy on ModelNet-40 and ModelNet-10 datasets. However, this network uses

multiple views of 2D images to accurately represent 3D objects. The network thus assumes an

availability of multiple view images for all 3D objects which is generally not true. The size of

the dataset used by RotationNet is also much larger. This is contrary to the objective of

achieving better accuracy on a smaller dataset given that, in most practical applications, large

datasets are unlikely to be readily available. The training and learning speed of RotationNet

are also affected because of the number of trainable parameters which is five times higher than

the 1D CapsNets. From Table 5.2 it is also seen that different CapsNets (3D CapsNet

Architectures 1 and 2, and 3D-CapsNets) can be trained only after the point cloud data is

converted to 3D voxel grids. All the CapsNets have reported very high total number of trainable

parameters when compared to the developed 1D CapsNets. In the case of Achlioptas et al.

[123] (Chapter 3, section 3.3.6), the design uses GANs which are also directly trained on point

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

85

cloud data. However, because of the property of the GANs to generate fake images using

random noise, the data gets increased (almost doubled) during the learning process.

Table 5.2. Comparison of different architectures using ModelNet-40 and ModelNet-10 datasets

The confusion matrices display the accuracy for the 1D CapsNetA and 1D CapsNetB on

each class of objects in the ModelNet-10 in Tables 5.3 and 5.4 respectively. The green cells in

both tables show the true positive results, i.e., the correct prediction percentage. The red cells

in both tables show the false-positive results, i.e., the wrong prediction percentage. The true

Neural Network

ModelNet-40

Accuracy (%)
ModelNet-10

Accuracy (%)

Total

Number of

Parameters

Multi-view

images

required

Point cloud to 3D

voxel conversion

required

1D CapsNetB

91.04 92.03

1 million

(approx.)

No

No

1D CapsNetA

89.97 91.48

1 million

(approx.)

No

No

PointCapsNet

83.4
89.43

1 million

(approx.)

No

No

3-D CapsNet

Architecture-1

[131]

88.67 91.48

200 million

(approx.)

No

Yes

3-D CapsNet

Architecture-2

[131]

89.66
91.37

200 million

(approx.)

No

Yes

3D Capsule [132]

92.7

94.7

150 million

(approx.)

No

No

3D-CapsNets

[130]

82.73

93.08

250 million

(approx.)

No

Yes

RotationNet [116]

97.37

98.46

5 million

(approx.)

Yes

No

Achlioptas et al.

[123]

84.5

95.4

2 million

(approx.)

GAN used

(Data

increases)

No

PointNet 89.2 [120] 77.6 [119]

880K

(approx.)

No

No

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

86

positive values of confusion matrices show that most of the predictions for each class were

correct. However, the false-positive results for each class obtained show that some closely

related objects were wrongly detected. For example, in Table 5.3, the object table, was

confused with the object desk in 9.47% of cases.

Table 5.3. Confusion matrix for 1D CapsNetA on ModelNet-10 (values are in %)

 Predicted

 Objects Bathtub Bed Chair Desk Dresser Monitor Night

Stand

Sofa Table Toilet

Actual Bathtub 92.9 0 3.2 0 0 0 0 0 0 3.9

 Bed 0 90.2 0 0 0.3 0 0 5.56 4.12 0

 Chair 0 0 93.7 0 o 0 0 0 0 6.3

 Desk 0 0 0 88.4 0 0 0 0 11.6 0

 Dresser 0 0 0 11.24 85.6 0 0 0 3.16 0

 Monitor 0 0 2.23 3.27 0 89.3 0 0 5.2 0

 Night

Stand

0 0 0 14.72 0 0 84.1 0 4.18 0

 Sofa 0 0.81 8.24 0 0 0 0 90.95 0 0

 Table 0 0 0 9.47 0 0 0 0 90.53 0

 Toilet 5.96 0 0.02 0 0 0 0 0 0 94.02

Table 5.4. Confusion matrix for 1D CapsNetB on ModelNet-10 (values are in %)

 Predicted

Actual Objects Bathtub Bed Chair Desk Dresser Monitor Night

Stand

Sofa Table Toilet

 Bathtub 95.24 0 0.12 0 0 0 0 0 0 4.64

 Bed 0 92.45 0 0 0 0 0 5.19 2.36 0

 Chair 0 0 93.77 2.01 0 0 0 1.06 0 3.16

 Desk 0 0 0 87.68 4.6 0 6.52 0 1.2 0

 Dresser 0 0 0 4.16 84.4 0 7.9 0 3.54 0

 Monitor 0 0 0 0 0 93.47 0 0 6.53 0

 Night

Stand

0 0 0 5.85 6.99 0 86.11 0 1.05 0

 Sofa 0 0 10.67 0.47 0.53 0 0 88.33 0 0

 Table 0 0 0.65 3.01 1.16 0 1.99 0 93.19 0

 Toilet 2.23 0 1.95 0 0 0 0 0 0.06 95.76

The same class table, in Table 5.4, is confused with chair, desk, dresser and nightstand. In

both cases, toilet, which is commode, shows the highest level of accuracy (according to the

percentage it acquired). However, many of the commodes are also wrongly classified as

bathtubs which can be attributed to the similarities in their shape. Therefore, objects which

have quite similar shapes can confuse the neural networks. Dresser had the lowest true positive

prediction percentage. The dresser is confused with desk, night stand and table as they all are

very similar in shape. Moreover, in the case of 1D CapsNetA, chair is the only object that is

confused with the toilet (commode). In the case of 1D CapsNetB, the monitor is the only object

that it is confused with the table.

Chapter 5 1D CapsNets for Efficient 3D Indoor Home Object Recognition

87

5.5. Conclusion

The work presented in this chapter shows that the difficult task of 3D object recognition

with good levels of accuracy, fewer trainable parameters, and using smaller datasets is

achievable through the 1D CapsNets architectures which differ only in the Max-Pool layer.

These architectures use point cloud dataset to train the parameters. This is achieved through a

combination of convolutional layers, a Max-Pool layer, and capsules which help to extract the

information directly from the point cloud dataset. Overall, the highest level of 3D object

recognition can be performed by the neural networks, 1D CapsNets, which are more efficient,

leaner, and less complicated.

The designed 1D CapsNetA and 1D CapsNetB can detect only one object at a time. This

helps an IAS to identify objects in any orientation as required. Now that the means of

identifying objects in any orientation has been developed, the next chapter concentrates on the

development of a more efficient indoor home scene recognition system using CNN. The

developed technique in this chapter can then be used in conjunction with the CNN scene

recognition architecture to assist IAS systems in identifying indoor areas and locate objects as

required.

88

Chapter – 6

A CNN Combination for Scene

Recognition and Conjunction with 1D

CapsNet for General Object Detection

6.1. Introduction

In chapter 4, using NoSquashCapsNet, indoor home scene recognition was developed but

the accuracy produced, although adequate for many tasks, it is not the best it could be achieved.

However, the same is true with other techniques that were compared as there was not much

difference in accuracy between NoSquashCapsNet and the other approaches. In this chapter, a

CNN system is used to affect an indoor home scene identification (e.g., bedroom, living room,

etc.) through multiple object recognition, all in their expected orientations.

 In this chapter, section 6.2 discusses the main reasons behind the object detection for scene

recognition. Section 6.3 is about the development of pretrained Mask-RCNN and CNN

combination for indoor home scene recognition using combinations of objects available in the

scenes. It should be noted that the objects are expected to be in their intended orientation as

this combination will not deal with varying objects orientations. Section 6.4 discusses the

produced outputs by the developed CNN combination. Section 6.5 concludes the chapter.

6.2 Reason behind using object recognition for indoor home scene recognition

Literature shows that, scene and object recognition tasks are considered different tasks, and

for this reason, they have always been treated as separate entities (Chapter 3, section 3.3.3,

3.3.4, 3.3.5 and 3.3.6). The works that have implemented scene recognition using object

detection have either used techniques like adaptive object detection (Chapter 3, section 3.3.5)

[107, 108] or have only partially used neural networks [137, 138]. The partial use of neural

networks can be understood form the work presented in [137] in which Fast-RCNN [97] is

used to first detect objects in different scenes. Then using the results obtained from Fast-

RCNN, two techniques COOR (co-occurring frequency of object-to-object relation) and SOOR

(sequential representation of object-to-object relation) are developed to establish object-to-

Chapter 6 A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for General Object Detection

89

object relationship. The established object relationships using COOR are then used to train

SVM (support vector machine) for scene classification, whereas, in case of SOOR, first the

established object relationships are encoded using RNN (Recurrent Neural Network) and then

MLP (Multi-Layer Perceptron) is used for scene classification. This whole technique still

produced very low accuracy (from 50% to 66.9% on different datasets).

It can be argued that scene recognition is more complex than object recognition. In object

recognition, a neural network has to learn only one object at a time, whereas in a scene, a neural

network has to learn a complete scene as a whole. In other words, in learning scenes, systems

have to learn all the patterns within the image of a scene without special consideration for

objects present. Further, in scene recognition tasks, similarities between different scenes make

the learning process for a neural network difficult. Naturally, the number and type of patterns

present in scenes are more complex than they are for individual objects.

Water Bottle

Living Room Scene

Figure 6.1. An image of a water bottle and a living room

This could be easily understood from the water bottle and the living room scene images

shown in Figure 6.1. From Figure 6.1, it is clear that a neural network, when shown the image

of the water bottle, has to learn the patterns of only the water bottle, but when the neural

network is shown the image of a living room then it has to learn the patterns associated with

the concept of a living room (i.e., combined pattern of sofa, armchairs, fireplace, etc).

However, it also includes in the learning process the patterns of other things that are not directly

relevant, such as the patterns of windows, for example. Clearly such generic pattern

combinations can also be present in other home scenes, thus making the task of establishing

the distinction between different indoor home scenes very challenging. As a result, while

attempting to recognise indoor home scenes, a neural network could confuse one indoor home

scene with another if the overall patterns in the scenes are close. However, the situations

occurring in a scene do not occur when learning to recognise individual objects. Learning

objects to recognize scene could be done using instantaneous segmentation which is discussed

Chapter 6 A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for General Object Detection

90

in section 6.3. Nonetheless, indoor home scene evaluation through recognition of associated

objects in the scene using only neural networks has remained mostly unexplored. Yet, this

appears to be a natural way of achieving high levels of accuracy of scene recognition since the

presence of certain objects usually betrays the use of a home room or area. Therefore, in this

chapter (section 6.3), a pretrained Mask-RCNN [103] is used for multiple object detection and

then a CNN is connected to the output of the Mask-RCNN to predict the scene as per the output

of the Mask-RCNN.

6.3. Pretrained Mask-RCNN and CNN combination

In this section, a pre-trained Mask-RCNN is used to perform multiple object detection in

2D. The motivation behind using a pre-trained Mask-RCNN is to utilise the concept of transfer

learning [139]. Mask-RCNN has been discussed in Chapter 3, section 3.3.6. The architecture

of the Mask-RCNN is shown in Figure 6.2.

Figure 6.2. Mask-RCNN Architecture [103]

The mask present in the Mask-RCNN enables the CNN to perform instance segmentation

which helps to recognise all objects, different or similar, separately. The Instance segmentation

performed by the pre-trained Mask-RCNN on the COCO dataset is the main reason behind

using Mask-RCNN. This helps in extracting the information of all the objects present in an

indoor home scene.

Chapter 6 A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for General Object Detection

91

Figure 6.3. A dining room scene showing instance segmentation [162]

The instance segmentation can be better understood from Figure 6.3, in which a dining room

scene is shown. In instance segmentation, it can be seen clearly that all objects present in the

scene are recognised separately, whereas in semantic segmentation, similar objects are

recognised as a single entity. Therefore, for accurate indoor home scene recognition through

object detection instance segmentation is important so that all objects present are recognised

separately, which, in turn, helps a neural network to properly learn the combination of objects

within a scene. Overall, the Mask-RCNN performs an identification of objects in 500 different

images of bathrooms, bedrooms, dining rooms, living rooms and kitchens. From Places365

dataset 500 indoor home scenes (100 images for each of the 5 scenes) are extracted.

Figure 6.4. Objects in kitchen recognised by Mask-RCNN

Figure 6.4, represents an output produced by Mask-RCNN. In Figure 6.4, the Mask-RCNN

has recognised objects associated with a kitchen. The recognised objects are represented in lists

as, for example, [42, 44, 46, 70], where 42, 44, 46 and 70 are cup, knife, bowl and cooker

respectively. In this way, the pre-trained Mask-RCNN is used to produce 100 combinations of

various objects for each indoor home scene category (bathroom, bedroom, kitchen, living room

and dining room). The 500 combinations obtained are converted into a dataset. Mask-RCNN

produces the output in a sorted form. The object detected by Mask-RCNN are always in

Chapter 6 A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for General Object Detection

92

ascending order which can be seen in Figures 6.4, 6.8, 6.9, 6.10, 6.11 and 6.12. Each

combination is provided with a label, either bathroom, bedroom, dining room, living room, or

kitchen. The CNN is then trained using the obtained labelled data. For training and validation,

80% and 20% of data are used, respectively. The process can be seen in Figure 6.5.

Figure 6.5. Training process for indoor home scene recognition using object detection

The CNN used in this process is one-dimensional because the obtained data is one-

dimensional. The architecture of the developed CNN is shown in Figure 6.6. The reason behind

not using transfer learning for implementing a CNN is because the approach of using the indoor

home dataset obtained from a Mask-RCNN to train a CNN has never been used before.

Although there are CNNs pretrained on various objects, there are no CNNs available which

have been trained on combinations of objects which is how this dataset has been generated.

Therefore, this proves the novelty of the work presented in this chapter as it uses a CNN to

evaluate scenes form combinations of objects generated by another CNN (in this case the

Mask-RCNN). Hence, this approach establishes a technique to perform scene recognition from

object recognition using only neural networks.

Before selecting the shown CNN architecture in Figure 6.6, many different architectures

were tried and tested. CNN architectures with 1, 2, 4, 5 and 6 convolutional layers were used.

When the convolutional layers used were either 1 or 2, the accuracy produced was around 55%.

When the number of convolutional layers was increased to 4, 5 or 6, then the accuracy was also

found to be between 50-60%. Pooling layers were also used to improve the performance of the

mentioned architectures but the accuracy remained low. Along with the increase and decrease

in the number of convolutional layers, fully connected layers with varying numbers of neurons

were also tested. However, making variations in fully connected layers also did not help to

improve CNN's performance on the required dataset.

The CNN shown in Figure 6.6 was also tried and tested using different numbers of filters

and different filter sizes for convolutional layers resulting in CNN producing only 40-50% of

accuracy. Therefore, after much experimentation, the CNN architecture shown in Figure 6.6

was chosen as it produced good results as compared to other aforementioned architectures.

Chapter 6 A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for General Object Detection

93

Figure 6.6. CNN developed for Scene Recognition

Table 6.1. CNN architecture specifications

Layers No. of Filters/Neurons Filter Size Activation Function

Conv1 16 filters 3 ReLU

Conv2 32 filters 3 ReLU

Conv3 64 filters 3 ReLU

FC layer-1 4096 neurons - ReLU

FC layer-2 4096 neurons - ReLU

FC layer-3 n-outputs (5) - Softmax

As shown in Table 6.1, the CNN architecture contains three 1D convolutional layers: Conv1,

Conv2, and Conv3. All Conv layers have the same filter size of 3. The number of filters for

Conv1, Conv2, and Conv3 is 16, 32, and 64, respectively. All Conv layers have ReLU

(Rectified Linear Unit) activation function, and no padding has been used in any Conv layer.

There stride is 1 for all convolutional layers. After Conv3 layer, there are three FC (Fully

Connected) layers. The first and second FC layers have 4096 neurons with ReLU activation

function. The third FC layer has neurons equal to the output, which is 5, with a softmax

function.

The combination of the pre-trained Mask-RCNN and the trained CNN used for testing is

shown in Figure 6.7. From the Places365 dataset [105], 24000 images are used for testing. The

images are evenly distributed among the bathroom, bedroom, dining room, living room and

kitchen. As already indicated, the object combinations are produced by the Mask-RCNN, and

these then become the input for the CNN which, in turn, predicts the indoor home scene.

