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Abstract

This thesis is concerned with two new one-dimensional models for solid-solid phase

transitions. The models, the idea of which is due to P. Rosenau, are proposed to ex-

tend the Allen-Cahn and Cahn-Hilliard equations, which arise from the Ginzburg-

Landau theory, to the case of large spatial gradients in the order parameter. The

new models incorporate saturation of the diffusion flux, which should be expected

of a physical process involving high gradients. We will study the effect that a sat-

urating diffusion flux has on the ensuing morphology of the system and contrast

this with the situation in the case of previous models. We show for example that,

unlike the situation for the Allen-Cahn and Cahn-Hilliard equations, discontinuous

equilibria are now admissible and we discuss questions of structure and stability

of equilibria, stabilisation and the dynamics of coarsening in the new models.
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Chapter 1

Introduction

1.1 Phase transitions

Phase transitions are of great academic interest and considerable technological im-

portance. In many contexts, it is essential to describe how a (mixture of) phase(s)

in a physical system changes into a new (mixture of) phase(s). Examples of phase

transitions include metal casting, crystal growth, glass formation and the phase

separation in alloys. We can speak of a solid-solid phase transition whenever there

is a transition from one solid state to another solid state, as in phase separation

in a metallic alloy or in the conversion of a metal (e.g. iron) from a paramag-

netic state, in which the material is not magnetised in the absence of an applied

magnetic field, to a ferromagnetic state, in which the material is magnetised even

when no field is applied. The second of these two examples of solid-solid phase

transitions is known as the phenomenon of ferromagnetism.

Assume that we have a physical system occupying a domain Ω ⊂ R
n, n ≥ 1. Then

the state of a system undergoing a phase transition over time t can be described by

an order parameter u(x, t), x ∈ Ω, which distinguishes different phases. In this

thesis, we are concerned with the simplest case of a scalar order parameter which

takes values in a bounded interval on the real line since we are only interested in

1



Chapter One 2

materials which can exist in two phases. If, for instance, one were interested in

modelling the phase separation of an alloy consisting of three or more components

then one would need to consider taking the order parameter to be a vector [28, 35].

We think of the order parameter as a measure of the local microscopic order of a

material which can exist in two phases and the order parameter varies between one

value u1, which represents one phase, and another value u2 which represents the

other phase. If the phase transition is governed by a conservation law then we are

in the case of a conserved order parameter. We have a non-conserved order

parameter whenever there are no global constraints on the order parameter. An

example of a conserved order parameter phase transition is the phase separation

of a binary alloy in which the order parameter may be taken to be the local con-

centration of one of the two components of the alloy or the difference between the

local concentrations of each of the two components of the alloy (see (1.2) and (1.3)

respectively). An example of a non-conserved order parameter phase transition is

the phenomenon of ferromagnetism which we discuss in detail below in order to

introduce the necessary concepts.

Often there exists a critical temperature Tc such that for temperatures T > Tc,

the material exists in a stable uniform state u(x, t) = ū and for T < Tc (the

subcritical temperature regime), the uniform state can lose stability. By the

mathematical study of phase transitions we mean the study of the evolution of

u(x, t) in the subcritical temperature regime. In the case of a ferromagnet (as de-

scribed in, for example, [8, Chapter 1]), in the absence of an applied magnetic field,

the material undergoes a spontaneous transition from a disordered (paramagnetic)

phase, in which there is no net magnetisation (this is the uniform state), to an or-

dered (ferromagnetic) phase, in which the material has non-zero magnetisation, at

some critical transition temperature Tc known in this context as the Curie tem-

perature. Conversely, as one heats a sample of a ferromagnetic material through

the critical temperature Tc, the material’s mean magnetisation steadily decreases
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as Tc is approached and vanishes entirely at Tc and for all higher temperatures as

in Figure 1.1.

m̄

TTc

Figure 1.1: Average magnetisation m̄ of a ferromagnet in the absence of an ap-

plied field against temperature T . For T < Tc, there is a spontaneous average

magnetisation ±m̄(T ).

Hence the uniform state is no longer stable once T < Tc. From the microscopic

point of view, the system consists of a lattice populated by two sorts of spins (“up”

and “down”). In the paramagnetic state (T > Tc), there is no preferred direction

for the magnetic moments of the spins, hence no net magnetisation. Below the

critical temperature Tc, some spins flip in such a way as to become aligned with

their nearest neighbours in the lattice as the material becomes magnetised. This

type of dynamics is commonly referred to as Glauber dynamics [33]. Suppose

we assign to a site i an occupation variable si, with si = +1 if the spin at site i

is up and si = −1 if the spin at site i is down. At the continuum level, we take

the order parameter u(x, t) at some x ∈ Ω and time t, to be the instantaneous

mean magnetisation in a small ball B(x, r) of radius r centred at x. That is,

we take

u(x, t) = lim
r→0

1

r

∑

i∈B(x,r)

si(t), (1.1)
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so that u(x, t) represents the average of the spins in the vicinity of the point x ∈ Ω

at a particular time t.

To relate this to the conserved order parameter situation, consider the phase sep-

aration of a binary alloy which is experimentally seen to occur if the high tem-

perature, at which alloys are prepared (so that the material is in a homogeneous

disordered phase), is reduced rapidly to a temperature below a critical value Tc at

which the material is seen to separate into regions of predominantly one component

or the other. Once again the uniform mixed state is no longer stable once the tem-

perature T is less than some critical temperature Tc. At the atomic level, we now

consider a lattice populated by two sorts of atoms, say A and B, and the occupa-

tion variable si is now such that si = +1 if we find an A-atom at site i and si = −1

if we find a B-atom at site i. This time the “spins” do not flip from one sign to the

other since flipping a single “spin” in this model would correspond to converting

an A-atom into a B-atom (or vice versa), which is inadmissible. Instead, there is

a direct interchange between two neighbouring “spins” in the material below the

critical temperature Tc. This type of dynamics is known as Kawasaki dynamics

[41]. At the continuum level, the order parameter in this case may be taken to

be the concentration of one of the two components of the binary mixture or the

difference between the local concentrations of each of the two species of the alloy.

For example, suppose that the binary alloy under consideration is the iron-nickel

(Fe-Ni) alloy. Then we can take the order parameter to be

[Fe](x, t)

[Ni](x, t) + [Fe](x, t)
= v(x, t), x ∈ Ω, (1.2)

where [Fe](x, t) and [Ni](x, t) are respectively the number of iron and the number

of nickel atoms in a small ball around x ∈ Ω at some time t, in which case
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v(x, t) ∈ [0, 1]. Alternatively, we can can take the order parameter to be

u(x, t) = 1 − 2v(x, t)

=
[Ni](x, t) − [Fe](x, t)

[Ni](x, t) + [Fe](x, t)
, (1.3)

so that u(x, t) is restricted to lie in the interval [−1, 1] and positive (negative)

values of u correspond to Ni (Fe)-rich regions. If u = +1 then we are in the pure

Ni-phase and u = −1 means that we are in the pure Fe-phase. When u = 0,

we have a one-to-one composition. Also, since the total order parameter is to be

conserved, the following constraint is imposed

1

|Ω|

∫

Ω

u(x, t) dx = M ∀t,

where |Ω| denotes the volume of the domain and |M | ≤ 1 is a constant.

As mentioned, below some critical temperature Tc, the alloy can no longer exist

in equilibrium in its homogeneous state and the alloy tends to separate and order

over time into a coarse mixture of its original materials. The order parameter

u, i.e. the difference between the local concentrations of each of the two species,

changes as the system is quenched below Tc from the homogeneous mixed state

(u = 0) to that of a spatially separated two-phase structure where each phase is

characterised by a different value of u which is either −1 or 1. For more details on

phase separation, one can consult the survey paper [29] of Fife.

We postulate the existence of a bulk free energy which is defined in terms of

the order parameter and the change in the bulk free energy with temperature T

is used to explain the dynamics of a system following a quench from a disordered

phase to an ordered phase. As explained in [59, Chapter 4], Landau theory is

concerned with the phenomenological description of phase transitions and is based

on the assumption that in the vicinity of the critical temperature Tc, the bulk free

energy of the system is an analytic function of the order parameter u where only
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those terms compatible with the symmetry of the system are retained. In the case

of a simple ferromagnet in zero external field, the Landau theory predicts that the

paramagnetic (u = 0) to ferromagnetic (u 6= 0) transition can be described by an

expansion of the bulk free energy E(u, T ) in powers of the order parameter u

E(u, T ) = α(T ) + β(T )u2 + γ(T )u4, (1.4)

where, because of the up-down spin symmetry of the system, the expansion con-

tains only even powers of u. In (1.4), the phenomenological parameters α(T ), β(T )

and γ(T ) are assumed to be smooth functions of the temperature T where α(T )

and γ(T ) are positive for all T and β(T ) is positive for T > Tc and negative for

T < Tc.

u

u

E(u, T )

E(u, T )

T > Tc

T < Tc

0

0

Figure 1.2: The bulk free energy E(u, T ) for some temperature T > Tc and for

some temperature T < Tc.
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Hence at high temperatures (T > Tc), the bulk free energy E(u, T ) is a convex

function of u and is minimised by u = 0 which corresponds to the disordered para-

magnetic state. The state of the system undergoes a sudden change when we reach

T = Tc at which β(T ) = 0 in (1.4). Below the critical temperature Tc, the minima

of E(u, T ) occur at u = ±
√

−β(T )
2γ(T )

and these correspond to the equilibrium states

in the ordered phase. The bulk free energy for T < Tc also has a local maximum

at u = 0 corresponding to the disordered state which is unstable in the subcritical

temperature regime. In summary, the bulk free energy is to be convex for T > Tc

and to have two symmetric wells at u = ±
√

−β(T )
2γ(T )

for T < Tc as in Figure 1.2.

That the wells arising in the subcritical temperature regime are symmetric makes

sense in this situation since the two equilibrium states for T < Tc are identical

in all aspects except in the direction of the magnetisation. Note that assuming

γ(T ) > 0 in (1.4) corresponds to the physical condition that the magnetisation be

finite. Also, the series is truncated after the term O(u4) since, as argued in [59],

if γ(T ) > 0, subsequent terms in (1.4) cannot alter the critical behaviour of the

system.

As we have discussed, we are only interested in the evolution of the order parameter

u(x, t) in the subcritical temperature regime and we therefore fix T in (1.4) such

that T < Tc so that we can then take

β(T ) = −b, γ(T ) = c,

in (1.4) for some constants b, c > 0. Denote W (u, T ) = E(u, T ) − α(T ) and scale

the order parameter u ∈
[

−
√

b
2c
,
√

b
2c

]

as u 7→
√

2bu so that u ∈
[

−
√

b2

c
,
√

b2

2

]

and

W (u, T ) = −u
2

2
+
cu4

4b2
, (1.5)

from (1.4). Without loss of generality, we choose constants b and c such that
c

b2
= 1 in (1.5) since physically, in both the case of the ferromagnet and the binary
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alloy, we require the order parameter to be restricted to [−1, 1]. Therefore, in the

subcritical temperature regime, we may regard the bulk free energy W = W (u) as

a double-well function, e.g. W (u) =
u4

4
− u2

2
, of the order parameter u only which

has minima at u = ±1.

In order to account for energy contributions from phase boundaries, Ginzburg

and Landau (see [44]) augmented the bulk free energy W (u) with a gradient term

ǫ
2
|∇u|2 where ǫ > 0 is a small parameter. The total free energy of the system at a

fixed temperature below Tc over a domain Ω is then given by

E[u](t) =

∫

Ω

[

W (u) +
ǫ

2
|∇u|2

]

dx, (1.6)

where Ω ⊂ R
n, n ≥ 1, corresponds to the region occupied by the material under

consideration and W (u) is of double-well type. The functional in (1.6) is often

referred to as the Ginzburg-Landau free energy functional and it will be also be

discussed in Section 2.1.1. The free energy (1.6) at a constant temperature is de-

rived in [44] (and also in [13] under the constraint that the total order parameter u

be conserved) by assuming that the local free energy per unit volume is a smooth

function of u and its derivatives so that it can be expanded in Taylor series about

the uniform composition ū where only leading terms are retained. Hence the the-

ory is based on the assumption of small gradients in the order parameter.

The Allen-Cahn [2] and Cahn-Hilliard [13] equations have been used to simulate

many phase transition phenomena in solids. The Cahn-Hilliard equation models

conserved order parameter processes such as the phase separation in binary alloys

and the Allen-Cahn equation models non-conserved order parameter processes such

as phase transitions in a ferromagnetic material. The equations may be obtained

by considering gradient flows of the associated free energy of the system which

in the case of both of these equations is given by the Ginzburg-Landau free energy

functional (1.6). We will see how these and other equations can be obtained in
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this way in the next chapter.

In the Ginzburg-Landau framework for solid-solid phase transitions, equilibrium

states with sharp interfaces are not permitted. Focussing on the one-dimensional

situation (since this will be the setting of interest to us in subsequent chapters) we

can see this from the point of view of the Ginzburg-Landau free energy functional

in (1.6) in which we take Ω ≡ (0, L) ⊂ R for some L > 0. Suppose we consider

only the interacting part of the free energy functional by setting W (u) ≡ 0 in (1.6).

The one-dimensional Sobolev space H1(0, L) is embedded in the space C([0, L]) of

continuous functions. In fact, according to the Sobolev embedding theorem (see

[1])

H1(0, L) ⊂ C0, 1
2 ([0, L]),

where C0, 1
2 ([0, L]) is the Hölder space of all functions u ∈ C([0, L]) for which

sup
x,y∈(0,L), x 6=y

{

|u(x) − u(y)|
|x− y| 12

}

<∞.

The interacting part of the free energy in (1.7) grows quadratically in the norm

of the gradient and this implies unbounded energy across a sharp interface in this

one-dimensional situation since if u is not continuous then u is not an H1(Ω)

function by the above arguments and therefore the quantity
∫

Ω
u2

x dx is not finite.

Consequently such interfaces must be precluded.

Philip Rosenau [52] looked to extend the Ginzburg-Landau small-gradient theory

in the one-dimensional setting to domains of higher gradients in the order pa-

rameter by modifying the free energy functional (1.6) in such a way as to ensure

that the interaction energy across a sharp interface be finite. In other words, he

considered the more general free energy functional

ER[u] =

∫

Ω

[W (u) + ǫΨ(ux)] dx, (1.7)
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and imposed the condition that
∫

Ω
Ψ(ux) dx in (1.7) remains bounded for arbitrar-

ily large gradients. The main step lies in choosing a form for Ψ in (1.7) which

interpolates between the small gradient regime and the large gradient limit. We

will discuss this in more detail in Section 2.1.4 but we note here that with Rose-

nau’s choice for Ψ, the free energy functional (1.7) has a linear growth rate in

the spatial gradient of the order parameter (which allows for equilibrium states

with genuinely sharp interfaces). Additionally [53], an initial state endowed with

sharp interfaces does not become smooth immediately and discontinuities persist

for a finite time after which they disappear. It is natural to view −Ψ′(ux) as a

flux of u which, since Ψ(s) has linear growth at infinity, is monotone, bounded

and saturates at a finite value as |ux| → ∞. Note that although saturation of the

flux is a necessary condition in delaying the resolution of discontinuities, it is not

sufficient and an appropriate saturation rate is needed to sustain discontinuities

[53]. If initial discontinuities persist for a finite time, we say that the saturation is

strong. Otherwise, the discontinuity disappears immediately and the saturation

is said to be weak. Equations with a strongly saturating flux are the ones that

we will consider in the subsequent chapters. The purpose of this thesis is to in-

vestigate in the one-dimensional setting the consequences of taking the Rosenau

saturating flux theory for phase transitions in solids instead of the more usual

Ginzburg-Landau framework.

1.2 Thesis outline

The thesis is organised as follows. Chapter 2 contains necessary background ma-

terial on models for solid-solid phase transitions and the mathematical tools that

we will employ. Chapters 3 to 5 comprise the original material of this thesis. In

Chapter 3 we discuss a one-dimensional model which has the saturating diffusion

mechanism introduced in [52] to replace the Allen-Cahn equation in the case of

large gradients. We prove a well-posedness result for (weak) solutions to this model
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and then present numerical simulations pertaining to the asymptotic behaviour of

solutions to this new model. This work has led to a publication [11] which is to

appear in the journal Communications in Applied Analysis.

In Chapter 4 we study the stationary problem associated with the model discussed

in Chapter 3. After defining what we mean by a solution to this problem, we prove

some results relating to its classical solutions. We first prove local bifurcation re-

sults for solutions to the stationary problem and then show that as the bifurcation

parameter (which physically corresponds to the reciprocal of the diffusion coeffi-

cient) is increased, solutions to the stationary problem develop infinite gradient in

the interior of the space interval and classical solutions cease to exist. We will see

that these bifurcation results depend on the length of the space interval as well as

on the bifurcation parameter. We prove that the non-constant classical solutions

are unstable and then discuss non-classical (discontinuous) solutions to the prob-

lem. We derive a formal construction for non-classical solutions to the problem

through phase plane arguments and then establish that this formal construction

satisfies our definition of a solution and delivers an uncountable number of solu-

tions to the stationary problem. We conclude this chapter with a presentation of

numerical simulations for non-classical solutions to the problem which suggest that

the non-classical solutions possess certain stability properties. The work contained

in this chapter has led to a publication [12] to appear in the European Journal of

Applied Mathematics.

Chapter 5 deals with a mass-conserving version of the Rosenau model described

in Chapter 3. This equation can also be viewed as a quasilinear analogue of

the semilinear equation introduced by Rubinstein and Sternberg in [54]. We are

interested in the stationary solutions to this (non-local) quasilinear model. We

establish local bifurcation results similar to those for the semilinear (Cahn-Hilliard)

case considered in [26] except that our results depend on the length of the space
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interval as well as on the bifurcation parameter (which again corresponds to the

reciprocal of the diffusion coefficient) and the average mass of a solution to the

problem. We then show that for a given length of the space domain and for each

average mass of a solution within a certain prescribed range, we have non-existence

of classical solutions whenever the bifurcation parameter is large enough. These

results are illustrated numerically using path-following methods. We conclude this

chapter with a derivation of a numerical scheme for the full evolution problem

and prove that this numerical scheme conserves mass. We then use this scheme

to present and discuss numerical simulations for the full evolution problem. The

thesis concludes with a summary of our main results and suggestions for further

work.



Chapter 2

Preliminary Material

2.1 Gradient flows

We are concerned in this section with the derivation of evolution equations describ-

ing phase transitions in solids such as ferromagnetic phase transitions or phase

separation in binary alloys. In order to do this, one assumes that the behaviour

of the system can be described by a free energy functional defined as a function

of an order parameter. We take the point of view that the material structure

changes in such a way as to decrease the free energy of the system as required by

thermodynamic principles. On a simple level of understanding, the total energy

of a physical system at a constant temperature can be considered as the sum of

the free energy and the entropy in the system. That is, it is the sum of the energy

available to do work and the energy unavailable to do work. According to the

second law of thermodynamics, the entropy in a physical system that does not

interact with its surroundings (i.e. a system that is isolated) will tend to increase

with time. Hence in order to preserve the conservation of energy principle, the free

energy of the mixture must counterbalance this by decreasing over time. Thus we

expect the system to evolve in such a way that the free energy decreases with time.

The approach we take here to achieve this follows the approach of Fife in [29]

13
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which postulates the evolution of a state as a gradient flow of the free energy

functional E[u] which is defined by

∂u

∂t
= −gradE[u], (2.1)

so that u evolves in the direction opposite to the gradient of the free energy func-

tional. Note that for each t, u(t) is a function of position i.e. u(t) belongs to some

function space X defined on a spatial domain so that ∂u
∂t

∈ X for all t > 0. On the

other hand, E : X → R is a nonlinear functional and gradE[u] in (2.1) is a linear

functional on X defined by

d

dh
E[u+ hv]|h=0 = 〈gradE[u], v〉 ∀v ∈ X,

where < ·, · > denotes the duality pairing in X. So for (2.1) to make sense we

must be able to identify gradE[u], which is an element of the dual space of X,

with an element of X and therefore it makes sense to choose X to be a Hilbert

space. We make our definitions more formal now that we know that we are going

to be working in a Hilbert space setting.

Definition 2.1. For a Hilbert space H, let 〈·, ·〉 denote the H∗,H pairing and (·, ·)
the H inner product. A functional E on H is said to be Gateaux differentiable at

u ∈ H with derivative (or first variation) E ′[u] ∈ H∗ if

lim
h→0

E[u+ hv] − E[u]

h
= 〈E ′[u], v〉 ∀v ∈ H,

i.e. if

d

dh
E[u+ hv]|h=0 = 〈E ′[u], v〉 ∀v ∈ H.

So if E is Gateaux differentiable at u ∈ H it then follows from the Riesz Repre-

sentation Theorem that there exists a unique w(u) ∈ H such that

〈E ′[u], v〉 = (w(u), v) ∀v ∈ H. (2.2)
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Definition 2.2. The w(u) in (2.2) is the classical or unconstrained gradient of E

at u which we denote by gradE[u] i.e.

d

dh
E[u+ hv]|h=0 = (gradE[u], v) ∀v ∈ H.

Now let M be an affine linear subspace (or linear manifold) of the Hilbert space

H. Hence M is a translate of some linear subspace of H, that is, there exists

û ∈ H and a linear subspace N of H such that

M = û+ N = {û+ v : v ∈ N ⊂ H}.

Definition 2.3. We denote the constrained gradient of E[u] in H by gradME[u]

defined as an element in N such that

d

dh
E[u+ hv]|h=0 = (gradME[u], v) ∀v ∈ M,

when such an element exists.

So Definition 2.2 is the same as Definition 2.3 when M = H.

2.1.1 The free energy

Suppose, as in Section 1.1 we have a physical system which can locally be described

by a scalar order parameter u ∈ [−1, 1] which depends on space and time. The

system may, for example, consist of a sample of ferromagnetic material which,

at the atomic level, has two possible spins ±1 as described in Section 1.1. It

may instead consist of a crystalline material with two possible lattice structures

which are represented by the order parameter assuming either the value +1 or

the value −1. The order parameter taking values in the interval (−1, 1) then

corresponds, in case of the ferromagnet, to a local mean magnetisation which may

be obtained by a coarse graining (as in (1.1)) or, in the case of the model of the

crystal, to mixtures of the two lattice structures. To model such a situation, a
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possible first step would be to derive a free energy associated with a configuration

u. In either the case of the ferromagnetic material or the case of the crystalline

structure, it is more favourable for the sample to attain values close to ±1 than

to attain an intermediate value in (−1, 1). This is true in the case of the coarse

grained ferromagnet if one considers the microscopic dynamics since, as discussed

in Chapter 1, it is energetically favourable for an atom to have the same spin as

its neighbours and in the case of the crystal because the pure lattice structures are

the most favourable. This effect is accounted for by the potential energy

E0[u] =

∫

Ω

W (u(x)) dx, (2.3)

where Ω ⊂ R
n with n ≥ 1 denotes the spatial domain occupied by the material

under consideration and, as explained in Chapter 1,

W (u) =
u4

4
− u2

2
= −

∫ u

0

f(s) ds, (2.4)

represents the bulk energy of the system, i.e. the free energy density that the

material would have if each of its components had a uniform spatial distribution.

So W (u) is a smooth double-well potential whose wells u = −1 and u = 1 define

the two phases of the system and f(u) = −W ′(u) is a (dissipative) bistable non-

linearity. This means that f(u) is assumed to have three simple zeros at u1, u2

and at u0 with u0 situated between u1 and u2. Hence f(u) is such that

f(u) = 0 ⇔ u = u1 or u0 or u2,

f ′(u) < 0 if u < u∗1 or u > u∗2,

f ′(u) > 0 if u∗1 < u < u∗2,

where u1 < u∗1 < u0 < u∗2 < u2 as in Figure 2.1.
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u1 u2u∗1 u∗2u0 u

f (u)

Figure 2.1: The bistable function f(u).

The three intermediate intervals are given the following names

(u1, u
∗
1) is called metastable interval 1;

(u∗1, u
∗
2) is called the spinodal interval;

(u∗2, u2) is called metastable interval 2.

In particular, if we take f(u) = u − u3 then u1 = −1, u0 = 0 and u2 =

1, the spinodal interval is (u∗1, u
∗
2) =

(

− 1√
3
, 1√

3

)

and the metastable interval is

(u1, u
∗
1) ∪ (u∗2, u2) =

(

−1,− 1√
3

)

∪
(

1√
3
, 1
)

.

Suppose we take the free energy functional to be given by (2.3). Then one would

be tempted to model the evolution of u by letting u evolve in such a way that the

functional E0 decreases with time. This would mean that the appropriate mini-

mum of E0 would be taken up by functions u which assume only the two values −1

and 1 (as desired) where −1 and 1 are the preferred states of u in the sense that

they ensure that free energy will be of moderate size. As discussed in Section 2.1,

one method to ensure that u evolved in such a way that E0 decreases in time would

be to let u evolve in the direction opposite to that of the gradient of E0 at u.

One objection to this approach with the free energy as it is in (2.3) would be that
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u could oscillate wildly between −1 and 1 in space but the energy in (2.3) remains

unaffected. We would expect the energy to penalise these large transitions in phase

and, as explained in Chapter 1, this is done by including some small gradient term

ǫ

2

∫

Ω

|∇u(x)|2 dx, (2.5)

in the free energy functional (2.3) where ǫ is a small positive parameter. The

gradient term in (2.5) is the contribution to the free energy of creating interfaces

which roughly speaking are the sets separating regions where the order parameter

u is positive from regions where u is negative.

This produces the Ginzburg-Landau free energy functional introduced in Chapter 1

and given by

Eǫ[u] = E[u] =

∫

Ω

[

W (u(x)) +
ǫ

2
|∇u(x)|2

]

dx, (2.6)

so that ǫ is a measure of the relative strength of the two terms in (2.6). Hence

the contribution to the free energy from (2.5) tends to spread the interface region

and thereby reduce the gradient as the order parameter changes between its stable

values −1 and 1. So we think of the first term in (2.6) as penalising states which

take values other than −1 and 1 and of the second term as penalising spatial non-

uniformity. Hence one would expect to observe competition between the effects of

an attraction of the material towards either one of the “pure” states −1 or 1 and

a tendency for the material to become spatially homogeneous. We say more on

this competition and its effects on the dynamics in Secton 2.1.3.

2.1.2 Gradient flows of the Ginzburg-Landau functional

The Allen-Cahn equation is a semilinear elliptic equation which was introduced in

[2] to model the growth of grains in crystalline materials near their melting point.

It is one of the simplest conceivable models describing order-disorder kinetics and

the evolution of interfaces between phases which does not preserve the total order

parameter. The equation is given by
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∂u

∂t
= ǫ∆u+ f(u), x ∈ Ω, (∆ ≡ ∇2), (2.7)

where ǫ is a small positive parameter, Ω is a bounded domain in R
n, n ≥ 1 and

u(x, t) ∈ [−1, 1] is the order parameter representing the state of the system at

position x and time t as described at the start of Section 2.1.1. The equation is

a prototype for the continuous modelling of phase transition phenomena of two-

phase systems such as the phase transitions in a ferromagnetic material described

in Chapter 1 or the motion of “phase-antiphase” boundaries between two grains

in a solid. As we will show, it is an example of an equation which can be written

as the gradient flow of the free energy functional E[u] in (2.6) with respect to a

suitable inner product. Let Ω ⊂ R
n denote the vessel (spatial domain) containing

the material under consideration so that Ω is open and bounded. Consider the

homogeneous Neumann conditions on the boundary ∂Ω,

∇u · n = 0 for x ∈ ∂Ω, (2.8)

where n denotes the outward unit normal to ∂Ω. The no-flux boundary conditions

in (2.8) are certainly the natural ones to take in the order parameter conserving sit-

uation of the phase separation in a binary alloy discussed in Chapter 1 since in that

case we physically do not want there to be any mass loss occurring at the bound-

ary walls. For mathematical consistency, we choose the same boundary conditions

in the present situation of a non-conserved order parameter where (2.8) have the

same implication of there being no exchange of material with the surroundings.

We see that another consequence of having Neumann boundary conditions is that

the free energy functional decreases with time (as required). Indeed, we have that

formally

d

dt
E[u] =

∫

Ω

[W ′(u)ut + ǫ∇u · ∇ut] dx

=

∫

Ω

W ′(u)ut dx+ ǫ

(∫

∂Ω

ut (∇u · n) dS −
∫

Ω

∆uut dx

)

=

∫

Ω

[W ′(u) − ǫ∆u]ut dx = −
∫

Ω

u2
t dx

= −||ut||2L2(Ω) ≤ 0, (2.9)
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where the boundary terms have vanished because of the Neumann boundary con-

ditions on u in (2.8). Hence as desired, the free energy functional in (2.6) evaluated

at a solution u = u(t) of (2.7) is non-increasing in time and this means that E[u]

is a Liapunov functional for solutions to the Allen-Cahn equation.

It follows from Definition 2.2 with H = L2(Ω) that for any v(x) ∈ H we should

have

d

dh
E[u+ hv]|h=0 = (gradE[u], v) , (2.10)

where, and hereafter, (·, ·) denotes the L2-inner product on Ω. Hence using the

form for E[u] in (2.6), Green’s identity and the Neumann boundary conditions on

u, we have

d

dh
E[u+ hv]|h=0 =

∫

Ω

[W ′(u)v + ǫ∇u.∇v] dx

=

∫

Ω

[W ′(u) − ǫ∆u]v dx

= (W ′(u) − ǫ∆u , v) . (2.11)

Thus from (2.10) and (2.11) we identify

gradE[u] ≡ −ǫ∆u+W ′(u),

in the space L2(Ω) and from (2.1) we obtain

∂u

∂t
= ǫ∆u+ f(u), x ∈ Ω,

as the L2-gradient flow of (2.6) as in (2.7). The Allen-Cahn equation is the sim-

plest dynamics that one can associate with the Ginzburg-Landau form of the free

energy functional (2.6) and is the gradient system defined by (2.6) which by (2.9),

serves as the Liapunov functional for the equation - see [38, 40] for details on gra-

dient systems. Being a gradient system means that the dynamics are such that

equilibrium points of (2.7) are the only limit points for (2.7). We shall say more
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on the Allen-Cahn equation in Section 2.1.3.

