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Abstract

Fisheries managers use scientific evaluations of management plans to determine whether
such plans will be sustainable. Most extant evaluations do not account for changes in
fleet dynamics in response to management measures, and are likely to be flawed as a
result. In this thesis, I develop a new simulation model to address this issue. I present
motivating case studies of management strategy evaluations for haddock, survey-based
management approaches, and multi-species catch quotas, in order to highlight the need
for an improved spatio-temporal fishery modelling framework. I characterise the re-
sponse of the Scottish whitefish fleet to short-term real-time area closures, as an exam-
ple of the type of fleet dynamics that a new model would need to be able to simulate
for cod in the North Sea. I demonstrate using two complementary methods that such
closures are unlikely to have directly encouraged skippers to avoid cod-important ar-
eas, and are therefore unlikely to have reduced cod mortality. I develop and implement
a new spatio-temporal fishery simulation model which is flexible and powerful enough
to account for fleet responses and thereby enable insightful quantitative analysis and
evaluation of the wide range of management approaches. Finally, I report initial tests
of the model, which demonstrate that a vessel seeking to maximise weekly profit will
act differently (and with different fish stock implications) to one that is allowed a max-
imum weekly catch. With this model and the further future developments of it that
I outline, scientists will be in a much better position to advise fisheries managers on
stock sustainability over long-term time scales.



Chapter I

Introduction
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1 The problem

In many parts of the world, agreements exist between different nations that allow their
fishing fleets to participate in shared international fisheries. Some of these shared fish-
eries are also subject to shared management, in which governments meet to agree on
how to regulate fishing effort, and how much effort to allow. A smaller subset of fish-
eries is subject to international fisheries management plans and harvest control rules,
which seek to automate the management response to perceptions of stock dynamics
(and thereby reduce the need for the long negotiations that can accompany the util-
isation of any shared resource). For managers to be able to devolve much of their
negotiating power, they must be confident that management plans will deliver what
they expect (Kell et al. 2006); and in order to do this, plans must be tested. This
can rarely be done experimentally in the field, so it is widely concluded (although not
universally; see Rochet and Rice 2009) that management strategy evaluations (MSEs)
must be conducted via computer simulations (Cooke 1999).

Many different frameworks exist to facilitate these simulations. Recent develop-
ments in Europe have included the FLR system (FLR Team 2006, Kell et al. 2007,
Hillary 2009), which provides a suite of modules and libraries within the R statisti-
cal programming environment (R Development Core Team 2006); the Irish F-PRESS
model (Codling and Kelly 2006, ICES 2007b) which is also based on R (but which has
largely been superseded by FLR in the context of ICES advice); and the English Spat-
Man model (Bell et al. 2007). In the United States, parallel work at the National Marine
Fisheries Service (NMFS) has produced the NOAA Fisheries Toolbox (NOAA 2008),
while the EDON biological operating model has been used to model the effect of closed
areas on the Californian coast (Walters et al. 2007). The problems evident in the man-
agement of valuable salmon stocks have also generated extensive work with MSEs
and related analyses (for example, see Eggers 1992, Holt and Peterman 2006). Mul-
tispecies approaches which model predation as well as fishing have been developed,
particularly for relatively simple boreal ecosystems (Hamre 2003), while multispecies
models which consider only fleets fishing on two or more stocks (rather than predation
links between the stocks) have been important in promoting the acceptance of man-
agement plans in a number of areas (Pilling et al. 2008). A body of literature has been
developed on the analysis of risk in fisheries management, using MSEs as quantifying
tools (see, for example, A’mar and Punt 2005, European Union 2009). Kruse et al.
(2005) contains a number of relevant papers on management strategies and their eval-
uation in data-poor situations. The longest experience with MSEs, however, is to be
found in Australia, New Zealand and South Africa (Butterworth and Punt 1999, Camp-
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bell and Dowling 2005, Hamon et al. 2007, Dichmont et al. 2008, Mapstone et al. 2008,
Prince et al. 2008, Kolody et al. 2008, Butterworth 2008a, Smith et al. 2008, Dowling
et al. 2008).

MSE simulations are generally designed around three distinct modules (Bunnefeld
et al. 2011):-

1. A biological module, which generates the underlying populations and the effect
of the fishery on them;

2. An assessment and advice (or knowledge production) module, simulating the
advisory process including the same data collation procedures and assessment
model as used by the relevant assessment working group (e.g. ICES 2008c); and

3. A management module, implementing the management rules.

These interact in an annual loop as shown in Figure 1.1, with additional initialisation
and interpretation modules before and after the loop.

Initialisation:
Historical assessment
Stock-recruit model
Survey catchability

Biological module
Recruitment
Growth
Mortality

Knowledge production 
module
Catches
Surveys
Assessment
Forecasts

Management module
Harvest control rule
Management plan
Implementation of measures

Year loop

Summary and interpretation of results:
Risk plots

Figure 1.1: An example of an algorithm flowchart for fisheries management strategy evaluation (MSE).

MSE systems represent a substantial body of work and have been used for a num-
ber of years to provide scientific advice to fisheries managers on the likely utility of
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management plans and approaches that managers propose. In nearly all cases the effort
has been worthwhile, in the sense that managers have been encouraged by the creation
and scientific validation of management plans to attempt to move towards more sus-
tainable fishery systems, to the extent that fishery MSE approaches are increasingly
considered for management of terrestrial systems (Bunnefeld et al. 2011). However,
considerable problems remain in three main aspects.

Firstly, most evaluations assume that the responses of fishermen to management

measures are fixed for the foreseeable future, or are at least directly predictable. That
is, a simulation will be carried out in which the relevant fishing vessels are expected
either to carry on doing what they have been doing in the very recent past, or to modify
their fishing patterns in very particular and forecastable ways. These expectations are
seldom tested against observed data, with the result that simulations can deviate dra-
matically from reality. A successful fisherman is an intelligent businessman who will
certainly modify fishing practice in response to management action if it appears ben-
eficial to do so. In some cases, this can also be beneficial to the stock: Graham et al.
(2007) discuss the changes in fishing practice brought about by a system of real-time
area closures and a (somewhat loosely defined) discard ban in Norwegian fisheries.
However, responses can also be deleterious to stocks, or can be driven to be either bene-
ficial or not by the current state of the stock (for example, see Holt and Peterman 2006),
and it is often difficult to know how to encode such changes in a computer simulation
because it is often not clear what fishermen’s motivations are. For example, a skip-
per who is trying to maximise profit may act quite differently in response to change
than one who wishes to maximise catch, or minimise unwanted bycatch, or maintain a
high social standing in his community (amongst other factors). Recently, Bastardie et
al. (2010) incorporated skipper decision-making in their evaluation of a recovery plan
for eastern Baltic cod, while Tserpes et al. (2009) considered the economic implica-
tions of a management plan for Mediterranean swordfish (although without modelling
economically-driven changes in fleet responses). Branch et al. (2006) reviewed eco-
nomic and sociological drivers of fleet dynamics in three classes of fishery: developing,
mature and what they termed “senescent” (that is, almost exhausted). They found that
very different suites of incentives and penalties were required in each class, and the use
of the wrong approach at the wrong time (for example, subsidies in senescent fisheries)
could be disastrous. However, the inclusion of such factors in evaluations has not often
been attempted.

Secondly, few evaluations explore adequately the impact that fisheries managers
can have on the development of a fishery. Managers are subject to a wide range
of pressures, from the fishing industry, from environmental groups, from competing
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managers, from governments of their own and other countries, from scientists, and
from the wider society. The means by which they reach their decisions and the prin-
cipal drivers of change in their approach may be opaque, to say the least. Scientific
advice may be followed to the letter, or it may be ignored, or it may be used as a bar-
gaining chip to secure a better deal on some other issue altogether. The advice itself
may be of relatively low quality and fluctuate from year to year, reducing confidence
(Sparholt 2001, Sparholt and Bertelsen 2002, Bertelsen and Sparholt 2002). Man-
agers can change their approach from year to year for reasons which are not always
clear. The existence of agreed management plans should serve to restrict the ability of
managers to sidestep conservation criteria, and in theory it should be reasonable for a
scientist conducting an MSE to assume that the “virtual” managers within the simula-
tion are similarly restricted. This is just another assumption, however, and should be
subject to the same testability criteria that is needed for assumptions about fishermen’s
activities.

It is also clear that uncertainty in assessments and advice can hinder managers con-
siderably in their attempts to achieve their objectives. Thinking about knowledge and
its precision in fisheries management science during development of this thesis gener-
ated the following questions, which one would hope could be addressed following the
development of an appropriate management evaluation structure:

1. How does the robustness of different assessment management approaches de-
pend on sources of uncertainty?

2. What is the smallest amount of information on which successful fisheries man-
agement can be based?

3. What must fisheries managers know?

4. What are the important sources of error and uncertainty?

These are valuable points to bear in mind throughout this thesis, and I will return to
them in Chapter V to see if they can yet be answered or not.

Thirdly, most evaluations to date have been based on very simple representations
of marine biology and ecosystem function. For example, the mean fish weight-at-age
and proportion mature-at-age may be assumed to be fixed in the simulation (so that
there is no variation in growth or condition). Changes in the shape and spread of
length distributions-at-age may similarly be ignored. Recruitment may be generated
via poorly-defined stock-recruitment relationships, or using empirical time-series char-
acterisations with little actual consideration for underlying biological process. Cru-
cially, few evaluations have included models of multispecies interations (Mueter and
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Megrey 2006, Pilling et al. 2008): the main exceptions to this have been simulations
of Arctic or boreal fisheries with naturally simple ecosystems (e.g. Hamre 2003). The
effects of observed and predicted climate change are further complications that have
seldom been considered. It is true that there may be good reasons for not modelling
ecosystem change in too much detail. In many cases the processes linking a measurable
environmental effect with subsequent population dynamics are unknown or difficult to
test; it can also be the case that the inclusion of environmental effects in management
advice (if done incorrectly) can make such advice worse (Basson 1999). On the other
hand, not considering ecosystem effects when these are known to be changing in ways
that will affect fisheries is also an error (Cook and Heath 2005, Beaugrand et al. 2003),
and there is clearly a balance to be struck.

For a management strategy evaluation to be able to provide useful and pertinent
information on the likely outcome of management action, it needs to characterise these
three aspects to the extent necessary to address the question being asked (Harte 1988).
The availability of powerful computers should not be viewed as an incentive to try and
include every conceivable (and perhaps even measurable) driving force in the evalu-
ation, and properly-constructed yet relatively simple models have a powerful role to
play. Paola (2011) described the historical reliance on simpler models in the absence
of high computational power thus:

It cultivated an essential counterpart to attention to detail, which is atten-
tion to what is truly essential.

And concluded that:

The danger in creating fully detailed models of complex systems is ending
up with two things you don’t understand - the system you started with, and
your model of it.

The complex multispecies models required for a mixed fishery in the North Sea, for ex-
ample, would be of a quite different order to the relatively simple models required for a
directed cod fishery in the Arctic Ocean, because the latter is a simpler ecosystem with
fewer species than the former. A system in which managers are tightly constrained by
a legally-defined management plan framework has less need of an evaluation which
models managers’ responses to change, than one in which management action is sub-
ject to re-negotiation each year. And the degree to which fleet dynamics need to be
included is dependent on how free fishermen are to choose different actions (and on
how much data are available to characterise those actions).
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In this thesis, I will develop case studies and modelling frameworks that attempt
principally to explore the first of these aspects: fleet dynamics and responses to man-
agement measures. The frameworks thus generated will be applicable to the second
and third aspects also, but the full development of these will be left mostly to future
work.
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2 Influences on fisheries

In this thesis, Chapter II presents methods and results for a series of case studies of
management strategy evaluation (MSE). These examples will demonstrate that, in or-
der to be appropriate, management strategy evaluations must characterise the key fea-
tures of the fishery system to the extent necessary for relevant management advice.
These features will not be the same for every system, and nor will the amount of detail
required. For example, the main feature missing from the existing North Sea haddock
MSE (Section 4) is an appropriate model of discarding behaviour. On the other hand,
current survey-based management evaluations (Section 8) will be hindered if the way
in which real surveys do not always cover the full stock distribution (due to unfishable
areas, say) is not adequately represented: fleet behaviour is much less relevant in this
case. The goal of any good evaluation should be to incorporate those aspects pertinent
to the advisory context.

Figure 2.1 provides a suggested influence diagram for a typical fishery. There are
three levels to this, indicated by concentric ovals in the Figure. The inner level con-
tains the processes which are key to any managed fishery, and which may need to be
modelled dynamically and in considerable detail: fisheries, managers and ecosystems.
There are links between these: strong influences of managers and ecosystems on fish-
eries, and of fisheries on ecosystems; and potentially weaker influences of fisheries and
ecosystems on managers.

The intermediate level includes processes which are influential for (and which are
potentially influenced by) processes in the inner level. For example, the decisions
of banks on whether or not to grant skippers loans to build new vessels is a crucial
business influence that affects the development of the fleet. Pressure from banks to
maintain loan repayments is also a key driver in the fishing decisions of many skip-
pers (Cox and Schmidt 2006). The relationship does not only operate in one direction,
however: the performance of the fishery (and the individual vessels therein) will deter-
mine whether the bank is willing to invest in it (and them). Fish prices offered by the
market are likely to be another key driver for many vessels, but here again skippers can
have an influence in that a glut in landings of a particular species can have strong ef-
fects on the market value of that species (for example, Vignes and Etienne 2011). The
wider society may have different perceptions of fishermen at different times, ranging
from the romantic view (noble hunters) to the disparaging (environmental despoilers),
and these may have concomitant effects on how fishermen perceive themselves, and
on their subsequent activities (Oliver 2005). Fishermen, of course, are also members
of society and have an influence on these perceptions (WorldFishingToday.com 2008).
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The concerns of society may have an effect on fisheries managers through (for exam-
ple) environmental pressure groups (Oceana 2011). Finally (in this scheme), govern-
ments do not affect and are not affected by fishermen directly, save that any member
of the voting public has some influence on their government – most of the relationship
between government and fisheries is channelled through fisheries managers (although
these may also be members of the government). Processes in this intermediate layer
need to be modelled dynamically, but this modelling can be at a coarse level only.

The outer layer in Figure 2.1 contains processes which clearly have an effect on
fisheries, managers or the ecosystem, but which are not affected directly by them. Ex-
amples are fuel price and availability, which can serve as a strong limitation on fishing
but which cannot really be influenced by the fishermen themselves, and climate change

which drives ecosystems but which cannot be readily be moderated by human action on
the time scale usually considered in fisheries management strategy evaluations. These
outer-level processes can generally only be modelled in terms of scenarios.

Fisheries

Ecosystems

Managers

Detailed
dynamics

Banks

Markets

Fuel

Society

Coarse
dynamics

Strong influence

Weak or moderate influence

Coarse dynamics
(input only)Climate

Government

Figure 2.1: Initial suggestion for a generic influence diagram for fisheries.

These are just a few examples of the many external factors which may influence
fishery decision-making: there are many others. The main point is this: the key stage
of the development of a fisheries MSE is the appropriate determination and charac-
terisation of the germane factors for the particular situation being considered. If this
is done incorrectly, then any subsequent advice on management is likely to be flawed
and may impinge on the sustainability of the stock(s) and the fishery. In this thesis, I
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will develop a new simulation model to address the potentially important issue of fleet
behaviour in particular. I will present five motivating case studies to highlight the need
for an improved spatio-temporal fishery modelling framework. I will then characterise
the response of the Scottish whitefish fleet to real-time closures, as an example of the
type of fleet dynamics that a new model would need to be able to simulate for cod in
the North Sea, and will demonstrate using two complementary methods that such clo-
sures are unlikely to reduce cod mortality. Finally, I will develop, implement and test
a new spatio-temporal fishery simulation model which is flexible and powerful enough
to account for fleet responses and thereby enable insightful quantitative analysis and
evaluation of the wide range of management approaches.
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3 Thesis plan

The plan of this thesis (Table 3.1) is based on considerations of the influence diagram
in Figure 2.1 and, in turn, the motivating examples in Chapter II. The ultimate goal of
this work is the creation, testing and dissemination of a general, spatially-structured,
multi-species simulation model of fisheries, management and ecosystems within which
a wide range of management approaches and strategies can be evaluated. This full goal
was not achievable within the time-scale of this doctorate, however, so what follows is
a plan for producing a series of key modules for this general model. The modules them-
selves may appear somewhat disparate, but the intention is that they will feed into the
same overarching structure. I have also included facsimiles of two published papers on
which certain Sections were based, namely Needle (2008c, for Section 4) and Needle
and Catarino (2011, for Sections 11 and 13): these are reproduced in Chapter VI.

Chapter I: Introduction
Chapter II: Motivating examples

1. Management strategy evaluation for North Sea haddock
2. Management strategy evaluation for West of Scotland haddock
3. Management strategy evaluation for Rockall haddock
4. Quota points
5. Survey-based assessment models

Chapter III: Characterising fleet dynamics
1. Background
2. Developing a relative index of fish importance
3. Data for analysing fleet dynamics
4. Fleet responses to real time closures
5. Effects on individual skippers of closures
6. Conclusions

Chapter IV: A general simulation model
1. Spatio-temporal fishery simulation models
2. Representing space
3. Generating a simulated area
4. Path finding
5. Representing fish populations and fishing vessels
6. Testing the simulation model
7. Future work

Chapter V: Conclusions
Chapter VI: Published papers
Chapter VII: References

Table 3.1: Thesis plan.
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Chapter II

Motivating case studies
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4 Management strategy evaluation for North Sea
haddock

This section is based on a series of analyses carried out to inform European fisheries
managers on the likely efficacy of a number of proposed management plans for the
North Sea haddock stock. The summary given here follows closely that in Needle
(2008c), but relevant material and development work is also given in Needle (2006a,
2006b, 2006c, 2008a, 2008b) and ICES (2006b, 2006a, 2006c, 2007b, 2008a). In the
wider context of the thesis, my intention here is to demonstrate the problems that can
arise with fisheries modelling if possible changes in fisheries activities (in this case,
discarding practices) are not taken into account.

4.1 BACKGROUND

The North Sea haddock (Melanogrammus aeglefinus) stock is exploited both by Eu-
ropean Union (EU) member states and by Norway, and is managed as a shared stock
(Figure 4.1). In 1999 the EU and Norway agreed the terms of a management plan for
haddock, which was finally implemented in January 2005. The main elements of the
plan were twofold:

1. Management regulations should seek to achieve a target fishing mortality Ftarget

of 0.3.

2. Spawning-stock biomass (SSB or B) should be kept above the precautionary
level (Bpa = 140kt). If B falls below Bpa, additional measures should be taken to
ensure that B increases.

Here, fishing mortality Fa,y for age a and year y is defined by the following relationship:

Fa,y = ln
(

Na,y

Na+1,y+1

)
−Ma,y, (4.1)

where Na,y is fish abundance in the stock, and Ma,y is the estimated (or assumed) natural
mortality. Ftarget is then the average of Fa,y for a predefined range of ages (2 to 4 for
North Sea haddock). Spawning-stock biomass in year y is defined by:

By = ∑
a

Na,yWa,yMata,y. (4.2)

This is the total weight of sexually-mature fish in the population: Wa,y is the estimated
mean weight of fish aged a in year y, and Mata,y is the proportion of these fish that are
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estimated to be mature.
The management plan contained a clause specifying that a review was to be car-

ried out by the end of 2006. In April of that year, the EU and Norway approached the
International Council for the Exploration of the Seas in Copenhagen (ICES) to inquire
about the feasibility of addressing this review through ICES assessment working group
channels. It was agreed that the ICES Working Group for the Assessment of Demersal
Stocks in the North Sea and Skagerrak (WGNSSK) would coordinate the evaluation
of the existing plan and any proposed modifications, and that the review would be pre-
pared subsequently during the October 2006 meeting of the ICES Advisory Committee
for Fisheries Management (ACFM).

20°W

20°W

10°W

10°W

0°

0°

10°E

10°E

40°N

50°N

60°N

±

Vb1a

Vb1b

Vb2

VIb1 VIb2
VIa

VIIc1 VIIc2

VIIk1

VIIk2

VIIb

VIIj2

VIIj1

VIIIe1

VIIIe2

IXb1 IXb2 IXa

VIIId1
VIIId2

VIIa

VIIg
VIIf

VIIe
VIId

VIIh

IVc

IVb

IVa

VIIIa

VIIIb

VIIIc

XIIa2

IIIa

Figure 4.1: ICES sub-areas and divisions for Western Europe. The management area for North Sea
haddock consists of Sub-Area IV (a, b and c) and Division IIIa (Skagerrak). Note that the Skagerrak
is the north-western part only of Division IIIa, immediately to the north of Denmark. Source: http:
//www.ices.dk.

I presented initial analyses (Needle 2006a) in June 2006 at the ICES Working
Group on Methods of Fish Stock Assessment (ICES 2006c), at which improvements
and modifications were suggested. Consultations with managers and stakeholders fol-
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lowed, and updated results (Needle 2006c) were discussed at the October meeting of
ACFM (ICES 2006a). The new analyses formed the basis of ICES advice to the EU and
Norway which was presented at their annual bilateral negotiations in November 2006.
In the margins of these meetings further discussions were held on the likely sustain-
ability of the proposed plan, and this led to modifications (the addition of a sliding-F
rule, and the clarification of the time when biomass should be measured). Following
this process, the revised plan came into force on 1st January 2007. The methodology
and results of the evaluation on which this decision was based were written up and
published in Needle (2008c, and reproduced in Chapter VI).

4.2 THE EU-NORWAY MANAGEMENT PLAN

The text of the plan as implemented in 2007 is as follows.

1. Every effort shall be made to maintain a minimum level of Spawning Stock Bio-
mass greater than 100,000 tonnes (Blim).

2. For 2007 and subsequent years the Parties agreed to restrict their fishing on the
basis of a TAC consistent with a fishing mortality rate of no more than 0.3 for
appropriate age-groups, when the SSB in the end of the year in which the TAC
is applied is estimated above 140,000 tonnes

(
Bpa
)
.

3. Where the rule in paragraph 2 would lead to a TAC which deviates by more than
15% from the TAC of the preceding year the Parties shall establish a TAC that is
no more than 15% greater or 15% less than the TAC of the preceding year.

4. Where the SSB referred to in paragraph 2 is estimated to be below Bpa but above
Blim the TAC shall not exceed a level which will result in a fishing mortality
rate equal to 0.3− 0.2×

(
Bpa−SSB

)
/
(
Bpa−Blim

)
. This consideration over-

rides paragraph 3.

5. Where the SSB referred to in paragraph 2 is estimated to be below Blim the TAC
shall be set at a level corresponding to a total fishing mortality rate of no more
than 0.1. This consideration overrides paragraph 3.

6. In order to reduce discarding and to increase the spawning stock biomass and
the yield of haddock, the Parties agreed that the exploitation pattern shall, while
recalling that other demersal species are harvested in these fisheries, be improved
in the light of new scientific advice from inter alia ICES.
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7. In the event that ICES advises that changes are required to the precautionary
reference points Bpa (140 000 t) or Blim (100 000 t) the Parties shall meet to
review paragraphs 1-5.

8. No later than 31 December 2009, the Parties shall review the arrangements in
paragraphs 1 to 7 in order to ensure that they are consistent with the objective of
the plan. This review shall be conducted after obtaining inter alia advice from
ICES concerning the performance of the plan in relation to its objective.

In essence, the plan can be simplified to two key points:

Ftarget and TAC constraint Set the Total Allowable Catch (TAC) in the quota year
(that is, the year after the assessment) so that the expected fishing mortality rate
when the TAC is taken is Ftarget = 0.3, where Ftarget is the intended mean fishing
mortality over some pre-specified age range (ages 2–4 for North Sea haddock),
as long as this results in spawning-stock biomass B > Bpa at the beginning of
the first year after the quota year. Bpa is defined as the precautionary level of
biomass below which the stock should not fall. Modify the TAC to ensure that
the maximum inter-annual change in TAC is ±15%. Note that, although “catch”
is referred to in the text of the plan, it is really landings that are controlled.

Sliding-F rule If, following the application of the Ftarget = 0.3 above, B < Bpa in the
first year after the quota year, apply the sliding-F rule with no TAC constraint
(Figure 4.2). This is analogous with the target harvest rule commonly used in
salmon fisheries (Butterworth and Punt 1999, Holt and Peterman 2006), in which
the target F is a nonlinear function of forecasted recruitment, and can be seen
as a simplified version of the generic rule proposed by Froese et al. (2011, see
Figure 1).

The first point ensures that management decisions are based on predictions of the re-

sults of management actions; the second is intended to prevent a strict adherence to
a pre-defined Ftarget in situations where it is clearly no longer appropriate. However,
these two features make evaluation of the plan quite complicated. It is easy to envisage
a situation in which the forecast at Ftarget = 0.3 leads to a biomass after the quota year
which is between Blim and Bpa. In this case the sliding-F rule stipulates a different
Ftarget (Figure 4.2), so the forecast must be performed again – which leads to another
different Ftarget, and so on. This cycle converges to a single solution, but only at the
cost of computational complexity and potentially long run-times.
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Figure 4.2: The sliding-F rule (thick line) for specifying the intended fishing mortality rate F̃ (see
page 25), based on the expected spawning-stock biomass B remaining after the corresponding quota has
been taken. For North Sea haddock: Ftarget = 0.3, Fbycatch = 0.1, Blim = 100 kt and Bpa = 140 kt.

The procedure is laid out schematically in Figure 4.3, while the timeline of events
considered by the management plan is laid out in Figure 4.4. The plan can be cat-
egorised as an F-based harvest control rule, in which Ftarget for a particular year is
specified by the expected biomass that would be left in the stock after the application
of that Ftarget. The plan is also restricted to the use of quotas (rather than effort limits
or technical measures) as the management tool.

Figure 4.3 shows an additional step in the simulated plan that is not present in the
actual plan, namely the limit of interannual change in Ftarget to ∆F =±25%. This must
be included in the simulation model to prevent the rapid (and irreversible) increase in
Ftarget that can occur when managers try to maintain quotas in the face of a long series
of low recruitments. Although essential to prevent the possibility of simulation failure,
in practice it is seldom needed for the North Sea haddock evaluation.

The management plan came under scrutiny again in 2008, following a meeting in
Bergen in June of the EU-Norway Working Group on Inter-Annual Quota Flexibility.
This had been convened as a result of a number of requests by EU member states
that they be allowed to manage their quotas of a number of shared stocks (including
North Sea haddock) allowing for inter-annual quota flexibility: that is, the potential
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Figure 4.3: Flowchart outlining the key points of the North Sea haddock management plan. See text
(page 23) for notation. Note that f (By+2) is shorthand for “the sliding-F rule applied to biomass in the
year y+2”.

for some of this year’s quota to be banked (taken from the year’s quota and added
to next year’s) or borrowed (taken from next year’s quota and added to this year’s).
This was allowed for stocks wholly managed by the EU, but not (at the time) for
stocks shared with Norway. One of the objections raised by Norway was that the
sustainability implications of quota flexibility had not been adequately evaluated, and
the Working Group was convened to consider this.

At this meeting, I presented the existing flexibility proposal (Stuart 2007) in the
form of an algorithm that could form the basis of a subsequent numerical evaluation,
and also showed the effect of the proposal when applied to a highly simplified example
(Needle 2008a). The stipulations of the proposal were:

1. A maximum flexibility of ±10% will apply.

2. The stock must be predicted to remain above Bpa in the year following the year
in which the TAC is applied.
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Figure 4.4: A timeline showing the sequence of events in one application of the proposed North Sea
haddock management simulation. If the assessment WG meets in year y, then complete catch data are
available for years up to and including y−1, while survey data may additionally be available for year y
depending on when the WG meets. The required output from the process is an estimate of catch in year
y+1, and SSB at the start of year y+2 (which we denote by By+2).

3. Quota banked for next year, or borrowed from next year, is not available for
subsequent banking or borrowing.

The Working Group decided that an evaluation would be carried out during the
summer of 2008, based on the evaluation framework developed by Needle (2008c)
and modified to incorporate the changes proposed in Needle (2008a). Following an
email exchange in July 2008, it was decided furthermore that the evaluation should
be conducted under the auspices of the Advisory Committee (ACOM) of ICES, using
the same Terms of Reference. The full results of this evaluation are given in Needle
(2008b), and are discussed further below.

4.3 EVALUATION METHODS

The evaluations carried out during this work have required the generation of computer
code of considerable complexity. The code is written in R (R Development Core Team
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2011, version 2.8.1) using modules and functions from the FLR library (FLR Team
2006, Kell et al. 2007, Hillary 2009, http://flr-project.org/), along with calls
to functions written in Fortran-90 to improve run speed. The key elements included
are as follows (taken from the Appendix of Needle 2008c, see also Chapter VI).

Structure

For North Sea haddock, the basic MSE structure followed that outlined in Figure 1.1.
50 (Needle 2008c) or 100 (Needle 2008b) simulations were run, each for 20 or 25 years
into the future, and for a series of scenarios with different Ftarget values (from 0.1 to 0.5
in steps of 0.1) with interannual quota variability set to ±15%. Through each simula-
tion, two separate stock data streams were maintained: one containing true information
on stock dynamics (abundance, mortality etc), and one giving the assessed stock in-
formation as would be available to managers in reality. As I discuss below, these two
stocks (true and assessed) can be quite different, and the differences between them can
be very influential on the outcome of the evaluations. Outcomes were expressed in
terms of the percentage of years in each simulation for which spawning stock biomass
B fell below the defined precautionary

(
Bpa
)

or limit (Blim) biomass reference points.

Historical data and parameter setting

Estimated numbers-at-age and mean weights-at-age for three catch components (land-
ings, discards and industrical bycatch), along with time-invariant natural mortality
and proportion mature values, were taken from the relevant ICES assessment work-
ing group reports (ICES 2006b, ICES 2007a). Model and management parameters
were set. These included biological reference points, age ranges over which to cal-
culate mean F , the plus-group age apg, and assessment model settings. Assessment
data for total catch numbers Ca,y and yield Yy were derived from data on landings and
discards.

An initial FLXSA stock assessment (Shepherd 1992, Darby and Flatman 1994,
Kell 2011) was run, using data up to and including year γ − 1 (which was 2006 in
this case study). This assessment generated estimates of abundance N̂a,y, recruitment
R̂y = N̂0,y (age 0 is the first age in the North Sea haddock dataset), and fishing mortality
F̂a,y, and enabled subsequent estimation of the following:-

1. Catchability qi,a for each survey. This was assumed to be related to estimated
abundance via a power relationship, and was estimated for each survey i and age
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a by minimising the sum-of-squares

SSQq = ∑
i,a,y

(
Ii,a,y− q̂i,aN̂ p̂i,a

a,y

)2
, (4.3)

where p̂i,a is the estimated power term in the catchability relationship for each
age a and survey i.

2. Parameters of simulated recruitment. These were the mean and variance of the
low-to-moderate recruitments observed during 1995-1998 and 2000-2006, and
the estimate of the high 1999 year-class recruitment. A key requirement for
applying the model to North Sea haddock is to ensure that it encapsulates ad-
equately the sporadic nature of recruitment for the stock. Historically, North
Sea haddock recruitment has followed a pattern of occasional large year-classes
(the size of which seems unrelated to parental stock size, at least directly), inter-
spersed with years of low-to-moderate recruitment (Figure 4.5). In the model,
this pattern is replicated by stipulating one large recruitment (of the order of the
1999 year-class; around 100 thousand million fish) in a random year within each
10-year simulation period. As these simulations are 20 years long, there will
therefore be exactly two large year-classes within each iteration; this seems to
be consistent with historical observations. A further proviso is to ensure that
the large year-classes are separated by at least two years, as North Sea haddock
have never been observed to produce two large year-classes in succession. This
may be due to cannibalism (age-1 fish predating on age-0 juveniles from the
following year-class) or other density-dependent effects (Fogarty et al. 2001).
Recruitment for the remaining years in the simulation is given by a lognormal
distribution about the geometric mean (around 10 thousand million fish) of the
ten years prior to 2006, not including 1999.

3. Selection ζa. This is a measure of how fishing mortality F varies with age a, and
was given for each age by the mean of the last three historical F estimates. If γ

was the first assessment year (γ = 2007 in the case study), then:

ζa =
1
3
(
F̂a,γ−3 + F̂a,γ−2 + F̂a,γ−1

)
. (4.4)

This was then rescaled so that ∑a ζa = 1. Selection ζa must be assumed to be
known throughout the simulation period: if this were not the case, there would
be no unique solution to the estimation of F that results in the required catch.
In this case study ζa was assumed to be fixed throughout the simulation period,
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although more complicated models of time-varying ζa would be possible.

4. The proportions of the total catch numbers in each of the catch components
(landings ρ l

a and discards ρd
a ) were fixed through the simulation period. They

were based on three-year historical means, as follows:

Landings: ρ
l
a =

1
3

2006

∑
y=2004

Cl
a,y

Cl
a,y +Cd

a,y
(4.5)

Discards: ρ
d
a = 1−ρ

l
a (4.6)

More generally, it was also assumed that the fishery would remain at the same
capacity, and fish in the same way as before. The modelling of discarding of
haddock from the commercial North Sea fishery is very important for the effec-
tive simulation of the fishery and its management. However, this is a difficult
issue to address successfully, as discarding activity is a function not only of
stock abundance, but also of prices, costs, quota constraints, gear regulations,
fishing distribution, and the availability of other fishing opportunities (amongst
other factors). There was no attempt here to model discards in this way (be-
cause appropriate models do not yet exist), and fixed proportions of discarding
at each age were used throughout the simulations (see Figure 4.6). As stipulated
in Equations 4.5 and 4.6, the proportion discarded at age a in the simulations is
the mean of the proportions discarded at age a for the years γ−3 to γ−1 (here
γ denotes the first assessment year, which is 2007 for this case study). This is an
approximation that has serious implications for the evaluation (see below), and
that needs to be revisited during future work.

Finally, data objects were stipulated, and run settings defined. The settings used in
the North Sea haddock case study were as follows:
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Survey CV: σi = 0.2

Catch CV: σc = 0.1

Management type: TAC-based landings regulation

HCR type: Management plan with sliding-F rule

Limit in TAC change: ∆TAC = 0.15(⇒ 15%)

Target F: Ftarget = 0.1,0.2,0.3,0.4,0.5

Bycatch F: Fbycatch = 0.1

Limit in F change: ∆F = 0.25(⇒ 25%)

Biomass reference points: Blim = 100kt,Bpa = 140kt

The analysis algorithm

The North Sea haddock MSE analysis consisted of three concentric loops: the Ftarget

loop, which considers different values of Ftarget; the k or iteration loop, which loops
over different randomly-generated recruitments, and the inner y or year loop. The
y-loop proceeds as follows:

1. If y = γ + 1, Fa,y (the intermediate year fishing mortality) is set to the mean
of the last three historical years. If y > γ + 1, this step is not required as the
intermediate-year F is determined by previous applications of the specified HCR.

2. Recruitment in year y is given by

Ry =

{
Rhigh

y y = y1,y2

Rlow
y otherwise

(4.7)

where
lnRlow

y ∼ N
(

R̄low,CVRy

)
, (4.8)

R̄low = exp

 1
10 ∑

y=95...98,
00...05

lnRy

 (4.9)

and
CV(Ry) = sd(lnR95, . . . , lnR98, lnR00, . . . , lnR05) . (4.10)
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In addition

y1 ∼ U(2006,2013) (4.11)

y2 ∼ U(2016,2023) (4.12)

and
Rhigh

y1,y2
∼ N (R99,0.1R99) . (4.13)

Although the inclusion of a stochastic recruitment term has been decried as
“paradoxical” by a minority of writers (e.g. Rochet and Rice 2009), it is a very
widespread technique that seems intrinsically reasonable when precise estimates
of recruitment are impossible to achieve. In addition, there has as yet been no
quantitative demonstration that alternatives (such as expert judgement or com-
parative approaches) produce results that are any more reliable. For these rea-
sons, I use this stochastic approach here.

3. Biological parameters are assumed to be constant throughout the simulation, so
that for any a and y:

Catch weights : W c
a,y = W c

a,y−1 (4.14)

Landings weights : W l
a,y = W l

a,y−1 (4.15)

Discard weights : W d
a,y = W d

a,y−1 (4.16)

Stock weights : W s
a,y = W s

a,y−1 (4.17)

Natural mortality : Ma,y = Ma,y−1 (4.18)

Maturity : Mata,y = Mata,y−1 (4.19)

Prop. F before spawning : PFa,y = PFa,y−1 (4.20)

Prop. M before spawning : PMa,y = PMa,y−1 (4.21)

4. Abundance in year y for all a < apg is given by

Na,y = Na−1,y−1 exp
(
−Fa−1,y−1−Ma−1,y−1

)
, (4.22)

and for a = apg, where apg is the plus-group age (in this case, apg contains all the
fish aged 8 or older):

Na,y = Na−1,y−1 exp
(
−Fa−1,y−1−Ma−1,y−1

)
+Na,y−1 exp

(
−Fa,y−1−Ma,y−1

)
. (4.23)
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5. Catch, landings and discard numbers C (as well as associated yields Y ) in year y

are now calculated, using

Cc
a,y =

F̃a,yNa,y
(
1− exp

(
−F̃a,y−Ma,y

))
F̃a,y +Ma,y

(4.24)

Cl
a,y = ρ

l
aCc

a,y (4.25)

Cd
a,y = ρ

d
aCc

a,y (4.26)

Y c
y = ∑

a
Cc

a,yW
c
a,y (4.27)

Y l
y = ∑

a
Cl

a,yW
l
a,y (4.28)

Y d
y = ∑

a
Cd

a,yW
d
a,y (4.29)

Note that F̃a,y here is the intended fishing mortality produced by a previous man-
agement decision. Under catch-based management, Equation 4.24 cannot be
used directly because it is intended landings yield Ỹ l

y that is determined by a
previous management decision, not fishing mortality F̃a,y. In this case, a mul-
tiplier λy must be determined such that the application of Fa,y = λyζa results in
Na,y > 0 ∀ a and Y l

y ≤ Ỹ l
y . Recall that ζa is the selection at age a from Equa-

tion 4.4. Here I am modelling a fishery which will take the predetermined TAC
if possible, but not if doing so would result in negative abundance at any age.
λy is estimated by minimising the sum-of-squares between intended yield Ỹ l

y and
actual yield Y l

y , constrained so that Na,y > 0 ∀ a. Once this is done, fishing mor-
tality is given by Fa,y = λyζa and catch by Equation 4.24.

6. Survey indices are now generated for year y: note that these are not actually used
in the assessment until the following year, but it is convenient to generate them
at this point in the cycle. Given catchability qi,a, abundance Na,y and a random
term ε i

a,y ∼ N
(
0,σ2

i
)
, survey indices are given by

Ii,a,y = qi,aN pi,a
a,y exp

(
ε

i
a,y
)
. (4.30)

7. Catch, landings and discards data for assessments are produced by applying ran-
dom noise to true values. Given an assumed measurement error variance on
catch data of σ2

c , assessment catch data is given by

Ĉc =
[
Ĉc

a,y
]
=
[
Cc

a,y exp
(
ε

c
a,y
)]

, (4.31)
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where εc
a,y ∼ N

(
0,σ2

c
)
. Assessment landings and discards data are generated in

an analogous manner to true landings and discards data:

Ĉl =
[
Ĉl

a,y

]
=
[
ρ

l
aĈc

a,y

]
(4.32)

Ĉd =
[
Ĉd

a,y

]
=
[
ρ

d
aĈc

a,y

]
(4.33)

where ρ l
a and ρd

a are given by Equations 4.5 and 4.6 respectively. Measured
yields Ŷc, Ŷl and Ŷd are calculated in a similar way to that given in Equa-
tions 4.27 to 4.29.

8. An assessment is carried out, using data (up to and including year y−1) for Ĉc,
Ŷc, Wc, Ws, M, Mat, PF, PM, and I (see Equations 4.14 to 4.21). The FLXSA
function of FLR is used for this purpose, and returns assessment estimates of
abundance N̂ and fishing mortality F̂. In the first year loop only (y = γ = 2007)
these estimates are treated as the true values, so that:

Na, j = N̂a, j (4.34)

Fa, j = F̂a, j (4.35)

for j ≤ γ−1.

9. At this point I apply the sliding-F management rule. An F-multiplier is esti-
mated that results in Fy+1 = Ftarget when applied to F̂y−1. A short-term (three-
year) forecast is carried out on the basis of this value of fishing mortality, using
year y−1 as the starting point, and the resultant spawning-stock biomass B̂y+2 in
the year following the quota year is generated. If B̂y+2 < Bpa, the sliding-F rule
is applied to generate a new Ftarget and the forecast procedure is repeated to pro-
duce a new B̂y+2. This may imply a different Ftarget, in which case the procedure
is repeated until the difference between subsequent values of Ftarget is less than a
pre-specified iteration tolerance. This iteration nearly always converges: if B̂y+2

flips between a value above Bpa and a value below Blim (which can happen if Bpa

and Blim are close together), then the average of Ftarget and Fbycatch is used.

If the final B̂y+2 > Bpa, the TAC constraint is applied (∆TAC = 15%, in this
case). The implied intended landings yield Ỹ l

y+1 is compared with Ỹ l
y ±∆TAC. If

Ỹ l
y+1 is within this range, then the intended yield is set to that which is implied

by F̃y+1 = F̂y−1 ×Fm. On the other hand, if the implied yield Ỹ l
y+1 from the

original forecast is not within the bounds specified by ∆TAC, then Ỹ l
y+1 is set to
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Ỹ l
y ±∆TAC as required.

A series of low recruitments can lead to an exponential (and irreversible) increase
in F as our virtual managers try to ensure that the full TAC is taken. To prevent
this, a limit ∆F is stipulated on interannual change in F . If Fm > 1.0+∆F then
Fm is set to 1.0+∆F : similarly, if Fm < 1.0−∆F then Fm is set to 1.0−∆F . It
is also useful to record intended yield, which in this case is the yield implied by
the modified Fm.

Although the process is quite complicated, the output from the evaluation is
simple: the intended landings yield Ỹ l

y+1.

10. With management decisions now determined, the y-loop carries on to the start
of the next year. The quota year from the previous y-iteration now becomes the
intermediate year, and effect of fishing on the stock is now largely determined
by the intended yields.

11. Once the y-loop is completed, the simulation begins again with the next k-loop
and a different time-series of recruitments, and subsequently the next Ftarget-loop.

Banking and borrowing

The version of the haddock MSE produced for Needle (2008b) incorporated interan-
nual quota flexibility (banking and borrowing). This extends the previous haddock
MSE work (Needle 2008c) and increases its complexity. The key features are as fol-
lows (y is the assessment year, y+1 is the quota year):

1. Flexibility is only available if By−1 > Bpa and Fy−1 < Fpa.

2. The options are:

(a) Borrow up to 10% from year y+2 to be fished in year y+1.

(b) Bank up to 10% from year y+1 to be fished in year y+2.

(c) Only the baseline quota (i.e. that derived from the management plan) can
be banked or borrowed. Thus quota borrowed from year y + 2 must be
fished in year y+1 or lost. Similarly, quota banked from year y+1 to year
y+2 cannot be banked again.

This is applied after the usual management-plan calculations. It means that there needs
to be two concurrent time-series of quota; the baseline quota, which is set using the
management plan, and the flexi quota, which is not.
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The flexi-quota algorithm is then:

1. Carry out an assessment in year y, using catch and survey data up to and includ-
ing year y−1 and (possibly) survey data from year y.

2. Apply the management plan to get TACp
y+1, the quota suggested by the plan.

3. Apply quota flexibility if precautionary limits are not exceeded. Let ρ be the re-
quired flexibility percentage (so that, for example, ρ = 0.1⇒ 10% banking), let
TACs

y be the standard quota, and let TAC f
y be the flexi quota. Then, if flexibility

is applied, the result is:

(1−ρ)TACp
y+1 7→ TACs

y+1

ρTACp
y+1 7→ TAC f

y+2

In other words, if ρ > 0 (banking), then ρ% of the quota for year y+1 has been
assigned to year y+2 instead (the formulae are reversed if ρ < 0, for borrowing).
Finally, the actual quota for year y+1 is calculated as

TACy+1 = TACs
y+1+ TAC f

y+1

(calculated in year y) (calculated in year y−1)

The following simple example illustrates the idea. Here I assume the flexibility
option is taken every year, the TAC according to the plan is constant at 1000 kt, and
ρ = 0.1 (so that 10% of the quota is banked every year). Then, recalling that TACp

y is
the plan-derived quota in year y, TACs

y is the standard quota, TAC f
y is the flexi quota,

and TACy = TACs
y +TAC f

y is what may actually be fished in year y:

ρ y TACp
y TACs

y TAC f
y TACy

0.1 1 ↘
0.1 2 ↘ 1000 −→ 900 ↘ 900

0.1 3 ↘ 1000 −→ 900 ↘ 100 1000

0.1 4 1000 −→ 900 ↘ 100 1000

0.1 5 100

The arrows follow the conceptual path for each calculation. Here the TAC settles down
to an equilibrium steady state of 1000 kt, which is the TAC according to the plan in
any case. If ρ =−0.1 (implying 10% borrowing each year):
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ρ y TACp
y TACs

y TAC f
y TACy

-0.1 1 ↘
-0.1 2 ↘ 1000 −→ 1100 ↘ 1100

-0.1 3 ↘ 1000 −→ 1100 ↘ -100 1000

-0.1 4 1000 −→ 1100 ↘ -100 1000

-0.1 5 -100

This also converges to the required steady state. Finally, if ρ alternates between ±0.1,
then:

ρ y TACp
y TACs

y TAC f
y TACy

0.1 1 ↘
-0.1 2 ↘ 1000 −→ 900 ↘ 900

0.1 3 ↘ 1000 −→ 1100 ↘ 100 1200

-0.1 4 ↘ 1000 −→ 900 ↘ -100 800

0.1 5 1000 −→ 1100 ↘ 100 1200

-0.1 6 -100

Here, the fishable TAC fluctuates around the plan TAC. So, on the basis of these sim-
ple examples, it would be reasonable to hypothesise that banking-and-borrowing is
unlikely to affect adversely stock sustainability. The main reason for this appears to be
the fact that quota transfers can only be done on the baseline plan-derived TAC: man-
agers cannot borrow the same block of quota for two years in a row. I should note here
that, at the time of writing, the banking-and-borrowing option for North Sea haddock
has never been exercised in the real fishery.

4.4 RESULTS

4.4.1 The North Sea haddock MSE

Figures 4.7 to 4.9 summarise the results of the analysis, which took around 75 hours
to complete due to the large number of repeated iterations and minimisations required
to simulate such aspects as the TAC constraint and the sliding-F rule in the bespoke
R code written for this analysis. As discussed on page 16, the sliding-F iteration
converged successfully on every occasion it was used.

Figure 4.7 summarises the model output for a single iteration for Ftarget = 0.3 (50
such iterations comprised the full analysis for a particular Ftarget). In this iteration, the

29



effect of the±15% TAC constraint is clear in the time-series of intended landings (that
is, quota or TAC; see Figure 4.7a). Following the sliding-F rule, the interannual change
in TAC deviates from the ±15% limits only for five years between 2018 and 2025
(Figure 4.7f), which correspond to years for which assessed biomass falls below Bpa

(Figure 4.7c). However, in these years (and, indeed, in most years in the simulation),
the true biomass was much higher, and this reveals the effect of the problem with
discard modelling that was mentioned above (see page 22). As fishing mortality is
maintained at a low level, biomass begins to rise; but the TAC constraint means that
landings do not rise commensurately. In reality this would probably lead to increased
discarding rate for younger ages, all else being equal, but that cannot happen in this
model for which fixed proportions discarded at each age have been stipulated. For this
reason, the catch (landings plus discards) on which the assessment is based is lower
than it should be, and hence the assessed biomass is lower.

The data from the simulated survey series did not have this bias, but the assessment
model used (FLXSA, an implementation of XSA) is largely driven by catch data with
surveys playing a calibrative role (Darby and Flatman 1994). Extensive testing during
model development showed that none of the FLXSA settings (shrinkage and so on)
could ameliorate the effect. A higher Ftarget or the removal of the TAC constraint
did reduce the problem: however, these were not part of the plan under evaluation.
The under-estimation also has consequences for fishing mortality, which was mostly
estimated to be higher than it really was. The result was a management plan which was
actually more conservative than it needed to be.

TAC increases of greater than 15% are possible (Figure 4.7f). This will happen
when a low assessment of spawning-stock biomass is combined with a large incoming
year-class. The management plan operates on the basis of spawning-stock biomass,
which remains low while the fish are young, so the constraint on interannual TAC
variation does not apply. At the same time, the abundant young fish contribute to
a higher quota forecast. The TAC must therefore increase by more than 15% if the
management plan is to be followed. This result seems contradictory in a situation of
low biomass, but is inevitable if the management plan is implemented as written.

The 50 iterations carried out with target Ftarget = 0.3 are summarised in Figure 4.8.
The median values from these plots are the result of smoothing across different reali-
sations of recruitments, and are therefore useful only as an indication of likely future
events. The median outcome itself is not at all likely, given that each recruitment time
series always has two large year-classes which are not directly reflected in the median.
Median landings yield falls to a low level as the 1999 year-class is exhausted, before
rising to a steady state of around 45 kt. Median fishing mortality is, for much of the
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time series, much lower than the Ftarget that the management plan should provide; this
is due to a combination of the ±15% TAC constraint and the simple discard model
mentioned above. Median biomass remains stable for four years or so, before rising
swiftly and rebounding to a steady state well above Bpa. Finally, the median recruit-
ment is low, but the occasional large year-classes are also evident as outliers.

As well as medians, Figure 4.8 also indicates the spread of possibilities, and on this
basis I can examine the risk of occurrence of unwanted events. One such event would
be biomass falling below Bpa or Blim, which is what the management plan is attempting
to avoid. I can estimate this risk by counting the number of years in a given iteration
for which B < Bpa or B < Blim. If I denote the spawning stock biomass in year y in
iteration k of a simulation using F = Ftarget by By,k,F , allow Bref to stand for Bpa or Blim

as appropriate, and use a test function κy,k,F such that

κy,k,F =

{
1, By,k,F < Bref

0, By,k,F ≥ Bref
(4.36)

then the required risk is given by

Riskk,F = ∑
y

κy,k,F . (4.37)

The distributions and central tendencies of Riskk,F are then used to indicate the degree
of risk associated with each management measure (which in this case means each value
of Ftarget).

The risk estimates for each Ftarget are summarised in Figure 4.9, which considers
the risk of both B < Bpa and B < Blim. The distributions of Riskk,F for both have had
loess smoothers passed through them, to give an indication of the central tendency of
risk. On the basis of these smoothers, the number of years for which B < Blim ranges
from 0.26 years (which is 1.18% of the total) to 1.90 years (8.64%), while the values
for B < Bpa range from 1.73 years (7.86%) to 4.32 years (19.64%). That is, the risk of
spawning biomass being below the limit reference point for the next 22 years, given
the assumptions of the model, remains less than 10% for values of Ftarget as high as
0.5. The results for Ftarget = 0.3, the value stipulated in the management plan, are 0.46
years (2.10%) for B < Blim and 2.35 years (10.70%) for B < Bpa.

In any stock simulation of this kind, one of the key aspects to get right (if only
approximately so) is the time-series of future recruitments. The assumption in this
Section of two strong year classes over the next 20 years is a strong one. It is pos-
sible that the risk estimates described above are largely or entirely dependent on the
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year of occurrence of the first large year-class, the hypothesis being that the early ap-
pearance of this year-class would a necessary condition for low risk. This is tested in
Figure 4.10, which shows Riskk,F for Ftarget = 0.5 (and considering the risk of B < Blim

in particular) plotted against the year of the first large recruitment in the corresponding
simulation iteration. The plot does not support the hypothesis; if anything, the relation-
ship between risk and the year of the first large recruitment is slightly negative. This
result suggests that the simulations are not as closely dependent on the recruitment
time-series as might have been expected.

Discussion and conclusions

On the basis of the available simulations, in Needle (2008c) I reached the conclusion
that the EU-Norway management plan for North Sea haddock is sustainable – that is,
it provides a low risk of biomass being below the limit reference point, along with sta-
bility in quotas that will benefit the fishing industry and related economies. However,
there are a number of caveats that need to be borne in mind. The analysis assumed full
implementation of the quota regulations, so that the landings are precisely as intended
by the specified quota, neither above nor below. In reality many situations will prevent
this happening: there may be misreporting of landings by species or area, or quota
uptake may be less than full (as was the case in the North Sea during 2007, and indeed
most years since assessments began). Fleet activity was assumed to be static, which
is unlikely. The simulations also did not consider the impact of effort management or
such technical measures as may be applied to the haddock fishery, nor did they incor-
porate multispecies considerations. Although these factors were not stipulated directly
in the management plan, they do affect the fishery and will therefore have an effect on
the sustainability of the plan when it is applied.

The biological assumptions in the analyses also affected perceptions of the likely
impact of the management plan. The growth of haddock is assumed to be constant
into the future, although it is well known that haddock growth is affected by year class
size (among other things; see ICES 2007a, Baudron et al. 2011, Jaworski 2011). Re-
cruitment of haddock was modelled as a time-series only, with no reference to parental
spawning-stock size. The lack of a clear relationship between stock and recruitment
would indicate that this was reasonable, but it meant that good recruitment was possi-
ble in the simulations from extremely small adult stocks and this may not be realistic.

The simulations in Needle (2008c) were limited to 50 iterations each (due to time
constraints). Generally, stochastic analyses of this kind would require 500 or more
iterations before reasonable conclusions could be drawn (Davison and Hinkley 1997),
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and the small number used here leads to potential problems. For example, the recruit-
ment distributions in Figure 4.8 would all be similar if sufficient iterations had been
run. That they are not may have introduced unwanted effects in the analysis. At the
time the analysis was carried out, this problem was very hard to avoid (although see
Section 6): a run of 50 iterations took around 15 hours in the extant implementation,
so that 500 iterations would occupy over 6 days of computing time. There were a
number of steps in the algorithm which slowed the process down, including the live
assessment, the iterative estimation of a TAC to produce a required fishing mortality
rate, and the sliding-F rule. However, the difficulty may not be as significant as it at
first appears. The real difference between each iteration lies in the years in which the
two large year-classes appear. While there are 56 possible permutations, there are only
four combinations which are likely to have any real impact: the large year-classes can
appear in the first or second half of 2006–2013, and first or second half of 2016–2023.
That is, the large year-classes are either close together, moderately separated and early,
moderately separated and late, or far apart. It may be that 50 iterations is sufficient to
cover this reduced range of outcomes, particularly following the results in Figure 4.10
which suggest that the recruitment time-series may not be all that critical. The issue of
the number of iterations available is addressed in Section 6. I return to the problem of
discard modelling in Section 4.5.
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Figure 4.5: Estimated historical time-series of recruitment at age 0 for North Sea haddock.
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Figure 4.7: Summary plots of a single simulation iteration for North Sea haddock, with Ftarget = 0.3. In
each plot the vertical dashed blue line delineates the last historical year. Each red line inthe top four plots
shows the assessment result for one year in the future simulation. a) Yield. b) True (black) and assessed
(red) fishing mortality F , with dashed green lines indicating Flim (upper) and Fpa (lower). c) True (black)
and assessed (red) spawning-stock biomass B, with dashed green lines indicating Bpa (upper) and Blim
(lower). d) True (black) and assessed (red) recruitment to the fished stock. e) Comparison of frequency
distribution of historical and simulated recruitment. f) The percentage interannual change in quota
(TAC), with dashed red lines showing the ±15% level. Source: Needle (2008c); see also Chapter VI.
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Figure 4.8: Summary plots of 50 simulation iterations, with Ftarget = 0.3. The short horizontal lines
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2007) are shown as short horizontal lines only. Source: Needle (2008c); see also Chapter VI.
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Chapter VI.
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Figure 4.10: The relationship between risk and the simulation year in which the first large recruitment
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4.4.2 Extension to include banking and borrowing

The distributions of yield, mean F , SSB and recruitment over the 100 iterations carried
out for each simulation including banking and borrowing are given in Figures 4.11 (for
run 1) and 4.12 (for run 5): the plots were almost identical for runs 1–4 (with two
strong year-classes in each run), and for runs 5–8 (with no strong year-classes), so
only two plots need be shown here. The only difference between the runs in each set
is the sequence of banking and/or borrowing (see page 27), so these Figures imply that
the application of interannual quota flexibility makes very little difference to the future
dynamics of the stock and the fishery. The key issue of inappropriate modelling of dis-
cards, and the consequent impact on management perceptions within the simulations,
could not be addressed in this revised analysis (see Section 4.5).

An appropriate index of risk for the management plans analysed here is the num-
ber of years in each simulation in which biomass is less than Bpa or Blim. This is
summarised for the eight extant runs in Figure 4.13. A slightly different way of look-
ing at risk is given in Table 4.1, which gives the percentage of iterations for each year
for which biomass is less than Bpa or Blim, averaged over all the years of the simula-
tions. Risk is clearly higher for the runs with lower recruitment (around 15% of years
with B < Bpa and 3% with B < Blim) than for runs with two strong year-classes (around
10% of years with B < Bpa and 1% with B < Blim). What constitutes a satisfactory level
of risk is something for managers to determine as part of a consultation process. The
important point to note here is that the risk is very insensitive to the particular sequence
of banking or borrowing that is carried out.