Figure 6.7. Working of Mask-RCNN and CNN

Chapter 6 A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for General Object Detection

94

6.4. Results for Mask-RCNN + CNN combination

After training, the proposed structure produced an accuracy of 97.14%, as indicated in Table

6.2. When compared to other works on scene recognition this is the highest accuracy reported

whilst also using more scenes (5 in total) than other methods. The reason behind higher

accuracy is, the CNN (which identifies indoor home scenes based on combinations of objects

generated by Mask-RCNN) is trained on a statistical dataset that represents different recognised

object combinations for different scenes. The task performed by the proposed technique is

faster and much simpler than other mentioned techniques. This is because of the very low

number of trainable parameters of CNN (10,000 -15,000 approx.), a very small dataset to train,

and the use of transfer learning (pre-trained Mask-RCNN). Therefore, learning 500 object

combinations (produced by Mask-RCNN) by CNN takes only 30 minutes when trained using

4 Nvidia 1080Ti GPU (Graphic Processor Units). Further, the problem of the presence of

similar objects in different indoor home scenes is eliminated because, in this technique, objects

present in the scene are used to recognise the scenes, instead of dealing with the scene as a

whole (discussed in section 6.1, Figure 6.1).

The accuracies produced by EfficientNet in Afif et al. [115] are 95.6% on the MIT67 dataset

[9] (bathroom, bedroom, kitchen, and living room) and 97% on Scene 15 dataset (bedroom,

kitchen, and living room). CLM (CodeBookless Model) [112] tested on the same Scene 15

dataset [114] like Afif et al. [115] produced 90% accuracy. However, other than the proposed

structure, all the mentioned techniques in this paragraph were trained on mixed indoor scenes

(i.e., the dataset included other indoor scenes along with indoor home scenes). Like the

EfficientNet and CLM are trained MIT67 dataset [9], which is a mixed scene indoor dataset

and then tested only on indoor home scenes of MIT67 dataset.

Table 6.2. Comparison of accuracies of different neural networks used for scene recognition

Neural Network Accuracy (%)

Proposed Method (Mask-RCNN + CNN) (5 home scenes) 97.14

Afif et al. EfficientNet (4 home scenes) [115] 97

Afif et al. EfficientNet (3 home scenes) [115] 95.6

ImageNet-GoogLeNet [105] 96.13

Places365-VGG [105] 92.99

Hybrid1365-VGG [105] 92.15

CLM [112] 90

Places401-Deeper-BN-Inception [106] 86.7

Unified-CNN [104] 51.7

Chapter 6 A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for General Object Detection

95

Some other neural networks which produced good accuracies on indoor scenes (this includes

indoor home scenes along with other indoor scenes) are ImageNet-GoogLeNet with 96.13%

on Event8 dataset, Places365-VGG with 92.99% on SUN attribute dataset [140], Hybrid1365-

VGG with 92.15% on Scene 15 dataset, and Places401-Deeper-BN-Inception with 86.7% on

MIT67 dataset [9]. Unified-CNN produced an accuracy of 51.7% in scene recognition tasks,

whereas it had 52.7% accuracy for object detection. All mentioned neural networks are CNNs

trained on very large datasets to acquire the highest possible accuracy. The mentioned

techniques in this paragraph, are trained and tested on mixed scene datasets like the Places365

dataset [105] which has millions of scene images of both outdoor and indoor. However, as

already mentioned, Places401-Deeper-BN-Inception is tested on MIT67 dataset [9], which is a

mixed indoor scene dataset.

Table 6.3. Confusion matrix for indoor home scene recognition by designed CNN

 Predicted

Scenes

Bathroom

Bedroom

Dining

Room

Kitchen

Living

Room

Actual

Bathroom

98%

0.5%

0%

0.9%

0.6%

Bedroom

0%

98.1%

0%

1.9%

0%

Dining Room

0%

0%

94.25%

5.75%

0%

Kitchen

0%

0%

1.8%

98.2%

0%

Living Room

0%

0%

2.85%

0%

97.15%

A confusion matrix was obtained to examine the class-wise indoor home scene prediction

done by the CNN, as shown in Table 6.3. The green cells of the table are true positive results,

i.e., the green cells show the percentage of accurate prediction for each class. The red cells

show the false-positive results, i.e., the percentage of wrong predictions. The wrong

classification might have happened because of the insufficient presence of objects in respective

scenes or they could be because of high number of object similarities between scenes.

The correctness of the developed method is checked by using random images. In indoor

home scenes, similarities and often duplication of objects exist. Hence, the method is tested if

it can clearly distinguish between indoor home scenes despite such similarities. Figure 6.8 is

the image of a living room. There are red rectangles in the living room image that indicate the

Chapter 6 A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for General Object Detection

96

objects detected in the living room scene. The objects detected in Figure 6.8 are represented as

[57 58 59 74 76], where 57, 58, 59, 74 and 76 represent a chair, couch, potted plant, book and

vase, respectively.

Figure 6.8. Scene recognition through object recognition in living room

The numbers below the object combination list in Figure 6.8 represent the probabilities of

the scenes in order, [bathroom bedroom dining-room kitchen living-room] which are assigned

the numbers [0 1 2 3 4]. In this case, the highest probability is given to the living-room by the

CNN, represented as “[4]” - which indicates a correct prediction. In Figure 6.8, there are objects

like a flower vase, chair and books in the living room scene. These are the objects which can

be found in any other indoor home scene. Still, the CNN responsible for predicting the indoor

home scene using the object combination correctly predicts the indoor home scene.

Figure 6.9. Scene recognition through object recognition in bedroom

Figure 6.9 is the image of a bedroom. In the bedroom image, there are red rectangles that

indicate the objects detected. The objects detected in Figure 6.9 are represented as [42 59 60

Chapter 6 A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for General Object Detection

97

76], where 42, 59, 60 and 76 represent cup, potted plant, bed and vase, respectively. Below the

object combination numbers in Figure 6.9 represent the probabilities of the scenes. The CNN

produces highest probability for bedroom and produces “[1]” as output, which is a bedroom.

Therefore, the prediction is correct.

Figure 6.10 Scene recognition through object recognition in bathroom

Figure 6.10 is the image of a bathroom. In the bathroom image, there are red rectangles that

indicate the objects detected. The objects detected in Figure 6.10 are represented as [40 59 62

72 76], where 40, 59, 62, 72 and 76 represent bottle, potted plant, toilet, sink and vase,

respectively. Below the object combination numbers in Figure 6.10 represent the probabilities

of the scenes. The highest probability is given to the bathroom in this case by CNN, represented

as “[0]”. The prediction is correct. In Figure 6.10, an object like bottle, can be found in any

indoor home scene, is detected in the bathroom scene. This shows that CNN has learnt the

object combinations associated with the bathroom correctly.

Figure 6.11. Scene recognition through object recognition in the dining room

Chapter 6 A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for General Object Detection

98

Figure 6.11 represents a dining room. In the image the red rectangles represent the objects

detected by the Mask-RCNN. The detected objects are represented as [46 57 59 61 76] where,

46, 57, 59, 61 and 76 represent bowl, chair, potted plant, dining table and vase respectively.

On the basis of predicted object combination by the Mask-RCNN, CNN predicts the scene as

“[2]” which is a dining room – a correct prediction. The scene is predicted correctly despite the

presence of objects like bowl and potted plant, where, a bowl can also be in a kitchen and a

potted plant can be present anywhere in the home. This shows that the CNN has been able to

learn the exact combination of objects that constitute a dining room.

Figure 6.12. Scene recognition through object recognition in kitchen

Figure 6.12 is the image of a kitchen. In the kitchen image, there are red rectangles that

indicate the objects detected. The objects detected in Figure 6.12 are represented as [1 40 64

69 70 73 75], where 1, 40, 64, 69, 70, 73 and 75 represent background objects, bottle, laptop,

microwave, oven, refrigerator and clock, respectively. Below the object combination numbers

in Figure 6.12 represent the probabilities of the scenes. The highest probability is given to the

dining room in this case by CNN, which is represented as “[3]”. The prediction is correct. The

thing to be noted in Figure 6.12 is that objects like laptop and wall clock are detected. A laptop

is an unusual object to be found in the kitchen. Moreover, a wall clock is an object that can be

found in any indoor home scene. Still, CNN, through the obtained object combination, detects

the scene properly. This shows that CNN has learnt the exact object combination associated

with the kitchen. The results discussed show that a robust system for indoor home scene

recognition has been developed.

Chapter 6 A CNN Combination for Scene Recognition and Conjunction with 1D CapsNet for General Object Detection

99

6.5. Conclusion

This chapter presented indoor home scene recognition technique through object recognition

using only neural networks. The developed CNN combination technique produced the best

accuracy and helped in solving the problem of high similarity between different indoor home

scenes. This will enable an IAS to perform an indoor home scene and object recognition tasks

smoothly. The obtained high degree of accuracy illustrates the effectiveness of the proposed

scheme.

100

Chapter – 7

Conclusion and Future Works

7.1 Conclusion

This thesis addresses issues associated with indoor home scene and object recognition

related to IAS (Intelligent Assistive Systems) which are designed to assist elderly and/or infirm

people by way of accomplishing tasks associated with indoor activities and/or locating and

transporting objects. New and novel approaches for indoor home scene recognition and object

recognition using different deep learning techniques have been developed and their

performance has been evaluated and compared to other existing methods. The thesis

concentrates on different CapsNets (Capsule Neural Networks) architectures which have been

developed and used to perform efficient scene and object recognition separately. These

different CapsNets architectures are the NoSquashCapsNet used for indoor home scene

recognition, and the 1D CapsNets used for 3D indoor object recognition. Further improvement

in indoor home scene recognition was achieved by combining a purposely designed CNN

architecture with a Mask-RCNN existing design to produce very high accuracy in indoor scene

recognition. Finally, the 1D CapsNet and the combined Mask-RCNN + CNN structures are

merged so that an IAS can use them together to accurately identify the indoor area surrounding

it and any objects which are required and which may be in any orientation.

Chapter 2 of this thesis describes, based on the literature review, why there is a need for

assistive systems. Further, it goes on to outline different existing indoor systems designed to

assist elderly and infirm people. These indoor systems involve mobile systems available

(section 2.3.1), different fall detection systems (section 2.3.2) and different systems available

for navigation in indoor home environments (section 2.3.3). The review of different indoor

systems helped to understand the need for developing efficient scene and object recognition

techniques for assistive systems. The review also helped to understand why deep learning

techniques will be the most appropriate for developing efficient techniques for IAS.

An extensive literature review on different techniques available for scene and object

detection is provided in Chapter 3. Furthermore, chapter 3 also explains, in some detail, the

basics of CNN and CapsNet. Most of the techniques discussed are based on deep learning

techniques implemented for scene and object detection. The review of different techniques

Chapter 7 Conclusion and Future Works

101

helps to understand that, in the case of indoor home scene recognition, there is not a wide

availability of methods which are trained and tested only on indoor home scenes. The idea of

CapsNet was explored in an attempt to perform both scene and object recognition using just

one system. CapsNet is ideal for 3D object recognition because of its ability to learn the

orientation of objects at no extra computational cost. Another research area which was

important to explore was the use of only deep learning techniques to perform scene recognition

using object detection. This topic not only had remained largely unexplored, but the

techniques used for scene recognition using object recognition had proved not very efficient

and produced low accuracy. The review helped to understand that there is lack of efficient

learning techniques. The available deep learning approaches are not capable of producing

higher accuracy when trained on smaller datasets and also do not have lower number of

trainable parameters even though they are trained on smaller datasets.

In Chapter 4, an indoor home scene recognition is developed using CapsNet. The traditional

CapsNet is implemented for indoor home scene recognition in section 4.2.5. The performance

of the CapsNet is compared with Mask-RCNN, Fast RCNN and Faster RCNN. The CapsNet

was able to produce an accuracy which is comparable to the aforementioned methods but

somewhat below the accuracies of Fast-RCNN and Faster-RCNN (section 4.2.7, Table 4.2).

Nonetheless when the training dataset was reduced to 5000 images, the CapsNet accuracy was

not affected. By contrast, the accuracy of all the other neural networks dropped substantially.

The ability of the CapsNet to retain the accuracy despite the substantial reduction in the amount

of data within the dataset showed that CapsNets can produce better accuracy on smaller

datasets (section 4.2.7, Table 4.3). However, CapsNet had too many trainable parameters, over

160 million. The higher number of trainable parameters of CapsNet possibly aid to reach a

saturation level but no conclusive evidence is available for the same. Therefore, this led to the

development of NoSquashCapsNet (section 4.3.2, Figure 4.7). In the NoSquashCapsNet

architecture, capsule without squash function is used and pooling layers are introduced in

CapsNet architecture. Squash function restricts the direction of vectors from being changed.

Removing squash helps in removing that restriction. Introduction of Max-Pool layers in the

architecture helps in further mitigating the problem of high numbers of trainable parameters.

NoSquashCapsNet produced equivalent accuracy to that of traditional CapsNet. However,

NoSquashCapsNet proves to be more efficient than traditional CapsNet because it has total

number of trainable parameters of 30 million+ (section 4.3.3, Table 4.9). The confusion

matrices (Table 4.4, 4.5, 4.6 and 4.10) also helped to understand that capturing a scene image

Chapter 7 Conclusion and Future Works

102

as a whole (learning the patterns of the whole scene) confuses the neural networks, resulting in

lower accuracy. Overall, then, in scene recognition (e.g., a room) orientation is not a

requirement as the main objects which dictate the type of scene are always as expected (tables,

chairs, etc,). As a result, in this case, the orientation advantage of CapsNet-based architecture

is not so important and it was deduced that this architecture did not offer much improvement

compared to other methods, apart from not requiring large datasets for a comparable

performance. An improved method of obtaining accurate scene recognition is presented in

Chapter 6 where indoor home scene recognition is performed using object recognition.

The knowledge acquired on CapsNets in Chapter 4 helped to further develop CapsNets for

3D object recognition in Chapter 5. There are two CapsNets developed in Chapter 5, 1D

CapsNetA and 1D CapsNetB (section 5.3, Figure 5.4). The reason behind developing 1D

CapsNets is to utilise the point cloud dataset so that the total number of parameters remains

low by avoiding the conversion of the point cloud dataset to 3D voxel grids (section 5.2).

Further, the development of 1D CapsNet enables to have better accuracy on smaller dataset.

The reasons behind producing better accuracy on smaller dataset are, (a) the information

supplied is in 3D and, (b) the CapsNet’s ability to capture objects’ orientation. The idea of

using point cloud dataset is derived from the PointNet (Section 5.2). PointNet became the basis

of further development of better architectures. However, PointNet has a complicated

architecture. Therefore, this led to the development of PointCapsNet architecture (Figure 5.3).

When compared to PointNet, PointCapsNet produced better accuracy on ModelNet-10 but a

drop in the case of ModelNet-40 indicating that this was a better architecture for 3D object

recognition. However, the problems present in PointNet still existed in PointCapsNet like

learning an objects’ orientation using T-Nets and presence of combination of different neural

networks which did not help with either training or further performance improvement (Section

5.2). Therefore, this led to the development of the 1D CapsNet architectures.

The difference between the two 1D CapsNet architectures is only the position of the Max-

Pool layer. On both datasets, 1D CapsNetB produced the better accuracy (91.04% on

ModelNet-40 and 92.03% on ModelNet-10) compared to the 1D CapsNetA (Table 5.2). 1D

CapsNet has one of the best performances but it has less total number of trainable parameters

as compared to other methods (Table 5.2). Both 1D CapsNets have substantially reduced

trainable parameters because: (a). Capsules are used in 1D, (b). the data in 1D array format and

(c). because of the introduction of Max-Pool layer. Hence, it can be concluded that efficient

architectures for object recognition have been developed with better accuracy despite having

Chapter 7 Conclusion and Future Works

103

less trainable parameters and being trained on a smaller dataset. The best part about the

developed architectures is that they are capable of recognising the objects presented to them in

any orientation because of the properties of the capsule (section 4.2.3, 4.2.4 and 5.3) and the

use of 3D datasets for training.

It can be concluded from Chapter 4 and 5 that CapsNets are very efficient in learning the

orientations but are less efficient in learning scene arrangements. Moreover, from the newly

designed CapsNet architectures (NoSquashCapsNet, 1D CapsNetA and 1D CapsNetB) it is

clear that CapsNets performed well when pooling layers were integrated into them. Further, it

is also shown that CapsNets architectures with lower trainable parameters can achieve better

accuracy.

