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Abstract

The promise of the broad range of direct band gaps of the (Al,Ga,In)N system

is limited by the crystal quality of current material. As grown defect densities of

InN, when compared with the more mature GaN, are extremely high and InN is

strongly influenced by these defects. This is particularly important due to the un-

usual position of the charge neutrality level of InN, leading to both the well known

surface charge accumulation and difficulties in p-type doping. While impurities

and native defects clearly impact on the bulk carrier density in InN, the effects of

threading dislocations on the electrical properties are still in dispute. Issues such

as whether the dislocation line is charged or contains dangling bonds remain open.

In this work an empirical Stillinger-Weber inter-atomic potential method is em-

ployed in a systematic global search for possible dislocation core reconstructions

for screw and edge dislocations in GaN. The global optimisation of the dislocation

cores is performed for a wide variety of core stoichiometries ranging from Ga rich

to N rich. The most promising optimised core configurations are subsequently

investigated using density functional theory for GaN and InN, in order to discuss

relative stability under a wide range of growth conditions and their influence on

the electronic properties of the bulk material.

x



CHAPTER 1

Introduction

1.1 Motivation

Figure 1.1: Band gaps of several semi-

conductor compounds, drawn versus lat-

tice constant. The visible spectrum has

been included as colored background.

Courtesy of [1]

The group-III nitrides are direct

bandgap semiconductors that are ideal

for opto-electronic devices as the

bandgap range of InN, GaN, AlN and

their alloys encompasses the entire vis-

ible spectrum as it extends from the

infrared (InN) into the far ultravio-

let (AlN). Gallium rich InGaN quan-

tum well structures are already in

wide commercial use as high efficiency

light emitting diodes (LEDs) and laser

diodes (LDs). These devices are used

for lighting, sensors, data storage (Blu-

rayTM technology), biosensing, steril-

isation, etc. In addition the narrow

band gap (<0.7 eV) of InN could al-

low the development of the highest efficiency solar cells and production of LEDs

with tuneable colour temperatures [3]. Moreover, due to an electron mobility

1



1.1. Motivation Introduction

of around >3000 cm2/Vs [4] and very high saturation velocities, InN is an ideal

material for the development of high electron mobility devices capable of operat-

ing in the Terahertz range. However, even though high efficiency LEDs can be

constructed from InGaN alloys, there still exists a very strong efficiency droop for

the indium rich end. This results in the current impossibility of achieving true

white light LEDs, as currently available devices use the blue emitting gallium rich

InGaN structures in combination with a yellow phosphor coating. The ability to

create efficient lighting at arbitrary wavelengths in the visible light spectrum not

only increases a devices white light colour rendering quality, but also enables

their use in many more lighting applications, which can reduce a countries total

elictricity consumption by up to 15% [5].

A major source of the efficiency droop in the InGaN alloys are unintentional

defects, such as point defects and extended defects. The effects of impurities and

native point defects have been studied in order to better control growth conditions

to minimise their impact on the efficiency of devices[6]. Due to the large lattice

mismatch of the usual growth substrates such as sapphire GaN, InN and their

alloys feature very high densities of extended defects. While these defects seem

to have little effect on the efficiency of gallium rich structures, their influence is

thought to be much greater in the In rich end. Extended defects such as disloca-

tions and stacking faults act as scattering centres for electrons due to the lattice

distortion itself and can act as sources of non-radiative electron hole recombina-

tion centres. In addition dislocations can have a major impact on the electronic

properties, depending on their core structure, as questions such as whether dis-

location lines are charged or metal filled are still in dispute.

In order to study the influence of dislocations on GaN and InN, a two fold ap-

proach was taken in this thesis. The first step is to systematically determine

all feasible dislocation core structures across the range of nitrogen to group-III

rich conditions, while the second step is to determine the electronic properties of

the most stable solutions and their influence on the semiconductor. The struc-

tural investigation incorporates a global optimisation of the nuclei positions in

the dislocation core of screw and edge type perfect dislocations. This is done

with a random search algorithm previously developed by Pickard and Needs [7],

where structural relaxations were performed exclusively with density functional

2



1.2. Thesis structure Introduction

theory (DFT). In contrast, within this work, the local structural relaxations were

performed with a very fast empirical Stillinger Weber type interatomic potentials

method. A more reliable DFT atomic position relaxation was not considered,

due to the extreme amounts of computational efforts required. However the sub-

sequent investigation of the optimised structures was performed using DFT.

1.2 Thesis structure

This thesis is divided into 7 chapters, where the first 3 serve to introduce the

applied techniques as well as the material system, the results of this work are

then presented in the following 3 chapters while the impact and implications of

these are discussed in the last chapter. The theoretical and material background

is strictly divided into chapters 2 (theory) and 3 (material) which serve to intro-

duce all implemented concepts that are used for the generation and discussion

of the results. Chapter 4 presents the results for a global optimisation applied

to the fully stoichiometric screw dislocation core in GaN and discusses all aris-

ing features and difficulties of the application of the optimisation technique on

this particular core. Chapter 5 then presents a comparative study of optimised

screw dislocation cores for a wide range of stoichiometries in GaN as well as an

additional investigation of the electronic structure of a smaller selection of stable

cores for GaN and InN using Density Functional Theory. The specific application

of the global optimisation to every core stoichiometry is not discussed in chapter

5, but the relevant data can be found in appendix B. Additional structural data

for each lowest energy (optimised) core can be found in appendix C. Chapter

6 then continues to present results of the global optimisation technique applied

to edge dislocation cores in GaN, while chapter 7 serves to present a summary,

conclusion and possible future work.

3



CHAPTER 2

Theoretical framework

This Chapter introduces concepts used to derive the results presented later in this

thesis. Brief reviews of Density Functional Theory (DFT), Stillinger Weber (SW)

type interatomic potentials, global optimisation, the fundamentals of elasticity

theory and an overview of the basics of dislocation models are given. With each

topic the specific approximations, functionals, parameters or assumptions that

have been adopted for this work, as well as the external computational codes

used, are presented and discussed.

2.1 Density Functional Theory

Density Functional Theory (DFT) is a widely used method to obtain electronic

properties in solid state physics and quantum chemistry. With the use of more

refined approximations, DFT is able to predict material properties with a satis-

factory accuracy and lower computational cost compared to traditional ab-initio

methods such as Hartree Fock theory.

DFT builds on two major principles to solve many body quantum mechanical

systems, the Hohenberg Kohn theorem and the Kohn Sham equations [8]. The

following sections give a short review of these principles and lay out specifics of

the implementation of the AIMPRO code that has been used in this thesis.

4



2.1. DFT Theoretical framework

2.1.1 Many body Hamiltonian

Henceforth electron coordinates are indexed by lower case letters (i,j,k) while

atomic nuclear positions and charges are labeled with upper case letters (I,J ,K).

Similarly, single particle wavefunctions are described by ψ or φ and Ψ or Φ

represent the many-body case.

The time independent Schrödinger equation for a single particle in a general (time

independent) potential V (r) takes the form

(

− ~
2

2m
∇2 + V (r)

)

ψ(r) = Eψ(r), (2.1)

where the first term describes the kinetic energy, which when combined with the

potential forms a Hamiltonian that is equal to a constant energy term E. The

resulting differential equation can be solved for the wavefunction ψ(r), that de-

scribes a probability density of finding the particle at a point r.

However in order to explore a solid composed of nuclei and electrons the wave-

function for a many-particle system needs to be determined. For such system a

many-body Schrödinger equation can be constructed and simplified by applying

the Born-Oppenheimer approximation. It states that effects of the nuclear mo-

tion can be neglected with the assumption that electron masses are sufficiently

small compared to those of the nuclei. The kinetic energy for the nuclei can thus

be neglected and the inter-nuclear coulomb potential becomes a constant. Con-

sequently the N-body Schrödinger equation takes the following form in atomic

units1:

(

−1

2
∇2 +

1

2

∑

i

∑

j

Vee(ri, rj) +
∑

i

Vext(ri)

)

Ψ(r1, ..., rN) = EΨ(r1, ..., rN),

(2.2)

here Vee represents the inter electron Coulombic potential while Vext stands for

the electron-nuclear Coulomb interaction:

Vee(ri, rj) =
1

|ri − rj|
and Vext(ri) =

∑

I

ZI

ri −RI
. (2.3)

1 Energy in Hartrees H = ~/(ma20) ≃ 27.21eV, distances in Bohr radii a0 = 4πǫ0~
2/(me2) ≃

0.5292Å and e = m = ~ = 4πǫ0 = 1

5



2.1. DFT Theoretical framework

A many body electron wavefunction, such as the solution to equation (2.2) is

fermionic in nature and is antisymmetric with respect to interchange of any elec-

tron pair. Methods to solve the many body Schrödinger equation, such as Hartree

Fock theory usually explicitly construct such a wavefunction by combining many

single particle functions with the correct symmetry. This can be done with a

determinant construction and is then called a Slater determinant.

2.1.2 Hohenberg-Kohn theorem

The many-electron Schrödinger equation of a given system can also be solved

purely from the electron density instead of requiring the more complex inter-

acting electron wavefunction. A proof that this is possible is given by the Ho-

henberg Kohn theorem, which states that the ground state electron density of a

non-degenerate system is unique and determines all of the information contained

within the wavefunction[9].

The definition of the ground state results in the following statement as, due to

the variational principle, any wavefunction either represents a ground state or is

higher in energy than the ground state energy E0:

〈Ψ|T̂ + V̂ee + V̂ext|Ψ〉 ≥ E0, (2.4)

where the kinetic energy term has been abbreviated with T and the Bra-ket

notation has been used, in which |Ψ > represents a vector with the vector prod-

uct 〈Ψ|T̂ |Ψ〉 =
∫

Ψ∗(r)TΨ(r) including an acting operator denoted by ˆ. The

electron density n for a many body wavefunction is defined as

n(r) = N

∫

Ψ∗(rr2...rN)Ψ(rr2...rN) dr2...drN . (2.5)

Assuming a fermionic wavefunction (antisymmetry) and identifying the local na-

ture of the external potential V̂ext one can write for the last term of equation

(2.4)

〈Ψ|V̂ext|Ψ〉 =

∫

Ψ∗(r1...rN)
∑

i

Vext(ri)Ψ(r1...rN) dri...drN

=

∫

n(r)Vext(r) dr = Vext[n]. (2.6)

6



2.1. DFT Theoretical framework

Where Vext[n] is a functional of the density n as it maps a function space to R.

The remaining part of equation (2.4) can also be written as a functional of n by

defining

F [n] = min
Ψ→n

〈Ψ|T̂ + V̂ee|Ψ〉. (2.7)

Where Ψ → n indicates that the minimisation is with respect to all Ψ that

generate the given density n. Together equations (2.6) and (2.7) represent the

Energy functional

E[n] = min
Ψ→n

〈Ψ|T̂ + V̂ee|Ψ〉+
∫

n(r)Vext(r) dr (2.8)

= F [n] + Vext[n]. (2.9)

The Hohenberg Kohn Theorem makes two statements with respect to the energy

functional. The first is equivalent to the inequality (2.4) and states

E[n] = F [n] + Vext[n] ≥ E0 (2.10)

and the second is that

F [n0] + Vext[n0] = E0, (2.11)

where n0 is the ground state energy, constructed from the ground state wavefunc-

ton Ψ0.
2 As an important result the inverse is also true, a non degenerate ground

state wavefunction can be constructed from the ground state charge density n0.

This was proven first by [9] and later by many more including [11], with stronger

approaches incorporating degenerate ground states. If a degenerate ground state

is present there is no unique mapping from n0 to Ψ0. However, a more general

functional for F can be constructed to acquire all degenerate ground states [12].

In addition the inequality (2.10) also provides a simple implementation of a vari-

ational principle in order to solve for n.

2.1.3 Kohn-Sham equations

The Kohn-Sham (KS) equations are the second central pillar of DFT. They pro-

vide an elegant way of determining the charge density of a given system without

2 In fact the equality between the true ground state wavefunction Ψ0 and the wavefunction
Ψmin

0 that constructs F [n0] in the minimisation needs to be shown[10]

7
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any initial approximations3. The key argument to deriving the KS equations is

that the true electron density can also be constructed using a wavefunction made

up from hypothetical non-interacting single electron wavefunctions, called Kohn-

Sham orbitals (KSO), from here on denoted as φ. Even with non-interacting

single particle wave functions, the antisymmetry of the total wavefunction is

still required and is thus usually constructed using a slater determinant of the

KSOs. The error stemming from the interaction of the electrons from the electron-

electron Coulomb potential can be accounted for by an adjusted potential [13].

Therefore the charge density can be equivalently described by either the many-

body wavefunction or the sum of the KSO’s:

n(r) = N

∫

Ψ∗(rr2...rN)Ψ(rr2...rN) dr2...drN

=
∑

i

fiφ
∗
i (r)φi(r), (2.12)

where at the same time here, a finite temperature T has been introduced with

the occupation probability fi defined though the Fermi-Dirac function

fi = 2fF (ǫi) =
1

1 + exp( ǫi−ǫF
kBT

)
. (2.13)

The Fermi energy ǫF is defined as to ensure the correct number of electrons:

N =
∑

i 2fF (ǫi).

The first step to obtaining a useable method for the KSO’s is to use the variational

principle with the functional derivative from equation (2.10). This results in the

ground state condition taking the form

δE[n]

δn
= µ =

δF [n]

δn
+
δVext
δn

=
δF [n]

δn
+ Vext, (2.14)

where µ is a Lagrange multiplier and has the physical interpretation of the increase

of energy when an additional electron is to be included into the system (chemical

potential). Functional derivatives with respect to a function f are here denoted

by δ/δf .

Notably the external potential Vext in equation (2.14) remains valid even with the

introduction of a density consisting of non-interacting particles. Therefore only

3 Approximations are still being made, they are just swept into a specific term, the exchange
correlation functional

8
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the functional F [n] defined in equation 2.7 needs to be reexamined:

F [n] = T [n] + Vee[n], (2.15)

where both functionals (kinetic energy and electron interaction) can be restruc-

tured to account for non-interacting particles. This has been done before in other

methods such as the Thomas Fermi model [14] for Jellium conditions and Local

Density Approximations. However, the key point is that here the difference with

respect to the true functional is repackaged as the exchange-correlation functional

and recognised as a change to the potential, creating an effective potential. This

idea results in the formulation of the Hohenberg-Kohn-Sham Functional

FHKS[n] = Ts[n] + EH [n] + Exc[n]. (2.16)

The above functional incorporates two altered functionals [8], the first being the

classical Coulomb potential for the electron-interaction EH [n] which takes the

form

EH [n] =
1

2

∫

n(r)n(r′)

|r − r′| drdr
′. (2.17)

And the second is the kinetic energy functional Ts[n] for the non-interacting KS

states. In order to get the real electron density, the difference to the complete

kinetic and electron repulsion energy must be included and is incorporated into

the exchange correlation energy functional Exc.

At this point the total energy of the system can be represented through the

rewritten functional and becomes

δEHKS

δn
=
δTs
δn

+ VH(r) + Vxc(r) + Vext(r) = µ, (2.18)

where the exchange-correlation potential is defined through the functional deriva-

tive

Vxc =
δExc

δn
. (2.19)

In equation (2.18) all contributions except the single particle kinetic energy are

local operators (diagonal in a real space representation) and therefore represent

single particle potentials and can be combined into an effective potential:

Veff(r) = VH(r) + Vxc(r) + Vext(r) (2.20)

9
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Using this effective potential the KS equations can be constructed, which is es-

sentially a Schrödinger equation for each hypothetical non-interacting electron

wavefunction ψλ called Kohn Sham Orbitals:

(

−1

2
∇2 + Veff(r)

)

φi(r) = ǫiφi(r). (2.21)

The non-interacting part of the total kinetic energy can be constructed then as

Ts =
∑

i

fi〈i|T̂ |i〉 =
∑

i

fi

∫

φ∗
i (r)

(

−1

2
∇2

)

φi(r)dr, (2.22)

with fi representing the above defined Fermi factor stating occupancy.

With these definitions the functional is then:

EHKS[n] = Ts[n] + EH [n] + Exc[n] + Eext[n] + Ezz, (2.23)

where Ezz is a constant representing the energy due to the nuclear coulomb

repulsion. The only unknown at this point is the exchange correlation functional

Exc, for which approximate forms can be found.

2.1.4 Exchange correlation functionals

The KS equations are the Hamiltonian for a set of non-interacting single parti-

cle states in an additional potential that compensates for the neglected many-

body effects in the full Schrödinger equation. This difference between the non-

interacting single particle equations and the full Schrödinger equation is known as

the exchange-correlation. The exchange-correlation is usually included approxi-

mately as a functional of the total charge density in DFT calculations.

Local density approximation

The earliest and simplest approximation of the exchange correlation functional is

the local density approximation (LDA) which treats the inhomogeneous electron

case as locally uniform:

Exc[n] =

∫

n(r)εxc(n(r))dr (2.24)

10
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or in terms of the potential

Vxc(r) = εxc(n(r)) +

[

n
dεxc(n)

dn

]

n=n(r)

. (2.25)

Several functional forms of ǫxc have been developed, a common solution can be

found in [15]. Although the accuracy of the LDA is surprisingly good, a major

source of error stems from the self-interaction problem. Within the LDA every

electron (incorrectly) interacts with itself as well as all others.

An improvement to this problem can be achieved by a slight generalisation of

the LDA, the local spin density approximation. It treats the two spin states

separately and is commonly referred to as ’LDA’.

ELSD
xc =

∫

n(r)εxc(n↑(r), n↓(r))dr (2.26)

The functional form of εxc that is being used in this thesis is from [16], which splits

it into exchange and correlation energies for various situations. The exchange

energy follows a dependency of n4/3 and correlation n5/3 with separate densities

for up and down spins.

General gradient approximation

In order to further refine the approximation for the exchange correlation func-

tional the general gradient approximation includes information of the electron

density gradient, a general form of which is

EGGA
xc [n] =

∫

f(n(r),∇n(r))dr. (2.27)

several implementations of this idea can be found in the literature. However,

the General Gradient Approximation is not used within this work, here LDA is

applied exclusively.

2.1.5 Periodic boundary conditions

While the above DFT method is capable of calculating approximate charge den-

sities for any atoms and in principle any number of atoms, further considerations

apply for periodic structures such as crystals. These are defined through a unit

cell containing a set of atoms and symmetry operations such as rotations and

11
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translations. Hence it is sufficient to only solve for the charge density of the

unit cell with the knowledge of the crystal symmetry in order to study the whole

crystal. This can be done utilising Bloch’s theorem [8], which is presented in this

subsection.

A general description for the lattice repeat can be written as a linear combination

of translations along lattice vectors to an identical position to any other unit cell:

L = n1a1 + n2a2 + n3a3 (2.28)

Where ni ∈ N and ai are the lattice vectors defining the symmetry of the crystal.

With this in mind the reciprocal lattice can be defined as

bi = 2πǫijk
aj × ak

ai · (aj × ak)
. (2.29)

The reciprocal lattice vectors bi are essentially a Fourier transform of the lattice

vectors and similarly define a unit cell in Fourier space or reciprocal space, called

the Brillouin Zone (BZ). Specifics on the BZ for the materials under study in this

thesis can be found in section 3.2.

Bloch’s theorem states that any single particle wavefunction in a periodic poten-

tial V (r + L) = V (r) can be represented by the product of a plane wave-like

phase factor with the wave vector k and a periodic function uik(r + L) = uik(r):

ψik(r) = eik·ruik(rr). (2.30)

Which results in only a phase shift of the wavefunction under translations by L:

ψik(r + L) = eik·Lψik(r). (2.31)

This also means that the charge density is not affected and displays the same

periodicity as the lattice (ρ(r+L) = ρ(r)). The construction of a charge density in

a system with multiple non-interacting wavefunctions is done by integrating over

the first BZ and summation over all occupied particle wavefunctions. However

each k-point wavefunction needs to be determined separately and therefore it

is common that the BZ is only sampled across the irreducible BZ, which is the

minimal section of the first BZ according to the lattice symmetry operations such

as rotations and inversion. A weighing factor ωk is included to account for this

12
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reduction to the irreducible BZ.

ρ(r) =
∑

i

∑

k∈BZ

ωk|ψik(r)|2. (2.32)

Various sampling schemes can be adopted, however the BZ sampling in this work

is performed exclusively using the scheme proposed by Monkhorst and Pack [17].

It follows the construction of a regular grid of (I × J ×K) points.

kijk = uib1 + ujb2 + ukb3 (2.33)

with ui = (2i− I − 1)/2I, uj = (2i− J − 1)/2J and ui = (2i−K − 1)/2K.

As the charge density obeys the same periodicity as the external potential, Bloch’s

theorem can also be used for the effective potential in the KS equations:

(

−1

2
∇2 + V k

eff(r)

)

φik(r) = ǫikφik(r). (2.34)

Therefore each KSO is also a function of k and the charge density is now similarly

defined through the summation

ρ(r) =
∑

k∈BZ

ωk

Nk
∑

i

fik|φik(r)|2. (2.35)

The density of the sampling scheme is now dependent on the size of the BZ

and the k dependence of the KSO’s. However, the size of the BZ is inversely

proportional to the lattice constant, resulting in the possibility of lower sampling

point densities for larger real-space cells. The actual quality of the sampling

for a particular system in principle needs to be determined for each property

separately.

2.1.6 Pseudopotentials

The use of pseudopotentials is a very important step in the ab-initio modelling

of large scale systems. The central idea is that only valence electrons should be

included in the charge density, as core electrons can be considered to be chemi-

cally inactive. The absence of core electrons is then compensated by a modified

nuclear potential. This idea ties in nicely with DFT, as the KS equations already

13
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rely on a modified effective potential.

The pseudopotential approach parameterises the external potential for each chem-

ical species. This parameterisation is commonly done by utilising all electron

ab-initio methods to ensure consistency, with several methods proposed for con-

structing these pseudopotentials and their parameterisation. However, high accu-

racy and transferability is obtained by constructing pseudopotentials with norm-

preserving states. A popular example for such a norm-preserving pseudopotential

is that of Bachelet, Hamann and Schlüter [18].

Norm-conservation is defined through a cut-off radius, beyond which the pseudo

valence electron wavefunction agrees with the respective wavefunction obtained

by an all-electron calculation. In addition the integrated charge must be identical

for the two wavefunctions within the cutoff distance [14]. The norm conservation

thus results in the equality of the total integrated charge for each wavefunction

with that for the all electron wavefunction. The functional shape of the resulting

pseudo-wavefunction is also chosen to be smooth at the cutoff boundary including

it’s derivatives.

