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Abstract 
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1 Introduction 

In this chapter, an introduction will be presented regarding various types of stroke and 

its effects. A variety of patient’s profiles and behaviours will be examined as well as 

their approach and reactions toward this particular condition. Different stages of stroke 

will be presented, existing methods of psychological support as well as various 

theories for psychological support and motivation enhancement towards goal-oriented 

rehabilitation for motor control impairments, which are significant contributors to 

patient engagement and rehabilitation progress. This chapter will inform the review in 

Chapter 3 and the identification of criteria for engagement and motivation 

enhancement.  

1.1 Types of Stroke 

Stroke is one of the main causes of death and permanent impairment [1]. Based on the 

recent research worldwide, stroke is responsible for 6.7 million deaths annually [1]. 

Particularly in the United Kingdom (UK) there are about 100.000 stroke cases each 

year. However, there has been in UK  a decrease between 1990 and 2010 of 19% [1]. 

There are two main categories of stroke. The first one, ischaemic stroke, affects a 

higher percentage of the population, around 80% - 85% [1][2][3]. Ischemic stroke can 

happen in two ways embolic and thrombotic [2]. The second category, haemorrhagic 

stroke, affects a lower percentage of the population, around 15% [1][2][3]. There are 

other types of stroke, less common, which can occur from different causes such as 

cardiac arrest and hematomas adjacent to the brain. These types are not categorised 

directly and affect around 5% of the population [2][3]. Figure 1 presents the 

classification of pathology into subcategories as defined by International 

Classification of Functioning, Disability and Health (ICF). 

Transient Ischemic Attack (TIA) is also known as mini stroke, manifest itself with 

stroke symptoms that last twenty-four hours before disappearing. Whereas TIAs 

typically do not cause permanent brain injury, they are a significant wake-up call of 

stroke and should not be ignored. Forty percent (40%) of the people who have had this 
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experience will experience a real stroke. The period from TIA to stroke development 

varies from 2 days to 3 months.  

 
Figure 1 Pathology of stroke subcategories defined by ICF; sourced from [3]. 

1.2 Stroke Effects  

The nature of stroke recovery is heterogeneous. The position and size of the lesion and 

the extent of recovery influence the residual effects of stroke. Recovery could be a 

complicated process that most likely happens through a mix of unprompted and 

learning depended process. This includes the restoration of broken neural tissue, 

rearrangement in order to regain lost abilities, and improvement of inequalities 

between the impaired skills of a patient and the demands of their environment [3]. 

In order to understand the level of functionality after stroke and the human body’s 

physical restrictions as well as disability effects after various medical conditions, a 

multipurpose classification scale [4] which includes the condition of stroke has been 

established. The reasoning behind the use of the ICF classification presented in Figure 

1 is, for example, the qualitative collection of data and information for various illnesses 

in which the medical diagnosis by itself is not adequate. Some examples include: the 

level of  physical limitation and the limitation of space use after the illness, the illness 

duration and rehabilitation, the time limit in which a patient can return to work, the 

level of social interaction, integration to the society, as well as the level of performance 

at work [5]. Table 1 and Table 2 present impairments and restrictions respectively 

which are interlinked given that the level and the number of impairments of stroke 

survivors varies based on which part of the brain has been affected. Stroke generates 

analogous restrictions which reflect on several limitations on daily activities.  

Pathology

Ischaemic Stroke 80%
Haemorrhagic Stroke 

Intracerebral 10%
Subrachanoid 5%

Not Specified 5%
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Table 1 Disorders which can be caused by stroke 
and body functions affected post-stroke; sourced 
from [3][6]. 

Most Relevant Body Functions 
Affected 
Consciousness Orientation And 
Intellectual 
Temperament And Personality 
Energy And Drive 
Sleep, Attention And Memory 
Psychomotor And Perceptual 
Cognitive And Seeing 
Proprioception And Touch 
Voice And Articulation 
Ingestion, Defecation, Urinary And 
Sexual 
Mobility And Stability Of Joints 
Muscle Power Tone And Reflexes 
Muscle Endurance 
Control Of (In) Voluntary Movement 
Gait Pattern Functions 

Table 2 Participation and activity restrictions  
caused by stroke  sourced from [3][6]. 
Most Relevant Restrictions In 
Participation  
Acquisition Of Good And Services 

Doing Housework 

Preparation Of Meals 

Basic Interpersonal 

Recreation And Leisure Activities 

Remunerative Employment 

Most relevant activities affected 

Communicating With And Speaking 

Reading Writing And Calculating 

Solving Problems 

Undertake Single And Multiple Tasks 

Transferring Oneself 

Maintaining Body Position 

Walking 

Mobility 

Toileting 

Dressing 

Moving Around Driving And Transportation 

Washing And Self-Care 

Hand And Arm Use 
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1.3 Differentiation of Gender, Age and Ethnicity  

Stroke affects all people regardless of age and ethnicity, although it appears to be 

affecting a higher percentage of elder people. There is a slight age difference between 

gender and race as well. Women are most likely of being affected in elder age than 

men [7]. Black and South-Asian people have higher percentage of being affected in 

younger age than white people although different life styles must be taken under 

considerations such as smoking, alcohol consumption and drug abuse [8][9][10]. 

Recent research has shown that the age of an individual who can experience stroke has 

been decreased in some cases from 74 years old to 55 years old. However average age 

is for men 74 years and for women 80 years [7]. Moreover, there are cases of stroke in 

children. Children develop mostly haemorrhagic stroke instead of ischaemic 

[11][12][13][14][15][16].  

In any case, stroke can create permanent disabilities. The disabilities caused to the 

human body are directly relevant to the part of the brain and the level at which it has 

been disposed [17]. Around 60% of survivors face visual impairments in the post 

stroke period which in most cases will be reduced further to 20% after a period of three 

months. On some cases there could be communication problems, perception problems, 

speech problems, as well as some confusion – a condition which is well known as 

aphasia. Lacking strength of legs and arms are quite common which can lead to 

mobility and balance problems. All these could affect the patient’s daily life 

[18][19][20]. Although in the UK there are 100,000 strokes every year, the survivors 

have increased by 50% in a period of 20 years (1990-2010). Thus in the UK at the 

moment there are more than 1.2 million survivors [21][22][23].  

1.4 Phases of Stroke and Patient Differentiation 

After stroke onset, two different phases can be distinguished; the hyper acute treated 

as hospitalised emergency (3 to 24 hours) and the acute focusing on stabilization. Each 

patient is unique and their needs as well as the time needed in order to get stabilized 

might differ [24]. After stabilization, normally there would be a discharge plan, for the 

patient to continue his/her rehabilitation at home or in special care homes based on 

their needs [7]. Discharge planning is important for patient progress. It is an 
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interdisciplinary way to deal with progression of care and a procedure that incorporates 

identification, appraisal, goal setting, arranging, execution, coordination, and 

continuing assessment [7]. When the patients return home, normally they will be 

facing some difficulties in order to accomplish their daily activities. Problems such as: 

toileting, dressing, washing by themselves, brushing their teeth’s, shaving, preparing 

meals, communicating with other family members, even the replacement of toilet 

tissue roll in the bathroom could be challenging (Table 2).  

Different abilities might have been lost (Table 1). Moreover, the personality plays a 

vital role. For example, there were patients with balance problems that were feeling 

weakness to move one leg and were finding helpful the use of a stick. While others 

with the same problem did not want to use a stick, because they thought that they might 

look older or disabled [25].  

Another case could be the wheelchair. For some survivors, using a wheelchair works 

well because they enjoy the freedom of moving around. While some others with the 

same impairment disliked it due to the loss of autonomy, shame, and an inclination 

that individuals overlooked them [26][27]. 

Due to different psychological factors and the differentiation of personalities one 

device regardless effectiveness it could work for one patient while it could be useless 

to another [28]. Obviously, some of the problems could be overcome with the house 

modification for example by installing a chair lift or with the installation of bathtubs 

(Table 1).  

1.5 Rehabilitation 

Although the diagnostics for stroke have been improved significantly (immediate brain 

scan and consultancy) especially in hyper acute centralized services, due to different 

reasons for example either clinical or practical only 10-15% of the patients take 

advantage of thrombolysis [29][30]. Thus, rehabilitation is an important factor in order 

to help patients. Its main objective is to re-establish as much freedom as could 

reasonably be expected by enhancing physical, mental, and emotional functions [29]. 
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In order to achieve the best outcome in patient recovery, multidisciplinary teams in 

hospitals and stroke units as well as Early Support Discharge teams (ESD) use a cyclic 

process (Figure 2) which includes different stages for patient’s recovery [3]. 

An organised review is presented in [3] regarding the intervention of rehabilitation that 

actually can be effective in patient progress. Although there are different approaches 

for different problems, there are 3 main areas that would be beneficial for the quick 

recovery [3].  

1) Rehabilitation must initiate early after the incident [31]. 

2) According to [29][32][33][38] it is showed that patients demonstrates 

better progress when their training activities are repetitive. This is 

especially true when these activities have specific goals and or are tailored 

to meet the needs of the patients and take place in a familiar environment 

such their home.  

3) The gradually increased level of exercise is a great advantage [35]. 

 
Figure 2 Rehabilitation process, created based on information available in [3]. 

Although there is significant recovery progress with the multidisciplinary teams and 

ESD, the motivation of the patient [36] including family support [29] plays a vital role 

on their improvement.  

Evaluation In 
Order To 

Acknowledge 
And Quantify  
Patients Needs

Goal 
Adjustements 

In Order To Set 
Realistic And 
Acheivable 

Targets 

Intervention 
To Help In 
The Process 

Of  Achieving 
The Goals 

Re-evaluation 
Of Progress 
Against The 
Goals Which 
Have Been 

Settled.  
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1.6 Motivation Analysis 

A significant factor which has a major impact in rehabilitation is the motivation of the 

patient. The improvement of the patient after the stroke demands personal commitment 

and high level of personal effort and contribution. This is a complex and fragile 

procedure which can be easily affected by the recovery progress of the individual as 

well as by their psychological condition, depression for example [36].  

The motivation of the patients varies according to their needs and their achievements 

during the recovery procedure. Thus, for the individual who has achieved entirely or 

partially their targets through a set of physiotherapy exercises for example, these 

targets are no longer a stimulus for recovery [36].  

There are different approaches in order to increase the level of patient’s engagement:  

1) Goal setting theory (Figure 3): this particular method sets small, realistic, 

manageable and well-defined targets. Challenge is a characteristic that these 

goals must include in order to keep motivation and engagement at a high level. 

This approach demonstrates high success rates in stroke survivors 

[36][37][38][39]. 

 
Figure 3 Goal setting theory created based on information provided in [36]. 

2) Building the self-confidence: through successful implementation of daily care 

activities was introduced by Bandura in 1997 [40]. Higher level of self-efficacy 

empowers people in stressful situations, increases confidence in implementing 

and accomplishing a task, and introduces comfort in overcoming challenges. 

Techniques of this approach have been used by nurses in hospital in order to 

increase patient’s motivation for rehabilitation. It is a fact that the better the 

task is performed the higher the motivation is for further commitment and 

effort. This procedure involves 4 main areas of implementation in order to 

achieve the desired result [41][42] (Figure 4): 
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a) Mastery experience: small tasks accomplished successfully increases 

confidence and shelf-efficacy to address complicated tasks. 

b) Vicarious experience: Observation of other patient’s improvement. 

c) Verbal persuasion: receiving verbal appraisal increases self-

confidence and courage to perform the task. 

d) Physiological feedback: support and empathy increases ability of 

learning new behaviours and motivation for recovery [41][42].  

3) Possible selves’ theory: Patients can increase their motivation for rehabilitation 

by providing an extend of a future self. This is directly relevant with the 

psychological stability in order to use positive future extension of their selves 

in order to imagine the development and success of recovery. This procedure 

creates an optimistic environment, and it can contribute to faster recovery. 

However, it can raise a high rate of uncertainty especially when the individual 

imagines mostly negative pictures [43]. 

 

Figure 4 Factors which contribute to self-efficacy enhancement created based on [41], [42]. 

The motivation increases when there is no lack of information (Figures 5, 6). Survivors 

could be more motivated if they can retain control of their actions by increasing the 

level of their choices regarding their daily activities. The achievement of realistic and 

slightly optimistic goals could be another source of motivation because it increases the 

level of patient’s engagement. The patient can operate and put higher level of effort 

when their needs and reasons that create an uncertain psychological condition such as 

anxiety can be sufficiently overcome [43]. However, it must be noted that motivation 
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is quite complex and there is a significant variation between patient characters and 

personalities. For some of them a motivation for recovery could be something that has 

not been described above for example a pet who is depended upon them [36].  

 

Figure 5 Factors for motivation enhancement created based on information available [36], [43]. 

 
Figure 6 The factors which can cause loss or decrease of motivation based on information available in [44][45]. 

Patients can demonstrate intrinsic or extrinsic motivation. Intrinsic motivation is 

sourced from within the patient. Extrinsic motivation is provided to the patient from 

the medic or carer. There are two categories of extrinsic motivation [43]. 
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Feedback contributes significantly in motivation enhancement. There are different 

forms of feedback and they are mostly based on the patient’s needs. Due to the variety 

of impairments that stroke can cause the approaches and feedback which leads to 

motivation enhancement might vary. There are three main categories among others. 

Oral or visual feedback, for example, a smile or a face expression in order to express 

that sufficient improvement has been achieved. This type is called motivational 

feedback. The second type is called knowledge of performance [36][46]. The third is 

physiological feedback through empathy and understanding of the patient’s condition 

[41]  

Motivation can be easily affected by different causes [44][45]. These include: 

1)  Different approaches for different individuals. Highly motivated patients 

may not respond to specific rehabilitation programmes [44][45];  

2) Age or severity can negatively affect motivation. Elder people are less 

motivated than younger. Young survivors engage on a higher level with 

rehabilitation because they aim for a faster recovery [44][45];  

3) Family unbalanced behaviour can negatively affect motivation e.g. setting 

unrealistic targets or unnecessary protection [44][45].  

4) Cultural and religious backgrounds can affect motivation and outcome 

[44][45]. 

5) Environment especially progress of others [44][45] and home-based 

rehabilitation improve engagement [47]. 

6) Labelling and poor behaviour of staff can affect engagement and 

motivation [44][45].  

1.7 Chapter Summary 

In this chapter stroke was introduced and  how the illness can cause significant changes 

was presented in different aspects of daily life by introducing several limitations. An 

introduction on  how the reduced ability of carrying out daily activities could be linked 

to lack of motivation and affects rehabilitation goals and progress was presented. The 

importance of motivation for rehabilitation was stressed and various factors which are 

linked with the patient’s progress and contribute on a patient’s psychological condition 
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which is vital for further recovery and strong engagement with predefined goals were 

analysed.  

 In the next chapter potential links with respect to home rehabilitation and the 

socioeconomical background will be investigated. The chapter will present the novelty 

of the thesis through the identified research questions.  



  12 

2 Motivation and Research Questions 

In the previous chapter, Chapter 1,an introduction regarding various types of stroke 

and its disastrous effects was presented. A variety of patient’s profiles and focused on 

theories for motivation enhancement, goal-oriented rehabilitation for motor control 

impairments and engagement with the rehabilitation progress was examined. 

In Chapter 2 the links between the home rehabilitation and the socioeconomical 

background motivating it will be investigated. The contribution of this particular 

research in terms of novelty as well as research questions will be presented. Aims & 

Objectives will be defined and they will be accomplished in the remaining chapters. 

Publications that have stemmed from this thesis and their relations to the chapters has 

been included along with the organisation of this thesis. 

2.1 Motivation 

Some of the main issues with rehabilitation have been analysed in this thesis in Chapter 

1. The conclusion is that although a lot of technologies have been developed, they do 

not simultaneously meet criteria such as individualised rehabilitation, high level of 

engagement, lack of stimulus and motivation as analysed in the review in Chapter 3. 

Thus, most of the developed systems would be inappropriate for an extended period 

of use. This could result in poor rehabilitation outcomes. Moreover, most of the current 

systems combine high level of technological complexity making them difficult to use 

and understand and utilise intrusive means as well as a number of wearable sensors 

which are not welcomed by all patients at all time. The complexity of some of the 

systems make it difficult for the user to understand how to use the device and how to 

interpret the feedback. This is critical while at the same time the specialists rely 

entirely on the technology for the patient’s progress which could prove to be 

inadequate for the particular subject and hence could lead to permanent impairment.  

Some of the systems analysed in this thesis are strictly for clinical use (Chapter 3). 

However, findings have shown that patients respond better, and engage more with 

rehabilitation in the home environment, if they can be supported and surrounded by 

family members (Chapter 1). The successful completion of daily activities such as 

stand up, walk around in the house by their selves, make a coffee, increases their 
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confidence and this could increase the level of motivation as well as engagement, 

given that they will be able to experience direct results. 

Hence, a low cost, non-intrusive home rehabilitation system which can monitor 

patients progress, combine more than one daily activity and set up some goals and 

tasks which will be tailored to the subject needs by providing a clear and sufficient 

feedback and increasing the difficulty gradually based on their progress could be a 

successful approach to rehabilitation (Section 3.8).  

2.2 Socioeconomical Background & Benefit 

Stroke has become a global problem [1]. The number of stroke patients is predicted to 

increase by 59% over the next 20 years [48]. In the UK alone, more than 100,000 

stroke cases are reported annually [1], with impairment or disability affecting two-

thirds of the 1.2 million stroke survivors [1]. Due to the high number of patients, in 

England, for example, the social care costs are almost £1.7 billion per annum. Thus, 

cost is one of the main drives for service delivery practices. Early discharge units have 

been used, consisting of specialized personnel who offer an intensive rehabilitation 

program. Afterwards, the patient continues the rehabilitation at home. This is expected 

to reduce costs by £1600 over 5 years for every patient, according to a 2017 report [1]. 

Due to increasing pressure to discharge patients early [49], the need for home 

rehabilitation systems that are not dependent on specialist or clinician operators has 

increased [1], [50], [51] while providing service similar to a clinical environment. 

Technological advances in home rehabilitation have been mainly focused on motor 

control impairments due to their prevalence (85% worldwide [1]). 

Rehabilitation in a home environment can prove more efficient than that in a clinical 

environment (Chapter 1), as it supports patient self-efficacy [52], [53] particularly 

through cooperation or in competition with family [54]. However, home environments 

have limitations that can affect the use of clinical devices. The most prevalent 

limitations are related to space and the lack of qualified personnel to operate devices. 

For example: number of occupants; patient’s mobility, individual personality, and 

mood disorders; sound insulation, home modification requirements, and cost [3], [6]. 

Finally, different age groups react differently to technology and devices; for example, 
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elderly survivors often do not engage with wearable devices or video games [55]. As 

a result, stroke rehabilitation requires a person-centric approach that is suitable for the 

home environment and that does not require infrastructure change in the home. 

2.3 Contribution & Research Question 

In this thesis criteria for successful rehabilitation are identified and a low-cost 

rehabilitation system proposed which will be simple to the user, it will involve low 

cost of development and manufacturing and hence will make it approachable to all 

subjects. It utilises modified non-intrusive low-cost sensors, covering a variety of 

different actions and provides sufficient feedback to the user which is easy to interpret. 

The system will be able to support patients with their rehabilitation goals as well as 

encourage patients to engage more with their goals through a simple and well 

understood feedback mechanism. The proposed system has a high level of 

transferability and is not focused on just one condition. Furthermore, could contribute 

on their initial evaluation of their condition by classifying them on particular clusters. 

By taking this under consideration, people with different conditions, for example, 

different types of stroke, cognitive impairments, and dementia, will be able to use the 

same system. Some of the main settings, like identification of the condition, goal 

setting for rehabilitation, as well as the targets to be achieved, will be set automatically, 

given that the proposed system is able to classify the subjects based on their condition 

and learn from their performance over time. This provides targeted and tailored 

rehabilitation, which addresses major concerns regarding patients’ individualisation.  

When referring to either home monitoring or home rehabilitation of subjects, various 

sources of noise have to be taken under consideration that can be introduced during 

the monitoring or testing procedure. Such noise could be sourced either from other 

residents of the house or from different objects. Moreover, for the evaluation of this 

system, certified NHS tests have been used. These tests help to evaluate the proposed 

system in terms of accuracy, complexity and transferability to a variety of daily 

activities and other prognostic and diagnostic applications. 

The proposed tests combine more than two daily activities which can increase self-

efficacy of the subjects which in return will lead to a higher level of confidence and 



  15 

level of engagement. The particular tests could be carried out within the home 

environment. The validation of the device will be performed by comparing to a 

“ground-truth” dataset which will be collected manually in the fashion that it is 

recorded in NHS. Ethics approval will be obtained for testing and validation of the 

proposed system to take place. 

Additionally, the feedback method will follow the goal-oriented feedback guidelines 

as identified in literature and will motivate the monitored subject to achieve a higher 

completion outcome. “Disaggregating” the moving patterns into various components 

is challenging. The data collected will be used to identify the stages and to describe 

the subject’s ability in completing each stage.  

The analysis performed on the timing for each building component of the moving 

pattern will use a clustering algorithm which will cluster the subjects based on the 

result and also analyse one single subject over time. According to the results of the 

analysis, individualised feedback will be displayed to the subject at each stage. The 

feedback will aim to stimulate better performance in the next repetition of the 

assessment test. Finally, to identify the efficacy of the device in encouraging and 

motivating patients, each subject will be requested to complete a questionnaire at the 

end of each session. The data from the questionnaires will be analysed to validate the 

performance of the device in relation to individualised home rehabilitation.  

Moreover, the time needed for patients in order to complete the test will be 

significantly longer in comparison with a healthy subject. This will differentiate 

automatically between the patient and healthy family members causing interference in 

the home environment, given that the system is not designed to capture fast activities 

and the tests will be automatically cancelled.  

Specifically, this thesis addresses the following research questions: 

RQ 1: Can stroke patients and elder people be motivated and encouraged in order to 

engage with different daily activities for life quality improvement as well as for home 

rehabilitation purposes using non-intrusive ambient intelligence through low-cost 

smart devices? 

RQ 2: Given a constraint of using a pair of communicating sensors only (and low-cost 

constraint and easy of installation) what kind of NHS tests can be supported at a 
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sufficient level of accuracy which are relevant to home rehabilitation of stroke 

patients? 

RQ 3: Given a number of underling conditions, what can be achieved in terms 

monitoring rehabilitation activities and monitoring of patient improvement over time 

(with a fixed accuracy desirable)?  

RQ 4: Can Accountable, Reliable and Transparent (ART) Machine learning be utilised 

in order to classify patient’s condition (diagnosis) and progress, giving interpreted 

feedback? 

RQ1 and RQ2 will be addressed in Chapter 4, while RQ3 and RQ4 will be addressed 

in Chapter 5. 

The novelty of this thesis lies in utilising and deploying a low-cost ambient 

intelligence sensor system and providing explainable and interpretable feedback 

through an applied machine learning hybrid approach, based on body-metrics 

and patient parameters, to provide home-based rehabilitation support tailored 

to the subject’s needs. 

2.4 Aims and Objectives 

The aim of the thesis is to address the identified research questions presented in the 

previous subsection. This will be achieved through the following objectives:  

1) Examining the state-of-the-art in-home rehabilitation systems and assessing 

their suitability and functionality from a patient engagement perspective in (1)  

combining research from 3 research domains: motivation enhancement as part 

of patient psychology, home rehabilitation technologies, and monitoring 

technologies and (2) identify a list of comparative criteria and successful device 

requirements. 

2) Developing a low-complexity and easy to use system (hardware and software) 

for in-home rehabilitation that meets the set criteria  

3) Designing appropriate experiments with subjects in order to evaluate the 

robustness and the accuracy of the system.  
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4) Develop, train and test a hybrid machine learning approach utilising the data 

recorded through the experiments and additional datasets available to support 

clustering subjects according to underling conditions and disaggregated motion 

patterns.  

