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Abstract 

Fault analysis based on high-resolution data acquisition is growing in use as it offers a more 

complete picture of faults, which provides an opportunity to deal with failures more 

effectively. However, with increasing volumes of data being collected, it becomes 

impossible for engineers to interpret every fault instance. To solve this, this thesis proposes 

novel power network fault detection and diagnosis methods applied to continuous high-

frequency Power Quality (PQ) data. These novel methods deliver online anomaly 

segmentation, fault classification, and automatic fault labelling. The work addresses the 

need for increasing levels of situational awareness in distribution networks and its 

corresponding data-related challenges. The combination of these contributions can 

achieve automatic extraction of information from operational PQ data without excessive 

manual effort. This research uses simulated cases and operational data to validate the 

effectiveness of the contributions. The significance of this research is that it extracts critical 

information from continuous PQ data streams and automatically interprets the segmented 

signals, which reduces the demand for expert interpretation. In addition, it can operate 

through intensive monitoring at a single point on the network, which enhances the 

observability of the distribution network without installing excessive amounts of sensors.  
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1.1 Overview 

With the growth in penetration of renewable and distributed generation, maintaining a safe 

and reliable power delivery in a distribution network has become a new challenge. In order 

to increase robustness of power distribution networks, utilities have moved to forestall 

operational problems by enhancing the visibility of their network with high frequency 

Power Quality (PQ) monitoring [1] [2]. This is motivated by the premise that faults have 

early stage signatures of their incipience and these manifest themselves in waveform 

artefacts [1]. There have been two key areas of focus: the first is to identify the anomalous 

behaviour of specific pieces of equipment and assets using PQ monitoring data [3] [4] [5]; 

the second, and less common, is analysis of network monitoring data to segment abnormal 

behaviour from normal signals [1] [6] [7]. Both topics are key problems within smart grids, 

and both would benefit significantly from enhanced online signal segmentation, anomaly 

detection and diagnosis - the improvements can enhance situational awareness within 

distribution networks, and the diagnosed results can be used to expedite maintenance and 

mitigate the effects of faults.  

Compared to other monitoring sources, high-resolution PQ data is characterized by 

high-speed and high-fidelity signals which can provide higher quality records about the 

health of the network, which can be more informative to enhance the level of situational 

awareness in distribution networks [1]. However, analysis of such continuous, streaming 

data, is a significant challenge. Often segmentation of anomalous regions is used, but this 

also is challenging. [1] and [2] demonstrated an approach which uses high-resolution 

waveform data to find the early signatures of failures and analyse the resulting waveforms 

to provide more fault information for remedial decision support. The system utilised a 

knowledge-based technique with expert knowledge to analyse faults. However, developing 

knowledge-based systems to cover every eventuality can be time-consuming [2] – it takes 

a lot of time to manually investigate the characteristics and thresholds of each fault. A 
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potential solution is to utilise a fully automatic fault diagnostic system for operationally 

critical faults; to achieve this, a classifier with automatic feature selection is required. 

However, many conventional fault diagnostic methodologies utilise supervised classifiers 

which require a large number of exemplars for training. In addition to this, labelled fault 

exemplars are a rare resource for utilities, and the fault cause is, by its nature, of low 

prevalence; therefore, it can be challenging for utilities to prepare sufficient exemplars for 

every eventuality to train automatic classifiers. To solve this, an appropriate classifier is 

required to deal with a minimal set of exemplar situations, or the classifier can work with 

another classifier which can automatically label historical events.  

This thesis therefore proposes a fully automatic fault analysis method which works 

with a high-frequency PQ monitoring system to tackle the complex problems of 

segmentation of the high-resolution signals, fault diagnosis with a minimal set of exemplar 

faults and automatic exemplar fault generation. High-frequency PQ in the thesis refers to 

the signals are continuously recorded at the serval kilo hertz for sampling frequency, such 

as 0.96kHz and 3.84kHz [8]. This overcomes some of the key barriers and problems 

outlined by recent works [1][6] and allows utilities to obtain maximally useful information 

with minimal manual effort. This work is based on the assumption of ideal hardware, 

architecture or communication infrastructure which has already been investigated in 

existing works - Distribution Fault Anticipation (DFA) [1]. This thesis takes a further step 

to investigate how intelligent processing of this data can lead to operational insight. In 

support of this, the work presented in this thesis additionally utilises simulated operational 

extremes and archived operational fault data to validate the effectiveness of the 

contributions in a practical context.  

1.2 Principal research contributions 

The main contribution of the thesis is summarised as follows: 
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• A novel integrated fault diagnostic system designed around high-frequency PQ 

data, which is assembled by an online anomaly segmentation model, an online fault 

diagnostic model and an offline exemplars generation model. The integrated fault 

diagnostic system can achieve an appropriate accuracy with a minimal set of 

exemplar faults. Additionally, the exemplar faults can be automatically generated 

by an offline fault labelling model, which can further reduce the demand for 

labelled faults in the model training phase.  

• A novel anomaly segmentation method is proposed and developed, which can be 

used to pick up abnormal events from a high-frequency PQ data streaming. This 

method is robust to the noise of non-linear loads. Compared to the conventional 

methodologies, the detection accuracy is high and the false alarm rate is low. An 

innovative metric has been demonstrated for evaluating the quality of anomaly 

segmentation using streaming PQ data. 

• A new approach is used to diagnose fault causes using waveform data recorded at 

distribution level substations. This method is built on a novel waveform similarity 

and associated inputs, which do not require waveform feature selection, and it can 

outperform conventional classifiers with a minimal set of exemplar faults.  

• An innovative fault labelling method is proposed for distribution level fault records. 

This provides a possible way to form labelled historical fault records, which can be 

used to train intelligent classifiers and also increase fault diagnostic accuracy.  

1.3 Thesis Outline 

This thesis focuses on increasing situational awareness within a distribution network. 

It outlines the drivers and existing methodologies firstly, then introduces the proposed 

method including fault signal segmentation, fault diagnosis and automatic fault labelling. 

The structure of the thesis is outlined below:  
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Chapter 2 reviews the levels of observability expected on distribution networks. In 

terms of the distribution network maintenance and operation, higher situational awareness 

can benefit power network management. The state-of-the-art methodologies are limited 

by various factors which will be discussed in this chapter. 

Chapter 3 develops a novel fault analysis method based on high-frequency data 

sampling, including the motivation, the inputs and the design. Furthermore, the various 

data for training and testing the proposed approach are given. 

Chapter 4 presents a high-resolution anomaly segmentation method for a distribution 

network, including various fault models for benchmarking. The model parameters 

initialization and updating are discussed, and the associated case studies with simulated 

extremes and archived operational data are discussed. 

Chapter 5 proposes a novel similarity-based classifier to identify fault causes trained 

with minimal documented faults. The performance is compared against some popular 

classifiers in recent literature and its practical implementation is discussed.    

Chapter 6 demonstrates an innovative approach to automated labelling of historical 

faults by using associated maintenance records. This uses a topic/word distribution model 

and is of practical benefit as it has the potential to generate training exemplars for 

supervised classifiers. The workflow and the implementation are discussed. 

Chapter 7 unifies the contributions into an end-to-end demonstration of the 

integrated fault analysis method on operational data and proposes corresponding future 

improvements.   

Chapter 8 summarises the contributions and the implementation of the research. 

Furthermore, future work, such as developing associated measurement devices and a data 

processing platform, are discussed. 
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2.1 Introduction 

Power networks can be categorized as three parts: generation, transmission and 

distribution level. They can be used to transmit electricity from large generation plants to 

distribution network loads. Distribution networks have higher customer interaction than 

transmission networks, which means that the electrical components in the distribution 

network can have more uncertainties in their operating states that pose a greater range of 

potential fault causes [9], such as tree contact, animal contact and equipment degradation. 

Furthermore, with the power system trend to be more decentralized [10] [11], and more 

new low-carbon technologies being embedded, it becomes more important to enhance the 

situational awareness in distribution networks, which can help DNOs reduce the penalties 

associated with excessive CI and CML by acting on faults before they evolve into outages 

[1][12][13]. Therefore, distribution networks need more advanced techniques to achieve 

this. This chapter outlines the motivation of increasing situational awareness for 

distribution networks, and two corresponding approaches are investigated. Section 2.2 

introduces the benefits of increasing situational awareness, including reducing financial 

penalties and enhancing maintenance efficiency. Section 2.3 compares the advantages and 

disadvantages of existing approaches and it also demonstrates some case studies of using 

these methodologies.   

2.2 The Motivation behind Increasing Situational Awareness in Distribution 

Networks 

2.2.1 Visibility of the Present Distribution Networks 

As Fig 2-1 shows, a distribution network usually connects to a transmission network 

through Grid Supply Points (GSPs) [14], then distributes electricity to the customer side 

via overhead lines or underground cables. Furthermore, a distribution network usually has 

many assets, such as transformers, circuit breakers, sectionalisers and lightning arrestors, 

etc., dispersed across the network. Any fault happening on the assets can affect the 
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network’s operation and reliability. While existing tools such as State Estimators [15] exist 

for understanding network parameters under normal operating conditions, it is also 

important to identify the network operating parameters reflecting asset condition under 

adverse conditions. Traditionally, the control room identifies abnormalities in distribution 

networks through observing breaker movements at higher voltage levels significant failures 

or receiving calls from customers who are off supply; they will then send crews to 

investigate the fault cause and take remedial action. Generally, conventional fault detection 

is passive and fault causes are identified through manual analysis of weather and fault 

behaviour [16].  

 

Fig 2-1. Example of Power System hierarchical structure [17]  
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2.2.2 Financial Penalties and Reliability Indices 

Many stakeholders are involved in power network management. In the UK, the Office 

of Gas And Electricity Markets (Ofgem), a government office for regulating electricity 

markets, has published a series of quality of service standards for distribution utilities to 

deliver [18]. Utilities can be penalized or rewarded according to their annual performance 

of operation and maintenance [19][20]. The commonly accepted indices are Customer 

Interruption (CI) and Customer Minutes Lost (CML) [18] [20] in the UK. CI indicates the 

number of customer interruptions per 100 customers in one year [20]. CML is the average 

length of time customers are without power per interruption for one year [20]. The higher 

levels of situational awareness of distribution networks can help DNOs reduce the 

penalties associated with excessive CI and CML by acting on faults before their seriousness 

elevates to a level where remedial work results in lengthy outages.  

2.2.3 Maintenance Implementation of Distribution Network 

Maintenance can be classified into three categories: Corrective Maintenance (CM), 

Preventive Maintenance (PM) and Condition Based Maintenance (CBM). For CM, crews 

only take maintenance actions when some significant damage or broken signatures are 

found on an asset. PM works on the time-based planning which requires crews to 

periodically check an asset to prevent an incipient fault developing into a failure. CBM has 

the same goal as PM, which is to prevent an incipient fault, but it assesses the current 

working condition and performs maintenance only when the need arises. The British 

Standards document defines CBM as ‘the maintenance policy carried out in response to a 

significant deterioration in a machine as indicated by a change in a monitored parameter 

of the machine condition’ [21][33].  

Presently, CM is treated as the first choice because its implementation is simple, and 

the capital cost, such as sensor installation, is low. However, since CM is a passive scheme, 

the consequence of failure is the largest among these schemes. Therefore, CM is usually 
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conducted for the non-critical assets in a distribution network. PM is usually conducted 

taking account of a historical degradation model. For example, PM is usually conducted in 

spring or autumn because they normally have higher risks from heavier rain than other 

seasons. However, PM only depends on the historical degradation which does not take 

into account the present condition. Therefore, this approach is not be the most cost-

efficient approach. CBM is a methodology taking account the present condition, which 

can prevent a fault before evolving into a failure. Although CBM can limit the consequence 

of failure to the lowest among three schemes, its capital cost is indeed the highest. 

Therefore, CBM is now only employed into some critical distribution assets in distribution 

level, such as transformers [22] and circuit breakers [23]. Generally, the maintenance of 

distribution networks is becoming more proactive, which requires the support of a higher 

level of situational awareness. 

From the perspectives of finance and maintenance, distribution networks are looking 

forward to higher levels of situational awareness. One solution is to use an automatic fault 

analysis system. The next section will introduce two existing methodologies and then will 

compare their advantages and disadvantages. 

2.3 Existing Fault Analysis Methodologies  

This section will introduce two methodologies to increase situational awareness on 

distribution networks. Based on different frequencies of data acquisition, the 

methodologies can be categorized as conventional fault analysis and continuous high-

resolution monitoring-based fault analysis. Conventional fault analysis usually utilises 

existing monitoring, such as Intelligent Electronic Devices (IEDs) and Supervisory 

Control And Data Acquisition (SCADA) systems; these devices are usually centralised to 

obtain data at regular intervals rather than on a continuous basis [24][25]. High-resolution 

monitoring-based fault analysis will usually collect continuous data at kHz sampling rates 

and analyse it in an online manner, which would be operate without interruption. 
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2.3.1 Fault Analysis using Existing Data 

2.3.1.1 Fault Diagnosis with SCADA alarm data 

Supervisory Control And Data Acquisition (SCADA) systems have been widely 

deployed for data acquisition, processing and communication, which produces a large 

amount of low-resolution data. SCADA is usually integrated into Distribution 

Management System (DMS). The current role of DMS is more akin to a dashboard which 

only presents the data rather than analyses it. In future, DMS are expected to process more 

events, such as voltage violation, and work with automatic equipment, such as reclosers. 

SCADA provides an opportunity to automatically extract critical fault information to 

increase situational awareness on distribution networks. In terms of the data resources, the 

research concerning the use of SCADA data in fault diagnostics can be categorized into 

two areas: the first uses SCADA alone; the other approach is to combine SCADA with 

other data sources, such IED data, to enhance the analysis result.  

Early research on SCADA data analysis used knowledge-based fault diagnostic 

approaches [26] [27] [28]. This then extended to the use of Digital Fault Recorder (DFR) 

data. The DFR monitored and recorded detailed disturbance data. It could provide more 

information on transient waveforms compared with SCADA. Therefore, fault analysis 

approaches for DFR data were developed [29][30]. The work advanced to using both data 

sources to improve the diagnosis [31][32][33][34]. Additional data resources, such as 

recloser data, were investigated to help analyse faults in combination with SCADA data 

[24].  

2.3.1.2 Fault analysis with IED data  

Intelligent Electronic Devices (IEDs) are used for power system automation. IED data is 

a common data source for fault analytics in distribution networks [35]. As the previous 

subsection shows, DFR is one of the IEDs utilised for fault diagnosis. Furthermore, some 
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other IEDs, such as Digital Protective Relay (DPR) and Pole Mounted Auto-Recloser 

(PMAR), were developed for fault analysis [24][31][32]. This is because DPR and PMAR 

can provide more fault details compared to SCADA or DFR. Generally, compared with 

SCADA, IED data benefits from more fault information, but it is only for a local area.  

The early work on SCADA, IED, DFR and other data analysis for fault diagnosis 

indicated the possibility of improved situational awareness. However, these data sources 

could not always capture faults that were transient or intermittent in nature. Consequently, 

there was a move to continuous data measurement to compensate for this, which requires 

research to provide fault diagnosis for such data. Thus, research starts to move into 

continuous high-resolution fault diagnosis.  

2.3.2 Continuous High-Resolution Fault Diagnosis 

Over last two decades, as data acquisition becomes cheaper, a new continuous high 

frequency fault analysis approach [1][12][13][38] is being developed to further improve 

situational awareness of distribution networks. Compared to the conventional fault analysis, 

this approach does not require the installation of many sensors for power networks, it only 

needs a few centralized sensors to collect data; then it can recognize the fault in the network 

by analysing the data. This approach can provide more fault information, especially for 

incipient faults, for DNOs to achieve better recognition and reaction to faults. The 

following subsections will demonstrate two cases of analysing continuous high-resolution 

fault data to increase situational awareness of distribution networks.  

2.3.2.1 Case Study: Cable Canary 

A large number of aged underground cables are used in London which makes the fault 

management and the corresponding maintenance difficult. The local DNO, which is UK 

Power Networks (UKPN), proposed a novel solution to this by analysing the high 

frequency signals acquired from the medium voltage distribution network [38]. This 
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project was named Cable Canary which is aimed to reflect the early warning capability of 

the technology. In this project, Radio Frequency Current Transformer (RFCT) from EA 

technology is used to obtain signals at 200kHz to 20MHz [39], which can collect 4800GB 

data for multiple sensors per day, which is impossible to manually process. However, some 

of the data is useful for preventing a fault evolving into an outage which is difficult to 

detect by the low-frequency fault analysis approaches. One of the examples is 

demonstrated in Fig 2-2. 

 

Fig 2-2. Successful case of detecting incipient fault with a high-frequency sensor in the Cable 

Canary project [38] 

As Fig 2-2 shows, the high frequency signals found a significant high partial discharge 

at a very early stage. However, this abnormality was not be seen by a conventional device 

until more than a month later. Although continuous high frequency signals can provide 

more information, the volume of data can be a challenge for processing. The next step of 

this work is to build automatic fault analysis to extract key information from the volume 

of data. The next case study will demonstrate an application of using continuous high 

frequency signals to diagnose faults online. 
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2.3.2.2 Case Study: DFA 

Distribution Fault Anticipation (DFA) is a commercial waveform-based fault analysis 

product for increasing situational awareness of distribution networks [1][12][13]. This 

application installed current and voltage measurement instruments on key feeders of the 

substations. The measurement devices are shown in Fig 2-3. 

 

Fig 2-3 The DFA measurement device for fault detection and diagnostic device [40] 

The input signals include three-phase voltage, current, relevant weather data input and 

communication ports. The device captures the waveform data stream at a rate of 20 

samples per AC 50 Hz cycle [41]. Therefore, it is implied that the fault diagnostics are built 

on the waveform data and the associated weather data. This work can identify a fault 

occurring downstream from a distributed electronic device [1]. The DFA device does not 

require extensive communication between devices, and this is achieved over an internet 

connection. Based on the hardware measurements, DFA identifies vegetation contact, 
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cable failures, switch and clamp failures, lightning arrestor failure, repetitive overcurrent 

faults, voltage regulator failure and capacitor problems [1][40].  

