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Abstract 

 

Building on recent successes in mixed-metal chemistry, this research project aims to 

enhance the understanding of the complicated correlations existing between 

structural patterns and reactivities of alkali metal magnesiates and zincates together 

with exploring their applications in a number of fundamental organic transformation 

reactions such as metallation, alkyl addition and metal-halogen exchange reactions.   

 

Elucidating the effect that donor solvents can exert on the overall constitution of 

organometallic reagents, a series of novel solvated [(donor)MMgR3] and 

[(donor)2M2MgR4] (donor = THF, dioxane, TMEDA, PMDETA; M = Li, Na, K; R = 

CH2SiMe3) compounds have been prepared and fully characterised both in the solid-

state and in solution using multinuclear NMR (including 1H-DOSY NMR) studies.  

A rich variety of structural motifs has been disclosed which range from simple 

monomers when polydentate ligands such as PMDETA are employed, such as 

[(PMDETA)LiMgR3] (6) and [(PMDETA)2MMgR4] (M = Na (9), K (11)), to much 

more complex polymeric structures using oxygen donor ligands dioxane or THF, 

such as [{(dioxane)2LiMgR3}∞] (3), [{(dioxane)Li2Mg2R6}∞] (4) and 

[{(THF)LiMgR3}∞] (2).  The first examples of unsolvated trisalkyl magnesiates 

[{NaMgR3}∞] (12) and [{KMgR3}∞] (16) have been unveiled which exhibit distinct 

2D supramolecular structures in the solid-state constructed exclusively of electron 

deficient M-C bonds. The ability of novel potassium magnesiates to participate in 

direct magnesium-hydrogen exchange reactions was assessed with several aromatic 

and heteroaromatic substrates. 

 

In addition, key reaction intermediates have been structurally defined from 

metallation, alkyl addition and metal-halogen exchange reactions which provide 

compelling evidence that the outcome of these reactions are reliant on subtle changes 

in the coordination sphere of the bimetallic reagent employed.  Thus, the reactivity of 

heteroleptic zincate [(THF)LiZn(TMP)(tBu)2] (22) towards pyrazine has 

demonstrated that despite the presence of two nucleophilic tBu groups the selective 
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two-fold deprotonation of the heterocycle pyrazine is preferred to form the 

unprecedented 2,5-di-zincated pyrazine molecule. These results are in contrast with 

those observed when pyrazine is confronted by the homoleptic alkyl zincate 

[(PMDETA)LiZn(tBu)3] (23) where the chemoselective addition of a tBu group to 

the α-C of the heterocycle takes place under mild reaction conditions.  Focussing on 

metal-halogen exchange reactions, the addition of LiOtBu has proved to greatly 

activate ZnEt2 towards zinc-iodine exchange reactions with 2-iodoanisole under mild 

conditions.  

 

Novel bimetallic approaches which allow the selective C4 functionalisation of 

unsaturated N-heterocyclic carbene IPr have been developed.  Thus, the first direct 

zincation of an NHC was achieved by reacting sodium zincate 

[(TMEDA)Na(TMP)(tBu)Zn(tBu)] with IPr to form [(THF)3Na(IPr*)Zn(tBu)2] (41).  

41 exhibits a unique chemical profile and can react efficiently with [ClAu(PPh3)] to 

form an unprecedented bis-gold [ClAu(IPr*)Au(PPh3)] (47) species.  Extension of 

these reactivity studies to Na/Mg combinations allows the isolation of the first 

sodium magnesiate containing a deprotonated carbene molecule 

[(THF)3Na(IPr*)Mg(CH2SiMe3)2(THF)] (50). 
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