2.5 Thesis Organisation 

The remainder of this thesis is organised as follows. Chapter 3 presents the literature 

search methodology. Related work and further analysis of existing technologies is 

covered and a taxonomy of the systems reviewed is presented along with a summative 

assessment, addressing all the strengths and weaknesses of the reviewed systems and 

demonstrating successful criteria for rehabilitation systems. 

In Chapter 3 a systematic narrative literature review for systems which are used for 

home rehabilitation will be conducted. A taxonomy of systems for home and clinical 

rehabilitation will be presented as well as a set of criteria of various systems in order 

to evaluate the successfulness in rehabilitation accomplishments.   

In Chapter 4, which medical tests are relevant for home-based rehabilitation 

monitoring will be evaluated. A literature review for a variety of systems which have 

been designed for monitoring the Timed Up and Go tests as well as Five Time Sit to 

Stand Tests will be conducted with respect to the criteria identified in the previous 

chapter. Design of the proposed system to meet the criteria, the evaluation 

methodology, and the descriptions of the experiments will be presented as well as 

analysis of the results and findings with respect to accuracy, engagement and 

motivation enhancement.  

To address the need for patient-centric individualised solutions, in Chapter 5, a 

literature review regarding machine learning algorithms will be conducted. Different 

experiments will be carried out in order to identify the most suitable algorithms for 

high accuracy predictions. A hybrid algorithm will be presented, and results of the 

experiments will be analysed and presented later in this chapter. 

In Chapter 6 a review of the findings of all the chapters will be presented, the research 

questions of the thesis will be revisited and the thesis novelty will be outlined.  Finally, 

in Chapter 7 conclusions as well as future work of the thesis will be presented.  
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In Figure 7 the thesis organisation is presented. The circles’ diameters correspond to 

the chapters’ significance in addressing the aims and objectives of the thesis and 

presenting contributions. For example, Chapter 5 and Chapter 6 which answer 

particular research questions appear of greater significance in comparison to Chapter 

1. Chapter 3 where the criteria for a successful rehabilitation system are presented is 

more important than Chapter 1 but less important of Chapter 5 and 6.   

 
       Ch.1 Introduction 
 

 Ch.4 Design & Method  
 

 Ch.7 Conclusion  

       Ch.2 Motivation &  
 Research Question 

 Ch.5 Machine Learning  
 

  

      Ch.3 Related Work    Ch.6 Discussion  

 

 
 

 

  

Figure 7 Thesis organisation and significance denoted by the circle diameter with respect to addressing the 

research questions, aims and objectives of the thesis. . 
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3 Review, Taxonomy and Criteria for Home-Based 

Rehabilitation Systems.  

In Chapter 2 the links between the home rehabilitation and the socioeconomical 

background motivating the work was investigated. In this chapter a review 

methodology that was followed for the conducted literature review will be established. 

The resources and results of the review methodology will then be presented. 

Technologies relevant to stroke rehabilitation for clinical as well as for in-home use 

will be critically reviewed. The importance of monitoring through smart meters and 

ambient intelligence as well as pattern identification will be presented. Finally, the 

findings will be summarised and criteria for a successful device presented; thus, 

identifying requirements to address RQ1 (Chapter 2). The chapter is based on the 

material published in [56]. 

3.1 Systematic Literature Search Methodology  

Although several review (narrative and systematic) articles have been published on 

rehabilitation technologies focused on particular areas of the taxonomy (e.g., wearable 

sensor systems review [57] and robotic systems review [54]), to our knowledge, no 

extensive narrative review of existing home-based rehabilitation technologies to 

identify criteria for designing future solutions has been done. Thus this thesis focusses 

on: (1) extending the state-of-the-art in assessment of home-based rehabilitation by 

combining research from 3 research domains: motivation enhancement as part of 

patient psychology, home rehabilitation technologies, and monitoring technologies 

through an interdisciplinary approach; (2) providing an in-depth narrative review of 

home rehabilitation systems that addresses both information and communication 

technologies and mechanical engineering solutions; (3) developing a patient 

motivation and engagement analysis of the reviewed technologies; and (4) identifying 

a list of comparative criteria and successful device requirements to address patient 

motivation and engagement designed based on research findings from all 3 research 

domains. 

A list of articles and references for review of home rehabilitation systems and 

monitoring systems to be included in the comparative analysis were selected. The data 
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sources used to search for items to be included in this review were the following 

databases of academic references, journals with a particular focus on stroke 

rehabilitation, and web sources: (1) PubMed, (2) Elsevier, (3) IEEE, (4) Springer, (5) 

Hindawi.com, (6) Journal of Neuro-Engineering and Rehabilitation, (7) websites of 

stroke-related institutions and foundations presenting articles on rehabilitation found 

through a generic Google search, and (8) Google Scholar (including ResearchGate). 

The database search was conducted between November 2017 and February 2019.  

The search criteria included the following keywords and combinations thereof: stroke; 

devices for stroke rehabilitation; home rehabilitation; rehabilitation engagement; 

rehabilitation motivation; stroke rehabilitation; tele-rehabilitation; smart meter; 

pattern recognition; kinematic analysis; robotic systems; exoskeleton systems; virtual 

reality; games; mobile applications; individualization; gait analysis; upper limb 

rehabilitation; balance rehabilitation and/or training. 

As the above combination of data sources and keywords returned a vast amount of 

results, we selected the following inclusion criteria to identify the most relevant 

sources. (1) Language: English. (2) Date range: within the past 20 years (1996-2018). 

The majority of articles were published within the past 5 years to reflect the state-of-

the-art (since 2014). Older references were made to technologies that substantially 

shaped the future direction of home rehabilitation systems. (3) Relevance: home or 

self-rehabilitation was necessary. 

3.2 Systematic Literature Search Results 

The literature search returned a total of 307,550 results after the inclusion criteria were 

applied as presented in Table 3. The following exclusion criteria to identify the most 

relevant sources and reduce the number of literature search results, were used: (1) no 

relevance to stroke rehabilitation in the home environment, (2) trained personnel 

required to operate the technology; (3) medication or other clinical intervention 

required, (4) no report of engagement or motivation as a result of using the technology 

or other form of patient feedback, (5) no description of the technology, (6) no report 

of usability especially for older people, and (7) no additional contribution to the review 

findings compared with the previously reviewed articles. 
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Table 3 Results of the literature search before and after inclusion criteria were applied. 
Topic Results of topic 

search 
Results after 
inclusion criteria 

Devices for stroke rehabilitation 325,000 6800 
Home rehabilitation 1,150,000 36,200 

Rehabilitation engagement 651,000 17,100 
Rehabilitation motivation 128,000 17,300 

Stroke rehabilitation 1,640,000 45,800 
Stroke; telerehabilitation 8180 3110 

Smart meter; pattern recognition 83,200 18,100 
Stroke; kinematic analysis 105,000 15,700 

Stroke rehabilitation; robotic systems 43,700 16,900 
Stroke rehabilitation; exoskeleton systems 15,300 4440 

Stroke rehabilitation; virtual reality 41,000 14,100 
Stroke rehabilitation; games 47,100 16,900 

Stroke rehabilitation; mobile applications 46,500 17,400 
Stroke rehabilitation; individualized systems 35,800 17,300 

Stroke rehabilitation; gait analysis 112,000 16,000 
Stroke; upper limb rehabilitation 138,000 17,200 

Stroke; balance rehabilitation 398,000 15,600 
Stroke; balance training 799,000 11,600 

Total literature search results 5,766,780 307,550 
 

Overall, 420 sources we studied. The remaining sources were excluded after reading 

the abstracts. A total of 96 sources remained for analysis (Figure 8) after meeting the 

inclusion criteria and having not been eliminated through the exclusion process. 

 
Figure 8 PRISMA diagram of the review stages. 
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3.3 Overview of Engineering in Rehabilitation  

After a disability occurs [28][58], technological solutions might not be suitable in all 

cases. For example, for a phase of stroke called aphasia – described in earlier sections 

– the engineers have been unable to find an effective way of communication [28]. 

There is a difference between rehabilitation and assistive technology. The term 

rehabilitation is used in order to describe the utilization of scientific knowledge and 

sciences in order to provide improvement to people with disabilities. On the other 

hand, assistive technologies are the tools used to achieve the rehabilitation goals. 

These include devices, strategies, services that help a patient in a functional activity 

[28]. 

The complexity of the technology and the cost of manufacturing most times are 

directly relevant (Figure 9). Thus, complex devices with higher level of scientific 

knowledge will be more expensive than devices which combine low level of 

technology and they are simpler for development and use.  

 
Figure 9 Relationship between cost and complexity sourced from [28]. 

Assistive technology devices demand complex design due to their multidisciplinary 

nature. Thus, often a wide range of engineering science (biomedical, electronic, 

electrical, mechanical etc.) will be combined with the knowledge of specialists from 

different disciplines such as medical or physiotherapists.  

In every case the main scope is to assist and improve an individual’s daily life. Thus, 

one of the criteria that we would need to take under consideration for a well-accepted 

design is the acknowledgement of the different stages that the person who has 

developed a particular disability has gone through. These stages can be related to either 

the individual’s emotions or alterations of the mind state [47], the patient’s needs and 
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the differentiation of the personalities, the restrictions, the environment, the selections 

and the capabilities. The good understanding of the subject states and the 

differentiation of the conditions could be determined if the assistive or rehabilitation 

device used is well accepted by the individual [28].  

Due to the rapid development of the technology lately, there are devices that use 

different technologies and approaches in order to improve disabilities after stroke. 

Although the design criteria for people with disability should remain the same, the 

philosophy and the technical approach for the patients in order to improve and 

eliminate the impairment after stroke is more complicated. This has to do mostly with 

the large amount of disabilities that scientists and engineers would need to address (see 

Table 1 on page 3).  

Although the impairments of stroke survivors can vary, it has been noticed that a larger 

number of survivors suffer from problems of motor control [59][60]. Thus, a large 

number of rehabilitation approaches and devices based on the literature has focused 

on the improvement of motor control impairments but the proposed approaches differ 

[61].  

This review focuses on: Loco Motor Training [60][62][63][64][65][66], exoskeleton 

approaches [67][68][69][70]; kinematic analysis [71]; robotic systems [72][73][74] 

[75][76][77][78][79]; Biofeedback electromyography; wearable systems; and 

software approaches.  

Robotics and exoskeleton devices are inappropriate for home use [72][73]. Although 

they are quite promising for rehabilitation of the individuals [74][75][76][77][78][79], 

they are cost-effective in a way due to the reduction of specialised personnel in the 

clinic. However, they are still mostly targeted to applications in the clinical 

environment [80][81]. On the other hand, the cameras for kinematic analysis etc. have 

been considered as an intrusive mean for most of the patients and individuals [55].  

Biofeedback Electromyography [82][83] offers a variety of devices that can help 

patients to recover in their own environment [84]. However, because they demand the 

usage of wearable electronic equipment and removable sensors, it might not be suitable 

for all patients and particularly elderly [55].  
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Moreover, Virtual Reality and Video games are quite promising methods for 

rehabilitation, like Nintendo WII or XBOX Kinect [85][86] [87][88][89][90][91][92] 

[93][94][95][96][49]. However, there are challenges to overcome such as the 

individualization of the game to the patient needs in order to keep them highly 

motivated [50][36][97][98] as well as the engagement level with new technology for 

elder people which is low [55].  

Non-invasive brain stimulation techniques such as Transcranial magnetic stimulation 

(TMS) and transcranial direct current stimulation (tDCS) [99], and regeneration of 

neural tissue with Stem Cell Therapy [100] will not be expanded in this thesis because 

they require intervention and clinical support. Thus, they are out of scope.  

Mirror Therapy could contribute in post stroke motor recovery and with further 

instructions through video and audio-visual means could be implemented in home. 

However, most times the therapy must be done under the supervision of specialists 

and with combination of conventional treatments for better results [101][102].  

Different academic and commercial devices have been published which aim to help 

with home rehabilitation such as, robotic systems for home use [103][104][105] 

[106][107][108] [109][110], balance measurement [111], wearable body sensor 

network systems (WBSN’s) [112], cell phone balance training [113], rich to grasp 

training with extensive feedback [51], low cost systems with resistive elements [114], 

music glove which motivates patients with the help of music [115], rehabilitation 

systems with continuous monitoring or exercise [116]. These will be examined in 

detail in Section 3.5. 

In the case of Cognitive Impairments after stroke, several methods have been used for 

rehabilitation. There are not sufficient patient outcomes regarding the means that can 

improve cognitive rehabilitation [60]. The problem of memory is quite challenging for 

stroke patients although there is improvement to the patients who receive escitalopram. 

The methods that have been used in [117][118][119] will not be expanded in this thesis 

because they are based on medical intervention and are out of the scope of this thesis 

as they are not addressed through engineering solutions.  

Similarly, rehabilitation has also focused on improvement of Aphasia. Aphasia is a 

condition which affects one third of stroke patients. There is significant improvement 
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with SLT (Speech and Language Therapy) [60][120]. However, further techniques 

which have been used are out of the scope of this thesis thus will not be expanded 

further. 

3.4 Limitations of Rehabilitation Technologies. 

Most of the methods for rehabilitation present some significant disadvantages. The 

majority are mostly deployable in the clinical environment. Wearable sensors or 

kinematic analysis with camera implementations are consider intrusive or not suitable 

for all patients. Similarly, video games cannot be used by all patients at the same level 

and do not provide high engagement from all the patients. Thus, individualisation for 

some of the video games has been proposed in order to keep the patient engaged and 

maintain their motivation [72][50].  

Furthermore, it is well understood from the engineering society that:  

• One assistive technology cannot provide a solution for all the impairments. 

• The cost of a successful device sometimes could be low given that devices with 

lower complexity of technology could prove more suitable and easier to use in 

comparison with others which are more expensive and complex.  

• People with impairments could be facing changes to some daily activities 

during time, thus, the assistive means can prove less accurate and incapable to 

assist fully the patient.  

• Devices which do not provide high level of engagement or motivation 

enhancement are more likely to be abandoned after 90 days [28]. 

The successful design of assistive technology or rehabilitation device should take 

under consideration what the individual will be trying to achieve during rehabilitation; 

for example, all the goals and tasks which the therapy involves. A multidisciplinary 

team which combines different experts could achieve a better outcome [28].  

Quantification and further analysis of present and future condition of the patient could 

overcome difficulties and unforeseen circumstances and could result to a better design 

of the assistive technology. Data and patterns from electronic databases are quite 

important because they can be used in order to identify and propose the appropriate 

system for rehabilitation. The choice of the individual must strongly be taken under 
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consideration because the patient will be the user of the device or the assistive 

technology, thus, he/she must feel comfortable with it. The technology would be 

operating more successfully if the patient’s environment has been fully informed about 

its operation. It appears that the continued adjustment of the technology/device based 

on the particular patient is more beneficial. 

3.5 Home Rehabilitation Systems  

Given that the amount of the stroke patients will be increased in coming years, there 

is an excessive need for new systems for home rehabilitation [50][1][51]. The 

rehabilitation in home, however, is very challenging due to different difficulties, such 

as design and technical limitations [72]. The following methods have been 

concentrated strictly on home rehabilitation of the patients after stroke. In this section, 

the sources identified through the systematic literature search are discussed through a 

narrative review. A taxonomy, comparative analysis and critical evaluation is then 

presented in rest of this chapter.  

In [51] a home rehabilitation system for upper limb recovery after stroke is proposed.  

A specially designed desk and chair were used to monitor the patient’s movement 

through sensors and cameras (kinematic analysis). However, the system is intrusive 

using cameras, has a wearable component and has a high technological complexity 

while is not tailored to the needs of individual patients.  Similarly, in [103] an 

exoskeleton device has been proposed for upper limb rehabilitation. However, the 

system does not provide sufficient feedback to the subject.  

In [104] a home wrist and fingers rehabilitation system is proposed. It comprises a 

robotic glove and software including different games in order to keep patient highly 

motivated. However, the system utilises wearable sensors, is not tailored to the needs 

of the user, and engagement and motivation are not investigated. 

In [105] the researchers have identified that home rehabilitation under the supervision 

of a specialist is quite beneficial. A home gait rehabilitation approach is proposed 

focusing on dynamic force analysis [121]. Although the device is quite promising, and 

it is suitable for gait rehabilitation at home, it does not provide any feedback and the 
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level of patient’s engagement is unknown. Moreover, the device is mostly for 

supervised rehabilitation and that would increase the overall cost.  

In [106] a robotic system has been developed for upper limb rehabilitation. The 

proposed system is portable. Although the device is inexpensive it does not provide 

any feedback and there is no sufficient evidence that it keeps the patient engaged with 

his daily goals. Moreover, there is no adjusted level of difficulty and this could lead to 

a patient steady state condition of recovery without further improvement.  

In [109] a robotic system has been proposed for home upper limb rehabilitation 

without supervision. The software contains 8 different games in order to engage the 

subject more efficiently. The games through an interactive algorithm can increase the 

level of difficulty gradually and contributes toward a sufficient recovery. However, 

the device does not provide sufficient feedback and it has not taken in account some 

difficulties such as the activity of other people in the house at the same time where the 

exercises are taking place. Furthermore, it did not keep high the level of patient’s 

engagement.  

In [110] a system has been proposed for upper limb rehabilitation. The system can 

individualise the therapy in order to increase the motivation of the patient evaluated 

through the method of Fugl-Meyer [122]. The system can provide extensive feedback. 

However, the population which has been used in order to test the system is small. Note 

that previous studies, reviewed in [110], have shown that game environments or usage 

of additional equipment on the subject quite often leads to aversion from treatment.  

In [111] a system has been proposed for home use in order to help patients to regain 

their balance. However, it would be more helpful if clinical trials with subjects are 

presented. Moreover, older patients’ engagement with new technology and 

particularly cameras and games is not always successful. 

Researchers in [112] have proposed a Wearable Body Sensor Network system 

(WBSNs) for home rehabilitation to help people with upper limb stroke impairments 

through the method of Brunnstrom in 6 stages [112]. However, the paper discusses a 

6 stage method, while according the literature the Brunnstrom method consists of 7 

stages [123][124]. Furthermore, wearable systems are not ideal for all patients. 
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In [114] many conventional methods for rehabilitation such as exoskeleton devices 

and robotic arms have been analysed. Most were found to be either very high cost or 

unsuitable for home rehabilitation. A simple system for goal-oriented training that 

consists of special modified resistive elements is proposed. The system can provide a 

feedback as sinusoidal signals. It is proven that graphs such as signals are not sufficient 

to deduct information [125]. Although the system is low cost, the feedback is not 

individualised.  

In [115] the device which has been proposed for hand rehabilitation has taken into 

account the positive influence of music. In this paper, it has been found that the device 

will be more functional and beneficial when it can be used for daily activities. The 

device is a wearable glove and provides musical and graphical feedback to the user. 

Although the device is low cost, it has shown that it can efficiently help only patients 

with moderate to low level of impairment. Moreover, it is wearable. The 

individualisation of the device might provide better results. 

In [116] an individualised system for physiotherapy is proposed. It has been found that 

the continuous monitoring of the patient is important. Although the system has 

understood the philosophy for individualised therapy, the devices that have been used 

are not tailored to the patient needs, they use the same mean for all patients. The level 

of engagement has not been tested especially with older people and there is no further 

evaluation of the device. 

In [88], researchers have identified the importance of motivation through challenging, 

and simple yet gradually increasing in difficulty tasks. A virtual reality system for 

upper limb rehabilitation is proposed using wearable sensors. The therapy and the 

goals provided to the patients are tailored. Although, the paper presents successful 

rates after the clinical trials, it has not taken under consideration the reaction of elder 

patients. Furthermore, elder patients present other neurological disorders as well in 

addition with stroke which might contribute to further limitation on the system usage.  

In [89] a game for upper limb home rehabilitation has been proposed. The researchers 

have identified that the subjects can have better chance for successful rehabilitation in 

home when they choose the parameters of their rehabilitation. It has been found that 

there is a direct link between the self-control in therapy and the enhancement of 
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motivation [126]. The game allows an initial calibration in order to assess and 

understand the patient needs, evaluated with Fugl-Meyer [122], Action Research Arm 

Tests (ARAT) [127] and ABILHAND [128]. Although the system presents good 

results and does not employ any wearable sensors or intrusive means like cameras, it 

provides therapy through games, and it is a question how the system helps the patients 

to accomplish daily tasks.  

In [95] a home device, it has been suggested that it must be small and portable with 

sufficient feedback to the patient which utilises different games which help to improve 

upper limb functionality. The system adjusts the level of difficulty based on needs. 

Although through the evaluation in this study the results are promising regarding the 

motivation of the patients, which can be maintained on a high level, and the recovery 

results are encouraging, there is a significant variation on the device usage. Moreover, 

it employs wearable sensors. 

In [49] a iPad app game is proposed. for upper limp rehabilitation. The application 

does not provide any significant evaluation of the subject and it has significant 

limitations for individuals. The paper does not explain the level of the feedback which 

the application can provide to the patient as well as the level of the motivation and 

engagement. 

In [97] a system which has been proposed for upper limb rehabilitation, combines 

wearable sensors. The important finding is the way to increase the motivation of the 

individual. Along with the common games that the authors have offered which are four 

in total, three of them can be used against or with healthy individuals in a competitive 

or cooperative way. Through the clinical trial, it has been found that the motivation 

and enjoyment increase significantly. Yet, more trials must be carried out and for a 

longer period of time because in this paper the time of subject involvement was 

limited. Furthermore, if the device is individualised for patient needs then this might 

not be suitable for the healthy individual.  

3.6 Taxonomy 

Following from the above systematic search and comprehensive narrative review, we 

propose a taxonomy of rehabilitation systems, shown in Figure 10, based on the type 
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of technology presented in the reviewed articles. We develop the taxonomy on the 

basis of the therapeutic effect in combination with sensing technology. Home 

rehabilitation mainly focuses on motor control impairments due to minimal or no 

clinical and medical intervention [59], [60]. On the other hand, most clinical systems 

(see left-hand side of Figure 10) have dependencies and are difficult to implement at 

home. Therapy that requires either clinical or specialist personnel to assist in execution 

includes transcranial magnetic stimulation and transcranial direct current stimulation 

[99], regeneration of neural tissue stem cell therapy [100], and mirror therapy [101], 

[129]. Similarly, treatment of aphasia and cognitive impairments is predominantly 

within a clinical environment or through specialist intervention [60], [120] . As a 

result, these approaches would require regular home visits or would be impossible to 

perform away from the clinical environment. 

 
Figure 10 Taxonomy of Rehabilitation Systems for stroke patients, VR: Virtual Reality; tDCS: Transcranial 

Direct Current Stimulation; TMS: Transcranial Magnetic Stimulation; WBSN: Wearable Body Sensor Network 

Systems 

The right-hand side of Figure 10 shows a variety of methods and approaches developed 

to support home rehabilitation focusing on locomotor training. They differ based on 

the individual’s situation and disabilities [61]. 

Clinical Home
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Locomotor training [60], [62]–[66] can be implemented through various methods. One 

approach is through the use of exoskeleton devices [72], [73] for gait [67][68] or upper 

limb [69], [70] training. Most large exoskeleton devices reduce clinic personnel costs 

[74]–[79] but are inappropriate for home use [80], [81]. Some devices in this category 

have started to have feedback mechanisms incorporated, such as that described in [51]. 

However, these are still very expensive systems requiring a caregiver to guide and 

support training. Thus, we did not review these systems. 

Biofeedback electromyography is based on feedback systems [82], [83]. Though 

mainly designed for clinical use, some devices using this approach have been designed 

for home use, such as Biomove [84]. However, the disadvantage of this method [84] 

is the use of wearable equipment, which is not suitable for all patients and particularly 

for the elderly [55]. 