We have noted that the Allen-Cahn equation does not preserve the total amount of

the order parameter u. This is not a problem if we are modelling phase transitions

in ferromagnetic materials but it does become an issue if we are modelling the

phase separation in a binary alloy since the total amount of each species in the

system must be conserved and consequently, the evolution equation which models

the phenomenon must posses this property. One can derive equations for which the

order parameter is conserved by imposing a mass constraint on the order parame-

ter and considering constrained gradient flows of the free energy functional (2.6).

Consider the case of a molten binary alloy with species A and B. For the interpre-

tation of the order parameter in this context see (1.3). We consider a constrained

gradient flow of (2.6) by taking

N = L2
0(Ω) =

{

v ∈ L2(Ω) :

∫

Ω

v(x) dx = 0

}

,

in Definition 2.3 and, for some û ∈ L2(Ω), we introduce the affine linear subspace

M = û+ N

of H = L2(Ω). We now find the constrained gradient gradME[u] of E[u] as an

element in N = N . From (2.11), we have for all v ∈ M and c ∈ R constant that

(gradME[u], v) = (W ′(u) − ǫ∆u, v)

= (W ′(u) − ǫ∆u+ c, v), (2.12)

since
∫

Ω
v dx = 0 so that (c, v) = 0. In order to obtain an evolution law over L2

0(Ω)

we must be able to guarantee that gradME[u] ∈ N = L2
0(Ω). Hence we require

that

∫

Ω

[W ′(u) − ǫ∆u+ c] dx =

∫

Ω

[W ′(u) + c] dx = 0

⇒ c = − 1

|Ω|

∫

Ω

W ′(u) dx,



Chapter Two 22

where |Ω| is the total volume of our domain. Thus we identify

gradME[u] ≡ −ǫ∆u+W ′(u) − 1

|Ω|

∫

Ω

W ′(u) dx,

in the space L2
0(Ω) and the ansatz (2.1) gives us the law of motion

∂u

∂t
= ǫ∆u−W ′(u) +

1

|Ω|

∫

Ω

W ′(u) dx, x ∈ Ω (2.13)

which, with the boundary conditions in (2.8), is the model for phase separation

introduced by Rubinstein and Sternberg in [54] as an alternative to the classical

Cahn-Hilliard equation (given by (2.16)) since, for example, stationary solutions

of (2.13) will also be stationary solutions to (2.16).

Equation (2.13) may be regarded as being physically unrealistic since it violates

a physical principle namely that there should be “no action at a distance”. In

brief, this means that the evolution law for the distribution u should be local but

in (2.13), the term 1
|Ω|
∫

Ω
W ′(u) dx, which arose from an enforcement of the con-

servation of mass, is an integral operator and hence non-local in nature so in this

sense the model (2.13) could be regarded as unreasonable.

A better choice of metric is that of the Hilbert space H−1
0 (Ω) where H−1(Ω) is the

dual of the Sobolev space H1(Ω) of L2 functions whose weak first derivatives are

also L2 functions and the subscript 0 refers to mean value zero. For any function

v ∈ L2(Ω) satisfying
∫

Ω

v(x) dx = 0,

there is a unique function φ which is a solution to the Neumann problem

∆φ = v(x), in Ω, (2.14)

∇φ · n = 0, on ∂Ω,

and satisfies
∫

φ(x) dx = 0. As in [29], the inner product in H−1
0 (Ω) can be defined

by

〈v1, v2〉H−1
0

:= (∇φ1,∇φ2),
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where φi and vi for i = 1, 2 are related to each other via (2.14) so that we may

write this as

〈∆φ1,∆φ2〉H−1
0

= (∇φ1,∇φ2). (2.15)

Hence from (2.11), (2.14) and (2.15) we have

d

dh
E[u+ hv]|h=0 =

d

dh
E[u+ h∆φ]|h=0

=

∫

Ω

[W ′(u) − ǫ∆u]∆φ dx

= −
∫

Ω

∇[W ′(u) − ǫ∆u] · ∇φ dx

= (−∇[W ′(u) − ǫ∆u],∇φ)

= 〈−∆[W ′(u) − ǫ∆u],∆φ〉H−1
0

= 〈gradE[u], v〉H−1
0
.

Thus we obtain the Cahn-Hilliard equation [13]

∂u

∂t
= ∆[W ′(u) − ǫ∆u], x ∈ Ω (2.16)

which also conserves mass and, as discussed in Chapter 1, describes the process

of phase separation by which the two components of a binary alloy subject to a

sharp drop in temperature spontaneously separate and form domains which are

pure in each component. The Cahn-Hilliard equation is usually considered with

the following boundary conditions

∇u · n = 0 and ∇[W ′(u) − ǫ∆u] · n = 0 on ∂Ω, (2.17)

the first of which corresponds to there being no exchange of material at the bound-

ary of Ω and the second is necessary in order to have global conservation of the

order parameter. Note that equilibria of the Cahn-Hilliard equation with the

boundary conditions in (2.17) do correspond to the equilibria of the non-local

bistable diffusion equation in (2.13) with Neumann boundary conditions. This is

seen by considering the stationary problem

∆[W ′(u) − ǫ∆u] = 0, x ∈ Ω, (2.18)
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associated with (2.16) and integrating (2.18) over Ω twice using the boundary

conditions in (2.17).

2.1.3 The local and non-local Allen-Cahn equations

Suppose, instead of considering the Ginzburg-Landau form of the free energy (2.6),

we take the free energy functional

E[u] =
ǫ

4

∫

Ω

∫

Ω

J(|x− y|)(u(y) − u(x))2 dy dx+

∫

Ω

W (u) dx, (2.19)

known as the van der Waals free energy functional where J(·) ∈ L1(Ω) is a smooth

weight function which measures the interaction between particles at position x

and particles at position y and as before W (u) = u4

4
− u2

2
. A derivation of (2.19)

from elementary statistical mechanics can be found in [5]. As with the Ginzburg-

Landau free energy functional in (2.6), the first term in (2.19) penalises spatial

non-uniformity while the second term penalises states which take values other than

±1. As shown in [30], the associated unconstrained gradient flow of (2.19) with

respect to the L2-inner product is the integro-differential equation

∂u

∂t
= ǫ

∫

Ω

J(|x− y|)(u(y) − u(x)) dy + f(u), x ∈ Ω. (2.20)

The functional in (2.19) is a natural generalisation of the Ginzburg-Landau free

energy functional given in (2.6). For simplicity, we illustrate this in the one-

dimensional situation so that Ω ⊂ R for the moment. Consider just the interacting

part I(u) of the free energy functional (2.19) so that

I(u) =
ǫ

4

∫

Ω

∫

Ω

J(|x− y|)(u(y) − u(x))2 dy dx. (2.21)

We change variables in (2.21) to ξ = x+y

2
and η = x−y

2
and Taylor expand the

expression about η = 0 to obtain

ǫ

4

∫

Ω

∫

Ω

J(2|η|)(u(ξ − η) − u(ξ + η))2 dη dξ

= ǫ

∫

Ω

∫

Ω

J(2|η|)
( ∞
∑

k=1

η2k−1

(2k − 1)!
D2k−1u(ξ)

)2

dη dξ.
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We now truncate the series at k = 1 so that

I(u) = ǫ

∫

Ω

∫

Ω

J(2|η|) (ηDu(ξ))2 dη dξ,

= ǫ

∫

Ω

J(2|η|)η2 dη

∫

Ω

[Du(ξ)]2 dξ

= c
ǫ

2

∫

Ω

[Du(ξ)]2 dξ

for c = 2
∫

Ω
J(2|η|)η2 dη which gives the interacting part of the free energy func-

tional in (2.6) up to a constant c which can be absorbed by a further change of

variable. Thus one can view (2.20) as a non-local analogue for the Allen-Cahn

equation (2.7) and one advantage it has over (2.7) lies in the fact that the diffu-

sion term in (2.20) can account for more general types of interactions between two

nearby states.

If we set the parameter ǫ = 0 in either (2.7) or (2.20) we obtain the kinetic equation

ut = f(u), x ∈ Ω, (2.22)

and this ordinary differential equation has stable equilibria at u = ±1 and an

unstable equilibrium at u = 0 where clearly

u(0) > 0 ⇒ u(t) → +1 as t→ ∞,

u(0) < 0 ⇒ u(t) → −1 as t→ ∞.

The kinetic equation also admits an uncountable set of equilibria which can be

characterised as follows. If we take any disjoint sets A, B and C such that

A ∪ B ∪ C = Ω then any function u(x) such that u = 1 in A, u = 0 in B

and u = −1 in C is a steady state solution of (2.22) and clearly there will be an

uncountable number of these.

Fife in [30] was particularly interested in characterising the differences between

equations (2.7) and (2.20). We mentioned in Section 2.1.2 that in some nonlin-

ear reaction-diffusion equations, solutions can develop internal transition layers
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or interfaces which separate the spatial domain into regions with different phase.

Typically this occurs when the diffusion coefficient ǫ is small. The motion of these

interfaces is then driven by their curvature. The Allen-Cahn equation (2.7) is an

example of an equation exhibiting such qualities. The situation for the Allen-Cahn

equation in one space dimension is well understood (see the pioneering work of Carr

and Pego [14] and also Fusco and Hale [32]): starting with smooth initial data with

a finite number of simple zeros and a sufficiently small ǫ, the orbit of (2.7) quickly

evolves to a state which is approximately a step function that takes values in the

set {−1,+1} where regions in which u ≈ 1 are separated from regions in which

u ≈ −1 by transition layers or interfaces. Diffusive effects tending to decrease the

area of the interfaces then take hold and drive these transition layers towards one

another or towards the boundary ∂Ω of Ω at an extremely slow speed (O(e
− C√

ǫ ) for

a constant C which depends on the distance between the layers). When some of

the layers are close enough to each other or to ∂Ω, they disappear quickly and the

system once again enters this regime of extremely slow migration of the transition

layers. For ǫ sufficiently small, the process repeats finitely many times until finally

all the transition layers have been annihilated and the solution converges either

to +1 or to −1 depending on the precise nature of the initial condition u0(x). So

for small enough ǫ, what one should theoretically see is a spatially homogeneous

state but the time for settling down to this state is so long that what one actually

observes is “the motion towards a stable state”. This phenomenon can be referred

to as “dormant instability” or “coarsening of solutions” and it means that in the

case of the Allen-Cahn equation (2.7), the only stable equilibria are the constant

stable solutions of the kinetic equation (2.22) i.e. u ≡ ±1

The situation is different in the case of the non-local Allen-Cahn equation (2.20).

It is shown in [36] that a “Conway-Hoff-Smoller” kind of result holds for (2.20):

if the diffusion coefficient ǫ is sufficiently large then the only stable steady state

solutions in, for example, L∞(Ω) of (2.20) are the constant solutions u = +1 and
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u = −1. However, as shown in [25], for sufficiently small ǫ, the solution does

not converge to either of the stable homogeneous states u = +1 or to u = −1.

Instead, for every initial condition u0(x) that changes sign in Ω, there is a value

ǫ0 > 0 which depends upon u0(x), such that the non-local Allen-Cahn equation

admits an uncountable number of non-constant steady state solutions which are in

one-to-one correspondence with the (uncountable) steady state solutions of the ki-

netic equation (2.22). This is because, as shown in [25] using the implicit function

theorem, for each solution û of f(u) = 0, there exists a locally unique continuation

u(ǫ) of û (with u(0) = û) to the steady state solutions of (2.20) provided ǫ is

small enough. Hence in the case of the non-local Allen-Cahn equation (2.20) with

sign-changing initial data u0(x), for 0 < ǫ < ǫ0, the initial condition will be in the

domain of attraction of some non-constant (not necessarily smooth) equilibrium

solution of (2.20).

To summarise, for all ǫ > 0, solutions to the Allen-Cahn equation (2.7) will (even-

tually) coarsen either to +1 or to −1 and for sufficiently small values of ǫ, solutions

to the non-local Allen-Cahn equation (2.20) cannot coarsen and the equilibrium

solutions of (2.20) are in one-to-one correspondence with equilibrium solutions of

the kinetic equation (2.22). This makes (2.7) a singular perturbation of (2.22)

since an approximation to (2.22) cannot be made simply by setting ǫ close to zero

in (2.7), while (2.20) is a regular perturbation of (2.22) and this is essentially a

consequence of the boundedness in L∞(Ω) of the non-local operator A in (2.20)

defined by

Au =

∫

Ω

J(|x− y|)(u(y) − u(x)) dy.

Another consequence of the boundedness of the operator A is that the non-local

Allen-Cahn equation is well-posed both forwards and backwards in time hence de-

fines a flow in L∞(Ω) while the local Allen-Cahn equation (2.7) is well-posed only

forwards in time and as such defines only a nonlinear semi-flow in for example
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the function space H1(Ω). As mentioned in Section 2.1.2, the Allen-Cahn is the

gradient system defined by the Liapunov functional given by (2.6). It possesses

a global attractor A, that is, a compact connected invariant set which for this

equation consists of equilibria and the orbits connecting them - see [38]. This set

A contains all the essential information about the asymptotic behaviour of the

semi-flow for the Allen-Cahn equation. On the other hand, it is shown in [25] that

the set of equilibria of the non-local Allen-Cahn equation is not compact in L∞(Ω)

and so it is not possible for the dynamical system generated by (2.20) to possess

a compact attractor in this setting.

The local (2.7) and non-local (2.20) Allen-Cahn equations do however share some

common features. They are both unconstrained L2-gradient flows of their respec-

tive natural free energy functionals (2.6) and (2.19) which also serve as Liapunov

functionals for the equations. Both (2.7) and (2.20) have been shown to admit

monotone travelling wave solutions, see [31] in the Allen-Cahn case and [6] in the

case of the non-local Allen-Cahn equation. The most important similarity that

the local and non-local Allen-Cahn equations share is the comparison principle: if

u0(x) ≥ v0(x) then corresponding solutions satisfy u(x, t) ≥ v(x, t) for both equa-

tions (2.7) and (2.20) under the condition in the case of (2.20) that the kernel J(·)
be non-negative. Also, the total amount of the order parameter is not conserved

over time in either of the two equations.

Both equations have their shortcomings: many people have been concerned by

the non-locality of the diffusion term in (2.20). With regards to considering dis-

continuous solutions to the equations, the fact that (2.20) generates a dynamical

system in L∞(Ω) means that propagation of discontinuities is impossible. On

the other hand, the Laplacian term in (2.7) which comes from the small-gradient

Ginzburg-Landau theory is not really justified as the flux function in that case

is linear in gradients and so the flux response to a sharp interface is for it to
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become unbounded and fail to represent the physical reality. It contradicts the

important global constraint of having an upper bound on the speed of propagation.

2.1.4 An alternative model

One would like to have a diffusion mechanism that is both local and does not

have an infinite speed of propagation of perturbations (i.e. a diffusion mechanism

which does not have immediate smoothing properties). To this end Philip Rosenau

[42, 52, 53] suggested an alternative model for solid-solid phase transitions

∂u

∂t
= ǫ∇·(ψ(∇u)) + f(u), x ∈ Ω, (2.23)

where Ω ⊂ R
n, n ≥ 1 and as we will see, the flux function ψ is a bounded

increasing smooth function of the gradient and such that ψ(0) = 0 and ψ′(s) → 0

as |s| → ∞. Of course (2.23) must be supplemented with an initial condition

and some boundary conditions which as above we take to be the no-flux boundary

conditions

ψ(∇u) · n = 0 for x ∈ ∂Ω,

and these guarantee that there is no exchange of material at the boundary of the

region Ω occupied by the material under consideration.

We can obtain (2.23) as the unconstrained L2-gradient flow of the free energy

functional given as

ER[u] =

∫

Ω

[W (u) + ǫΨ(∇u)] dx. (2.24)

where W (u) is the double-well potential given in (2.4) and as we will show, suitable

choices for the functions Ψ in (2.24) and ψ in (2.23) are

Ψ(∇u) =
√

1 + |∇u|2 − 1,
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and

ψ(∇u) =
∇u

√

1 + |∇u|2
.

With the above choices for Ψ and ψ we have, from Definition 2.2 with H = L2(Ω),

(gradER[u], v) =
d

dh
ER[u+ hv]|h=0

=
d

dh

∫

Ω

[W (u+ hv) + ǫΨ(∇u+ h∇v) dx|h=0

=

∫

Ω

[

W ′(u)v + ǫ
∇u · ∇v

√

1 + |∇u|2

]

dx

=

∫

Ω

W ′(u)v dx+ ǫ

∫

Ω

ψ(∇u) · ∇v dx

=

∫

Ω

W ′(u)v dx+ ǫ

{∫

∂Ω

v [ψ(∇u) · n] dS −
∫

Ω

v∇ · (ψ(∇u)) dx

}

=

∫

Ω

[W ′(u) − ǫ∇ · (ψ(∇u))] v dx,

= (W ′(u) − ǫ∇ · (ψ(∇u)), v),

for all v ∈ L2(Ω) where we have used Green’s identity:
∫

Ω

v∆u dx =

∫

∂Ω

v
∂u

∂n
dS −

∫

Ω

∇u · ∇v dx,

but taken ∇u = ψ(∇u). As in the situation for the local and non-local Allen-Cahn

equations and their respective free energy functionals, the free energy functional

in (2.24) serves as a Liapunov functional for (2.23) as one can easily check.

We will be restricting ourselves, as Rosenau did in [42, 52, 53], to one space

dimension so that Ω ⊂ R and from the point of view of the free energy functional

ER[u] =

∫

Ω

[W (u) + ǫΨ(ux)] dx, x ∈ Ω ⊂ R, (2.25)

we can determine the properties that the functions Ψ and ψ must possess in order

for (2.23) to be able to admit discontinuous solutions. As discussed in Chapter 1,

if large gradients occur then the Ginzburg-Landau form for the free energy func-

tional (2.6) cannot be correct. Rosenau [52] generalised the Ginzburg-Landau form
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of the free energy functional to domains of larger gradients by modifying the free

energy functional in (2.6) and considering the free energy functional in the form

of (2.25).

The L2 gradient flow of the free energy functional in (2.25) is given by

ut = ǫ(Ψ′(ux))x −W ′(u)

= ǫΨ′′(ux)uxx −W ′(u), (2.26)

assuming u is smooth enough. Hence one sees immediately that we must have that

Ψ is convex, i.e.

Ψ′′(s) ≥ 0 ∀s.

since if Ψ′′(ux) were to become negative then (2.26) would describe the dynam-

ics of backwards diffusion and this problem is not well-posed as we do not have

continuous dependence on the initial data. We also require Ψ(ux) to have linear

growth at infinity so that the flux Ψ′(ux) = ψ(ux) will saturate as |ux| → ∞.

This provides a means to control the growth of the flux as gradients become infinite

and we thereby depart from the previous nonphysical linear dependence of the flux

on the gradients in which an overestimate of the speed of propagating fronts can

occur. Therefore,

Ψ(s) =
√

1 + s2 − 1, (2.27)

being a convex function with linear growth at infinity, is indeed a suitable choice

for Ψ and the free energy functional (2.25) becomes

ER[u] =

∫

Ω

[

u4

4
− u2

2
+ ǫ(

√

1 + u2
x − 1)

]

dx, (2.28)

which reduces to the Landau-Ginzburg free energy functional (2.6) in the case of

small gradients since

√
1 + s2 − 1 ∼ 1

2
s2,
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for small s. We therefore take the flux function ψ to be given by

ψ(s) =
s√

1 + s2
, (2.29)

which corresponds to the well-known mean-curvature operator.

We note that the flux in (2.29) is strongly saturating since

∫ ∞

0

sψ′(s) ds <∞,

and so the saturation rate is sufficiently fast and initially imposed discontinuities

persist for a finite time as shown in [53]. There are other possibilities for a flux

with strong saturation. For example, one could take

ψ(s) =
1

2
tan−1(s) +

1

2

s

1 + s2
,

or

ψ(s) = tanh(s),

however, we will proceed with the choice of flux (2.29) which is taken in [18, 42,

52, 53]. An example of a flux with weak saturation is

ψ(s) = tan−1(s),

since in that case

∫ ∞

0

sψ′(s) dx =

∫ ∞

0

s

1 + s2
ds = ∞,

and initially imposed discontinuities are resolved instantaneously [53].

With the choice for Ψ(s) in (2.27), the evolution equation (2.26) becomes

ut = ǫ

(

ux
√

1 + u2
x

)

x

+ u− u3, x ∈ Ω ≡ (0, L), (2.30)
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where L > 0 is the length of the space domain. Equation (2.30) with Neumann

boundary conditions and suitable initial data will be the subject of discussion in

the next two chapters. In Chapter 3 we will prove that (2.30) is well-posed in the

space of functions of bounded variation (see Section 2.2 for a discussion on func-

tions of bounded variation). In Chapter 4, we study the one-dimensional stationary

problem associated with (2.30) and obtain results for classical and non-classical

solutions to that problem. We will also be interested in determining in what ways

the effects of the quasilinear diffusion mechanism in (2.30) can be related to the

effects of the semilinear and non-local diffusion mechanisms of (2.7) and (2.20)

respectively.

As an aside, we note that (2.30) as it stands is dimensionless. In the most general

dimensional form, we would have

∂û

∂t̂
=

∂

∂x̂





κ̂
√

1 + α̂
(

∂û
∂x̂

)2

∂û

∂x̂



+ β̂û− γ̂û3 on 0 ≤ x̂ ≤ L̂,

where carets denote dimensional quantities and where κ̂, α̂, β̂ and γ̂ are physical

parameters. The nondimensionalisation that yields (2.30) is

û =

√

β̂

γ̂
u, x̂ =

√

α̂β̂

γ̂
x, t̂ =

1

β̂
t, ǫ =

κ̂γ̂

α̂β̂2
, L = L̂

√

γ̂

α̂β̂
.

If we take û to be a dimensionless quantity initially, then both β̂ and γ̂ become

inverse timescales while
√
α̂ is a lengthscale representing the inverse of the typical

gradient at which the flux starts to saturate. The dimensionless parameter L then

represents the ratio of the domain length to this saturation lengthscale, while the

dimensionless parameter ǫ represents the ratio of the saturation lengthscale to

a diffusive lengthscale defined in terms of the rate parameters and the diffusion

coefficient. Hence we have shown that (2.30) contains two irreducible dimensionless

parameters L and ǫ and we will see in Chapter 4 that the bifurcation behaviour

of the stationary problem associated (2.30) depends in a non-trivial way on the

parameter ǫ as well as on the length L of the space domain Ω.
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We conclude this section by noting that one obtains a quasilinear version of the

Rubinstein-Sternberg equation (2.13) by taking the constrained L2-gradient flow

of (2.24) to give the following mass-conserving equation

ut = ǫ∇·(ψ(∇u)) + f(u) − 1

|Ω|

∫

Ω

f(u) dx, x ∈ Ω,

whose one-dimensional stationary problem with Neumann boundary conditions we

will study in Chapter 5.

2.2 Functions of bounded variation

In Chapter 3, we consider a problem of the form

ut = ǫ(ψ(ux))x + f(u), (2.31)

where x ∈ Ω = (0, L) ⊂ R, L > 0, ǫ ∈ (0,∞), ψ(s) = s√
1+s2

and f(u) = u − u3.

We explained in Section 2.1.4 that (2.31) can be obtained as the L2-gradient flow

of the free energy functional in (2.28).

In studying this problem, we will not be able to work in the function space Lp(Ω)

since in general

f(u) : Lp(Ω) 9 Lp(Ω).

For example, take p = 1 and u(x) = x−
1

2 so that u(x) ∈ L1(Ω) but u3(x) = x−
3

2 /∈
L1(Ω). Nor will we be able to work in any classical Sobolev space such as H1(Ω) of

L2-functions whose weak first derivatives are also L2-functions since (2.31) admits

discontinuous solutions and in particular, in the one-dimensional setting of interest

to us, H1(Ω) ⊂ C(Ω̄) (as discussed in Chapter 1). When u is discontinuous, the

gradient of u has to be understood as a measure.

Therefore as we shall see, the space of functions of bounded variation (BV ) is a

reasonable candidate in which to study solutions to (2.31). To define BV in the
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modern way we need some measure theory and what follows can be found in, for

example [3, 27, 58, 60]. We need a measure space (X, E) where X is any set and E
is a σ-algebra of subsets of X. That is, E is a collection of subsets of X satisfying

• E is non-empty so that there is at least one A ⊂ X in E

• E is closed under complementation: if A ∈ E then so too is Ac = X\A

• E is closed under countable unions: if we have a countable collectionA1, A2, · · ·
of subsets of X which are in E , then their union

∞
⋃

n=1

An is also in E .

Definition 2.4. Let (X, E) be a measure space and let m ∈ N with m ≥ 1. A

function µ : E → R
m is called a measure if it satisfies the following properties

• µ(∅) = 0

• If {Ek} ⊂ E is a collection of pairwise disjoint sets, i.e. if Ei ∩ Ej = ∅ for

i 6= j, then µ

( ∞
⋃

k=0

Ek

)

=
∞
∑

k=0

µ(Ek).

• µ = [µ1, · · · , µm] ∈ R
m

If m = 1 we say that µ is a real measure and if m > 1 we say that µ is a vector-

valued measure.

A set E is said to be measurable with respect to the measure µ if it belongs to the

σ-algebra on which µ is defined.

Definition 2.5. The total variation of a measure µ is given by

|µ|(E) = sup

{ ∞
∑

k=1

||µ(Ek)||
}

where || · || is the norm in R
m and the supremum is taken over all finite collections

{Ek} of pairwise disjoint sets in E such that
∞
⋃

k=1

Ek = E.
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In particular, as the indicated collection of sets, one can take the set E itself so

that we obtain the inequality

||µ(E)|| ≤ |µ|(E).

The smallest σ-algebra B that contains all open subsets of the space X is called the

Borel algebra of X and the sets belonging to this algebra are called Borel sets. By

virtue of the definition of a Borel set, all open sets and also all closed sets, being

complements of open sets, are Borel sets. A measure µ defined on the measure

space (X,B) is called a Borel measure and any Borel measure which is finite on

compact sets is called a Radon measure.

Let Ω ⊂ R
n, n ≥ 1, u ∈ L1

loc(Ω) and suppose that for all i = 1, · · · , n there exists

a finite measure µ such that
∫

Ω

∂v

∂xi

u dx = −
∫

Ω

v dµi ∀ v ∈ C1
0(Ω).

Then we say that µi represents the generalised i-th first partial derivative of u so

that

Du := (D1u, · · · , Dnu) := (µ1, · · · , µn),

where Diu = ∂u
∂xi

for i = 1, · · · , n.

Definition 2.6. A function u ∈ BV (Ω) if u ∈ L1(Ω) and
∂u

∂xi

are Radon measures

with finite total variation for all i = 1, · · · , n in the sense defined above.

Thus u ∈ BV (Ω) if there exist Radon measures µ1, · · · , µn such that |µi|(Ω) <∞
∀i and

∫

Ω

∂v

∂xi

u dx = −
∫

Ω

v dµi ∀ v ∈ C1
0(Ω), (i = 1, · · · , n) (2.32)

The variation V (u,Ω) of a function u ∈ L1
loc(Ω) is defined by

V (u,Ω) := sup
v∈C1

0
(Ω)

{∫

Ω

u div v dx : ||v||∞ ≤ 1 ∀x ∈ Ω, 1 ≤ i ≤ n

}

, (2.33)
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as in [3, Definition 3.4] and it is shown in [3, Proposition 3.6] that u ∈ BV (Ω)

if and only if V (u,Ω) < ∞. It is also proven in [3, Proposition 3.6] that for any

u ∈ BV (Ω), V (u,Ω) coincides with |Du|(Ω), the total variation of the measure

Du. For u ∈ BV (Ω), we will denote |Du|(Ω) = V (u,Ω) by
∫

Ω
|Du|.

Suppose we take Ω ≡ (0, L) ⊂ R, L > 0 and consider the one-dimensional situa-

tion.

Definition 2.7. For any function u : Ω → R, the pointwise variation pV (u,Ω) of

u in Ω is defined by

pV (u,Ω) = sup

{

n−1
∑

i=1

|u(xi+1) − u(xi)| : n ≥ 2, 0 < x1 < · · · < xn < L

}

,

so the above supremum is taken over all partitions of [0, L].

Hence pV (u,Ω) is going to be sensitive to changes in the values of u even at a

single point in Ω. Consequently, as in [3] we define the essential variation

eV (u,Ω) := inf {pV (v,Ω) : v = u a.e. in Ω} , (2.34)

and it is proven in [3, Theorem 3.27] and also in [27, Theorem 1, p.217] that for

any u ∈ L1
loc(Ω), the infimum in (2.34) is attained and coincides with the variation
∫

Ω

|ux| = sup

{∫

Ω

uvx dx : v ∈ C1
c (0, L), ||v||∞ ≤ 1

}

, (2.35)

as defined in (2.33) (except that n = 1 here).