DFA utilised a Fuzzy Logic methodology with expert knowledge to identify the faults 

[2]. In this way, Fuzzy Logic does not require numeric data for knowledge learning, but it 

does need a lot of time to manually capture knowledge for different faults, especially for 

low-prevalence faults; this results in a limitation of the type of fault identified. The 

improved methodology extracts shape based features from the RMS waveform and then 

uses Fuzzy Logic to calculate the probability that the features conform to each fault signal 

features in theory [2].  

Two successful cases are discussed: Fault Induced Conductor Slap (FICS) fault and 

clamp failures on transformer case. 

Fault Induced Conductor Slap Detection:  

DFA was used to help one of the US utilities, Mid-South Synergy Electric Cooperative 

(MSEC), to identify faults [42]. MSEC instrumented ten circuits with DFA technology. 

One of the successful examples of detecting FICS is demonstrated in Fig 2-4 and Fig 2-5. 

FICS is a complex phenomenon which usually occurs when the initial fault causes the 

overhead line to swing and make contact with another cable, and then causes a second 

fault [42].   
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Fig 2-4 FICS fault detection by DFA [40] 

 

Fig 2-5 Scene of FICS [40] 
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As demonstrated in Fig 2-4 and Fig 2-5, a tree contacted an overhead line which results 

in an initial fault. After a while, the overhead line swing caused by the initial fault results in 

the second fault, and the second fault is more dangerous because it is closer to the 

substation. This fault is difficult to detect by conventional methodologies; however, DFA 

has identified this fault through analysing high-frequency signals and provides an alert 

before a failure occurs. 

Clamp failure:  

Clamps can be critical in networks. They can be used to connect cables and 

transformers. However, the identification of a clamp related fault is difficult for 

conventional methodologies. This is because a clamp failure only makes a subtle change 

to the waveform. An example is demonstrated in Fig 2-6.  

 

Fig 2-6 The waveform of a clamp failure in distribution networks [40] 

 Although the electrical variance caused by a clamp is minor, DFA detected it in a 

distribution network: a clamp on a transformer failed over 21 days before it was corrected. 

During this period, the abnormal waveform recurred for 2333 times and local customers 
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experienced four outages, demonstrated in Fig 2-7. However, DFA detected it and sent 

alerts ahead of the first outage.  

 

Fig 2-7 The procedure of the conventional maintenance and DFA records [40] 

Generally, a continuous high-resolution fault diagnosis can provide more information 

for failure, which can help DNOs to expedite remedial maintenance and reduce the effect 

of the faults. However, the state-of-the-art is built on expert knowledge, which can be 

time-consuming to obtain, and which is impossible to cover every eventuality for every 

distribution network. To solve this, a data driven approach will be proposed in this thesis.   

2.4 Challenges 

Knowledge-driven methodologies cannot identify all faults, especially for the faults 

which cannot be easily characterized and quantified in terms of voltage, current and other 

PQ measures. Therefore, a data-driven approach is needed to increase situational 

awareness of distribution networks. As opposed to a knowledge-based approach, a data-

driven approach needs to automatically learn expert knowledge from measured signal data 

without expert intervention. Combining this with the characteristics of high-frequency data, 

this results in a number of data related challenges as outlined below: 
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• Excessive volumes of input data: 

As Section 2.3.2.1 shows, the continuous high-frequency data set can be extremely 

large [38]. In this data, most of the data are for normal operational situations, which can 

result in large volumes of needless storage. Therefore, to efficiently utilise storage, the 

continuous high-frequency data must be analysed to assess their usefulness.  

• Automatic abnormal waveform interpretation: 

As Section 2.3.2.2 shows, abnormal waveform needs to be automatically interpreted, 

this is because abnormal events are excessive, which is difficult to manually identify. 

Knowledge-based models need to quantify expert knowledge manually [1][12][13], while 

data-driven models need to learn knowledge automatically from data. Therefore, the latter 

model requires a large amount of labelled data for a pre-trained model; however, most 

DNOs would consider archiving curated fault data, marked up with diagnostic labels, to 

be beyond their usual remit. Therefore, it is impossible to gather such amounts of labelled 

data in a short time – the demand for a large number of labelled fault data sets is challenging 

for the data-driven approach. 

Therefore, this thesis will describe the research that addressed these challenges and 

proposes a novel approach to solving them and delivering automated analysis.    

2.5 Conclusion 

Distribution networks are becoming more and more complex; however, situational 

awareness on these networks is still low, which results in DNOs being unable to make a 

correct decision in a timely manner. To address this, some fault diagnosis methodologies 

have been proposed; however, all the existing methodologies have limitations in practical 

implementation. In the following chapters, a new high-frequency fault diagnosis approach 

will be proposed, which addresses these limitations.  
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3.1 Introduction 

Fault analysis based on Power Quality (PQ) monitoring involves continuously 

capturing voltage and current measurements at waveform level resolution, such as 0.96 

kHz and 3.84 kHz sampling frequency, then segmenting the abnormal waveform out and 

diagnosing the fault based on these waveforms; therefore, the waveform of the events is 

critical for the fault analysis. This section will review the information carried by different 

waveforms which can assist fault analysis and outline the overview of the proposed fault 

analysis system. Section 3.2 demonstrates the motivation of automatically identifying the 

fault cause through analysing the prevalence of fault causes in the UK for 2015. Section 

3.3 shows examples of how different faults may manifest in waveform data, including the 

faults caused by external effects, such as tree contact, and faults caused by internal effects, 

such as aging. Section 3.4 explains the associated labels for fault waveform data as well as 

the challenge and solution around labelling data. Section 3.5 introduces the design of the 

proposed automatic high-resolution fault analysis. Section 3.6 demonstrates the simulated 

operational extremes and archived operational data which are used for validating 

effectiveness of approaches. 

3.2 Fault Cause Statistics 

According to Eaton’s 2015 UK power outage data [43], 640 outages were found which 

affected 2.56 million people. Among these outages, damaged equipment or human error 

takes 51.56% of all, as Fig 3-1 shows. The root cause of approximately 30% faults are 

unknown, and approximately 18% of faults are caused by external effects such as weather 

and trees. As section 2.2.2 mentioned, excessive CI and CML can result in the utilities 

being punished. Furthermore, from an operational perspective, knowing the broad cause 

of a fault prior to going into the field to investigate would inform maintenance crews of 

how to equip themselves and how to formulate a plan for finding the fault cause and 

instigating remedial action. Such fault information has the potential to shorten the 
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timescales in which this restoration plan may be executed. An example would be in 

distinguishing an overhead line bird strike from a vehicle hitting a pole – the pole impact 

necessitates visual inspection to confirm the cause whereas the bird strike is transient in 

nature and therefore pointless to look for – hence restoration of power can be immediate. 

To solve the problem, utilities are looking for a higher observability through a continuous 

high-frequency fault analysis to identify the fault causes for downstream network, then the 

results can be used to accelerate the recovery procedure.  

 

Fig 3-1 Fault causes statistic for UK networks [43] 

3.3 PQ Waveform Characteristic of Different Fault Causes 

Faults or abnormal events normally can be categorized into two classes: the external 

faults and internal faults. External faults are usually caused by environmental incidents, 

such as tree contact, animal contact, vehicle impact and lightning strikes. The internal faults 

usually result from damage to, or defects in, the equipment. If a fault occurs, it usually 

introduces specific characteristics into the PQ waveform. For example, a short-circuit 

usually results in an abrupt overcurrent, and then the waveform distortion will affect the 

quality of power delivery. However, the waveform distortion provides an opportunity to 

identify faults by the characteristics of the waveform. The remainder of this section will 
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demonstrate the characteristics and associated expert knowledge for different faults 

through visualizing some realistic operational data.  

3.3.1 External Faults 

3.3.1.1 Tree Contact Fault 

Tree contact faults are harmful and can affect the operation of power networks, some 

of which may even threaten the safety of the public. Furthermore, this fault is difficult to 

detect using conventional means. Tree contact faults are usually associated with overhead 

lines. These failures usually manifest as short-circuits; however, the circuit current may be 

not sufficiently large to trigger the protection system. Additionally, this fault usually can be 

produced by swinging tree branches, which can result in subsequent faults [44]. These 

events can be called fault episodes. Each fault episode is very short in duration, such as 

one to three cycles, before it clears itself [8]. Furthermore, the tree contact faults can also 

produce some abrupt and significant overcurrent signatures in the waveform. This can be 

because the voltage and current through the tree trunk usually is slightly increased with 

thermal changes, and some abrupt changes manifest on the voltage signal if the branch 

breaks or burns [44]. Finally, some of these faults are high-impedance faults which means 

these fault waveforms might not be detected by conventional means, and it can be difficult 

to use expert knowledge to identify these faults. The following is an example of a tree 

contact fault episode.  
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(a) The first episode of the tree contact sequence 

 

(b) The second episode of the tree contact sequence 

 

(c) The third episode of the tree contact sequence 

Fig 3-2 Tree Contact Fault Episodes – the same tree invoking three separate fault episodes 

[8] 
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Fig 3-2 shows a sequence of faults caused by tree contact over a period of one hour. 

The waveform characteristics of the tree contact episodes are consistent, and each fault is 

cleared by a recloser. This provides an opportunity to identify the episode using shape 

similarity. However, each contact could damage and burn the overhead line which requires 

crews to find them as soon as possible. Furthermore, the episodes in Fig 3-2 are phase-to-

phase overcurrent faults, which indicates the tree may affect two lines at the same time.  

3.3.1.2 Lightning Induced Fault 

Lightning can directly strike power network equipment, resulting in the interruption of 

operation or it can induce an overvoltage which damages the equipment. For physical 

lightning contact, strikes occur in areas with high towers usually associated with high 

voltage transmission [45]. Therefore, induced lightning strikes are more common on the 

distribution network. For induced lightning, the PQ waveform usually is coupled to strong 

electromagnetic fields from the lightning which can be further propagated across the 

power network. Lightning induced overvoltage can result in maloperation of the 

protection system or the associated control system in distribution networks [45]. 

Furthermore, lightning is usually associated with tree contact faults, because trees naturally 

attract lightning, and the struck trees can contact the overhead line to produce faults. 

Therefore, the variance of the faults makes it difficult to identify. Moreover, lightning 

caused faults can be a fault episode, as Fig 3-3 shows.  
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(a) The first episode of the lightning sequence 

 
(b) The second episode of the lightning sequence 

Fig 3-3 Lightning Strike Episodes [8] 

As Fig 3-3 shows, the initial PQ distortion is caused by a lightning strike on the 

transformer which results in a single-phase of current abruptly increasing. Then the strike 

burned the primary feeder down, which results in operational failure of the power network. 

Compared with the event in Fig 3-3 (a), the event in Fig 3-3 (b) contains more harmonics 

and higher phase imbalance level.  

3.3.1.3 Animal Contact Fault 

Animal contact faults can happen anywhere but tend to occur predominantly in rural 

areas. Furthermore, animal contact faults tend to happen in spring and summer. This is 

because animals prefer to go out in the spring and summer to hunt, rather than the winter 

months when they are more likely to be in hibernation. Animal faults usually manifest as 
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phase-to-earth or phase-to-phase short-circuit faults with current conducted through the 

body of the animal involved, which can result in the PQ waveform being distorted. e.g. 

snakes can climb on to the top of transformers, poles or towers; birds build nests on pole 

or towers, which can cause a short-circuit. Animals such as squirrels can also interfere with 

transformers [8]. These faults can result in poor power quality service which can further 

damage the equipment, and the fault might further threaten wildlife. An example [46] from 

US DoE/ EPRI Power System Events Repository is shown in Fig 3-4. 

 

(a) The first episode of the animal related sequence 

 

(b) The second episode of the animal related sequence 

Fig 3-4 Fault episodes caused by snake contact [8] 
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Figure 3-4 shows a fault caused by a snake touching the lightning arrester. When the 

snake touched the high-voltage terminal, a large current flowed through its body, resulting 

in a persistent ground fault and triggering the protection device. The resulting conducted 

fault is difficult to self-clear, therefore the duration of these faults can be relatively long or 

permanent.  

3.3.1.4 Vehicle Impact Fault 

When a vehicle hits a pole, it can result in plant failure. This fault can be difficult to 

identify, especially in a rural area; however, it can be observed via PQ waveform distortion. 

The common resulting faults comprise single-phase ground faults and interphase faults 

[47]. Furthermore, many vehicle impact faults are permanent faults, that is they can trigger 

the protection devices multiple times until they are locked-out. One fault episode is 

demonstrated in Fig 3-5. 
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(a) The first episode of the vehicle impact sequence 

 

(b) The second episode of the vehicle impact sequence 

 

(c) The third episode of the vehicle impact sequence 

 

(d) The fourth episode of the vehicle impact sequence 

Fig 3-5 Fault Episodes Caused by Vehicle Impact [8] 
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According to the weather records for that time, ice and snow were present, and the 

vehicle likely skidded, hit the pole, and then generated a permanent fault until the 

sectionalizers locked-out. Every time the sectionalizer operates, the waveform for the fault 

is collected. As Fig 3-5 shows, every waveform record is different which implies the fault 

is evolving. For example, the event from Fig 3-5(a) has more obvious harmonics and higher 

phase imbalance than the event 3-5(b). If the fault can be identified at the beginning, then 

crews can be sent to fix this fault immediately, which can prevent the fault further affecting 

other assets in the distribution network. 

3.3.2 Internal Fault 

The internal fault refers to an equipment related fault, such as defects, aging and 

equipment damage. The following section will cover three common equipment related 

faults. 

3.3.2.1 Incipient Faults in Cables 

Cables have been widely used in cities or towns to transmit electricity to end users. 

Many underground cables in UK power networks, which have existed for over 100 years, 

are now at a high risk of failure. However, the observability of underground cables is low. 

The underground cable possesses unique waveform characteristics [3][48][4] which 

provide an opportunity to identify faults. The duration of the incipient cable faults can be 

sub-cycle or multi-cycle. Many cable faults can be self-cleared, but they can also recur for 

many times until they evolve into permanent faults, such as the case demonstrated in Fig 

3-6.  
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(a) Incipient faults on 2008-11-12 at 19:40 

 

 (b) Second episode on 2008-11-12 at 21:11 

 

(c) Permanent fault on 2008-11-14 at 15:51 

Fig 3-6 an incipient fault developed into a permanent fault [3] 

As Fig 3-6 shows, arcing caused waveform distortion of the sinusoid peak at 19:40 on the 

12th of November [3]. Then the arc evolved into a permanent fault over two days. There 

are three waveform shots captured during the two days, and the waveform shape seems 
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similar to each other, especially for the incipient faults. This provides an opportunity to 

detect and identify faults in a timely manner, also help DNOs prevent recurring episodes.  

Arcing is one of the most common faults for cables. Arcing usually manifests on the 

waveform as transient and intermittent distortion. The arcing can usually be caused by 

failure of cable joints, the failure of cable terminations and defective insulation. The voltage 

waveform during arcing can be approximated as a square wave, as [3] shows. However, 

the signal captured remotely from the originating fault location can contain more noise 

compared with the pure fault waveform, therefore, it can be more challenging for fault 

identification at a distance. 

3.3.2.2 Incipient Fault on Transformers 

Transformers are used for increasing or decreasing the voltage level in power networks; 

they are usually positioned in key locations such as substations. Previous work has 

demonstrated that the incipient fault of transformers can recur until they develop into a 

failure [49][8]. One of the fault episodes is demonstrated in Fig 3-7.  
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(a)  first episode for transformer fault sequence on April 21st, 2010 at 6:13:41.1825 

 
(b)  second episode for transformer fault sequence on April 21st, 2010 at 9:51:36.1367 

 

(c)  third episode for transformer fault sequence on April 25st, 2010 at 8:10:43.0045 

Fig 3-7 Tap Changers Failure in Transformer [8] 

Fig 3-7 shows three waveforms during a tap changer failure. The event duration 

becomes longer as the fault development progresses which means the equipment is 

degrading. Furthermore, the current of phase A drops to zero during the disturbances. The 

first incipient fault is observed one week before it developed into a catastrophic failure. 

During this week, about 40 similar waveforms were captured [8].  
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3.3.2.3 Capacitor Switching Restrike 

Capacitors are widely used to support reliability of networks as they can store or 

discharge electrical energy. Capacitor switching is a common operation for network control. 

Normal capacitor switching does not produce any significant transient signals; however, 

obvious transient signals can be observed during capacitor switching restrikes. Capacitor 

switching restrike has been defined as “a re-estimation of current between the contacts of 

a switching device during an opening operation after an interval following zero current of 

greater than one-quarter cycle at normal frequency” [8]. Restrikes can damage capacitors 

and switches, as they can cause poor power quality output. Fig 3-8 demonstrates an 

example of a poor power quality waveform caused by capacitor switching restrike. The 

waveform is measured at the 28kV bus in a substation. There is only one capacitor on the 

bus and an oil circuit breaker is used to switch the capacitor. 
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(a) Voltage waveform 

 

(b) Current waveform 

Fig 3-8 Capacitor switching restrike [8] 

As Fig 3-8 shows, a significant oscillation appears on the waveform due to the restrike. 

The resulting distorted waveform might cause further damage. Therefore, the distorted 

PQ waveform which is related to the capacitor needs to be monitored. 

In summary, all the faults mentioned above possess some unique characteristics on their 

waveforms, which provides opportunities for fault identification. However, as Section 2.4 

shows, data-driven methods need to be pre-trained on labelled waveforms before they can 

be used to identify fault cause. Therefore, the next section will discuss the limitation of 

labelling and possible solutions. 
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3.4 Labelling of Fault Waveforms 

When a newly occurring fault waveform is archived in a repository, some corresponding 

labels (or contextual data) will also be recorded with it. Common attributes include 

timestamp, weather, fault phase and isolation equipment. Uncommon but important labels 

are fault cause and fault location, which usually need a lot of effort to identify. This research 

is aimed at developing an automated means of fault cause identification. However, as 

Section 2.4 discussed, limited volumes of labeled waveforms can affect the discriminative 

power of classifiers. To address this problem, the performance of various classifiers with 

minimum labeled data can be investigated and the best classifier can be used. However, 

even collecting the minimal volumes of labeled faults might take excessive time. Therefore, 

to expedite a fault labelling procedure, additional labeled faults can be automatically 

generated using other data sources, such as historical maintenance records, to support 

classifier pre-training. Maintenance reports have been widely used for utilities to schedule 

and validate remedial works. These are typically free text, which usually contains a large 

amount of useful fault information, such as fault causes, sequence of protection actions 

and weather.  