The same challenge is faced by wearable body sensor network systems [112]. 

Additionally, observation by expert or clinical personnel is often needed and, thus, we 

did not investigate these 2 categories further in this review. 

Another approach is to use cameras or wearable sensors for motion or kinematic 

analysis [71], [112], [130], [131]. Cameras and wearables, however, are considered 

too intrusive for home use by many patients and individuals [55]. Many applications 

of cameras and wearables in home rehabilitation systems exist; thus, we reviewed 

these in detail. 

Robotic systems have been heavily investigated [103]–[110] for home use. However, 

they face the same challenges of high complexity and cost. This includes systems such 

as low-cost resistive elements training [114]. However, these systems still do not avoid 

the requirement for supervision of the exercise. We reviewed systems in this category 

to identify their ability to enhance motivation and patient engagement. 

Another area of research interest is the virtual reality and video game domain [49], 

[85], [87]–[96]. Although this is a promising area for home rehabilitation, there are 

still many challenges. The games are not individualised to the patients’ needs; hence, 

patients lose motivation easily and are not engaged with the activities they need to 

perform [36], [50], [97], [98]. In particular, elderly patients demonstrate very low 

engagement with this technology [55]. This category can be expanded to include 
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balance measurement [111], cell phone balance training [113], and even a music glove, 

which motivates patients with the help of music [115]. We further analysed systems 

in this category. 

We critically evaluate home-based rehabilitation technologies with a focus on patient 

engagement as the widely recognized key indicator of success of rehabilitation systems 

in the reviewed articles. In contrast with usability, which is a measure preferred in 

human-computer interaction studies, engagement is not the singular measure of the 

usability of an interface, but rather of the perpetual retention of the user’s interest over 

a prolonged period of time as defined in [132]. Engagement can be the effect of a 

successful human-computer interaction design in combination with the psychological 

motivation of stroke survivors for rehabilitation [132]. Based on the literature, 

engagement is more likely when the feedback is sufficient and well understood by the 

patient, and the system, apparatus, or device is easy and convenient to use without 

employing intrusive means and without complex requirements from the user [133]. 

3.7 Contribution of Monitoring in Home Rehabilitation  

The literature review identified challenges in incorporating the rehabilitation systems 

in the home environment. Retrofitting is more challenging than designing smart homes 

with embedded technology. To avoid these issues, research has mostly focused on 

smart home environment or monitoring devices that stand alone and do not require 

redesign of the home. Such systems mostly focus on monitoring generic parameters 

and provide individualization through pattern recognition algorithms, but do not 

contribute to rehabilitation activities. To support rehabilitation, their scope would need 

to be altered to encompass rehabilitation goals, and patient motivation and 

engagement, while at the same time being transferable (supporting different 

application domains). This section explores the potential benefits such systems could 

bring to the home-rehabilitation domain. 

Smart meters are devices used in order to measure energy consumption and contribute 

to a better and sufficient usage of appliances, which will be providing the additional 

benefit of lower cost reflected on the electricity bills. The smart meters will be playing 

an important role on the design of future Non-Intrusive Load Monitoring (NILM) 

[134]. Although smart meters are not directly related to stroke rehabilitation, they can 
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play a vital role in pattern identification. For example, monitoring is crucial for some 

cases of stroke patients who can develop a second illness such as dementia thus further 

analysis in monitoring patterns might be useful. Due to the potential growth of usage 

in the near future an advantage could be taken through the identification and analysis 

of power consumption patterns. With an indirect way daily activities could be 

monitored and data collected can be used for health related monitoring when certain 

qualities and additional sensors are used as presented in Figure 11[135].  

A future NILM system will be having the ability to identify the particular appliance 

usage and take samples of electricity in sufficient time frame. The usage of particular 

appliances could create individualised patterns for the home users and this can help 

for early detection of different illnesses such as dementia and mental disorders. Most 

importantly, NILM does not utilise any intrusive means like cameras or wearable 

sensors, it is integrated in the environment of the user and it has good transferability 

on various illnesses detection. Developers would need to take under consideration that 

for non-intrusive monitoring system designed for a particular illness, changes on 

behaviour and Assistive Daily Leaving (ADL), or faster sampling time, and 

complimentary sensors might be necessary [135][57].  

 
Figure 11 Monitored qualities for the health and care applications and the need for additional sensorial 

input to monitoring devices, source [135]. 

The smart meters can be used mostly for telehealth and telecare, and the patterns of 

the users will be able to detect possible illnesses. Possible illnesses detection can be 

viewed in Table 4. 

It is worth noticing that research has focused on the development of algorithms using 

machine learning in order to understand user behaviour in a more accurate way [55] 

Change in Energy Use Patterns 

Change in Appliance use

Changes in Behaviours/ADL's

Changes in Health Events  

Other 
sensors 
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[136][137][138][139][140][141][142][143]. Obviously, it might raise concerns to the 

users to share personal data. In addition, it raises the question of who is responsible in 

case the device does not operate in the promised way [135][143]. This is further 

examined in Chapter 5. 

Table 4 Diagnostic capabilities for health conditions using smart meter data, source [135]. 
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In addition, there are commercialised assistive technologies helping patients and their 

relatives. Some of them can be plugged in the wall socket and are able to monitor the 

power consumption of a particular device/appliance. These commercial devices can 

notify the carer of the patient that someone used the device and this can be an 

indication of the patient’s or elder person’s condition [135][144][145][146][147] 

[148][149]. The main benefit of these systems is the low cost in comparison with other 

systems. However, there is no application of such systems in the rehabilitation domain, 

all of them are focused mostly on monitoring.  

To the best of the author’s knowledge, there is only one system in literature whose aim 

is to bridge monitoring systems and rehabilitation. In [150], the proposed system is 
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based on the use of wearable sensors along with distributed sensors and cameras within 

the patient’s home. The paper promises to support tele-rehabilitation but only through 

monitoring by a trained caregiver from a remote location. As previously identified, 

wearable sensors are not preferable. In practice the claim of bridging monitoring with 

rehabilitation is not implemented in this system. It is instead, a monitoring system that 

enables remote management of rehabilitation. 

3.8 Critical Evaluation of Engineering Approaches 

Table 6 demonstrates a summative comparison of all the systems discussed in the 

previous sections. Only the systems that are suitable for home use were presented, 

clinical systems were not taken under consideration. The first three criteria based on 

motivation and engagement aspects were selected (Section 1.6). The next four criteria 

were selected according to commonly used and evaluated metrics in the majority of 

the reviewed articles (Sections Error! Reference source not found. to 3.7) informed 

by the conclusions in Chapter 1. The remaining criteria were selected to meet other 

acceptability and economic aspects, as well as a separate category for the application 

area. The presented analysis identifies 3 aspects of technologies that we use for 

comparison: (1) motivation, (2) acceptance of technology, and (3) technological 

aspects.  These aspects were selected for their importance in supporting patients’ 

motivation and engagement (motivation) and in being incorporated into patients’ 

rehabilitation routines (acceptance, technology). 

For each aspect, several comparison criteria were identified. Regarding motivation, 

the criteria are (1) the motivation method used, (2) the patient’s engagement with the 

technology, and (3) whether the technology supports daily activities as an additional 

measure of motivation. There are 3 motivation methods: cooperative, supportive, and 

constructive. When the method used in a technology was not specified, the 

characterisation made was general. With respect to acceptance, the criteria are (1) 

individualization of the device to meet patients’ needs, (2) suitability of the device for 

elderly patients, (3) the use of wearable components, and (4) the use of intrusive 

monitoring methods (e.g., wearable sensors, on-body sensors, cameras, microphones). 

Wearable and intrusive methods have a negative impact on acceptance. Technological 

aspects are (1) intended use for the technology (monitoring, rehabilitation, diagnosis), 
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(2) cost, (3) complexity, and (4) transferability to other domains. Regarding intended 

use, besides our focus of rehabilitation, we also included 2 systems that perform 

monitoring and diagnostics. 

Based on Table 6 there is lack of systems for home rehabilitations due to various 

limitations in house design. Strengths and weaknesses of the systems are identified 

based on several criteria. It can be seen from the table, that what has been missing, is 

a system which can combine high level motivation and engagement by helping the 

individual through rehabilitation exercises to accomplish daily tasks. The system must 

be not intrusive and not wearable as well as tailored to the needs of the user in order 

to increase the level of usage and the number of the users regardless the age. Due to 

the complexity of stroke illness it has to be taken under the consideration that the 

subject has not been affected by other illnesses which affect elder people, thus the 

monitoring of the patient and the transferability of the device which will be capable of 

diagnosis or prevention of other threat is crucial in several occasions. Sometimes due 

to the relationship between cost and complexity (Figure 9), the devices which are low 

cost appear to be less complex, but they are not efficient enough due to the lack of 

features such as feedback etc. Thus, the system should maintain all the above criteria 

and at the same time must maintain simplicity at a low-cost basis.  

We use the extracted information from the reviewed articles to establish the criteria 

and to identify whether the criteria were met by the proposed systems. For the 

engagement and motivation criteria, as well as acceptance, all of the reviewed articles 

reported results on a common basis; thus, we needed no additional steps to cross-

validate the reported results. 

Table 6 presents a detailed comparative analysis of all the aforementioned 

technologies applicable for use in the home environment. We select the technologies 

as representative examples of each category we analysed. The system is assessed to be 

individualized or personalized or person centric when it learned or adapted to the needs 

of a particular patient by incorporating some type of feedback loop mechanism where 

the device adjusted the requested task(s) to the ability of the patient. Examples of such 

mechanisms are various machine learning approaches and increasing task difficulty. 

Suitability for the elderly was assessed based on Debes et al [55]. Nonwearable (on-
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body sensors, wearable components) and nonintrusive (cameras, microphones) 

systems were classified according to the system inputs that were used. The intended 

use of the system can be for rehabilitation, smart home monitoring, or smart home 

diagnosis of a health condition. 
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In the analysis, systems were considered that could be purchased by an average 

household in the United Kingdom to be cost-effective. Systems that would require a 

high capital investment were considered, and thus reimbursement from the health care 

provider, to be not cost-effective. Technologically complex systems were considered 

to be those that had a significant number of components, required significant training 

before use, or required extensive installation to be usable in a household. Finally, 

transferable systems were those that could be used for other rehabilitation purposes 

and were not restricted to stroke rehabilitation. 

As the tables show, no technology met all the selected criteria. Most of the 

technologies were suitable for the elderly and were nonintrusive. However, most 

technologies lacked motivation and engagement enhancement through the use of a 

variety of motivation methods. The developed approaches were technology centric, 

whereas a person-centric approach is necessary to keep patients engaged and 

motivated in achieving their rehabilitation goals. Several devices claimed to enhance 

motivation but produced little or no evidence of patient engagement [51], [97], [109], 

[110], [87], [93], [111]. None of the devices intended for rehabilitation were 

transferable to other uses. Devices intended for monitoring or diagnosis had the desired 

transferability features [135], [150]. Only 1 of the reviewed technologies proposed for 

rehabilitation supported individualization [110]; however, it did not meet the 

requirements for elderly patients and it used wearable components. On the other hand, 

individualization was supported by monitoring devices that were not intended for 

rehabilitation use [135], [142]. Several technologies we reviewed were inappropriate 

for home rehabilitation, as they were technologically complex and expensive. 

3.9  Chapter Conclusion 

The first rows of Table 6 list all the selected criteria which we review in this paragraph, 

drawn from our extensive literature review. The system needs to avoid wearable or 

intrusive components. It needs to support enhanced motivation and engagement by 

being incorporated into the daily activity routine. It must be cost-effective and not 

complex to install, maintain, and use. It needs to support the needs of all patients, 

regardless of age and background. Moreover, it needs to be portable and transferable 

to other domains such as diagnosis of co-morbidities. 
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The successful design of an assistive technology or rehabilitation device should take 

under consideration what the individual should and can achieve during rehabilitation 

[28]. Quantification and further analysis of the present and future conditions of the 

patient could overcome difficulties and unforeseen circumstances and could result in 

better assistive technology design. 

It is important to tailor rehabilitation to the patients’ requirements and goals, adapt to 

their individual needs, and provide suitable challenges. Individual choice and personal 

control are mandatory for success. Technology design has to follow a person-centric 

approach considering technology ability levels. Given the developments in smart 

devices, algorithms, and information extraction, devices can adopt a person-centric 

approach while meeting the requirements for cost and complexity. 

Thus, a system catering to every occasion, individualised and adapted to support the 

patient’s daily activities in their home environment, has a higher potential for 

successful acceptance and engagement, but is a challenging prospect. Hence, the 

successful system should focus on supporting specific daily activities that have 

measurable outcomes specified in recognised health care rehabilitation tests. In 

summary the contributions of this chapter are addressing RQ1 as identified in Chapter 

2 and are:  

a) The criteria for a successful home-based rehabilitation system; 

b) The identification of the gap in literature. 
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4 Design of Home-Based Rehabilitation System & Evaluation 

Methodology  

In Chapter 3 a review of the relevant literature was performed and a taxonomy was 

presented (Figure 10). The importance of monitoring and the pattern identification was 

discussed and criteria for a successful device, along with summarised findings 

presented, published in [56]. 

Through Chapter 3 a significant gap in the literature was identified. This chapter firstly 

will review clinical tests widely used worldwide and the selection criteria for the tests 

that are most relevant to home-based rehabilitation, daily activities, and could support 

a system that will satisfy the criteria discussed in Chapter 3. Then systems which offer 

automated solutions for the selected tests will be reviewed.  

These tests will be used to evaluate a home-based rehabilitation system through 

experimental patient case studies, thus, addressing both RQ1 and RQ2 as defined in 

Chapter 2. The methodology will be presented along with the participants’ profile. 

Then the analytical description of the experiments will be presented. Finally, the 

chapter will be concluded with the presentation of experimental and questionnaire 

results. These will provide the basic dataset for further development of pattern 

identification to build an intelligent system that satisfies the full extent of the criteria 

presented in Chapter 3, directly addressing RQ3 and RQ4 (Chapter 2). This intelligent 

system will be further discussed in Chapter 5.  

4.1 Introduction 

Since the patients are meant to interact with rehabilitation systems alone after 

receiving some training, without support from a specialist, acceptance and lasting 

engagement are crucial. However, home-based rehabilitation equipment that fulfils the 

aforementioned criteria usually cannot meet the specifications of clinical rehabilitation 

systems in terms of rigor. Therefore, home-based rehabilitation equipment must be 

rigorously evaluated against specific and measurable medical tests [151] in order to 

meet medical standards. These tests combine multiple daily activities such as walking, 

sitting and standing. A detailed literature search performed in Chapter 3 reaffirms the 

previous findings of [152] that existing automated self-evaluation systems do not meet 
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the above identified criteria, particularly in terms of acceptance and low-cost 

requirements.  

This chapter proposes practical methodological steps for evaluating new home-based 

rehabilitation systems in terms of meeting the medical specifications and the 

acceptance criteria (Chapter 3). To demonstrate the proposed evaluation methodology, 

we evaluated a home-based rehabilitation system that satisfies the four criteria of 

patient acceptance, and evaluate its performance against medically accepted standard 

tests, as discussed next. 

4.2  Patient Evaluation Tests 

Different tests exist for the evaluation of gait, balance and mobility of subjects. These 

tests are used to measure/evaluate specific characteristics relevant to the subject's 

clinical condition. The outcomes of these tests help identify underlying illnesses or 

support recovery after an illness has occurred (e.g., post stroke) [153]. Most well-

known and used tests are presented in Table 6. The functional reach test would require 

a combination of several sensor systems, including wearable sensors to capture 

vestibular motion. Berg balance scale, performance-oriented mobility assessment, and 

balance evaluation system tests all assess static balance and posture; but require 

wearable or intrusive sensing techniques as well as a specialist being present during 

the tests. Hence, the aforementioned tests are not suitable for self-assessment and 

home rehabilitation, where specialists may not be present. Falls efficacy scale and 

balance confidence scale self-evaluation are carried out via a questionnaire to describe 

daily activities. To automate and monitor all the activities covered in the questionnaire, 

the system cost would increase significantly. The balance error scoring system (BESS) 

test is targeting the younger segment of adult population and particularly athletes, with 

tasks that could be challenging for the less mobile. Finally, the timed up and go (TUG) 

and five times sit to stand (FTSTS) tests can be characterised by their simplicity, 

accuracy and suitability for all adults. Furthermore, TUG and FTSTS cover multiple 

activities with one test, and can be monitored by systems meeting the four criteria of 

patient acceptance, both in home and clinical environments. Due to a variety of 

reasons, including socioeconomic [154], automated solutions for some of these tests 

have appeared. A significant motivator for the automation of these tests is the 



  43 

elimination of human error [152], [155], [156]. Indeed, in the majority of non-

automated tests, the time is measured using a stopwatch, which inherently incurs 

human error [157]. 

Table 6 Medical Tests to Assess Patient Activities 
Test Measured Capacity 

Functional Reach Test  Dynamic Balance [158] 
Berg Balance Scale Dynamic And Static Balance [159] 

Performance Oriented Mobility 
Assessment  

Dynamic/Static Balance And Gait Abilities 
[160]  

Balance Evaluation System  Overall Balance. Tests Include Sit To Stand 
Test, Rise To Toes, Stand On One Leg [161] 

Falls Efficacy Scale and Balance 
Confidence Scale Self-Evaluation  

Subject Ability /Confidence In Carrying Out 
Daily Activities [162] 

Balance Error Scoring System (BESS) Static Postural Stability [163] 
Timed Up and Go (TUG) Mobility Static And Dynamic Balance [153] 

Five Times Sit To Stand (FTSTS) Test Lower- Limb Functionality, Durability And 
Balance [164] 

 

The TUG test can be carried out in the home environment with a non-clinical 

assistance. However, for safety purposes either the system should automatically raise 

flags and specialist can be notified or a family member could be present. The only tool 

needed is a stopwatch to measure the time to complete the test [165]. The test algorithm 

is relatively simple, combines more than one daily activity and contains performance 

thresholds, as defined by the NHS of the United Kingdom. For example, completion 

time exceeding 15sec identifies a patient at risk of falling [165][166]. 

However, factors such as age, gender, different levels of impairment or other medical 

conditions, can affect the accuracy of this assessment. Thus, different thresholds have 

been proposed to incorporate these factors, as presented in a study of 2084 subjects in 

[167]. To investigate, validate and evaluate the transferability of the automated sensor 

system, a second test was selected. The FTSTS test also incorporates basic motion 

linked to daily activities [168], but it complements TUG in assessing strength of lower 

limbs and durability, is time based and identifies fall risk [169]. Both TUG and FTSTS 

tests are approved by the NHS. 

4.2.1 Automated Timed Up and Go Test 

In the literature, different methods have been proposed in order to automate the TUG 

test mostly using intrusive means such as cameras [170][171]. Such a system, in [172], 
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is able to analyse stability and classify the subjects on susceptive or non-susceptive to 

fall, while in [173] the system monitors and analyses each phase of the test. Recent 

approaches use advanced webcam sensors [174][175][155] such as Microsoft and 

improve accuracy. These studies given the fact that their design is based on video 

technology, have different constraints such as camera positioning, people interference, 

lighting issues, floor quality for the Kinect sensors and most important privacy issues.  

On the other hand, research has focused on wearable approaches [51] [112]. In [176], 

the TUG test was performed along 7 meters instead of 3 meters and has been divided 

in four phases for most accurate measurements. In [177][178][179] the focus is on fall 

prevention and tele-evaluation by specialists. In [180] the time needed for TUG stages 

completion is measured to distinguish fallers from non-fallers. Similarly, TUG test 

was used for hemiplegic subjects study in [181] and it was capable of distinguishing 

the hemiplegic subjects where supervision was necessary. In [182] a TUG test has 

been carried out with Alzheimer’s illness and mild cognitive impairment subjects, in 

order to identify successfully differences in gait characteristics among two categories.  

There are applications based on mobile phones that rely on wearable sensors 

[183][184]–[186]. For example, [187] places the phone on patient’s waist. The 

approach proposed in [188] has been developed for self-assessment; it is able to 

capture different parameters and through a user interface all the results can be 

displayed on the mobile screen. 

Although mobile and wearable sensors applications are quite promising and some of 

them easy to use by healthy subjects, for elder people as we have aforementioned, 

these types of applications are not always welcome and, in this thesis, will not be 

analysed further. This could happen for a variety of reasons for example: due to the 

requirement of specialists in order to place the sensors on the body or could be due to 

the complexity of displayed information on mobile screen/user interface. 

Another way that has been developed in order to automate the TUG test is with the 

help of ambient sensors. Ambient sensors can be defined as two different main 

categories of sensors which could be either wearables or non-wearables and able to be 

integrated in subjects’ environments. Although the wearable ambient sensor systems 

share the same disadvantages with other wearable systems which do not utilise 
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ambient technology, ambient sensors which could be attached on transducer boards or 

being integrated on stand-alone systems appear to be an attractive solution given that 

they are not intrusive, could provide a solution tailored to the user needs, they are 

easily extendable, they can be integrated into daily environments (in the house, for 

example) and they can easily be readjusted to new needs of the individual [189].  

Although, ambient systems have been developed in order to capture gait speed using 

PIR sensors [190], [191] they have not been designed in such a way in order to 

automate the Timed up and go test. However, in [192] one fully automated timed up 

and go test has been proposed which utilises ambient sensors.  However, during the 

experiment procedure, the subjects were asked to wear white cuffs on their feet. 

Moreover, in order to transfer the data captured due maybe to high volume, a cable 

was necessary. Furthermore, this system does not provide any feedback to the user and 

thus a specialist should be present. 

4.2.2 Automated Five Time Sit to Stand Test  

In order to investigate, validate and evaluate the transferability of a device,  the FTSTS 

were carried out. Due to a variety of reasons, such as human error when measurements 

are taken with the help of stopwatch [157], different technological approaches have 

been developed in order to provide automated solutions for better accuracy. There is a 

variety of different ways which have been proposed in literature and utilise different 

means in order to achieve test automation.  

Wearable or camera-based systems have been mostly investigated for the automation 

of FTSTS [193][194][195]. In [196] cameras and coloured markers placed along left 

side of the subject are used for kinematic analysis. In [197] a Microsoft Kinect sensor 

has been employed along with VR. For validation of the test a stopwatch measurement 

and recordings for 2 video cameras were taken. 

Moreover, ambient sensor systems have been utilised to monitor and automate the 

FTSTS test. In [198], [199] ambient sensors are used to evaluate different phases of 

the test, for example time of sit to stand, stand to sit etc. 
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4.3 Methodology  

In this section, the methodology to assess the accuracy of home-based rehabilitation 

systems for the TUG and FTSTS tests were described , as illustrated in Table 6 and 

Section 4.2. For that purpose, a home-based rehabilitation sensor system was designed 

developed and deployed, which satisfies the four criteria of [56], namely non-

intrusiveness, does not contain any wearable component, is easy to use and low cost. 

The system comprises two time-synchronised blocks, each assembled using a micro-

controller and a modified BISS0001 passive infrared (PIR) sensor. 

To identify suitable sensors for the experiments a variety of sensors were reviewed. 

The main reasons for selecting BISS0001 PIR sensor were: (a) the low cost of the 

sensor, (b) the capacity of the sensor to be altered or modified in order to comply with 

the extended needs of the system, (c) the size and footprint.  

When it comes to home monitoring or home rehabilitation of subjects, during the 

design phase, further consideration of various sources of noise need be taken into 

account, which can be introduced during monitoring. Such noise could be sourced 

either from other residents of the house or from different objects that they can be 

moved and accidentally block either the capture angle of the sensor and/or the whole 

view. This is where the system is able to identify that something in the room or home 

condition has changed.  

