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Abstract 
 

Algorithms for developing Diffractive Optical Elements (DOEs) are improved to 

achieve real time holograms capable of switching at rates of 25frames/second or 

greater. A Phase Optimised General Error Diffusion (POGED) algorithm optimised 

for quality and speed of generation of diffractive elements is the main contribution of 

the research. Compared to Simulated Annealing algorithms, a fourfold improvement 

in the speed of generation is achieved. The algorithm is further enhanced to operate in 

the Fresnel region with high diffraction efficiency and Signal-to-Noise Ratio (SNR). 

 

A number of different target reconstructions are simulated to determine validity and 

performance of the algorithm. Diffractive optical elements are fabricated to verify 

performance and a free space optical beam steering application is defined to further 

validate a DOE generated by POGED. The performance of the diffractive optical 

elements is proven through the design and characterisation of a free space optical 

interconnect amenable to harnessing the fast switching speeds of liquid crystal spatial 

light modulators. 
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Chapter 1 

Introduction 

1.1 Motivation 

Communication networks are continually evolving to meet the growing demand from 

more sophisticated user communities consuming an ever increasing range of rich 

services  e.g. high definition movies, multi-player gaming [1].  Consequently, there is 

a pressing, near term need for the deployment of higher capacity access solutions, 

illustrated in Figure 1.1, the segment of the network which represents the major 

restriction to extending high bandwidth services to end users. 

 

Free space reconfigurable optical interconnects [3-12] are a class of transparent 

optical switches used within an optical network to improve the scale of delivery of 

services.  Transparent optical switches eliminate the optical-electronic-optical (OEO) 

conversion overhead executing on the routing function directly in the optical domain, 

in so doing extending the ultimate data transmission rate [2]. There are a number of 

implementation options within the hierarchy of the network for transparent optical 

switches [1] and indeed a number of switch types offering different set of 

performance parameters have been developed.  
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Figure 1.1 A schematic of a representative optical network hierarchy [2]. 

 

One possible implementation utilises the fast switching speeds of liquid crystal 

Spatial Light Modulators (SLMs) [9,12]. Currently the fastest SLMs employ ferro-

electric liquid crystal on a silicon backplane, capable of switching within ~450 μs 

[13]. The Thesis confines the research to consider network architectures in which a 

SLM is used as a means to implement routing of optical signals.  More specifically, 

the generation of diffractive optical elements is core to this evolution option and one 

of the limiting characteristics of SLM-inspired optical diffraction is the speed of 

establishing a suitable diffraction pattern. For example, algorithmic frameworks that 
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improve the speed of generation to rates in the micro second time scales or less 

allows the implementation of video frame-rate beam steering applications. 

 

A free space optical interconnect was proposed by Marchand et al [85] to increase 

the scale of delivery of services.  This system utilises two sets of meso-lens in the 

input and output planes, illustrated in Figure 1.2.  To improve upon this design, a 

central Fourier Transform Lens is proposed to minimise off-axis aberrations, as 

described in Chapter 9.  Further to assist in beam steering and shaping of the optical 

signal, two sets of reconfigurable DOEs are proposed, located in the focal planes of 

the meso-lenses at the input and output.  With the use of reconfigurable DOEs, an 

algorithm must be developed that will achieve a high quality output signal and be 

able to generate a new DOE in the order of micro seconds or less.   

 

Figure 1.2 Example of a free space optical interconnect with the potential location 

for a central Fourier transform lens and the reconfigurable DOE’s at the input and 

output. 
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Since the advent of computers, algorithms that underpin the modulation of the phase 

of the spatial spectrum of an optical image have been in development and applied to 

a variety of  applications e.g. creation of a corrector lens for the Hubble telescope 

[14-17], beam steering [6], beam shaping [18-22] and image projection [23].  A large 

body of research has also focused on the development of algorithms that enable 

reconfigurable and accurate diffraction patterns to be implemented.  Example 

algorithms include the Gerchberg-Saxton (GS) [24], Genetic Algorithms (GA) [25], 

the Iterative Fourier Transform Algorithm (IFTA) [26-27], Direct Binary Search 

(DBS) [28-29], Simulated Annealing (SA) methods [30-31] Minimum average error 

diffusion [32-33].  Each algorithm offers a mix of strengths and weaknesses, most 

often a trade-off weighing computational speed and accuracy versus stagnation - 

finding the local minimum instead of an objective function. 

 

The Phase Optimised General Error Diffusion (POGED) algorithm is proposed as a 

novel formulation targeted at improving the speed of execution whilst maintaining 

the quality of the diffractive optical element.  It has, as its basis, the minimisation of 

a cost function and provides a performance comparable to the SA algorithm but 

within a shorter time period;  it yields a high quality design at computational times 

approaching real time where real time refers to calculations occurring in the order of 

milliseconds. 

 

POGED is a modified version of the error diffusion algorithm developed originally 

for printing [34]. The error diffusion method is a form of half-toning where 
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quantisation errors are spread to yet to be processed neighbouring pixels.  The 

diffusion of errors is accomplished through the use of a filter defined by its spectral 

transfer function (the ‘filter function’) or equivalently its convolutional kernel (the 

‘mask function’) that, whenever a quantised pixel state is updated, diffuses the 

quantisation error to the neighbouring pixel. 