The construction of such a norm preserving potential is done by performing an

all electron calculation on a single (radially symmetric) atom and calculating the

KSO’s. The effective all-electron potential is

veff (r) = −Z
r
+

∫

n(r′)

|r − r′|dr
′ + vxc[n(r)], (2.36)

where r is the distance from the nucleus. The effective pseudo potential is chosen

to be non singular at (r = 0); A function f(x) is introduced that is equal 1 at

x = 0 and tends to zero as x > 1:

vpseff,l(r) = veff (r)

(

1− f

(

r

Rcl

))

+ clf

(

r

Rcl

)

. (2.37)

the parameter Rcl is the cutoff radius, which has to be chosen carefully to en-

sure accuracy, while cl is adjusted to match the lowest energy eigenvalue for each

angular momentum l with the all electron case. Note that this dependence on

the angular momentum makes the potential non-local. The ground state pseudo

wavefunction of this initial modified potential must match its all electron equiva-

lent (outside of Rcl). The pseudopotential capable of generating this normalised

wavefunction can be found by inverting the Schrödinger equation at the energies

of the matched eigenvalues. The resulting potential contains then a modified
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electron-ion potential as well as part of the exchange correlation and Hartree po-

tential and can usually be separated into a non-local and local part.

The particular implementation used within this work have been developed by

Hartwigsen, Goedecker and Hutter [19] and includes relativistic separable, dual-

space Gaussian pseudopotentials as well as non-linear core corrections (NLCC).

NLCC are particularly important for Group-III elements (such as Ga and In)

as here the semi-core d states overlap more strongly with the valence p states.

Therefore the exchange-correlation potential is non linear and

vxc(nc, nv) = vxc(nc) + vxc(np) (2.38)

can no longer be assumed. See Louie et al. [20] for a discussion of a method to

produce NLCCs.

2.1.7 AIMPRO code implementations

All DFT calculations in this thesis have been performed using the AIMPRO code,

which has been developed at the University of Newcastle and is in use at sev-

eral groups in Europe [21]. It uses Gaussian basis functions to expand the KS

states, enabling efficient simulations. Many other DFT codes instead use a sim-

pler plane wave expansion, which allows for easy control of the accuracy of the

solution, however the expansion of KSOs as a sum of Gaussian functions requires

fewer terms and therefore allow for a much smaller set of functions to solve the

KS equations[22], enabling the convergence to be achieved more rapidly. In ad-

dition AIMPRO is capable of including pseudopotentials and allows a choice of

either LDA [16] or GGA [23] functionals for the estimation of the exchange cor-

relation energy. The results presented here have been obtained solely within LDA.

These features enable the AIMPRO code to perform very efficient DFT-calculations

for structures containing up to hundreds of atoms on a desktop machine. How-

ever, recent advances have resulted in the development and implementation of

the basis filtration principle [24] within the AIMPRO code. Usual local basis

codes using direct diagonalisation to solve the eigenvalue problem require O(N3)

steps, where N is the number of basis functions. The filtration algorithm effec-

tively reduces this by dynamically building a smaller contracted basis, consisting

of 4 basis functions per atom. For an original basis of 16 functions per atoms

this results in a theoretical speed gain of ∼ (16
4
)3 = 64 [24], while retaining the
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accuracy of the original basis.

In order to solve the KS equations, the AIMPRO code applies a direct diagonal-

isation method. Specifically, it expands each KSO into basis functions4 ϕi with

coefficients cλsi . This takes the usual form (s denoting the spin)

φλs =
N
∑

i=1

cλsi ϕi(r). (2.39)

The quality of the above expansion is only limited by the suitability of the basis

functions and their quantity N . The normalisation of a KSO is then expressed

as
∫

|φλs(r)|2 dr =
∑

ij

cλsi c
λs
j Sij = 1, (2.40)

where Sij denotes the overlap matrix, defined through:

Sij =

∫

ϕi(r)ϕj(r)dr. (2.41)

The spin dependent charge density in this notation is then represented as

ns(r) =
∑

ij

bsijϕi(r)ϕj(r), bsij =
∑

λ

fλsc
λs
i c

λs
j (2.42)

With bsij being the spin dependent charge density matrix. The self consistent

minimisation of the KS equations can now be done with respect to the quantities

cλsi
δ

δcλsi

[

E[bsij ]−
∑

λ′,s′

ǫλ′s′

(

∑

ij

Sijc
λ′s′

j cλ
′s′

j − 1

)]

= 0. (2.43)

The differentiation can be done formally using

δE

δcλsi
=
∑

jk

δE

δbsjk

δbsjk
δcλsi

=
∑

j

Hs
ijc

λs
j (2.44)

4 The basis functions are typically Gaussian within AIMPRO and will therefore be treated in
this section as real valued for simplicity as opposed to the usual complex approach. Important
to note is that for periodic Bloch functions the complete complex treatment is required.
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where the Hamiltonian matrix Ĥ is defined through

Hs
ij =

δE

δbsij
. (2.45)

Therefore a matrix equation has been constructed

∑

j

Hs
ijc

λs
j = ǫλs

∑

j

Sijc
λs
j (2.46)

which has the simple form of a generalised eigen-problem

(Ĥ− Ŝǫ)c = 0 (2.47)

and can be solved through common linear algebra methods [25]. The self consis-

tency cycle itself consists of

1. building the Hamiltonian Ĥ in a chosen basis,

2. calculating the overlap matrix and formulating the eigenvalue problem in

equation (2.47),

3. performing the diagonalisation and updating the density matrix b̂ as well

as constructing the charge density with equation (2.42).

Having found a new density matrix at the end of a cycle, step (1) can be repeated

starting a new cycle until the difference in the solution (commonly with respect

to the total energy) is sufficiently small.

Choice of basis set

In order to solve the eigenvalue problem posed by the KS equations it is necessary

to use a suitable basis set spanning that function space. A very common and

orthogonal choice are plane waves, resulting in the expansion becoming:

φλs(r) =
∑

G

cλs(G) exp(iGr), (2.48)

where G is a reciprocal space vector and the summation is done up to a cutoff

value. The advantage being that the quality of the basis set is easily adjustable

by increasing the cutoff energy and a straightforward incorporation of periodic
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boundary conditions.

The basis set used in the AIMPRO code however are Cartesian Gaussian in

nature, with the form:

ϕi(r) = (x− Rix)
n1(y −Riy)

n2(z − Riz)
n3 exp

(

−αi(r −Ri)
2
)

. (2.49)

The basis functions here are real space representations and are centred around

the atom positions Ri, where the αi are atomic type dependent coefficients that

need to be optimised for each species and bonding type. The coefficients n1,n2,n3

are integers and vary the nature of the basis function between s-,p-, d-, ... type.5

Linear combinations of these Gaussians can be chosen to transform like spheri-

cal harmonics under rotations [22]. The Gaussian basis set requires only a few

functions per atom, is real valued and has easily determined overlap matrices, for

example two s-type orbitals:

S00
ij =

(

π

αi + αj

)3/2

exp

(

− αiαj

αi + αj
(Ri +Rj)

2

)

(2.50)

and similarly for higher momenta. Therefore utilising these orbitals requires little

computational time and memory. In addition a Gaussian basis set is more suit-

able for pseudopotential calculations as core states in an all-electron calculation

deviate too strongly from a Gaussian form requiring many functions to expand

them.

However, contrary to the KSO orbital construction, the charge density is repre-

sented as a plane wave expansion within AIMPRO and thus is dependent on a

cutoff frequency.

Filtration principle

Basis set filtration is a method to drastically reduce computational time for each

self consistency step in a DFT calculation. It does this by redefining the eigen-

value problem in a subspace consisting of fewer states, and more importantly a

reduction in basis functions, by projecting only a subset of local eigenfunctions

that contribute to each chosen diagonalisation. This requires an original basis set

of localised orbitals such as Gaussian orbitals and a restructuring of the eigen-

5 A s-nature results when all n coefficients are zero, if only one coefficient deviates to be
equal 1 the basis function acquires a p-type and the six choices of

∑

i ni = 2 incorporate a
combination of 5 d-states and 1s state.
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value problem [24].

The filtration of the basis set is performed by defining a function of the Hamilton

operator F(H), chosen to suppress eigenvalue-eigenfunction pairs according to a

Fermi-Dirac function f(x) operating at high temperature (this is separate from

the electron temperature introduced earlier in the charge density construction).

In a non-orthogonal basis this becomes

cf(ǫ)cTS|t〉 = FS|t′〉, (2.51)

where F acts on a test function, filtering out components so that the remaining

ones lie predominantly in the desired subspace. This filtration is repeated until

the space is sufficiently spanned, creating a smaller diagonalisation problem.

Until this point filtration has not introduced any approximations. However there

have also been no computational savings, as the construction of the filtration

is as costly as the diagonalisation of the original problem. Therefore the filtra-

tion must be constructed locally for each atom position (FI, with I = 1, ..,M)

and only approximately includes all basis functions by restricting its support to

surrounding atoms within a cutoff distance, the filtration radius. From here sub-

space Hamiltonians and density matrices can be constructed and diagonalised

separately. Subsequently the full charge density can be reconstructed. This fil-

tration radius is therefore a quality parameter and by increasing it to infinity the

original solution is achieved.
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2.2 Interatomic potentials

Interatomic potentials utilise the fact that, in principle a system’s total energy is

a function of atomic types and positions. These potentials can also be used for

Molecular Dynamics calculations under the Born-Oppenheimer approximation.

Under this constraint, forces can be calculated from the gradient of the deter-

mined potential.

While ab-initio methods such as DFT can provide such a potential, interatomic

potential methods use a purely empirical approach to the construction of the

energy of a given system. Clearly the most prominent advantage to such a for-

mulation its great speed. However electronic interactions and charge transfer are

commonly not included at all and can therefore not be studied, only structural

information and total energy is to be gained. Further disadvantages are the low

transferability as these potentials can only give accurate results in situations sim-

ilar to those where the potential parameters were fitted for. This quality is also

strongly dependent on the functional complexity of the potentials themselves.

Several interatomic potential forms have been developed, the earliest and simplest

being pair potentials such as hard spheres, Lennard-Jones or Morse potentials.

Pair potentials calculate the total energy with

E(r1, r2, ..., rN) =
∑

I

∑

J>I

U2(rIJ), (2.52)

where rIJ = |rI − rJ | is the distance between two atoms. A simple example of

which is the Lennard-Jones potential:

U2(rIJ) = 4A

(

(

B

rIJ

)12

−
(

B

rIJ

)6
)

, (2.53)

with A and B being parameters to be fitted for different atom types. This pair

potential approximates the short range ’hard sphere’ repulsion due to the Pauli

principle with the polynomial r−12 and an attractive part due to van der Waals

attraction with −r−6 and is as such very suitable functional description of gases

and few solids [26]. However in a crystal where directional bonds play a crucial

role it is necessary to add an angular dependent term to the energy potential.

Three body potentials include this information about the configuration of atoms

and are hence applicable to covalent bonded materials [26]. A popular example
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is the Tersoff potential that builds on a Morse Pair potential (an exponential

description of attraction and repulsion) and adds a three body term on the at-

tractive part that includes the bond angle between three atoms. The potential

of choice in this thesis however is one developed by Stillinger and Weber[27] and

has been used here exclusively for structural optimisations on GaN systems.

2.2.1 Stillinger Weber potentials

The Stillinger Weber (SW) Type interatomic potential is a three body potential

that builds on a Lennard-Jones type two body pair potential. It is capable of

describing directional bonds and has been originally parameterised for group 4

elements such as silicon and carbon[27]. The potential itself is a sum of two and

three body parts:

E(r1, r2, ..., rN) =
∑

IJ

U2(rIJ) +
∑

IJK

U3(rIJ , rIJ , θIJK). (2.54)

The two body potential incorporates positive repulsive, negative attractive and

exponential terms. The last serves as a decay over the cutoff distance aIJ ,

U2(rIJ) = AIJǫIJ

[

BIJ

(

σIJ
rIJ

)qIJ

−
(

σIJ
rIJ

)pIJ]

g(rIJ , σIJ , aIJ), (2.55)

where g is the cutoff function defined through

g(r, σ, a) =







exp
(

σ
r−aσ

)

if r < a

0 if r ≥ a.
(2.56)

The three body term U3 is similarly defined, in that it utilises the same cutoff

function, however scaled additionally with a parameter γ. It ranges from zero to

positive numbers depending on the angle θIJK between the three atoms, where

this angle is measured as the smallest angle between rJ and rK with rI as the

vertex.

U3(rIJ , rIK , θIJK) = λIJKǫIJK
(

cos θIJK − cos θ0IJK
)2

g(rIJ/γIJ , σIJ , aIJ/γIJ) (2.57)

g(rIK/γIK , σIK , aIK/γIK) (2.58)
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(b) Single SW three body potential (U3) for
Ga-N-N
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(c) Complete SW potential for Ga-N-N

Figure 2.1: Figures depict the individual components and the complete SW type
interatomic potential. The radial part (b) and complete potential (c) are those acting
on a nitrogen atom due to one gallium atom at (0, 0) and one nitrogen atom at (1.9, 0).
As there are only two atoms drawn in figures (b) and (c), a rotational symmetry
develops with rotational axis along the Ga-N direction (x-direction) and as a result the
complete potential can be viewed in a 2D plot. Parameters for the potential were taken
from [2].
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The parameters γ and λ are included to scale the three body to two body potential

and hence regulate the angular potential strength and range, while θ0IJK deter-

mines the optimum bonding angle. At an angle of 109.47◦ (cos(θ0IJK) = −1/3)

the potential favours tetrahedral bonds. A depiction of the two and three body

potential as well as the full potential can be found in figure (2.1).

The SW potential with various parameterisations and slight modifications has

been used before in extended defect studies in group-III Nitrides. Examples in-

clude dislocation core configurations from [28], [29] and [30] or stacking faults

and partial dislocations from [31]. In addition ab-initio or semi-empirical meth-

ods (such as DFTB) have been used to compare predictions and confirm the

applicability of the SW-potential.

Various SW-parameters for the group-III nitrides can be found in the literature,

which are usually fitted to lattice parameters and elastic constants. The parame-

ters used in this work were developed by Béré et al [2] for GaN and were an opti-

misation of the parameters from Äıchoune et al. [32]. Äıchoune et al. originally

used a modified version of the SW-potential and optimised the parameters to re-

produce the experimental lattice parameters, experimental elastic constants and

ab-initio results, then claiming that usual Inversion Domain Boundaries (IDB)

are unfavourable in GaN. However, more recent experimental results proved the

existence of these IDBs. Therefore Béré et al. included slight modifications to

the parameters and was able to recover to the original form of the SW-potential

by reducing interactions to zero smoothly before the second neighbour atomic

distance. These parameters then differ in the prediction of the IDB stability

and match experimental data. Additional comparisons have been made to ab-

initio modelling with extended defects, confirming their applicability [2]. These

parameters are listed in table (2.1) and have been used for all interatomic po-

tentials calculations in this work. It is important to note that all parameters

are given pairwise, i.e. do not involve a third atom. Therefore λIJK = λIK and

ǫIJK =
√
λIJǫIJλIKǫIK/λIK are assumed.

The LAMMPS code

All structural optimisations utilising the SW-potential were performed using the

LAMMPS code [37]. LAMMPS is a classical molecular dynamics code, and an

acronym for Large-scale Atomic/Molecular Massively Parallel Simulator. It in-
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(a) Stillinger Weber potential parameters from [2]
ǫ σ λ a A B

Ga-N 2.17 1.695 32.5 1.8 7.917 0.72
Ga-Ga 1.2 2.1 32.5 1.6 7.917 0.72
N-N 1.2 1.3 32.5 1.8 7.917 0.72

(b) Wurtzite lattice parameters and elastic constants
a c c11 c12 c13 c33 c44 c66 B

SW 3.19 5.21 354 140 124 370 97 107 206
exp.1 391 144 108 399 103 124 210
exp.2 359 129 92 389 98 115 194
exp. 3.19 5.18

(c) Zinc-blende lattice parameters and elastic constants
a c11 c12 c44 B

SW 4.52 318 149 123 205
calc.3 296 154 206 201
exp.4 4.49

Table 2.1: Parameters and comparison for the Stillinger Weber potential for Ga,
N and GaN taken from [2]. The units for ǫ are given in eV while σ is in Å, all
other quantities in table (a) are dimensionless. Elastic constants in table (b) and
(c) are in GPa, lattice constants in Å.

1 experimental data from [33]
2 experimental data from [34]
3 calculated from wurtzite by [35]
4 experimental data from [36]
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cludes a formulation of the SW-potential and accepts SW-parameters for any

interaction. The actual optimisations were performed with periodic boundary

conditions using large supercells and a conjugate gradient optimiser.
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2.3 Optimisation algorithms

The general definition of an optimisation is the selection of a best element from

a group with regard to pre-defined criteria. In many cases including this one the

pre-defined criteria is a real valued cost function or energy function. In addition

the group of elements in which the solution is to be found is often a subspace of

R
n and specified by a set of constraints. Elements of this group are called feasible

solutions.

f, gi : R
n → R

minimize f(x), x ∈ R
n (2.59)

subject to gi(x) ≤ 0, i = 1, . . . , m

where f is the objective cost function and gi are constraint functions that can

be equalities. With this definition it is possible to classify optimisation problems

into linear, non-linear a subset of non-linear, convex problems; if the following is

true for both constraint and objective function:

f(αx+ βy) = αf(x) + βf(y) linear

f(αx+ βy) 6= αf(x) + βf(y) non-linear (2.60)

f(αx+ βy) ≤ αf(x) + βf(y) convex

where α, β ∈ R and x, y ∈ R
n. A convex minimisation problem has only a single

minimum that can be readily found with a variety of optimisation algorithms,

however all other problems may have several local minima and a global optimi-

sation technique needs to be applied to find the optimal solution[38].

The following sections will introduce only a few select optimisation methods and

their application to find local or global minima.

2.3.1 Local optimisations

Many optimisation algorithms exist that are well defined global optimisations

for convex problems such as the simplex and conjugate gradient algorithm. The

simplex algorithm is defined for linear cost functions and works by systemati-

cally (iteratively) reducing the feasible solution set by changing the constraint

conditions until an optimal solution is found. The efficiency of the simplex algo-
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rithm is usually of polynomial order, however for all its implementations, worst

case scenarios have been shown to exist where the efficiency drops to exponen-

tial order. On the other hand the conjugate gradient algorithm very efficiently

solves for quadratic cost functions by using local gradient information in addition.

It is usually much faster than the more simple gradient descent method, where

the main difference lies in the assumption of a purely quadratic function in a

standardized form. However for general non-linear problems, where many local

extrema can exist, neither of these methods can guarantee to produce an optimal

solution and are hence treated here as local optimisations.

In this work the prominent optimisation problem consists of a potential energy

function to be optimized that uses atomic positions as arguments. This function

can be computed with either DFT or SW potentials. Some of the possible lo-

cal optimisations for the atomic positions are a downhill simplex (Nelder-Mead),

simple gradient or a nonlinear conjugate gradient method[25]. Where in this work

primarily the conjugate gradient option has been chosen for its superior efficiency.

2.3.2 Global optimisations

In order to find the true global extremum for a general non-linear optimisation

problem, global optimisation techniques need to be applied, as there are com-

monly a large quantity of local extrema (potentially of exponential order). Op-

timisations for non-linear functions is a field of active research that has already

produced a wide variety of methods where generally a heuristic or stochasitc ap-

proach can be taken. Stochastic approaches include Monte Carlo methods and

simulated annealing, while heuristic approaches include evolutionary and swarm-

based algorithms. Only a very select few methods will be briefly introduced here

and compared to the approach taken within this work. The random search algo-

rithm used here, however could be classed as a stochastic method as it randomly

searches through the feasible set of solutions to find initial tries.

Simulated annealing

Simulated annealing is a stochastic metaheuristic global optimisation technique,

it therefore produces a probable global solution to a given system subject to a

quality parameter, the annealing schedule [39]. The method iteratively searches
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for the global minimum of a given system by looking at the neighbouring states of

an arbitrary starting state, computing the probability of moving to these states

and deciding on the optimal choice. This is done by using a probablity function

P (E,E ′, T ) for moving from a current configuration with energy E to a new

neighbouring configuration with energy E ′ at temperature T , which is usually

a Boltzmann factor exp(−(E ′ − E)/kBT ). The important feature is that the

probability to change into another state is always positive and goes to 1 for

any choice with higher temperature. The algorithm then works by assuming a

random starting point at a sufficiently high temperature that is lowered with every

iteration according to the annealing schedule until a the configuration is frozen

as all probabilities for movement tend to 0. The annealing schedule is therefore

the manner of lowering the temperature, where the probability of finding a global

optimal solution approaches 1 as the annealing schedule is extended. However,

the time required to reach a high probability of finding the globally optimal

solution can be exceedingly long and confirmation of actually finding the optimal

solution cannot be given.

Genetic algorithm

A genetic algorithm is a type of evolutionary algorithm where the evolutionary

process in biology is taken as an example for a metaheuristic optimisation, mean-

ing that an approximate global solution can be found. This has been perfomed on

structural optimisation before for example by Hartke et al. [40]. In this method

the geometry of a particular solution is encoded into a bit string, which is the

equivalent of a genome of an individual. In order find the global optimimum

a random starting population is created and according to an energy ”fitness“

function parents are chosen from which children are constructed by combining

the genomes into that of an entire new generation. This is repeated until a best

solution has been found, subject to the convergence of the fitness criteria of the

energy function. A guarantee of actually finding an optimal solution however

cannot be given.

Particle swarm optimisation

The particle swarm optimisation technique is a more recent development and

has been applied to structural optimisations before [41] as well as a very wide

area of other topics [42]. It is an iterative method and works by introducing
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an initial population of particles at random positions in the feasible solution

space, where each particle is assigned a velocity that determines its change in

position per iteration. The method is inspired by flocks of birds and hence uses

two separate influences on the velocity of each particle, those are the individuals

particle’s social neighbourhood and its own history. The selection of which parts

of neighbourhood and history are used is determined by the cost function. A

common description of the evolution of the ith particles velocity vi(t) at time t is:

vi(t+ 1) = ωvi(t) + AR1(xni(t)− xi(t)) +BR2(xhi(t)− xi(t)), (2.61)

where xi is the ith particle’s position, xni is the particles position with the best

cost function of the ith particles social neighbourhood, xhi is the position with

the best cost function of the ith particles hisory, ω,A,B are constant parameters

and Ri, R2 are random coefficients. With each iteration all particle positions are

updated and the swarm will tend towards the global minimum. Other variations

of the velocity construction include a global swarm position and current global

swarm best particle position. However the performance of the particular particle

swarm optimisation flavour including its parameterisation depends strongly on

the landscape of the problem it is applied to[43].