Run B < Bpa B < Blim Recruitment Quota flexibility

1 9.63 0.91 Two strong year-classes No banking or borrowing
2 9.45 0.91 Two strong year-classes 10% banking every year
3 9.91 0.91 Two strong year-classes 10% borrowing every year
4 10.00 1.00 Two strong year-classes Alternating 10% banking

and borrowing

5 15.18 2.72 No strong year-classes No banking or borrowing
6 15.00 2.55 No strong year-classes 10% banking every year
7 15.45 2.72 No strong year-classes 10% borrowing every year
8 14.73 2.55 No strong year-classes Alternating 10% banking

and borrowing

Table 4.1: North Sea haddock with possible banking-and-borrowing: risk of biomass B being below
the specified reference points. Numbers give the percentage of iterations in each year in the forward
simulations for which biomass was lower the relevant point, averaged over 25 years carried out for each
run.
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The banking-and-borrowing simulations described here were based on the earlier
work on the North Sea haddock MSE presented above. The problem of modelling
discard behaviour that was present in the earlier work was not rectified in the banking-
and-borrowing analyses, so results must be considered with that caveat in mind. Given
this and the other simplifying assumptions made, the conclusion must be that the se-
quences of banking-and-borrowing implemented do not make any significant differ-
ence to the future dynamics of the stock and the fishery. As these trial runs included
the most extreme types of interannual quota flexibility permitted by the proposed reg-
ulation, it is very unlikely that any actual sequence of banking-and-borrowing would
have any deleterious effect on future stock sustainability.
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Figure 4.11: North Sea haddock with possible banking-and-borrowing: distributions of landings, SSB,
mean F and recruitment from run 1 (two strong year-classes, no banking or borrowing). The short
horizontal lines indicate the medians, and the boxes the quartiles (25%ile and 75%ile). The lower
whisker gives the value of 25%ile− (1.5× (75%ile− 25%ile)) and the upper gives 75%ile + (1.5×
(75%ile−25%ile)). Outliers beyond this range are shown by open circles. The green dashed line in the
mean F plot gives the target-F value for the simulation, while the equivalent lines in the SSB plot give
Blim and Bpa.
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Figure 4.12: North Sea haddock with possible banking-and-borrowing: distributions of landings, SSB,
mean F and recruitment from run 5 (no strong year-classes, no banking or borrowing). See caption for
Figure 4.11 for plot key.

4.5 PROBLEMS WITH THE EVALUATIONS

Regarding this thesis, the principal germane point of the North Sea haddock manage-
ment evaluations carried out thus far is that the evaluations used a very simple model
of future discarding practice (one aspect of fleet behaviour) which has a demonstra-
bly deleterious effect on the outcomes. The banking-and-borrowing analysis serves to
demonstrate the flexibility of the approach in simulating different types of management
plan, but could not address this central issue.

Consider Figure 4.7, which summarises one simulation run from Needle (2008c).
Realised mean fishing mortality in all the evaluation runs is well below the target F

value of 0.3, which means that the management simulation is likely to be more con-
servative that it should be. This problem relates to the way in which discarding is
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Figure 4.13: North Sea haddock with possible banking-and-borrowing: summary of risk of B < Bpa
(grey) and B < Blim (black) for different runs. The correspondingly-coloured solid lines show the fits of
loess smoothers to the full time-series of risk estimates. Small random perturbations have been applied
to the vertical position of each cross to improve visualisation. Risk is defined as the number of years in
each simulation for which spawning stock biomass B < Bpa or B < Blim as appropriate.
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modelled in the simulations. There does not yet exist a model that can explain the
discarding behaviour of North Sea fishing fleets, and I had therefore to use the crude
approximation that the proportions discarded-at-age at the end of the historical time-
series (actually, the mean proportions over 2005–2007) are carried forward unchanged
into the future simulations. In reality, discarding proportions will change over time for
many different reasons, and in particular may increase when a large year-class appears.
One reason for this is the TAC cannot increase commensurately with stock biomass,
because the quota is constrained to change by no more than ±15% each year. The
consequence of this feature (in a situation of increasing biomass) is that the assess-
ment process within the management cycle thinks that the catch is less than it actually
should be. Because of this, the assessment estimate of biomass is smaller than the real
biomass, and the estimate of fishing mortality is correspondingly higher than the real
fishing mortality. Therefore, while the “managers” in the simulations think that mean
F is around the target value of 0.3, the real mean F is consistently lower. However, a
large year-class is not the only driver of discarding practices, and there are many others
(such as market prices and quota availability) which are external to the stock and thus
more difficult to build into these evaluations.

Previous authors have noted the deleterious effect that a discrepancy between pre-
dicted mortality and realised mortality can have on the sustainability of a management
plan: an example is Holt and Peterman’s (2006) study of management plans for Fraser
River sockeye salmon in British Columbia. If predicted mortality is higher than re-
alised, as was often the case in the North Sea haddock simulations presented in this
Section, the danger is of lost yield and unnecessarily disadvantaged fishing communi-
ties. If realised mortality is higher than predicted, as with the case discussed by Holt
and Peterman (2006), it is likely that the management plan will be much less sustain-
able than expected.

Solving problems of this kind calls for more extensive and realistic models of fish-
ermen’s decision-making than currently exist. This issue is one of the main motivating
drivers for this thesis. Without a better knowledge of why fishermen act as they do,
and what their likely reaction to changes in management and population dynamics
will be, management strategy evaluations are much less useful or reliable than they
could be. Past evaluations have not often included this aspect: case studies like Eggers
(1992) and Holt and Peterman (2006) have generally considered correlations between
potential driving forces and outcomes, rather than true process models through which
causation can be determined.
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5 Management strategy evaluation for West of
Scotland haddock

5.1 INTRODUCTION

This Section is based on analyses first presented in Needle (2010a). I include it here
as it builds on the North Sea haddock case study (see Section 4) and introduces a new
issue which a general fisheries simulation model needs to be able to address: how to
simulate survey-based management in which not just discards, but also unallocated
removals need to be modelled.

The North-Western Waters Regional Advisory Council (NWWRAC) is a focus and
lobbying group, consisting of stakeholders in the fisheries in the areas to the north
and west of the UK. These stakeholders include representatives of the relevant fishing
industries, non-governmental environmental groups, and fisheries managers. Scientists
are not generally members of the NWWRAC (or other RACs), but they may be invited
to provide advice and analyses when required. The main purpose of the European
RACs (of which there are seven at the time of writing) is to provide stakeholders with
a voice and input to the European advisory and management process which they may
previously have been lacking.

The NWWRAC Focus Group on Management for West of Scotland haddock met
at the Marine Laboratory, Aberdeen, on 3 July 2009 to discuss options for management
approaches for the haddock stock in ICES Division VIa (see Figure 4.1). In particular,
they considered a draft request for advice that had been made to ICES from the Eu-
ropean Commission (EC), which called for an evaluation of the utility of applying the
EU-Norway long-term management plan for North Sea haddock to Division VIa had-
dock (see Figure 4.1), given appropriate changes in specified biomass reference points.
The key aspects of this plan, as described in Section 4 above, are a target fishing mor-
tality (F) derived through a sliding-F rule based on forecast biomass, and a constraint
on interannual change in quota.

The Focus Group concluded that the terms of the EC request to ICES formed an
appropriate basis for consideration for haddock management in Division VIa, with the
following provisos:

1. Target fishing mortality rates for the sliding-F rule and the TAC constraints
would need to be specified appropriately for the stock. This could only be done
following evaluation over the following ranges: target F from 0.2 to 0.4, and
TAC constraints from ±15% to ±25%.
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2. While explicit technical measures need not form part of the management plan,
the Focus Group emphasised that such measures should at least be alluded to in
the text of the plan (if not directly specified). Previous versions of the North Sea
haddock management plan had included such clauses. Their relevance is that
they ensure that the plan is not viewed in isolation from the wider management
structure.

It was agreed that I would conduct the necessary management strategy evaluation
(MSE), building on the experience of running similar evaluations for the functionally-
identical North Sea haddock management plan (Needle 2008c, Needle 2008b, Sec-
tion 4 and Chapter VI). Once the EC request had been formally received by ICES,
arrangements were made for me to complete the required analyses by 18 November
2009 for subsequent ICES review.

The Focus Group outlined the following important issues to be resolved for the
evaluations (in ascending order of difficulty and tractability):

1. The stock-recruitment model to be used;

2. How to implement a live assessment module in the evaluation loop, where no
FLR function to replicate a Time Series Analysis (TSA) assessment exists;

3. Accounting for potential density dependence in growth;

4. Discard models (although these are also lacking from the North Sea evaluation);

5. Multispecies fleet models.

In the evaluation presented below, points 1 and 2 have been addressed in full, while
the time available was not been sufficient to cover points 3 to 5. The evaluation
was implemented in the R programming system (R Development Core Team 2011,
version 2.8.1), using FLR libraries (FLR Team 2006, Kell et al. 2007, Hillary 2009,
http://flr-project.org/).

5.2 SPECIFIC MODELLING ISSUES FOR WEST OF SCOTLAND HAD-

DOCK

It was envisaged that the development time for this evaluation would be relatively
brief, as it was thought that much of the North Sea evaluation code (which had taken
over two years to develop) could be reused. This did prove to be the case to a certain
extent, but there were also a number of issues specific to the VIa haddock evaluation
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that needed to be addressed. These issues are summarised below. Aside from these,
all other algorithms and assumptions were carried over from the North Sea haddock
example (see Section 4).

5.2.1 Recruitment

The recruitment model for the North Sea haddock evaluation was based on the assump-
tion that there occurs one very large year-class every ten years (where “very large”
means at least two orders of magnitude greater than the mean). This pattern has not
been observed to the same extent for VIa haddock, for which the range of year-class
strengths is narrower (Figure 5.1), so a different approach was taken.
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Figure 5.1: Time-series of recruitment at age 1 (in thousands) for haddock in ICES Division VIa, as
estimated by ICES (2009c) using the TSA method. Dotted lines give the approximate pointwise 95%
confidence intervals for the TSA estimates.

Time series of estimated parental spawning-stock biomass B and subsequent re-
cruitment at age 1 R were taken from the most recent ICES assessment working group
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report (ICES 2009c). Five nested stock-recruit models were fitted to these data, us-
ing linear least-squares regression. The models used are given in Table 5.1 (see also
Needle 2002).

Model Formulation

Changepoint R =
{

α, S > β
αS
β

, S ≤ β

Linear R = αS
Power R = αSβ

Ricker R = αSexp(−βS)
Saila-Lorda R = αSγ exp(−βS)

Table 5.1: Management strategy evaluation of haddock in ICES Division VIa: recruitment model for-
mulations. R and S are recruitment and SSB respectively; α , β and γ are parameters to be estimated.

Model fit confidence intervals were estimated using parametric sampling, as de-
scribed in Needle and Hillary (2007). The goodness-of-fit of each recruitment model
was tested using the AIC measure (Akaike 1973).

Following the approach suggested by Needle et al. (2003), time-series of log resid-
uals rt were generated for each recruitment model, where rt = ln

(
Rt/R̂t

)
: that is, the

log ratio of observed to fitted recruitment for each year t. A number of ARMA(p,q)
models were fitted to each time-series, for autoregressive orders p = 0, . . . ,3 and mov-
ing average orders q = 0, . . . ,3, where:

rt = φ1rt−1 + . . .+φprt−p + εt +θ1εt−1 + . . .+θqεt−q. (5.1)

Here εt ∼ N
(
0,σ2), while φp and θq are fitted autoregressive and moving average

parameters respectively. The goodness-of-fit of the 16 resultant ARMA model fits was
tested, again using the AIC measure.

The best-fitting models, as determined by this process, were used to generate re-
cruitments in the future stock simulations as follows. The selected ARMA model
was used to generate future residuals rt , by random sampling from the distribution of
ε . These residuals were then transformed back to recruitments using Rt = R̂tert , for
which R̂t was produced by the selected recruitment model.

Test runs showed that this approach could sometimes yield recruitments that were
larger than has been observed historically for this stock. Stochastically-generated fu-
ture recruitment residuals were therefore capped to lie within the range

r̃ ∈ {min{rt} ,max{rt}} . (5.2)

48



5.2.2 Assessment and data streams

The Division VIa haddock assessment (ICES 2009c) is carried out using a variant
of the TSA model (Fryer 2001), in which catch data for the most recent period are
removed from the analysis. The assessment for recent years is therefore based largely
on survey data, scaled to the level of historical catches, and recent assessments have
suggested that there is a substantial component of unaccounted removals from the stock
(presented as the difference between observed and estimated catches: see Figure 5.2).
The removals are further divided into landings, for which official records exist, and
discards, the levels of which are extrapolated from Scottish observer sampling.
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Figure 5.2: Estimated and reported catch data for haddock in ICES Division VIa, from ICES (2009c).
Columns show total catch (left), landings (middle) and discards (right). Top row: yield time-series
(tonnes). Red dots give reported values, lines give TSA estimates (solid) with approximate pointwise
95% confidence intervals (dashed). Middle row: TSA estimates of the coefficients of variation (CVs).
Bottom row: ratio of estimated to observed values. For both middle and bottom rows, green dots show
the mean of the last three values. For the bottom row, the blue lines show a ratio of 1.0 - i.e. where
observed and estimated values are equal.
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This structure causes problems for the MSE, over and above those encountered
when evaluating the North Sea haddock management plan (see Section 4; also Chap-
ter VI, Needle 2008c, Needle 2008b). In order to maintain as much realism in the
simulations as possible, the distinction between estimated and observed catches has
to be maintained moving forward in time, as does the distinction between landed and
discarded catch. For North Sea haddock, this was achieved by running a biological
module that generated a “true” population, followed by a knowledge-production mod-
ule that generated catches (landings plus a fixed discarded proportion) and surveys,
and subsequently an assessment module that used this information to run the same
stock assessment model as the real Working Group to generate an “assessed” popula-
tion. This assessed population was then fed into the management module to trigger
management decisions for the following year.

This approach was not possible for VIa haddock, as there was no implementation
of the TSA model that was accessible from the R system that I used for the evaluation.
Instead, I attempted to replicate the structure in simulations as follows:

1. Reported landings in year y, in terms of weight landed
(
Lr

y
)

and numbers-at-
age landed

(
lr
a,y
)

are generally determined by the quota for that year, where
this is set by the management module run in the previous year. If there are not
enough fish available for the quota to be taken, reported landings will be adjusted
downwards pro rata. I assume that the full quota is taken by the fleet if there are
fish available to do so. Under-utilisation of quota is a common feature of several
haddock fisheries, but I have not attempted to model it here. Given reported
landings, reported catch

(
Cr

y and cr
a,y
)

and discards
(
Dr

y and dr
a,y
)

are generated
using the same proportions-at-age as for true catch, landings and discards (see
below).

2. True catch yield in year y, measured in tonnes and denoted by
(
Ct

y
)
, is the yield

which is actually removed from the population each year by fishing. It is gen-
erated in the simulations by applying a fixed multiplier to reported catch yield.
The multiplier is derived from the average of the ratio of estimated to observed
catches for the last three years of historical data (see Figure 5.2, bottom row).
True catches are also generated in terms of numbers of fish at each age, which
I denote as ct

a,y. From these values I further generate true landings
(
Lt

y and lt
a,y
)

and discards
(
Dt

y and dt
a,y
)

by applying fixed proportions-at-age: these are de-
rived from the average of the proportions landed and discarded at age over the
last three years of historical data.
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3. Finally, I consider the assessed population, which (as in Section 4) will not nec-
essarily be the same as the true population. As stated above, the evaluation can-
not include the actual assessment used to provide advice for this stock. Instead,
I have derived assessed stock numbers NA

a,y and fishing mortalities FA
a,y directly

from the true stock numbers Na,y and fishing mortalities Fa,y by applying random
noise (with a specified but fairly ad hoc variance). The underlying assumption
in so doing, on which the advisory process is also based, is that the survey-based
TSA assessment gives a close approximation to the true population. Once I
have an assessed population, I can derive assessed catch

(
CA

y and cA
a,y
)
, landings(

LA
y and lA

a,y
)

and discards
(
DA

y and dA
a,y
)

from the assessed population estimates
by applying firstly the catch equation, and secondly the proportion discarded.

The approach outlined above makes extremely strong assumptions about the future
relationships between observed and estimated removals, and between landings and
discards. All the comments made in Section 4 regarding the difficulty in predicting
discard practice without good models of fleet behaviour apply here also, but in the
VIa case I have the additional difficulty of predicting unaccounted removals. In this
evaluation I have assumed that these relationships are fixed in the future, but this is not
very justifiable and must affect the validity of conclusions to be drawn.

The simulations were initialised using historical data from ICES (2009c), as fol-
lows:

• Means of the last three historical values were used in forward simulations for
biological metrics such as weights-at-age, natural mortality, proportion mature-
at-age, and proportion of F and M occurring before spawning.

• The actual 2009 quota (3520 tonnes) was used in generation of reported landings
for the first year of the simulation. Quotas in all subsequent years were the result
of the applied management plan.

• Also in the first simulation year (2009), I use reported landings (in other words,
the quota) as the intended landings and “true” F as the intended F . In subsequent
years these arise from the management plan.

Aside from these added complications, the simulation algorithm is functionally the
same as that used for the North Sea haddock MSE (Section 4), to which the reader is
referred for details on such aspects as the target-F iterative loop and the sliding F-rule.
Legacy code to implement interannual quota flexibility (Needle 2008b) remains in the
R-script used for the evaluation, but it is not used in the evaluations presented below.
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5.3 RESULTS

Fifty iterations of the future management simulations were carried out for all the re-
quested combinations of target F (0.2, 0.3, 0.4) and TAC constraint (±15%, ±20%,
±25%), giving nine separate realisations in all. Each iteration was run for 22 years into
the future, being the 20 years called for by the Focus Group plus 2 years to allow for
quota-setting forecasts. Each realisation took around 4-6 hours to complete, depending
on which computer was being used.

Figure 5.2 summarises the historical development of yield for the stock, both the
observed yield and the yield estimated by the TSA model (ICES 2009c). The Figure
also shows the time-series of CVs for estimated catch, landings and discards: these
could be used to generate distributions of starting values for simulations, although
this has not been done for this evaluation. Finally, time-series of the ratio between
estimated and observed yield are given (referred to here as the “multipliers”). These
are close to 1.0 for years prior to 1995, since catch data are included in the assessment
for the earlier years, but diverge considerably in more recent years. There is a spike
in estimates of unreported landings during the early years of this century, but this
has subsequently fallen, perhaps due to the UK Registration of Buyers and Sellers
legislation (Scottish Government 2005).

Figure 5.3 shows summaries of mean F , SSB and recruitment for this stock, as esti-
mated by the TSA assessment model (ICES 2009c), along with approximate pointwise
95% confidence intervals. The CVs of these estimates are also summarised. In future
work it may be possible to take CVs forward into simulations as part of the assessment
uncertainty module.

The results of fitting five stock-recruitment models to historical stock-recruit data
from ICES (2009c) are shown in Figure 5.4. Free parameter estimation for both the
power and Saila-Lorda models led to fitted curves that were biological implausible,
with very high recruitment at very low biomass. Applying a lower bound to parameter
estimates for the power and Saila-Lorda models reduces them to the simpler linear and
Ricker models respectively. Table 5.2 provides the AIC values for each of these model
fits, from which it is clear that the changepoint model has the lowest AIC (and hence
is ranked as the best-fitting model). I therefore selected the changepoint model to be
used for future simulations.

Finally, Figure 5.5 gives the (almost identical) time-series of log residuals for these
model fits. I determined above that I would use the changepoint model, but I also
needed to evaluate whether there was any time-series structure to these residuals. Ta-
ble 5.3 shows the AIC value obtained when fitting a number of ARMA(p,q) models
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Figure 5.3: Stock assessment results for haddock in ICES Division VIa, from ICES (2009c). Top row:
TSA estimates (solid lines) with approximate pointwise 95% confidence intervals (dashed lines) for
mean F (left), SSB (middle) and recruitment (right). Bottom row: corresponding CVs. Green dots show
the mean of the last three values.

to each time-series, for autoregressive orders p = 0, . . . ,3 and moving-average orders
q = 0, . . . ,3. The best fitting model by this criterion is the ARMA(0,0) model: that
is, a simple random walk. This fit is not significantly better than the ARMA(0,1) or
ARMA(1,0) equivalents (the difference in AIC is much less than 2.0), so there is no
strong basis on which to select between these.

However, it may be the case that an unautocorrelated random walk would allow
too many large residuals when these are not particularly evident in the recent history
of year-class strength. To address this issue, rather than on the basis of strong evidence
for it, the simulations discussed below are carried out assuming a ARMA(1,0) time-
series of log residuals about the changepoint model. For this time-series model, rt+1 =
0.179rt − 0.015 and σ2 ' 0.970. These results indicate a fairly weak autoregressive
pattern. Examples of these residuals are given in Figure 5.6.
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Figure 5.4: Fitted recruitment models for haddock in ICES Division VIa. Stock-recruit data is taken
from ICES (2009c). See Table 5.1 for model formulations. Solid lines give fitted models, dashed lines
give 95% confidence limits. Note that parameters in both the power and Saila-Lorda model fits were
bound below to ensure biological interpretability (power: β ≥ 0, Saila-Lorda: γ ≥ 1 ).

Figure 5.7 gives a number of summary plots for one realisation of the simulation for
which the target F = 0.3 and the TAC constraint =±15% (recall that 50 such realisa-
tions were run for each of nine simulations). The time-series of generated recruitment
for this example (middle row, right plot) remains at low to moderate levels, and does
not (in this case) feature a strong year-class. The corresponding density plot (bottom
row, left plot) also demonstrates this lack - on the other hand, this is only one realisa-
tion, so too much should not be read into it. Realised mean F (middle row, left plot)
oscillates quite vigorously for the first part of the simulation. This is due to the combi-
nation of several low years of recruitment, which keeps SSB below Blim, and the clause
in the proposed management plan that allows TAC constraints to be waived when SSB
is so reduced. The lack of constraint in quota allows mean F to reach high levels for
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Figure 5.5: Time-series of log residuals from fitted stock-recruit models for haddock in Division VIa.

short time periods. Mean F eventually settles down to fluctuate around the target F

level (0.3). The fluctuation is caused by a combination of the following factors:

Implementation lag Each year of the simulation includes a two-year-ahead forecast,
the result of which determines what quotas should be for the following year.
However, these forecasts contain assumptions about recruitment, and if these
are not accurate (as they generally won’t be), the permitted quota may be too
large or too small for the actual population to which it is applied. If the quota is

Changepoint Linear Power Ricker Saila-Lorda

AIC 89.040 94.186 94.186 91.635 91.635

Table 5.2: AIC values for fitted recruitment models.
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p q AIC

0 0 89.040
0 1 90.154
1 0 90.268
0 2 91.717
0 3 91.879
2 1 92.206
2 0 92.233
1 1 92.291

p q AIC

1 2 92.552
3 0 93.023
1 3 93.634
3 1 93.663
2 2 94.282
3 2 95.629
2 3 95.632
3 3 97.595

Table 5.3: AIC values (in ascending order) from fitting ARMA(p,q) models to log residuals from the
changepoint recruitment model.

taken regardless, this will result in realised mean F that is higher or lower than
intended.

The TAC constraint Fixing the amount by which quotas can change from year to year
will also hinder achievement of the target F . In a situation of rising (or falling)
stock size, the quota is not allowed to rise (or fall) commensurately, and realised
mean F is affected as a result.

Even with these fluctuations, the average F over the later simulation period is consis-
tently lower than the historical average (Figure 5.3). Recruitment strength remains low
to moderate in this run. SSB continues to fall initially and then rises steadily. This
pattern is facilitated by the lower realised F : this allows the moderate recruitments
that do occur to survive to adulthood. Permitted quota (top row, middle plot) follows
an overall slowly-ascending trajectory (save for a temporary jumps in years when the
TAC constraint is removed), with true landings, discards and catches all following suit
according to the fixed relationships between them. The interannual change in quota
(bottom row, right plot) is at the maximum permitted value for the majority of years in
the simulation.

Staying with the same evaluation (target F = 0.3, TAC constraint ±15%), Fig-
ure 5.8 summarises all 50 simulation iterations. The median values from these plots
are essentially the result of smoothing across different realisations of recruitments, and
are therefore only useful as an indication of likely future events. Given this caveat, the
simulations indicate that SSB is likely to rise initially before stabilising at or around
80 to 90 kt, mean F is likely to fluctuate considerably around the target level (but
should in any case be able to remain low on average), and landings will rise steadily
and (broadly speaking) as fast as the quota constraint allows.

I can summarise risk from these simulations in two ways. The first is to consider the
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Changepoint: ARMA(1,0)

Figure 5.6: Examples of stochastically-generated time-series of log-residuals to the fitted changepoint
model for haddock in Division VIa. Values to the left of the vertical blue line are observed historical log
residuals, while those to the right are values generated by an ARMA(1,0) model.

true biomass values from all 50 iterations for a given year, and calculate the proportion
of those values which lie below Bpa or Blim. Doing this for each year of the same run as
above (target F = 0.3, TAC constraint ±15%) results in Figure 5.9 which shows that
the risk is small after the initial three or so years of recovery (although the risk does
average around 5% towards the end of the time-series).

The second method is to consider each iteration separately, and count the number
of years in that iteration for which biomass was less than Bpa or Blim. This provides
a different type of inference that some managers may find more intuitive, and I will
focus on it for the remainder of our discussion. The results of this analysis for all nine
evaluation runs are summarised in Table 5.4, and Figures 5.10 and 5.11.

The ways in which the TAC constraint and target F affect risk and yield are com-
plicated and worthy of closer consideration. Figure 5.10 suggests that, for a ±15%
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TAC constraint, the risk declines between F = 0.2 and 0.3, before increasing again for
F = 0.4. This perception is more a function of the loess curve that has been plotted,
rather than related to the actual risk: Table 5.4 shows that the risk is approximately
equal for F = 0.2 and 0.3. Note, however, that yield shows a definite peak at F = 0.3
for all TAC constraints (Table 5.4 and Figure 5.11), which concurs with general per-
ceptions that Fmsy for haddock is around 0.3 (ICES 2007c). The original EC request
called for a comment on “the extent to which the application of this rule would de-
liver maximum sustainable yield from the stock”: on the basis of these results, and
assuming that Fmsy is indeed around 0.3, then fishing at this level appears to result in
higher cumulative yield than either higher or lower fishing mortalities, no matter what
the TAC constraint. Returning to Figure 5.10, target F has less effect on risk when
the TAC constraint is 20% - in this case, however, the cumulative yield is very much
less for an F of 0.2 than for either 0.3 or 0.4 (Figure 5.11). The pattern of risk when
the TAC constraint is 25% is similar to that for the 15% case (Figure 5.10), and the
cumulative yield shows a maximum at F = 0.3.

Run Target F TAC cons Years B < Bpa Years B < Blim Cumulative yld

1 0.2 15% 3.76 0.80 703544.4
2 0.3 15% 3.70 0.94 789485.8
3 0.4 15% 6.24 2.34 667363.2
4 0.2 20% 3.60 1.04 663931.1
5 0.3 20% 4.40 1.10 804322.1
6 0.4 20% 4.70 1.18 785020.7
7 0.2 25% 3.46 0.86 711195.9
8 0.3 25% 4.00 1.08 806573.7
9 0.4 25% 6.26 2.20 775960.1

Table 5.4: Summaries of risk (number of years in each iteration for which biomass is less than reference
points, averaged over iterations) and cumulative yield (summed true landings in tonnes, averaged over
iterations) for each of the nine 20-year simulation runs for the VIa haddock MSE.

5.4 CONCLUSIONS

This evaluation proved to be difficult to complete. While the example of the North Sea
haddock MSE (Section 4) was a useful template, there were considerable additional
coding issues to be solved, caused principally by the need to mimic the mostly survey-
based TSA stock assessment method used by the ICES WGNSDS and WGCSE groups
to assess the stock (ICES 2009c). Aside from these issues, there were real difficulties
in deciding how to deal with discards and other unaccounted removals in the future
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simulations. These have been circumvented in the evaluation by assuming that the
proportions in the total catch of all such removals remains constant into the future:
without better models of fleet behaviour, it is hard to see how this approach could be
improved, but the assumptions about future removals remain crude and this must have
an effect of the utility of the conclusions reached. It did not prove to be possible to
implement the code in the new version of FLR, which is unfortunate as this would have
run much more quickly and removed concerns over the small number of simulations
on which the extant results are based (but see Section 6).

The example of VIa haddock presents the same problem as that of North Sea had-
dock, namely difficulties in forecasting discards without good models of why fisher-
men discard in the first place. However, it also features the additional issue of how to
deal more widely with unaccounted removals, which may be caused by misreported
or unreported catch, changes in natural mortality, or changes in survey catchability, as
well as discards. It therefore emphasises, perhaps even more strongly than the North
Sea haddock case, the need for improved models of fleet behaviour. Without these, the
utility of advice based on management simulations must always be compromised.

The conclusion of the evaluation presented in Needle (2010a), given these caveats,
was as follows. The simulations carried out suggested that the proposed manage-
ment plan for haddock in Division VIa is likely to be sustainable. Over all tested
combinations of target F (0.2, 0.3, 0.4) and TAC constraint (±15%, ±20%, ±25%),
spawning-stock biomass was below Bpa for less than seven of the 22 years in the future
simulations (on average). The bulk of these years occurred during the first years of
the simulations as the stock recovered from its current low state. Biomass was below
Blim for less than three years in the simulations (on average), and these were nearly
always during the first years of recovery. Cumulative yield is also likely to increase
under the plan, although the relationships between target F , TAC constraint and yield
are complicated. The simulations suggest that a target F of 0.3 has the best chance of
producing the combination of high cumulative yield and low risk to biomass. It should
be noted that, at the time of writing (March 2012), Scottish fisheries managers have
been keen to avoid implementation of this plan, viewing the 25% TAC constraint as
being too restrictive for the current state of the stock and fishery.
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Figure 5.7: Summary plots for one realisation of the VIa haddock MSE. Here the target F is 0.3, and the
TAC constraint is ±15%. For all plots, the vertical blue line denotes the last historical year. Top row:
total catch (left), landings (middle) and discards (right), showing true and reported values (and intended
values, for the landings plot). Middle row: time series of mean F (left), SSB (middle) and recruitment
(right). The true values are given in black, while the assessed values from each year of the forward
simulation are shown in red. Green dots indicate the intended mean F in the left-hand plot. Green lines
show reference points for mean F and SSB. Bottom left plot: comparison of standardised frequency
distributions for historical and simulated recruitment. Bottom right plot: percentage interannual change
in quota, with ±15% limits highlighted by red dashed lines.
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Figure 5.8: Summary plots of 50 simulation iterations of the haddock VIa MSE, with target F = 0.3 and
TAC constraint of ±15%. The short horizontal lines indicate the medians, and the boxes the quartiles
(25%ile and 75%ile). The lower whisker gives the value of 25%ile− (1.5× (75%ile−25%ile)) and the
upper gives 75%ile+(1.5× (75%ile−25%ile)). Outliers beyond this range are shown by open circles.
The dashed line on the top-right plot shows the target F , while those on the bottom-left plot show Bpa
(upper) and Blim (lower). Historical estimates (pre-2009) are shown as short horizontal lines only.
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6 Management strategy evaluation for Rockall
haddock

This section is based on analyses first presented in Needle and Mosqueira (2011). My
co-author in this paper (Iago Mosqueira, EC Joint Research Center, Ispra, Italy) has
confirmed that the methods, results and analyses presented here are solely my own
work (see page 5). I include the analysis here as it builds further on those presented in
Sections 4 and 5, adding the ability to base evaluations on many more iterations than
before.

6.1 INTRODUCTION

Discussions between the European Union (EU) and the Russian Federation (RF) on
possible joint management measures for the Rockall haddock fishery have been pro-
gressing for over ten years. Changes in the shape of the EU Exclusive Economic Zone
in 1999 led to the renewal of the RF Rockall haddock fishery, and as this fishery has
quite different characteristics from the (predominantly) Scottish and Irish fisheries al-
ready present in the area, it was clear that joint management would be both necessary
and potentially difficult to implement. Meetings involving both scientists and fisheries
managers from the EU and the RF have been held on an almost annual basis since 2001
to determine what is known about these fisheries, and how such information can best
be used to develop a productive and sustainable management system.

Building on the history of Rockall fisheries and the supporting scientific work pre-
sented by Newton et al. (2008), the EU-RF Working Group on Rockall haddock met
four times during 2008-2010 and produced a state-of-the-art review of available data
and scientific analyses pertaining to Rockall haddock (European Commission and Rus-
sian Federation 2009). At the fourth of these meetings, in Edinburgh during September
2010, a proposal for a joint EU-RF management plan for Rockall haddock was drafted.
Following further refinements, a final version was presented to the appropriate North
East Atlantic Fisheries Commission (NEAFC) plenary meeting towards the end of
2010. The decision was taken there to forward the proposal to ICES for evaluation:
the text of the request is given in Section 6.2 below.

Although the request was received by ICES towards the end of 2010, technical
difficulties with the evaluation and pressure of other work meant that the response
to the request could not be included as part of the June 2011 advice release. This
Section provides a quantitative risk-based evaluation of the likely performance of the
proposed management plan, although it does not cover all relevant issues as yet. Re-
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maining problems are highlighted in the text and will be dealt with during any future
revisions of the management plan (if implemented). I implemented the evaluation in
the R programming system (R Development Core Team 2011, version 2.13.0), using
the most recently-available versions of the FLR libraries (FLR Team 2006, Kell et
al. 2007, Hillary 2009, http://flr-project.org/).

The key development in this work, when compared with the North Sea and West
of Scotland haddock MSEs discussed in Sections 4 and 5, is the implementation of a
new version of the FLR analysis libraries, to be released formally in October 2011.
Although quite difficult to use, the numerical estimation modules now provided in
FLR are several orders of magnitude faster than the bespoke routines developed for
the previous MSEs (Sections 4 and 5). This enables much more complete coverage of
distributions of output quantities (and therefore risk), and improves the robustness of
conclusions to process and model uncertainty.

6.2 REQUEST TO ICES FROM NEAFC REGARDING THE PROPOSED

ROCKALL HADDOCK LTMP

NEAFC requested ICES to evaluate the following proposal for the harvest control com-
ponent of a long-term management plan for Rockall haddock and in particular to con-
sider whether the plan is consistent with the precautionary approach and will provide
for the sustainable harvesting of the stock. ICES was also asked to suggest an alterna-
tive approach if necessary.

Draft EU-Russia proposal for harvest control component of a long-term management
plan for haddock at Rockall

In the following, the TACs refer to total catches, not just landings.

1. Every effort shall be made to maintain a level of Spawning Stock Biomass (SSB)
greater than Bpa and a minimum level of SSB greater than Blim.

2. For [20XX] and subsequent years the Parties agreed to set a TAC to be consistent
with a fishing mortality rate Ftarget of no more than [either Fpa (0.4) or Fmsy (0.3)]
for appropriate age-groups, when the SSB in the end of the year in which the
TAC is applied is estimated above Bpa.

3. The Parties agree that the TAC that results from the application of the fishing
mortality referred to in paragraph 2 will be adjusted according to the following
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formula:
TACy = TAC f +0.2

(
TACy−1−TAC f

)
where TACy is the TAC that is to be set by the management plan, TACy−1 is the
TAC that was fixed the previous year and TAC f is the TAC resulting from the
provisions in paragraphs 1 and 2.

4. Where the SSB referred to in paragraph 2 is estimated to be below Bpa but above
Blim the TAC shall not exceed a level, which will result in a fishing mortality rate
equal to Ftarget −

(
Ftarget−0.1

)(
Bpa−SSB

)
/
(
Bpa−Blim

)
. This consideration

overrides paragraph 3.

5. Where the SSB referred to in paragraph 2 is estimated to be below Blim the TAC
shall be set at a level corresponding to a total fishing mortality rate of no more
than 0.1. This consideration overrides paragraph 3.

6.3 SPECIFIC MODELLING ISSUES FOR ROCKALL HADDOCK

The code used previously for haddock MSEs (Needle 2008b, Needle 2008c, Needle
2010a, Sections 4 and 5, and Chapter VI) could have been modified to run the Rock-
all haddock MSE, but it presented two significant problems. Firstly, much of it was
bespoke code written to implement features that were not present in the early version
of FLR that was available at the time, and such code would have been very difficult
for reviewers to understand and check for errors. Recent developments in FLR have
in any case rendered much of this bespoke code obsolete. Secondly, the previous code
was not optimised for speed, and a single 100-iteration simulation run could take over
15 hours (thus limiting the scope of sensitivity analyses). The new version of FLR fea-
tures a number of optimised analysis algorithms which reduce runtimes dramatically:
the same 100-iteration simulation run now takes around 8 minutes.

For these reasons, the Rockall haddock MSE described here does not build directly
on previous haddock MSEs, but rather on MSEs developed for other species using the
development version of FLR (to be released in October 2011 as version 2.4). As is
usually the case, the code for these MSEs could not be used without modification for
Rockall haddock, due to specific features of the stock, assessment and proposed man-
agement plan, and further code development was required. However, the programming
approach used in the new version of FLR is not particularly intuitive or easy to use,
so the development was not without problems initially. Furthermore, the MSE does
not implement all the features of the system that could be considered, particularly the
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presence of two different fleets with different catachability characteristics. The inten-
tion expressed by Needle and Mosqueira (2011) was that the evaluation would be a live
code that would develop in the future and be used for evaluations of subsequent revi-
sions to the proposed management plan. It is worth noting that the North Sea haddock
MSE (Needle 2008b, Needle 2008c, Section 4 and Chapter VI) took over two years to
develop, a much greater period of time than has been devoted thus far to the Rockall
haddock MSE.

6.3.1 Recruitment

Recruitment dynamics for haddock in the North Sea and West of Scotland are charac-
teristically sporadic: that is, there is a strong tendency in those stocks for very occa-
sional large year-classes interspersed with several weak year-classes. Recruitment for
Rockall haddock appears to have a stronger relationship with parental spawning stock
biomass, as indicated by Figure 6.1. Therefore, a Ricker stock-recruit model was used
to generate stochastic recruitments in the biological simulation model under-pinning
the evaluation. This model is given by

Ry = αSy−1 exp
(
−βSy−1

)
exp
(
ε

R
y−1
)
, (6.1)

where Ry is recruitment at age 1 in year y, Sy−1 is the parental spawning stock biomass
in year y− 1, α and β are fitted parameters, and εR

y−1 ∼ N
(
0,σ2

R
)

where σR is the
assumed recruitment standard deviation. Within the knowledge production model (see
Figure 1.1), a simple three-year geometric mean of previous recruitment was used
as the best estimate of incoming year-class strength. In the real assessment (ICES
2011d), a survey-based RCT3 prediction is used to generate recruitment estimates for
the intermediate year, while a long-term (1991 onwards) geometric mean is used for
the quota year. These refinements could be included in a future revision of the MSE.

6.3.2 Stock assessment

The Rockall haddock assessment (ICES 2011d) is carried out at the ICES assessment
working group using the original MS-DOS implementation of XSA (Shepherd 1992,
Darby and Flatman 1994). The version of the model provided with FLR (FLXSA; Kell
2011) is functionally identical to XSA, and has the advantage that it can be built into
MSE simulation loops. For this reason, FLXSA is used here to generate the simulated
stock assessment on which management decisions are taken. The same run settings are
used as for the XSA assessment in ICES (2011d), namely:
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Figure 6.1: Diagnostics for Ricker stock-recruit model. The fitted Ricker curve is shown in the top-
left plot (red line), along with comparative non-parametric loess smoothers (blue lines). The remaining
diagnostics are self-explanatory.

• Tuning indices: one survey index
(SCOGFS).

• Time-series weights: none.

• Catchability dependent for ages < 4.

• Regression type: C.

• Catchability plateau: 5.

• Shrinkage standard error: 1.0.

• Shrinkage age-year: 3 ages, 4 years.

• Minimum standard error: 0.3.

• Plus group: 7+.

• Mean F age range: 2-5

The summary outputs from the FLXSA run on historical data are given in Fig-
ure 6.2 (stock summary) and 6.3 (residuals).

69



1995 2000 2005

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
ea

n 
F

1995 2000 2005

0
50

00
15

00
0

25
00

0

S
S

B

1995 2000 2005

0
40

00
0

80
00

0
12

00
00

R
ec

ru
itm

en
t

Historical XSA estimates

Figure 6.2: Summary results of the FLXSA assessment applied to historical Rockall haddock data.

The assessment makes no explicit distinction between reported landings and es-
timated discards, which are summed together to give total catch. In the simulation
forecast, the ratio of landings to discards for each age is assumed to be fixed. In previ-
ous work on MSEs for haddock (see, for example, Section 4), it has been demonstrated
that this assumption can lead to problems (generally underestimation of SSB) with the
simulated assessment, particularly when a large year-class is generated. This difficulty
may still arise for Rockall haddock, but the magnitude of the effect is likely to be less as
the quota is assumed to apply to total catch rather than just landings (see Section 6.2).
I also note that the Russian fleet is thought not to discard any fish. Hence the assumed
split between landings and discards is less germane to the simulated stock and fishery
dynamics.
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Figure 6.3: Survey-index catchability residuals from the FLXSA assessment applied to historical Rock-
all haddock data.

The simulations were initialised using historical data, as follows:

• Means of the last three historical values were used in forward simulations for
biological metrics such as weights-at-age, natural mortality, proportion mature-
at-age, and proportion of F and M occurring before spawning.

• The actual 2010 quota (4997 tonnes) was used in generation of total catch for
the first year of the simulation. Quotas in all subsequent years were the result of
the applied management plan.

• Also in the first simulation year (2010), I used total catch (in other words, the
quota) as the intended catch and "true" F as the intended F . In subsequent years
these arise from the management plan.
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Aside from these added complications, the simulation algorithm is functionally similar
to that used for the North Sea haddock MSE: see Section 4, to which the reader is
referred for details on such aspects as the target-F iterative loop and the sliding F-rule.

6.3.3 Research-vessel survey indices

The ICES assessment for Rockall haddock uses indices from one research-vessel sur-
vey (the Scottish Q3 groundfish survey), which has been conducted annually since
1991 (save for three years during which the survey did not take place). Figure 6.4
gives the time-series of the survey indices for each age, along with distributions of the
same indices but with stochastic noise applied. For a survey index datum Ia,y for age a

in year y, in the kth iteration, the stochastic version is generated using

Ĩa,y,k = Ia,y exp
(

ε
I
a,y,k−

1
2

σ
2
I

)
, (6.2)

where ε I
a,y,k ∼ N

(
0,σ2

I
)

and σI = 0.3 is the assumed survey standard deviation. Fig-
ure 6.5 shows the resultant distributions of assessed mean fishing mortality, SSB and
recruitment when K assessments are run using the K stochastically-generated survey
index time-series.

Survey indices must also be generated for each year in the future simulations, to en-
able these to include stock assessments. The historical relationship between estimated
abundance Na,y and survey indices Ia,y for each age was generated by fitting straight
lines to logged values,

ln Ia,y = γa +ηa lnNa,y. (6.3)

These relationships are illustrated in Figure 6.6. In each year y of each future simula-
tion, the required survey indices were then generated using

Ia,y,k = γaeηaNa,y,kε
I
a,y,k. (6.4)

6.3.4 Maximum fishing mortality

In the FLR implementation used here, true simulated fishing mortality has an upper
bound of 2.0. This can be reached (very occasionally) in the simulations following
(it would appear) a combination of an increasing trend in fishing mortality, limited
scope to match quota to stock abundance (due to a constraint of interannual variation
in quota), and a coincidental run of relatively low recruitments. This is not a common
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Figure 6.4: Time-series of Rockall haddock ScoGFS Q3 survey abundance indices for each age. Black
lines: observed indices. Red lines: percentiles (5%, 50%, 95%) of K = 500 indices with stochastic noise
applied (see Equation 6.2).

occurrence: for the 500 simulations with a target F of 0.3 reported below, the max-
imum F was reached in only 9 (0.018%) iterations. However, as Figure 6.8 shows,
the high true F does not appear to be immediately reflected in a high assessed F , so
it is not clear that managers would be aware of the effect were it to occur in reality.
The summary results presented here do not include these outlying runs, as there is not
yet a full understanding of why they happen in the simulations and they do not appear
to be very realistic. Removing these runs avoids the problem, but is very ad hoc. A
different approach was taken for the same issue in the North Sea haddock MSE (see
Figure 4.3), in which case the solution was to limit interannual change in fishing mor-
tality to±25%. Neither of these ad hoc fixes are particularly satisfactory, and the issue
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Figure 6.5: Comparison of Rockall haddock summary population values from the standard (“true”)
assessment (black lines) with those from K = 500 iterations including stochastically-generated survey
indices (red lines; 5%, 25%, 50%, 75% and 95% quantiles are shown).

needs to be addressed in future work.

6.4 RESULTS

The great advantage of the new FLR implementation used for this MSE is the speed
with which each evaluation can be completed. Previous work (Section 4, Chapter VI
Needle 2008b) was limited to 50 iterations for each target F , whereas here I have been
able to run 500 iterations for each F (and indeed 1000 iterations would have been
quite possible). This greatly increases coverage of the range of simulated possibilities,
and improves confidence in the conclusions. Two values of target F were considered

74



●

● ●

●
●●

●●
●

●

●

●

●

●

●

●

9.0 9.5 10.0 10.5 11.0 11.5

5
7

9

Age 1

Log N

Lo
g 

I ●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

9.0 9.5 10.0 10.5 11.0 11.5

6
7

8
9

Age 2

Log N

Lo
g 

I

●

●
● ●

●

●

●
●

●

●

●●

●

●

●

●

9.0 9.5 10.0 10.5 11.0

5.
5

7.
0

8.
5

Age 3

Log N

Lo
g 

I

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

8.0 8.5 9.0 9.5 10.0

5.
0

6.
0

7.
0

Age 4

Log N
Lo

g 
I

●

●
● ●

●
● ●

●

●

●

●

●

●

●

● ●

7.0 7.5 8.0 8.5 9.0 9.5

4
5

6
7

Age 5

Log N

Lo
g 

I

●

●

●
●

●

● ●
●

●
●

●

●

● ●
●

●

6.5 7.0 7.5 8.0 8.5 9.0

3
4

5
6

Age 6

Log N

Lo
g 

I

Survey log q

Figure 6.6: Scatterplots (by age) comparing the logged survey indices (ln I) with the logged stock abun-
dance estimates (lnN) from the “true” historical assessment for Rockall haddock. Fitted lines give the
best linear relationships (see Equation 6.3).

here, and each iteration was run for 22 years into the future (being a standard 20 year
simulation period, with two extra years to allow for quota-setting forecasts in the final
simulation year).

Figure 6.7 gives summary plots for one realisation of the simulation for which the
target F = 0.3 (recall that 500 such realisations were run for each of two target F

values considered). Permitted quota follows an overall upwards trajectory with only
minor fluctuations, with true landings and discards following suit according to the fixed
relationship between them. True (or realised) mean F fluctuates around the target F

level (0.3), although the assessed mean F is much closer to the target. The fluctua-
tions are caused by a combination of implementation lag and the TAC constraint (see
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page 55). Even with these fluctuations, the average F over the simulation period is
consistently lower than the historical average. Recruitment remains around an average
value in this run. SSB fluctuates in a manner similar (but opposite) to mean F , and for
this iteration is always above Bpa.

In contrast, Figure 6.8 shows one of the few examples of an iteration for which true
mean F hits the maximum value (2.0). Such an extreme discrepancy between true and
assessed stock values for mean F and SSB is difficult to interpret, and (as mentioned
above) such runs have all been removed from the overall analysis.
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Figure 6.7: Summary plots for iteration 1 of the Rockall haddock MSE. Here the target F is 0.3. For
all plots, the vertical blue line denotes the last historical year. Top left: total catch (black solid line),
landings (green solid line) and discards (green dashed line). Red circles show the intended TAC for each
year. Top right: time series of mean F , with true values in black while the assessed values from each year
of the forward simulation are shown in red. Green dots indicate the intended mean F . The horizontal
blue line shows the value of Fpa. The same colour scheme is used for SSB (bottom left; horizontal lines
show Bpa and Blim) and recruitment (bottom right).
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Figure 6.8: Summary plots for iteration 6 of the Rockall haddock MSE. See caption to Figure 6.7 for
details.

Staying with the same simulation (target F = 0.3), Figure 6.9 summarises all 491
simulation iterations (that is, all 500 iterations minus the 9 runs for which F became
equal to 2.0: see above for a discussion). As I have noted before, the median values
from these plots are the result of smoothing across different realisations of recruit-
ments, and are therefore only useful as an indication of likely future events. Given this
caveat, the simulations indicate that SSB is likely to rise initially before stabilising at
or around 25 to 30 kt, mean F is likely to fluctuate considerably around the target level
(but should in any case be able to remain low on average), and total catches will rise to
a mean level of around 8 kt.

Figure 6.10 provides the same summary information for the run with target F = 0.4.
Here there were 456 valid runs (91.2% of the total) for which F did not hit 2.0. The
yield in these runs is similar to those for which the target F = 0.3 (at around 8 kt on
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Run Target F Num. years B < Bpa Num. years B < Blim

1 0.3 0.17 0.03
2 0.4 1.18 0.28

Table 6.1: Summaries of risk (number of years in each iteration for which biomass is less than reference
points, averaged over iterations) for each of the tested levels of the target F . Only valid iterations have
been included here (that is, those for which F does not reach 2.0).

average), but at the cost of a lower SSB (generally less than 20 kt). Recruitment is also
similar to the previous case. I note that the true mean F for this analysis is much closer
to the target F (0.4) than for the previous case (when the target F = 0.3).

I summarise risk from these simulations as follows. For each value of the target F ,
I consider each iteration separately, and count the number of years in that iteration for
which biomass was less than Bpa or Blim. The results of this analysis for both evaluation
runs are summarised in Table 6.1, and Figures 6.11 and 6.12. For both levels of the
target F , the risk of biomass falling below either biomass reference points is very low.
The number of years for which B < Blim in particular is considerably less than 1.0, for
both target F values.

6.5 CONCLUSIONS

On the basis of the simulations presented in this Section, it would appear that pro-
posed EU-RF management plan for Rockall haddock is sustainable – that is, the risk
of biomass falling below either of the specified reference points over the future 20-year
period is very low. As for Sections 4 and 5, however, several caveats should be borne
in mind, however, when considering this result.

The evaluation follows the example of the ICES stock assessment in not allowing
explicitly for the presence of two fleets with very different characteristics. The simu-
lations are based on an assessment and data which end in 2010, a year in which very
few Russian Federation (RF) vessels fished at Rockall (due in part to considerable fish-
ing opportunities in the Barents Sea). The simulations are therefore based on a view
of fishery dynamics which is overwhelmingly driven by the characteristics of the EU
fleet. Should the RF fleet return to Rockall in significant numbers in the future, this
view may not longer pertain. It is possible to model separate fleets in FLR, and this
should be considered as a priority in any future revisions.

The evaluation is also limited by the general hindrances that affect all analyses of
this type. There is no bioeconomic feedback loop in the simulation, so fishing practices
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at Rockall (and, importantly, the number of vessels that fish there) are assumed to
affect stock dynamics only through the medium of quotas. In reality, increased prices
for haddock might increase the number of vessels fishing at Rockall, and thereby have
an effect on the risk estimates outlined in this paper - increased fuel costs could have
the opposite effect. The proportions discarded-at-age are assumed to be fixed through
time (and these are in any case generally extrapolations from the North Sea). Finally,
the lack of a multispecies component to the analysis could (for some mixed-fishery
vessels, at least) leads to difficulty in drawing firm conclusions.

Without consideration of aspects such as different fleet characteristics and spatial
responses to closed areas (for example), this case study doesn’t lead directly to new
insights about the affect of fleet dynamics (fishermen’s choices) on management strat-
egy evaluations. However, it does demonstrate succinctly that evaluations with 500 or
1000 iterations are certainly possible. Runs with many iterations in these analyses are
preferable to runs with fewer, as the former allow for a more complete exploration of
the full uncertainty range: and hence a more robust analysis.
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Figure 6.9: Summary plots true population values from the 491 valid simulation iterations (that is, all
those without F reaching 2.0), with target F = 0.3. The short horizontal lines indicate the medians,
and the boxes the quartiles (25%ile and 75%ile). The lower whisker gives the value of 25%ile− (1.5×
(75%ile−25%ile)) and the upper gives 75%ile+(1.5×(75%ile−25%ile)). Outliers beyond this range
are shown by open circles. The lines on the top-right plot show the target F (upper) and F = 0.1 (lower),
while those on the bottom-left plot show Bpa (upper) and Blim (lower). Vertical dashed blue lines show
the last historical year.
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Figure 6.10: Summary plots true population values from the 456 valid simulation iterations (that is, all
those without F reaching 2.0), with target F = 0.4. The short horizontal lines indicate the medians,
and the boxes the quartiles (25%ile and 75%ile). The lower whisker gives the value of 25%ile− (1.5×
(75%ile−25%ile)) and the upper gives 75%ile+(1.5×(75%ile−25%ile)). Outliers beyond this range
are shown by open circles. The lines on the top-right plot show the target F (upper) and F = 0.1 (lower),
while those on the bottom-left plot show Bpa (upper) and Blim (lower). Vertical dashed blue lines show
the last historical year.
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Figure 6.11: Histograms of the number of years within each iteration (target F = 0.3, 491 valid runs
only) in which SSB B < Bpa (upper) or B < Blim (lower). The average number of years (out of a
maximum total of 20) is given for each case.
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Figure 6.12: Histograms of the number of years within each iteration (target F = 0.4, 456 valid runs
only) in which SSB B < Bpa (upper) or B < Blim (lower). The average number of years (out of a
maximum total of 20) is given for each case.
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7 Quota points

7.1 BACKGROUND

In many parts of the world, serious consideration is being paid by fisheries managers
to alternative methods of managing their fisheries. Although implemented with the
best of intentions, many management paradigms have demonstrably failed to provide
sustainability in target fisheries, with the result that many of the world’s fish stocks are
thought to be overexploited (although see Branch et al. 2011). Common examples of
extant management instruments include landings quota (often referred to incorrectly
as TAC, or Total Allowable Catch), restrictions on fishing effort through days-at-sea
limits, gear regulations, and many others (Pitcher et al. 1998, Kruse et al. 2005, Motos
and Wilson 2006).

The North Sea cod stock is managed via a combination of landings quotas, effort
restrictions and gear measures (ICES 2011c). Even with stringent effort controls, it
is likely that any specified quota for North Sea cod will control landings only, not
mortality. If overquota cod cannot be landed due to such policy instruments as the
UK Buyers and Sellers regulation (Scottish Government 2005), they will be discarded
dead at sea. To a certain extent, skippers are able to avoid cod areas, but accidental
catches will inevitably occur (ICES 2011c). In fact, when the prevailing management
structure is applied to a mixed fishery such as the North Sea, it is hard to imagine how
an outcome other than discarding could be possible. The recovery of the cod stock
from recent low levels in this situation is not impossible, but it is much less likely.
Landings quotas cannot be synchronised with the species mix that skippers encounter
in different areas and at different times – it is a functional impossibility, and leads
to many of the problems fisheries managers face today (Murawski and Finn 1988).
Many writers have concluded that a set of single-species quotas is an inappropriate
management system that is unlikely to be sustainable (for example, see references in
Villasante et al. 2011)

However, it is not possible to simply ban discards and leave the rest of the existing
management structure unaltered. Vessels would inevitably run out of quota for one
species more quickly than for other species, and a simple discard ban would prevent
many vessels going to sea at all for long periods of the year and would result in the de

facto closure of much of the fishery. It is certainly preferable to encourage the industry
to avoid catching cod, rather than punish them on the occasions when they do so. One
plausible way of doing this (at least in theory) is the following quota points scheme,
taken from a recent discussion paper (Needle 2007b):
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• A general multi-species quota is determined for each relevant area, not in terms
of tonnes but points.

• The points are allocated to countries and thence to individual skippers in a man-
ner analogous to what is done now with tonnes. Each skipper now knows how
many points he (or she) has to spend in the coming year.

• The fleet begins to fish. There are no species-specific quotas, effort limitations
or gear technical measures in this version of the scheme. Crucially, there are no
discards allowed – everything that is caught must be landed and reported. The
discard ban operating in Norway is accompanied by several other management
measures, but it may be that these were introduced to ease the passage of the
fishery into a no-discard regime and might not be absolute requirements (Graham
et al. 2007).

• The main new element is that, when landing and reporting, the skipper must now
add up the number of points that his catch represents, and deduct that from his
total for the year. Different species would be worth different points, so (for the
sake of argument) one tonne of cod could be 10 points, one tonne of haddock 5
points, and one tonne of whiting 2 points: there would need to be considerable
thought put into this points scale. Once the vessel is out of points, that is it for
the year, although points could be transferrable (and could therefore be bought
and sold or leased, much as quota is now).