 

1.2 Overview  

The Thesis is divided into two main parts.  The first part reviews the theoretical 

foundations that underpin the research, including the fundamentals of scalar 

diffraction theory. The core of the research - the Phase Optimised General Error 

Diffusion algorithm - targeted at the design of phase only diffractive optical elements 

of specified far-field or near-field field magnitude – the definition of far-field and 

near field are described in Section 2.4 - is then introduced and its structure defined.  

The second half presents an overview of the fabrication of the diffractive optical 

elements including their optical and structural characterisation and a free space 

optical interconnect is selected as a representative application example of an optical 

architecture making use of reconfigurable diffractive optical elements. The 

application is used in a performance comparison of POGED with the well-

established Simulated Annealing approach. 

 

Chapter 2 reviews of some applications employing diffractive optical elements.  A 

historical background is then presented along with a review of scalar diffraction 

theory, the different grating types and the artefacts introduced by the naïve 
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application of the discrete Fourier Transform to numerically evaluate the continuous 

Fourier Transform, embedded within the diffraction integral. 

 

Chapter 3 presents, for the purpose of positioning the research, relevant reported 

algorithms used to generate diffractive optical elements; specifically two of the more 

established algorithms, Simulated Annealing (SA) and the Direct Binary Search 

(DBS) form the focus of a comparison of performance. 

 

The theory and performance evaluated through simulation for the Phase Optimised 

General Error Diffusion (POGED) algorithm applied to problems with a target 

reconstruction specified in the far-field region (Fraunhofer), are presented in Chapter 

4.  The Chapter begins with an introduction to the method and proceeds with its 

mathematical description.  The filter function and its effects are evaluated.  The 

Chapter concludes with an analysis of performance results for binary, quaternary and 

multi-level grating structures.   

 

Chapter 5 begins with a discussion of the necessity to modify POGED for target 

reconstruction applications in the near-field region (Fresnel).  Arguments are 

developed for the selection of the angular spectrum method in preference to 

alternative integral representations.  Results for multi-level gratings and a discussion 

on the effects of different filters are presented. 

 

Chapter 6, the beginning of the second part of the Thesis, reviews the 

photolithographic fabrication techniques used routinely in the manufacture of static 
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gratings.  Two techniques are discussed in particular; electron beam lithography, a 

maskless technique; and step and repeat lithography, a technique where the pattern 

defined by a smaller mask, is repeated across the wafer. 

 

Chapter 7 presents a review of techniques used to evaluate the quality of fabricated 

grating structures along with a discussion of results obtained. 

 

The design of a Free Space Optical Interconnect (FSOI) architecture harnessing 

diffractive optical elements is detailed in Chapter 8, the optimum implementation 

being through ferroelectric liquid crystal spatial light modulators.  However, due to 

limitations of the software used to define the optics for the switch, beam deflection 

mirrors emulate the diffractive element. 

 

Chapter 9 provides conclusions arising out of the research and presents future work.  

1.3 Contributions 

The principal contribution of the research is the design and development of the Phase 

Optimised General Diffusion (POGED) algorithm for the generation of diffractive 

optical elements for beam steering applications. The core contribution can be further 

segmented into; 

 

 The development of POGED for binary to multiphase diffractive optical 

elements   

 Improved filtering through the use of Dykstra’s Alternating Projection 

algorithm 
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 Fresnel POGED using the angular spectrum method to eliminate high 

frequency oscillations 

  Fabrication and test of DOE’s generated using POGED  

 The emulation of a free space optical interconnect application with beam 

steering diffractive optical elements generated by POGED 
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Chapter 2 

Fundamentals of Diffractive Optical 

Elements 

2.1 Introduction 

Interference, essential to holography, has been the subject of considerable research 

over many years.  The field has moved from generating holograms on photographic 

plates to complex holograms generated using computers and lithography.  The 

diffractive optical elements (DOEs) now being generated are in use in a number of 

applications, stimulating new technologies to be developed, increasing production 

capabilities in a number of key industries and seeding other potential valuable 

developments.  The massive impact on science research and engineering has 

stimulated new methods that improve the quality of, or produce real time operation 

of families of DOEs. 

 

2.2 Background 

The Section reviews some of the basic principles underpinning scalar diffraction 

theory and the beginnings of computer generated holography.  A brief description of 

the differences between holography and photography is given.    
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2.2.1 Traditional Holography 

In conventional photography, the process only captures intensity variations and 

therefore only the amplitude of the image is recorded; thus any phase information 

from the object is lost.  Phase information allows the ability to create 3D images.  

This limitation stimulated the development of holography - stemming from the Greek 

term “holo” meaning total - a technique for recording both amplitude and phase.  A 

hologram encodes both the amplitude and phase captured through optical 

interference.  This process is outlined in the following references [35-40].  

 

2.2.2 Computer Generated Holography (CGH) 

As the object wavefront is required for the recording process and as such, holograms 

are impacted by a number of factors such as vibration [36]. For Computer Generated 

Holograms (CGHs), the object wavefront is now described mathematically, the 

interference pattern being synthesised [38-41, 47-48].  The advantages of CGHs are 

significant, the major capability being the easy production of complex wavefronts 

not possible with the traditional approach.  Another key aspect centres on the 

recording process; CGH holograms are produced through lithographic methods not 

subject to problems that plague the traditional process such as coherent illumination 

artefacts and air turbulence. 