Random search

The random search method applied in this work is a ”brute force” method, mean-

ing that a complete sampling of the feasible solution space is performed. Specif-

ically, this method randomly samples the solution space and performs local op-

timisations from each random starting point. As a result this approach features

an exponential increase of computational cost with increasing dimensionality of

the solution space, as the number of sampling points necessary for a constant res-

olution increases exponentially. Heuristic approaches such as the above particle

swarm optimisation and Simulated Annealing tend to be more efficient than this

complete sampling, however the clear disadvantage of each heuristic approach is

that it cannot guarantee that an actual global minimum has been found.

This random search global optimisation technique for structural optimisations

has been developed and applied previously by Pickard et al. [26][44], where

the crystal structure of solid hydrogen was investigated initially. Within this
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approach, the atomic positions inside a region of interest are randomised and

subsequently relaxed using DFT in conjunction with a local conjugate gradient

optimiser multiple times. In fact this randomisation/relaxation cycle needs to

be repeated as many times as it takes to let the space of feasible solutions to be

mapped so thoroughly that a lowest energy structure has been found with a suf-

ficient degree of certainty. This can be achieved provided that the lowest energy

structures occur disproportionately more often, since the structural relaxation

algorithm will always tend towards the local minima. This behaviour becomes

apparent when the resulting distribution of relaxed total energies is being inves-

tigated: It shows a normal-like distribution (or Gamma distribution) with clear

spikes towards the lowest limit. In other words the mapping from the space of

possible starting positions to the set of local minima of the total energy surface

has more connections or larger basins towards the global minimum.

The exponential increase in computational time for this search method stems

from the fact that it is based around a complete investigation of the feasible

solution space through random sampling of points. However by using local op-

timisations at each random point the exponential cost behaviour also implies an

exponential increase of local minima with increasing variables or dimensions. In

the case of an energy function f with N distinguishable particles in a volume V

with constant shape and Ω(N) local minima, the general assumption of exponen-

tial behaviour can be expressed as:

lim
N→∞

(

ln(Ω(N))

N

)

= α, α > 0. (2.62)

The exponential rate parameter α can depend on the particle density N/V and

is specific to the energy/cost function, i.e. depends on the material and the

approximations made. A simple argument for the validity of equation (2.62)

is is that if a system of N particles is divided into M subsystems with N/M

particles large enough to have independent stable solutions, then the number of

local minima of the complete system is:

Ω(N) = ΩM(N/M), (2.63)

with the solution Ω(N) = exp(αN). However, this simple argument assumes

that the function Ω is continuous and scaleable to all system sizes. A more
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detailed discussion of this behaviour has been made by Stillinger [45], where the

exponential increase of local minima is described with upper and lower bound

scenarios.
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2.4 Elasticity Theory

X

Y

(a) Graphical representation of strain
deformation of an area.

X

Y

z

(b) Graphical representation of stress on a vol-
ume element. Stress components are symmet-
ric and have thus been labeled.

Figure 2.2: Schematics of strain and stress

In this section a brief review of elasticity theory will be given. The focus will re-

main with linear isotropic elasticity theory and its application on the displacement

fields of dislocations. Anisotropy will only be discussed briefly for the hexagonal

wurtzite symmetry. For details on the influence of symmetries on linear elasticity

theory or more precisely its influence on the shape of the elastic stiffness tensor,

please refer to Appendix A.

Elasticity theory describes the relationship between stress and strain in materi-

als that return to their initial state after deforming (i.e. elastic deformations).

Stress stands here for an applied force on a surface area element and strain is the

resulting deformation of the volume element. A graphical representation of each

can be seen in figure 2.2. Classical linear elasticity theory is then the restriction

to the regime where stresses are small enough so that the resulting strain can be

expressed by a linear transformation. Materials are therefore approximated as

continuous media rather than a discrete selection of atoms.

Stress has six independent components and is expressed by a symmetric matrix:

σ =







σxx σxy σxz

σxy σyy σyz

σxz σyz σzz






(2.64)
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As seen in figure 2.2(b) each stress component (σij) stands for a force component

applied to one of the volume’s surface areas (defined through surface normal).

For instance σxy is the force in y direction on the volume’s x = 0 surface. This

results in the following identity, implying no net internal torque:

σij = σji. (2.65)

With the inclusion of an external force f the net force must still be zero and

therefore

∂jσij + fi = 0 (2.66)

holds true. For the above expression, and henceforth, Einstein’s summation rule

is being used. Similarly the strain is represented by the same matrix notation:

ǫ =







ǫxx ǫxy ǫxz

ǫyx ǫyy ǫyz

ǫzx ǫzy ǫzz






(2.67)

As can be seen in figure 2.2(a), the components for strain can be expressed with

the spatial derivative of the displacement field u(r). One possibility would be:

ǫij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

. (2.68)

the above definition of the strain components is symmetric in nature and therefore

results in the neglect of all antisymmetric (rotational) parts of the deformation.

Rotational parts ω of a displacement u can be described by the antisymmetric

part:

ωij =
1

2

(

∂ui
∂xj

− ∂uj
∂xi

)

. (2.69)

In addition, it is worthwhile to note for the strain tensor that all volume changing

compressive/tensile elements are on the diagonal, while the volume preserving

shear strains are on the off diagonal.

As mentioned above the relationship between strain and stress in linear elasticity

theory is described by a linear transformation. The strain and stress components

therefore have the relation:

σij = cijklǫkl (2.70)
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where c is called the stiffness tensor and is material dependent. The inverse of

the stiffness tensor s is then called the elastic compliance tensor and can be used

to describe the strain 6

cijklsklmn = δimδjn ⇒ ǫij = sijklσkl, (2.71)

where δ is the Kronecker delta.

From the above equations and given the linear relationship between stress and

strain it is possible to deduce that the stiffness tensor has the following identities:

cijkl = cjikl = cijlk = cklij (2.72)

This decreases the number of independent elements of the stiffness tensor to 21.

Therefore the linear transformation above can be represented using a matrix by

rewriting σ and ǫ as vectors 7. In the most common Voigt notation this results

in the following scheme:























σ11

σ22

σ33

σ23

σ31

σ12























=























c11 c12 . . . c16

c21 c22 .

. . .

. . .

. . .

c61 . . . . c66













































ǫ11

ǫ22

ǫ33

γ23

γ31

γ12























, (2.73)

where γij = 2ǫij to preserve convention (this way, matrix components do not have

to be scaled when incorporating all strain and stress components).

Also, it is useful to remind oneself that the energy density can be calculated by

6 It is interesting to note that with included (isotropic) thermal expansion α the relationship
between stress and strain becomes

σij = cijkl (ǫkl − α∆Tδkl)

and
ǫij = sijklσkl + α∆Tδij ,

where ∆T is the difference in temperature and α is material dependent.
7 Using only the independent elements of the symmetric σ and ǫ tensors to create a 6 dimen-

sional vector (3(3 + 1)/2 = 6). This means that c and s will be symmetric 6 × 6 matrices
with 21 independent indices (6(6 + 1)/2)
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force times distance over volume, i.e.

U =
1

2
σijǫij . (2.74)

2.4.1 Isotropic elasticity theory

In this subsection the elastic stiffness tensor and its elements are analysed for

materials with properties independent of direction. In this case the elements

of the stiffness tensor do not change under any orthogonal transformation, i.e.

length preserving unit transformations such as rotations and reflections. This

leads to dependencies between the matrix elements and some of them becoming

zero (details in Appendix A). In terms of shape of the stiffness tensor, an isotropic

material is very close to the cubic system. For a cubic system the stiffness tensor

becomes:

ccub =























c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44























(2.75)

If, in addition to the stiffness tensor above, complete isotropy is considered, the

number of independent elements in the stiffness tensor decreases to two with the

relationship

2c44 = c11 − c12. (2.76)

In fact for anisotropic materials the factor

A =
2c44

c11 − c12
(2.77)

is called the anisotropy ratio and a deviation from 1 is a measure of anisotropy.

Since at this point only two elastic constants remain independent, it is common

to define

µ = c44 =
1

1
(c11 − c22) (2.78)

λ = c12 (2.79)

⇒ λ+ 2µ = c11. (2.80)
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Where λ and µ are called the Lamé constants. µ specifically is called the shear

modulus, as it is the ratio of shear stress to shear strain. Expressing the elastic

constants tensor with Lamé constants then yields:

ciso =























λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ























. (2.81)

or the same in index notation:

σij = λǫkkδij + 2µǫij (2.82)

At this point, the relations between specific stresses and resulting strain can be

quantified for each material with several constants. Those include the Young’s

modulus (E, ratio of simple tensile stress to strain), the bulk modulus (B, ratio

of pressure to volume change) and Poisson’s ratio (ν, transverse contraction to

elongation in simple tension). These can be expressed for isotropic materials:

B =
1
3
(σ11 + σ22 + σ33)

ǫ11 + ǫ22 + ǫ33
= λ+

2

3
µ (2.83)

E =
σ11
ǫ11

=
µ(2λ+ 2µ)

λ+ µ
, ∧ σ22 = σ33 = 0 (2.84)

ν =
1
2
(ǫ22 + ǫ33)

ǫ11
=

λ

2(λ+ µ)
, ∧ σ22 = σ33 = 0 (2.85)

and in turn the Lamé constants can then be expressed as

λ = 3
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (2.86)

Planar conditions

Solving for strain and stress fields can be largely simplified if a displacement field

is present that is independent of one dimension. In this special case a differential
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equation for a scalar field can be constructed in order to solve for all strain and

stress components.

If the independent dimension is chosen to be along the x3 axis the general dis-

placement field reads:

U(x) =







u1(x1, x2)

u2(x1, x2)

0






. (2.87)

This also implies that all derivatives of the displacement field and by extension

stress and strain fields with respect to x3 will be zero. Therefore equation (2.66)

without external forces will simplify to

∂σ11
∂x1

+
∂σ12
∂x2

= 0 (2.88)

∂σ12
∂x1

+
∂σ22
∂x2

= 0 (2.89)

The two equations above can be solved with the scalar field ψ:

∂2ψ

∂x22
= σ11,

∂2ψ

∂x21
= σ22,

∂2ψ

∂x1∂x2
= σ12 (2.90)

Similarly, looking at the definition for the strain field (2.68) under planar condi-

tions one can construct

∂2ǫ11
∂x22

+
∂2ǫ22
∂x22

= 2
∂2ǫ12
∂x1∂x2

(2.91)

Using the elastic compliance tensor for isotropic materials (equations (2.71) and

(2.81)) to rewrite the above in terms of σij and inserting then the definition for

ψ will lead to the following differential equation:

∂4ψ

∂x41
+ 2

∂4ψ

∂x21∂x
2
2

+
∂4ψ

∂x42
= 0 (2.92)

∇2(∇2ψ) = 0 (2.93)

∇4ψ = 0 (2.94)

By solving the above equation for ψ (the Airy stress function) one can construct

the general solution for all internal strain and stress effects under planar con-

ditions. This can readily be applied to the edge dislocation as its displacement
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field satisfies planar conditions. By qualitatively selecting relevant parts of the

solution for the Airy stress function the displacement field for the edge dislocation

can be constructed.

2.4.2 Elasticity theory for hexagonal systems

Hexagonal systems such as wurtzite InN and GaN are anisotropic (as are cubic),

however they are usually described by a transverse isotropic symmetry. This

means that all rotations and reflections in two dimensions are symmetries. At

this point the x3 axis is chosen to be the axis of symmetry, which is the axis

around which all rotations are symmetries and as a result is orthogonal to the

symmetry plane. Under these conditions the stiffness tensor can be shown to take

the form (for a complete analysis see Appendix A):

chex =























c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66























, (2.95)

where the additional relationship c66 =
1
2
(c11 − c12) reduces the number of inde-

pendent matrix elements to five.

In the case of a hexagonal system the elastic moduli described above for isotropic

materials are not as simply expressed, as there is now a unique direction. For the

Young’s modulus we separate ET = σ33

ǫ33
and EP = σ11

ǫ11
= σ22

ǫ22
as the planar and

transverse part. Similarly the Poisson’s ratio and shear modulus have separate

values for xz = yz and xy directions.
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2.5 Theory of Dislocations

L

ds

Figure 2.3: Schematic of the integra-

tion path for a Burgers circuit

The following discussion of dislocations fol-

lows the description given in [46] but does

not go into great detail. It utilises the prin-

ciples of linear elasticity theory outlined in

the previous section as a description of the

long range deformation of general disloca-

tions.

A general line defect is a one dimensional

defect that can be classified with a line

direction and a Burgers vector. The line

direction describes the path of the defect

through the material while the Burgers vector is a measure of the crystal de-

formation that is caused by the defect. The Burgers vector B can be defined

using the displacement field U(r) that represents the deformation from the per-

fect crystal. The local Burgers vector is hence given by the line integral around

the defect line L, which is taken using a curve C in a right handed sense:

B =

∮

C

∂U

∂s
ds. (2.96)

A line defect where B 6= 0 is then called a dislocation. In a crystal, it follows

that the length of the Burgers vector is constrained by the nature of the crystal

lattice. This enables the definition of a perfect dislocation as a line defect with

a Burgers vector that is a linear combination of integer lattice vectors, while a

partial dislocation is a line defect with a Burgers vector containing fractions of a

lattice vector.

As a perfect dislocation is only classified by its Burgers vector and line direction,

two limiting cases can be identified in the extrema of the relationship of their rela-

tive direction. When line direction and Burgers vector are orthogonal the perfect

dislocation is called an edge dislocation, while the parallel case is described as a

screw dislocation. Consequently any other perfect dislocation can be decomposed

into its edge and screw components, including the long range strain field within

linear elasticity. Although pure edge and screw type dislocations are commonly

present in materials a “linear combination” of those can also be found, called the

mixed dislocation.
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(a) Screw Dislocation (b) Edge Dislocation

Figure 2.4: Schematic of a screw and edge dislocation. Burgers vector is shown
in red, line direction in green and Burgers circuit in purple.

2.5.1 Screw dislocations

A screw dislocation is a perfect dislocation with a Burgers vector Bs parallel to

its line direction, therefore

L×Bs = 0 (2.97)

holds true. A schematic of a screw dislocation in a cubic lattice can be found

in figure 2.4(a), where the line direction, Burgers vector and Burgers circuit are

depicted.

At this point isotropic elasticity theory (section 2.4) is applied to a straight screw

dislocation for a quantitative description of the resulting crystal deformation. The

deformation necessary to produce such a screw dislocation in polar coordinates

can be deduced from figure 2.4(a) to be a smoothly increasing displacement from

0 to Bs with the angle θ (0 to 2π) around the dislocation centre. Therefore the

displacement field U(r) for a screw dislocation in x3 direction will only consist of

one non-zero component:

u3 =
Bs

2π
θ =

Bs

2π
tan−1

(

x2
x1

)

, (2.98)

wherer Bs is the length of the Burgers vector. From the singular nature of the

displacement field at x = 0 it can already be seen that linear elasticity theory
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Figure 2.5: Non-zero strain components for a screw dislocation in an isotropic
medium with a Burgers vector length of 5.2Å.

will not be applicable close to the dislocation centre. In fact the threshold inside

which elasticity theory breaks down and the atomic configuration in a real cell

is not being described correctly by elasticity theory any more is marked by the

so called the Dislocation Core Radius Rc. Therefore elasticity theory is only

applicable to regions away from the dislocation centre and will only be used in

the analysis chapters to find Rc itself and verify dislocation centre positions.

From equations (2.68) and (2.98) it can be determined that for a screw dislocation

the strain components become:

ǫ11 = ǫ22 = ǫ33 = ǫ12 = 0 (2.99)

ǫ23 =
Bs

4π

x

x2 + y2
=

Bs

4π

cos(θ)

r
(2.100)

ǫ13 = −Bs

4π

y

x2 + y2
= −Bs

4π

sin(θ)

r
(2.101)

and with the elastic constants for isotropic media (2.81) the stress components

become:

σ11 = σ22 = σ33 = σ12 = 0 (2.102)

σ23 =
Bsµ

2π

x

x2 + y2
=

Bsµ

2π

cos(θ)

r
(2.103)

σ13 = −Bsµ

2π

y

x2 + y2
= −Bsµ

2π

sin(θ)

r
(2.104)
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It can be seen that the elastic stresses and strains do not have any tensile or

compressive parts, consisting solely of shear components that only vary in the

plane orthogonal to the line direction.

Elastic and dislocation core energy

As now all strain and stress components of the screw dislocation have been de-

termined, the energy density of the strain field as defined in equation (2.74) can

be derived and becomes:

U(r) =
B2
sµ

8π2

(

sin2(θ)

r2
+

cos2(θ)

r2

)

(2.105)

=
B2
sµ

8π2

1

r2
(2.106)

Figure 2.6: Schematic of the inte-

gration path for a Burgers circuit

The elastic energy density can be integrated

in a cylindrical volume around the disloca-

tion line in order to derive the total dislo-

cation energy. However, as mentioned above

the singular nature of the strain field results

in a diverging, unphysical situation close to

the dislocation centre. Therefore it is to be

expected that in a real crystal a certain dis-

location core radius exists at which the linear

elasticity theory becomes invalid and a more

realistic atomistic theory needs to be applied

inside. As a result the energy of the strain

field is only included in the total energy of

a real dislocation for the region outside the

dislocation core radius Rc. The integration

of the elastic strain energy density then becomes:

Eel/L =

∫ R

Rc

U(r)2πr drdθ (2.107)

=
B2
sµ

4π
ln

(

R

Rc

)

(2.108)

Where L is the integration cylinder length in the line direction. The elastic

energy Eel is also divergent as R → ∞ and therefore means that the elastic
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energy cannot be used as a measure to describe a dislocation. However, within a

cylinder of radius R around a screw dislocation the total energy is:

Escrew/L = Ecore/L+ Eel(R)/L. (2.109)

And thus in elasticity theory the dislocation core radius Rc and dislocation core

energy Ecore are defined as the minimum distance from the dislocation line to

where the elastic energy describes the crystal well and as difference of the elastic

energy Eel outside the core radius and the total dislocation energy Escrew.

The above description of the screw dislocation elastic fields and energy has been

for isotropic media only. However for hexagonal or even orthorhombic systems

there will be a difference in the primitive Burgers vector lengths for various di-

rections and as a result the energy density in the dislocation strain field will

be directionally dependent. The forces on atoms will also have differences in

direction, since the two shear stress components in the case of hexagonal mate-

rials have different shear moduli if the line direction is not perpendicular to the

isotropic plane. However, these issues will not be discussed here further, for an

analysis of dislocations in anisotropic media refer to [46].

2.5.2 Edge dislocation

An edge dislocation is a perfect dislocation with a Burgers vector Be orthogonal

to the line direction L:

L · Be = 0. (2.110)

This means that topologically speaking the edge dislocation is obtained by insert-

ing a half-plane of lattice sites into the crystal perpendicular to both line direction

and Burgers vector which terminates at the dislocation line. This can be seen in

the graphical represention of an edge dislocation in figure 2.4(b), where a Burgers

circuit is drawn around the dislocation line, revealing the Burgers vector for a

cubic lattice structure.

The displacement field of the edge dislocation can be found by acknowledging

the applicability of the constraints of planar stress. Which is to say that the dis-

placement field acts only in two dimensions and is independent of the third. All

non-zero components lie in the plane orthogonal to the line direction of the edge

dislocation. Therefore solving for the Airy stress function (2.94) will provide a

general solution for stresses in the two dimensional case without external forces,
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including the stress distribution for the edge dislocations.

Solving for ψ becomes much easier when considering another scalar function de-

fined as:

φ = (σ11 + σ22) = ∇2ψ. (2.111)

This results in equation (2.94) simplifying to the Laplace equation:

∇4ψ = ∇2φ = 0 (2.112)

which reads in polar coordinates as:

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)

φ = 0 (2.113)

The standard solution to this can be found readily by realising that the φ is

separable in its variables. However, only part of the solution corresponds to the

long range field of the edge dislocation. By qualitativeley analyzing the geometry

of the edge dislocation and only incorporating long range strains (details can be

found in [46]), the relevant part of the general solution can be identified to be:

φe =
β

r
sin θ, (2.114)

where β is an unknown constant at this point. Which yields for ψ through

integration:

ψe =
β

2
r ln r sin θ (2.115)

The constant β can now be found by producing the strain function with the above

solution for ψ and integrating along a Burgers circuit. The result should therefore

be equal to the Burgers vector, which means that

β = − µBe

π(1− ν)
. (2.116)

44



2.5. Theory of Dislocations Theoretical framework

Inserting β into the equations for the stress (see section 2.4.1 for details) will then

produce:

σ11 = − µBe

2π(1− ν)

x2(3x
2
1 + x22)

r4
(2.117)

σ22 =
µBe

2π(1− ν)

x2(x
2
1 − x22)

r4
(2.118)

σ12 =
µBe

2π(1− ν)

x1(x
2
1 − x22)

r4
(2.119)

σ33 = − µνBe

π(1− ν)

x2
r2

(2.120)

σ13 = σ23 = 0 (2.121)

and for the strain, by use of the compliance tensor:

ǫ11 = − Be

4π(1− ν)

(

(1− 2ν)
x2
r2

+
x2x

2
1

r4

)

(2.122)

ǫ22 =
Be

4π(1− ν)

(

(1 + 2ν)
x2
r2

− 2x32
r4

)

(2.123)

ǫ12 =
Be

4π(1− ν)

x1(x
2
1 − x22)

r4
(2.124)

ǫ33 = ǫ13 = ǫ23 = 0 (2.125)

and finally, the displacement field can be found by integrating the strain ten-

sor and setting the constant of integration for u1 with the boundary values of

u1(x1, 0) = 0. The constant of integration for u2 is set to C = b/3π(1 − ν) in

order to create a symmetric expression in x1 and x2. This is done in analogy to

[46, 47]

u1(x1, x2) =
Be

2π

(

tan−1

(

x2
x1

)

+
1

2 (1− ν)

x1x2
r2

)

(2.126)

u2(x1, x2) = −Be

2π

(

1− 2ν

2 (1− ν)
ln (r) +

1

4 (1− ν)

x21 − x22
r2

)

. (2.127)

The above solutions for strain, stress and displacement field around an edge

dislocation can be seen in Figure 2.7.
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Figure 2.7: Strain components and displacement field of an edge dislocation
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Elastic and dislocation core energy

The elastic energy density for the edge dislocation and its subsequent cylindrical

integration can be done in analogy to the screw dislocation arriving at the form

for the total dislocation energy:

Eedge(R)

L
=
Ecore

L
+

µB2
e

4π(1− ν)
log

(

R

Rc

)

. (2.128)

2.5.3 Mixed dislocations

Mixed dislocations are perfect dislocations that have a Burgers vector Bm that

can be decomposed into edge and screw dislocations.