The following sections will introduce a novel method which contains these solutions to 

track the fault causes described in Section 3.3 using the waveform inputs, and the 

associated labels and maintenance records. 

3.5 An Architecture for High-Frequency Fault Analysis 

As described in Chapter 2, distribution networks are suffering from low observability. To 

solve this, [1] and [2] proposed a new approach to obtain high-resolution data to find the 

early signatures of failures and analyse the resulting waveforms to increase situational 

awareness. This provides more context for remedial and preventive decision support. 

However, this approach utilised a knowledge-based technique [1][12][13] populated with 

expert knowledge to analyse faults; developing knowledge-based systems to cover every 
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eventuality can be time-consuming, and the volume of detected anomalies is excessive [2]. 

To solve this, a data driven approach is required. However, there are two data-related 

challenges obstructing the development: the data available to feed-in to the fault detection 

is excessive in terms of volume, and the historical examples for training fault classifiers are 

limited. To solve these, some new methods are developed in this thesis for online anomaly 

segmentation, fault classification, and automatic fault labelling. Fig 3-9 demonstrates an 

end-to-end framework which uses and integrates these methods.  

  



57 

 

 

 

(a) Online Implementation: Automatic Anomaly Segmentation and Diagnosis 

 

(b) Offline Implementation: Fault Exemplars Generation 

Fig 3-9 Proposed automation of fault processing through waveform analysis, (a) Online 

system: automatic fault segmentation and diagnosis, (b) Offline system: fault exemplars 

generation  



58 

 

Fundamentally, this system utilises historical anomalous waveforms along with the 

maintenance reports and the recorded faults context to form an event example repository. 

The resulting examples can support training of fault classifiers, which is carried out offline 

as shown in Fig 3-9 (b).  

For online implementation in Fig 3-9 (a), when high-frequency continuous waveform 

signals are streamed in, abnormal events will be automatically segmented out when the 

transient components are found in waveform which will be specified in Chapter 4, then 

can be inserted into the fault classifier to interpret the anomalous waveform. While fault 

data may naturally partition itself according to cause, this is not immediately 

understandable by a non-expert. To assign a human readable description to faults, the 

semantics of the closest historical maintenance record are analysed to obtain a label which 

can then serve as the label for the fault [50]. The specifics of each component will now be 

elaborated upon. 

3.5.1 Online System: Automatic Anomaly Segmentation and Diagnosis 

3.5.1.1 Online Anomaly Segmentation 

As Fig 3-9 (a) shows, the approach only uses fault current signals to detect the 

abnormal events, because current is more sensitive to events. After detection, this event 

can be segmented then stored in a cache for later processing. Conventional high-resolution 

anomaly detection schemes, such as using the RMS value of three-phase current to 

determine abnormal events, can result in high false positive rates [8][6]. This could be 

resolved through using the shape of the signal as a discriminatory feature to identify the 

abnormal events [6] rather than the localized thresholding of statistics. Based on the 

observation in [6], this thesis proposes a new shape-based anomaly detection and 

segmentation method which can produce the probability of the detection to imply the 

reliability of the result. The details of this anomaly segmentation model will be described 

in Chapter 4. 
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3.5.1.2 Automatic Fault Cause Identification 

Fault recognition amounts to a supervised learning problem, which needs historical 

examples to train the data-driven model before it can identify faults. To lessen the model’s 

demand for data quantity, a similarity based fault classifier is proposed. If a fault has already 

occurred, the root cause of the fault can be identified through retrieving the most similar 

historical event. The similarity measure combines the context of the event with the event 

waveform. The event context amounts to the associated weather data and isolation 

equipment record which can be retrieved from weather service providers and online fault 

recording system indexed on time and location. The details of this fault cause identification 

model will be discussed in Chapter 5. 

3.5.2 Offline System: Fault Exemplar Generation 

As Fig 3-9 (b) shows, through aligned time and location records, historical waveforms 

and contexts can be associated with maintenance reports which correspond to a remedial 

work order. Maintenance reports have been widely used for utilities to schedule and 

validate remedial works. Previous research [51] has utilised historical maintenance reports 

to predict feeder failure and limit the cascading impact of problems, which has validated 

the use of handwritten records in decision support for the maintenance of the distribution 

network in New York City.  

Fault labelling could be automated by using maintenance reports to create labels for 

training and validating intelligent classifiers, but these reports are generally not pro-forma 

based, which results in free-form and sometimes abbreviated text. The labelling model 

utilises a topic model to learn the relevance between the words from the free text in 

maintenance reports, then the semantic relevance between documents and topics can be 

used to categorize the maintenance reports. Topic models are generally based around co-

occurring word counts and their resulting statistics, which facilitates generalising their 
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content into clusters that are considered to be hypothetical topics. The details of fault 

exemplar generation model will be described in Chapter 6. 

3.6 Modelling and Simulation to Support Validation of the System 

To demonstrate and prove the effectiveness of the proposed fault processing methods 

and system, the following two approaches are taken: retrospective analysis of archived 

operational fault data and simulated operational extremes. Archived operational fault data 

includes DoE/EPRI PQ event repository and two-days continuous data. Among these 

data, simulated operational extremes and two-days continuous data are used for anomaly 

segmentation validation, and PQ event repository is used for validating diagnostic function. 

This section outlines how the simulations were designed, and the nature of the archived 

data. All of this is used in the future chapters to validate the operation and performance of 

the methods.  

3.6.1 Simulated Operational Extremes 

Various faults are simulated to validate the capability of the anomaly segmentation. 

The severity, duration and location of the faults can be arbitrarily defined in a realistic 

range. The following two subsections will discuss the modelling detail. 

3.6.1.1 Modelling PQ Disturbances 

As noted in [6], power quality measurements under normal conditions on an 

operational network can be decomposed into noise components and normal load 

components. Transient events contain additional components which can indicate the 

operational context of the distribution network [52]. For the waveform, the voltage and 

current can usually be expressed as: 

𝑆(𝑡) = ∑ 𝐴𝑘 cos(2𝜋𝑘𝑓𝑟𝑡 + 𝜑𝑘) + 𝑛(𝑡) + 𝑎(𝑡)

𝐾

𝑘=0

 
(3.1)         
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Where 𝑡  is the time, 𝑆(𝑡)  is the signal measured at substation, 𝐴𝑘  and 𝜑𝑘 

represent amplitude and phase of 𝑘th harmonic component, K is the highest harmonic 

order, 𝑓𝑟 is the fundamental operation frequency, 𝑛(𝑡) is high-frequency random noise 

and 𝑎(𝑡) represents the transient components. In order to rigorously test the capabilities 

of an anomaly detector, it is necessary to identify the features of PQ disturbances that it 

may encounter. The following subsections cover the individual aspects of this and 

discusses how these can be realistically modelled. 

3.6.1.1.1 PQ Transients 

Many faults have precursors that are observed long before they evolve into a serious 

outage. These precursors, such as effects from electrical arcing and mechanical aging, can 

repeat and generally increase in severity resulting in outright failure of components. The 

duration of these transients varies, but incipient faults can occur with increasing frequency 

as they develop further. The duration of the incipient fault development period offers a 

possibility for utilities to forestall serious faults or outages in advance. However, not all 

transient components are attributable to faults, some of them are caused by regular 

operation of the network, such as load switching [53]. These regular events can result in 

some small changes in signals which might confuse an anomaly detector into raising a false 

alarm. To address this, some different transient components are simulated to test the 

robustness of anomaly detection methods. Some transients are associated with faults, such 

as Kizilcay’s arcing model [54] [55], capacitor switching model and three-phase fault model 

[6]. Others are not, such as load switching model [6]. The underlying methodology for 

these models is demonstrated in Fig 3-10.  
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Fig. 3-10. Definition of transient models in terms of RLC 

As Fig 3-10 shows, the four models are RLC circuits, which consists of a resistor (R), 

an inductor (L) or a capacitor (C). These electrical components can be connected in series 

or parallel. RLC circuit can used to represent different loads or faults. Among these models, 

constant fault is one of the most common models for anomaly/fault detection. Kizilcay’s 

arcing model has previously been validated [55] and used to test distribution network PQ 

anomaly detection [6][54]. This model is representative of the arcs in air in a resonant-

earthed medium voltage system [55] and also emulates High Impedance Faults (HIF) in 

overhead lines on distribution networks [55]. These arise in the operational context in two 

situations: broken overhead lines and faults that earth through arcing suppression coils. In 

both of these cases the high impedance nature of the fault results in a very small fault 

current which can be challenging to detect as an anomaly. As Fig 3-10 shows, load 

switching in the thesis represents the inductive load switching, which is common in daily 
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load schedules to achieve system balance on a distribution network. Load switching usually 

results in small transient components in the PQ waveform which could confuse an 

anomaly detector: capacitor switching is used to correct voltage and power factor, in doing 

so though, it can bring high magnitude and high frequency transient overvoltages which 

may damage customer side equipment, resulting from oversensitive tripping in response 

to these momentary excursions, such as a capacitor switching restrike [56]. It also 

significantly affects the network health compared with load switching [56]. Although 

capacitor switching transients can be mitigated by harmonic limiters in the operational 

context [57], it would be too complex to emulate all of these limiters in the simulation; 

therefore, it is worthwhile to just model capacitor switching in the simulation network and 

ignore the unrealistically significant power quality distortion during these events. In 

summary, for anomaly detection, capacitor switching should be considered as a fault type, 

but load switching should be treated as a normal event. 

3.6.1.1.2 PQ Noise 

PQ noise challenges the correct identification of transient components in anomaly 

detection [58]. Noise is commonly modelled as high-frequency white noise which is usually 

caused by Electromagnetic Interference (EMI). EMI can damage the devices and degrade 

service levels. Conventionally, standards with respect to Electromagnetic Compatibility 

(EMC) [59] are made to limit the emitted EMI level. Although noise such as EMI can be 

limited, PQ noise is inevitable, and they can exist on any device, especially for electronic 

devices [59]. Therefore, it is necessary to verify the robustness of an anomaly detector in 

the presence of such forms of noise. [6] has verified that PQ noise under normal operation 

almost obeys a Gaussian distribution.  

3.6.1.1.3 Harmonic Content 

PQ harmonics are usually produced by industrial plant (diodes, transistors, rectifier 

control and frequency convertor, etc.) and power electronic devices in commercial 
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buildings (computer, monitors and telecom system, etc. ) [59]. This can affect an anomaly 

detectors performance. Although a lot of work has already proposed some schemes to 

reduce or eliminate harmonics, high-frequency harmonics can be difficult to completely 

filter out. Therefore, anomaly detection on a distribution network must be robust to the 

harmonics from realistic power electronic device penetrations. Furthermore, with a large 

number of residential customers produce harmonics through domestic PV inverters which 

can continually affect the network over the long-term, and these can be represented using 

non-linear load models [60]. To mimic harmonics from a non-linear load, a simple but 

generic power electronic model [61] [62] is utilised which is demonstrated in Fig 3-11. This 

model utilises diode switching along with an impedance model to emulate a variety of non- 

linear loads, such as PCs and Electric Vehicles. Switches, such as diodes, can produce 

ripples which dominate the harmonics generated by power electronics [60].  

 

Fig. 3-11. Circuit representation of harmonic model used 

3.6.1.2 Modelling the Operational Network 

The IEEE 13-Bus Test Network [63] is an unbalanced radial distribution network at 

medium voltage level which consists of underground cables, overhead lines, shunt 

capacitors and a transformer. The injected faults provide the ground truth for abnormal 
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events which can evaluate whether an anomaly segmentation detector with high-frequency 

data acquisition is capable of finding anomalies and how early it can detect the event. The 

network and disturbance configuration are shown in Fig 3-12. According to [6][54], the 

initial parameter values for the IEEE 13-bus simulation are given in Table 3.1. Using this 

model, simulation is used to generate events to cover all possible parameter values: 1632 

load switching events, 1278 high current arcing faults, 928 low current arcing faults, 480 

capacitor switching operations and 560 constant impedance faults. To add additional 

operational realism, simulation of 10-50A low current arcing is also included which aligns 

with High Impedance Faults seen in practice [64]. Moreover, the fault duration is randomly 

assigned within a realistic range, which is generated by a random seed. Except that, the 

system short-circuit level can affect the disturbance PQ waveform characteristic obtained 

at the substation. A more robust network will obscure or minimize the changes to PQ 

waveform. The total load on the network is approximately 3.8MVA. Accordingly, the 

short-circuit level of the network can be set to 20MVA, 60MVA and 100MVA to test 

accuracy under different short-circuit levels [65]. Furthermore, some subtle disturbances, 

such as partial discharge, are difficult to detect because the noise and harmonics conceal 

the transient components. Through observing the level of white noise and harmonics in 

realistic data [66], an appropriate level of white noise and harmonics from non-linear loads 

are added to the simulated signals to validate robustness to noise: 30dB signal-to-noise 

ratio (SNR) for current and 40dB SNR for voltage are commonly used for power delivery 

in distribution networks; According to IEEE 519-1992 [67], THD(%) limits of voltage and 

current are 5% and 15% respectively. This range determines the configuration of the 

harmonics generated by the impedance model described in Section 3.6.1.3, which is 

demonstrated in Table 3.2. 
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Fig. 3-12 IEEE 13-bus simulation with fault injection 

Table 3.1 Fault setup in IEEE 13-bus Simulation [6][54] 

Fault type 
Fault 

Location 
Duration (cycle) Impedance 

High Current Arcing Fault 633,634,645 0.25 to 1.25 

u0=300~4000 V 

r0=0~0.015 ohm 

tau=5e-5~4e-4 s 

Low Current Arcing Fault 680,652,692 0.25 to 1.25 

u0=1000~6000 V 

r0=0.1~100 ohm 

tau=5e-5~4e-4 s 

Constant Impedance Fault 680,652,692 2 to 3.25 
Rg=0.1~1500 ohm 

Rf=0.1~10 ohm 

Capacitor Switching 680,652,692 N/A C=1e-6~4e-6 F 

Load Switching 675,611,646 N/A Rg=0.3~10 ohm 
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TABLE 3.2 Noise Configuration in IEEE 13-bus Simulation 

Noise type 
Fault 

Location 
Duration (cycle) Configuration 

White Noise N/A N/A SNR = 70,80,90 dB 

Harmonics 671 N/A 

R=0.1~100 ohm 

L=0.0005 H 

C=60e-6 F 

In general, this simulation contains a large amount various faults in a representative 

radial distribution network. The generated waveform at substation will be used to validate 

the effectiveness of continuous anomaly segmentation function.  

3.6.2 Archived Operational PQ Data 

Archived operational faults consist of two databases: a PQ event repository and two-

days of continuous PQ data. The PQ Event Repository [46] archives 334 anomalies and 

faults by US Department of Energy from January 2015 to September 2017 which provides 

an opportunity to test fault diagnostics and fault labelling on operational faults. Two days 

of continuous operational 25kV substation data [66] is provided by the IEEE Power 

Quality Data Analysis Working Group which can be used to test high-frequency anomaly 

segmentation.  

3.6.2.1 PQ Event Repository 

The repository provides the fault waveform and the associated time, weather, fault 

cause and corresponding field crew fault records. However, it is difficult for a realistic fault 

repository to contain all of these, especially the fault cause labels - this is because fault 

cause identification is still a problem for DNOs to identify, none of the standards are made 

for DNO to record faults information - operational practice tends to be to use free text to 

record fault case information, there is no standard across DNOs for a pro-forma approach 

to capture fault details. The sampling frequency of waveforms is 0.96kHz and 3.84kHz – 
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the PQ events in this repository are collected from multiple locations and multiple devices, 

which results in the sampling frequency being different. A high-resolution representation 

is shown in Fig 3-13.  

 

 

Fig 3-13 PQ waveform representation 

As fig 3-13 shows, the library also provides the fault waveform start time and end time 

down to millisecond level. Table 3.3 shows the additional fault details that accompany each 

record for the first 14 instances. 
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Table 3.3 Maintenance records, fault cause labels and associated weather 

EventId Cause Weather 
Isolated 

Equipment 
Maintenance Report (free text) 

0001 Tree Clear Weather Recloser 

Fault caused line recloser lockout. 

Tree Outside Right of Way (Fall/Lean 

On Primary) 

0004 Tree Clear Weather Recloser 

Fault caused line recloser lockout. 

Tree Outside Right of Way (Fall/Lean 

On Primary) 

0005 Tree Clear Weather Recloser 

Fault caused line recloser lockout. 

Tree Outside Right of Way (Fall/Lean 

On Primary) 

0007 Tree Clear Weather Recloser 

Fault caused line recloser lockout. 

Tree Outside Right of Way (Fall/Lean 

On Primary) 

3042 Equipment Unknown Equipment Equipment, Device UG, Damaged. 

0021 Equipment Clear Weather Equipment 
Overhead Insulator Failure. 

BROKEN INSULATOR 

0022 Equipment Clear Weather Equipment 
Overhead Insulator Failure. 

BROKEN INSULATOR 

0062 Undetermined Raining Undetermined Storm 

0064 Undetermined Raining Undetermined Storm 

0067 Tree Thunderstorm Tree Tree/Limb Growth 

0065 Tree Thunderstorm Tree Tree/Limb Growth 

0068 Tree Clear Weather Tree VINES ON TRANSFORMER 

2760 Unknown Unknown Unknown 
Short duration variation. No outage 

information found. 

3048 Equipment Unknown Equipment 
Equipment, Capacitor Station, 

Damaged. 

Table 3.3 shows the free text report associated with the fault indicating its context. 

Furthermore, Table 3.3 also contains the associated weather data and isolation equipment 

which can be used as an input for fault diagnosis as Fig 3-9 (a) shows. These data provide 

ground truths for validating fault recognition and fault labelling. To ensure that the result 

is not affected by unlabelled data and individual extreme cases, appropriate labelled faults 
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should be selected. Firstly, the repository has 12 fault causes labels for the fault as Fig 3-

14 shows. However, a third of the archive are unknown which are labelled as ‘Unknown’, 

‘Undetermined’, ‘Other’ or without any labels which should be removed. This also implies 

present recording systems will still fail to identify the fault cause for some events. The 

prevalence of fault cause, as shown in Fig 3-14, is unbalanced which can be challenging 

for automated classification – it will be difficult to learn general representations of seldom 

seen events. Five fault categories have sufficient prevalence to be considered: Equipment 

Caused Faults (ECF), Lightning Strike Faults (LSF), Vehicle Impact Faults (VIF), Animal 

Contact Faults (ACF) and Tree Contact Faults (TCF). These five categories will be used 

to test the proposed online fault classification and the offline fault labelling. 