With a view to Chapter 3, we will also need to define the functional
∫

Ω

Ψ(ux),

for u ∈ BV (Ω) where Ψ is a convex function which has linear growth at infinity

and whose argument is a measure. Following [23, Lemma 1.1], for u ∈ BV (Ω), we

define
∫

Ω

Ψ(ux) = sup
v∈DΨ(C∞

0
)

{

−
∫

Ω

uvx dx−
∫

Ω

Ψ∗(v) dx

}

, (2.36)
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where

Ψ∗(v) = sup
y∈R

{yv − Ψ(y)} (2.37)

is the conjugate or Legendre transform of Ψ and

DΨ(C∞
0 ) = {v ∈ C∞

0 (Ω) : Ψ∗(v) ∈ L1(Ω)}.

Lemma 2.8. Suppose Ψ(s) = |s|, then through the definition of

∫

Ω

Ψ(ux) for

u ∈ BV (Ω) in (2.36), we obtain

∫

Ω

|ux| = sup
v∈C∞

0

{∫

Ω

uvx dx : |v(x)| ≤ 1 ∀x ∈ Ω

}

, (2.38)

as required by (2.35).

Proof. By definition,

∫

Ω

Ψ(ux) =

∫

Ω

|ux| = sup
v∈DΨ(C∞

0
)

{

−
∫

Ω

uvx dx−
∫

Ω

Ψ∗(v) dx

}

,

and so we need to find a formula for the Legendre transform of Ψ(s) = |s| us-

ing (2.37). Suppose that |v| > 1 and consider first the case where v > 1 so that

yv − |y| > y − |y| = 0,

for all y > 0. Also, for such v,

yv − |y| = y(v + 1) < 0,

for all y < 0.

For v < −1 with y > 0 we have

yv − |y| = y(v − 1) < 0,

and for such v with y = −x < 0 where x > 0 we also have

yv − |y| = −xv − |x| > x− |x| = 0.
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Therefore we have shown that for v such that |v| > 1,

Ψ∗(v) = sup
y∈R

{yv − |y|} = +∞.

Now we consider the case where |v| ≤ 1. Then

yv − |y| = y(v − 1) ≤ 0,

for all y ≥ 0 and

yv − |y| = y(v + 1) ≤ 0,

for all y < 0. Consequently, we have that for v such that |v| ≤ 1,

Ψ∗(v) = sup
y∈R

{yv − |y|} = 0.

Having exhausted all possibilities, we conclude that v ∈ DΨ(C∞
0 (Ω)) only in the

situation where |v| ≤ 1 in which case Ψ∗(v) = 0. Therefore for Ψ(s) = |s|,

DΨ(C∞
0 ) = {v ∈ C∞

0 (Ω) : |v(x)| ≤ 1 ∀x ∈ Ω},

and
∫

Ω

|ux| = sup
v∈C∞

0

{

−
∫

Ω

uvx dx : |v(x)| ≤ 1 ∀x ∈ Ω

}

= sup
v∈C∞

0

{∫

Ω

uvx dx : |v(x)| ≤ 1 ∀x ∈ Ω

}

.

as in (2.38).

Example 2.9. Suppose we take Ω = (0, L), L > 0 and u(x) = H
(

x− L
2

)

∈
BV (Ω), then

∫

Ω

|ux| = sup
v∈C∞

0

{

−
∫

Ω

uvx dx : |v(x)| ≤ 1 ∀x ∈ Ω

}

= sup
v∈C∞

0

{

−
∫ L

0

H

(

x− L

2

)

vx dx : |v(x)| ≤ 1 ∀x ∈ Ω

}

= sup
v∈C∞

0

{

−
∫ L

L
2

vx dx : |v(x)| ≤ 1 ∀x ∈ Ω

}

= sup
v∈C∞

0

{

v

(

L

2

)

: |v(x)| ≤ 1 ∀x ∈ Ω

}

= 1.
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Lemma 2.10. Suppose

Ψ(s) =
√

1 + s2 − 1,

then for u ∈ BV (Ω),

∫

Ω

Ψ(ux) := sup
v∈C∞

0

{∫

Ω

uvx dx+

∫

Ω

√
1 − v2 − |Ω| : |v(x)| ≤ 1∀x ∈ Ω

}

. (2.39)

Moreover, we have the following estimate

∫

Ω

|ux| dx− |Ω| ≤
∫

Ω

√

1 + u2
x − 1 dx ≤

∫

Ω

|ux| dx+ |Ω|, (2.40)

for all u ∈ BV (Ω) which we will make use of in Section 3.1.

Proof. From (2.37)

Ψ∗(v) = sup
y∈R

{yv −
√

1 + y2 + 1}.

As in Lemma 2.8, we suppose that |v| > 1 and first consider the case where v > 1

for which

yv −
√

1 + y2 + 1 > y + 1 −
√

1 + y2

> y + 1 − (1 + |y|) = 0,

for all y > 0 where we have used the inequality

√
p+ q <

√

p+ 2
√
p
√
q + q

=
√

(
√
p+

√
q)2 =

√
p+

√
q ∀p > 0, ∀q > 0. (2.41)

For such v, we also have

yv −
√

1 + y2 + 1 < yv < 0,

for all y < 0.
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Now suppose that v < −1 so that

yv −
√

1 + y2 + 1 < −y −
√

1 + y2 + 1

< −y − 1 + 1

= −y < 0,

for all y > 0.

Also, for such v we have, for y = −x < 0 with x > 0,

yv −
√

1 + y2 + 1 = −xv −
√

1 + x2 + 1

> x−
√

1 + x2 + 1

> x− (1 + |x|) + 1

= 0,

using inequality (2.41) once again.

We have therefore proved that in the case where v is such that |v| > 1,

Ψ∗(v) = sup
y∈R

{yv −
√

1 + y2 + 1} = +∞.

Consider the case of |v| ≤ 1 with v(x) fixed and define the function

g(y) = yv −
√

1 + y2 + 1.

We want to determine the maximum of g(y) with v(x) fixed and such that |v| ≤ 1

hence we consider

g′(y) = 0 ⇒ v
√

1 + y2 − y
√

1 + y2
= 0

⇒ v
√

1 + y2 = y

⇒ y2(1 − v2) = v2

⇒ y =
v√

1 − v2
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Hence

g

(

v√
1 − v2

)

=
v2

√
1 − v2

− 1√
1 − v2

+ 1

= −
√

(1 − v2)2

1 − v2
+ 1

= −
√

1 − v2 + 1

and

g′′
(

v√
1 − v2

)

= (v2 − 1)
√

1 − v2 ≤ 0,

so that max
y∈R

g(y) = −
√

1 − v2 + 1 for |v| ≤ 1. Thus

sup
y∈R

{yv −
√

1 + y2 + 1} =











+∞ if |v| > 1

−
√

1 − v2 + 1 if |v| ≤ 1

,

and we finally obtain

∫

Ω

√

1 + u2
x − 1 = sup

v∈C∞
0

{

−
∫

Ω

uvx dx+

∫

Ω

√
1 − v2 − |Ω| : |v(x)| ≤ 1 ∀x ∈ Ω

}

= sup
v∈C∞

0

{∫

Ω

uvx dx+

∫

Ω

√
1 − v2 − |Ω| : |v(x)| ≤ 1 ∀x ∈ Ω

}

,

as required.

From the above calculation we also have

∫

Ω

√

1 + u2
x − 1 = sup

v∈C∞
0

{∫

Ω

uvx dx+

∫

Ω

√
1 − v2 dx : |v(x)| ≤ 1 ∀x ∈ Ω

}

− |Ω|

≥ sup
v∈C∞

0

{∫

Ω

uvx dx : |v(x)| ≤ 1 ∀x ∈ Ω

}

− |Ω|

=

∫

Ω

|ux| − |Ω|

and
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∫

Ω

√

1 + u2
x − 1 ≤ sup

v∈C∞
0

{∫

Ω

uvx dx+

∫

Ω

dx : |v(x)| ≤ 1 ∀x ∈ Ω

}

− |Ω|

=

∫

Ω

|ux|

<

∫

Ω

|ux| + |Ω|,

so that we obtain (2.40), i.e.

∫

Ω

|ux| dx− |Ω| ≤
∫

Ω

√

1 + u2
x − 1 ≤

∫

Ω

|ux| dx+ |Ω|,

for all u ∈ BV (Ω) thus the lemma is proven.

Example 2.11. As in Example 2.9, we take Ω = (0, L) and u(x) = H
(

x− L
2

)

so

that we have

∫

Ω

√

1 + u2
x − 1 = sup

v∈C∞
0

{

−
∫

Ω

uvx dx+

∫

Ω

√
1 − v2 dx− |Ω| : |v(x)| ≤ 1 ∀x ∈ Ω

}

= sup
v∈C∞

0

{

−
∫ L

L
2

vx dx+

∫ L

0

√
1 − v2 dx : |v(x)| ≤ 1 ∀x ∈ Ω

}

− L

= sup
v∈C∞

0

{

v

(

L

2

)

+

∫ L

0

√
1 − v2 dx : |v(x)| ≤ 1 ∀x ∈ Ω

}

− L,

(2.42)

and since we are considering a supremum, we need to optimise both terms in (2.42).

To this end, consider the functions

wδ(x) =







(

2x−L+2δ
2δ

)

+
, 0 ≤ x < L

2
,

(

L−2x+2δ
2δ

)

+
, L

2
< x ≤ L,

for some 0 < δ < L
2
, where (f(x))+ = max(0, f(x)). We have plotted the functions

wδ(x) for δ = 0.1, δ = 0.4 and δ = 0.8 in Figure 2.11.
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0
0 LL

2

1

wδ(x)

Figure 2.2: wδ(x) for δ = L
30

, L
6

and L
3
.

The function v(x) that is the limit as δ tends to zero of wδ(x), while not being

a C∞
0 function, will optimise both of the terms in (2.42). The first term, v

(

L
2

)

,

when optimised is 1 and the second term
∫ L

0

√
1 − v2 dx when optimised is L. One

could smooth out the edges of the sequence of functions wδ(x) at each x = L
2
± δ

and at x = L
2

so that they will be C∞
0 (Ω) and we therefore conclude that in the

case where u(x) = H
(

x− L
2

)

on Ω = (0, L),
∫

Ω

√

1 + u2
x − 1 = 1.

2.3 Liapunov-Schmidt reduction

In Chapter 4 and Chapter 5 we will study local bifurcation problems. Such prob-

lems may be formulated as an equation

Θ(λ, u) = 0, (2.43)

where the unknown u is the state variable and λ is the bifurcation parameter. We

assume that Θ : R ×X → Y is a smooth mapping between Banach spaces X and
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Y and such that

Θ(λ, 0) = 0 ∀ λ ∈ R. (2.44)

We will require that Θ satisfies the conditions of the Crandall-Rabinowitz Theorem

which gives the solution set of (2.43) locally at a point (λ, u) = (λk, 0) which will

be a bifurcation point from the trivial solution to (2.43).

Theorem 2.12. Let Θ : R×X → Y satisfy (2.44) and suppose that the following

conditions hold

• Ker(Θu(λk, 0)) is one-dimensional and spanned by vk,

• codim(Range(Θu(λk, 0))) = 1,

• Θλu(λk, 0)vk /∈ Range(Θu(λk, 0)),

then there is a δ > 0 and a non-trivial C1-curve through (λk, 0) given by

{(λ(s), u(s)) : s ∈ (−δ, δ), (λ(0), u(0)) = (λk, 0)},

and Θ(λ(s), u(s)) = 0 for all s ∈ (−δ, δ). Moreover, any solution of Θ(λ, u) = 0

either lies on this curve or is of the form (λ, 0).

Proof. See [56, Theorem 13.5].

Liapunov-Schmidt reduction is the process by which a problem such as (2.43)

involving multiple solutions is reduced to a single equation h(λ, y) = 0 where

h : R × R → R and whose solutions are locally in one-to-one correspondence with

solutions of the original problem i.e. in a neighbourhood of a bifurcation point

(λ, u) = (λk, 0) from the trivial solution u = 0 to (2.43).

The linearisation of Θ applied to v ∈ X is given by

dΘλ,u · v =
d

dh
Θ(λ, u+ hv)|h=0,
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and we let S be (dΘ)λk,0 = Θu(λk, 0) with ker(S) denoted by K and range(S)

denoted by R. We assume that S : X → Y is a Fredholm operator of index zero

meaning that dim K < ∞, R is closed and dim K = codim R. The derivation of

the reduced equation h can then be divided into the following five steps as in [34].

Step 1. Decompose the spaces X and Y into summands related to S as follows

X = K ⊕K⊥, Y = R⊕R⊥.

Let E : Y → R denote the projection of Y onto R so that E(x) = x for

x ∈ R (ES = S) and E(x) = 0 for x ∈ R⊥.

Step 2. Transfer the decomposition to the equation Θ(λ, u) = 0. For this we note

the relation

v = 0 ⇔ Ev = 0 and (I − E)v = 0,

so that (2.43) can be written as the alternative pair of equations

EΘ(λ, u) = 0, (2.45a)

(I − E)Θ(λ, u) = 0. (2.45b)

Step 3. Decompose u ∈ X as u = v + w for v ∈ K, w ∈ K⊥ and define a mapping

G : R ×K ×K⊥ → R by

G(λ, v, w) = EΘ(λ, v + w).

The derivative of G with respect to w at (λk, 0) is ESK⊥ = SK⊥ and since

the operator SK⊥ is Fredholm, R is closed and so

SK⊥ : K⊥ → R,

is non-singular so that (2.45a) is uniquely solvable near (λk, 0) for w as a

function of λ and v by the implicit function theorem. This leads to a function

W : R ×K → K⊥ such that

EΘ(λ, v +W (λ, v)) = 0, W (λk, 0) = 0. (2.46)
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Step 4. Substitute the solution W of (2.45a) into (2.45b) to obtain the mapping

φ : R ×K → R⊥ where

φ(λ, v) = (I − E)Θ(λ, v +W (λ, v)). (2.47)

Step 5. Choose coordinates vk ∈ K and v∗k ∈ R⊥ so any v ∈ K can be written as

v = yvk for y ∈ R and define h : R × R → R by

h(λ, y) = 〈v∗k, φ(λ, yvk)〉 , (2.48)

where 〈·, ·〉 denotes the inner product defined on Y . The definition of the re-

duced function h implies that the zeros of φ are in one-to-one correspondence

with the zeros of h since φ(λ, yvk) ∈ R⊥ which implies that φ(λ, yvk) /∈ R
unless φ(λ, yvk) = 0 because of the way we have decomposed Y as a direct

sum of R and R⊥, hence

〈v∗k, φ(λ, yvk)〉 = 0 ⇔ φ(λ, yvk) = 0.

Note that if we substitute the definition of φ in (2.47) into (2.48) we obtain

h(λ, y) = 〈v∗k,Θ(λ, yvk +W (λ, yvk))〉 ,

where the projection E has dropped out since v∗k ∈ R⊥ and for any V ∈ Y ,

EV ∈ R.

While the bifurcation function h is not known explicitly, all its partial derivatives

at a bifurcation point (λk, 0) can be computed with the use of the following chain

rule

∂

∂y
{(drΘ)λ,u(z1, . . . , zr)}

= (dr+1Θ)λ,u

(

∂u

∂y
, z1, . . . , zr

)

+
r
∑

i=1

(drΘ)λ,u

(

z1, . . . ,
∂zi

∂y
, . . . , zr

)

, (2.49)

where r ∈ N is fixed and (drΘ)λ,u is a symmetric, multilinear function of r argu-

ments given by

(drΘ)λ,u(z1, · · · , zr) =
∂r

∂t1 · · · ∂tr
Θ(λ, u+ t1z1 + · · · + trzr)

∣

∣

∣

t1=···=tr=0
. (2.50)
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The derivatives of the reduced function

h(λ, y) = 〈v∗k,Θ(λ, yvk +W (λ, yvk))〉 ,

evaluated at λ = λk, y = 0 ⇒ u = 0 are given by

hy = 〈v∗k, dΘ(vk)〉 = 0

hyy =
〈

v∗k, d
2Θ(vk, vk)

〉

hyyy =
〈

v∗k, d
3Θ(vk, vk, vk) − 3d2Θ(vk, S

−1E[d2Θ(vk, vk)])
〉

(2.51)

hλ = 〈v∗k,Θλ〉

hλy =
〈

v∗k, dΘλ(vk) − d2Θ(vk, S
−1EΘλ)

〉

,

and these are obtained by applying the chain rule in (2.49) to Θ(λ, yvk+W (λ, yvk))

and then to the equation

EΘ(λ, yvk +W (λ, yvk)) = 0,

in order to obtain formulae for Wyy(λk, 0) and Wλ(λk, 0) making use of the fact

that (drΘ)λ,u is a symmetric operator.

In Chapter 4 and Chapter 5 we will also require the following standard result from

bifurcation theory.

Proposition 2.13. [34] Let h(λ, y) = 0 be a bifurcation problem such that, when

(λ, y) = (λk, 0), we have

h = hy = hyy = hλ = 0 and hyyyhλy < 0; (2.52)

then the number of solutions of h(λ, y) = 0 jumps from one to three as λ crosses

λk and so a supercritical bifurcation occurs. If hyyyhλy > 0 then the number of

solutions jumps from three to one and a subcritical bifurcation occurs.

A proof of this result which requires only the use of the implicit function theorem

can be found in [34].
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2.4 Essential and natural boundary conditions

In Section 4.5 we will prove (Theorem 4.5) a result on the instability of classical

solutions to a one-dimensional Neumann boundary value problem which requires

the use of some calculus of variations since the problem has variational structure.

This means that the solutions of the problem correspond to critical points of a

(free energy) functional which is of the form

E(w) =

∫

Ω

j(w,w′) dx,

where we take Ω = (0, L) ⊂ R for some L > 0 and

j(w,w′) = W (w) + ǫΨ(w′),

with W (s) = s4

4
− s2

2
and Ψ(s) =

√
1 + s2 − 1. Hence j has continuous partial

derivatives with respect to w and w′. Thus we consider a variational problem of

the form

E(w) =

∫

Ω

j(w,w′) dx→ min, (2.53)

on some space of functions X(Ω), say. In this section we distinguish between solv-

ing a problem such as (2.53) with essential boundary conditions and solving a

problem such as (2.53) with natural boundary conditions.

A solution u to (2.53) will satisfy

d

dτ
E(u+ τv)|τ=0 = 0,

where v is from the set of admissible variations. Hence we consider

d

dτ
E(u+ τv)|τ=0 =

d

dτ

∫

Ω

j(u+ τv, u′ + τv′) dx
∣

∣

∣

τ=0

=

∫

Ω

ju(u, u′)v + ju′(u, u′)v′ dx

=

∫

Ω

ju(u, u′)v dx+ [ju′(u, u′)v]
L

0 −
∫

Ω

d

dx
ju′(u, u′)v dx

=

∫

Ω

[

ju(u, u′) − d

dx
ju′(u, u′)

]

v dx+ [ju′(u, u′)v]
L

0 = 0. (2.54)
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Note that the boundary term [ju′(u, u′)v]L0 in (2.54) vanishes if v(0) = v(L) = 0

and these are known as essential boundary conditions in which case we are asking

that the admissible variations v be in the function space

X0(Ω) = {v ∈ X : v(0) = v(L) = 0},

hence we minimise over a subspace X0 of X and Dirichlet boundary conditions are

built into the solution space.

The boundary term in (2.54) also vanishes for all v if

ju′(u, u′)(0) = ju′(u, u′)(L) = 0,

and these are the natural boundary conditions, they are a restriction on the as-

sumed solution u to the variational problem rather than on the admissible variation

v. It is the natural boundary conditions that we will consider in Section 4.5.

2.5 Uniqueness of solutions to an initial value

problem

In the proof of Theorem 4.5 in Section 4.5 we also require the use of a result on the

uniqueness of solutions to a certain initial value problem (see (4.34)). Consider

the function

g(u, u′) := λf(u)(1 + (u′)2)
3

2 , (2.55)

where λ = 1
ǫ
∈ (0,∞), f(u) = u − u3 and u(x) is a (classical) solution of the

problem

u′′ = −g(u, u′), (2.56)

u′(0) = u′(L) = 0,

which is the Neumann stationary problem associated with (2.30) that we study in

Chapter 4. If we set u′ = z and suppose that u′′(0) = z′(0) = 0 then, using (2.56),

the particular initial value problem which arises in Section 4.5 is given by

z′′ + h1(x)z′(x) + h0(x)z(x) = 0, z(0) = z′(0) = 0 (2.57)
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where h1(x) = ∂g

∂u′ and h0(x) = ∂g

∂u
with g(u, u′) given in (2.55).

Lemma 2.14. Solutions of the initial value problem (2.57) are unique.

Proof. Since h1(x) and h0(x) are continuous functions on some open interval J

containing 0, they will both be bounded on any finite closed subinterval [x1, x2] of

J , i.e. there exists a constant M(J) ≡M such that

|h0(x)| ≤M and |h1(x)| ≤M for all x ∈ [x1, x2] ⊂ J.

We would like to show that (2.57) has a unique solution. Let u(x) and v(x)

solve (2.57) and let w(x) = u(x) − v(x) so that w(0) = w′(0) = 0. Choose

x1, x2 ∈ J such that x1 < 0 < x2. Let M be as above and let

p(x) = [w′(x)]2 + [w(x)]2,

so that p(0) = 0. For x ∈ [x1, x2] ⊂ J ,

p′(x) = 2w′(x)w′′(x) + 2w(x)w′(x)

= 2w′(x)[−h1(x)w′(x) − h0(x)w(x)] + 2w(x)w′(x)

= −2h1(x)[w′(x)]2 − 2w′(x)h0(x)w(x) + 2w(x)w′(x)

= −2h1(x)[w′(x)]2 + 2w(x)w′(x)[1 − h0(x)].

Hence

|p′(x)| ≤ 2|h1(x)|[w′(x)]2 + 2|w(x)||w′(x)||1 − h0(x)|

≤ 2|h1(x)|[w′(x)]2 + 2|w(x)||w′(x)|(1 + |h0(x)|)

≤ 2M [w′(x)]2 + 2|w(x)||w′(x)|(1 +M)

≤ 2M([w′(x)]2 + [w(x)]2) + 2|w(x)||w′(x)|(1 +M)

≤ 2M([w′(x)]2 + [w(x)]2) + ([w(x)]2 + [w′(x)]2)(1 +M)

= (1 + 3M)([w′(x)]2 + [w(x)]2) = (1 + 3M)p(x),

and we have shown that

−Kp(x) ≤ p′(x) ≤ Kp(x), x ∈ [x1, x2], (2.58)
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where K = 1 + 3M . In particular, from (2.58), we have

e−Kxp′(x) ≤ e−KxKp(x), x ∈ [0, x2]

⇒ d

dx
[e−Kxp(x)] ≤ 0, x ∈ [0, x2],

and so

e−Kxp(x) ≤ p(0) = 0 ⇒ p(x) ≤ 0 ∀x ∈ [0, x2].

But p(x) ≥ 0 and so we have that p(x) = 0 for x ∈ [0, x2]. Similarly, from (2.58),

eKxp′(x) ≥ −eKxKp(x), x ∈ [x1, 0]

⇒ d

dx
[eKxp(x)] ≥ 0, x ∈ [x1, 0],

and so

eKxp(x) ≤ p(0) = 0 ⇒ p(x) ≤ 0 ∀x ∈ [x1, 0].

But p(x) ≥ 0 hence p(x) = 0 for x ∈ [x1, 0]. Hence we have shown that p(x) ≡ 0

on [x1, x2] which implies that w(x) = u(x) − v(x) = 0 on [x1, x2] and since x1 and

x2 were arbitrary in J it follows that u(x) ≡ v(x) for all x ∈ J and so solutions of

the initial value problem (2.57) are unique.
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The Bistable Rosenau Equation:

Well-posedness and Asymptotic

Behaviour

In this chapter we study the following problem

ut = ǫ(ψ(ux))x + f(u), (x, t) ∈ QT ≡ Ω × (0, T ), (3.1)

ψ(ux) = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where Ω ⊂ R, T > 0, ǫ ∈ (0,∞), u(x, t) is the order parameter representing

the state of the system at position x and time t, f(u) is bistable and the flux

function ψ is a monotone function of the gradient which saturates at a finite value

as gradients become infinite. As discussed in Section 2.1.4, an appropriate choice

for ψ in (3.1) is the mean curvature operator given by

ψ(s) =
s√

1 + s2
,

so that ψ(0) = 0 and the boundary conditions in (3.1) can be written as

ux = 0, (x, t) ∈ ∂Ω × (0, T ).

53



Chapter Three 54

In Section 2.1.4, we noted that (3.1) is obtained as the L2-gradient flow of the

free energy functional in (2.25). In this chapter, using the methods of [22] we

prove a well-posedness result for (3.1) and while this result can be shown to hold

for any dimension n, we still we restrict ourselves to the one-dimensional case

so that Ω ≡ (0, L), L > 0. In [22], similar results are proven for the case of

a purely diffusive process so that f(u) ≡ 0 in (3.1) but here we prove a well-

posedness result for the problem with a bistable kinetic nonlinearity f(u) we take

to be u − u3. We keep the length L of the spatial domain Ω general since, as

we will show in Chapter 4, the bifurcation structure for the stationary problem

associated with (3.1) depends on the parameter ǫ as well as on the length L of the

interval. We conclude this chapter with some numerical results in connection with

the asymptotic behaviour of solutions to (3.1).

3.1 Well-posedness

The problem for which we prove a well-posedness result is given by

ut = ǫ(ψ(ux))x + f(u), (x, t) ∈ QT ≡ Ω × (0, T ), (3.2)

ux = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where (0, T ) is a finite time interval. Note that in what follows, the diffusion coeffi-

cient ǫ in (3.2) will be regarded as being fixed in (0,∞). In Section 2.1.4 we noted

that discontinuous solutions to our problem may arise and in order to account for

such solutions we will need to work in a space of functions in which discontinuous

solutions are permissible. Hence we shall be working in BV , since in this space,

functions are allowed to be discontinuous (see Section 2.2 for a discussion of BV ).

It is this space that we will use to define the notion of a variational inequality solu-

tion to (3.2) (see Definition 3.1) and it is the purpose of this section to prove a local

existence and uniqueness result for a variational inequality solution to our problem.
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We briefly note some properties of the function space BV (Ω) we will need in this

section. For a further discussion of BV (Ω) see Section 2.2 where for example we

show that a function of bounded variation is a function u ∈ L1(Ω) whose partial

derivatives in the sense of distributions are measures with finite total variation,

∫

Ω

|ux| dx = sup

{∫

Ω

u vx dx : v ∈ C∞
0 (Ω), |v(x)| ≤ 1 forx ∈ Ω

}

.

The space BV (Ω) endowed with the norm

||u||BV (Ω) = ||u||L1(Ω) +

∫

Ω

|ux| dx,

is a Banach space but this norm-topology is too strong for many applications.

For example, as noted in [3, p.121], continuously differentiable functions are not

dense in BV (Ω) with respect to this topology. The topology on BV which we will

require in this chapter is the BV -weak∗ topology defined by

uj
BV −w∗
−−⇀ u⇔ uj → u in L1(Ω) and ujx ⇀ ux in M(Ω),

where M(Ω) is the space of bounded measures on Ω and ujx ⇀ ux in M(Ω) means

that
∫

Ω

ujxϕdx→
∫

Ω

uxϕdx,

for all ϕ ∈ C∞
0 (Ω) (see [3, Definition 3.11]).

We also have the following compactness property [3, Proposition 3.13]: for every

bounded sequence {uj} ⊂ BV (Ω), there exists a subsequence {ujk
} and a function

u in BV (Ω) such that ujk

BV −w∗
−−⇀ u as k → ∞.

We need to define our notion of a variational inequality solution. To begin with, let

us suppose that u is smooth enough so as to permit us to perform the calculations

which follow. For smooth test functions v ∈ C∞(QT ), we multiply our equation
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by v − u and integrate by parts using the Neumann boundary conditions on u to

obtain

∫

QT

(ut − f(u))(v − u) dx dt+

∫

QT

ǫψ(ux)(vx − ux) dx dt = 0.

Since Ψ(s) =
√

1 + s2−1 is convex, we have that Ψ(vx)−Ψ(ux) ≥ Ψ′(ux)(vx−ux)

and hence

∫

QT

(ut − f(u))(v − u) dx dt+

∫

QT

ǫ(Ψ(vx) − Ψ(ux)) dx dt ≥ 0,

for smooth functions v ∈ C∞(QT ). This motivates the following definition of a

variational inequality solution to our problem.

Definition 3.1. Let M(QT ) denote the space of bounded measures on QT . A func-

tion u ∈ L∞(QT ) ∩ L∞((0, T ), BV (Ω)) ∩ {u : ux ∈M(QT )} is called a variational

inequality solution of problem (3.2) if ut ∈ L2(QT ) and u satisfies the variational

inequality

∫

QT

(ut − f(u))(v − u) dx dt+

∫

QT

ǫ(Ψ(vx) − Ψ(ux)) dx dt ≥ 0, (3.3)

for all v ∈ L∞(QT ) ∩ {v : vx ∈M(QT )}.

Thus vx, the distributional derivative of the function v, will be a measure with

finite total variation. In Definition 3.1, the notation that u ∈ L∞((0, T ), BV (Ω))

means that the function [0, T ] ∋ t 7→ u(·, t) ∈ BV (Ω) belongs to L∞(0, T ) for

almost every t ∈ [0, T ] i.e.

||u||L∞((0,T ),BV (Ω)) = ess sup
0<t≤T

||u(·, t)||BV (Ω) <∞.