Chapter 6 of this thesis illustrates scene recognition through multiple object detection and

how to combine the scene recognition with object recognition irrespective of object orientation.

The pre-trained Mask-RCNN is chosen to perform the object recognition because it can

perform instance segmentation and it was readily available through transfer learning (section

6.3). Object recognition was performed using pre-trained Mask-RCNN on 500 different indoor

home scenes. This helped to generate a unique dataset which represented different objects

recognized in a particular scene (section 6.3, Figure 6.4). A CNN was then developed which

can be trained on the generated dataset to perform the indoor home scene recognition (section

6.3, Figure 6.6). After training the CNN, its input is connected with the output of the pre-trained

Mask-RCNN (section 6.4, Figure 6.5). The developed combination was tested on 24000

different indoor home scenes and produced the highest accuracy compared to other existing

techniques (section 6.4, Table 6.2). Therefore, it can be concluded that a complete system has

been developed which solves the problem of accurate and efficient indoor home scene and

object recognition in IAS.

The results obtained for indoor home scene and object recognition show that, in this thesis,

efficient techniques with better accuracies have been developed which can use smaller datasets

for training and which have less total number of trainable parameters and, therefore, they

require less training time and effort. A unique development has also been produced which uses

only neural networks to perform indoor home scene recognition through object recognition.

This development helps to substantially reduce problems in indoor home scene recognition

such as requirements of large datasets, slow training process, use of same scene and object

images from different angles, etc. These are the advantages which can help IAS to perform the

tasks much faster and with substantially less effort. Furthermore, the developed techniques now

Chapter 7 Conclusion and Future Works

104

enable an IAS to move within an indoor home environment more efficiently, through the use

of the Mask-RCNN+CNN method. At the same time an IAS can also recognise any object

present in any orientation using 1D CapsNet. However, further work could be carried out to

improve the developed techniques presented in this thesis. This is discussed in the next section.

7.2. Future Works

There are many aspects associated with the work presented in the thesis that could be

explored further,

• In Chapter 4, it is seen that the accuracy of CapsNets did not drop when the dataset was

decreased but the accuracy also did not improve when the data in the dataset was

increased which potentially points to a saturation level of CapsNets. This needs further

investigation to reach a conclusive reason for why this happens in CapsNets. If the

reason behind accuracy saturation becomes known, it may help to further improve the

performance of CapsNets. The same applies to the 1D CapsNets presented in Chapter 5.

• In Chapter 5, developed 1D CapsNets can recognise only one object at a time. Therefore,

as it stands, the present development is incapable of performing multiple object

detection like the Mask-RCNN shown in Chapter 6. Should CapsNet become capable of

performing instance segmentation and semantic segmentation. CapsNet can be

developed in way such that it is able to show the objects recognised using bounding

boxes. This can help to replace the Mask-RCNN in our architecture.

• In Chapter 6, combination of CNNs to perform indoor home scene recognition using

object recognition. Instead of having a combination of neural networks to perform the

required task, single neural network must be developed that can itself perform indoor

home scene recognition by recognising the objects present in the scene. This could

replace the developed Mask-RCNN+CNN combination. However, this will require

development of a completely new neural network that can perform two tasks which

presently does not exist.

• Datasets are the most important single part in deep learning for creating an efficient

system. Therefore, the above-mentioned future works can be implemented using the 3D

indoor environment dataset developed by Matterport and recently made available for

Chapter 7 Conclusion and Future Works

105

academic use. This would help to replace the dataset used in this thesis with a much

better dataset which could help in producing improved results.

• The conjunction of Mask-RCNN+CNN (Chapter 6) and 1D CapsNet (Chapter 5) can be

implemented so that the indoor navigation of an IAS can be improved further. This can

be implemented in real time (for example, in an existing mobile robot with computer

vision capabilities). (Appendix D)

106

Appendix

Appendix A – Python Code for

NoSquashCapsNet (Referred to Chapter 4)

A. I. NoSquashCapsNet

"""

Created on Fri May 10 11:59:09 2019

@author: gpu-server

Github: `https://github.com/XifengGuo/CapsNet-Keras` (reference)

"""

import numpy as np

from keras import layers, models, optimizers

from keras import backend as K

from keras.utils import to_categorical

import matplotlib.pyplot as plt

from utils import combine_images

from PIL import Image

from capsulelayersVer3 import CapsuleLayer, PrimaryCap, Length, Mask,

PrimaryCapWithoutReshape1

from capsule_layers import ConvCapsuleLayer

from keras.utils import multi_gpu_model

#from keras.layers.advanced_activations import LeakyReLU

#from keras.layers.advanced_activations import PReLU

from keras.layers import Dropout

from keras.layers.merge import concatenate

from keras.layers.normalization import BatchNormalization

K.set_image_data_format('channels_last')

def CapsNet(input_shape, n_class, routings):

 x = layers.Input(shape=input_shape)

 # Layer 1: Just a conventional Conv2D layer

 conv1_1 = layers.Conv2D(filters=64, kernel_size=3, strides=1,

padding='same', activation= 'relu', name='conv1_1')(x)

 conv1_2 = layers.Conv2D(filters=64, kernel_size=3, strides=1,

padding='same', activation= 'relu', name='conv1_2')(x)

 conv1_3 = layers.Conv2D(filters=64, kernel_size=3, strides=1,

padding='same', activation= 'relu', name='conv1_3')(x)

 concat1 = concatenate([conv1_1, conv1_2, conv1_3], axis=3)

 pool1 = layers.MaxPooling2D(pool_size=(2, 2), strides=2,

padding='same', data_format=None)(concat1)

 conv2_1 = layers.Conv2D(filters=128, kernel_size=3, strides=1,

padding='same', activation= 'relu', name='conv2_1')(pool1)

 conv2_2 = layers.Conv2D(filters=128, kernel_size=3, strides=1,

107

padding='same', activation= 'relu', name='conv2_2')(pool1)

 conv2_3 = layers.Conv2D(filters=128, kernel_size=3, strides=1,

padding='same', activation= 'relu', name='conv2_3')(pool1)

 concat2 = concatenate([conv2_1, conv2_2, conv2_3], axis=3)

 pool2 = layers.MaxPooling2D(pool_size=(2, 2), strides=2,

padding='same', data_format=None)(concat2)

 conv3_1 = layers.Conv2D(filters=256, kernel_size=3, strides=1,

padding='same', activation= 'relu', name='conv3_1')(pool2)

 conv3_2 = layers.Conv2D(filters=256, kernel_size=3, strides=1,

padding='same', activation= 'relu', name='conv3_2')(pool2)

 conv3_3 = layers.Conv2D(filters=256, kernel_size=3, strides=1,

padding='same', activation= 'relu', name='conv3_3')(pool2)

 concat3 = concatenate([conv3_1, conv3_2, conv3_3], axis=3)

 pool3 = layers.MaxPooling2D(pool_size=(2, 2), strides=2,

padding='same', data_format=None)(concat3)

 conv4_1 = layers.Conv2D(filters=512, kernel_size=3, strides=1,

padding='same', activation= 'relu', name='conv4_1')(pool3)

 conv4_2 = layers.Conv2D(filters=512, kernel_size=3, strides=1,

padding='same', activation= 'relu', name='conv4_2')(pool3)

 conv4_3 = layers.Conv2D(filters=512, kernel_size=3, strides=1,

padding='same', activation= 'relu', name='conv4_3')(pool3)

 concat4 = concatenate([conv4_1, conv4_2, conv4_3], axis=3)

 primarycaps = PrimaryCapWithoutReshape1(concat4, dim_capsule=32,

n_channels=16, kernel_size=3, strides=2, padding='valid')

 # Layer 3: Capsule layer. Routing algorithm works here.

 digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16,

routings=routings,

 name='digitcaps')(primarycaps)

 # Layer 4: This is an auxiliary layer to replace each capsule with its

length. Just to match the true label's shape.

 # If using tensorflow, this will not be necessary. :)

 out_caps = Length(name='capsnet')(digitcaps)

 # Decoder network.

 y = layers.Input(shape=(n_class,))

 masked_by_y = Mask()([digitcaps, y]) # The true label is used to mask

the output of capsule layer. For training

 masked = Mask()(digitcaps) # Mask using the capsule with maximal

length. For prediction

 # Shared Decoder model in training and prediction

 decoder = models.Sequential(name='decoder')

 decoder.add(layers.Dense(4096, activation='relu',

input_dim=16*n_class))

decoder.add(BatchNormalization())

decoder.add(Dropout(0.5))

 decoder.add(layers.Dense(4096, activation='relu'))

decoder.add(BatchNormalization())

decoder.add(Dropout(0.5))

 decoder.add(layers.Dense(5, activation='relu'))

108

 decoder.add(layers.Dense(np.prod(input_shape), activation='sigmoid'))

 decoder.add(layers.Reshape(target_shape=input_shape, name='out_recon'))

 # Models for training and evaluation (prediction)

 print(x.shape)

 print(y.shape)

 print(out_caps.shape)

 print(decoder(masked_by_y).shape)

 train_model = models.Model([x, y], [out_caps, decoder(masked_by_y)])

 eval_model = models.Model(x, [out_caps, decoder(masked)])

 # manipulate model

 noise = layers.Input(shape=(n_class, 16))

 noised_digitcaps = layers.Add()([digitcaps, noise])

 masked_noised_y = Mask()([noised_digitcaps, y])

 manipulate_model = models.Model([x, y, noise],

decoder(masked_noised_y))

 return train_model, eval_model, manipulate_model

def margin_loss(y_true, y_pred):

 """

 Margin loss for Eq.(4). When y_true[i, :] contains not just one `1`,

this loss should work too. Not test it.

 :param y_true: [None, n_classes]

 :param y_pred: [None, num_capsule]

 :return: a scalar loss value.

 """

 L = y_true * K.square(K.maximum(0., 0.9 - y_pred)) + \

 0.5 * (1 - y_true) * K.square(K.maximum(0., y_pred - 0.1))

 return K.mean(K.sum(L, 1))

def train(model, data, args):

 """

 Training a CapsuleNet

 :param model: the CapsuleNet model

 :param data: a tuple containing training and testing data, like

`((x_train, y_train), (x_test, y_test))`

 :param args: arguments

 :return: The trained model

 """

 # unpacking the data

 (x_train, y_train), (x_test, y_test) = data

(x_train, y_train) = data

 # callbacks

 log = callbacks.CSVLogger(args.save_dir + '/log.csv')

 tb = callbacks.TensorBoard(log_dir=args.save_dir + '/tensorboard-logs',

 batch_size=args.batch_size,

histogram_freq=int(args.debug))

 checkpoint = callbacks.ModelCheckpoint(args.save_dir + '/weights-

{epoch:02d}.h5', monitor='val_capsnet_acc',

 save_best_only=True,

save_weights_only=True, verbose=1)

 lr_decay = callbacks.LearningRateScheduler(schedule=lambda epoch:

109

args.lr * (args.lr_decay ** epoch))

 # compile the model

 model.compile(optimizer=optimizers.Adam(lr=args.lr),

 loss=[margin_loss, 'mse'],

loss='categorical_crossentropy',

 loss_weights=[1., args.lam_recon],

 metrics={'capsnet': 'accuracy'})

Training without data augmentation:

 model.fit([x_train, y_train], [y_train, x_train],

batch_size=args.batch_size, epochs=args.epochs,

 validation_data=[[x_test, y_test], [y_test, x_test]],

callbacks=[log, tb, checkpoint, lr_decay])

 # Begin: Training with data augmentation ------------------------------

---------------------------------------#

def train_generator(x, y, batch_size, shift_fraction=0.):

train_datagen =

ImageDataGenerator(width_shift_range=shift_fraction,

height_shift_range=shift_fraction) # shift up to 2 pixel for MNIST

generator = train_datagen.flow(x, y, batch_size=batch_size)

while 1:

x_batch, y_batch = generator.next()

yield ([x_batch, y_batch], [y_batch, x_batch])

Training with data augmentation. If shift_fraction=0., also no

augmentation.

model.fit_generator(generator=train_generator(x_train, y_train,

args.batch_size, args.shift_fraction),

steps_per_epoch=int(y_train.shape[0] /

args.batch_size),

epochs=args.epochs,

validation_data=[[x_test, y_test], [y_test,

x_test]],

callbacks=[log, tb, checkpoint, lr_decay])

 # End: Training with data augmentation --------------------------------

---------------------------------------#

 model.save_weights(args.save_dir + '/trained_model.h5')

 print('Trained model saved to \'%s/trained_model.h5\'' % args.save_dir)

 from utils import plot_log

 plot_log(args.save_dir + '/log.csv', show=True)

 return model

def test(model, data, args):

 x_test, y_test = data

 y_pred, x_recon = model.predict(x_test, batch_size=100)

 print('-'*30 + 'Begin: test' + '-'*30)

 print('Test acc:', np.sum(np.argmax(y_pred, 1) == np.argmax(y_test,

1))/y_test.shape[0])

 img = combine_images(np.concatenate([x_test[:50],x_recon[:50]]))

 image = img * 255

 Image.fromarray(image.astype(np.uint8)).save(args.save_dir +

"/real_and_recon.png")

110

 print()

 print('Reconstructed images are saved to %s/real_and_recon.png' %

args.save_dir)

 print('-' * 30 + 'End: test' + '-' * 30)

 plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png"))

 plt.show()

def manipulate_latent(model, data, args):

 print('-'*30 + 'Begin: manipulate' + '-'*30)

 x_test, y_test = data

 index = np.argmax(y_test, 1) == args.digit

 number = np.random.randint(low=0, high=sum(index) - 1)

 x, y = x_test[index][number], y_test[index][number]

 x, y = np.expand_dims(x, 0), np.expand_dims(y, 0)

 noise = np.zeros([1, 10, 16])

 x_recons = []

 for dim in range(16):

 for r in [-0.25, -0.2, -0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15, 0.2,

0.25]:

 tmp = np.copy(noise)

 tmp[:,:,dim] = r

 x_recon = model.predict([x, y, tmp])

 x_recons.append(x_recon)

 x_recons = np.concatenate(x_recons)

 img = combine_images(x_recons, height=16)

 image = img*255

 Image.fromarray(image.astype(np.uint8)).save(args.save_dir +

'/manipulate-%d.png' % args.digit)

 print('manipulated result saved to %s/manipulate-%d.png' %

(args.save_dir, args.digit))

 print('-' * 30 + 'End: manipulate' + '-' * 30)

#def load_mnist():

the data, shuffled and split between train and test sets

from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(-1, 28, 28, 1).astype('float32') / 255.

x_test = x_test.reshape(-1, 28, 28, 1).astype('float32') / 255.

y_train = to_categorical(y_train.astype('float32'))

y_test = to_categorical(y_test.astype('float32'))

return (x_train, y_train), (x_test, y_test)

def load_images():

 images=np.load('npz_data.npy')

 labels=np.load('npz_label_data.npy')

 num_example=images.shape[0]

 ratio=0.9

 s=np.int(num_example*ratio)

 x_train = images[:s]

 y_train = labels[:s]

 x_test = images[s:]

 y_test = labels[s:]

111

 x_train = x_train.reshape(-1, 128, 128, 3).astype('float32') / 255.

 x_test = x_test.reshape(-1, 128, 128, 3).astype('float32') / 255.

 y_train = y_train.reshape(-1, 5).astype('float32')

 y_test = y_test.reshape(-1, 5).astype('float32')

 #label=labels.reshape([-1, 10]).astype('float32')

 return (x_train, y_train), (x_test, y_test)

if __name__ == "__main__":

 import os

 import argparse

 from keras.preprocessing.image import ImageDataGenerator

 from keras import callbacks

 # setting the hyper parameters

 parser = argparse.ArgumentParser(description="Capsule Network on

MNIST.")