In quantitative terms, the calculations required for such a scheme could operate as
follows:

1. Estimate time-series of maximum sustainable yield values Fmsy and Bmsy for
each stock (see references in Pilling et al. 2008).

2. Calculate a threat index

T = ln
(

Fmsy

Fsq
× Bcurrent

Bmsy

)
. (7.1)

Thus T ≥ 0 indicates a stock in reasonable health, while T < 0 suggests a threat-
ened stock.

3. Estimate the current total catch (landings plus discards, in tonnes) per country
per stock, averaged over the last three historical years. Multiply these catches
by the threat index, and sum across stocks. This is the total number of available
points.
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4. The allocation of points per country should be based on the current allocation
key, but will of course be open to considerable negotiation.

5. As a further development, it should be possible to use cumulative sum approaches
to determine time periods covered by different recruitment regimes (ICES 2009a).
Then estimates such as Fmsy could be generated for the most recent recruitment-
regime period only, thus avoiding problems associated with the use of historical
time-periods when some stocks were (apparently) more productive (Cook and
Heath 2005).

I note here that a similar scheme has been suggested independently (although sub-
sequently) by ClientEarth and Marine Conservation Society (2009, known as fishing

credits), and (at the time of writing) the approach was being considered seriously by
Scottish Government fisheries managers as a strong alternative to single-species quotas
(in that context it is referred to as multispecies catch quotas). The revised Common
Fisheries Policy (CFP) proposed by the European Commission in July 2011 (European
Commission 2011) calls for discard bans and catch quotas, although without clearly
specifying how these would operate in practice. Suggestions have been put forward
by Schou (2011) and Holm and Schou (2011), and there has been a scoping study of
the effect of a potential ban on English vessels (Catchpole et al. 2011), but rigorous
evaluation is lacking as yet.

7.2 ISSUES WITH QUOTA POINTS

The advantages of this scheme are as follows:

• The industry would become effectively self-regulating. Skippers could by all
means go fishing for cod (or any other species with a high points value), but
they would run out of points very quickly in so doing. There would be a strong
incentive to a) look for areas low in high-points species, and move from these
areas if found; b) use gear that avoided catching high-points species; and c) space
out fishing effort through the year so as to ensure their points lasted.

• If skippers did accidentally catch cod while fishing for something else, they
could land it without recrimination (except for losing points). The fish, which
are dead once caught anyway, would therefore not be wasted.

• The scheme is very simple, once the points are estimated, and reduces enor-
mously the number of regulations that the industry has to be concerned with.
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Some of the disadvantages are:

• It will be difficult to ensure that there is no discarding. If this cannot be guaran-
teed, then the scheme is unlikely to work. On the other hand, while discarding
remains, cod recovery is far less likely. Recent trials in Denmark and Scotland
(Marine Scotland 2010, Kindt-Larsen et al. 2011) of CCTV-based monitoring
schemes (see also Section 12.3) would suggest that a discard ban could be a
tractable solution in the near future.

• The scheme would be difficult to set up in the first place, although the example
given above could indicate a way forward. The methodology would have to be
agreed for turning the various single-species and multi-species stock assessments
into a final quota-points number for a particular area, and the allocation of these
points to different countries and stakeholders would be a source of contention.
The specification of the points value of each species would also require much
careful analysis.

• If boats must land everything they catch, then there will be large landings of
previously non-commercial species such as gurnards and dabs. This may not be
a bad thing, as it maximises the efficient use of the resource, but it would require
the development of markets for previously unmarketed fish – or processes to
utilise such fish in other ways. It would also remove biomass from the marine
ecosystem that would otherwise have been returned as discards (Zhou 2008).

However, the main problem, and the one which motivates this thesis, is that man-
agers have no way of telling whether a quota-points scheme will improve management
of their fisheries, or do the opposite. What would be the response of the fishing indus-
try to such radical change? Would improved stock sustainability for North Sea cod be
the result, and if so, at what cost to other species? Would some parts of the industry be
disadvantaged compared to others? Discussions of this kind cannot begin until more is
known about fleet dynamics in such situations. The management approach cannot be
evaluated until a simulation framework is developed that characterises these dynamics.
I will return to this consideration in Chapter IV.
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8 Survey-based assessment models

8.1 BACKGROUND

Stock assessments based on research-vessel surveys or other fishery-independent sources
of information are becoming increasingly important as drivers of fisheries management
advice, in Europe and elsewhere. In some cases this approach has arisen as a conse-
quence of stringent management measures which have led to less reliable commer-
cial catch and effort data; in others, the stock trends indicated by fishery-independent
data are used as informative counterparts to more traditional catch-based assessment
methods. Examples of such methods include catch-size analyses (CSA; Mesnil 2003),
biomass random-effect models (BREM; Trenkel 2007), year-class curves (YCC; Cotter
et al. 2007), extensions to time-series analysis (TSA; Gudmundsson 1994), and length-
(Dobby 2005) or age-based separable survey-based models (SURBA; Needle 2003,
Needle 2004a, Beare et al. 2005, Mesnil et al. 2009).

The basis of SURBA is a simple survey-based separable model of mortality. This
was first applied to European research-vessel survey data by Cook (1997), but the
underlying model has a long history in catch-based fisheries stock assessment (e.g.
Fournier and Archibald 1982, Pope and Shepherd 1982, Deriso et al. 1985, Gudmundsson
1986, Johnson and Quinn II 1987, Patterson and Melvin 1996): see Quinn II and De-
riso (1999) for a summary.

Cook (1997) took existing separable methods and developed a way to apply them
to survey data alone; all existing approaches had been based on catch data, or a combi-
nation of catch and survey data. Cook called his implementation RCRV1A, and used
it to estimate population trends for a number of European stocks. However, the pro-
gram was not made generally available, and its use didn’t extend much past the original
paper and a follow-up (Cook 2004).

During preparation for the ICES Northern Shelf assessment working group in
Copenhagen in 2002 (ICES 2002), it became clear that population signals arising from
catch and survey sources were quite different, particularly for gadoid stocks in the West
of Scotland and Irish Sea (ICES Divisions VIa and VIIa). This was evident from trends
in survey residuals from catch-based assessments, but it was not obvious what the pop-
ulation trends would be if based on the surveys alone. To address this, I developed an
updated version of Cook’s model, restructured in Fortran 90 (although as yet without
a Windows interface, and using only one survey at a time). This was SURBA ver-
sion 1.0, which became SURBA version 1.03 during the ICES meeting (Appendix 1 in
ICES 2002). The implementation was rough and ready, but the results appeared to con-
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cur with the group’s prior perceptions. Version 1.03 subsequently became the basis of
a paper on survey-based analysis for haddock in Division VIa (Beare et al. 2002, Beare
et al. 2005).

SURBA (version 3.0; see also ICES 2010c) is used for two main purposes in ICES
assessment working groups: to supplement existing catch-based VPA-type analyses,
and to provide the basis for advice for a number of stocks for which catch data are not
thought to be reliable. Among other improvements, SURBA 3.0 features a Windows
interface, and is able to model data from several surveys. It is used very widely to
provide advice for stocks in the Mediterranean Sea and elsewhere, for which data are
not available for standard catch-at-age assessments (see, for example: Ungaro et al.
2008, GFCM-SAC 2008, STECF 2010). Pomarede et al. (2006) used the model in an
MSE context to evaluate the comparative utility of advice based on fishery-dependent
and fishery-independent data for North Sea herring. An implementation of the SURBA
method in the SAS framework has been used in Canada to assess the status of stocks
for which there are fishery moratoria and hence no catch data (Cadigan 2010).

The most recent development is SURBAR (that is, SURBA in R: see Section 9.2
in ICES 2009a, and below) which features improved uncertainty estimation and a new
parameter-estimation algorithm that avoids the use of NAG library routines (Numerical
Algorithms Group 2002), the dissemination of which is restricted by copyright issues.

8.2 PROBLEMS WITH SURVEY-BASED ASSESSMENTS

SURBA has been subjected to methodological testing on a number of occasions (ICES
2004, ICES 2006c, Mesnil et al. 2009, Needle 2004c, Needle 2004b). However, all
such tests have been based on simulated data from virtual populations, generated by
simple simulation models (e.g. NRC 1998, Needle 2008d) which make correspond-
ingly simple assumptions about the relationship between the survey index I and stock
abundance N (often using I = qN where q is catchability). In reality, survey stations
are sparsely distributed, and q may vary considerably from year to year depending on
whether (for example) the survey hits a spawning aggregation or not. When simulating
a survey, therefore, it is important to characterise this spatial dependency, and this is
often not done adequately.

This problem causes subsequent difficulties with management strategy evaluations.
As discussed above (page 88), problems with the reliability of catch data have led many
managers to consider the possibility of basing management decisions on survey data
alone. Indeed, this has already been done for stocks like Division VIa haddock (see
Section 5). In order to evaluate the likely success of any such approach, a framework
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is required within which the implications can be ascertained appropriately. Current ap-
proaches will not consider the spatial and catchability aspects of a survey in simulating
survey data, and so may result in conclusions about survey-based management that are
misleading. Hence, any evaluation of a survey-based management approach should
be carried out using a spatial simulation model that can account for the specific issues
of survey-based assessment methods, and this is the motivation for discussing survey-
based assessment issues in this thesis. In the remainder of this Section, I consider the
SURBA method itself (along with the SURBAR implementation), and present brief
results of the application of SURBAR to North Sea haddock data.

8.3 SURBA 3.0 AND SURBAR

Much of this Section is derived from a course I gave at DFO North-West Atlantic
Fisheries Centre, St. John’s, Newfoundland, Canada, during 3-4 September 2008
(Needle 2008e), with additional material pertaining to the new SURBAR implementa-
tion. I include it here for completeness, given the potential relevance of the method to
evaluations of survey-based management (when considered within a spatial simulation
framework).

8.3.1 Basis

The separable model used in SURBA assumes that total mortality Za,y for age a and
year y can be expressed as

Za,y = sa× fy, (8.1)

where sa and fy are respectively the age and year effects of mortality (see also Ta-
ble 8.1). Note that this differs from the usual assumption in that total mortality Z is the
quantity of interest, rather than fishing mortality F . Then, given Za,y, abundance Na,y

can be derived as

Na,y = Na0,yc0 exp

(
−

a−1

∑
m=a0

y−1

∑
n=y0

Zm,n

)

= ryc0 exp

(
−

a−1

∑
m=a0

y−1

∑
n=y0

Zm,n

)
(8.2)

where a0 and yc0 = y− a− a0 are respectively the age and year in which the fish
measured as Na,y first recruit to the observed population (y0 is the first year of the
dataset). Thus the abundance at each age and year of a cohort is given by the recruiting
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abundance (denoted by ryc0 = Na0,yc0) of the relevant cohort modified by the cumulative
effect of mortality during its lifetime (Table 8.2).

f06 f07 f08
s1 Z1,06 = s1× f06 Z1,07 = s1× f07 Z1,08 = s1× f08
s2 Z2,06 = s2× f06 Z2,07 = s2× f07 Z2,08 = s2× f08
s3 Z3,06 = s3× f06 Z3,07 = s3× f07 Z3,08 = s3× f08

Table 8.1: An example of the separable model for mortality Z used in SURBA.

2006 2007 2008
Age 1 N1,06 = r05
Age 2 N2,07 = N1,06e−Z1,06 = r05e−s1 f06

Age 3 N3,08 = N2,07e−Z2,07 = r05e−s1 f06−s2 f07

Table 8.2: SURBA Derivation of abundance N using age effects s, year effects f and cohort effects r.
Only a single cohort is shown here. Note that r05 refers to the abundance at the recruiting age of the
2005 year-class (which recruited at age 1 in 2006).

8.3.2 Estimation

The parameters to be estimated when fitting the model are Θ = [s, f,r], where:

Age effects : s = [sa] = [sa0,sa0+1, . . . ,sA]

Year effects : f = [ fy] =
[

fy0, fy0+1, . . . , fY
]

Cohort effects : r = [ryc] =
[
ry0−A+a0,ry0−A+a0+1, . . . ,rY−a0

]
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Here A is the oldest age and Y is the last year in the dataset. The data available may
include:

Age-structured abundance indices : I = [Ia,y,i]

Biomass abundance indices : J =
[
Jy, j
]

Stock weights-at-age : W = [Wa,y]

Proportion mature-at-age : Mat = [Mata,y]

Proportion mortality before spawning : PZ = [PZa,y]

Age-structured index catchabilities : q = [qa,y,i]

Age-structure index weightings : ω = [ωa,y,i]

Age-structured index timings : ρ = [ρi]

Biomass index weightings : ν =
[
νy, j
]

Penalty term weighting (smoothing parameter) : λ

Here i ∈ [1,2, . . . ,NI] indexes age-structured series, while j ∈ [1,2, . . . ,NJ] indexes
biomass (non-age-structured) series. SURBA assumes that at least one age-structured
survey index is available: biomass indices are optional. If present, it is assumed that
biomass indices are measured at spawning time, following the convention used in such
models as ICA (Patterson and Melvin 1996).

The fitting procedure is as follows. Abundance indices (age-structured and biomass)
are mean-standardised using

I′a,y,i = Ia,y,i

(
1

(A−a0+1)(Y−y0+1)

A

∑
m=a0

Y

∑
n=y0

Im,n,i

)−1

, (8.3)

J′y, j = Jy, j

(
1

Y−y0+1

Y

∑
n=y0

Jn, j

)−1

, (8.4)

so that the mean of each index over all ages and years is 1.0. Given estimated parame-
ters ŝ, f̂ and r̂, fitted age-structured abundance indices are calculated using

Ẑa,y = ŝa f̂y (8.5)

and

N̂a,y = r̂y0−a−a0 exp

(
−

a−1

∑
m=a0

y−1

∑
n=y0

Ẑm,n

)
(8.6)
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and
Î′a,y,i = qa,y,iN̂a,y. (8.7)

Here qa,y,i denotes the relative catchability of survey i for fish aged a in year y. It is
very difficult to estimate qa,y,i, and in extant applications it has usually been fixed to 1.0
for all a, y, and i (although see, for example, Cadigan 2010). However, it can be shown
that while fluctuations in catch curves (that is, plots of ln N̂a,y by cohort) are caused by
changes in Z or q, positive slopes in catch curves can only be due to q (as Z cannot be
negative in reality, assuming a closed population). It is possible, therefore, that catch
curves could be used to compute a lower bound on catchability q, although this has
yet to be investigated in any detail. Work is also proceeding in Canada on methods
to estimate catchability using survey data by linking the stock assessment closely with
the survey design itself (Noel Cadigan, DFO, St. John’s, pers comm).

Note that both Î′a,y,i and N̂a,y refer to the stock as measured at January 1 of the
year in question. In order to compare these fitted values with observations, SURBA
backshifts the observed indices from the time of observation to the start of the year
(January 1st), thus:

I′∗a,y,i = I′a,y,i exp
(
ρiẐa,y

)
, (8.8)

where ρi is the decimal time of year at which the ith survey takes place (so that, for
example, ρ = 0.5 for a survey that starts on July 1st). Then the sum-of-squares to be
minimised for NI age-structured indices is

SSQI =
NI

∑
i=1

A

∑
a=a0

Y

∑
y=y0

ωa,y,i
(
ln I′∗a,y,i− ln Î′a,y,i

)2
. (8.9)

The procedure for biomass indices is somewhat different. Since these indices refer
to all mature fish, there is no sensible way to shift a biomass index back to the start of
the year on the basis of age-structured mortality up until the time of the survey. Rather
than shifting biomass indices back, SURBA shifts SSB estimates forward to the time
of the survey (assumed to be spawning time) before comparing observations with fits.
Forward-shifted SSB is estimated as

B̂y =
A

∑
a=a0

N̂a,yWa,yMata,y exp
(
−PZa,yẐa,y

)
, (8.10)

and the fitted biomass indices are then

Ĵ′y, j = qy, jB̂
k j
y (8.11)
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where k j is the power relationship for the biomass index (currently it is assumed that
k ≡ 1). The sum-of-squares to be mimimised for NJ biomass indices can then be
written as

SSQJ =
NJ

∑
b=1

Y

∑
y=y0

νy, j
(
lnJ′y, j− ln Ĵ′y, j

)2
. (8.12)

The final element of the sum-of-squares is a term which penalises inter-annual
variation in the estimated year-effect f̂ (Cook 1997), and which is defined as

SSQλ = λ

Y−2

∑
y=y0

(
f̂y− f̂y+1

)2
. (8.13)

Here λ is a smoothing factor which has no intrinsic justification and for which there
is no estimation methodology: the user is expected either to experiment with different
values of λ and select that which provides appropriate variation in f̂, or to leave the
default value (λ = 1.0) unchanged. Then the overall sum-of-squares to be minimised
is

SSQ = SSQI +SSQJ +SSQλ (8.14)

Fixed values

As presented above, the SURBA model is indeterminate and has no unique solution.
For this reason, elements of s and f must be fixed beforehand. If A is the oldest age, Y is
the last year, and ar is a reference age chosen by the user, then the following parameter
values are derived from other parameters (and are therefore not directly estimated):

sar = 1.0 (8.15)

sA = ŝA−1 (8.16)

fY = 1
3

Y−1

∑
y=Y−3

f̂y (8.17)

Uncertainty

SURBA estimates a variance-covariance matrix for the estimated parameters Θ̂. How-
ever, the variance and associated confidence limits of derived estimated population
characteristics such as mortality Ẑa,y, abundance N̂a,y and SSB B̂y are more directly
relevant to users. To generate derived variances, SURBA (version 3.0) uses the delta
method (e.g. Seber 1982, Oehlert 1992).

From above, we have seen that the SURBA model has a number of parameters,
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namely s, f and r, and that the parameter vector for the model is denoted by

Θ = [s, f,r]

=
[
sa0, . . . ,sA, fy0, . . . , fY ,ry0−A+a0,ry0−A+a0+1, . . . ,rY−a0

]
Denote further the estimated variance-covariance matrix of the estimated parameters
by V̂ar

[
Θ̂
]
, and let G denote the transformation to the required model output Φ̂ (which

could be mortality or SSB, for example). Further, let δG be the matrix of partial
derivatives of G with respect to the estimated parameters. The delta method then uses
a first-order Taylor expansion to approximate the variance-covariance matrix of Φ̂ via

V̂ar[Φ̂] = V̂ar
[
G(Θ̂)

]
= δG(Θ̂)V̂ar

[
Θ̂
]

δG(Θ̂)T .

This approximation will be close in general if the assumption of lognormally-distributed
errors is reasonably accurate: otherwise, it may be misleading. Standard errors for the
components of Φ̂ are obtained by taking square roots of the diagonal elements of this
matrix. The estimated parameter correlation matrix ˆCorr[Φ̂] may also be informative,
and is derived from the variance-covariance matrix using

ˆCorr[Φ̂i,Φ̂ j] =
ˆCov
[
Φ̂i,Φ̂ j

]√
V̂ar
[
Φ̂i
]

V̂ar
[
Φ̂ j
] .

Inferred variance estimates

Here I give examples of the calculations required to infer (via the delta method) the
variances of population summary statistics and other values produced by SURBA. Note
that hats (̂ ) have been dropped throughout for clarity. As a first example, consider
mortality Za,y in age a and year y, where

Φ|a,y = G(Θ)|a,y = Za,y = sa fy.

Then
δG(Θ)|a,y =

[
δZa,y
δ sa

δZa,y
δ fy

]
=
[

fy sa

]
and

Var [Za,y] =
[

fy sa

][ Var [sa] Cov(sa, fy)
Cov(sa, fy) Var [ fy]

][
fy

sa

]
so that

Var [Za,y] = f 2
y Var [sa]+2sa fyCov(sa, fy)+ s2

aVar [ fy] .
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As a second example, consider abundance N2,y at age 2 in year y, which can be
written as

Φ|2,y = G(Θ)|2,y = N2,y = ry−1−a0e−s1 fy−1

Then

δG(Θ)|2,y =
[

δN2,y
δ ry−1−a0

δN2,y
δ s1

δN2,y
δ fy−1

]
=

[
e−s1 fy−1 −ry−1−a0e−s1 fy−1 −ry−1−a0e−s1 fy−1

]
and

Var
[
N2,y

]
=
[

e−s1 fy−1 −ry−1−a0e−s1 fy−1 −ry−1−a0e−s1 fy−1

]
× Var [r] Cov(r,s1) Cov

(
r, fy−1

)
Cov(r,s1) Var [s1] Cov

(
s1, fy−1

)
Cov

(
r, fy−1

)
Cov

(
s1, fy−1

)
Var
[

fy−1
]

×
 e−s1 fy−1

−ry−1−a0e−s1 fy−1

−ry−1−a0e−s1 fy−1


so that

Var
[
N2,y

]
= e−2s1 fy−1

(
Var[ry−1−a0]+Cov(ry−1−a0,s1)+Cov(ry−1−a0, fy−1) + (8.18)

r2
y−1−a0

(
Cov(ry−1−a0,s1)+Cov(ry−1−a0, fy−1)+Var[s1]+2Cov(s1, fy−1)+Var[ fy−1]

))
In most cases, confidence limits about a summary estimate Φ̂i can be approximated

with
ĈLΦi = Φ̂i±2

√
V̂ar
[
Φ̂i
]
. (8.19)

The exceptions in SURBA are those estimates which are generated as monotonic trans-
formations of parameter estimates. For example, recruitment in year y is given by

R̂y = ln r̂y.

In these cases SURBA uses V̂ar [r̂y] to generate confidence intervals on the log scale,
which are then back-transformed to the required arithmetic scale. Thus the confidence
interval for recruitment R̂y would be given by

ĈLRy = exp
(

ln R̂y±2
√

V̂ar
[
ln R̂y

])
.

It is important to note that the delta approach has proven to be very difficult to
implement for composite measures such as SSB. Equation 8.18 is a fairly awkward

96



calculation, and that is only for a single abundance estimate. To estimate the variance
on SSB in a particular year using the delta method would require a very complicated
calculation indeed – not impossible, but difficult to code correctly. For this reason,
version 3.0 of SURBA only provides inferred variance estimates for mean Z and re-
cruitment.

8.3.3 Modifications for SURBAR

SURBAR is a relatively new implementation of SURBA, written using the R package
(R Development Core Team 2011) and dating from ICES (2009a). Parameters are
estimated by nonlinear least-squares regression using the nls.lm function in the R
minpack library (Elzhov et al. 2010). To generate uncertainty estimates, the Hessian
H of this model fit is used to define a multivariate Normal distribution of the model
parameters, and the R function mvrnorm (Venables and Ripley 2002, Ripley 2011) is
applied to draw 1000 samples from this distribution. This generates 1000 values of the
required sa, fy and ryc parameters in such a way that their variance-covariance structure
from the Hessian is maintained. Each of these parameter resamples is then used in
turn to produce estimated time series of mortality and relative abundance, and I derive
a 95% confidence interval about these fitted time series from the 2.5% and 97.5%
quantiles of these 1000 curves at each age. This is a far simpler and more powerful
procedure than the delta method used in SURBA 3.0. Needle and Hillary (2007) have
shown that the methods give equivalent results for simple models. In SURBAR, I have
also avoided the use of loops and data-frames in the estimation function, so run-times
are comparable with the Fortran-90 version (and hence NAG library routines can be
dispensed with).

8.3.4 Application to North Sea haddock

Figures 8.1 to 8.3 show the results of a SURBAR run for North Sea haddock, using
data provided to the relevant 2011 ICES assessment working group (ICES 2011c).
Five survey series were used for this run. Figure 8.1 gives the estimated time-series
for mean mortality Z (ages 2 to 4), relative spawning stock biomass (SSB), relative
total biomass (TSB), and relative recruitment (these results are “relative” in the sense
that their scale is determined by the average values of the survey indices on which they
are based, and cannot be interpreted as absolute estimates). 90% confidence intervals
(shown as grey bands) are tight for this analysis. Figure 8.2 shows the corresponding
survey log residuals for each of the five survey series used: here there is some evidence
of trends in survey residuals (which could indicate changing survey catchabilities).
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Finally, Figure 8.3 gives the results of retrospective analyses, generated by successively
removing the last data-point from each series and re-estimating parameters. In this
case, ten such retrospective runs have been performed, and the estimates of mortality,
biomass and recruitment are very consistent: in other words, there is little retrospective
bias. For North Sea haddock, the SURBAR assessment is used in an exploratory sense
only: advice is still based on a catch-at-age approach (ICES 2011c)
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Figure 8.1: North Sea haddock 2011: SURBAR summary plots. Mean mortality Z (ages 2 to 4), relative
spawning stock biomass (SSB), relative total biomass (TSB), and relative recruitment. Shaded grey
areas correspond to the 90% CI. Green points give the model estimates, while red crosses and black
lines give (respectively) the mean and median values from the uncertainty estimation bootstrap. Data
source: ICES (2011c).

The relevance of this brief summary to the aims of this thesis is that survey-based
assessment methods have been developed, and have the potential to provide useful
advice to fisheries managers when catch data are unavailable or misleading. Survey
data often have spatial structure (in terms of sampling strata or unfishable areas), and
evaluations of the potential of survey-based management and advice need to be able to
account for such structure. This Section on survey-based assessment methods therefore
highlights another potential benefit of the spatial model outlines in Chapter IV.
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Figure 8.2: North Sea haddock 2011: survey residuals. Lines are loess smoothers fitted through each
residual time-series. Data source: ICES (2011c).
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Figure 8.3: North Sea haddock 2011: SURBAR retrospective plots. Mean mortality Z (ages 2 to 4),
relative spawning stock biomass (SSB), relative total biomas (TSB), and relative recruitment. Shaded
grey areas give the 90% CI of the full time-series run. Black lines give the full time series run, red lines
show each retrospective run. For mean Z, the black and red dots gives the final true estimate for each
time-series: the following value in each case is a simple three-year mean and has not been estimated
directly. Data source: ICES (2011c).
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9 Conclusions

This Chapter has presented four management strategy evaluations for haddock stocks
in European waters, addressing the following principal issues in each case:-

North Sea haddock Development of evaluation code to deal with the sliding-F rule
through iteration; presentation of the problems arising from a simplistic model
of discarding practice.

North Sea haddock with banking-and-borrowing Demonstration of the flexibility
in the North Sea haddock evaluation code.

West of Scotland haddock Extension to accommodate a more complex assessment
structure including landings, discards and unaccounted removals.

Rockall haddock Implementation of revised FLR libraries, greatly increasing analy-
sis speed and allowing for much more complete exploration of confidence inter-
vals.

These analyses have served to progress the science of management strategy evalua-
tions in European haddock fisheries, and have formed the basis of successful inter-
governmental agreements on fisheries management that have contributed to the main-
tenance of sustainable haddock stocks (ICES 2011c, ICES 2011d). However, they have
not been able to address the issue of modelling appropriately changes in how fishermen
operate in the face of imposed regulation changes, particularly with regards to how a
fishermen decides whether to throw a fish away or not. As fish stocks and fish markets
are unevenly distributed in space, fishing is clearly an activity with a strong spatial
component that these evaluations do not consider.

Further discussion Sections in this Chapter have considered alternative manage-
ment approaches such as quota points, and survey-based assessment and management.
These, along with such common measures as closed areas, also all have (or should
have) explicitly spatial aspects to them, either through spatial fleet responses or through
spatial characteristics of surveys and other fisheries data.

In conclusion, in this Chapter I have shown that any model of fleet dynamics and
fisheries data must be able to simulate spatial responses to change as well as temporal.
The remainder of this thesis attempts to contribute to the development of such a model.
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Chapter III

Characterising fleet dynamics
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10 Background

Scientific advice for fishery management has always been based on limited data (Kruse
et al. 2005). Catch data often do not include discards (ICES 2011c), and survey indices
are derived from brief snapshots of stock abundance and distribution (ICES 2011b).
Such limitations hamper the ability of scientists to help managers to take appropriate
decisions. Historically, one of the key missing pieces of information has been the lo-
cation and intensity of fishing effort (see, for example, ICES 2001). Without good data
on where and how much vessels have been fishing, it has been very difficult to de-
vise and implement appropriate management measures that take account of the spatial
distributions of fish or fleets.

Vessel Monitoring System (VMS) data consist of vessel speeds, headings, and lo-
cations, with one reading (known as a “ping”) being transmitted to a central repos-
itory via a satellite link on a regular time schedule. In the current Scottish system
pings are transmitted every 2 hours, although this is a regulatory rather than a tech-
nical restriction. Although not without problems, the recent availability of VMS data
to scientists has permitted a wide range of analyses that would not previously have
been possible. Many studies have focussed on improved estimates of fishing effort
distribution (Borchers et al. 2009, Lee et al. 2010, Vermard et al. 2010, Gerritsen and
Lordan 2011), while a smaller number have used VMS data further to analyse aspects
of fishing decision-making (see, for example, Rijnsdorp et al. 2011). In this chapter,
I follow Needle and Catarino (2011) and consider the response of Scottish demersal
whitefish skippers to the implementation of real-time closures (RTCs), which are part
of the Scottish Government’s response to European Union (EU) calls for reductions in
cod (Gadus morhua) mortality. Using VMS data and a derived spatio-temporal dis-
tribution indicating the relative importance of cod, I analyse the movements of those
vessels thought to be most directly affected by RTCs. Specifically, I determine whether
vessels moving away from closed areas (or back towards reopened areas) increase or
decrease their likely impact on cod mortality, as measured by the RFII (relative fish
importance index) for cod in the areas in which they are fishing.

Needle and Catarino (2011) focussed on the years 2008 and 2009, and considered
cod only. In the first part of this chapter, I extend this work to include data from 2010.
I consider firstly a relative index of fish abundance, which is required in order to de-
termine whether vessels are moving towards or away from areas of high fish density.
I then develop a method for presenting VMS data which does not infringe commer-
cial confidentiality. Next I look into data from Remote Electronic Monitoring (REM)
management schemes, and present a method for using such data to test the widely-
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used assumption that the “speed” component of VMS data can be used to determine
activity as well as location. I then provide information on Scottish real-time closures
during 2008-2010, and develop a methodology for estimating the difference between
the relative fish abundance values from two locations (and the distance between those
locations). I present the results of all these analyses for a specific vessel in 2009, and
for all vessels during 2008 to 2010.

The final Section of the Chapter considers how VMS data can be used to char-
acterise changes in fishing locations used by particular vessels in particular quarters
from year to year. I use cluster analysis to determine discrete fishing areas, then eval-
uate whether any significant location changes can be related to changes in the density
of real-time closures in those discrete areas. This analysis approaches the question
of response to closures in a different way, allowing for consideration of the possible
effects of closures on the entire fleet (that is, not just those fishing directly in closed
areas soon before or soon after the time-period covered by the closures).

These analyses are useful in themselves for evaluating the impact of management
measures on fish mortality, and as examples of how to use fishery-dependent infor-
mation to provide management advice that would not otherwise be obtainable. More
importantly for the aim of this thesis, they are case studies of how to begin to char-
acterise the likely response of fishing fleets to management measures. Without such a
characterisation, it would be impossible to develop the kind of spatio-temporal simu-
lation models that I will consider in the final section of the thesis. For example, if a
vessel travels a long way from a cod closure to reach another good cod area, then the
skipper may be thinking of himself as principally a cod fishermen rather than a profit
maximiser (the latter would factor fuel costs more strongly into their planning). If he
switches to fishing on Nephrops (that is, prawns) in a nearby location using different
gear, then he may well be a profit maximiser. A functional fisheries simulation would
need (ultimately) to be able to account for these factors.

Note that parts of this chapter are based on the methodology and data analysis pre-
sented in Needle and Catarino (2011, reproduced in Chapter VI). My co-author in this
paper (Rui Catarino, Marine Laboratory, Aberdeen) has confirmed that the methods,
results and analyses presented here are solely my own work (see page 5).
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11 Developing a relative index of fish importance

11.1 DATA

In order to generate a spatio-temporal distribution of relative fish importance, and
thereby estimate whether vessels move towards or away from aggregations of different
species as the result of area closures or other management measures, reliable data on
observed fish density is required. Reported landings records have limited utility for this
purpose, as a) they do not include discards, which may be a sizeable component of the
catch, and b) they can be very non-specific about where fish were caught. The reported
landings for a fishing trip can in theory be assigned equally to all the VMS fishing-
ping locations for that trip, but this is imprecise and could be misleading. Appropriate
models of fish distribution that can incorporate landings records are in development,
but in the meantime I concluded that they could not be used for this analysis.

The data used, therefore, come from a combination of research-vessel surveys and
discard observations. The data for 2008–2010 were as follows:

1. The North Sea International Bottom Trawl Survey (IBTS NS Q1 and Q3), car-
ried out by several countries during January-February and July-September, and
collated by ICES.

2. The Beam Trawl Survey (BTS Q3), conducted in the southern North Sea during
August and September, and also collated by ICES.

3. The Scottish Groundfish Survey in Division VIa (West of Scotland), carried out
by Marine Scotland on RV Scotia during March (ScoGFS VIa Q1).

4. The Scottish Rockall Survey (Rockall Q3), conducted by Marine Scotland on
RV Scotia at Rockall during September.

5. Scottish discard observations, collated from around 75 Scottish observer trips
each year.

Data were taken from the ICES DATRAS database (see www.ices.dk), as well as the
Scottish Fisheries Management Database (FMD) maintained by Marine Scotland (see
www.scotland.gov.uk). As an example, the locations of available observations for
February 2010 are plotted in Figure 11.1, while all the available data for 2008-2010
are summarised in Figure 11.2.
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Figure 11.1: Locations of the observations of fish density used in the generation of the relative fish
importance index (RFII). Symbols indicate locations of available observations for February 2010.
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Figure 11.2: Locations of the observations of fish density used in the generation of the relative fish
importance index (RFII). Symbols indicate locations of available observations for all months during
2008-2010.
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11.2 GENERATING THE RELATIVE FISH IMPORTANCE INDEX (RFII)

In order to determine whether vessels move to areas of greater or lesser apparent cod
density when displaced by the imposition of an RTC, Needle and Catarino (2011) de-
veloped an index of relative cod density called the Relative Cod Importance Index
(RCII), which here is generalised and referred to as a Relative Fish Importance Index
(RFII). In brief: this takes all the available spatial fish observation data from research-
vessel surveys and discard observer trips for a given month, standardised to lie on a
consistent scale (since measurement units used by different surveys and observer pro-
grammes can vary widely), then fits a trend surface using generalised least-squares
regression smoothing. This procedure produces a contour plot of relative cod impor-
tance for each month. However, observations in a given month can be patchy, and
for some months there are no observations at all. To improve the consistency of fitted
distributions through time, an additional temporal smoothing step is used, in which
the distribution at each point for a given month is modified by the equivalent values
in preceding and succeeding months. Temporal smoothing is achieved using weighted
local polynomial regression (loess) smoothers (Cleveland et al. 1992), in which the
weights are the means of the Haversine distances (see Equation 11.2) from the point in
question to the nearest points with actual observations in that month. Therefore, a rela-
tive fish distribution is generated using observed fish abundances, smoothed over both
space and time to avoid problems inherent in the patchiness of the data. All analyses in
the section were carried out using R (R Development Core Team 2011, version 2.8.1),
with the spatial library (Venables and Ripley 2002).

The RFII algorithm proceeds as follows. Numbers of fish N caught per hour (ei-
ther by a survey or by an observed vessel) are extracted from the relevant datasets.
Fish numbers from each data source are generally heavily skewed, with many zero
observations and a few large observations. If used without any transformation, these
data could lead to fish distribution maps consisting of two or three “hot spots,” and
this pattern does not often reflect well the industry perception of more widespread fish
abundance on which fishing decisions are based. As I am attempting to model the
results of such decisions here, a distribution based on untransformed data (although
tractable if modelled with an appropriate extreme value distribution) would be difficult
to interpret. To improve the distributional properties of the data for the purposes of
this analysis, therefore, a cube-root transformation N

1
3 is applied. The effect on data

distributions is illustrated in Figure 11.3.
It should be noted that the choice of transformation is ad hoc and possibly not

ideal: zero-inflated models (Zuur et al. 2009) would be examples of plausible alterna-
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Figure 11.3: Histograms of cod abundance during 2008-2010 in data sources used for estimation of the
RFII for cod. For each data source, the left plot gives untransformed abundance N, while the right plot
gives the cube-root transform N

1
3 .

tives. The cube-root transform reduces to a certain extent the extreme skewness of the
raw data distributions, although it does not normalise them and the problem of many
zero observations is not addressed. It may also not be fully appropriate to attempt to
generate smooth distributions for species in which patchiness could play an important
rôle in stock dynamics. Needle and Catarino (2011) argued that the cube-root trans-
form was a reasonable approach in the first instance, as it reduced the propensity for the
method to produce very localised points with high importance indices (which in any
case are largely a function of low sample sizes), and thereby enabled appropriate infer-
ence on the likely effect of vessel movements. Alternative transformations should be
explored in future work, along with alternative abundance measures such as biomass.

Next, fish abundance data are further rescaled so that relative abundance over all
observations lies between 0 and 1, thus permitting direct comparison between data
from different sources which may use very different measurement units. This rescaled
abundance is denoted by Ñ

1
3 . Abundance data from all sources are collated into a

single dataset, and then split by months. Land areas are bounded by set of zero-valued
observations located along all coastlines. The surf.gls function in R (Ripley 2011)
was used to fit trend surfaces: I implemented this with a polynomial surface of degree
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2 and an exponential covariance structure (Venables and Ripley 2002). surf.gls will
fail if two or more observations have exactly the same positions. To prevent these
computational problems when fitting trend surfaces, small random perturbations are
applied to the lat-long position records of all observations.

The dataset for a given month now contains a list of rescaled abundances along
with a unique lat-long position marker for each. surf.gls is now applied to these
data for each month, to generate trend surfaces on the basis of values of Ñ

1
3 . This

approach assumes an heteroscedastic error structure in the underlying abundance dis-
tribution, which the cube-root transform has not really provided (and which therefore
is a potential source of bias). As part of the fitting process presented for cod in Needle
and Catarino (2011), a mask is applied to ensure that land areas (depth > 0 m) and
deep-water areas (depth < -250 m) are excluded from the fitted distribution, as cod are
unlikely to be found in either. This mask can be made specific to the particular stock
under consideration. The results of this first stage of RFII generation for cod during
the first four months of 2010 are given in the distributions presented in Figures 11.4
to 11.5, and for all months of 2008-2010 in Figure 11.6.

The distributions presented in Figures 11.4 to 11.6 are independent from each other,
in that the distributions for a given month have no links (explicit or otherwise) with
either the preceding or the following month. In order to implement time-dependency,
and in so doing to provide information for those months with few or no observations,
the next step is to apply temporal smoothing through a weighted loess regression time-
series smoother. Weights are calculated using the mean inverse Haversine distances of
the point of interest (xi,yi) to the n available abundance observations for that month.

For an angle θ , the Haversine function is given by

haversin(θ) = sin2 (θ/2) (11.1)

and the Haversine formula (Gellert et al. 1989) is then

haversin(d/R) = haversin(φ2−φ1)+ cos(φ1)cos(φ2)haversin(|λ2−λ1|) (11.2)

where d is the spherical distance between points, R is the radius of the sphere (in
this case, the Earth), and (φ1,λ1) and (φ2,λ2) are the latitude and longitude of the
first and second points respectively. The required distance d can be calculated from
Equation 11.2 using the inverse Haversine function, so that

d = R haversin−1 (haversin(φ2−φ1)+ cos(φ1)cos(φ2)haversin(|λ2−λ1|)) . (11.3)
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The loess smoother weight ωi,m for the ith point (xi,yi) in month m is then given by
the inverse of the means of the Haversine distances between the ith point and all other
extant points in that month. This approach is used rather than Euclidean distances, as
it accounts for the curvature of the Earth: however, the Haversine formula does assume
a perfectly spherical Earth (rather than the actual ellipsoid), and may be up to ±0.5%
inaccurate.

The intention with this weighting scheme is to produce an estimate for a given point
in a given month that is strongly dependent on nearby observations, and only weakly
determined by distant observations. These weights are then used in a weighted loess
time-series smoother, which in addition to the monthly values includes the mean of the
time-series as extra values in months 0 and 37: that is, at the ends of the time-series.
These extra values are given a weight of 0.5 each in the smoother, and are intended to
prevent potential extrapolation to negative values.

In Needle and Catarino (2011), the span of the loess smoother was set to 2.0, fol-
lowing exploratory analyses which indicated that this gave a reasonable balance be-
tween responsiveness and smoothness (although no formal statistical testing of this
conclusion was carried out). Here this approach has been modified. For each point
(xi,yi), loess smoothers with a range of spans in the set {0.25,0.5,0.75,1,2,3,4,5}
were fitted to the time-series of RFII observations. For each fit, the small-sample
Akaike’s Information Criterion (AICc; Burnham and Anderson 2010) was determined
using

AICc = 2k−2lnL+
2k(k +1)
n− k−1

(11.4)

where L is the likelihood of the smoother fit, n is the number of data points and k is the
effective number of parameters (this is determined by the loess smoother itself). AICc

is interpreted in the same way as AIC, but accounts for relatively small sample sizes
such as those used here.

The approach is illustrated for a point east of Shetland in Figure 11.7. This shows
the loess fits for the the observation time-series for the eight different span values,
along with the AICc in each case. The plot to the bottom right of Figure 11.7 compares
the AICc for each span with the minimum observed AICc for that point. Burnham and
Anderson (2010) suggest that models for which the AICc is within±1 of the minimum
AICc should be considered to be strongly supported. In Figure 11.7, this is the case
for all spans except 0.25. The same result pertained for every point in the study area
(unpublished results), suggesting that any span between 0.5 and 5.0 would be suitable
for this analysis. I have used a span of 0.5 throughout the following analysis, as this
generates fitted distributions that differ noticeably between months, and this seems
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more realistic than very smooth and unchanging distributions that would be produced
by higher spans.

Examples of the smoother weights and the resultant smoothed RFII time-series
for cod (assuming a loess span value of 0.5) at a point east of Shetland are given in
Figure 11.8.

The final step is to collate (without further smoothing) all the smoothed index val-
ues for each month to generate a new smoothed density map for that month. The
resultant monthly distributions are given in Figures 11.9 to 11.10 (for the first four
months of 2010), and Figure 11.11 (for all months of 2008-2010).

The RFII as presented above (and, using an earlier iteration, in Needle and Catarino
2011) remains problematic, however. It is still at a relatively early stage of develop-
ment, and may not yet be sufficiently detailed to permit robust evaluations of fleet
behaviour at the appropriate scale. Specific potential problems with the RFII include:-

• No estimates of uncertainty are yet available.

• The use of two separate smoothing steps is neither parsimonious nor elegant.

• The abundance metric currently used is based on simple abundance counts. The
age, length or weight structures in these data are ignored, with a potential loss of
inference.

• There is no consideration made of the different selectivity characteristics of dif-
ferent fishing vessels. For example, a large year-class of young haddock might
not be caught at all by commercial vessels (due to large cod-end mesh-size and
other measures such as square-mesh panels), yet feature strongly in abundance
indices from research-vessel surveys.

• The RFII estimates for cod for an area (such as Rockall) which always has rela-
tively low but non-zero observations will be artificially inflated by the rescaling
used here. Such areas will therefore appear to be more important than they actu-
ally are.

I am currently developing alternative, model-based methods to generate spatio-temporal
distributions for cod and other species, taking account of uncertainty and additional in-
formation such as depth. Possible approaches include 3D smoothers such as mgcv in
R (Wood 2011).

Any developments in this area will only ever be as good as the survey and observer
data on which they are based. However, it should also be emphasised that the results
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reported in this paper do concur with what would have been expected given my expe-
rience of survey data and the fishing industry. I would contend that the results given
in Section 13 are unlikely to be compromised by the extant deficiencies in the RFII
methodology.
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Figure 11.4: Fitted trend surface (without temporal smoothing) for rescaled cod abundance Ñ
1
3 for

January and February 2010. Grey lines indicate the 250-m depth contour, used as a mask for the fitted
surface. Darker areas indicate higher Ñ

1
3 . Data points from research-vessel surveys are indicated by

open circles, while data from observer trips on commercial vessels are shown by closed circles.
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Figure 11.5: Fitted trend surface (without temporal smoothing) for rescaled cod abundance Ñ
1
3 for

March and April 2010. Grey lines indicate the 250-m depth contour, used as a mask for the fitted
surface. Darker areas indicate higher Ñ

1
3 . Data points from research-vessel surveys are indicated by

open circles, while data from observer trips on commercial vessels are shown by closed circles.
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Figure 11.6: Fitted trend surface (without temporal smoothing) for rescaled cod abundance Ñ
1
3 for all

months during 2008-2010. Darker areas indicate higher Ñ
1
3 .
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Figure 11.7: Monthly RFII values for cod for 2008-2010 at a point to the east of Shetland, along with
weighted loess smoothers (solid line) with 95% confidence limits (dotted lines). Loess spans range from
0.25 (top left) to 5.0 (bottom middle). Loess weights are not shown here. AICc values for each loess fit
are indicated. Points in months 0 and 37 indicate the means of the full time-series, which were included
in the smoother estimation (with weights of 0.5) to prevent unrealistic extrapolation. The summary plot
(bottom right) gives all the AICc results (the x-axis for this plot gives the loess spans). Dashed blue lines
show minAICc (lower) and minAICc +1 (upper).
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Figure 11.8: Left: mean Haversine-distance weights for the temporal loess index smoothing at a point
off the east coast of Shetland, for 2008-2010. Right: monthly RFII values for cod for 2008-2010, along
with a weighted loess smoother (solid line) with 95% confidence limits (dotted lines). The loess span
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Figure 11.10: Fitted trend surface (with temporal smoothing) for rescaled cod abundance Ñ
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Figure 11.11: Fitted trend surface (with temporal smoothing) for rescaled cod abundance Ñ
1
3 for all

months during 2008-2010. Darker areas indicate higher Ñ
1
3 .
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12 Data for analysing fleet dynamics

12.1 INTRODUCTION

In this Section, I consider the Vessel Monitoring System (VMS) and Remote Elec-
tronic Monitoring (REM) data that are available for characterising and modelling fleet
dynamics in response to measures taken by fisheries managers (in this case, temporary
closed areas). VMS data have been used in previous studies of the effects of closed
areas, but these have tended to focus on such aspects as descriptions and models of
effort distribution in the vicinity of closures (e.g. Murawski et al. 2005), or the poten-
tial impacts of effort redistribution from large, permanently closed areas (e.g. Dinmore
et al. 2003). REM data have only recently become available, and analyses of fleet
dynamics using REM data are as yet mostly still in development.

12.2 VMS DATA

12.2.1 Background

Since 2003, monitoring systems of the VMS type have been installed on Scottish fish-
ing vessels longer than 15 m, ostensibly with two main purposes: to assist in search-
and-rescue operations, and to enable Compliance officials to know where a vessel was
at a given time (and therefore whether it was transgressing in closed areas, for exam-
ple). VMS is in widespread use: all EU, Faroese and Norwegian vessels greater than
15 m in length must be fitted with the system, and from 2012 the minimum length for
EU vessels will change to 12 m. The potential value of VMS data to scientists studying
fleet behaviour and producing stock assessments was clear immediately, but permis-
sion for Scottish fishery scientists to access VMS data was granted by the Scottish
fishing industry only in 2007 (Gatt and Reid 2007). Since then, scientists from govern-
ment laboratories have been allowed to use such data for research purposes. However,
such access is limited to studies concerning the Common Fisheries Policy (CFP) of the
EU and associated issues. Issues arising from access restrictions and dissemination are
discussed in Section 12.2.2.

VMS data consist of vessel speeds, headings, and locations, with one reading
(known as a "ping") being transmitted to a central repository via a satellite link ev-
ery 2 hours. The data are actually generated at a much higher frequency (as much
as once every 10 seconds), but the limitation to one ping every 2 hours reduces the
cost of satellite transmissions. Even at this frequency, there are often periods of miss-
ing data in the VMS database; these can occur for various reasons, principally faulty
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equipment.
The database used for this study contains VMS records for all Scottish demersal

vessels (>15 m) fishing during 2008 to 2010. Each record consists of the following
fields:

X Unique identifier for the VMS ping.

Vessel.Id The identifying number the vessel in the VMS database.

Logtime The time and date of the VMS record, in a YYYY-MM-DD HH:MM:SS
format (for example, 2008-01-02 18:33:00).

Latitude and Longitude Expressed as decimal degrees from the equator and the Green-
wich meridian.

Knots.SUM The inferred speed of the vessel at the time the ping pt was sent. This
is estimated by considering the distance moved and the recorded time of the
previous ping pt−1 and the subsequent ping pt+1.

PLN The Port Letter Number for the vessel. This identifies the port (or other relevant
authority) with which the vessel is registered, along with an identifying number
for the vessel itself. It does not follow, however, that a vessel registered to a
Scottish port must be Scottish, so the PLN is not necessarily a useful guide to
nationality.

COD, HAD, WHG, MEG, MON, POK, PLE, NEP, MAC, HER, WHB, SCE,
CRE, CRS, LOB The VMS data records transmitted by each vessel do not in-
clude information on fish catches. However, when collating VMS datasets for
analysis, Marine Scotland staff combine VMS data with sales notes and data
on reported landings held in Marine Scotland’s Fisheries Information Network
(FIN) database. These fields give the total landed yield (in kilograms), for the
trip as a whole (so every VMS ping in a given trip will have the same value of
COD, say), and I have used the data in Section 14 to determine which vessels
to include in the time-series VMS analysis. The species recorded are cod, had-
dock, whiting, megrim, monkfish, saithe, plaice, Nephrops, mackerel, herring,
blue whiting, common scallop, edible crab, swimcrab and lobster.

Trip.Id The identifier for the trip in the VMS database.

Gear.Code A code (taken from FIN) indicating the gear used for the given trip. The
full list of codes (and therefore the full list of fishing gears and methods used in
Scotland) is given in Table 12.1.
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Mesh.Size The mesh size (where relevant) of the net used for the given trip.

RSS Following the UK Merchant Shipping (Registration, etc) Act of 1993, all com-
mercial fishing vessels must be registered with the Registry of Shipping and Sea-
men (RSS); see also the Scottish Government website at http://www.scotland.
gov.uk/Topics/marine/Licensing/. The RSS number is a unique identifier
for the vessel and does not change with new skippers or owners.

12.2.2 Public dissemination of VMS data

Before using VMS data in fleet analysis, I note that general dissemination and trans-
mission of VMS data to the public are not permitted. The Freedom of Information
Scotland Act (2002) does not apply, because VMS data are considered to be sensitive
personal data and are separately protected under EU law. However, it is important to
note what are and are not thought of as VMS data. This term is intended to cover data
on the vessel identity, speed, position and heading of individual vessels. Recent legal
advice (Scottish Government, pers. comm., 2011) indicates that suitably-anonymised
plots of vessel position and speed are not VMS data, and can be included in publically-
available documents (including doctoral theses). A more recent interpretation (P. Deg-
nbol, ICES, Copenhagen, pers. comm., 2011) of the EC Data Collection Framework
and Implementation Regulations (European Commission 2008) goes further in con-
cluding that all such data are “in practice public domain with a few limitations.” How-
ever, the legal position has not yet been fully clarified or tested, and it is not yet clear
which of these two interpretations (if either) is correct.

In this context, it is important to be able to generate plots which summarise a ves-
sel’s position and speed in a way that does not permit the determination of the identity
or exact fishing locations of the vessel, as this is commercially-sensitive information
that it would be illegal to present. This is not a significant issue if, for example, the plot
shows the aggregated VMS pings for an anonymous vessel over a quarter or a longer
time period, but it does become problematic if the requirement is to present VMS pings
for a specific trip undertaken by that vessel. Standard plots of VMS positions are not
appropriate for this purpose, so several alternatives were tested. Note that the results
given here (Figures 12.1 to 12.3) are not to be considered as part of the VMS analyses
presented later in this Chapter: they are intended only to illustrate an alternative way
of displaying VMS data that does not impinge on commercial confidentiality.

The first stage of the test was to generate simulated VMS data. This had to represent
a trip path with varying speeds and headings, arranged so that one or more discrete
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fishing areas could be determined (as is characteristic of actual VMS data). Suppose I
want to generate a path with 100 VMS-type “pings” (so that n = 100). Given a position
(xt ,yt) at time t, movement during the period t to t + 1 can be determined by a vector
vt+1 with length (or speed)

φt+1 = 10
[

sin
(

10t
n

)
+1
]

(12.1)

and angle
θt+1 = T θt + εt , (12.2)

so that θ can be considered as an ARMA(1,0) process with autoregressive term T and
variation ε ∼ N(0,0.75). The position at time t +1 is then given by

xt+1 = φt+1 cos(θt+1) (12.3)

yt+1 = φt+1 sin(θt+1) (12.4)

Any t at which φt < 15 was considered to represent fishing activity. Figure 12.1 illus-
trates a time-series of φ and θ for one particular realisation of this simulation scheme,
while Figure 12.2 shows the equivalent VMS-type pings. The pattern produced is typ-
ical of what would be expected to be seen in real VMS data from a fishing trip, with
relatively discrete fishing areas separated by steaming activity. Finally, Figure 12.3
summarises the application of a simple ping-binning technique to these simulated data:
this relates the colour used to shade a map square to the density of VMS pings within
that square. The most suitable output format (given in the lower right subplot of Fig-
ure 12.3) indicates the locations of fishing and non-fishing activity in broad terms,
without permitting the precise identification of trawl locations, and is appropriate for
the analyses of vessel movement response presented in the remainder of this Chap-
ter. It should be noted, however, that the actual VMS ping locations are retained in
the dataset and are used in the analyses considered here, so accuracy has not been
sacrificed.
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Figure 12.1: Time-series of φ (upper) and θ (lower) for one realisation of a simulated fishing trip.
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Code Description Code Description

DRB Boat dredge LNS Shore operated stationary lift nets
DRH Hand dredge LTL Trolling lines
FAR Aerial nets LX Hooks and lines (not specified)
FCN Cast nets MIS Other miscellaneous gears
FG Falling gear (unspecified) OT Otter trawls (not specified)
FIX Traps (not specified) OTB B trawls otter (side/stern not speci-

fied)
FPN Stationary uncovered poundnets OTB1 B trawls otter trawls (side)
FPO Covered pots (creels) OTB2 B trawls otter trawls (stern)
FSN Stownets OTM Mid trawls otter (side/stern not

spec)
FWR Barriers, fences weirs, etc OTM1 Mid trawls otter trawls (side)
FYK Fyke nets OTM2 Mid trawls otter trawls (stern)
GEN Gill/entangling nets (not specified) OTT Twin trawls Otter twin multi trawls
GN Gill nets (not specified) PS Purse seine
GNC Encircling gillnets PS1 Purse seine operated by one vessel
GND Drift gillnets PS2 Purse seine operated by two vessels
GNF Fixed gillnets (on stakes) PT Pair trawls (two vessels) not speci-

fied
GNS Set gillnets (anchored) PTB B trawls pair trawls (two vessels)
GTN Combined gillnets-trammel nets PTM Mid trawls pair trawls (two vessels)
GTR Trammel nets SB Beach seines
HAR Harpoon SDN Boat/vessel seines-Danish seines
HMD Mechanized dredges SFH Shell fishing by hand
HMP Pumps SPR Boat/vessel Pair seines(two vessels)
HMX Harvesting machines(not specified) SSC Boat/vessel seines-Scottish seines
LA Without purse lines (lampara) SX Seine nets (not specified)
LHM Handlines and polelines (mecha-

nised)
TB B trawls bottom trawls (not speci-

fied)
LHP Handlines and polelines (hand-

operated)
TBB B trawls Beam trawls

LL Longlines (not specified) TBN B trawls nephrops trawls
LLD Drift longlines TBNT Twin trawls nephrops twin muli

trawls
LLS Set longlines TBS B trawls shrimp trawls
LN Lift nets not specified TM Mid trawls (not specified)
LNB Boat operated lift nets TMS Mid trawls shrimp trawls
LNP Portable lift nets TX Other trawls (not specified)

Table 12.1: Scottish fishing gear and method codes used in VMS data, and in Marine Scotland’s Fish-
eries Information Network (FIN).
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Figure 12.2: VMS-type pings for a simulated fishing trip path generated by the φ and θ time series
given in Figure 12.1. Fishing locations (φ < 15) are indicated in red, steaming locations in green.