The sensors were used to capture the time a subject took to walk between two points 

as he/she performed the TUG test (through horizontally spaced sensor blocks) (Figure 

12). Replacement of the electrical components as well as optimisation of the lens 

yielded sensitivity range of up to 1 m and capture angle of 30° x 30°. The digital signal 

was adjusted to remain high after the trigger for a variable time between 0.25 sec to 

25 sec, depending on subject speed. The FTSTS test was performed through a vertical 

arrangement of the two aforementioned sensor blocks, which measured the time from 

sit to stand. The sensor allowed for vertical and horizontal arrangement. The two 

sensor blocks were optimally placed for both tests to minimise false positives (i.e., 

when a motion that was not part of the test was picked up), and false negatives (i.e., 

when a motion that was part of the test was not picked up).  
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Though applied to this system for demonstration purposes only, the proposed 

evaluation methodology described in the next sections is generic and can be followed 

for assessment of other similar home-based rehabilitation systems. 

 

Figure 12 Subject performing TUG with the deployed system at National Centre of Prosthetics and Orthotics. 

The head is covered for subject privacy. 

4.3.1 Participants  

Participants were recruited and the experiments took place in the National Centre of 

Prosthetics and Orthotics at the University of Strathclyde, after ethical approval 

UEC16/52 was obtained by University of Strathclyde Ethics Committee.  

In total, eight healthy subjects were recruited to take part in the experiment in order to 

evaluate the proposed system for TUG and FTSTS tests. The participant recorded 

parameters are presented in Table 7.  

Table 7 Participant recorded parameters. 

Participant Height (m) Weight (kg) Age (years) Sex (Female 
(F)/ Male (M)) 

1 1.5 56 34 F 
2 1.7 75 25 M 
3 1.82 84 41 M 
4 1.7 86 25 M 
5 1.84 80 22 M 
6 1.85 77 28 M 
7 1.74 62 27 M 
8 1.8 92 40 M 
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The subjects were recruited to illustrate the proposed methodology and to demonstrate 

if a system (any system) meets the desired requirements. The subjects were seven 

males and one female aged 22 to 41 (mean age 𝑋 = 30.25). The mean height of the 

participants was 𝑋 = 1.74 cm, with standard deviation of σ = 0.12 and weight 𝑋 = 76.5 

kg with σ = 12.14. This range of heights and weights allows for evaluation of the 

technology in a variety of scenarios even though it is predominantly representative of 

characteristics relevant to male adults[200] [201]. 

The eight subjects were over the age of 18 with good vision (with or without corrective 

aids), the author of this thesis provide a participant information sheet explaining the 

procedure and were able to provide consent, and instructed them through the process. 

They followed instructions in English and attended a single appointment at the lab. 

Exclusion criteria were used for subjects that were pregnant, had a hearing and/or 

visual problems that was not corrected, subjects that were unwell or were taking 

medication potentially compromising their ability of mild physical activity, subjects 

with significant speech problems affecting the safe execution of the experiment and 

subjects with vestibular impairments, heart or respiratory conditions that limited their 

ability to walk. The study was approved by the University of Strathclyde ethics 

committee and a data management plan for data security was in place. Following a 

similar approach to [170], subjects were asked to simulate various disabilities. The 

simulated disabilities and number of repetitions are discussed in Section 4.3.3 for each 

test. The total number of individual experiments were 184 for TUG and 40 for FTSTS.  

To demonstrate that the evaluated technology is able to record TUG and FTSTS results 

that are relevant to a wide range of adults, we compared the TUG and FTSTS 

completion time recorded during the simulations to the completion time reported for 

healthy and geriatric elderly (>65 years) and adults (>18 years) in the Shirley Ryan 

Ability Lab [201] international database. For TUG test, a total of 48 studies were 

analysed in the database of 6632 participants with a variety of conditions. Of those, 

only 10 studies report male/female populations; seven are predominately male at 

67.3% on average, while three have male populations of 36.3% on average. For FTSTS 

test, a further 23 studies were analysed with a total of 7794 participants in the adult 

and elderly groups. Of those, only two studies report male/female populations at an 
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average of 48.7% male predominance. A two-sample t-test analysis was performed 

with the hypothesis that recorded completion time distribution for each of the 

simulations was equal to completion time distribution reported in the database for 

conditions relevant to the simulated disabilities. The selected groups are presented in 

Section 4.4. As the female representation in the database is on average 49.23%, the 

hypothesis will also further support our experimental results not being overly biased 

towards male participants. The experiment procedure for the pilot validity study is 

described in Section 4.3.4 for the TUG and 4.3.5 for FTSTS, respectively. Alongside 

the system an assistant was present holding a stopwatch to record time of completion. 

Moreover, for the gold standard a camera recording was used capturing the whole 

scene. The camera was setup on a tripod for stability and was on eye level of the subject 

taking the experiment when standing. Ceiling lights were turned on to avoid blur and 

glare and there were no windows in the room. The angle of filming was setup to avoid 

participants blocking any segment of the test from being recorded. A professional 

camera was used to record high quality video.  

4.3.2 Statistical Data Analysis Measures  

To identify agreement between the results obtained by the automated sensor system 

and the video measurements the Bland–Altman 95% bias analysis was carried out. 

This method is widely used in the medical field when comparing two measurements 

of the same variable. For each pair of measurements, the x-axis illustrates the mean 

and the y-axis the difference. The method also provides the lower and upper level of 

agreement and establishes acceptable limits [202]. The percentage error (PE) of the 

measurements of the experiment is calculated following the Bland–Altman method 

based on the upper and lower limit of agreement (LOA) according to [203] (Equation 

1): 

𝑃𝐸	 = 	!""#$!"#%&'(#$!"#
)

	 (1) 

where:  
𝑃𝐸 →													Percentage error  
𝑈𝑝𝑝𝑒𝑟$%&	 →Upper level of agreement  
𝐿𝑜𝑤𝑒𝑟$%& →Lower level of agreement  
𝑋 →            Mean value of set 
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Lin’s concordance correlation coefficient (ρc) (Equation 2) was calculated to compare 

the proposed automated sensor system measurements against a “gold standard” or 

“ground truth" measurement as one of the most well-established methods to assess 

agreement [204], as follows: 

𝜌𝑐	 = 	 !∗#∗$!"!#$%∗$&'($)
(&!"!#$%'	&&'($))*$!"!#$%*$&'($)

	 (2) 

where ρ is the correlation coefficient, 𝜎+,+-./	 and  𝜎012.3 represent the standard 

deviation, of the automated sensor system and the video system, respectively, and 

𝑋+,+-./	and 𝑋012.3 are the mean of the automated sensor system and video system 

data points, respectively. 

The intraclass correlation coefficient (ICC) was calculated as assessment of the 

reliability of the measurements [205]. The ICC was evaluated after conducting 

analysis of variance of two factors without replication. Finally, linear regressions 

analysis was performed to obtain accuracy, quantification and data trends. 

4.3.3 Experiments  

For each of the TUG and FTSTS tests that was conducted, data were recorded through: 

1. a non-intrusive, non-wearable, low cost, motivation and engagement enhancing 

system that can be individualized, is simple and transferable; 

2. a stopwatch following the instructions for specialists according to the NHS 

suggested method [165]; 

3. and a standard video camera as golden standard to avoid human error in the 

stopwatch method. 

The automated sensor system is able to capture motion and time. It is a portable 

system, easy to use and set up. The placement of the components depends on the 

participant's biometric characteristics in order to collect and extract accurate data 

during the experiments. For each participant, the system has to be calibrated to the 

individual, as presented for each test in the following subsections. The test completion 

time is crucial, given that slower time than normal could be an indication of a medical 

condition. In all of the experiments the time of completion was measured.  
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At the end of every experiment repetition, the subject was receiving simple feedback 

through a screen. The feedback was based on the performance and the time of each 

completion. If there was an improvement over time in comparison with the previous 

repetition the feedback was illustrated as a happy green face; for stable performance  

the feedback was a yellow face and for degraded performance in comparison with 

previous repetitions a red sad face. This simple feedback was considered easy to 

interpret according to the relevant literature review in Chapter 1.  

4.3.4 Timed Up and Go Test Experiments  

Inline with NHS instructions, subjects were seated on an armed chair, and on the word 

“Go”, the subjects would stand, walk 3 meters on a straight line, make a 180°degree 

turn, walk back to the chair, turn and sit down (Figure 13). 

For calibration, each participant was asked to complete the TUG test at their normal 

walking speed (own pace) three times. Next, to investigate the properties of the system 

under a wide range of conditions, the participants were asked to simulate three 

impairments, and motion at an accelerated pace. First, they were asked to simulate 

reduced ability, or difficulty, to stand (Figure 14). The subject was trying to stand up 

by spending time on various positions or by performing unsuccessful attempts. 

 
Figure 13 Timed Up and Go Test Experiment 

This was a way of testing that the device and the motion sensor will be capturing and 

transmitting data accurately with the right angle and range without resetting and 

recapturing the particular subject multiple times. The task of sitting down was 

performed in a similar manner during this simulation. 
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Figure 14 Timed Up and Go Test Experiment Simulating Difficulty to Stand 

Next the participants were asked to simulate a reduced ability, or difficulty, to walk as 

it is often the case for patients with reduced mobility even if the distance is limited to 

3 meters (Figure 15). Subjects were asked to slow down in order to ensure that the 

time captured will be the time of the worst-case scenario (i.e., the time a geriatric 

elderly would need to perform this test). The aim was to evaluate the system’s ability 

to accurately capture the overall time, without system resets and without the sensor 

recording interference from the testing area. 

Finally, the participants were asked to simulate reduced ability or difficulty to turn by 

delaying when they were performing the 180° turn. This was simulated as wobbling 

or assuming the need of a walking aid (Figure 16). Here, the subjects were asked to 

simulate imbalance while turning to capture the motion that are relevant to this stage. 

 
Figure 15 Timed Up and Go Test Experiment Simulating Difficulty to Walk 
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Figure 16 Timed Up and Go Test Experiment Simulating Difficulty to Turn 

This part of the experiment was designed to demonstrate the ability of the automated 

sensor system to recognise and capture potential mobility problems by distinguishing 

between these stages. There were no time restrictions for the participants to carry out 

and complete each of the five repetitions.  

Finally, the system was tested under fast walking conditions. The participants were 

asked to perform the TUG test as fast as they could without running. The aim of this 

set was to identify the limitations of very low-cost sensors, in accurately capturing fast 

motion. The number of times each stage was repeated is presented in Table 8. 

Table 8 Timed Up and Go Test and Five Time Sit to Stand Experiments 
Test  Stage Repetitions  Simulations  
TUG 1 3  Normal Walking  

 2  5  Difficulty To Stand  
 3 5  Difficulty To Walk  
 4 5  Difficulty To Turn  
 5 5 Fast Walking  

FTSTS 1 3 Fast 
 2 2 Difficulty To Stand And Sit 

4.3.5 Five Time Sit to Stand Test  

Instructions were initially given to the participants on how to perform the FTSTS test. 

Each subject was seated on an armless chair with hands crossed over the chest. On the 

word “Go”, the participant had to stand and then sit five times without support (Figure 

17). The participants performed experiments at their own pace. 
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Figure 17 Five Times Sit to Stand Test Stages Repeated Five Times For Each Experiment 

Next, the participants were asked to simulate difficulty to stand and sit, by performing 

the same task but with a delay in sitting and standing to validate if the sensor-system 

could accurately record these cases. Table 8 summarises the experiments. 

4.3.6 Mapping of the System  

Due to different body metrics of the subjects and given that the system is portable, the 

right placement of the system plays a vital role for the tests to be carried out 

successfully. Hence, for people with different heights and weight, sensors and the 

whole system should be placed accordingly to the subject’s requirements. However, 

the initial system would need to be installed at the right position the first time before 

operation and should be tailored to the subject. Afterwards no further alterations or 

adjustments would need to be made. Moreover, when conducting the experiments, the 

system had to be adjusted frequently given that the participants had different heights 

and weights. The height of the participants was affecting the vertical placement of the 

sensors and the weight of subjects, i.e., the mass was affecting the sensors on 

horizontal line. Furthermore, the system consists of two different portable parts, which 

were located 3 meters apart.  

Figure 18 presents the location of two portable components of the system (S1 and S2) 

and the parameters that were calculated for each subject. These were estimated based 

on the participant recorded parameters presented in Table 7. Then, experimenting with 

the device and sensitivity, the final placement was adjusted to acquire the most 

accurate results. Table 9 presents the final measurements after the adjustment.  
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Figure 18 Location and placement of system components for TUG. 

 
Table 9 Location and placement parameters for each participant of TUG. 

Subject d1 (m) h1 (m) d2 (m) h2 (m) 
1 0.4 0.915 0.60 0.5 
2 0.5 0.915 0.68 0.7 
3 0.6 0.915 0.73 0. 915 
4 0.6 0.915 0.68 0.7 
5 0.6 0.915 0.74 0.915 
6 0.5 0.915 0.74 0.915 
7 0.4 0.915 0.70 0.7 
8 0.7 0.915 0.72 0.915 

 

Analysing the resulting measurements presented in Table 9, through correlation 

analysis, the following relationships were identified (Equations 3 to 6): 

𝑑1	 = 	0.0084 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡	 − 	0.1037	 (3) 

ℎ1 = 𝑠𝑒𝑎𝑡	ℎ𝑒𝑖𝑔ℎ𝑡 + 0.315	 (4) 

𝑑2 = 0.4 ∗ ℎ𝑒𝑖𝑔ℎ𝑡	 (5) 

ℎ2 = 	0.8964 ∗ ℎ𝑒𝑖𝑔ℎ𝑡	 − 	0.7456	 (6) 

where: 
weight →in kilograms (kg) 
height → in meters (m) 

In order to avoid any confusion, the user could select between 2 modes, the first 

selection enables the TUG test while the second selection enables the FTSTS test. The 

two parts of the system had a different placement arrangement for FTSTS as presented 

in Figure 19. The system was easy to operate given that the screen was a touch screen 

and the menu very simple for the user. However, a small remote control was available 

as well which was enabling distanced selection. The only thing that the user had to do 
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in order to change the test option was pressing the number 1 or number 2 on the remote 

control.  

A similar process was followed to identify the most suitable placement for FTSTS. 

Component S1 remained at the same location, while S2 was moved as presented in 

Figure 19. Thus, Table 10 presents the final measured location and placement 

parameters, for FTSTS. Equations 3 and 4 remained the same for 𝑑1 and ℎ1. Analysing 

the remaining parameters, the following equations were identified (Equations 7 and 

8): 

𝑑2 = 𝑠𝑒𝑎𝑡	𝑏𝑎𝑐𝑘 − 0.2	 (7) 

ℎ2 =	= 	1.7277 ∗ ℎ𝑒𝑖𝑔ℎ𝑡	 − 	1.5165	 (8) 

 
Figure 19 Location and placement of system components for FTSTS. 

Table 10 Location and placement parameters for each participant of FTSTS. 
Subject d1 (m) h1 (m) d2 (m) h2 (m) 

1 0.4 0.915 -0.2 1.15 
2 0.5 0.915 -0.2 1.35 
3 0.6 0.915 -0.2 1.65 
4 0.6 0.915 -0.2 1.35 
5 0.6 0.915 -0.2 1.69 
6 0.5 0.915 -0.2 1.72 
7 0.4 0.915 -0.2 1.41 
8 0.7 0.915 -0.2 1.65 

 

4.4 Experimental Results 

Table 11 and Table 12 present the 𝑋 and 𝜎 values for each of the TUG and FTSTS 

tests, respectively. The last column presents results from studies with adult patients 

reported in [201]. As demonstrated in the last column, the ranges of completion time 
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recorded in the experiments were within the reported ranges for those patient 

populations. A two-sample t-test analysis comparing the automated sensor system to 

the database supports the hypothesis that the two distributions are significantly similar 

for all cases, where α = 0.05 is the acceptance limit. The t-values were -2.14, 1.42, 

2.51, 0.27, 2.25, 6.66 and 0.98, for each case. The probability of the two distributions 

being equal was calculated to 0.91	 ≤ 𝑃(|𝑡| ≥ 𝑡0456.) ≤ 0.99	for all other cases, 

except the fast TUG set with 𝑃(|𝑡| ≥ 0.273) = 0.61 and the fast FTSTS set with 

𝑃(|𝑡| ≥ 0.982) = 0.83 . 

Table 11 Timed Up and Go (TUG) Characterisation Of The Tests 𝑋 (σ). The Results Are Given in Seconds 
TUG 

Set  
Automated 
sensor system 

Stopwatch Video  Patient  

Walk 24.94 (9.41) 26.46(9.0) 25.54(9.31) 31.9(20.9) (geriatric age 𝑋 79.9)  
Turn  26.43(8.25) 26.63(7.92) 26.78(8.1) 23.33(11.66) (Bilateral 

vestibular hypofunction age 𝑋 
77.95) 

Stand 22.32(8.65) 21.27(7.01) 22.31(8.6) 15.5(11.03) (Parkinson’s fallers/ 
No medication age 𝑋 77.95) 

Fast 8.13(2.47) 7.82(1.9) 7.73(1.73) 7.94(2.15) (Parkison’s Non 
faller/Medication age 𝑋 66.64)  

Normal 9.66(1.30) 9.80(1.8) 9.69(1.37) 8.13(2.34) (Parkison’s Non 
fallers / No Medication age 𝑋 
66.64) 

 
Table 13 presents the coefficient of variation as a percentage for each set. To further 

investigate the correlation, three different categories of graphs were used for each of 

the tests and each simulated impairment; box plots, linear regression, and Bland–

Altman. 

Table 12 Five Time Sit to Stand (FTSTS) Characterisation Of The Tests 𝑋 (σ). The Results Are Given in Seconds 
FTSTS 

Set 
Automated 
Sensor System 

Stopwatch Video  Patient 

Diff. 49.71(14.58) 50.66(14.05) 49.98(14.94) 20.25(14.12). (Parkinson’s age 
𝑋 65.9) 

Fast 17.78(5.1) 19.15(5.37) 18.87(4.93) 16.4 (4.4) (Vestibular 
Disfunction 𝑋 66.64) 

 
Table 13 Characterisation Of The Tests: Coefficient of Viriation Percentage (%) 

Set  Automated Sensor System  Stopwatch Video 
TUG Walk 37.72 34.00 36.42 
TUG Turn 31.23 29.75 30.23 

TUG Stand 38.76 32.97 38.54 
TUG Fast 30.46 24.33 22.45 

TUG Normal 13.49 18.41 14.16 
FTSTS Diff 29.33 27.73 29.90 
FTSTS Fast 28.69 28.08 26.14 
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For the box plots, the y-axis represents the time while on the x-axis the methods of 

recording. The whiskers which are lines anchored at the edges of the box, represent 

the range of measurements in seconds. The horizontal line in the box represents the 

mean and the x point in the box represents the median. Bland–Altman plots, in our 

case, show the mean and the difference between video and system measurements, 

respectively, with acceptance limits within 2 s. The limits of agreement were 

calculated at 1.96 σ (differences) per definition for the 95% bias analysis [202], [206]. 

The y-axis represents the difference between two measurements, i.e., video - system, 

while on the x-axis the mean of the measurements is shown. The horizontal black line 

represents the bias while the horizontal blue and red dotted lines represent the Upper 

and Lower level of agreement, respectively. In the linear regression graphs, the y-axis 

represents the measurement of the system in seconds while the x-axis represents the 

video measurements in seconds. The video recording was used as the “gold standard” 

or “ground truth" measurement for all the experiments to calculate the Lin's 

coefficient, as well as the regression analysis. Figure 20- Figure 26 present the results 

for TUG and FTSTS tests according to the simulated impairment or set of repetitions 

the participants were called to perform. Table 14 presents the PE, ρc and ICC results 

of the analysis as defined in Section 4.3 and the linear regression results of the 

coefficient of determination (R2) and p-value. 

 
(a) 

 
(b) 

 
(c) 

Figure 20 TUG Normal Simulation Aggregate: (a) box Plot (b) Bland – Altman (c) Linear Regression 

 
(a) 

 
(b) 

 
(c) 

Figure 21 TUG Difficult to Stand Simulation Aggregate: (a) box Plot (b) Bland – Altman (c) Linear 

Regression 
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(a) 

 
(b) 

 
(c) 

Figure 22 TUG Difficult to Turn Simulation Aggregate: (a) box Plot (b) Bland – Altman (c) Linear 

Regression 

 

 
(a) 

 
(b) 

 
(c) 

Figure 23 TUG Difficult to Walk Simulation Aggregate: (a) box Plot (b) Bland – Altman (c) Linear 

Regression 

 

 
(a) 

 
(b) 

 
(c) 

Figure 24 TUG Fast Simulation Aggregate: (a) box Plot (b) Bland – Altman (c) Linear Regression 

 

 
(a) 

 
(b) 

 
(c) 

Figure 25 FTSTS Slow Simulation Aggregate: (a) box Plot (b) Bland – Altman (c) Linear Regression 

 

 
(a) 

 
(b) 

 
(c) 

Figure 26 FTSTS Fast Simulation Aggregate: (a) box Plot (b) Bland – Altman (c) Linear Regression 
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Table 14 Characterisation of The Tests: Percentage Error and correlation Results 
Set PE ρc R2 p-Value ICC 

TUG Walk 13.3% 0.994 0.992 2.16*10-41 0.994 
TUG Turn 11.4% 0.996 0.992 5.6*10-41 0.995 

TUG Stand 13.8% 0.996 0.992 3.4*10-41 0.996 
TUG Fast 126.15% 0.246 0.079 0.097 0.251 

TUG Normal 14.1% 0.997 0.942 4.67*10-15 0.969 
FTSTS Diff 4.73% 0.999 0.999 1.81*10-20 0.999 
FTSTS Fast 31.1% 0.931 0.931 1.93*10-11 0.934 

 
4.4.1 Questionnaire 

Each participant was asked to complete a questionnaire at the end of the experiment 

to identify the level of motivation and engagement. A total of five questions were 

provided with the opportunity to provide general comments at the end: (1) Was the 

device easy to use and set up? (2) Was the feedback sufficient? (3) Would you use the 

device again? (4) Was the device engaging? (5) Did the device increase your 

motivation for performing the task? (6) Any other thoughts, detailed responses to the 

above questions, recommendations, or general comments? 

The participants were asked to respond on a scale from 0, meaning very poor, to 5 

meaning excellent, to questions 1 to 5. The last question was open ended to allow for 

further feedback.The responses from the collected questionnaires were analysed by 

simple sum and percentage proportion analysis for each of the possible responses 

(Figure 27).  

All of the subjects found the system easy to setup and use (Question 1: 100% ≥3) 

meaning that all eight responses were equal to 3, 4 or 5. 83% found the received 

feedback sufficient, good or excellent (Question 2: 83% ≥ 3). Additionally, all the 

participants found the system engaging (Question 4: 100% = 5) and that it increased 

their motivation to perform the task (Question 5: 100% = 5). Finally, the majority 

would use the system again if they ever needed home self-rehabilitation (Question 3: 

88% ≥3). 
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Figure 27 Questionnaire Results in terms of start-rating for each of the questions 1 to 5. Category 5 

corresponds to the highest (good) rating while category 1 corresponds to the lowest (bad). 
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4.5 Chapter Discussion 

In this chapter various evaluation tests were reviewed as well as a variety of related 

systems which automate clinical tests such as FTSTS and TUG. A range of difficulties 

were simulated using healthy subjects. There was a significant difference between 

participants, as evidenced through the range of results presented in the box plot 

analysis. The automated sensor system has consistently produced box plots that are 

well aligned with the video recording (gold standard ground truth). The results of the 

simulated difficulties were hypothesised to represent adult participants with reduced 

mobility. The hypothesis was tested against the international database’s records for 

male and female patient groups. The result of the two-sample t-test hypothesis testing 

confirmed the validity of the assumption. As a result, the device is suitable for 

recording TUG and FTSTS tests for a wide range of the patient population.  