 

A number of methods for fabricating and defining CGHs have been developed, 

including the Detour Phase Hologram [42], the Kinoform [43] and the Binary 

Hologram [44-47].   
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2.2.2.1 Detour Phase Hologram (DPH) 

The Detour Phase Hologram (DPH) [42] is one of the oldest and most widely 

investigated techniques in the 1990’s, encoding the wavefront phase using a “detour 

phase” for the diffracting grating. DPH encoding is performed using the shift 

theorem of the Fourier Transform (FT) which states that lateral shift of the FT 

induces a concomitant phase shift of the diffraction orders. The resultant hologram is 

divided into a number of equally spaced square cells forming a matrix (Figure 2.1). 

Based on the amplitude and phase values of the hologram, a rectangular shape of 

varying size is placed in each square with respect to the center of the cell.   

 

 

 

Figure 2.1 Example of a Detour Phase Hologram [40]. 

 

The amplitude and phase of the hologram are encoded but there are limitations 

stemming from the dislocation of adjacent apertures that store the complex 

wavefront, resulting in approximations to the amplitude and phase of the wavefront 
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owing to the quantization process.  The method is also not able to treat large phase 

variations, since the maximum phase change that can be represented by the apertures 

is limited to 2π [42-43]. 

 

2.2.2.2 Kinoforms 

Kinoforms are phase-shaping elements that transform a wavefront into a desired 

shape with constant amplitude [43] and are used in a number of devices; one 

example is a Fresnel lens used in colour correction of infrared (IR) lenses (Figure 

2.2). 

 

 (a) (b) 

Figure 2.2 An example of a Kinoform (surface relief).  (a) a Fresnel lens and b) the 

original lens. 

 

2.2.2.3 Binary CGHs 

Binary holograms are a special case of the Kinoform, introduced to solve the two 

fundamental problems of DPHs [44].  A binary hologram is not able to capture large 

original lens 

shape

Fresnel lens

original lens 

shape

Fresnel lens
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phase variations and only approximates the phase and amplitude of the field it 

encodes (Figure 2.3). 

 

 

Figure 2.3 Example of a two level binary hologram. 

 

Patterns in binary CHGs could be interpreted as interferences fringes in traditional 

holograms. 

 

2.3 Technology Review 

In parallel with improvements in computing power and semiconductor 

manufacturing, methods used to create Diffractive Optical Elements (DOEs) have 

also evolved [39-40, 67-68].  DOEs are now being used in a number of different 

sectors ranging from the commercial to the aerospace industry [14-17, 51-53].  

Industries routinely use diffusers [49] to control the divergence angle of coherent or 

incoherent laser sources as well as beam shaping for lasers in micro machining [22] 

or LED sources [20] and in beam steering [6] for free space interconnects or in 

pattern generation [49]. 

 

2.3.1 Engineered Diffusers/Homogenisers 

Diffusers create light uniform in intensity and emitted at a specific angle [49].  There 

exist a number of ways of making optical diffusers including ground glass, 

holographic, flashed opal, and greyed glass diffusers. 

http://en.wikipedia.org/wiki/Ground_glass
http://en.wikipedia.org/wiki/Opal_glass
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One mass application of a diffuser is in photography, most commonly referred to as 

‘flash diffusers’ that spread the illumination from the flash lamp of a camera.  The 

device makes the light appear to originate from a diffuse source rather than a point 

source, essentially spreading the light to eliminate any harsh shadows.  Figure 2.4 

shows an example of an engineered diffuser which homogenises a LED source to 

produce a circular pattern. 

 

 

Figure 2.4 Engineered LED diffuser [49]. 

 

2.3.2 Beam Shapers 

Optical beam shaping is widely used in the consumer, telecommunications and 

industrial markets where Gaussian beams emitted by a laser are transformed into a 

flat top beam [18] (Figure 2.5).  The elliptical emission pattern of laser diodes 

requires to be reshaped into a more circular symmetry for the efficient coupling into 

a circularly symmetric optical fibre. New LED back lit flat screen televisions use 

beam shapers to guarantee uniformity of the emitted light and to remove ellipticity 

[19].  
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Figure 2.5 Example of how a diffractive/holographic element transforms a Gaussian 

into a flat-top beam. 

 

Optical beam shaping for the redistribution of optical power into a specified profile is 

used in the laser micromachining industry to increase accuracy, speed and output 

power. DOEs can be used to shape the beam correctly over a refractive axicon [50] 

and  prove to be more cost effective (Figure 2.6)[22].  

 

 

Figure 2.6 An example of a Gaussian beam shaped into a circular beam used in the 

micro machining industry. 
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2.3.3 Array Generators 

An array generator consists of a single DOE that splits a beam into a number of 

‘beamlets’ at pre-defined angles or into an array of elements of varying size [49]. In 

Figure 2.7 individual beamlets are imaged at infinity as a collection of bright points. 

 

 

Figure 2.7 An example of an array generator splitting a beam into a rectangular 

pattern [49]. 

 

Array generators are useful when traditional beam splitters are inappropriate e.g. for 

a very large number of beams.  

 

2.3.4 Phase Retrieval for Optical Metrology 

Phase retrieval is used to correct the aberrations in the Hubble Space Telescope [14-

17] and test mirrors for the James Webb Telescope [51].  Many different algorithms 

are used to execute this function, the most noteworthy the Gradient Search 

Technique [52].  Phase retrieval operates by measuring the point spread function 

Noise

Array Pattern

Noise

Array Pattern
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recovering the phase then transformed using Zernike polynomials [53] to represent 

wavefront deformation at optical surfaces.  With this information, it is then possible 

to construct a correcting lens. 