 

Fig 3-14 DoE repository fault prevalence 
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3.6.2.2 Two-days continuous PQ data 

A realistic sample of two-days continuous PQ data is used to validate the effectiveness 

of the diagnostic function. As Fig 3-15 shows, the two-days of continuous PQ data is 

recorded at the substation bus. The topology of this network implies the absence of power 

electronic devices which may present less of a challenge than the simulation cases 

presented here; however, more realistic noise make this case still worthwhile to test the 

detector. Fault occurrences have not been marked up on this data set so prior to usage, 

anomalous regions are manually identified for evaluating the effectiveness of changepoint 

detectors, the RMS value for every cycle is extracted and shown in Fig 3-16. According to 

the RMS value, only a single anomalous region can be found approximately 41 hours into 

the data, where four abnormal events are picked up. Furthermore, the sampling frequency 

of the data is 3.84 kHz. This data is used to validate the effectiveness of the online anomaly 

segmentation function.   

 

 

Fig 3-15 The measurement setup for 2-days continuous data [66] 
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Fig 3-16 anomalous regions for two-day continuous data 

3.7 Conclusion 

Automatic fault cause identification using high-frequency PQ data can help DNOs 

reduce the occurrence of failures and expedite the corresponding maintenance. This 

chapter has outlined an end-to-end design for automatic high-resolution fault diagnosis, 

which includes anomaly segmentation, fault cause diagnosis and automated fault event 

labelling. The following chapters will expand on these and will use both simulated extremes 

and archived operational data to test their effectiveness.  
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4.1 Introduction 

The previous chapters have discussed that high frequency fault analysis on power 

distribution networks can help DNOs to achieve higher situational awareness. However, 

one of the challenges of high frequency fault analysis is to precisely extract anomalous 

regions from multiple continuous data streams before classifying the underlying fault 

signature. Failure to do this correctly can result in the needless storage of large volumes of 

data, which must then be analysed to assess their usefulness. Conventional high-resolution 

anomaly detection has previously utilised the differential waveform RMS method [48], 

Mean Absolute Variation in Squared Amplitude (MAVSA) [48] and Kalman Filtering (KF) 

[68] as examples. However, the former two approaches are prone to false alarms because 

they are built on local statistical characteristics, such as waveform RMS and mean value, 

rather than the entire waveform. In other works, [6] proposed a generic anomaly detection 

method using hypothesis testing to examine the statistic distribution of the PQ noise of a 

normal waveform, then Kullback-Leibler Distance (KLD) is utilised to determine whether 

the noise from a new event conforms to the distribution of that for normal operational 

waveform – a standard Gaussian distribution is used in [6]. None of these works discussed 

anomaly detection performance in a non-linear noise environment and tested for the 

online streaming data. With the increasing use of Low Carbon Technologies (LCT) in 

distribution networks, the harmonics and noise produced by convertors/inverters can 

degrade the PQ of the grid, and can be challenging to the robustness of anomaly detection 

[69]. Additionally, previous works have tended to require adjustment of the threshold of 

anomalous behaviour to accommodate dynamic noise levels, which can also obstruct 

practical implementation [70]: setting a threshold manually can be time-consuming and 

prone to error in the presence of previously unseen noise. To solve these, this chapter 

develops an online and generic PQ anomaly detection method for distribution level faults 

which can fit in the processing in Fig 3-9 of Chapter 3. The proposed anomaly detection 

model tackles the complex problem of segmentation of the high-resolution signals and 
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automatically learns the bounds of anomalous behaviour in an online mode without 

historical data. This overcomes some of the key barriers and problems outlined in the 

literature reviewed, and allows a move to effective online anomaly and fault detection.  

4.2 Automating Disturbance Detection 

This section will detail the approach to extracting PQ events from a continuous stream 

of current sampled at a high resolution. Plant failure on power distribution networks 

usually starts with PQ distortion, which manifests as either an immediate interruption (e.g. 

equipment damage, animal contact and lightning strikes) or periodic anomalies (e.g. arcing 

and aging [71][72]) of changing magnitudes.  

The problem is constrained by the following practical considerations: 

- Temporal dependency: PQ data is non-stationary over time during disturbances and 

faults which requires the subsequent predictions to depend on the previous 

observations rather than assuming every observation is independent 

- Weak delineation: Faults may cause anomalies to be dispersed across time which 

dispels the assumption that a new underlying regime delineates a fault with a single 

structural break in stochastic behaviour.  

- Quantification of Uncertainty: power utilities will need to know how confident they 

can be in automated decisions made so any approach must offer transparency as to the 

certainty that a segment of data is anomalous. 

- Online Operation: The rate at which data is acquired means that online analysis must 

be conducted as data storage requirements will not be scalable to a network wide 

solution. Furthermore, online learning of anomalous behaviour is preferable owing to 

the individual operating characteristics of networks.   

- Adaptive thresholds: The heterogeneity of anomalies in distribution networks means 

fixed thresholds will not be sufficient for detection – changes in loading, which occur 

over longer timescales than faults, render these ineffective. 
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Based on these requirements, a changepoint analysis approach can be seen as an 

appropriate solution. Changepoint analysis finds abrupt changes [73][74] in time series data, 

which can in practice distinguish between different operating regimes, such as identifying 

industrial plant faults [75]. The conventional changepoint approaches include Hidden 

Markov Model [76], state space models such as the Kalman Filter [68] and the sequential 

application of hypothesis testing [77]. The approaches are designed to identify a particular 

abrupt change; however, individually they do not meet the practical constraints given 

above. Thus, the approach proposed here is the application of an online Bayesian 

Changepoint detector [73], which learns online and models the uncertainty of anomaly 

occurrence across a detection window.  

4.2.1 Processing Design 

As Fig 4-3 shows, a sampling window roughly segments raw data, which ensures that 

the abnormal condition is learned only from local transients rather than long-term load 

variation and reduces the computational complexity. Then an abnormal component 

extraction algorithm is applied to transform the sinusoid in the window into a transient 

signal. Following this, the resulting signals are input to a Bayesian Changepoint PQ 

anomaly Segmentation (BCPQS) model with initial conditions that can be either randomly 

selected or set using prior knowledge. These stages will now be described in detail. 
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Fig. 4-1. The design of automatic segmenting steaming PQ data  

4.2.2 Sampling Window Design 

Based on the findings of past work [70], the length of the sampling window is specified 

as 8 cycles. To ensure the detection result is not affected by the initialization stage at every 

window, the detection avoids this and double counting anomalies by refreshing the raw 

data for 7.8 cycles time (i.e. less than window length) to capture the continuous input signal.  

4.2.3 Abnormality Extraction 

As described in [6], the current signal can be thought of as a sinusoid (the AC 

fundamental as well as harmonics) with abnormalities (noise and transient components) 

superimposed. The conventional approach to decoupling the sinusoidal components from 
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the abnormal components of the signal are to superimpose the faults over the previous 

cycle [48]; this approach is adopted here to reduce the computational complexity and 

accommodate the supposed absence of knowledge of the form of faults. This method 

utilises the present measure superimpose over the last health cycle which can be simply 

expresses as: 

𝑛(𝑡) + 𝑎(𝑡) = 𝑖(𝑡) − 𝑖(𝑡 − 𝑞𝑁0∆𝑡) (4.1) 

Where 𝑛(𝑡)  and 𝑎(𝑡)  refer to noise component and transient component to 

maintain consistency with the Equation (3.1); 𝑞 denotes the number of the gap cycles 

between last healthy cycle and the currently measured cycle. 𝑁0 denotes the number of 

samples in one cycle current; ∆𝑡 is the sampling interval which represents the time gap 

between two consecutive samples. In short term, the fundamental component and 

harmonics would not change; therefore, the superimpose would only reveal the noise and 

transient components.  

The extracted component residual has been validated as Gaussian distributed for 

normal operation using a normality test [6]. To investigate the characteristics of the noise 

of the 2-days of continuous PQ data, 2400 normal operation signal pieces (50 events per 

hour) were randomly selected from the archived data to test their Gaussianity using the 

Anderson-Darling test (AD), Lilliefors test (L), Jarque-Bera test (JB), Shapiro-Wilk test 

(SW) and Kolmogorov-Smirnov test (KS) [78]. 8 cycles, which amounts to the window 

size, are used for this Normality test. Comparison of the percentage of the events obeying 

Gaussian distribution with significance level is shown in Fig 4-2; significance level is the 

probability of rejecting the null hypothesis when it is true – lower significance level means 

it is more likely the hypothesis is true (not due to chance) [78]. 
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Fig. 4-2. Normality Test for the extracted noise of the 2-days continuous data 

As Fig 4-2 shows, KS test and Lilliefors test shows most of the noise obeys a Gaussian 

distribution, even at low significance levels. AD test, SW test and JB test performs relatively 

worse, especially for JB. This can be because the latter three tests have a heavier weight for 

testing tails [78], and the industrial noise has heavier tails than normal Gaussian 

Distribution; one example of industrial noise is visualized using a Quantile-Quantile (Q-

Q) plot [79] in Fig. 4-3. 

 

Fig. 4-3. QQplot for one of the extracted noise from the 2-days of continuous data 
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As Fig 4-3 shows, the dash line represents the standard Gaussian distribution, and the 

blue data represents the selected signal. The distribution of the noise is close to the shape 

of a Gaussian distribution, but it has heavier tails than a Gaussian distribution. Therefore, 

the Gaussian distribution is not a best distribution to track the noise. In following sections, 

a new distribution to track the noise will be introduced. 

4.2.4 Online Learning of PQ Abnormalities Model 

After abnormality extraction, the processed signal of the single phase current is then 

run through a changepoint detection model [73] to identify abnormal events. To identify 

changepoints within the sampling window (given in Section 4.2.2), the problem can be 

formulated as 𝑃(𝑆𝑖|𝑥1:𝑖), where 𝑖 is the time step, 𝑥1 ⋯ 𝑥𝑖 ⋯ 𝑥𝑘  are a sequence of PQ 

current observations, 𝑥𝑘 is the last observation in the sampling window and 𝑆𝑖 is the 

binary state (healthy or abnormal) at time 𝑖. Thus, the formula represents a probability of 

the normal or abnormal state at time 𝑖. If the probability strongly indicates an anomaly 

existed at time 𝑖, then the waveform at that time could be saved and put in a fault analysis 

model for further processing. The process of online segmentation of a PQ abnormality for 

a single detection window is shown in Fig 4-4. Online learning of the bounds of an 

anomalous region works on the principle of run length estimation [73]. that is, how long a 

model can be sequentially updated with new PQ observations before a random model of 

behavior is considered to be more likely than the current one. To achieve this in this 

application context, BCPQS assumes the parameters of the start point in the sampling 

window have been reset to represent a normal event – this is undertaken offline using 

historical normal events. Each new observation updates model hyper-parameters, which 

are then utilised to evaluate the changepoint probability and run length distribution. Finally, 

the run length probability is normalised and used to detect anomalies by comparison with 

probability thresholds learned offline. When a changepoint has been encountered, the 

prior distribution is reset, and parameters are sequentially calculated as before until another 
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changepoint is found. After a start point is found, the fault segmentation function is 

triggered to look for the corresponding end point of the abnormal event and segment it 

out. The end point is determined when three consecutive cycles are free of changepoints  

[70].  

 

Fig. 4-4 Bayesian Changepoint anomaly detection workflow process  

This section will now detail: the initialization of the BCPQS model parameters, how 

these are sequentially updated as more data is observed and how the detector model works 

in the presence of PQ noise.  

4.2.4.1 Noise Distribution Initialization 

As discussed in [6], the non-periodic component of a normal signal’s behaviour can be 

modelled by a Gaussian distribution with the presence of any abnormalities resulting in 

the violation of this assumption. A key part of BCPQS arises from the adoption of the 

exponential family form [80] of a Gaussian distribution with conjugate priors over its 

parameters. Conjugate prior is defined as a prior distribution, which is from the same 
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distribution family as the likelihood and posterior [80]. The Bayesian formulation of this 

results in a Student-t distribution being used to track abnormal performance as a 

probability rather than a Gaussian distribution which has the additional benefit of being 

more robust to outliers (through its heavy tails) [81]; this can perfectly solve the heavy tails 

problems described in Section 4.2.3. The distribution is parameterized by prior 

hyperparameters which in turn can be used to formulate expressions for the mean, variance 

and degree of freedom for the distribution by integrating over all possible values of the 

prior distribution[73] .  

The conjugate prior of the Student-t distribution is the Normal-Gamma distribution 

[81], 𝜇, ∑ ∈ 𝑁𝐺(𝑢, 𝑘, 𝛼, 𝛽) which is expressed as: 

𝑁𝐺(𝜇, ∑|𝑢, 𝑘, 𝛼, 𝛽) = 𝑍 ∙ ∑𝛼−
1
2 ∙ e(−

∑
2

(𝑘(𝜇−𝑢)2+2𝛽))  (4.2) 

𝑍(𝑢, 𝑘, 𝛼, 𝛽) =
𝛽𝛼

 𝛤 (α)
(
2𝜋

𝑘
)−

1
2 (4.3) 

Where 𝑢, 𝑘, 𝛼, 𝛽  are hyper-parameters and 𝛤  denotes the Gamma function. 

Gamma function is a well-known factorial generalization function amounting to an 

approximation of a continuous factorial of a real number. The initial hyper-parameters of 

the observation distribution can change the shape of the distribution which affects the 

sensitivity of the changepoint detection [81]. The initial values of 𝜇0  and 𝑘0  can be 

determined by the mean and variance of the mean value of historical normal behaviour 

data. According to [81], the variance of sample is determined by the initial parameters 𝛼0 

and 𝛽0 for the Gamma distribution, All the initial parameters can be estimated from the 

historical healthy condition data.  

4.2.4.2 Sequential Update of Noise Distribution 

As Section 4.2.4 described, the parameters of the predictive distribution need to be 

sequentially updated based on previous observations. To achieve this, a sequential Bayesian 
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estimation is utilised to derive parameter updates [81]. Bayesian statistic is a theory to 

calculate or update probability, which is based on an assumption that the probability can 

be dependent to the prior knowledge rather than only to the frequency of the occurrence 

of an event [82]. Based on some pertinent inferences, the corresponding Bayesian posterior 

[81] is: 

𝑢𝑖+1 =
𝑘𝑖𝑢𝑖 + �̅�

𝑘𝑖 + 1
 (4.4) 

𝑘𝑖+1 = 𝑘𝑖 + 1 (4.5) 

𝛼𝑖+1 = 𝛼𝑖 +
1

2
 (4.6) 

𝛽𝑖+1 = 𝛽𝑖 +
1

2
(𝑥𝑗 − �̅�)2 +

𝑘𝑖(�̅� − 𝑢𝑖)2

2(𝑘𝑖 + 1)
 (4.7) 

This permits a sequential update to be carried out using just the sufficient statistics of 

the distribution. Sufficient statistics means that no other statistic needs to be calculated 

from the same sample to provide additional information as to the value of the parameter. 

In the case of the Gaussian distribution, this amounts to a running sum for the mean. The 

new parameters are then estimated based on the previous distribution and the current 

observation. Then the updated new parameters can produce a new Student-t distribution 

to evaluate the next changepoint probability. 

4.2.4.3 Changepoint Detection 

The BCPQS model can be used to evaluate the run length probability of a PQ noise 

signal over a window. Fig 4-5 shows an example of how the exponential family distribution 

works on PQ noise and how the model update for new observations. For each run length 

probability calculation, the hyper-parameters can be updated with each new observation 

injected, then put in Normal-Gamma distribution to calculate the distribution prediction 

and run length probability. The run length probability is expressed as: 
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𝑃(𝑟𝑖 , 𝑥1:𝑖) = ∑ 𝑃(𝑟𝑖−1, 𝑥1:𝑖−1)𝑃(𝑟𝑖|𝑟𝑖−1)

𝑟𝑖−1

𝑃(𝑥𝑖|𝑢𝑖 , 𝑘𝑖 , 𝛼𝑖, 𝛽𝑖) (4.8) 

Where 𝑟𝑖 is run length at time 𝑖, 𝑟𝑖 = 𝑟𝑖−1 + 1 for normal event and 𝑟𝑖 = 0 for 

anomaly.  

 

Fig. 4-5 Window based tracking of changes in noise distribution 

The run length probability can be calculated for every possible scenario and can form 

a trellis of probable run lengths over the sampling window. 

4.2.5 Offline Threshold Selection 

The proposed detector adapts a probability threshold to track anomalies which can 

achieve adaptive threshold as a certain value can be set for all the cases; however, an 

appropriate probability threshold and associated approach are required to pick up the 

abnormal segmentation from continuous current signals. The run length specifies the 
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number of time points for which the observation distribution has been valid – if this is 

lower than that for a shorter run length, it is indicative that it should be reset. Owing to 

the time period required for a fault to develop, 𝑟𝑖 = 5 has been observed experimentally 

to identify the minimum plausible run length at a given time. This is because the purpose 

of the detector is to detect significant disturbances, such as incipient faults, rather than 

subtle inferences from normal operation, such as demand fluctuation; if 𝑟𝑖 is too small, 

the detector can be too sensitive to the outliers; large 𝑟𝑖 makes it possible to pick up 

changepoints with small variance. An example is demonstrated in Fig 4-6. The run length 

is sensitive to waveform distortion. As demonstrated in Fig 4-6 (1) and 4-6 (2), the small 

signal inference around the time 900, 1000, 1140 and 1280 can results in a run length reset 

but these are not expected to detect. As demonstrated in Fig 4-6 (3), 𝑟𝑖 = 5 make it more 

intuitive to detect the start point and end point through setting an appropriate probability 

threshold.  

 

Fig 4-6 Comparison of indicators for changepoint result, (top) the run length of the 

maximum likelihood varies with time, (centre) residual current varies with time, (bottom) 

anomaly probability at 𝑟𝑖 = 5 varies with time 
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Threshold of anomaly probability is chosen through analysis of historical events and 

how they affect the false alarm rate [6], and a buffer of three extra cycles on either side of 

the anomalous region is retained to capture subtle transients as noted in [70]. 