By the above discussion, classical solutions of (3.2) automatically satisfy varia-

tional inequality (3.3). To see that a smooth solution u of (3.3) also satisfies (3.2),

choose as a test function v = u + ch where h ∈ C∞(QT ), c ∈ R, so that (3.3)

becomes

∫

QT

(ut − f(u))(ch) dx dt+

∫

QT

ǫΨ(ux + chx) dx dt ≥
∫

QT

ǫΨ(ux) dx dt.
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Hence from the Taylor series of Ψ(ux + chx) we have

c

∫

QT

(ut−f(u))h dx dt+c

∫

QT

ǫΨ′(ux)hx dx dt+
c2

2

∫

QT

ǫΨ′′(ux)(hx)2 dx dt+. . . ≥ 0.

Considering firstly, c > 0, then c < 0 and letting c → 0 from above and below

yields
∫

QT

(ut − f(u))h dx dt+

∫

QT

ǫψ(ux)hx dx dt = 0 ∀ h ∈ C∞(QT ).

Integrating by parts and using the boundary conditions, we see that u classically

satisfies (3.2).

We now formulate the main theorem of this section.

Theorem 3.2. Problem (3.2) admits a unique variational inequality solution for

all T > 0 for every u0(x) ∈ L∞(Ω) ∩BV (Ω).

Proof. A standard method for proving existence results for this type of problem

consists in replacing the original problem by a sequence of simpler problems for

which one can show existence of a solution and for which the solutions of this

sequence of problems converge in an appropriate topology to the solution of the

original problem. Hence for γ > 0, consider the following regularised problem:

ut = ǫ(ψ(ux))x + f(u), (x, t) ∈ Ω × (0, T ), (3.4)

ux = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = uγ
0(x), x ∈ Ω,

where uγ
0(x) satisfies

uγ
0 ∈ C∞(Ω̄), uγ

0x = 0 on ∂Ω,

||uγ
0 − u0||L∞(Ω) → 0 as γ → 0, ||uγ

0 ||L∞(Ω) ≤ ||u0||L∞(Ω) + 1 = m0,

and
∫

Ω

|uγ
0x| dx ≤ C(Ω)

∫

Ω

|u0x| dx. (3.5)
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The existence of such a sequence of regularising initial data uγ
0 ∈ C∞(Ω̄) follows

from the fact that the initial data u0 ∈ BV (Ω) and because the space C∞(Ω̄) is

dense in the space of functions of bounded variation with respect to the topology

defined by the metric

d(u, v) = ||u− v||L1(Ω) +

∣

∣

∣

∣

∫

Ω

|ux| −
∫

Ω

|vx|
∣

∣

∣

∣

,

see for example [27, Section 5.2.2].

Let uγ(x, t) represent the unique classical solution to the regularised problem with

the regular initial data uγ
0(x); these exist by standard parabolic theory, see for

example Theorem 7.4, [43, Chapter V] which is proved for a more restricted type

of quasilinear equation in divergence form but by the remark in [43, p.492], the

proof survives without much change for problems of the type of (3.4). We want

to show that there exists a function u ∈ BV (QT ) such that uγ → u in L1(QT )

as γ → 0, which will be a variational inequality solution to our problem and that

it does not depend on the choice of the sequence uγ . As in [22], we will need

to establish a series of convergence properties for, and a priori bounds on, the

approximating solutions uγ . Namely we show

Lemma 3.3.

A: the sequence {uγ} is uniformly bounded in L∞(QT ) and the sequence {uγ
t } is

uniformly bounded in L2(QT ),

B: the sequence {uγ} is uniformly bounded in L∞((0, T ), BV (Ω)) and in BV (QT ),

C: the sequence {uγ} converges in the space L∞((0, T ), L2(Ω)) and the sequence

{uγ(·, t)} converges in the space L2(Ω) for all t ∈ [0, T ].

Proof. [A]: In what follows, let Qτ denote the space-time cylinder Ω× (0, τ) where

τ is arbitrary in [0, T ]. First of all, we have that

||uγ||L∞(QT ) < m0, (3.6)
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where m0 > 1, by the parabolic maximum principle and properties of f(·). We

show next that the sequence {uγ
t } is uniformly bounded in L2(QT ). Multiply the

regularised problem by uγ
t and integrate over Qτ :

∫

Qτ

(uγ
t )2 dx dt = −

∫

Qτ

ǫψ(uγ
x)uγ

tx dx dt+

∫

Qτ

f(uγ)uγ
t dx dt

= −
∫ τ

0

d

dt

∫

Ω

ǫΨ(uγ
x) dx dt+

∫ τ

0

d

dt

∫

Ω

F (uγ) dx dt

= −
∫

Ω

(ǫΨ(uγ
x)|t=τ − ǫΨ(uγ

0)) dx+

∫

Ω

(F (uγ)|t=τ − F (uγ
0)) dx,

where F (u) =
∫ u

0
f(s) ds.

Hence

||uγ
t ||2L2(Qτ ) +

∫

Ω

ǫΨ(uγ
x)|t=τ dx+

∫

Ω

[

(uγ)4

4

∣

∣

∣

∣

t=τ

+
(uγ

0)2

2

]

dx

≤
∫

Ω

ǫΨ(uγ
0x) dx+

(

m4
0

4
+
m2

0

2

)

|Ω|, (3.7)

from the bounds we have on uγ
0 and on uγ . Hence using the bound on

∫

Ω
Ψ(ux) dx

in (2.40) and subsequently the bound in (3.5), it follows from (3.7) taking τ = T ,

that

||uγ
t ||2L2(QT ) ≤

∫

Ω

ǫΨ(uγ
0x) dx+

(

m4
0

4
+
m2

0

2

)

|Ω|

≤
∫

Ω

ǫ|uγ
0x| dx+

(

m4
0

4
+
m2

0

2
+ ǫ

)

|Ω|

≤ C(Ω)

∫

Ω

ǫ|u0x| dx+ C1(ǫ) <∞, (3.8)

since u0 ∈ BV (Ω) and where C1(ǫ) =
(

m4
0

4
+

m2
0

2
+ ǫ
)

|Ω|. Thus we have that the

sequence {uγ
t } is uniformly bounded in L2(QT ) and therefore also in L1(QT ).

[B]: We also need to show that the sequence {uγ} is uniformly bounded in the

space L∞((0, T ), BV (Ω)) and also that {uγ} is uniformly bounded in BV (QT ). To

see the former, first note that (3.7) also implies that
∫

Ω

ǫΨ(uγ
x)|t=τ dx ≤ C(Ω)

∫

Ω

ǫ|u0x| dx+ C1(ǫ),
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but since τ was arbitrary in [0, T ] we have, using (2.40) once again, that for all

t ∈ [0, T ]

C(Ω)

∫

Ω

ǫ|u0x| dx+ C1(ǫ) ≥
∫

Ω

ǫΨ(uγ
x) dx ≥

∫

Ω

ǫ|uγ
x| dx− ǫ|Ω|,

⇒
∫

Ω

|uγ
x| dx ≤ C(Ω)

∫

Ω

|u0x| dx+ C2(ǫ) + |Ω| = C3 <∞, (3.9)

where C2(ǫ) = 1
ǫ
C1(ǫ). This, together with the fact that uγ(·, t) ∈ L1(Ω) for all

t ∈ [0, T ] implies that

||uγ(·, t)||BV (Ω) < C4 ∀ t ∈ [0, T ],

with C4 independent of γ and of t and so sup
0<t≤T

||uγ(·, t)||BV (Ω) < C4. Hence we

have that the sequence {uγ} is indeed uniformly bounded in L∞((0, T ), BV (Ω)).

Since uγ(·, t) ∈ L1(Ω) ∀ t ∈ [0, T ], we infer that uγ ∈ L1(QT ) and since (3.9)

implies that
∫ T

0

∫

Ω

|uγ
x| dx dt ≤ C3T,

we have that

||uγ||BV (QT ) < C5,

for C5 independent of γ and so uγ is also uniformly bounded in BV (QT ).

[C]: We now establish that the sequence {uγ(·, t)} converges in the space L2(Ω)

as γ → 0 for all t ∈ [0, T ] and that the sequence {uγ} converges in the space

L∞((0, T ), L2(Ω)) as γ → 0. To this end, consider uγm and uγn both satisfying the

regularised problem, multiply the difference of the two equations by the difference

uγm − uγn , then integrate over Qτ to obtain

1

2

∫

Qτ

∂

∂t
(uγm − uγn)2 dx dt = −

∫

Qτ

ǫ(ψ(uγm

x ) − ψ(uγn

x ))(uγm

x − uγn

x ) dx dt

+

∫

Qτ

(f(uγm) − f(uγn))(uγm − uγn) dx dt. (3.10)
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Since the function ψ(s) is monotonic, the first term on the right-hand side of (3.10)

is non-positive and so (3.10) becomes

∫ τ

0

d

dt

(∫

Ω

(uγm − uγn)2 dx

)

dt ≤ 2

∫

Qτ

(f(uγm) − f(uγn))(uγm − uγn) dx dt

= 2

∫

Qτ

[

(uγm − uγn) − {(uγm)3 − (uγn)3}
]

(uγm − uγn) dx dt

= 2

∫

Qτ

[

1 − {(uγm)2 + uγmuγn + (uγn)2}
]

(uγm − uγn)2 dx dt

≤ 2

∫

Qτ

|{(uγm)2 + uγmuγn + (uγn)2} − 1||uγm − uγn|2 dx dt

≤ 2|3m2
0 − 1|

∫

Qτ

|uγm − uγn|2 dx dt

=

∫ τ

0

|6m2
0 − 2|

(∫

Ω

(uγm − uγn)2 dx

)

dt. (3.11)

Thus if we define C(m0) = |6m2
0 − 2| then we have, since τ is arbitrary in [0, T ]

d

dt

∫

Ω

(uγm − uγn)2 dx ≤ C(m0)

∫

Ω

(uγm − uγn)2 dx.

Hence Gronwall’s inequality implies that

∫

Ω

(uγm − uγn)2 dx ≤ eC(m0)τ

∫

Ω

(uγm

0 − uγn

0 )2 dx,

so that from (3.11)

∫

Ω

(uγm − uγn)2|t=τ dx ≤
∫ τ

0

C(m0)

(∫

Ω

(uγm − uγn)2 dx

)

dt+

∫

Ω

(uγm

0 − uγn

0 )2 dx

≤ (C(m0)τ e
C(m0)τ + 1)

∫

Ω

(uγm

0 − uγn

0 )2 dx,

but since τ was arbitrary in [0, T ] and uγm and uγn both satisfy the regularised

problem, we have

||uγm(·, t) − uγn(·, t)||L2(Ω) → 0 as γm, γn → 0 for all t ∈ [0, T ].

So uγn(·, t) is Cauchy in L2(Ω) for all t ∈ [0, T ] hence the sequence uγn(·, t) con-

verges in L2(Ω) for all t ∈ [0, T ] and from this it follows that uγ converges in

L∞((0, T ), L2(Ω)). Thus Lemma 3.3 is established.
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We now pass to the limit as γ → 0 making use of the above properties of the

sequence uγ . We have shown that there exists a unique u ∈ L∞((0, T ), L2(Ω))

such that

||uγ(·, t) − u(·, t)||L2(Ω) → 0 as γ → 0 ∀t ∈ [0, T ],

and

||uγ − u||L2(QT ) → 0 as γ → 0,

but then this implies convergence in L1 so that we have

||uγ(·, t) − u(·, t)||L1(Ω) → 0 as γ → 0 ∀t ∈ [0, T ],

and

||uγ − u||L1(QT ) → 0 as γ → 0, (3.12)

using the Cauchy-Schwarz inequality.

We have also shown uniform boundedness of uγ
t in L2(QT ), hence ||uγ

t ||L2(QT ) ≤ C

and so by weak compactness in L2(QT ), we can extract a subsequence that we still

denote as {uγ
t } which is such that

uγ
t ⇀ ut in L2(QT ) with ut ∈ L2(QT ).

This implies that given ϕ ∈ L2(Ω) we have

∫ t

0

〈uγ
t (x, s), ϕ〉L2(Ω) ds = 〈uγ(x, t), ϕ〉L2(Ω) − 〈uγ

0(x), ϕ〉L2(Ω) ,

and letting γ → 0 gives

∫ t

0

〈ut(x, s), ϕ〉L2(Ω) ds = 〈u(x, t), ϕ〉L2(Ω) − 〈u0(x), ϕ〉L2(Ω) ,

from which it follows that the limit function u(x, t) satisfies the initial condition,

u(x, 0) = u0(x), and following the same reasoning as for (3.6), the limit function

u is also uniformly bounded in L∞(QT ).
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We now prove that the limit function u is in BV (QT ). We have shown that

the sequence {uγ} is uniformly bounded in BV (QT ). Hence we can extract a

subsequence denoted {uγi} that converges weakly to some BV function η. That

is to say, uγi(x, t) ⇀ η(x, t) in BV (QT )-weak∗ with η ∈ BV (QT ), but this means

that uγi → η in L1(QT ), so from (3.12), by the uniqueness of the limit, we must

have

u = η ∈ BV (QT ). (3.13)

Hence by definition of BV functions on QT , we conclude from (3.13) that the weak

first derivative in space of u is a bounded measure on QT .

We can now show that the limit function u is such that u(·, t) ∈ BV (Ω) for every

t ∈ [0, T ]. That the sequence {uγ} is uniformly bounded in L∞((0, T ), BV (Ω))

means that

||uγi(·, t)||BV (Ω) < C6, for almost every t ∈ [0, T ].

Fix an arbitrary t0 in [0, T ]. We can extract a subsequence {uγj} of {uγi} such

that uγj (·, t0) ⇀ U(·, t0) weak∗ in BV (Ω) with U(·, t0) ∈ BV (Ω). But this means

that uγj (·, t0) → U(·, t0) in L1(Ω) and so we have once again from (3.12) that

u(·, t) = U(·, t) ∈ BV (Ω) for all t ∈ [0, T ] since t0 was arbitrary in [0, T ].

In [22] it is shown that for u ∈ BV (Ω) and Ψ convex, the functional
∫

Ω
Ψ(ux) dx

is lower semi-continuous with respect to L1-convergence. Hence, since u(·, t) ∈
BV (Ω) for all t ∈ [0, T ] and since ||uγ(·, t) − u(·, t)||L1(Ω) → 0 as γ → 0 for all

t ∈ [0, T ], we must have that

∫

Ω

Ψ(ux) dx ≤ lim inf
γ→0

∫

Ω

Ψ(uγ
x) dx for all t ∈ [0, T ]. (3.14)

We noted earlier that from (3.7), it follows that

∫

Ω

Ψ(uγ
x) dx ≤ C(Ω)

∫

Ω

|u0x| + C2(ǫ) ∀t ∈ [0, T ]. (3.15)
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Hence taking the limit inferior of (3.15) as γ → 0, we see that by (2.40)
∫

Ω

|ux| dx− |Ω| ≤
∫

Ω

Ψ(ux) dx

≤ lim inf
γ→0

∫

Ω

Ψ(uγ
x) dx ≤ C(Ω)

∫

Ω

|u0x| dx+ C2(ǫ) ∀t ∈ [0, T ].

Thus we are lead to conclude that ||u(·, t)||BV (Ω) <∞ for all t ∈ [0, T ] and conse-

quently

u ∈ L∞((0, T ), BV (Ω)).

For later, note that one may integrate (3.14) with respect to t on [0, T ] and obtain

lim inf
γ→0

∫

QT

Ψ(uγ
x) dx dt ≥

∫

QT

Ψ(ux) dx dt.

An additional result that we will need when passing to the limit as γ → 0 is that

||uγ −u||L1(QT ) → 0 as γ → 0 implies that ||f(u)− f(uγ)||L1(QT ) → 0. This follows

easily when one considers
∫ T

0

∫

Ω

|f(u) − f(uγ)| dx dt =

∫ T

0

∫

Ω

|u− u3 − (uγ − (uγ)3)| dx dt

≤
∫ T

0

∫

Ω

|u− uγ| dx dt+

∫ T

0

∫

Ω

|u− uγ||u2 + uuγ + (uγ)2| dx dt

≤
∫ T

0

∫

Ω

|u− uγ| dx dt+ 3m2
0

∫ T

0

∫

Ω

|u− uγ| dx dt → 0 as γ → 0.

So far we have shown that the limit function u is such that

u ∈ L∞(QT ) ∩ L∞((0, T ), BV (Ω)) ∩ {u : ux ∈M(QT )},

so that all that remains is to be proven is that the limit function u satisfies the

variational inequality (3.3). Note that the variational inequality holds for the

solutions uγ of the regularised problems with test functions taken from the smooth

sequence {vn}n∈N ⊂ C∞(QT ) i.e.
∫

QT

(uγ
t − f(uγ))(vn − uγ) dx dt+

∫

QT

ǫ(Ψ(vn
x) − Ψ(uγ

x)) dx dt ≥ 0, (3.16)

for n = 1, 2, · · · . It is shown in [23, Thm 2.2] that the space C∞(QT ) is dense in

BV (QT ) equipped with the topology defined by the distance

d(u,w) = ||u− w||L1(QT ) +

∣

∣

∣

∣

∫

QT

|ux| −
∫

QT

|wx|
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

QT

Ψ(ux) −
∫

QT

Ψ(wx)

∣

∣

∣

∣

,
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which means in particular that one can approximate BV (QT ) functions by a

sequence of C∞(QT ) functions, i.e. for v ∈ BV (QT ), there exists a sequence

{vn} ∈ C∞(QT ) such that

∫

QT

Ψ(vn
x) dx dt→

∫

QT

Ψ(vx) as n→ ∞,

and

∫

|vn − v| dx dt→ 0 as n→ ∞.

This combined with all the properties established in Lemma 3.3 for solutions uγ

to the regularised problem, means that one may pass to the limit as n → ∞ and

subsequently as γ → 0 in inequality (3.16) to obtain the result.

As usual, in order to prove uniqueness of a variational inequality solution to our

problem we suppose non-uniqueness and derive a contradiction. Hence suppose

there are two variational inequality solutions u1 and u2 satisfying problem (3.2)

and therefore the variational inequality (3.3) with

u1(x, 0) = u2(x, 0) = u0(x). (3.17)

Take the variational inequality first with u = u1, v = u2 and then with u = u2,

v = u1 so that

∫

Qτ

(

∂u1

∂t
− f(u1)

)

(u2 − u1) dx dt+

∫

Qτ

ǫ[Ψ((u2)x) − Ψ((u1)x))] dx dt ≥ 0,

and

∫

Qτ

(

∂u2

∂t
− f(u2)

)

(u1 − u2) dx dt+

∫

Qτ

ǫ[Ψ((u1)x) − Ψ((u2)x)] dx dt ≥ 0.

Adding these two inequalities gives

∫

Qτ

∂(u1 − u2)

∂t
(u1 − u2) dx dt ≤

∫

Qτ

(f(u1) − f(u2))(u1 − u2) dx dt.
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As before

∫

Ω

(u1 − u2)
2 dx|t=τ ≤

∫ τ

0

C(m0)

(∫

Ω

(u1 − u2)
2 dx

)

dt+

∫

Ω

(u1(x, 0) − u2(x, 0))2 dx

≤ (C(m0)τ e
C(m0)T + 1)

∫

Ω

(u1(x, 0) − u2(x, 0))2 dx,

using again the Gronwall inequality. Thus it follows from (3.17) that

||u1(·, τ) − u2(·, τ)||L2(Ω) = 0,

and uniqueness follows from τ being arbitrary in [0, T ].

3.2 Numerical analysis

In this section we present some numerical simulations in connection with the

asymptotic behaviour of solutions to the bistable Rosenau equation

ut = ǫ(ψ(ux))x + f(u), (x, t) ∈ QT ≡ Ω × (0, T ), (3.18)

ux = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

for Ω = (0, L) ⊂ R, L > 0. In the experiments which follow, in order to

solve (3.18) numerically, we have used the built-in MATLAB partial differential

equation (PDE) solver pdepe which can be used to solve initial-boundary value

problems for systems of parabolic and elliptic PDEs in one space variable x and

time t. We note that pdepe is not specifically designed to deal with degenerate

parabolic problems and so we cannot guarantee how well it will handle discontinu-

ities; nevertheless, we will see that its handling does appear to agree empirically

with that implied in the analysis of Section 3.1 and also with the analysis in Chap-

ter 4. Pdepe uses an ODE solver in t and finite differences in x. Hence it works on

a discrete spatial grid consisting of, say, N + 1 mesh points x1, x2, · · · , xN+1 where

N ∈ N and so we need to consider how we would regard a particular numerical

solution to (3.18) found using pdepe as being discontinuous. Hence for N = N1

and particular initial data u0(x), suppose we obtain a numerical solution u(x, t)



Chapter Three 67

to (3.18) at a particular time t ∈ (0, T ] and that there exists an x0 ∈ Ω such that

for some fixed 1 < i < N1 + 1 we have xi = x0 and

|u(xi+1, t) − u(xi, t)| = δN1
,

for some δN1
> 0. Now suppose N is increased to Nk = kN1, k ∈ N, so that we

will have x0 = xk(i−1)+1 = xj for 1 < j < Nk + 1 and suppose that

|u(xj+1, t) − u(xj, t)| = δNk
,

for δNk
> 0. If the decreasing sequence δN1

> δN2
> · · · is such that δNk

9 0

as k → ∞ then we regard the numerical solution u(x, t) to (3.18) as having a

discontinuity at x = x0 ∈ Ω.

Experiment 3.4. We consider solving (3.18) with the following piecewise constant

initial data

u0(x) =

{

(−1)n

2n
, x ∈

[

L

2n
,
L

2n−1

]

, n = 1, 2, · · ·
}

, (3.19)

as plotted in Figure 3.1 where we have taken L = 2.5. We note that this particular

initial data (3.19) was suggested by Professor Vivian Hutson of The University of

Sheffield in order to establish conditions in [36] on the initial data under which

the non-coarsening theorem of [25] discussed in Section 2.1.3 for solutions to the

integro-differential equation (2.20) holds. For details see [36, Theorem 3.3].

0 1.25 2.5

−1

−0.5

0

0.5

1

x

u 
( 

x,
 0

 )

Figure 3.1: Initial data u0(x) from (3.19).
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As discussed in Section 2.2, in the one-dimensional setting, the BV norm of a

function u is its pointwise total variation pV (u,Ω) defined in Definition 2.7. The

pointwise total variation of a piecewise constant function is simply the sum of the

absolute value of the jumps it undergoes, therefore

pV (u0(x),Ω) =
∞
∑

k=1

∣

∣

∣

∣

(−1)k

2k
− (−1)k+1

2k+1

∣

∣

∣

∣

=
∞
∑

k=1

3

2k+1

=
3

2
<∞.

If ǫ = 0 in (3.18) so that we are solving the kinetic equation ut = f(u), then any

part of u0(x) which is positive will tend to +1 as t → ∞ and any part of u0(x)

which is negative will tend to −1 as t → ∞. Hence u0(x) → u(x) as t → ∞
as in Figure 3.2 but we note that since we will have finitely many space mesh

points, neither the initial data u0(x) in (3.19) nor the solution u(x) to which u0(x)

converges can entirely be realised numerically.

0 1.25 2.5

−1

−0.5

0

0.5

1

x

 

 

 u
0
(x)

 u(x)

Figure 3.2: Solution to (3.18), (3.19) with ǫ = 0, L = 2.5.

In order to account for domains x ∈
[

L
2n ,

L
2n−1

]

which get smaller and smaller as

n → ∞ we need to take the space mesh to be finer at values of x ∈ [0, L] closer

to zero. Specifically, for N = 15000, we define our space mesh in MATLAB as
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follows

x =

[

0 :
L

100N
:

L

1024
,
L

1024
+

L

100N
:
L

N
: L

]

, (3.20)

so that for x ∈
[

0, L
1024

]

, ∆x = L
100N

and for x ∈
[

L
1024

+ L
100N

, L
]

, ∆x = L
N

. Since

there will be infinitely many contributions to the pointwise total variation of the

solution u(x) to (3.18), (3.19) for ǫ = 0, the BV norm of u(x) is infinite. In fact,

pV (u(x),Ω) =
∞
∑

k=1

∣

∣(−1)k − (−1)k+1
∣

∣ = ∞.

and so for ǫ = 0 we have initial data (3.19) with finite BV norm converging to the

solution in (3.2) which has infinite BV norm.

Suppose we now take ǫ > 0 but small and solve (3.18) with the initial data u0(x)

as in (3.19). We take ǫ = 0.00001, L = 2.5 and the space mesh in (3.20) with

N = 15000 and the solution converged to the solution u in Figure 3.3 which is

approximately piecewise constant. For a brief discussion of how we measure the

numerical convergence for large time of solutions to (3.18) in this and subsequent

experiments in the thesis, see the remark at the end of this section.
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t = 0
t → ∞

Figure 3.3: Solution to (3.18), (3.19) with ǫ = 0.00001, L = 2.5.
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This solution at first sight looks very similar to the one obtained in Figure 3.2 for

ǫ = 0 however, we calculated the pointwise variation pV (u,Ω) of the solution in

Figure 3.3 to be approximately equal to 13.99989 for this particular space mesh.

In Figure 3.4, we examine the difference between the solutions corresponding to

ǫ = 0 (left) and ǫ = 0.00001 (right) for smaller values of x, namely for x ∈
[

0, L
10

]

.
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Figure 3.4: Solution to (3.18), (3.19) with ǫ = 0 (left) and ǫ = 0.00001 (right) for

x small
(

0 ≤ x ≤ L
10

)

, L = 2.5.

When ǫ = 0 there are an infinite number of regions in [0, L] in which the solution

either equals +1 or −1 and for ǫ = 0.00001, there is a finite number (7, in this

case) of regions in [0, L] in which the solution is approximately equal to either +1

or −1 and the solution has finite BV norm. Hence we have initial data (3.19)

with a finite BV norm converging to a solution with infinite BV norm for ǫ = 0

and to a solution with finite BV norm for ǫ > 0. To test whether the value

(≃ 13.99989) obtained above for pV (u,Ω) for the solution u to (3.18), (3.19) in

the case ǫ = 0.00001 can be regarded as mesh-independent we also present a plot

of pV (u,Ω) against N from (3.20) for solutions to (3.18), (3.19) for various values

of ǫ in Figure 3.5.
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4

44

Figure 3.5: Plot of pV (u,Ω) versus N for solutions to (3.18), (3.19) with (3.20) in

the cases ǫ = 0.001, ǫ = 0.0001 and ǫ = 0.00001.

Experiment 3.5. Experiment 3.4 leads on naturally to a discussion of coarsen-

ing (or non-coarsening) of solutions for (3.18), a notion which was described in

Section 2.1.3. Suppose we take

u0(x) =
4x(L− x)

L2
sin

(

10πx2

L2

)

, (3.21)

as sign-changing initial data for (3.18). We aim to see whether or not solutions

to (3.18), (3.21) will coarsen to ±1 for sufficiently small ǫ > 0. This time we

partition the space interval [0, L] by the N + 1 evenly spaced points

0 = x1 < x2 < . . . < xN+1 = L, (3.22)

so that ∆x = L
N

. We fix N = 10000 and present the time evolutions of the initial

data (3.21) to equilibrium for ǫ = 0.05 and ǫ = 0.001 in Figures 3.6 and 3.7

respectively. As shown in Figure 3.6, with ǫ = 0.05, only partial coarsening can

be observed while in Figure 3.7, for ǫ = 0.001, the solution of (3.18) through u0

in (3.21) does not coarsen at all.
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Figure 3.6: Time evolution of the solution of (3.18), (3.21) with ǫ = 0.05.

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

t = 0

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

t = 0.5

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

t = 1

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

t = 3

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

t = 5

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

t = 10

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

t = 100

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

t = 300

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

t → ∞

Figure 3.7: Time evolution of the solution of (3.18), (3.21) with ǫ = 0.001.
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Experiment 3.6. The partial coarsening of solutions to (3.18), (3.21) observed in

Experiment 3.5 for larger ǫ, suggests that a Conway-Hoff-Smoller type result may

hold for (3.18). That is, it may be that for large enough ǫ, the only stable equilibria

for (3.18) are the constant equilibria ±1 of the kinetic equation (2.22). This would

mean that for a sufficiently large diffusion coefficient, solutions to the bistable

Rosenau equation are asymptotic to solutions of the kinetic equation ut = f(u).

The result is proven in [56, Chapter 14] and in [21] for the case of the Allen-Cahn

equation (2.7) and in [36] for the non-local Allen-Cahn equation (2.20) under the

assumption that the kernel J(·) in (2.20) is non-negative. We partition the space

interval as in (3.22) taking N = 10000.
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Figure 3.8: Equilibrium solutions to (3.18), (3.19) with L = 2.5 for various values

of ǫ.
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In Figure 3.8 we have plotted the initial data in (3.21) together with the equi-

librium solutions of (3.18) to which the solution converged for various values of ǫ

increased from ǫ = 0.01 to ǫ = 0.09 in increments of 0.01. Hence in this instance,

for ǫ large enough, the solution converges to a constant solution (namely u = +1)

of the kinetic equation ut = f(u).

Remark: We note that the convergence of numerical solutions of (3.18) to equi-

librium states in the above experiments was assessed in general by numerically

solving (3.18) for particular initial data firstly up to some time T = T1 and then

again up to a larger time T = kT1, k ∈ N and then comparing the two solutions

to see whether

||u(x, kT1) − u(x, T1)||1 =
N
∑

j=1

|u(xj, kT1) − u(xj, T1)| < tol,

for some tolerance tol we took to be 10−8 and where (x1, x2, · · · , xN+1) denotes

the particular chosen space mesh.