 parser.add_argument('--epochs', default=100, type=int)

 parser.add_argument('--batch_size', default=100, type=int)

 parser.add_argument('--lr', default=0.0001, type=float,

 help="Initial learning rate")

 parser.add_argument('--lr_decay', default=0.9, type=float,

 help="The value multiplied by lr at each epoch. Set

a larger value for larger epochs")

 parser.add_argument('--lam_recon', default=0.392, type=float,

 help="The coefficient for the loss of decoder")

 parser.add_argument('-r', '--routings', default=3, type=int,

 help="Number of iterations used in routing

algorithm. should > 0")

 parser.add_argument('--shift_fraction', default=0.1, type=float,

 help="Fraction of pixels to shift at most in each

direction.")

 parser.add_argument('--debug', action='store_true',

 help="Save weights by TensorBoard")

 parser.add_argument('--save_dir', default='./result23')

 parser.add_argument('-t', '--testing', action='store_true',

 help="Test the trained model on testing dataset")

 parser.add_argument('--digit', default=2, type=int,

 help="Digit to manipulate")

 parser.add_argument('-w', '--weights', default=None,

 help="The path of the saved weights. Should be

specified when testing")

 parser.add_argument('--gpus', default=4, type=int)

 args = parser.parse_args()

 print(args)

 if not os.path.exists(args.save_dir):

 os.makedirs(args.save_dir)

 # load data

(x_train, y_train), (x_test, y_test) = load_images()

 (x_train, y_train), (x_test, y_test) = load_images()

 print(x_train.shape)

 print(y_train.shape)

 # define model

 model, eval_model, manipulate_model =

CapsNet(input_shape=x_train.shape[1:],

112

n_class=len(np.unique(np.argmax(y_train, 1))),

 routings=args.routings)

 model.summary()

 # train or test

if args.weights is not None: # init the model weights with provided

one

model.load_weights(args.weights)

if not args.testing:

train(model=model, data=((x_train, y_train), (x_test, y_test)),

args=args)

else: # as long as weights are given, will run testing

if args.weights is None:

print('No weights are provided. Will test using random

initialized weights.')

manipulate_latent(manipulate_model, (x_test, y_test), args)

test(model=eval_model, data=(x_test, y_test), args=args)

train or test

 if args.weights is not None: # init the model weights with provided

one

 model.load_weights(args.weights)

 if not args.testing:

 # define muti-gpu model

 multi_model = multi_gpu_model(model, gpus=args.gpus)

 train(model=multi_model, data=((x_train, y_train), (x_test,

y_test)), args=args)

 model.save_weights(args.save_dir + '/trained_model.h5')

 print('Trained model saved to \'%s/trained_model.h5\'' %

args.save_dir)

 test(model=eval_model, data=(x_test, y_test), args=args)

 else: # as long as weights are given, will run testing

 if args.weights is None:

 print('No weights are provided. Will test using random

initialized weights.')

 manipulate_latent(manipulate_model, (x_test, y_test), args)

 test(model=eval_model, data=(x_test, y_test), args=args)

A. II. Capsule without squash function

"""

Created on Mon Mar 11 12:38:35 2019

@author: kkb17226

"""

"""

Github: `https://github.com/XifengGuo/CapsNet-Keras` (reference)

"""

import keras.backend as K

import tensorflow as tf

from keras import initializers, layers

class Length(layers.Layer):

 """

 Compute the length of vectors. This is used to compute a Tensor that

113

has the same shape with y_true in margin_loss.

 Using this layer as model's output can directly predict labels by using

`y_pred = np.argmax(model.predict(x), 1)`

 inputs: shape=[None, num_vectors, dim_vector]

 output: shape=[None, num_vectors]

 """

 def call(self, inputs, **kwargs):

 return K.sqrt(K.sum(K.square(inputs), -1) + K.epsilon())

 def compute_output_shape(self, input_shape):

 return input_shape[:-1]

 def get_config(self):

 config = super(Length, self).get_config()

 return config

class Mask(layers.Layer):

 def call(self, inputs, **kwargs):

 if type(inputs) is list: # true label is provided with shape =

[None, n_classes], i.e. one-hot code.

 assert len(inputs) == 2

 inputs, mask = inputs

 else: # if no true label, mask by the max length of capsules.

Mainly used for prediction

 # compute lengths of capsules

 x = K.sqrt(K.sum(K.square(inputs), -1))

 # generate the mask which is a one-hot code.

 # mask.shape=[None, n_classes]=[None, num_capsule]

 mask = K.one_hot(indices=K.argmax(x, 1),

num_classes=x.get_shape().as_list()[1])

 # inputs.shape=[None, num_capsule, dim_capsule]

 # mask.shape=[None, num_capsule]

 # masked.shape=[None, num_capsule * dim_capsule]

 masked = K.batch_flatten(inputs * K.expand_dims(mask, -1))

 return masked

 def compute_output_shape(self, input_shape):

 if type(input_shape[0]) is tuple: # true label provided

 return tuple([None, input_shape[0][1] * input_shape[0][2]])

 else: # no true label provided

 return tuple([None, input_shape[1] * input_shape[2]])

 def get_config(self):

 config = super(Mask, self).get_config()

 return config

class CapsuleLayer(layers.Layer):

 """

 The capsule layer. It is similar to Dense layer. Dense layer has

`in_num` inputs, each is a scalar, the output of the

 neuron from the former layer, and it has `out_num` output neurons.

CapsuleLayer just expand the output of the neuron

 from scalar to vector. So its input shape = [None, input_num_capsule,

input_dim_capsule] and output shape = \

 [None, num_capsule, dim_capsule]. For Dense Layer, input_dim_capsule =

dim_capsule = 1.

 :param num_capsule: number of capsules in this layer

 :param dim_capsule: dimension of the output vectors of the capsules in

114

this layer

 :param routings: number of iterations for the routing algorithm

 """

 def __init__(self, num_capsule, dim_capsule, routings=3,

 kernel_initializer='glorot_uniform',

 **kwargs):

 super(CapsuleLayer, self).__init__(**kwargs)

 self.num_capsule = num_capsule

 self.dim_capsule = dim_capsule

 self.routings = routings

 self.kernel_initializer = initializers.get(kernel_initializer)

 def build(self, input_shape):

 assert len(input_shape) >= 3, "The input Tensor should have

shape=[None, input_num_capsule, input_dim_capsule]"

 self.input_num_capsule = input_shape[1]

 self.input_dim_capsule = input_shape[2]

 # Transform matrix

 self.W = self.add_weight(shape=[self.num_capsule,

self.input_num_capsule,

 self.dim_capsule,

self.input_dim_capsule],

 initializer=self.kernel_initializer,

 name='W')

 self.built = True

 def call(self, inputs, training=None):

 # inputs.shape=[None, input_num_capsule, input_dim_capsule]

 # inputs_expand.shape=[None, 1, input_num_capsule,

input_dim_capsule]

 inputs_expand = K.expand_dims(inputs, 1)

 # Replicate num_capsule dimension to prepare being multiplied by W

 # inputs_tiled.shape=[None, num_capsule, input_num_capsule,

input_dim_capsule]

 inputs_tiled = K.tile(inputs_expand, [1, self.num_capsule, 1, 1])

 # Compute `inputs * W` by scanning inputs_tiled on dimension 0.

 # x.shape=[num_capsule, input_num_capsule, input_dim_capsule]

 # W.shape=[num_capsule, input_num_capsule, dim_capsule,

input_dim_capsule]

 # Regard the first two dimensions as `batch` dimension,

 # then matmul: [input_dim_capsule] x [dim_capsule,

input_dim_capsule]^T -> [dim_capsule].

 # inputs_hat.shape = [None, num_capsule, input_num_capsule,

dim_capsule]

 inputs_hat = K.map_fn(lambda x: K.batch_dot(x, self.W, [2, 3]),

elems=inputs_tiled)

 # Begin: Routing algorithm --

-----------------------------#

 # The prior for coupling coefficient, initialized as zeros.

 # b.shape = [None, self.num_capsule, self.input_num_capsule].

 b = tf.zeros(shape=[K.shape(inputs_hat)[0], self.num_capsule,

self.input_num_capsule])

 assert self.routings > 0, 'The routings should be > 0.'

 for i in range(self.routings):

 # c.shape=[batch_size, num_capsule, input_num_capsule]

115

 c = tf.nn.softmax(b, dim=1)

 # c.shape = [batch_size, num_capsule, input_num_capsule]

 # inputs_hat.shape=[None, num_capsule, input_num_capsule,

dim_capsule]

 # The first two dimensions as `batch` dimension,

 # then matmal: [input_num_capsule] x [input_num_capsule,

dim_capsule] -> [dim_capsule].

 # outputs.shape=[None, num_capsule, dim_capsule]

 outputs = squash(K.batch_dot(c, inputs_hat, [2, 2])) # [None,

10, 16]

 if i < self.routings - 1:

 # outputs.shape = [None, num_capsule, dim_capsule]

 # inputs_hat.shape=[None, num_capsule, input_num_capsule,

dim_capsule]

 # The first two dimensions as `batch` dimension,

 # then matmal: [dim_capsule] x [input_num_capsule,

dim_capsule]^T -> [input_num_capsule].

 # b.shape=[batch_size, num_capsule, input_num_capsule]

 b += K.batch_dot(outputs, inputs_hat, [2, 3])

 # End: Routing algorithm --

-----------------------------#

 return outputs

 def compute_output_shape(self, input_shape):

 return tuple([None, self.num_capsule, self.dim_capsule])

 def get_config(self):

 config = {

 'num_capsule': self.num_capsule,

 'dim_capsule': self.dim_capsule,

 'routings': self.routings

 }

 base_config = super(CapsuleLayer, self).get_config()

 return dict(list(base_config.items()) + list(config.items()))

def PrimaryCapWithoutReshape1(inputs, dim_capsule, n_channels, kernel_size,

strides, padding):

 """

 Apply Conv2D `n_channels` times and concatenate all capsules

 :param inputs: 4D tensor, shape=[None, width, height, channels]

 :param dim_capsule: the dim of the output vector of capsule

 :param n_channels: the number of types of capsules

 :return: output tensor, shape=[None, num_capsule, dim_capsule]

 """

 output1 = layers.Conv2D(filters=dim_capsule*n_channels,

kernel_size=kernel_size, strides=strides, padding=padding,

 name='primarycapwithoutreshape1_conv2d')(inputs)

 return output1

116

Appendix B – Python Code for 1D CapsNet,

1D Capsule and PointCapsNet (Referred to

Chapter 5)

B. I. 1D CapsNet

"""

Created on Mon Aug 26 16:36:18 2019

@author: gpu-server

https://github.com/charlesq34/pointnet (reference)

"""

#!/usr/bin/env python3

-*- coding: utf-8 -*-

"""

Created on Fri May 10 11:59:09 2019

@author: gpu-server

"""

import numpy as np

from keras import layers, models, optimizers

from keras import backend as K

from keras.utils import to_categorical

import matplotlib.pyplot as plt

from keras.utils import multi_gpu_model

from keras.layers import Dropout

from keras.layers.merge import concatenate

from keras.layers.normalization import BatchNormalization

import os

import tensorflow as tf

from keras import layers, models

from keras import optimizers

from keras.layers import Input

from keras.models import Model

from keras.layers import Dense, Flatten, Reshape, Dropout

from keras.layers import Convolution1D, MaxPooling1D, BatchNormalization

from keras.layers import Lambda

from keras.utils import np_utils

import h5py

from capsulelayer1D import CapsuleLayer, PrimaryCapWithoutReshape1, Length,

Mask

def mat_mul(A, B):

 return tf.matmul(A, B)

def load_h5(h5_filename):

 f = h5py.File(h5_filename)

117

 data = f['data'][:]

 label = f['label'][:]

 return (data, label)

def rotate_point_cloud(batch_data):

 """ Randomly rotate the point clouds to augument the dataset

 rotation is per shape based along up direction

 Input:

 BxNx3 array, original batch of point clouds

 Return:

 BxNx3 array, rotated batch of point clouds

 """

 rotated_data = np.zeros(batch_data.shape, dtype=np.float32)

 for k in range(batch_data.shape[0]):

 rotation_angle = np.random.uniform() * 2 * np.pi

 cosval = np.cos(rotation_angle)

 sinval = np.sin(rotation_angle)

 rotation_matrix = np.array([[cosval, 0, sinval],

 [0, 1, 0],

 [-sinval, 0, cosval]])

 shape_pc = batch_data[k, ...]

 rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)),

rotation_matrix)

 return rotated_data

def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):

 """ Randomly jitter points. jittering is per point.

 Input:

 BxNx3 array, original batch of point clouds

 Return:

 BxNx3 array, jittered batch of point clouds

 """

 B, N, C = batch_data.shape

 assert(clip > 0)

 jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1 * clip,

clip)

 jittered_data += batch_data

 return jittered_data

num_points = 1024

number of categories

k = 10

define optimizer

adam = optimizers.Adam(lr=0.001, decay=0.7)

input_points = Input(shape=(num_points, 3))

 # Layer 1: Just a conventional Conv2D layer

conv1_1 = layers.Conv1D(64, 1, activation='relu', input_shape=(num_points,

3), name='conv1_1')(input_points)

conv1_2 = layers.Conv1D(64, 1, activation= 'relu', input_shape=(num_points,

3), name='conv1_2')(input_points)

#conv1_3 = layers.Conv1D(64, 1, activation= 'relu',

input_shape=(num_points, 3), name='conv1_3')(input_points)

concat1 = concatenate([conv1_1, conv1_2], axis=1)

#pool1 = layers.MaxPooling1D(pool_size=2048)(concat1)

118

conv2_1 = layers.Conv1D(128, 1, activation= 'relu',

name='conv2_1')(concat1)

conv2_2 = layers.Conv1D(128, 1, activation= 'relu',

name='conv2_2')(concat1)

#conv2_3 = layers.Conv1D(128, 1, activation= 'relu',

name='conv2_3')(concat1)

concat2 = concatenate([conv2_1, conv2_2], axis=1)

#pool2 = layers.MaxPooling1D(pool_size=2048)(concat2)

pool3 = layers.MaxPooling1D(pool_size=2048)(concat2)

conv3_1 = layers.Conv1D(256, 1, activation= 'relu', name='conv3_1')(pool3)

conv3_2 = layers.Conv1D(256, 1, activation= 'relu', name='conv3_2')(pool3)

#conv3_3 = layers.Conv1D(256, 1, activation= 'relu', name='conv3_3')(pool2)

concat3 = concatenate([conv3_1, conv3_2], axis=1)

#pool3 = layers.MaxPooling1D(pool_size=2048)(concat3)

conv4_1 = layers.Conv1D(512, 1, activation= 'relu',

name='conv4_1')(concat3)

conv4_2 = layers.Conv1D(512, 1, activation= 'relu',

name='conv4_2')(concat3)

#conv4_3 = layers.Conv1D(512, 1, activation= 'relu',

name='conv4_3')(concat3)

concat4 = concatenate([conv4_1, conv4_2], axis=1)

#pool3 = layers.MaxPooling1D(pool_size=2048)(concat4)

primarycaps = PrimaryCapWithoutReshape1(concat4, dim_capsule=32,

n_channels=16, kernel_size=1)

digitcaps = CapsuleLayer(num_capsule=k, dim_capsule=16, routings=3,

 name='digitcaps')(primarycaps)

out_caps = Length(name='capsnet')(digitcaps)

 # Decoder network.

y = layers.Input(shape=(k,))

masked_by_y = Mask()([digitcaps, y]) # The true label is used to mask the

output of capsule layer. For training

masked = Mask()(digitcaps) # Mask using the capsule with maximal length.