4.3 Operational Case Study 

To test the model capability, simulated and operational distribution network 

monitoring data is used. The purpose of using both is to ensure sufficient operational 

realism, in the case of the operational data, and the full spectrum of fault possibilities, in 

the case of the simulation. The BCPQS is now compared against several existing works to 

demonstrate its effectiveness and practical advantages. 

4.3.1 Model Initialization 

Section 4.2.4.1 noted that normal operational data is required for the initial values of 

the prior distributions. In order to achieve this online, the first 200 moving windows, each 

comprising 8 cycles of normal operation [2], are used to initialize the prior distributions by 

fitting a Student-t distribution by Maximum Likelihood Estimation. Using the resulting 

location, shape and degree of freedom estimates for the sample Student-t, the initial values 

of 𝑢, 𝑘, 𝛼 and 𝛽 can be recovered [30] from:  

𝜈 = 2𝛼 (4.9) 

𝜇 = 𝑢 (4.10) 

𝜆 = √
𝛽

𝛼
×

1 + 𝑘

𝑘
 (4.11) 

 

Where 𝜈 is degree of freedom, 𝜆 is the scale factor and 𝜇 is the location factor. 

Sensitivity analysis reveals that the mean of the current almost remains stable at 0 which 

indicates the initial Gaussian mean can (intuitively for normal operation) be set to 0. 
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4.3.2 Benchmark Changepoint Detection Models 

The Kalman Filter [68], Differential RMS [6][70] and MAVSA [6] detectors are used 

as benchmarks. Differential RMS detects anomalies through observing whether the 

differential waveform between consecutive cycles is out with a predefined threshold [6]. 

Firstly, the differential current waveform ∆𝐼 extract abnormality by superimposing the 

fault over previous cycle. Then the differential waveform will be divided into 𝑀 pieces 

and the RMS value will be calculated for every segment. The normalised segments can be 

expressed as: 

𝛼𝑙,𝑟 =
∆𝐼𝑙,𝑟

𝐼𝑟
 (4.12) 

Where 𝑙 and 𝑟 denote the 𝑙-th segment and the 𝑟-th cycle. The maximum ratio in 

every cycle is utilised to determine abnormality and the detection rule is: 

Normal, max(𝛼𝑙,𝑟) ≤ 𝛼𝑇𝐻 (4.13) 

Abnormal, max(𝛼𝑙,𝑟) > 𝛼𝑇𝐻 (4.14) 

Where the 𝛼𝑇𝐻 is the threshold whose value can be evaluated by using historical data. 

MAVSA compares the difference of the squared value between two consecutive cycles 

with predefined thresholds to detect anomalies [6]. This is similar to the differential RMS, 

but variance rather than RMS to determine the abnormality. 

Anomaly detection with a Kalman Filter utilises the sequential estimation of a non-

stationary Gaussian distribution from a dynamic signal; the signal is segmented through 

comparing the log likelihood of the observation with a predefined threshold – the 

threshold is calculated at 3.5% false alarm rate using ROC curve [68]. The Kalman Filter 

can be used to model the evolution of time-varying variables. The state space equations 

for a Kalman Filter are: 
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𝑞𝑡 = 𝑞𝑡−1 + 𝑤𝑡 (4.15) 

𝑦𝑡 = 𝐹𝑡𝑞𝑡 + 𝑣𝑡  (4.16) 

where 𝐹𝑡 are the input time-varying observations, 𝑞𝑡 are state variables, 𝑤𝑡 is the 

state noise and 𝑣𝑡  is the observation noise; both obey a Gaussian distribution. The 

parameters are updated using a Kalman filter which has two steps: prediction and 

correction.  

Prediction: 

The predicted state variable, �̂�𝑡, and predicted covariance, ∑�̂�. 

�̂�𝑡 = 𝑞𝑡−1 (4.17) 

∑�̂� = ∑𝑡−1 + W𝑡  (4.18) 

W𝑡 is the state noise covariance at time t. 

Correction: 

The observation mean and covariance updates are: 

𝑞𝑡 = �̂�𝑡 + K𝑡(𝑦𝑡 − 𝐹𝑡�̂�𝑡) (4.19) 

∑𝑡 = ∑�̂� − 𝐾𝑡𝐹𝑡∑�̂� (4.20) 

Where 𝐾𝑡 is Kalman Gain which can be expressed as: 

𝐾𝑡 =
∑�̂�𝐹𝑡

𝑇

𝑣𝑡
2 + 𝐹𝑡∑�̂�𝐹𝑡

𝑇
 (4.21) 

Then the observation function is expressed as: 

𝑝(𝑦𝑡) = 𝒩(𝑦�̂�, 𝑣𝑡
2 + 𝐹𝑡∑�̂�𝐹𝑡

𝑇) (4.22) 
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The abnormal event will be detected only if the evidence (observation probability) of 

the data point is low, which will be the case if the data at this point contains more noise. 

4.3.3 Performance Evaluation Criteria 

Continuous streams of monitoring data will mostly represent normal network 

operation. This resulting high prevalence can result in misleading evaluation metrics which 

can indicate a very high accuracy even when no detection takes place. However, abnormal 

events usually should be more important than normal events. This necessitates metrics to 

reward different scores for True Positive (TP), True Negative (TN), False Positive (FP) 

and False Negative (FN) rates and use these to reflect detector performance. Furthermore, 

a well performing anomaly detector requires correct detection of the abnormal time 

location: if the error between the detected time and the actual abnormal time is too large, 

this can result in the method segmenting an incomplete signal out. This can be detrimental 

to the subsequent fault analysis. Therefore, an evaluation window is required to score every 

instance. Receiver Operating Characteristic (ROC) is a conventional metric used to 

evaluate the performance of anomaly detection [6]. The ROC is used to observe the true 

positive rate (detection probability) versus the false positive rate (false alarm probability) 

at various threshold setting of anomaly detection. The area under the ROC curve reflects 

the effectiveness of the detector. However, ROC cannot reward early detection. 

The Numenta Anomaly Benchmark (NAB) score [83] has been used to evaluate online 

anomaly detection against its ground truth. NAB labels ranges of data as anomalous, 

therefore, it can reward short period error detection and penalize detection outside the 

scoring window as Fig 10 shows and is defined as: 

𝑆 =
2

1 + 𝑒𝑐(𝑦−𝑛)
− 1 (4.23) 

   Where 𝑆 represents the performance score, parameter 𝑐 can control the rate of the 

drop, parameter 𝑛 can be used to adjust the zero-cross point and 𝑦 is the output of 
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anomaly detection. Accordingly, if a disturbance lasts for three consecutive cycles, the 

segmentation can be identified as an abnormal event [70]. Therefore, missing detection by 

more than three cycles should be heavily punished by evaluation metrics as Fig 4-7 shows. 

To reward a small detection error and heavily penalize missed detection, a narrow reward 

range is required – outside of the range will be gradually penalized – the accurate detector 

can be selected, and the curve is expected to decrease more gently at the beginning. 

Therefore, c=0.02, n=N*1.5 where N is the number of samples in one cycle. For multiple 

detection within a single detection window, only the earliest result is used to contribute to 

the score. The overall score is:  

𝑆𝑡 = 𝐴𝑇𝑃𝑆𝑇𝑃 − 𝐴𝐹𝑃𝑆𝐹𝑃 − 𝐴𝐹𝑁𝑆𝐹𝑁 (4.24) 

𝑁𝐴𝐵 =
𝑆𝑡 − 𝑆𝑡

𝑛𝑢𝑙𝑙

𝑆𝑡
𝑝𝑒𝑟𝑓𝑒𝑐𝑡

− 𝑆𝑡
𝑛𝑢𝑙𝑙

 (4.25) 

Where 𝐴  are weights for the confusion matrix elements to raise or lower the 

importance of true or false positives, and 𝑁𝐴𝐵 is the ultimate score considered with all 

instances. 𝑆𝑡
𝑝𝑒𝑟𝑓𝑒𝑐𝑡

 represents all the instances are detected with best performance and 

𝑆𝑡
𝑛𝑢𝑙𝑙 means the worst performance for all the instances. As the start of Section 4.3.3 

mentioned, True Positives (TP) should be much more important than True Negatives 

(TN). Therefore, the award of a TP should be higher than that of TN meaning 𝐴𝑇𝑃 ≫

𝐴𝑇𝑁. Therefore, 0 is selected for 𝐴𝑇𝑁 with all others set to 1. The NAB score can obtain 

0 for the worst case and 100 for perfect detection. Consequently, a NAB score of over 65 

can be considered acceptable [83].  
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Fig. 4-7 The NAB scoring window shape to visualize the reward zone and 

penalization zone  

4.4 Anomaly Segmentation Result 

This section will discuss the performance of different detectors using both the 

simulated and operational data described in Chapter 3.6. Since there are tradeoffs to 

consider with detection accuracy, a number of metrics are used for evaluation. 

4.4.1 Detection Performance Using Simulated Network Data 

To test the capability of segmentation, the simulated fault data (discussed in 3.5.1) is 

used; the data contains waveform data, and the ground truth of start point and end point 

of faults. In this experiment, the segmented time point will be used to compare with the 

ground truth, then the detection accuracy taking account of false alert rate is examined by 

ROC curve (discussed in Section 4.3.3), the detection error for different fault identification, 
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and the detection error of the start point and the end point are calculated using NAB 

(discussed in Section 4.3.3). The fault data from Section 3.6.1 is utilised to estimate the 

ROC curve shown in Fig 4-8.  

 

Fig. 4-8 ROC curve of comparing the proposed method against benchmarks  

From Fig 4-8, the proposed BCPQS takes larger area of the ROC curve which means 

it outperforms other detectors for the data with non-linear load noise. Furthermore, a 

threshold of 3.5% specified by [6] at the same false alarm rate can be calculated for the 

following performance comparison, and the thresholds are demonstrated in Table 4.1.  

BCPQS outperforms other detectors for all the fault recognition as Table 4.2 

demonstrates. KF is good at identifying constant impedance, but poor for arcing fault 

detection. Differential RMS and MAVSA get similar performance, as Table 4.2 shows, and 

are good at identifying significant over-current change. However, both Differential RMS 

and MAVSA are built on local statistical characteristics, such as RMS and Variance, which 
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can result in the false positive rate is too high for practical implementation [70]. Finally, 

the start point and the end point of the event are used to validate the capability of 

segmentation, as Table 4.3 shows. Generally, the start point of the abnormal events are 

easier for detectors to capture which may be caused by the way faults gradually end rather 

than abruptly change back to normal operation.  

Table 4.1 Thresholds of Detectors at 3.5% False Alarm Rate 

Detector BCPQS KF Differential RMS MAVSA 

Thresholds 0.0747 91.4024 0.0426 20963.88 

 

Table 4.2 NAB Score of Fault Detector Performance, at False Alarm Rate 3.5%, 

Starting Time Detection 

Fault type BCPQS KF Differential RMS MAVSA 

High Current 

Arcing Fault 
98.1 61.66 87.38 85.71 

Low Current 

Arcing Fault 
92.15 13.50 64.38 65.63 

Constant 

Impedance Fault 
92.66 85.86 83.84 85.43 

Capacitor 

Switching 
86.68 74.22 68.99 66.60 

Load Switching 96.65 97.74 96.52 96.51 
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Table 4.3 Anomaly Start and End Point Test, NAB Score at False Alarm Rate 3.5% 

Reference Point BCPQS KF 
Differential 

RMS 
MAVSA 

Start Point 94.46 53.86 74 73.79 

End Point 86.65 34.45 66.24 64.23 

 

4.4.2 Detection Performance Using Operational Data 

Using the set of continuous operational data described in Section 3.6.1.1.1, the 

proposed BCPQS method is compared against the Differential RMS method with results 

shown in Table 4.4. Because there are only 4 anomalous episodes in this data, there are too 

few cases to produce a ROC Curve. This also inhibits the selection of a threshold for the 

benchmark Differential RMS model: if the same thresholds as Section 4.41 are used to 

pick up the abnormal events, the proposed method will continue to work well but the 

benchmark method produces thousands of false alarms – a NAB score of 0.00525. This is 

because the benchmark methods work on the absolute magnitude of signal which can be 

sensitive to different voltage and current levels. Therefore, in order to continue to make a 

comparison the threshold used for the simulation data in Section 4.41 is supplanted with 

the fixed threshold proposed in [8] for use with Differential RMS – which raises its NAB 

score to 72.84. Under these conditions, both methods are able detect the four abnormal 

events with no false alarms. However, the BCPQS model detects the abnormal event 

earlier than the Differential RMS method as Fig. 4-9 shows. The resulting NAB scores are 

shown in Table 4.4 where BCPQS is demonstrated as the significantly better performer. 

This can be attributed to the BCPQS model building a distribution of plausible values of 

the next value [81] in the PQ current using the values observed since the last changepoint 

rather than a single prediction being compared to a single threshold. 
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Table 4.4 NAB Score for Operational Data Anomaly Detection 

NAB BCPQS Differential RMS 

Using threshold from 

simulated data at 3.5% false 

alarm rate 

95.07 0.00525 

Using the threshold from c 95.07 72.84 

 

 

Fig 4-9 Anomaly detection result for BCPQS benchmarked with Differential RMS 

for case 1 in operational data set  

4.5 Conclusion 

The contribution of this chapter has been to utilise online Bayesian Changepoint 

methods to automatically detect and segment operational fault and anomaly data collected 

from distribution networks under typical operation and realistically challenging simulated 

conditions. Compared with conventional monitoring approaches, the proposed method 

offers improved false alarm rates, earlier detection of disturbances and also provides 

associated severity metrics, in terms of observation likelihood, interpretable as fault stage 

development. In addition, this chapter has introduced a new metric for evaluating the 
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effectiveness of detecting anomalies online from continuous streams of distribution 

network monitoring data. Both operational data from a typical distribution network and 

simulations of various realistic challenges including high power electronic penetrations 

have been used to demonstrate its effectiveness against state of the art approaches.  

The segmentation algorithm, described in this chapter, supports online abnormal 

waveform extraction by accurately identifying only the periods of interest within 

continuously monitored data. However, the extracted signal is still difficult to interpret and 

analyse. Therefore, the next chapter will discuss how to identify the fault signatures using 

machine learning. 

 

 

  



97 

 

 

 

 

 

 

 Chapter 5 

 

 

 

Automated Distribution Network Fault 

Cause Identification with Advanced 

Similarity Metrics 
  



98 

 

5.1 Introduction 

Chapter 4 has discussed how continuous PQ data streams can be segmented to isolate 

periods of anomalous operation; however, the fault cause resulting from the selected 

anomaly waveform is difficult to interpret. As Chapter 3 showed, the ability to identify the 

causes of disturbances via PQ waveforms is beneficial from both an operational and an 

asset management perspective. Widespread recognition of the causes of faults over time 

can allow maintenance for affected assets to be planned and enhance the situational 

awareness for the network. Therefore, an appropriate fault cause identification approach 

based on the segmented PQ waveform is required.  

Traditionally, fault causes were identified through manual analysis of weather and fault 

behaviour [16]. The expert knowledge that defines this is difficult to standardize across 

cause identification and is time-consuming and therefore expensive to undertake. 

Additionally, the complex form faults can now take, makes this endeavour challenging to 

define new criteria for fault identification. High-resolution fault and disturbance recording 

equipment compounds this problem further, in that the waveform level representations 

they capture are too voluminous to interpret manually.  

In response to this, recent works have already moved on to using automatic classifiers: 

[47] has shown an application of knowledge-based features to accurately identify causes, 

however, the choice of an appropriate threshold still requires the intervention of a domain 

expert, which can hamper the scalability of this solution. The works [84][85] respectively 

proposed Artificial Neural Network (ANN) and Fuzzy Classification using field context 

data to identify outage causes via training with a large amount of examples. [86] utilised 

One Nearest Neighbour (1-NN) to rank and validate the relevant contextual and waveform 

features for transmission level fault identification, while [16] constructed a Deep Belief 

Network (DBN) to identify fault cause. The automated approaches outlined, such as ANN 

and DBN, required a large number of exemplars to train the classifier. Most DNOs would 
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consider archiving curated fault data marked up with diagnostic labels to be beyond their 

usual remit. Many state of the art classifiers [47][84][85][86] require thousands of examples 

to learn from which is time consuming and impractical. However, previous research 

[87][1][70] identified that many faults and failures can exhibit similar characteristics. This 

would be classed as “event similarity”. This provides a possibility to reduce the demand 

on the labelled examples. 

Event similarity could be used to automatically identify a recurring fault situation via 

patterns learned from this historical data [88], which can in turn be used for diagnosis and 

prognosis of recurrent incipient faults observed operationally [7][24]. Operational noise 

and variability make matching events to historical equivalents difficult, necessitating means 

of similarity to be developed specifically for PQ events. 

To support the application of a fault cause identifier for practical use on distribution 

networks, the following problems need to be addressed: extensive labelled fault exemplars 

are not always available for training classifiers, therefore, this Chapter proposes a means 

of inferring fault cause from operational data through analysing the most similar PQ events 

on a distribution network; fault signatures can vary in duration and magnitude even when 

they result from the same cause - the proposed approach eschews existing pointwise means 

of comparison to deal with similar fault cases that may be misaligned; Extraction of 

relevant features as input to a classifier requires extensive domain knowledge to inform an 

optimal selection that can accommodate natural variability and context. This is time and 

resource intensive and even the best feature extraction is still going to discard part of the 

waveform. The approach proposed here uses all of the data comprising the waveform 

rather than just a representative feature. 

This solution could automatically interpret a segmented disturbance waveform without 

the need for a large set of exemplars to train classifiers to diagnose faults. The resulting 

classifier can simply be embedded into the framework in Chapter 3 and propagate the 
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predicted fault context to maintenance crews who in turn can approach root cause 

investigations with higher situational awareness. The model capability and performance are 

demonstrated on the US Department of Energy (DoE) Power Quality data set which has 

been introduced in Chapter 3. This performance is compared with conventional classifiers 

drawn from recent literature.  

5.2 Similarity-based Fault Cause Identification  

PQ disturbance causes are multifactorial which presents difficulties in identifying 

features that represent particular faults [89][86]. The DoE PQ data set provides 166 expert 

labelled three-phase AC voltage and current signals at 0.96 and 3.84 kHz [46]; one such 

event is shown in Fig 5-1.  