Bs = (Bm · L)L (2.129)

Be = L× (Bm × L) (2.130)

Within linear elasticity any elastic field of a dislocation that is a linear combina-

tion of edge and screw dislocations can be described by a simple addition of their

component strain and stress fields. Due to the fact that mixed dislocations will

not be discussed within the results of this work, no detailed description of their

elastic fields will be given here.

Elastic and dislocation core energy

It is possible to describe a general mixed dislocation total energy with the ex-

pression
Emixed(R)

L
=
Ecore

L
+
k(β)B2

m

4π
log

(

R

Rc

)

, (2.131)

where β is the angle between the Burgers vector and the line direction of the

given dislocation. k(β) is then an energy factor and depends on β and the elastic

medium. Assuming isotropic condition it takes the form

k(β) = µ

(

cos2 β +
sin2 β

1− ν

)

(2.132)

This expression can be found by following the same procedure as for the screw

dislocation, however including a linear combination of edge and screw disloca-

tions. The somewhat lengthy construction is also not shown here but can be
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found in [46] or [47].

2.5.4 Partial dislocations and stacking faults

Partial dislocations are dislocations with a Burgers vector length of a fraction of

the underlying crystal lattice vectors. Therefore a lattice mismatch has to exist

along the dislocation line during the Burgers circuit, creating a stacking fault.

This can occur in crystals where the primitive unit cell is composed of multiple

atoms, allowing for atomic neighbours that are not in their native configuration.

For specific examples of partial dislocations in the wurtzite lattice please refer to

section 3.3.2.

In an infinite crystal, a stacking fault is a two dimensional structure that is

bounded by partial dislocations at either site. These partial dislocations together

have then a total Burgers vector of integer lattice vector repeats. Therefore they

can be created by a dissociation of a perfect dislocation. However in real crystals

partial dislocations and therefore stacking faults can be created in various ways

including errors during growth that can also be bounded by the surface.
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CHAPTER 3

Group III Nitrides fundamentals

This chapter covers the properties and applications of the Group-III nitrides and

provides a review of the literature on these topics. First the fundamental prop-

erties such as the crystal lattice and mechanical behavior and growth challenges

are discussed. Then the electronic properties are discussed with an emphasis on

GaN and InN including surface properties and point defects such as native point

defects and dopants. Last but not least the most common dislocation types in

wurtzite material are presented including their occurrence and effect in GaN and

InN.

3.1 Mechanical properties

3.1.1 Crystal structure

The group-III nitrides are usually associated with indium, gallium and aluminium

nitride, however the group-III also includes boron and thallium. While boron

nitride can form as a polymorphic solid under normal conditions with semicon-

ducting properties and can even be used to construct boron nitride nanotubes,

thalium nitride (Th3N) is only stable in ammonia solutions. As a result henceforth

only indium, gallium and aluminium nitride will be considered. These group-III

nitrides are composed of two atomic types and can therefore form hetero struc-
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ture semiconductors. In addition, a tetrahedral coordination is found to be most

stable, which means that all three compounds are commonly found in a wurtzite

or zincblende structure, with wurtzite being the more stable configuration.

The zincblende structure features a cubic lattice where all atoms have the same

tetrahedral coordination making this similar to a diamond cubic configuration,

but where next nearest neighbours are of alternating atomic type (point symmetry

group Td). The wurtzite structure is also composed of tetrahedrally coordinated

atoms with alternating atomic type, however there are two distinct bonding sites

present in a unit cell in a hexagonal lattice (space group C6v). Figure 3.1 dis-

plays the wurtzite lattice including its lattice vectors and the major planes: polar

c-plane (0001) as well as non-polar a-plane (11̄00) and m-plane (21̄1̄0). While

the zincblende structure can be fully classified through its lattice constant, the

wurtzite structure is further specified by the ratio of its two lattice constants

c/a and the internal parameter u, that determines the nitrogen group-III bond

distance in the c-direction. The ideal wurtzite structure provides identical bond

lengths for all atoms, in this case c/a = 2
√

2/3 and u = 3/8 and each atomic

type features a hexagonal close packed sublattice.

First principles DFT-LDA (section 2.1) can predict structural parameters well

for the group-III nitrides, even though the 3d and 4d electrons in GaN and InN

bonding respectively are not included in the pseudopotential method actively,

but are commonly included into pseudopotentials via NLCCs (see section 2.1.6).

The interaction of the outer d electrons in the group-III atoms and the p-shell

electrons of nitrogen create a repulsion term that is often incorrectly handled in

even an all-electron DFT calculation [48] and results in a shift of the energies

of the valence band. However total structural energies and therefore structural

parameters are not affected as strongly. A comparison of LDA-DFT predicted

structural parameters can be found in table 3.1.

The hardness of the materials, as specified by the bulk modulus B, reduces the

heavier the group-III atom is. In addition, InN in the wurtzite structure has the

largest lattice constants of the group-III nitrides, but is still the most dense at

6.81 g/cm3.
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(a) Non-primitive unit cell of a wurtzite crystal
depicting planes and lattice vectors

(b) c-plane (0001) (c) m-plane (11̄00) (d) a-plane (21̄1̄0)

Figure 3.1: Depiction of the wurtzite lattice. Atoms are represented by a ball and stick
model, lattice vectors are represented by red arrows, green surface represents c-plane,
blue surface a-plane and yellow surface m-plane.
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Table 3.1: Structural parameters for AlN, GaN and InN. Computed with LDA-
DFT, lattice constants are given in Å, bulk moduli in Mbar.

zinc-blende wurtzite
a B a c c/a u B

InN 5.0 - 3.54 5.71 1.61 0.375 -
1 5.0 1.4 3.54 5.76 1.63 0.377 1.4

exp2 - - 3.538 5.703 1.612 - -
GaN - - 3.18 5.21 1.64 0.376 -

1 4.52 1.9 3.19 5.22 1.64 0.376 2.0
exp2 - - 3.189 5.185 1.626 - -
AlN1 4.31 2.1 3.06 4.94 1.61 0.378 2.1
exp2 - - 3.111 4.980 1.601 - -

1 Ref [48]
2 Ref [49]

3.1.2 Growth

GaN and InN crystals are usually grown using molecular beam epitaxy (MBE) or

vapour deposition methods such as MOCVD and HVPE, on sapphire or silicon

carbide substrates. This creates a large lattice mismatch of up to 10% for InN

which in turn causes creation of high structural defect densities. The sapphire

growth supports growth for multiple directions. For c-plane growth this means

that interfaces are created at the polar c-plane, resulting in the formation of

strain fields that result in the creation of electric fields due to the piezoelectricity

of the wurtzite structure on these polar surfaces. However, the magnitude of

these strain fields depends on the lattice mismatch, misfit dislocation density and

growth temperatures.

3.2 Electronic properties

The following discussion of electronic properties is limited to the properties of

wurtzite GaN and InN. As discussed in section 2.1 any crystal can be described

by its primitive unit cell and its lattice constants, which can be used to define the

Brillouin zone. The Brillouin zone for any hexagonal structure is displayed in fig-

ure 3.2 where the irreducible zone is marked including special points. The energy

momentum dispersion of electrons in any infinite hexagonally ordered structure
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Figure 3.2: Brillouin zone for hexagonal symmetry including irreducible zone with
special points marked

can be described by following a complete path around the irreducible zone, such

a description is called a band structure. The integration of the band structure

over the Brillouin zone produces the density of states.

The lack of a centre of a symmetry in the wurtzite structure of the group-III ni-

trides provides the potential for piezoelectricity along the polar directions, which

results in the creation of polarisation when the material is strained. Therefore, a

two dimensional electron gas (2DEG) forms on interfaces with other materials [3],

depending on the band offset. The formation of a very narrow width 2DEG and

the high electron mobility (> 3000 cm2/Vs [4]) can be used for high-frequency

electronics. The symmetry of the hexagonal cell also results in either polar or

non-polar structures depending on the crystal orientation. In polar quantum

well structures a spatial separation of electron and hole wavefunction is usually

present prohibiting efficient recombination[50].

3.2.1 Band structure

The band structure and density states of InN and GaN can be found in figure 3.3.

The band structure displays the E-k dispersion in reciprocal space of the material

for a specific path through the Brillouin zone and the density of states displays
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an integration of the electron states over all k-points. The band gap generally

refers to the difference in energy between the conduction band minimum and the

valence band maximum. In the case of the group-III nitrides these two points

both occur at k = 0, the γ-point, making them direct band gap semiconductors.

Group-III nitrides and their alloys can have band gaps that easily span the entire

visible spectrum and are therefore ideal for all applications in optoelectronics.

However, the band gap of InN has been in discussion for several years. The latest

theoretical [51] and experimental [52] results both point to a band gap of 0.69eV,

which is now widely accepted. The origin of this discussion stems from the diffi-

culty growing high quality InN and the challenges to theory in predicting excited

states energies accurately. The low dissociation temperature of InN and the high

equilibrium vapour pressure of N2 over InN create a difficult environment for

crystal growth. Only once high quality (large electron mobility and reduced free

electron concentration) thick InN films had been grown, could the experimental

band gap estimates converge from the original ∼ 1.9 eV [53] to the recent lower

value.

While predicting lattice parameters with good accuracy, DFT-LDA usually un-

derestimates the bandgap of semiconductors. In the case of InN it has predicted

metallic behaviour with a negative band gap [48]. For GaN it predicts a band gap

of around 2.1 eV[48]. In order to compensate for the improper approximation

of the exchange correlation functional, alternative methods have been applied

by several groups. Before the new experimental narrow band gap was found,

self-interaction corrected pseudopotentials were applied, yielding band gap esti-

mations around 1.6 eV [54]. With the new experimental value, semi-empirical

LDA methods were used to adjust and produce band gaps of 0.85 eV by us-

ing external delta-function potentials [55] and 0.81 eV by adjusting the atomic

pseudo-potentials for relaxation-corrected self interaction [56]. A first principles

result of 0.69 eV has also been obtained by employing a GW method based on

Kohn-Sham states [51].

3.2.2 Surface properties

Surface states appear in all crystals due to the incomplete bonding arrangement

and hence large quantity of defect states at the surface. As a result the Fermi level

is strongly influenced as it tends towards the Fermi-level stabilisation energy [57]
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(c) Density of states for InN
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(d) Density of states for GaN

Figure 3.3: Band structures and density of states for InN and GaN computed
with DFT-LDA, the valence band edge has been set to zero, the Fermi energy
has been marked by a red line in the band structures.
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and is pinned by these states. Depending on the relative position of the defect

statest the Fermi level pinning at the surface can act to create Schottky-barriers

when contacted. Due to this surface Fermi pinning effect and the expected po-

sition of the Fermi stabilisation energy within the conduction band, a charge

accumulation layer is expected to form in InN [58]. DFT calculations present

evidence that this charge accumulation exists for InN on polar surfaces while it

remains negligible on non-polar surfaces [59, 60]. The charge accumulation layer

is present for both n-type and p-type InN, creating an n-p junction on the surface.

This complicates the analysis of Hall-measurements of p-type InN [3].

3.2.3 Vacancy defects

While the properties of the ideal bulk are important, a real material will contain

defects, including both deliberate and accidental doping and also native defects

such as vacancies. Of the two types of vacancy defects, the nitrogen vacancy has

been shown by ab-initio methods to be energetically more favourable in equilib-

rium bulk conditions. It also acts as a source of electrons, either acting as an

n-type dopant or to compensate p-type doping. For InN the formation energy of

the nitrogen vacancy varies with the level of background doping and is lower for

p-type material [6]. It was also found that in n-type conditions the neutral charge

state is favoured, which results in the formation of “nitrogen vacancy clusters”[61]

and regions with higher In-content creating metallic regions [62].

Doping

The intentional incorporation of impurities in order to control the electronic be-

haviour of a material is called doping. These impurities are usually single atoms

creating point defects but can be clusters of these. In the case of GaN common

choices are silicon or oxygen for n-type doping and magnesium to p-type dope.

In the case of InN many sources act as n-type dopants. For instants hydro-

gen interstitial or substitutional sites have been shown to act as donors. While

being inferior electron donors, interstitial hydrogen is a shallow single donor, sub-

stitutional hydrogen has lower formation energy and acts as a double donor[63].

Even nitrogen vacancy defects can also act as electron donors and compensate

p-type doping. Given these sources InN has a tendency for high background elec-
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tron densities. However, the realisation of optoelectronic devices depends on the

ability to p-type dope and thus is of major interest. Mg doped InN has been

shown experimentally by low temperature photoluminescence to act as a p-type

material [64].

3.3 Extended defects

Extended defects such as topological defects represent strain relaxation mecha-

nisms and are present in GaN and InN in very high concentrations, due to large

lattice mismatch of the common growth substrates and the resulting strain during

growth. These in grown dislocations are called threading dislocations if their line

direction is not purely orthogonal to the growth direction. On the other hand

misfit dislocations are found perpendicular to the growth direction and usually

at interfaces and act as strain relaxation.

The precise origin or threding dislocationsin in GaN has been a source of contro-

versy [65]. While it is clear that they commonly form during growth on interfaces,

the notion that they form on island boundaries as the islands coalesce during the

initial stages of growth has not been supported unanimously. Other results sug-

gest that threading dislocations instead form near the interfaces independent of

island boundaries[66], where most likely lattice error sites perform as nucleation

sites.

3.3.1 Screw dislocations

Screw dislocations are perfect dislocations with a Burgers vector B in line direc-

tion L. See section 2 for details. As the formation energy is proportional to |B|
the screw dislocation is most commonly found in [21̄1̄0] and in [0001] directions

with Burgers vectors of 1
3
[21̄1̄0] and [0001] respectively.

Most wurtzite GaN and InN material is grown in c-direction, therefore the thread-

ing screw dislocation is energetically unfavourable as it’s Burgers vector is along

the longer lattice repeat. In addition the strain field of the screw dislocation con-

sists solely of shear components, which do not influence the in-plane compressive

and tensile strains from the substrate mismatch. In current state of the art InN

and GaN samples there are only about 2-8% screw dislocations. However their

intrinsic properties are still very important as they are not directly caused by the
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interface lattice mismatch during growth. The question of their dislocation core

configuration and it’s influence on the electronic properties will be discussed in

chapters 4 and 5.

3.3.2 Edge dislocations

In wurtzite GaN and InN pure edge dislocations are commonly found with dis-

location lines along the [0001] or [011̄0] direction, as these provide an orthogo-

nal Burgers vector in the c-plane with the smallest lattice repeat in the crystal

(B = 1
3
[21̄1̄0]). This results in the smallest strain field and hence features the

least strain energy. Therefore, as most GaN and InN samples are grown in c-

direction the threading edge dislocations are usually most common, followed by

threading mixed dislocations. However, depending on growth conditions these

ratios can vary widely. In Section 6 the threading edge dislocation core will be

studied in detail.
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CHAPTER 4

Screw dislocations in GaN

Figure 4.1: Schematic of a single screw

dislocation in a cubic system.

This chapter investigates the fully sto-

ichiometric core structure of the screw

dislocation in GaN with a line direc-

tion along c. The first section details

modelling parameters for screw dislo-

cations while the later section discusses

an applied global optimisation of the

dislocation core structure. The per-

formed global search allows a system-

atic investigation into possible dislo-

cation cores as predicted by Stillinger

Weber (SW) type interatomic poten-

tials. An emphasis on strain related issues is given as well as a discussion of

the optimisation performance. Electronic structure results for the predicted dis-

location cores are not presented here but can be found in Chapter 5, where a

comparative study of dislocation cores across a wide stoichiometry range is given.
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4.1 Dislocation modelling in periodic boundary

conditions

a 1

2

3 a

a

(a) Dipole configuration

1

2

a

a

a3

(b) Quadrupole configuration

Figure 4.2: Comparison of periodic boundary conditions. Shows a plan view
of screw dislocations in ±a3 direction, 	 and � mark dislocation centres and
distinguish the sign. Dipole unit cells and lattice vectors a1,a2,a3 are marked

The nature of the lattice distortion that defines a dislocation means that it is

intrinsically impossible to model a single dislocation with periodic boundary con-

ditions (PBC). The Burgers vector is a measure of the lattice mismatch created

by a dislocation and therefore only unit cells where the net Burgers vector is zero

can be modelled in PBC. This can be done by creating a structure with multiple

dislocations, the simplest of which is a dipole configuration. Another solution is

the use of semi-periodic systems, where a dislocation is modelled in a cylindrical

cluster type structure, where only the dislocation line direction is treated with

PBC and the surface of the resulting column can be treated in various ways. The

clear advantage to such an approach is the relatively small number of atoms to

be modelled and that there is no interaction of surrounding dislocations with the

dislocation under study. However, with a lack of PBC the electronic structure

investigation is limited to a set of discrete levels. In addition the treatment of

the cluster surface has a significant influence on the electronic properties of the
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material, in order reduce dangling bonds on the surface a hydrogen termination

is commonly implemented[67]. As for structural disadvantages, the surface of

such a cluster needs to be frozen during structural relaxation in order to simulate

strain effects of the bulk and not of the undesired surface. As a result the long

range strain field and with it the exact dislocation line position is artificially fixed.

Therefore, in the case of core structure changes for the same cluster, the strain

field cannot adapt to the new configuration and it’s exact core position, as will

be discussed in detail later for the supercell approach.

For this work the supercell approach has been adopted for both structural optimi-

sation and electronic structure calculations. With computational costs in mind it

is best to choose a dipole configuration as the unit cell, however there are a num-

ber of ways that the PBC can be realised. Orthorhombic boundary conditions

would result in an array of dipoles, while the more commonly used PBC result

in an array of quadrupoles, see figure 4.2 for details. Historically either choice

has been used in a range of studies [68, 69, 70, 71, 72], while the dipole array

has been found to produce a mismatch at the boundaries of the cells previously

[73]. Therefore the array of quadrupoles condition has been used extensively for

all types of dislocations. However, a study by Lehto et al.[67] presents a general

solution for the boundary inconsistencies. They conclude that while the array

of dipoles represents the minimum energy state for the edge type dislocation, in

contrast a quadrupolar PBC for the screw type dislocation appears to be more

favourable, due to the difference in the strain fields. Therefore in this work, the

PBC producing an array of quadrupoles are used.

The supercell structure used in this work for electronic structure calculations

was created by repeating a usual wurtzite primitive unit cell 7 times in the [21̄1̄0]

and 8 times in the [011̄0] direction, resulting in a 448 atom cell with a single

lattice layer in the [0001] direction 1. Subsequently the displacement field for two

screw dislocations (equation (2.98)) with opposing Burgers vectors was applied

to the atomic coordinates, with a core separation of about 22Å along the [011̄0]

1 This creates an orthorhombic unit cell of size

7a× 8 · 2 sin(1/3π)a× c = 22.4Å× 44.34Å× 5.2Å for GaN

= 24.5Å× 48.50Å× 5.7Å for InN,

as the repetition of the wurtzite cell along [011̄0] incorporates 2 unit cells
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direction. The supercell lattice vectors were then taken to be

a1 = 7[21̄1̄0] + 4[011̄0] +
1

2
[0001]

a2 = 8[011̄0] (4.1)

a3 = [0001].

This choice of non-orthorhombic lattice vectors creates an array of quadrupoles

as depicted in figure 4.2(b). The addition of half a Burgers vector ([0001]) to a1

serves to compensate for the distortion of the unit cell by the screw displacement

field and ensures a lattice match at the opposite site.

4.1.1 Strain effects of screw dislocations in periodic bound-

ary conditions

As outlined above a single dislocation cannot be described within PBC. A dipole

configuration however can be used with various PBC, where the array of dipole

structure is unfavourable. Therefore an array of quadrupoles is used. A schematic

of such a quadrupole condition can be found in figure 4.2(b). These PBC result

in an effective array of straight screw dislocations arranged in groups of 4, where

direct neighbours have Burgers vectors opposite in sign. Such a situation could

create a strong strain influence of neighbouring dislocations on any particular

dislocation core. However, in order to model an unperturbed dislocation core,

the creation an environment free of external strain is of high importance. There-

fore the influence these conditions create on a single dislocation core region was

modelled using the analytical elastic field generated by a screw type displacement

field (see section 2.4 for details) in a quadrupolar arrangement under PBC.

Figure 4.3 shows several plots for the two non-zero strain components of such

a quadrupolar array. The dislocation core positions are clearly marked by the

diverging strain field. In addition it shows the strain at a missing dislocation

in an array of quadrupoles, in order to gain a quantitative perspective of the

amount of strain influence of the dislocation neighbours on a single dislocation

core region in the modelled cell. In order to simulate this only one dislocation in

the centre array is missing, in an otherwise complete arrangement of quadrupoles.

For a single cell under PBC this scenario would not be possible to model, due to
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the non zero Burgers vector for the central cell and, as per definition the images

in PBC being identical to the unit cell. However, in order to simulate such a

unique situation the PBC of a normal simulation was represented by repeating

a quadrupole 25 times in a square grid and centring on the site of interest. In

addition typical simulation values have been chosen for this computational repre-

sentation, i.e. a Burgers vector length of about 5Å with a dislocation separation

of about 25Å. Comparing this to usual dislocation core radii of about 6Å, it can

be easily seen that in such a setup the surrounding dislocations have almost no

distortion effect on the small core region. This demonstrates clearly the very

low strain influence of the surrounding dislocations on the core region of each

dislocation. Thus a quadrupolar array with sufficiently large cell sizes provides

an excellent environment to model unperturbed dislocation cores.
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(a) ǫ13 strain component of a complete
screw dislocation quadrupole in PBC.

(b) ǫ23 strain component of a complete
screw dislocation quadrupole in PBC.

(c) ǫ23 strain component of an incomplete
screw dislocation quadrupole in PBC.

(d) ǫ23 strain component of an incomplete
screw dislocation quadrupole in PBC.