For prediction

Shared Decoder model in training and prediction

decoder = models.Sequential(name='decoder')

decoder.add(layers.Dense(4096, activation='relu', input_dim=16*k))

decoder.add(BatchNormalization())

decoder.add(Dropout(0.5))

decoder.add(layers.Dense(4096, activation='relu'))

decoder.add(BatchNormalization())

decoder.add(Dropout(0.5))

decoder.add(layers.Dense(5, activation='relu'))

decoder.add(layers.Dense(k, activation='softmax'))

print the model summary

model = Model(inputs=input_points, outputs = out_caps)

print(model.summary())

119

try:

 model = multi_gpu_model(model)

except:

 pass

load train points and labels

path = os.path.dirname(os.path.realpath('./cap1D/'))

train_path = os.path.join(path, "PrepData")

filenames = [d for d in os.listdir(train_path)]

print(train_path)

print(filenames)

train_points = None

train_labels = None

for d in filenames:

 cur_points, cur_labels = load_h5(os.path.join(train_path, d))

 cur_points = cur_points.reshape(1, -1, 3)

 cur_labels = cur_labels.reshape(1, -1)

 if train_labels is None or train_points is None:

 train_labels = cur_labels

 train_points = cur_points

 else:

 train_labels = np.hstack((train_labels, cur_labels))

 train_points = np.hstack((train_points, cur_points))

train_points_r = train_points.reshape(-1, num_points, 3)

train_labels_r = train_labels.reshape(-1, 1)

load test points and labels

test_path = os.path.join(path, "PrepData_test")

filenames = [d for d in os.listdir(test_path)]

print(test_path)

print(filenames)

test_points = None

test_labels = None

for d in filenames:

 cur_points, cur_labels = load_h5(os.path.join(test_path, d))

 cur_points = cur_points.reshape(1, -1, 3)

 cur_labels = cur_labels.reshape(1, -1)

 if test_labels is None or test_points is None:

 test_labels = cur_labels

 test_points = cur_points

 else:

 test_labels = np.hstack((test_labels, cur_labels))

 test_points = np.hstack((test_points, cur_points))

test_points_r = test_points.reshape(-1, num_points, 3)

test_labels_r = test_labels.reshape(-1, 1)

label to categorical

Y_train = np_utils.to_categorical(train_labels_r, k)

Y_test = np_utils.to_categorical(test_labels_r, k)

compile classification model

model.compile(optimizer='adam',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

Fit model on training data

for i in range(1,12):

 #model.fit(train_points_r, Y_train, batch_size=32, epochs=1,

shuffle=True, verbose=1)

 # rotate and jitter the points

120

 train_points_rotate = rotate_point_cloud(train_points_r)

 train_points_jitter = jitter_point_cloud(train_points_rotate)

 model.fit(train_points_jitter, Y_train, batch_size=32, epochs=1,

shuffle=True, verbose=1)

 s = "Current epoch is:" + str(i)

 print(s)

 if i % 5 == 0:

 score = model.evaluate(test_points_r, Y_test, verbose=1)

 print('Test loss: ', score[0])

 print('Test accuracy: ', score[1])

score the model

score = model.evaluate(test_points_r, Y_test, verbose=1)

print('Test loss: ', score[0])

print('Test accuracy: ', score[1])

B. II. 1D Capsule

"""

Created on Mon Aug 26 16:44:03 2019

@author: gpu-server

"""

"""

Created on Mon Mar 11 12:38:35 2019

@author: gvb17226

"""

"""

`https://github.com/XifengGuo/CapsNet-Keras`(reference)

"""

import keras.backend as K

import tensorflow as tf

from keras import initializers, layers

class Length(layers.Layer):

 """

 Compute the length of vectors. This is used to compute a Tensor that

has the same shape with y_true in margin_loss.

 Using this layer as model's output can directly predict labels by using

`y_pred = np.argmax(model.predict(x), 1)`

 inputs: shape=[None, num_vectors, dim_vector]

 output: shape=[None, num_vectors]

 """

 def call(self, inputs, **kwargs):

 return K.sqrt(K.sum(K.square(inputs), -1) + K.epsilon())

 def compute_output_shape(self, input_shape):

 return input_shape[:-1]

 def get_config(self):

 config = super(Length, self).get_config()

121

 return config

class Mask(layers.Layer):

 """

 Mask a Tensor with shape=[None, num_capsule, dim_vector] either by the

capsule with max length or by an additional

 input mask. Except the max-length capsule (or specified capsule), all

vectors are masked to zeros. Then flatten the

 masked Tensor.

 For example:

        ``` 

        x = keras.layers.Input(shape=[8, 3, 2])  # batch_size=8, each 

sample contains 3 capsules with dim_vector=2 

        y = keras.layers.Input(shape=[8, 3])  # True labels. 8 samples, 3 

classes, one-hot coding. 

        out = Mask()(x)  # out.shape=[8, 6] 

        # or 

        out2 = Mask()([x, y])  # out2.shape=[8,6]. Masked with true labels 

y. Of course y can also be manipulated. 

        ``` 

 """

 def call(self, inputs, **kwargs):

 if type(inputs) is list: # true label is provided with shape =

[None, n_classes], i.e. one-hot code.

 assert len(inputs) == 2

 inputs, mask = inputs

 else: # if no true label, mask by the max length of capsules.

Mainly used for prediction

 # compute lengths of capsules

 x = K.sqrt(K.sum(K.square(inputs), -1))

 # generate the mask which is a one-hot code.

 # mask.shape=[None, n_classes]=[None, num_capsule]

 mask = K.one_hot(indices=K.argmax(x, 1),

num_classes=x.get_shape().as_list()[1])

 # inputs.shape=[None, num_capsule, dim_capsule]

 # mask.shape=[None, num_capsule]

 # masked.shape=[None, num_capsule * dim_capsule]

 masked = K.batch_flatten(inputs * K.expand_dims(mask, -1))

 return masked

 def compute_output_shape(self, input_shape):

 if type(input_shape[0]) is tuple: # true label provided

 return tuple([None, input_shape[0][1] * input_shape[0][2]])

 else: # no true label provided

 return tuple([None, input_shape[1] * input_shape[2]])

 def get_config(self):

 config = super(Mask, self).get_config()

 return config

def squash(vectors, axis=-1):

 """

 The non-linear activation used in Capsule. It drives the length of a

large vector to near 1 and small vector to 0

 :param vectors: some vectors to be squashed, N-dim tensor

 :param axis: the axis to squash

 :return: a Tensor with same shape as input vectors

 """

122

 s_squared_norm = K.sum(K.square(vectors), axis, keepdims=True)

 scale = s_squared_norm / (1 + s_squared_norm) / K.sqrt(s_squared_norm +

K.epsilon())

 return scale * vectors

class CapsuleLayer(layers.Layer):

 """

 The capsule layer. It is similar to Dense layer. Dense layer has

`in_num` inputs, each is a scalar, the output of the

 neuron from the former layer, and it has `out_num` output neurons.

CapsuleLayer just expand the output of the neuron

 from scalar to vector. So its input shape = [None, input_num_capsule,

input_dim_capsule] and output shape = \

 [None, num_capsule, dim_capsule]. For Dense Layer, input_dim_capsule =

dim_capsule = 1.

 :param num_capsule: number of capsules in this layer

 :param dim_capsule: dimension of the output vectors of the capsules in

this layer

 :param routings: number of iterations for the routing algorithm

 """

 def __init__(self, num_capsule, dim_capsule, routings=3,

 kernel_initializer='glorot_uniform',

 **kwargs):

 super(CapsuleLayer, self).__init__(**kwargs)

 self.num_capsule = num_capsule

 self.dim_capsule = dim_capsule

 self.routings = routings

 self.kernel_initializer = initializers.get(kernel_initializer)

 def build(self, input_shape):

 assert len(input_shape) >= 3, "The input Tensor should have

shape=[None, input_num_capsule, input_dim_capsule]"

 self.input_num_capsule = input_shape[1]

 self.input_dim_capsule = input_shape[2]

 # Transform matrix

 self.W = self.add_weight(shape=[self.num_capsule,

self.input_num_capsule,

 self.dim_capsule,

self.input_dim_capsule],

 initializer=self.kernel_initializer,

 name='W')

 self.built = True

 def call(self, inputs, training=None):

 # inputs.shape=[None, input_num_capsule, input_dim_capsule]

 # inputs_expand.shape=[None, 1, input_num_capsule,

input_dim_capsule]

 inputs_expand = K.expand_dims(inputs, 1)

 # Replicate num_capsule dimension to prepare being multiplied by W

 # inputs_tiled.shape=[None, num_capsule, input_num_capsule,

input_dim_capsule]

 inputs_tiled = K.tile(inputs_expand, [1, self.num_capsule, 1, 1])

 # Compute `inputs * W` by scanning inputs_tiled on dimension 0.

 # x.shape=[num_capsule, input_num_capsule, input_dim_capsule]

 # W.shape=[num_capsule, input_num_capsule, dim_capsule,

123

input_dim_capsule]

 # Regard the first two dimensions as `batch` dimension,

 # then matmul: [input_dim_capsule] x [dim_capsule,

input_dim_capsule]^T -> [dim_capsule].

 # inputs_hat.shape = [None, num_capsule, input_num_capsule,

dim_capsule]

 inputs_hat = K.map_fn(lambda x: K.batch_dot(x, self.W, [2, 3]),

elems=inputs_tiled)

 # Begin: Routing algorithm --

-----------------------------#

 # The prior for coupling coefficient, initialized as zeros.

 # b.shape = [None, self.num_capsule, self.input_num_capsule].

 b = tf.zeros(shape=[K.shape(inputs_hat)[0], self.num_capsule,

self.input_num_capsule])

 assert self.routings > 0, 'The routings should be > 0.'

 for i in range(self.routings):

 # c.shape=[batch_size, num_capsule, input_num_capsule]

 c = tf.nn.softmax(b, dim=1)

 # c.shape = [batch_size, num_capsule, input_num_capsule]

 # inputs_hat.shape=[None, num_capsule, input_num_capsule,

dim_capsule]

 # The first two dimensions as `batch` dimension,

 # then matmal: [input_num_capsule] x [input_num_capsule,

dim_capsule] -> [dim_capsule].

 # outputs.shape=[None, num_capsule, dim_capsule]

 outputs = squash(K.batch_dot(c, inputs_hat, [2, 2])) # [None,

10, 16]

 if i < self.routings - 1:

 # outputs.shape = [None, num_capsule, dim_capsule]

 # inputs_hat.shape=[None, num_capsule, input_num_capsule,

dim_capsule]

 # The first two dimensions as `batch` dimension,

 # then matmal: [dim_capsule] x [input_num_capsule,

dim_capsule]^T -> [input_num_capsule].

 # b.shape=[batch_size, num_capsule, input_num_capsule]

 b += K.batch_dot(outputs, inputs_hat, [2, 3])

 # End: Routing algorithm --

-----------------------------#

 return outputs

 def compute_output_shape(self, input_shape):

 return tuple([None, self.num_capsule, self.dim_capsule])

 def get_config(self):

 config = {

 'num_capsule': self.num_capsule,

 'dim_capsule': self.dim_capsule,

 'routings': self.routings

 }

 base_config = super(CapsuleLayer, self).get_config()

 return dict(list(base_config.items()) + list(config.items()))

def PrimaryCapWithoutReshape1(inputs, dim_capsule, n_channels,

kernel_size):

 """

124

 Apply Conv2D `n_channels` times and concatenate all capsules

 :param inputs: 4D tensor, shape=[None, width, height, channels]

 :param dim_capsule: the dim of the output vector of capsule

 :param n_channels: the number of types of capsules

 :return: output tensor, shape=[None, num_capsule, dim_capsule]

 """

 output1 = layers.Conv1D(filters=dim_capsule*n_channels,

kernel_size=kernel_size,

 name='primarycapwithoutreshape1_conv2d')(inputs)

output2 = layers.MaxPooling1D(pool_size=2048)(output1)

outputs = layers.Reshape(target_shape=[-1, dim_capsule],

name='primarycap_reshape')(output1)

 return layers.Lambda(squash,

name='primarycapwithoutreshape1_squash')(output1)

return output1

B. III. PointCapsNet

"""

Created on Thu Dec 28 15:39:40 2017

Pointnet+Caps

@author: gvb17226

https://github.com/charlesq34/pointnet (reference)

"""

import numpy as np

import os

import tensorflow as tf

from keras import layers, models

from keras import optimizers

from keras.layers import Input

from keras.models import Model

from keras.layers import Dense, Flatten, Reshape, Dropout

from keras.layers import Convolution1D, MaxPooling1D, BatchNormalization

from keras.layers import Lambda

from keras.utils import np_utils

import h5py

from capsulelayer1D import CapsuleLayer, PrimaryCapWithoutReshape1, Length,

Mask

def mat_mul(A, B):

 return tf.matmul(A, B)

def load_h5(h5_filename):

 f = h5py.File(h5_filename)

 data = f['data'][:]

 label = f['label'][:]

 return (data, label)

def rotate_point_cloud(batch_data):

 """ Randomly rotate the point clouds to augument the dataset

 rotation is per shape based along up direction

 Input:

 BxNx3 array, original batch of point clouds

 Return:

 BxNx3 array, rotated batch of point clouds

125

 """

 rotated_data = np.zeros(batch_data.shape, dtype=np.float32)

 for k in range(batch_data.shape[0]):

 rotation_angle = np.random.uniform() * 2 * np.pi

 cosval = np.cos(rotation_angle)

 sinval = np.sin(rotation_angle)

 rotation_matrix = np.array([[cosval, 0, sinval],

 [0, 1, 0],

 [-sinval, 0, cosval]])

 shape_pc = batch_data[k, ...]

 rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)),

rotation_matrix)

 return rotated_data

def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):

 """ Randomly jitter points. jittering is per point.

 Input:

 BxNx3 array, original batch of point clouds

 Return:

 BxNx3 array, jittered batch of point clouds

 """

 B, N, C = batch_data.shape

 assert(clip > 0)

 jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1 * clip,

clip)

 jittered_data += batch_data

 return jittered_data

number of points in each sample

num_points = 2048

number of categories

k = 10

define optimizer

adam = optimizers.Adam(lr=0.001, decay=0.7)

------------------------------------ Pointnet Architecture

input_Transformation_net

input_points = Input(shape=(num_points, 3))

x = Convolution1D(64, 1, activation='relu',

 input_shape=(num_points, 3))(input_points)

x = BatchNormalization()(x)

x = Convolution1D(128, 1, activation='relu')(x)

x = BatchNormalization()(x)

x = Convolution1D(1024, 1, activation='relu')(x)

x = BatchNormalization()(x)

x = MaxPooling1D(pool_size=num_points)(x)

x = Dense(512, activation='relu')(x)

x = BatchNormalization()(x)

x = Dense(256, activation='relu')(x)

x = BatchNormalization()(x)

x = Dense(9, weights=[np.zeros([256, 9]), np.array([1, 0, 0, 0, 1, 0, 0, 0,

1]).astype(np.float32)])(x)

input_T = Reshape((3, 3))(x)

forward net

g = Lambda(mat_mul, arguments={'B': input_T})(input_points)

g = Convolution1D(64, 1, input_shape=(num_points, 3), activation='relu')(g)

126

g = BatchNormalization()(g)

g = Convolution1D(64, 1, input_shape=(num_points, 3), activation='relu')(g)

g = BatchNormalization()(g)

feature transform net

f = Convolution1D(64, 1, activation='relu')(g)

f = BatchNormalization()(f)

f = Convolution1D(128, 1, activation='relu')(f)

f = BatchNormalization()(f)

f = Convolution1D(1024, 1, activation='relu')(f)

f = BatchNormalization()(f)

f = MaxPooling1D(pool_size=num_points)(f)

f = Dense(512, activation='relu')(f)

f = BatchNormalization()(f)

f = Dense(256, activation='relu')(f)

f = BatchNormalization()(f)

f = Dense(64 * 64, weights=[np.zeros([256, 64 * 64]),

np.eye(64).flatten().astype(np.float32)])(f)

feature_T = Reshape((64, 64))(f)

forward net

g = Lambda(mat_mul, arguments={'B': feature_T})(g)

g = Convolution1D(64, 1, activation='relu')(g)

g = BatchNormalization()(g)

g = Convolution1D(128, 1, activation='relu')(g)

g = BatchNormalization()(g)

g = Convolution1D(1024, 1, activation='relu')(g)

g = BatchNormalization()(g)

global_feature

global_feature = MaxPooling1D(pool_size=num_points)(g)

capsule integration

cap = PrimaryCapWithoutReshape1(global_feature, dim_capsule=32,

n_channels=16, kernel_size=1)

digitcaps = CapsuleLayer(num_capsule=k, dim_capsule=16, routings=3,

 name='digitcaps')(cap)

out_caps = Length(name='capsnet')(digitcaps)

y = layers.Input(shape=(k,))

masked_by_y = Mask()([digitcaps, y])

masked = Mask()(digitcaps)