  

Fig 5-1 Power Quality Waveforms for short term phase-earth overcurrent. The fault clears in 

0.042 sec; overhead arrester failure; isolated by recloser; clear weather; happened at 5/19/2005 

04:40:26.1990, Phase A 

Fig 5-1 shows an example of how a fault may manifest in waveform data. This fault is 

caused by weather – specifically, heavy snow on overhead lines. During the fault, distortion 

of one-cycle of voltage on phase A and neutral overcurrent can be observed. This can be 
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because the snow causes a short-circuit which conducts from the overhead line to ground. 

An approach of fault causes identification based on the PQ waveform will be discussed 

below. 

The Nearest Neighbour (1-NN) classifier using Euclidean distance as its similarity 

measurement has been previously validated to classify fault cause with a large amount of 

training data at transmission level [86]. Here, 1-NN based on a new similarity measurement 

is proposed to identify the recurrent fault and retrieve associated cause behind the PQ 

disturbance events but with only a small amount of training data. Fig 5-2 demonstrates the 

processing stages of the proposed similarity-based classification model.    

  

Fig 5-2. Online processing stages for the proposed automatic fault cause 

identification. 
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From Fig 5-2, the waveform processing output stages are associated with context 

obtained from fault recorders, such as isolation equipment operated, and weather 

providers such as localized environmental conditions. Since faults manifest as abrupt noise 

signals rather than changes in periodicity, the non-periodic component from the three-

phase current is extracted from the raw data through a pre-processing function before 

evaluating the waveform similarity between event pairs. Beyond this, the similarity of the 

associated context will be assessed through comparison with the context of historical 

events. Then a combined similarity measure of the waveform and the context will be 

inserted into the 1-NN to retrieve the closest historical event and infer the associated fault 

cause for reporting. The detailed function of these processing stages will now be described. 

5.2.1 Waveform Pre-processing 

To mitigate the influence of the sinusoidal waveform on the similarity, the fault 

components can be extracted via removing the sinusoid components. The approach to 

decoupling the sinusoidal components from the abnormal components of the signal is to 

superimpose faults over the prior normal cycle waveform [6] which is identical to the 

method in Chapter 3. Then the shape of the residual fault components can be used to 

evaluate the similarity. An example of the residual fault component is given in Fig 5-3. 

 

Fig 5-3. Residual fault components of event 2784 and event 2932 
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As Fig 5-3 shows, some faults, such as arcing, are usually triggered at the peaks [54] 

and when they initiate at peak or valley positions, this affects the sign of the residual. To 

solve this, the absolute value of the fault components is used to evaluate the similarity 

between pairs.  

5.2.2 Waveform Similarity Measurement 

The duration of instances of the same fault can be different. To eliminate the effect of 

this, a signal alignment technique is required. Dynamic Time Warping (DTW) is a dynamic 

programming based time algorithm which has been widely employed to calculate similarity 

between two signals with different durations [90], such as spoken word, by ignoring both 

global and local shifts in the time dimension. Assuming two post-processed temporal 

signals 𝑈 and 𝑉 with different duration: 

𝑈 = 𝑢1, 𝑢2 … 𝑢𝑛 … 𝑢𝑁 (5.1) 

𝑉 = 𝑣1, 𝑣2 … 𝑣𝑚 … 𝑣𝑀 (5.2) 

where 𝑁 are 𝑀are the length of the signals and 𝑁 ≠ 𝑀. To eliminate the effect of 

different durations, DTW uses a pairwise assessment of amplitudes as the distance between 

observations in 𝑈 with observations in 𝑉. The resulting N by M distance matrix is shown 

in Fig 5-4 and provides an optimum path from the bottom left to the top right which is 

called warping path, 𝑊𝑃(𝑘), traverses as:  

𝑊𝑃(𝑘) = 𝑤(1), 𝑤(2) … 𝑤(𝑘) … 𝑤(𝐾), 

max(𝑁, 𝑀) ≤ 𝐾 < 𝑁 + 𝑀 

(5.3) 

where 𝐾 is the length of warping path, 𝑘 is the index of the warp function and 

𝑤(𝑘) is the element of the warp path. To prevent information loss during calculating 

similarity, a minimized cumulative distances warp path, 𝐷(𝑊𝑃(𝑘)), is required. The 

cumulative distances warp path is also called the cost matrix: 
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𝐶𝑘 = ∑ 𝐷𝑖𝑠𝑡(𝑤(𝑗))

𝑘

𝑗=1

 (5.4) 

𝐷(𝑊𝑃(𝑘)) = 𝑀𝑖𝑛(𝐶𝑘) (5.5) 

where 𝐷𝑖𝑠𝑡() is a distance function, such as Euclidean distance; 𝐶𝑘 is the value of 

the cost function at the 𝑘th element of the warping path.  

 

Fig 5-4. DTW cost matrix formation for two signals Y and X of duration M and N; the 

warping path is defined as the lowest cost route from cell 1,1 to N, M 

As Fig 5-4 shows, the warping path starts from (1,1) and ends at (𝑁, 𝑀). A constraint 

requires the warping path to monotonically increase, so the update of the warping path is 

given as: 

𝐷(𝑊𝑃(𝑘 + 1))

= 𝐷(𝑊𝑃(𝑘))

+ min (𝐷𝑖𝑠𝑡(𝑖, 𝑗 + 1), 𝐷𝑖𝑠𝑡(𝑖 + 1, 𝑗 + 1), 𝐷𝑖𝑠𝑡(𝑖 + 1, 𝑗)) 

(5.6) 

    The minimized cumulative distance at K, 𝐷(𝑊𝑃(𝐾))
(𝑈,𝑉)

, represents the waveform 

similarity between signals 𝑈 and 𝑉. DTW will have a higher tolerance to phase distortion 
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compared to conventional pairwise means of assessing similarity since it carries out the 

alignment prior to the similarity assessment. 

5.2.3 Context Similarity Measurement 

With the context of the new fault extracted, contextual similarity can be evaluated. As 

Fig. 5-2 shows, the context can be extracted through time and location. This paper utilizes 

the same context data as in [84] [91], which are a timestamp, local weather, isolation 

equipment and phase affected, as Table I shows. Timestamp can provide season and time 

of day; interrupting device and fault phase can be provided by SCADA or IED devices; 

weather data can be provided by a weather service using the specified time and location. 

All of the proposed contextual data are commonly available. However, context usually 

takes the form of a label (which can be a categorical value) which makes similarity measures, 

such as Euclidean distance, unsuitable. To address this, contextual similarity based on the 

Hamming distance is used as a measure of how closely context is associated with an event. 

Hamming distance, expressed as 𝐷𝐻 , has been used to measure the distance between 

examples that have multiple categories attached to them [92] :  

𝐷𝐻(𝑈,𝑉)
=

1

𝑁
∑ |𝑌𝑖(𝑈)

− 𝑌𝑖(𝑉)
|

𝑁

𝑖=1

 (5.7) 

where 𝑌𝑖(𝑈)
, 𝑌𝑖(𝑉)

 are the categories that represent the context of signal 𝑈 and 𝑉 

respectively. N is the number of contextual features. The output of the Hamming distance 

is a discrete value. 

5.2.4 Combined Similarity 

Faults can manifest through the waveform but can also be jointly related to the context 

they occur in; therefore, combined similarity can be a beneficial approach to indicate the 
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relations between the fault being investigated and historical events. It is proposed to 

combine waveform similarity and contextual similarity as follows: 

𝐶𝑜𝑚𝑏(𝑈,𝑉) =
𝐷𝐻 (𝑈,𝑉)

max (𝐷𝐻
′)

∙
𝐷(𝑊𝑃(𝐾))(𝑈,𝑉)

max (𝐷(𝑊𝑃(𝐾))
′
)
 (5.8) 

where 𝐷𝐻
′  is the contextual similarity between historical current events and 

𝐷(𝑊𝑃(𝐾))
′
 is the corresponding waveform similarity. 

The weights used for waveform similarity and contextual similarity are identical. 

However, waveform and contextual similarity contain different amounts of useful 

information. Therefore, the weights might affect the final result. To demonstrate, weights 

are added to the combined similarity as: 

𝐶𝑜𝑚𝑏(𝑈,𝑉) = (
𝐷𝐻(𝑈,𝑉)

max(𝐷𝐻
′)

)𝑤 ∙ (
𝐷(𝑊𝑃(𝐾))

(𝑈,𝑉)

max (𝐷(𝑊𝑃(𝐾))
′
)

)1−𝑤 
(5.9) 

Where 𝑤  is weight of context similarity which is within [0,1]. 
𝐷𝐻(𝑈,𝑉)

max(𝐷𝐻
′)

 is the 

normalized context similarity and 
𝐷(𝑊𝑃(𝐾))

(𝑈,𝑉)

max(𝐷(𝑊𝑃(𝐾))
′
)
 is normalized waveform similarity. The 

result of a sensitivity analysis for this is shown below: 

 

Fig 5-5. Weight analysis for waveform similarity and contextual similarity 
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As Fig 5-5 shows, the result of using waveform similarity alone is significantly worse 

than the result of using the context similarity alone. However, higher or identical weight 

of waveform similarity can result in a slightly higher accuracy than higher weight of context. 

This can be because the variance of context similarity is higher than waveform similarity, 

and the waveform similarity carries some very important information. Generally, the 

weight does not affect the classification result a lot. Therefore, to simplify the similarity, 

equal weights are used. 

5.3 Case Study: Recurrent Fault Identification 

In order to validate that the proposed similarity metric can be used to express the 

relationship between PQ event causes and their waveforms as well as the relationship 

between PQ event causes and their contextual features, the EPRI DoE Power Quality data 

set is used [46]. As Chapter 3 described, the data was sourced from various power quality 

monitors, digital fault recorders, microprocessor relays, and remote terminal units (RTUs). 

This provides 3-phase voltage and current measurements sampled at 0.96 kHz and 3.84 

kHz for 334 power quality fault instances. Among these, 166 faults and disturbance records 

have been labelled by experts according to their cause, environmental conditions and 

associated failed plant. Two cases are presented to highlight the practical effectiveness of 

the metric: the first case validates that the proposed waveform similarity measurement can 

identify shape-based recurrent faults. The second case is to validate that the proposed 

contextual similarity can identify recurrent faults based on context. Both cases use the same 

pair of events, shown in Fig 5-6, for comparison purposes; its residual fault component 

has been given in Fig 5-3. These two faults in Fig 5-6 (a) and (b) came from the same 

substation (site 14 in the DoE set), resulted from a terminator failure and the fault was 

interrupted by a circuit breaker. However, the time interval between these two events in 

Fig 5-6 is more than one year, the incident report may have been discarded in this time, 

and numerous subsequent events may have resulted with the cause being forgotten, 
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preventing domain knowledge from facilitating fault analysis and therefore resolution. 

Consequently, the PQ waveform of these two events is very similar although it can be seen 

that event 2932 from Fig 5-6 (a) begins half a cycle earlier than event 2784 from Fig 5-6 

(b). It is quite common to see incipient faults, such as arc faults in underground cables [70], 

begin at different parts of the cycle, which would have rendered a pointwise similarity 

metric ineffective.  
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(a) The first terminator failure happened at 14th July 2005 

 

(a) The second terminator failure happened at 3rd Oct 2005 

Fig 5-6 two PQ disturbance events with a high similarity. Although the cause is the same in 

both cases, a pairwise comparison would have overlooked this due to differences in the duration 

and cycle position of fault initiation [46]. 
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5.3.1 Shape-based Signal Similarity 

Using the two examples from Fig 5-6, the signal similarity evaluates the waveform 

shape differences between two PQ events. Their waveform similarity is evaluated as 0.99 

and the maximum value is 1, indicating highly similar events which is in agreement with 

the actual fault causes. 

5.3.2 Contextual Similarity 

The fault records used contain associated information which is detailed in Table 5.1. 

Although the gap between the two faults is more than one year, they occur in similar 

contexts, such as the time of day and location. The only difference is the season, but the 

associated ambient temperature on a given day in North America may be the same in 

Autumn and Winter so this could be uninformative. For this case, the proposed method 

has calculated the contextual similarity between the two events in Fig 5-6 as 0.8 which is 

four identical features out of five known features. 

Table 5.1 Fault Context Comparison for A Pair of Recurrent Faults  

FAULT FAULT 1 FAULT 2 

SEASON SUMMER FALL 

FAULTED PHASE PHASE C PHASE C 

DAY TIME 12:25:31 11:12:09 

INTERRUPTING DEVICE BREAKER BREAKER 

WEATHER UNKNOWN UNKNOWN 

LOCATION SITE 4, FEEDER 18 SITE 4, FEEDER 18 

CONTEXTUAL SIMILARITY 0.8 

 

5.4 Fault Cause Identification Benchmarks 

Using supervised classifiers to automatically identify fault cause [93] still requires 

domain knowledge to select appropriate input features. Past works used two broad 

categories of features to identify fault causes in distribution networks: Waveform-based 
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features [47] and contextual features [84] [91]. The waveform-based features arise from 

field experience, for example, animal contact is likely to only affect a single phase owing 

to the native of physical contact. By the same reasoning, a vehicle pole impact can result 

in multiple phases being affected through the resulting collision of overhead conductors. 

From these examples, the number of faulted phases can be inferred as a useful indicator 

of fault cause. These features extracted from domain knowledge on the DoE data in this 

Chapter are shown in Table 5.2 and have been previously discussed in [47]. Other prior 

work [84] has incorporated fault context, such as weather, season, faulted phase and time 

of day to identify the fault cause. Examples of this are listed in Table 5.3. To demonstrate 

the performance benefits of the proposed classifier, it will now be benchmarked on 

operational data against the conventional classifiers with both input features.  

Table 5.2 Waveform Characteristics Used for Fault Cause Identification [47] 

SYMBOL EQUATION DESCRIPTION 

𝑅1 MAX (𝐼𝑎𝑚𝑎𝑥, 𝐼𝑏𝑚𝑎𝑥, 𝐼𝑐𝑚𝑎𝑥)

MEDIAN (𝐼𝑎𝑚𝑎𝑥, 𝐼𝑏𝑚𝑎𝑥, 𝐼𝑐𝑚𝑎𝑥)
 THE NUMBER OF FAULTED PHASES 

𝑅2 MEDIAN (𝐼𝑎𝑚𝑎𝑥, 𝐼𝑏𝑚𝑎𝑥, 𝐼𝑐𝑚𝑎𝑥)

MIN (𝐼𝑎𝑚𝑎𝑥, 𝐼𝑏𝑚𝑎𝑥, 𝐼𝑐𝑚𝑎𝑥)
 THE NUMBER OF FAULTED PHASES 

𝐼𝑓 𝐼𝑝𝑘𝑚𝑎𝑥 − 𝐼0𝑝𝑘 FAULT CURRENT COMPONENT 

𝑛𝑓 

∑
𝐼𝑝𝑘(𝑗)

𝐼0𝑝𝑘

𝑛

𝑗=1

 FAULT DURATION 

𝛼𝐴𝑇𝑇 𝐼𝑝𝑘𝑚𝑖𝑛

𝐼0𝑝𝑘
 FAULT CURRENT ATTENUATION 

E ENERGY(WAVEDEC(VNORM)) FREQUENCY DOMAIN ENERGY 

PERCENTAGE 

𝐼𝑎𝑚𝑎𝑥 𝐼𝑏𝑚𝑎𝑥 𝐼𝑐𝑚𝑎𝑥– maximum value of the current phase A, B, C 

𝐼𝑝𝑘𝑚𝑎𝑥- maximum value of peak point of phase current 

𝐼0𝑝𝑘- normal operation peak current, here use the peak current of first cycle current 

𝐼𝑝𝑘𝑚𝑖𝑛- minimum value of peak point of phase current 
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Table 5.3 Contextual Features Used for Fault Cause Identification [84] 

Feature Value 

Interrupting Device Recloser, Fuse, Breaker, Sectionlizer, Switch 

Weather clear weather, thunderstorm, snow, windy 

Faulted Phase A, B, C, BC, AC, AB, ABC 

Season spring, summer, fall, winter 

Day time day, night  

Day time: 6:00 am – 6:00 pm 

Spring: Mar – May; Summer: June – August; Fall: Sep – Nov; Winter: Dec – Feb 

5.5 Automated Fault Cause Identification 

The analysis in Section 5.4 has demonstrated the use of conventional inputs in fault 

classification, including waveform-based features and contextual features, and explained 

why these have been selected. However, these features were investigated only with a large 

number of exemplars and none of the previous works identifies an appropriate classifier 

that can work using minimal exemplars. To address this, the following section will 

investigate the predictive power of different fault event features and performance of 

different fully automated classifiers trained on a relatively small number of fault examples. 

These will employ the proposed similarity-based classifier benchmarked against the same 

classifiers with the waveform-based features, contextual features as well as a combination 

of both. No user tunable parameters are required, which can help to extend this approach 

to any fault in future, even for low-prevalence faults. The DoE data is labelled according 

to fault cause, which provides a means of validating the effectiveness of these classifiers. 

The low prevalence of faults coupled with the small number of exemplars simulates the 

realistic environment for fault identification. Five categories of faults are considered from 

a two-year period: Tree (41 examples), Equipment (75), Animal (11), Vehicle (21) and 

Lightning (17). To test the classifiers with waveform-based and contextual input features, 

leave-one-out cross validation, which is appropriate for validating small data sets, is used 

to understand the level of performance that might be expected in operational use. Leave-



113 

 

one-out cross validation is an extreme approach of the k-fold cross validation. Leave-one-

out cross validation uses every event as a test set in turn, and then train the model using 

the remaining events. In this way, every event can be fully used; therefore, this is 

appropriate for validating small data sets. Table 5-4 and Table 5-5 show both the combined 

and individual class accuracies for all classifier tested. 

Furthermore, the classifiers tested are ANN[2], DBN[16], Decision Tree, Discriminant, 

Support Vector Machine (SVM), KNN[86] and Ensemble methods[94][95], these 

classifiers were either used in past literature or can be applied for minimal data. And the 

architecture of these classifiers has been optimized, e.g. the ANN used has 4 hidden layers 

to connected with inputs, and each layer has 500 neurons, which are fully connected by 

weights. The activation function for each layer is set as an ELU (Exponential Linear Unit) 

[22]. To achieve a stable accuracy at the end, 100 epochs are pre-set to validate the neural 

network. The optimisation method is chosen to be ADAM [23] which is a kind of first-

order gradient descent optimization method, selected for its fast convergence properties.  