 

Phase retrieval has the potential to become very attractive for testing aspheric lenses 

since current testing protocols use an interferometer and are thus subjective because 

positioning is critical.  Some techniques also require computer generated null 

holograms which are expensive and time consuming to manufacture. 

 

2.4 Scalar Diffraction Theory 

DOEs are usually analysed using Scalar Diffraction Theory [35, 38] which assumes 

light propagates substantially along the optical axis in a linear isotropic, homogenous 

and non-dispersive medium.  Thus all electric and magnetic field components behave 

the same and can thus be described by scalar wave equations.  For scalar diffraction 

theory to be valid, the size of the diffracting features must be larger than the 

wavelength of the incident beam and the observation plane is assumed to be located 

at a substantially ‘far distance’ [35, 38].  The far field (Fourier) region is defined at a 

distance significantly greater than     , where W is largest dimension in the 

aperture and λ is the wavelength of light.  The near field region (Fresnel), is defined 

as the region where scalar diffraction is only valid z is less than     . 

 

One condition core to the description of scalar diffraction theory is Kirchhoff 

Boundary conditions [35, 38].  The conditions relate to an opaque screen with a 

small aperture, labeled Σ (Figure 2.8) and the assumptions made on an incident 
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wavefront are: across Σ , the function U0(u,v)  and its derivative are the same as if no 

screen is present and U0(u,v), and its derivative are zero in the geometric shadow of 

the screen. 

 

Figure 2.8 Illustration of a point-source illuminating a screen, a Kirchhoff boundary 

value condition. 

 

Using the Rayleigh-Sommerfeld formulation [38] for scalar diffraction, a complex 

diffracted field can be described as: 

   
 

 dudvr
r

ikr
vuU

i
yxU


,cos

exp
,

0
1

,
1






  (2.1) 

where U0(u,v) is the incident field, U1(x,y) is the complex diffracted field at Z = z1,  

     ⁄ , λ is the wavelength of light,    (   ⃗⃗⃗⃗⃗⃗⃗⃗)   is the direction cosines between 

 ⃗ and r


, and Σ is the aperture over which everything is described (Figure 2.9). 
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Figure 2.9 Rayleigh-Somerfield diffraction formulation [35, 38]. 

 

2.4.1 Fresnel Diffraction 

To simplify the diffraction integral, the distance r between Z = 0 and Z = z1 can be 

approximated by the binomial theorem where r is: 

  √(   )  (   )     (2.2) 

Applying the binomial theorem [36], Equation 2.5 can be approximated by: 
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Substituting the approximation for r into Equation 2.4 results in the Fresnel/near field 

diffraction integral: 
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Expanding all terms of the exponential inside the integrand, the Fresnel integral 

becomes: 
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If Z >> λ, the exponential term    (
  

  
(     )) approaches unity and Equation 

2.8 becomes: 
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Equation 2.9 is known as the Fraunhofer/Far-field integral. 

 

2.5 Grating Structure Types 

The range of grating structure types can be classified into two categories: amplitude 

and phase, either transmissive or reflective.  An amplitude grating (Figure 2.10(a)) 

only acts on the amplitude of the incident wave e.g. dark slits on glass.  A phase 

grating (Figure 2.10(b)) acts only on the phase of the incident wave e.g. Echellette 

grating which has a continuous profile [40]. 
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 (a) (b)   

Figure 2.10: Examples of a) a binary phase grating b) a quantised phase grating. 

 

In the Thesis all gratings are assumed to be phase i.e. either 0 or 1 (whereas for an 

amplitude grating phase is always 0).  A phase grating can be easily quantised to 

generate multiple phases; a phase grating is fabricated by quantising its height, 

expressed as a number of quantised levels e.g. a binary grating with two levels.  The 

levels progress in powers of two until a continuous grating structure is defined.  The 

number of levels has differing effects on the grating output characteristics, the first 

and most important being the diffraction efficiency. As the number of levels 

increases so does the diffraction efficiency [39-40].   
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The mathematical framework to analyse the performance of different types of 

gratings is illustrated in Figure 2.11. 

 

 

 

Figure 2.11: Graphical representation on the unit circle of the complex amplitude 

transmittance of  a) a binary amplitude grating b) a binary grating c)  a multiple 

phase grating, d) a continuous phase grating. 

 

Mathematically a phase grating structure, labelled h(x), is represented as  ( )  

   (   ( )) where Φ(x) is its phase defined as: 

 ( )  
  

 
 ( )  (    ) (2.7) 

for a continuous grating which leads to a corresponding value for h(x) on the unit 

circle in the complex plane.  When Φ =-π or 0 and h(x) = –1 or 1, the grating is a 

binary structure (Figure 2.11) [37-38].  A quaternary grating has h(x) = -1,-i, i, or 1 

with Φ = -π,   
 ⁄ , 0,   ⁄ ,  [39-40]. 
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2.6 Discrete Fourier Transform (DFT) 

The diffraction calculation relies on a continuous Fourier Transform [39-40]; 

however, in practice a numerical calculation using a representation of the problem 

involving a finite number of parameters must be performed.  Choosing the right 

representation conveniently casts the calculation into a Discrete Fourier Transform 

(DFT), enabling a Fast Fourier Transform (FFT) to be used.   