Decoder

decoder = models.Sequential(name='decoder')

decoder.add(layers.Dense(4096, activation='relu', input_dim=16*k))

decoder.add(BatchNormalization())

decoder.add(Dropout(0.5))

decoder.add(layers.Dense(4096, activation='relu'))

decoder.add(BatchNormalization())

decoder.add(Dropout(0.5))

decoder.add(layers.Dense(5, activation='relu'))

decoder.add(layers.Dense(k, activation='softmax'))

--end of pointnet

print the model summary

model = Model(inputs=input_points, outputs=out_caps)

print(model.summary())

load train points and labels

path = os.path.dirname(os.path.realpath('./cap1D/'))

127

train_path = os.path.join(path, "PrepData")

filenames = [d for d in os.listdir(train_path)]

print(train_path)

print(filenames)

train_points = None

train_labels = None

for d in filenames:

 cur_points, cur_labels = load_h5(os.path.join(train_path, d))

 cur_points = cur_points.reshape(1, -1, 3)

 cur_labels = cur_labels.reshape(1, -1)

 if train_labels is None or train_points is None:

 train_labels = cur_labels

 train_points = cur_points

 else:

 train_labels = np.hstack((train_labels, cur_labels))

 train_points = np.hstack((train_points, cur_points))

train_points_r = train_points.reshape(-1, num_points, 3)

train_labels_r = train_labels.reshape(-1, 1)

load test points and labels

test_path = os.path.join(path, "PrepData_test")

filenames = [d for d in os.listdir(test_path)]

print(test_path)

print(filenames)

test_points = None

test_labels = None

for d in filenames:

 cur_points, cur_labels = load_h5(os.path.join(test_path, d))

 cur_points = cur_points.reshape(1, -1, 3)

 cur_labels = cur_labels.reshape(1, -1)

 if test_labels is None or test_points is None:

 test_labels = cur_labels

 test_points = cur_points

 else:

 test_labels = np.hstack((test_labels, cur_labels))

 test_points = np.hstack((test_points, cur_points))

test_points_r = test_points.reshape(-1, num_points, 3)

test_labels_r = test_labels.reshape(-1, 1)

label to categorical

Y_train = np_utils.to_categorical(train_labels_r, k)

Y_test = np_utils.to_categorical(test_labels_r, k)

compile classification model

model.compile(optimizer='adam',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

Fit model on training data

for i in range(1,100):

 #model.fit(train_points_r, Y_train, batch_size=32, epochs=1,

shuffle=True, verbose=1)

 # rotate and jitter the points

 train_points_rotate = rotate_point_cloud(train_points_r)

 train_points_jitter = jitter_point_cloud(train_points_rotate)

 model.fit(train_points_jitter, Y_train, batch_size=32, epochs=1,

shuffle=True, verbose=1)

 s = "Current epoch is:" + str(i)

 print(s)

 if i % 5 == 0:

128

 score = model.evaluate(test_points_r, Y_test, verbose=1)

 print('Test loss: ', score[0])

 print('Test accuracy: ', score[1])

score the model

score = model.evaluate(test_points_r, Y_test, verbose=1)

print('Test loss: ', score[0])

print('Test accuracy: ', score[1])

129

Appendix C – Python Code for Mask-

RCNN+CNN combination (Referred to

Chapter 6)

C. I. Mask-RCNN+CNN combination for indoor home scene

recognition using object detection

"""

Created on Tue Dec 1 14:59:45 2020

@author: gpu-server

https://github.com/matterport/Mask_RCNN (reference)

"""

from keras.preprocessing.image import load_img

from keras.preprocessing.image import img_to_array

from mrcnn.config import Config

from mrcnn.model import MaskRCNN

from matplotlib import pyplot

from matplotlib.patches import Rectangle

import pandas as pd

draw an image with detected objects

def draw_image_with_boxes(filename, boxes_list):

 # load the image

 data = pyplot.imread(filename)

 # plot the image

 pyplot.imshow(data)

 # get the context for drawing boxes

 ax = pyplot.gca()

 # plot each box

 for box in boxes_list:

 # get coordinates

 y1, x1, y2, x2 = box

 # calculate width and height of the box

 width, height = x2 - x1, y2 - y1

 # create the shape

 rect = Rectangle((x1, y1), width, height, fill=False,

color='red')

 # draw the box

 ax.add_patch(rect)

 # show the plot

 pyplot.show()

define the test configuration

class TestConfig(Config):

 NAME = "test"

 GPU_COUNT = 1

 IMAGES_PER_GPU = 1

 NUM_CLASSES = 1 + 80

define the model

rcnn = MaskRCNN(mode='inference', model_dir='./', config=TestConfig())

130

load coco model weights

rcnn.load_weights('mask_rcnn_coco.h5', by_name=True)

load photograph

img = load_img('elephant.jpg')

img = img_to_array(img)

make prediction

results = rcnn.detect([img], verbose=0)

visualize the results

draw_image_with_boxes('elephant.jpg', results[0]['rois'])

from keras.preprocessing.image import load_img

from keras.preprocessing.image import img_to_array

from mrcnn.visualize import display_instances

from mrcnn.config import Config

from mrcnn.model import MaskRCNN

import numpy as np

define 81 classes that the coco model knowns about

class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',

 'bus', 'train', 'truck', 'boat', 'traffic light',

 'fire hydrant', 'stop sign', 'parking meter', 'bench',

'bird',

 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',

 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',

'tie',

 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',

 'kite', 'baseball bat', 'baseball glove', 'skateboard',

 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',

 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',

 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog',

'pizza',

 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',

 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',

 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',

 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',

 'teddy bear', 'hair drier', 'toothbrush']

define the test configuration

class TestConfig(Config):

 NAME = "test"

 GPU_COUNT = 1

 IMAGES_PER_GPU = 1

 NUM_CLASSES = 1 + 80

define the model (pre-trained Mask-RCNN, Transfer Learning)

rcnn = MaskRCNN(mode='inference', model_dir='./', config=TestConfig())

load coco model weights

rcnn.load_weights('mask_rcnn_coco.h5', by_name=True)

#predict object from 500 rooms and create csv file of object list

table1 = np.zeros((499,81), dtype = int)

for i in range (499):

 i = i+1

 img = load_img('/home/gpu-server/Mask_RCNN/room_data100/room' + str(i)

+ '.jpg')

 path = '/home/gpu-server/Mask_RCNN/room_data100/room' + str(i) + '.jpg'

 img = img_to_array(img)

 results = rcnn.detect([img], verbose=0)

 r = results[0]

 #display_instances(img, r['rois'], r['masks'], r['class_ids'],

class_names, r['scores'])

131

 obj = np.unique(r['class_ids'])

 n = len(obj)

 for j in range (n):

 x = obj[j]

 if x > 0:

 table1[i-1,x] = 1

for j in range (n):

arr = np.reshape(obj, (1,n))

table1[i-1,j] = arr[0,j-1]

pd.DataFrame(table1).to_csv("onehot_object500_2.csv")

#Oblect detect for test data

table2 = np.zeros((24,81), dtype = int)

for i in range (24):

 i = i+1

 img = load_img('/home/gpu-server/Mask_RCNN/home_data/room' + str(i) +

'.jpg')

 path = '/home/gpu-server/Mask_RCNN/home_data/room' + str(i) + '.jpg'

 img = img_to_array(img)

 results = rcnn.detect([img], verbose=0)

 r = results[0]

 #display_instances(img, r['rois'], r['masks'], r['class_ids'],

class_names, r['scores'])

 obj = np.unique(r['class_ids'])

 n = len(obj)

 for j in range (n):

 x = obj[j]

 if x > 0:

 table2[i-1,x] = 1

arr = np.reshape(obj, (1,n))

for j in range (n):

table2[i-1,j] = arr[0,j-1]

pd.DataFrame(table2).to_csv("onehot_object.csv")

cnn model for classify scence from object list

import numpy as np

from numpy import mean

from numpy import std

from numpy import dstack

from pandas import read_csv

from matplotlib import pyplot

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.utils import to_categorical

import pandas as pd

trainpath = "/home/gpu-server/Mask_RCNN/dat_w_matlab/onehot_object500.csv"

train_label = "/home/gpu-server/Mask_RCNN/dat_w_matlab/room_label_500.csv"

testpath = "/home/gpu-

server/Mask_RCNN/dat_w_matlab/testing_onehot_object.csv"

test_label = "/home/gpu-server/Mask_RCNN/dat_w_matlab/room.csv"

load the dataset, returns train and test X and y elements

def load_dataset(trainpath, train_label, testpath, test_label):

132

 # load all train

 trainX = pd.read_csv(trainpath)

 trainy = pd.read_csv(train_label)

 print(trainX.shape, trainy.shape)

 # load all test

 testX = pd.read_csv(testpath)

 testy = pd.read_csv(test_label)

 print(testX.shape, testy.shape)

 # zero-offset class values

trainy = trainy - 1

testy = testy - 1

one hot encode y

trainy = to_categorical(trainy)

testy = to_categorical(testy)

 print(trainX.shape, trainy.shape, testX.shape, testy.shape)

 return trainX, trainy, testX, testy

#fit and evaluate a model (CNN)

def evaluate_model(trainX, trainy, testX, testy):

 verbose, epochs, batch_size = 1, 100, 10

 n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2],

trainy.shape[1]

 model = Sequential()

 model.add(Conv1D(filters=16, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

 model.add(Conv1D(filters=32, kernel_size=3, activation='relu'))

 model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))

model.add(Dropout(0.5))

model.add(MaxPooling1D(pool_size=2))

 model.add(Flatten())

 model.add(Dense(4096, activation='relu'))

 model.add(Dense(4096, activation='relu'))

 model.add(Dense(n_outputs, activation='softmax'))

 model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

 model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size,

verbose=verbose)

 model.save_weights('onehot_room_500.h5')

 # evaluate model

 model.load_weights('onehot_room_500.h5')

 _, accuracy = model.evaluate(testX, testy, batch_size=batch_size,

verbose=1)

model.summary()

 return accuracy

summarize scores

def summarize_results(scores):

 print(scores)

 m, s = mean(scores), std(scores)

 print('Accuracy: %.3f%% (+/-%.3f)' % (m, s))

run an experiment

def run_experiment(repeats=1):

 trainX, trainy, testX, testy = load_dataset(trainpath, train_label,

testpath, test_label)

 trainX = np.expand_dims(trainX, axis=2)

 testX = np.expand_dims(testX, axis=2)

 # repeat experiment

 scores = list()

 for r in range(repeats):

133

 score = evaluate_model(trainX, trainy, trainX, trainy)

 score = score * 100.0

 print('>#%d: %.3f' % (r+1, score))

 scores.append(score)

 # summarize results

 summarize_results(scores)

run the experiment

run_experiment()

test with random images

rcnn.load_weights('mask_rcnn_coco.h5', by_name=True)

load photograph

#img = load_img('kitchen.jpeg')

#img = img_to_array(img)

make prediction

#results = rcnn.detect([img], verbose=0)

visualize the results

#draw_image_with_boxes('kitchen.jpeg', results[0]['rois'])

#test_obj = np.unique(r['class_ids'])

#print(test_obj)

def prediction_model(test_obj):

 batch_size = 1

 n_timesteps, n_features = test_obj.shape[1], test_obj.shape[2]

 model = Sequential()

 model.add(Conv1D(filters=16, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

 model.add(Conv1D(filters=32, kernel_size=3, activation='relu'))

 model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))

 model.add(Flatten())

 model.add(Dense(4096, activation='relu'))

 model.add(Dense(4096, activation='relu'))

 model.add(Dense(5, activation='softmax'))

 model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

 model.load_weights('onehot_room_500.h5')

 y = model.predict(test_obj, batch_size=batch_size,)

 return y

def run_test(repeats=1):

 table3 = np.zeros((1,81), dtype = int)

 trainX, trainy, testX, testy = load_dataset(trainpath, train_label,

testpath, test_label)

 img = load_img('test9.jpg')

 img = img_to_array(img)

 results = rcnn.detect([img], verbose=0)

 draw_image_with_boxes('test9.jpg', results[0]['rois'])

 r = results[0]

 test_obj = np.unique(r['class_ids'])

 print(test_obj)

 n = len(test_obj)

 for j in range (n):

 x = test_obj[j]

 if x > 0:

 table3[0,x]=1

arr = np.reshape(test_obj, (1,n))

for j in range (n):

table3[0,j] = arr[0,j-1]

pd.DataFrame(table3).to_csv("onehot_Test_obj.csv")

 trainX = np.expand_dims(trainX, axis=2)

 test_obj = table3

134

 test_obj = np.expand_dims(test_obj, axis=2)

repeat experiment

 for n in range(repeats):

 y = prediction_model(test_obj)

 print(y)

 room_index = np.argmax(y, axis=1)

 print(room_index)

 if room_index == 0:

 print('bathroom')

 elif room_index == 1:

 print('bedroom')

 elif room_index == 2:

 print('diningroom')

 elif room_index == 3:

 print('kitchen')

 elif room_index == 4:

 print('livingroom')

 else:

 print("Unknown room")

run_test()

def run_validation(repeats=1):

 trainX, trainy, testX, testy = load_dataset(trainpath, train_label,

testpath, test_label)

arr = np.reshape(test_obj, (1,n))

for j in range (n):

table3[0,j] = arr[0,j-1]

 trainX = np.expand_dims(trainX, axis=2)

 test_obj = np.expand_dims(testX, axis =2)

 # repeat experiment

 for n in range(repeats):

 y = prediction_model(test_obj)

 print(y)

 room_index = np.argmax(y, axis=1)

 print(room_index)

 if room_index == 0:

 print('bathroom')

 elif room_index == 1:

 print('bedroom')

 elif room_index == 2:

 print('diningroom')

 elif room_index == 3:

 print('kitchen')

 elif room_index == 4:

 print('livingroom')

 else:

 print("Unknown room")

run the experiment

run_validation()

135

Appendix D – Conjunction of proposed

approaches (Mask R-CNN + CNN) with an

1D CapsNet for IAS generic object detection

In this appendix, the conjunction of Mask R-CNN + CNN (Chapter 6) with the 1D CapsNet

(Chapter 5) is presented (The pseudo code was developed during the Covid lockdown.

Therefore, this has not been practically implemented). This is done to enable an IAS to perform

generic scene and object recognition irrespective of object orientation. Indoor home scene

recognition is more dependent on the combination of different objects that constitute a

particular scene whereas recognizing particular objects relies specifically on the shape of each

object and its orientation. Therefore, the Mask R-CNN + CNN is designed to help an IAS to

navigate easily in the indoor home areas and identify its current location. When however, an

IAS is expected to handle and move objects, then it will require the 1D CapsNet for both

recognising and for handling an object. In such cases the orientation of the object must be

known to the IAS at that moment.

The conjunction of Mask RCNN + CNN and 1D CapsNet is shown using a flowchart in

Figure 6.13. There can be 4 cases for an IAS to consider:

1. No input received;

2. Input of a particular indoor area (room) that the IAS is expected to reach;

3. Input of an object only which the IAS is expected to find and handle;

4. Both indoor home scene and object inputs, in which an IAS is expected to locate the

room find the object and handle and/or move the object.

In case of no input received, the IAS will perform no activity or remain in sleep mode. When

a person commands the IAS to go to a particular room, the IAS receives the command as a

scene input and activates the Mask RCNN + CNN combination. The IAS keeps navigating

until it reaches the desired scene. The navigation for finding the required scene will happen

over a defined time frame. If the IAS fails to find the required scene within this time frame,

then it will navigate back to the place where it received the command or some other designated

area. Once the IAS reaches the desired scene, it checks if it has any further input for finding,

and/or handling an object. If there is no such input, then the IAS waits for further input.

136

Figure D.1. Flow chart for conjunction of proposed technique (Mask R-CNN + CNN) and 1D CapsNet

Further, if an IAS receives only an object as an input command, then it directly activates the

1D CapsNet module. The IAS will keep trying to find the object by navigating within the

vicinity of the area where it happens to be until the desired object is found. Once the object is

found, the IAS can, for example, pick up the object and return to the place where it received

the command. Navigating back to original starting area the IAS again uses the Mask R-CNN +

CNN module to navigate and recognise the scene. Suppose the object is not in the vicinity of

the area where IAS is already present. In that case, it searches for the object in other scenes by

navigating among different indoor home scenes. There is also a fixed time frame for finding

the desired object. If the object is not found within the designated time frame, then the IAS

navigates back to the place where it received the input.