(e) abs(ǫ) of an incomplete screw dislocation
quadrupole in PBC.
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Figure 4.3: Depiction of the two strain components of an array of screw disloca-
tion quadrupoles. Figures (a) and (b) centre on a complete unit cell. Figures (c)-(d)
show the same section of a repeated quadrupolar cell, where one dislocation has been
removed.
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4.2 Global optimisation for the stoichiometric

dislocation core

Finding the optimal atomic configuration for a dislocation core is a non-linear,

non-convex optimisation problem, as the energy function defining the optimal

solution as a global minimum is non trivial depending on the underlying approxi-

mations made. In general it can be seen that there exist many stable local minima

or even meta-stable saddle point configurations for any structural optimisation

consisting of a group of atoms. As discussed in section 2.3 such a problem can be

solved by employing any one of a wide variety of optimisation techniques, such

as particle swarm optimisations, simulated annealing or genetic algorithms.

In order to employ a systematic approach, the global optimisation through ran-

domisation scheme was adopted to investigate possible core structures for the

screw dislocation. Details for the optimisation algorithm can be found in section

2.3. The application of which on the fully stoichiometric screw dislocation core

will be discussed in this subsection. As detailed above a quadrupolar array of

dislocations in PBC was used, however for each configuration only a single core

of the structure has been optimised. Specifically all atomic positions within a

cylindrical volume around the dislocation centre with a radius of 3.2Å have been

randomised and relaxed repeatedly. In the chosen structure that was described

in the previous section for GaN this volume encloses twelve atoms, six nitrogen

atoms and six group-III atoms.

The random nature of the configuration space sampling of the optimisation pro-

cedure results in an exponential increase of sampling tries in order to reach a

converged result as the number of optimised atoms increases. This means that

when all 12 atoms are included only after up to 105 tries will a core structure

be fully investigated and all lowest energy structures found with sufficient cer-

tainty. Therefore using a DFT approach for the structural optimisation is far out

of reach for currently available computational resources. As a result a SW type

interatomic potential method has been used for the structural relaxation during

the global optimisation. As is discussed in section 2.2 a parameterisation for only

GaN was used because of the sensitivity of the approach to the quality of the

relaxation and the excellent performance of the parameters.
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The typical dislocation core radius of a screw dislocation in [0001] direction in

GaN is around 6Å as discussed in section 3.3, which means that the volume of

the dislocation core is much greater than the optimised cylindrical volume with

a radius of only 3.2Å. Therefore it could be argued that the size of the randomi-

sation volume does not suffice. However, by definition the dislocation core radius

is only the point at which classic linear elasticity theory fails and a more basic

atomistic theory is to be applied. It does not mean that the material changes

completely from a bulk-like tetrahedral bond arrangement exactly at the core

radius. In fact I am unaware of any claim in the literature that this would be

the case. In addition the structural optimisation, unlike the randomisation, is

not restricted to the smaller centre volume and distortions are allowed to occur

during relaxation which could result in alien core configuration larger than the

randomisation volume. However, this does mean that such cores are less likely to

be found as they fall into only an edge of the configuration space sampling. With

a sufficiently large quantity of structural optimisation tries this is not a problem.

The randomisation and relaxation procedure has been fully automated using

a combination of Python [74] scripts and the LAMMPS code [37]. A Python

controller program has been developed that sets up local work folders to start a

variable amount of relaxation threads. For each thread a template quadrupolar

dislocation array structure is taken and in the above mentioned volume around

one of the dislocation centres all atomic positions are randomised.2 The ran-

domised version of the template is then placed in a thread specific working folder

and a LAMMPS conjugate gradient structural relaxation is started. After each

relaxation the procedure is repeated until convergence or an upper limit of the

step amount is reached. The large quantity of randomisation tries and the specific

mult-threaded implementation results in a nearly perfectly parallel scalability of

the global optimisation. Convergence of the result is reached when the unique

structure count for the lowest energy structure approaches a constant fraction of

the total amount of structures. Distinct structures are identified by sorting the

total energies into bins with a width of 10−6eV, which is chosen to be sufficiently

larger than the structural relaxation tolerance, but small enough to uniquely dis-

2 An additional constraint has been added to prevent atoms being initially positioned within
0.2Å of each other before relaxation.
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tinguish structures.

As the initial and final structure, as well as the total relaxed energy, needs to

be stored for analysis for each relaxation step a large quantity of data is being

accumulated. Therefore the controller program parses each completed LAMMPS

output and stores only the relevant data in a binary datafile. A number of further

Python scripts were created for accessing the data files and subsequent analysis

of the structures.

4.2.1 Energy distribution

The total energy of all relaxed structures can be displayed as an energy distri-

bution. Convergence of the energy distribution, showing a high count of stable

dislocation core structures, has been found to occur after ≈ 5×104 randomisation

and relaxation steps. Figure 4.4 shows such a distribution after 9×104 relaxation

steps. The structural energies have been displayed after binning all energies into

narrow 10−6 eV bins, showing the amount of times an individual structure has

been found during the global optimisation, as that bin width is only marginally

larger than the selected accuracy of each local SW optimisation. However, after

applying a gaussian broadening to the obtained energies (see figure 4.4(c)) it is

obvious that the number of structures per energy resemble a statistical distribu-

tion3 with a mean of -3801 eV and a variance of 18 eV. A clear indication of the

high probability of finding low energy structures can be seen in the divergence

from the normal distribution of the tail, showing a high count of the lower energy

structures.

In order to visualise individual core reconstructions a differential displacement

map (DDM) was created. A DDM displays atom-sites (2 distinct sites in wurtzite

GaN, distinguishable by colour) as circles and the displacement of a neighbour-

ing site in a pre-defined direction as arrows, where size implies magnitude and

scaled to bond-length. As a result a DDM is an excellent method to display a

specific strain component in combination with the atomic configuration and its

deformation orthogonal to the viewed plane and hence presents a more atomistic

3 The structure distribution is close to a normal distribution and a fitting procedure has been
attempted, although a gamma distribution is expected to be more accurate as this would
account for the existence of a lowest energy structure behaviour.
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(a) All total energies binned into narrow ∼
10−6eV bins. The bin height represents the
number of times an individual structure has
been found during the random search.
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(c) All total energies from (a) displayed with a
0.08 eV Gaussian broadening

Figure 4.4: Energy distribution of the total energy of the fully stoichiometric core
after 105 randomisation/relaxation steps shown with individual structure counts
and gaussian broadened.

representation of the continuum strain model. Figure 4.5 shows DDMs for the

energetically lowest two unique structures in the energy distribution in a c-plane

view for displacements in [0001] direction. The dislocation centre is marked as a

diamond symbol.

The lowest energy structure found by this optimisation procedure is identical

to a structure obtained by applying the screw dislocation displacement field with

a dislocation core centre at the bond site, therefore confirming similar results by

Béré et al. [29]. This structure is not displayed here for brevity but can be found
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as a ball and stick model in appendix C. In addition a DDM of this lowest energy

structure is depicted in figure 4.5(a). However the same structure can be found

in multiple variations in the structure energy distribution as there are several

equivalent bond sites to centre the dislocations that will create a slight separa-

tion in energy due to change in position relative to the strain field of the other

non-optimised dislocations of the quadrupole. This convolution of the energy

distribution with equivalent structures at different positions is analysed quanti-

tatively in section 4.2.3.

The next lowest energy structure is a new location for the dislocation line which is

centred near to an atom site, but in between two bond sites (see figure 4.5(b) for

details). However, in addition to the difference in dislocation line position to the

most stable structure, atoms positioned at the site closest to the dislocation line

direction also show displacements in the c plane. This structure is separated from

the lowest energy case by only about 0.7eV and exhibits a similar convolution in

the energy distribution ranging around 0.1eV.

A channel centred dislocation line position has been found as well at 0.8eV above

the lowest energy structure. This core reconstruction was found with a very

small structure count, suggesting that the SW potentials method predicts this

configuration to be meta stable.

4.2.2 Influence of the strain field and locating dislocation

cores

As mentioned briefly above, the strain field of the quadrupolar dislocation array

can influence the total energy of a structure depending on the dislocation centre

position of the optimised dislocation core. In order to quantitatively investigate

this behaviour the strain at each atom position rJ has been calculated. As strain

is the spatial deviation from the bulk (see section 2.4), this is done by comparing

the tetrahedron formed by the four first neighbours to each atom to the expected

tetrahedron in an unstrained bulk material. The deviation is evident in the

vectors describing the relative position of the four surrounding atoms uJn =

rNn
− rJ , where rNn

is a nearest neighbour position to rJ and n = 1...4. From

the definition of strain in equation (2.68) it is clear that the relationship between
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(a) DDM for the lowest energy struc-
ture

(b) DDM for the second lowest unique
structure

Figure 4.5: Differential displacement map (DDM) for the lowest energy (a) and
second lowest (b) unique structures obtained for the fully stoichiometric core.
The blue diamond symbol marks the dislocation line position as obtained by
computational to analytical strain fitting.

strained us
Jn and unstrained uJn distances for every n at position rJ is

mJ uJn = us
Jn, with mJ = I+ ǫJ , (4.2)

where I is the identity matrix. The matrix mJ incorporates the strain tensor

ǫJ at position rJ in this definition. In addition, an implicit approximation was

introduced with the assumption that the strain is constant for all distance vectors

uJn of a single tetrahedron (i.e. ǫJ is independent of n). However this case

approaches the limit of the continuum definition of the strain, since there must

be a physically distorted geometric shape that can be compared to the norm

in order to find strain and the tetrahedron formed by the next nearest bonding

atoms represent the smallest possible shape. As a consequence, the strain within

a single tetrahedron at centre-position rJ can be determined using a least squares

minimisation of the euclidean norm over all n:

minimize

{

∑

n

||us
Jn −mJ uJn||2

}

. (4.3)

Only for strongly distorted centre atoms of a given dislocation core can this al-

gorithm not detect the strain, as there is no atomic configuration present that is

comparable to the bulk. Within the lowest energy structure in the given distri-
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bution there are 2 atoms exhibiting this behaviour.

The computed strain at each atomic position can then be displayed by inter-

polating the irregular data to a regular grid and averaging along one axis to give

a two dimensional projection. Figure 4.6 shows the computed strains for the low-

est energy structure of the performed and above discussed global optimisation.

Core regions and the optimised core are marked. It is evident that strain within

the optimised core is identical to its counterpart in the diagonally opposite posi-

tion within the supercell.

(a) computational strain ǫ12 (b) computational strain ǫ23

Figure 4.6: Computational strain for the lowest energy structure with a fully sto-
ichiometric core. Green circles indicate core regions, while the yellow circle marks
the optimised core. The strain has been obtained by analysing local deviations
of the crystal structure from the bulk.

In order to determine the position of the dislocation line centre after optimisa-

tion, the computed strain can be compared to the analytical strain solution from

linear elasticity theory for a quadrupolar array of dislocations in PBC. This is

done by a least squares optimisation of the dislocation centre position and Burg-

ers vector, as these are the only free parameters in the linear elasticity model of a

dislocation. By definition the strain within the core region should not be used in

this parameter optimisation, therefore only strains outside a fixed cylindrical vol-

ume of the expected dislocation line position, using a generous radius of ∼ 10Å,

were included. The Burgers vector was optimised as a test as it should always
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be equal to the lattice vector of the total structure in line direction (c direction

in this case). For all parameter optimisations performed the obtained Burgers

vector was equal to the expected value to within < 10−1Å.

4.2.3 Strain effects on the energy distribution

A specific dislocation core reconstruction will not only be found in a single energy

bin, due to a convolution of the energy distribution with the breaking of the lat-

tice translational symmetry by the induced strain field of the quadrupole. This is

primarily a result of the randomisation in the search method, as the subsequent

relaxation process does not guarantee to produce every example of a particular

dislocation core at the same lattice position. In fact, the core position will vary

up to one full lattice repeat in the c plane. Figure 4.7 is a graphical representation

of the spatial arrangement across the strain broadened bins for two unique struc-

tures. It was created by determining the dislocation centre positions for the 500

most stable structures of the energy distribution. The dislocation line position is

given as the deviation from its location in the quadrupole for the optimised core.

It is important to note that within a single energy bin, two separate locations can

be found provided the sites are related by a mirror symmetry around the zero

point. The size of each point in the figure represents the structure count at that

position and hence the likelihood of finding a dislocation line there.

Given the energy convolution, it is still possible to quickly identify new higher

energy core reconstructions as the total energy only changes by around 30 meV/Å

due to changes in location with respect to the quadrupolar strain. The energy

difference between unique core structures is usually greater, specifically in the

presented case for the two lowest unique structure the separation amounts to

0.7 eV. However, there is no reason why this should be the case for all structures;

and indeed a general trend can be observed in the energy distribution of higher

energy/less stable structures being closer together in energy. This is apparent in

the similarity of the energy distribution to a Gaussian normal distribution, where

closer to the mean more structures will be found with smaller energy separation.

In order to produce a clearer energy distribution a deconvolution with respect

to dislocation line position can be attempted. With the ability to determine the

geometric deviation from a quadrupole for each structure the resulting change for
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(a) Lowest energy structure

−1.2

−0.8

−0.4

0.0

0.4

0.8

1.2

[0
1 1

0]

−1.5 −1.0 −0.5 0.0 0.5
[2110]

0.000

0.015

0.030

0.045

0.060

0.075

0.090

R
e
la

ti
v
e
 e

n
e
rg

y
 [

e
V

]

(b) Second lowest energy structure

Figure 4.7: Spatial arrangement of dislocation core centres of a unique core with
respect to its most stable position in the quadrupole strain field. The size of each
point represents the structure count and hence the likelihood of finding the centre
at the particular position. Distances are given in units of the a lattice vector.
Both structures have been presented in section 4.2.1 including their DDMs.

the analytic elastic strain energy can be determined and used to adjust the total

energy of every structure in the energy distribution individually. However, such

a deconvolution has not been attempted as there is no information to be gained

from such a process, since only a few distinct low energy structures are to be con-

sidered actual candidates with likely real crystal application and those are easily

extracted from the data with the tools at hand. In addition, the inherent error

introduced in the dislocation line position calculation would result in a larger

uncertainty in the corrected energy for a particular structure, hence the energy

bins would have to be larger in order to sort structures correctly. With larger

energy bins it is also more likely to sort two energetically degenerate structures

into the same bin, making a thorough investigation more difficult. The likelihood

of exactly finding energetically degenerate distinct structures seems negligible.

However, to my knowledge, there is no way of estimating the likelihood of finding

such a case.

4.2.4 Dislocation core radii and energies

The classification and analysis of dislocation cores in the literature usually fo-

cusses on the dislocation core radius and energy (see definitions in section 2.5.1).

The dislocation core radius can be found by noting the point of divergence of
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the cylindrically integrated elastic energy density from the constant slope in a

logarithmic plot [75][28][76]. With the knowledge of the core radius, the core

energy is easily determined in an atomistic theory by integrating the atom re-

solved energies within the now defined boundaries of the dislocation core (see

equation 2.109). However within this definition of the dislocation core energy, a

quantitative comparison between two separate core structures is impossible as the

surrounding strain energy is excluded at a different point, due to the difference in

core radius. It is therefore prudent to compare cores with a core energy defined

through a generous upper limit core radius that is kept equal for all structures.

In fact within this work, core structures are compared only based on their total

energy difference to the lowest energy fully stoichiometric structure, which is the

same approach as assuming a constant radius, up to a constant of integration.

A complication within this approach is however the strain induced energy differ-

ences for cores at different positions. This effect is being neglected due to the

relatively low impact (less than 0.1eV).

The search for the dislocation core radius is further complicated by the broken ra-

dial symmetry of the long range elastic fields due to the quadrupolar arrangement

of dislocations. Figure 4.8 displays the energy density for the used quadrupolar

array in PBC computed for the analytical screw dislocation strain field, and de-

termined directly from the relaxed atomic positions. As can be seen the energy

density does not drop off with radial symmetry as it would for a single disloca-

tion. Therefore integrating over a cylindrical volume will not show a deviation

from the constant logarithmic slope as neatly. As a consequence the dislocation

core radius needs to be determined from the difference between the analytical

and computational energy densities. As can be seen in Figure 4.8, the divergence

starts being significant at about 6.9Å.

In order to find the dislocation core radius under the present conditions it is

essential to locate the dislocation core position (using the method outlined in

section 4.2.2). This provides the possibility to calculate the analytical strain field

of any individual geometry, which can then be used to compare it to the com-

puted strain at each atom position and note the point of divergence, i.e. the

core radius. As the computational strain can only be determined at each atomic

position it forms a discrete irregular three dimensional grid. This irregular grid
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Figure 4.8: Difference of the analytical and computational strain energy den-
sity of the dislocation quadrupole in PBC, computed with the analytical screw
strain/stress fields and determined directly from the relaxed atomic positions.
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4.2. Global optimisation Screw dislocations

can be used directly to determine the core radius, or it can be interpolated and

projected to the c-plane, removing noise and creating a continual data set. The

interpolation method proved to be less influenced by noise and hence was used

to determine the radius. With this continual data set the absolute value of the

difference of the analytical and computational strain energy density can be av-

eraged along the angular coordinate of a radial coordinate system centred on

the dislocation line position. This creates a radial measure of the discrepancy

between the analytical and computational strain. Figure 4.8(e) shows the strain

energy difference determined by this approach. Furthermore, this difference does

not only show the strain mismatch in the dislocation core, but all other influ-

ences such as slight inaccuracies in the determined dislocation core position. A

mismatch in a single core position would result in an added strain energy den-

sity difference that extends beyond the dislocation core boundary and follows a

1/r2 behaviour. Therefore such an influence can be removed by analysing the be-

haviour of the strain difference in the outer region. However, only the linear part

can be determined reliably from the tail, as the error in a quadratic coefficient

can be too large and more than one dislocation core position will deviate slightly.

Subsequently a radial integration of the corrected strain difference was performed

between r = 3.2 and 12Å. The dislocation core radius was then determined to be

the point where 99% of the integrated difference is bounded (see figure 4.8(e)).
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Figure 4.9: Energy bin size over total

structure energy for all energy bins cre-

ated during the optimisation of the fully

stoichiometric core.

In the example presented here, 87444

randomisation and local optimisation

steps were performed in order to ob-

tain a converged energy distribution.

The resulting structures were sorted

into 81248 very narrow energy bins,

which means that most bins only con-

tain a single structure. This implies a

non-converged result, however looking

at the energy/structure count relation-

ship of the energy bins in figure 4.9, it

is evident that all low energy bins fea-

ture a very high structure count of up

to 52 in a single bin. It is important

to note that the appearance of single structure bins at the lowest energy range in

figure 4.9 represent the same unique structures as the surrounding high counting

bins, but located at less likely positions away from the quadrupole equilibrium4.

Therefore, the convolution of the energy distribution due to the strain effects on

the dislocation line position does influence the measure of when an optimisation

is converged. Unfortunately it is difficult to monitor this automatically during

the optimisation procedure, however due to the simplicity of the approach the

optimisation can be resumed at any point until a global minimum has been found

and verified.

With the help of a range of automated scripts structural properties of the optimi-

sation region, such as dislocation core position and radius, could be determined

for the large amount of found stable, low energy structures. As this enables an

analysis and identification of the relevant part of the large quantity of structural

data, and since the results (see figures 4.5(a) and C.5(d) for a DDM and structure)

confirm previous findings about structural properties of probable best cores[75],

4 See section 4.2.3 for details. The only exemption found for low energies is the channel centred
dislocation core at a relative total energy of 0.8eV above the minimum
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4.3. Discussion Screw dislocations

the optimisation procedure can be seen as successful. Therefore, applying this

technique on non-stoichiometric cores can provide a systematic approach to solv-

ing the question of the nature of dislocation core structure in any growth situation.

The lowest 500 energy bins in the optimisation of the full core, representing ap-

proximately 40 unique stable structures, were investigated for core position and

radius. No clear dependence of the core radius to the relative dislocation core

energy could be determined. In fact, the core radii consistently vary between 7

and 8.5Å without a clear dependence on core stability. In addition it is to be

expected that higher energy local minima in the optimisation do not represent

realistic core structures, but artefacts of inadequate approximations within the

SW inter-atomic potentials approach. A theory incorporating electronic structure

that accounts for non-tetrahedral bonding situations needs to be applied for more

realistic structures. However, as lowest energy cores are seemingly represented

and predicted well within SW and only these represent relevant structures, a more

in-depth investigation into higher energy structures would be purely academic.

4.3.2 Optimisation performance

The random brute force sampling optimisation approach used in this work and

described in detail above, was chosen for its simplicity and the fact that it provides

a measure of certainty of finding the actual global minimum. The performance,

as measured in the amount of randomisation and relaxation steps required to be

sure that the minimum has been found, can only be described as slow. However,

with the use of SW-type inter-atomic potentials the computational cost becomes

manageable on a current workstation machine for the presented example of a

fully stoichiometric dislocation core, where 12 centre atoms are included in the

optimisation.

Clear limits of the random search method include the exponential behaviour of

the computational cost to the dimensionality of the feasible solution space. Due

to the nature of the complete sampling of the solution space this property cannot

be changed, making larger randomisation areas impossible and hence prohibiting

the investigation into dislocation core structures with more than one lattice repeat

in line direction. The only performance optimisations to the method that can be

done involve the increase of the amount and strength of the search constraints.
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4.3. Discussion Screw dislocations

This effectively reduces the size of the feasible solution space and could greatly

reduce the number randomisation/relaxation steps needed to reach convergence

for any system size. However, this step could mean that the global minimum

is being excluded from the search space and hence care needs to be taken. In

this work no constraints other than a restriction of a minimum nearest neighbour

distance have been included. However restrictions of bond angle arrangements

or a more homogeneous space allocation in the random arrangement could be

considered, but were not implemented as a stable structure for a dislocation core

is not expected to completely follow the crystal symmetry or specific bond ar-

rangements. A study of the influence of additional constraints can be found in

[44] for various structural compositions and situations.

A possible improvement to the randomisation procedure that can be implemented

without risking a biased result is the reduction in equivalent structures due to per-

mutations. As the randomisation region for the example of a fully stoichiometric

core includes 12 atoms of two types, there exist 924 5 equivalent configurations

for every random structure. A function could be implemented to dismiss new

random points if they are close to any previous try, including all permutations.

However, such a step would not increase the likelihood of finding a global or more

stable solution to one higher in energy, nor would it decrease the number of local

minima to be searched, it merely would decrease the total sampling space. How-

ever adding such a distance measure in the configuration space and excluding

close sampling points could deny repeated sampling of small local minima energy

basins. In combination with the previously established premise that a trend exists

that the lower the local minimum the larger the energy basin/sampling chance,

this could increase the optimisation performance without imposing a structural

bias. On the other hand this thought could be extended into diverging from a

random search to a structured, rasterised sampling of the solution space, with a

raster separation defined through the distance measure in configuration space.