It was further hypothesised that the system will demonstrate the same behaviour if 

used by female and elderly subjects. This hypothesis was supported by the comparative 

analysis to the international database where the adult groups had a strong female 

participant population (49.23% average of the studies that reported male/female ratios 

on TUG and FTSTS). 

The stopwatch has lower correlation with the video as demonstrated from the box plots 

through displacement line. This difference is likely to be due to human error. Due to 

the significant variability in recording time, the stopwatch measurements were not 

regarded as the “ground truth” for the comparative analysis and were not used for the 

Bland–Altman analysis. Additionally, the box plot analysis highlights the presence of 

outliers in the TUG fast series and the FTSTS simulated disability case. The TUG fast 

series produced generally the poorest results as the participants were performing the 

test at a speed that exceeded the capabilities of the evaluated system. Thus, the outlier 

in this case can be assigned to a system fault in capturing fast completion times. An 

outlier of the FTSTS test, on the other hand, is present in all of the three measurement 

methods and thus can be the result of a particular participant taking long pauses while 

performing the test. For the Bland–Altman analysis all the data points (>50%) were 

between the limits of agreement. Points outside the limits of agreement are present in 

the TUG difficulty to stand simulation, turn simulation and the FTSTS fast test. 
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However, in all cases these points are still very close to the LOA and do not statistically 

significantly affect the agreement between the two measurements. The bias was in 

most graphs close to zero, which reflects an unbiased relation between the 

measurements. It is worth noticing that in the graph which represents the TUG fast 

simulation, the upper limit of agreement coincides with the bias and it is obvious that 

the automated sensor system has limitations in recording fast repetitions. By observing 

the linear regression analysis, can be distinguished that, even in the worst case, i.e., 

the tests of TUG normal and FSTS fast simulation, the correlation is statistically 

significant. However, the TUG test fast simulation is completely uncorrelated, 

demonstrating that the automated sensor system is incapable of capturing fast 

movements. However, these recordings would be only relevant to adults who are 

potentially not in need of rehabilitation. The remaining TUG and FTSTS test sets are 

highly correlated with perfect alignment on the linear trend line. The above 

observations are further supported through the ICC, ρc and R2 results. 

In the next chapter a review of various algorithmic approaches and Machine Learning 

methods will be presented and experiments will be carried out in order to identify the 

best algorithmic approach to provide motivation and engagement enhancing feedback 

tailored to patient needs for monitoring rehabilitation progress and at the same time be 

able to predict potential development of co-morbidities. 

4.6 Chapter Conclusion 

The low cost, non-intrusive, non-wearable, motivation and engagement enhancing 

system that can be individualised and support daily activities, is cost-effective, non-

complex and transferable has excellent correlation and agreement with the video 

recordings in all the simulated conditions. The stopwatch measurements have an 

inherently higher PE compared to the golden standard video measurements due to the 

human error factor. Moreover, the transferability of the automated sensor system is 

presented with the FTSTS test simulation demonstrating excellent accuracy and 

correlation to the video recording. The relevance of this early technology to the patient 

population was demonstrated through comparative analysis with the international 

database. However, experiments with elderly subjects will be required as further 

evaluation steps. 
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Fast FTSTS (R2=0.92) was not as accurately captured while the fast TUG test was 

uncorrelated between system and video (R2=0.07). The limitation of the very low-cost 

motion detection sensor is apparent in these two sets of experiments as the sensor’s 

delay in recording the event is significant and affects the recorded time. However, as 

the system is designed to be utilised for rehabilitation and incorporation of daily 

activities for increased engagement, the range of fast TUG is assumed with the scope 

of the study targeting less capable adult subjects. Thus, the automated sensor system 

is fit for purpose and has been validated for use with statistically significant accuracy 

(ϱc>0.99, R2>0.94, ICC>0.96). In summary the contributions of this chapter are 

addressing RQ2 identified in Chapter 2 and are:  

a) Deployment of a low-cost system to automatically perform the TUG and 

FTSTS medical tests. 

b) A detailed methodology to assess a home-based rehabilitation system’s 

accuracy against the test specifications, benchmarked against NHS standard 

practice and ground truth established through video recording. 

c) Demonstration of transferability to other daily activities and more than one 

NHS test. 
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5 Machine Learning-Enabled Individualised Home-Based 

Rehabilitation  

In Chapter 4 clinical tests that are widely known at global scale for patients’ evaluation 

and diagnosis of various conditions were reviewed. Then review of systems which 

offer automated solutions for the selected TUG and FTSTS tests was conducted. These 

can offer automated evaluation of patients through a defined process. The 

methodology for the conducted experiments was presented along with the participants’ 

profile, the system mapping and the presentation of experimental results. These results 

will provide a significant building block for the present chapter. They will be used to 

classify difficulties in activities relating to home-based rehabilitation. Moreover, the 

same tests will be used to evaluate conditions. 

In this chapter the process of the FTSTS and TUG tests for home-based rehabilitation 

will be automated and additional early diagnosis for potential co-morbidities for stroke 

survivors will be provided. This will be achieved by applying Machine Learning (ML) 

to the system proposed in Chapter 4. However, in order to apply ML to provide 

interpretable and engaging information (RQ4 in Chapter 2), in Section 5.1.1, then the 

state of the art will be examined in terms of Accountable, Responsible, and 

Transparent (ART) Artificial Intelligence (AI) in terms of ethics, transparency, 

regulation & control, socioeconomic impact as well as design requirements and 

responsibility. Then, in Section 5.1.2 the organisation of the chapter, contribution, and 

how it is linked with the objectives of the thesis will be discussed. In Section 5.1.3 

medical systems in general and in Section 5.1.4 home rehabilitation systems in 

particular which utilise ART will be reviewed. Discerption of the proposed 

methodology will be presented in Section 5.2 in terms of designing the datasets and it 

will be continuing by reviewing and selecting appropriate ML algorithms. An 

implementation and comparative analysis of algorithms will be presented based on 

accuracy of their predictions for the defined problem. Then a hybrid ML approach will 

be proposed followed by further evaluation (Section 5.3). The chapter will conclude 

by presenting evaluation results. Thus, this chapter will address both RQ3 and RQ4 as 

defined in Chapter 2. 
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5.1 Background 

As it was  discussed in Chapter 3, and presented in Table 6, one of the main factors for 

a successful rehabilitation system is to be able to provide an individualised 

rehabilitation approach. Existing approaches lack in individualised therapy. As a 

result, patients lose their interest quite quickly and this results in poor rehabilitation 

outcome. In general, individualised therapy is very challenging for an automated 

system to provide, given that the system should be able to understand and learn from 

the user, and continuous adapt based on the user’s progress and preferences. Different 

patient conditions, daily habits and comorbidities also must be taken into account.  

The basic research direction is to develop a home-based rehabilitation system based 

on an incremental ML approach that can learn a user profile. Such an approach should 

take under consideration and combine different parameters and features of the user 

such as BMI, weight and height. Hence, it should provide a tailored home-based 

rehabilitation approach by increasing gradually the level of difficulty of the tasks, 

constantly checking for any comorbidities that could affect the user/subject’s progress, 

identify daily patterns and raise flags or notify appropriate care givers in case of 

emergency.  

There are several challenges and considerations that must be addressed in terms of 

design, ethical implications, transparency, regulation and control, and responsibility, 

especially when the system is intended for medical use. In this chapter, considerations 

in relation to home-based rehabilitation will be examined and a novel approach to 

address them will be proposed.  

5.1.1 State of the Art in Applied Artificial Intelligence  

In order to analyse what responsible AI stands for, the impact of different factors 

around it which are interlinked and presented in Figure 29. In the following list each 

of these factors are introduced separately. The link of the proposed approach to each 

of these categories will be presented in the following Subsection 5.1.2 and evaluated 

and discussed in Subsection 5.2.6. 

Ethics & Accountability: AI applied to power networks, security, smart home 

entertainment, and driverless cars demands that ethics should be taken under 
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consideration in the design phase. This process should ensure that the particular AI 

system will not be violating human moral code [207], [208]. This links to the need of 

unbiased data used to train and develop ML models as well as the need to understand 

any unintended and possibly unethical consequences (Accountability). Instead of 

dealing with a “black box” AI model, the designer should pay attention to completely 

understand the behaviour of the particular system (Interpretability) and improve its 

alliance with the moral code of the intended user. Important aspects here include the 

beneficence or maleficence embedded into the AI model by design. Ethics play an 

important role of reducing bias and hence can eliminate discrimination and improve 

adherence to human moral code by machines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Transparency: To achieve better adherence to ethics there should be an ability to 

justify AI model decisions. An adequate level of explainability of decision making 

should be provided. In order to eliminate obscurity, different solutions could be 

applied such as a complimentary combination of simple and more advanced models, 

post-hoc analysis, and input modification to improve transparency [208][209].  

Regulation & Control: AI intended and unintended consequences in society [208] 

impose the need for a regulatory framework. Hence, there is a discussion for a legal 

Figure 28 Responsible AI 
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frame establishment (regulation/control) in order to impute liabilities to whoever is 

responsible for the model’s action. Hence, according to AI application different actions 

have been proposed such as, issue of certificate of “safe AI”, continuous monitoring 

and control, and limitation of autonomous decision scope [208], [210].  

Socioeconomic Impact: The level of integration of AI should be evaluated as well as 

the environment in which such integration will take place. Moreover, the acceptability 

from the society should be studied in depth given that autonomous systems could 

possibly introduce a level of discrimination and bias. Another factor that should be 

considered is the behaviour of employees and employers [208], [211].  

Design: AI should be designed and reviewed by interdisciplinary teams. 

Interdisciplinary teams could evaluate possible impacts in society, ethics and 

economy. Moreover, indirect impacts to animals or the environment, for example, 

could be studied and evaluated further. Bias could be significantly reduced as well, by 

sharing and combining significant knowledge and expertise of different domains 

[208]. 

Responsibility: In some applications which can cause harm to humans and can be 

classified as more sensitive than others, further research will be required in order to 

identify, who should be responsible in the case of an undesired outcomes [208], [212]. 

Although the margins are quite thin, and ART AI principles are interlinked, 

responsibility should not be confused with accountability which considers mostly the 

justification of the decisions of AI to the interactors of the system.  

5.1.2 ART AI for Patient-Centric Home-Based Rehabilitation 

As previously identified, healthcare and socioeconomic reasons in the post COVID-

19 world [213][214] impose a need for home-based rehabilitation is multifaceted, 

Thus, there is an increased need for new approaches that combine AmI or smart 

monitoring as discussed in Chapter 3 and individualisation to support engagement and 

motivation in home-based rehabilitation. However, the technological solution must 

also comply to ethical principles and ART.  

Existing AI solutions introduce assumptions and bias of the engineer in the decisions 

taken by the algorithm [215]. This issue is reflected in recent efforts for ethical AI 
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requirements and design practices as discussed in the previous subsection, which 

highlights a deeper underlying consideration regarding the used values and norms, and 

their reinforcement through the evolution of the machine’s autonomy [216]. Thus, 

there is a global urgent need for Accountable [217], Responsible [218], and 

Transparent [219] AI to enable wider use of AI [220] based on generally acceptable 

value systems [221]. Specifically, the following aspects of ART AI were taken under 

consideration: 

a) Unbiased AI: A significant body of work has contributed to methods for 

bias-free ML models [222][218][219]. State-of-the-art bias reduction 

approaches was followed [225] in the proposed rehabilitation support approach 

based on designing an appropriate and balanced training dataset that would 

remove bias due to a class under-representation. This is presented in Sections 

5.2.1 to 5.2.3.  

b) Explainable AI: There has been strong research interest in the field of 

explainable AI (XAI) in recent years [226]. However, these approaches are 

mostly focused on the social aspect (user response to XAI) [219], or the 

implications of manipulating inputs to generate false negative or false positive 

responses [227]. Explainability will be taken under consideration in terms of 

user engagement combining the findings of Chapters 1 and 3 and discuss this 

further in Subsection 5.2.6. 

c) Interpretable: Interpretable and justifiable outcomes of AI require 

transparency of the ML model as well as the model’s decisions and behaviours 

[228][229]. Current EU regulation allows for individuals to enquire about AI 

decisions [230]. However, regulation is not well defined for the design and 

development of such models particularly in the medical applications domain 

[231]. Moreover, accountability and transparency are strongly interlinked with 

interpretability [224]. The approach to transparency will be discussed in terms 

of the design (Subsection 5.1.5) and methodology (Subsections 5.2 and 5.2.5) 

and in Subsection 5.2.6. 

Unbiased AI is particularly needed for home-based rehabilitation systems as they are 

used by a variety of users including elderly and young, male and female, of varied 
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height and weight and all need to receive the same and fair level of support. 

Explainability and interpretability are also key to enable user engagement as it was 

identified in Chapters 1 and 3 and strongly link to complexity and motivation. In this 

chapter, the information that the model can generate will be taken under consideration 

to provide further insight to the decision-making process, establish a dataset to address 

the bias issue, and aim for interpretability to address some of the challenges in home-

based rehabilitation AI.  

We review existing Artificial Ambient Intelligence approaches in Section 5.1.3 and 

Section 5.1.4  will be reviewed and the state-of-the-art as well as further improvements 

will be identified. A system to address them will be investigated and presented in 

Section 5.2. The evaluation of the proposed system along with the results is presented 

in Section 5.3, followed by the discussion in Chapter 6. Finally, conclusions and the 

identified future work are presented in Chapter 7. 

5.1.3 Review of ART AI in Medical Systems 

In medical applications, such as rehabilitation, the requirement for ART AI is 

heightened. In radiology AI has been already introduced in order to contribute further 

to diagnosis. High-quality data as well as the responsibility for curating, provenance 

and avoiding bias are critical. In the medical domain unintended consequences of AI 

can be significantly damaging or irreversible. The benefit to patient care and society 

on the other hand is tremendous. Thus, ART solutions become of paramount 

importance [231].  

In [232] it has been stated that AI has a crucial role in disease detection. It is found 

that deep learning in particular is often difficult to comprehend. Additionally, 

incorporating medical knowledge in the design of ML solutions is important to 

generated XAI AI. Also, the outputs of XAI AI should be in human legible terms such 

as sentences of text, and that embedded optimisations and decisions should be 

explained. 

Additionally, in [233] the power of prediction of ML models in comparison with 

statistical models has been identified. However, given that the explainability and 

interpretability of these models due to ‘black box’ conditions and complexity are 

limited, ML is an approach that cannot entirely be trusted by the clinicians. In order to 
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evaluate and test the interpretability of a complex system which utilises Neural 

Networks, a reinforcement learning decision support system (DSS) was developed 

around the neural network model which would be able to learn and understand what is 

interpretable to different users. The developed DSS suggests that feedback in different 

forms must be provided and that the ART AI adapts not only the model to the user but 

also the form of the provided output. Thus, individualisation and layered/selectable 

feedback is necessary for the non-technical user of AI. However, these systems refer 

to the medical professional and are not targeting the home-based rehabilitation 

environment or the end user, which is the focus of our work. 

According to [229], the target user audience is a key consideration for the XAI design. 

Additionally, the authors discuss the explainability of well-known models. The 

identified taxonomy will be used during the analysis of suitability of various models 

in this chapter with a focus on the end user of the home-based rehabilitation system 

5.1.4 ART AI in Home-Based Rehabilitation Systems 

It has been mentioned in Section 4.2.1 that AmI is a promising solution for home-

based rehabilitation for a variety of reasons. Based on [234] AmI are systems are:  

a) embedded to the user’s environment,  

b) able to recognise the user and the environment  

c) able to provide individualisation  

d) able to provide a good level of adaptiveness according to users’ needs  

e) able to be aware and anticipate a variety of users’ behaviours  

In Figure 29 the desired functional and non-functional properties of systems and 

technologies characterised as AmI are presented. According to the findings in [234] 

AmIs provide the appropriate framework, the right architecture and all the 

requirements needed in order to provide a high level of explainability as well as to 

operate as mediators between humans and other systems.  

Furthermore, they have the opportunity to provide dialogic explanations of the 

system’s behaviour and to observe the user’s explanation needs. As it was mentioned 

above, due to the fact that AmI systems are by nature embedded into the environment, 

they are context aware, they can be individualised, and most importantly, they can 
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change in response to the user and can anticipate the user’s desires. This relates to goal 

setting, motivation enhancement, and engagement which are primary factors affecting 

home-based rehabilitation [56]. 

 
Figure 29 AmI characterisation based on[234] 

It has been found in [235] that operation and philosophy of AmI is based on interaction 

of heterogeneous elements. It is an integration of hardware and software in order to 

provide further support to humans. Moreover, as it was mentioned, AmI systems can 

provide individualisation and hence more sophisticate and complex algorithms would 

need to be used. These can increase computational capacity requirements that in AmI 

– and Internet of Things (IoT) systems in general – is always a significant constraint 

[236]. Hence, our proposed home-based rehabilitation system, which is based on AmI, 

must also be capable of addressing the challenges of reduced computational cost and 

physical constrains of the utilised devices.  

Recent studies have improved computational efficiency of advanced AI methods and 

proved applicability in AmI scenarios. For example, random decision forests in general 

have proven to be a very effective AI approach for medical applications at reasonable 

complexity [237][238]. Recently, ensemble methods but also hybrid methods that 
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combine heuristic algorithms with heterogeneous ML models have proven to improve 

performance with various effects on computational footprint [239] 

At slightly higher complexity but lower computation capacity requirement, in [240], 

eXtreme Gradient Boosting (XGboost) is used for sensor calibration as part of an 

ensemble method applied on an AmI system. The benefits of using this particular 

algorithm has been pointed out, given that it has the ability of scaling up to large 

volumes of data with low computational resources. XGboost is a method which 

develops a strong learner through an advanced ensemble learning approach that 

combines several weak learners through an iterative process. In this case the weak 

learners are individual smaller decision trees. The strong learner combines them 

sequentially. The goal of the algorithm is to correct the residuals of predictions of 

previous trees in the sequence [241]. Moreover, XGBoost offers a high level of 

hyperparameter tuning that makes it versatile and highly performant on a variety of 

applications. However, the solution presented in [240] is restricted to a single feature 

data stream learning problem.  

Deep learning approaches are in general considered complex as they require large 

computational resources and large datasets, and hence often unsuitable for light home-

based rehabilitation applications. However, Keras API, one of the most popular 

platforms to easily implement deep learning models, offers an efficient deployment of 

neural networks (NNs) for complex multi-dimensional problems [242][243], making 

NNs suitable for IoT devices.  

All of the approaches mentioned above are promising in terms of accuracy and 

complexity and will be investigated further in Section 5.2 for suitability in our specific 

problem domain under the specified ART AI requirements previously discussed in 

Section 5.1.2. 

In [244] an approach for increased security on IoT has been suggested. Due to potential 

growth of IoT systems which will be connected to the web, there will be an increased 

need for high level of security. Hence, in order to address this issue, the authors have 

developed an Infusion Detection System (IDS) which is able to detect anomalies at the 

network level. XGBoost has been used in order to create a model which is able to 

analyse network frames. The approach utilises ensemble learning and edge computing, 
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in real time, demonstrating the very low computational footprint of gradient boosting 

algorithms.  

In [241] an accurate method for predicting toluene, ethylbenzene and xylene (TEX) 

concentrations and corresponding enrichment factors has been developed. It has been 

found that although ML approaches are widely used on this particular area, due to 

complexity, they lack in explainabilty and interpretability. Hence, the proposed ML 

approach is based on regression analysis by means of XGBoost in order to estimate 

relationships between different parameters and improve interpretability. In [241] it is 

reported that XGBoost is suitable for a variety of applications and performs accurately. 

Most importantly, in IoT applications considered in [241] it performs better than 

Support Vector Machines, Random Forests, and Deep Learning NNs [241]. Note that 

in [241], the dataset was divided in 80/20 percent, for training and testing datasets, 

respectively. Hyperparameter tuning was implemented using brute-force grid search 

and 10 fold cross-validation to prevent overfitting the dataset. The final model was 

tuned to the values that reported the best accuracy. In terms of ART AI, based on 

[241][229] boosted trees can provide outputs to support explainability and 

interpretability in an IoT context. Further, boosted trees improve the bias variance 

trade off [245][246]. However, [229] suggests that ensembles of trees require further 

simplification to relay information, and make them the most appropriate approach for 

further investigation to improve the ART component of ensemble learning approaches.  

According to [247] in order to apply successful ensemble learning two main criteria 

have to be taken under consideration a) accuracy and b) diversity. Ensemble learning 

methods were analysed in [247]. Bagging is when similar weak learners learn in 

parallel through an independent process with each other. Combining then the weak 

learners happens through deterministic averaging process. Boosting is when similar 

weak learners are ensembled following a sequential learning process and a 

combination through a deterministic approach. Stacking is when non-similar, weak 

learners, learn through a parallel process and they are combined together in order to 

produce an overall model based on weak learners’ predictions. For the development 

of a spatiotemporal fusion method in [247], a stacking model approach has been 

selected. Data are inputted to three different algorithms: Back Propagation Neural 

Network (BPNN), K Nearest Neighbours (KNN) and XGBoost. The outputs of these 
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are fed to a stacking model which will output the final value. However, this approach 

has a significant training overhead that would make individualisation impossible in an 

AmI scenario due to the computational capacity restrictions. On the other hand, as has 

been found on the above research, further improvements can be achieved by 

combining boosting (XGBoost) and stacking with k-nearest neighbour (KNN) on a 

server while at the same time improving the robustness and reducing overfitting issues. 

Overfitting and underfitting are directly related to the model’s performance. Simplicity 

of the model which utilises a small number of features, introduce high bias, underfits 

the data and decreases the flexibility of learning from the dataset. On the other hand, 

increased complexity leads to data overfitting, which means that the model fits the 

training data extremely well, but there is limited knowledge on how the model will fit 

the test data otherwise known as new/unseen data. In this case there is high level of 

variance. Both, high Bias or high Variance could increase significantly the error of 

prediction [248]. 

There are several ways for avoiding overfitting issues such as: (a) cross-validation 

[249][250], (b) training the algorithm with a bigger amount of data, (c) improving 

generalizability through removal of unimportant features [245], (d) regularization 

[251] (e) ensemble learning. Underfitting can be reduced through various approaches 

such as: (a) increasing the number of features in the model where this could include 

the extraction of features from existing features (b) increasing model complexity c) 

increasing the training time [252]. XGBoost algorithm decreases both variance and 

bias thus addressing overfitting considerations but at the cost of sacrificing 

explainability. This results in a need for post-hoc analysis.  

Post-hoc analysis is part of explainability and transparency as discussed in Section 

5.1.1. Post-hoc explainability refers to models that are not explainable or interpretable 

by design and in order to increase their level of interpretability they utilise different 

means for explanation such as visual, or local, explanations which can be made by 

example and/or by simplification as well as feature relevance explanations [229]. 

Based on [229] Linear/Logistic regression, Decision trees, KNN, Rule Based Learners, 

General Additive Models and Bayesian Models do not need further post-hoc analysis 

and hence are easily interpretable. XGboost on the other hand requires limited post-
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hoc analysis which can be based on feature relevance explanations and probability-

based explanations.  

In summary, existing approaches that ensure high accuracy, such as deep learning, do 

not meet the ART AI requirements and do not maintain low computation footprint 

suitable for individualised incremental learning on AmI systems to support home-

based rehabilitation. On the other hand, XGBoost can lead to high accuracy and low 

computation footprint while providing some level of transparency. Hybrid methods 

can further improve accuracy and have a variable impact on computation footprint 

depending on implementation. 