 

First consider a one dimensional hologram composed of N pixels separated at a pitch 

p and initially, that each pixel is a Dirac Delta function [38-40].  A discrete hologram 

function represented by h(x) can then be defined as: 

 ( )   ( )      (
 

 
)     (

 

  
)  (2.8) 

where h(x)c represents the continuous hologram, comb(x/p) represents the sampling 

by the Dirac-Delta (representing each pixel) and rect(x/Np) represents the finite 

spatial extent of the hologram. The function is defined so that rect(x) = 1 for -½≤x≤ 

½, otherwise it is zero.  

 

The diffracted amplitude produced by a beam passing through the DOE in the 

Fraunhofer regime is defined as H = FT(h) where FT represents the Fourier 

Transform operator given by: 

 ( )   ( )      (  )      (   )
 (2.9)

 

Where   represents the convolution operator and the sinc function arises because 

aperture of the diffractive optic.  The sinc(x) function is represented by     ( )  
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     (  )   ⁄  [38].  The comb term represents the replication of the reconstructed 

image, which is infinitely periodic owing to sampling.    

 

Because the diffracted intensity is important rather than the phase, many periods of 

the hologram are illuminated, allowing the phase of the diffracted amplitude H(u) to 

be random.  In this case, the sinc interpolation from Equation 2.12 no longer results 

in a continuous and smooth reconstruction, instead it produces a speckle pattern 

which is a result of interference of many different waves at the same frequency of 

different phase and amplitude.   

 

The effects of the laser speckle may be reduced if the DOE is replicated, leading to a 

new definition of h(x) given by:   

 ( )   ( )      (
 

 
)      (

 

  
)

 (2.10)

 

with the second comb() representing an infinitely periodic hologram, which in turn 

results in a new definition of H(u): 

 ( )   ( )      (  )      (   )
 (2.11)

 

The diffracted amplitude is now sampled by the second comb(), its intensity being 

zero at all locations except where it is precisely determined by the original encoding. 

Combining Equation 2.11 and Equation 2.13, h(x) now becomes (illustrated in Figure 

2.12):  
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Figure 2.12 Illustration of the effects of the DFT in the hologram plane. 

 

The first convolution term represents the sampling point convolved by the square 

pixel, with leads to the definition of H(u) as (illustrated in Figure 2.13); 

 ( )  {[ ( )      (  )]      (  )}      (   )
  (2.16)  

 

 

Figure 2.13 Illustration of the effects of the DFT in the reconstruction plane.
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For a square pixel, a second sinc term is added to the diffracted amplitude, yielding a  

sinc
2
 intensity envelope with the central lobe the same height as the first period of the 

diffracted intensity.  If the amplitude being calculated uses the DFT, the sinc term 

arising from the square pixel must be explicitly included.  

 

2.7 Conclusions 

The phenomenon of interference is essential to the development of holography and 

has been the subject of massive development.  The field has moved from generating 

holograms on photographic plates to holograms generated using significant 

computing platforms and manufactured using semiconductor mass production 

processes.  DOEs are presently in use in a number of different applications and are 

stimulating new technologies to be developed, increasing production capabilities in a 

number of key industry sectors and pushing the boundaries of others. 

 

With all these different opportunities, new methods that improve the quality or 

produce real time solutions are required to sustain and evolve progress to date.  The 

root of any new development is an in-depth knowledge of diffraction theory to 

capture and formulate the problem and develop its understanding. This knowledge is 

also core when evaluating the operational difference between the near-field and the 

far-field regions.  The quadratic phase factors that occurs in the treatment of the near-

field region presents more specific challenges when developing an algorithm to 

generate a DOE and is discussed in subsequent Chapters.   
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Knowledge of Fourier Transforms is extremely important since computing 

frameworks are not capable of treating a continuous Fourier Transform and are 

tailored to execute on discrete quantities’.  The limitation must be properly 

understood so that judgements on the quality and performance of any DOE generated 

using a computer can be robustly supported. 
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Chapter 3 

Diffractive Optical Elements (DOEs) 

3.1 Introduction 

A number of algorithms have been developed to calculate DOEs, the most 

noteworthy being the Iterative Fourier Transform Method (IFTA) [26-27], Genetic 

Algorithms (GA) [25], the Direct Binary Search (DBS) [28-29] and the Simulated 

Annealing (SA) [30-31].  The aim of the Chapter is to review two of the above 

algorithms - DBS and SA - due to their similarity to the proposed POGED method.  

The root of the similarity is that these two algorithms evaluate an energy function, 

defined as the difference between a ‘flipped’ pixel and its previous state, as does 

POGED, the only difference being in which plane the function is evaluated and the 

manner it is filtered.  The Chapter also provides a basis for a comparison, the metrics 

being the time to generate a DOE and the quality of the reconstructed image.  

 

3.2 Direct Binary Search (DBS) and Simulated Annealing (SA)  
 

In their simplest form, DBS and SA are downhill search algorithms that operate by 

finding a local or global minimum of an objective function [28-31].  For DBS this 

may result in arresting at a local minimum, whilst with SA the global minimum is 

sought with a sufficiently slow annealing schedule, executed through the use of a 

probability function that allows pixel states to be accepted even if their energy is not 

minimised.  
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The energy function depicted in Figure 3.1 demonstrates how the solution progresses 

towards optimisation.  The start of this class of search technique is in the selection of 

the form of a random grating structure; for ease of illustration a binary grating is 

chosen. The random grating is then modified using any one of the highlighted 

techniques so that the actual image closely approximates the target image, according 

to calculations of the diffraction efficiency and Signal-to-Noise Ratio (SNR). 