5 Permutation of N sites occupied by two types is:

N !

NGa!NN !
=

12!

6!6!
= 924
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CHAPTER 5

Non-stoichiometric screw dislocation cores

This chapter incorporates a discussion of the modelling of screw dislocations in

InN and GaN. As in chapter 4 the results presented are produced by implementing

a global search algorithm for the screw dislocation core. However, here a wide

selection of non-stoichiometric conditions ranging from nitrogen rich to group-

III rich as well as open core structures are included in the search space. The

core configuration search is performed using an empirical interatomic potentials

method (a Stillinger Weber (SW) type potential) for GaN only. A selection of

the most favourable optimised core structures and their electronic properties are

then investigated for both GaN and InN with DFT within LDA.

The first section in this chapter gives a comparative study of the structural prop-

erties of all of the studied core compositions that were optimised using the ap-

proach introduced in chapter 4. A discussion of the electronic properties of the

most likely core configurations and compositions is given in the last section of

this chapter. A more complete presentation of the data, including cases omitted

for clarity from this chapter, can be found in appendix B and C.
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5.1. Optimisation Non-stoichiometric cores

5.1 Structural optimisation

In chapter 4 it has been established that the applied global optimisation technique

shows that the proposed energetically most favourable structures in the literature

[75] for the fully stoichiometric cores are indeed the lowest energy structures. This

rather unspectacular result emphasises that the proposed method is well suited

to the system under examination, as structurally unrealistic dislocation cores

were all found to be higher in the energy distribution, and the relative energy

separation is large enough to distinguish structures reasonably well. However,

the strength of the global optimisation method lies in straightforward application

to more complex non-stoichiometric core reconstructions, which is done by sim-

ply placing varying amounts of atoms inside the randomisation volume for each

configuration during the optimisation.

5.1.1 Optimisation region

As part of this work, a wide range of stoichiometries were considered and opti-

mised using the same procedure as described in Chapter 4 for the fully stoichio-

metric core configuration. For brevity the resulting total energy distributions are

not discussed or shown here, however details can be found in appendix B where

table B.1 lists a summary of all optimisations performed and figures B.1-B.8 show

a graphical representation of all obtained energy distributions.

In order to identify core configurations, a labelling convention has been adopted

that describes a core composition by the number of vacancies it contains. The

fully stoichiometric core is then labelled as (00) which is itself an abbreviation

for (0VGa,0VN). Similarly (-11) represents a structure containing an additional

gallium atom and a nitrogen vacancy 1. An additional bond angle convention has

been adopted, where the type of angle is given by three atomic type indices. The

1 A similar labelling scheme has been introduced by Northrup et al. [77], where a core region
also contains 6 gallium atoms and 6 nitrogen atoms. The labelling is then done by specifying
the amount of atoms by type in the core region, i.e. the (66) core there corresponds to the
(00) core label used here and the (65) core corresponds to the (01) core here:

(nm)Northrup = ({6− n}{6−m})here (5.1)

A different naming scheme was chosen for this work in order not to imply a constant core
region size. As a result the (00) core is always the fully stoichiometric core, independent of
randomisation region size
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5.1. Optimisation Non-stoichiometric cores

acute angle is given between the latter atom types, with first index representing

the atomic type at the vertex.

Comparing energies between structures of different stoichiometries is achieved

by determining the chemical potentials for Ga and N in unstrained bulk GaN.

With the chemical potential the thermodynamic Grand Potential Ω can be con-

structed, if the entropy is neglected, due to the relatively low temperatures in

solids. The Grand Potential can be used to easily compare structural energies as

it incorporates the difference of atoms in different structures with the inclusion

of the chemical potential. In the case of SW interatomic potentials, the chemical

potential is found by taking atom resolved energies. A reference point for the

energy has been chosen as the lowest energy structure for the fully stoichiomet-

ric core configuration. It is important to note that this type of comparison of

energies is nearly identical (up to a constant) to using a dislocation core energy

for a fixed (independent of core configuration and composition) dislocation core

radius. Figure 5.2 shows a plot of these relative energies for the lowest energy

structures of all core configuration considered.
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Ga-rich Empty

Crowded

#VGa

#
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Figure 5.1: Range of optimised core sto-

ichiometries. The darker region marks

the range of stoichiometries considered

for optimsiation.

As a consequence of the limitation of

the randomisation volume, it is only

possible to optimise core compositions

within a certain range. This range is

bounded by the (66) fully open core,

(−x6) Ga filled cores and the (6−x)
N filled cores. Where a choice of re-

stricting x to a maximum of 6 has

been chosen. However, this composi-

tion area still incorporates 91 differ-

ent core compositions, without even

considering adding additional atoms to

the core, i.e. nVGa + mVN < 0 with

n,m ∈ N. Adding compositions that

follow nVGa + mVN = −1 would in-

crease the number of possible core optimisations to 103. As a consequence of
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5.1. Optimisation Non-stoichiometric cores

computational expenses and time only about a quarter (24) of the possible com-

positions were optimised.2 However, emerging trends in the relative energies from

the sampled set can be used to dismiss or include cores from the remaining set.

5.1.2 Core structure analysis

Figure 5.2(b) displays the relative energies of all stoichiometric cores from the full

core (00) to a completely open core containing no randomised atoms (66). Inter-

estingly the lowest energy is not the full core but the (11) core with an energy

difference of −0.27eV, making this particular configuration the most favourable

dislocation core. From this point the relative energy increases linearly with de-

creasing GaN pairs. Figures 5.2(c) to 5.2(e) display core compositions each with

a constant total number of atoms contained, but with varying gallium to nitro-

gen ratios. These dependencies show a more quadratic behaviour in the relative

energy with the minimum being close to the stoichiometric centre. However, a

clear trend favouring N rich conditions can be observed for all diagonals, by not-

ing that the projected minimum of a square energy dependence would be away

from the stoichiometric middle into the nitrogen rich side. This results in mirror

configurations such as (01) and (10) always favouring the composition with more

nitrogen atoms contained.

The relative energy trends shown in figure 5.2 can be explained by examining

the structural properties of the optimised cores. Table 5.1 lists these properties

for the optimum structures of all stoichiometries, determined by a script running

through all atoms within a cylindrical volume of 10Å radius around the disloca-

tion line. The script determines distances and angles to nearest neighbours for

all atoms within the PBC. Restrictions to neighbour distances were determined

according to the type dependent binding distances of the SW parameters (see

figure 2.1), with cutoff distances of 2Å for N-N, 2.7Å for Ga-Ga and 2.5Å for

Ga-N bonds.

With this statistical data, the trends in figure 5.2(b) can be analysed more care-

fully. The SW potential favours the (11) core as, unlike the (00) core, a geometry

2 The computational time for optimising the complete core region can be estimated to be ≈20
cpu years.
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Figure 5.2: Comparison of total energies of all investigated core configurations.
Chemical potentials for Ga and N were taken from bulk. Relative energies were
computed by compensating the difference in atomic composition with the chem-
ical potentials of Ga and N and are shown relative to the (00) total energy.
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is possible where no homonuclear bonds exist3, instead 2 atoms are surrounded by

5 nearest neighbours. However, as the angular configuration of the N-Ga-Ga and

Ga-N-N feature a wider deviation in bonding angles than the (00) core, mean-

ing bonding angles deviate more strongly from the tetrahedral ideal (109.49◦),

making the energetic lead of the (11) core relatively low at −0.27Å. As the core

composition becomes emptier with the (22) core it can be constructed without

homonuclear bonds but as a consequence includes atoms with only three neigh-

bours. The (33) core then features the first fully ”open core” as there are no more

atoms around the centre, increasing the amount of atoms with 3 neighbours.

Looking at the relative energies across compositional changes (figures 5.2(c)-

5.2(e)), nitrogen rich cores are being favoured as the N-N interaction is lower

in energy than the Ga-Ga interaction in the SW pair parameters. With this in

mind it could be argued that since the perfect bonding angle Θ0
IJK within the

parameters is constant for all interaction types, the most stable core configuration

is symmetric under atomic type exchange. However, this is not the case. The

difference in energy and bond length of the N-N and Ga-Ga bonds means that

the most stable cores can be unique in structure and vacancies or interstitials will

form at different places.

The fact that SW potentials favour nitrogen rich conditions is however not neces-

sarily physical and should be considered with caution. This could be due to the

simple case of comparing energies with the chemical potentials at a too extreme

nitrogen rich case, as a result of inaccuracies in the SW parameterisation. How-

ever, it can also be argued that the SW potentials method itself is insufficient by

looking at the extremes of the present situation. It shows that a gallium filled core

(-66) is highly unfavourable while a nitrogen rich core (2-2) is much less unstable.

This can be explained as due to the insensitivity of the SW potential towards

bonding environments beyond immediate neighbours. In a N rich core more N-N

homonuclear bonds will exist, in addition these same atoms will still contribute

towards all N-Ga-N and N-Ga-Ga bonds without restriction in the SW potentials

method. This would not necessarily be true for a real situation, therefore a more

rigorous ab-initio method should be used to confirm the SW results predictions.

3 Ga-N bonding has the lowest energy in the used SW parameters, with N-N the second lowest
and Ga-Ga the highest. See figure 2.1 for details
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Table 5.1: List of properties of investigated core configurations across a wide compositional range. Energies are given in eV,
core radii Rc and distances in Å, angles in degrees. Columns 4 and 5 show a count of atoms with 5 and 3 nearest neighbours
in the structure, columns 6 through 9 show a count of homonuclear bonds and average bond distances d, while columns 10
through 21 show bond angle counts, averages and variance measure.

nn Ga-Ga N-N Ga-Ga-N N-N-Ga N-Ga-Ga Ga-N-N
Core rel. E Rc 5 3 # d # d # θ var # θ var # θ var # θ var

(00) 0.00 6.5 0 0 1 2.19 1 1.62 6 103.1 15.0 6 113.2 11.0 138 109.1 8.8 138 109.6 8.6
(01) 0.86 6.6 0 2 2 2.26 0 0.00 10 107.6 15.4 0 0.0 0.0 141 109.4 8.3 136 109.5 7.9
(02) 1.25 7.6 0 2 3 2.30 0 0.00 14 108.2 16.5 0 0.0 0.0 138 109.4 8.0 122 109.5 7.4
(10) 0.17 6.5 0 2 0 0.00 1 1.56 0 0.0 0.0 5 112.7 12.9 145 109.5 8.9 150 109.3 9.0
(11) −0.27 6.7 2 0 0 0.00 0 0.00 0 0.0 0.0 0 0.0 0.0 160 109.2 11.2 160 109.2 11.4
(12) 0.48 6.9 3 1 2 2.47 0 0.00 14 97.0 24.0 0 0.0 0.0 148 109.2 10.7 141 109.5 9.7
(20) 1.05 8.2 0 0 0 0.00 2 1.56 0 0.0 0.0 12 112.5 13.9 132 108.8 9.8 150 108.3 15.4
(21) 0.71 8.4 2 0 0 0.00 2 1.67 0 0.0 0.0 12 111.8 13.8 148 109.0 10.7 154 109.2 10.7
(22) 0.71 8.7 0 2 0 0.00 0 0.00 0 0.0 0.0 0 0.0 0.0 141 109.4 9.6 141 109.3 9.7
(33) 2.15 8.1 0 10 0 0.00 0 0.00 0 0.0 0.0 0 0.0 0.0 129 109.4 6.6 129 109.4 6.6
(0-1) 2.21 6.5 2 0 0 0.00 3 1.83 0 0.0 0.0 16 120.8 29.3 139 108.9 9.3 144 109.4 9.6
(-10) 3.12 10.5 2 3 3 2.47 0 0.00 16 114.1 28.0 0 0.0 0.0 144 109.3 9.5 130 109.3 9.1
(-12) 3.75 10.8 4 3 7 2.43 0 0.00 34 104.9 28.9 0 0.0 0.0 146 108.9 11.4 120 109.8 7.2
(-66) 30.10 7.5 8 0 33 2.42 0 0.00 70 103.7 21.2 0 0.0 0.0 126 108.5 12.7 92 110.6 6.5
(-11) 2.11 9.1 4 2 5 2.38 0 0.00 24 103.5 20.9 0 0.0 0.0 148 109.1 9.8 131 109.8 8.0
(1-1) 0.47 6.7 2 0 0 0.00 3 1.63 0 0.0 0.0 16 110.2 14.7 139 109.2 8.7 152 108.8 11.5
(-22) 6.12 10.9 7 2 12 2.44 0 0.00 53 100.9 22.9 0 0.0 0.0 140 108.7 10.8 113 110.3 7.0
(2-2) 3.39 10.4 2 2 0 0.00 7 1.63 0 0.0 0.0 34 110.3 14.6 118 108.8 7.2 134 108.9 11.2
(-21) 6.12 10.4 6 2 8 2.43 0 0.00 42 106.9 20.8 0 0.0 0.0 142 109.1 9.8 119 109.6 8.6
(2-1) 2.04 10.7 1 3 0 0.00 5 1.63 0 0.0 0.0 24 110.7 14.5 120 108.8 7.7 130 109.1 10.3
(1-2) 2.29 9.3 2 3 0 0.00 5 1.57 0 0.0 0.0 22 109.5 14.7 136 109.4 7.8 143 108.8 11.7
(-32) 11.11 11.8 4 1 11 2.37 0 0.00 46 108.1 20.9 0 0.0 0.0 142 109.0 8.9 113 109.8 6.4
(2-3) 4.62 10.3 1 3 0 0.00 9 1.57 0 0.0 0.0 35 110.0 11.7 116 109.0 7.0 130 109.0 9.3
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5.2. Electronic structure Non-stoichiometric cores

(a) (00) (b) (01)

Figure 5.3: Electron density projection of (00) and (11) on the c-plane. The
electron density has not been corrected for core electrons.

5.2 Electronic structure for the screw disloca-

tion

This section presents a study of the electronic structure of several optimised

core configurations that were presented in section 5.1. In the first stage the GaN

quadrupole structures are re-relaxed using a conjugate gradient optimisation with

a DFT energy functional. Notable differences to the SW potential predictions are

discussed. Subsequently the electronic structure is discussed based on the cal-

culated electron density and the density of states. Finally total energies over a

range of chemical potential conditions are compared for all selected structures to

find the most probable cores.

The second part of this section shows results for InN core structures. These

cores were created using initial GaN structures, scaling the lattice parameters for

InN and re-relaxing the core structures. The same analysis is presented for these

cores as for the GaN cores.

5.2.1 GaN - Structures

In order to obtain electronic structure information, DFT in combination with the

LDA, was used to solve for the electron density of several core structures. A GGA

calculation was not performed as structural accuracies are not increased nor is the
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5.2. Electronic structure Non-stoichiometric cores

band gap problem changed for InN, therefore no significant gain of information

in the results is to be expected with the application of a GGA functional. As

introduced in section 2.1 the AIMPRO code was used, which implements a basis

set filtration method and a local wave function basis set to enhance efficiency.

As presented in section 4.1 arrays of quadruples are constructed using unit cells

containing a dislocation dipole in combination with lattice constants creating a

non-orthorhombic symmetry. This results in the modelling of up to 448 atoms

per structure. A convergence test of the Monkhorst and Pack k-point sampling

was performed to confirm a reliable total energies and density of states.

The structures used here were selected from the dislocation core optimisation

presented in the previous section. However this would mean that only one core

per unit cell is the desired core configuration, while the remaining one is (00)

configuration, which results in a combined influence of both dislocation cores on

the electronic structure of the total structure. In order to prevent such an un-

wanted influence, new unit cells were constructed containing a dipole of mirrored

copies of the optimised core. This could be done by using the mirror symmetry

of the (21̄1̄0) plane of the underlying wurtzite structure. This operation changes

the parity of the screw dislocation while retaining its core configuration, hence a

unit cell containing two opposite screw dislocations could be created. However,

as the dislocation line position varies for each core structure, it is not always

precisely on the chosen mirror plane. As a result the mirror operation creates

a deformation of the rectangular quadrupole into a rhombohedral configuration.

This creates a slight total energy change, which will be neglected in the further

analysis as it does not influence the core structures and can be estimated to be

less than 0.1eV using the SW predictions from chapter 4.2.

The structures chosen for the DFT analysis are located around the global rel-

ative energy minimum as predicted in 5.1 ((00),(11),(01),(10),(-11),(1-1)) as well

as the three lowest energy structures of the (00) core and several core configura-

tions ranging into the gallium filled core structures ((-12),(-22),(-66)). Ball and

stick models for several of the studied cores can be found in figure 5.4.

All selected structures were relaxed using a local conjugate gradient optimisa-

tion with DFT. Major structural changes from the SW predictions could only be
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(a) (00) (b) (01)

(c) (10) (d) (11)

(e) (-11)

Figure 5.4: Core structures for various stoichiometries, where all atoms were re-
relaxed using a conjugate gradient minimiser and DFT. Gallium is marked as
white balls nitrogen as blue and the dislocation line position as green circle.
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observed for (1-1) where the additional nitrogen atoms departed from a tetrahe-

dral bonding and favoured a proximity to other nitrogen atoms. As can be seen

from figure 5.4(a), in comparison with figures C.1 through C.12, the DFT relaxed

structures feature only small changes. More precisely both the dislocation line

position as well as the structure remains the same for the (00) core and also for

the (01) core, however the (10) configuration slightly changes the position of the

nitrogen at the gallium vacancy site to be more closely bonded to its nitrogen

neighbour. At the same time the gallium at the neighbour position moves closer

to the dislocation line position. This deviation creates a core which more closely

resembles the (11) configuration.4 The structural changes for the (11) core are

more visible but are in fact minor. The DFT relaxed structure simply moves the

central GaN site into a perfect centre position, creating a more symmetric core

with the line position exactly on top of this central site. The (-11) core shows no

obvious structural changes from the SW predictions.

5.2.2 GaN - relative energies

The total energy for all selected structures was computed using DFT under LDA

with a local basis set, non linear core corrected pseudo-potentials and a converged

k-point grid. However, in order to compare total energies of two structures with

different stoichiometries the thermodynamic Grand Potential

Ω = U − TS −
∑

i

µini, (5.2)

needs to be determined [78]. The following procedure is used in analogy to

Northrup et al. [79][77][80]. Equation (5.2) states that the total structure energy

U needs to be corrected by an entropy term TS and the sum of the chemical

potential of its constituents. The Grand potential compensates the difference in

composition of different structures by the inclusion of the chemical potential of

the constituents, thus creating an energy term that can be directly compared for

all obtained core structures and directly relates to the relative likelihood of core

formation in a real solid. The entropy term in equation 5.2 can be neglected here

due to the low influence of the entropy in solids at relatively low temperatures

(including room temperature [79]), while the chemical potentials for gallium and

4 This behaviour is much more pronounced for the InN (10) core, see section 5.2.4
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Table 5.2: Total energy comparison for all structures investigated by DFT ex-
pressed with their thermodynamic potential relative to the (00) structure at equi-
librium position. (00)’ and (00)” denote higher energy core configurations as
predicted by the random optimisation and SW potentials.

Core (00) (00)’ (00)” (01) (10) (11) (22) (-11) (-12) (-22) (-66)
Ω[eV ] 0.00 -0.07 0.03 0.27 0.88 -0.14 0.95 -0.39 -0.70 0.84 13.85

nitrogen needs to be determined.

The chemical potentials of Ga and N in a GaN crystal are not easily determined

as they can vary depending on the condition of the thermodynamic bath. How-

ever the variables can be constrained, if the system is in contact with a bulk GaN

reservoir. In that case the corresponding constraint on the chemical potentials

µGaN = µGa + µN (5.3)

holds true with µGaN being set by the calculated energy of a GaN formula unit.

µGaN can be calculated readily for the two limiting cases the chemical potentials

cannot exceed, allowing chemical potentials to be expressed solely as a function

of µGa, as equation (5.3) holds true in all cases. These two limiting cases are the

chemical potential of bulk gallium and that of molecular nitrogen. Therefore the

range of values for µGa represents growth conditions from gallium to nitrogen rich.

The bulk gallium chemical potential µGa(bulk) was determined by computing the

structural energy for the stable configuration of α-Ga as specified by [81], while

the nitrogen molecule potential µN(mol) was computed similarly from a N2 DFT

molecular calculation. With these two limiting points, the heat of formation of

GaN ∆H can be expressed as:

∆H = µGa(bulk) + µN(mol) − µGaN = 1.68eV (5.4)

and is equal to the range µGa can have. The value for the formation enthalpy,

∆H , agrees with similar LDA calculations in the literature [82].

The determined thermodynamic potential for each investigated structure is shown

as a function of the chemical potential range in figure 5.5. Here µGa(GaN) was cho-

sen as a reference for the centre range so as to describe equilibrium conditions.
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Figure 5.5: Relative dislocation core energies as calculated by DFT plotted for
varying gallium chemical potential. The (00) core has been taken as reference.

For the fully stoichiometric cores only the lowest energy core were shown, as the

energy difference is too small to be clear on the scale used. All other cores were

drawn relative to the (00) cores. The relative thermodynamic potential for all

structures at the equilibrium position can be found in table 5.2.

From figure 5.5 it is notable that, as the SW potentials optimisation predicted,

the (11) core is found to be more stable than the normal (00) core. However the

gallium rich cores are shown to be much more favourable. In fact for most of

the growth condition range, the (-12) core is found to be the most stable core

configuration. Only under nitrogen rich conditions do the stoichiometric cores

represent the lowest energy state. The completely gallium filled core (-66) con-

taining 12 gallium atoms is very unfavourable for all growth conditions and has

not been included.

5.2.3 GaN - density of states

The density of states (DOS) for several of the investigated structures are displayed

in figure 5.6, where the defect DOS has been drawn behind the GaN bulk DOS to

emphasise states within band gaps. Notable for figures 5.6(a),5.6(b) and 5.6(c)
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(a) (00) (b) (01)

(c) (10) (d) (11)

(e) (-11) (f) (-66)

Figure 5.6: Density of states comparison of bulk and various core configurations.
The valence band edge of the bulk is set as zero point.
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are the position and height of the gap states. These imply a strong influence of

the homo-nuclear bonds in these structures, in particular the N-N on states in the

gap. The most notable difference is the complete lack of states above the valence

band for the (11) core in figure 5.6(d). There are however in all cases lower band

gap for all dislocation structures, with a metallic behaviour for cores more rich

in gallium than the (-11) core, where the gap has been decreased to only about

0.4eV.