137

In case of both scene an object inputs, the IAS first uses the Mask-RCNN + CNN to find

the scene and then uses the 1D CapsNet to find the object. The IAS executes the scene

recognition just like the way it executes the task when it receives only scene input. Once, the

scene is found within the time frame then the IAS looks for the object input. Once the IAS

detects an object input, it executes the object recognition process just like the way it does in

the case of only object input. However, in this case, the IAS searches only in the scene that it

was first expected to reach.

138

References

[1] M. E. Pollack, "Intelligent assistive technology: the present and the future," 2007:

Springer, pp. 5-6.

[2] M. E. Pollack, "Intelligent technology for an aging population: The use of AI to assist

elders with cognitive impairment," AI magazine, vol. 26, no. 2, p. 9, 2005.

[3] J. Ausubel. "Older people are more likely to live alone in the U.S. than elsewhere in the

world." https://www.pewresearch.org/fact-tank/2020/03/10/older-people-are-more-

likely-to-live-alone-in-the-u-s-than-elsewhere-in-the-world/ (accessed 6 November,

2021).

[4] N. H. S. United Kingdom. "Loneliness in older people." https://www.nhs.uk/mental-

health/feelings-symptoms-behaviours/feelings-and-symptoms/loneliness-in-older-

people/ (accessed 6 November, 2021).

[5] D. Dey, K. Nguyen, C. Brockett, and B. Dolan. "HELP! Training assistive indoor

agents to ask for assistance via imitation learning - Microsoft Research."

https://www.microsoft.com/en-us/research/blog/help-training-assistive-indoor-agents-

to-ask-for-assistance-via-imitation-learning/ (accessed 24 November, 2021).

[6] Microsoft. "AI for Accessibility - Microsoft AI." https://www.microsoft.com/en-

us/ai/ai-for-accessibility (accessed 24 November, 2021).

[7] D. Leprince-Ringuet. "Facebook wants to help train the robots that will take out your

trash and unload your dishwasher." https://www.zdnet.com/article/facebook-wants-to-

help-train-the-robots-that-will-take-out-your-trash-and-unload-your-dishwasher/

(accessed 6 November, 2021).

[8] "Matterport and Facebook AI research collaborate to release the world's largest dataset

of 3D spaces for academic spaces." https://www.i-micronews.com/matterport-and-

facebook-ai-research-collaborate-to-release-the-worlds-largest-dataset-of-3d-spaces-

for-academic-research/?cn-reloaded=1 (accessed 6 November, 2021).

[9] A. Quattoni and A. Torralba, "Recognizing indoor scenes," 2009: IEEE, pp. 413-420.

[10] "Important Facts about Falls." Available online:

http://www.cdc.gov/HomeandRecreationalSafety/Falls/adultfalls.html. (accessed 05

April, 2021).

[11] "Important Facts about Falls." Available online:

http://www.cdc.gov/HomeandRecreationalSafety/Falls/adultfalls.html. (accessed

05/04, 2021).

[12] "Seniors’ Falls in Canada: Second Report. Public Health Agency of Canada, 2014. ."

Available online: http://www.phac-aspc.gc.ca/seniors-

aines/publications/public/injury-blessure/seniors_falls-chutes_ aines/index-eng.php.

(accessed 05 April, 2021).

[13] D. Who, "Noncommunicable Disease and Mental Health Cluster, The Injury Chart

Book. Fall-related injuries," ed: Geneva, Switzerland: World Health Organization,

2002.

[14] "Chronic Rheumatic Conditions." Available

Online: https://www.who.int/chp/topics/rheumatic/en/#:~:text=Worldwide%20estimat

es%20are%20that%209.6,major%20daily%20activities%20of%20life. (accessed 15

April, 2021).

[15] J. Demirovic et al., "Prevalence of dementia in three ethnic groups: the South Florida

program on aging and health," Annals of epidemiology, vol. 13, no. 6, pp. 472-478,

2003.

https://www.pewresearch.org/fact-tank/2020/03/10/older-people-are-more-likely-to-live-alone-in-the-u-s-than-elsewhere-in-the-world/
https://www.pewresearch.org/fact-tank/2020/03/10/older-people-are-more-likely-to-live-alone-in-the-u-s-than-elsewhere-in-the-world/
https://www.nhs.uk/mental-health/feelings-symptoms-behaviours/feelings-and-symptoms/loneliness-in-older-people/
https://www.nhs.uk/mental-health/feelings-symptoms-behaviours/feelings-and-symptoms/loneliness-in-older-people/
https://www.nhs.uk/mental-health/feelings-symptoms-behaviours/feelings-and-symptoms/loneliness-in-older-people/
https://www.microsoft.com/en-us/research/blog/help-training-assistive-indoor-agents-to-ask-for-assistance-via-imitation-learning/
https://www.microsoft.com/en-us/research/blog/help-training-assistive-indoor-agents-to-ask-for-assistance-via-imitation-learning/
https://www.microsoft.com/en-us/ai/ai-for-accessibility
https://www.microsoft.com/en-us/ai/ai-for-accessibility
https://www.zdnet.com/article/facebook-wants-to-help-train-the-robots-that-will-take-out-your-trash-and-unload-your-dishwasher/
https://www.zdnet.com/article/facebook-wants-to-help-train-the-robots-that-will-take-out-your-trash-and-unload-your-dishwasher/
https://www.i-micronews.com/matterport-and-facebook-ai-research-collaborate-to-release-the-worlds-largest-dataset-of-3d-spaces-for-academic-research/?cn-reloaded=1
https://www.i-micronews.com/matterport-and-facebook-ai-research-collaborate-to-release-the-worlds-largest-dataset-of-3d-spaces-for-academic-research/?cn-reloaded=1
https://www.i-micronews.com/matterport-and-facebook-ai-research-collaborate-to-release-the-worlds-largest-dataset-of-3d-spaces-for-academic-research/?cn-reloaded=1
http://www.cdc.gov/HomeandRecreationalSafety/Falls/adultfalls.html
http://www.cdc.gov/HomeandRecreationalSafety/Falls/adultfalls.html
http://www.phac-aspc.gc.ca/seniors-aines/publications/public/injury-blessure/seniors_falls-chutes_
http://www.phac-aspc.gc.ca/seniors-aines/publications/public/injury-blessure/seniors_falls-chutes_
https://www.who.int/chp/topics/rheumatic/en/#:~:text=Worldwide%20estimates%20are%20that%209.6,major%20daily%20activities%20of%20life
https://www.who.int/chp/topics/rheumatic/en/#:~:text=Worldwide%20estimates%20are%20that%209.6,major%20daily%20activities%20of%20life

139

[16] "Alzheimer's Disease Statistics." Available

Online: https://alzheimersnewstoday.com/alzheimers-disease

statistics/#:~:text=Prevalence,a%20related%20form%20of%20dementia. (accessed 6

April, 2021).

[17] "Diabetes Prevalence." Available Online: https://www.diabetes.co.uk/diabetes-

prevalence.html#:~:text=It%20is%20estimated%20that%20415,with%20diabetes%20

worldwide%20by%202040. (accessed 02 April, 2021).

[18] "The Future is Elder Care Robots." Available

Online: https://waypointrobotics.com/blog/elder-care-robots/. (accessed 09 April,

2021).

[19] C. Mucchiani, P. Cacchione, R. Mead, M. Johnson, and M. Yim, "Preliminary

Hardware and System Design Investigation for an Affordable and Mobile Assistive

Robot for Elderly Care," 2019.

[20] "Alpha 2, a Humanoid Robot With Social Skills." Available

Online: https://spectrum.ieee.org/automaton/robotics/home-robots/ubtech-alpha-2-

humanoid-robot. (accessed 11 October, 2018).

[21] "Pillo." Available Online: https://pillohealth.com/. (accessed 21 September, 2018).

[22] "Wakamaru Robot." Available Online: https://robots.ieee.org/robots/wakamaru/.

(accessed 15 January, 2021).

[23] "Robot to care for elderly made at University of Salford." Available

Online: https://www.bbc.co.uk/news/uk-england-manchester-21590182. (accessed 14

April, 2019).

[24] "Robot man Theo's creation for BBC Christmas." Available Online: https://news-

archive.salford.ac.uk/news/articles/2017/robot-man-theos-creation-for-bbc-

christmas.html?SQ_DESIGN_NAME=news-portal. (accessed 30 April, 2019).

[25] P. Flandorfer, "Population ageing and socially assistive robots for elderly persons: the

importance of sociodemographic factors for user acceptance," International Journal of

Population Research, vol. 2012, 2012.

[26] A. Haasch et al., "Biron–the bielefeld robot companion," Dialog, vol. 11111111, p.

11111111, 2004.

[27] R. Chatila, "Towards cognitive robot companions," 2008: IEEE, pp. 391-391.

[28] "COGNIRON: The Cognitive Robot." Available

Online: http://www.cogniron.org/final/Home.php. (accessed 04 March, 2021).

[29] S. Chaudhuri, H. Thompson, and G. Demiris, "Fall detection devices and their use with

older adults: a systematic review," Journal of geriatric physical therapy (2001), vol.

37, no. 4, p. 178, 2014.

[30] E. J. Porter, "Wearing and Using Personal Emergency," Journal of Gerontological

Nursing, vol. 31, no. 10, pp. 26-33, 2005.

[31] R. Yared and B. Abdulrazak, "Ambient technology to assist elderly people in indoor

risks," Computers, vol. 5, no. 4, p. 22, 2016.

[32] J. Fleming and C. Brayne, "Inability to get up after falling, subsequent time on floor,

and summoning help: prospective cohort study in people over 90," Bmj, vol. 337, 2008.

[33] X. Yu, "Approaches and principles of fall detection for elderly and patient," 2008:

IEEE, pp. 42-47.

[34] M. A. Habib, M. S. Mohktar, S. B. Kamaruzzaman, K. S. Lim, T. M. Pin, and F.

Ibrahim, "Smartphone-based solutions for fall detection and prevention: challenges and

open issues," Sensors, vol. 14, no. 4, pp. 7181-7208, 2014.

[35] F. Sposaro and G. Tyson, "iFall: an Android application for fall monitoring and

response," 2009: IEEE, pp. 6119-6122.

https://alzheimersnewstoday.com/alzheimers-disease
https://www.diabetes.co.uk/diabetes-prevalence.html#:~:text=It%20is%20estimated%20that%20415,with%20diabetes%20worldwide%20by%202040
https://www.diabetes.co.uk/diabetes-prevalence.html#:~:text=It%20is%20estimated%20that%20415,with%20diabetes%20worldwide%20by%202040
https://www.diabetes.co.uk/diabetes-prevalence.html#:~:text=It%20is%20estimated%20that%20415,with%20diabetes%20worldwide%20by%202040
https://waypointrobotics.com/blog/elder-care-robots/
https://spectrum.ieee.org/automaton/robotics/home-robots/ubtech-alpha-2-humanoid-robot
https://spectrum.ieee.org/automaton/robotics/home-robots/ubtech-alpha-2-humanoid-robot
https://pillohealth.com/
https://robots.ieee.org/robots/wakamaru/
https://www.bbc.co.uk/news/uk-england-manchester-21590182
https://news-archive.salford.ac.uk/news/articles/2017/robot-man-theos-creation-for-bbc-christmas.html?SQ_DESIGN_NAME=news-portal
https://news-archive.salford.ac.uk/news/articles/2017/robot-man-theos-creation-for-bbc-christmas.html?SQ_DESIGN_NAME=news-portal
https://news-archive.salford.ac.uk/news/articles/2017/robot-man-theos-creation-for-bbc-christmas.html?SQ_DESIGN_NAME=news-portal
http://www.cogniron.org/final/Home.php

140

[36] I. C. Lopes, B. Vaidya, and J. J. P. C. Rodrigues, "Sensorfall-an accelerometer based

mobile application," 2009: IEEE, pp. 1-6.

[37] J. T. Perry, S. Kellog, S. M. Vaidya, J.-H. Youn, H. Ali, and H. Sharif, "Survey and

evaluation of real-time fall detection approaches," 2009: IEEE, pp. 158-164.

[38] A. K. Bourke, K. J. O'Donovan, and G. M. ÓLaighin, "Distinguishing falls from normal

ADL using vertical velocity profiles," 2007: IEEE, pp. 3176-3179.

[39] A. K. Bourke, K. J. O’Donovan, and G. Olaighin, "The identification of vertical

velocity profiles using an inertial sensor to investigate pre-impact detection of falls,"

Medical Engineering & Physics, vol. 30, no. 7, pp. 937-946, 2008.

[40] T. Zhang, J. Wang, L. Xu, and P. Liu, "Fall detection by wearable sensor and one-class

SVM algorithm," in Intelligent computing in signal processing and pattern recognition:

Springer, 2006, pp. 858-863.

[41] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford, "A hybrid

discriminative/generative approach for modeling human activities," 2005, vol. 5:

Citeseer, 2005 ed.

[42] L. Tong, Q. Song, Y. Ge, and M. Liu, "HMM-based human fall detection and prediction

method using tri-axial accelerometer," IEEE Sensors Journal, vol. 13, no. 5, pp. 1849-

1856, 2013.

[43] B. Florentino-Liano, N. O'Mahony, and A. Artés-Rodríguez, "Hierarchical Dynamic

Model for Human Daily Activity Recognition," 2012, pp. 61-68.

[44] J. Yin, Q. Yang, and J. J. Pan, "Sensor-based abnormal human-activity detection," IEEE

Transactions on Knowledge and Data Engineering, vol. 20, no. 8, pp. 1082-1090, 2008.

[45] M. Yu, S. M. Naqvi, A. Rhuma, and J. Chambers, "One class boundary method

classifiers for application in a video-based fall detection system," IET computer vision,

vol. 6, no. 2, pp. 90-100, 2012.

[46] Y. Wang, K. Wu, and L. M. Ni, "Wifall: Device-free fall detection by wireless

networks," IEEE Transactions on Mobile Computing, vol. 16, no. 2, pp. 581-594, 2016.

[47] D. Zhang, H. Wang, Y. Wang, and J. Ma, "Anti-fall: A non-intrusive and real-time fall

detector leveraging CSI from commodity WiFi devices," 2015: Springer, pp. 181-193.

[48] M. S. Khan, M. Yu, P. Feng, L. Wang, and J. Chambers, "An unsupervised acoustic

fall detection system using source separation for sound interference suppression,"

Signal processing, vol. 110, pp. 199-210, 2015.

[49] G. I. Parisi and S. Wermter, "Hierarchical SOM-based detection of novel behavior for

3D human tracking," 2013: IEEE, pp. 1-8.

[50] R. Barber, J. Crespo, C. Gómez, A. C. Hernámdez, and M. Galli, "Mobile robot

navigation in indoor environments: Geometric, topological, and semantic navigation,"

in Applications of Mobile Robots: IntechOpen, 2018.

[51] "The Index Project." Available Online: https://theindexproject.org/post/nursebot.

(accessed 14 April, 2021).

[52] B. Ando, S. Baglio, and C. O. Lombardo, "RESIMA: An assistive paradigm to support

weak people in indoor environments," IEEE Transactions on Instrumentation and

Measurement, vol. 63, no. 11, pp. 2522-2528, 2014.

[53] Y.-J. Chang and T.-Y. Wang, "Indoor wayfinding based on wireless sensor networks

for individuals with multiple special needs," Cybernetics and Systems: An International

Journal, vol. 41, no. 4, pp. 317-333, 2010.

[54] A. L. Liu et al., "Indoor wayfinding: Developing a functional interface for individuals

with cognitive impairments," Disability and Rehabilitation: Assistive Technology, vol.

3, no. 1-2, pp. 69-81, 2008.

https://theindexproject.org/post/nursebot

141

[55] B. Li, J. P. Munoz, X. Rong, J. Xiao, Y. Tian, and A. Arditi, "ISANA: wearable context-

aware indoor assistive navigation with obstacle avoidance for the blind," 2016:

Springer, pp. 448-462.

[56] Y.-J. Chang, C.-N. Chen, L.-D. Chou, and T.-Y. Wang, "A novel indoor wayfinding

system based on passive RFID for individuals with cognitive impairments," 2008:

IEEE, pp. 108-111.