 

 

 

 

 

 

 

Figure 3.1 Schematic of the cost function illustrating a downhill search. 

 

The DBS and SA methods proceed by changing the state (‘flipping’ in the binary 

case) of a pixel within a N×N array random grating structure.  A calculation 

evaluates the difference in the energy between the new and previous states.  For 

DBS, if the energy is reduced the pixel flip is accepted; otherwise the previous state 

is kept.  The algorithm proceeds to the next pixel and repeats the process, continuing 

until all pixels have been visited.  If the last pass resulted in the acceptance of one or 

more pixel flips, a new pass is initiated; otherwise the algorithm terminates.  SA 

takes the above methodology one step further by additionally accepting a pixel flip 

E(h) 
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when the change in the energy is positive with a probability p = exp(-ΔE/kT) where 

kT is a computational temperature which decreases slowly (c.f. annealing) as the 

algorithm proceeds. In principle, this permits SA to locate the global optimum but at 

of the expense of additional computational resources.   

 

3.2.1 Direct Binary Search (DBS) 

DBS is an iterative algorithm that provides the foundation for all algorithms 

presented in the Thesis.  The primary difference between the proposed POGED 

algorithm and DBS is that all calculations for the latter algorithm are executed in the 

reconstruction (Fourier) plane whilst for POGED, described in detail in Chapter 4, 

the bulk of the calculations are performed in the hologram (object) plane.   

 

In DBS, a hologram h is defined over an array of N×N pixels, of value +1 or -1 in the 

binary case.  Considering a 1D case for simplicity, the diffracted field amplitude is 

given by the Fourier Transform of the transmitted hologram h:  
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If the j
th

 pixel is flipped, the provisional diffracted field amplitude H’ is given by: 
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and is stored as a look-up table to speed up calculations [30-31].  The sinc envelope 

arises from the diffraction pattern owing to a single square pixel of the grating 

structure. 

 

The energy function - a cost metric - is defined as
2


 FHE  , where  denotes 

that the norm is evaluated only over a signal window (Figure 3.2) where the target 

amplitude F  is contained within the signal window in the target plane.  The 

reconstructed amplitude H  is contained in the reconstruction plane, α determining 

scale freedom [55].  The scaling factor is given by 
HTF NN   , where
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The diffraction efficiency is defined as the ratio of the diffracted energy in the 

reconstruction plane inside the signal window  divided by the total diffracted 

energy (the whole plane is denoted by the universal set E) [30-31].  The Signal-to-

Noise Ratio (SNR) is defined as [30-31, 37-38]:  
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Figure 3.2 Illustration of the signal window. 

 

The algorithm operates by flipping the state of a pixel followed by a re-calculation of 

the energy; for the binary case, the pixels take the value of +1 or -1.  If the energy is 

less than the previous state, the pixel flip is accepted and the algorithm proceeds to 

the next pixel.  If however, the energy is higher than the previous state, a pixel flip is 

rejected and the original pixel state is retained.  This algorithm takes a short time to 

compute, however it is a ‘greedy’ algorithm which can become trapped within a local 

minimum [28-29].  One way to escape a local minimum is to introduce a probability 

function allows pixel flips to be accepted when the energy is increased, the principle 

embedded in SA. 

 

3.2.1.1 DBS Results 

 

Calculations for a grating structure consisting of 128×128 pixels with a signal 

window of 21×21 pixels generated by DBS on a computer -  a Xeon 3.2GHz 
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processor with 3.2 GB of RAM under Windows XP - take 1 minute and 38 seconds 

(Figure 3.3).  

 

The diffraction efficiency is evaluated to be 68%, much lower than the theoretical 

maximum of 74%, due to the fact that there are a number of errors outside the signal 

window (Figure 3.3(b)).  The SNR of the diffracted field is 10dB which is relatively 

poor, (Figure 3.3(c)) due to errors within the signal window, both surrounding and 

within the target. 
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(a) 

 

(b)  (c) 

 

Figure 3.3 Results for a grating structure generated using DBS: a) hologram 

function b) full reconstructed Image c) reconstructed inside signal window. 

 

Results for the DBS algorithm are poor due to the algorithm arresting in a local 

minimum, one of the major drawbacks of the method and the reason why the 

algorithm is executed in a relatively short time period. 
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3.2.2 Simulated Annealing (SA) 

The SA method extends DBS a stage further by embedding a secondary decision step 

in the evaluation of the energy function, through the employment of a probability 

function.  In SA, the same energy function is optimised,
2


 FH E  within the 

signal window.  The embedding of the probability function allows for cases when the 

energy function is higher than the previous state to be accepted, allowing the 

algorithm to escape any local minima, and in turn able to proceed to locate the global 

minimum. 

The probability function is defined as: 

)exp( kTEp   (3.17) 

where T is a ‘computational temperature’ [30-31], k is Boltzmann’s constant, and ΔE 

is the difference in the energy of states.  A pixel flip is accepted with probability p 

and the next pixel is evaluated, progressing the probability distribution over the state 

space of the hologram to reach equilibrium: 

  

   




H

dhkThE

dhkThE
dhh

/exp

/exp
)prob(  (3.18) 

where H is the set of all permitted hologram functions. 