5.2.4 InN - structure

A structural and electronic investigation of screw dislocation cores was also per-

formed for InN using the stable core configurations found for GaN. This analysis

was undertaken under the assumption that the global optimisation of dislocation

cores in GaN produces core configurations that are structurally sound for general

wurtzite materials. The main difference between a GaN and InN bulk wurtzite

structure is the size of the lattice repeat, which is about 10% larger in InN. This

type of scaling can therefore transform a GaN cell into InN by changing the atomic

type of the group-III atoms. It would produce valid copies of bulk material and

long range dislocation strain fields, as these scale with the Burgers vector, which

is by definition proportional to the lattice vectors for any dislocation. The dislo-

cation core however can incorporate homonuclear bonds and bonding situations

that do not translate well from GaN to InN, as the nitrogen bond length does not

scale and bulk indium is most stable in a different configuration than gallium.5

Therefore different stable core configurations could be viable for InN and GaN,

which is not further considered, instead in order to deal with non-scaling relative

atomic positions a local optimisation (conjugate gradient) was performed subse-

quently.

A selection of investigated structures can be seen in figure 5.7, where for each

structure a projection of the electron density has been drawn in addition, using

only the valence electrons without correcting for the pseudo potentials. As a re-

sult indium positions cannot be seen directly, only a diffuse rise in electron density

around their position is visible. As a result the metallic single atomic channel

5 Bulk indium crystallises in a body centred tetragonal lattice, while gallium has various
stable forms, but favours under normal conditions α-Ga, which is an eight atom unit cell in
an orthorhombic lattice configuration.
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Figure 5.7: Core structures for various stoichiometries, where all atoms were re-
relaxed using a conjugate gradient minimiser and DFT. Presented with ball and
stick model as well as an electron density projection on the c-plane. Indium is
marked as yellow balls, nitrogen as blue.
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in the (-11) core structure is emphasised nicely (5.7(b)). Structural differences

after the atomic position relaxation are small throughout all investigated struc-

tures, except for the (10) structure which shows a visibly more central location

of the single most central indium atom, when compared to the equivalent GaN

structure.

5.2.5 InN - relative energies

In order to compare all investigated structures the thermodynamic potential Ω

was obtained in the same manner as for GaN. In order to determine indium

rich conditions, the chemical potential for indium was determined by calculating

the binding energy of indium bulk in the body centred tetragonal lattice with

LDA-DFT. The same molecular nitrogen chemical potential could be used for

the nitrogen rich conditions as in the GaN case. With these values, including the

chemical potential of an InN pair in a wurtzite lattice, the enthalpy ∆H of InN

was determined to be 0.23eV.

The enthalpy of InN is much lower than for GaN, indicating that a change in

growth conditions will have a lower impact on the thermodynamic potential of

structures with different stoichiometries. Figure 5.8 displays the found relative

thermodynamic potentials of the investigated structures. It can clearly be seen

that a change in growth conditions has a much lower impact on the ordering of

the various structures. This is shown as a function of the chemical potential of

indium µIn. The relative ordering of the structures is different from the GaN case

as the group-III rich structures are not favoured as strongly, in fact the (10) core

is consistently lower in energy than the (01) core. In addition the (11) core is

lower in energy compared to the (00) core by 0.7eV making this structure the

most feasible core for most of the growth condition range. Only for the last third

of the indium rich end is the (-12) core predicted to be lower in energy. As in the

GaN case the relative energy for the (22) core is much higher than that of the

(11) and (00) cores, confirming also the SW-potential predictions.

5.2.6 InN - density of states

The densities of states for the InN core structures were computed and presented

in analogy to the GaN case. Here also the valence band maximum of InN bulk
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Figure 5.8: Relative dislocation core energies as calculated by DFT plotted for
varying gallium chemical potential. The (00) core has been taken as reference.

was chosen as the reference energy. It is important to note that LDA-DFT pre-

dicts a zero band gap width for InN as was shown in section 3. Still, defect states

appear above the bulk valence band edge features, suggesting that with a band

gap present these would lie inside or even cover it. Especially the distance of filled

defect states to filled bulk states should be predicted with reasonable reliability

within these calculations as DFT is a ground state theory.

The densities of states of several low energy configurations are shown in fig-

ure 5.9. As in the GaN case and as can be seen in figure 5.7, the stoichiometric

cores differ clearly in the number of homo-nuclear bonds, meaning that the (11)

core is a configuration featuring a 5 fold coordinated centre InN pair without

any homo-nuclear bonding. As a result there appear no additional defect states

immediately above the valence band in the (11) core. The same is true for the

(22) core, however this configuration has a much higher relative energy and is

therefore not shown here. On the other hand the (-11) and (-12) cores are In-

dium rich and feature a single-atomic indium wire at the dislocation core centre.

This results in additional states above the valence band edge, making the InN

bulk ”more” metallic.
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Figure 5.9: Density of states comparison of bulk and various core configurations.
The valence band edge of the bulk is set as zero point.

98



5.3. Discussion Non-stoichiometric cores

5.3 Discussion

The results in this section are divided into two major parts, the first is the global

optimisation across a wide core composition range and the second are electronic

structure investigations performed with DFT on the optimised cores in GaN and

InN. The global optimisation on each configuration was performed in analogy to

the (00) case presented in chapter 4. Looking at the predictions of core stability

directly from the global optimisation it can be seen that the lowest energy core is

the (11) core. However looking at the more general trends of the relative energies

it was shown that SW predicts nitrogen rich cores to be more stable. Empty

cores as well as the extreme nitrogen and gallium rich cores were predicted to

be unfavourable. However, all relative energies were given by using the chemical

potentials for Ga and N in GaN bulk as given by the atom resolved energies. Only

for the DFT total energies were chemical potentials over a wide range considered,

meaning that relative energies with different N to Ga ratios can shift with varying

conditions.

In section 5.2 the most stable cores from the optimisation procedure are re-relaxed

using DFT. It can clearly be seen that structural changes to the optimised cores

are small, with the largest deviations being in the (11) core: The dislocation core

centre and a GaN pair are shifted to an exact symmetry centre, creating two

5 atom rings and two heavily strained 6 atom rings, when viewed in plan view

(see figure 5.4(d)). The relative energies of the three lowest energy structures

of the (00) structures as produced by the optimisations, do not follow the same

behaviour as in the SW case. However, all relative energies are extremely small

in comparison to the difference in energy to other core configurations. A similar

study of a range screw dislocation cores in GaN has been presented by Northrup

et al. [77], where the gallium filled cores are predicted to be most stable over the

complete range of growth conditions. However, the results shown here include

core structures not considered by Northrup et al., such as the (11), (-12) and (-

11) cores, in addition a wider range is predicted here for the GaN enthalpy ∆H ,

resulting in ”more” nitrogen-rich conditions. This creates a small range where

gallium filled cores are unlikely. The value of 1.68eV for ∆H calculated here

agrees with similar LDA-DFT predictions from [82], however their GGA-DFT

calculations predict a much lower value of 1.12eV. However, it is still clear that

there is a trend of very stable gallium filled cores, even into the Nitrogen rich
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condition range. From the presented results it can be projected that cores like

the (-13),(-2,3) or even (-4,6) are the most stable configurations over the complete

enthalpy range.

InN has a much lower enthalpy than GaN. The calculations performed here pre-

dict a value of 0.23 eV, which does not agree as well with the results (0.3eV)

presented in [82], but is closer to experimental results (0.21eV). A much lower

value results in a much lower reordering of relative core stability as growth condi-

tions do not affect the core stoichiometry as heavily. As a result it can be seen in

figure 5.8 that for most of the presented chemical potential range the most stable

stoichiometric core (11) is the overall energetically best core configuration, while

the Indium rich configurations only become favourable under very Indium rich

conditions. Again, more Indium rich core configurations could have lower ener-

gies, however looking at the relative ordering of the other cores, the InN material

does not tend towards metal rich compositions.

The electronic properties of the various cores investigated show clearly that as

expected the more metal rich cores introduce defect states above the valence

band all across the band gap. This means that they can act as conductive paths

and non-radiative recombination centres. The core configuration with the least

influence on the band gap is the (11) core as it does not feature any homo-

nuclear bonds. This means that for the InN case c-screw dislocations should be

electrically inactive as here the (11) core is the most stable of the investigated

configurations across most growth conditions.
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CHAPTER 6

Edge dislocations in GaN

Figure 6.1: Schematic of an edge disloca-

tions in a cubic system. The purple line

represents a Burgers circuit, the green

line shows the Burgers vector

This chapter contains a discussion of

the application and results of a global

optimisation of the edge dislocation

core structure in GaN. As in chap-

ter 4, a random search algrithm was

used that utilizes Stillinger Weber type

interatomic potentials to generate a

cost function. In addition to the sto-

ichiometric core, a selection of non-

stoichiometric conditions ranging from

nitrogen rich to Group-III rich condi-

tions as well as open core structures

were considered. Unlike chapters 4 and

5, the effects of dislocation climb on

core composition become apparent and are discussed.

The first section in this chapter details the geometry of the investigated structures

and provide a discussion on the feasibility of this approach. The following sec-

tions shows results in detail for the global optimisation of the fully stoichiometric

core, while a comparative study of all studied core compositions is performed
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(a) unit cell schematic (b) abs(ǫ)

Figure 6.2: Unit cell schematic for the edge dislocation optimisation (a) and
absolute value of the strain influence on investigated core region (b)

subsequently.

6.1 Optimisation parameters

The optimisation procedure was performed for the edge dislocation in analogy

to the screw dislocation case (chapter 4). Similarly a supercell structure was

created with a choice of boundary conditions to construct an array of dislocation

quadrupoles. The size of the the unit cell has identical dimensions, the disloca-

tions however were included by applying the displacement field for an edge dislo-

cation as presented and derived in equation (2.127) to the constructed unit cell.

The chosen quadrupole arrangement is presented as a schematic in figure 6.2(a).

The resulting strain influence from the dislocation quadrupole arrangement on

the investigated dislocation core was determined as for the screw dislocation case.

The resulting absolute value of the strain on the dislocation core region can be

seen in figure 6.2(b). Due to asymmetry of the strain in the c-plane for an edge

dislocation with a line direction along c, the absolute value of the strain in figure

6.2(b) differs from the arrangement seen for the screw case (figure 4.3(f)). How-

ever, the fact remains that the strain due to the surrounding dislocations on a

single dislocation core is minimal for the cell sizes chosen.

The application of the edge dislocation displacement field can yield a range of
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core configurations depending on the position of the dislocation line on the c-plane

within a unit cell. After relaxation, this can lead to a 5/7 core, 8-core or 4-core

configuration [71]. The initial line position chosen within this work resulted in

a 5/7-core configuration arrangement, where the dislocation core consists of a 5

atomic site ring and a 7 site ring (see figure 6.5(a) for an example).

As with the screw dislocation, the global optimisation was performed using a

randomisation radius of around 3.2Å surrounding the dislocation line position,

which results in a cylindrical randomisation region containing 12 atoms. As a

result usual optimzation performances were similar and up to 105 randomisation

relaxation steps were completed for each core configurations.

6.2 Fully stoichiometric core

The fully stoichiometric core was defined for the screw dislocation as the dislo-

cation core that was randomised with a full set of atoms (12 atoms, 6 Ga and 6

N) inside the randomisation region, i.e. the (00) core. However, the situation for

the edge dislocation is more complex as the Burgers vector lies inside the plane

of the simulated sheet of atoms, resulting in a half plane of inserted material per-

pendicular to the Burgers vector. A movement of the edge dislocation core along

this half plane is called dislocation climb and will result in the stoichiometrically

constant1 filling or emptying (depending on direction) of the core region. As a

result the edge dislocation can form its most stable dislocation core with a change

of centre position by gaining or losing GaN pairs. Therefore the fully stoichio-

metric core for the edge dislocation will here be defined as the combination of all

possible stoichiometric cores, i.e. (00),(11),..,(nn); with n being the number of

GaN pairs inside the randomisation region.

The movement of an edge dislocation can be classified into slip and climb. It

is a slip movement if the dislocation line position shifts along the Burgers vector

and climb if it is perpendicular to it. Figure 6.3(a) displays a schematic of dis-

location climb and slip for the investigated core region in the present simulation

environment. In addition a strain energy analysis has been performed by simu-

lating the analytical elastic energy for dislocation movement along slip and climb

1 Meaning a change of equal numbers of Ga and N atoms present in the core region.
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(a) Schematic showing possible simula-
tion cell (blue) plus PB neighbours (green
(+a1) and red(+a1−a2)) with added dis-
location climb and slip directions
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Figure 6.3: Schematic and simulation for dislocation slip and climb movements.

directions under present simulation conditions (figure 6.3(b)). The simulation

clearly shows an energy barrier for climb movement and an immediate drop in

total elastic energy for slip movement.

As seen for the screw dislocation optimisation procedure, core configurations are

expected to form around the starting position with distances of up to one lattice

constant. Therefore the energy barrier in climb direction, due to the strain field

surrounding the dislocation under investigation, will result in an ordering of the

structure distribution to show cores centred on the equilibrium position. Slip

movement on the other hand has no effect on core composition, but features a

quick decline in total energy, creating the possibility of core movements during

relaxation. Such a movement of the dislocation core along the [21̄1̄0] direction

for the chosen geometry leads to an annihilation with the next nearest neighbour

dislocation featuring opposite Burgers vector.

The structure energy distributions created by the optimisation algorithm for the

(00), (11), (22) and (33) cores are depicted in figure 6.4. It is immediately pos-

104



6.2. Fully stoichiometric core Edge dislocations in GaN

−3575−3570−3565−3560−3555−3550−3545−3540−3535−3530
Energy [eV]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
tr

u
ct

u
re

 c
o
u
n
t

Screw dislocation (00)

0.08 eV

(a) Structure energy distribution for the (00)
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optimisation
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Figure 6.4: Structure energy distributions for the global optimisation of the sto-
ichiometric edge dislocation core.

sible to see that aside from the main distribution, a very long low energy tail

exists. The structures present in the tail however, are all geometries that have

undergone slip movement and annihilated with the opposing dislocation. However

these unwanted slip configurations are all very low in probability as the structure

count per bin is low compared to the structure count of the genuine low energy

structures. Furthermore the (11) optimisation features a much higher number of

slip-annihilated structures as compared to the other stoichiometric optimisations.

The genuine lowest energy structures in the (00) optimisation procedure are all

variations of the original 5/7 cores with different core positions. The next low-

est genuine structure is approximately 2eV above this position and features a
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larger core size containing a ”double” 5/7-core, where the two atomic layers in

c-direction in the cell both feature a 5 and a 7 site ring that are displaced in a slip

direction by one lattice constant. However, the lowest energy structures in the

optimisation results for the (00) core do not contain 4 cores or 8 cores that are

expected to exist, as they have been shown to be stable by experiment and theory

results in the literature. In addition both cores can be directly created with the

edge dislocation displacement field acted on a perfect wurtzite lattice and a sub-

sequent SW-optimisation, suggesting that they exist as local minima in the SW

paramterised interatomic potential cost function and are therefore expected to be

represented within the optimisation structure distribution for the stoichiometric

core. Instead both core types are not present in the (00) optimisation but can be

found readily as the most stable structures in the (11) optimisation. Figure 6.5

displays structure models for the mentioned cores.

The situation that 5/7 and 8-,4-cores appear mutually exclusive in the (00) and

(11) optimisation respectively can be explained with the chosen boundary con-

ditions and their relationship with respect to their dislocation centre position.

Relative to a lattice unit cell, the 8-core and 4-core centre positions are separated

only along the slip plane while the 5/7 cores centre is positioned away along the

climb direction. The distance apart in climb direction results in half of a unit

cell (a pair of Ga and N atoms) being incorporated into the 5/7 core, which are

not present in the 8- or 4-core. However, as the total number of atoms in the

simulated supercell remains constant, the other half unit cell is then not present

at the connection to the boundary condition, which needs to fit to the other

opposite core in the simulated unit cell, which has been chosen and confined to

be a 5/7-core. Or in other words, the 5/7 core contains a single GaN atom pair

more than the 4- and 8- core and as a result a supercell containg both an 8-core

and a 5/7-core needs to contain an uneven amount of GaN pairs, even though

this would not be possible in a supercell constructed from bulk with dislocation

displacement fields and PBC. Hence in the present optimisation only when half a

unit cell2 is removed or added from the randomisation procedure will the creation

of an 8- or 4-core be possible.

2 Due to the possibility in dislocation climb with integer steps of the lattice vector, it is more
general to say that uneven amounts of GaN pairs need to be removed or added.
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(a) Most stable structure for the (0a) core (b) Second stable structure for the (0a) core

(c) Most stable structure for the (0b) core (d) Other stable structure for the (0b) core

Figure 6.5: Ball and stick model for stable stoichiometric edge dislocation core
structures.
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The necessity of preserving complete unit cells in the dislocation climb is further

evidenced by the appearance of a shifted double 5/7 core in the (11) optimisation.

The shifted double 5/7 core is composed of two 5/7 ring structures, split between

the two atomic layers in c-direction and separated by one lattice site in the climb

direction.

The high count of slip annihilated structures during the (11) optimisation can

be linked to the predominance of 8- and 4-cores and their high mobility along

the slip direction. As 4- and 8-cores are directly related to each other by a shift

of dislocation centre position along the slip direction within one unit cell, they

constitute two repeating local minima for the motion of the core along the path to

annihilation. The slip movement during structural relaxation causing the anni-

hilation process is aided by the decrease in total elastic energy as two dislocation

cores approach each other (figure 6.3(a)).

All other performed stoichiometric core optimisations ((22) and (33)) show very

similar results. In addition, a clear trend of the edge dislocation core reconstruc-

tions towards filled cores can be observed. Both the (22) and (33) optimisation

produce open core structures at their randomisation site. However the lowest

energy structures in both cases are dislocation cores moved in climb direction as

to reach a filled state, despite the accompanying increase in elastic energy of the

simulated supercell.

6.3 Composition range

As for the stoichiometric case, the non-stoichiometric cores cannot be easily clas-

sified through their amount of randomized atoms (or lack thereof). Instead the

composition range discussed for the screw dislocation case can be reduced to

purely the difference between the number of Ga to N atoms. Therefore the two

dimensional composition range (NVGa
,NVN

) can be projected into (NVGa
− NVN

)

through the equality of (NVGa
,NVN

)=(NVGa
+ C,NVN

+ C), with C ∈ Z. How-

ever it is best to keep in mind that, due to the boundary conditions and manner

of optimisation, two separate optimisations need to be perfomed for each class:

(NVGa
−NVN

)=(NVGa
+C,NVN

+C),(NVGa
+C+1,NVN

+C+1). For instance the

class of optimisations (10),..,(n+1,n)=(1) is complete when optimisations only for
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(10) and (21) have been performed. Therefore dislocation cores will be labelled

as ((NVGa
− NVN

)a) and ((NVGa
− NVN

)b), where a denotes the case where the

lowest vacancy count is even and b when it is odd.

Optimisation procedures for non-stoichiometric cores were performed for the cases

(01),(10),(12),(21),(23) and (32). These reduce to the two edge stoichiometries

(1a),(1b) and (-1a),(-1b), where only the a cases are contained twice. As expected

from the stoichiometric case, the lowest energy structures in the (23) and (32)

optimisations case map onto the (01) and (10) results and will not be discussed

further. The lowest energy structures emerging from the remaining optimisations

can be found in figure 6.6, where all structures are shown in the same segment of

the simulated cell.3

The most stable (-1a) 4 structure features a 5/7 core with a nitrogen vacancy

at the centre of the dislocation removing the nitrogen homonuclear bond, while

the most stable (-1b) structure features a mix between 8 and 5/7 cores. This

can be understood as either a 5/7 core with a gallium interstitial or an 8-core

with a nitrogen vacancy. The three distinct most stable structures for the (1a)

dislocation core can be found in figures 6.6(c)-6.6(e) and show several interesting

mixtures of 4-,8- and 5/7-cores. The lowest energy structure shows a 5/7 core

arrangement and a shifted 8-core, where each configuration is separated by the

two atomic layers in c-direction. The rise5 in dislocation climb for the 8-core

(upper layer) means that a gallium vacancy is inherent to the structure but not

obvious. The next stable structure is less subtle, and represents a 5/7-core with

a gallium atom removed at the homonuclear bond site, while the next higher

structure features the same strategy as the lowest energy structure, but with a

4-core, 5/7-core combination. Similarly the (1b) core uses a combination of 4

core and 5/7 core with the half 5/7 core shifted one lattice site higher than the

(1a) case, making up the GaN pair difference.

3 As a result relative shifts in climb direction can be observed easily.
4 one more Ga than N atom per simulated cell
5 dislocation climb will be referenced here as ”upwards” if it results in the addition of atoms

in the core and ”downwards” if they are removed. However, the general trend towards filled
cores hinders a downward movement.
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(a) Edge dislocation core (-1a) (b) Edge dislocation core (-1b)

(c) Edge dislocation core (1a) (d) Edge dislocation core (1a)+0.11eV

(e) Edge dislocation core (1a)+0.28eV (f) Edge dislocation core (1b)

Figure 6.6: Ball and stick model for stable non-stoichiometric edge dislocation
core structures.
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6.4 Conclusion

The global optimisation performed on the edge dislocation core was able to find

all core configurations for the stoichiometric case ((0a) and (0b) core) that have

been predicted by previously published results in the literature for GaN [71][83]

and InN [72] and observed by experiment[84]. The 5/7 core is predicted here (SW

interatomic potentials) to be the most stable configuration, while 8- and 4- core

have nearly identical structural energies, with low diffusion barriers separating

the two. More complex core configurations have been found in addition, but are

expected to be much less favourable, such as the double 5/7 core (figure 6.5(b)).

However very similar structures were proposed as configurations for mixed dislo-

cation cores[28][85], where a double 5/7 core becomes a double 5/6-core by the

addition of a screw displacement field. Additional optimisation runs ((22) and

(33)) have been performed and shown that the dislocation climb energy barrier

is low compared to the gain in structural energy by forming full dislocation cores

away from the original randomisation volume. This suggests that open cores are

generally unfavourable making the additional optimisation results redundant.

The implications of dislocation climb and slip movement were discussed. Disloca-

tion climb movement effectively reduces the amount of optimisation procedures

for each stoichiometry to two cases, while slip movement has caused the appear-

ance of anomalous annihilation structures in the optimisation distributions due

to the very low diffusion barrier between the 4- and 8-core. However, it stands

to reason that the dislocation slip behaviour can be changed by adjusting the

geometry of the simulated supercell. This procedure has not been attempted,

but should not pose a problem if a more general dislocation displacement field is

used, as suggested by Lehto et al.[67].