128



−50 0 50 100 150 200

−
15

0
−

10
0

−
50

0 Start

End

−100 0 50 100 150 200 250

−
15

0
−

10
0

−
50

0
50

2

1

2

2

5

3

2

2

2

1

2

2

1

5

2

1

4

6

3

2

1

2

3

26

2

1

3

2

4

1

2

1

1

1

−100 0 50 100 150 200 250

−
15

0
−

10
0

−
50

0
50

−100 0 50 100 150 200 250

−
15

0
−

10
0

−
50

0
50

Figure 12.3: Summary of an aggregation procedure for VMS data from a single trip. Upper left: sim-
ulated fishing (red) and non-fishing (green) VMS pings, with an overlaid spline path. Upper right:
subdivisions of the area into equal aggregation bins, with VMS pings and counts of the number of pings
in each bin (blue numbers). Lower left: aggregation bins shaded by ping abundance (darker colours
indicate more pings), with overlaid VMS pings and path. Note that only fishing pings are included in
the scaling for those bins with both fishing and non-fishing pings. Lower right: final VMS summary.
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12.3 REM DATA

12.3.1 Background

REM equipment was first used in Europe for compliance and science purposes on
Danish fishing vessels in 2008. In that year, the European Commission offered member
states the option to acquire additional North Sea cod quota for some of their vessels
(European Commission 2010), if it could be demonstrated that these vessels had made
successful efforts to reduce their catches of cod (rather than reducing landings as had
been the case previously). The Danish government concluded that the best way to
effect such a demonstration was to install monitoring equipment on fishing vessels that
would enable fishery officers to determine what had been caught, where it had been
caught, and which gear had been used to do so.

The initial pilot project was run during 2008 (Dalskov and Kindt-Larsen 2009,
Kindt-Larsen et al. 2011). Seven systems were installed on Danish fishing vessels, pro-
vided by Archipelago Marine Research Ltd., Victoria, British Columbia, Canada (see
www.archipelago.ca). Archipelago has provided similar fishery monitoring services
in Canada for over 30 years. Each system consists of a number of units:

• A stand-alone PC which acts as a control unit, and to which all other components
are connected.

• A removable hard drive (capacity 500 Gb to 1 Tb) which stores video and data
files and allows them to be easily transported to a central point for analysis and
interpretation.

• A number of video cameras, robustly mounted in waterproof housings. In the
Danish trials, up to four cameras were installed on each vessel. The positions
of the cameras varied from vessel to vessel and were strongly dependent on
the fishing and catch-processing procedures used by the vessel, but generally
included views of:

– The location where the net was drawn up onto the vessel (the stern for many
trawlers, but other points where relevant for different vessels);

– The point at which the catch was loaded into the fish house;

– The main catch-sorting area (or belt if installed);

– The route by which discards were returned to the sea.

• A voltage meter to indicate the power supply to the REM systems, which could
be intermittent and cause system failure on some smaller vessels.
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• A counter indicating the number of net drum rotations per minute.

• A sensor measuring the hydraulic pressure (psi) in the winch mechanism. This
will return a high (vessel-dependent) value whenever the net is in the water: both
this and the drum-rotation counter can be used to indicate when the net is being
set and when it is being hauled. The resultant data may overestimate slightly
the length of time for which the vessel is actively fishing, as a demersal net
(for example) does not generally start working until near the sea bed. However,
the extent of any such overestimation cannot be measured without data on net
geometry and position that are not readily available.

• A standard GPS system indicating the position, heading and speed of the vessel.

Once installed, the systems were put into operation on a number of Danish fishing trips
thought to be representative of the fishing effort for the vessels concerned, and methods
were developed to analyse and interpret the resultant wealth of video and sensor data.

The Danish trials were deemed to be a success (Dalskov and Kindt-Larsen 2009,
Kindt-Larsen et al. 2011) and further trials were planned for 2010 and 2011. Compo-
nent systems were subsequently purchased by the Scottish, English, German, Dutch
and Swedish governments, all intending to use their systems in slightly different ways
but all with the underlying (though sometimes unstated) goal of accessing additional
cod quota for their vessels. Some of this purchasing may be considered to have been
a little premature: the positive results of the Danish trial related only to discards of
cod, and several governments (particularly Scotland) have very ambitious plans to use
REM systems for a number of compliance and science purposes. However, the full
utility of an REM system for tasks such as discard species composition and biological
sampling has yet to be determined at the time of writing. I am leading on REM re-
search at the Marine Laboratory in Aberdeen, and at the time of writing I am closely
involved in a number of REM projects that have generated widespread media interest
(see, for example, Lindsay 2011).
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12.3.2 Determining fishing activity through VMS and REM data

Despite the issues raised in the previous Section, the benefits of REM sensor data re-
main clear. Unlike VMS location and speed data, which is broadcast (under current
regulations) every two hours, REM data are stored every ten seconds. It is also possible
to determine very precisely whether a vessel is actually fishing in a particular location
or not, using the combination of video and sensor data. It has therefore become pos-
sible to test the commonly-used assumption (e.g. Borchers and Reid 2008, Vermard et
al. 2010) that a trawler moving at 41

2 to 5 knots or less must be fishing.
To demonstrate this, I compared REM and VMS data for one trip of a particular

Scottish demersal whitefish trawler fishing during 2009. Due to the commercially-
sensitive nature of these data, it would be inappropriate to name the vessel: I will refer
to it as Vessel A. REM sensor data were downloaded from the hard-drive data gener-
ated during the relevant Scottish REM trials (Marine Scotland 2010). VMS data were
taken from the Scottish Government FIN database generated for the project described
in Section 13.2 below. The drum-rotation counter had not been working on this par-
ticular trip, so the principal source of information regarding fishing activity was the
winch-pressure sensor. The winch operates continually while the net is in the water, in
order to maintain contact with the seabed (or to maintain the net at a constant depth),
so the winch sensor provides a direct measure of activity. Full camera coverage was
also available, but not used in this analysis.

The winch pressure levels that signify when the winch is or is not being used vary
from vessel to vessel, so the first task was to determine what these levels were for Ves-
sel A. Figure 12.4 (upper plot) reproduces the winch pressure readings for the whole
trip. These are highly variable, and to facilitate interpretation a loess curve (span =
0.01) was fitted through the observations. The lower plot of Figure 12.4 gives the
frequency distribution of the fitted loess curve points. The distribution was split into
two sub-distributions at its minimum (which I denote by Psplit), and the maxima of
both subsections were determined. These maxima were denoted by Poff and Pon for the
left and right sub-distributions respectively, and indicate the modal winch pressure for
“fishing” (when the winch is working; Pon) and “not fishing” (for when it is not; Poff).
For Vessel A:

Poff = 12.22

Psplit = 388.12

Pon = 1338.54
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Figure 12.4: Upper plot: REM winch pressure (psi) time series from Vessel A (grey line) with fitted
loess curve (blue line). Lower plot: frequency distribution of fitted loess curve values from upper plot.
The red vertical line indicates the minimum Psplit of the distribution, while the green vertical lines (Poff
and Pon) give the maxima of the sub-distributions formed by partitioning the full distribution at the
minimum.

Each day of data from the time-series for Vessel A was analysed separately, and
the results combined to allow conclusions for the time-series as a whole. Figure 12.5
summarises the available information from Day 1 of the time-series. The correlation
between REM and VMS speed measures appears to be quite poor (R2 = 17.35%),
although the REM speed data are very variable and a direct correspondence with the
VMS speed data is not always evident. For example, the average speed comparison R2

over all days from Vessel A for which both VMS and REM data are available is only
63.62%.

REM winch pressure data for each day were categorised as follows. To reduce
the effect of high variability in pressure data, a loess curve Ploess was fit to the raw
winch pressure time series for each day, using local polynomial regression fitting and
a small span (0.05). Each point on Ploess was then categorised as fishing or not fishing
by comparison with the estimated split value

(
Psplit

)
calculated via Figure 12.4: all
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times for which Ploess ≥ Psplit were deemed to be fishing times, otherwise the vessel
was assumed to be not fishing. The resultant time series are indicated in Figure 12.5
(lower left subplot): this suggests good agreement between the REM-derived indica-
tor of fishing activity and the VMS speed-derived indicator, save for two points in
mid-morning and late evening when the VMS speed was greater than 5 knots but the
REM winch pressure indicated fishing activity. These points are also highlighted in
the contingency table plot of VMS speed against REM loess winch pressure (lower
right subplot of Figure 12.5), with both appearing in the upper-right quadrant (indi-
cating disagreement between the two measures). For Day 1, VMS and REM fishing
indicators agree for 8 (88.9%) out of 9 available time points.

Figure 12.6 shows the equivalent comparison for Day 2, for most of which Vessel A
was fishing before steaming for the mainland in the evening. The correlation between
REM and VMS speed data is good for this day (94.56%), as is the agreement between
REM and VMS fishing indicators (12 out of 14 points, or 85.7%). A comparison is
not always possible, however. Figure 12.7 is an example of a day for which VMS data
are not available. The reasons for the lack of VMS data are not known, but some VMS
data were absent on 11 out of 31 days in the time-series.

Summing the daily contingency tables comparing REM and VMS fishing indica-
tors results in the following overall contingency table.

REM not fishing REM fishing

VMS not fishing 90 7

VMS fishing 7 117

In other words, over the full time-series REM and VMS fishing indicators agreed for
207 out of 221 time points (93.7%). A simple χ2 test applied to the table above in-
dicates strong support (p < 2.2e− 16) for the hypothesis that the measures are not
independent.

I can also determine how dependent they are in a statistical sense. I assume firstly
that the REM indicator of fishing is the correct baseline value, against which I am
testing whether the VMS indicator of fishing agrees. Define a binomial variable Frem,
such that

Frem = 1 ⇒ Fishing according to REM winch data

Frem = 0 ⇒ Not fishing according to REM winch data
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Define a second variable Fagree, such that

Fagree = 1 ⇒ REM and VMS indicators agree

Fagree = 0 ⇒ REM and VMS indicators disagree

I then fit the following GLM to these data, using a binomial fit function with a logit
link:

Fagree ∼ Frem−1. (12.5)

This will produce estimates for two factors, one for when REM and VMS both indi-
cate fishing, the other for when they both indicate no fishing. These factors will be
expressed on the logit scale. Converting back to the arithmetic scale and estimating
95% confidence limits (CLs) yields

Factor Lower CL (2.5%) Estimate Upper CL (97.5%) p-value
VMS and REM indicate
fishing

0.8651 0.9278 0.9683 7.58e-11

VMS and REM indicate no
fishing

0.8937 0.9435 0.9753 4.56e-13

In other words: if REM indicates fishing, VMS also indicates fishing for around 93%
of the observations, with a confidence interval of 87% to 97%. If REM indicates no
fishing, VMS agrees for 94% of such occasions, with a confidence interval of 89%
to 98%. Both factors are strongly significant. The factor estimates can be obtained
directly from the contingency table above, but the GLM is required to evaluate signifi-
cance and obtain confidence intervals.

Hence, if I assume that REM winch-pressure data accurately indicates fishing ac-
tivity, then VMS speed data is a reasonably good proxy which agrees with REM indi-
cators on over 90% of observations (for this trip of Vessel A). This supports the use of
VMS data as a marker of fishing activity, as suggested by Borchers and Reid (2008)
and Vermard et al. (2010), and implemented in recent years by enforcement authorities
in Scotland and elsewhere. The assumption that a vessel for which VMS data indicate
a speed of less than 5 knots must be fishing is therefore used for the rest of this Chapter.

On a final note: REM data provide one way of interpolating between VMS pings,
but another approach is illustrated in Figure 12.8 which shows how confidence intervals
about a transit line between pings could be generated. Song et al. (2010) used this idea
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in a fascinating paper on characterising the movement pattern of people from mobile-
phone transmission records, and a similar method could prove very applicable in the
future to studies of fishing vessel movements.
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Figure 12.5: Comparison of VMS and REM sensor data for Day 1 of REM time-series from Vessel
A. Upper left plot: vessel position. Black line gives REM position data: points give VMS position
data, categorised as fishing (red) or not fishing (green). Grey lines show bathymetry contours in 100-m
intervals. To ensure anonymity, latitude and longitude axis labels have been removed. Upper right plot:
time-series of REM (lines) and VMS (points) speed data, along with the R2 value from a linear model fit
to REM against VMS data. Lower left plot: winch pressure time series (grey line), with loess fit (blue
line) and blocked equivalent (red line). VMS speed data (points) are given as before. Lower right plot:
scatterplot and contingency table of VMS speed data against the loess fit to REM winch-pressure data.
Vertical line is at Psplit, while horizontal line is at 5 knots. The number of points in each quadrant is also
indicated.
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Figure 12.6: Comparison of VMS and REM sensor data for Day 2 of REM time-series from Vessel A.
See caption of Figure 12.5 for details.
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Figure 12.7: Comparison of VMS and REM sensor data for Day 17 of REM time-series from Vessel A.
See caption of Figure 12.5 for details.
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A

B

Figure 12.8: Conceptual model of path uncertainty between two VMS pings A and B. The black line
shows the direct path, which is generally assumed to be the route taken. Blue lines give examples of
paths that the vessel could have taken in the time available to get from A to B, while red lines show
possible confidence bounds about the hypothesised route which could be generated from consideration
of many possible paths.
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13 Fleet responses to real time closures

13.1 THE SCOTTISH REAL TIME CLOSURE (RTC) SCHEME

As part of its Conservation Credits initiative which began in 2008, the Scottish Gov-
ernment instigated a series of RTCs intended to divert demersal fishing effort away
from areas of abundant cod, and thereby reduce cod mortality. The RTCs were stip-
ulated as areas of approximately 50 square nautical miles, and were initially defined
as 7× 7 nautical-mile squares, although this limitation was subsequently relaxed and
RTCs may now be of different shapes. Following analyses which suggested that the
residence time of cod in a 7× 7 square nautical mile area could be less than three
weeks (Peter Wright, Marine Scotland Science, Aberdeen, pers comm), the maximum
possible area of each RTC since June 2010 has been increased to 225 square nautical
miles. Each RTC is in place for 21 days, following which period they are automatically
reopened. Further, rules limit the number of RTCs that can be enacted simultaneously
in close proximity, in order to prevent local fishing communities being unfairly disad-
vantaged. The closure of an area is triggered by an upper limit on the observed cod
density, defined as 40 cod (of any size) per hour’s fishing. Notification is via skipper’s
logbooks, monitored landings, or by on-board observation, and a single high-density
haul is sufficient to instigate a closure. There may only be a maximum of 11 closures
defined by logbook or landings data in operation at any one time, along with an ad-
ditional three closures defined by positive on-board samples. Since 2009, observance
of RTCs by Scottish demersal fishing vessels has been mandatory. There is no legal
impediment to vessels from other countries fishing in RTCs, although they have been
encouraged by the Scottish Government and the EU not to do so, and anecdotal evi-
dence from compliance officers and the Scottish fishing industry suggests that RTCs
have generally been respected by non-Scottish vessels.

Full details on how RTCs are defined within the Conservation Credits scheme are
given in Holmes et al. (2009): see also European Parliament (2010). In all, 15 such
closures were implemented in 2008. An expansion of the scheme led to 144 closures
in 2009 (Figure 13.1), 165 in 2010 (Figure 13.2), and 142 in 2011 (as of 5th October).
Although the area covered by the closures in 2009 and 2010 looks substantial, it is im-
portant to note that only a few of the RTCs were in force on any given day: Figure 13.2
also shows the extant closures on 1st July 2010.

In the Section, I will analyse the movement response of Scottish vessels to RTCs,
as shown by VMS data. The analysis considers vessels moving away from RTCs when
closed, vessels fishing in (or very near to) RTCs while they are closed, and vessels
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returning to the area of RTCs after reopening. The response metrics are the difference
in the mean RFII of subsequent trips (see Section 13.2) and the distance moved. The
analysis will go part of the way towards characterising such reponses, and it is my
intention that the results will ultimately be reflected in the development of (and the
output from) spatial response models of the kind discussed in Chapter IV.
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Figure 13.1: Real-time closures (RTCs; red) and permanent or other seasonal closures (blue) imple-
mented by the Scottish Government in 2008 (upper) and 2009 (lower). The dotted line shows the extent
of the UK EEZ, and grey lines show bathymetry at 100-m intervals.
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Figure 13.2: Real-time closures (RTCs; red) and permanent or other seasonal closures (blue) imple-
mented by the Scottish Government in 2010 (upper), and those in place on 1st July 2010 (lower). The
dotted line shows the extent of the UK EEZ, and grey lines show bathymetry at 100-m intervals.
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13.2 GENERATION OF RFII DIFFERENCE METRICS AND DISTANCES

MOVED

Given a spatio-temporal RFII for cod (see Section 11.2), the next task is to determine
those vessels which would be expected to be directly affected by RTCs. The full VMS
dataset for 2008-2010 was partitioned by vessel. The VMS data for each vessel were
then examined to determine if:

A: the vessel had been fishing within an RTC area during the 15 days preceding clo-
sure;

B: the vessel had been fishing in an RTC during the closure;

C: the vessel had returned and fished in the RTC area during the 15 days following
reopening.

For each trip in which one of these criteria was met, the mean RFII for all VMS fishing
ping locations during the trip was calculated. For cases A and B, the mean fishing-ping
RFII for the following trip undertaken by the vessel was calculated; for case C, the
mean fishing-ping RFII for the preceding trip was calculated. The mean RFII for the
trip of interest was then compared with that from either the preceding or the following
trip (the comparison trip), as appropriate. If the mean RFII for the trip of interest
exceeded that for the comparison trip, it would indicate that the vessel had moved to
an area of less importance for that fish stock following the closure (cases A or B) or
reopening (case C), although I cannot conclude that the closure was necessarily the
reason for the move: these analyses can only be indicative.

To characterise the location of each fishing trip, I calculated the geographic mid-
point G = (Gx,Gy) of all the fishing pings PF = (PFx,PFy) for trip t of vessel X, and
for the comparison trip t +1 (case A or B) or t−1 (case C), using

Gx = median(PFx) (13.1)

Gy = median(PFy) (13.2)

I also performed a cluster analysis on fishing pings for each trip to determine whether
the assumption of one geographic midpoint for each trip was valid. Clustering was
carried out by partitioning around medoids (Kaufman and Rousseeuw 2005, see also
page 177 below), using the PAM function of the cluster package (version 1.11.11) in
R (version 2.8.1). The results were summarised by a plot of the principal components
of the ping data with the suggested number of clusters (k) indicated by ellipses (Pison
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et al. 1999). For this plot (known as a clusplot), the following procedure was carried
out:

1. As part of the PAM algorithm, an (n×n) dissimilarity matrix of the n VMS pings
for trip t was created. This gave the Euclidean distances between the location of
each ping and the location of every other ping (see Section 14.2 for more details
and discussion).

2. A principal components analysis (PCA) was carried out on the elements of the
dissimilarity matrix.

3. The clusplot is then given by plotting every VMS ping on the scales of the first
two principal components. The variation explained by the components is also
given, and each cluster (as determined by the PAM method) is marked by an
ellipse. Finally, lines are drawn joining the central point of the ellipses.

If more than one cluster was identified by this procedure, this suggested that my as-
sumption that a single geographic midpoint could summarise the fishing location for
that trip may not have been valid.

Finally, the Haversine distance (Equation 11.3) between the two VMS midpoints
was used to approximate the distance moved between the areas fished in the two trips,
and therefore how far the vessel had moved following the closure (cases A and B) or
the reopening (case C).

13.2.1 Results for Vessel X in 2009

For example, consider the case of a certain vessel (which I’ll call Vessel X) fishing
in the North Sea. Figures 13.3, 13.4 and 13.5 summarise the VMS data for Vessel X
from three successive trips during January 2009. Fishing effort during the first trip in
the sequence (which was actually Vessel X’s second trip for 2009) was focused on the
western edge of the Norwegian Deeps, with some fishing also in the region of the Long
Hole seasonal closure; although the cluster analysis returns k = 1 (see middle lower
plot in Figure 13.3), suggesting that geographic midpoint of the pings is a reasonable
summary of the fishing locations for that trip (probably because there are many more
pings near the Norwegian Deeps than near the Long Hole). During that first trip, Vessel
X fished (according to its VMS pings) in an area which became RTC number 1 (for
2009) during the following week (Figure 13.3). Although it cannot be assumed that it
was a report from Vessel X that triggered the closure, it can be concluded that Vessel X
was operating in that area. The VMS data from the same vessel’s next trip shows that
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fishing was concentrated in the Shetland area (Figure 13.4). In this case, k = 3 from
the cluster analysis, suggesting three distinct fishing areas (and indeed the location
of the geographic midpoint is almost on Shetland itself). Vessel X’s third trip in this
sequence went back to the edge of the Norwegian Deeps again (Figure 13.5). The
pings for this trip, which were adequately summarised by a single geographic midpoint
(k = 1), entered into three areas which subsequently (within 15 days) became RTCs,
and skirted the edges of three others.

The mean RFII for cod by fishing-ping from the first trip was 0.423, whereas that
from the second trip was 0.378, and 0.425 from the third. The median distances be-
tween trips were 339 km (from the first trip to the second), and 276 km (from the
second trip to the third). So, in summary, Vessel X was fishing in an area that was
subsequently closed. It moved a considerable distance on its next trip, and fished in
an area which (according to the RFII for cod) was less important for cod. On next trip
after that, the vessel moved back to near the area of the first trip, and thereby fished
once again in an area of (relatively) high importance for cod.

Without consulting the skipper concerned (if indeed he could recall the trips), the
precise reasons for these moves cannot be known. There may have been many good
reasons other than the closure for the shift in fishing area. In any case, if the RTC was
a factor in moving away from the Norwegian Deeps, it was not a long-lasting one: the
vessel returned to that area in the next again trip.

I can also collate the results from the full 2009 year of activity for Vessel X. There
were 32 identified trips, the first starting on January 1st and the last starting on De-
cember 27th. Fishing activity was spread quite evenly through the year, with between
one and three trips per month. Contrary to our assumption of a single geographic mid-
point, Vessel X tended to visit multiple fishing areas in each trip, and cluster analysis
indicated a single ping cluster (k = 1) for only 37.5% of the trips (see Figure 13.6).

It is convenient to summarise each trip by a single point, as this simplifies trip
comparisons and enables a second level of cluster analysis on the collection of geo-
graphic midpoints from each trip. The use of a single midpoint for each trip may not
capture the full spatial distribution of each trip, but it may be appropriate to use it as a
first approximation when making large-scale comparisons between trips. Applying the
same clustering method to trip centres as I applied to VMS fishing pings for each trip,
I can spatially categorise the annual activity for a given vessel. Results are given for
Vessel X in 2009, in Figures 13.7 to 13.10. These show that the fishing locations for
this vessel during 2009 can be broadly categorised into two main areas: the northern
North Sea, and Rockall. The finer distinctions within the North Sea that are clear from
Figure 13.10 are rather lost in this analysis, as the differences between the North Sea
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and Rockall are much greater than those within the North Sea.
Finally for Vessel X, I summarise the type of movement undertaken by the vessel

following real-time closures. Figure 13.11 shows the geographic midpoints of each
trip, as in Figure 13.10, along with arrows indicating the type, distance and direction
of those inter-trip movement which were related to RTCs. In 2009, vessel X had a total
of 23 trips in which there was some interaction with one or more of 30 RTCs. There
were 43 such interactions: 17 trips in which Vessel X fished in the RTC in the 15 days
before it was closed, 6 trips in which the vessel fished in the RTC while it was closed,
and 20 in which it returned to RTCs in the 15 days following reopening.

It would have been illegal for Vessel X to undertake fishing operations in an RTC
during closure, so the trips in which the VMS data indicate this took place need to be
examined more closely. The relevant data are presented in Figure 13.12. In all six
cases, the fishing pings lie mostly along the edges of the RTCs. There are at most two
fishing pings within each RTC while closed, and it could be argued that these are an
artefact of the assumption of fishing activity when VMS pings indicate that the vessel
is travelling at less than 5 knots (see Section 12.3.2, in which I showed that VMS data
are good indicators of fishing activity but not infallible ones). There does not appear
to be a focus of activity from Vessel X within these RTCs while they were closed.

The differences in the mean RFII for cod for the relevant trips, and the mean dis-
tances between them, are summarised for Vessel X in 2009 in Tables 13.1 and 13.2.
The mean RFII difference for cod in 2009 is only significantly different from zero for
one combination of quarter and RTC-involvement type, namely a significant increase
in RFII for cod when Vessel X moved back towards RTCs in quarter 3. There are too
few observations of RTC involvement to reach statistically-significant conclusions on
whether Vessel X moved towards or away from cod following RTCs in 2009.

before during after

all -0.061 (p = 0.2448) -0.11 (p = 0.2205) 0.017 (p = 0.6426)
q1 -0.208 (p = 0.1324) NA (p = NA) NA (p = NA)
q2 0.004 (p = 0.8538) -0.106 (p = 0.676) 0.007 (p = 0.8052)
q3 NA (p = NA) NA (p = NA) 0.064 (p = 0.0325)
q4 0.042 (p = 0.5182) -0.017 (p = 0.7442) -0.078 (p = 0.5823)

Table 13.1: Differences between mean RFII values for cod for pre- and post-closure trips of Vessel X,
for the whole of 2009 and for each quarter thereof (q1-q4), and for each of the three cases (see text for
details). “NA” indicates there were not enough relevant observations to calculate a mean. p-values of
pairwise Student’s t-tests carried out to determine whether mean values are statistically different from
zero are given in parenthesis: significant differences (at the 95% level) are shown in bold face.
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before during after

all 373.9 381.2 114.8
q1 933.2 1068.1 NA
q2 37.8 502.6 36.0
q3 29.5 56.3 92.6
q4 107.9 78.8 226.8

Table 13.2: Means of the median distances (km) moved by Vessel X between consecutive trips around
closure periods for cod, for the whole of 2009 and for each quarter thereof (q1-q4), and for the three
cases (see text for details). Cases and quarters for which relative RFII indices for cod between fishing
grounds were significantly different at the 95% level (see Table 13.1) are marked by bold face.
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Figure 13.3: Upper plot: aggregation summary of VMS pings for the second trip for 2009 of Vessel
X (see Section 12.2.2). Aggregation bins are 0.5◦× 0.25◦ rectangles, shaded by ping density (darker
colours indicate more pings). Red shading shows fishing pings, green shading shows non-fishing pings.
Note that only fishing pings are included in the shading for those bins with both fishing and non-fishing
pings. Red polygons indicate real-time closures; blue polygons show permanent or other seasonal clo-
sures. Grey lines show bathymetry at 100-m intervals. The circled number (2) shows the location of the
geographic midpoint of the fishing pings for the trip. Lower left plot: time series of the vessel speed
estimates (in knots) associated with each VMS ping (fishing and non-fishing). Lower middle plot: prin-
cipal component plot of fishing-ping cluster analysis (k and the number of ellipses indicate the number
of clusters for which there is most evidence). Lower right plot: time-series of estimated RFII for cod at
the location of each fishing ping. The dashed red line gives the average for the trip.
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Figure 13.4: Summary of VMS data for the third trip for 2009 of Vessel X. See caption for Figure 13.3
for details.
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Figure 13.5: Summary of VMS data for the fourth trip for 2009 of Vessel X. See caption for Figure 13.3
for details.
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Figure 13.6: Histogram of the number of VMS fishing-ping clusters indicated per trip for Vessel X
during 2009. The label “trip.pam.k” indicates the number of clusters per trip, while the proportion of
the total number of trips for which the given number of clusters was indicated is shown at the top of
each bar.
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Figure 13.7: Cluster analysis of trip midpoints in 2009 for Vessel X: the average silhouette width s for all
possible numbers of clusters. For each observation i, the silhouette width s(i) is a measure of how well
positioned in a cluster the observation is. Observations with s(i) ' 1 are very well clustered, s(i) ' 0
means that the observation lies between two clusters, and observations with s(i) < 0 are probably placed
in the wrong cluster (Kaufman and Rousseeuw 2005). The vertical dashed line shows the number of
clusters for which the average s is greatest, and therefore the suggested best clustering (in this case, the
suggested number of clusters is 2).
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indicate suggested clusters (Kaufman and Rousseeuw 2005).
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Figure 13.9: Cluster analysis of trip midpoints in 2009 for Vessel X: silhouette widths s(i) for each
observation, partitioned into suggested clusters. For each observation i, the silhouette width s(i) is a
measure of how well positioned in a cluster the observation is. Observations with s(i)' 1 are very well
clustered, s(i)' 0 means that the observation lies between two clusters, and observations with s(i) < 0
are probably placed in the wrong cluster (Kaufman and Rousseeuw 2005). In this example, the Rockall
cluster (lower) is very well-defined. The North Sea cluster (upper) is less well-defined: in particular, the
grouping of observation 26 (a trip to the north-western shelf edge) is not very well-supported (see also
Figure 13.10).
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Figure 13.10: Aggregation summary of VMS pings for all trips for 2009 of Vessel X. Aggregation
bins are 0.5◦× 0.25◦ rectangles, shaded by ping abundance (darker colours indicate more pings). Red
shading shows fishing pings, green shading shows non-fishing pings. Note that only fishing pings are in-
cluded in the shading for those bins with both fishing and non-fishing pings. Grey lines show bathymetry
at 100-m intervals. The circled numbers show the locations of the geographic midpoints of the fishing
pings for the trip, and are colour-coded according to cluster analysis (the colour legend is in the top
right).
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fishing pings for the trip, and are colour-coded according to cluster analysis (the colour legend is in the
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Figure 13.12: VMS pings for Vessel X in 2009 for those areas and times for which VMS data indicate
Vessel X was fishing in RTCs. Lat-long information and RTC ID numbers have been removed to ensure
anonymity: only ping dates remain. The RTC is shown by the central polygon. Fishing ping dates are
shown in red, non-fishing ping dates in green. Grey arrows indicate direction of travel.
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13.2.2 Results for all affected vessels in 2008-10

Full results are presented in Tables 13.3 to 13.5, and Figures 13.13 to 13.18. Note that
these results refer to “affected” vessels. This is a convenient shorthand for vessels that
fall into one of the three cases listed on page 145, but is not intended to imply that
the fishing patterns of other vessels in the fleet are necessarily unaltered by the imple-
mentation of RTCs. Analyses of fishing patterns for the whole fleet are introduced in
Chapter 14.

There were only 15 RTCs in 2008, and observance of them was not mandatory for
the entire Scottish demersal whitefish fleet. Therefore, although the mean differences
in RFII for cod were negative for case A for the full year, and for each of the quarters
in which RTCs occurred in 2008, none of these differences are significantly different
from zero by Student’s t-tests (Table 13.3b, Figures 13.13 and 13.14). There are a
range of mean differences for cases B and C, both positive and negative, but as none
of these are significantly different from zero I cannot reach any conclusions for 2008.

In 2009, there were 144 RTCs, and full observance of the closures was mandatory
for all Scottish whitefish demersal vessels. The higher number and greater extent of
RTCs resulted in more observations of vessels in one or more of the three cases, and
this is reflected in the greater significance of the mean RFII difference estimates for
cod. Figure 13.15 shows that the average of the mean differences is negative over
the whole year for cases A (“moving away”) and B (“fishing during closure”), and
positive for case C (“moving towards”), while Table 13.4b demonstrates that all these
averages are significantly different from zero. Over the whole year, affected Scottish
vessels were observed to move towards areas of lower cod importance (as measured
by the RFII for cod) when moving away from newly-closed RTCs. This was also
the case when fishing in RTCs during closures, although the example in Figure 13.12
suggests that many of these records may not truly indicate disregard of the closures.
On the other hand, vessels were also observed to move back towards more important
cod areas when RTCs were reopened. It should also be noted that the average of
the mean RFII differences for cod for case A is very similar in absolute terms to the
value for case C. Quarterly results for 2009 (Table 13.4b and Figure 13.16) show that
the mean RFII differences for cod for case A were negative for all quarters in which
there was a significant difference (the result for quarter 2 was slightly positive, but
this is not statistically significant). All results for case B were negative, although only
significantly so for quarters 2 and 4 (and I have suggested that indications of fishing
“during” closures need to be interpreted carefully). Correspondingly, all significant
results for case C were positive.
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The number of RTCs in 2010 increased to 165, and the maximum possible extent
of each increased to 225 square nautical miles. The likelihood of vessels encounter-
ing RTCs (in either of the three cases) was therefore substantially higher, and this is
reflected in Table 13.5a which shows the increase in the number of vessels and trips
directly affected by RTCs. The conclusions in terms of mean RFII differences for cod
are very similar to 2009, however. Over the whole year, the mean difference for case
A was significantly negative, implying that vessels moved to areas less important for
cod when an RTC was imposed where they had been fishing (Table 13.5b and Fig-
ure 13.17). This is balanced, however, by a positive (and slightly greater) significant
mean difference for case C, suggesting that vessels increased their potential impact on
cod when moving back to newly-reopened RTCs. The comparison also holds for all
quarters (Table 13.5b and Figure 13.18), although the negative difference for case A
in quarter 1 is not significantly different to zero. Previous comments about the case B
(“during”) results hold here, although the results are included for completeness.

Regarding the distances moved by affected vessels, Tables 13.3c, 13.4c and 13.5c
(as well as Figures 13.14, 13.16 and 13.18) indicate a fairly consistent pattern: dis-
tances moved for case A (moving away from RTCs) are greater than for case C (mov-
ing towards RTCs) for most of the year, before the pattern is reversed (in 2009 and
2010) in the third or fourth quarter. There is currently no explanation for this effect,
although it could be explored using multi-annual VMS records for individual vessels
(see Chapter 14).

To conclude: there is significant evidence for a decreased RFII for cod when vessels
move away from newly-implemented RTCs (case A), but that the reduction in RFII for
cod is at least matched by an equal and opposite increase in RFII for cod when vessels
return to RTCs after reopening (case C), for the year as a whole and for all quarters.
There are differences in the detail between the years, but this overall pattern appears to
be maintained. These results suggest that RTCs encourage vessels to move away from
cod-important areas when they are closed, but do not necessarily discourage renewed
fishing on cod when they are reopened.
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a) all q1 q2 q3 q4

Vessels in dataset 397 - - - -
Vessels directly affected by RTCs 88 63 40 24 0
Trips directly affected by RTCs 257 135 77 45 0

b) A: before B: during C: after

all -0.02 (p = 0.094) 0.014 (p = 0.337) 0.01 (p = 0.309)
q1 -0.003 (p = 0.746) -0.017 (p = 0.384) -0.007 (p = 0.562)
q2 -0.025 (p = 0.239) 0.044 (p = 0.066) 0.013 (p = 0.458)
q3 -0.051 (p = 0.186) -0.006 (p = 0.272) 0.051 (p = 0.100)
q4 NA (p = NA) NA (p = NA) NA (p = NA)

c) A: before B: during C: after

all 166.0 128.2 99.9
q1 116.1 100.4 74.9
q2 198.3 160.3 120.6
q3 189.3 16.3 119.9
q4 NA NA NA

Table 13.3: Summary of RTC analysis for the affected vessels of the Scottish whitefish fleet in 2008. a)
Numbers of vessels. b) Mean differences between mean RFII values for cod for pre- and post-closure
trips of all affected Scottish demersal vessels, for the whole of 2008 and for each quarter thereof (Q1-
Q4), and for each of the three cases (see text for details). “NA” indicates there were not enough relevant
observations to calculate a mean. p-values of pairwise Student’s t-tests carried out to determine whether
values are statistically different from zero are given in parentheses: significant differences (at the 95%
level) are shown in bold face. c) Means of the median distances (km) moved by all affected vessels
between consecutive trips around closure periods for cod, for the whole of 2008 and for each quarter
thereof (Q1-Q4), and for the three cases (see text for details). Cases and quarters for which relative RFII
indices for cod between fishing grounds were significantly different at the 95% level (see Table 13.1)
are marked by bold face.
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Figure 13.13: Histograms of results from VMS analyses for all affected Scottish vessels in 2008 (88 out
of 397 in the VMS database). All three cases are included here, combined over all four quarters. Pre-
and post-closure trips are compared in terms of (left panels) the difference in the mean RFII for cod for
fishing pings, and (right panels) the distance moved between trips (km). The dashed vertical lines and
the boxed numbers show means of each distribution.
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Figure 13.14: Histograms of results from VMS analyses for all affected Scottish vessels in 2008 (88 out
of 397 in the VMS database). Only case A (moving away from an RTC after it is closed) is included
here, and the four quarters of the year (Q1-Q4) are presented separately. Pre- and post-closure trips are
compared in terms of (left panels) the difference in the mean RFII for cod for fishing pings, and (right
panels) the distance moved between trips (km). The dashed vertical lines and the boxed numbers show
means of each distribution.
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a) all q1 q2 q3 q4

Vessels in dataset 403 - - - -
Vessels directly affected by RTCs 153 97 102 93 87
Trips directly affected by RTCs 1007 218 290 272 227

b) before during after

all -0.031 (p = 0.000) -0.039 (p = 0.000) 0.034 (p = 0.000)
q1 -0.051 (p = 0.000) -0.058 (p = 0.039) -0.022 (p = 0.203)
q2 0.001 (p = 0.933) -0.009 (p = 0.502) 0.021 (p = 0.007)
q3 -0.036 (p = 0.001) -0.077 (p = 0.000) 0.071 (p = 0.000)
q4 -0.039 (p = 0.001) -0.031 (p = 0.096) 0.038 (p = 0.012)

c) before during after

all 142.6 164.5 120.7
q1 155.2 154.5 76.5
q2 141.2 206.1 129.6
q3 140.5 151.4 118.1
q4 129.4 114.1 135.1

Table 13.4: Summary of RTC analysis for the affected vessels of the Scottish whitefish fleet in 2009. a)
Numbers of vessels. b) Mean differences between mean RFII values for cod for pre- and post-closure
trips of all affected Scottish demersal vessels, for the whole of 2009 and for each quarter thereof (Q1-
Q4), and for each of the three cases (see text for details). “NA” indicates there were not enough relevant
observations to calculate a mean. p-values of pairwise Student’s t-tests carried out to determine whether
values are statistically different from zero are given in parentheses: significant differences (at the 95%
level) are shown in bold face. c) Means of the median distances (km) moved by all affected vessels
between consecutive trips around closure periods for cod, for the whole of 2009 and for each quarter
thereof (Q1-Q4), and for the three cases (see text for details). Cases and quarters for which relative RFII
indices for cod between fishing grounds were significantly different at the 95% level (see Table 13.1)
are marked by bold face.
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Figure 13.15: Histograms of results from VMS analyses for all affected Scottish vessels in 2009 (153
out of 403). All three cases are included here, combined over all four quarters. Pre- and post-closure
trips are compared in terms of (left panels) the difference in the mean RFII for cod for fishing pings, and
(right panels) the distance moved between trips (km). The dashed vertical lines and the boxed numbers
show means of each distribution.
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Figure 13.16: Histograms of results from VMS analyses for all affected Scottish vessels in 2009 (153
out of 403). Only case A (moving away from an RTC after it is closed) is included here, and the
four quarters of the year (Q1-Q4) are presented separately. Pre- and post-closure trips are compared in
terms of (left panels) the difference in the mean RFII for cod for fishing pings, and (right panels) the
distance moved between trips (km). The dashed vertical lines and the boxed numbers show means of
each distribution.
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a) all q1 q2 q3 q4

Vessels in dataset 403 - - - -
Vessels directly affected by RTCs 207 156 117 117 123
Trips directly affected by RTCs 1543 360 301 429 453

b) before during after

all -0.053 (p = 0.000) -0.027 (p = 0.002) 0.057 (p = 0.000)
q1 -0.014 (p = 0.136) -0.027 (p = 0.074) 0.026 (p = 0.009)
q2 -0.036 (p = 0.002) 0.009 (p = 0.680) 0.036 (p = 0.000)
q3 -0.072 (p = 0.000) -0.047 (p = 0.001) 0.065 (p = 0.000)
q4 -0.070 (p = 0.000) -0.026 (p = 0.220) 0.079 (p = 0.000)

c) before during after

all 136.1 131.1 125.1
q1 117.0 108.4 90.9
q2 154.0 145.4 114.7
q3 143.3 132.4 152.2
q4 123.8 136.8 126.2

Table 13.5: Summary of RTC analysis for the affected vessels of the Scottish whitefish fleet in 2010. a)
Numbers of vessels. b) Mean differences between mean RFII values for cod for pre- and post-closure
trips of all affected Scottish demersal vessels, for the whole of 2010 and for each quarter thereof (Q1-
Q4), and for each of the three cases (see text for details). “NA” indicates there were not enough relevant
observations to calculate a mean. p-values of pairwise Student’s t-tests carried out to determine whether
values are statistically different from zero are given in parentheses: significant differences (at the 95%
level) are shown in bold face. c) Means of the median distances (km) moved by all affected vessels
between consecutive trips around closure periods for cod, for the whole of 2010 and for each quarter
thereof (Q1-Q4), and for the three cases (see text for details). Cases and quarters for which relative RFII
indices for cod between fishing grounds were significantly different at the 95% level (see Table 13.1)
are marked by bold face.

168



Moving away

Mean trip RCII difference

F
re

qu
en

cy

−0.5 0.0 0.5

0
10

0
20

0
30

0

Moving away

Distance moved

F
re

qu
en

cy

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0

Fishing during closure

Mean trip RCII difference

F
re

qu
en

cy

−0.5 0.0 0.5

0
20

60
10

0

Fishing during closure

Distance moved

F
re

qu
en

cy

0 200 400 600 800 1000 1200

0
50

10
0

20
0

Moving towards

Mean trip RCII difference

F
re

qu
en

cy

−0.5 0.0 0.5

0
10

0
20

0
30

0

Moving towards

Distance moved

F
re

qu
en

cy

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0

Figure 13.17: Histograms of results from VMS analyses for all affected Scottish vessels in 2010 (207
out of 403 in the VMS database). All three cases are included here, combined over all four quarters.
Pre- and post-closure trips are compared in terms of (left panels) the difference in the mean RFII for cod
for fishing pings, and (right panels) the distance moved between trips (km). The dashed vertical lines
and the boxed numbers show means of each distribution.
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Figure 13.18: Histograms of results from VMS analyses for all affected Scottish vessels in 2010 (207
out of 403 in the VMS database). Only case A (moving away from an RTC after it is closed) is included
here, and the four quarters of the year (Q1-Q4) are presented separately. Pre- and post-closure trips are
compared in terms of (left panels) the difference in the mean RFII for cod for fishing pings, and (right
panels) the distance moved between trips (km). The dashed vertical lines and the boxed numbers show
means of each distribution.
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14 Effects on individual skippers of closures

The analyses of responses to real-time closures described in Sections 11 to 13 above,
and in Needle and Catarino (2011, reproduced in Chapter VI), provide useful infor-
mation the dynamics of a subset of the Scottish fleet for part of the time, but they
are necessarily incomplete. In order to attempt to explain the responses of vessels to
closures in a tractable way, I restricted the analysis to vessels which were fishing in
areas that were subsequently closed within 14 days, or which fished within a closed
area while it was closed, or which moved back to a reopened area within 14 days of
reopening. However, through such an approach I can only characterise a relatively
small proportion of the trips of these vessels. I also can say nothing about the rest of
the fleet: a vessel which avoided an area altogether because of a real-time closure was
following exactly the fishing pattern that the regulation was intended to generate, but
such a vessel is explicitly excluded from the analyses presented above. The analysis
was therefore insufficient as the basis for the characterisation of vessel responses that
is required for the spatio-temporal model outlined in Chapter IV.

An alternative approach is to consider in more detail all the available VMS data for
a particular vessel. Suppose there are such data from a vessel (which I’ll refer to here
as Vessel X) for three years: 2008, when the RTC scheme was in its infancy and the
closures were thought to have been too small and few in number to significantly affect
fishing locations, and 2009-2010, when there were many more (and larger) closures
and changes in fishing patterns were to be expected. The relevant questions are: firstly,
whether I can determine discrete fishing areas used by Vessel X; secondly, whether the
extent to which these areas are used by Vessel X has changed over time; and thirdly,
whether I can determine if such changes are related to changes in the density of real-
time closures in those fishing areas.

In this Section, I develop a methodology for addressing these questions, and apply
it to the analysis of VMS data from the relevant vessels in the Scottish whitefish fleet
(that is, those which were subject to RTC regulations during 2008-2010). As I am not
considering socio-economic or other drivers of changes in fishing practices, I will still
not be able to determine why such changes have taken place. However, I can provide
a more detailed and inclusive characterisation of fleet movements than that given by
Needle and Catarino (2011), and the correlation analysis comparing fishing locations
with real-time closures (while not proving causality) will provide a useful basis for
further study. I will illustrate the methods used with reference to two specific vessels,
chosen only because they were the first two relevant vessels (in terms of fishing loca-
tion and gear type) in the VMS dataset, and then draw conclusions from the application
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of the methods to the entire dataset of relevant vessels.

14.1 VMS DATA

The VMS data used for this analysis are derived from the same database used in Sec-
tion 12, with the addition of derived database fields for year (2008-2010) and quarter
(1-4). To enable analyses for a specific vessel, the full VMS dataset was restricted to
records specific to that vessel using the unique RSS (Registry of Shipping and Seamen)
code. For example, Figure 14.1 shows all VMS pings for the years 2008-2010 for Ves-
sels 1 and 2 in the dataset. Plots of pings aggregated over a quarter (or a longer time
period) do not contravene privacy or confidentiality legislation, as long as the vessel
concerned is not named (see Section 12.2.2).

It would not be sufficient to reach conclusions on whole-fleet dynamics from the
analysis of one or two vessels, however. For a whole-fleet analysis (as presented to-
wards the end of Section 14.3), a dataset of all relevant vessels is required: in other
words, those vessels which would be expected to be subject to real-time closure regula-
tions, and for which a change in fishing locations following RTCs would be a possible
outcome.

Vessel subsetting from the full available VMS dataset for 2008-2010 therefore was
therefore carried out according to the following steps:-

1. A list was generated for each year, containing the ID numbers of all vessels
for which VMS data was reported for that year. The resulting three lists were
denoted V08, V09 and V10.

2. A new list was generated, including only those vessels which provided VMS
pings in every year: that is, all vi such that (vi ∈ V08)∧ (vi ∈ V09)∧ (vi ∈ V10) .

3. The vessel list was further refined according to three criteria:-

VMS pings A plot of all VMS pings for 2008-2010 for each vessel was exam-
ined. Vessels were removed if their ping distribution was characteristic of
a pelagic trawler (few pings, scattered along the shelf edge), an inshore
Nephrops or scallops vessel (pings located close to the shore in discrete
areas), or if all pings were too far south or north for the vessel concerned
to be affected by Scottish RTCs.

Species landings compositions Those vessels which landed only scallop, crab
(swimming or edible), lobster, blue whiting, mackerel or herring were
also removed from the dataset. Vessels landing predominantly monkfish,
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megrim or Nephrops were not removed by this criterion, as they would still
have been subject to RTC legislation and could well have fished in RTC
areas.

Gear Consider the gear types listed in Table 12.1. Vessels or fishermen using
certain gears would not be affected by RTCs, and so their movements fol-
lowing the introduction of RTCs cannot be considered to be indicative of a
consequential response. However, it is more difficult definitively to iden-
tify relevant vessels through gear codes alone, as (for example) a demersal
trawler fishing for gadoids and a pelagic trawler targetting mackerel could
both use bottom otter trawls to fish successfully. To illustrate this, VMS
data for the vessels considered in Figure 14.1 (Vessels 1 and 2) all showed
the use of either bottom otter trawls (OTB) or otter twin trawls (OTT). An-
other vessel, which was removed from the analysis, used both bottom otter
trawls (OTB) and midwater otter trawls (OTM) to fish for mackerel, and
so in this case a simple inclusive gear-code criterion would not have been
sufficient on its own. However, some gear codes clearly mark a vessel as
one which would not usually be subject to RTC regulations: examples in-
clude OTM (midwater otter trawls, only used for pelagic fishing), DRB
(boat dredge, for scallops), and FPO (covered pots or creels, used for crab
fishing). Any vessel which fished using these gears, even if only for part of
the study period, was removed from the analysis. The gear codes included
in the final dataset are listed in Table 14.1.

The second of these steps (limiting the dataset to vessels with VMS data for every
quarter in every year) reduced the size of the dataset from 425 vessels to 345. The
first of the three criteria in step 3 (VMS pings) retained 204 (59%) of these, the second
(species landings compositions) 278 (81%), and the third (gear codes) 249 (72%). If
a vessel needs to satisfy all three criteria to be retained, the resultant dataset includes
188 vessels. This represents just 54% of the vessels with VMS data for every year, but
is still a substantial sample of the Scottish whitefish and Nephrops fleets.

Note that the three criteria in step 3 agreed on whether to include or remove a vessel
for 243 cases (70%). The disagreements arose mostly because:-

• Vessels were using appropriate gear and landings appropriate species, but were
fishing too far south or west for RTCs to have any effect; or

• Vessels were fishing in RTC-prone areas, but were using creels to target crab or
Nephrops.
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Restricting the vessels considered in this way would also have been relevant for the
analyses presented in Section 13. At the time of writing of Needle and Catarino (2011)
this was not done due to a lack of extant information on gear types. It is possible that
the conclusions of Section 13 could be biased due to the inclusion of non-relevant ves-
sels, and this could to be addressed in future work. However, all the vessels included
in Needle and Catarino (2011) had been fishing in or near the areas of RTCs during
2008-2010, which would not be characteristic for the vessels removed from the current
analysis, so the likelihood of an incorrect conclusion in Section 13 is slim.

Code Description

GN Gill nets (not specified)
GNS Set gillnets (anchored)
LLS Set longlines
OTB B trawls otter (side/stern not specified)
OTT Twin trawls Otter twin multi trawls
PS Purse seine
PTB B trawls pair trawls (two vessels)
PTM Mid trawls pair trawls (two vessels)
SSC Boat/vessel seines-Scottish seines
TBB B trawls Beam trawls

Table 14.1: Scottish fishing gear and method codes used in VMS data, and in Marine Scotland’s Fish-
eries Information Network (FIN). This list is derived from Table 12.1, but retains only those gear types
which would be expected to be affected by RTC legislation.
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Figure 14.1: All VMS pings (red dots) transmitted by two Scottish fishing vessels during 2008-2010.
Grey lines show bathymetry at 100-m intervals.
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14.2 CLUSTER ANALYSIS OF VMS DATA

In order to determine whether a vessel changes the location of fishing grounds from
year to year, I need first to ascertain where those fishing grounds are. These will not
be consistent across the fleet. Each vessel (by which I mean each skipper) will have
a list of areas that they favour and in which they have fished successfully in the past,
but the locations of these areas will depend on the experience of the skipper, the target
species, the type of vessel being used, the distance to port, and a wide range of other
factors (Hilborn and Ledbetter 1985, Thorlindsson 1994, Russel and Alexander 1996,
Colding et al. 2000). A method is therefore needed for isolating discrete fishing areas,
given detailed information from VMS pings on where the vessel concerned has been
operating.

Categorising spatial information in this way leads quickly to considerations of clus-
ter analysis (Kaufman and Rousseeuw 2005). This is a collection of techniques for
quantitatively grouping spatial data on the basis of their locations (or other features),
and has a long history in marine science (see, for example Nemec and Brinkhurst 1988,
He et al. 1997, Spencer and Collie 1997). I have used cluster analysis previously in
this thesis (Section 13): the following gives further relevant details.

The cluster analysis for this application was carried out in the R programming
language (R Development Core Team 2011, version 2.8.1) using the cluster library
(Maechler et al. 2005, version 1.11.11). This includes many different clustering meth-
ods, following Kaufman and Rousseeuw (2005), but the large number of VMS data
points available from each fishing vessel in this study limits considerably the range
of clustering methods available for this study. To see why this is, consider a set of n

VMS pings pi = (xi,yi), where i = 1,2, . . . ,n. Many cluster methods use as the ba-
sis for clustering a dissimilarity matrix D, which contains measures of the “distance”
between each point and every other point, so that

D =


d(p1, p1) d(p1, p2) d(p1, p3) . . . d(p1, pn)
d(p2, p1) d(p2, p2) d(p2, p3) . . . d(p2, pn)

...
...

... . . . ...
d(pn, p1) d(pi, p2) d(pi, p3) . . . d(pi, pn)

 (14.1)

which is a matrix with n× n elements. The widely-used distance metrics for spatial
clustering include Euclidean, where the distances are the root of sum-of-squared dif-
ferences

d
(

pi, p j
)

=
√

(x2− x1)
2 +(y2− y1)

2, (14.2)
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and Manhattan, where the distances are the sum of the absolute differences

d
(

pi, p j
)

= |x2− x1|+ |y2− y1|. (14.3)

In either case d(pi, p j) = d(p j, pi) and d(pi, pi) = 0, so the matrix in Equation 14.1
can be simplified to the upper triangular form

D =


d(p1, p2) d(p1, p3) . . . d(p1, pn)

d(p2, p3) . . . d(p2, pn)
. . . ...

d(pn, pn)

 (14.4)

which is a matrix with 1
2n(n−1) elements. A typical VMS dataset for a specific vessel

for the years 2008-2010 will contain around 5000 to 10000 records. For example, the
dataset used to produce Figure 14.1 for Vessel 2 contains n = 7220 separate records.
The dissimilarity matrix for the full dataset for that vessel would thus need to contain
1
2n(n− 1) = 26060590 elements, and would require 198.9 Mb of storage space. The
default maximum for R (which is present to prevent problems with the other processes
running on the computer) is around 84 Mb, so the full dissimilarity matrix for this
vessel could not be stored in R. Even if the memory allocation was increased, the
analysis would still run too slowly to be practical.

One possible approach to circumvent this limit would be to resample (without re-
placement) 10% to 20% of the available pings, and to run the cluster analysis on the
basis of this reduced dataset. This would allow a wide range of clustering methods
to be explored, but the pings that have been removed from the analysis cannot readily
be assigned to clusters thereafter with this approach. Trial runs demonstrated that this
approach led to unsatisfactory results.

The cluster library (Maechler et al. 2005) provides a solution to this problem
via the CLARA method (Kaufman and Rousseeuw 2005). This is a subset of the PAM
method (see below) which initially subsamples the ping dataset as described above (the
size of the sampled sets can be set by the user). Once clustering has been carried out
on the subset, following the PAM method, the remaining pings are assigned to clusters
by computing distances to the cluster medoids (that is, the member of each cluster with
the minimum average dissimilarity or distance to all the other members of the cluster).
Medoids are conceptually similar to the mean or median of the cluster elements, except
that a medoid is itself always a member of the cluster and is therefore more akin to the
mode of a distribution.
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The PAM cluster method (“partitioning around medoids”: Kaufman and Rousseeuw
2005), on which CLARA is based, works as follows. Consider the dissimilarity matrix
D (Equation 14.4), generated using either the Euclidean (Equation 14.2) or Manhattan
(Equation 14.2) metrics from VMS data pi = (xi,yi) for i = 1,2, . . . ,n. I set the num-
ber of clusters k that are required, although silhouette widths (see below) can be used
subsequently to determine the optimum number of clusters. The method then finds
the set of k medoids (also known in the clustering literature as centrotypes or simply
representative objects) that minimise the average dissimilarity between each medoid
and every member of its dependent cluster. A point becomes a member of a cluster if
it is closer to that cluster’s medoid than the medoid of any other cluster.

The algorithm proceeds in two steps. The first, known as the “build” step, seeks
to designate an initial list of k medoids. The first such medoid is defined as the point
for which the dissimilarity with all other points is minimised. The second step is
to iteratively associate all points with appropriate medoids: details can be found in
Kaufman and Rousseeuw (2005).

The standard fit diagnostic for the PAM method is the silhouette-width plot (Kaufman
and Rousseeuw 2005), which is constructed as follows. For a given number of clusters
k, every point i in the dataset has a silhouette width si which is given by

si =
bi−ai

max{ai,bi}
. (14.5)

Here ai is defined as the average dissimilarity of i to all other points in the cluster to
which it has been assigned (which I’ll call A). If di,C is the average dissimilarity of i to
all points in clusters other than A (denoted here by C), then

bi = min
C 6=A

{di,C}. (14.6)

That is, the minimum of the dissimilarities (averaged over clusters) between point i

and all points in clusters other than A. si can be thought of as measuring the average
dissimilarity (or, for our purposes, distance) between point i and the nearest cluster
to which i does not belong. Points for which si is large (close to 1.0) are very well-
clustered, an si close to zero indicates that the point lies between two clusters, and a
negative si suggests the point has been placed in the wrong cluster. Figure 14.2 illus-
trates silhouette widths for k = 4 and k = 8 when applied to the VMS data for Vessel 2
depicted in Figure 14.1. The average silhouette width for k = 4 for that vessel is 0.62,
compared with 0.54 for k = 8, which suggests that the points are better characterised
by four clusters than by eight (there are also six points when k = 8 for which si < 0,
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implying that they are probably in the wrong cluster).

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

k = 4

Average silhouette width :  0.62

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

k = 8

Average silhouette width :  0.54

Figure 14.2: Silhouette widths si from a PAM cluster analysis applied to the VMS data for Vessel 2
presented in Figure 14.1, assuming k = 4 clusters (left) and k = 8 clusters (right). A value of si close to
1.0 indicates that point i is characterised well by its cluster.