[57] H. A. Yanco, "Wheelesley: A robotic wheelchair system: Indoor navigation and user

interface," in Assistive technology and artificial intelligence: Springer, 1998, pp. 256-

268.

[58] A. O. Caffo et al., "Comparing two different orientation strategies for promoting indoor

traveling in people with Alzheimer's disease," Research in developmental disabilities,

vol. 35, no. 2, pp. 572-580, 2014.

[59] M. Kahraman and C. Turhan, "An intelligent indoor guidance and navigation system

for the visually impaired," Assistive Technology, pp. 1-9, 2021.

[60] G. Ballestin and T. Zielinska, "Indoor robot navigation and mapping using sensory

fusion," in Mechanism and Machine Science: Springer, 2021, pp. 279-292.

[61] W. Yan, C. Weber, and S. Wermter, "Learning indoor robot navigation using visual

and sensorimotor map information," Frontiers in neurorobotics, vol. 7, p. 15, 2013.

[62] H. Surmann, C. Jestel, R. Marchel, F. Musberg, H. Elhadj, and M. Ardani, "Deep

Reinforcement learning for real autonomous mobile robot navigation in indoor

environments," arXiv preprint arXiv:2005.13857, 2020.

[63] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, "Object detection with deep learning: A

review," IEEE transactions on neural networks and learning systems, vol. 30, no. 11,

pp. 3212-3232, 2019.

[64] L. Xie, F. Lee, L. Liu, K. Kotani, and Q. Chen, "Scene recognition: A comprehensive

survey," Pattern Recognition, vol. 102, p. 107205, 2020.

[65] J. Schmidhuber, "Deep learning in neural networks: An overview," Neural networks,

vol. 61, pp. 85-117, 2015.

[66] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, no. 7553, p.

436, 2015.

[67] Y. LeCun, K. Kavukcuoglu, and C. Farabet, "Convolutional networks and applications

in vision," 2010: IEEE, pp. 253-256.

[68] K. Hara, D. Saito, and H. Shouno, "Analysis of function of rectified linear unit used in

deep learning," 2015: IEEE, pp. 1-8.

[69] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, "A guide to convolutional

neural networks for computer vision," Synthesis Lectures on Computer Vision, vol. 8,

no. 1, pp. 1-207, 2018.

[70] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to

document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[71] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," 2012, pp. 1097-1105.

[72] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model

size," arXiv preprint arXiv:1602.07360, 2016.

[73] M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks,"

2014: Springer, pp. 818-833.

[74] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale

image recognition," arXiv preprint arXiv:1409.1556, 2014.

[75] C. Szegedy et al., "Going deeper with convolutions," 2015, pp. 1-9.

142

[76] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional

networks for accurate object detection and segmentation," IEEE transactions on pattern

analysis and machine intelligence, vol. 38, no. 1, pp. 142-158, 2016.

[77] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification," 2015, pp. 1026-1034.

[78] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward

neural networks," 2010, pp. 249-256.

[79] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition,"

2016, pp. 770-778.

[80] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, "Inception-v4, inception-resnet

and the impact of residual connections on learning," 2017, vol. 4, p. 12.

[81] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception

architecture for computer vision," 2016, pp. 2818-2826.

[82] K. He, X. Zhang, S. Ren, and J. Sun, "Identity mappings in deep residual networks,"

2016: Springer, pp. 630-645.

[83] M. Lin, Q. Chen, and S. Yan, "Network in network," arXiv preprint arXiv:1312.4400,

2013.

[84] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic

segmentation," 2015, pp. 3431-3440.

[85] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, "Feature

Pyramid Networks for Object Detection," 2017, vol. 1, 2 ed., p. 3.

[86] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for

biomedical image segmentation," 2015: Springer, pp. 234-241.

[87] F. Milletari, N. Navab, and S.-A. Ahmadi, "V-net: Fully convolutional neural networks

for volumetric medical image segmentation," 2016: IEEE, pp. 565-571.

[88] V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep convolutional encoder-

decoder architecture for image segmentation," arXiv preprint arXiv:1511.00561, 2015.

[89] A. Chaurasia and E. Culurciello, "Linknet: Exploiting encoder representations for

efficient semantic segmentation," 2017: IEEE, pp. 1-4.

[90] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, "The one hundred

layers tiramisu: Fully convolutional densenets for semantic segmentation," 2017: IEEE,

pp. 1175-1183.

[91] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, "Pyramid scene parsing network," 2017,

pp. 2881-2890.

[92] G. Lin, A. Milan, C. Shen, and I. D. Reid, "RefineNet: Multi-path Refinement Networks

for High-Resolution Semantic Segmentation," 2017, vol. 1, 2 ed., p. 5.

[93] M. A. Islam, M. Rochan, N. D. B. Bruce, and Y. Wang, "Gated feedback refinement

network for dense image labeling," 2017: IEEE, pp. 4877-4885.

[94] S. Hong, H. Noh, and B. Han, "Decoupled deep neural network for semi-supervised

semantic segmentation," 2015, pp. 1495-1503.

[95] N. Souly, C. Spampinato, and M. Shah, "Semi and weakly supervised semantic

segmentation using generative adversarial network," arXiv preprint arXiv:1703.09695,

2017.

[96] J. Dai, Y. Li, K. He, and J. Sun, "R-fcn: Object detection via region-based fully

convolutional networks," 2016, pp. 379-387.

[97] R. Girshick, "Fast r-cnn," in Proceedings of the IEEE international conference on

computer vision, 2015 2015, pp. 1440-1448.

[98] K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional

networks for visual recognition," IEEE transactions on pattern analysis and machine

intelligence, vol. 37, no. 9, pp. 1904-1916, 2015.

143

[99] M.-R. Hsieh, Y.-L. Lin, and W. H. Hsu, "Drone-based object counting by spatially

regularized regional proposal network," 2017, vol. 1.

[100] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: towards real-time object

detection with region proposal networks," IEEE Transactions on Pattern Analysis &

Machine Intelligence, no. 6, pp. 1137-1149, 2017.

[101] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, "The

pascal visual object classes challenge 2007 (voc 2007) results (2007)," ed, 2008.

[102] T.-Y. Lin et al., "Microsoft coco: Common objects in context," 2014: Springer, pp. 740-

755.

[103] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask r-cnn," 2017: IEEE, pp. 2980-

2988.

[104] H. Sun, Z. Meng, P. Y. Tao, and M. H. Ang, "Scene recognition and object detection

in a unified convolutional neural network on a mobile manipulator," 2018: IEEE, pp.

1-5.

[105] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, "Places: A 10 million

image database for scene recognition," IEEE transactions on pattern analysis and

machine intelligence, 2017.

[106] L. Wang, S. Guo, W. Huang, Y. Xiong, and Y. Qiao, "Knowledge guided

disambiguation for large-scale scene classification with multi-resolution CNNs," IEEE

Transactions on Image Processing, vol. 26, no. 4, pp. 2055-2068, 2017.

[107] P. Espinace, T. Kollar, N. Roy, and A. Soto, "Indoor scene recognition by a mobile

robot through adaptive object detection," Robotics and Autonomous Systems, vol. 61,

no. 9, pp. 932-947, 2013.

[108] P. Espinace, T. Kollar, A. Soto, and N. Roy, "Indoor scene recognition through object

detection," 2010: IEEE, pp. 1406-1413.

[109] A. Shapiro, "Monte Carlo sampling methods," Handbooks in operations research and

management science, vol. 10, pp. 353-425, 2003.

[110] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-

time object detection," 2016, pp. 779-788.

[111] J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger," arXiv preprint, vol.

1612, 2016.

[112] P. Wu, Y. n. Li, F. Yang, L. Kong, and Z. Hou, "A CLM-based method of indoor

affordance areas classification for service robots," Jiqiren/Robot, vol. 40, no. 2, pp.

188-194, 2018.

[113] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky, "Learning hierarchical

models of scenes, objects, and parts," 2005, vol. 2: IEEE, pp. 1331-1338.

[114] N. Ali and B. Zafar, "15-scene image dataset," Figshare, 2018.

[115] M. Afif, R. Ayachi, Y. Said, and M. Atri, "Deep Learning Based Application for Indoor

Scene Recognition," Neural Processing Letters, pp. 1-11, 2020.

[116] A. Kanezaki, Y. Matsushita, and Y. Nishida, "Rotationnet: Joint object categorization

and pose estimation using multiviews from unsupervised viewpoints," 2018, pp. 5010-

5019.

[117] Z. Wu et al., "3d shapenets: A deep representation for volumetric shapes," 2015, pp.

1912-1920.

[118] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, "Multi-view convolutional

neural networks for 3d shape recognition," 2015, pp. 945-953.

[119] A. Garcia-Garcia, F. Gomez-Donoso, J. Garcia-Rodriguez, S. Orts-Escolano, M.

Cazorla, and J. Azorin-Lopez, "Pointnet: A 3d convolutional neural network for real-

time object class recognition," 2016: IEEE, pp. 1578-1584.

144

[120] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "Pointnet: Deep learning on point sets for 3d

classification and segmentation," 2017, pp. 652-660.

[121] L. Noriega, "Multilayer perceptron tutorial," School of Computing. Staffordshire

University, 2005.

[122] J. Li, B. M. Chen, and G. Hee Lee, "So-net: Self-organizing network for point cloud

analysis," 2018, pp. 9397-9406.

[123] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, "Learning representations and

generative models for 3d point clouds," arXiv preprint arXiv:1707.02392, 2017.

[124] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, "Pointnet++: Deep hierarchical feature learning

on point sets in a metric space," arXiv preprint arXiv:1706.02413, 2017.

[125] W. Wu, Z. Qi, and L. Fuxin, "Pointconv: Deep convolutional networks on 3d point

clouds," 2019, pp. 9621-9630.

[126] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, "PointCNN: Convolution on χ-

transformed points," 2018, pp. 828-838.

[127] J. Jiang, D. Bao, Z. Chen, X. Zhao, and Y. Gao, "MLVCNN: Multi-Loop-View

Convolutional Neural Network for 3D Shape Retrieval," 2019, vol. 33, pp. 8513-8520.

[128] K. Zhang, M. Hao, J. Wang, C. W. de Silva, and C. Fu, "Linked dynamic graph CNN:

Learning on point cloud via linking hierarchical features," arXiv preprint

arXiv:1904.10014, 2019.

[129] S. Sabour, N. Frosst, and G. E. Hinton, "Dynamic routing between capsules," 2017, pp.

3856-3866.

[130] R. Lambert, "Investigation: Capsule Nets for Content-Based 3D Model Retrieval,"

Dimension, vol. 30, p. 30x30x30.

[131] A. Ahmad, "Object Recognition in 3D data using Capsules," 2018.

[132] A. Cheraghian and L. Petersson, "3dcapsule: Extending the capsule architecture to

classify 3d point clouds," 2019: IEEE, pp. 1194-1202.

[133] G. E. Hinton, A. Krizhevsky, and S. D. Wang, "Transforming auto-encoders," 2011:

Springer, pp. 44-51.

[134] M. K. Patrick, A. F. Adekoya, A. A. Mighty, and B. Y. Edward, "Capsule networks–a

survey," Journal of King Saud University-Computer and Information Sciences, 2019.

[135] A. Basu, L. Petropoulakis, G. Di Caterina, and J. Soraghan, "Indoor home scene

recognition using capsule neural networks," Procedia Computer Science, vol. 167, pp.

440-448, 2020.

[136] A. Basu, K. Kaewrak, L. Petropoulakis, G. Di Caterina, and J. J. Soraghan, "Modified

Capsule Neural Network (Mod-CapsNet) for indoor home scene recognition," 2020.

[137] X. Song, S. Jiang, B. Wang, C. Chen, and G. Chen, "Image representations with spatial

object-to-object relations for RGB-D scene recognition," IEEE Transactions on Image

Processing, vol. 29, pp. 525-537, 2019.

[138] X. Song, C. Chen, and S. Jiang, "RGB-D scene recognition with object-to-object

relation," 2017, pp. 600-608.

[139] J. West, D. Ventura, and S. Warnick, "Spring research presentation: A theoretical

foundation for inductive transfer," Brigham Young University, College of Physical and

Mathematical Sciences, vol. 1, no. 08, 2007.

[140] G. Patterson and J. Hays, "Sun attribute database: Discovering, annotating, and

recognizing scene attributes," 2012: IEEE, pp. 2751-2758.

[141] Amlan Basu, Lykourgos Petropoulakis, Gaetano Di Caterina, and John Soraghan.

"Assistive technology evolving as intelligent system." International Conference On

Computational Vision and Bio Inspired Computing, pp. 289-303, 2018.

145

[142] Minh Tanh, Viet-Khoa Vo-Ho, Kyle Quinn, Hien Nguyen, Khoa Luu, and Ngan Le.

"CapsNet for Medical Image Segmentation." arXiv preprint arXiv:2203.08948 (2022).

[143] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. "Imagenet: A

large-scale hierarchical image database." IEEE conference on computer vision and

pattern recognition, pp. 248-255, 2009.

[144] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang et al. "Imagenet large scale visual recognition challenge." International

journal of computer vision, pp.211-252, 2015.

[145] Mark Everingham, S. M. Eslami, Luc Van Gool, Christopher KI Williams, John Winn,

and Andrew Zisserman. "The pascal visual object classes challenge: A

retrospective." International journal of computer vision, pp. 98-136, 2015.

[146] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and

Antonio Torralba. "Semantic understanding of scenes through the ade20k

dataset." International Journal of Computer Vision 127, no. 3 (2019): 302-321.

[147] Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba.

"Sun database: Large-scale scene recognition from abbey to zoo." In 2010 IEEE

computer society conference on computer vision and pattern recognition, pp. 3485-

3492, 2010.

[148] Xiao, Jianxiong, Krista A. Ehinger, James Hays, Antonio Torralba, and Aude Oliva.

"Sun database: Exploring a large collection of scene categories." International Journal

of Computer Vision, pp. 3-22, 2016.

[149] Genevieve Patterson, Chen Xu, Hang Su, and James Hays. "The sun attribute database:

Beyond categories for deeper scene understanding." International Journal of Computer

Vision, pp. 59-81, 2014.

[150] Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao. "Sun rgb-d: A rgb-d scene

understanding benchmark suite." Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 567-576. 2015.

[151] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.

"Learning deep features for scene recognition using places database." Advances in

neural information processing systems, 2014.

[152] Nouman Ali, Bushra Zafar, 15-Scene Image Dataset. figshare Dataset, 2018

https://doi.org/10.6084/m9.figshare.7007177.v1

[153] Li-Jia Li, and Li Fei-Fei. "What, where and who? classifying events by scene and object

recognition." 11th international conference on computer vision, pp. 1-8, 2007.

[154] Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. "Segmentation

and recognition using structure from motion point clouds." European conference on

computer vision, pp. 44-57. 2008.

[155] Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla. "Semantic object classes in

video: A high-definition ground truth database." Pattern Recognition Letters 30, pp.

88-97, 2009.

[156] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,

Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. "The cityscapes

dataset for semantic urban scene understanding." IEEE conference on computer vision

and pattern recognition, pp. 3213-3223. 2016.

[157] Li Fei-Fei, Rob Fergus, and Pietro Perona. "Learning generative visual models from

few training examples: An incremental bayesian approach tested on 101 object

categories." IEEE conference on computer vision and pattern recognition workshop,

pp. 178-178, 2004.

[158] Gregory Griffin, Alex Holub, and Pietro Perona. "Caltech-256 object category dataset."

2007.

146

[159] Gonzalez, Rafael C. Digital image processing. Pearson education india, 2009.

[160] Giovanni Lucca França da Silva, Thales Levi Azevedo Valente, Aristófanes Corrêa

Silva, Anselmo Cardoso de Paiva, and Marcelo Gattass. "Convolutional neural

network-based PSO for lung nodule false positive reduction on CT images." Computer

methods and programs in biomedicine, pp. 109-118, 2018.

[161] Donald F. Specht, "A general regression neural network." IEEE transactions on neural

networks, pp. 568-576, 1991.

[162] Abel Brown, "Introduction to object detection and image segmentation," https://on-

demand.gputechconf.com/gtcdc/2017/presentation/dc7217-abel-brown-deep-learning-

object-detection-and-segmentation.pdf (accessed: 11 November, 2021)