 

If T reduces slowly, the probability of the energy function reaching the global 

minima reaches one.  T should therefore be reduced adiabatically for the system to 

remain in equilibrium, the cooling defined as    zzT ln/1  where z is the iteration 

number. 
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3.2.2.1 SA Results 

Calculations for a grating structure consisting of 128×128 pixels with a signal 

window of 21×21 pixels generated by SA on an identical computing platform used 

for the DBS evaluation took 21 minutes and 38 seconds.   

 

Figure 3..4 illustrates the results obtained by SA.  The full reconstructed image, 

Figure 3.4(c) shows two off-axis reconstructed images with errors along the diagonal 

the images are centered on.  The background in this case still contains a large amount 

of noise indicative of the computed diffraction efficiency of 69%, lower than the 

theoretical maximum of 72%, which includes both the reconstructed image and its 

inverted image.  However, since the grating is defined as an array of 128×128 pixels, 

there are insufficient degrees of freedom to achieve improved results. A larger array 

size results in better diffraction efficiency [39-40].   
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(a) 

 

(b) (c) 

 

Figure 3.4 a) A hologram generated using SA producing a T structure in the 

reconstruction plan (b) reconstructed image of the T structure in the signal window 

(c) full reconstruction plane showing the twin images generated by a binary grating. 
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The SNR for the grating structure is 26dB, consistent with little noise in the region 

surrounding the target in the signal window (Figure 3.4(b)).  

 

3.3 Conclusions 

The DBA and SA algorithms are successfully implemented in Matlab on a Xeon 3.2 

GHz processor with 3.2Gbytes of RAM operating under Windows XP.  These 

algorithms were chosen as both have roots in a similar methodology underpinning 

the proposed POGED and thus provide benchmark performance targets. The results 

of the evaluation are summarized in Table 3.1. 

 

It is clear that the SA provides the best SNR but at the expense of longer calculation 

time.  The diffraction efficiency results are governed by the principles of the 

algorithm; DBS can arrest in a local minimum whilst SA is able to find the optimum 

local minimum.   Computational times are however still large in both cases which 

restrict the spectrum of feasible applications.  

 

Table 3.1 Summary of results for the DBS and SA algorithms for a binary grating 

structure. 

Algorithm Time Computed 

Diffraction 

Efficiency (%) 

SNR (dB) 

DBS 0:1:38 68% 10 dB 

SA 0:21:38 69% 26dB 
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Table 3.2 encapsulates the advantages and disadvantages of both DBS and SA. SA 

provides a better SNR but its computation time is inferior to DBS.   

 

Table 3.2 Comparison of advantages and disadvantages of the DBS and SA 

algorithms. 

 Advantage Disadvantage 

Time DBS SA 

SNR SA DBS 

Diffraction 

Efficiency 

DBA/SA DBS/SA 

 
POGED is designed to provide both these advantageous features, creating 

implementations with the quality of SA at DBS timescales. 
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Chapter 4 

Phase Optimised General Error Diffusion 

(POGED) 

 

4.1 Introduction 

The Phase Optimised General Error Diffusion (POGED) algorithm is a modified 

version of the error diffusion algorithm first developed for the printing industry to 

optimise the rendering of half-tone images [34].  The use of phase optimisation 

improves calculation times. The quality of the reconstructed image is compared 

Simulated Annealing (SA) and Direct Binary Search (DBS) algorithms. 

 

The Chapter focuses on the design of the POGED algorithm for the synthesis of 

Fourier plane diffractive optical elements, followed by a description of how the 

algorithm is implemented in the binary Fourier hologram case. An explanation is 

given of how it is modified to accommodate the case of multiple pixel level 

holograms.   

 

4.2 POGED Definition 

POGED is similar to DBS [54-56], the primary difference being that the bulk of the 

calculations for the latter are executed in the object plane whereas in POGED, 
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calculations are performed in the Fourier plane.  The modification allows the speed 

of the DBS to be achieved with the quality of the SA algorithm, as explained later in 

the Chapter.   Another major difference lies in the use of a convolution mask which 

scans across the array as the algorithm progresses, filtering out any local errors.  

Phase optimisation is an integral dimension within POGED based on a variant of the 

Gerchberg-Saxon algorithm popularised by Fienup [24, 14-16]. Phase optimisation 

provides further correction of the phase of the target image, yielding a well corrected 

reconstructed image. 

 

Assume a plane wave of amplitude  yxh ,0  passing through the DOE to create a 

desired target image; also assume that the DOE follows a phase function defined by

 yx, .  After the DOE, the plane wave acquires a complex amplitude, in the thin 

phase screen approximation [38, 54-56] given by: 

      ),exp,,
0

yxiyxhyxh   (4.1) 

After a distance Z from the DOE, the complex amplitude has diffracted sufficiently 

to form the reconstructed image, H, where )(hH   and   represents a specific 

propagation operator.  This operator is the Fresnel Transform if the distance Z is in 

the near field region or the Fourier Transform if Z falls within the far field region 

[38]. 

 

POGED determines the phase function,  yx,  that produces the desired 

reconstructed image, executing on this goal through minimisation of an energy 
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defined as GPGE ,
1
, where P is a positive function allowing the distribution of 

the errors described by FHG   weighted according to the significance placed 

upon them. H is the reconstructed image, F is the target image and α is a scaling 

factor.  