3.3 Conclusions

We have presented a quasilinear reaction-diffusion equation (3.2) with a bistable

kinetic nonlinearity f(u) and Neumann boundary conditions as a model for solid-

solid phase transitions in the case of large gradients and we have defined solutions

to (3.2) via a variational inequality. This allowed us to obtain a well-posedness

result for the problem in the space of functions of bounded variation. We also

carried out some numerical experiments pertaining to the asymptotic behaviour

of solutions to (3.2). We are not aware of any analytical results for the asymp-

totic behaviour of solutions to this problem. One would like to be able to prove

rigorously a result on convergence to equilibria for (3.2). The main technique used

to prove convergence to equilibria is usually the Simon- Lojasiewicz inequality [19]

but we do not have sufficient knowledge of the free energy functional to be able
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to apply such a result in our case. One would need to prove that the free energy

functional (2.28) associated with (3.2) is analytic, i.e. that it can be written locally

as a convergent power series.

The bistable Rosenau equation (3.1) is a singular perturbation of the kinetic equa-

tion

ut = f(u), x ∈ Ω (3.23)

since (3.1) is not well-posed backwards in time. However, (3.23) has an uncount-

able number of stationary solutions and the results of Experiment 3.5 suggest that

there is still an uncountable number of stationary solutions to (3.1) for ǫ > 0 small

enough since solutions do not coarsen for small ǫ. The results of Experiment 3.4

suggest that if we are working in the space of functions of bounded variation then

there cannot be a one-to-one correspondence between solutions of (3.23) and (3.1)

since we found an example of initial data (3.19) with a finite BV norm which con-

verged to a solution with infinite BV norm in the case that ǫ = 0 and to a solution

with finite BV norm when ǫ > 0. Proving a Conway-Hoff-Smoller type result such

as the one suggested by Experiment 3.6 for (3.18) usually requires having access

to the spectrum of the diffusion operator (or, as in [39], a representation of the

semigroup via the variation of constants formula) but it is not clear how one even

defines the spectrum of the diffusion operator in (3.18). Proving such a result

for (3.18) remains an open problem.



Chapter 4

The Stationary Problem for the

Bistable Rosenau Equation

We devote this chapter to the study of the following bistable quasilinear equation

with saturating flux

(ψ(u′))′ + λf(u) = 0, x ∈ Ω, (4.1)

ψ(u′) = 0, x ∈ ∂Ω,

where Ω ≡ (0, L) ⊂ R, L > 0 and λ ∈ (0,∞). We noted in Section 2.1.4 that a

particular suitable choice of saturating flux function is

ψ(s) =
s√

1 + s2
, (4.2)

and we take f(u) to be the usual bistable nonlinearity u− u3. With these choices

for ψ(ux) and f(u), equation (4.1) is the stationary problem associated with (3.18)

with λ = 1
ǫ

and we may write (4.1) as

−
(

u′
√

1 + (u′)2

)′

= λf(u), x ∈ (0, L), (4.3)

u′(0) = u′(L) = 0,

which is the one-dimensional prescribed mean curvature equation with a bistable

right hand side and Neumann boundary conditions. Solutions to (4.3) are defined

76
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in the following way.

Definition 4.1. We define a BV solution of (4.3) to be a function u ∈ BV (Ω)

satisfying the variational inequality

−λ
∫

Ω

f(u)(v − u) dx+

∫

Ω

Ψ(vx) − Ψ(ux) dx ≥ 0 ∀v ∈ BV (Ω), (4.4)

where Ψ′(s) = ψ(s).

Note that the variational inequality in (4.4) is obtained from the variational in-

equality (3.3) associated with (3.18) by taking u to be independent of time t

in (3.3). As in the discussion before Definition 3.1 about variational inequal-

ity solutions to the time dependent problem (3.18), we note that classical i.e.

C2((0, L)) ∩ C1([0, L]) solutions of (4.3) will automatically satisfy variational in-

equality (4.4).

We find the first integral J(u, u′) for (4.1) by multiplying (4.1) by u′

(ψ(u′))′u′ + λf(u)u′ = ψ′(u′)u′′u′ + λf(u)u′

= ψ′(u′)u′′u′ + ψ(u′)u′′ − ψ(u′)u′′ + λf(u)u′

=
d

dx
[ψ(u′)u′ − Ψ(u′) + λF (u)] = 0,

where F ′(u) = f(u). Hence the quantity

J(u, u′) = ψ(u′)u′ − Ψ(u′) + λF (u), (4.5)

is constant on the classical orbits of (4.1).

The boundary value problem in (4.3) for different choices of the nonlinearity f(u)

and boundary conditions has received attention from a variety of authors including

Pan [47, 48, 49], Bonheure et al. [9], Obersnel [46] and Habets and Omari [37].

In [37], Habets and Omari study (4.3) with Dirichlet boundary conditions, taking

f(u) = up for p > 0, and they investigate the influence the concavity of this choice
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of f(u) has on the multiplicity of positive solutions to the problem. Note that they

can consider (4.3) on only the unit interval [0, 1] since up is homogeneous of degree

p and so it is possible to scale the fixed parameter L out of the space domain as

follows: set y = x/L and v = u/L, and then v(y) satisfies

− v̈

(1 + (v̇)2)
3

2

= µf(v), y ∈ (0, 1),

where µ = λLp+1, and the overdot denotes differentiation with respect to y. Thus,

in the case of [37] it is possible to incorporate the length L of the space interval in

the parameter µ, and hence in this case the associated bifurcation diagram cannot

change as L is changed. Note that the same is true also of the semilinear case

ψ(s) = s which gives the Allen-Cahn equation (2.7). Pan [47, 48, 49] however has

studied a variant of the Liouville, Bratu-Gelfand problem, taking an exponential

nonlinearity, f(u) = eu, and both in his case and our case of f(u) = u − u3, the

nonlinearities are non-homogeneous, so that different bifurcation behaviours in λ

are in principle possible for different values of L. This is indeed the case as we

shall demonstrate in Section 4.2.

4.1 Phase plane analysis

We rewrite (4.3) as a first order system











u′ = v,

v′ = −λ(1 + v2)
3

2f(u),

(4.6)

and analyse the classical solutions of (4.6) by phase plane methods. This system

has the first integral given by (4.5) but if we set H = 1 − J , an alternative form

of a first integral is

H(u, u′) =
1

√

1 + (u′)2
− λF (u), (4.7)
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and for classical solutions to (4.3), the level curves of H(u, u′) determine the global

structure of the phase portrait for (4.6) since each phase curve lies entirely in one

energy level set H = const.

In Figure 4.1, we show the phase portraits for λ = 3, 4 and 5 and from these

portraits one can see the effect that increasing λ has on the qualitative structure

of the phase portrait. For example, in the case where λ = 3, the saddle points

(1, 0) and (−1, 0) are connected by a heteroclinic orbit. This is not the case for

λ ≥ 4. Instead, the trajectories have vertical asymptotes at u = ±
√

1 − 2√
λ

which

is seen by solving H(±1, 0) = H(u,−∞) for u ∈ (−1, 1) with λ ≥ 4. We shall

consider this point in more detail in Proposition 4.2.

Figure 4.1: Phase portraits with λ = 3, λ = 4 and λ = 5.

4.1.1 The semilinear case

Consider the semilinear case,

u′′ + λf(u) = 0, (4.8)

u′(0) = u′(L) = 0,

where f(u) = u − u3 and λ ∈ (0,∞) as above. Problem (4.8) is the stationary

problem for the Allen-Cahn equation (2.7) in one dimension and we note that (4.8)
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can be converted to the first order system











u′ = v,

v′ = −λf(u),

(4.9)

where, unlike the situation in the quasilinear case (4.3), the saddle points (±1, 0)

can always be connected by a heteroclinic solution for any value of λ. Hence since

Neumann solutions to (4.8) are contained within the heteroclinic loop for all λ,

all steady state solutions to the Allen-Cahn equation with Neumann boundary

conditions are smooth. We will show in Section 4.6 that this is not true of the

Neumann problem in (4.3).

Chafee [17] proved that in this one-dimensional situation where the domain Ω is

an interval, the only stable solutions to (4.8) are the constant solutions u = ±1.

Casten and Holland [16] and Matano [45] obtained the same conclusion for arbi-

trary dimension n ∈ N and Ω convex. In Section 4.5 we obtain a similar result for

classical solutions to (4.3) in the one-dimensional case.

We note that any solution to (4.8) can always be identified with one of the

monotone-decreasing solutions: if (λ1, um(x)) represents a monotonic decreasing

solution to (4.8) (with period 2L) then (um, u
′
m) is the lower half of a periodic orbit

in the phase plane of (4.9) with λ = λ1. But then for any k ∈ N, (k2λ1, um(kx))

also satisfies (4.8) and this solution can be viewed as part of the same periodic

orbit as above only we are wrapping around k
2

of a period in “less time” so that

the solution (k2λ1, um(kx)) has period 2L
k

. In fact, by phase plane arguments

it can be shown that any non-monotone solution to (4.8) is merely the periodic

extension of a monotone solution. Also, any monotone-increasing solution w(x)

to (4.8) can be written as w(x) = um(L−x) hence any solution to (4.8) can be de-

termined from the monotone-decreasing solutions to (4.8). We will see that there

is no corresponding statement like this in the case of the quasilinear problem (4.3).
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4.1.2 The quasilinear case

As in the semilinear case, a classical solution of the Neumann problem for (4.3)

is part of a trajectory starting on the u-axis in the phase plane for (4.6), which

encircles the origin in a clockwise direction and ends on the u-axis taking a “time”

L in which to do this. For example, monotone-decreasing solutions start on the

positive u-axis and end on the negative u-axis as shown in Figure 4.2. From now

on we will concentrate on multiplicity questions for monotone-decreasing solutions

of the Neumann problem for (4.3).

Figure 4.2: A classical solution to (4.3) and its corresponding phase curve for

L = 2.5, λ = 3.

We have noted that for λ ≥ 4 there are no heteroclinic solutions connecting the

saddle points at (±1, 0). Let us consider this point in more detail.

Proposition 4.2. For each λ ≥ 4 there exists a value rλ ∈ (0, 1] (see Figure 4.3)

such that:

1. The orbit passing through the point (rλ, 0) on the positive u-axis in the phase

plane satisfies u′ → −∞ as u→ 0.
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2. Orbits passing through points (r, 0), rλ < r ≤ 1 are such that u′ → −∞ as u

tends to some value ūλ(r) > 0.

3. Orbits passing through points (r, 0), 0 < r < rλ are such that |u′| < ∞ as

u→ 0.

Proof. This is a simple computation using the function H(u, v) of (4.7). For the

value rλ ∈ (0, 1] to exist, we must have H(rλ, 0) = H(0,−∞). This is equivalent

to requiring that λF (rλ) = 1 for some rλ ∈ (0, 1], so that

rλ =

√

1 −
√

1 − 4

λ
, (4.10)

and it is now clear that such a rλ would only exist for λ ≥ 4. Note that rλ = 1

when λ = 4 and that rλ → 0 as λ→ ∞.

To find the vertical asymptotes ūλ(r) of orbits passing through (r, 0), r ≥ rλ for

λ ≥ 4, we solve the equation H(r, 0) = H(ūλ(r),−∞), obtaining

ūλ(r) =

√

1 −
√

1 +
4

λ
− 2r2 + r4. (4.11)

Of course ūλ(rλ) = 0.

rλ ūλ(r) r

Figure 4.3: Trajectories through points on the u-axis with λ ≥ 4, (λ = 5, rλ ≃
0.7435).
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Note that for λ > 4 we can formally construct a non-classical (continuous) solution

of the Neumann problem that conserves H(u, v) as follows: start on the u-axis at

(rλ, 0) in the phase plane and end on the negative u-axis at (−rλ, 0) and take a

“time” L in which to do this. We will call such a solution the critical solution

for (4.3) so that for a given λ > 4, there is a particular L for which this so-called

critical solution u(x) is possible, and this value of L is defined to be such that

u′
(

L
2

)

= −∞. We give an illustration of the form of the critical solution for a

particular L and λ in Figure 4.4.

rλ−rλ

Figure 4.4: Critical solution of (4.3) in the case λ = 5, L = 1.140420442.

For the moment, we are interested in characterising the exact number of (monotone-

decreasing) classical solutions of the Neumann problem for (4.3) not only as the

parameter λ varies but also as the interval length L is changed since as we have

suggested, changing the length parameter L can have an effect on the exact num-

ber of classical solutions of (4.3). As a starting point we note that due to the

Z2-symmetry of the problem, we can expect bifurcation from the trivial solution

u = 0 to be pitchforks. Moreover, we show that we can apply the bifurcation from

a simple eigenvalue result due to Crandall and Rabinowitz (see Theorem 2.12)
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which states that a branch of nontrivial solutions emanates from the trivial so-

lution at each eigenvalue λk of the linearised problem about the trivial solution.

This will give us the solution set of (4.3) locally at (λk, 0) where λk is the k-th

eigenvalue of equation (4.3) linearised about the trivial solution u = 0.

Let us define a mapping

Θ : R ×X → C((0, L)), (4.12)

where

X = {u ∈ C2((0, L)) : u′(0) = u′(L) = 0}, (4.13)

and

Θ(λ, u) =
u′′

(1 + (u′)2)
3

2

+ λf(u),

for λ > 0. Hence problem (4.3) can be written as

Θ(λ, u) = 0, λ > 0, u ∈ X,

with Θ(λ, 0) = 0 and we note that the linearisation of the operator Θ is

dΘλ,u · v =
d

dh
Θ(λ, u+ hv)|h=0 =

v′′

(1 + (u′)2)
3

2

− 3u′′u′v′

(1 + (u′)2)
5

2

+ λf ′(u)v.

Thus equation (4.3) linearised about the trivial solution u = 0 is given by

dΘλ,0 · v = v′′ + λv. (4.14)

The null space ker(dΘλ,0) is one-dimensional when λ = λk = k2π2

L2 and spanned by

vk(x) = cos
(

kπx
L

)

. Denoting dΘλk,0 by S, we have that the range of S

R(S) =

{

w ∈ C((0, L)) :

∫ L

0

w(x) cos

(

kπx

L

)

dx = 0

}

= [ker(S)]⊥, (4.15)
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which has codimension 1. To see why the range space of S is as in (4.15), set

vk(x) = cos
(

kπx
L

)

and suppose

Sz = z′′ + λkz = w,

so that w is a member of the range of the operator S and z(x) is in the domain of

the operator S. Consider

∫ L

0

w(x)vk(x) dx =

∫ L

0

(z′′(x) + λkz(x))vk(x) dx

= [z′(x)vk(x)]
L

0 −
∫ L

0

z′(x)v′k(x) dx+ λk

∫ L

0

z(x)vk(x) dx

= − [z(x)v′k(x)]
L

0 +

∫ L

0

z(x)v′′k(x) dx+ λk

∫ L

0

z(x)vk(x) dx

= 0,

(

since v′′k(x) = −k
2π2

L2
cos

(

kπx

L

)

= −λkvk(x)

)

as required. Finally, Θuλ(λk, 0) · vk(x) = f ′(0)vk(x) /∈ R(S), since for all k ∈ N

∫ L

0

f ′(0)vk(x)vk(x) dx = f ′(0)

∫ L

0

cos2

(

kπx

L

)

dx = f ′(0)
L

2
6= 0.

Hence from Theorem 2.12, the conditions of the Crandall and Rabinowitz theorem

are satisfied and so the solution set of (4.3) near (λ, u) = (λk, 0) consists of two

parts; the line of trivial solutions {(λ, 0)} and a curve {(λ(s), u(s, x))}, |s−s0| ≤ δ

(for δ > 0), with (λ(s0), u(s0, x)) = (λk, 0) and us(s0, x) = vk(x). We will return

to the map (4.12) in Section 4.3.

4.2 The time map

To get more information about multiplicity of solutions as we change λ and L, we

now define and analyse the time map for classical solutions. This is a well-known

technique in the analysis of boundary value problems, see for example Schaaf [55]

and Smoller and Wasserman [57]. Note that in this section, we will use a mixture

of analytical results and numerics.
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Definition 4.3. We define the (classical part of the) time map Tλ(r) to be the

“time” it takes for solutions starting at u(0) = r, u′(0) = 0 to reach u = 0.

From this definition, given that the points (±1, 0) are saddles we have that the

domain of the classical part of the time map, D(Tλ), is given by

D(Tλ) =







(0, 1) if λ ≤ 4,

(0, rλ] if λ > 4.

Hence the classical part of the time map T = Tλ(r) is such that the problem

−
(

u′
√

1 + (u′)2

)′

= λf(u) := fλ(u), u(0) = r, u′(0) = 0, (4.16)

has a solution u ∈ C2((0, L)) ∩ C1([0, L]) with u(t) > 0 in [0, T ) and u(T ) = 0.

r

−r

Tλ(r)

u(x)

L
0

r
x

Figure 4.5: Time map Tλ(r) for λ = 4, L = 1.440087338 with r = u(0) = 0.7.

Hence from the way we have defined the classical part of the time map Tλ(r) in

Definition 4.3 and with the aid of the diagram in Figure 4.5, it is easy to see that,

given L, for a particular value of λ, a monotone-decreasing classical solution to



Chapter Four 87

the Neumann problem (4.3) exists iff we can find r ∈ D(Tλ) such that

Tλ(r) =
L

2
. (4.17)

and in such case r = u(0).

Note that, more generally, given L, for a particular value of λ, there exists a

classical solution to the Neumann problem with k zeros in [0, L] for k ∈ N iff we

can find r ∈ D(Tλ) such that

Tλ(r) =
L

2k
. (4.18)

Since the number of (monotone) classical solutions of the stationary problem (4.3)

coincides with the number of positive solutions of (4.17), it will be useful to com-

pute an explicit formula for the classical part of the time map Tλ(r) and to study

its properties as we vary λ.

Let Fλ(u) = λF (u). To satisfy Neumann boundary conditions in (4.3), we must

have that H(u, u′) = H(r, 0) = 1 − Fλ(r), i.e.

1 − 1
√

1 + (u′)2
= Fλ(r) − Fλ(u).

Solving this equality for u′ and setting χ(t) =
1 − t√
2 − t

as in [37], gives

u′ = −
√

Fλ(r) − Fλ(u)

χ(Fλ(r) − Fλ(u))
,

where we have taken the negative square root since we are dealing with monotone-

decreasing solutions. Thus an explicit formula for Tλ(r) is

Tλ(r) =

∫ Tλ(r)

0

dx =

∫ r

0

χ(Fλ(r) − Fλ(u))
√

Fλ(r) − Fλ(u)
du, (4.19)

which becomes

Tλ(r) =

∫ r

0

4 − 2λr2 + λr4 + 2λu2 − λu4

√
8 − 2λr2 + λr4 + 2λu2 − λu4

√

λ(2r2 − r4 − 2u2 + u4)
du,
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for fλ(u) = λ(u − u3). Note that Tλ(r) is well-defined and continuous on D(Tλ)

since

fλ(u) > 0 ⇒ F ′
λ(u) > 0 ⇒ Fλ(r) − Fλ(u) > 0,

because u ∈ (0, r). Also, for λ < 4,

λ[F (r) − F (u)] < λ[F (1) − F (0)] =
λ

4
< 2,

and for λ ≥ 4,

λ[F (r) − F (u)] < λ[F (rλ) − F (0)] = 1 < 2.

Hence for all λ, 2 − λ[F (r) − F (u)] > 0.

Let us substitute u = rs in (4.19) so that

Tλ(r) = r

∫ 1

0

χ(Fλ(r) − Fλ(rs))
√

Fλ(r) − Fλ(rs)
ds := r

∫ 1

0

G(r, s) ds.

Computing the Taylor expansion of the function rG(r, s) about the point r = 0

and integrating in s, we have

Tλ(r) =
π

2
√
λ

+
3

32

π(2 − λ)√
λ

r2 − 3

2048

π(5λ2 − 20λ− 76)√
λ

r4 +O(r6). (4.20)

From (4.20) we can derive a number of conclusions. First of all we have

lim
r→0

Tλ(r) =
π

2
√
λ
. (4.21)

Secondly, the coefficient of the r2 term

3π(2 − λ)

32
√
λ

,
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changes sign from positive to negative when λ = 2. Thus for λ < 2, Tλ(r) is

initially monotone-increasing, while for λ > 2 it is initially monotone-decreasing.

Furthermore, by (4.10) we have that rλ = O(λ−
1

2 ) for λ large. Therefore since

D(Tλ) → 0 as λ → ∞ and since the remainder term in the Taylor series (4.20)

with r = rλ is O(λ−
1

2 ), we conclude that for λ large enough, Tλ(r) is always

decreasing on D(Tλ). Also observe that for λ ≤ 4, since (u, u′) = (±1, 0) are

saddle points,

lim
r→1

Tλ(r) = ∞. (4.22)

This means that we have (at least) three different types of behaviour of the classical

part of the time map, depending on the values of λ; these are indicated in Figure 4.6

generated using MAPLE (note the differences in vertical scale).

r

T1.5(r)

r

T4(r)

r

T6(r)

Figure 4.6: Time maps Tλ(r) for λ = 1.5, λ = 4 and λ = 6.

From Figure 4.6, the time map corresponding to λ = 1.5 is monotonically increas-

ing in its domain, the time map corresponding to λ = 4 has a turning point in its

domain and the time map corresponding to λ = 6 is monotonically decreasing in

its domain. A study of such diagrams shows that for λ > 2, the classical part of the

time map Tλ(r) may have a turning point in its domain (at some rt(λ) ∈ D(Tλ),

say) provided λ is not too large as is the case for λ = 6 wherein the turning point

occurs outside the domain of the classical part of the time map and within the do-

main of the non-classical part of the time map Sλ(r) which we define in Section 4.6.
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Remark: We have not proved that the turning point which must exist for Tλ(r)

for intermediate values of λ by the above calculation (as seen in Figure 4.6 for

λ = 4) is unique and rely for that on numerical evidence.

We can show that, for small enough λ, the classical part of the time map Tλ(r)

will always be monotonic increasing by taking the series expansion of rG(r, s) in λ

at λ = 0, found using MAPLE, with the leading term in the expansion given by

1√
λ

√
2r√

2r2 − r4 − 2r2s2 + r4s4
=

1√
λ
P (r, s).

The integral of this function P (r, s) in s from 0 to 1 is given by

∫ 1

0

P (r, s) ds =

√
2√

2 − r2
EllipticK

(

r√
2 − r2

)

= Q(r), (4.23)

where EllipticK(k) is the complete elliptic integral of the first kind,

EllipticK(k) =

∫ π
2

0

dθ
√

1 − k2 sin2 θ
=

∫ 1

0

dt√
1 − t2

√
1 − k2t2

, (t = sin θ),

(elliptic integrals are termed complete when the amplitude is equal to π
2

as is the

case above).

So (4.23) explicitly gives us the leading term of Tλ(r) as λ→ 0 and by the nature

of elliptic functions we have that it is indeed monotonic increasing for λ small

enough and, as we would expect from (4.22), for such λ

lim
r→1

Tλ(r) = ∞,



Chapter Four 91

since lim
k→1

EllipticK(k) = ∞.

In Figure 4.7 we see that 1√
λ
Q(r), the leading term of Tλ(r) as λ → 0 with Q(r)

given in (4.23), captures the behaviour of Tλ(r) for small λ with λ in this case

taken to be λ = 0.05.

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

T0.05(r)

1√
0.05

Q(r)

r

Figure 4.7: Comparison of the numerical plot of the time map Tλ(r) for λ = 0.05

with the leading term of Tλ(r) for small λ.

4.3 Liapunov-Schmidt reduction

We would like to determine the dependence of the direction of the pitchfork on

the parameter L. The easiest way of doing this is to use the Liapunov-Schmidt re-

duction which was described in Section 2.3. Let us first show that our bifurcation

problem is amenable to a Liapunov-Schmidt reduction.

Recall the one-dimensional prescribed mean curvature equation with a bistable
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nonlinearity and Neumann boundary conditions

(ψ(u′))′ + λf(u) = 0, (4.24)

u′(0) = u′(L) = 0,

where λ = 1
ǫ

is our bifurcation parameter, ψ(s) = s√
1+s2

and f(u) = u − u3.

In order to set up the Liapunov-Schmidt reduction for (4.24), we return to the

mapping Θ from Section 4.1 and defined in (4.12). We hence rewrite (4.24) as

Θ(λ, u) = 0, λ > 0, u ∈ X, (4.25)

with X as in (4.13) and we observe that Θ(λ, 0) = 0 for all λ ∈ R.

In order to investigate possible multiplicity of solutions to (4.24), we study the

linearisation dΘλ,u of Θ. From (4.14), the linearisation of Θ at the trivial solution

u = 0 for a given value of λ is given by

dΘλ,0 · v = v′′ + λv.

As discussed in Section 4.1, the values λk = k2π2

L2 are points of bifurcation from

the trivial solution, which by the Z2-symmetry of the problem must be pitchforks.

Hence as noted at the end of Section 4.1, ker(dΘλ,0) is one-dimensional when

λ = λk = k2π2

L2 for k = 1, 2, . . . and is spanned by vk = cos
(

kπx
L

)

.

We aim to show that in a neighbourhood of a bifurcation point, solutions of

Θ(λ, u) = 0 on X are in one-to-one correspondence with solutions of the reduced

equation h(λ, y) = 0, y ∈ R. Let S = (dΘ)λk,0 and denote the null-space and

range of S by K and R respectively. Since S is a second order elliptic differential

operator, we know from [34, Appendix 4, p332] that it is Fredholm of index zero

and so the reduction outlined in Section 2.3 is applicable to (4.24).

In accordance with Section 2.3, we split X by writing

X = K ⊕K⊥,



Chapter Four 93

where

K⊥ =

{

u ∈ X :

∫ L

0

u(x) cos

(

kπx

L

)

dx = 0

}

,

is the orthogonal complement of K in X with respect to the inner product

〈u, v〉 =

∫ L

0

u(x)v(x) dx.

Similarly, we split the range space Y into its active and passive subspaces so that

Y = R⊕R⊥.

However, we have from (4.15) that

R = K⊥, (4.26)

and by the Fredholm Alternative,

R⊥ = ker(S∗),

where S∗ denotes the adjoint of S. However, we also have that S is self-adjoint

since

〈Su, v〉 = 〈u′′ + λku, v〉

=

∫ L

0

u′′(x)v(x) + λku(x)v(x) dx

= [u′(x)v(x)]
L

0 −
∫ L

0

u′(x)v′(x) dx+

∫ L

0

λku(x)v(x) dx

= − [u(x)v′(x)]
L

0 +

∫ L

0

u(x)v′′(x) dx+

∫ L

0

λku(x)v(x) dx

=

∫ L

0

u(x)[v′′(x) + λkv(x)] dx.

= 〈u, Sv〉 ∀u, v ∈ D(S) = X,

and so

R⊥ = ker(S∗) = K.
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Therefore, both X and Y have the same decompositions and so the simplest choice

of coordinates in the Liapunov-Schmidt reduction is to set

vk = v∗k = cos

(

kπx

L

)

.

As discussed in Section 2.3, it is rarely possible to obtain an explicit formula for

the reduced function h(λ, y). Instead we calculate the derivatives of the reduced

function at the bifurcation point λ = λk, y = 0 using the derivatives of the original

function Θ(λ, u) so as to determine locally the form of the bifurcation. Since our

original function Θ in (4.25) is odd, i.e.

Θ(λ,−u) = −Θ(λ, u), (4.27)

the formulae in (2.51) are simplified considerably since, when u = 0, we have

(d2Θ)λk,0 = 0, Θλ = 0;

so terms involving S−1 in (2.51) will vanish. Thus at the bifurcating point y = 0,

λ = λk we have

h = hy = hyy = hλ = 0,

hyyy =
〈

cos, d3Θ(cos, cos, cos)
〉

,

hλy = 〈cos, dΘλ · cos〉 .

Now, at λ = λk, u = 0

(d3Θ)(v1, v2, v3) =
∂3

∂t1∂t2∂t3
Θ(λk, t1v1 + t2v2 + t3v3)|t1=t2=t3=0 (4.28)

= −3(2λkv1v2v3 + v′′1v
′
3v

′
2 + v′′2v

′
3v

′
1 + v′′3v

′
2v

′
1).

so that

hyyy =

〈

cos,
9π4

L4
cos sin2 −6

k2π2

L2
cos3

〉

= 3

∫ L

0

{

3π4

L4
cos2

(

kπx

L

)

sin2

(

kπx

L

)

− 2
k2π2

L2
cos4

(

kπx

L

)}

dx

=
9

8

k2π2(k2π2 − 2L2)

L3
. (4.29)
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Similarly Θλ(u) = f(u), so that (dΘλ)λk,0 · v = v; thus

hλy = 〈cos, cos〉 =
L

2
> 0. (4.30)

We are finally in a position to determine the value of L for which there is a

transition between a supercritical and a subcritical bifurcation. Using Proposi-

tion 2.13, (4.29) and (4.30) we have proved

Proposition 4.4. The k-th bifurcation from the trivial solution is a supercritical

pitchfork if L > kπ/
√

2 and a subcritical pitchfork if the inequality is reversed.

We relate this to the study of the time map (4.19) in Section 4.2 by noting that

lim
r→0

Tλ(r) = π

2
√

λ
from (4.21) and if we set

π

2
√
λ

=
L

2
,

then for monotone classical solutions to (4.24), the critical value of L = π√
2

found

by Liapunov-Schmidt reduction in the case k = 1, corresponds to when λ = 2

which represents the value of λ for which the time map Tλ(r) changes from being

initially monotone-increasing to being initially monotone-decreasing in D(Tλ).

4.4 Bifurcation diagrams

Recall from Proposition 4.2 that for λ > 4, the equation

r =

√

1 −
√

1 − 4

λ
,

gives the value of the right end-point of the domain of the classical part of the

time map Tλ(r) which we defined in Definition 4.3. Solving this equation instead

for λ we obtain the inverse of rλ considered as a function of r,
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λ = Λ(r) =
4

1 − (1 − r2)2
.