The CLARA algorithm is an example of a clustering method that based on the
minimisation of sums or averages of dissimilarities, and is therefore referred to as an
L1 method. The alternative L2 family of methods are based on sums-of-squares of
dissimilarities. In general, L1 methods are more computationally intensive but have
the advantage of being more robust, in the sense of being less susceptible to outliers
(Kaufman and Rousseeuw 2005). Many clustering methods exist, however, and the
choice between them can be difficult to justify. For the purposes of VMS analysis,
CLARA clustering has a tendency to generate clusters that appear to have disparate
outliers, or which subdivide locations that a visual inspection would suggest should
remain undivided. An example is the clustering (with k = 17) in Figure 14.8 of the
VMS data for Vessel 2 first presented in Figure 14.1. Here several of the clusters lie
where I would expect: cluster 13 at Rockall, for example, or cluster 10 to the north-east
of Shetland. However, for that vessel, the group of points south of the Færoes, which
is visually quite coherent in Figure 14.1, has been divided between three clusters on
the basis of medoid distance. Another example is the group of points off Fraserburgh,
which appears in Figure 14.8 grouped with points off Kinlochbervie. In many of these
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cases it is the eye that is deceived. Plots of VMS pings overlap, and it is hard to
determine visually the true density of points on which the clustering method is based.
A linear group of points, such as that along the continental shelf edge (Figures 14.1
and 14.8), will also tend to be split up on apparently arbitrary lines.

While the clusters produced by the CLARA method may not always conform to
what a visual inspection would predict, they do have a sound statistical basis and the
appropriateness of different values of k can readily be determined using silhouette
diagnostics. However, in one key aspect the CLARA method can perform poorly. The
purpose for our cluster analysis is to determine (as far as possible) discrete fishing
grounds for a particular vessel: that is, what the skipper of that vessel would consider
to be fishing grounds. Using a strictly statistical basis, CLARA will often generate
clusters which (while best-fitting in terms of dissimilarities) are much too large to be
thought of as discrete fishing grounds. A typical split is between the North Sea and the
West of Scotland, and this level of aggregation is far too coarse to mean anything when
trying to understand skippers’ fishing-area choices. For this reason, an additional stage
in the process was added, as follows.

A CLARA analysis was run for all k = 2, . . . ,50, and the average silhouette width
s̄k recorded each time. According to the standard CLARA methodology, the cluster
number kmax which maximises s̄k should be used to identify the best-fitting cluster.
For Vessel 1, Figure 14.3 (upper plot) shows that kmax = 7 (note that I do not consider
k < 5, on the assumption that every fishing vessel will have at least five discrete fishing
areas). However, this level of clustering seems too crude: Figure 14.4 (upper plot)
shows a large cluster which includes both grounds east of Orkney and south-west of
the Færoes, and it is difficult to conclude that a skipper would consider that those areas
comprised a single contiguous fishing location.

Another way to highlight a useful clustering level is to determine whether there is a
value knnd such that both s̄knnd−1 and s̄knnd+1 are much less than s̄knnd: in other words, a
clustering level that improves s̄ considerably when compared with immediately neigh-
bouring clustering levels. This is an important measure for many of the analyses in
this study, since values of s̄k are often very similar for wide ranges of k and with knnd I
can isolate those values of k that actually make a difference. I can determine this using
neighbour difference, defined as

δk = (s̄k− s̄k−1)− (s̄k+1− s̄k) . (14.7)

Then knnd is that value of k which maximises δk. Values of δk for Vessel 1 are shown
in Figure 14.3 (middle plot), from which knnd = 47.
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The final step is to combine these estimates, as I want to use a value of k that
produces s̄k that is both high in absolute terms, and high in relation to its immediate
k-neighbours. To achieve this, both s̄k and δk are rescaled to lie between 0 and 1, using:

s̄∗k =
s̄k−mink{s̄k}

maxk{s̄k}−mink{s̄k}
, (14.8)

δ
∗
k =

δk−mink{δk}
maxk{δk}−mink{δk}.

(14.9)

For each k, I calculate the sum of these two rescaled quantities,

ρk = s̄∗k +δ
∗
k . (14.10)

Then the required clustering level ksum is given by the k which maximises ρk. For
vessel 1, Figure 14.3 (lower plot) shows that ksum = 47, although there is very little
difference between ρ7 and ρ47 (recall that kmax = 7).

Figure 14.4 compares the estimated clusters for k = kmax = 7 (upper plot) and
k = ksum = 47 (lower plot). While 47 discrete fishing areas is a large number, the scale
at which skippers operate is quite fine and trips to location 10 miles apart can often be
thought as going to different locations. This is particularly true for vessels targeting
species such as Nephrops which are very patchily distributed (ICES 2011c). Hence the
fine distinction between areas suggested by the ksum clustering is not difficult to justify,
and certainly appears more useful for this vessel than the competing kmax clustering.
Full CLARA diagnostics for both of these clustering runs are given in Figures 14.5
and 14.6

For comparison, I show the results of the same methodology applied to the VMS
pings from Vessel 2 (plotted for 2008-2010 in Figure 14.1, lower plot). In this case,
Figure 14.7 indicates that both kmax and knnd should be equal to 17, and therefore that
ksum = 17 as well. In this case, using 17 clusters results in both the highest absolute
value of s̄k, and the highest value relative to immediate k-neighbours (assuming k is
not less than 5). I have already commented on the clusters in Figure 14.8, although
confidence in the appropriateness of this value of k must be increased by the fact that
two different measures of cluster quality suggest k = 17. Finally, the silhouette-width
plot in Figure 14.9 confirms that a block of points are probably not in the correct
cluster: these are the points off Fraserburgh that were discussed above.

In summary, I have developed a method for determining possible discrete fishing
grounds for any given vessel, on the basis of VMS fishing points from 2008-2010.
The method uses a development of the CLARA cluster algorithm of Kaufman and
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Figure 14.3: Determination of number of clusters k for Vessel 1. Upper plot: average silhouette
width s̄k for k = 2, . . . ,50. Blue lines give kmax and maxk{s̄k}. Middle plot: neighbour difference
δk = (s̄k− s̄k−1)− (s̄k+1− s̄k) . Blue lines give knnd and maxk{δk}. Lower plot: ρk, the scaled sum
of s̄k and δk. Blue lines give ksum and maxk{ρk}. In all plots the vertical red line shows the minimum k
considered.

Rousseeuw (2005) to account for the relatively fine scale on which fishermen make
decisions about fishing locations.
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Figure 14.4: All VMS pings transmitted for Vessel 1 during 2008-2010, divided into k = kmax = 7 (top)
and k = ksum = 47 (bottom) clusters using the CLARA method. All points within a cluster are plotted
in the same colour, and the cluster is bound by a minimum convex polygon of the same colour. Circled
numbers show the ID number of each cluster at the cluster medoid. Grey lines show bathymetry at
100-m intervals.
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These two components explain 100 % of the point variability.
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Figure 14.5: CLARA method diagnostics for cluster analysis of VMS data from Vessel 1, assuming
k = kmax = 7. Upper left: VMS pings for Vessel 1 (2008-10), coloured according to cluster membership.
Upper right: the clusplot for the analysis (see Section 13.2 for a description). Symbols are the VMS
points rescaled to lie on principal component axes. Each ellipse encloses all the rescaled observations
from a given cluster, while lines are intended to indicate distance between clusters. Lower left: silhouette
widths (see caption for Figure 14.2 for details). Lower right: scaled sums ρk (see caption for Figure 14.3
for details.)
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These two components explain 100 % of the point variability.
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Figure 14.6: CLARA method diagnostics for cluster analysis of VMS data from Vessel 1, assuming k =
ksum = 47. Upper left: VMS pings for Vessel 1 (2008-10), coloured according to cluster membership.
Upper right: the clusplot for the analysis (see Section 13.2 for a description). Symbols are the VMS
points rescaled to lie on principal component axes. Each ellipse encloses all the rescaled observations
from a given cluster, while lines are intended to indicate distance between clusters. Lower left: silhouette
widths (see caption for Figure 14.2 for details). Lower right: scaled sums ρk (see caption for Figure 14.3
for details.)
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Figure 14.8: All VMS pings transmitted for Vessel 2 during 2008-2010, divided into k = kmax = ksum =
17 clusters using the CLARA method. All points within a cluster are plotted in the same colour, and
the cluster is bound by a minimum convex polygon of the same colour. Circled numbers show the ID
number of each cluster at the cluster medoid. Grey lines show bathymetry at 100-m intervals.
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These two components explain 100 % of the point variability.
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Figure 14.9: CLARA method diagnostics for cluster analysis of VMS data from Vessel 2, assuming
k = kmax = ksum = 17. Upper left: VMS pings for Vessel 2 (2008-10), coloured according to cluster
membership. Upper right: the clusplot for the analysis (see Section 13.2 for a description). Symbols
are the VMS points rescaled to lie on principal component axes. Each ellipse encloses all the rescaled
observations from a given cluster, while lines are intended to indicate distance between clusters. Lower
left: silhouette widths (see caption for Figure 14.2 for details). Lower right: scaled sums ρk (see caption
for Figure 14.3 for details.)
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14.3 CHANGES IN FISHING LOCATIONS OVER TIME

Having determined the fishing locations used by a given vessel during 2008-2010,
the next question is whether the frequency with which these locations have been used
changed during those years. I note first that fishing areas for the majority of vessels are
very seasonal. The locations used traditionally during the spring are usually quite dif-
ferent to those used in the summer, for example, due to factors like improved weather,
changes in markets through the year, and availability (or otherwise) of quota. Fig-
ure 14.10 demonstrates this succinctly for Vessel 1, which (during 2008-2010) fished
at Rockall in the first half of the year only, and fished the Norwegian Deeps (eastern
North Sea, towards the Skagerrak) in the second half of the year only. Another good
example in the past was the Scottish Rockall haddock fishery (Newton et al. 2008).
Historically, this was only ever conducted in the summer months when the weather
could be expected to be reasonable, although this has changed recently and the Rock-
all fishery now takes place throughout the year. Figure 14.11 shows this for Vessel 2,
which fished at Rockall at some point during all four quarters over 2008-2010. When
considering possible changes in fishing locations between years, it is therefore impor-
tant to ensure comparison between parts of the year which would normally be expected
to be similar. In this study, I will compare the first quarter of 2008 with the first quarter
of 2009 (and so on). Analysis on a monthly basis would also be possible, although the
likelihood of having very small sample sizes or a null dataset is higher when consider-
ing months than quarters.

The next step is to evaluate whether the distribution of VMS pings between fishing
areas changes significantly within a quarter from year to year. These distributions
are summarised using the histograms in Figure 14.12 for Vessel 1, and Figure 14.13
for Vessel 2. The left-to-right ordering of the fishing-area ping count data in these
histograms is fixed for each vessel so that the fishing area with the most pings over the
full 2008-2010 time-period is plotted on the left of each histogram, down to the fishing
area with the least pings on the right of each histogram. If the pattern of fishing effort
within a quarter did not change from year to year, then the histograms in each column
of Figures 14.12 and 14.13 would be the same. That they are not suggests changes in
fishing patterns.

I have explored the question of whether these fishing-pattern changes are signifi-

cant or not using three metrics, as follows. Consider the example in Figure 14.14, in
which I compare the VMS data in Q1 from 2008 and 2009 for Vessel 1. The first met-
ric given here is the Kolmogorov-Smirnov test (Kolmogorov 1933, Smirnov 1939b,
Smirnov 1939a), which I have implemented in R using the algorithm suggested by
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Figure 14.10: VMS points for Vessel 1 during Q1-Q4 and 2008-2010, coloured using the same cluster-
membership scheme as in Figure 14.6. Grey lines show bathymetry at 100-m intervals.

Sokal and Rohlf (1995, pages 434–439). Consider two histograms of the same length
l, so that

H = (h1,h2, . . . ,hl) , (14.11)

G = (g1,g2, . . . ,gl) , (14.12)

where hi and gi are the counts of VMS pings in fishing area i in Q1 for 2008 and 2009,
respectively. Form the cumulative sum of each of these histograms,

H∗ = (h∗1,h
∗
2, . . . ,h

∗
l ) , (14.13)

G∗ = (g∗1,g
∗
2, . . . ,g

∗
l ) , (14.14)

where

h∗i =
i

∑
j=1

h j, (14.15)

g∗i =
i

∑
j=1

g j. (14.16)
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Figure 14.11: VMS points for Vessel 2 during Q1-Q4 and 2008-2010, coloured using the same cluster-
membership scheme as in Figure 14.9. Grey lines show bathymetry at 100-m intervals.

If nH and nG are the number of pings in H and G, respectively, then the cumulative
frequency vectors for each year are

H f =
(

h f
1 ,h f

2 , . . . ,h f
l

)
, (14.17)

G f =
(

g f
1 ,g f

2 , . . . ,g f
l

)
, (14.18)

where

h f
i = h∗i /nH , (14.19)

g f
i = g∗i /nG. (14.20)

The Kolmogorov-Smirnov test statistic is then

Dks = max
i

{
|h f

i −g f
i |
}

: (14.21)

that is, the maximum of the absolute differences between the cumulative histograms.
The corresponding two-tailed critical value for significance difference at the α level
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Figure 14.12: Histograms of VMS-ping counts per cluster for Vessel 1, separately for each year (rows)
and quarter (columns). Bar colours follow those used for the equivalent clusters in Figures 14.6. Clusters
are ordered consistently according to VMS-ping counts over the full 2008-2010 time period.

(Sokal and Rohlf 1995) is then

Dks,a = Ka

√
(nH +nG)

nHnG
(14.22)

where

Ka =
√

0.5
[
− log

(
α

2

)]
. (14.23)

Figure 14.14 shows the cumulative histograms for Vessel 1, along with the Kolmogorov-
Smirnov test results. For this comparison, Dks = 0.34 which is greater than Dks,a =
0.06. This suggests that there is a significant difference between years.

However, repeating this comparison for different years, quarters and vessels, I
found that the Kolmogorov-Smirnov test statistic nearly always suggests a significant
difference, even when histograms appear quite similar. To understand why, I applied
a randomisation approach (Fisher 1936, Good 1994, and references in Haddon 2001).
For this, I consider the VMS pings on the level of the fishing trip. If fishing-location
choices were the same in Q1 2008 and Q1 2009 (say), then it would be possible to
swap a 2008 fishing trip with a 2009 fishing trip and produce no difference in the
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Figure 14.13: Histograms of VMS-ping counts per cluster for Vessel 2, separately for each year (rows)
and quarter (columns). Bar colours follow those used for the equivalent clusters in Figures 14.9. Clusters
are ordered consistently according to VMS-ping counts over the full 2008-2010 time period.

VMS-ping cluster histograms for the two years (as they would be indistinguishable).
In fact, it would be possible to permute fully the trips for the two years and reach the
same conclusion.

To implement this for the example in Figure 14.14, I categorised all the VMS pings
for both years by trip. I then generated a list of trip ID numbers, of length nH + nG,
and randomly permuted the order of this list. The first nH permuted trips were then as-
signed to 2008, the remaining trips to 2009, and the Kolmogorov-Smirnov test statistic
was calculated as above. I repeated this process 500 times, to produce a distribution
of Kolmogorov-Smirnov test statistics under the hypothesis that the years were not

different.
This distribution is given in Figure 14.14 (third column, lower row). According

to the randomisation approach, if the histograms were significantly different at the
α = 5% level, then the point estimate Dks would be greater than the 95th percentile
point of the distribution Dks,95%. In this case, Dks = 0.34 is less than Dks,95% = 0.40,
implying that the histograms are not significantly different at the 5% level. It seems
that in this case, the Kolmogorov-Smirnov significant level Dks,a is too low, as nearly
all of the D distribution lies above it. This is generally the case (see Figures 14.14
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to 14.17) and would appear to be the reason why the Kolmogorov-Smirnov test nearly
always finds a significant difference between these histograms. It is not clear yet why

this should be, but I hypothesise that the Normal distributional assumption of the test
is not being met by these data.

Aside from the statistical properties of the Kolmogorov-Smirnov test, there is also
the question of whether the difference metric being used is the correct one. The metric
is that given in Equation 14.21, and uses the maximum absolute difference between
the cumulative histograms. However, this really only measures the difference in ping
counts for one cluster (the one with the maximum difference): all the other clusters
could be identical, and the metric in Equation 14.21 would still (possibly even with
randomisation) lead to a false conclusion of significant differences.

When viewing VMS ping plots, the eye is very much drawn to differences in out-
lying clusters, rather than what might constitute the bulk of the pings. Thus, if a vessel
had two trips to Rockall one year and not the next, both the eye and the Kolmogorov-
Smirnov test might conclude that the years were very different, whereas in fact most of
the fishing areas could have remained constant. Care therefore needs to be taken over
the distance metric used.

I have examined two alternatives. The first, which I call the presence/absence
(PA) function, operates in much the same way, but replaces the difference metric in
Equation 14.21 with

Dpa =
1
nc

nc

∑
i=1

dpa,i (14.24)

where nc is the number of clusters, and

dpa,i =

{
1,

{
h f

i = 0
}
⊕
{

g f
i = 0

}
0, otherwise

(14.25)

Here ⊕ is the exclusive-OR operator. In other words, Dpa is proportion of clusters
which have zero pings in one year and non-zero pings in the next year (or vice versa).
There is no distributional significance test for this test statistic, but I can apply the
same randomisation test as above to determine whether the histograms are significantly
different on the basis of a presence/absence test.

The Dpa test when comparing 2008 and 2009 ping distributions for Vessel 1 in Q1 is
shown in the fourth column (top row) of Figure 14.14. Here the conclusion is the same
as for the randomisation-test version of Dks: namely, there is no significant difference.
However, Figures 14.15 to 14.17 demonstrate the drawback of Dpa: it is derived from
a count, and so only ever takes one of the nc possible values between 0 and 1 during
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randomisation. Hence the distribution of Dpa is not continuous, and it often happens
(as in Figures 14.16 to 14.17) that the point estimate of Dpa is exactly equal to the 95th
distribution percentile Dpa,95%. This is not desirable as it limits interpretability.

For this reason, I have developed to a third distance-metric option and will use it
as the basis for analysis for the rest of this Chapter. This metric measures the mean
absolute difference (AD) between the cumulative histograms,

Dad =
1
nc

nc

∑
i=0

{
|h f

i −g f
i |
}

. (14.26)

This accounts for differences in all clusters (unlike Dks), and produces continuous
distributions following randomisation (unlike Dpa). Figures 14.14 to 14.17 show that,
according to Dad, the ping cluster-count histograms for Vessel 1 were significantly
different between 2008 and 2009 for Q2 and Q3, but not for Q1 or Q4. The results
for the first three quarters concur with what would be concluded following a visual
inspection of the pings. The fishing areas used in Q1 do look very similar, while quite
clear differences exist for Q2 and Q3. A simple confirmation of the visual conclusion
does not always arise, however: the pings for Q4 (Figure 14.17) look quite different,
but the Dad test suggests no significant difference. In this case, the eye is drawn to the
new areas to the north and west used in 2009 but not 2008: however, the bulk of the
pings are in the central and eastern North Sea, and these areas do not change much
between those two years.

Having developed the method, I applied it to all 188 relevant vessels in the dataset.
Out of 1504 histogram comparisons (188 vessels × 4 quarters × 2 “years”; 2008-
2009 and 2009-2010), the AD method indicated significantly different VMS-ping dis-
tributions on 452 occasions (that is, 30.1%). Hence, almost one-third of comparisons
showed significant differences. The proportions differ between quarters and between
years: Table 14.2 demonstrates that fishing-area changes did not differ much between
years, but that vessels were much more likely to change fishing locations in the second
half of each year (35% of comparisons on average) than the first (25%). This is not
unexpected, since fish quotas for many vessels will only start to become restrictive in
the second half of the year. This could lead to the observed changes in fishing locations
if skippers are trying to avoid aggregations of a species for which they have little or no
quota remaining.

It is also instructive to consider whether there is any discernable difference be-
tween vessels in terms of changes in fishing distribution between years. Table 14.3
summarises the results of the AD analysis by vessel. The number of significant dif-
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Figure 14.14: Histogram analysis for Vessel 1, comparing Q1 VMS data for 2008 and 2009. First
column: VMS points for Vessel 1 during Q1 in 2008 (upper) and 2009 (lower), coloured using the
same cluster-membership scheme as in Figure 14.6. Second column: histograms of VMS-pin counts
per cluster, during Q1 in 2008 (upper) and 2009 (lower) (coloured as for the first column). Third col-
umn (upper): cumulative histograms for Q1 2008 (black) and Q1 2009 (green). D and Da are the
Kolmogorov-Smirnov test statistic and significance level, respectively. Third column (lower): distribu-
tion of resampled Kolmogorov-Smirnov test statistics (see text for details). Lines give the KS significant
value Da (green), the KS test statistic D (red), and the upper 95th percentile of the distribution (blue).
Legends indicate whether the test is significant, and the number of trips in 2008 and 2009 respectively.
Fourth column: distributions of resampled PA (upper) and AD (lower) test statistics (see text for details).

ferences ranged from 0 (21 vessels, or 11%) to 7 (3 vessels, or 2%). Of the vessels
which showed no significant changes, 12 (57%) were vessels targetting Nephrops in
the Fladen, Moray Firth or South Minch grounds. The vessels with the most changes
are not readily classifiable, and include a mixed-species trawler fishing along the shelf
edge, a Nephrops vessel covering a wide range of (mostly western) inshore grounds,
and a mixed-species trawler operating around Shetland. There may of course be many
reasons why a vessel would or would not change fishing area for a quarter from year
to year (and I will consider the effects of RTCs in Section 14.5), but it is interesting
to note that more than half of the vessels which did not change could be classified as
Nephrops vessels fishing on the principal Scottish Nephrops grounds, which may be
because they are not directly targetting cod.
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VMS pings: 2008 q2
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Figure 14.15: Histogram analysis for Vessel 1, comparing Q2 VMS data for 2008 and 2009. See caption
for Figure 14.14 for details.
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Figure 14.16: Histogram analysis for Vessel 1, comparing Q3 VMS data for 2008 and 2009. See caption
for Figure 14.14 for details.
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Figure 14.17: Histogram analysis for Vessel 1, comparing Q4 VMS data for 2008 and 2009. See caption
for Figure 14.14 for details.

Quarter
Year 1 2 3 4 Marginal totals

2008-2009 57 (30%) 38 (20%) 66 (35%) 73 (39%) 234 (31%)
2009-2010 44 (23%) 48 (26%) 69 (37%) 57 (30%) 218 (29%)

Marginal totals 101 (27%) 86 (23%) 135 (36%) 130 (35%)

Table 14.2: Numbers of vessels with significant differences between VMS-ping distributions, as mea-
sured by the AD method, categorised by year (2008-2009, 2009-2010) and quarter. The total number of
comparisons for each combination of year and quarter was 188.
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V SD V SD V SD V SD

1 4 48 2 95 2 142 6
2 2 49 3 96 4 143 2
3 1 50 2 97 2 144 4
4 1 51 6 98 1 145 4
5 1 52 1 99 2 146 5
6 1 53 4 100 1 147 0
7 2 54 5 101 3 148 4
8 6 55 2 102 2 149 1
9 2 56 3 103 3 150 3

10 1 57 1 104 0 151 0
11 1 58 5 105 0 152 4
12 0 59 2 106 4 153 2
13 4 60 2 107 2 154 2
14 4 61 2 108 6 155 5
15 5 62 2 109 1 156 4
16 4 63 2 110 1 157 1
17 2 64 2 111 1 158 0
18 3 65 2 112 6 159 1
19 2 66 3 113 3 160 2
20 0 67 6 114 4 161 3
21 3 68 5 115 2 162 0
22 1 69 2 116 1 163 5
23 3 70 1 117 5 164 2
24 1 71 3 118 2 165 2
25 3 72 2 119 1 166 7
26 3 73 5 120 0 167 1
27 2 74 1 121 7 168 1
28 1 75 1 122 5 169 1
29 1 76 1 123 0 170 0
30 7 77 5 124 1 171 2
31 2 78 2 125 5 172 3
32 2 79 0 126 3 173 2
33 5 80 0 127 1 174 2
34 6 81 1 128 1 175 3
35 0 82 0 129 1 176 5
36 4 83 2 130 2 177 3
37 1 84 1 131 3 178 0
38 1 85 0 132 4 179 1
39 5 86 0 133 3 180 1
40 4 87 3 134 3 181 1
41 1 88 4 135 5 182 3
42 1 89 1 136 5 183 1
43 3 90 1 137 4 184 4
44 4 91 6 138 0 185 3
45 2 92 0 139 3 186 4
46 0 93 1 140 1 187 2
47 2 94 1 141 3 188 1

Table 14.3: Significant differences between VMS-ping distributions, as measured by the AD method,
categorised by vessel. V = vessel, SD = number of significant differences (out of a possible total of
eight: 2 years × 4 quarters).
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14.4 CHANGES IN RTC DENSITY PER FISHING AREA OVER TIME

I have demonstrated a method for determining whether a vessel changes its distribu-
tion of fishing areas for a given quarter from one year to the next, using VMS data
from 2008-2010 for a 188-vessel subset of the Scottish fishing fleet. In this Section,
I consider whether such changes can be linked (if only in a correlational sense) to the
implementation of RTCs in those same fishing areas.

Figure 14.18 summarises the RTCs imposed by the Scottish Government during
years 2008-2010, and for each quarter thereof. There were very few RTCs in 2008,
but the pattern for 2009 and 2010 was quite consistent with more RTCs in the second
and third quarters than the first or fourth. The distribution of RTCs is similar to the
cod distribution generated in Section 11.2 (see, for example, Figure 11.9). Finally,
the RTCs generally increase in area for the third and fourth quarters of 2010, follow-
ing an increase in the permitted maximum from 50 to 225 square nautical miles (see
page 141).
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Figure 14.18: Scottish real-time closures (RTCs) for quarters Q1-Q4, during years 2008-2010. The
RTCs are marked as green polygons, overlaid with a green symbol that marks the centroid of each RTC.
Seasonal and other more permanent closures are marked by blue polygons. Grey lines show bathymetry
at 100-m intervals.

Given this distribution of RTCs, I can now count how many RTCs fall within the
boundaries of the fishing areas for each vessel (as determined by the cluster-analysis
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approach described in Section 14.2). Figures 14.19 to 14.21 summarise these counts
for Vessels 1 and 2 from the dataset of relevant Scottish fishing vessels. In this analysis,
I summarise each RTC by its geographic midpoint, and count the number of such
midpoints that occur in each fishing area for that vessel during the year and quarter
concerned. For RTCs that span the change from one quarter to the next, I have used
only the first such quarter by assigning each midpoint to the first date of the RTC
duration. These simplifications facilitate the analysis, although reducing each RTC to
its midpoint may introduce some bias in the second half of 2010 when RTCs became
considerably larger. It could be argued that an RTC of 225 square nautical miles would
be more likely to induce changes in fishing area than one of 50 square nautical miles,
but I have not explored this possibility here. For both Vessels 1 and 2, the presence of
RTCs in their fishing areas increases substantially from 2008 to 2010.

As before, I generated these counts for all 188 relevant vessels in the Scottish
dataset. Results are given in Table 14.4. In all cases, the number of RTCs in fishing
areas increased or (rarely) stayed the same from 2008 to 2009, while this occurred
from 2009 to 2010 for 181 vessels (96.3%). While this is to be expected, given the
rapid increase in the number of RTCs from 2008 onwards, the fact that RTC numbers
increased in the fishing areas of nearly all relevant vessels suggests that relating fishing-
location changes to increases in local RTC numbers may have some validity. I explore
this possibility in Section 14.5.
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Figure 14.19: Number of RTC midpoints in each cluster of Vessels 1 (upper four plots) and 2 (lower four
plots) during 2008. The RTCs are marked as green polygons, overlaid with a green symbol that marks
the centroid of each RTC. Seasonal and other more permanent closures are marked by blue polygons.
VMS points are coloured using the same cluster-membership scheme as in Figures 14.6 and 14.9. Grey
lines show bathymetry at 100-m intervals. The legend (top left) shows the counts of RTC medians in
each cluster (for non-zero counts only).
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Figure 14.20: Number of RTC midpoints in each cluster of Vessels 1 (upper four plots) and 2 (lower
four plots) during 2009. See caption for Figure 14.19 for details.
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Figure 14.21: Number of RTCs medians in each cluster of Vessels 1 (upper four plots) and 2 (lower four
plots) during 2010. See caption for Figure 14.19 for details.
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V 08 09 10 V 08 09 10 V 08 09 10 V 08 09 10

1 10 103 121 48 5 24 47 95 0 0 10 142 11 87 112
2 11 51 70 49 7 65 91 96 8 31 57 143 1 8 20
3 9 32 31 50 12 56 90 97 1 3 19 144 2 12 37
4 9 45 53 51 0 1 2 98 0 0 10 145 5 18 31
5 12 92 120 52 7 67 67 99 0 4 3 146 0 0 1
6 13 85 111 53 12 97 120 100 0 0 11 147 0 0 8
7 8 36 48 54 7 45 71 101 0 0 8 148 0 1 7
8 11 103 123 55 8 36 67 102 0 2 12 149 0 2 15
9 4 13 42 56 0 0 1 103 0 2 3 150 0 0 10

10 14 113 131 57 1 5 10 104 0 0 10 151 0 0 7
11 4 34 73 58 6 43 63 105 0 1 10 152 1 11 23
12 6 92 109 59 4 38 54 106 6 17 37 153 2 4 35
13 9 43 48 60 9 42 79 107 4 19 39 154 7 26 52
14 4 19 22 61 10 98 114 108 0 2 6 155 7 27 41
15 6 42 69 62 12 109 129 109 1 14 14 156 0 1 3
16 9 86 110 63 12 106 114 110 0 0 7 157 0 0 6
17 6 44 66 64 10 48 72 111 4 16 29 158 0 8 0
18 6 31 65 65 4 30 44 112 1 2 16 159 1 13 14
19 6 19 25 66 5 47 58 113 3 18 24 160 8 33 51
20 5 73 79 67 2 19 26 114 0 0 4 161 5 37 64
21 8 90 113 68 12 58 84 115 0 1 6 162 7 31 39
22 1 8 35 69 6 23 55 116 0 0 9 163 8 27 54
23 7 34 32 70 5 41 50 117 8 53 84 164 3 12 27
24 11 53 76 71 5 35 36 118 3 7 19 165 6 31 62
25 8 94 106 72 0 0 0 119 0 2 16 166 0 5 11
26 10 79 93 73 8 87 111 120 0 2 16 167 8 66 88
27 2 5 30 74 6 32 40 121 0 1 2 168 4 37 44
28 0 0 10 75 10 49 63 122 8 43 59 169 6 73 74
29 5 20 48 76 2 17 42 123 3 6 20 170 9 36 51
30 10 38 45 77 6 20 42 124 0 0 9 171 6 62 80
31 9 87 108 78 0 1 9 125 7 73 96 172 15 125 157
32 12 60 83 79 1 8 15 126 1 5 24 173 14 121 147
33 8 63 81 80 0 0 9 127 8 66 88 174 9 40 38
34 11 31 55 81 0 0 10 128 2 14 33 175 5 19 25
35 9 72 85 82 0 0 8 129 0 2 13 176 5 22 34
36 9 41 62 83 0 2 7 130 6 19 42 177 0 2 13
37 4 18 38 84 0 0 2 131 13 53 75 178 1 6 2
38 14 133 143 85 0 0 11 132 9 40 68 179 5 22 51
39 8 75 95 86 0 0 13 133 0 3 15 180 0 0 1
40 6 44 50 87 2 6 20 134 7 28 46 181 0 2 11
41 7 51 58 88 0 0 2 135 0 2 10 182 2 3 16
42 13 116 128 89 0 0 3 136 7 25 44 183 9 96 108
43 7 31 43 90 3 6 17 137 7 20 46 184 0 0 3
44 4 32 44 91 1 2 14 138 0 2 16 185 8 54 65
45 7 31 34 92 0 7 18 139 5 12 10 186 4 14 36
46 13 114 120 93 0 0 0 140 0 0 7 187 2 5 21
47 10 50 57 94 4 10 24 141 5 15 39 188 1 6 19

Table 14.4: Counts of RTC centroids in the fishing areas of each relevant vessel (V) for 2008–2010.
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14.5 RELATING FISHING LOCATION CHANGES TO RTC DENSITY

The final step in this analysis is to determine whether there is a relationship between
changes in fishing areas used over time, and changes in the density of RTCs in those
areas. Although I will carry out this study using the fleet as a whole, the component
parts of the analysis are built up from data on individual vessels, as follows.

14.5.1 Individual vessels

Consider Vessel i from the dataset of I = 188 relevant vessels. The cluster analysis
presented in Section 14.2 generates estimates of ki distinct fishing areas for Vessel i,
indexed by n = (n1,n2, . . . ,nki) . For each fishing area n j, quarter (q ∈ {1,2,3,4}) and
year comparison (yc∈ {2008−2009,2009−2010}), Section 14.3 provides a measure
of the difference between VMS ping counts from one year to the next, given by

dv
i, j,q,yc = vi, j,q,y+1− vi, j,q,y, (14.27)

where vi, j,q,y is the VMS ping count for Vessel i, fishing area j, and quarter q, and y =
2008 or 2009 as required. The method presented in Section 14.4 gives a corresponding
measure of the difference between the RTC counts

dr
i, j,q,yc = ri, j,q,y+1− ri, j,q,y, (14.28)

where ri, j,q,y is the corresponding RTC count. These could be compared directly,
through regression or contingency-table analyses, but I observe that for a given vessel
i, quarter q and year comparison yc, the AD method (Section 14.3) indicates whether
the ping distributions across all fishing areas n are significantly different from one
year to the next. Therefore I also use the AD-method indication to strip out all those(

dv
i, j,q,yc,d

r
i, j,q,yc

)
points for which ping distributions are not significantly different.

The first approach I tried was regression analysis, using count data from vessels
individually. Figures 14.22 to 14.25 illustrate results for the first two vessels in the
relevant dataset, and also indicate the principal drawback with this approach. When
considering a single vessel, the AD-method histogram comparison may not be signif-
icant (so that no valid conclusions can be drawn), or there may be too many instances
of dv

i, j,q,yc = 0 or dr
i, j,q,yc = 0 (or both) for a regression analysis to be successful. Fig-

ures 14.22 to 14.25 demonstrate this well, and show that no clear inference about the
relationship between RTC count difference and ping count difference can be made
using regression analysis at the scale of the single vessel.

206



−1 0 1 2 3

−
50

0
50

10
0

●
●

●

●

●●
●

●

●

●
●

● ●

●

●●
●
●

●

●
●●

●
●

●

●

●

●

● ●●●●●●● ●●

●

●

●

●

●
●●●●

●

●

Sig
Not sig

Vessel 1 Q1 0809

−2 −1 0 1 2 3 4

−
50

0
50

10
0

●
●●

●

●●●

●

●

●

●

●

●

●

●
●

●
● ●

●

●●●

●
●

●

●

●

●●●
●●●●●●●●●●●

●

● ●●●

●

●

Sig
Not sig

Vessel 1 Q2 0809

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
50

0
50

10
0

20
0

●
●

●●
●●

●

●●●
●●● ●●●

●●●● ●●●●●●● ●●

●

●
●

●

●

●

●

●

●●●

●● ●

●

●●●

●

●

Sig
Not sig

Vessel 1 Q3 0809

0 1 2 3 4 5

−
10

0
−

50
0

50

●

●

●●

●●
●

● ●●

●
●

●
●● ●
●●● ●●
●

●●●●● ●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

Sig
Not sig

Vessel 1 Q4 0809

RTC count difference

P
in

g 
co

un
t d

iff
er

en
ce

Figure 14.22: Regression analyses comparing ping count difference dv
i, j,q,yc and RTC count difference

dr
i, j,q,yc between 2008 and 2009 for Vessel 1. Plots for quarters with significantly different fishing distri-

butions by the AD test use filled circles, otherwise open circles are used. For quarters passing the AD
test, red lines give fitted linear models (solid) with 95% confidence intervals (dashed).

My second approach used contingency-table analysis, and for single-vessel com-
parisons this suffers from a similar drawback. For each combination of vessel i, year
comparison yc and quarter q, I constructed a contingency table T in which both ping
count difference and RTC count difference are categorised as being negative, zero or
positive:

Ti,q,yc =



dv
i, j,q,yc < 0 dv

i, j,q,yc = 0 dv
i, j,q,yc > 0

dr
i, j,q,yc < 0 T 1,1

i,q,yc T 1,2
i,q,yc T 1,3

i,q,yc

dr
i, j,q,yc = 0 T 2,1

i,q,yc T 2,2
i,q,yc T 2,3

i,q,yc

dr
i, j,q,yc > 0 T 3,1

i,q,yc T 3,2
i,q,yc T 3,3

i,q,yc


For example, T 1,1

i,q,yc gives the count of the fishing areas for vessel i for which the ping
count difference dv

i, j,q,yc and the RTC count difference dr
i, j,q,yc (across all fishing ar-

eas j) were both negative. Once this table is constructed, I apply Pearson’s χ2 test to
determine whether the proportion of counts between different columns changes signif-
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Figure 14.23: Regression analyses comparing ping count difference dv
i, j,q,yc and RTC count difference

dr
i, j,q,yc between 2009 and 2010 for Vessel 1. See caption for Figure 14.22 for details.

icantly (p < 0.05) between rows. If so, then there is a contingency between the two
variables (that is, the two variables are not independent), and ping counts are deemed
to be significantly influenced by RTC counts. If there is no contingency, the two vari-
ables are independent, and ping counts are not significantly influenced by RTC counts.
χ2 tests were carried out in R, using the chisq.test function of the stats library.

Consider two extreme examples to demonstrate the expected output. In table τ1,
all the entries are the same:

τ1 =


dv < 0 dv = 0 dv > 0

dr < 0 1 1 1
dr = 0 1 1 1
dr > 0 1 1 1


The χ2 test statistic for τ1 is 1.0, with 4 degrees of freedom and a p-value of 1.0.
This indicates strong independence between the variables and no contingency: that is,
knowing the difference in RTC counts dr would not help us to determine the difference
in ping counts dv. On the other hand, in table τ2 there appears to be a direct relationship
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Figure 14.24: Regression analyses comparing ping count difference dv
i, j,q,yc and RTC count difference

dr
i, j,q,yc between 2008 and 2009 for Vessel 2. See caption for Figure 14.22 for details.

between the variables:

τ2 =


dv < 0 dv = 0 dv > 0

dr < 0 10 0 0
dr = 0 0 10 0
dr > 0 0 0 10


In this case, the χ2 test statistic is 60.0, with 4 degrees of freedom and p < 1.0e−10,
suggesting strong dependence and hence contingency. Here, knowledge of dr gives a
very strong indication of the sign of dv.

Returning to the single-vessel analysis, for Vessel 1 there were four histogram com-
parisons that were significant by the AD test: Q2 and Q3 for 2008-08 (Figure 14.22),
and Q2 and Q4 for 2009-10 (Figure 14.23). The corresponding contingency tables and
χ2 test results were as follows.
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Figure 14.25: Regression analyses comparing ping count difference dv
i, j,q,yc and RTC count difference

dr
i, j,q,yc between 2009 and 2010 for Vessel 2. See caption for Figure 14.22 for details.

T1,2,0809 =


dv < 0 dv = 0 dv > 0

dr < 0 1 0 1
dr = 0 7 16 11
dr > 0 5 3 3

 χ2 = 4.166
(df = 4, p = 0.384 > 0.05)

T1,3,0809 =


dv < 0 dv = 0 dv > 0

dr < 0 0 0 0
dr = 0 4 20 7
dr > 0 4 5 7

 χ2 = 4.691
(df = 2, p = 0.096 > 0.05)

T1,2,0910 =


dv < 0 dv = 0 dv > 0

dr < 0 3 2 4
dr = 0 13 7 10
dr > 0 1 1 6

 χ2 = 4.624
(df = 4, p = 0.328 > 0.05)
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T1,4,0910 =


dv < 0 dv = 0 dv > 0

dr < 0 2 1 5
dr = 0 14 11 5
dr > 0 8 1 2

 χ2 = 6.683
(df = 4, p = 0.154 > 0.05)

It would appear from these results that changes in RTC counts within fishing areas
for Vessel 1 do not have a significant relationship with change in VMS ping counts
within those same areas, although the χ2 test for the comparison of 2008 and 2009 in
quarter 3 is almost significant. This conclusion is contingent on the fact that I have
limited the analysis to those inter-year comparisons for which the change in fishing
locations was deemed to be significant via the AD test.

If I apply this approach to all 188 relevant vessels individually, it is difficult to de-
tect significant influences. Recall (from page 195) that there were 452 inter-year com-
parisons for which the AD test indicated significantly different VMS-ping histograms.
Following the methodology summarised above, I generated contingency tables com-
paring changes in VMS ping counts and RTC counts for all 452 cases. For only 25 of
these (5.53%) was there a significant influence of changes in RTC counts on changes
in VMS ping counts, as measured by contingency-table analysis. It may indeed be the
case that the imposition of RTCs in fishing areas has little effect on fishing-location
choice, but it is equally possible that the contingency-table approach has little statis-
tical power when applied to individual vessels (the number of counts in the tables is
quite low), and the question is worthy of further investigation.

14.5.2 Fleet-level analysis

Given that single-vessel analyses may lack statistical power, I applied the same method-
ology to a dataset which collated all the inter-year comparisons with significant fishing-
location changes: that is, as in the previous analysis but summed across all relevant
fishing vessels (but still only including those histogram comparisons indicated as be-
ing significant via the AD test).

Figure 14.26 gives the scatterplot of ping count difference dv
i, j,q,yc against RTC

count difference dr
i, j,q,yc for all of these significant inter-year comparisons, along with

a linear-model regression line (analogous to the single-vessel examples in Figure 14.22
to 14.25). The line is well-defined with narrow confidence bounds, but this is due to
the large number of points on the plot: in fact, the linear model explains very little of
the relationship between the variables (R2 = 0.2%). The slope of the line is small, but
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it is significantly positive (slope = 3.194, p < 0.001). Thus, on the basis of regression
analysis across the fleet as a whole, RTCs have little demonstrable effect on fishing
locations, and the small effect that can be detected indicates that vessels move towards

areas of RTCs (over a time-scale of months).

● ●● ●●●●
●

●
●

●

●

●
●●● ●● ●● ●●●
●●
●●
●
●●●●●●●●●●●●●●

●● ●●●●
●
●● ●●

●
●●● ●●● ●●●●●●● ●●●●●●● ●●

●
●●

●
●

●

●

●

●●●●● ●

●

●●●●● ●● ● ●●
●

●
●

●●●
●●
●●●●

●
● ●●

●
●

●

●
●
● ● ●●●
●●●

●
●

● ●

●

●
● ●● ●●●

●

●●

●
●

●●● ●●● ●●●● ●●●● ●●●●●●●● ●
●

●
●●

●

●
●

●

●

●●●●●●
●●●
●● ●

●

●

●●

●

●

●

●● ●●

●
●

●

●●
●

●
●●

●

●● ●
●●

●

●
● ●

●

●

●
●

●

●●
●

●
●

●●●
●

●●
●
●
●

●
●
● ●

●
●●●

●
●

●

●

●
●●

●

●

●

●

●●
●

●

●
●

●
●● ●●

●

●●

●

●

●

● ●●●
●

●● ● ●● ●●
● ●
●●

●
●
●

●

●

●
●●●

●
●●

●
●

●
●

●

●●●
●

●●●
●●●●● ● ●●

●

●
●●●●●●
●

●

●

●

●
●

●

● ●

●●

●● ●●
●
●

●●

●

●

●
●

●
●

●

● ●
●● ●

●

● ●●● ●
● ●

●●
●

●

●

●

●

●

● ● ●

●
●

●

●
●

●● ●●●●

●

●

●
●

●●●
●

●
●

●●

●●

●● ●● ●●

●●

●

●●

●
●

●

●●

●

●
●●

●

●

●

● ●
●

●
●●●● ●

●

● ●●● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●●●●
●
●

●●

● ●●●●

●

●

● ●

●● ● ●● ●●

● ●●

●

●

● ●●●●

●
●

●● ●●●
●●

●

●
●
●● ● ●

●

●●● ●

●●

●

●

● ●●● ●●●●

●

●

●
●

●

●●

●

●

●●●●

●

●

●
●●●

●
●●

●
●

●

●

●

●

●

●

●

●

● ● ●●●●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●● ●

●

● ●●

●

●

● ●●●●

●

●

●

●
●●

●

●

●

●

●

●

●●●●●●●● ●
●●

●
●

●

●●●●●

●

● ●●●●●

●

●

●

●
●
●●
●●

●

●

●●●

●●●●●●
●
●
●●●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●● ●
●●
●

●

●

●

●
●

●
●

●
●
●
●

●
●

●●●●●●●●●●

●

●●●●● ●●● ● ● ●
●●

●●●● ●●
●
●●
●

●

●

●

●

●
●●●
●●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●
●

●
●

●

●

●●
● ●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●
●●●
●●●●●●
●

●

●●
●

●●●●●●●
●

●●●●●●●●
●●●●
●

●
●
●●
●●

●●

●

●

●●● ●
●●
●●
●
●●●●●● ●

●●

●

●

●

●●
●
●●●

●

● ● ●●●
●●
●●

●
●●●● ●●●●

● ●

●● ●●
●●●●

●

●

●●● ●●● ●●

●

●
●
●●

● ●

●●●●●
●●●●
●●●●
●
●● ●
●

●
●
●

●

●

●
●●
● ●
●

●
●

●
●●
●●●●●●● ●
●
●
●

●●●●●●●●●
●

● ●●●● ●

●

●

●

●●●
●
●●●
●
●●
●●●●
●●
●●

●
●

●●●●
● ●●
●●

●
● ●●

●
●

●●●●●●●● ●●

●

●

●
●
●

●

● ●
●

●●
●

●

●●●●●
●

●
●●

●●●●●●●
●●●

●
●●

● ●●● ●●●●
●

●
●●●

●

●●

●

●

●

●● ●●
●●●●

●●

●●● ●
●●
●●

●

●

●

●

● ●

●

●●

●

●
●

● ●●
●

●●
●

●

●

●

●

●

●

● ●
● ●●●

●

●
●

●

●

●
●

●● ●

●

●● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●● ●●
●
●
●
●

●
●●●●●●

●●●
●

●
●● ●● ●
●
●●●● ●

●

●

● ●●● ●●
●

●

●

●●
● ●● ●●●

●

●●●

●
●

●
●
● ●●●●●●● ●
●●

●●●● ●●●●
●

●
●

●

●●

●
●
●●● ●●●●● ●●●● ●
●●
●●

●

●
●●

●
● ●●●●

●
●

●

●
● ●

●

●

●● ● ●●●
●

●

●

●●●● ●● ●
●●●
● ●●● ●
●

●

●●
●

●
●●●●

●
●

●●●●●●●●

●

●

●

●

●●
●

●
●
●

●●
●

●●
● ●●

●
●

●

●
●

●●●
●

●●● ●●
●

●

●

●
●

●
●
●●●

●

●● ●●●●●

● ●

●
●●

● ●● ●● ●
●

●

●

●

● ●●
●

● ●●●●
●

●

●

●

●

● ●●●●●

●

●
●

●
●

●

●

●

●●
●
●

●

●

●

●

● ●●● ●

●

●

●

●●●
●

● ●

●

●

●

● ●
●●

●

●
●

●

●
●

●

●

● ●●●

●

●●●

●

●
●●
●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●● ●

●

●

●

●

●

●

●
●
●●
●
●
● ●
●
●

●
●
●● ●
●
●

●

●●●

●

●●
●

●

●
●

● ●

●
●
●● ●
●●

●

●

●

●
●●●
●
● ●

●●

●
●●●

●
●● ●● ●
●

●●●●● ●●●
●●
●●
●●

●
●
●●●● ●

●

●
●

●● ●
● ●●●●●●

●●●

●

●● ●●●●●

●
●
●
●

●●● ●
●
●●●●●
●●
●
●●
●● ●● ●●●

●

●●●●
● ●

●

●●●●●●●●
●
●●●●●●●

● ●

●

●
●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
●●
●

●●●
●●

●

●

●● ●●●
●

●
●●

●

● ●●
●●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●

●●

●

●
●● ●

●

●
●
●

●
● ●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●
●
●
●

●●

●

●
●

●

●●

●●
●● ●●●
●

●

●●

●

●● ●

●

●

●

●

●
●

●●●●
●●●●

●
●●

●
●●●

● ●
●●● ●

● ●● ●
●

●

●●
●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●●

●
●
●●●●
●
●●
●

●

●
●
●●●●

●●●

●●●●●●●●●●●●

●●●●
●
●●

●

●

●

●

●●●●●●●●●●

●

●●●
●
●●
●
●●

●●

●

●●

●
●

●

●●
●●
●●●●●●●●●
●●

●●
●●●
●●

●

●

●

●

●●●●●●●●●●●
●
●●●●●

●

●●

●

●
● ●

●
●

●

●●●●●●
●
●●●

●

●●●

●

●●●●
●
●●●●

●

●●

●

●●●●
● ●

●●
●

●

●

●

●

●
●

●
●

●●

●●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●● ●●●●

●

●●●

●
●

●● ●●●

●

●
●

●
●

●

●●● ● ●●
●

●

●

●●
●

●

●
● ●

● ●

●

●

●

●●

●
●

● ●
●
●

● ●
●

●
●
●

●

●

●

●●● ●●●

●

●

●

●

●●
●

●

●●

●●

●

●
●●●

●●

●●●●
●● ●●
●
●

●

●
●
●● ●●●
●
●●● ●●●●

●●

●

●

●

●
●●

●
● ●●

●●
●

●●●● ●●●
●
●

●

●
●
●

● ●●

●

●

●●

●

●● ●●
●

●● ● ●

●● ●
●

●
●

●

●

●

●●●● ●●●
●

●
●●

●
●●

●●
●●

●

●
●
● ●●
●

●

● ●●●
● ●

●●

●
●

●

●● ●●● ●●●● ●
●

●
●●

●

●● ●

●

●●
●
●

●

●

●

●

●
●

● ●●●
●

●

●● ●
●●

●● ●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●●

●●●
●

●

● ●

●

●

●

●●

●

●

● ●

●
●

●●● ●●

●

●●

●

●
●●

●
●
●●●●

●

●

●

●

●

●

●●●●

●

●●●● ●
●
●

●●●
●

●
●●●

●

●
● ●

●
●● ●

●

●

●

●

●

●

●
●

●
●

●
●● ●

●●
●

●
●

●
●
●●

●●

● ●● ●●
●●

●

●
●

●

●

●
●

●
●

●●●

●●

● ●●●●
●
●●

●●●

●

●
●
●
●

● ●

●●
●●●
●●●

● ●
●

●●● ● ●●
●

●●

●

● ●

●
●

●

●
●

●

●● ●
●

●●●

●
●
●●●●●
●●
●

●

●
●

● ●●

●●
●

● ●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

● ●● ● ●

●

●
●●

●
●

●

●

●

●

●
●
●
● ●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●●●
●

●

●

●

● ●●

●

● ●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●
●

●
●

●

●●
●

●

●

●
●

●

●

●
●

●

●●●

●

●

●●

●

●●●

●
●

●
●
●
●●
●
●●

●
●

●● ● ●●
●

●

●●

●
● ●

●●

●●● ●●●● ●●●

●

●●●

●● ●
●●

●

●●●● ●

●

●
●●●●●

●

●
●

●

●
●

● ●

●

●
●●

●
● ●●●
●
● ●●
●●

●

●

●

●
●●●●

●

●

●

●
●

●

●
●

●●●●
●

●
●

●

●●●
●●●●● ●
●
●●● ●
●●
●

●
●●●●●

●

●

●
●●

●
●
●

●

●
●

●●●

●
●

●

●●●

●●

●●●●

●●●

●

●●
●
●
●

●

●

●●●

●

●

●

●

●

●
●
●

●
●●
●

●
●
●

●
●● ●
●

●

●

●●●●
●

●
●

●

●●●
●
●●●

●

●
●●● ●

●

●●
●

●

●
●
●
● ●●●

●●

● ●●
●●●

●

●

●

●

●●●●●
●
●●●

●●●

●

●

●
●

●
●

● ●●
●

●

●
●●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●●●●
●
●●●
●●
●

●

●
●●

●

●●
●

●●
●
●

●
●

● ●
●
●
●

●
●

●

●
●●●

●

●●
●●●●●● ●●●●
●

●

●

●

●●●●●●●●●●●

●

●●
●

●
●

●
●

●
●●●●

●
●●
●

●
●●

●●

●

●●●

●

●●●
●

●

●

●

●

●
●●

●

●
●

●
●●

●

●● ●
●
●

●●
●

●

●

●

●

●
●

●
●
●

●●
●●●
●●●●●
●●●
●●
●●●●
● ●

●●●●
●●

●

●●●●●
●

●

●
●
●●

●

●

●
●

●
●
●●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●
●●

●

●●
●●

●

●●
●
●
●
●

●

●

●

●

●●

●

●
●

●

●

●
●
●

●
●
●
●●
●
●●●●●
●●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●●●

●

●

●

●●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●●●●

●

●●
●

●

● ●
●
●
●●●

●
●

●
●
●●

●

●

●●●

●

●

●

●

●

●●
●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●●●●●●
●
●● ●●

●

●

●●●
●●

●
●●

●●●●●

●
●● ●
●

●

●

●●●
●●

●

●
●●●

●

●
●

●
●

●

●
●

●●● ●●

●

●
●

●

●
●
●
●●

●
●
●

●

●●

●

●
●
●●●

●

●
●

●

●● ●●

●●

●

●
●●

●

●
●

●

●
●

●

●●

●

●

●●●●●

●

●●
●
●●

●

●●

●●

●

●
●●

●

●

●
●
●●●
●

●●

●●

●

●

●●●●●● ●

●

●●
●

●
●●

●

●●●●●●●

●

●
●
●

●

●●●
●●●●●●●● ●●●●●●●●●●●●●●●●●
●●

●

●●
●●●●●●

●
●●
●●●●●●●●●
●●●

●

●

●

●
●●●●●●●●●●●●●●●
●

●
●

●●

●

●●
●●●●

●
●●
●●●●●●●●●●●

●●● ●
●
●

●

●●●●●●●●●
●●

●

●●
●

● ●●● ●●●

●
●●●

●

●
●●

●●●● ● ●●●●

●

●

●
●

● ●
●
●

●● ●●●●

●

●
● ●●

●

●

●

●
●●●●●●●●●●●●●

●●●

●●●●●●

●
●
●●●●●●●●●
●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●
●
●

●
●●●●●●●●
●●
●
●
●●●●●●
●
●●●● ●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●●●●●

●

●

●

●●

●

●●

●

●

●

●●●

●
●

●

●● ●●●●
●
●●

●

●

●

●●

●●●

●●

●

● ●●●● ●●
●

●
●
●
●

●

●●

●
●

●

●● ● ●●

●

●
● ●●

●

●

●●●●

●●●

●●

●

●● ●
●

● ●●
●

●
●

●●●●●

●
●● ●●● ●
●

●

●● ● ●
●

●

●●●●●●●●
●
●●●●●●

●●

●

●

●

●
●

●●

●

●
●

●●●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●●
●
●●●●●

●

●●

●
●

●
●

●●

●

●
●

●
●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●●●

●

●
●

●
●
●

●
●
●

●

●

●

● ●●

●

●

●
●

●●

●

●●

●●
●

●
●

●

●

●

●

●
●

●

●
●●●● ●●●

● ●
●●●

●
●
●

●

●

●

● ●
●

●

●

●

●●

●
●●

●●
●

●

●

●

●

●
●●●

●

●
●

●

●● ●●

●

●● ●●

●
●

●
●

●

●
●

●

●●

●

●

●
●

●●

●

● ● ●

●

●

●●

●

●
●
●

●●●
●
●
●●
●
●●●●●●

●●
●

●
●
●

●●●●●
●

●

●
●●● ●●● ●●●

●

●
●●

●

●●

●● ● ●

●

●
●

●

●

●
●

●●

●●
●

●

●
●

●

●●●●●●●
●●
●

●

●
●

●

●●●●

●
●●●

●

●

●●●

●
●

●

● ●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●
●

●●
●

●●
●

●●●
●●●●●
●
●

●

●●●

●●

●●
●●●
●●●
●
●

●●
●
●●
●●●●●
●

●
●●●● ●●●●

●●● ●●

●

●●●
●
●
●

●● ●● ●
●

●
● ●

●

●●

●●
●

● ●●● ●
●

●
●

●

●

●●
●●●●

●

●

● ●

●

●
●

●●●●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●●
●

●

●

●

●●●●●●

●
●●●●●●●●●●

●

●●●●
●●●●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●● ●●●
●

●●
●

●

●

● ●●●●●

●

●

●
●●●●

●
●

●

●

●●●●

●

● ●

●

●

●

●●●
●

●

● ●●●
●

●●
●

●

●
●

●

●

●

●
●

●

●●
●

●

●●●●

●●

●

●

●
●●●●● ●●●● ●●

●

●

●
●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●●

●●● ●

●

● ●●● ●●●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●
●●
●●●●●●●●●●
●
●●
●●●
●
●
●●●●●●●●●
●

●●● ●
●●●
●●

●

●

●

●

●●

●

●●● ●●●

●
●

●
●

●
●

●

●
●

●

● ●
● ●

● ●

●

●

●

●

●●●●●●●●●● ●● ● ●●● ●●● ●●
●

●● ●● ●

●

●

●

●
●

●

●
●

●

●

●

● ●●●●●●●
●●●●●●●

●
●● ●
●

●

●●

●

●
●

●

●

●
● ●●
●

●
●●

●
● ●●●

●
●● ●●●

●

●

●

●
●

● ●●
●

●

● ●
●

●● ●
●

● ●● ●

●

●●
●●

●

●

●

●

●

●
●●●

●

● ● ●●●● ●
●●●●

●
●● ● ●● ●

●

●
●
●

●

● ●●
●

●
●

●
●●●

●

●

●

●

●

●

●●●

●●

●

●●●

●

●
●

●

●
●

●
● ●● ●
●
●●●

●

●

●

●●

●
●

●
●

● ●

●

● ●● ●●

●

● ●● ●●●●
●
●●

●

●
●
●
●

●

●
●●
●●
●●●●●●
●●●

●●●
●

●

●●

●
●
●

●

●●
●

●

●

●
●
●

●

●●●●●
●

●
●●
●
●
●

●●●●

●

●●

●

●●

●

●

●

●

●

●
●

●
●
●
●

●
●●●●●
●●●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●●

●

● ●●

●●

●

●
●

●

●

●

●

●
●

●
●●

●
●

●
●

●●●● ●
●●●

●
●●●

●
●

●
●

●
●●

●●
●

● ●
●

●
●●

●

●

●

●●●●●

●

●●●●●●

●

●
●

●
●
●●●
●
●

●

●●●

●

●
●●●
●

●

●

●

●

● ●
●
●

●●

●
●

●●

● ●

●

●

●
●

●
●●●●

●

●
●

●

●
●
●

●

●
●

●

● ●
●

●

●

●

●●
● ●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●
●
●

● ●
●

●
●

●
●

●

●●●●●●●●
●
●
●●
●●●●●●
●
●
●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●
●
●●
●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●
●
●●●●●
●
●
●
●
●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●
●●
●
●
●●●●●
●●
●
●●●●●●●●●

●

●●●●●
●
●●

●
●

●

●

●

●
●●●●

●

●

●

●

●

●
●

●●
●●

●

●●
●●

●●

●

●
● ●

●

●
●

●

●
●
●

●

●●
●●● ●

●
●

●

●●● ●● ●
●
●
●

●

● ●
● ●

●

●

●

●

●

●

●
●
●

●

●●

●
●● ●●●●●

●●
● ●

●

●

●

●

●
●●
●
● ●●●

●

●
●
●●●● ●●

●

●
●

●

●

●●●

●

●

●
●

●●●●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●
●

●●

●

●

●

●

●●●
●

●
●●

●

●●

●

●
●
●

●●●●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●●●●●●
●●●●●●●●●●●
●● ●
●
●●●●●●●●●●●●●●

●●●●●●

●

●●
●●●●●●●●●●●●
●●●
●
●●●●●●

●
●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●
●
●● ●●●●●●●●●●
●●
●
●
●●● ●

●
●
●●

●
●●

●

●●●●●●●●●●●●
●●
●●●

●
●●●● ●●●●●●●●●● ●●●●●
●●●●●● ●●●●●● ●

●●

●

●

●

● ●

●●● ●● ●●● ●●●
●

● ●●●●
●

●

●
●

● ●●
● ●●●●●●

●

●

●●●● ●● ●
●
●

●
● ●

●
●

●
●● ●

●
●

●
●

● ●●

●

●
● ●●●

●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
● ●

●
● ●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●●

● ●

●

●

●

●

●
●

●

● ●

●
●

●
●
●

●

●

●
●

●

●●●
●

●

●

●

● ●●● ●

●

●● ●●

●

●
●●●●

●
●

●

●

●●
●
●
●
●
●

●

●
●

●

●
●●●●●●●●
●

●●●
●
●
●●

●●●●●

●
●

●
●
●●●●

●
●

● ●●
●
●

●

●

●

●

●

●●●●
●● ●●●●● ●●●●●●●●
●●●●●●
●
●●
●●
●●●
●
●●●
●●●●●●●●●

●

●●

●
●
●●●●
●●●●
●●
●
●
●●●●
●●●●

●
●
●●●●●
●●●

●●

●

●
●●
●
●
●

●

●
●
●

●

●

●

●
●
●

●●
●

●

● ●

●

●

● ●

●●

● ●●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●●
●
●●●

●

●

●

●●
●●

●●

●

●

●●
●●

●

●

●

●

●
● ●

●

●
●●●●

●
●
●

●

●●●●

●

●
●

●●
●
●
●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●
●
●●
●

●
●

●●●●●●●●●●

●
●

●

●
●

●
●

●●●
●

●●●
●
●

●●
●
●

●●

●

●

●

●

●●

●●

●●●●●●●
●

●

−10 −5 0 5 10 15 20

−
10

00
−

50
0

0
50

0

RTC count difference

P
in

g 
co

un
t d

iff
er

en
ce

Figure 14.26: Regression analyses comparing ping count difference dv
i, j,q,yc and RTC count difference

dr
i, j,q,yc for both inter-year comparisons, all quarters and all vessels. Only those comparisons with sig-

nificantly different fishing distributions by the AD test have been included. Red lines give a fitted linear
model (solid) with 95% confidence intervals (dashed).