Motivated by the low computational cost of boosting and the potentially limited post-

hoc analysis required, in this chapter, ART for AmI in the home-rehabilitation systems 

was investigated, a low computational footprint boosting and stacking ensemble 

learning method to deliver intelligent and individualised ART AI to meet the criteria 

presented in Chapter 3 was proposed, where, following a rigorous review of 

technologies for home-based rehabilitation, the requirements for engagement and 

motivation enhancing technologies for home-based rehabilitation were identified. In 

particular, XGBoost and KNN algorithms were combined without the added overhead 

of traditional stacking on a computational power restricted setup. Both models are 

categorised as transparent with little simplification and post-hoc analysis requirements 

for explainability [229] 

5.1.5 ART Design Considerations  

To design a system in accordance with the ART AI principles, design time 

considerations in this section were reviewed. Responsible AI ethics can be categorised 

in three groups [253]: 

• Ethics by Design: technical/algorithmic amalgamation of moral thinking abilities as 

a major aspect of conduct of artificial self-governing systems. 

•  Ethics in Design: regulatory and engineering strategies that contribute to the 

examination and assessment of the moral implications of AI systems as these 

incorporate or supplant conventional social structures  
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• Ethics for Design: code of conduct and standards and certification processes that 

guarantee the honesty of responsible developers and system users as they research, 

plan, develop, utilise and manage AI systems.  

In every case the design time considerations for the development of ethical AI models 

is highlighted. These categories include the ethical reasoning capabilities integrated in 

the model’s behaviour, the analysis and evaluation of ethical implications in social 

structures and ensuring integrity of the developers and users. Design time 

considerations have recently been published by European Research and Innovation 

that apply to safety-critical systems with AI [208]: 

1) avoid bias and prejudice in training data, or make biases clear to user 

population 

2) ethical principles embedded into AI development. 

3) interdisciplinary teams are crucial. 

4) transparent data provenance (input, output). 

5) lay people need to understand AI decisions. 

6) decision justification.  

Design time considerations were followed in the development of the proposed 

methodology and the design of the proposed hybrid ML approach for individualised 

ART-driven rehabilitation. We discuss our ART AI Design approach was discussed 

and the 6 design time considerations were addressed for our proposed system in 

Section 5.2.6. 

5.2 Methodology 

In combining ART principles and ML the approach presented in Chapter 4 is further 

enhanced and discuss a patient-centric individualised, home-based rehabilitation 

support system based on responsible and interpretable AI. In this section, first the 

experimental data set used was described, and then provide a methodology for 

generating a synthetic dataset to ensure unbiased decision making following the ART 

AI principles and design considerations reviewed in the previous section. Then, well-

known ML methods conforming with our ART AI requirements discussed in Section 
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5.1.2 were evaluated on both datasets. Finally, a hybrid learning approach was 

proposed to mitigate limitations of the existing solutions in Section 5.2.5.  

5.2.1  Training Dataset Design 

To design a responsible ART AI driven home-based rehabilitation system an 

appropriate dataset needs to be generated, collected and prepared. A dataset was 

required which can be used both to monitor progress of activities relevant to 

rehabilitation and also to diagnose both individual difficulties and medical conditions 

or comorbidities. Advantage was taken on the small experimental dataset presented in 

Chapter 4 and published in [213], where a sensor-based platform was introduced for 

data collection and analysis of two medical tests used in subject evaluation, namely 

the TUG and FTSTS tests. A thorough review of patient evaluation medical tests and 

their relation to home-based rehabilitation is presented in Chapter 4. 

The two tests were selected as they are relevant to a variety of activities of daily living, 

can be performed without medical supervision and in the home environment have been 

used to evaluate the progress and condition of post-stroke patients in line with the 

criteria presented in Chapter 3. Both tests evaluate lower limb strength, mobility, static 

and dynamic balance, functionality, and durability, all of which are relevant to 

rehabilitation outcomes. Improvement in performing the tests over time translates to 

better ability to perform daily tasks (such as sitting and standing, walking small 

distances), self-efficacy and engagement with rehabilitation as discussed in Chapter 3. 

Additionally, the use of medical tests provides the benefit of evaluating the system 

against medical standards and clinical specification. 

However, to achieve high accuracy, large datasets representative of real patient 

measurements is needed, which, to the best of our knowledge, are not publicly 

available for the above-mentioned problem. 

A poorly designed dataset used for training the models can easily lead to biased or 

inaccurate outcomes [220]. According to [254] a dimension is a measurable property 

of data quality in which some aspects of the data (e.g. precision, consistency) are 

reflected. Which in turn can be used to direct the quality understanding process. Hence, 

data can be defined as according to one or more dimensions of being high quality. In 

[254][255] hundreds of dimensions of dataset quality have been collected and further 
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reduced to 15 summative dimensions which have been categorized into 4 categories. 

The 4 categories are the following (Table 15): (a) intrinsic category: dimensions 

indicative of the natural quality of data; (b) contextual category: quality of data must 

be regarded in a particular context; (c) representational category: dimensions linked 

with format and interpretation; (d) accessibility category: dimensions connected 

accessibility to users. 

Table 15 Data Quality dimensions[254] and our approach to addressing them. 
Category  Dimensions  Description  Addressed 
Intrinsic  Accuracy Data is correct (error-

free) and reliable 
No errors, outlier 
removal 

Believability Degree to which data is 
seen as credible and true 

Medical journal 
publications 

Objectivity How impartial the data 
is  

Bias reduction 

Reputation Data contents or source 
are kept in high 
consideration  

Medical journal 
publications & 
interdisciplinary team 
experiment design 
according to ethics 
application 

Contextual Appropriate 
amount 

How suitable the 
quantity of the data  

Generated synthetic 
data 

Completeness Refers to the scope of 
the information in the 
data 

All possible 
difficulties; All 
conditions for which 
results are published 

Relevancy How usable applicable, 
or interesting the data is 

Only publications with 
full feature set 
reported 

Value-added Data provides a 
competitive advantage  

Thesis contribution 

Timeliness The age of the data Wide range of dates in 
published journals 

Representational  Concise 
representation 

Data is compactly 
represented 

No missing data, no 
unnecessary features 

Ease of 
understanding  

How clear readable or 
understandable the data 
is  

Simple understandable 
features 

Interpretability The extent to which the 
data meaning is 
explained 

All familiar measures 

Consistency Data continuously 
presented in the same 
format  

Upheld by experiment 
& synthetic data 

Accessibility  Access Security Access is secure or can 
be restricted  

n/a 

Accessibility  The degree to which the 
data is retrievable 

n/a 
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The dimensions for each of these categories are presented in Table 15 where the last 

column showcases how they were addressed in our dataset design approach. Initially 

goal was addressed by mitigating the intrinsic, contextual, and representational data 

quality dimensions as presented in [254] and Table 15 which should be considered 

when designing a training dataset. By addressing these dimensions, the quality of our 

produced dataset was ensured. An extensive discussion of the method used to produce 

a high quality the dataset is presented in the following Subsections and refers to these 

dimensions.  

Specifically, to generate a synthetic dataset and address the appropriate amount and 

quality of data, was considered carefully the following aspects: (a) Accuracy; (b) 

Believability; (c) Objectivity; and (d) Reputation as presented in Table 15, through 

developing a method that generates data from published medical research outputs.  

To generate a new synthetic dataset that will lead to high accuracy and objectivity, the 

experimental data from Chapter 4 was used as a starting point, and was augmented 

using statistical published data, collectively presented as a list of publications in [201] 

for TUG and [201] for FTSTS tests. further elaboration on the datasets is presented 

next. 

5.2.2 Experimental Dataset  

In Chapter 4, data on completion of TUG and FTSTS tests were collected through the 

presented low-cost home-rehabilitation system with 8 participants. The participants 

simulated difficulties in the various stages of the TUG test simulating elderly 

individuals performing the same test. Each difficulty level was considered  as a label. 

The features recorded for each participant are: 

1) Test completion time (seconds) 

2) Age (years) 

3) Height (meters) 

4) Weight (kg) 

5) BMI (kg/m2calculated using Equation 9) 

6) Gender (male/female) 

𝑩𝑴𝑰 = +#,-./	(2-)
[5#,-./(6)])

	( 9) 
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The use of BMI, in addition to Height and Weight, could improve the prediction 

accuracy. According to [256], the inclusion of features which are generated from other 

features (using linear or polynomial equations) can improve the performance of more 

complex models such as Neural Networks (NN). The influence of features such as BMI  

will be investigated based on accuracy in Section 5.3.  

This dataset had no missing, malicious, erroneous, inconsistent, or irrelevant data 

points. Data formatting was necessary to map gender and category data entries from 

String to Integer values. Some outliers were present in the originally recorded data 

as evident in [213]. These outliers were removed following the > 3σ (σ denotes 

standard deviation) approach [257]. Finally, all measurements were normalised in the 

range (−1,1).  

The categories (interchangeably referred to classes or labels) which were recorded for 

TUG were: (a) Difficulty to Walk, (b) Difficulty to Turn, (c) Difficulty to Stand/sit, 

(d) Normal, (e) Fast. For FTSTS, the classes are: (a) difficulty to stand/sit (annotated 

as Slow) and (b) Fast.  

There are two major issues with this experimental dataset. First, it is small since only 

8 participants are included, which will lead to inaccurate outcomes. Second, the dataset 

is very unbalanced, potentially leading to bias and affecting objectivity requirement. 

Indeed, firstly,  the class Normal in TUG (and Fast in FTSTS) has fewer collected data 

points. Class unbalance is addressed with the use of the synthetic minority over 

sampling technique (SMOTE) [258]. With the use of SMOTE all classes were 

balanced with each class having 40 datapoints both in TUG and FTSTS. In total 17 

samples were generated by SMOTE for TUG of which one was for the Fast and 16 for 

the Normal class. Moreover, 7 were generated for FTSTS for the Difficulty class. 

Besides class unbalance, the dataset suffers from data unbalance as the resulting 

dataset had 87% male participant entries and all participants belong to 20-40 years of 

age group; clearly leading to biased outcomes. To identify the effect of this bias the 

feature importance for the proposed method in Section 5.2.5.2 will be discussed while 

it is mitigated through the introduction of the synthetic dataset presented in the 

following Subsection.  
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5.2.3 Synthetic Dataset 

To address requirements for dataset objectivity, accuracy and believability, and 

facilitate transferability to a range of conditions, such as Parkinsons and Dementia, a 

dataset was further synthesised based on published statistical results for TUG and 

FTSTS tests. Transferability and diagnosis are two desired criteria for home-based 

rehabilitation systems in Chapter 3, the underlying reason being the development of 

co-morbidity for stroke survivors and early diagnosis/warning to carers.  

ML models have demonstrated success in many application fields. However, since 

advanced ML models are data driven, to translate these successes to medical fields, it 

is necessary to provide large datasets to develop and train the models.  Generating an 

open access dataset based on collected data is a significant obstacle due patient data 

privacy and cost [259]. Hence, the rehabilitation field suffers from a lack of 

appropriate datasets to develop and test advanced ML models. In many other fields, 

where real data collection is expensive or impractical, synthetic datasets are generated 

and employed. However, the medical domain has been very reluctant to embrace 

synthetic datasets. Most recently, the community has recognised this adverse effect 

[259][260]. In [260], [261]  the main arguments against synthetic datasets are rebutted 

through a comparative analysis of actual and synthetic datasets used to train and test 

the model. It is demonstrated that the synthetic dataset can produce equal performance 

if synthesised from statistical representative of the actual cohort of patients. In [259] 

it is discussed that if the model performs accurately when tested with unseen real 

patient data then the synthetic dataset can be accepted as representative of the reality. 

In this chapter this line of work was followed, a dataset ensuring statistical agreement 

with real measurements and test the trained model using experimental dataset in 

Section 5.3 was synthesised. 

The reasons for synthesising a dataset are: 

1. To meet the requirements of Chapter 3 for transferability and co-morbidity 

diagnosis, the underlying reason being the development of co-morbidity for 

stroke survivors and early diagnosis/warning to carers. 

2. To improve variance and bias of our experimental dataset. 

3. To improve accuracy of our model. 
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4. To include a wider range of height, weight, age and BMI that is representative 

of the wider population that is discharged to home-based rehabilitation directly 

impacting bias. 

5. To improve believability by sourcing information from medical journals, 

where larger cohorts of geriatric subjects and patients have participated in 

experiments. 

6. To improve objectivity by including information from experiments with 

participants diagnosed to have the medical conditions that can be developed as 

co-morbidities, such as Parkinson’s and Dementia. 

It is important to highlight here that the synthetic dataset will be used for initial training 

of the model. However, as one of the criteria in Chapter 3 is to provide individualised 

solutions, our model would be constantly re-trained and corrected using real data 

acquired by the user of the device presented in [213]. Thus, throughout the system 

lifetime the synthetic data will eventually be proportionally a small contributor to the 

model. Furthermore, the synthetic dataset could not be generated from the 

experimental dataset using an oversampling method. 

SMOTE could not be used in this case as: (a) experimental dataset is gender and age 

unbalanced (b) SMOTE requires an input dataset and the original dataset, described in 

the previous Subsection, does not link the 6 features with specific conditions. Thus, an 

alternative approach for data synthesis is proposed next.  

A database of medical/clinical research publications that present statistical results of 

experiments with patient cohorts for TUG and FTSTS was consulted. Each publication 

states the medical condition of the cohort, the number of subjects and the statistical 

characteristics of the cohort. To the best of our knowledge this database presents a 

comprehensive review of all medical conditions for which TUG and FTSTS are used 

to evaluate patients. 

Every condition reviewed in [201] and [262] was included for TUG and FTSTS, 

respectively. Publications cited in [201][262] were included as inputs in the synthetic 

dataset algorithm, if they presented statistical descriptors for all of the features used in 

the Experimental dataset above, or if the features could be extrapolated or calculated 

(e.g., BMI). Publications were in turn excluded if any of the features was not reported 
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or could not be extrapolated from the information presented. Because the selection is 

not made using a specific feature as the criterion, this selection method does not 

introduce a particular bias to the pool of included publications. Additionally, 

publications were not excluded based on race, sex, or ethnicity of the participants. In 

addition to the difficulty classes mentioned in the experiment dataset for TUG, the 

following condition classes were finally considered: Healthy, Geriatric, Parkinsons, 

Parkinsons non fallers - medication, Parkinsons non fallers – no medication, 

Parkinsons fallers, Dementia mild/moderate, Dementia severe, Arthritis improvement, 

Arthritis knee arthroplasty, Arthritis, Stroke, Brain Injury, Bilateral vestibular 

hypofunction, Unilateral vestibular hypofunction, Spinal injury, Paraplegia, 

Tetraplegia. In total 16 publications remained for TUG based on the inclusion criteria, 

namely [263][264][265][266][267][268][269][270][271][272][273][274][275][276] 

[277][278][279]. A total cohort of 𝑛 = 937 subjects is represented by these 

publications with age in the range [5, 112] years, height in the range [0.81, 2.20) m, 

and weight in range (30, 136) kg. Each condition class has 280 datapoints and the 

overall set has a total of 5040 datapoints. 

Similarly, for FTSTS the condition classes are: Healthy, Geriatric, Geriatric fallers, 

Parkinsons stage 1, Parkinsons stage 2, Parkinsons stage 2.5, Parkinsons stage 3, 

Parkinsonsstage 4, Parkinsons, Arthritis, Arthritis knee arthroplasty, Stroke, 

Vestibular disorder. In total 12 publications remained for FTSTS based on the 

inclusion criteria, namely [266][280][281][282][283][284][285][164][286][287][288] 

[289]; while 3 were excluded. A total cohort of 𝑛 = 2381	subjects is represented by 

these publications with age range [11, 93] years, height in the range [0.94, 2.35) m, 

and weight in range (22, 120) kg. Each class has 240 datapoints and the overall set has 

a total of 3120 datapoints. In summary, Table 16 presents the final datasets, each with 

its own features and labels presented for clarity.  

According to [283], BMI has low correlation to the FTSTS test completion time (p-

value= 0.4) so higher variability was introduced compared to the TUG synthetic 

dataset as reflected in Figure 30. The same is true for height [285], [289].  

On the contrary, hand positioning has a significant correlation to completion time. But 

all participants in the experiments and included publications followed the same hand 
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positioning; hands crossed over chest. So, this parameter was ignored [290] given that 

it would be the same value for all datapoints and hence provided no difference in 

completion time. Algorithm 1 is proposed to generate synthetic data points from the 

statistical properties presented in considered publications, where μ and σ denotes class 

mean and standard deviation, respectively.  

Table 16 Summary of datasets with their respective features and labels 

Dataset Features Labels 
TUG EXP Test completion time  Difficulty to walk 

Age  Difficulty to stand 
Height Difficulty to Turn  
Weight Normal  
BMI  Fast 
Sex  

TUG 
SYNTH 

Test completion time  Healthy,  
Geriatric,  
Parkinsons, 
 Parkinsons non fallers - medication,  
Parkinsons non fallers – no medication, 
 Parkinsons fallers, Dementia 
mild/moderate, Dementia severe, 
 Arthritis improvement, Arthritis knee 
arthroplasty,  
Arthritis, 
 Stroke,  
Brain Injury,  
Bilateral vestibular hypofunction,  
Unilateral vestibular hypofunction,  
Spinal injury,  
Paraplegia,  
Tetraplegia 

Age  

Height 

Weight 

BMI  

Sex 

FTSTS 
EXP 

Test completion time  Difficulty to stand/sit 
Age Fast 
Height  
Weight  
BMI  
Sex  

FTSTS 
SYNTH 

Test completion time  Healthy, Geriatric, Geriatric fallers, 
Parkinsons stage 1, Parkinsons stage 2, 
Parkinsons stage 2.5, Parkinsons stage 3, 
Parkinsonsstage 4, Parkinsons, Arthritis, 
Arthritis knee arthroplasty, Stroke, 
Vestibular disorder 

Age 
Height 
Weight 
BMI 
Sex 

 

The algorithm is based on the following observations: 
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• There is a linear relationship between time of completion and age in both TUG and 

FTSTS tests [278][281] but there are several exceptions to this rule so variability is 

required to represent a more realistic relationship. 

• In [291] an almost linear relationship is presented between age and BMI for adults 

over 40 years of age. This is further supported by the widely accepted BMI charts 

[72]. But it is not absolute, so variability is again required. 

• BMI, by definition, has a linear relationship to Weight (Equation 9) 

• According to [268] female subjects perform faster than male subjects in TUG which 

is a superset of activities in relation to FTSTS.  

• Sex and Weight also have a relationship that is linear in regard to the mean weight 

value of the population with higher variance (wide standard deviation causing 

overlap between the two populations) [292]. 

• Height is calculated using Equation 9 after the pair {BMI, Weight} has been 

established. 

• Sex and Age have no correlation (observation supported by our experimental 

dataset and the mean age value reported in each of the included publications). 

Algorithm 1 Generate features for n datapoints of Class x 

Require: n, x, μtime, σtime, μage, σage, μbmi, σbmi 
Require: μweight, σweight, μheight, σheight, %female 
 time ← sort(X∼N(μtime, σ2time)) 
 age ← sort(Y∼N(μage, σ2age)) 
 age ← insertVariability(Y) 
 bmi ← sort(Z∼N(μbmi, σ2bmi)) 
 bmi ← InsertVariability(Z) 
weight ← sort(W∼N(μweight, σ2weight)) 
gender ← Si= 0 ∀i ∈ {0,n∗%female}∧ Si= 1 ∀i ∈{n∗%female+ 1,n} 
{bmi,weight,gender} ← insertVariability({Z,W,S}) 

 height ← H=L7
8
 

Ensure: μheight=μH and σheight = σH 
 
These observations are further supported by the Experimental dataset observations 

both in terms of linearity and variability.To introduce linearity, e.g., to ensure a linear 

relationship between time of completion and age, pseudorandom numbers from the 
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Gaussian distribution were generated for each feature and generate a sorted sequence 

(function sort in Algorithm 1). 

Since lists of all features are sorted from lower to higher, the linear relationship is 

generated, as for example the lowest completion time will be aligned to the lowest age. 

Then to introduce variability the order of several data points was swapped (function 

insertVariability in Algorithm 1) in one of the two feature columns, for 

example, keeping completion time sorted and swapping values in the age column. If 

variability is required between one feature and a set of other features, then the same 

swaps are applied to the full set. For example, if data point 3 would be swapped with 

data point 7 in BMI to introduce further variability compared to age, the same swap 

would be applied to Height and Sex as well, thus maintaining the correlation between 

the BMI, Weight and Gender sequences. Since the Height is generated using the BMI 

Equation 9, in order to ensure that the generated heights correspond to the reported 

height mean and standard deviation of the publication. Thus, the final step of the 

algorithm validates this through comparing the generated list mean and standard 

deviation to the parameter retrieved from the literature.Finally, to verify the validity 

of the generated datasets for FTSTS and TUG, the correlation matrix for comparison 

of the features of the synthetic datasets to the original recorded experimental datasets 

was used. The correlation matrix was used as well, as a guide for the amount of 

variability to be introduced. The final correlation matrices are presented in Figure 30. 

It is evident that a similar correlation matrix emerges in both the experimental and the 

synthetic datasets. However, the gender bias is the most evident bias in the case of the 

experiment.  

This bias is demonstrated through the apparent high correlation of sex to height and 

weight. As the experiment recruited only 1 female subject this is far from realistic. The 

synthetic dataset, on the other hand, demonstrates a weaker relationship between sex 

and height as well as sex and weight which is closer to reality and thus compensating 

for the bias in the experiment dataset. Figure 31 presents both the datasets after 

projecting all the features to 2 dimensions using PCA. Visualising the data also 

demonstrated a potential polynomial function as displayed in Figure 31a, Figure 31c 

where all the points seam to follow a polynomial curve with different offset for each 

of the classes. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 30. (a) Correlation matrices for TUG experiment, (b) TUG synthetic data, (c), FTSTS experiment and 

(d) FTSTS synthetic data 

  
(a) (b) 

  
(c) (d) 

Figure 31 (a) TUG exp. data after PCA analysis reducing the features to 2, (b) TUG synth, (c) FTSTS exp., and 

(d) FTSTS synth. respectively.  
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5.2.4 Evaluation of ML Methods for Supervised Classification 

Several ML models exist with widespread use in a variety of medical applications. 

Here, the most relevant to the home-based rehabilitation problem will be reviewed. 

Then an implementation of those and a comparison based on  their accuracy will be 

carried out in order to identify the most promising models for further investigation and 

development. As the data were labelled both for the experiment and the synthetic 

datasets, supervised learning methods were selected. The design requirements-

imposed restrictions: Firstly, through the computational capabilities/capacity of the 

ambient intelligence system; secondly, through the available programming language 

to collaborate with the sensors and components of the system. As a result, pandas and 

sklearn libraries within Python platform were selected. In the following subsections 

the available algorithms will be examined. 

5.2.4.1 Support Vector Machines  

SVMs[293] are a supervised learning algorithm, and they can be utilised in order to 

address regression (SVR) as well as classification (SVC) problems. However, SVMs 

perform well with smaller datasets and given that the computation time will be less in 

comparison with big data sets. SVMs utilise Kernel Functions in order to identify the 

appropriate Support Vector Classifiers in higher dimensions. There are different types 

of Kernel functions and most popular have been illustrated on Figure 32.  

 
Figure 32 Different SVM Kernels where RBF is Radial Basis Function. 
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Using these mathematical functions, kernels are able to take data as an input and 

transform them to the analogous form. However, kernel functions calculate the 

relationship of every set of two data points as if they are located in the higher 

dimension. They do not perform the transformation. This is called the Kernel trick. 

The Kernel trick is responsible of reducing the requirements of computational capacity 

on SVM’s by avoiding the mathematical calculations which is the tool in order to 

transform the data from low to high dimensions.  