Hence we can define a function

g(r) = TΛ(r)(r), (4.31)

which will give the values of the classical parts of time maps evaluated at the right

end-points of their domains; this will be useful in the discussion which follows on

the bifurcation diagrams corresponding to different values of L. From the foregoing

analysis we see that g(r) is a monotone-increasing function satisfying

g(0) = 0, lim
r→1

g(r) = ∞.

Let us use the results obtained in Section 4.2 and Section 4.3 to discuss the vari-

ous (minimal) possibilities for bifurcation of monotone solutions to the Neumann

problem (4.24) by referring to Figures 4.8, 4.9, and 4.10 below. There we have

plotted some of the classical parts of the time maps Tλ(r) for values of λ increasing

down the vertical axis and we have fixed L firstly to be sufficiently large, say L1

(Figure 4.8), then intermediate, say L2 (Figure 4.9) and finally sufficiently small,

say L3 (Figure 4.10). In the left-hand sides of these figures we analyse how many

intersections there are between Tλ(r) (for varying values of λ) and the values of
Li

2
,

i = 1, 2, 3 and in the right-hand sides, we plot the resulting bifurcation diagrams

corresponding to each value of Li. The curve g(r) as defined in (4.31), represents

the values of the time maps evaluated at the right end-points of their domains.

Starting with L = L1 as in Figure 4.8, the first intersection occurs for Tλ∗(r),

where λ∗ = π2/L2
1 and for L1 sufficiently large, λ∗ will be a supercritical pitchfork
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bifurcation point.

There continues to be a single intersection between Tλ(r) and L1

2
for values of

λ up to and including λ∗ for which the intersection occurs at the value of the

corresponding classical part of the time map evaluated at the right end-point of

its domain (i.e. we have that Tλ∗(rλ∗) = L1

2
). For all subsequent λ there are no

intersections between Tλ(r) and L1

2
and hence no further classical solutions to the

Neumann problem. Note that the solution we obtain for the value λ∗ is the critical

solution discussed in Figure 4.4.

L1

2

Tλ(r)

r
g(r)

Tλ∗(rλ∗) Bifurcation Diagram for L1 = 2.5 (Large)

r = u(0)

0

0

1

1

λ∗ = π
2

L2

1

λ∗ λ

λ

Figure 4.8: Plots of time maps Tλ(r) intersecting with L1

2
(left) and the corre-

sponding bifurcation diagram (right).

The intermediate values of L are such that the first time map to solve the equation

Tλ(r) = L/2 has a turning point. In this case the bifurcation point is a subcrit-

ical pitchfork and the diagram will exhibit a saddle-node at some value λ∗; see

Figure 4.9. Again, there is a value λ∗ beyond which no classical solutions exist.
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L2

2

Tλ(r)

r

g(r)

Tλ∗(rλ∗)

Bifurcation Diagram for L2 = 1.6 (Intermediate)

r = u(0)

0

0

1

1

λ∗ π
2

L2

2

λ∗ λ

λ

Figure 4.9: Plots of time maps Tλ(r) intersecting with L2

2
(left) and the corre-

sponding bifurcation diagram (right).

Finally we consider L = L3, the situation where the first intersection is with a

monotone-decreasing time map. Here the bifurcation is again a subcritical pitch-

fork, but the classical solutions stop existing before we reach a saddle-node; see

Figure 4.10

L3

2

Tλ(r)

r
g(r)

Tλ∗(rλ∗)

Bifurcation Diagram for L3 = 1 (Small)

r = u(0)

0

0

1

1

λ∗ λ∗ = π
2

L2

3

λ

λ

Figure 4.10: Plots of time maps Tλ(r) intersecting with L3

2
(left) and the corre-

sponding bifurcation diagram (right).
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To summarise, for a given L, there exists a value of λ = λ∗(L) beyond which there

are no further intersections between Tλ(r) and L
2
. That is, λ∗(L) is such that

Tλ∗(rλ∗) =
L

2
,

then, in the case of a large or intermediate value of L,

for λ > λ∗, Tλ(r) <
L

2
∀ r ∈ D(Tλ),

and, in the case of a small value of L,

for λ < λ∗, Tλ(r) >
L

2
∀ r ∈ D(Tλ).

In all cases, for a given value of L, there comes a value λ∗(L) at which the bifur-

cation diagrams for monotone classical solutions to the Neumann problem (4.24)

stop and the stationary solutions develop infinite gradient. Note that for L suffi-

ciently large, λ∗(L) ≃ 4 since rλ → 1 as λ → 4, lim
r→1

Tλ(r) is infinite for all λ ≤ 4

and Tλ(rλ) <∞ for all λ > 4.

Remark: We note that similar analyses can be done for non-monotone solutions

to (4.24) via Proposition 4.4 and (4.18), but unlike the semilinear case, there is no

easy way to infer the behaviour of all branches from that of the monotone one.

4.5 Instability of non-trivial classical solutions to

the Neumann problem

In this Section we prove that the non-constant classical solutions to (4.24) discussed

above are unstable. This result is comparable with the result obtained in [17] for

the semilinear problem (4.8) which shows that the only stable solutions to (4.8)

are the constant solutions u = ±1. Solutions to the Neumann problem in (4.24)

arise as critical points of the free energy functional introduced in Section 2.1.4

E[u] =

∫ L

0

Ψ(u′) − λF (u) dx, (4.32)
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where Ψ′(s) = ψ(s) and F ′(s) = f(s). This is because the first variation of E[u]

is determined from

d

dh
E[u+ hv]|h=0 = 〈− [(ψ(u′))′ + λf(u)] , v〉L2(Ω) ∀ v ∈ L2(Ω),

and so u ∈ C2((0, L))∩C1([0, L]) that is a solution to the Neumann problem (4.24)

is such that d
dh
E[u + hv]|h=0 = 0 for all v ∈ L2((0, L)) and (4.24) has variational

structure.

Theorem 4.5. Non-constant classical solutions to (4.24) are unstable.

Proof. We show that a non-constant solution u ∈ C2((0, L)) ∩C1([0, L]) to (4.24)

is unstable in the sense that there exists some path v along which the second vari-

ation of the free energy functional is strictly negative. This will mean that there

are no non-constant C2((0, L))∩C1([0, L]) local minimisers of the free energy func-

tional (4.32).

Indeed, for u ∈ C2((0, L))∩C1([0, L]) and v ∈ L2((0, L)) consider ϕ(h) = E[u+hv].

If d
dh
E[u + hv]|h=0 = 0 and d2

dh2E[u + hv]|h=0 < 0, i.e. if ϕ′(0) = 0 and ϕ′′(0) < 0,

then ϕ has a strict relative maximum at h = 0 so that E[u + hv] < E[u] for all

sufficiently small h 6= 0.

Hence we consider the second variation of the free energy functional

d2

dh2
E[u+ hv]|h=0 =

∫ L

0

Ψ′′(u′)(v′)2 − λF ′′(u)v2 dx.

=

∫ L

0

ψ′(u′)(v′)2 − λf ′(u)v2 dx,

and we take a classical solution u to the stationary problem and show that d2

dh2E[u+

hv]|h=0 can be non-positive for at least one sensible choice of path/direction v.

Note that since we consider Neumann (natural) boundary conditions, there are

no restrictions that one needs to place on boundary values of the variations v as

explained in Section 2.4.
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Following the approach of Carr, Gurtin and Slemrod in [15] which is concerned

with the minimisation problem for a one-dimensional elastic bar placed in a soft

loading device, for a non-constant solution u(x) ∈ C2((0, L)) ∩ C1([0, L]) to the

Neumann problem (4.24) we choose

v(x) = u′(x) + δβ(x) ∈ C1((0, L)),

where β(x) = L−x
L

and δ is some arbitrary constant. For such v, we have

d2

dh2
E[u+ hv]|h=0

=

∫ L

0

{

ψ′(u′)[(u′′)2 + 2δβ′u′′ + δ2(β′)2] − λf ′(u)
[

(u′)2 + 2δu′β + δ2β2
]}

dx

=
d2

dh2
E[u+ hu′]|h=0 + 2δ

∫ L

0

[ψ′(u′)β′u′′ − λf ′(u)u′β] dx+ δ2 d
2

dh2
E[u+ hβ]|h=0.

(4.33)

From (4.24)

−λf(u) = ψ′(u′)u′′ ⇒ −λf ′(u)u′ = ψ′′(u′)(u′′)2 + ψ′(u′)u′′′,

and so

d2

dh2
E[u+ hu′]|h=0 =

∫ L

0

{

ψ′(u′)(u′′)2 − λf ′(u)(u′)2
}

dx

=

∫ L

0

{

ψ′(u′)(u′′)2 + ψ′′(u′)(u′′)2u′ + ψ′(u′)u′′′u′
}

dx

=

∫ L

0

{

ψ′(u′)[(u′′)2 + u′′′u′] + ψ′′(u′)(u′′)2u′
}

dx

=

∫ L

0

{

ψ′(u′)[(u′′u′)′] + ψ′′(u′)(u′′)2u′
}

dx

= [ψ′(u′)u′′u′]L0 −
∫ L

0

ψ′′(u′)(u′′)2u′ dx+

∫ L

0

ψ′′(u′)(u′′)2u′ dx

= 0,

because of the Neumann boundary conditions on u. Also,
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∫ L

0

{ψ′(u′)β′u′′ − λf ′(u)u′β} dx

=

∫ L

0

{

ψ′(u′)β′u′′ + ψ′′(u′)(u′′)2β + ψ′(u′)u′′′β
}

dx

=

∫ L

0

{

ψ′(u′) [β′u′′ + u′′′β] + ψ′′(u′)(u′′)2β
}

dx

=

∫ L

0

{

ψ′(u′) [(βu′′)′] + ψ′′(u′)(u′′)2β
}

dx

= [ψ′(u′)βu′′]
L

0 −
∫ L

0

ψ′′(u′)(u′′)2β dx+

∫ L

0

ψ′′(u′)(u′′)2β dx

= −u′′(0),

and we establish that u′′(0) 6= 0 by considering the equation for u′ = z in which

case

z′ = u′′ = −λf(u)(1 + (u′)2)
3

2 := −g(u, u′),

and

z′′ = −∂g
∂u
z − ∂g

∂u′
z′. (4.34)

Suppose that u′′(0) = 0 and treat (4.34) as an initial value problem with z(0) =

z′(0) = 0. By inspection, z ≡ 0 is a solution to problem (4.34) and by uniqueness

of solutions to such initial value problems (see Lemma 2.14) we must have that

z ≡ 0 is the only solution to the problem which would imply that u(x) is constant

and this contradiction means that u′′(0) 6= 0.

Thus (4.33) becomes

d2

dh2
E[u+ hv]|h=0 = −2δu′′(0) + δ2 d

2

dh2
E[u+ hβ]|h=0,

and whatever the situation that arises in the two terms above, we will always able

to choose some δ with |δ| small enough in such a way that d2

dh2E[u + hv]|h=0 < 0.

Hence Theorem 4.5 is proven.
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Remark: The key to this kind of argument lies in the choice of path v. Chmaj and

Ren [20] studied stationary solutions to the non-local Allen-Cahn equation (2.20)

in one dimension and proved that the van der Waals functional (2.19) does not

admit non-constant C1 local minimisers. They could choose v = u′ as an admissi-

ble path since there are no boundary conditions to their problem (since there are

no derivative terms) and so they had more freedom over which paths they could

choose. We could not have chosen v = u′ to establish Theorem 4.5 since we require

that the minimiser u satisfies the Neumann boundary conditions and have no such

restrictions on the choice of path v. However choosing v = u′ would mean that we

would require v(0) = v(L) = 0 as if we were minimising over some subspace of the

whole space with Dirichlet boundary conditions which we are not.

4.6 Non-classical solutions to the Neumann prob-

lem

Non-classical solutions for problems related to the prescribed mean curvature equa-

tion have been considered, to some extent, in [9]. However, in that paper the

non-classical solutions are C∞((0, L)). In [46] and [49], existence and multiplicity

of sign-changing solutions that are possibly discontinuous at points at which the

solutions attain the value zero are discussed. Below we show a construction for

λ > λ∗ of solutions (in the BV sense) that are discontinuous in the interior of

the interval. Moreover, we show numerically that this construction delivers an

uncountable number of solutions, and that, surprisingly, the set of solutions is

dynamically stable.

We will again focus on monotone-decreasing solutions to (4.24). For definiteness,

take L to be large enough so that we are discussing the supercritical case, i.e. take

L > π√
2

by Proposition 4.4. For λ > 4 let us define a mapping Sλ(r) as the time

taken for solutions starting at u(0) = r, u′(0) = 0 (for some r ≥ rλ) to reach
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u = ūλ(r), where ūλ(r) is given by (4.11). An explicit form for Sλ(r) is

Sλ(r) =

∫ r

ūλ(r)

χ(Fλ(r) − Fλ(u))
√

Fλ(r) − Fλ(u)
du,

where now the domain of Sλ(r), D(Sλ) = [rλ, 1). Note that at the value rλ from

Proposition 4.2, the classical and non-classical parts of the time map coincide, i.e.

we have Tλ(rλ) = Sλ(rλ).

Proposition 4.6. For a particular value of λ > 4, there exists a non-classical

monotone-decreasing solution to the Neumann problem (4.24) if we can find r1, r2 ∈
[rλ, 1) (where without loss of generality, r1 ≥ r2) such that Sλ(r1) + Sλ(r2) = L.

So for example, if we set r1 = r2 = r∗ ≥ rλ with Sλ(r∗) = L
2
, we can construct a (so

far formal) non-classical solution to (4.24) by starting on the positive u-axis in the

phase plane at u = r∗ and ending on the negative u-axis at u = −r∗ as depicted

in Figure 4.11. There will need to be a jump connecting the two trajectories

from the “point” (ūλ(r∗),−∞) to the “point” (−ūλ(r∗),−∞) and in this way, we

would have constructed a non-classical solution to (4.24) which has zero mean and

obviously Sλ(r∗) + Sλ(r∗) = L.

r∗−r∗

r∗

−r∗

Figure 4.11: Non-classical solution with zero mean for λ = 5, L = 2.5 and r∗ ≃
0.9818.
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We can also construct non-classical solutions to (4.24) for a particular value of λ

that do not have zero mean: we could start on the positive u-axis in the phase plane

at u = r1 > rλ and end on the negative u-axis at u = −r2 < −rλ with r1 > r2.

Again, there will have to be a jump to connect the two trajectories from the

“point” (ūλ(r1),−∞) to the “point” (−ūλ(r2),−∞), and to satisfy the boundary

conditions we must have Sλ(r1)+Sλ(r2) = L. Figure 4.12 (left) gives an indication

of how one can construct such a non-classical solution with positive mean: we have

a value of L
2

and, for a particular value of λ, we have merged the classical (red)

and non-classical (blue) time maps, Tλ and Sλ with an intersection between Sλ(r)

and L
2

at the value of this non-classical part of the time map evaluated at r = r∗,

which corresponds to the non-classical solution with zero mean constructed in

Figure 4.11. If we move up in the diagram from L
2

by a certain amount δ with

Sλ(r1) = L
2

+ δ and move down by the same amount δ with Sλ(r2) = L
2
− δ then

we will indeed have constructed a non-classical stationary solution to the problem

satisfying Sλ(r1) +Sλ(r2) = L as required. The diagram in Figure 4.13 shows such

a non-classical solution that does not have zero mean.

L

2
+ δ

L

2

L

2
− δ

g(r)

Tλ(r)

Tλ(rλ) = Sλ(rλ)

0 1 r

r1

r1

r2

r2 r∗

λ

Figure 4.12: Construction of a non-classical solution.
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r1

−r2

ūλ(r1)

−ūλ(r2)

0 L

u(x)

Figure 4.13: A Non-classical solution of (4.24) with positive mean for λ = 5,

L = 2.5, r1 ≃ 0.9978, r2 ≃ 0.7795.

The above constructions are formal but we can show that they define BV solutions

to the Neumann problem (4.24) i.e. they satisfy the variational inequality (4.4).

We have the following theorem:

Theorem 4.7. Suppose there exists x0 ∈ (0, L) such that

• for x ∈ [0, x0) and for x ∈ (x0, L], u(x) resides in level curves of the Hamil-

tonian H(u, ux),

• Sλ(u(0)) + Sλ(u(L)) = L where Sλ(u(0)) = x0 and Sλ(u(L)) = L− x0,

• ux(x) → −∞ as x→ x±0 .

Then u(x) is a BV solution of (4.24).

Proof. Consider v ∈ BV (Ω) and the C∞(Ω) sequence vn = v ∗ ϕn for all n where

ϕn is the standard mollifier so that vn → v with respect to the topology in BV (Ω)

defined by the metric

d(u, v) = ||u− v||L1(Ω) +

∣

∣

∣

∣

∫

Ω

|ux| −
∫

Ω

|vx|
∣

∣

∣

∣

, (4.35)
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see for example [27, p172]. Note that (4.35) does not assert that
∫

Ω
|ux − vx| → 0.

Since the functional
∫

Ω
Ψ(vx) is convex, by [23, Lemma 2.2] we have that

− λ

∫

Ω

f(u)(v − u) dx+

∫

Ω

(Ψ(vx) − Ψ(ux)) dx

= lim
n→∞

{

−λ
∫

Ω

f(u)(vn − u) dx+

∫

Ω

(Ψ(vnx) − Ψ(ux)) dx

}

.

Hence

− λ

∫

Ω

f(u)(v − u) dx+

∫

Ω

(Ψ(vx) − Ψ(ux)) dx

= lim
n→∞

{

−λ
∫

Ω

f(u)(vn − u) dx+

∫

Ω

(Ψ(vnx) − Ψ(ux)) dx

}

= lim
n→∞

{

−λ
∫ L

0

f(u)(vn − u) dx+

∫ x0

0

(Ψ(vnx) − Ψ(ux)) dx+

∫ L

x0

(Ψ(vnx) − Ψ(ux)) dx

}

≥ lim
n→∞

{

−λ
∫ L

0

f(u)(vn − u) dx+

∫ x0

0

Ψ′(ux)(vnx − ux) dx+

∫ L

x0

Ψ′(ux)(vnx − ux) dx

}

= lim
n→∞

{

−λ
∫ L

0

f(u)(vn − u) dx+ [Ψ′(ux)(vn − u)]
x0

0 −
∫ x0

0

d

dx
Ψ′(ux)(vn − u) dx

+ [Ψ′(ux)(vn − u)]
L

x0
−
∫ L

x0

d

dx
Ψ′(ux)(vn − u) dx

}

= lim
n→∞

{

−
∫ x0

0

[

λf(u) +
d

dx
ψ(ux)

]

(vn − u) dx−
∫ L

x0

[

λf(u) +
d

dx
ψ(ux)

]

(vn − u) dx

+ lim
x→x−

0

ψ(ux)(vn − u) − lim
x→x+

0

ψ(ux)(vn − u)

}

= lim
n→∞

{

−
∫ x0

0

[

λf(u) +
d

dx
ψ(ux)

]

(vn − u) dx−
∫ L

x0

[

λf(u) +
d

dx
ψ(ux)

]

(vn − u) dx

− vn(x0) + u(x−0 ) + vn(x0) − u(x+
0 )

}

> lim
n→∞

{

−
∫ x0

0

[

λf(u) +
d

dx
ψ(ux)

]

(vn − u) dx−
∫ L

x0

[

λf(u) +
d

dx
ψ(ux)

]

(vn − u) dx

}

= 0,

because u(x) must satisfy the Euler-Lagrange equation (4.24) in regions for which
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u(x) is classical. Thus we obtain

−λ
∫

Ω

f(u)(v − u) dx+

∫

Ω

(Ψ(vx) − Ψ(ux)) dx ≥ 0 ∀v ∈ BV (Ω).

Remark: We note that while Theorem 4.7 is only proven for monotone non-

classical solutions to (4.24), it can be extended to non-monotone non-classical

solutions u(x) which have k ∈ N discontinuities at xi ∈ (0, L), i = 1, · · · , k with

x1 < · · · < xk where we would require that

kSλ(u(0)) + kSλ(u(L)) = L.

4.6.1 The existence of uncountably many solutions

Suppose we fix a supercritical L, then for each λ > λ∗(L) (with λ∗(L) as defined in

Section 4.4), there will be a range, depending on λ, in which the position x0 ∈ (0, L)

of the interface in the non-classical solution u(x) to (4.24) can appear. Since we

must have that

Sλ(u(0)) + Sλ(u(L)) = L,

it is easy to see using Figure 4.14 that for each λ > λ∗(L)

x0 ∈
[

min
r∈[rλ,1)

Sλ(r), L− min
r∈[rλ,1)

Sλ(r)

]

, (4.36)

where

min
r∈[rλ,1)

Sλ(r) =







Sλ(rλ) if rt ∈ D(Tλ),

Sλ(rt) if rt ∈ D(Sλ) .

So suppose we have some λ1 > λ∗(L) and that Sλ1
(r) has a turning point at some

rt ∈ D(Tλ1
) as in Figure 4.14 (left). Then for this value of λ there will be “outer”

solutions u1(x) and u2(x) to (4.24), where u1(0) = rλ1
and u1(L) = −r1 with

Sλ1
(r1) = L− Sλ1

(rλ1
) and u2(x) = −u1(L− x) as depicted in Figure 4.15 (left).

Now suppose we have λ2 > λ∗(L) with λ2 > λ1 and that Sλ2
(r) has a turning

point at an rt ∈ D(Sλ2
) in Figure 4.14 (right). Then for this value of λ there will
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be “outer” solutions u1(x) and u2(x) to (4.24), where u1(0) = rt, u1(L) = −r1 and

again u2(x) = −u1(L− x) as depicted in Figure 4.15 (right).

L− Sλ1
(rλ1

)

L

2

L

2

Sλ1
(rλ1

)Sλ1
(rλ1

)

Time MapTime Map

00 rr r1r1r2 = rλ1
rt 11

L− Sλ2
(rt)

Sλ2
(rt)

g(r)g(r)

r2 = rt

Figure 4.14: Construction of the non-classical “outer” solutions for λ = λ1 [rt ∈
D(Tλ1

)] (left) and λ = λ2 [rt ∈ D(Sλ2
)] (right) with λ1 < λ2, (L = 2.5, λ1 = 4.5,

λ2 = 8 with min
r∈[rλ,1)

Sλ(r) ≃ 0.6854 for λ = 4.5 and min
r∈[rλ,1)

Sλ(r) ≃ 0.3332 for λ = 8

- see (4.36)).

0

0

0

0

rλ1

−rλ1

−r1−r1
LL L

2

L

2

r1r1

rt

−rt

Figure 4.15: The non-classical “outer” solutions for λ = λ1 [rt ∈ D(Tλ1
)] (left)

and λ = λ2 [rt ∈ D(Sλ2
)] (right) with λ1 < λ2, (L = 2.5, λ1 = 4.5, λ2 = 8 with

r1 ≃ 0.9955, r2 = rλ ≃ 0.8165 for λ = 4.5 and r1 ≃ 0.9998, r2 = rt ≃ 0.6498 for

λ = 8.
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As we show below, the set of BV solutions constructed above has dynamical

stability properties: we can generate quite easily initial conditions for which the

dynamic problem (3.18) converges as t→ ∞ to a discontinuous solution such as in

Figure 4.11 or Figure 4.13 and certainly not to a spatially homogeneous solution.

To be more specific, we take

u0(x) = −α tanh
(

β
(x

L
− δ
))

, (4.37)

which serves as an approximation to the discontinuous steady state with disconti-

nuity at some x0 = δL for δ ∈ (0, 1). Note that in (4.37),

u0(0) = −u0(L) = α ∈ (0, 1),

and β is large and such that u′0(x0) = −αβ

L
. As usual we partition the space

interval [0, L] by N + 1 equally spaced grid points

0 = x1 < x2 < . . . < xj < . . . < xN+1 = L, (4.38)

where xj = (j − 1)∆x and ∆x = L
N

= xj+1 − xj. Throughout the numerical

experiments which follow, we fix N = 10000. For L = 2.5 (supercritical) with

λ = 5 > λ∗(2.5) ≃ 4.019534, we solve (3.18) using the built-in MATLAB PDE

solver pdepe we used for the numerical simulations of Section 3.2 and we present

the time evolution of the initial function

u0(x) = −0.9 tanh
[

500
(x

L
− 0.965

)]

,

in Figure 4.16.

0 1.25 2.5

−1

−0.5

0

0.5

1

x

u ( x, t )

 

 

t = 0
t = 0.04
t = 0.19
t = 100

Figure 4.16: Time evolution of the initial data u0(x) in (4.37) for λ = 5, L = 2.5

with α = 0.9, β = 500 and γ = 0.765.
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Hence we have numerical evidence suggesting that the discontinuous equilibria

for (3.18) constructed above are normally stable in BV (Ω) in the sense of [51].

Note that if E denotes the set of equilibria for the problem, then u∗ ∈ E is said to

be normally stable in BV (Ω) if solutions starting near u∗ ∈ E exist globally and

converge in BV to some (other) point on E . We expect that the generalised prin-

ciple of linearised stability developed in [51] should be applicable in this situation.

4.6.2 The free energy of solutions

Since we have a continuum of solutions to (4.24) for λ > λ∗(L) with interfaces

positioned at some

x0 ∈
[

min
r∈[rλ,1)

Sλ(r), L− min
r∈[rλ,1)

Sλ(r)

]

,

it is interesting to know which has the lowest energy. In Figure 4.17, we fix

L = 2.5 (supercritical), and λ = 5 > λ∗(L) ≈ 4.019534 and solve the dynamic

problem (3.18), (4.37) with α = 0.9, β = 500 and δ = 0.5, 0.7, 0.73 and 0.765

respectively and each solution converges to a discontinuous steady state. We treat

E[u](t), the free energy for the solution u(x, t) to (3.18), (4.37), as an integral

with respect to x and apply the trapezoidal rule at each time step. Then for a

particular stationary solution u(x) to the bistable Rosenau equation in (3.18)

E[u(x)](t = T ) =

∫ L

0

√

1 + (u′(x))2 − 1 − λF (u(x)) dx

=

∫ L

0

E(x) dx

≃ ∆x

2
[E(0) + 2E(x2) + 2E(x3) + . . .+ 2E(xN) + E(L)],

using the discretisation of the space interval [0, L] in (4.38). Hence we have also

plotted in Figure (4.17) the time evolution of the free energy for each of the
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stationary solutions obtained above with a given interface at some x0 ∈ (0, L).

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

        x
0
 = 0.5L

E[u](T) = −1.5399

0 1.25 2.5
−1

−0.5

0

0.5

1
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0
 = 0.7L

E[u](T) = −1.5460

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

        x
0
 = 0.73L

E[u](T) = −1.5506

0 1.25 2.5
−1

−0.5

0

0.5

1

 

 

       x
0
 = 0.765L

E[u](T) = −1.5612

0 1 2 3 4

−1.5

−1.4

−1.3

−1.2

t

E
 [u

] (
t)

 

 

interface at 0.5L
interface at 0.7L/0.3L
interface at 0.73L/0.27L
interface at 0.765L/0.235L

Figure 4.17: Time evolution of the free energy for the stationary solutions

to (3.18), (4.37) with interface at x0 = 1.25, 1.75, 1.825 and 1.9125.

Since E[u] = E[−u] for any solution u(x) to (4.24), a given monotone non-classical

solution u(x) with interface positioned at x0 = Sλ(u(0)) will have the same free

energy as the corresponding monotone non-classical solution v(x) = −u(L − x)

with interface positioned at x0 = L− Sλ(u(0)). To see this, consider

E[v] =

∫ L

0

√

1 + [v′(x)]2 − 1 − λF (v(x)) dx

=

∫ L

0

√

1 + [u′(L− x)]2 − 1 − λF (u(L− x)) dx

=

∫ L

0

√

1 + [u′(x)]2 − 1 − λF (u(x)) dx = E[u].
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Hence we have Figure 4.18 in which the plot of the position of the interface x0

against energy E[u] for a particular value of L and λ > λ∗(L) is shown where the

outer values x1 and x2 represent min
r∈[rλ,1)

Sλ(r) and L− min
r∈[rλ,1)

Sλ(r) respectively.

Note in the case of λ = 5, min
r∈[rλ,1)

Sλ(r) = Sλ(rλ).

E[u]

L0 L

2

x0

−1.54

−1.56

x1 x2

Figure 4.18: Plot of position of interface x0 against energy E[u] of stationary

solutions to (4.24) corresponding to L = 2.5 and λ = 5.

4.6.3 Propagation of discontinuities

Finally for a fixed supercritical L, we take initial data with a jump discontinuity in

(0, L) and solve the full evolution problem (3.18) for λ large enough so that there

can exist discontinuous equilibria to (3.18), i.e. for λ > λ∗(L). We take L = 2.5,

λ = 5 > λ∗(L) ≃ 4.019534 and the following piecewise constant initial data

u0(x) =











0.7 0 ≤ x ≤ L
2

−0.2 L
2
< x ≤ L.

(4.39)

The solution to (3.18), (4.39) at various times is presented in Figure 4.19.
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Figure 4.19: Solution to (3.18), (4.39) with L = 2.5 and λ = 5 at various times.