Applying the contingency-table methodology described above to the new dataset
produces the following.
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Tall =


dv < 0 dv = 0 dv > 0

dr < 0 180 53 147
dr = 0 1690 1062 1681
dr > 0 560 215 592

 χ2 = 60.247
(df = 4, p < 1.0e−10)

This indicates a strong contingency between dr and dv: that is, the variables are
not independent, implying that changes in the RTC count do have a significant effect
on changes in VMS ping counts. Furthermore, the direction of change is positive, as
suggested by the weak relationship in Figure 14.26. To demonstrate this, I consider a
version of Tall in which I have expressed each value as a percentage of the sum of the
values in that row:

T ∗all =


dv < 0 dv = 0 dv > 0

dr < 0 47.4% 14.0% 38.7%
dr = 0 38.1% 24.0% 37.9%
dr > 0 41.0% 15.7% 43.3%


The percentage of comparisons for which dv < 0 falls from 47.4% to 41.0% as dr

changes from negative to positive. At the same time, the percentage for which dv > 0
increases from 38.7% to 43.3%. In other words: a positive change in VMS pings is
linked to a positive change in RTCs, and a negative change in VMS pings is linked
to a negative change in RTCs. The conclusion from both regression and contingency-
table analysis is that, across the fleet as a whole (and only considering instances of
significant changes in fishing location), vessels increase their fishing activity in areas
over time which have increasing numbers of RTCs.
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15 Conclusions

In this Chapter, I have applied two different approaches to the problem of characteris-
ing movement, both using VMS data from Scottish commercial fishing vessels, with
the dual aims of (firstly) showing whether real-time closures (RTCs) are an effective
management tool for North Sea cod, and (secondly) providing a characteristic case-
study of fleet dynamics which a good fisheries simulation model would need to be able
to replicate. The first approach considered only those vessels directly (in a specified
sense) affected by real-time closures (RTCs), and used a spatio-temporal relative fish
importance index (RFII) for cod to determine on a trip-by-trip basis whether vessels
moved towards or away from areas of high cod abundance following the closure or
reopening of an area. The second approach used cluster analysis to characterise the
fishing areas used by a vessel, then compared changes in frequency of fishing in these
areas with changes in the density of RTCs in the same areas to determine whether
vessels moved towards or away from RTCs over a period of several years. These are
relatively simple methods when compared with (for example) the trajectory-entropy
modelling approach employed by Song et al. (2010) to model human movements us-
ing mobile-phone records, or the sophisticated foraging framework applied by Boyer
and Walsh (2010) to individual position data for animals, but it could be argued that
their very simplicity leads to greater understanding and interpretability of the outcomes
(Harte 1988, Paola 2011).

At first sight, the results in this Chapter appear to be rather counter-intuitive. RTCs
were set up by the Scottish Government with the express intention of encouraging ves-
sels to move away from areas of high cod abundance, and thereby reduce cod mortality.
The trip-specific analyses of vessels directly affected by RTCs (Section 13.2) showed
that vessels will move away from RTCs while they are in operation, but are equally as
likely to move back to the area occupied by an RTC once it reopens. The analysis of
changes in fishing locations by quarter, and the relationship between those and changes
in the number of RTCs in vessel-specific fishing areas (Section 14.5), concluded that
across the entire fleet, an increase in imposed RTCs is linked to an increase in fishing
effort (as measured by VMS pings). The conclusion from both analyses is that RTCs
induce changes in fishing patterns only in the very short term, and in the long term may
actually lead to the opposite response to that intended with increased fishing in areas
with more RTCs.

On further reflection, however, this result is not very counter-intuitive at all. RTCs
are placed where there are aggregations of cod and other profitable species. If they
were in place for a long time then they might cause vessels to move elsewhere perma-
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nently, but as currently implemented they are of such short duration that they appear
to serve principally as flags marking good areas to fish. There is no evidence in the
available Scottish data from 2008-2010 that suggests that all vessels have intentionally
avoided such areas: some have, but across the fleet as a whole the pattern is one of
moving towards RTCs. During these years, the international fishing mortality on cod
as estimated by ICES (ICES 2011c) has reduced, but not by as much as anticipated and
by very much less than the mortality on other related species such as haddock, whiting
and plaice.

The implications for fisheries managers are serious, as the analyses indicate that
RTCs are not leading to the long-term changes in fishing locations that are required
to reduce cod mortality. There are also important implications for the development
of spatio-temporal fishery simulation models, which is the focus of this thesis. Sec-
tion 14.3 showed that vessels are more likely to change fishing patterns in the second
half of the year. Therefore, a useful fishery simulation model needs to be able to track
quota availability for vessels, and include mechanisms for vessels to try and avoid fish
for which they have little or no quota left. The conclusion given above suggests that
such a model needs to be able simulate vessels moving towards short-term closed areas
if these are imposed. This could be done by building in such a tendency and checking
whether the fishing patterns thus generated reflect historical data, or by determining
whether such movements arise as an emergent property of the model. In either case,
a simulation model which could not replicate fleet responses of this kind could not be
considered to be a very reliable tool for generating spatially-based fisheries manage-
ment advice.
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Chapter IV

A general simulation model
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16 Spatio-temporal fishery simulation models

In this thesis, I have presented case studies of existing fishery management simulation
models that have been used (and are still being used) as the basis for management ad-
vice and decisions (Chapter II). I have shown that these models use strong assumptions,
often necessarily so given the available data and limited models of fleet dynamics: and
how these assumptions can lead to problems which impinge on the utility of the mod-
els. I have given examples of management systems which could have great potential
for helping to manage sustainable fisheries (see Chapters II), and I have presented anal-
yses of new kinds of data (see Chapter III) that are becoming available and which could
in theory be used in the service of said management systems.

What is not yet widely available, however, is a management simulation framework
that can join these threads together. By this, I mean a model system which can in-
corporate the new forms of data on fishing times and locations, and other aspects of
fleet dynamics, and which can be used to overcome the difficulties inherent in the ex-
tant management evaluation frameworks by allowing for changes in spatio-temporal
patterns of fishing in response to management measures and environmental changes.
Skagen (2004) pointed out that the type of management that is possible, and which
would need to be evaluated in a quantitative sense, is dependent on the data that are
available. As new types of data enter the scientific domain, new models are required
to faciliate their analysis. It is also important that models are able to generate emer-
gent and realistic economic activity: as highlighted by Lunn (2008), people (including
fishermen) do not always behave as the rational, independent agents assumed by au-
thors of neoclassical economic theory such as Clark (1976). The aim of this thesis is
to develop and present some key components of such a modelling framework. The
full framework is beyond the scope of the thesis, but work on it will continue once
the thesis is completed and it is my intention that the framework will be ready for its
intended use in the near future.

Several previous authors have explored these aspects: direct simulation examples
include Bell et al. (2007) (SpatMan), Prince et al. (2008) and Bastardie et al. (2010),
while the ecoOcean gaming simulation approach being developed by Nissen et al.
(2011) will be applied to management evaluation in the near future (see also Briand
and Giuliano 2011). I have built upon these ideas and started the development of a
new implementation which more easily allows for the incorporation of fleet dynamics
in terms of fishing activity choice, and I will describe this model for the remainder of
this Chapter.
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17 Representing space

Commercial fishing is an activity that takes place in space as well as in time. Fish
stocks are not evenly distributed through the sea, and the decision about where to fish
during a trip is just as important (if not more so) than decisions about when to fish, with
what gear and for what species. Managers are also keenly aware of the importance of
spatial fisheries policy, and closed (or otherwise limited) fishing areas are a key part
of the available toolbox for managing fisheries. While not essential for developing
policy (as I have shown in Chapter II), an evaluation framework with the ability to
model space as well as time is likely to be more flexible and offer a wider scope for
answering policy questions. Given this, I turn to the problem of how to represent space
in a fisheries simulation model.

The model described in this thesis concurs with Nissen et al. (2011) in using a sys-
tem of hexagons to partition the available space. Many previous authors (for example,
Bell et al. 2007, Bastardie et al. 2010) have used squares instead. Squares have the
advantage of simplifying cell referencing (in that the row-column identities of neigh-
bouring cells are easy to specify, which is not the case with a hexagonal system as I
shall show). However, the distances between the centroids of neighbouring squares
are not constant. If centroids within row or column neighbours are one unit apart, a
vessel moving one cell in a diagonal direction must travel

√
2 units. While this is not

very difficult to code in (for example) shortest-distance algorithms, it is an unnecessary
complication that can be avoided by using a hexagonal system in which movement dis-
tance between cell centroids is the same not matter which direction is taken. The other
reasons for this choice are that I feel it leads to area representations that look more
organic and realistic, and hexes are widely used in gaming and other simulations from
which this model takes much inspiration.

17.1 A SINGLE HEX

I consider first the representation of a single hexagon in Figure 17.1, with the centre at
(xc,yc), six vertices numbered clockwise from (x1,y1) in the bottom left-hand corner,
and six equal sides of length s. The internal spokes also have length s, and all of the
internal angles are π

3 radians. If

x′ = scos
π

3
=

s
2
, (17.1)

y′ = ssin
π

3
, (17.2)
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then

xc = x1 + x′, (17.3)

yc = y1 + y′. (17.4)

The remaining vertices are given by:

(x2,y2) =
(
x1− x′,y1 + y′

)
(x3,y3) =

(
x1,y1 +2y′

)
(x4,y4) =

(
x1 + s,y1 +2y′

)
(x5,y5) =

(
x1 + s+ x′,y1 + y′

)
(x6,y6) = (x1 + s,y1)

s

s

/3

(x1,y1)

(x2,y2)

(x3,y3) (x4,y4)

(x5,y5)

(x6,y6)

(xc,yc)

x' = s/2

y' =
 s sin 

/3

s

s

/3

(x1,y1)

(x2,y2)

(x3,y3) (x4,y4)

(x5,y5)

(x6,y6)

(xc,yc)

x' = s/2

y' =
 s sin 

/3

Figure 17.1: Geometry of a single hex for the simulation map.

17.2 MULTIPLE HEXES

The positions of hexes in rows and columns for the map are determined as follows.
Suppose that the map is bounded in the x and y dimensions by x ∈ [0,xmax] and y ∈
[0,ymax], and that there should be n hexes in each row and column. Figure 17.2 gives
a sample layout for n = 5, in which the hexes that form alternate rows are highlighted.
Note that hex rows are necessarily crooked, while hex columns are straight.
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I denote the bottom left-hand vertex of the hex in the ith column and the jth row by
(x1,y1)i, j. Considering the hex (x1,y1)1,1 in the first row and first column, I can write

(x1)1,1 = scos
π

3
=

s
2
, (17.5)

(y1)1,1 = s. (17.6)

Note firstly that these x-coordinate values will be the same for every hex in a column,
since these are stacked vertically, so this can be generalised to

(x1)1, j =
s
2
. (17.7)

Then, from Figure 17.2, the equivalent x-coordinates for the hexes in each row are
given by:

(x1)1, j =
s
2

(17.8)

(x1)2, j = (x1)1, j + s+
s
2

=
4
2

s (17.9)

(x1)3, j = (x1)2, j + s+
s
2

=
7
2

s (17.10)

(x1)4, j = (x1)3, j + s+
s
2

=
10
2

s (17.11)

(x1)5, j = (x1)4, j + s+
s
2

=
13
2

s (17.12)

And generally that:

(x1)i, j =
s
2

+(i−1)
3
2

s. (17.13)

The y-coordinates of the bottom left-hand hex vertices depend on whether an even-
or odd-numbered column is being referred to. For an odd-numbered column (i mod
2 = 1), such as the first column, the y-coordinates proceed upwards from the first row
as follows:

(y1)i,1 = s (17.14)

(y1)i,2 = (y1)i,1 +2ssin
π

3
= s
(

1+2sin
π

3

)
(17.15)

(y1)i,3 = (y1)i,2 +2ssin
π

3
= s
(

1+4sin
π

3

)
(17.16)

(y1)i,4 = (y1)i,3 +2ssin
π

3
= s
(

1+6sin
π

3

)
(17.17)

(y1)i,5 = (y1)i,4 +2ssin
π

3
= s
(

1+8sin
π

3

)
(17.18)
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And generally that:

(y1)i, j |i odd = s
(

1+2(i−1)sin
π

3

)
. (17.19)

For even-numbered columns (so that i mod 2 = 0), these y-coordinates are shifted
downwards by ssin π

3 (see Figure 17.2), so that Equation 17.19 becomes

(y1)i, j |i even = s
(

1+(2i−3)sin
π

3

)
. (17.20)

The maximum extent of the map in the x-direction can be obtained by calculat-
ing the x-coordinate of lower left-hand vertex of the nth hex on any given row (from
Equation 17.13), and adding 3

2s:

xmax = (x1)n, j +
3
2

s

=
s
2

+(n−1)
3
2

s+
3
2

s

=
1
2

s(3n+1) (17.21)

Similarly, using Equation 17.19:

ymax = (y1)i,n |i odd +2ssin
π

3

= s
(

1+2(n−1)sin
π

3

)
+2ssin

π

3

= s
(

1+2nsin
π

3

)
(17.22)

If the map is defined on the basis of xmax and the number of hexes to a side (n), then
the length of a hex side s can be obtained from Equation 17.21 as

s =
2xmax

3n+1
. (17.23)

17.3 MOVING BETWEEN HEXES

Hexes have been used for map generation in this thesis for three main reasons: the
distance required to move between adjacent locations is direction-invariant, which is
not the case for a square grid; generated land areas look rather more realistic on a hex
map; and hexes are widely used in gaming and other computer simulations from which
the model presented here takes much inspiration (Stout 1996, Woodcock 2008). The
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main drawback to using hexes is that the indexing of locations when moving from one
hex to an adjacent hex is not consistent, but depends on whether the start point is in an
even-numbered or an odd-numbered hex column.

To illustrate this, consider Figure 17.3. This shows two particular hexes from Fig-
ure 17.2, one from an even column and one from an odd, along with the six neighbour-
ing hexes in each case. Figure 17.3 gives the (i, j)-indices for all hexes, and the changes
in i and j that would be generated by moving out of the central hex. These changes (or
movement schedules) depend on the column in which the start hex is located. Mov-
ing in the “upwards-right” direction from a hex in an even-numbered column produces
the index mapping (i, j) 7→ (i + 1, j), for example, while the same movement from an
odd-numbered column produces the mapping (i, j) 7→ (i+1, j +1).
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k = 7

i = 3
j = 2
k = 8
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j = 2
k = 9

i = 5
j = 2
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i = 1
j = 3
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i = 2
j = 3

k = 12

i = 3
j = 3
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j = 3
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j = 3

k = 15

i = 1
j = 4

k = 16

i = 2
j = 4

k = 17

i = 3
j = 4

k = 18

i = 4
j = 4
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i = 5
j = 4
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i = 1
j = 5
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j = 5

k = 22

i = 3
j = 5

k = 23

i = 4
j = 5

k = 24
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k = 25

s

s/2
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p

Figure 17.2: Geometry of a hex row for the simulation map (here n = 5). Alternate rows have been
coloured differently for clarity. x and y coordinates for the bottom left-hand vertex of each hex are
indicated, along with the maximum xmax and ymax values. Each hex is marked with row number ( j),
column number (i) and hex number (k). Key lengths are also highlighted: for brevity, I denote p =
ssin π

3 .
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i−1, j−1

i = 1
j = 1

i, j−1

i = 2
j = 1

i+1, j−1

i = 3
j = 1

i−1, j

i = 1
j = 2

i, j

i = 2
j = 2

i+1, j

i = 3
j = 2

i, j+1

i = 2
j = 3

i, j

i = 2
j = 2
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i−1, j

i = 2
j = 4

i, j−1

i = 3
j = 3

i+1, j

i = 4
j = 4

i−1, j+1

i = 2
j = 5

i, j

i = 3
j = 4

i+1, j+1

i = 4
j = 5

i, j+1

i = 3
j = 5

i, j

i = 3
j = 4

Odd column

Figure 17.3: Movement schedules from hexes in even (upper) and odd (lower) hex columns. In both
cases, the hexes displayed are a subset of those presented in Figure 17.2, and the same cell indexing
(small numbers) and colouring scheme has been used here. The central hex is highlighted with a thicker
boundary, while the larger-font captions in each of the surrounding hexes gives the change in the (i, j)-
index that will be produced by moving from the central hex.
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18 Generating a simulated area

Once a method of defining and specifying hexes had been established, the next step
in generating a fisheries simulation was to develop code that stochastically generates
a land- and sea-scape for the simulation to take place in. It would be possible to set
up simulations using real coastlines and bathymetry, and indeed that needs to be done
for application to policy advice, but for more general methodological work a large
number of randomised areas were required to ensure that the subsequent applicability
of the models is not limited to one or two types of locale. The challenge was then to
set up the stochastic generation in such a way that the resultant area retains the salient
features of real-world areas, and (equally importantly for simulations that are intended
to inform policy managers) “looks right”: a simulation based on an area which looks
unrealistic or physically impossible is likely to be treated with scepticism.

The steps involved in generating a suitable map were as follows. I defined five
nh×nh boolean arrays, one for each of five possible depth categories (deep, medium,
shallow, coast and inland), and denoted these respectively as IJdp, IJmd, IJsh, IJco and
IJin. All elements of these arrays were initially set to false. In order to plot the
generated map, the boolean arrays were converted to depth records for each hex (i, j)
according to the following pseudo-code decision tree (where depths are in metres):

i f ( I J _dp [ i , j ] )

d e p t h ( i , j ) = −200

e l s e i f ( I J _md[ i , j ] )

d e p t h ( i , j ) = −100

e l s e i f ( I J _ sh [ i , j ] )

d e p t h ( i , j ) = −50

e l s e i f ( I J _co [ i , j ] )

d e p t h ( i , j ) = 0

e l s e i f ( I J _in [ i , j ] )

d e p t h ( i , j ) = 10

In step 1 of the process, all hex depths are initially set to -200 m, so IJdp(i, j) = true

for all (i, j).
The next step is to generate medium-depth water hexes on top of the deep water

hexes. I defined the proportion of deep water hexes that would be raised to medium-
depth water hexes,

ρmd = 0.75. (18.1)
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The number of medium-depth water hexes was then given by

nmd = bn2
hρmd +0.5c, (18.2)

which is the number of hexes multiplied by the medium-depth proportion, rounded
to the nearest integer. The positions of the nmd medium-depth water hexes were then
determined by a random walk. The first such hex (i0, j0) was determined using

i0 ∈ bU(2,nh−1)+0.5c, (18.3)

j0 ∈ bU(2,nh−1)+0.5c : (18.4)

that is, a randomly-determined deep-water hex not on the boundary of the map. IJmd (i0, j0)
was set to true, and IJdp (i0, j0) to false. Then the remaining medium-depth water
hexes were generated using R code based on the following:

k = 2

whi le ( k ≤ nh_md)

i n . a r e a = f a l s e
whi l e ( ! i n . a r e a )

h e x . r n d = round ( r u n i f ( 1 , min = 0 .5 , max = 6 . 5 ) )

i f ( x . r n d mod 2 = 0)

x . t e s t = x . r n d + hex .move . even $x [ h e x . r n d ]

y . t e s t = y . r n d + hex .move . even $y [ h e x . r n d ]

e l s e
x . t e s t = x . r n d + hex .move .odd $x [ h e x . r n d ]

y . t e s t = y . r n d + hex .move .odd $y [ h e x . r n d ]

i f ( x . t e s t in 1 : nh & y . t e s t in 1 : nh )

i n . a r e a = t rue
i f ( ! i j _md[ x . t e s t , y . t e s t ] )

i j _md[ x . t e s t , y . t e s t ] = t rue
i j _dp [ x . t e s t , y . t e s t ] = f a l s e
k = k + 1

At each hex (i, j), a random number between 1 and 6 is generated. This determines
(following the scheme shown in Figure 17.3) the direction for the next step in the
random walk. If this next hex (i∗, j∗) lies outside the area of the map defined by
(1 : nh,1 : nh), then the boolean flag in.area remains false and a new direction is
determined. Otherwise, IJmd (i∗, j∗) is set to true, IJdp (i∗, j∗) is set to false, and the
walk continues from (i∗, j∗) onwards. This process is repeated until nmd hexes have
been converted to medium-depth water hexes. The results for the example map are
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given in Figure 18.1 (upper plot).
Following some experimentation with this approach, I noted that there was a ten-

dency for the random walk to generate isolated single hexes (of either deep or medium-
depth water). While this is not an adverse result in terms of the use in simulations to
which the map is to be put, I felt that the isolates reduced the coherence and believ-
ability of the maps. To address this, I added a sweep function which determines which
hexes (if any) are deep water completely surrounded by medium-depth water (the re-
verse cannot arise from the random walk). The function then converts these hexes
from deep to medium-depth water and thus removes the isolates. The results for the
example map are given in Figure 18.1 (lower plot), in which it can be seen that the four
isolated deep water hexes have been converted to medium-depth water hexes. Hexes
on the boundary of the map are not included in this sweep step.

Step 4 is to build shallow water hexes onto medium-depth water hexes. This fol-
lows a similar random-walk algorithm to that for medium-depth hexes, except that
shallow water cannot be built on top of deep water. Hence, in the process of generating
the nsh = bn2

hρsh + 0.5c shallow water hexes (where ρsh = 0.5), the walk moves for-
ward in the randomly-determined direction only if new hex is both within the area of
the map, and is already defined as a medium-depth water hex. Changing from medium-
depth water to shallow water for a given hex is implemented by altering the values of
the relevant elements of IJmd and IJsh, as before, and I include a further sweep to re-
move isolates, also as before. The results for the example are given in Figure 18.2.
Continuing upwards, I now modify a proportion of the shallow water hexes to make
them land (using ρin = 0.25), adding a sweep to deal with single-hex lakes and land
bridges (defined as any land hex that has two non-contiguous land hexes joined to it;
Figure 18.3). I also note that land hexes cannot form part of the boundary of the map,
as this can lead to large areas of sea being isolated from each other. The final steps are
a last sweep for single hexes of any depth (Figure 18.4, upper plot) and a function to re-
define those land hexes with adjoining sea hexes as “coast” hexes (Figure 18.4, lower
plot). These have a special function in the simulation, as they are the only suitable
locations for ports.

The maps generated by this process are randomly determined, but they are based
on two main regular principles: depth determination proceeds from the bottom up,
and an attempt is made to deal with isolated hexes. The intended proportion of hexes
within each depth category is also maintained, for the most part, although minor de-
viations will occur as the results of isolate removal (Figure 18.5). The process is also
completely scalable: Figure 18.6 shows two simulated maps with nh = 5 and 100 re-
spectively.
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Step 2: Medium−depth water

● ● ● ● ●Inland Coast Shallow Medium Deep

Step 3: Medium−depth water without pockets

● ● ● ● ●Inland Coast Shallow Medium Deep

Figure 18.1: Hex map generation: steps 2 (medium-depth water) and 3 (removing isolated hexes from
the medium-depth water array). Here the number of hexes to each side of the map nh = 20. The legend
gives the colours used to indicate each depth band.

228



Step 4: Shallow water

● ● ● ● ●Inland Coast Shallow Medium Deep

Step 5: Shallow water without pockets

● ● ● ● ●Inland Coast Shallow Medium Deep

Figure 18.2: Hex map generation: steps 4 (shallow water) and 5 (removing isolated hexes from the
shallow water array). Here the number of hexes to each side of the map nh = 20. The legend gives the
colours used to indicate each depth band.
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Step 6: Land

● ● ● ● ●Inland Coast Shallow Medium Deep

Step 7: Land without single−hex lakes or bridges

● ● ● ● ●Inland Coast Shallow Medium Deep

Figure 18.3: Hex map generation: steps 6 (land) and 7 (removal of single-hex lakes and land bridges).
Here the number of hexes to each side of the map nh = 20. The legend gives the colours used to indicate
each depth band.
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Step 8: Final sweep for single hexes

● ● ● ● ●Inland Coast Shallow Medium Deep

Step 9: Coast

● ● ● ● ●Inland Coast Shallow Medium Deep

Figure 18.4: Hex map generation: steps 8 (final sweep to remove isolates) and 9 (definition of coastal
hexes). Here the number of hexes to each side of the map nh = 20. The legend gives the colours used to
indicate each depth band.
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Figure 18.5: Hex map generation: resultant depth histogram, for example in which nh = 20.
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Final map

● ● ● ● ●Inland Coast Shallow Medium Deep

Final map

● ● ● ● ●Inland Coast Shallow Medium Deep

Figure 18.6: Hex map generation: examples for nh = 5 (upper) and nh = 100 (lower). The legend gives
the colours used to indicate each depth band.

233



19 Path finding

Having generated stochastic simulation maps, the next requirement was for a method
to determine the minimum distance from any given hex to any other hex, assuming
that only sea hexes are passable. In order to minimise fuel use and other costs from
being at sea, it is reasonable to assume that skippers will usually take the shortest route
possible between their home harbour and their selected fishing grounds, or between
one fishing ground and another, and to be realistic the simulation must reflect this.

Many different approaches to the problem of path determination exist, and de-
termining the shortest possible distance between two points on a non-trivial map is a
problem that occurs in many fields. Much of the extant literature refers to work done in
the context of computer games (Woodcock 2008). An example is Stout (1996), which
is very well-cited and has considerable status as the standard work on the subject of
pathfinding (particularly in the context of gaming). Stout (1996) provides a download-
able program PathDemo which allows testing of many different types of pathfinding
algorithm, and in the course of developing pathfinding approaches for the fisheries
simulation I implemented several of these in R.

Many of the simple algorithms can work well, but run into difficulties when pre-
sented with situations to which they are not well suited. An example is given in Fig-
ure 19.1. Here I have implemented an algorithm which uses the following simple
decision rule: “head towards the target, turn right or left if hitting land, choose shortest
such path.” The Figure demonstrates that such an approach can easily get stuck, and is
clearly not a generally-applicable solution.

One of the most flexible and widely-used pathfinding algorithms is the so-called
A* algorithm: an example using PathDemo is given in Figure 19.2. The A* algorithm
was first described by Hart et al. (1968), in relation to theoretical graph analysis, with
further developments following shortly thereafter (Hart et al. 1972). It is a recursive-
tree algorithm that searches down potential path trees to determine the shortest suitable
paths. It differs from a simple depth or breadth first search in that it uses a heuristic to
direct the search in the direction of the target. In other words, each node (or hex) n is
given a score f (n), where

f (n) = ωgg(n)+ωhh(n). (19.1)

Here g(n) is the actual cost of moving from the start node to node n, in terms of distance
travelled, while h(n) is an estimate of the distance from node n to the target node. h(n)
is often chosen as the Euclidean (straight line) distance, but other formulations are
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possible. ωg and ωh are weightings terms. This approach generally improves the
process in terms of finding the shortest path. Although there can be situations where
it makes it slower, the heuristic can be tailored to the analysis. Too high a value of
the heuristic weighting ωh can lead to suboptimal paths: should this be a problem, the
algorithm can be made to mimic a simple depth-first search by setting ωh = 0.

Figure 19.1: Path examples when using a simple “head towards the target, turn right or left if hitting
land, choose shortest such path.” Green and purple dots show start hexes, red dots are target hexes. Sea
hexes are blue (or hatched blue if also spawning areas), land hexes are green. Red arrows show direction
towards target from each test hex. Dotted black line in the left plot shows the selected shortest route.
No shortest route can be found using this method for the right-hand map.

The properties of the A* algorithm, in particular its optimality, have been studied
in considerable depth in the literature: in addition to Hart et al. (1968) and Hart et al.
(1972), examples include Dechter and Pearl (1985). The pseudo-code given by Stout
(1996) is as follows:

priorityqueue Open

list Closed

AStarSearch

s.g = 0 // s is the start node

s.h = GoalDistEstimate(s)

s.f = s.g + s.h

s.parent = null

push s on Open
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Figure 19.2: Example of the use of the A* algorithm in PathDemo (Stout 1996). The start and end points
of the path are shown as green and red points respectively, impassable squares are given in black, and
the shortest possible path is shown as a red line. The other lines show trial paths which were rejected.

while Open is not empty

pop node n from Open // n has the lowest f

if n is a goal node

construct path

return success

for each successor n’ of n

newg = n.g + cost(n,n’)

if n’ is in Open or Closed,

and n’.g < = newg

skip

n’.parent = n

n’.g = newg

n’.h = GoalDistEstimate(n’)

n’.f = n’.g + n’.h

if n’ is in Closed
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remove it from Closed

if n’ is not yet in Open

push n’ on Open

push n onto Closed

return failure // if no path found

I illustrate the A* algorithm through a simple example. Consider the generated area
in Figure 19.3. This includes 25 hexes in a 5× 5 grid, with six land hexes positioned
centrally. The aim is to determine the shortest path from the Start hex (marked S) to
the End hex (marked E). Listed on each hex are five numbers, namely (from top to
bottom): the hex identifier i along with the identifier of the parent of the hex in the
current best path, the “heuristic” value H (see below), the number of hexes G traversed
to reach hex i from the Start hex, and the hex score F = G + H. In this case (and in
the simulation implementation), the “heuristic” H is the straight line distance from the
centre of hex i to the centre of the End hex (calculated using Pythagoras’ Theorem),
and H is given equal weight to G in the calculation of F .

The algorithm proceeds according to the following steps:

1. Add the Start hex to the Closed list.

2. Add the admissible (non-land) neighbours (hexes 8 and 9) of the Start hex to the
Open list, noting the parent hex (S, in this case) and calculate their G, H and F

scores. This is the point reached in Figure 19.3.

3. Pick the element of the Open list with the lowest F score (hex 8, in this case).
Move this element to the Closed list. Add all admissible neighbours (non-land
and not already in the Closed list) of this element to the Open list. If a neigh-
bouring hex is already in the Open list, only replace it in this step if the new G

score is lower than the existing G score. The result of these steps can be seen in
Figure 19.4.

4. Repeat for the element of the new Open list with the lowest F score (hex 9), to
produce the lists in Figure 19.5.

5. Continue until the End hex E appears in the Closed list (Figure 19.6).

Once this stage is reached, the required shortest path can be recovered by following
the trail of Parent hexes in the Closed list. In this case, the hexes on the path (reading
backwards from the End hex) are (E,16,11,6,2,8,S), and the path length is 6 hexes.
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1 / -
4.00

-
- 2 / -

3.64
-
-

3 / -
4.47

-
- 4 / -

4.61
-
-

5 / -
5.66

-
-

6 / -
3.00

-
- 9 / S

3.91
1.00
4.91S

8 / S
3.61
1.00
4.617

10 / -
5.00

-
-

15 / -
4.47

-
-

20 / -
4.12

-
-

14

18

12

11 / -
2.00

-
-

25 / -
4.00

-
-24 / -

3.04
-
-

19

23 / -
2.00

-
-22 / -

1.00
-
-

17

E
0.00

-
-

16 / -
1.00

-
-

Open:
Hex G H F Pnt
8 1.00 3.61 4.61 S
9 1.00 3.91 4.91 S

Closed:
Hex G H F Pnt
S - - - -

Figure 19.3: Step 1 of a simple demonstration of the A* algorithm. The Start hex is marked by S, the
End hex by E, and all non-land hexes (apart from the Start hex S) are marked by the hex identifier i, the
“heuristic” value H (see text), the number of hexes G traversed to reach hex i from the Start hex, and the
hex score F = G+H (in that order). A hyphen indicates that a value has not yet been determined. The
tables list the Open and Closed hexes, along with the F , G and H scores and the current Parent of each
hex.
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6.47 4 / 8
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2.00
6.61

5 / -
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-
-

6 / -
3.00

-
- 9 / S

3.91
1.00
4.91S

8 / S
3.61
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4.617
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-
-
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E
0.00

-
-

16 / -
1.00

-
-

Open:
Hex G H F Pnt
9 1.00 3.91 4.91 S
2 2.00 3.64 5.64 8
3 2.00 4.47 6.47 8
4 2.00 4.61 6.61 8

Closed:
Hex G H F Pnt
S - - - -
8 1.00 3.61 4.61 S

Figure 19.4: Step 2 of a simple demonstration of the A* algorithm. See caption to Figure 19.3 for
details.
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7.00

15 / 9
4.47
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-
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E
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-
-

16 / -
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-
-

Open:
Hex G H F Pnt
2 2.00 3.64 5.64 8
3 2.00 4.47 6.47 8
4 2.00 4.61 6.61 8
10 2.00 5.00 7.00 9
15 2.00 4.47 6.47 9

Closed:
Hex G H F Pnt
S - - - -
8 1.00 3.61 4.61 S
9 1.00 3.91 4.91 S

Figure 19.5: Step 3 of a simple demonstration of the A* algorithm. See caption to Figure 19.3 for
details.
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5.00
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16 / 11
1.00
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Open:
Hex G H F Pnt
3 2.00 4.47 6.47 8
4 2.00 4.61 6.61 8
10 2.00 5.00 7.00 9
15 2.00 4.47 6.47 9
1 3.00 4.00 7.00 2

Closed:
Hex G H F Pnt
S - - - -
8 1.00 3.61 4.61 S
9 1.00 3.91 4.91 S
2 2.00 3.64 5.64 8
6 3.00 3.00 6.00 2
11 4.00 2.00 6.00 6
16 5.00 1.00 6.00 11
E 6.00 0.00 6.00 16

Figure 19.6: Step 4 of a simple demonstration of the A* algorithm. See caption to Figure 19.3 for
details.
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My implementation in R followed the standard A* algorithm quite faithfully, al-
though with minor modifications to allow for the restrictions of the R language. Ex-
amples of the application of the algorithm to find the shortest path between points in
two runs of my simulation model are given in Figure 19.7. The algorithm will always
find the shortest path if a path exists, and if not, it will report that no such path is possi-
ble. The times taken to find the paths in Figure 19.7 are as follows: although the code
is written entirely in native R code and should therefore be quite slow, the run times
are not unreasonable.

nh Start point Length of path (hexes) Time taken for estimation (s)

20 1 4 0.10
20 2 25 1.14
20 3 26 1.33

100 1 68 8.25
100 2 103 22.20
100 3 55 7.24
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Figure 19.7: Path-finding using the A* algorithm: examples for nh = 20 (upper) and nh = 100 (lower).
The legend gives the colours used to indicate each depth band. The yellow dot shows the centre of the
target hex. Three coastal hexes are marked, and red lines show the shortest path from each to the target
hex.
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20 Representing fish populations and fishing vessels

Once the geography and bathymetry of the simulation area has been defined, the next
step is to populate the area with fish. Fish population simulations have a long history,
and there are many more extant models of fish than there are of fisheries (see Hart and
Pitcher 1983, for a useful introduction). Given that the main foci of my simulation are
the dynamics of fleets and the responses of fishermen to regulation changes, the model
of fish populations on which subsequent models of fisheries will be built does not need
to be very fully realised. As I discussed in Chapter I, fish population biology needs to
be characterised in a fisheries model only to the extent necessary (Harte 1988, Paola
2011), although what that means is dependent on the context and it is also important
to remember that: “there is a need for greater emphasis in simulation tests on the
implications of alternative stock structures, spatial dynamics and ecosystem effects”
(Butterworth 2008b, p. 385), to which I would add fishery response patterns.

The first (conceptual) version of the fish population model that I created for this
purpose was based on individuals, following such authors as Hinckley et al. (1996)
The second (actual) version was a rather complex, age- and length-structured stochastic
model of stock distributions that allowed for variations in growth, and which enabled
models of fishing gear (and other sources of mortality) to be fully length-specified.
While this approach would have produced realistic models with many of the charac-
teristics of actual fish stocks, there were two drawbacks. Firstly, it was very memory-
intensive: using one-cm length classes, a model of a cod-like population would need
perhaps 100 such classes for every hex. If ages are used, this requirement drops dra-
matically, to 10 or 15 age-class records per hex. Secondly, and more problematically,
growth needs to be treated carefully for a length-based model to produce appropri-
ate results. Gurney et al. (2007) show that a monotonic rescaling of length classes into
variable-extent size classes prevents unwanted bunching effects for larger fish, but time
did not permit this to be done for the analysis reported in this thesis. Most processes af-
fecting marine fish are driven by length (or size) rather than by age, but for this version
of the model I considered it sufficient to implement an age-based modelling approach
only. The extension to a length-based approach must be reserved for future work.

The biological simulation was set up in the first instance (and without loss of gen-
erality) to model one fish stock, although as the approach uses a list in R it would be
readily extendible to several stocks. The first stock was designed to mimic the bio-
logical characteristics of cod (Gadus morhua) in the North Sea (ICES Subarea IV and
Divisions IIIaN and VIId; see Figure 4.1), due to its high profile in European fisheries
management and its economic importance for many of the fleets that I intend for the
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model to simulate. Data on North Sea cod were taken from ICES (2011c) and used to
generate appropriate models of biological parameters, as described below.

20.1 WEIGHTS AT AGE

Mean weights-at-age in the North Sea cod stock Wa,y for ages 1-11+ and years 2001-
2010 were extracted from ICES (2011c) and are reproduced in Table 20.1. Note that
these are actually mean catch weights-at-age, but ICES (2011c) assumes that these
are the same as stock weights-at-age and I make the same assumption here. Rough
estimates for age 0 have been included here, as age-0 fish appear in my simulation
but not in the ICES assessment. Only the most recent 10 years were used, as growth
characterisics for fish such as cod can change considerably through time and more
historical weight data may not be relevant (Baudron et al. 2011, Jaworski 2011). These
data were used to estimate parameter values for the following parameterisation of the
von Bertalanffy individual growth model

Wa,y = W∞ (1− exp(−aκvb))
βvb (20.1)

which I obtain by substituting the usual allometric weight relationship Wa,y = αvbLβvb
a,y

into the classic von Bertalanffy model (von Bertalanffy 1934, Beverton and Holt 1957)

La,y = L∞ (1− exp(−κvb (t− t0))) , (20.2)

setting W∞ = αvbLβvb
∞ and allowing t0 = 0. Parameters were estimated by nonlinear

least-squares regression using the nls.lm function in the R minpack library (Elzhov
et al. 2010). The Hessian H of this model fit was then used to define a multivariate Nor-
mal distribution of the model parameters, and the R function mvrnorm (Venables and
Ripley 2002, Ripley 2011) applied to draw 1000 samples from this distribution. This
generated 1000 values of W∞, κvb and βvb in such a way that their variance-covariance
structure from the Hessian was maintained. Each of these parameter resamples was
then used in turn to produce a von Bertalanffy curve, and I derived a 95% confidence
interval about the fitted von Bertalanffy curve from the 2.5% and 97.5% quantiles of
these 1000 curves at each age (see Figure 20.1). This is analogous to the uncertainty
estimation procedure using for the SURBA stock assessment model (see Section 8.3.3).

In the simulations, increases in weights-at-age were applied each week, following
the smooth fitted von Bertalanffy curve in Figure 20.1.
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Age
Year 0 1 2 3 4 5 6 7 8 9 10 11+

2001 0.10 0.37 0.61 2.09 3.66 5.87 7.33 9.26 10.08 12.06 12.01 10.20
2002 0.10 0.46 0.92 1.71 3.86 5.37 7.99 9.63 10.40 10.96 12.82 11.84
2003 0.10 0.28 0.75 1.53 3.19 5.11 7.27 8.63 12.06 12.85 10.77 17.35
2004 0.10 0.34 0.67 1.71 3.10 5.17 7.43 8.68 9.80 11.68 13.06 14.14
2005 0.10 0.35 0.90 1.95 3.70 5.06 7.56 9.61 11.23 11.50 13.33 15.34
2006 0.10 0.22 0.77 1.97 3.61 5.59 6.85 8.91 10.64 12.22 9.21 10.77
2007 0.10 0.28 0.86 2.19 4.06 5.61 8.47 8.92 9.90 12.36 13.73 8.15
2008 0.10 0.33 0.90 1.97 3.83 5.69 7.23 9.32 9.88 11.60 15.28 13.30
2009 0.10 0.39 1.03 2.34 3.97 6.04 7.54 8.80 10.21 10.00 11.92 13.60
2010 0.10 0.29 1.03 2.45 4.20 6.05 7.69 9.23 10.31 10.80 11.46 10.52

Table 20.1: Mean catch (stock) weights-at-age for North Sea cod. Source: ICES (2011c)

20.2 NATURAL MORTALITY

For a number of years, the ICES Working Group on Multispecies Assessment Meth-
ods (WGSAM: ICES 2008b, ICES 2009b, ICES 2010b) has produced estimates of
natural mortality for the main stocks of interest in European waters. These are de-
rived using a multispecies assessment model (SMS: Lewy and Vinther 2004), based
on stomach-contents data in addition to the standard catch and survey data. The last
large-scale survey of stomach contents was in 1991 (ICES 1996) so the predation links
are necessarily out of date, but ICES recommend that the resultant estimates of natural
mortality M are appropriate if used with care. The assessment of North Sea cod is
carried out using these estimated, time-varying natural mortality rates (ICES 2011c),
so it is reasonable for them to be used to characterise my simulation also.

Estimates of natural mortality M from ICES (2008b), via ICES (2011c), are given
in Table 20.2. The North Sea cod assessment does not include age-0 fish, so the M esti-
mates have been augmented with a fixed value of 1.5 for age 0: this seems a reasonable
value with reference to other gadoid stocks in the North Sea (for example, M0 = 2.05
for haddock; ICES 2011c). I fitted the following simple model to these data, by non-
linear least-squares regression using the nls.lm function in the R minpack library
(Elzhov et al. 2010):

Ma = bm +
am

a+1
. (20.3)

Using an approach analogous to that used for weights-at-age (Section 20.1), I also
generated 95% confidence limits about the fitted curve. The data from ICES (2011c),
along with the fitted line and its confidence bounds, are presented in Figure 20.2.
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Age

Year 0 1 2 3 4 5 6 7+
2001 1.50 0.56 0.29 0.44 0.27 0.27 0.35 0.20
2002 1.50 0.53 0.28 0.43 0.27 0.27 0.35 0.20
2003 1.50 0.51 0.28 0.42 0.27 0.27 0.34 0.20
2004 1.50 0.50 0.27 0.41 0.27 0.27 0.34 0.20
2005 1.50 0.49 0.27 0.40 0.26 0.26 0.34 0.20
2006 1.50 0.47 0.27 0.39 0.26 0.26 0.33 0.20
2007 1.50 0.46 0.26 0.38 0.26 0.26 0.33 0.20
2008 1.50 0.46 0.26 0.38 0.26 0.26 0.33 0.20
2009 1.50 0.46 0.26 0.38 0.26 0.26 0.33 0.20
2010 1.50 0.46 0.26 0.38 0.26 0.26 0.33 0.20

Table 20.2: Natural mortality M estimates for North Sea cod. Sources: ICES (2008b), ICES (2011c).

20.3 MATURITY AT AGE

The ICES assessment of North Sea cod (ICES 2011c) makes the assumption that the
proportion of fish that are mature at each age is fixed through time. Recent work that
I undertook with the North Sea haddock stock (see ICES 2011a) would suggest that
this is unlikely to be true for any gadoid stock, but in the absence of appropriate data
it is difficult to produce improved models of changes in North Sea cod maturation.
However, in the simulations it is important that increases in proportion mature at age
Mata,y are applied each week. To enable this, I fitted the following function to the data
in Table 20.3,

Mata,y =
eαmat+βmat

1+ eαmat+βmat
, (20.4)

for which αmat = −6.058 and βmat = 1.623, and the resultant curve (Figure 20.3) is
applied to generate increases in maturity for every week in the simulation.

Age 0 1 2 3 4 5 6 and older

Proportion mature 0.00 0.01 0.05 0.23 0.62 0.86 1.00

Table 20.3: Proportion mature-at-age for North Sea cod. Source: ICES (2011c)
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Figure 20.1: Estimated age-weight relationship for North Sea cod. Small circles reproduce age-weight
data for North Sea cod given in ICES (2011c). Lines give fitted von Bertalanffy curve (solid) with
approximate 95% confidence interval (dotted). The legend indicates estimates for W∞ (w.inf), κvb (w.k)
and βvb (w.b) (see Equation 20.1).
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dence interval (dotted). The legend indicates estimates for am (a.m) and bm (b.m) (see Equation 20.3).
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20.4 CARRYING CAPACITY

In many fish stocks, individuals of different sizes are not distributed evenly across the
habitable range (Horne and Schneider 1997, ICES 2011c) There will often be clearly-
defined nursery areas, in which most fish will be juveniles apart from an influx of
larger adults at spawning time (Pastoors et al. 2000), and there may be specific feeding
areas in deeper water which are only used by large individuals. These uneven size
distributions can have a significant impact on the location of fishing activity: vessels
targetting larger fish might preferentially avoid nursery areas, for example.

In the simulation, I have implemented a caricature of this feature by defining dif-
ferent carrying-capacity functions for different water depths. The maximum number
of fish (across all ages) that each sea hex can hold was fixed to 10000 (that is, twice
the mean of recent implied North Sea cod recruitment; see Section 20.5). A beta dis-
tribution (scaled to lie across the available ages in the simulated population) is used to
define the maximum permitted number of fish at each age that can be found in each
hex, and the parameters of the beta distributions are different for different depths. In
this way, I generate an uneven age distribution of fish in different areas such as I would
expect to find in reality. The general beta distribution for ages a with shape parameters
αcc and βcc is given by

Ba ∼
Γ(αcc +βcc)
Γ(αcc)Γ(βcc)

aαcc−1(1−a)βcc−1 (20.5)

for αcc > 0, βcc > 0, 0≤ a≤ 1 and Γ(αcc) =
∫

∞

0 tαcc−1e−tdt. For use in the simulation,
I rescaled the beta distribution so that 0≤ a≤ 15 and ∑a Ba = 10000 as required.

In future work, the parameters of the beta distributions could be derived from ob-
served age- or length-frequency data from different locales. For this first implementa-
tion of the simulation, I have chosen beta-distribution parameters in order to generate
specific characterstics. The parameters are summarised in Table 20.4, and the resultant
carrying-capacity beta distributions across ages are given in Figure 20.4.

Depth αcc βcc Characteristic

Shallow (-50 m) 1 3 Mostly younger fish (a≤ 5)
Medium (-100 m) 2 2 Mostly medium-aged fish (5 < a < 10)
Deep (-200 m) 3 1 Mostly older fish (a≥ 10)

Table 20.4: Carrying-capacity beta distribution parameters for North Sea cod.
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Figure 20.4: Assumed carrying capacities by age for North Sea cod, for three depths (shallow, medium,
deep). The total carrying capacity in each case is 10000 fish.

20.5 RECRUITMENT

The Ricker stock-recruitment model (Ricker 1958) has been used for many years by
ICES assessment working groups to attempt to characterise the relationship between
spawning-stock biomass B and subsequent recruitment R, and thereby to try to improve
stock forecasts for managers (Needle 2002). In particular, the Ricker model is used to
generate forecasts for North Sea cod recruitment at age 1 in year y (ICES 2011c), which
I denote here by R′y. For my simulation, I need to characterise (and then generate)
recruitment at age 0 (which I denote here by Ry), as that is the first age in the model.
In order to generate representative values for RY on which to base the Ricker model fit,
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I back-tracked values of R′y from ICES (2011c) by one year, using the fixed values of
natural mortality M0,y (see Section 20.2), so that

Ry = R′yeM0,y. (20.6)

The standard formulation for the Ricker model is

Ry = αrBy exp(−βrBy) , (20.7)

where Ry is recruitment in year y, By is the parental spawning stock biomass (here I
assume recruitment to the fished population at age 0), and αr and βr are parameters
to be estimated. To do this, Equation 20.7 is linearised by applying a log transform to
both sides,

ln
(

Ry

By

)
= lnαr−βrBy (20.8)

= b0 +b1By.

I estimate parameters b0 and b1 using the lm function in R, and backtransform using

αr = exp(b0) (20.9)

βr = −b1. (20.10)

This gives the fitted Ricker curve. Approximate 95% confidence intervals about the
curve are generated using the same bootstrap process as used for weights-at-age (see
Section 20.1, and Needle and Hillary 2007). The fitted Ricker model for North Sea
cod is shown in Figure 20.5.

I intended to use this fitted model to generate recruitment in the fisheries simula-
tion model. However, initial trials demonstrated a problem with this particular curve.
Consider the first derivative w.r.t. B of the Ricker model,

dR
dB

=−αre−βrB (βrB−1) . (20.11)

Setting this to zero and solving for B gives the value of spawning-stock biomass at
which the Ricker curve reaches its maximum,

Bmax =
1
βr

. (20.12)
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The corresponding maximum recruitment is then

Rmax =
αr

βre1 . (20.13)

For the model fit shown in Figure 20.5, α̂r = 15.310 and β̂r = 3.462×10−5, giving

(Bmax,Rmax)∼ (2888,16269) . (20.14)

This point is well outside the observed data range for this stock. In the simulation,
this linear increase in R with increasing B means that both increase very rapidly, lead-
ing to a simulated stock which bears little resemblence to that characterised by the
stock-recruitment data in Figure 20.5. To account for this, a dummy Ricker stock-
recruitment curve was defined by setting the maximum (Bmax,Rmax) = (100,2000).
Applying Equations 20.12 and 20.13 gave

(αr,βr) = (54.367,0.010). (20.15)

This new curve is also shown in Figure 20.5, and was used subsequently in simulations
with the inclusion of a noise term, so that

R′y = Ryeε (20.16)

where ε ∼ N
(
0,σ2

r
)

and the standard deviation σr is fixed at 0.25. Recruitment is
assumed to occur at the start of the first week of each year.

I note also that there are no mature fish in the population at the start of each sim-
ulation, so the application of the Ricker model in the first year would generate zero
recruitment. To circumvent this, recruitment R1 in the first year is fixed at 2000, which
is roughly four times the mean of the estimated North Sea cod recruitment (in millions)
during 2001-2010 (see Figure 20.5).

Finally, a spawning depth for each stock is defined (for the cod-like stock it is
shallow water at 50 m), and the number of spawning locations is determined. For the
simple one-stock simulation, I used only one spawning location, but this is flexible.
Once the spawning locations have been determined at the start of each simulation, they
do not move thereafter.
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20.6 OVERCAPACITY AND RANDOM DISPERSION

Figure 20.6 shows an example of the start point of a simulation. The first step is for a
large recruitment event to occur, in which 2000 fish of age 0 appear at the spawning
location. However, this will be too many fish for the capacity of the spawning-location
hex: Figure 20.4 shows that the maximum number of age-0 fish that any shallow hex
can hold is 1814 (note that here I am using the term fish as a shorthand for fish from the

simulated cod-like stock). Hence, the second step is to apply overcapacity dispersion,
as follows.

Consider a hex h, with row and column number
(
hi,h j

)
. For each age a, hex h

contains nh
a fish. I calculate the difference Dh

a, between nh
a and the permitted maxi-

mum carrying capacity Nh
a of the hex (from Equation 20.5). Dh

a then represents the
overcapacity fish of age a that are currently in hex h. At this point, I also calculate
the convergence criterion δ = ∑a,h Dh

a (that is, the overcapacity fish summed across all
ages and hexes). The next stage is to split the Dh

a fish into six equal parts, and move
each part from hex h into each of the six neighbouring hexes (as defined by the ap-
propriate hex movement schedule: see Figure 17.3). If the intended destination hex
is land or outwith the boundary of the map, the movement will not occur, but it will

occur if the movement would lead to the destination hex becoming overcapacity. The
dispersion process is carried out for all sea hexes, and then repeated iteratively until
the convergence criterion δ falls below 1814 (so some remaining overcapacity fish are
permitted: insisting that δ → 0 can lead to endless loops).

The result of this initial overcapacity dispersion can be seen in Figure 20.7. I note
that this approach lacks biological realism, as repeated movement can see individual
groups of fish moving much further than would actually be possible in the given time-
frame. However, I would argue that the approach generates appropriate dispersal on
the scale of the population as a whole, and as I am not trying to model the survival
characteristics of individual fish, this type of dispersion (or diffusion) is probably rea-
sonable.