Computational requirements are directly linked to the selected kernel [294] 

[295][296][297]. Overall, SVMs are powerful yet light weight in terms of 

computational requirements (subject to kernel selection).  

All possible kernels used by the Python library were tested with the SVM in our 

implementation including: linear, polynomial of degree 4, radial basis function (RBF), 

and sigmoid. In all cases the inverse of strength regularization, which is one of the 

parameters, denotated with letter C was set equal to 1. There is a relation between 

parameters and behaviour of the model. It was noticed experimentally that, as the C 

increases the model overfits and model underfits when the value of C decreases.  

5.2.4.2 XGBoost 

As it was aforementioned XGboost is a method which develops a strong learner 

through an advanced ensemble learning approach that combines several weak learners 

through an iterative process. In this case the weak learners are individual smaller 

decision trees. The strong learner combines them sequentially. The goal of the 

algorithm is to correct the residuals of predictions of previous trees in the sequence. 

XGBoost algorithm can be utilised for regression and classification.  

The algorithm uses regularization parameter λ to reduce the similarity scores given 

that λ is ιn the denominator of the fraction. Hence, lower similarity results in lower 

gain which in return will mean that a lower value is needed for γ to prune more 

branches. Thus, λ has a great impact on tree’s sensitivity. At the same time λ reduces 

the contribution/sensitivity of a single observation to the new prediction.  
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XGBoost can mitigate variance and bias in datasets while automatically correcting 

model biases through the random forest underlying approach. This also results in 

reduced risk of overfitting. [298] 

XGBoost concentrates a high level of many advantages in comparison with other ML 

algorithms. For example, it allows parallel processing, it is highly flexible, it can 

handle missing values, it can be efficient on tree pruning, there is a built-in Cross-

validation and it can built up on existing models [299][300][301][302]. 

Parameter and hyper-parameter tuning are quite important because they influence the 

behaviour of the training algorithm directly and have a major impact on the model’s 

output. In Figure 33 the XGBoost parameters are presented. Of those, the parameters 

that were tuned in our proposed method have been highlighted. Those that are not 

highlighted are superseded by those used or present alternative possible settings. In 

any case our approach completely covered any possible optimisation of the XGBoost 

model.  

The Grid search hyperparameter optimization technique has been utilized. The process 

started by defining the objective as multisoftmax because of our multiclassification 

problem definition presented in Subsections 5.2.1 and 5.2.2. Also  num_class is 

defined as the number of classes in each of our classification problems. For all the 

following steps the seed = 27 was used to maintain comparability between grid 

search cross validation results.  

Leaving all other values at default the effect of booster changing between the two 

possible values is evaluated. It was found that gb_linear reduced accuracy so the 

gb_tree default setting is maintained. With the above set up, the learning_rate 

using grid search is evaluated between the values 0.05 and 0.3; the optimal value was 

evaluated to be 0.1 for all cases at this point. Then, the value of n_estimators (i.e. 

maximum number of trees) is evaluated at a range between 0-5000. Optimal values for 

n_estimators was 11 for the TUG experiment dataset, 238 for TUG conditions 

dataset, 1 for FSTS experiment dataset and 318 for FSTFTS conditions at this point.  
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Figure 33 XGBoost parameters. Parameters that were tuned using grid search are highlighted in yellow 

The next step was to tune max_depth and mean_child_weight. The ranges tested 

were 3-20 with step1, and 1-6 with step 1, respectively. These two variables were cross 

validated with grid search simultaneously with a scoring parameter set to accuracy. 

The results of grid search tuning are presented in Table 17.  
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Table 17 Optimal hyperparameter tunined values for XGboost for all TUG and FTSTS datasets.  

Parameter TUG exp. TUG synth. FTSTS exp.  FTSTS synth.  
objective 'multi:softmax' 'multi:softmax' 'multi:softmax' 'multi:softmax' 

Num_class 5 18 2 13 
nthread 4 4 4 4 

n_estimators 11 786 1 162 
Learning_rate 0.1 0.01 0.01 0.1 

Eta 0.2 0 1 0 
Max_depth 7 3 20 9 

min_child_weight 1 2 1 1 
scale_pos_weight 1 1 1 1 

subsample 0.85 0.7 0.8 0.85 
colsample_bytree 0.85 0.85 0.8 0.85 

gamma 0.1 0 0 0 
reg_alpha [default] [default] [default] 1e-5 

Reg_lamda [default] [default] [default] [default] 
 

Setting the previously optimised parameters to their respective optimal values and 

keeping all untuned parameters to their default values gamma next is tuned. The γ 

values of 0 to 0.5 with step 0.1 were tested with scoring set to ‘accuracy’. The optimal 

results were gamma = 0.1 for TUG experiment and gamma = 0 for all other cases.  

At the end of this step the n_estimators were re-evaluated and the only case that 

reported a new optimal value was synth-FTSTS with n_estimators = 162.  

The next set of parameters to be tuned were subsample and colsample_bytree 

the ranges tested were 0.6 to 1 for each of the variables. First, a 0.1 step is used and 

then evaluated a second time with a range that focused around the first result with a 

0.05 step for further fine tuning. The optimal results are presented in Table 17. 

Then, the reg_alpha and reg_lamda parameters were tuned. The values tested with 

gridsearchcv were [0, 1e-5, 1e-2, 0.1, 1, 100] for both parameters. No benefits were 

observed by changing reg_alpha in terms of accuracy apart from the FTSTS 

conditions case (synthetic dataset) case were reg_alpha = 1e-5 was the optimal. 

For all other cases the optimal reg_alpha was 0 which is the default setting. 

reg_lamda did not improve accuracy at all. So, it remained at the default value for 

all the models. Finally, the learning_rate (or eta) values were further tuned after 

all the previous parameters were set to the optimal values above. The final optimal 

results are presented in Table 17. 
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5.2.4.3 Neural Networks 

There is a lot of discussion nowadays regarding NNs and hence it is worth 

investigating their applicability to home-based rehabilitation systems. Although NNs 

were discovered several decades ago the computational limitations back then were 

forbidding their application. However, given that the technology has progressed 

rapidly, and particularly computing hardware, more and more scientists apply NN’s 

on various problems and datasets. From healthcare and diagnosis to driverless cars, 

NNs seem to be quite a promising approach. The NN’s structure, consists of neurons 

connected between each other on different layers with a variety of architectures. 

Although this sounds like a simple concept, it quickly becomes quite complicated and 

it seems to be the leading black-box model given that it is hard to analyse and interpret 

how the predictions/decisions were made.  

Because of the widespread adoption of NNs, general purpose libraries have been 

developed such as TensorFlow. TensorFlow a library which has been developed by 

Google, seems quite a promising approach for building a variety of applications using 

Python. It helps to simplify and deploy complex and large-scale NN models onto a 

variety of different hardware setups. TensorFlow is based on the concept of a 

computational graph. In a computational graph, nodes represent either persistent data 

or math operation and edges represent the flow of data between nodes. The data that 

flow through these edges is a multi-dimensional array known as a tensor. The output 

from one operation or group of operations is fed into the next input. While TensorFlow 

was designed to support NNs, any domain where computation can be modelled as a 

data flow graph can be supported. In order to allow flexibility and easy of 

programming for the NN designer, TensorFlow typically is encapsulated within an 

additional library called Keras. Keras provides efficient NN models that are proven to 

perform well when trained on sufficient, balanced data.  

As discussed in the previous Section Keras is able to provide models that perform well 

on IoT devices and respect the computation capacity constraints. However, in Chapter 

3 it is identified individualisation as a main requirement. In that respect, incrementally 

training NNs can become very computationally intensive and thus impossible for IoT 
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or AmI solutions. Furthermore, as discussed at the beginning of this Section NNs have 

high levels of obscurity.  

As  discussed in Section 5.1.1 and 5.1.3, computational capacity requirements for 

training and thus re-training would be prohibitive for deployment on AmI [303]. 

Furthermore, Convolutional NNs have proven to perform similarly to XGboost in 

terms of accuracy in non-imaging applications [304][305]. XGboost has proved to 

produce models of very high accuracy in a variety of problems when compared to NNs 

[306] [77]. Thus, accuracy is not being sacrificed in favour of explainability and 

computation constraints. 

Hence, this algorithmic approach does not meet the ART AI requirements and NNs 

were not evaluated further for this thesis as they did not meet the ART AI requirements 

and also the individualisation requirements on a resource constrained AmI system.  

5.2.4.4 K-Nearest Neighbour 

K-Nearest Neighbour, often referred as KNN, is a well-known algorithmic method for 

classification. In order to identify the optimal value for K the method of grid search is 

followed given that there is no literature based optimum value for this parameter and 

it is dependent on the dataset. Low values of K emerge as optimum when the data have 

a high level of noise and/or outliers. Another possibility is that clusters overlap in some 

of the dimensions [307]. In our case for every dataset the optimal value was K=1. This 

was identified through grid search cross validation. For our datasets this is a result of 

the overlap between classes as evidenced through the PCA analysis presented in Figure 

31. 

5.2.4.5 OLS Multiple Regression 

Multiple regression in comparison with linear regression predicts the required output 

(value y) by adding multiple parameters in a polynomial equation. Hence, it allows us 

to add more data into the system and take multiple parameters under consideration in 

order to predict the output.  

Given that different parameters can be included into the equation, multiple regression 

allows us to understand the importance of each parameter to the final prediction. 

Equations are very similar to the equations of linear regression with some 
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differentiations. It is worth mentioning that a parameter can be ignored if including its 

contribution does not affect the result.  

For the regression approach the Python OLS multiple regression algorithm was used 

[308]. No parameter tuning is required for this algorithm. The algorithm is 

characterised by simplicity, but in many applications does not provide high enough 

accuracy.  

5.2.4.6 Hyper-Parameter Tunning and Comparison of Algorithms Based on Accuracy  

In the previous Subsections various algorithms were presented and discussed in 

relation to their methods and their complexity. In [309] a review of all classification 

algorithms available in Python libraries is presented along with their computational 

requirements and effect on bias and variance. Based on this review, the most suitable 

classifiers to our problem specification and multiclass classification in the sklearn 

library are Support Vector Machine (SVM) and XGBoost for the following reasons. 

SVMs are powerful yet light weight in terms of computational requirements. The 

default one-vs-all multiclass classification approach is used. On the other hand, 

XGBoost can mitigate variance and bias in datasets while automatically correcting 

model biases through the random forest underlying approach. This also results in 

reduced risk of over-fitting. XGBoost operates on a one-vs-all principle but optimises 

the models based on SoftMax probabilities. 

Although NNs will not be included in this thesis, initial experiments were conducted, 

and early findings included in the Future Work Section 7.2. The details regarding the 

hyperparameter optimization were aforementioned in the previous Sections for each 

algorithm. In this Subsection comparative experiments were presented as well as 

evaluation of the results based on accuracy. 

With a relatively small number of features (seven), initial implementation of simpler 

approaches such as SVM and Polynomial Regression was carried out. All possible 

kernels were tested with the SVM including linear, polynomial of degree 4, rbf, and 

sigmoid.  In all cases the regularisation parameter C=1which is the default value in 

sklearn Python library.  
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The best performing kernel of the SVM approach was the linear and only the accuracy 

of this kernel is discussed in this Section. However, the subtle correlations between 

the features as well as the sheer number of classes in the synthetic dataset proved 

challenging for these simpler approaches as demonstrated by the very low accuracy in 

Table 18. For the regression approach, the Python OLS multiple regression algorithm 

was used [308]. Both linear SVM and the regression approach are excluded from 

further hyper-parameter tuning because of their accuracy being <40% in all multiclass 

cases. 

Higher complexity models were then tested. They were selected because they have 

low computation requirements for the prediction phase and were appropriate for the 

ambient intelligence hardware developed in our experiments [213] as previously 

discussed in the earlier Subsections.  

XGboost was initially set up with maximum depth equal to double the number of 

classes and the multi:softmax objective function which are required settings for 

multiclass problem with all other hyper parameters set to default. This is discussed as 

XGBoost before hyperparameter tuning in in Table 18.  

Table 18 5-fold cross validation accuracy results of ML models. Accuracy is calculated as the fraction of correct 

predictions using sklearn.metrics.accuracy_score 

Model TUG 
exp 

TUG 
synth 

FTSTS 
exp 

FTSTS 
synth 

SVM 0.3099 0.3921 0.9778 0.3625 
Regression 0.35 0.0605 1 0.0705 

KNN(k=5) before tunning  0.475 0.7006 0.6917 0.6791 
XGBoost before hyperparameter 

tunning  
0.4600 
 

0.7667 0.9778 0.7827 

XGBoost after 
 Hyperparameter Tunning  

0.65 0.8006 1 0.7965 

 

Moreover, the results after hyperparameter tuning are presented for comparison and to 

demonstrate both the heightened capacity of the earlier version and the impact of 

tuning. KNN was also parametrised with k equal to 5 prior to tuning. The number 5 

for nearest neighbours was used as an even number that respects the low computation 

requirements and is a starting point to be further optimised. As these methods reported 

higher accuracy, further hyper-parameter tuning is undertaken in the next Section. 
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Again, these results are provided as a baseline for comparison for the hyperparameter 

tuned version of the models. The accuracy of all the models were evaluated using an 

80% training and 20% test dataset split and 5-fold cross validation [310]. Note that it 

is shown in [311] that a number between 5 and 10 folds provides similar results. 

Table 18 presents the accuracy score of the model (all classes) averaged across the 5-

fold cross validation. This table demonstrates the accuracy of each model for the 

particular dataset with the purpose of identifying which model would be most suitable 

for further tuning and evaluation. XGBoost and KNN have a significantly better 

accuracy in all datasets compared to other models. Additionally, XGBoost which is 

based on decision trees and KNN are easier for humans to understand when many 

features are involved [241] with little or no post-hoc analysis [229] as discussed in 

earlier Sections. Moreover, the XGBoost Python implementation can provide results 

such as the probability of each cluster, and the decision weights used for each tree to 

improve transparency and support interpretability and explainability and will be 

further discussed in Section 5.2.5. 

Differences in the results between the experiment (exp.) and synthetic (synth.) datasets 

presented in Table 18 can be explained by either the increased bias of the exp. dataset 

in the TUG case or the larger number of classes ( 5and 2 in exp., vs. 18 and 13 in TUG 

and FTSTS datasets, respectively) and higher number of data points in the syth. dataset 

in the FTSTS case. Indeed, as a result of bias (see Figure 30) the classification error 

on exp. dataset is generally higher for TUG (e.g., TUG exp. KNN vs TUG synth. KNN 

results). For FTSTS, on the other hand, the increased number of classes (e.g., 13 for 

FTSTS synth. vs 2 for FTSTS exp.) can lead to higher probability of misclassification 

affecting accuracy of classifiers when applied to synth. datasets (e.g., FTSTS exp. 

XGBoost vs FTSTS synth. XGboost results). Finally, for TUG and FTSTS the 

difference between exp. and synth. must be discussed in terms of dataset size. In the 

case of exp., smaller datasets had a profound effect on accuracy. 

In summary, exp. dataset results are negatively affected by bias and small number of 

training samples. On the other hand, the results on the synth. dataset demonstrate that 

similar or better accuracy can be achieved with well-designed dataset, even with 

significantly higher number of classes.  
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Finally, using grid search cross validation [312] several sessions were performed of 

hyper-parameter tuning to identify the most optimal parameters and develop separate 

XGBoost models for each dataset. The hyper parameters tuned for XGboost were: 

booster, eta, n_estimators, max_depth, min_child_weight, gamma, 

learning_rate, subsample, colsample_bytree, reg_alpha, 

reg_lamda. Similarly, the k parameter of KNN was tuned using grid search cross 

validation. 

The feature importance obtained by XGboost classifier after hyper-parameter tuning, 

is presented in Figure 34. Features have clearly different contribution to the prediction 

in the case of the experimental dataset models and the synthetic models. This is 

predominantly a result of reducing bias between male and female participants and 

removing the original experimental data biases in the correlations of height, weight, 

and BMI with sex. Additionally, as the synthetic datasets cover a wider variety of ages 

and conditions, the correlation between the condition and the completion time is 

reduced compared to the clear correlation between stages of difficulty and completion 

time in the experimental dataset. Thus, the synthetic dataset led to better balancing the 

features. 

  
(a) (b) 

  
(c) (d) 

Figure 34 Impurity-based feature importance of the xgboost forests based on mean decrease in impurity as 

calculated by XGB Classifier.feature_importances_for (a) TUG exp., (b) TUG synth., (c) FTSTS exp., and (d) 

FTSTS synth. 
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5.2.5 Hybrid ML Approach for Individualised ART-Driven Rehabilitation 

According to the results of the ML method evaluation in the previous Section, it is 

evident that the XGBoost approach demonstrates the highest prediction accuracy 

among all tested approaches. However, using this model alone does not satisfy the 

requirements for our proposed system as presented in Chapters 3 and 4, since the scope 

of the sensory system requires both the monitoring of rehabilitation progress over long 

periods of time against goals, and the ability to adapt/diagnose a variety of conditions 

related to stroke survivors such as co-morbidity developed after discharge. Moreover, 

identifying the areas of difficulty relates to identifying challenges in the user’s daily 

activities. Thus, combining the models developed for the experiment and/or the 

conditions is required for each of the two medical tests. Additionally, the combination 

is necessary to reduce bias and improve variance in the training data. 

Figure 35 presents the method used to combine the algorithms through the proposed 

hybrid ensemble learning approach inspired by the stacking method. 

 

Figure 35 Graphical representation of the hybrid stacking model combining Difficulty prediction and 

Condition prediction for a medical test. The data refers to experimental plus synthetic data. 

The algorithm uses the rate of improvement for the specific user as an additional 

feature and combines the XGBoost models (Experimental & Synthetic data trained) 

along with a further supervised model (KNN-based) to establish a final prediction of 
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both the condition and the difficulty faced by the user (Algorithm 2). The model is 

incrementally re-trained according to individual performance. The XGBoost 

prediction returns both the condition class (e.g., Stroke, as defined in Section 5.2.3), 

and the difficulty class (e.g., difficulty to turn, as defined in Section 5.2.2).  

The system is initialised with the condition the user is diagnosed by a medical 

professional. If the condition predicted is consistently different to the initialised one, 

then a co-morbidity may be developing. The algorithm monitors this against the 

baseline prediction set (baseline) and produces outputs to alert the user to this event. 

Algorithm 2 Hybrid Learning Method 

 Timecompletion ← ReadSensors() 
 improvement ← PolinomialFit(history).get_rate() 
 baseline ← MostFrequentPrediction() 
 xgbprediction ← XGBoostModel.predict(timecompletion) 
 knnprediction← KNNModel().predict(timecompletion) 
Closest, farthest ← CalculateEucledianDistance(xgbprediction, 
knnprediction,healthy) 
If improvement = true then 
  Retrain(closest) {Closer to Healthy} 
 else if improvement = false then 
  Retrain(farthest) 
else 
  Retrain(baseline) {Steady} 
end if 
userState ← 
stateCalculation(sensorData,improvement,finalprediction) 

 

Additionally, the raw sensor data from the system, the improvement, baseline and final 

prediction are used to generate a set of user state flags (stateCalculation). These 

flags are generated to improve the safety of the user of the system and inform carers if 

necessary. Those are:  

• The test starts and does not complete, possible indication of fall. 

• Noise and unexpected sensor inputs, possible miss-use, sensor faults or multiple 

users interfering with the test. 

• Improvement rate is too high, and prediction deviates significantly from baseline, 

possible indication of user forcing themselves to achieve the goal faster.  

• Negative improvement is consistently reported, possible deterioration of user 

condition. 
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The KNN models are trained with exactly the same training set as the XGBoost models 

and incrementally retrained as in Algorithm 2. The grid search tuned k-value was 

used here for each of the four cases. As the KNN is trained in a supervised fashion, it 

was used in combination with XGBoost to provide a corrective mechanism. Moreover, 

the KNN method had a better accuracy compared to other tested models which made 

it the only alternative candidate (see Section 5.3) and was also used with the SMOTE 

algorithm for dataset balancing in earlier section of this chapter. The goal set in the 

system is to gradually decrease the completion time that the patient takes to achieve 

the exercise (goal-oriented rehabilitation). The algorithm is implemented with the 

parameterisation of the goal in mind so that different levels of improvement rate can 

be defined to make goals realistic for each individual. Finally, both the XGBoost and 

KNN methods have previously been used in IoT applications with real-time design 

requirements, and the Hybrid algorithm does not add statistically significant 

computational overhead as it amounts to a simple Euclidean distance calculation 

between the new point and the centroid of the healthy cluster and an if-then-else 

statement. This is significantly smaller than the third model required for stacking. 

Thus, the algorithm is appropriate for use in AmI in terms of computational 

requirements. Additionally, XGBoost has a light computational footprint incremental 

training method in its Python implementation. 

5.2.6 ART AI Design Approach  

This Section discusses the design considerations and ART AI concepts of the proposed 

method. As identified by [232], medical knowledge was embedded in the design of the 

system both through the medical journal published information used to generate the 

condition datapoints in the synthetic dataset and the medically approved tests 

implemented. Additionally to the outputs discussed in the earlier Sections, also results 

were generated demonstrating the inner workings of the algorithm (which model’s 

output was selected by the hybrid approach, what the KNN and XGboost models 

predicted individually, which were the other options and with what probability).This 

addresses the layered feedback requirement identified in [233] and the exposure of the 

embedded optimisations of the model as discussed in [232].  



  103 

All these results can be used as future work by the interface to enable the user to a) 

understand and b) overwrite the algorithm decisions as suggested in [232], [233]. The 

benefits address both the interpretability and explainability requirements set out in this 

chapter. The previous Section discussed the approach for eliminating any bias 

generated by the system designer leading to fair and non-discriminatory decisions 

The 6 design time considerations were followed  [208] in the development of the 

proposed method as follows: 

1) Bias of the experimental dataset, in terms of the female/male balance, is 

mitigated using SMOTE and balanced data between female/male participants 

through the synthetic dataset. Biases in the remaining features (e.g., Age, 

Height, Weight) were also addressed as a result of the SMOTE method and the 

wide variety of sources used in the synthetic dataset; 

2) ethical principles followed as presented in [253], [313] when designing the 

datasets and developing the inference algorithms; 

3) interdisciplinary team (electronic & electrical engineering for the design, 

manufacturing and development of the system and Biomedical Engineering for 

guidance and design of the experiment and testing) and literature review were 

significant contributors in the identification of design requirements [56], [213] 

as was also the clear approach to inclusion/exclusion of each paper; 

4) data provenance both in terms of input and output is transparent to the user and 

published at the edge node using open protocols. Both KNN and XGBoost are 

categorised as transparent by [229] and all the generated model information is 

also included in the model output. However, for security reasons, only 

authorised users can view and access both input and output information 

(system login functionality [56]); 

5) the feedback is simplified so that lay people can understand it as presented in 

[56] and users can inquire further into the factors affecting the decision 

following the model presented in [234]. This follows the ART AI principles of 

[232], [233]; 

6) decisions are justified both through the probability results, the persons rate of 

improvement and the model’s selection process. Results are available to the 

user. 
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In the case of health applications, the value system to be used is one that does not in 

any case worsen the quality of life or the health of the patient. As a result, the manner 

in which feedback is presented had to be adjusted to ensure that the user is not urged 

to always perform a faster exercise but rather focus on long-term goals. Our proposed 

method is focused on beneficence by its application specifications (rehabilitation 

support) and through the goal setting theory approach discussed in Chapter 1.  

Furthermore, the alerts generated by the system support both the identification of 

system failures but also the Responsible AI principles. The system generated useful 

information for the state of the user that can identify user safety and critical events. 