Two non-stichiometric cases have been investigated, the (1) and (-1) cores. While

the (-1) lowest energy structures feature usual 5/7- and 8-cores with N vacancies,

the (1) core tends to contain split 5/7- and 4-cores. This can be seen as splitting

the core along the c-direction and moving one part along the climb direction or

as removing one gallium atom at the homonuclear bonding site at the 5/7 core

and resulting slight relaxations of the surrounding atoms.

The SW type interatomic potentials favour the stoichiometric cores, where the
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5/7-core is the most stable and the (0b),(1a) and (-1a) are all of comparable

energy. However, in order to compare the stability of structures with varying sto-

ichiometries, electronic structure theories such as DFT need to be employed to

construct more meaningful chemical potentials. In addition the relative energy

for the (0) cores have already been compared in the litearture by Lymperakis

et al. [71] and it can be seen that the ordering of formation energy shifts to a

favoured 8-core when DFT is employed. This is possibly due to the more com-

plex bonding arrangement with dangling bonds at the 3-fold coordinated centre

atoms.
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CHAPTER 7

Summary, conclusion and future work

The question of the influence of dislocations on a material is not easily answered,

mainly due to the number of unknown conditions such as the effects of growth

conditions on the creation of dislocations and the dislocation core composition

itself. In addition their intrinsic geometry results in the inability to model sin-

gle dislocations in an otherwise bulk material, which results in large models and

computationally costly investigations. While the long range strain field of a dis-

location can be accurately described by elasticity theory, the modelling of the

dislocation core is more complex and requires the application of atomistic the-

ories. The dislocation core structure can diverge strongly from the surrounding

bulk and depends on a wide range of influences such as growth conditions, that

govern the relative chemical potentials of the constituents. In addition and as a

result of the nature of dislocation geometry, it is necessary to model a consider-

able amount of atoms per simulation to provide low external influences, making

slow but accurate electronic theories impractical, even with currently available

computing resources. This work was aimed at solving the questions of the influ-

ence of dislocation cores on the material by performing a systematic investigation

into a wide range of conditions. This was done by implementing a multi-scale

approach, where an initial structural investigation was performed by a fast in-

teratomic potentials method and a subsequent less inaccurate density functional

theory calculation on the resulting optimised structures.
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The systematic approach was realised by implementing a global search method

that performs a stochastic sampling of the search space and can reliably present

global minima for the chosen cost-functions. Although other global search meth-

ods can be faster, it is feasible to use such a ”brute force” method, as the imple-

mentation of a very fast interatomic potentials method as cost function cannot

be circumvented. Since no assumptions are made of the core structure previ-

ous to optimisation, any condition inside can be simulated. This fact was used

to extend this method to optimise screw dislocation cores for a large range of

stoichiometries. In this manner core structures were found, presented here and

published[86] that, to my knowledge, have not been proposed in the literature

previously, such as the (11) core. The range of stable cores could then be ef-

fectively be compared in relative stability by using the most stable structures in

DFT calculations. Similar comparisons of core stoichiometries in GaN have been

performed previously by Northrup et al. [77], however the core structures used

there were not optimised previously. In addition results for GaN were translated

to InN with the assumption that no significant change in core geometry should

occur and similar DFT calculations were performed, concluding that relative core

energies are more important than possible growth condition for determining the

most stable core in InN due to the lower InN enthalpy.

The applicability of the dislocation core search for a wide variety of conditions

was demonstrated not only for the screw dislocation but also for the edge disloca-

tion. While a wide range of cores for the screw dislocation could be investigated,

the edge dislocation showed more complex behaviour, due to more pronounced

dislocation slip and the existence of dislocation climb movements during relax-

ation. Dislocation slip movement did occur for (0b)-type cores during structural

relaxation and subsequent core annihilation was found to introduce unwanted

features into the optimisation distribution. However, these features were few and

could be easily identified and thus did not pose a problem for the optimisation

procedure as a whole. In addition possible solutions were presented to circum-

vent slip movement during relaxation altogether. Also, due to the mechanisms

of dislocation climb, edge dislocation cores can be filled or emptied by a change

in position, which results in a the appearance of same core structures in various

optimisation procedures. However, this trend was found to effectively reduce the
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amount of structures to be investigated and can be seen as a positive side effect.

Still, no additional optimisations or subsequent DFT calculations were performed

as of now. Yet, with the results presented it is shown that the presented approach

of investigating core structures is equally applicable if not more effective for the

edge case.

Similarly to the edge dislocation core optimisation no further complications are

expected for mixed dislocation core studies, since these can be treated as linear

combinations of screw and edge dislocation simulations, or even partial disloca-

tion cores, provided that reasonable sized simulation supercells can be constructed

that contain dislocation cores with minimal external strain influences. In addi-

tion preliminary investigations into basal plane screw type dislocation cores have

already been performed, but results were not presented within this thesis.

The clearest limitation to the presented method is the necessity of using compu-

tationally cheap inter-atomic potential methods for the structural investigation.

As a result all found structures are by default only the most stable structures

according to the theory used to calculate their total energy. Unfortunately even

by drastically reducing the amount of necessary structural relaxation steps, this

cannot be prevented as more costly electronic theories are too slow by several or-

ders of magnitude and their application would be accompanied by the inclusion

of too many constraints on the search space. As a consequence, in this work, only

SW-type potentials were used with parameterisations for GaN that have shown

a good performance in previous studies of extended defects. The effects of the

changing the quality of the parameters within the SW-type potentials method

were not tested directly in conjunction with the applied optimisation technique.

However, it stands to reason that a slight deviation from the used parameters

will only shift relative energies of stable cores in the obtained energy distribution

and a subsequent analysis of lowest energy structures with DFT will compensate

for this. In addition equally well performing Tersoff type potentials could be

used instead of or even in combination with the SW-type potentials to increase

the quality of the optimisation results. The quality check of the found optimised

cores is performed within this work with DFT in the LDA, which does produce
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structural energies well and can be considered an appropriate1 measure for the

chosen structures. However, the investigation into the electronic properties can

be improved with the application of GGA or even hybrid functionals.

Another limitation of the chosen randomisation optimisation approach is the

exponential scaling of computational time with the number of optimised atoms,

which results in the inability to model core structures extending two or more

lattice repeats along the line direction. These situations could be solved by using

more efficient heuristic global optimisations such as evolution or swarm based

optimisation algorithms.

1 The AIMPRO implementation of LDA-DFT produces results with a reasonable
tradeoff between quality and computational performance for the quantity of struc-
tures and their large sizes.
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APPENDIX A

Symmetry operations on elastic constants

A.1 Transforming elastic constants

Starting from the basic relationship between stress and strain in the uncompressed

form:

σij = cijklǫkl. (A.1)

With isotropic can be defined through invariance with rotation. A general coor-

dinate transformation can be used on the strain:

ǫ′ij = TilTjmǫlm (A.2)

σ′
ij = TilTjmσlm, (A.3)

where T is a unitary orthogonal matrix satisfying TilTjl = δij . It is then evi-

dent with (A.2) and (A.3) and the orthogonality of T that the elastic constants

transform as:

c∗ijkl = TimTjnTkoTlpcmnop, (A.4)

The interesting bit is now that under a symmetry transformation (i.e. the under-

lying material does not change properties under such a transformation) the elastic

constants remain unchanged as well. Therefore such a coordinate transformation

117



A.2. Cubic symmetry Symmetry in elasticity

T sym will yield the relationship

cijkl = TimTjnTkoTlpcmnop. (A.5)

This relationship can now be used to find relationships between the elastic con-

stants under the constraints of a symmetry transformation. Therefore it is here

prudent to examine some general orthogonal transfomrations. For instance a re-

flective transformation can be described using the identity matrix (I) and the

normal vector (n) to the reflection plane

Trefl = I− 2nnT . (A.6)

choosing n = (cos θ, sin θ, 0) will therefore enable a parameterisation for all re-

flection planes incorporating the x3 axis. Therefore T will take the form

Trefl(θ) =







− cos(2θ) − sin(2θ) 0

− sin(2θ) cos(2θ) 0

0 0 1






, Trefl(0) =







−1 0 0

0 1 0

0 0 1






, (A.7)

where it is useful to recognize that

T refl
ij (0) =







δij i 6= 1

−δij i = 1
. (A.8)

Let us similarly define a rotation around the x3 axis as:

Trot,1(θ) =







1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)






, Trot,3(θ) =







cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1







(A.9)

Using the above defined general transformations we can now consider a few special

cases of symmetries.

A.2 Cubic symmetry

Cubic symmetry is the most commonly found symmetry in materials, it is de-

scribed by the possibility of rotations and reflections with respect to the axis of
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an orthogonal basis. Therefore all rotations with 90◦ are symmetries under (A.5)

as well as reflections with respect to the surfaces x1 = 0, x2 = 0 and x3 = 0.

Therefore with Trefl(0), being symmetry, one can write:

cijkl = T refl
im (0)T refl

jn (0)T refl
ko (0)T refl

lp (0)cmnop (A.10)

cijkl = (−1)Nδimδjnδkoδlpcmnop (A.11)

cijkl = (−1)Ncijkl, (A.12)

with N being the amount of ones appearing in the indices i, j, k, l. Therefore, for

N = 1, 3 cijkl will be zero. Similarly, using Trefl(90):

cijkl = (−1)Mcijkl, (A.13)

where M is the amount of twos. At this point it is not necessary to consider a

reflection with respect to the x3 = 0 surface, as no new relations will be found.

This fact is apparent when reminding oneself that if there is an uneven amount

of ones and twos in 4 indices all uneven amounts of 3’s are covered as well...

Considering the relations in (2.72) one can easily see that only the elastic con-

stants with indices 1222, 1333, 1233, 1323, 1322, 1223, 1113, 1112, 2333, 2311, 2113,2223

will be set to zero. Resulting in the elastic constant matrix taking the form:























c1111 c1122 c1133 0 0 0

c2211 c2222 c2233 0 0 0

c3311 c3322 c3333 0 0 0

0 0 0 c2323 0 0

0 0 0 0 c1313 0

0 0 0 0 0 c1212























=























c11 c12 c13 0 0 0

c21 c22 c23 0 0 0

c31 c32 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66























.

(A.14)

If now also 90◦ rotations are considered one can quickly find the remaining rela-

tions between the elastic constants. Again only two of the three possible rotations

are needed to find all dependencies. Considering therefore the above defined ro-

tations (A.9, θ = 90◦), in combination with A.5, we get:

c1111 = c2222 = c3333, c1313 = c1212 = c2323, c1122 = c1133 = c2233 (A.15)
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One can see now that only 3 independent matrix elements are left, resulting in one

of the simplest possible elastic constants. The final form of the elastic constant

tensor in a material with cubic symmetry will therefore be

ccub =























c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44























. (A.16)

A.3 Isotropy

Taking a further step in simplicity from the cubic system results in an anisotropic

material. Here all directions are equal, therefore all rotations are a symmetry

transformation, not only 90◦ ones. Using a lot of tedious arithmaticy we can find

one additional dependency for the case c1112 under transformation with Trot,3(θ):

0
(A.14)
= c1112 =T

rot,3
1i (θ)T rot,3

1j (θ)T rot,3
1k (θ)T rot,3

l2 (θ)cijkl (A.17)

0 =2(cos2 θ − sin2 θ)C66 − cos2 θC11 + sin2 θC22 + (cos2 θ − sin2 θ)C21

⇒ c66 = c44 =
1

2
(c11 − c12), (A.18)

where (A.15) has been used. This step has now reduced the amount of indepen-

dent constants to two.

A.4 Hexagonal symmetry or transverse isotropy

The hexagonal symmetry is usually being described by transverse isotropy, in this

case the material is isotropic in only 2 dimensions. We will choose here the x3

axis to be the axis of symmetry, i.e. the axis around which all rotations will be

symmetries and the axis that is part of all possible reflection planes.

Therefore Trefl(0), Trefl(90), and Trot,3(θ) are symmetry transformations. This

means all considerations up to (A.14) are incorporated and we can start from

there.

Using all elastic constants with indices 1222, 1333, 1233, 1323, 1322, 1223, 1113,
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1112 equal 0, we can write

Trefl(θ) =







− cos(2θ) − sin(2θ) 0

− sin(2θ) cos(2θ) 0

0 0 1






(A.19)

=







− cos(θ) − sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1













cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1






(A.20)

= Trefl(θ/2)Trot(θ) (A.21)

for 1112 : 0 = 2c′C66 − cos2(θ)C11 + sin2(θ)C22 + c′C21 (A.22)

for 1113 : 0 = sin2(θ)C24 + cos2(θ)C14 + 2 cos2(θ)C56 (A.23)

for 1222 : 0 = − sin2(θ)C11 + cos2(θ)C22 − cos(θ)C12 − 2 cos(θ)C66 (A.24)

for 1333 : 0 = cos(θ)C35 + sin(θ)C34 (A.25)

for 1233 : 0 = −C13 + C23 (A.26)

for 1323 : 0 = −C55 + C44 (A.27)

for 1322 : 0 = cos2(θ)C24 + sin2(θ)C14 − 2 cos2(θ)C56 (A.28)

for 1223 : 0 = − cos2(θ)C14 + cos2(θ)C24 − cos2(θ)C56 + sin2(θ)C56, (A.29)

As a result of the above relations for the elastic constants, the tensor takes the

form

chex =























c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66























(A.30)

with c66 =
1
2
(c11− c12). This will set the number of independent elastic constants

to 5.
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APPENDIX B

List of total energy distributions

This appendix lists all performed core optimisations of the screw dislocation in

the c-direction. A wide selection of core stoichiometries have been considered

and an optimisation procedure has been done for each. Core stoichiometries have

been labeled according to the amount of vacancies in the core, where the first

digit represents Ga vacancy and the second N. Hence (00) represents a full dislo-

cation core and (-11) represents a core with an additional Ga and a N vacancy.

Details on the optimisation procedure can be found in section 4.2, while section

5 discusses the lowest energy structure of all optimisations presented here. Addi-

tional structural plots for the lowest energy structures can be found in appendix

C.

An overall summary of the optimisation parameters can be found in table B.1.

For each structure the number of performed optimisation steps is listed as well as

the count of how often the lowest energy unique structure has been found. This

lowest structure count however does not include bin counts for the same unique

structrue that has been reformed at different positions and hence undergone an

energy symmetry breaking due to the boundary conditions (see section 4.2.2 for

details) and can therefore be misleading. However, this can still be a measure of

convergence in combination with the distribution of the lowest energy strucures.
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Energy distributions

Table B.1: Summary of all screw dislocation optimisations. Energies are given in
eV.

Core steps E0 bin E0 Elowest average variance rel. E
(00) 87444 25 −3812.45 −3781.19 −3801.32 18.0 0.00
(01) 100000 43 −3807.25 −3781.22 −3797.71 17.2 0.86
(02) 100000 22 −3802.52 −3776.29 −3793.57 15.4 1.25
(10) 100000 11 −3807.94 −3779.45 −3798.29 20.2 0.17
(11) 81156 6 −3804.04 −3777.29 −3794.57 18.6 −0.27
(12) 100000 160 −3798.95 −3774.84 −3790.31 16.0 0.48
(20) 100000 19 −3802.72 −3777.93 −3793.90 16.9 1.05
(21) 100000 7 −3798.72 −3774.99 −3790.22 15.9 0.71
(22) 100000 103 −3794.38 −3769.36 −3786.11 14.1 0.71
(33) 100000 13 −3784.26 −3765.17 −3777.11 9.3 2.15
(0-1) 56390 4 −3814.59 −3785.95 −3804.50 16.8 2.21
(-10) 54769 2 −3813.67 −3785.61 −3803.85 16.2 3.12
(-12) 59263 15 −3804.36 −3780.93 −3796.31 14.4 3.75
(-66) 61882 9 −3782.35 −3772.59 −3780.46 1.3 30.10
(-11) 100000 108 −3810.34 −3783.52 −3800.37 16.3 2.11
(1-1) 100000 303 −3811.98 −3783.55 −3801.65 20.2 0.47
(-22) 100000 104 −3806.33 −3781.12 −3798.17 13.4 6.12
(2-2) 100000 2 −3809.06 −3783.64 −3800.18 16.2 3.39
(-21) 99998 57 −3810.67 −3785.27 −3802.08 14.6 6.12
(2-1) 99998 13 −3806.07 −3780.91 −3797.26 16.7 2.04
(1-2) 99998 25 −3814.50 −3786.53 −3804.39 18.7 2.29
(-32) 99998 2 −3805.69 −3783.34 −3799.09 10.5 11.11
(2-3) 99998 3 −3812.17 −3786.59 −3802.80 15.2 4.62
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Energy distributions
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Figure B.1: Optimisation distributions for (00),(01),(10) cores
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Figure B.2: Optimisation distributions for (11),(12),(21) cores
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Figure B.3: Optimisation distributions for (22),(33),(02) cores
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Figure B.4: Optimisation distributions for (20),(-10),(0-1) cores
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Figure B.5: Optimisation distributions for (-11),(1-1),(-12) cores
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Figure B.6: Optimisation distributions for (-21),(-22),(-32) cores

129



Energy distributions

−1.0 −0.8 −0.6 −0.4 −0.2
Energy [eV] −3.7814e3

0

100

200

300

400

500

600

S
in

g
le

-s
tr

u
ct

u
re

 c
o
u
n
t

Screw dislocation (-6+6)

(a)

−3784 −3782 −3780 −3778 −3776 −3774 −3772
Energy [eV]

0

5000

10000

15000

20000

25000

30000

S
tr

u
ct

u
re

 c
o
u
n
t

Screw dislocation (-6+6)

0.08 eV

(b)

−1.0 −0.8 −0.6 −0.4 −0.2
Energy [eV] −3.805e3

0

10

20

30

40

50

S
in

g
le

-s
tr

u
ct

u
re

 c
o
u
n
t

Screw dislocation (+2-1)

(c)

−3810 −3805 −3800 −3795 −3790 −3785 −3780
Energy [eV]

0

2000

4000

6000

8000

10000
S
tr

u
ct

u
re

 c
o
u
n
t

Screw dislocation (+2-1)

0.08 eV

(d)

−1.0 −0.8 −0.6 −0.4 −0.2
Energy [eV] −3.808e3

0

5

10

15

20

S
in

g
le

-s
tr

u
ct

u
re

 c
o
u
n
t

Screw dislocation (+2-2)

(e)

−3810 −3805 −3800 −3795 −3790 −3785 −3780
Energy [eV]

0

2000

4000

6000

8000

10000

S
tr

u
ct

u
re

 c
o
u
n
t

Screw dislocation (+2-2)

0.08 eV

(f)

Figure B.7: Optimisation distributions for (-66),(2-1),(2-2) cores
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Figure B.8: Optimisation distributions for the (2-3) and (1-2) cores
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APPENDIX C

Optimized screw dislocations

In this appendix structural details are given for all lowest energy screw disloca-

tions taken from the global optimisations for a wide range of core stoichiometries.

Details of the optimisations can be found in appendix B. An overall discussion of

these structures can be found in section 5.

For each dislocation core a structural representation is given by a ball-and-stick

model, in addition the strain energy density is plotted as a function of distance

from the dislocation core centre for each atomic position and as an average for all

angles at a specific radius. The energy density average is used to determine the

dislocation core radius Rc through integration. Details can be found in section

4.2.2. Bonds in the ball-and-stick model have been drawn with a length cutoff

according to atomic type and the SW parameterisation; This is done in the same

manner as the bond angle/distance statistic accumulation in table 5.1. Nitro-

gen positions are represented by blue spheres while gallium is shown with white

spheres. The dislocation core centre for the optimised core is marked by a green

dot, however the centre of the image is in all cases the original dislocation centre

according to the unoptimised dislocation quadrupole. As a result the presented

part of the total structure is constant.
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Optimized structures

(a) (01) Core structure
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(b) (01) Rc retrieval
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(c) (01) Strain energy

(d) (02) Core structure
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(e) (02) Rc retrieval
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(f) (02) Strain energy

Figure C.1: Core structure and radius for (01) and (02)
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Optimized structures

(a) (10) Core structure
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(b) (10) Rc retrieval
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(c) (10) Strain energy

(d) (11) Core structure
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(e) (11) Rc retrieval
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(f) (11) Strain energy

Figure C.2: Core structure and radius for (10) and (11)
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Optimized structures

(a) (12) Core structure
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(b) (12) Rc retrieval
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(c) (12) Strain energy

(d) (20) Core structure
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(e) (20) Rc retrieval
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(f) (20) Strain energy

Figure C.3: Core structure and radius for (12) and (20)
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Optimized structures

(a) (21) Core structure
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(b) (21) Rc retrieval
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(c) (21) Strain energy

(d) (22) Core structure
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(e) (22) Rc retrieval
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(f) (22) Strain energy

Figure C.4: Core structure and radius for (21) and (22)
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Optimized structures

(a) (33) Core structure
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(b) (33) Rc retrieval
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(c) (33) Strain energy

(d) (00) Core structure
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Figure C.5: Core structure and radius for (33) and (00)
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Optimized structures

(a) (1-1) Core structure
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(d) (0-1) Core structure
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Figure C.6: Core structure and radius for (1-1) and (0-1)
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Optimized structures

(a) (-10) Core structure
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(c) (-10) Strain energy

(d) (-12) Core structure
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Figure C.7: Core structure and radius for (-10) and (-12)
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Optimized structures

(a) (-66) Core structure
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(c) (-66) Strain energy

(d) (-11) Core structure
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Figure C.8: Core structure and radius for (-66) and (-11)
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Optimized structures

(a) (2-2) Core structure
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(c) (2-2) Strain energy

(d) (-22) Core structure
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Figure C.9: Core structure and radius for (2-2) and (-22)
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Optimized structures

(a) (1-2) Core structure
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(d) (-21) Core structure
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Figure C.10: Core structure and radius for (1-2) and (-21)
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Optimized structures

(a) (2-1) Core structure
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(d) (2-3) Core structure
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Figure C.11: Core structure and radius for (2-1) and (23)
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Optimized structures

(a) (-32) Core structure
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(c) (-32) Strain energy

Figure C.12: Core structure and radius for (-32)

144



Bibliography

[1] Ya-Hong Xie. Prof. Ya-Hong Xie’s group, Semiconductor

Materials Lab, Los Angeles, California, USA. Available at

http://www.seas.ucla.edu/smrl/GaN.html, April 2013.
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