Each week in the simulation also included a random dispersion step. This func-
tioned in much the same way as the overcapacity dispersion, except that a proportion
of fish at each age in each hex could move away from that hex whether overcapacity
or not. The proportion was determined stochastically for each age a, year y and hex h

using

ρa,y,h ∼ U
(

1
2

ρmax,ρmax

)
(20.17)

and then the number of fish of age a in year y and hex h to be moved was determined
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as
Pa,y,h = ρa,y,hNa,y,h. (20.18)

The direction of movement was generated in the same way as for overcapacity dis-
persion. Following initial trials, the maximum dispersion rate ρmax was set to 0.25.
Random dispersion can lead to hexes being overcapacity for certain ages, but to save
run-times the overcapacity dispersion step was only applied once in every six months
of simulation time. An example of the effect of the first random dispersion is given
in Figure 20.9, which follows the first application of natural mortality (Figure 20.8).
The continuation of the simulation in these plots (which as yet does not include any
fishing) leads to Figure 20.10, which shows the stock situation after the first 26 weeks
(half the first year).
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Figure 20.6: Stock summary at the start point of a simulation. Top right: total abundance Nh in each
hex, summed across ages. The value of Nh is printed on each hex, and hexes are colour-coded to reflect
abundance from blue (low) to red (high). Land and coast areas are marked in two shades of green. The
total stock abundance is also given. Top right: as for top left, but summarising spawning-stock biomass
B per hex. Spawning locations are marked with red dots. Bottom left: bathymetry with superposed
age distributions in red (along with the spawning location). These distributions are scaled so that the
maximum bar height is always the same. Bottom right: age distribution for whole stock.
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Figure 20.7: Stock summary after the first overcapacity dispersion. See caption to Figure 20.6 for
details.
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Figure 20.8: Stock summary after the first application of natural mortality and growth (although the
consequences of growth in this first week are not apparent in SSB, as both maturity and weight are still
extremely low). See caption to Figure 20.6 for details.
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Figure 20.9: Stock summary after the first application of random dispersion. See caption to Figure 20.6
for details.

261



total numbers = 1090

4

2

43
67

78
●●201

125

133

117

96

69

57

23

30

15

8

9

2

3

4

2

2

total SSB = 0 tonnes

●●

Scaled age dist for cod

●●

● ● ● ● ●Inland Coast Shallow Medium Deep

5 10 15

0
20

0
40

0
60

0
80

0
10

00

Age

S
to

ck
 n

um
be

rs

cod: week = 26, year = 1

Figure 20.10: Stock summary at the start of week 26 in the first year. See caption to Figure 20.6 for
details.
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20.7 FISHING

A spatial simulation of one or more fish populations cannot be used to address issues
of fisheries management without the ability to simulate one or more fishing vessels.
Consider the simplest case of one vessel (although, as for the simulated stock(s), vessel
data is held in a list in R and so is readily extendible to two or more vessels). The
following settings and data objects are required in order to be able to add this vessel to
the simulation:

Start year The vessel is not allowed to start fishing until a number of years have
elapsed in the simulation, in order to let the fish populations settle into an equi-
librium (albeit a fluctuating one). In trials, the start year was set to y = 5.

Home port The location of the home port of the vessel is randomly selected from the
available coastal hexes in the simulation. To ensure that the chosen hex is suit-
able, the selection algorithm includes a check that more than 90% of the water
hexes are accessible from the port hex. Accessability is determined by using the
A* algorithm (Section 19) to check if there exist paths from the proposed home
port to each and every sea hex.This prevents the home port being positioned on
a lake or other inland water feature. An example is given in Figure 20.11.

Selectivity The selectivity σl of fishing gear (that is, the proportion of available fish
in each length class that the gear would be expected to retain) is often modelled
by an S-shaped curve (Beverton and Holt 1957). One formulation of this is

σl =
1

1+ exp(s1− s2l)
, (20.19)

with two parameters s1 and s2. The selectivity curve is often summarised by
the length at which 50% and 25% of fish are retained (denoted by L50 and L25

respectively). Given these two quantities, the required parameters can be derived
using

s2 =
ln3

L50−L25
, (20.20)

s1 = L50s2. (20.21)

For example, UK studies in 2001 (Barry O’Neill, Marine Laboratory, Aberdeen,
pers comm) indicated that, for North Sea cod, L50 = 29.4cm and L25 = 26.9cm,
implying that s1 = 12.92 and s2 = 0.44.

263



Although my simulation model is currently based on age rather than length, I
can generate an age-based selectivity curve in a directly-analagous manner. Ob-
servations of cod lengths at age from the ICES North Sea International Bot-
tom Trawl Survey (IBTS) data, available from the DATRAS database (http:
//datras.ices.dk/), indicate that the mean age of cod measuring 29.4 cm
(L50) and 26.9 cm (L25) respectively is approximately

a50 = 2.0, (20.22)

a25 = 1.0, (20.23)

from which an age-based selectivity curve can be derived using

sa
2 =

ln3
a50−a25

, (20.24)

sa
1 = a50sa

2, (20.25)

and
σa =

1
1+ exp

(
sa

1− sa
2a
) (20.26)

for age a.

The resultant selectivy-at-age curve is plotted in Figure 20.12. Note that this
indicates only the proportion of fish which are retained by the gear once in the
net, and does not account for the availability of fish to the gear in the first place.

Fuel costs The cost of diesel fuel is one of the key financial impediments for mod-
ern fishing vessels (Abernethy et al. 2010). Some types of fishing (for example,
beam trawling) require a large amount of fuel, while others (for example, creel-
ing) may require less, but for all vessels expenditure on fuel is one of the main
costs associated with fishing activity. The economics of fuel for fishing are com-
plicated and the subject of an extensive literature, but for this first implementa-
tion of my simulation model it is sufficient to consider fuel costs to be a function
of the number of hexes travelled in a trip: the further away the fishing grounds,
the more expensive it is to get there (and back). In the simple trials described in
Section 21, I have assumed that travelling one hex costs Ct = £100.

Fish price If fuel is the main cost of fishing activity, then clearly the main benefit (and
hence source of income and potential profit) is selling the fish caught. The price
of fish is another complicated variable that can change considerably from day
to day due to numerous factors (both internal and external to the market), and
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which itself is the subject of extensive literature (see, for example Sumaila et
al. 2007), but (as with fuel price) I have deemed it sufficient to consider a simple
price function in which price Pa per fish is a function of the square-root of age a,

Pa = φ
√

a, (20.27)

where φ is a fixed constant. The shape of this relationship for φ = 1000.0 is
given in Figure 20.13.

Home port

x

● ● ● ● ●Inland Coast Shallow Medium Deep

Figure 20.11: An example of a generated home port, marked with a blue cross. A hex is allowed to be a
home port if vessels from that hex access at least 90% of sea hexes (in this case, all of the sea hexes can
be accessed).

265



0 5 10 15

0.
2

0.
4

0.
6

0.
8

1.
0

Age

S
el

ec
tiv

ity

a50 = 2
a25 = 1

Figure 20.12: Age-based selectivity σa for a UK-type vessel fishing on North Sea cod.

Once fishing parameters have been defined, the activities of the fishing vessel can
be simulated within the wider fisheries model. For this implementation, the fishing
location for the vessel for each week is determined as follows:

1. The vessel is assumed to start each week at the home port.

2. A search is carried out to determine the fishing location for that week. For each
sea hex, the A* algorithm (Section 19) is applied to determine the number of
hexes hn that would need to be traversed for the vessel to reach that hex (so that
2hn hexes need to be crossed if the return journey is also included). Then the
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Figure 20.13: Example of an age-based fish price curve, based on Equation 20.27 with φ = 1000.

cost of fishing in that hex is given by

Ch = 2Cthn. (20.28)

3. Next, the vessel’s selectivity curve σa is applied to the current age distribution
Na,h of fish in that hex, to determine the expected catch Ya,h that the vessel would
return with if that hex was chosen:

Ya,h = σaNa,h. (20.29)

Note that here I am assuming that the skipper of the vessel has perfect knowledge
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of the age distribution of every hex in the simulation: this could be modified to
model uncertainty, which would be much more realistic. Given Ya,h, the expected
price of the fish to be caught is calculated as

Ph = ∑
a

PaYa,h. (20.30)

4. Finally, the profit (or loss) to be expected from fishing in hex h is generated as

Dh = Ph−Ch. (20.31)

This calculation is repeated for each sea hex in the simulation, and the hex which
meets the economic requirements of the vessel is chosen to be fished in that
week. These requirements could be simply to maximise profit at all times, or
they could be for the vessel to try and follow a pre-defined profit curve through
the year. These ideas are explored further in Section 21.

5. The effect of fishing mortality on the chosen hex is modelled in a straightforward
manner by removing the fish caught from the population distribution in that hex,
so that

Na,h → Na,h−Ya,h. (20.32)
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20.8 THE SIMULATION ALGORITHM

The algorithm followed by the simulation is outlined in Figure 20.14. This has been
implemented in R (version 2.8.1, R Development Core Team 2011) in a modular fash-
ion, so that the code remains flexible. For example, the two simple harvest control
rules (HCRs) currently included are:

WPM Weekly profit maximisation: In this mode, the vessel selects the hex that returns
the greatest profit for that week.

WCQ Weekly catch quota: Here, the vessel selects the hex which will produce the
largest catch below a predefined upper limit (and ignores the profit implications).

It is a straightforward matter to replace these in the code by any conceivable HCR that
a manager may wish to be tested.

The principal drawback with the extant implementation is that it is coded solely
in R, and contains several loops. This combination leads to long run-times: the case
studies presented in Section 21 below include only 10 iterations (each of 10 years with
5 fishing years on a 10× 10 map), but took over 41

2 hours to run. This precludes
extensive testing allowing for uncertainty and variation in (for example) recruitment,
and will need to be addressed in future versions.

Figures 20.15 and 20.16 illustrate the fishing part of the algorithm for a test run in
which the goal of the vessel was to maximise catch below an upper limit of 15. Firstly,
Figure 20.15 summarises the stock in week 1 of the sixth year of a simulation (that is,
week 261 in total), which represented the first week of fishing activity for this particular
case study. Here, recruitment has just taken place on the other side of the land-mass
from the home port, while mature fish remain concentrated along the western edge
of the map (although not necessarily close to the spawning area). Figure 20.16 then
shows the hexes fished by the vessel during the first four weeks of that sixth year. In
this case, the vessel is not concerned about profit, although profit is high for each of
these weeks. The focus is on fishing the hex which gives the highest yield which is
still less than 15, and to achieve this the vessel fishes hexes which are either north or
south of the spawning hex (but avoids the spawning hex itself). To reach these hexes,
the vessel passes either to the north or the south of the land-mass, whichever produces
the shorter journey.

To save storage space, the plotting of weekly fishing decisions is optional, and such
plots were not generated for the case-study tests presented in Section 21 below.
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Figure 20.14: Flowchart for hex simulation.
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Figure 20.15: Stock summary at the start of week 1 in the sixth year, the first week of fishing for this
simulation. See caption to Figure 20.6 for details. The home port is marked by a blue cross.
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Figure 20.16: Fishing decisions taken during weeks 261-264 (the first four weeks of the sixth year) by a
vessel attempting to maximise catch below an upper limit of 15. Dark green hexes are land, light green
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21 Testing the simulation model

21.1 INTRODUCTION

It is not my intention in the Section to explore fully the potential of the simulation
model. I anticipate that it will be flexible and powerful enough to be applicable to a
very wide range of questions that fisheries managers might ask, and I cover some of
these in notes on future work below (see Section 22). Here, I will present the results
of two simple case studies, in which I determine whether the choice of harvest control
rule between weekly profit maximisation (WPM) and weekly catch quota (WCQ; see
page 269) affects catch, profit, and abundance.

The parameters of the two simulations are as follows. I use a 10× 10 hex grid
(so nh = 10), and assume a single land mass. Stock and vessel settings are as given
in Sections 20.1 to 20.7 above. The simulations are run for ten years (ny = 10), with
fishing activity starting in the sixth year. Each simulation was run for ten iterations.
This is a very low number: for a reasonable exploration of confidence intervals at
least 500 iterations would be recommended (Davison and Hinkley 1997), but with
this R implementation such a run would take over nine days of computing time (as
mentioned above, around 41

2 hours were required for ten iterations). Hence, I consider
these examples to be illustrative only.

21.2 WEEKLY PROFIT MAXIMISATION (WPM)

In this simulation, the vessel’s approach is to fish in the hex which generates the max-
imum profit each week. Figure 21.1 shows the generated area for the first iteration of
the WPM simulation, which features a triangular land mass with the home port at the
south-west corner. Figures 21.2 to 21.4 then summarise the state of the stock immedi-
ately following recruitment (that is, in the first week of each year) in the first three of
the ten years of this first iteration of the simulation, showing the stock spreading from
the initial spawning area and building up a spawning-stock biomass.

Figure 21.5 gives time-series of the weekly values of total abundance, catch, spawn-
ing stock biomass (SSB), total stock biomass (TSB), and the profit generated by the
vessel (which is the difference between the value of the catch each week, and the travel
costs incurred in catching it). In this case, abundance goes through the anticipated an-
nual cycle, but the overall trend is downwards from the third year onwards. SSB and
TSB both rise steadily until the start of fishing activity in the sixth year, at which point
they decline considerably and reach a relatively low equilibrium. Catch and profit both
go through annual cycles, with the highest values of each at the start of the year when
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young fish are abundant. It could be hypothesised that such an inconsistent cash flow
pattern would be very difficult to manage for a real commercial fishing business, but
that is perhaps outwith the scope of this thesis.

The annual stock summaries in Figure 21.6 follow much the same pattern for abun-
dance and biomass. The size of the incoming year-classes is, however, declining
through time, and so what looks from Figure 21.6 to be a stable fishery may in fact
be on the brink of further reductions. Finally for this first iteration, Figure 21.7 sum-
marises the fishing locations chosen over the simulation period to maximise weekly
profit. The principal focus is on the shallow water to the south-west of the map. This
is where the spawning area for this stock is located (see, for example, Figure 21.2) and
where the bulk of the stock remains as it grows. The fish provide the required prof-
itability, despite the relatively long journeys required to get to that area, but at the cost
of a suppressed abundance.

Similar plots were generated for each of the 10 iterations carried out for the WPM
case-study simulation. I compare the results of these iterations in Figure 21.8 (weekly)
and 21.9 (annual). Each of the iterations uses the same settings for stock, fishery and
area, but the layout and recruitment are both randomised and this generates quite large
differences between them. However, there is a strong underlying trend of SSB de-
clining dramatically to a low level when fishing activity commences, and all iterations
show a strong annual cyclicity to catch and profit.
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Figure 21.1: Generated sea and land hexes for the first iteration of the WPM case-study simulation. The
blue cross indicates the home port.
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Figure 21.2: Stock summary at the start of first year of the first iteration for the WPM case-study
simulation. See caption to Figure 20.6 for details.
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Figure 21.3: Stock summary at the start of second year of the first iteration for the WPM case-study
simulation. See caption to Figure 20.6 for details.
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simulation. See caption to Figure 20.6 for details.
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Figure 21.5: Weekly stock summaries for the first iteration of the WMP case-study simulation.
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Figure 21.6: Annual stock summaries for the first iteration of the WMP case-study simulation. The
blue line on the stock-recruitment plot (lower right) is the underlying Ricker curve used to generate
recruitment in the simulation.
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Fishing location summary

14

15

11

5

3

2

2

1

0

0

15

16

12

10

5

3

1

4

1

0

18

16

10

8

5

3

1

0

0

0

12

18

0

9

0

0

0

7

0

0

0

5

0

0

0

0

0

2

2

0

0

0

0

0

0

1

0

x

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

● ● ● ● ●Inland Coast Shallow Medium Deep

Figure 21.7: Summary of fishing locations used during the first iteration of the WPM case-study sim-
ulation. Numbers indicate the number of times each hex was used for fishing activity. The blue cross
indicates the home port.
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Figure 21.8: Comparison of weekly stock summaries for the 10 iterations of the WMP case-study
simulation. Grey lines give the values for each iteration, while red lines give the 25th, 50th and 75th
quantiles across all 10 iterations.
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Figure 21.9: Comparison of annual stock summaries for the 10 iterations of the WMP case-study simu-
lation. Grey lines give the values for each iteration, while red lines give the 25th, 50th and 75th quantiles
across all 10 iterations.
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21.3 WEEKLY CATCH QUOTAS

In the second set of simulations, the vessel’s task each week was to fish in the hex
which maximised its catch (in weight), as long as said catch did not exceed 15 fish
units (the weekly catch quota: note that I am not specific here about exactly what a
“fish unit” is, as the unit used is not very relevant to the test analysis). Thus, when
choosing the fished hex, all those hexes for which implied catch was greater than 15
fish units in that week were declared out of bounds. Profit was not a consideration in
this approach, so it was possible for the vessel to make a loss in achieving its weekly
catch quota.

Rather than include all of the diagnostics plots that were given for the first itera-
tion of the WPM case-study simulation, I focus here for the first iteration of the WCQ
case-study simulation on the weekly (Figure 21.10) and annual (Figure 21.11) stock
summaries. These retain a degree of cyclicity in catch and profit, but both generally
start lower than for the WPM simulation and decline less rapidly. This is to be ex-
pected: the vessel is limited in how much it can catch early in the year, so there are
more fish left to catch later in the year. I also note that there is no underlying down-
wards trend in abundance, and that while SSB and TSB both decline after fishing starts,
their stable levels are noticeably higher than for the WPM simulation. Again, it could
be hypothesised that a lower but more consistent catch is more sustainable for a fish-
ing business, but I will not attempt to address this directly here (except to suggest that
the hex-model framework provides a useful tool for exploring such questions in the
future).

Finally, Figures 21.12 and 21.13 present stock summaries for all 10 iterations of
the WCQ case-study simulation. On average, SSB shows a tendency to increase after a
nadir around week 300, and while catch is limited to be less than 15 fish units, it never
drops away to zero either. Note also that some profit values become negative in these
simulations.
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Figure 21.10: Weekly stock summaries for the first iteration of the WCQ case-study simulation.
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Figure 21.11: Annual stock summaries for the first iteration of the WCQ case-study simulation. The
blue line on the stock-recruitment plot (lower right) is the underlying Ricker curve used to generate
recruitment in the simulation.
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Figure 21.12: Comparison of weekly stock summaries for the 10 iterations of the WCQ case-study
simulation. Grey lines give the values for each iteration, while red lines give the 25th, 50th and 75th
quantiles across all 10 iterations.
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Figure 21.13: Comparison of annual stock summaries for the 10 iterations of the WCQ case-study
simulation. Grey lines give the values for each iteration, while red lines give the 25th, 50th and 75th
quantiles across all 10 iterations.
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21.4 COMPARING WPM AND WCQ

The differences between the WPM and WCQ approaches are clear when comparing
Figures 21.8 and 21.12. In the former (WPM), large catches and profits are possible,
particular early in each year, but yields are very inconsistent and high profits decline
rapidly. The cost of the profit-maximisation approach is also apparent in the low level
of spawning-stock biomass in comparison with the unfished state. In the latter (WCQ),
catches and profits both tend to be lower but are much more stable through each year,
and the benefits can be seen in terms of a much higher stable level of spawning-stock
biomass.

Table 21.1 provides a further comparison between the approaches, considering the
mean and cumulative catches and profits, and the mean spawning-stock biomass. On
average, catches are slightly higher for WPM, and profits are around a third higher, but
at the cost of much lower biomass.

Although interesting, these results do not perhaps bear much relevance for any cur-
rent fisheries management issues, as there are too few iterations to permit the drawing
of robust conclusions, and the WCQ approach in particular is not particularly realis-
tic: it is unlikely that a skipper would fish knowing he was losing money. However,
the value of this short demonstration lies in the illustration of the potential of the hex-
model simulation method for evaluating management plans and approaches. Both of
the harvest-control rules considered in this Section were very easy to specify within
the model, and comparing the effects of each is also straightforward. In the next Sec-
tion, I consider a number of different ways of modifying and improving the model, and
a number of different management approaches that would be amenable to evaluation
using it.

Approach

WPM WCQ

Mean weekly catch 9.932 8.649
Cumulative catch for all years 2582.35 2248.61

Mean SSB 58.24 98.32
Mean weekly profit £3897.24 £3030.95

Cumulative profit for all years £1,013,282.13 £788,046.92

Table 21.1: Summary statistics from two fishery simulations using the hex model, and implementing
two harvest-control rules: allowing the vessel to attempt to maximise weekly profit (WPM), and limiting
weekly catch to 15 fish units or less (WCQ). Results are averaged over 10 iterations. See text for further
details of simulations.
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22 Future work

In this Section, I will list some of the developments in the hex model that would be both
useful for improving it, and tractable to implement, along with management measures
which could be evaluated using it. I have not attempted to rank these in importance or
ease of implementation, but I note that anything that increases the complexity of the
model very much should be treated with caution. Although somewhat intricate, and
potentially complicated when using many hexes, vessels and stocks, the hex model
is essentially a simple construct of a fishery system which will undoubtedly be much
more complicated in reality. However, this is a benefit for application to real problems,
and for interpretability of the outcomes, as simple models of complex processes can
be more instructive than complex models (Hamre 2003, Paola 2011).

Optimised code The current R implementation of the hex-model algorithm does not
run particularly quickly. The principal elements which will retard R code are loops and
the overuse of data frames and/or lists (Anglim 2010, Thulin 2011). In developing a
fast numerical parameter estimation function for the SURBAR survey-based asssess-
ment method (see Section 8.3), I restructured the original Fortran-90 code to vectorise
all loops, and converted all data frames and lists to numerical matrices. Doing so im-
proved the speed of the algorithm by several orders of magnitude. For the hex model,
there are several processes which take up a great deal system time in R, most no-
tably the A* shortest path algorithm, and capacity or random diffusion of fish. During
early development of the hex model, I wrote an implementation of the A* algorithm
in Fortran-90 which could be called from R. I no longer have access to the Fortran-90
compiler with which to develop this further and the R implementation has been used
in the meantime, but the time savings were quite impressive (Table 22.1). Alterna-
tively, these problematic algorithms could be redeveloped in R as I did for SURBAR.
This optimisation is probably as essential precursor to the serious use of the model to
provide advice to fisheries managers, as it is currently too slow and unwieldy.

Uncertain information In the simulations presented in Section 21, I assumed that
the skipper of the vessel could know precisely how many fish at each age the vessel
would catch if it were to fish in any given hex. This meant that the fishing approach
being used (WPM or WCQ, in this case) could be followed very closely: if weekly
profit maximisation was the goal, the vessel could achieve that exactly. In reality, of
course, fishing is more a matter of highly educated guesswork, and even the existence
of a “skipper effect” determining fishing success has been widely debated (Hilborn
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nh Fortran-90 R

10 0.02 1.17
20 0.04 1.44
30 0.06 0.93
40 0.27 12.94
50 0.52 4.31

100 30.88 94.01

Table 22.1: Comparison of runtimes (in seconds) for the A* algorithm in Fortran-90 and R. nh is the
number of hexes per side of the simulated area, while the results are the times it took for the algorithm
to find the shortest distance between two randomly selected hexes. Only one path for each nh was
calculated, but it was the same path for Fortran-90 and R.

and Ledbetter 1985, Russel and Alexander 1996). Assuming this effect does exist,
an experienced skipper will know where he is likely to get good yields of particular
species at particular times of year (Thorlindsson 1994, Colding et al. 2000), but until
the net is hauled back up he does not really know what he is going to catch. If this were
not the case, then management measures to encourage (for example) cod avoidance in
the North Sea would have been much more successful in recent years than they have
been (ICES 2011c). The hex model therefore needs to be able to include uncertainty
into how much each skipper knows about the stock distribution of the fish he is trying
to catch. One possible approach to be explored is to fit gamma distributions to the
age distribution in each hex, apply multivariate resampling (Needle and Hillary 2007)
to the gamma parameters, and generate resampled age distributions which are similar
to (but differ from) the true distributions and which the simulation would use in the
location-decision process. Furthermore, management evaluations could be repeated
for different levels of this uncertainty, to model the influence of skippers of varying
levels of experience.

Uncertain management implementation What are the implications if there are dis-
crepencies between what a manager thinks will happen, and what actually does hap-
pen? Instructive examples include North Sea haddock (Needle 2008c), for which there
is a consistent underestimation of F in the MSE, caused by an inappropriate discard
model; and Fraser River sockeye salmon (Holt and Peterman 2006), for which the
value of F used in management and MSEs can be under- or overestimated, depending
on current stock size. Spatio-temporal simulations such as the hex model would enable
managers to evaluate whether this type of discrepancy is likely, and whether it is driven
by fishing patterns.
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Multiple vessels The case studies presented in Section 21 assumed that the fishery
consisted of only one vessel, for parsimony and to ensure tractable run-times. How-
ever, the presence of vessels with different characteristics can have a significant effect
on the success or otherwise of a management plan (Campbell and Dowling 2005, Bas-
tardie et al. 2010), and as vessel data and settings are coded in the R software as a
list, the simulations are readily extendible to two or more vessels. This would allow
the model to be used to consider issues of competition for resources, and the classic
“tragedy of the commons” problem (Hardin 1968, 1998). For example, the likelihood
of success (or otherwise) of management measures such as quota points (see Section 7)
could be evaluated. Approaches such as these are important examples of bottom-up,
industry-driven management that may be more likely to succeed due to “reciprocity,
reputation and trust” (Kraak 2011), yet without quantitative demonstration of possible
outcomes it is difficult for many fisheries managers to believe that bottom-up control
can ever work. Progress in this direction will require developments in the model to ac-
count for social cooperation in a multi-vessel simulation, so the question can be asked
whether this leads to a better outcome than short-term self-interest? The ecoOcean

gaming application of Nissen et al. (2011) has been used to demonstrate that “players”
(that is, skippers) must cooperate in order to prevent overexploitation under standard
quota-based management, and the hex model has the potential to demonstrate how
likely this is in the real world away from games.

Multiple stocks Including more than one stock in the hex model would enable con-
sideration of the effects of both mixed fisheries and multispecies predation. As for
vessels, stock data and settings are stored as a list, so extending the simulation to sev-
eral stocks would be straightforward. Hamre (2003) gives an example of a possible
management approach accounting for multispecies predation in the Arctic (although
the conclusion that mortality on immature cod should be increased in warm periods
while capelin abundance is low would need very careful consideration before imple-
mentation), while the Strathrecovery model provides a more detailed and flexible ap-
proach for the North Sea (Guirey et al. 2008, Speirs et al. 2010). Pilling et al. (2008)
did not model interspecific predation, but their study of a linked plaice-sole fishery
in the southern North Sea was instrumental in the wider acceptance of a multistock
management plan. Models of this type could readily be simulated in the hex model,
with hex-based natural mortality dependent on the respective distributions of predator
and prey species. The issue of mixed fisheries can be summarised by the question
of whether vessels will switch targets to different species if economic conditions are
right: in this context, the hex model provides an excellent method of evaluating de-
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velopments in such management measures as quota points (see Section 7) which are
essentially attempts to deal with the problems inherent in mixed fisheries.

Surveys In reality, fisheries stock assessments (and hence scientific advice to fish-
eries managers) are based on a combination of commercial catch data and research
vessel survey indices. The reason for this is that catch data are based on a very large
sample size, but may be biased by (for example) incomplete reporting or vessels ag-
gregating, and hence these data generally have low variance but (potentially) high bias:
on the other hand, survey data are derived from a relatively small sample, but should
not have much bias, so these data have high variance but low bias (Beare et al. 2005).
The intention behind using both sources is to try and generate an assessment with low
variance and low bias. It would be straightforward to simulate a research-vessel sur-
vey in the hex model, using perhaps a low selectivity across all ages (so hence a high
variance) and a regular grid of surveyed hexes (so hence a low bias). The genera-
tion of survey data would enable evaluation of survey-based assessment and advice
(Section 8), and comparison with management approaches that rely on both catch and
survey data, or just catch data.

Annual management decisions The current implementation has explored the effects
of two very simple harvest-control rules (HCRs). The vessel attempts to maximise
profit each week, or the vessel attempts to catch the highest yield that is less than 15
fish units (Section 21), but these HCRs do not include management intervention. Of
more interest are the management strategies and HCRs used in reality, such as those for
haddock evaluated in Chapter II. The single-species, non-spatial evaluations described
in that Chapter were flawed to a certain extent because they could not account for
changes in fleet dynamics. Real-life HCRs of this kind would be quite straightforward
to implement in the hex model, and this would enable a more effective evaluation of
the management plans used to set fishery quotas across the world.

Economic targets The hex model could include a requirement that vessels fish through
the year to achieve weekly profits lying on some predetermined profit curve. Suitable
shapes for this could include constant through the year, high towards Christmas, high
early in the year when fishing is often good on gadoid spawning grounds, and so on.
The hex model also has the potential to be used to explore neoclassical economic
theories of resource utilisation (e.g. Clark 1976) to see if they hold under realistic sim-
ulations of fleet dynamics.
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Discards No allowance has yet been made for the fact that fishermen (unless pro-
hibited from doing so) will discard fish which they do not wish to land, either because
they have no quota for them, they are too small to be landed legally, or the current
market price would make landing uneconomic (see Section 4). The spatio-temporal
economic hex model could be used to address and and attempt to understand this prob-
lem, once restrictive quotas, gear selectivity and fish-distribution uncertainty are built
in, and further to understand to potential effects of discard bans.

Closed areas In Chapter III I considered the likely effects of closed areas in Euro-
pean waters, and concluded that short-lived real-time closures mostly served to attract
vessels towards cod: or at least, higher cod abundance led to increases in both clo-
sures and fishing effort, so the former could not be considered to be a strong control
on the latter. Further afield, short-term closures have been used in the Bering Sea to
reduce bycatch of non-target species such as chinook salmon and Pacific halibut (e.g.
Haflinger and Gruver 2010). More permanent closures have been used in a number
of Californian rockfish fisheries (National Oceanic and Atmospheric Administration
2011), and in New England to reduce exploitation rates on demersal species such as
cod (New England Fishery Management Council 2007). Many fisheries managers have
imposed permanently-closed areas (Marine Protected Areas, or MPAs) as a means to
protect sensitive habitats and increase the local abundance and diversity of ages of
targeted stocks (Claudet 2011). There is also often an underlying assumption that clo-
sures will have beneficial effects for populations as a whole. However, work to date
(Hilborn et al. 2006, Walters et al. 2007, see also Chapter III above) has suggested
that closed areas, in themselves, may not necessarily lead to the benefits that managers
expect. Effort displaced by closures moves to other areas, and the negative effects of
the increased effort in other areas may offset the benefits to the closed areas. The case
studies in Section 21 did not consider this aspect, but closing an area for three weeks
(say) in the hex model would be very easy. Indeed, it would be straightforward to
simulate the full range of measures in the Scottish Conservation Credits scheme (see
details and references on page 141). The hex model could then be used to ascertain
whether the effect I demonstrated for Scottish vessels fishing for cod is universal, and
if not, under what circumstances one might expect a real-time closure scheme to be
successful.

Length and size structure As discussed on page 244, the draft version of the hex
model was based on fish length distributions, rather than the age distributions used in
the implementation presented in this thesis. As many processes affecting fish are con-
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trolled by length (or size), rather than age, it would be appropriate at some stage to
move to a length-based simulation approach, using methods such as the size-transition
model of Gurney et al. (2007) or the combined length-age model (CALA) of Martin
and Cook (1990). Switching to length-based modelling would also facilitate the in-
clusion of more biological realism (see, for example, Persson et al. 2007, Walters et
al. 2007, Leeuwen et al. 2008) and evaluations of length-based assessment and advi-
sory methods (Pauly and Morgan 1987).
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Chapter V

Conclusions
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When I am teaching courses in stock assessment to postgraduate students (Needle
2009b), fisheries science colleagues (Needle 2008e, Needle 2009a), or active fisher-
men, I often use a simple analogy to explain why stock assessment is so hard. Imagine
(I will say) that you are in a hot-air balloon, flying high over a strange land completely
hidden by a thick layer of cloud. You have been asked to write a report on this land
– what lives there, how many of each species there are, how they reproduce, how the
populations might change in the future – a complete ecosystem summary, in fact. And
you have been given a basket and a long rope. So you lower your basket, scrape it
along the ground for half-an-hour or so, haul it up, and have a look at the contents.
Then you repeat the exercise a few times, although you are limited in how often you
can do this by the amount of burner fuel you have. And then you have a look at what
you have dragged up, and try and write your report. But, inevitably, you will have
missed large swathes of land. You might be scraping at a time of the year (or hour of
the day) when many species are hiding in holes. Your basket would have got stuck if
you had scraped through towns, so you won’t have caught many people at all. And
you will have missed the land’s teeming bird population altogether. So your ability to
estimate the abundance of any particular type of animal is reduced by the fact that you
can’t see them, and by the tools available to you to sample them.

Now think about the biology and behaviour of the fish themselves. Forestry scien-
tists tell us that their estimates of the number of trees in a wood are accurate to within
20%, roughly (G. Clarke, University of Aberdeen, pers. comm.). But trees are station-
ary, and tree reproduction is limited more by space than anything else. It is far more
challenging to estimate fish numbers, when they can move quickly from place to place,
and when the numbers of young fish are determined by a whole range of factors from
the numbers of adult fish, to the numbers of predators or prey there are, to the way the
wind happened to be blowing on a particular day.

So these are some of the challenges that stock assessment scientists face. But, rel-
atively speaking, the assessment of historical events is the easy part. It is much more
difficult to predict what is likely to happen in the future, yet this is what is required
for management strategy evaluation. The difficulties in forecasting fish recruitment
(and hence future fish population dynamics) have been widely covered in the litera-
ture (see a review in Needle 2002), but the development of an understanding of how
fishermen might change their actions in response to management measures (imposed
or otherwise) has progressed much more slowly. In the words of Holt and Peterman
(2006): errors in the implementation of management strategies occur “in part because
managers are unable to predict exactly the behaviour of harvesters in response to reg-
ulations and therefore usually can not take this behaviour into account when setting
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regulations.”
I first realised the importance (and serious implications) of this propensity when

producing the evaluation of the EU-Norway management plan presented here in Sec-
tion 4, and published in Needle (2008c) amongst other papers. My model included
a knowledge production module, in which virtual landings, discards and survey data
were generated on the basis of fish abundance from an underlying biological popula-
tion module. These data were passed into the same stock assessment model as used
in the real ICES assessment (ICES 2011c), and management decisions were taken
(in the management implementation module) that were based on the stock abundance
and mortality estimates produced by this assessment model. In each simulation run,
I would know the true underlying abundance (and hence spawning stock biomass B)
and the values of B returned by the assessment model. Unfortunately, the latter were
always lower than the former, often by a considerable margin, which meant that my
virtual “managers” would be taking decisions based on underestimates of biomass and
would therefore act more harshly than truly warrented. This was not, then, a truly
unbiased evaluation of the management plan.

But why did this effect arise? I spent days trying to fix it, exhaustively changing
parameters in the assessment model, modifying survey data, and adjusting the clauses
of the management plan itself. Eventually it occurred to me that the main problem was
an inadequate model of discarding, when allied with a low target F and a constraint
on interannual variation in TAC. Following common practice and in the absence of
information that would have helped me to do otherwise, I had assumed that discard
proportions-at-age were fixed through time. When a large year-class appears, in the
context of a low target F and a constraint on how much TAC can increase interannually,
the actual response of the real fishery would be to increase discarding, on the large
year-class in particular, since the increase in TAC would necessarily lag behind that of
abundance. However, my model did not account for this: adequate models of discard
behaviour were not yet well-developed (and still are not).

This is the crux of the problem. Fisheries scientists are asked by fisheries managers
to pronounce on whether proposed management plans are likely to provide sustainable
fisheries for the foreseeable future, with all the ecological, economic and social benefits
this would bring. Since the number of young fish that recruit to the adult population
is one of the great imponderables of fisheries science (Needle 2002), scientists do
not claim to know what recruitment will be, but rather implement simulation models
which evaluate the likely risk inherent in the application of the management plan over a
randomly-generated range of plausible future recruitment levels. They then report the
risk as the probability that biomass will be below some reference point in ten years’
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time, or the number of years over the next twenty years that this can be expected to
happen, and managers are satisfied that a transparent and justifiable scientific process
has supported the use of their management plan. But the scientists have had to make
a number of simplifying assumptions in their model, and one of the principal tenets
is that fishing practices will not change in response to management measures. We
therefore fall into the classic trap of assuming something that is patently untrue in
order to make our models work, and then omit to advertise the fact widely.

Some authors (e.g. Rochet and Rice 2009) have concluded that quantitative man-
agement strategy evaluation is not to be trusted, and have advocated other, more quali-
tative approaches, such as learning from past application of management plans (includ-
ing comparison across areas and biota). This thesis is part of an effort to take the other
path. I contend here that these alternative approaches present even more problems than
quantitative MSEs, and that the issue is how to improve the latter. Specifically, I have
tried to consider in some detail the problems of changing fishing practices (and hence
fleet dynamics) raised by the case studies in Sections 4 to 6, and to think about how
these problems might be addressed by a different approach to management strategy
evaluation.

Of course, there are much wider issues that I could have considered here as well, to
do with management strategies themselves (rather than just their evaluation). Around
half-way through my doctorate I had defined four key questions that I thought the thesis
should address, all concerned with information and uncertainty and how these affect
fisheries managers. I raised these in Chapter I with a promise to return to them, so here
they are:

1. How does the robustness of different assessment management approaches de-
pend on sources of uncertainty?

2. What is the smallest amount of information on which successful fisheries man-
agement can be based?

3. What must fisheries managers know?

4. What are the important sources of error and uncertainty?

For example, consider a simple age-based forecast system such as that caricatured in
Figure 22.1. What is important in this system is dependent (most directly) on the type
of management being carried out and the type of fishery. Examples include:

• If the abundance Ny+2 in the quota year is the metric (that is, the thing that
management decisions are based on), and if the fishery operates mainly on young
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fish with a high F , then the appropriate forecasting of recruitment is crucial. In
this case, neither abundance Ny−1 nor growth are very important.

• If the metric is Ny+2, the fishery operates on older fish, and Ry−1 is large (a strong
year-class), then the final-year assessment of Ny−1 is what will drive manage-
ment.

• If spawning-stock biomass By+2 is the metric, then management will be driven
by the Ny−1 estimates and by forecast growth models. In this case recruitment
forecasts are relatively unimportant, as few of the recruits will contribute to By+2.

So I had a list of important questions that needed to be addressed. Following the
principle that complex realities are best understood through simplified simulations
(Harte 1988, Paola 2011), I decided to implement a generic fishery model (initially
known as the “lake” model, but subsequently referred to here as the hex model) to act
as a test-tube for exploration of hypotheses. But I quickly ran into difficulties. Firstly,
although simplified, the hex model still had to be able to “represent” reality to a certain
extent, and this proved to be a strenuous undertaking. Secondly, before I could con-
sider the effect of uncertainty on fisheries managers, I needed to be able to characterise
(and hence simulate) the likely response of fishing fleets to decisions that managers
would take: otherwise I would be back at my starting point of trying to evaluate a
management plan without considering changes in fleet dynamics. It quickly became
clear that there was a wealth of preparatory work to be done before the key questions
laid out in Chapter I and above could be answered, and it is this work on which this
thesis has focussed. The questions themselves remain largely unanswered for now, but
I would argue that I am in a much better position to consider addressing them in the
near future.

This thesis consists of three main Chapters. In Chapter II (Motivating case studies),
I considered a number of analyses that I used to stimulate the work in the remainder
of the thesis. The first of these were three evaluations of management plans for had-
dock (Melanogrammus aeglefinus) in the North Sea (ICES Divisions IVa, IVb, IVc
and IIIa; Section 4), West of Scotland (ICES Division VIa; Section 5) and Rockall
(ICES Division VIb; Section 6); a map is given in Figure 4.1. I demonstrated, using
relatively simple age-structured, non-spatial MSE models, that while all three of these
MSEs suggested that the management plans concerned would be sustainable over the
medium- to long-term, they were all hindered by a poor understanding of fish discard-
ing practices which made the applications of the plans more restrictive than would
have been the case in reality. The MSE for the West of Scotland compounded this
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Figure 22.1: Caricature of a simple age-based forecast system. Shaded cells indicate abundance fore-
casts that are determined (to a greater or lesser extent) by the final-year (y−1) assessment. Unshaded
cells are determined by recruitment forecasts. The red arrow shows the progress of the y−2 year-class.
y is the assessment year, y+1 is the quota year.

difficulty by splitting catches into landings, discards and unallocated removals: here,
discards are poorly understood, but unallocated removals are not understood at all.
The Rockall haddock MSE improved one aspect of the previous MSEs, in that the use
of newly-available FLR evaluation functions enabled a much wider exploration of the
confidence intervals about the results, but the underlying problem with fleet dynamics
and discard practices remained. In none of these evaluations was I able to characterise
(and hence model) the likely response of the fishing fleet to the management measures
that the evaluations were trying to appraise.

This is a problem of some concern, as the MSEs could fairly be said to be inad-
equate yet the management plans in question are either being used by managers, or
are under serious consideration for future use. The North Sea haddock management
plan has been used by the European Union and Norway to set quotas for that stock
since 2005 (ICES 2011c). The status of the West of Scotland management plan is
currently somewhat unclear. The version of the plan in which the TAC constraints
only applied when B > Bpa (see Needle 2010a, and Section 5) was reviewed by ICES
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and passed as being sustainable (Section 5.3.3.1 in ICES 2010a). A modification was
subsequently requested by the European Commission, for which I provided a further
evaluation (Needle 2010b). This was apparently mislaid by ICES and was not formally
reviewed, so the management plan remains in abeyance. Following a meeting of the
EU-Russia Working Group on Rockall haddock in Moscow in September 2011, the
Rockall haddock management plan is in the process of being further modified and will
be reconsidered in 2012.

Chapter II concluded with short summaries of work on quota points (Section 7) and
survey-based assessment models (Section 8). Both of these aspects would readily lend
themselves to evaluation using the kind of system developed later in the thesis. Previ-
ous evaluation approaches did not permit ready consideration of quota points as they
are not (generally) multispecies in nature, and cannot simulate the switching between
target stocks that is a likely response to discard bans and multispecies quotas. Simi-
larly, survey-based assessment methods have been difficult to evaluate before because
previous methods have not been able to account for such inherently spatial aspects
as the catchability discrepancy caused by the mismatch between survey distributions
(which are expected to cover the entire area) and fishery distributions (which would
only cover the stock areas in which it is profitable to fish). I focussed on these two
issues in Sections 7 and 8 because I have studied them both in some detail in recent
years, but I would suggest that the applicability of the spatio-temporal fisheries model
presented in Chapter IV to the evaluation of measures such as closed areas, closed sea-
sons and gear restrictions is clear. While time has not allowed me yet to consider these
aspects in the framework of the hex model, the groundwork is in place to enable me to
do so in the very near future.

In Chapter III (Characterising fleet dynamics), I looked in depth at the response of
the Scottish demersal fishing fleet to the imposition of a system of real-time closures
(RTCs), starting in 2008 and expanding to the present day. RTCs had been imposed by
the Scottish Government in an effort to reduce the mortality exerted by this fleet on the
North Sea cod stock, and thereby save the fleet from the full brunt of stringent effort
penalties imposed by the European Commission on countries who could not demon-
strate a reduction in cod mortality. The immediate question was whether a movement
of vessels away from RTCs (and hence, away from areas of high cod abundance) could
be shown with available data. The deeper question, and the one of more relevance to
the thesis, was whether this fleet exhibited a characteristic response to such closures
that the hex simulation model would need to be able to reproduce in the fullness of
time. If the fleet ignored RTCs, then the model could too, but if the fleet could be
shown to move either towards or away from RTCs, then the model would need to
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be able to replicate that behaviour (probably as an emergent property) if it was to be
applicable to evaluations of RTC-based management.

The Chapter began with work on the development of a Relative Fish Importance
Index (RFII), which was intended to avoid the obvious hyperaggregation pitfalls in-
herent in using landings data to infer fish distributions. In other words: fishing vessels
will probably go where the most profitable fishing areas are, so landings data (even
assuming they are reliable) tell us little about the full stock distribution. I then consid-
ered aspects of data from the fishing industry which have only been made available to
scientists within the last few years, namely VMS data (for which I discussed sources,
collation and public dissemination) and CCTV data from Remote Electronic Monitor-
ing or REM (which I used to provide a simple ground-truthing result on the widely-held
assumption that trawlers must be travelling at less than 5 knots to be able to fish). The
combination of fish distributions (from the RFII) and vessel-specific fishing locations
(from VMS and CCTV data) enabled a detailed analysis of the response of Scottish
vessels to RTCs.

I did this in two ways. Firstly, in Section 13, I identified all those trips which fell
into one or more of three categories: fishing in the area of an RTC in the 15 days
before closure (denoted before), fishing in an RTC during closure (during), and fishing
in the area of an RTC in the 15 days after reopening (after). These were the trips
that I deemed to be affected by the RTCs, for the purposes of this analysis at least.
For each such trip, I calculated the average RFII for all the VMS fishing pings in the
trip, and compared that with the average RFII for the “comparison trip” (for before

and during trips, the comparison was with the following trip: for after trips, it was
with the preceding trip). I measured the distance between the geographic medians of
the trip and the comparison trip. These two metrics enabled me to determine whether
the vessel moved to an area of less cod abundance when moving away from an RTC,
or towards an RTC, and how far the vessel moved on each occasion. I also applied
a standard t-test to decide whether RFII differences between trips were statistically
different to zero.

My conclusion from this first analysis, when applied to all relevant vessels during
2008-2010, was as follows. There is significant evidence for a decreased RFII for cod
when vessels move away from newly-implemented RTCs (before), but the reduction
in RFII for cod is at least matched by an equal and opposite increase in RFII for cod
when vessels return to RTCs after reopening (after), for the year as a whole and for all
quarters. There are differences in the detail between the years, but this overall pattern
appears to be maintained. These results suggest that RTCs encourage vessels to move
away from cod-important areas when they are closed, but do not necessarily discourage
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renewed fishing on cod when they are reopened.
In the second analysis, in Section 14, I considered what the effect of RTCs might

have been on all vessels in the fleet to which RTC legislation could reasonably be
expected to apply: in other words, not just those vessels fishing in or around each
RTC in the same broad period as the closure. The question was then: could I detect
any significant change in patterns of fishing locations from year to year (within each
quarter), and could those changes be linked to changes in the numbers of RTCs in or
around those fishing locations?

To address these questions, I first limited the full Scottish VMS dataset to those
vessels which had VMS data records for every year, and which had appropriate catch
compositions, gear types and fishing locations. For each of the resulting 188 vessels
(54% of the total), I applied a specifically-designed cluster analysis procedure to gen-
erate estimated discrete fishing areas for the vessel. Then, considering each quarter
separately, I used a randomisation approach to determine whether the distribution of
VMS pings for a vessel over its fishing areas changed significantly from year to year.
I also calculated the change over the years in the numbers of RTCs within each fishing
area, by quarter and vessel. Finally, for those vessels, quarters and years for which the
change in VMS distribution was deemed significant, I collated contingency tables to
tally the fishing areas for which VMS pings decreased, stayed the same, or increased,
and for which RTC numbers decreased, stayed the same, or increased.

There were generally too few observations to reach statistically significant conclu-
sions for any one vessel when considered individually, but when the data were collated
across the full fleet the results were quite strong. I showed that changes in the RTC
count do have a significant effect on changes in VMS ping counts, and furthermore
that the direction of the relationship is positive. That is: an increase in the numbers of
RTCs in fishing areas is linked to an increase in fishing activity in those areas. Both
analyses therefore reached the same conclusion: that real-time closures of the limited
duration used by Scotland in the North Sea do not in themselves lead directly to cod
avoidance, and may indeed have the opposite effect. As a Scottish fishery scientist in
an advisory role, I find this a valuable (if rather disappointing) result, but in the context
of the hex model, it stands as an excellent example of fleet dynamics that the model
would need to be able to replicate.

Having presented several case studies of MSEs in Chapter II, and characterised
particular responses of the Scottish whitefish fleet to management measures in Chap-
ter III, I turned to the development and partial testing of the final spatio-temporal fish-
ery (“hex”) model in Chapter IV. In each run of the model, the simulation area is
built up from hexes representing land areas or different sea depths. The sea hexes are
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populated by fish of one or more species, following species-specific rules on spawn-
ing and recruitment, growth, diffusion and movement, carrying capacity, and natural
mortality. The population in each hex is represented by a distribution at age to which
all processes are applied (so the model is not based on the individual, but on groups
of individuals), and the principal time-step is weekly. After an initial burn-in period
to allow the populations to develop, one or more fishing vessels commence activity
from their designated home port, with each vessel having specified selectivity charac-
teristics. The only income available to the vessel is the value of the fish they catch
(as determined by an age-based price curve), while their only cost is that of travelling
through hexes (the A* algorithm is used to ensure the vessels take the shortest possible
route for each trip).

I presented two simple examples of how this model might be used, each allowing
for one fish stock and one vessel, and assuming that the vessel had perfect knowledge
of the stock distribution in each hex. In the first example, the vessel was assumed
to be trying to maximise profit (income minus costs) for each week and would select
the hex to fish in accordingly. In the second, the aim was to maximise catch under a
specified upper catch limit. Although the simulations were limited by time constraints
to only ten iterations each, the results indicated that the profit maximiser would make
more money over the five-year simulation period and have a slightly higher average
catch than the catch-quota vessel, but that the profit and catch would both fluctuate
much more for the former than for the latter. I also showed that the average level of
spawning-stock biomass when the profit-maximising approach was applied was around
half that for when the catch-quota approach was used.

These simple case-study simulations were perhaps not very useful in themselves,
but they did serve an important function in testing the hex model, and indicating the
range of possible management approaches which it could be used to evaluate. In the
remainder of Chapter IV (and to conclude the main body of the thesis) I outlined some
possible future developments in the hex model that would be both useful for improving
it, and relatively easy to implement, along with management measures which could be
evaluated using it. These include the need to optimise the code for speed; methods to
account for uncertainty in information provided to vessels and managers, or discrepan-
cies between what managers think will happen when they impose measures and what
actually happens in the fishery; testing the inclusion of multiple vessels and multiple
stocks; the simulation of research-vessel surveys; the evaluation of more complicated
management plans such as are used in reality; and a number of other methodologi-
cal issues to do with economic targets, discards, closed areas, and length-based data
structures.
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To conclude: I have presented several motivational case studies to highlight the
need for an improved spatio-temporal fishery modelling framework. I have charac-
terised the response of the Scottish whitefish fleet to real-time closures, as an example
of the type of fleet dynamics that a new model would need to be able to simulate.
Finally, I have developed, implemented and tested a new simulation model which I
would argue is flexible and powerful enough to enable insightful quantitative analy-
sis and evaluation of the wide range of management approaches that will be required.
This work is certainly not yet complete, but over the period of this doctorate I have
progressed it considerably in the right direction, and I feel confident that I and my
advisory colleagues will be in a much better position to advise fisheries managers on
stock sustainability well into the future.
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Published papers
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This Chapter presents facsimiles of two published papers (Needle 2008c, Needle
and Catarino 2011) on which parts of this thesis have been based, along with a related
poster (Needle 2007a). Permission to reproduce Needle (2008c) has been granted
by Elsevier BV (www.elsevier.com). Permission to reproduce Needle and Catarino
(2011) has been granted by Oxford University Press (www.oxfordjournals.org).
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Figure 22.2: Poster presented at the UNH Haddock 2007 Symposium, held during 25-26 October in
Portsmouth NH, USA.
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a b s t r a c t

North Sea haddock (Melanogrammus aeglefinus) are managed under a plan agreed between the European
Union (EU) and Norway. This management plan was reviewed during 2006. As part of the review pro-
cess, a quantitative management strategy evaluation (MSE) was undertaken, both of the existing plan and
of proposed modifications. The evaluation was implemented in the R programming system, using FLR
libraries, and was based on stochastic simulations of the complete fishery system (including a biological
operating model, a knowledge production model with “live” stock assessments, and a simple implemen-
tation model). The generation of appropriate time-series of recruitment was of key importance for a stock
like North Sea haddock which produces sporadic large year-classes. Although some refinement of growth
and discard models is still required, tentative conclusions can be reached on the likely efficacy of different
management plans. Well-defined MSEs have the potential to impart useful information for assessment
scientists, fisheries managers and stakeholders.

Crown Copyright © 2008 Published by Elsevier B.V. All rights reserved.

1. Introduction

In many parts of the world, agreements exist between different
nations that allow their fishermen to participate in shared inter-
national fisheries. Some of these shared fisheries are also subject
to shared management, in which governments meet to agree on
how to regulate fishing effort, and how much effort to allow. A
yet smaller subset of fisheries is subject to international fisheries
management plans and harvest control rules, which seek to auto-
mate the management response to perceptions of stock dynamics
(and reduce the need for the long negotiations that can accom-
pany the utilisation of any shared resource). For managers to be
able to devolve much of their negotiating power, they must be
confident that management plans will deliver what they expect
(Kell et al., 2006a); and in order to do this, plans must be tested.
This can rarely be done at sea, so management strategy evalua-
tion (MSE) is usually conducted via computer simulation (Cooke,
1999). In this paper I discuss such an MSE for North Sea had-
dock, or more specifically, haddock in Sub-Area IV and Division IIIa
(Fig. 1) of the International Council for the Exploration of the Seas
(ICES).

This stock is exploited both by European Union (EU) member
states and by Norway, and is managed as a shared stock. In 1999
the EU and Norway agreed the terms of a management plan for
haddock, which was finally implemented in January 2005. The

∗ Tel.: +44 1224 295456.
E-mail address: needlec@marlab.ac.uk.

plan contained a clause specifying that a review was to be carried
out by the end of 2006. In April of that year, the EU and Norway
approached ICES to inquire about the feasibility of addressing this
review through ICES assessment Working Group channels. It was
agreed that the ICES Working Group for the Assessment of Demersal
Stocks in the North Sea and Skagerrak (WGNSSK) would carry out
the evaluation of the existing plan and any proposed modifications,
and that the review would be prepared subsequently during the
October 2006 meeting of the ICES Advisory Committee for Fisheries
Management (ACFM).

Initial analyses (Needle, 2006a) were presented in June 2006
at the ICES Working Group on Methods of Fish Stock Assessment
(ICES, 2006b), at which improvements and modifications were sug-
gested. Consultations with managers and stakeholders followed,
and updated results (Needle, 2006b) were discussed at the Octo-
ber meeting of ACFM (ICES, 2006a). The new analyses formed the
basis of ICES advice to the EU and Norway which was presented at
their annual bilateral meetings in November. In the margins of these
meetings further discussions were held on the likely sustainability
of the proposed plan, and this led to modifications (the addition of
a sliding-F rule, which we discuss below, and the clarification of the
time when biomass should be measured).

Following this process, the revised plan came into force on 1st
January 2007. The text of the plan is reproduced in Appendix A. In
essence, it can be simplified to two key points:

Ftarget and TAC constraint Set the Total Allowable Catch (TAC) in the
quota year (that is, the year after the assessment) to give Ftarget =
0.3, where Ftarget is the intended mean fishing mortality over some

0165-7836/$ – see front matter. Crown Copyright © 2008 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.fishres.2008.03.004



142 C.L. Needle / Fisheries Research 94 (2008) 141–150

Fig. 1. The management area for North Sea haddock, consisting of ICES Sub-Area IV and Division IIIa (Skagerrak). Note that the Skagerrak is the northern part only of Division
IIIa.

pre-specified age range (2–4 for haddock), as long as this results
in spawning-stock biomass B > Bpa at the beginning of the first
year after the quota year. Bpa is defined as the precautionary level
of biomass below which the stock should not fall. Modify the TAC
to ensure that the maximum inter-annual change in TAC is ±15%.
Note that, although “catch” is referred to in the plan, it is really
landings that are controlled.
Sliding-F rule If, following the application of the Ftarget = 0.3 above,
B < Bpa in the first year after the quota year, apply the sliding-F rule
with no TAC constraint (Fig. 2).

The procedure is laid out schematically in Fig. 3. The plan can be
categorised as an F-based harvest control rule, in which Ftarget for a
particular year is specified by the expected biomass that would be

Fig. 2. The sliding-F rule (thick line) for specifying the intended fishing mortality
rate F̃ , based on the expected spawning-stock biomass B remaining after the corre-
sponding quota has been taken. For North Sea haddock: Ftarget = 0.3, Fbycatch = 0.1,
Blim = 100 kt and Bpa = 140 kt.

left in the stock after the application of that Ftarget. The plan is also
restricted to the use of quotas (rather than effort limits or technical
measures) as the main management tool, although there is a vague
reference to alternative approaches (Appendix A, clause 6).

The principal changes from the first (January 2005) version of
the plan are the inclusion of the sliding-F rule, and the clarifica-
tion of when biomass should be measured. The former is intended
to prevent a strict adherence to a pre-defined Ftarget in situations
where it is clearly no longer appropriate; the latter ensures that
management decisions are based on predictions of the results of
management actions. However, these two features make evalua-
tion of the plan quite complicated. It is easy to envisage a situation
in which the forecast at Ftarget = 0.3 leads to a biomass after the
quota year which is between Blim and Bpa. In this case the sliding-
F rule stipulates a different Ftarget (Fig. 2), so the forecast must be
performed again – which leads to another different Ftarget, and so
on. This cycle converges to a single solution, but only at the cost of
computational complexity and long run-times.