Furthermore, two common evaluation metrics, Overall Accuracy (ACC) and F-score 

are used to evaluate the performance [86]. ACC can indicate the overall performance of 

the classifiers, but is not adequate for an unbalanced dataset (where the proportions of 

exemplars are unequal), whereas F-score can reflect the confusion matrix for every class 

regardless of how prevalent fault cases are. The formula of them are demonstrated as:  

Overall Accuracy = 
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 +∑ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 (5.10) 

F-score = 
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5.11) 

Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (5.12) 

Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5.13) 
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5.5.1 Classifier Design for Maximum Accuracy 

Prior research [47][84] used waveform-based features and contextual features 

respectively to identify fault causes in distribution networks. Table 5.4 demonstrates the 

performance of different classifiers with both features and the combination of the two. 

Regardless of the classifiers chosen, the rank of the accuracy metrics show that the 

contextual features perform better than waveform-based features, but worse than the 

combination of the two. These will now be described. 
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Table 5.4 Comparison of Choice of Model and Feature Set for Fault Cause Classifier 

Classifier Feature Set 
F-score Overall 

Accuracy Tree Equipment Animal Vehicle Lightning 

ANN [84] 
Waveform 

Features [47] 
18.42% 32.76% 0% 8.33% 19.27 19.27% 

Bagged Tree 
Waveform 

Features [47] 
67.47% 79.49% 40% 66.67% 52.94% 69.88% 

1-NN [86] 
Waveform 

Features [47] 
67.42% 66.67% 20% 60.47% 48.48% 61.44% 

ANN [84] 

Contextual 

Features [84] 

[85] 

22.86% 28.8% 10.81% 22.64% 12.77% 22.22% 

Bagged Tree 

Contextual 

Features [84] 

[85] 

78.57% 78.67% 60% 88.37% 75.68% 78.9% 

1-NN [86] 

Contextual 

Features [84] 

[85]  

65.71% 82.67% 76.19% 86.38% 63.86% 76.6% 

ANN [84] 

Combined 

Features [84] 

[47] 

22.78% 39.62% 21.26% 21.05% 14.04% 24.09% 

DBN [16] 

Combined 

Features [84] 

[47] 

0% 62.24% 0% 0% 0% 43.43% 

Bagged Tree 

Combined 

Features [84] 

[47] 

77.92% 82.72% 73.68% 85% 82.35% 81.32% 

1-NN [86] 

Combined 

Features [84] 

[47] 

80.95% 86.9% 66.67% 79.07% 83.33% 82.5% 
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Table 5.5 Comparison of Choice of Similarity Measure for Fault Cause Classifier 

Classifier 
Similarity 

Measure 

F-score Overall 

Accuracy Tree Equipment Animal Vehicle Lightning 

1-NN  
Waveform-

based similarity 
75% 65.73% 33.33% 52.63% 61.54% 63.86% 

1-NN  

Contextual 

similarity using 

Hamming 

distance 

69.44% 85.14% 76.19% 90.48% 65.31% 78.9% 

1-NN  
Combined 

Similarity 
89.16% 90.54% 75% 88.38% 94.12% 89.15% 

 

5.5.1.1 Waveform Characteristics 

Although 1-NN and Bagged Tree can identify the faults to a reasonable level (> 60%) 

in Table 5.4, some fault classes with significant waveform variability (e.g. animal and 

vehicle) obtain a low F-score. Some of the fault events in the DoE data set manifest over 

several waveform occurrences. Although the root cause is the same, the waveform shapes 

can vary drastically. An example is demonstrated in Fig 5-7. The events in Fig 5-7 recur 

consecutively within a short period and they are both caused by animals; both occur in 

similar contexts but the waveform looks significantly different. However, through 

observing the whole dataset, the animal related faults in DoE data set all occur around 

April to August and frequently occur under fair weather, which means the contextual 

features can be a more powerful predictor than waveform on these faults. Generally, the 

waveform characteristics alone can be difficult to use to identify fault causes, especially for 

faults with significant variability.   
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Fig 5-7 Two consecutive animal fault episodes occurring less than a second apart; the 

waveform is dissimilar but context matches exactly 

5.5.1.2 Contextual Features 

Compared to waveform-based classification alone, the use of contextual features alone 

can improve the overall accuracy by approximately 10% for 1-NN (from 61.44% to 

76.66%) and Bagged Tree (from 69.88% to 78.9%) as Table 5.4 shows. Generally, 

contextual features are considered powerful predictors of fault causes [84], however, the 

accuracy for contextual features alone is sometimes not enough in practical 

implementation as Table 5.4 shows. 

5.5.1.3 Combined Features 

Table 5.4 shows that the classifiers with the combined waveform derived inputs, 

augmented with features based on context, generally outperform the classifiers that that 

only use the individual feature sets alone; e.g. 1-NN, Bagged Tree and ANN achieve 82.5%, 

81.32% and 24.09% which improve approximately 6%, 2% and 2% respectively. DBN 
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cannot work with minimal exemplars which is not taken into account (all the data are 

categorised into one class). This shows that waveform and context together carry 

additional information to support accurate classification.  

5.5.2 Comparison of feature-based and similarity-based method 

To investigate the predictive power of the proposed similarity measures compared with 

conventional waveform-based features and contextual features, three comparison 

experiments are carried out. As Table 5.5 demonstrates, if machine learning methods with 

the domain knowledge listed in Table 5.2 are used to classify the fault causes, a reasonable 

overall ACC (>60%) is obtained with a 1-NN classifier. Using the proposed similarity 

measure can enhance classifier accuracy by 2% over an equivalent classifier in Table 5.4 

using Euclidean distance on conventional waveform features. Furthermore, as the 

proposed waveform similarity is directly extracted from the waveform shape, it removes 

the need to select features for fault identification. Moreover, the contextual similarity-based 

1-NN can enhance approximately 2% compared with contextual feature-based 

methodology. Furthermore, the overall best classification accuracy, 89.15%, comes from 

using the combined similarity measure, which improves accuracy by approximately 7% 

over conventional combined features. This also removes the need to select statistical 

features from the waveform. Every fault class attains an F-score of greater than 75%. 

Generally, the similarity based method can be advantageous regardless of waveform or 

contextual inputs used. Fault diagnosis using the combination of both similarity measures 

still can achieve higher accuracy than using one alone. 

5.5.3 Classifier Performance with Minimal Available Data  

Instead of waiting to collect a large number of exemplars, utilities may prefer an 

intelligent classifier that works with minimal available data in order to gain value from 

monitoring as quickly as possible. Suggested in Section 5.5, and as Table 5.4 and Table 5.5 

show, regardless of the features chosen, Neural Networks, including ANN and DBN, have 
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difficulty in classifying fault cause with the minimal data available, with the test result being 

worse than a random prediction, such as 24.09% overall accuracy for ANN and 43.43% 

overall accuracy for DBN using combined features. Having optimized the network to 

consist of 4 layer and 500 neurons for each layer, performance is still low. Among the other 

classifiers, Bagged Tree and 1-NN achieve the best results using conventional waveform 

and contextual features, with the highest accuracy achieved around 82% and 89% 

respectively. Among the five fault classes, lightning related faults achieved the best F-score 

even though the exemplar support is not the highest. Therefore, 1-NN using the proposed 

similarity can provide a reliable fault cause classification without manual intervention, 

knowledge of which can be used to expedite failure rectification.  

5.5.4 Performance Impact of Sampling Frequency  

In practice, multiple sampling frequencies are used to record PQ events, including 0.96 

kHz and 3.84 kHz [46][67]. For conventional fault classification, the sampling frequency 

can affect the waveform feature extraction then further affect the classification result. As 

Table 5.6 shows, the events recorded at higher sampling frequency can achieve 94.44% 

overall classification accuracy with the proposed similarity using 1-NN – an almost 20% 

gain which justifies the higher resolution of the data.  

Table 5.6 Comparison of Waveform Sampling Frequencies 

Sampling Frequency Overall Accuracy 

960 Hz 77.58% 

 3840 Hz 94.44% 

 

5.6 Conclusion 

This chapter has contributed a new similarity measure to identify recurrent faults and 

created a classification method to automatically identify fault causes associated with Power 



120 

 

Quality events. The highest accuracy achieved with the new approach is 89.15%, using a 

combination of waveform and contextual similarity and retaining high accuracy even for 

low-prevalence events. Possible improvements to enhance the accuracy of the 

classification may be in developing an automatic exemplar generation model to increase 

historical events for every eventuality, which allows power quality related faults to be 

identified during the operational implementation without waiting to accrue a significant 

archive of labelled examples.  
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6.1 Introduction 

The previous chapters have demonstrated an approach to automatically identifying 

fault causes in a distribution network, which follows other industries’ pursuit of leveraging 

data to enhance operational understanding. The barrier to this is that in order to classify 

such faults, a set of labelled faults are required for training in the first instance. Explicit 

labelling is time consuming and requires expertise to identify and articulate fault 

taxonomies, which can be difficult when the industry records faults manually and 

infrequently – many automatic fault cause identification related projects are conducted 

without extensive labelled data. Although a possible approach to the problem described in 

last chapter is to use a similarity-based method which can work for minimal exemplars, 

more exemplars can indeed help the classification further enhance the accuracy. Therefore, 

this chapter provides a solution to automatically extract labels from other sources which 

will increase the amount of exemplars for training.  

6.2 Maintenance Tickets 

Ticket based maintenance records and directives exists in a number of service and 

infrastructure industries. In distribution network operation, often attached to faults are 

incident or maintenance tickets submitted for validation or work scheduling purposes. 

These too are typically free text, with a description provided by the individual who filed 

them and as such will not contain standardized terms or descriptions; instead, it will 

contain the perspective of the filing individual making it susceptible to ambiguity, personal 

perspective and hence unusable for supervised machine learning of fault diagnoses; 

however, these free text usually contain numerous terms relating to useful expert 

knowledge, such as procedure of past failures or outages, the inspection of each piece of 

equipment or even transcribed phone conversations with customers. One well-curated 

example of such a set of incidents, is the EPRI/DoE National Database of Power System 

Faults [2], 13 examples of which are given in Table 6.1.  
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Table 6.1 Maintenance records, fault cause labels and associated weather 

EventId Cause Weather Details (free text) 

0001 Tree Clear Weather 
Fault caused line recloser lockout. Tree 

Outside Right of Way (Fall/Lean On Primary) 

0004 Tree Clear Weather 
Fault caused line recloser lockout. Tree 

Outside Right of Way (Fall/Lean On Primary) 

0005 Tree Clear Weather 
Fault caused line recloser lockout. Tree 

Outside Right of Way (Fall/Lean On Primary) 

0007 Tree Clear Weather 
Fault caused line recloser lockout. Tree 

Outside Right of Way (Fall/Lean On Primary) 

3042 Equipment Unknown Equipment, Device UG, Damaged. 

0021 Equipment Clear Weather 
Overhead Insulator Failure. BROKEN 

INSULATOR 

0022 Equipment Clear Weather 
Overhead Insulator Failure. BROKEN 

INSULATOR 

0062 

Undetermi

ned 
Raining Storm 

0064 

Undetermi

ned 
Raining Storm 

0067 Tree Thunderstorm Tree/Limb Growth 

0065 Tree Thunderstorm Tree/Limb Growth 

0068 Tree Clear Weather VINES ON TRANSFORMER 

2760 Unknown Unknown 
Short duration variation. No outage 

information found. 

3048 Equipment Unknown Equipment, Capacitor Station, Damaged. 

 

This data set is unique in that it provides both the maintenance report (‘Details’) as 

free text as well as a ground truth classification (‘Cause’); operationally, providing these 

classifications would be an unfeasible effort, so a means of automatically inferring these 

from the routinely available maintenance notes would be valuable, and this data set 

provides the means of validating such a method. 
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6.3 Documentation Topic Models 

In machine learning, a topic model is a statistic model which is designed to extract the 

abstract topic from a collection of documents. Topic models have previously been used to 

understand the underlying problems from unstructured ticket text in distribution networks: 

[96] leverages content in maintenance records of Manhattan electric networks to rank the 

most vulnerable areas. [97] used Hidden Markov Model based models to analyse 

operational free-text data to aid fault identification. This chapter demonstrates an 

application of leveraging free-text database in power networks to automatically label PQ 

events by extracting semantic information from the free-text maintenance tickets. Without 

a topic based model to extract sematic information, the labelling of fault occurrences using 

selected keywords from maintenance tickets would be prone to spelling, grammatical, style 

and terminology aberrations which could only be overcome by enforcing strict 

maintenance reporting guidelines which provides an additional burden on the field 

operative. A representation popular in the Natural Language Processing and Information 

Retrieval communities for many years, the ‘bag of words’ is highly suited to incident tickets 

and operative fault reports [96]: this entails ‘stopping’ the document (ticket) by removing 

common words, stemming all verbs and adverbs (which turns them into a corresponding 

noun) and leaves the document as a vector of word occurrence counts. This approach 

yielded a number of widely used document similarity metrics based on distances between 

these vectors that reflected commonality of terms. Subsequent probabilistic formulations 

of this approach could be used to imply polysemy and synonymy among terms making 

them ideal for identifying documents with the same sentiment but different term usage [98] 

– a characterizing problem of maintenance reports.  

Latent Dirichlet Allocation (LDA) [99] is a probabilistic model which can extract 

semantic representations using a hypothetical topic distribution. The model assumes each 

document can be represented by a different mixture of latent topics, and each topic can be 
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characterized by a distribution over words. To achieve this, LDA model utilises the 

following probability distributions: 

• Dirichlet distribution based on hyperparameter 𝛼 is used to generate a mixture 

topic distribution 𝜃, which is multinomial distributed 

• Multinomial distribution 𝜃  is used to select the topic 𝑧  of each of 𝑀 

documents 

• Dirichlet distribution based on hyperparameter 𝛽  is used to determine 

distribution over 𝑁  words for the selected topic 𝑧 , which generates the 

probability for word 𝑤  

The diagram is demonstrated as: 

 

Fig 6-1 Plate notation for LDA model; dark circle represents observations 

The equation can be expressed as: 

𝑝(𝐷|𝛼, 𝛽) = ∏ ∫ 𝑝(𝜃𝑑|𝛼)

𝑀

𝑑=1

∏ ∑ 𝑝(𝑍𝑑𝑛|𝜃𝑑)𝑝(𝑤𝑑𝑛|𝑍𝑑𝑛, 𝛽)𝑑𝜃𝑑

𝑍𝑑𝑛

𝑁𝑑

𝑛=1

 (6.1) 

Where 𝛼  and 𝛽  are the hyper-parameters of two Dirichlet distribution; 𝑑  and 𝑀  

represent the current index and total number of documents, 𝑛 and 𝑁 represent the 

current index and total length of words in a document. After an appropriate optimization, 

such as EM algorithm [99] and Gibbs Sampling [100], the topic distribution can be 

obtained. 
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The use of a Dirichlet distribution with parameter α, selects the proportion or composition 

θ of topics in a given document: 

𝑝(𝜃|𝛼) =
𝛤(∑ 𝛼𝑖

𝑀
𝑖=1 )

∏ 𝛤(𝛼𝑖)
𝑀
𝑖=1

∏ 𝜃
𝑗

𝛼𝑗

𝑀

𝑗=1

 (6.2) 

While β similarly parameterizes a conditional Dirichlet distribution of words over each 

topic. 

6.4 The Relation Between Expert Labels and Maintenance Ticket Content 

Using LDA to process maintenance reports, a representation of the topic distribution 

can be obtained. Then a small selection of state of the art classifiers were trained with to 

validate the relations between expert labels and maintenance tickets using DoE data [50]. 

The detail is demonstrated in Fig 6-2. 

 

Fig 6-2 an example of using LDA to extract labels from document using supervised 

learning 

Each maintenance record is converted to the bag of words representation and then the 

resulting word vector is run through the LDA model to get a topic vector associated with 

each fault record and feed them in a pre-trained classifier produce its label. For predicting 

the expert label from just a topic vector, Table 6.2 shows the accuracy (the ratio of true 

positives plus true negatives to all classifications made) of 10 classification models, all of 

which work on different discriminatory principles and decision surface shapes. 
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Additionally, the number of latent topic variable is selected as five, which could be 

interpreted as fault causes types.   

Table 6.2 Classification Performance of 5-Topic LDA Model 

Classifier 

Maintenance 

Ticket Label 

Prediction 

Accuracy 

Parameters 

Ada Boosted Tree 54.7% 
Learning rate =1, 

The maximum number of estimators=50 

Decision Tree 76.2% 

The minimum number of samples required to 

split an internal node=2, 

The minimum number of samples required to 

be at a leaf node=1 

Gaussian Process 61.9% Alpha=1e-10  

Linear SVM 59.5% 
penalty =’l2’, loss= ‘squared_hinge’, 

tolerance=1e-4, Regularization parameter =1 

Naive Bayes 45.2% variance_smoothing = 1e-9 

Nearest 

Neighbour 
78.6% 

Number of neighbors=5, Weights= 

‘uniform’, Leaf size= 30, Metric=’minkowski’ 

Neural Network 69% 

Layer =1, hidden_layer_sizes = 100, 

activation=’relu’, solver=’adam’, alpha = 

0.001, learning rate=0.001, Maximum number 

of iterations=200, Tolerance=1e-4, 

Momentum=0.9, 

QDA 45.2% Regularizes the covariance=0 

RBF SVM 66.6% 

Regularization parameter=1, Kenel=’rbf’, 

Degree of the polynomial kernel function=3, 

Gamma=scale, Tolerance=1e-3, 

Random Forest 73.8% 

The number of trees in the forest=100, 

The minimum number of samples required to 

split an internal node=2, 

The minimum number of samples required to 

be at a leaf node=1, 

The minimum weighted fraction of the sum 

total of weights (of all the input samples) 

required to be at a leaf node=0 
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Using a 25% held out set from a selection of 168 labelled examples, Table 6.2 shows that 

given an appropriate classifier choice, the topic composition vector provided by the LDA 

model can be related, and is therefore implicit of the sentiment conveyed in the 

maintenance report since it corroborates with the label provided by the domain expert in 

the DoE data set. The relation has been proved; however, the supervised methods results 

in another demand on labels for maintenance ticket which is not acceptable. Therefore, 

the next logic step is to further reduce the burden of collecting labelled maintenance tickets 

by replacing the supervised classifiers with an unsupervised classifier which does not 

require labelled documents. 