This numerical experiment suggests that if we take initial data endowed with a

discontinuity in (0, L) then, if the discontinuity is to move, the solution to (3.18)

must become continuous first. This is also true of the integro-differential equation

in (2.20) since that equation generates a semigroup in L∞ in which the propagation

of discontinuities is impossible.
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4.7 Conclusions

We undertook the investigation of a boundary value problem (4.1) associated with

a quasilinear reaction-diffusion equation (3.18) with a bistable kinetic nonlinear-

ity f(u) and Neumann boundary conditions. The results we have obtained are

surprising. Firstly, the bifurcation structure depends not only on the diffusion

coefficient ǫ but also on the length L of the space interval, which is not the case for

the corresponding semilinear equation (for which ψ(s) = s in (4.1)), for equations

with diffusion governed by, say, the p-Laplacian operator

ψ(s) = ψp(s) = |s|p−2s, p > 1,

or indeed for equations with diffusion governed by the prescribed mean curvature

operator (4.2), with a homogeneous kinetic nonlinearity. A physical interpretation

of this dependence of the bifurcation diagrams on the length L is required.

Secondly, we have shown that as the bifurcation parameter λ = 1
ǫ

is increased,

solutions to (4.24) develop infinite gradient and that for λ large enough, classical

solutions to the problem cease to exist. We note that this cessation of classical

solutions to a boundary value problem as a parameter passes through a critical

threshold has recently been observed in models for microelectromechanical systems

[10]. We also proved that the non-constant classical solutions to problem (4.24)

are unstable since the free energy functional does not admit non-constant classical

local minimisers. We have also presented a construction for non-classical solu-

tions to (4.24) which are discontinuous in (0, L) and shown that this construction

satisfies our definition of a BV solution to the problem. Furthermore, there is nu-

merical evidence (see Figure 4.17 and also Figure 4.19) to suggest that the problem

possesses a wealth of apparently stable discontinuous stationary solutions, which is

reminiscent of the situation in the integro-differential analogue of the Allen-Cahn

equation (2.20), [25, 30]. Hence the loss in continuity of solutions to (4.1) appears

to coincide with a gain in stability. The elucidation of the mechanism by which
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stability is generated is an interesting open question. We note that this interplay

of continuity and stability of stationary solutions as the bifurcation parameter is

varied is observed in the case of the integro-differential equation (2.20) in [7]. For

comparison with the semilinear situation, it is well-known that the classical Allen-

Cahn equation with Neumann boundary conditions has no stable non-constant

solutions on any convex domain.
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Non-local Mass Conserving

Bistable Rosenau Equation

It is not hard to show that the bistable Rosenau equation discussed in the previous

two chapters does not preserve the average value of the order parameter. This is

not a drawback if we are modelling phase transitions in a ferromagnetic material or

the evolution of the alignments in a crystalline substance but becomes a problem

when modelling phase separation in a binary alloy for which the total amount of

each species in the system must be conserved. Hence we are concerned in this

chapter with the following non-local equation

ut = ǫ (ψ(ux))x + f(u) − 1

|Ω|

∫

Ω

f(u) dx, x ∈ Ω, t > 0, (5.1)

ux = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where Ω = (0, L) ⊂ R, L > 0, |Ω| is the Lebesgue measure of Ω and ǫ, ψ(s) and

f(u) are as in previous chapters. The equation does conserve mass since, if we

117
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integrate (5.1) over Ω, we obtain

d

dt

∫

Ω

u(x, t) dx =

∫

Ω

ut dx

= ǫ

∫

Ω

(

ux
√

1 + u2
x

)

x

dx+

∫

Ω

f(u) dx− 1

|Ω|

∫

Ω

(∫

Ω

f(u) dy

)

dx

= 0, (5.2)

from the Neumann boundary conditions and so we must have that

∫

Ω

u(x, t) dx =

∫

Ω

u0(x) dx ∀t > 0.

There are various ways to introduce (5.1). One is simply by analogy with the

Rubinstein-Sternberg equation (2.13). Another way is as described in Section 2.1.4

where we noted that (5.1) can be viewed as the constrained gradient flow of the

free energy functional (2.24) on the linear manifold M = û+L2
0(Ω) in the Hilbert

space L2(Ω) where û is some element of L2(Ω) and

L2
0(Ω) =

{

v ∈ L2(Ω) :

∫

Ω

v(x) dx = 0

}

.

We will be analysing the stationary problem associated with (5.1) on Ω and so from

this point of view, we can also introduce (5.1) by considering the Cahn-Hilliard

version of the bistable Rosenau equation (3.1), that is,

ut = −(ǫ(ψ(ux))x + f(u))xx, x ∈ Ω, t > 0, (5.3)

ux = 0 and (ǫ(ψ(ux))x + f(u))x = 0, x ∈ ∂Ω,

which can be obtained as the H−1-gradient flow of the free energy functional

in (2.25). Note that one can integrate the stationary problem associated with (5.3)

twice using the Neumann boundary conditions to obtain the stationary problem

associated with (5.1). Hence stationary solutions to (5.1) are stationary solu-

tions to (5.3) and so since we are primarily interested in the stationary problem

for (5.1), the fact that (5.1) is nonlocal is not very important. We note that the

Cahn-Hilliard version of the non-local integro-differential equation in (2.20) with
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Neumann boundary conditions is considered in [4] in which well-posedness of that

problem is proven. We conclude this chapter with a study of a mass-conserving

numerical scheme for (5.1) and some numerical simulations of (5.1) using this

scheme.

5.1 The stationary problem

We are interested in this section in characterising the multiplicity of solutions to

the stationary problem associated with (5.1),

(ψ(ux))x + λf(u) − λ

L

∫ L

0

f(u(x)) dx = 0, x ∈ (0, L), (5.4)

ux = 0, at x = 0, L,

1

L

∫ L

0

u(x) dx = M,

as the bifurcation parameter λ = 1
ǫ

varies in (0,∞). We will see that the solutions

to (5.4) depend not only on their average mass M but also on the length L of the

space domain. As in previous chapters, we will be taking f(u) = u− u3 however,

the arguments below can easily be adapted to handle any bistable nonlinearity.

5.1.1 Liapunov-Schmidt reduction

Just as we did for the non-conserving problem (4.24) in Section 4.3, we use the

method of Liapunov-Schmidt reduction described in Section 2.3 to obtain local

bifurcation results for (classical) solutions to the non-local equation in (5.4). Note

that if u(x) is a solution to (5.4) then u(L − x) is also a solution to (5.4) and so

bifurcations from the trivial solution u(x) = M of (5.4) arise as pitchforks.

This work is a quasilinear analogue to work done in [26] which considers the case

where ψ(s) = s in (5.4) and uses local bifurcation and path-following methods to
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examine the changes in bifurcation diagrams of stationary solutions to the Cahn-

Hilliard model of phase separation as the mass constraint is varied.

We set v = u−M and recast problem (5.4) as

G(v, λ,M) = 0,

where

G(v, λ,M) =

(

vx
√

1 + (vx)2

)

x

+ λf(v +M) − λ

L

∫ L

0

f(v(x) +M) dx. (5.5)

Hence we regard G as an operator G : D(G) ⊂ H → H where D(G) is given by

D(G) =

{

v ∈ C2((0, L)) : v′(0) = v′(L) = 0,
1

L

∫

Ω

v(x) dx = 0

}

,

and H is the space

H =

{

w ∈ C((0, L)) :
1

L

∫ L

0

w(x) dx = 0

}

.

The linearisation about the trivial solution v = 0 is given by

(dG)0,λ,M · w =
d

dh
G(0 + hw, λ,M)|h=0

= wxx + λf ′(M)w − λ

L

∫ L

0

f ′(M)w(x) dx

= wxx + λf ′(M)w,

since w ∈ D(G). Hence ker(dG)0,λ,M is one-dimensional when λ = λk =
k2π2

L2f ′(M)
and is spanned by vk = cos

(

kπx
L

)

. Thus in a neighbourhood of a bifurcation point

(λk, 0) of (5.4), we aim to show that solutions of

G(v, λ,M) = 0

on H are in one-to-one correspondence with solutions of the reduced equation

h(λ, y) = 0, y ∈ R,
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through a Liapunov-Schmidt reduction. Let

S = (dG)0,λk,M : D(G) → H,

with kernel K and range R given by

K =

{

span

[

cos

(

kπx

L

)]}

,

and

R =

{

w ∈ H :

∫ L

0

w(x) cos

(

kπx

L

)

dx = 0

}

, (5.6)

respectively, and let E : H → R denote the projection of H onto R. As for

the non-conserving problem (4.24), the linearisation S of the equation (5.4) at a

bifurcation point (λk, 0) is self-adjoint and Fredholm of index zero and so, following

the steps in Section 2.3, the spaces D(G) and H are decomposed as

D(G) = K ⊕K⊥, H = K ⊕K⊥,

since K = R⊥ and K⊥ = R. The coordinates chosen in the Liapunov-Schmidt

reduction are then

v∗k = 2 cos

(

kπx

L

)

, vk = cos

(

kπx

L

)

,

and we denote the L2-inner product on [0, L] by 〈·, ·〉.

We now proceed to calculate the derivatives given in (2.51) of the reduced function

h(λ, y) in order to determine locally the direction of the pitchfork bifurcations from

the trivial solution u(x) = M of (5.4) for a given L and a given M . This is more

complicated than for the non-conserving problem (4.24) since unlike the operator

Θ defined in (4.12), the operator G in (5.5) is not odd and so terms involving S−1

in (2.51) will not necessarily vanish. In order to invert S we will need to solve an

ordinary differential equation; see (5.7).
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From (2.50) we have

(d2G)0,λk,M(w1, w2) =
∂2

∂t1∂t2
G(0 + t1w1 + t2w2, λk,M)

= λkf
′′(M)w1w2 −

λk

L

∫ L

0

f ′′(M)w1(x)w2(x) dx,

and so

(d2G)0,λk,M(vk, vk) = λkf
′′(M) cos2

(

kπx

L

)

− λk

L

∫ L

0

f ′′(M) cos2

(

kπx

L

)

dx

= λkf
′′(M) cos2

(

kπx

L

)

− λk

f ′′(M)

2
.

Hence by (2.51)

hyy =
〈

v∗k, d
2G(vk, vk)

〉

=

∫ L

0

2 cos

(

kπx

L

)[

λkf
′′(M) cos2

(

kπx

L

)

− λk

f ′′(M)

2

]

dx

= 0.

Set

(d2G)0,λk,M(vk, vk) = λkf
′′(M) cos2

(

kπx

L

)

− λk

f ′′(M)

2
= p(x).

so that

p′(0) = p′(L) = 0,

and

1

L

∫ L

0

p(x) dx = 0,

therefore (d2G)0,λk,M(vk, vk) ∈ H.

However,
∫ L

0

(d2G)0,λk,M(vk, vk) cos

(

kπx

L

)

dx

=

∫ L

0

[

λkf
′′(M) cos3

(

kπx

L

)

− λk

f ′′(M)

2
cos

(

kπx

L

)]

dx

= 0,



Chapter Five 123

so that (d2G)0,λk,M(vk, vk) ∈ R by (5.6). Therefore (d2G)0,λk,M(vk, vk) ∈ H triv-

ially decomposes as

(d2G)0,λk,M(vk, vk) = (d2G)0,λk,M(vk, vk) + 0,

where (d2G)0,λk,M(vk, vk) ∈ R and of course 0 ∈ R⊥. Thus, since E : H → R is

the projection of H onto the range of S, we have

E[(d2G)0,λk,M(vk, vk)] = (d2G)0,λk,M(vk, vk),

and we consider

S−1E[(d2G)0,λk,M(vk, vk)] = S−1(d2G)0,λk,M(vk, vk) = l(x)

⇒ (d2G)0,λk,M(vk, vk) = Sl(x).

Thus the second order ordinary differential equation that we need to solve for l(x)

in order to obtain S−1E[(d2G)0,λk,M(vk, vk)] is

l′′(x) + λkf
′(M)l(x) = λkf

′′(M) cos2

(

kπx

L

)

− λk

f ′′(M)

2
, (5.7)

which has solution

l(x) = cos

(

kπx

L

)

− 1

6

f ′′(M)

f ′(M)
cos

(

2kπx

L

)

,

so that

S−1E[(d2G)0,λk,M(vk, vk)] = cos

(

kπx

L

)

− 1

6

f ′′(M)

f ′(M)
cos

(

2kπx

L

)

.

Hence we compute

d2G(vk, S
−1E[d2G(vk, vk)])

= d2G

(

cos

(

kπx

L

)

, cos

(

kπx

L

)

− 1

6

f ′′(M)

f ′(M)
cos

(

2kπx

L

))

= λkf
′′(M)

[

cos2

(

kπx

L

)

− 1

6

f ′′(M)

f ′(M)
cos

(

2kπx

L

)

cos

(

kπx

L

)]

− λk

1

L

∫ L

0

f ′′(M)

[

cos2

(

kπx

L

)

− 1

6

f ′′(M)

f ′(M)
cos

(

2kπx

L

)

cos

(

kπx

L

)]

dx

= λkf
′′(M)

[

cos2

(

kπx

L

)

− 1

6

f ′′(M)

f ′(M)
cos

(

2kπx

L

)

cos

(

kπx

L

)]

− λk

f ′′(M)

2
,
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and so we have

〈v∗k, 3d2G(vk, S
−1E[d2G(vk, vk)])〉

=

∫ L

0

6λkf
′′(M)

[

cos3

(

kπx

L

)

− 1

6

f ′′(M)

f ′(M)
cos

(

2kπx

L

)

cos2

(

kπx

L

)]

dx

−
∫ L

0

3λkf
′′(M) cos

(

kπx

L

)

dx

= −λkL

4

[f ′′(M)]2

f ′(M)
= −k

2π2

4L

[f ′′(M)]2

[f ′(M)]2
. (5.8)

In addition to this,

(d3G)0,λk,M(w1, w2, w3) =
∂3

∂t1∂t2∂t3
G(0 + t1w1 + t2w2 + t3w3, λk,M)|t1=t2=t3=0

= −3[w′′
3w

′
1w

′
2 + w′′

2w
′
1w

′
3 + w′′

1w
′
2w

′
3] + λkf

′′′(M)w1w2w3

− λkf
′′′(M)

1

L

∫ L

0

w1(x)w2(x)w3(x) dx,

so that

(d3G)0,λk,M(vk, vk, vk) = −9[v′′k(v′k)2] + λkf
′′′(M)v3

k − λkf
′′′(M)

1

L

∫ L

0

v3
k(x) dx

=
9k4π4

L4
cos

(

kπx

L

)

sin2

(

kπx

L

)

+ λkf
′′′(M) cos3

(

kπx

L

)

,

and

〈

v∗k, d
3G(vk, vk, vk)

〉

=

∫ L

0

[

18k4π4

L4
cos2

(

kπx

L

)

sin2

(

kπx

L

)

+ 2λkf
′′′(M) cos4

(πx

L

)

]

dx

=
3k2π2

4L3

(

3k2π2 + L2f
′′′(M)

f ′(M)

)

. (5.9)

Therefore from (2.51), (5.8) and (5.9) we obtain

hyyy =
〈

v∗k, d
3G(vk, vk, vk) − 3d2G(vk, S

−1E[d2G(vk, vk)])
〉

=
3k2π2

4L3[f ′(M)]2

(

3k2π2[f ′(M)]2 + L2f ′′′(M)f ′(M) +
L2

3
[f ′′(M)]2

)

. (5.10)

Also,

Gλ(v, λ,M) = f(v +M) − 1

L

∫ L

0

f(v(x) +M) dx,
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so that Gλ(0, λk,M) = 0 which implies that

(d2G)0,λk,M(vk, S
−1E[Gλ(0, λk,M)]) = 0, (5.11)

while

(dGλ)0,λk,M · w = f ′(M)w − 1

L

∫ L

0

f ′(M)w(x) dx

= f ′(M)w, (5.12)

for any w ∈ D(G). Therefore, from (2.51), (5.11) and (5.12) we have

hλy =
〈

v∗k, dGλ(vk) − d2G(vk, S
−1EGλ)

〉

=

∫ L

0

2 cos

(

kπx

L

)

f ′(M) cos

(

kπx

L

)

dx

= Lf ′(M). (5.13)

By the preceding calculations,

h = hy = hyy = hλ = 0,

and so we therefore have from Proposition 2.13 that

hλyhyyy < 0 ⇒ a supercritical bifurcation from the trivial solution occurs;

hλyhyyy > 0 ⇒ a subcritical bifurcation from the trivial solution occurs.

So, for f(s) = s − s3, consider first taking M = 0. In this case, hλy = L > 0

by (5.13) and we need to determine where hyyy changes sign.

From (5.10), when M = 0,

hyyy =
3k2π2

4L3
(3k2π2 − 6L2),

which will be negative for L large enough i.e. for L > kπ√
2

and so we have that

the bifurcation from the trivial solution is subcritical if L < kπ√
2

and supercritical
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if L > kπ2√
2

. This corresponds with the result obtained in Proposition 4.4 for the

non-conserving equation

(

u′
√

1 + (u′)2

)′

+ λf(u) = 0, (5.14)

u′(0) = u′(L) = 0,

as we would expect since, as we noted in Section 4.1, non-constant classical solu-

tions to (5.14) are represented by a trajectory encircling the origin, starting and

ending on the u-axis in the phase plane for the first order system (4.6) associated

with (5.14). The symmetry in the phase plane means that a non-constant classical

solution u(x) to (5.14) has zero mean, i.e.

1

L

∫ L

0

u(x) dx = 0,

and, by integrating (5.14) over Ω = (0, L), we see that

1

L

∫ L

0

f(u) dx = 0.

Therefore non-constant classical solutions to (5.14) are solutions to (5.4) in the

case that M = 0.

Now suppose 0 < |M | < 1√
5

we again need to determine where hyyy in (5.10)

changes sign in order to answer the question of how many stationary solutions

there are for a given L and a given M such that 0 < |M | < 1√
5

as λ varies in a

neighbourhood of a bifurcation point (λk, 0). Solving hyyy = 0 for L2 as a function

of M gives

L2 = (L∗)2 :=
k2π2

2

[1 − 3M2]2

(1 − 5M2)
,

and taking the positive square root of this gives

L = L∗ :=
kπ√

2

[1 − 3M2]√
1 − 5M2

, (5.15)
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which has a vertical asymptote when |M | = 1√
5

and a turning point when |M | =

1√
15

. We plot the relationship between this critical value of L in (5.15) and M for

some k ∈ N in Figure 5.1.

L∗

0

kπ√
2

2k
√

3π
5

1√
15

1√
5

1√
3

− 1√
15

− 1√
5

− 1√
3

Super Super

Sub Sub

M

Figure 5.1: Plot of length L∗ against mass M for some k ∈ N, (k = 1).

Consider

hyyy =
3k2π2

4L3[f ′(M)]2

(

3k2π2[f ′(M)]2 + L2f ′′′(M)f ′(M) +
L2

3
[f ′′(M)]2

)

> 0

⇔3k2π2[f ′(M)]2 + L2f ′′′(M)f ′(M) +
L2

3
[f ′′(M)]2 > 0

⇔3k2π2(1 − 3M2)2 − 6L2(1 − 3M2) + 12L2M2 > 0

⇔3k2π2(1 − 3M2)2 > 6L2 − 30L2M2

⇔k2π2(1 − 3M2)2 > 2L2(1 − 5M2)

⇔L2 <
k2π2

2

(3M2 − 1)2

1 − 5M2
= (L∗)2,

since 0 < |M | < 1√
5

so that 1 − 5M2 > 0.
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Also, we note that for all L > 0 with 1√
5
< |M | < 1√

3
,

3k2π2[f ′(M)]2 + L2f ′′′(M)f ′(M) +
L2

3
[f ′′(M)]2

= 3k2π2(1 − 3M2)2 + 6L2(5M2 − 1) > 0,

so that from (5.10), hyyy > 0 for all for all such L and M . Therefore, since

hλy = f ′(M)L > 0 for all M such that |M | < 1√
3
, we have established:

Proposition 5.1. For 0 ≤ |M | < 1√
5
, the k-th bifurcation from the trivial solution

of (5.4) is a supercritical pitchfork if L > L∗ and a subcritical pitchfork if L < L∗

(with L∗ given in (5.15)). For 1√
5
< |M | < 1√

3
, bifurcation from u(x) = M is

a subcritical pitchfork for all L. In the parameter regime |M | ≥ 1√
3
, no local

bifurcations from the constant solution u(x) = M exist for any L.

Remark: Note that, just as in the non-conserving situation discussed in Sec-

tion 4.3, it is again possible to have either subcritical or supercritical bifurcations

for different values of k.

5.1.2 Nonexistence of classical solutions for λ large enough

For fixed L and a ∈ R, we consider

(

u′
√

1 + (u′)2

)′

+ λf(u) = λa, (5.16)

u′(0) = u′(L) = 0,

which can be written as the first order system











u′ = v,

v′ = λ(a− f(u))(1 + v2)
3

2 ,

(5.17)

with the first integral given by

H(u, v) =
1√

1 + v2
+ λ(au− F (u)). (5.18)
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Integrating (5.16) over Ω = (0, L) we see that

1

L

∫ L

0

f(u(x)) dx = a,

hence we can think of (5.16) as an ancillary problem for (5.4) and we will use (5.16)

to gain insight into the multiplicity of solutions to (5.4). We begin with the

following Lemma.

Lemma 5.2. For a fixed L and any a ∈ R such that |a| < 2
3
√

3
, there is a number

λ∗(a, L) such that ∀λ > λ∗(a, L), there are no non-constant classical solutions

to (5.16).

Proof. Suppose 0 < a < 2
3
√

3
so that the equation f(u) = a has three solutions ul,

c, ur with ul < 0 < c < ur where (ul, 0) and (ur, 0) are saddle points for (5.17) and

(c, 0) is a centre. From considerations on the first integral (5.18) associated with

the ancillary problem (5.16) one can see that for λ < λh(a), there is a homoclinic

loop connecting (ur, 0) to itself which, for a particular λ < λh(a), we have denoted

by γλ in Figure 5.2. Note that for each a, λh(a) is obtained through solving

H(ur, 0) = H(c,−∞),

for λ = λh(a). Non-constant classical solutions to (5.16) for λ < λh(a) are repre-

sented in the phase plane by trajectories which encircle the centre (c, 0), start and

end on the u-axis and which are contained within γλ.

ul urc

γλ

Figure 5.2: Phase portrait for (5.17) with λ < λh(a) (a = 0.1, λ = 3 < λh(0.1) =

6.3426).
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For λ large enough, i.e. for λ = λh(a), the homoclinic loop will break. Through

further considerations on H(u, v), one sees that if λ > λh(a), as in Figure 5.3,

there exist values u∗(λ) and u∗∗(λ) such that u∗(λ) < c < u∗∗(λ),

H(u∗(λ), 0) = H(u∗∗(λ), 0), (5.19)

and

u∗(λ) → c−, u∗∗(λ) → c+ as λ→ ∞. (5.20)

Note that for each λ, we can find u∗(λ) for each λ > λh(a) by solving

H(u∗(λ), 0) = H(c,∞),

for ul < u∗(λ) < c and then obtain u∗∗(λ) via (5.19). Hence non-constant classical

solutions to (5.16) are now confined to γ∗λ as in Figure 5.3 which is the region

enclosed by the trajectories through (u∗(λ), 0) and (u∗∗(λ), 0) in the phase plane.

urcul
u∗(λ) u∗∗(λ)

γ∗λ

Figure 5.3: Phase portrait for (5.17) with λ > λh(a), (a = 0.1, λ = 15 > λh(0.1) ≃
6.3426).

Now assume that for a given λ and a given n ∈ N, there exists a non-constant

classical solution u(x) to (5.16) which has n points of inflection in (0, L). Such a
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solution will have period equal to 2L
n

. For λ large enough, because of (5.20), the

only possible non-constant Neumann classical solutions to (5.16) will be in a small

neighbourhood of the centre, hence we linearise (5.16) around (c, 0) to obtain

u′′ + λf ′(c)u = 0.

Thus the period of such a solution is equal to

2π
√

λf ′(c)
, (5.21)

which is well-defined since 0 < c < 1√
3

so that f ′(c) > 0 but (5.21) will not be

equal to 2L
n

if λ is large enough. This contradiction proves Lemma 5.2 in the case

that 0 < a < 2
3
√

3
. The case − 2

3
√

3
< a < 0 can be treated similarly. Note that

in the case that a = 0 (in which non-constant classical solutions to (5.16) are

also solutions to the non-conserving equation (4.24)), there are heteroclinic loops

connecting saddle points which break for λ large enough rather than homoclinic

loops but the arguments carry through just as easily.

Remark: We note that for each 0 < a < 2
3
√

3
, if λ is small enough then the

phase portrait for (5.17) contains non-trivial classical solutions to the ancillary

problem (5.16) which are also non-trivial classical solutions to (5.4) for some

0 < M < 1. Similarly, for each − 2
3
√

3
< a < 0, if λ is small enough then the

phase portrait for (5.17) contains non-trivial classical solutions to (5.16) which

are also non-trivial classical solutions to (5.4) for some −1 < M < 0. If a = 0

then for λ small enough, the phase portrait for (5.17) contains non-trivial classical

solutions to (5.16) which are also non-trivial classical solutions to (5.4) withM = 0.

Just as we did in Chapter 4 for the stationary problem (4.24) associated with the

non-conserving equation (3.18), we now concentrate on the multiplicity of mono-

tone classical solutions to (5.4) where without loss of generality, 0 ≤ M < 1√
3

so that from now on, for a ∈
[

0, 2
3
√

3

)

, λ∗(a, L) represents the value of λ for

which there are no monotone classical solutions to (5.16) ∀λ > λ∗(a, L). We
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also note that when a = 0, the value λ∗(0, L) corresponds to the value arising

in Section 4.4 that we denoted by λ∗(L), i.e. the value of λ such that monotone

classical solutions to (4.24) develop infinite gradient in (0, L) and the bifurcation

diagrams for monotone classical solutions to (4.24) stop. Therefore we have that

λ∗(a, L) → λ∗(0, L) = λ∗(L) as a → 0. Also, the value λ∗(a, L) must occur after

the homoclinic orbit has broken for a fixed a so that λ∗(a, L) → ∞ as a→ 2
3
√

3
.

Let us drop the dependence of λ∗(a, L) from Lemma 5.2 on L and denote the

value simply by λ∗(a) since we will regard L as being fixed. Hence Lemma 5.2

implies that for every a ∈
[

0, 2
3
√

3

)

, there is a value λ∗(a) such that monotone

solutions to the ancillary problem (5.16) develop infinite gradient at some x0 ∈
(0, L). Therefore for every λ ≥ λ∗(0), there is a value of a corresponding to the

inverse of λ∗(a) which will be denoted by a∗(λ) and be such that a∗(λ) → 2
3
√

3
as

λ → ∞ and a∗(λ) → 0 as λ → λ∗(0)+. We give a sketch of the function a∗(λ) in

Figure 5.4 but note that we do not prove that the curve a∗(λ) is continuous (see

Theorem 5.4).

λ
0 λ∗(0, L)

a

2
3
√

3

a∗(λ)

Figure 5.4: Sketch of the curve a∗(λ) in the (λ, a)-plane.

Lemma 5.3. For a fixed L and each 0 ≤ M < 1√
3
, the bifurcation curve of

monotone classical solutions to (5.4) does not exist in the region in the (λ, a)-

plane defined by a∗(λ) < a < 2
3
√

3
for λ large, where a∗(λ) is the curve obtained
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from Lemma 5.2.

Proof. Let ã(λ) denote the bifurcation curve of monotone classical solutions to (5.4)

in the (λ, a)-plane and assume the contrary to Lemma 5.3. Then there exists a

sequence (λn)∞n=1 such that λn → ∞ as n→ ∞ and

a∗(λn) < ã(λn) <
2

3
√

3
,

for all n ∈ N sufficiently large. Then since a∗(λn) → 2
3
√

3
as n → ∞ we have by

the sandwich theorem that

ã(λn) → 2

3
√

3
as n→ ∞. (5.22)

But M is constant along ã(λ) and (5.22) implies that M must be equal to 1√
3

which is a contradiction.

We now have the following theorem regarding (monotone) classical solutions to

the non-local mass-conserving equation (5.4):

Theorem 5.4. For fixed L and 0 ≤ M < 1√
3
, there exists a value λ1(M,L) such

that for λ > λ1(M,L) there cannot exist monotone classical solutions to the non-

local mass-conserving equation in (5.4).

Proof. In the (λ, a)-plane, the curve a∗(λ) obtained from Lemma 5.2 separates

two regions; a region in which monotone classical solutions to the non-local mass-

conserving equation (5.4) can exist for fixed L and 0 ≤ M < 1√
3

and a region in

which monotone classical solutions to (5.4) cannot exist for such L and M . As in

Lemma 5.3, let ã(λ) denote the bifurcation curve of monotone classical solutions

to (5.4). We know by Lemma 5.3, that ã(λ) must intersect the curve a∗(λ) at

some point since ã(λ) cannot not exist in the region defined by a∗(λ) < a < 2
3
√

3
in

the (λ, a)-plane for sufficiently large λ and from the Rabinowitz theorem (see [56,

Theorem 13.10]), it has to go somewhere as λ increases. We want to prove that

ã(λ) intersects a∗(λ) at a point of continuity of a∗(λ).
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λ
0

a

a∗(λ)

ã(λ)

2
3
√

3

CLASSICAL SOLUTIONS

TO (5.4)TO (5.4)

λ∗d

NO CLASSICAL SOLUTIONS

Figure 5.5: The curve a∗(λ) and a proposed bifurcation curve ã(λ) of classical

monotone solutions to (5.4) intersecting a∗(λ) at a supposed point of discontinuity

of a∗(λ).