Fig. 3 shows an additional step in the simulated plan that is not
present in the actual plan, namely the limit of interannual change
in Ftarget to �F = ±25%. This must be included to prevent the rapid
(and irreversible) increase in Ftarget that can occur when managers
try to maintain quotas in the face of a long series of low recruit-
ments. Although essential to prevent simulation failure, in practice
it is seldom needed.

In this paper, I will present a method for evaluating the North
Sea haddock management plan, along with a number of indica-
tive results. I also draw conclusions on the likely sustainability of
the stock under the plan, and highlight a number of limitations
in the method which must be borne in mind when interpreting
the results. Two of these are related to key features of the imple-
mentation. Firstly, haddock are sporadic spawners, and as such will
tend to produce very large (but infrequent) year-classes, the sizes of
which seem to be, to all intents and purposes, unrelated to parental
spawning stock biomass. It is important, therefore, that the bio-
logical simulations on which the evaluations are based represent
adequately this characteristic of haddock recruitment. Even if this
is ensured, recruitment forecasting is still problematic, and this is
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Fig. 3. Flowchart outlining the key points of the North Sea haddock management plan. See Appendix B for notation. Note that f (By+2) is shorthand for “the sliding-F rule
applied to biomass in the year y + 2”.

why many possible time-series of future recruitments are consid-
ered in any MSE. Secondly, management perceptions about a stock
are largely driven by the assessments provided by fisheries scien-
tists, so that the quality of management is largely a function of the
quality of the assessment. The utility of any management plan is
therefore dependent on the accuracy of the stock assessment. In
order to evaluate fully a management plan, it is important that the
evaluation includes a “live” stock assessment module as part of the
simulation loop. The implementation presented in this paper does
so, and allows us to observe the effects (sometimes deleterious,
sometimes beneficial) of biased or noisy data and stock assessments
on the success of management plans.

2. Methods

The basis of the management-plan evaluation code is the FLR
package (FLR Team, 2006; Kell et al., 2007), a collection of data types
and methods written in the R language (R Development Core Team,
2005) as part of the EU EFIMAS-COMMIT-FISBOAT project cluster
(e.g. EFIMAS, 2007). Specifically, the code makes use of FLR data
types for fish stocks, as well as stock assessment methods imple-
mented in FLR, and expands considerably upon these to address
the particular issues relevant to the North Sea haddock case study.
Model parameters were defined on the basis of historical data, and
then a number of simulations of future stock dynamics and fish-
eries management were performed. Fifty iterations were carried
out for each of five different target fishing mortalities (Ftarget =
0.1, 0.2, 0.3, 0.4, 0.5), with each simulation running for 20 years
into the future. Each Ftarget was evaluated in terms of the number
of years in each simulation in which spawning-stock biomass B was
below biomass reference points Blim (considered an absolute lower
limit) and Bpa.

The model algorithm can be summarised in brief as follows (a
full description is given in Appendix B):

(1) Historical assessment data are read in, using ICES (2007) as
the source. Run parameters are determined by an initial stock

assessment; these include variables governing recruitment, dis-
carding behaviour, fishery selectivity, and survey catchability.

(2) A biological simulation is carried out for the year in question.
This generates recruitment, growth, and mortality, and results
in values for abundance and biomass. In the first year, fishing
mortality is assumed to be equal to a three-year historical aver-
age: in subsequent simulation years, fishing mortality or yield
is determined by application of management decisions from
previous years (with some implementation error).

(3) A stock assessment and associated short-term forecast are car-
ried out, based on data up to (but not including) the current
year.

(4) Management decisions for the following year are then deter-
mined, using information from the assessment and forecast
and following the specified management plan to generate an
intended landings yield.

(5) Steps 2–5 are repeated for the number of years required in the
simulation.

(6) Finally, steps 2–5 are repeated for the number of iterations
required (50 are used in this paper). Each iteration differs
only in the time-series of generated recruitments, and in
measurement error for landings and survey indices (although
this error is of a much lower order than the recruitment
variability).

A key requirement for applying the model to North Sea had-
dock is to ensure that it encapsulates adequately the sporadic
nature of recruitment for the stock. Historically, North Sea haddock
recruitment has followed a pattern of occasional large year-classes
(the size of which seems unrelated to parental stock size, at least
directly), interspersed with years of low-to-moderate recruitment
(Fig. 4). In the model, this pattern is replicated by stipulating one
large recruitment (of the order of the 1999 year-class; around
100 thousand million fish) in a random year within each 10-
year simulation period. As the simulations are 20 years long,
there will therefore be exactly two large year-classes within each
iteration; this seems to be consistent with historical observa-
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Fig. 4. Estimated historical time-series of recruitment at age 0 for North Sea had-
dock.

tions. A further proviso is to ensure that the large year-classes
are separated by at least two years, as a potentially cannibalis-
tic species such as haddock have never been observed to produce
two large year-classes in succession. Recruitment for the remain-
ing years in the simulation is given by a lognormal distribution
about the geometric mean of the 10 years prior to 2006, not
including 1999 (around 10 thousand million fish). Details of
implementation of the recruitment model are given in Appendix
B.

The modelling of discarding of haddock from the commercial
North Sea fishery is also important for the effective simulation of
the fishery and its management. However, this is a much more
difficult issue to address successfully, as discarding behaviour is
a function not only of stock abundance, but also of prices, costs,
quota constraints, gear regulations, fishing distribution, and the
availability of other fishing opportunities (amongst other factors).
I have not attempted to model discards in this way in this paper,
but rather have used fixed proportions of discarding at each age
throughout the simulations (see Fig. 5). Specifically, the proportion

Fig. 5. Estimated historical time-series of discards at ages 0–7+ for North Sea had-
dock. The lines give the proportion of total catch for each age that was discarded.
The points to the far right show the three-year average discard proportions for each
age that were taken forward into simulations.

discarded at age a in the simulations is the mean of the proportions
discarded at age a for the years � − 3 to � − 1 (here � denotes the
first assessment year, which is 2007 for this case study). This is an
approximation that is unavoidable for now, that does have implica-
tions for the evaluation (see below), and that needs to be revisited
during future work.

3. Results

Figs. 6–8 summarise the results of the analysis, which took
around 75 h to complete due to the large number of repeated iter-
ations and minimisations required to simulate such aspects as the
TAC constraint and the sliding-F rule (Appendix B). As described
above, the sliding-F iteration converged successfully on every occa-
sion it was used.

Fig. 6 summarises the model output for a single iteration for
Ftarget = 0.3 (50 such iterations comprised the full analysis for a
particular Ftarget). In this iteration, the effect of the ±15% TAC con-
straint is clear in the time-series of intended landings (that is,
quota or TAC; see Fig. 6a). Following the sliding-F rule, the inter-
annual change in TAC deviates from the ±15% limits only for five
years between 2018 and 2025 (Fig. 6f), which correspond to years
for which assessed biomass falls below Bpa (Fig. 6c). However, in
these years (and, indeed, in most years in the simulation), the true
biomass was much higher, and this reveals the effect of the problem
with discard modelling that was mentioned above. As fishing mor-
tality is maintained at a low level, biomass begins to rise; but the
TAC constraint means that landings do not rise commensurately.
In reality this would probably lead to increased discarding across
all ages, all else being equal, but that cannot happen in this model
for which fixed proportions discarded at each age have been stip-
ulated. For this reason, the catch (landings plus discards) on which
the assessment is based is lower than it should be, and hence the
assessed biomass is lower.

The data from the simulated survey series does not have this
bias, but the assessment model used (FLXSA, an implementation of
XSA) is largely driven by catch data with surveys playing a calibra-
tive role (Darby and Flatman, 1994). Extensive testing during model
development showed that none of the FLXSA settings (shrinkage
and so on) could ameliorate the effect. A higher Ftarget or the removal
of the TAC constraint do reduce the problem: however, these are
not part of the plan under evaluation. The under-estimation also
has consequences for fishing mortality, which is mostly estimated
to be higher than it really is. The result is a management plan which
is actually more conservative than it needs to be.

We note also that TAC increases of greater than 15% are possible
(Fig. 6f). This will happen when a low assessment of spawning-stock
biomass is combined with a large incoming year-class. The man-
agement plan operates on the basis of spawning-stock biomass,
which remains low while the fish are young, so the constraint on
interannual TAC variation does not apply. At the same time, the
abundant young fish contribute to a higher quota forecast. The TAC
must therefore increase by more than 15% if the management plan is
to be followed. This result seems contradictory in a situation of low
biomass, but is inevitable if the management plan is implemented
as written.

The 50 iterations carried out with target Ftarget = 0.3 are sum-
marised in Fig. 7. The median values from these plots are the result
of smoothing across different realisations of recruitments, and are
therefore useful only as an indication of likely future events. We note
that the median outcome itself is not at all likely, given that each
recruitment time series always has two large year-classes which
are not reflected in the median. Median landings yield falls to a
low level as the 1999 year-class is exhausted, before rising to a
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Fig. 6. Summary plots of a single simulation iteration, with Ftarget = 0.3. In each plot the vertical dashed line delineates the assessment year � . Each grey line shows the
assessment result for one year in the future simulation. (a) Yield. (b) Fishing mortality, with dashed horizontal lines indicating Flim (upper) and Fpa (lower). (c) True (black)
and assessed (grey) spawning-stock biomass B, with dashed horizontal lines indicating Bpa (upper) and Blim (lower). (d) True (black) and assessed (grey) recruitment to the
fished stock. (e) Comparison of frequency distribution of historical and simulated recruitment. (f) The percentage interannual change in quota (TAC), with dashed horizontal
lines showing the ±15% level.

steady state of around 45 kt. Median fishing mortality is, for much
of the time series, much lower than the Ftarget that the management
plan should provide; this is due to a combination of the ±15% TAC
constraint and the simple discard model mentioned above. Median

biomass remains stable for four years or so, before rising swiftly and
rebounding to a steady state well above Bpa. Finally, the median
recruitment is low, but the occasional large year-classes are also
evident.
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Fig. 7. Summary plots of 50 simulation iterations, with Ftarget = 0.3. The short horizontal lines indicate the medians, the boxes the quartiles (25th and 75th percentiles), and
the whiskers the 5th and 95th percentiles. Outliers are shown by open circles. The dashed line on the top-right plot shows Ftarget, while those on the bottom-left plot show
Bpa (upper) and Blim (lower). Historical estimates (pre-2007) are shown as short horizontal lines only.

As well as medians, Fig. 7 also indicates the spread of possibil-
ities, and on this basis we can examine the risk of occurrence of
unwanted events. One such event would be biomass falling below
Bpa or Blim, which is what the management plan is attempting to
avoid. We can estimate this risk by counting the number of years in
a given iteration that B < Bpa or B < Blim. If we denote the spawn-
ing stock biomass in year y in iteration k of a simulation using Ftarget

by By,k,F , allow Bref to stand for Bpa or Blim as appropriate, and use
a selection function �y,k,F such that

�y,k,F =
{

1, By,k,F < Bref
0, By,k,F ≥ Bref

(1)

then the required risk is given by

Riskk,F =
∑

y

�y,k,F . (2)

The distributions and central tendencies of Riskk,F are then used
to indicate the degree of risk associated with each management
measure (which in this case means each value of Ftarget).

The risk estimates for each Ftarget are summarised in Fig. 8, which
considers the risk of both B < Bpa and B < Blim. The distributions
of Riskk,F for both have had loess smoothers passed through them,
to give an indication of the central tendency of risk. On the basis
of these smoothers, the number of years for which B < Blim ranges
from 0.26 years (which is 1.18% of the total) to 1.90 years (8.64%),
while the values for B < Bpa range from 1.73 years (7.86%) to 4.32
years (19.64%). That is, the risk of spawning biomass being below
the limit reference point for the next 22 years, given the assump-
tions of the model, remain less than 10% for values of Ftarget as high
as 0.5. The results for Ftarget = 0.3, the value stipulated in the man-

agement plan, are 0.46 years (2.10%) for B < Blim and 2.35 years
(10.70%) for B < Bpa.

In any stock simulation of this kind, one of the key aspects to get
right (if only approximately so) is the time-series of future recruit-
ments. The assumption in this paper of two strong year classes
over the next 20 years is a strong one. It is possible that the risk

Fig. 8. Summary of risk of B < Bpa (grey) and B < Blim (black) for different values of
Ftarget. The correspondingly-coloured solid lines show the fits of loess smoothers to
the full time-series of risk estimates. Small random perturbations have been applied
to the vertical position of each cross to improve visualisation. Risk is defined as the
number of years in each simulation for which spawning stock biomass B < Bpa or
B < Blim as appropriate.
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Fig. 9. The relationship between risk and the simulation year in which the first
large recruitment event occurs. Risk is defined here as the number of years in each
simulation for which spawning stock biomass B < Blim. Each cross gives the result
for one of the 50 simulations performed, in this case with Ftarget = 0.5, and small
random perturbations have been applied to the vertical position of each cross to
improve visualisation. The solid line shows a loess smoother passed through the
data, while the dotted lines give ±2 standard errors of the smoother.

estimates described above are largely or entirely dependent on
the year of occurrence of the first large year-class, the hypothesis
being that the early appearance of this year-class would a neces-
sary condition for low risk. This is tested in Fig. 9, which shows
Riskk,F for Ftarget = 0.5 (and considering the risk of B < Blim in par-
ticular) plotted against the year of the first large recruitment in
the corresponding simulation iteration. The plot does not support
the hypothesis; if anything, the relationship between risk and the
year of the first large recruitment is slightly negative. This result
suggests that the simulations are not as closely dependent on the
recruitment time-series as might be expected.

4. Discussion and conclusions

On the basis of the simulations presented in this paper, it would
appear that the EU-Norway management plan for North Sea had-
dock is sustainable – that is, it provides a low risk of biomass
being below the limit reference point, along with stability in quo-
tas that will benefit the fishing industry and related economies.
However, there are a number of caveats that need to be borne in
mind. The analysis has assumed full implementation of the quota
regulations, so that the landings are precisely as intended by the
specified quota, neither above nor below. In reality many situa-
tions will prevent this happening: there may be misreporting by
species or area, or quota uptake may be less than full (as has
been the case in the North Sea during 2007). Fleet behaviour is
assumed to be static, which is unlikely. The simulations also do not
consider the impact of effort management or such technical mea-
sures as may be applied to the haddock fishery. Although these
are not stipulated directly in the management plan, they do affect
the fishery and will therefore have an effect on the sustainability
of the plan when it is applied, as will multispecies considera-
tions.

The biological assumptions in the analyses will also affect per-
ceptions of the likely impact of the management plan. The growth
of haddock is assumed to be constant into the future, although it
is well known that haddock growth is affected by year class size
(among other things; see ICES, 2007). Recruitment of haddock has
been modelled as a time-series only, with no reference to parental

spawning-stock size. The lack of a clear relationship between stock
and recruitment would indicate that this is reasonable, but it means
that good recruitment is possible in the simulations from extremely
small adult stocks and this may not be realistic.

The simulations in this paper have been limited to 50 itera-
tions each (due to time constraints). Generally, stochastic analyses
of this kind would require 1000 or more iterations before reason-
able conclusions could be drawn, and the small number used here
leads to potential problems. For example, the recruitment distri-
butions in Fig. 7 would all be similar if sufficient iterations had
been run. That they are not may be introducing unwanted effects
in the analysis. This problem is currently very hard to avoid: a run
of 50 iterations takes around 15 h in the extant implementation,
so that 1000 iterations would occupy over 12 days of computing
time. There are a number of steps in the algorithm which slow the
process down, including the live assessment, the iterative estima-
tion of a TAC to produce a required fishing mortality rate, and the
sliding-F rule. Work is ongoing to address this issue. However, the
difficulty may not be as significant as it at first appears. The real
difference between each iteration lies in the years in which the
two large year-classes appear. While there are 56 possible permu-
tations, there are only four combinations which are likely to have
any real impact: the large year-classes can appear in the first or
second half of 2006–2013, and first or second half of 2016–2023.
That is, the large year-classes are either close together, moder-
ately separated and early, moderately separated and late, or far
apart. It may be that 50 iterations is sufficient to cover this reduced
range of outcomes, particularly following the results in Fig. 9 which
suggest that the recruitment time-series may not be all that criti-
cal.

The analyses suggest that one of the strongest influences on the
simulated management is the assumption in the discard model
that proportions discarded-at-age are invariant with time. This
assumption is very clearly not true, and leads to consistent under-
estimation of biomass in the simulated assessment when large
year-classes appear. The discrepancy between true and assessed
B and F in these management simulations can be reduced by using
a higher Ftarget, as this keeps biomass below the level at which
discarding behaviour would be expected to change. It can also be
ameliorated by allowing TACs to change without constraint. How-
ever, neither of these possibilities is allowed by the management
plan, and the problem will therefore remain until an improved
model of discarding is developed.

Indeed, all of the problems mentioned above are very difficult to
address using currently-available knowledge. Given this, the best
we can conclude is that the management plan appears to be sus-
tainable in the context of a number of fairly crude (and possibly
untestable) assumptions. However, this in itself is a valuable con-
clusion for fisheries managers, and is certainly more useful than no
evaluation at all. The development of the evaluation has also been
instructive, both in terms of generating a template in which other
management plans can be evaluated, and in terms of highlighting
issues with management for this particular fishery (such as dis-
card modelling) which strongly affect the evaluation in unexpected
ways – and which therefore need to be considered in more detail.
Other important avenues for future work include evaluations of the
effect of a “banking and borrowing” provision, whereby quota can
be banked in one year to be used in the next, or borrowed from
next year to be used in this (interannual flexibility); methods by
which multispecies aspects can be incorporated; analyses to eval-
uate the sensitivity of outcomes to model assumptions (including
the starting conditions and recruitment simulation); code optimi-
sation to allow for more iterations; and ways in which the impact
of other fisheries (such as industrial bycatch) can be incorporated
in the evaluation.
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Properly specified management-strategy evaluations, carried
out using simulation methods, are the best (and perhaps only) way
in which the structure, details and inherent risk of management
plans can be tested, short of impractical real-world experimenta-
tion (Cooke, 1999; De Oliveira and Butterworth, 2004; Kell et al.,
2006a; Aranda and Motos, 2006; Kell et al., 2006b). While it is pos-
sible to determine values for reference or trigger points without an
MSE, using considerations of biology, fisheries, economics, and so
on, it is difficult to test the effect of using any particular reference
point in management (and thereby justify that point) without an
MSE. Without an MSE, it is also impossible to claim with any cer-
tainty that a given plan will do what is intended. Although many
difficulties remain, the development of MSE methods has been an
important step forward in fisheries management science.
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Appendix A. The EU-Norway management plan for North
Sea haddock

The text of the revised EU-Norway management plan for North
Sea haddock, which came into effect on 1st January 2007, is as fol-
lows. TAC here stands for Total Allowable Catch; in fact this refers
only to landings, not catch.

(1) Every effort shall be made to maintain a minimum level of
Spawning Stock Biomass greater than 100 kt (Blim).

(2) For 2007 and subsequent years the Parties agreed to restrict
their fishing on the basis of a TAC consistent with a fishing mor-
tality rate of no more than 0.3 for appropriate age-groups, when
the SSB in the end of the year in which the TAC is applied is
estimated above 140 kt (Bpa).

(3) Where the rule in paragraph 2 would lead to a TAC which devi-
ates by more than 15% from the TAC of the preceding year the
Parties shall establish a TAC that is no more than 15% greater or
15% less than the TAC of the preceding year.

(4) Where the SSB referred to in paragraph 2 is estimated to be
below Bpa but above Blim the TAC shall not exceed a level which
will result in a fishing mortality rate equal to 0.3 − 0.2 × (Bpa −
SSB)/(Bpa − Blim). This consideration overrides paragraph 3.

(5) Where the SSB referred to in paragraph 2 is estimated to be
below Blim the TAC shall be set at a level corresponding to a total
fishing mortality rate of no more than 0.1. This consideration
overrides paragraph 3.

(6) In order to reduce discarding and to increase the spawning stock
biomass and the yield of haddock, the Parties agreed that the
exploitation pattern shall, while recalling that other demersal
species are harvested in these fisheries, be improved in the light
of new scientific advice from inter alia ICES.

(7) In the event that ICES advises that changes are required to the
precautionary reference points Bpa (140 kt) or Blim (100 kt) the
parties shall meet to review paragraphs 1–5.

(8) No later than 31 December 2009, the parties shall review
the arrangements in paragraphs 1–7 in order to ensure that
they are consistent with the objective of the plan. This review

shall be conducted after obtaining inter alia advice from ICES
concerning the performance of the plan in relation to its
objective.

Appendix B. The evaluation algorithm

For those who wish to replicate the analysis or understand more
fully the simulations presented in this paper, I have given a detailed
description of the algorithm below. The method is also summarised
schematically in Fig. 3. Throughout, a denotes age and y year, so Fa,y

gives (for example) the value of fishing mortality in age a and year y.
The matrix of fishing mortalities for all ages and years is denoted by
F = [Fa,y]. F̂a,y is the estimated fishing mortality, while F̃a,y gives the
fishing mortality intended by management. For fishing mortality in
particular, a missing a indicates the mean over ages 2–4: that is,
Fy = (1/3)(F2,y + F3,y + F4,y). For parsimony, we define the target
fishing mortality as

Ftarget = 1
3

4∑
a=2

F̃a,y.

The initial assessment year (the first year in the simulation) is
denoted by � .

(1) Assessment working group data for North Sea haddock are read
in. These are taken from the most recent assessment meeting
(ICES, 2007), and consist of time series by age on landings and
discards (both numbers and mean weights), stock weights, nat-
ural mortalites, maturities, and research-vessel survey indices.

(2) Assessment data for total catch numbers Ca,y and yield Yy are
derived from data on landings and discards.

(3) Model and management parameters are set. These include bio-
logical reference points, age ranges over which to calculate
mean F, the plus-group age apg, and assessment model settings.

(4) An initial XSA assessment (Shepherd, 1992; Darby and Flatman,
1994) is run, using data up to and including year � − 1 (which
is 2006 in the case study). The FLR implementation (FLXSA) is
used here. This generates estimates of abundance N̂a,y, recruit-
ment R̂y = N̂0,y (age 0 is the first age in the North Sea haddock
dataset), and fishing mortality F̂a,y, and enables subsequent
estimation of the following:
(a) Catchability qi,a for each survey. This is assumed to be

related to estimated abundance via a power relationship,
and is estimated for each survey i and age a by minimising
the sum-of-squares

SSQq =
∑

y

(Ii,a,y − q̂i,aN̂p̂i,a
a,y )

2
, (B.1)

where pi,a is the power term in the catchability relationship
for each age a and survey i.

(b) Parameters of simulated recruitment. These are the
mean and variance of the low-to-moderate recruitments
observed during 1995–1998 and 2000–2006, and the esti-
mate of the high 1999 year-class recruitment.

(c) Selection �a. This is a measure of how fishing mortality F
varies with age a, and is given for each age by the mean of the
last three historical F estimates. If � is the first assessment
year (� = 2007 in the case study), then:

�a = 1
3

(F̂a,�−3 + F̂a,�−2 + F̂a,�−1). (B.2)

This is then rescaled so that
∑

a�a = 1. In simulations
modelling effort-based management, selection �a must be
assumed to be known throughout the simulation period: if
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this were not the case, there would be no unique solution
to the estimation of F that results in the required catch. In
this case study �a is assumed to be fixed throughout the
simulation period, although more complicated models of
time-varying �a would be possible.

(d) The proportions of the total catch numbers in each of the
catch components (landings and discards) is fixed through
the simulation period. They are based on three-year histor-
ical means, as follows:

Landings : �l
a = 1

3

2006∑
y=2004

C l
a,y

C l
a,y + Cd

a,y

(B.3)

Discards : �d
a = 1 − �l

a (B.4)

(5) Data objects are stipulated, and run settings defined. The set-
tings used in the North Sea haddock case study are as follows:

Survey CV : �i = 0.2
Catch CV : �c = 0.1
Management type : TAC − based landings regulation
HCR type : Management plan with sliding − F rule
Limit in TAC change : �TAC = 0.15(15%)
Target F : Ftarget = 0.1, 0.2, 0.3, 0.4, 0.5
Bycatch F : Fbycatch = 0.1
Limit in F change : �F = 0.25(25%)
Biomass reference points : Blim = 100 kt,Bpa = 140 kt

(6) The analysis itself consists of three concentric loops: the Ftarget

loop, which considers different values of Ftarget; the k or iter-
ation loop, which loops over different randomly-generated
recruitments, and the inner y or year loop. The y-loop proceeds
as follows:
(a) If y = 1, Fa,y (the intermediate year fishing mortality) is set

to the mean of the last three historical years. If y > 1, this
step is not required as the intermediate-year F is determined
by previous applications of the specified HCR.

(b) Recruitment in year y is given by

Ry =
{

Rhigh
y y = y1, y2

Rlow
y otherwise

(B.5)

where

ln Rlow
y ∼ N(R̄low,CVRy), (B.6)

R̄low = exp

(
1
10

∑
y=95...98,00...05

ln Ry

)
(B.7)

and

CV(Ry) = sd(ln R95, . . . , ln R98, ln R00, . . . , ln R05). (B.8)

In addition

y1 ∼ U(2006, 2013) (B.9)

y2 ∼ U(2016, 2023) (B.10)

and

Rhigh
y1,y2

∼ N(R99, 0.1R99). (B.11)

(c) Biological parameters are assumed to be constant through-
out the simulation, so that for any a and y:

Catch weights : Wc
a,y = Wc

a,y−1 (B.12)

Landings weights : W l
a,y = W l

a,y−1 (B.13)

Discard weights : Wd
a,y = Wd

a,y−1 (B.14)

Stock weights : W s
a,y = W s

a,y−1 (B.15)

Natural mortality : Ma,y = Ma,y−1 (B.16)

Maturity : Mata,y = Mata,y−1 (B.17)

Prop. F before spawning : PFa,y = PFa,y−1 (B.18)

Prop. M before spawning : PMa,y = PMa,y−1 (B.19)

(d) Abundance in year y for all a < apg is given by

Na,y = Na−1,y−1 exp(−Fa−1,y−1 − Ma−1,y−1), (B.20)

and for a = apg:

Na,y = Na−1,y−1 exp(−Fa−1,y−1 − Ma−1,y−1)

+Na,y−1 exp(−Fa,y−1 − Ma,y−1). (B.21)

(e) Catch, landings and discard numbers C (as well as associated
yields Y) in year y are now calculated, using

Cc
a,y = F̃a,yNa,y(1 − exp(−F̃a,y − Ma,y))

F̃a,y + Ma,y
(B.22)

C l
a,y = �l

aCc
a,y (B.23)

Cd
a,y = �d

a Cc
a,y (B.24)

Yc
y =
∑

a

Cc
a,yWc

a,y (B.25)

Y l
y =
∑

a

C l
a,yW l

a,y (B.26)

Yd
y =
∑

a

Cd
a,yWd

a,y (B.27)

Note that F̃a,y here is the intended fishing mortality
produced by a previous management decision. Under catch-
based management, Eq. (B.22) cannot be used directly
because it is intended landings yield Ỹ l

y that is determined
by a previous management decision, not fishing mortality
F̃a,y. In this case, a multiplier �y must be determined such
that the application of Fa,y = �y�a results in Na,y > 0 ∀ a
and Y l

y ≤ Ỹ l
y. Recall that �a is the selection at age a from Eq.

(B.2). Here we are modelling a fishery which will take the
predetermined TAC if possible, but not if doing so would
result in negative abundance at any age. �y is estimated by
minimising the sum-of-squares between intended yield Ỹ l

y

and actual yield Y l
y, constrained so that Na,y > 0 ∀ a. Once

this is done, fishing mortality is given by Fa,y = �y�a and
catch by Eq. (B.22).

(f) Survey indices are now generated for year y: note that these
are not actually used in the assessment until the following
year, but it is convenient to generate them at this point in the
cycle. Given catchability qi,a, abundance Na,y and a random
term εi

a,y ∼ N(0, �2
i

), survey indices are given by

Ii,a,y = qi,aNpi,a
a,y exp(εi

a,y). (B.28)

(g) Catch, landings and discards data for assessments are pro-
duced by applying random noise to true values. Given an
assumed measurement error variance on catch data of �c,
assessment catch data is given by

Ĉ
c = [Ĉc

a,y] = [Cc
a,y exp(εc

a,y)], (B.29)
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where εc
a,y ∼ N(0, �2

c ). Assessment landings and discards
data are generated in an analogous manner to true landings
and discards data:

Ĉ
l = [Ĉ l

a,y] = [�l
aĈc

a,y] (B.30)

Ĉ
d = [Ĉd

a,y] = [�d
a Ĉc

a,y] (B.31)

Measured yields Ŷ
c
, Ŷ

l
and Ŷ

d
are calculated in a similar way

to that given in Eqs. (B.25)–(B.27).
(h) An assessment is carried out, using data (up to and including

year y − 1) for Ĉ
c
, Ŷ

c
, Wc, Ws, M, Mat, PF, PM, and I(see Eqs.

(B.12)–(B.19)). The FLXSA function of FLR is used for this
purpose, and returns assessment estimates of abundance N̂
and fishing mortality F̂. In the first year loop only (y = 2007)
these estimates are treated as the true values, so that:

Na,j = N̂a,j (B.32)

Fa,j = F̂a,j (B.33)

for j ≤ y − 1.
(i) At this point we apply the sliding-F management rule. An F-

multiplier Fm is estimated that results in Fy+1 = Ftarget when
applied to F̂y−1. A short-term (three-year) forecast is carried
out on the basis of this value of fishing mortality, using year
y − 1 as the starting point, and the resultant spawning-stock
biomass B̂y+2 in the year following the quota year is gener-
ated. If B̂y+2 < Bpa, the sliding-F rule is applied to generate
a new Ftarget and the forecast procedure is repeated to pro-
duce a new B̂y+2. This may imply a different Ftarget, in which
case the procedure is repeated until the difference between
subsequent values of Ftarget is less than a pre-specified iter-
ation tolerance. This iteration nearly always converges: if
B̂y+2 flips between a value above Bpa and a value below Blim,
then the average of Ftarget and Fbycatch is used.

If the final B̂y+2 > Bpa, the TAC constraint is applied
(�TAC = 15%, in this case). The implied intended landings
yield Ỹ l

y+1 is compared with Ỹ l
y ± �TAC. If Ỹ l

y+1 is within this
range, then the intended yield is set to that which is implied
by F̃y+1 = F̂y−1 × Fm. On the other hand, if the implied yield
Ỹ l

y+1 from the original forecast is not within the bounds

specified by �TAC, then Ỹ l
y+1 is set to Ỹ l

y ± �TAC.
A series of low recruitments can lead to an exponential

(and irreversible) increase in F as our virtual managers try to
ensure that the full TAC is taken. To prevent this, a limit �F is
stipulated on interannual change in F. If Fm > 1.0 + �F then
Fm is set to 1.0 + �F: similarly, if Fm < 1.0 − �F then Fm

is set to 1.0 − �F . It is also useful to record intended yield,
which in this case is the yield implied by the modified Fm.

Although the process is quite complicated, the output
from the evaluation is simple: the intended landings yield
Ỹ l

y+1.
(j) With management decisions now determined, the y-loop

carries on to the start of the next year. The quota year from
the previous y-iteration now becomes the intermediate
year, and effect of fishing on the stock is now largely
determined by the intended yields.

(k) Once the y-loop is completed, the simulation begins
again with the next k-loop and a different time-series of
recruitments, and subsequently the next Ftarget-loop.
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Under its Conservation Credits scheme to reduce cod mortality, the Scottish Government has implemented a system of real-time
closures (RTCs) since 2008. These are relatively small, temporarily closed areas (50 –225 square nautical miles per RTC, closed for
21 d) that are triggered by high cod catches. An important step in evaluating their effectiveness is to determine the response of
vessels to RTCs, because the conservation benefit would be reduced if vessels moved to areas of greater cod abundance following
closures. Abundance indices from research-vessel surveys and commercial-vessel observer trips are combined to create a time- and
space-dependent relative cod-importance index (RCII). Vessel monitoring system data from Scottish vessels fishing during 2008/

2009 are used to construct RCII profiles for each vessel, which are then used to determine whether the areas to which vessels
move have a higher or a lower RCII, and how far away they move when an RTC is activated. We show that the RCII of the areas
moved to tends to be lower than that of the RTC and that vessels travel farther when moving away from a closure than when
moving back after reopening. Although not conclusive, this result indicates that RTCs may impact beneficially on cod mortality.

Keywords: closed areas, cod, fleet dynamics, relative importance index, VMS data.

Introduction
Scientific advice for fishery management has always been based on
limited data. Catch data often do not include discards, and survey
indices are derived from brief snapshots of stock abundance and
distribution. Such limitations often hamper the ability of scientists
to help managers to take appropriate decisions. Historically, one of
the key missing pieces of information has been the location of
fishing effort. Without good data on where vessels have been
fishing, it has been very difficult to devise and implement appro-
priate management measures that take account of the spatial dis-
tributions of fish or fleets.

Although not without problems, the recent availability of vessel
monitoring system (VMS) data to scientists has permitted a wide

range of analyses that would not previously have been possible

(see, e.g. Lee et al., 2010; Vermard et al., 2010; Gerritsen and

Lordan, 2011). The example considered in this paper is the

response of Scottish skippers to the implementation of real-time

closures (RTCs), which are part of the Scottish Government’s

response to European Union (EU) calls for reductions in cod

(Gadus morhua) mortality. Using VMS data and a derived spatio-

temporal distribution indicating the relative importance of cod, we

analyse the movements of those vessels thought to be most directly

affected by RTCs. Specifically, we determine whether vessels

moving away from closed areas (or back towards reopened

areas) increase or decrease their likely impact on cod mortality,

as measured by the RCII (relative cod-importance index) in the

areas in which they are fishing. Although the analysis is useful in

itself for evaluating the impact of management measures on cod

mortality, it is also valuable as an example of how to use fishery-

dependent information to provide management advice that

would not otherwise be obtainable.

Data
Since 2003, monitoring systems of the VMS type have been
installed on Scottish fishing vessels longer than 15 m, ostensibly
with two main purposes: to assist in search-and-rescue operations
and to enable compliance officials to know where a vessel was at a
given time (and whether it was transgressing in closed areas, for
example). The potential value of VMS data to scientists studying
fleet behaviour and producing stock assessments was clear
immediately, but permission for Scottish fishery scientists to
access VMS data was granted by the Scottish fishing industry
only in 2007 (Gatt and Reid, 2007). Since then, scientists from gov-
ernment laboratories (Marine Scotland) have been allowed to use
such data for research purposes. However, such access is limited to
studies concerning the Common Fisheries Policy (CFP) of the EU
and associated issues.

VMS data consist of vessel speeds, headings, and locations,
with one reading (known as a “ping”) being transmitted to a
central repository via a satellite link every 2 h. The data are actu-
ally generated at a much higher frequency (as much as once
every 10 s), but the limitation to one ping every 2 h reduces
the cost of satellite transmissions. Even at this frequency, there
are often periods of missing data in the VMS database; these
transpire for various reasons, principally faulty equipment. The
database used for this study contains VMS records for all
Scottish non-pelagic vessels (.15 m) fishing during the period
specified.

Restrictions on the use of VMS data
Dissemination and transmission of Scottish VMS data to the
public are not permitted. The Freedom of Information
(Scotland) Act does not apply, because VMS data are considered
to be sensitive personal information and are protected under EU
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law. However, it is important to note what are and what are not
considered to be VMS data. The term is intended to cover data
that identify individual vessels and reveal their speed, position,
and heading while at sea. Our interpretation of recent legal
advice indicates that suitably anonymized plots of vessel positions
and speeds are not VMS data and can be included in publicly avail-
able documents.

In this context, it is important to be able to generate plots that
summarize a vessel’s position and speed in a way that does not
reveal its identity or exact fishing location, because this is commer-
cially sensitive information that would be illegal to present.
Standard plots of VMS positions are not appropriate for this
purpose. In this paper, a system of data binning is used to
present VMS information at a suitable level of aggregation.
However, the analyses are carried out using exact-position 2-h
VMS ping data, so the accuracy of vessel positions is not
compromised.

VMS data do not indicate directly what a vessel is doing at a
particular location. Borchers and Reid (2008) used probabilistic
activity models to conclude, for demersal trawlers, that only
those moving at speeds of 0.5–5 knots were likely to be fishing.
Recent analyses comparing VMS and closed-circuit television
data from Scottish vessels support this speed range (unpublished
results), and it is used by the Scottish Government when

determining areas to be closed. VMS fishing pings in the analysis
here are therefore specified using the same speed criterion.

RTCs during 2008–2010
As part of its Conservation Credits initiative which began in 2008,
the Scottish Government instigated a series of RTCs intended to
divert demersal fishing effort away from areas of abundant cod,
and hence to reduce cod mortality. The RTCs were stipulated as
areas of �50 square nautical miles and were initially defined as
7 × 7 nautical mile squares,, although this limitation has sub-
sequently been relaxed and RTCs may now be of different
shapes. Since June 2010, the maximum possible area of each
RTC has been increased to 225 square nautical miles. Each RTC
is in place for 21 d, following which period they are reopened auto-
matically. Further, the rules limit the number of RTCs that can be
enacted simultaneously in proximity to prevent certain local
fishing communities being unfairly disadvantaged. The closure
of an area is triggered by an upper limit on the observed cod
density, defined as 40 cod (of any size) per hour’s fishing.
Notification is via skipper’s logbooks, monitored landings, or by
on-board observation, and a single high-density haul is sufficient
to instigate a closure. There may only be a maximum of 11 closures
defined by logbook or landings data in operation at any one time,
along with an additional three closures defined by positive

Figure 1. Area closures in (a) the whole of 2009, and (b) on 1 July 2009, showing both RTCs (red), and permanent or other seasonal closures
(blue; see Holmes et al., 2011). The dotted line shows the extent of the UK EEZ, and grey lines show bathymetry at 100-m intervals.
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on-board samples. Since 2009, observance of RTCs by Scottish
demersal fishing vessels has been mandatory. There is no legal
impediment to vessels from other countries fishing in RTCs,
although they have been encouraged by the Scottish
Government and the EU not to do so, and anecdotal evidence
from compliance officers and the Scottish fishing industry suggests
that RTCs have generally been respected by non-Scottish vessels.

Full details on how RTCs are defined within the Conservation
Credits scheme are given in Holmes et al. (2009): see also
European Parliament (2010). In all, 15 such closures were
implemented in 2008, but an expansion of the scheme led to
144 closures in 2009 (Figure 1a) and 165 in 2010. Although the
area covered by the closures in 2009 looks substantial, it is impor-
tant to note that only a few of the RTCs were in force on any given
day: Figure 1b shows the extant closures on 1 July 2009.

Cod abundance data
To generate a spatio-temporal distribution of relative cod impor-
tance, and thereby to determine whether vessels moved towards or
away from cod as a result of the area closures, reliable data on
observed cod densities were required. Reported landings have
limited utility for this purpose, because they do not include

discards, which may be a sizeable component of the catch, and
they are not very informative about where the fish were caught.
The reported landings for a fishing trip might be assigned
equally to all the VMS fishing-ping locations for that trip (see
above), but this is imprecise and could be misleading.
Appropriate models of fish distribution incorporating landings
records are under development, but for this exercise, we con-
sidered that landings data could not be used for the analysis.
The data used, therefore, come from a combination of research-
vessel surveys and discard observations. For 2008 and 2009, they
were:

(i) the North Sea International Bottom Trawl Survey (IBTS-NS,
Q1 and Q3), carried out by several countries during the
periods January/February and July–September and collated
by ICES;

(ii) the Beam Trawl Survey (BTS Q3), conducted in the southern
North Sea during August and September and also collated by
ICES;

(iii) the Scottish Groundfish Survey in Division VIa (West of
Scotland), carried out by Marine Scotland on RV “Scotia”
during March (ScoGFS VIa Q1);

Figure 2. A subset of the cod-density observations used to generate the relative cod-importance index (RCII). Symbols indicate the locations
of available observations for the period May–August 2008. Note that these dates do not include the ScoGFS VIa Q1 or Rockall Q3 surveys.
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(iv) the Scottish Rockall survey (Rockall Q3), conducted by
Marine Scotland on RV “Scotia” during September;

(v) Scottish discard observations, collated from �75 observer
trips each year.

Data were taken from the ICES DATRAS database (www.ices.dk)
and the Scottish Fisheries Management Database (FMD) operated
by Marine Scotland (www.scotland.gov.uk). The locations of cod
observations for the period May–August 2008 are summarized
in Figure 2.

Methods
The relative cod-importance index
To determine whether vessels moved to areas of greater or lesser cod
density when displaced by the creation of an RTC, we developed an
index of relative cod density (the relative cod-importance index, or
RCII). In brief, it takes all available spatial distribution data on cod
from research-vessel surveys and discard-observer trips for a given
month, standardized to a consistent scale (the measurement units
used by different surveys and observer programmes can vary
widely), then fits a trend surface using generalized least squares.
The procedure produces a contour plot of relative cod importance
for each month. However, observations in a given month can be
patchy; and for some months, there are no observations at all, so
to improve the consistency of fitted distributions through time,
there is an additional temporal-smoothing step in which the
distribution at each point for a given month is modified by
the equivalent values in preceding and succeeding months.
Temporal smoothing is achieved using weighted local polynomial
regression (loess) smoothers (Cleveland et al., 1992), in which the
weights are the Haversine distance (see below) from the point in
question to the nearest points with actual observations in that

month. Therefore, we generate a relative cod distribution using
observed abundances, smoothed over both space and time to
avoid problems inherent in the patchiness of the data. These ana-
lyses were carried out using R (version 2.8.1; R Development
Core Team, 2008), with the “spatial” library (Venables and
Ripley, 2002).

The RCII algorithm proceeds as listed below.

(i) The numbers of cod N caught per hour (by either a survey or
an observed vessel) are extracted from the relevant datasets.
Cod numbers from each data source are heavily skewed,
with many zero observations and a few large ones. If used
without any transformation, these data would lead to cod dis-
tribution maps consisting of a few hotspots, a pattern that
does not reflect the industry perception of a widespread cod
abundance on which fishing decisions are based. As we are
attempting to model the consequences of such decisions,
results based on non-transformed data would have little rel-
evance. To improve the distributional properties of the data
for the purposes of this analysis, therefore, a cube-root
transformation N1/3 is applied. However, the choice of trans-
formation is ad hoc: zero-inflated models (Zuur et al., 2009)
would be examples of plausible alternatives.

(ii) The data are further rescaled so that the relative abundance
over all observations for each source lies between 0 and 1
(considering all months together), avoiding problems with
the original very different measurement units. This rescaled
abundance is denoted by Ñ1/3.

(iii) Abundance data from all sources are collated into a single
dataset, then split by month. The R function used to fit
trend surfaces (see below) will fail if two or more

Figure 3. Fitted trend surface (without temporal smoothing) for rescaled cod abundance Ñ1/3 for January 2008. Grey lines indicate the 250-m
depth contour, used to limit the study area. Darker areas indicate higher values of Ñ1/3. Open circles, data points from research-vessel surveys
(in this case, IBTS NS Q1); closed circles, data from observer trips on commercial vessels.
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observations have exactly the same position. To prevent these
computational problems, small random perturbations are
applied to the latitude–longitude position records of all
observations.

(iv) The dataset for a given month now contains a list of rescaled
abundances along with a unique latitude–longitude position

marker for each. The R function “surf.gls” is used for each
month to generate trend surfaces based on Ñ1/3 values.
This approach assumes a heteroscedastic error structure in
the underlying abundance distribution. As part of the
fitting process, a mask is applied to ensure that land
(depth , 0 m) and deep-water areas (depth . 250 m) are

Figure 4. (a) Mean Haversine-distance weights for temporal loess index smoothing at a point off the east coast of Shetland, for 2008/2009. (b)
Monthly relative cod-importance index (RCII) for 2008/2009, along with a weighted loess smoother (solid line) with 95% confidence limits
(dotted lines). Solid points in months 0 and 25 indicate the means of the full time-series, which were included in the smoother estimation
(with weights of 0.5) to prevent unrealistic boundary estimates.

Figure 5. Fitted trend surface (with temporal smoothing) for rescaled cod abundance Ñ1/3 for January 2008. Grey lines indicate the 250-m
depth contour used to limit the study area. Darker areas indicate higher values of Ñ1/3.
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excluded from the fitted distribution, because cod are unli-
kely to be found in either. An example is given in Figure 3
(for January 2008).

(v) The next step is to apply temporal smoothing through a
weighted loess regression time-series smoother. Weights are
calculated using the mean inverse-Haversine distance of the
point of interest (xi, yi) to the n available abundance obser-
vations for that month (see below).

(vi) The final step is to use all the smoothed index values for each
month to generate a new smoothed-density map for that month.

For an angle u, the Haversine function is given by

haversin(u) = sin2 u

2

( )
, (1)

and the Haversine formula (Gellert et al., 1989) is then

haversin
d

R

( )
= haversin(w2 − w1)

+ cos(w1) cos(w2) haversin(l2 − l1), (2)

where d is the spherical distance between points, R the radius of
the sphere (in this case, the Earth), and (w1, l1) and (w2, l2) the
latitude and the longitude of the first and the second points,
respectively. The required distance can be calculated from
Equation (2) using the inverse Haversine function. The weight
vi,m for the ith point (xi, yi) in month m is then given by the
mean d between the ith point and all other extant points in that
month. This approach is used rather than Euclidean distances,
because it accounts for the curvature of the Earth, but the
Haversine formula assumes a perfectly spherical Earth (rather
than the actual ellipsoid), and may be up to +0.5% inaccurate.

The intention with this weighting scheme is to produce an esti-
mate for a given point in a given month that depends strongly on
nearby observations and is only weakly determined by distant
observations. These weights are then used in a weighted loess
smoother, which in addition to the monthly values includes the
mean of the time-series as extra values in months 0 and 25, i.e.
at the ends of the time-series. These extra values are given a
weight of 0.5 each in the smoother and are intended to prevent
potential extrapolation to negative values. The span of the loess
smoother is set to 2.0, following exploratory analyses which indi-
cated intuitively that this gave a reasonable balance between
responsiveness and smoothness.

Generation of RCII difference metrics and distances
moved
Given a spatio-temporal RCII, the next task is to determine those
vessels which would be expected to be affected by RTCs. The full
VMS dataset for 2008 and 2009 was partitioned by vessel. The
VMS data for each vessel were then examined to determine if:

(A) the vessel had been fishing within an RTC area during the
15-d preceding closure;

(B) the vessel had been fishing in an RTC during the closure;

(C) the vessel had returned to the RTC area during the 15-d fol-
lowing reopening.

For each trip in which one of these criteria was met, the mean
RCII for all VMS fishing ping locations during the trip was calcu-
lated. For cases A and B, the mean fishing-ping RCII for the fol-
lowing trip undertaken by the vessel was calculated; for case C,
the mean fishing-ping RCII for the preceding trip was calculated.
The mean RCII for the trip of interest was then compared with that
from either the preceding or the following trip (the comparison
trip), as appropriate. If the RCII for the trip of interest exceeded
that for the comparison trip, it would indicate that the vessel
had moved to an area of less importance for cod following the

Figure 6. Aggregated VMS ping positions for vessel X during two
consecutive trips in 2009. Aggregation bins are 0.58 × 0.258
rectangles, shaded by ping abundance (darker colours indicate more
pings). Note that only fishing pings are included in the scaling for
those bins with both fishing and non-fishing pings. Red polygons
indicate RTCs; blue polygons show permanent or other seasonal
closures.
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closure, although we cannot conclude that the closure was necess-
arily the reason for the move.

We also calculated the geographic midpoint of all the fishing
pings for the trip of interest and for the comparison trip. The
Haversine distance [Equations (1) and (2)] between the two
VMS midpoints was used to approximate the distance moved
between the areas fished in the two trips, and therefore how far
the vessel had moved following the closure (cases A and B) or
the reopening (case C).

Results
An example of the results of the weighting scheme for the RCII for
a point east of Shetland is shown in Figure 4a. Figure 4b gives the
smoothed time-series for the example point, showing some evi-
dence (although not strong) for a decline in RCII for this
example point through the study period. Figure 5 then gives the
full result of the RCII algorithm for January 2008. The overall
impression is of a cod distribution that is concentrated around
the northern reaches of the North Sea, which is similar to what
would have been expected from knowledge of survey data and
the locations of good fishing grounds.

Figure 6 summarizes the VMS data for a particular vessel
(vessel X) from two successive trips during 2009. Fishing effort
during the first trip was focused on the western edge of the
Norwegian Deeps, with some fishing also in the region of the
Long Hole seasonal closure. During that first trip, vessel X fished

(according to its VMS pings) in an area which became RTC
number 1 (for 2009) during the following week (Figure 6a).
Although it cannot be assumed that it was a report from vessel
X that triggered the closure, it can be concluded that vessel X
was operating in that area. The VMS data from the same vessel’s
next trip show that fishing was concentrated in the Shetland area
(Figure 6b). The mean RCII by fishing ping from the first trip
was 0.509, whereas that from the second trip was 0.378. The
median distance between trips was 339 km, so, in summary,
vessel X was fishing in an area that was subsequently closed. It
moved a considerable distance on its next trip and fished in an
area which (according to the RCII) was less important for cod.

Without consulting the skipper concerned (if indeed he could
recall the trips), the precise reasons for this move cannot be
known. There may have been many good reasons other than the
closure for the shift in fishing area. However, such comparisons
can be used to characterize the changes in fishing areas around
the closing or reopening times of RTCs.

Figure 7 summarizes two quantities for all 403 Scottish vessels
in the available VMS database that were observed to move away
from RTCs following closure (case A): the difference in RCII
between the trip preceding the closure and the trip following it
(left panels), and the distance moved between the two trips
(right panels). The results are presented here as histograms cover-
ing each quarter (Q1–Q4) in 2009. The mean RCII difference was
negative (meaning that vessels moved away from cod following a

Figure 7. Example histograms of results from VMS analyses for 403 Scottish vessels in 2009. Only case A (moving away from an area after it is
closed) is included here. Pre- and post-closure trips are compared in terms of (left panels) the difference in mean relative cod importance
index for fishing pings, and (right panels) the distance moved (km). The four quarters of the year (Q1 –Q4) are presented separately. The
dashed vertical lines and the boxed numbers show the means.
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closure) for three of the four quarters of the year, and the distances
between trips was greatest during the first quarter.

The mean RCII difference does not in itself indicate whether
the movement away from cod was statistically significant.
Table 1 summarizes the results of t-tests for whether the mean
RCII difference was significantly different from zero, for the
whole year and for each quarter of 2009. In addition to the
results covered in Figure 7, Table 1 also considers those cases in
which vessels fished in RTCs while they were closed (case B) and
moved back into RTCs after reopening (case C). Over the year
as a whole, there was statistically significant (at the 95% level)
movement away from cod following RTCs. Significant negative
mean RCII differences can be seen in the first, third, and fourth
quarters. The positive mean RCII difference in the second
quarter could have indicated movement towards cod, and
indeed anecdotal evidence from the industry suggests that this
may have happened following concerns over catch-composition
rules. However, the Q2 value is not significantly different from
zero, so firm conclusions cannot be drawn. In terms of what can
be determined for case A (moving away from RTCs after
closure), it would appear that the movements were generally
away from cod. This also holds for case B (fishing in RTCs
during closures), although there are few records in this category
(only 16.1% of all RTC interactions in 2009) and they are likely
to have arisen from vessels which were not fully subject to the
RTC scheme. The fishing areas of vessels in the Conservation
Credits scheme are closely monitored, and there are strong disin-
centives to fishing in RTCs. There is significant evidence for an
increased RCII when vessels return to RTCs after reopening
(case C), overall and for all quarters except the first. These
results suggest that RTCs encourage vessels to move away from
cod-important areas when they are closed, but do not necessarily
discourage renewed fishing on cod when they are reopened.

Finally, Table 2 reports the means of the distances moved
between consecutive trips during 2009 and each quarter thereof,
and for each case (A, B, and C). On average, vessels moved
further when displaced away from closing areas (case A) than
when moving back into reopening areas (case C), which may indi-
cate more deliberate efforts to change the fishing area immediately
following a closure. The distance moved following closures
(case A) decreased through the year, whereas that following
reopening (case C) tended to increase, so that by the fourth
quarter, the mean case C distance was actually greater than the
mean case A distance.

Conclusions
VMS data have been used in previous studies of the effects of
closed areas, but have tended to focus on such aspects as descrip-
tions and models of effort distribution near closures (e.g.
Murawski et al., 2005), or the potential impacts of effort redistri-
bution from large, permanently closed areas (e.g. Dinmore et al.,
2003). We have considered a rather different problem and have
used VMS data and an estimated spatio-temporal RCII to evaluate
whether vessels moved away from cod-important areas following
the imposition of RTCs in 2009. The results suggest that some
avoidance of cod-rich areas following closures did indeed transpire
in the first, third, and fourth quarters of that year, but no firm con-
clusions can be drawn about the second quarter. It would also
appear that there was some movement back towards cod-rich
areas following the reopening of RTCs. Consequently, we suggest
that the RTCs in 2009 did reduce overall cod mortality while
they were closed, but that they may not have had any longer-lasting
effect on cod exploitation patterns.

However, there are several caveats with the analysis that must be
borne in mind. The RCII is at an early stage of development and
may not be sufficiently detailed to permit robust evaluations of
fleet behaviour at the scale of the small RTCs implemented in
2009. The use of three separate smoothing operations is rather
cumbersome, and the spatial scale of the results is perhaps too
broad for purpose. We note also that the resultant monthly RCII
is deterministic, and does not account for model uncertainty.
However, the results reported in this paper do concur with what
would have been expected given our experience of survey data
and the fishing industry, so we suggest that the method presented
here is fit for purpose for the time being.

The patchiness of research-survey and discard-observation data
suggests that the RCII should be considered as a minimum esti-
mate of cod abundance, although firm conclusions on this
hypothesis are not yet possible. Model-based methods to generate
spatio-temporal distributions for cod and other species, taking
account of uncertainty and additional information such as
depth, are currently being developed, although these will only
ever be as good as the data on which they are based. We have
assumed in this paper that the data are fully representative, and
of course this is open to debate. VMS pings of 2 h may have insuf-
ficient resolution to track fishing activities, and the assumed
relationship between vessel speed and fishing operations may
not apply universally.

Equally importantly, for reasons of tractability we have limited
our analysis to those vessels observed to be fishing in the area of
RTCs that were subsequently closed (case A), or while closed
(case B), or after reopening (case C). We did not attempt to
draw any conclusions about the rest of the fleet, which may also
have changed behaviour as the result of RTCs, although we

Table 1. Differences between mean relative cod importance
(density) index values for pre- and post-closure trips of Scottish
trawlers, for the whole of 2009 and for each quarter thereof
(Q1–Q4), and for each of the three cases (see text for details).

Period Before (case A) During (case B) After (case C)

2009 20.028* (p , 0.001) 20.033* (p , 0.001) 0.035* (p , 0.001)
Q1 20.042* (p , 0.001) 20.042 (p ¼ 0.169) 0.005 (p ¼ 0.774)
Q2 0.009 (p ¼ 0.411) 0.000 (p ¼ 0.982) 0.026* (p ¼ 0.009)
Q3 20.050* (p , 0.001) 20.081* (p , 0.001) 0.050* (p , 0.001)
Q4 20.025* (p ¼ 0.031) 20.024 (p ¼ 0.155) 0.051* (p ¼ 0.001)

p-values of pairwise Student’s t-tests carried out to determine whether the
values are statistically different from zero are given in parenthesis: significant
differences (at the 95% level) are shown by an asterisk.

Table 2. Means of the median distances (km) moved by Scottish
trawlers between consecutive trips around closure periods for cod,
for the whole of 2009, for each quarter thereof (Q1–Q4), and for
the three cases (see text for details).

Period Before (case A) During (case B) After (case C)

2009 142.6* 164.5* 120.7*
Q1 155.2* 154.5 76.5
Q2 141.2 206.1 129.6*
Q3 140.5* 151.4* 118.1*
Q4 129.4* 114.1 135.1*

Cases and quarters for which relative cod importance indices between
fishing grounds were significantly different at the 95% level (Table 1) are
marked by an asterisk.
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cannot tell yet whether this did or did not benefit the cod stock.
Moreover, we cannot yet determine whether the movements of
the evaluated vessels were unusual. Vessel X (Figure 6) may have
intended to fish around Shetland on that second trip anyway,
regardless of the implementation of a closure. To address this
issue, it will be necessary to track the fishing patterns of specific
vessels for longer than a single year, to improve the estimation
of cod distribution (and extend it to other relevant species), and
to investigate the socio-economic factors that determine the
underlying drivers behind changes in fishing location.

This paper should be viewed, therefore, as a first step in an
ongoing analysis. The conclusion that vessels generally moved
away from cod following the RTCs in 2009 is robust, given the
information used and the assumptions made, but should not
necessarily be considered as the final result.
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And finally, I present two works by Needle and Gurney, which (although unpub-
lished) were very influential in the development of this thesis. Many thanks, Bill.
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Figure 22.3: Professor Bill Gurney’s whiteboard at the University of Strathclyde, Glasgow: February
(top) and November (bottom) 2008.
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