6.5 Exemplar Generation Using Fault Incident Ticket 

As Chapter 3 described previously, the associated labels can be extracted from 

maintenance tickets during offline implementation. To reduce the burden of pre-

processing maintenance tickets data, an unsupervised classifier is required. The fault labels 

and the associated maintenance tickets are free-text in nature; therefore, a semantic 

meaning extracted from both documents should be identical; however, the order of words 

is not taken into account because of Bag-of-Word. This provides a possibility to utilise two 

documentation topic models to extract both semantic meaning from maintenance records 

and expected labels, then a document similarity measure can be used to match the most 

semantically similar maintenance records and labels. Details of this are given in Fig 6-3.  
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Fig. 6-3. Process for automatically labelling faults with maintenance records 
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As Fig 6-3 shows, the stop words are removed and remaining words are stemmed, and 

the topic distributions are generated for the labels and maintenance reports, then the ticket 

similarities are calculated using semantic similarity. Fig 6-3 shows how the topic 

distribution would be generated and then associated with fault records – the resulting fault 

would be automatically labelled with the most similar given topic. As with the data pre-

processing used in [50], both labels and maintenance tickets are converted into topic 

distributions by using the same bag of words and LDA model; then the maintenance tickets 

will be associated through calculating their semantic similarity in Vector Space Model [101]. 

The maintenance tickets and labels can be expressed as the vectors: 

𝐿 = 𝑙1, 𝑙2, 𝑙3 … 𝑙𝑗 … 𝑙𝐽 (6.3) 

𝑀 = 𝑚1, 𝑚2, 𝑚3 … 𝑚ℎ … 𝑚𝐻 (6.4) 

Where 𝑙𝑗 and 𝑚ℎ denotes the 𝑗th label and ℎth maintenance ticket. Each label and 

maintenance ticket also can be decomposed into topic distribution through extracting 

semantic features by LDA model, which can be expressed as: 

𝑙𝑗 = 𝑓1, 𝑓2, 𝑓3 … 𝑓𝑛 (6.5) 

𝑚ℎ = 𝑓1
′, 𝑓2

′, 𝑓3
′ … 𝑓𝑛

′ (6.6) 

The relations between each pair can be evaluated by using the cosine similarity as 

demonstrated below: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝑙𝑗 , 𝑚ℎ) =
∑ 𝑓𝑛

𝑁
𝑛=1 𝑓𝑛

′

√∑ 𝑓𝑛
2𝑁

𝑛=1
√∑ 𝑓𝑛

′2𝑁
𝑛=1

 
(6.7) 

Where 𝑓𝑛 and 𝑓𝑛
′
 are the 𝑛th topic probability for 𝑙𝑗 and 𝑚ℎ.  

In this case, each event has five possible fault causes. The most similar label will be 

attached to the maintenance ticket. Additionally, since both the maintenance tickets and 

fault records, such as historical fault waveform and their context, can usually be associated 
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by using the timestamp and the location for the fault. Therefore, the labelled fault records 

data can be synthesized with these relations as Fig 6-4 demonstrates.  

 

Fig 6-4 the relation between maintenance tickets, fault records and domain expert 

assigned labels 

6.6 Automated Labelling Performance 

The key barrier to applying supervised machine learning techniques for fault diagnosis 

in power systems applications is the effort required to produce a sets of labelled exemplars 

for models to learn from. This section demonstrates how a topic model implemented with 

realistic data to extract labels for the faults. The first 14 examples of similarity calculation 

are demonstrated in Table 6.3: 1 represents perfectly relevant and 0 means completely 

irrelevant. Most events are strongly relevant to one topic. However, events 3024, 0021, 

0022 and 3048 are attributed to both Vehicle Impact Fault (VIF) and Equipment Caused 

Fault (ECF), and more strongly associated to ECF. This is because many VIF events in 

the operational dataset usually damages the poles and overhead line. The most similar label 

for faults is used to train the cause classifiers. Since maintenance tickets are produced as a 

consequence of routine operational procedure, this removes the bottleneck associated with 

translating domain knowledge into machine learned profiles without the need for manual 

labelling.  
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Table 6.3 The Semantic Similarity Between Maintenance Reports and Labels for First 

14 Cases,  T – Tree, A – Animal, L – Lightning, V – Vehicle, E – Equipment 

To demonstrates the effectiveness of the exemplar generation model, the confusion 

matrix from a classifier trained using the topic generated labels and actual labels is given in 

Table 6.4. 

  

Event id Details (free text) T A L V E 

0001 

Fault caused line recloser lockout. Tree 

Outside Right of Way (Fall/Lean On 

Primary) 

0.97 0.15 0.20 0.09 0.08 

0004 

Fault caused line recloser lockout. Tree 

Outside Right of Way (Fall/Lean On 

Primary) 

0.97 0.15 0.20 0.09 0.08 

0005 

Fault caused line recloser lockout. Tree 

Outside Right of Way (Fall/Lean On 

Primary) 

0.97 0.15 0.20 0.09 0.08 

0007 

Fault caused line recloser lockout. Tree 

Outside Right of Way (Fall/Lean On 

Primary) 

0.97 0.15 0.20 0.09 0.08 

3042 Equipment, Device UG, Damaged. 0.22 0.15 0.22 0.93 0.94 

0021 
Overhead Insulator Failure. BROKEN 

INSULATOR 
0.21 0.14 0.21 0.93 0.94 

0022 
Overhead Insulator Failure. BROKEN 

INSULATOR 
0.21 0.14 0.21 0.93 0.94 

0062 Storm 0.37 0.94 1 0.56 0.27 

0064 Storm 0.37 0.94 1 0.56 0.27 

0067 Tree/Limb Growth 0.98 0.17 0.25 0.15 0.12 

0065 Tree/Limb Growth 0.98 0.17 0.25 0.15 0.12 

0068 VINES ON TRANSFORMER 0.81 0.27 0.37 0.24 0.38 

2760 
Short duration variation. No outage 

information found. 
0.20 0.89 0.97 0.44 0.08 

3048 Equipment, Capacitor Station, Damaged. 0.28 0.18 0.28 0.90 0.98 
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Table 6.4 Confusion Matrix of Fault Labelling Using Document Similarity of LDA 

Model (74.69% Overall Accuracy) 

     Actual 

Predicted 
Tree Equipment Vehicle Animal Lightning 

Tree 41 0 0 0 0 

Equipment 7 51 7 8 2 

Vehicle 0 0 21 0 0 

Animal 0 3 0 6 0 

Lightning 11 0 2 0 5 

 

As Table 6.4 shows, approximately 74% labels agree with actual labels (true positive/ 

total instances). Among these fault classes, Tree Contact and Vehicle Impact Fault can be 

classified to a high degree of accuracy (Recall = 100%). Equipment Cause Fault and 

Lightning Strike Fault have many false classifications. Among them, the Lightning Related 

Faults are even worse than random which can be because some Tree Contact Events are 

related to the lightning strikes which confuse the LDA model, two examples are 

demonstrated as Table 6.5 shows. 
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Table 6.5 Instances of Tree Contact Related With Lightning Related Fault 

Maintenance Record Fault Cause Label 

Transmission Line tripped during a major storm. 

The cause of this event was likely tree contact. 

Breakers at Substations tripped and reclosed 

multiple times. 

Tree 

Lightning struck transf, burned primary 

down.Overhead Primary Failure (No Tree 

Involved) 

Lightning 

Both instances records contain key word ‘Tree’. The second record intended to 

address no tree involved; however, this can confuse the topic model to identify the fault 

cause – only nouns are taken account for document similarity calculation. 

Two solutions to this problem will be investigated in future: 1) a documentation topic 

model with a stronger robustness to noise is required, and 2) more maintenance records 

of unrelated tree might be required for LDA model to obtain the representations. 

Generally, compared to the result of using supervised learning in Table 6.2, the 

accuracy is comparable but the method contributed here does not require labelled 

documents to train classifiers.  

6.7 Conclusion 

This chapter has proposed a means of automatically labelling historical power system 

faults by modelling the semantic content in their associated maintenance tickets; this would 

deal with the bottleneck associated with producing training data for supervised learning of 

fault classifiers – with a readable description associated with a fault records, there would 

be no need for engineers to manually label exemplars. Performance of around 75% for 

predicting fault cause from inferred document semantic content, which suggests that LDA 

models need larger corpora to learn from: LDA as originally formulated does not lend 

itself to learning word distributions from short documents i.e. maintenance tickets. Rather 

than imposing verbosity limits [10] and language guidelines on the filing of maintenance 
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reports, an LDA model instead may be pre-trained on semantically related documents such 

as maintenance manuals or abstracts.  
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7.1 Introduction 

The previous chapters discussed how the anomaly segmentation, fault cause 

identification and fault label generation methods were designed and constructed; however, 

an intelligent fault analysis requires concurrent operation of these three functions and every 

function can affect the final classification result. This chapter will investigate the 

performance of the whole analysis end-to-end including signal segmentation, fault 

recognition and fault labelling. This is illustrated using the DoE PQ Events Repository 

data.  

7.2 Performance of the Integrated Fault Diagnosis Approach 

This section uses DoE operational data to validate anomaly segmentation and labelling 

functionality, then tests classification with automated labelling which is benchmarked 

against the classification with expert labelled data. To achieve this, 166 labelled faults are 

used to go through the system from end to end to test the capability of the whole system. 

The performance of both models will be measured using the same overall accuracy metric 

as used in Chapter 5. 

 

Fig 7-1 The integrated process of the proposed continuous high-resolution fault 

diagnosis method 
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The Fig 7-1 demonstrates the high-level of the relations among the models. 166 

labelled faults are used to go through the integrated system from end to end to test the 

capability. Firstly, the faults need to be filtered out by signal segmentation. Then the topic 

model described in Chapter 6 is utilised to generate a repository of historical exemplars. 

Topic models usually capture the proportions of topics present in a document and assign 

the most similar label to the fault. As Fig 3-9 (b) shows, the historical maintenance reports 

are linked with pertinent fault waveform records using timestamp. And the relevance 

between every maintenance report in training set with the defined labels, such as ‘tree’ (this 

represents tree contact faults), can be calculated using a pre-trained topic model. The most 

strongly relevant will be selected as the label of the fault. Ultimately, the training set with 

generated labels will be put into the fault cause classifier, which is 1-NN as Chapter 5 

shows, to calculate the performance and benchmark it against the ground truth. 

Table 7.1 Confusion Matrix of Anomaly Detection Model (100% Overall Accuracy) 

Actual 

Fault 
Abnormal Normal 

Abnormal  166 0 

Normal 0 0 

Table 7.1 shows the performance of anomaly detection using DoE archived fault data, 

none of the signals are missed by the proposed detector. This validates the effectiveness 

of the online anomaly detection model again. After segmentation, the remaining data are 

used to do fault diagnosis. Two situations are compared - the confusion matrix of the 

classification using ground truth and generated labels on the DoE data for training are 

shown in Table 7.2 and Table 7.3 respectively. Although trained on faults labelled by 

different means (automated and manual), both classifiers are tested against the actual labels 

provided by an expert.  
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 Table 7.2 Confusion Matrix of Fault Diagnosis With Expert Labels (89.16% Overall 

Accuracy) 

Actual 

Fault 
Tree Equipment Vehicle Animal Lightning 

Tree 37 4 0 0 0 

Equipment 3 67 2 3 0 

Vehicle 0 1 19 1 0 

Animal 0 1 1 9 0 

Lightning 2 0 0 0 16 

 

Table 7.3 Confusion Matrix of Fault Diagnosis With Automatically Generated Labels 

(71.08% Overall Accuracy) 

Actual 

Fault 
Tree Equipment Vehicle Animal Lightning 

Tree 37 3 0 0 1 

Equipment 5 52 8 9 1 

Vehicle 1 0 19 0 1 

Animal 0 2 2 6 1 

Lightning 12 0 2 0 4 

 

As Table 7.2 and Table 7.3 shows, working with leave-one-out cross validation, the 

overall classification accuracy against ground truth labels is around 89.16%, and the overall 

classification accuracy of generated labels is 71.08% - this is an approximately 18% 

reduction in classification accuracy to achieve fully automated fault labelling using 1-NN 

with the US Department of Energy data. Furthermore, the reduction stems from 

Equipment Caused Fault (ECF) and Lightning Strike Fault (LSF), which is consistent with 

Table 6.4 in Chapter 6 – the reduction results from the labelling error. Therefore, future 

work should focus improving the fault labelling accuracy. 
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7.3 Conclusion 

This Chapter integrates anomaly segmentation, fault cause diagnosis and fault labelling 

to identify the fault cause from continuous fault waveforms. Archived operational faults 

are used to test the approach end-to-end. Assuming all archived fault causes labels are the 

ground truth, the integrated system can achieve 89.16% overall accuracy with minimum 

volumes of exemplar faults. If a DNO owns numerous maintenance reports rather than 

exemplar faults, the DNO can still automatically identify faults. However, the accuracy will 

be reduced by 18% compared to using ground truths.  
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8.1 Summary of Contributions 

DNOs are experiencing numerous faults on distribution networks, which result in 

Customer Interruptions (CIs) and Customer Minutes Lost (CMLs). However, due to the 

extremely low observability of distribution networks, it is challenging for DNOs to make 

an effective response in timely manner. To increase levels of situational awareness in 

distribution networks, numerous fault analysis methods are used. Conventional fault 

diagnosis used fault data from existing devices, such as SCADA and IEDs. However, these 

methods can only provide limited fault information to DNOs. This is because these 

devices usually obtain data at regular intervals rather than on a continuous basis, however, 

numerous incipient faults are intermittent and transient in nature – they can be easily 

missed. Therefore, there are motives to move to an effective continuous high-frequency 

fault diagnosis approach. The state-of-the-art research utilised a knowledge-driven 

approach to continuously identify faults. However, the knowledge-driven approach needs 

a lot of time to manually capture knowledge for different faults, especially for low-

prevalence faults. Additionally, only a limited range of faults can be identified because 

many faults are difficult to characterize. Therefore, a data-driven approach is needed to 

solve these limits. However, a continuous high-frequency data-driven approach contains 

new data related challenges for fault diagnosis: continuous fed-in data will contain large 

volumes of useless information pertaining to normal operation, which can result in 

needless storage; data-driven approaches need a large amount of data to pre-train on before 

identifying fault causes. To address these challenges, this thesis investigated an innovative 

continuous high-resolution fault diagnosis approach [102] which employs an online 

segmentation model to extract abnormal waveforms from streamed current data, then the 

extracted waveform and its associated context are utilised to identify the fault cause.  

Contrary to conventional methodologies using local statistical features to detect 

anomalies, the proposed online segmentation model [103] identifies the start and end 
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points of faults through tracking residual fault components. The new segmentation model 

is more robust to the non-linear noise and the false detection is lower. Additionally, to 

measure the time errors of the detection, a novel evaluation metric is used.  

To reduce the demand for labelled data, this research proposed two approaches: the 

first approach is to use the best classifier which can run with minimal amounts of exemplar 

faults to identify the fault cause [104]; the second approach is to use an additional model 

to generate more exemplar faults with a common third-party data source (maintenance 

reports) [50], then the fault diagnosis can be pre-trained by generated labelled data to 

identify fault causes. Through integrating a fault segmentation model with a fault diagnosis 

model, the former method can achieve approximately 89% accuracy on fault cause 

classification; With the fault labelling model is integrated in, the latter method can achieve 

roughly 71% on the same data. Although the latter method has a significant reduction on 

the accuracy, it eliminates the requirement for manual fault labelling - this makes the 

method scalable and therefore operationally viable.  

8.2 Future Work 

8.2.1.1 Performance Improvement of The Fault Diagnostic Method 

Although the similarity-based fault diagnostic method discussed in Chapter 6 can 

achieve approximately 89% overall accuracy, higher accuracy would be expected in 

practical implementation. To achieve this, one of the approaches is to add more contextual 

information in similarity calculation, which then can provide more discriminative power 

for the classifier to identify fault causes. Therefore, the next steps can be: 

• To gather more field data to investigate whether other features, such as 

network configuration, can be used to improve the performance. 

• To investigate new data generation method, such as time stretching and 

Generative Adversarial Network (GAN), to increase the diagnosis accuracy. 
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8.2.1.2 Accuracy Improvement of The Integrated Approach 

As Chapter 7 and 8 discussed, the accuracy of the fault labelling function now is still 

limited, which then affects the final performance of the end-to-end system. Therefore, one 

of the areas of future work is to enhance the capability of the fault labelling function. If all 

generated labels are correct, which can potentially increase accuracy by approximately 18%. 

A few potential solutions to improve the word representation vector and LDA model can 

be investigated:  

• As Chapter 6 discussed, Bag-of-Words does not take account the order of 

words and negative words (e.g. not). Therefore, the next step can be to find a 

new word representation vector which contains this information. 

• LDA as originally formulated does not lend itself to learning word distributions 

from short documents i.e. maintenance tickets. Rather than imposing verbosity 

limits [10] and language guidelines on the filing of maintenance reports, an 

LDA model instead may be pre-trained on semantically related documents 

such as maintenance manuals or abstracts. 

• An alternative NLP technique can be used such as Probabilistic Latent 

Semantic Analysis (PLSA). 

8.2.1.3 Hardware Based Implementation  

As the concept of continuous high-resolution based fault diagnosis and the 

performance of each function has been validated, the next logical step should be using an 

appropriate hardware platform to validate the effectiveness. This requires extensive 

practical knowledge, such as data acquisition and parallel computation, to set up an 

experiment. The algorithms, including anomaly segmentation model, fault cause 

identification model and fault labelling model, can be adjusted during the hardware testing. 
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After tuning models for online implementation, the whole work can move to the next 

Technology Readiness Level (TRL) which is to produce a prototype to demonstrate the 

performance in a representative operating environment, and prototype testing is an 

essential step in the transformation of research into industrial application. 

8.2.1.4 Additional Functionality  

Except for fault causes, other information is also useful to increase the levels of 

situational awareness, such as incipient fault locations and predicted failures. Therefore, 

some additional functions based on the proposed models can be investigated to further 

improve situational awareness in future. For example, the detected abnormal waveform 

can be further analyzed by an appropriate model to identify where these abnormal signals 

come from. And the waveform similarity based on identified recurrent faults can be further 

used to predict failure occurrences – if the sequence can be learnt from examples, then it 

can used as a predictive model. 
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