We assume the contrary and consider the bifurcation curve ã(λ) of monotone

classical solutions to (5.4) in the (λ, a)-plane as we have it in Figure 5.5. We assume

that the curve a∗(λ) is discontinuous at some value λ∗d and that the bifurcation

curve ã(λ) enters the region of no classical solutions to (5.4) at this point of

discontinuity of a∗(λ). By the Rabinowitz theorem [56, Theorem 13.10] there must

be a classical solution in a neighbourhood of this point λ∗d and the bifurcation curve

of classical solutions can be extended. However, we would then have entered into

the region in which there can be no classical solutions to (5.4) and so we have

obtained a contradiction. Hence the bifurcation curve must intersect the curve

a∗(λ) at a point of continuity and the theorem is proven.

Remark: Although we established Theorem 5.4 for monotone classical solutions

to (5.4), the result can be generalised to non-monotone classical solutions u(x)

to (5.4) which have n points of inflection in (0, L) for some n ∈ N. Thus for each

n ∈ N, there exists a value λn(M,L) such that for λ > λn(M,L), there are no clas-

sical solutions to (5.4) with n points of inflection in (0, L). However, we point out

that unlike the situation in the (semilinear) Rubinstein-Sternberg equation [26],
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there is no obvious way to deduce the behaviour of a particular branch of solutions

to (5.4) from that of the monotone one. Also, in the proof of Theorem 5.4 we did

not establish that the curve a∗(λ) is continuous but we did show that it must

be continuous at the point λ∗d where the bifurcation curve of monotone classical

solutions to (5.4) intersects it.

We have not given a precise depiction of the bifurcation curve of monotone classical

solutions to the mass-conserving problem (5.4) in the (λ, a)-plane for given L and

0 ≤ M < 1√
3
. Hence for fixed L and M subcritical and then for fixed L and

M supercritical, we numerically obtain the curve a∗(λ) from Lemma 5.2 and the

bifurcation curve ã(λ) of monotone classical solutions to (5.4) and plot these in

the (λ, a)-plane. With regards to problem (5.4), we know that along the line of

trivial solutions, a = 1
L

∫ L

0
f(u(x)) dx is constant and equal to M −M3. Given L,

for each 0 ≤ M < 1√
3
, bifurcation from the trivial solution of (5.4) occurs when

λ = π2

L2f ′(M)
which we can rearrange to

M =
1√
3

√

1 − π2

L2λ
,

and since bifurcation points appear along the line of trivial solutions (upon which

a = M−M3) we can plot a curve of bifurcation points for fixed L in the (λ, a)-plane

by considering the function

ab(λ) = M −M3

=
1

3
√

3

√

1 − π2

L2λ

(

2 +
π2

L2λ

)

.

For a given L, we can numerically work out the value of λ∗(a) from Lemma 5.2

for various values of a ∈
[

0, 2
3
√

3

)

and then plot the curve a∗(λ) in the (λ, a)-plane

through an analysis of the time map associated with the ancillary problem (5.16)

which can be defined in a similar way to the time map for the non-conserving equa-

tion (4.24) defined in Section 4.2. Using AUTO [24], we then plot the bifurcation

curve ã(λ) of monotone classical solutions to (5.4) in the (λ, a)-plane for fixed M
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and L and obtain the value λ1(M,L) of Theorem 5.4.

Thus we fix L = 1 and M = 0.1 so that the bifurcation at λ = π2

f ′(0.1)
= 10.1748500

from the trivial solution is subcritical and a = 0.099 along the line of trivial

solutions to (5.4). According to AUTO, the branch of monotone classical solutions

to (5.4) for these parameter values stops when λ = λ1(0.1, 1) = 5.657873 with

ã(λ1(0.1, 1)) = a∗(λ1(0.1, 1)) = 0.02890214 and we have plotted all relevant curves

in the (λ, a)-plane in Figure 5.6.

λ

a

0.099
ã(λ)

a∗(λ)

2

3
√

3

ab(λ)

0
0 5 10 15 20

Figure 5.6: The bifurcation curve ã(λ) of monotone classical solutions to (5.4) for

L = 1, M = 0.1 and the curves ab(λ) and a∗(λ) in the (λ, a)-plane.

In the case of large L, λh(a) ≃ λ∗(a) for each a where λh(a) is the value of λ

mentioned in the proof of Lemma 5.2 for which the homoclinic loop connecting

the saddle point (ur, 0) to itself breaks. In Figure 5.7 we plot all relevant curves

in the (λ, a)-plane for L = 2.5, M = 0.3 for which a = 0.273 along the line

of trivial solutions to (5.4). We have a supercritical bifurcation from the trivial

solution when λ = π2

2.52f ′(0.3)
= 2.163201 and according to AUTO, the branch of

monotone classical solutions in this case stops when λ = λ1(0.3, 2.5) = 4.085973

with ã(λ1(0.3, 2.5)) = a∗(λ1(0.3, 2.5)) = 0.005144947.
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λ

a

0.273

ã(λ)
a∗(λ)

2

3
√

3

ab(λ)

0
0 5 10 15 20

Figure 5.7: The bifurcation curve ã(λ) of monotone classical solutions to (5.4) for

L = 2.5, M = 0.3 and the curves ab(λ) and a∗(λ) in the (λ, a)-plane.

On the basis of the preceding numerical experiments we would conjecture that

the bifurcation curve ã(λ) of classical solutions to (5.4) is monotonic and for given

L and M , a is at its largest along the line of trivial solutions i.e. when a = M−M3.

Remark: We have not discussed the case of having 1√
3
< |M | < 1 in (5.4), i.e.

what happens in the “metastable” regime in which there are no local bifurcations

from the trivial solution and for which the trivial solution is always stable. As

|M | → 1√
3
, f ′(M) → 0 and the first and all subsequent bifurcation points λk =

k2π2

L2f ′(M)
go off to infinity. In the semilinear situation studied in [26], in passing from

the spinodal to the metastable regime, they show through spectral approximations

and path-following methods that the saddle-nodes which exist for 1√
5
≤ |M | < 1√

3
,

move off to the right as f ′(M) → 0+ but at a speed much slower than that of

the bifurcation points. In our case, for all L with M just less than 1√
3

so that the

bifurcation from the trivial solution is subcritical by Proposition 5.1, the classical

solutions to (5.4) stop existing before we reach a saddle-node. Hence we were

not able to perform a two parameter continuation in λ and in M of the saddle-
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nodes for |M | beyond
1√
3

. We can however say what happens in the parameter

regime |M | ≥ 1. By the remark after Lemma 5.2 we see that it is not possible

to construct a non-trivial classical solution to the ancillary problem (5.16) which

will have average mass M such that |M | ≥ 1. One can also see from phase

portraits associated with (5.17) that it is also not possible to construct a non-

classical solution to (5.16) for any |a| < 2
3
√

3
which will have |M | ≥ 1. Therefore

for |M | ≥ 1, there are no non-trivial solutions to (5.4) for any λ ∈ (0,∞) which is

also true of the semilinear problem (see [26]).

5.2 Numerical analysis

In this section we carry out some numerical experiments for the non-local mass-

conserving equation in (5.1). The MATLAB PDE solver pdepe we used for the

numerical experiments on the non-conserving problem (3.1) in Section 3.2 and

Section 4.6 is not applicable here as one cannot implement the integral term in (5.1)

with this solver. Therefore we first have to derive an explicit numerical method

to solve the equation (5.1) and we are grateful to Dr John Mackenzie of The

University of Strathclyde for discussions on the numerical scheme we outline in

the following subsection.

5.2.1 Numerical approximation

We derive a mass-conserving numerical scheme to solve

ut =

(

ux
√

1 + u2
x

)

x

+ λf(u) − λ

|Ω|

∫

Ω

f(u) dx, (x, t) ∈ QT ≡ Ω × (0, T )

ux(0, t) = ux(L, t) = 0, (x, t) ∈ ∂Ω × (0, T ) (5.23)

u(x, 0) = u0(x), x ∈ Ω,

where λ ∈ (0,∞), Ω = (0, L), L > 0, f(s) = s − s3 and 0 < T < ∞. We

obtain (5.23) from (5.1) by multiplying (5.1) by
1

ǫ
and scaling time as t 7→ ǫt.
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By (5.2), the non-local equation (5.23) conserves mass and to hope to have the

same at the discrete level we must discretise the equation in conservative form, i.e.

in the form given in (5.23).

We discretise the space interval Ω into N + 1 evenly spaced points

0 = x1 < x2 < . . . < xN+1 = L,

so that ∆x = L
N

and we regard there as being cells [xi− 1

2
, xi+ 1

2
] of width ∆x around

each internal point xi, i = 2, · · · , N while at the boundaries i = 1 and i = N + 1

we use cells [x1, x 3

2
] and [xN+ 1

2
, xN+1] of half width ∆x

2
as in Figure 5.8.

x1x2−1
2
x2 x2+1

2
x3 x4 x

N−1
2
xN x

N+1
2
xN+1

0 L

· · ·

Figure 5.8: Discretisation of the space interval [0, L].

At a particular xi ∈ Ω = (0, L) (hence i ∈ {2 · · ·N}), tn ∈ (0, T ) the equation is

given by

ut(xi, tn) =

(

ux(xi, tn)
√

1 + u2
x(xi, tn)

)

x

+ λf(u(xi, tn)) − λ

L

∫ L

0

f(u(x, tn)) dx.

Let v(x, t) denote the flux, i.e.

v(x, t) =
ux(x, t)

√

1 + u2
x(x, t)

so that at some xi ∈ Ω = (0, L), tn ∈ (0, T )
(

ux(xi, tn)
√

1 + u2
x(xi, tn)

)

x

= vx(xi, tn)

≃
v(xi+ 1

2
, tn) − v(xi− 1

2
, tn)

∆x
(5.24)

that is, we approximate the flux term by a first central difference in space at the

point xi with half-spacing.
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Now,

v(xi+ 1

2
, tn) =

ux(xi+ 1

2
, tn)

√

1 + u2
x(xi+ 1

2
, tn)

≃ (u(xi+1, tn) − u(xi, tn))/∆x
√

1 +
[

u(xi+1,tn)−u(xi,tn)
∆x

]2
(5.25)

and

v(xi− 1

2
, tn) =

ux(xi− 1

2
, tn)

√

1 + u2
x(xi− 1

2
, tn)

≃ (u(xi, tn) − u(xi−1, tn))/∆x
√

1 +
[

u(xi,tn)−u(xi−1,tn)
∆x

]2
(5.26)

so that in (5.25) we approximate the term v(xi+ 1

2
, tn) by a first central difference

in space about the point xi+ 1

2
with half-spacing and in (5.26) we approximate the

term v(xi− 1

2
, tn) by a first central difference in space about the point xi− 1

2
with

half-spacing. Therefore by (5.24), (5.25) and (5.26)

(

ux(xi, tn)
√

1 + u2
x(xi, tn)

)

x

= vx(xi, tn)

≃ 1

∆x2









(u(xi+1, tn) − u(xi, tn))
√

1 +
[

u(xi+1,tn)−u(xi,tn)
∆x

]2
− (u(xi, tn) − u(xi−1, tn))
√

1 +
[

u(xi,tn)−u(xi−1,tn)
∆x

]2









.

We approximate the integral term in (5.23) at some given time tn using the mid-

point rule for numerical integration as follows

∫ L

0

f(u(x, tn)) dx =

∫ x 3
2

x1

f(u(x, tn)) dx+

∫ x 5
2

x 3
2

f(u(x, tn)) dx+ . . .+

∫ x
i+1

2

x
i− 1

2

f(u(x, tn)) dx

+ . . .+

∫ x
N+1

2

x
N− 1

2

f(u(x, tn)) dx+

∫ xN+1

x
N+1

2

f(u(x, tn)) dx

≃ ∆x

2
f(u(x1, tn)) +

N
∑

j=2

∆xf(u(xj, tn)) +
∆x

2
f(u(xN+1, tn)).
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Let u(xi, tn) = un
i so that using the forward Euler method, we approximate (5.23)

at interior points xi ∈ (0, L), i = 2, · · · , N by the numerical scheme

un+1
i = un

i + ∆t

(

1

∆x2









un
i+1 − un

i
√

1 +
(

un
i+1

−un
i

∆x

)2
− un

i − un
i−1

√

1 +
(

un
i −un

i−1

∆x

)2









+ λf(un
i )

− λ

L

[

∆x

2
f(un

1 ) +
N
∑

j=2

∆xf(un
j ) +

∆x

2
f(un

N+1)

])

, (5.27)

for i = 2, . . . , N . At the boundary points x = 0 and x = L we consider the

discretisation in the half-cells [x1, x 3

2
] and [xN+ 1

2
, xN+1] respectively, so that we

have

un+1
1 = un

1 + ∆t

(

2

∆x2

un
2 − un

1
√

1 +
[

un
2
−un

1

∆x

]2
+ λf(un

1 )

− λ

L

[

∆x

2
f(un

1 ) +
N
∑

j=2

∆xf(un
j ) +

∆x

2
f(un

N+1)

])

, (5.28)

and

un+1
N+1 = un

N+1 + ∆t

(

− 2

∆x2

un
N+1 − un

N
√

1 +
[

un
N+1

−un
N

∆x

]2
+ λf(un

N+1)

− λ

L

[

∆x

2
f(un

1 ) +
N
∑

j=2

∆xf(un
j ) +

∆x

2
f(un

N+1)

])

. (5.29)

For the above numerical scheme to approximately (5.23) reasonably it must also

conserve mass. Therefore we have the following theorem.

Theorem 5.5. The explicit numerical scheme contained in (5.27), (5.28), (5.29)

conserves mass.
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Proof. We multiply (5.27) by ∆x and sum over i = 2, 3, · · · , N to obtain

N
∑

i=2

un+1
i ∆x =

N
∑

i=2

un
i ∆x+ ∆t

(

N
∑

i=2

1

∆x









un
i+1 − un

i
√

1 +
(

un
i+1

−un
i

∆x

)2
− un

i − un
i−1

√

1 +
(

un
i −un

i−1

∆x

)2









+ λ

N
∑

i=2

f(un
i )∆x−

N
∑

i=2

∆x
λ

L

[

∆x

2
f(un

1 ) +
N
∑

j=2

∆xf(un
j ) +

∆x

2
f(un

N+1)

])

=
N
∑

i=2

un
i ∆x+ ∆t

(

1

∆x









un
N+1 − un

N
√

1 +
[

un
N+1

−un
N

∆x

]2
− un

2 − un
1

√

1 +
[

un
2
−un

1

∆x

]2









+ λ
N
∑

i=2

f(un
i )∆x−

N
∑

i=2

∆x
λ

L

[

∆x

2
f(un

1 ) +
N
∑

j=2

∆xf(un
j ) +

∆x

2
f(un

N+1)

])

(5.30)

Now we multiply both of the boundary terms in (5.28) and (5.29) by ∆x
2

and add

the resulting equations to (5.30) to give
[

un+1
1

2
+

N
∑

j=2

un+1
i +

un+1
N+1

2

]

∆x =

[

un
1

2
+

N
∑

j=2

un
i +

un
N+1

2

]

∆x

and so mass is conserved at the discrete level as required.

5.2.2 Numerical experiments

We present the results of some numerical simulations for the non-local mass-

conserving equation (5.23) using the explicit mass-conserving numerical scheme

described in Section 5.2.1. For 0 < M < 1√
5

fixed, we choose both sub- and super-

critical lengths L (see Proposition 5.1). In the subcritical case (Experiment 5.6) we

use AUTO to plot the bifurcation diagram for monotone classical solutions to (5.4)

and find the value λ1(M,L) of Theorem 5.4 for these values of M and L. Then

we solve (5.23) using (5.27), (5.28), (5.29) for λ < λ1(M,L) and for λ > λ1(M,L)

with monotone initial data satisfying the mass constraint and present the initial

data with the final equilibrium state in each case. In the supercritical case (Exper-

iment 5.7), we use AUTO to plot the bifurcation diagram for monotone classical
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solutions to (5.4) and also for non-monotone classical solutions to (5.4) which have

two inflection points in (0, L). We find λ1(M,L) and λ2(M,L) the values of λ such

that for all λ > λi(M,L), there are no classical solutions to (5.4) with i inflection

points in (0, L) for i = 1, 2 respectively. We then run experiments solving (5.23) in

the cases λ > λ1(M,L) and λ > λ2(M,L) using (5.27), (5.28), (5.29) for particular

initial data u0(x).

Experiment 5.6. We fix M = 0.2 so that L∗ = 2.185609418 from (5.15) and

so, to have a subcritical L, we can take L = 1.7 in this case. We use path-

following methods of AUTO to plot the bifurcation diagram for monotone classical

solutions to (5.4) for these values of L and M in Figure 5.9. We have a subcritical

bifurcation from the trivial solution u(x) = M when λ =
π2

1.72f ′(0.2)
= 3.880782

and according to AUTO, the bifurcation diagram for monotone classical solutions

to the stationary problem stops when λ = λ1(0.2, 1.7) ≃ 4.303221 as in Figure 5.9.

0.

0.

1.

1.

2. 3. 4. 5. 6.

u(0)

λ

−1.

M

Figure 5.9: Bifurcation diagram for monotone classical solutions to (5.4) with

M = 0.2, L = 1.7 where λ1(M,L) ≃ 4.043293.
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We take the following initial data

u0(x) = 0.3 − 0.5 tanh
(

1000
[x

L
− 0.4

])

, (5.31)

which satisfies the mass constraint, i.e.

1

L

∫ L

0

u0(x) dx = M = 0.2.

Hence we present the equilibrium solutions to the time-dependent problem (5.23),

(5.31) in Figure 5.10 for λ = 4 < λ1(M,L) (left) and λ = 5 > λ1(M,L) (right)

obtained using the scheme in (5.27), (5.28), (5.29) with N = 500.

0 0.85 1.7

−1

−0.5

0

0.5

1
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1
(0.2,1.7)

x

u 
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x,
 t 

)

 

 

t = 0
t → ∞

0 0.85 1.7

−1

−0.5

0

0.5

1

λ > λ
1
(0.2,1.7)

x

u 
( 

x,
 t 

)

 

 

t = 0
t → ∞

Figure 5.10: Initial data and equilibrium solutions to (5.23), (5.31) for λ <

λ1(0.2, 1.7) (left) and λ > λ1(0.2, 1.7) (right).

Experiment 5.7. Suppose we now consider the case M = 0.2 with L = 2.5.

We have a supercritical bifurcation from the trivial solution u(x) = M when

λ =
π2

2.52f ′(0.2)
= 1.794474 and according to AUTO, the bifurcation diagram for

monotone classical solutions to the stationary problem stops when λ = λ1(0.2, 2.5) ≃
4.043293. There is also a subcritical bifurcation from the trivial solution when

λ =
4π2

2.52f ′(0.2)
= 7.177894 and a curve of non-monotone classical solutions to (5.4)

which stops when λ = λ2(0.2, 2.5) ≃ 4.987213 just after it has reached a saddle-

node at λ = λsn ≃ 4.971442 as in Figure 5.11.
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0.

0.

1.

2. 4. 6. 8. 10.

u(0)

λ

−1.

M

Figure 5.11: Bifurcation diagram for classical solutions to (5.4) with at most

two inflection points in (0, L) where M = 0.2, L = 2.5, λ1(M,L) ≃ 4.043293,

λ2(M,L) ≃ 4.987213 and there is a saddle-node at λ = λsn ≃ 4.971442.

Suppose we solve (5.23) for L = 2.5, M = 0.2 and fixed λ > λ1(M,L) with initial

data given by

u0(x) = β + 0.5 tanh
(

1000
(x

L
− γ
))

, (5.32)

and we vary the position x0 = γL of the interface in (5.32) but ensure that

1

L

∫ L

0

u0(x) = M, (5.33)

still holds by changing β accordingly. The results of taking L = 2.5, M = 0.2

with λ = 8 > λ1(0.2, 2.5) ≃ 4.043293 and solving (5.23) for various values of γ

(and β) are plotted in Figure 5.12 where one sees that modifying the initial data

while ensuring that (5.33) holds has an effect on the equilibrium state to which

the solution converges as t → ∞ which is not the case for λ < λ1(M,L). This

suggests that, as for the non-conserving situation (4.24) discussed in Section 4.6,

the discontinuous equilibria for (5.1) existing for λ > λ1(M,L) are normally

stable in the sense of [51].
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γ = 0.5, β = 0.2 
γ = 0.6, β = 0.1 
γ = 0.9, β = −0.2 

Figure 5.12: Equilibrium solutions to (5.23), (5.32) with (γ, β) =

(0.5, 0.2), (0.6, 0.1), (0.9,−0.2) solved using (5.27), (5.28), (5.29) with N = 500.

Finally we take λ > λ2(0.2, 2.5) with the following non-monotone initial data we

define piecewise as follows

u0(x) =











0.32 − 0.6 tanh
(

1000
[

x
L
− 0.2

])

0 ≤ x < L
2

0.32 + 0.6 tanh
(

1000
[

x
L
− 0.8

])

L
2
≤ x < L,

(5.34)

which satisfies the mass constraint (5.33). In Figure 5.13 we show this initial

data and the final equilibrium state to which the solution converges as t→ ∞ for

λ = 8 > λ2(0.2, 2.5).
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0.5
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 t 
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t = 0
t → ∞

Figure 5.13: Non-monotone non-classical equilibrium solution to (5.23), (5.34) for

λ > λ2(0.2, 2.5) ≃ 4.987213 solved using (5.27), (5.28), (5.29) with N = 500.



Chapter Five 147

5.3 Conclusions

The equation (5.1) we have introduced in this chapter can be viewed as a one-

dimensional quasilinear version of the Rubinstein-Sternberg equation (2.13) and

we have considered its associated stationary problem. We have shown in Proposi-

tion 5.1 that unlike the situation for the bifurcation diagrams of stationary solu-

tions to the one-dimensional Cahn-Hilliard equation [26], the bifurcation behaviour

for classical stationary solutions to (5.1) as λ is varied depends on the length L of

the space interval Ω as well as on the average mass M of a solution. Just as we

did for the stationary problem for the quasilinear version (3.1) of the Allen-Cahn

equation, we have proved (Theorem 5.4) that for each n ∈ N there is a value of

λ = λn(M,L) such that for any λ > λn(M,L) there cannot exist classical sta-

tionary solutions to (5.1) with n points of inflection in (0, L). We have presented

some numerical results using AUTO which illustrate Proposition 5.1 and Theo-

rem 5.4 and we derived a mass-conserving numerical scheme for (5.1). There is

numerical evidence (see Figure 5.12) to suggest that for λ > λ1(M,L), there exist

a continuum of stable (again in the sense of [51]) non-classical monotone stationary

solutions to (5.1) with a discontinuity at some x0 ∈ (0, L). We have also presented

numerical evidence which suggests that there are also stable non-monotone non-

classical stationary solutions to (5.1) for λ large enough (see Figure 5.13).

An understanding of what happens in the “metastable”regime
(

1√
3
< |M | < 1

)

is

required. We were not able to perform a two parameter continuation in λ and in

M of the saddle-nodes arising in the 1√
5
< |M | < 1√

3
parameter regime since for

M large enough, the classical solutions to (5.4) stop existing in the bifurcation

diagrams before the saddle-nodes are reached. One can show however through an

analysis of the phase plane associated with the ancillary problem for (5.4) that for

|M | ≥ 1, there are no non-trivial solutions to (5.4).
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Conclusions and further work

In Chapter 3 we introduced a one-dimensional model (3.1) for solid-solid phase

transitions to replace the Allen-Cahn equation (2.7) in the case of large spatial

gradients in the order parameter. We defined a BV solution to this problem via

a variational inequality and proved a well-posedness result for the equation in the

space of functions of bounded variation. There remains much analysis to be done

on the bistable Rosenau equation (3.1). Everything concerning the asymptotic

behaviour of the solutions to (3.1) is open. We were able to produce some numer-

ical evidence which suggests that if the diffusion coefficient is small enough then

solutions to (3.1) cannot coarsen to either of the two stable solutions of the kinetic

equation (2.22) and that if the diffusion coefficient is large enough then solutions

of the bistable Rosenau equation are asymptotic to solutions of (2.22). We have

not proven a stabilisation result for (3.1). In the case of the semilinear Allen-Cahn

equation (2.7), which generates a gradient system on L2(Ω), such a stabilisation

result follows from the general theory of such systems (see for example, [40]). It

would perhaps be useful to have other notions of solution to (3.1) since issues such

as stabilisation are best approached if one can obtain some integral representation

of the solution with estimates, which seems out of reach of the variational inequal-

ities framework. Questions of stabilisation are best considered in the framework of

semigroup theory since this affords representation formulae (such as the (nonlin-

148
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ear) variation of constants formula) for the solution and estimates on decay - see

for example [50]. However, we are not aware of a semigroup theory that applies to

non-accretive perturbations of accretive operators in a BV set-up such as the one

we have in (3.1).

We dealt with the stationary problem (4.3) associated with (3.1) in Chapter 4

and defined BV solutions to this problem via the time-independent version of the

variational inequality associated with solutions to (3.1). We have shown through a

Liapunov-Schmidt reduction that the local bifurcation structure for (4.3) is depen-

dent not only on the bifurcation parameter (which corresponds to the reciprocal of

the diffusion coefficient) but also on the length L of the space interval. A physical

interpretation of the dependence of the bifurcation diagrams on L is required. We

proved that the non-constant classical solutions to (4.3) are unstable by showing

that any non-constant classical solution of (4.3) is not a local minimum of the

associated free energy functional (2.28). We have also shown through a phase

plane analysis and a discussion of the time map associated with (4.3) that for each

L, as the bifurcation parameter is increased, the non-constant classical solutions

to (4.3) develop infinite gradient in Ω = (0, L) and the classical solutions to the

problem stop existing. We concluded Chapter 4 with a discussion of non-classical

solutions to (4.3) which are discontinuous in the interior of the space interval. We

began with a formal construction of non-classical solutions to (4.3) by connecting

different level curves of the Hamiltonian in the phase plane such that the values

of the time maps at the boundary points sum to L. We then proved that this for-

mal construction gives rise to a continuum of solutions satisfying the variational

inequality associated with the stationary problem (4.3). Numerical experiments

on non-classical solutions revealed that there is an intimate connection between

discontinuity and stability of solutions to (4.3). That is, the loss in continuity of

solutions to (4.3) appears to coincide with a gain in stability (in the sense of [51])

and an illumination as to how this stability is generated remains an open problem.
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The numerical experiments also suggest that a result for convergence to equilibria

for the full evolution problem (3.1) does hold and we also saw that if there was

a discontinuity present in the initial data then in order for the discontinuity to

move, the solution to (3.1) became continuous first. The result of this experiment

suggests that the bistable Rosenau equation (3.1) generates a C0-semigroup in BV .

Chapter 5 was concerned with a nonlocal mass-conserving version (5.1) of the

bistable Rosenau equation (3.1) which can also be viewed as a quasilinear ana-

logue of the Rubinstein-Sternberg equation (2.13). We were mainly interested

in the corresponding stationary problem (5.4) for (5.1) and we proved through a

Liapunov-Schmidt reduction that the bifurcation structure also depends on the

length L of the space interval as well as on the average mass M of a solution

and on the bifurcation parameter which was taken to be the reciprocal of the

diffusion coefficient. The result holds only for M in the spinodal region, i.e. for

M ∈
(

− 1√
3
, 1√

3

)

since for |M | ≥ 1√
3

there are no local bifurcations from the trivial

solution of (5.4). We introduced an ancillary problem (5.16) for (5.4) in order to

obtain further results on classical solutions to (5.4). Using (5.16), we were able

to prove that for a fixed L and |M | < 1√
3
, the non-constant classical solutions

to (5.4) cease to exist once the bifurcation parameter is sufficiently large. We

were able to illustrate these results using AUTO but we were not able to perform

a two parameter continuation in λ and in M of the saddle nodes arising in the

1√
5
< |M | < 1√

3
parameter regime since for |M | large enough and close to 1√

3
, the

classical solutions would stop existing before we reached a saddle node. An expla-

nation of what happens in the metastable regime 1√
3
< |M | < 1 is required. We

saw through arguments in the phase plane associated with the first order system

corresponding to (5.16) that there are no non-trivial solutions to (5.4) for |M | ≥ 1.

We concluded the chapter by deriving a mass-conserving numerical scheme to solve

the dynamic problem (5.1) and we were able to produce numerical evidence for

the existence of stable non-monotone non-classical solutions to (5.4).
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The numerical method outlined in Chapter 5 is used primarily to illustrate Theo-

rem 5.4 and because the in-built MATLAB solver pdepe is not able to implement

the integral term λ
L

∫ L

0
f(u(x)) dx. We were restricted somewhat in the number N

of space mesh points we were allowed to take. For finite difference schemes solving

linear partial differential equations, there are usually restrictions on the time and

space step-sizes that one can choose as one usually has to ensure that ∆t and

∆x satisfy a certain property in order for the numerical scheme to be stable. For

example, in the case of the (parabolic) heat equation, the corresponding numerical

scheme requires that

r =
∆t

∆x2
≤ 0.5. (6.1)

We cannot be sure what the equivalent statement would be for our scheme but,

since our equation is also parabolic, we worked to ensure that (6.1) also held for

the numerical scheme in (5.27), (5.28), (5.29). This meant that when it came to

choosing a space mesh with N + 1 mesh points and ∆x = L
N

, we were limited in

our choice of times T to which we could let the scheme run because the size of

∆t = T
M

was determined by choosing the number of time-steps M so that (6.1)

was satisfied. For example, for N = 500 and L = 2.5, if we wanted the scheme to

run to a final time of T = 20 then, from (6.1), we would need to take

M ≥ N2T

L20.5
= 1600000.

So even for 500 space mesh points we needed to take an computationally costly

number of time-steps in order to reach a final time T at which we can measure

“convergence to equilibria” in the manner described in the remark at the end

of Section 3.2. This discussion perhaps motivates the need for a more efficient

numerical method to solve (5.23).
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