5.3 Evaluation and Results  

The evaluation methodology is summarised in Figure 36. 

 

Figure 36 ML Model Evaluation Methodology Flowchart where “Evaluation” stands for the critical 

evaluation of the results presented in this thesis. Phase 1 Results were presented in Section 5.2.4.6. Phase 2 is 

discussed in this Section. 

The evaluation methodology was used for evaluation of the model and comprised of 

the following steps:  
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Phase 1: 
1) Split the four datasets using an 80%-20% split. This generates one train-test split 

for each of the TUG exp, TUG synth, FTSTS exp, FTSTS synth datasets. These 

splits are saved in static variables, 4 for training and 4 for testing, so they can be 

reused in Step 4 (a total of 8 variables). 

2) Then each model is trained with the 80% train dataset and tested with the 

remaining 20% test dataset.  

3) For verification of the results in Step 2 a 5-time cross validation (CV) over the full 

dataset (without using the Step 1 train-test split) is executed for each of the TUG 

exp, TUG synth, FTSTS exp and FTSTS synth, respectively.  

a. The outcome is the generation of 5 random train-test splits (of 80% train and 

20% test) for each dataset. 

b. The accuracy of prediction of the test data is calculated by comparing the true 

labels (already known) against the predicted labels (predicted by the trained 

model).  

c. The result is 5 different accuracy figures (one for each random split of the 5 

cross validation tests) for each dataset individually.  

d. The 5 accuracy figures of each dataset are averaged to get the overall accuracy 

of the dataset.  

e. The outcome is 4 final accuracy results one for each dataset. These average 
values are presented in Table 18.  

Phase 2: 
4) After the models are selected based on accuracy results as presented in Section 

5.2.4.6 and the hybrid model is developed to improve the overall accuracy as 

presented in Section 5.2.5, the 8 variables from Step 1 (initial train-test split) are 

used to evaluate the performance of each model.  

a. Each model is trained with 80% then tested with the remaining 20%.  

b. 5-time cross validation using the test set alone is performed to see repeatability 

of the results. Repeatability is important to prove that the model will have 

consistently the same accuracy over time.  

c. Τhen, the accuracy outcome of the prediction of the cross validation for each 

dataset is averaged, the results are presented in Table 19.  

5) A self-evaluation was run using the train dataset (80%) and test with the same 

train dataset without the assigned labels (80%) to understand self-prediction 
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accuracy of each model. Self-prediction is defined as the ability of the model to 

provide correct predictions for an already known datapoint used for training. This 

enables us to see if there is overfitting, or underfitting tendencies in the models. 

The results are presented in Table 20. 

6) Finally, 5-time cross validation is performed of the full set of each data set 

(random 80% and 20% splits) as presented and discussed in the following 

paragraphs. This allows us to evaluate the robustness of the model. Robustness 

refers to the ability of the model to avoid overfitting or underfitting. The average 

accuracy of this final full set cross validation is discussed in the following 

paragraphs.  

The accuracy, comparison between the proposed hybrid approach and benchmarks, 

averaged over all classes, is presented in Table 19. These results justify the combined 

use of the two models based on accuracy. 

Table 19 Accuracy results of XGBoost, KNN, and hybrid models using the test dataset 

Model TUG exp TUG synth FTSTS exp FTSTS synth 
XGB 5-f 0.625 0.6052 0.7 0.577 
KNN 5-f 0.45 0.5932 0.7 0.5930 

Hybrid 5-f 0.5789 1 1 1 
 

Table 20 Accuracy results of XGBoost, & KNN models using the train dataset (self-evaluation) 

Model TUG exp TUG synth FTSTS exp FTSTS synth 
XGB 5-f 0.8313 1 0.9697 1 
KNN 5-f 0.5938 0.7927 0.9417 0.7776 

 

According to Figure 36 Step 6, for TUG, the accuracy of the hybrid approach on the 

full dataset is 57.89% (matching the one for the test dataset in Table 19) which is an 

improvement from the original 42.5% for the full dataset using the XGBoost model 

alone. Similarly for FTSTS, the accuracy of the hybrid approach was 100% (again 

matching the one for the test dataset in Table 19) which is an improvement over the 

original value of 70% for XGboost over the full dataset (also matching the one for the 

test dataset in Table 19). 

To further investigate the Hybrid approach’s reduced performance in the TUG 

experiment dataset trained model (Table 19)  the prediction accuracy is examined in 

each of the considered classes. Difficulty to walk is most often misclassified by 

XGBoost (60% miss classification as difficulty to turn or difficulty to stand).  This is 
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corrected by KNN in only 17.89% of the misclassified cases.  At the same time 

however, difficulty to turn (28.57% misclassification), difficulty to stand and fast (0% 

misclassification for both) have a far better prediction accuracy.  Moreover, normal is 

occasionally misclassified as fast (57%), but as they are both healthy conditions, this 

misclassification is not considered further. Similarly, for FTSTS, the misclassification 

was 0% for both difficulty/slow and fast classes.  

Additionally, it can be inferred from Table 19 that the number of data points in TUG 

synthetic versus FTSTS sythn. do not have a significant effect on the accuracy of the 

hybrid model. It is rather the misclassification of some classes in TUG experiment that 

have a more profound effect. The reasons behind this misclassification are further 

discussed in the following section. 

The accuracy of the proposed combined approach not only demonstrated improved 

outcomes (Table 19) but it improves over time as presented in Figure 37. The graphs 

display the prediction accuracy cumulatively calculated over the full history of use.  

  
(a) (b) 

Figure 37 (a) Prediction accuracy improvement over time for TUG with difficulty to walk (one of the 

difficulties that are miss classified in 30% of the cases) and Geriatric classification used 5000 times by individual 

1, (b) Prediction accuracy improvement over time for TUG performed Normally (anon-difficulty that is miss 

classified as Fast in 71% of the cases) 1000 times by individual 3 classified as Dementia Severe. 

As demonstrated in Figure 37 the number of correct predictions increases over time 

resulting in a gradual increase in prediction accuracy. The graphs demonstrate that the 

system’s behaviour is similar to that of a positive feedback loop in control theory. This 

is an expected result as the model is incrementally re-trained in a similar manner. This 

will continuously improve the sensitivity of the model to the specific individual. 

Moreover, as the user continues to use the system, a possible false negative in a single 

use will be counterbalanced by true positives/negatives over the lifetime of the system. 

This is examined further through Figure 38. 
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(a) (b) 

 
(c) 

 
(d) 

Figure 38 Confusion matrices for the hybrid model presented separately for (a) TUG difficulty, (b)FTSTS 

difficulty, (c) TUG conditions, and (d) FTSTS conditions. 
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To further investigate the low accuracy of the TUG test, Figure 38(a) Figure 38(c) 

demonstrate the confusion matrices of the hybrid model for the difficulties and 

conditions, respectively. Additionally, the confusion matrices for FTSTS are presented 

Figure 38(b), Figure 38(d). It is evident that Difficulty to Turn is often confused with 

Difficulty to Stand or Difficulty to Walk. Moreover, Spinal Injury and Unilateral 

Vestibular hypofunction are often confused with Stroke. 

This explains the relatively low score in TUG accuracy. Furthermore, Arthritis is most 

often miss classified as a range of different conditions. These observations will be 

discussed in Section 5.4. Overall, the sensitivity (Equation 28), specificity (Equation 

29), precision (Equation 30) and f1 score (Equation 31) for four confusion matrices 

(corresponding to the four datasets) are presented in Table 21, where: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 !"
!"#$%

 (10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	 !%
!%#$"

 (11) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =	 !"
!"#$"

 (12) 

𝑓1	𝑆𝑐𝑜𝑟𝑒 = 	2	 "&'()*)+,∗.',*)/)0)/1
"&'()*)+,#	.',*)/)0)/1

 (13) 

and where TP is the true positives, TN the true negatives, FP the false positives and 

FN the false negatives as dictated by the confusion matrices for each model. 

Table 21 Hybrid Model Confusion Matrix Metrics  

Metric TUG exp.  TUG synth.  FTSTS exp. FTSTS synth.  
Sensitivity  0.33 0.9 1 0.87 
Specificity 0.78 0.94 1 1 
Precision 0.78 0.94 1 1 

f1 Score 0.47 0.92 1 0.93 
 

Further, the most frequently predicted condition for each of the TUG and FTSTS 

experimental dataset classes was investigated. The results are presented in Table 22. 

These results demonstrate the validity of the claims in Chapter 4, specifically in Table 

11 and Table 12, where the simulated experimental conditions were related to patient 

and elderly subject completion times. 
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Table 22 Hybrid model most frequent association of difficulty and condition for the experimental test dataset of the 
8 participants 

Test Cluster Condition 
TUG Diff. Walk Geriatric 

 Diff. Turn Paraplegia 
 Diff. Stand Dementia Severe 
 Normal Arthritis  

 Fast Unilateral Vestibular 
Hypofunction 

FTSTS Diff. Vestibular disorder 
 Fast Parkinson’s stage 4 

 
In all cases the hybrid approach has excellent precision and specificity. This is 

important as false alerts are avoided and do not cause unnecessary alarm to carers. As 

expected, TUG experiment performs lower than other models in sensitivity due to the 

misclassification between the aforementioned difficulty classes. We consider this to 

be less problematic as the user is not misclassified as healthy. 

These results demonstrate the validity of the claims in [213] where the simulated 

experimental conditions were related to patient and elderly subject completion times. 

Similar tests have been performed for each participant of the experiment and for each 

simulated difficulty. The prediction accuracy improved or stayed the same over time 

in 81.82% of the tested cases for the test set. Accuracy improved over time in 100.0% 

of all the tested combinations of {individual, difficulty} in the full set combining test 

and train data. 

5.4 Chapter Conclusion 

Based on the results, the proposed method is capable of providing accurate home-

based rehabilitation support, with improvement of individualisation in terms of 

accuracy overtime based on observations of a specific individual. The method is 

suitable for both rehabilitation goal setting as well as diagnosis of comorbidities.  

In the case of difficulties in the experimental dataset for both TUG and FTSTS tests, 

time of completion has clearly a higher importance compared to other features. 

However, in terms of conditions (synthetic dataset) all features are contributing in 

some cases almost equally (refer to Figure 34). The high importance of the time of 

completion feature in the experimental dataset is expected because of the bias 
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presented in the dataset due low variability in terms of other features (e.g., all 

participants belong to the same age group and only one was female). 

In the confusion matrices the most often miss-classifications of the hybrid model are 

identified. These are attributed to the use of a very small number of sensors described 

in Chapter 4. Given that a small number of sensors were utilised, the completion time 

of the different stages of the TUG was not extracted from the overall completion time 

and thus not supplied as separate features. Instead, the full time of completion of the 

TUG is the used feature. This results in the model’s inability to clearly differentiate 

between the two difficulties of Turn and Stand.  

Furthermore, it was identified that two conditions in TUG are always miss-classified 

as Stroke. This is believed to be due to the similarity of the effect of the condition on 

the walking pattern. For example, a severe stroke could result in severe vestibular 

hypofunction or have similarities to spinal injury due to the effect on the motor control 

system. Moreover, there was no differentiation between mild, moderate or severe 

stroke symptoms. It is possible that a refinement of the dataset to differentiate the 

severity of stroke would improve performance of the hybrid model. A similar effect is 

seen in the case of Arthritis where various stages of arthritis are not differentiated. On 

the contrary, the differentiation between stages of dementia and Parkinson’s have 

proven to have better performance as evident from the confusion matrices in both TUG 

and FTSTS. In terms of FTSTS the Difficulty/Slow class is never confused with the 

Fast class.  However, the Healthy class is very rarely miss-classified as Stroke (Figure 

38(b), Figure 38(d)). As before it was hypothesised that a fine-grained presentation of 

stroke stages in the dataset would address this issue. It is possible that very mild cases 

or early stroke signs are miss-classified as Healthy which is reasonable as mild stroke 

patients might not have significant disability developed. Addressing this issue would 

be future work. In summary, the contributions of this chapter are presented in Figure 

39.  

These contributions are addressing RQ3 and RQ4 as presented in Chapter 2: 

a) Methodological steps to produce a new synthetic dataset based on statistical 

results reported in the literature for training ML algorithms to avoid bias in 

autonomous system outcomes, (Section 5.2.3); 
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b) A novel hybrid ML algorithm to meet the individualisation, interpretability, 

and ART design considerations while maintaining a low computational 

footprint, (Section 5.2.5);  

c) Interpretability of the designed solution, including feature importance for a 

patient-centric individualised, responsible home-based rehabilitation support 

(Sections  5.2.5, 5.2.6).  

d) A detailed simulation performance comparison and analysis demonstrating that 

the proposed approach outperforms existing work, used as benchmark, by 5% 

for FTSTS and 15% percent for TUG test (Sections 5.3). 

 
Figure 39 Chapter 5's contributions 

 

  

Creation of 
new synthetic 

dataset to 
reduce bias 

ART Hybrid ML 
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6 Discussion  

This chapter discusses initially the main findings regarding the successful criteria of 

systems for rehabilitation and how they can motivate patients in order to engage with 

their rehabilitation goals. Later the proposed system and the experiments that were 

carried out are discussed and the chapter conclude with the discussion of the proposed 

ART AI hybrid approach for individualised rehabilitation and comorbidities detection. 

The discussion in this chapter will cover the thesis as a whole. 

Based on the analysis in Chapters 1 and 3, an ideal home rehabilitation device should 

meet all the criteria and requirements identified in Chapter 3 as follows. The system 

needs to avoid wearable or intrusive components. It needs to support enhanced 

motivation and engagement by being incorporated into the daily activity routine. It 

must be cost-effective and not complex to install, maintain, and use. It needs to support 

the needs of all patients, regardless of age and background. Moreover, it needs to be 

portable and transferable to other domains such as diagnosis of co-morbidities. Data 

and patterns from online databases are quite important to tailor rehabilitation, as the 

device can learn the patients’ requirements and goals, adapt to their individual needs, 

and provide suitable challenges, for example, through ML Individual choice and 

personal control are mandatory for success.  

This thesis suggests an AmI system which potentially could assist patients with their 

rehabilitation goals. The successful system focused on supporting specific daily 

activities that have measurable outcomes specified in recognised health care tests. The 

proposed system in this thesis initially was suggested in order to increase patient’s 

rehabilitation goals by increasing the level of difficulties through daily activities by 

providing sufficient feedback which was easy to interpret.  

However, given that there are no data available for all daily activities in a home 

environment further process, comparison and evaluation of such a system would 

introduce a significant challenge. In order to evaluate the system, the state of the art 

was followed and two certified NHS tests was selected, the TUG and the FTSTS. 

Additionally, information regarding the relation between time of completion and 

condition diagnosis exist. Hence, by designing, manufacturing and testing the system 

with human subjects as presented in Chapter 4, experimental data could be used in 
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order to carry out comparisons against data from a synthetic dataset as presented in 

Chapter 5. In order to evaluate such a system, experiments had to be carried out with 

patients. According to the results, the automated sensor system was fit for purpose and 

has been validated for use with statistically significant accuracy (ϱc>0.99, R2>0.94, 

ICC>0.96) while the participants identified the system as engaging and motivation 

enhancing.  

Training and testing were carried out on various ML model and initial steps were made 

in order to automate a procedure which could be beneficial for the user in order to: (a) 

provide sufficient monitoring, (b) carry out early diagnosis or raise flags in case of co-

morbidity, (c) provide a higher level of engagement with rehabilitation goals by 

increasing self-efficacy, and (d) reward patients progress by providing sufficient, 

simple and interpretable feedback. 

Based on the results of Chapter 5, the proposed method is capable of providing 

accurate home-based rehabilitation support, with improvement of individualisation in 

terms of accuracy overtime based on observations of a specific individual. The method 

is suitable for both rehabilitation goal setting as well as diagnosis of comorbidities. An 

important observation is the feature importance of the XGBoost model which is 

evidently different for each of four datasets. The final model reaches up to 100% 

accuracy for FTSTS in both the prediction of difficulty and the prediction of associated 

patient condition. In the case of TUG, the performance reaches up to 100% in the 

prediction of patient condition and 83.13% in the prediction of area of difficulty. 

Though a direct comparison with other ML-based approaches used for FTSTS and 

TUG tests cannot be made due to unavailability of common datasets and minor 

differences in classification of test stages, by analysing the accuracy results reported 

in the literature, it is concluded that the proposed hybrid model achieves acceptable 

accuracy that surpasses the results reported in the literature. Indeed, the hybrid model 

reports higher accuracy than state-of-the-art AI methods that use intrusive means of 

monitoring such as cameras or the Kinect sensor. For example in [314] FTSTS 

decision tree models and k-NN have demonstrated 92% and 91% accuracy, 

respectively. In [315], the accuracy of the proposed classifier was 94.68% for FTSTS, 

and a review of similar publications demonstrates that this is the state of the art for 
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FTSTS AI models. Similarly, in [316], accuracy of all assessed classifiers including 

NNs did not exceed 85% for TUG. As a result, our proposed hybrid approach improves 

accuracy over and above the state of the art for both tests while also addressing a series 

of constrains such as computational requirements, incremental re-training, and ART 

AI, thus, addressing all the criteria in Chapter 3 to enhance engagement and 

motivation. 

  



  116 

7 Conclusion 

This thesis demonstrated that the existing approaches in home-based rehabilitation do 

not meet all the criteria in the motivation, acceptance, and technological categories 

required for engagement and motivation enhancement. The thesis identified the criteria 

for a system that will provide the required level of self-rehabilitation commitment as 

nonintrusive, nonwearable, motivation and engagement enhancing through a list of 

motivation methods, individualized, supporting daily activities, suitable for the 

elderly, cost-effective, simple, transferable, and intended for use in rehabilitation. 

A low-cost system to automatically perform the TUG and FTSTS medical tests was 

designed and deployment of. A detailed methodology was presented to assess a home-

based rehabilitation system’s accuracy against the test specifications, benchmarked 

against NHS standard practice and ground truth established through video recording. 

The system’s transferability was demonstrated to other daily activities and more than 

one NHS test. The results demonstrated that the stopwatch measurements have an 

inherently higher PE compared to the golden standard video measurements due to the 

human error factor. The automated sensor system is fit for purpose and has been 

validated for use with statistically significant accuracy (ρc > 0.99, R2 > 0.94, ICC > 

0.96). 

To achieve the requirement of individualisation this thesis presented a ML approach. 

Methodological steps to produce a new synthetic dataset based on statistical results 

reported in the literature for training ML algorithms to avoid bias in autonomous 

system outcomes was presented. A novel hybrid ML algorithm based on stacking, 

XGBoost and KNN was developed to meet the individualisation, interpretability, and 

ART design considerations while maintaining a low computational footprint. 

Interpretability of the designed solution was analysed, including feature importance 

for a patient-centric individualised, responsible home-based rehabilitation support. 

The re-training element proves to be incrementally improving overall model accuracy 

which means that as the user continues rehabilitation at home the device better adapts 

to the user’s specific difficulty areas and conditions. A detailed performance 

comparison and analysis demonstrating that the proposed approach outperforms 

existing work, used as benchmark, by 5% for FTSTS and 15% percent for TUG test. 
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7.1 Limitations 

The system was not tested with elderly or patients. The relevance of this early 

technology to the patient population was demonstrated through comparative analysis 

with the international database. However, experiments with elderly subjects will be 

required as further evaluation steps. 

The system could potentially support rehabilitation but further clinical trials would be 

required to measure this benefit as well as the motivation enhancement and 

engagement in the patient population.  

Fast FTSTS (R2 = 0.92) was not as accurately captured while the fast TUG test was 

uncorrelated between system and video (R2 = 0.07). The limitation of the very low-

cost motion detection sensor is apparent in these two sets of experiments as the sensor's 

delay in recording the event is significant and affects the recorded time. However, as 

the system is designed to be utilised for rehabilitation and incorporation of daily 

activities for increased engagement, the range of fast TUG is assumed with the scope 

of the study targeting less capable adult subjects. 

Miss-classification occurs between the difficulty to turn and difficulty to stand cases. 

Also, normal TUG tests are confused with fast in 57% of the cases. The confusion 

matrices imply that some of the patient conditions such as Stroke and Arthritis are 

largely generalised classes and if broken down to severity the model could improve. 

Furthermore, to better differentiate between difficulty to turn and difficulty to stand 

the TUG completion time feature could be split into two additional features for 

individual stages of the test. 

7.2 Future Work 

Additionally to addressing the above limitations, future work could also follow 

additional directions to expand the research. In the proposed system the architecture 

as a whole can be altered, in hardware and software. Given that the system should 

maintain a low cost, the sensor selection for further improvement should be carefully 

addressed. However, sensors could be further optimised or increased in numbers in 

order to gain the ability to extract more features and break down the whole medical 

test into smaller segments. This can provide additional information for the test and the 
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user and can increase the prediction and evaluation accuracy. For example, the same 

optimised sensors could be located in the middle of the 3 meters distance for the TUG 

test. A detailed mapping regarding the location of the new sensors should be taken 

under consideration. However, given that the sensors will not require continuous 

adjustments re-training requirements could be limited to the optimum minima.  

The rapid development of the hardware in order to support Neural network ML by 

using Tensor Flow can offer an attractive approach especially with Microsoft’s recent 

light-weight algorithms [317]. Although given that the model will be continuously 

retrained in order to offer an individualised approach for rehabilitation for the 

particular user the carbon footprint due to the power consumption will be increased in 

comparison with other lighter algorithmic approaches. The continuous power 

consumption through voltage transformation from domestic supply to 5V increases the 

carbon footprint and should be taken under consideration in future design approaches.  

As part of the work on this thesis and although these have not been presented, initial 

experiments with NNs have been carried out. Keras was used to create a CNN with 6 

hidden layer neurons in a Dense layer with activation function relu and followed by a 

second Dense layer with a softmax activation function. The RMSProp optimiser was 

used for the CNN and the models were optimised over 100 epochs. The model was not 

hyper-tuned and given that the initial results were significantly lower in terms of 

accuracy in comparison with other algorithmic approaches (namely KNN and 

XGboost), this approach was temporarily abandoned. Although the NN is a promising 

approach for the future, the level of interpretability due to a “black box” limitation is 

always questioned. However, as we mentioned above the rapid development of various 

hardware options with increased computational capacity and acceleration of NN 

algorithms in combination with new lighter algorithmic approaches could be an option 

for testing in the near future. However, there will still persist a question on how NNs 

can address the black box issue in terms of ART. 

Although the proposed system in this thesis was used for stroke rehabilitation and 

detection of co-morbidities, it might offer a good approach on a variety of conditions 

and not only for unhealthy but for healthy subjects as well. The tests were selected 

given that there are data available in order to help with comparison and evaluation of 



  119 

the system itself and co-morbidities. However, the operation could be focused on 

particular daily activities in which the subject shows lack of ability or confidence in 

order to carry them out. Moreover, for healthy elder subjects the system will be able 

to extract patterns and help in terms of monitoring while at the same time can raise 

flags or warning to the rest of the family when the daily patterns have changed and 

this could be an indication of an early stage of an illness such as dementia, for example. 

Hence, the system could be optimised and tested in many ways and in various 

scenarios. Given that there is a good level of transferability it could be used on a variety 

of healthy and unhealthy subjects.   

This thesis concluded by presenting the Hybrid ML model approach as well as the 

input and output data generated to support ART AI. In the future the user interface 

could be further developed. We aim to follow the dialogic XAI model presented in 

[234] in combination with state-of-the-art Human Computer Interaction (HCI) and 

cognitive theory approaches for ART AI as discussed in [318]. Moreover, we aim to 

address the miss-classification issues discussed in Chapter 5 by improving the 

presentation of both the TUG features and the generalised classes. 
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Appendix  

Scanned copies of questionnaires responses are presented in this Appendix section.  
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