 

A few key variables must be defined before progressing to the mathematical 

formulation that embodies POGED; 

 the hologram function consists of an array of N×N elements 

 the target image is defined as a separate array of M×M elements and can be 

either a binary or a grey scale image 

 a mask forms the convolution kernel (impulse response) of a filter and is 

calculated using Dykstra’s Alternating Projections method [60-61]. The 

kernel is defined as an array band limited to S×S elements implementing a 

real, positive transfer function (Fourier Transform). The transfer function 

forms the ‘soft’ weight P of the energy function defined above 

 Dykstra’s algorithm ensures that the weight function satisfies the band 

limited and positivity constraints for a target ‘hard’ weight, used as the initial 

value in Dykstra’s procedure [60-61]. 

 

                                                 

1
 where: 

  dxdyyxByxABA ),(),(, *   

is the Hermitian inner product in the relevant space of two complex functions with B
*
 representing the 

complex conjugate. 
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The following variables are defined: F is the target function, H is the reconstructed 

image and P is the weight function defined in the reconstruction plane.  The inverse 

Fourier Transforms of these functions are defined as f , h , p where f is the Fourier 

target object, h is the hologram, and p is the convolution kernel of the filter defined 

in the hologram plane. These Fourier Transforms pairs are: 

 
 
 pP

hH

fF







 (4.19) 

The energy function is defined as:  

       fhfhpFHFHPE   ,,   (4.20) 

  

where E is a function of both the target and reconstructed image,  is a scalar 

variable treating scale freedom between the target and reconstructed images [57].   

 

The constraint that P  is real and positive ensures that: 

 

 

 

 vV

uU

VPUVU

vupvu









,,

,,
 (4.4) 

where u, v  are any variables and are inner products in weighted Hilbert space, 

following from Parseval’s Theorem. 

The minimum of the energy function with respect to the scaling factor is found 

analytically by: 

ffp

fhp

FPF

FPH

,

,

,

,




  (4.5) 

POGED performs its descent on the energy function E, restricted to the optimum 

value of scaling factor α. 
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In most applications, the target function F has phase freedom. The POGED energy 

function may therefore be further refined by optimising the phase of the target image.  

With proper choice of the phase of F, the inner product FPH ,  can be maximised 

and hence the energy function reduces in value.  

Since: 

FHPFPH ,,   (4.6) 

the appropriate choice is )arg()arg( HF   so that FHPFPH ,,   i.e. the phase of 

the target image is set to equal the phase of the reconstructed image [15]: 

  HiFF argexp  (4.7) 

The operation is most simply performed in the reconstruction plane. However, the 

minimisation of the POGED energy function with respect to the hologram pixel 

states is most efficiently performed in the hologram plane where the mask size is 

small since it is band limited.  The phase update governed by Equation 4.7 is applied 

infrequently; so the bulk of the computation occurs in the hologram plane, decreasing 

calculation times. 

 

Thus far, the description of POGED has assumed a Fourier Transform relation 

between functions defined in the hologram and reconstruction planes i.e. the 

reconstruction occurs in the far-field of the hologram. Although the detailed 

relationships depend on the propagation operators, very similar expressions result in 

other diffraction regimes, corroborated when the Fresnel regime is considered in 

Chapter 5, Section 5.2 
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The restricted energy function is now given by: 

  hhphE  ,  (4.8)
 

where the linear operator   is defined as: 

   
 

ffp

ffp
I

,

,




  (4.9) 

Moreover, easily verified by direct computation,   is a projection: 

2
 (4.10) 

with a one dimensional null space spanned by f  and self-adjoint with respect to the 

weighted inner product: 

vupvup  ,,  (4.11) 

It then follows that Equation 4.11 is an orthogonal projection with respect to the 

weighted inner product: 

  0,  uuup  (4.12) 

  maps any function to the closest function (with respect to the norm induced by the 

weighted inner product) orthogonal to f .  

The above properties enable the restricted energy function to be written in a simpler 

form: 

  hhphE ,  (4.13) 

Since the algorithm manipulates each pixel sequentially, it is necessary to write the 

energy function as a function of individual pixel values. Hence the description of the 

hologram function h requires refinement by the variable e, representing a pixel shape 

function at different array positions: 

     yxijeijhyxijhyxh ,,\,   (4.14) 
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where the subscript ij  denotes array positions and  ij\  denotes the omission of the 

element indexed by  ji,  . With continuous variables, the function e describes the 

shape of individual pixels. When the continuous problem is discretised for 

compatibility with computer calculations, the Kronecker-Delta centered at (xi,yj) is 

followed: 

   jyyixxyxije  ,,   (4.15) 

The energy function now demonstrates a quadratic dependence on hij : 

2
**

ijijij hdbhhbaE   (4.16) 

where  

ijij

ijij

ijij

eepd

ehpb

hhpa

,

,

,

\

\\







 (4.17) 

Parameters a, b, d are independent of hij.  

Given the research is exclusively concerned with phase-only holograms for which; 

)exp( ijij ih   (4.18) 

then the energy is minimised when: 

 bij  arg
 (4.19) 

Equation 4.19 may be used to treat holograms with continuously valued phase but 

needs to be modified for multi-phase gratings. In practice a suitable quantisation rule 

is used to select the nearest supported phase. For equally spaced phase levels with a 

step size 
M




2
  , a suitable rule is: 

   
         (     (   (  )) (  )  ⁄ ) (4.20) 
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Inserting the step size into Equation 4.20, the change between the new and the 

previous states becomes: 

|   
       

   |        ⁄⁄  (4.21) 

Alternative rules apply in the binary and quaternary cases. For the binary case, an 

appropriate quantisation rule is: 

  bhij  realsgn  (4.22) 

For the quaternary case where  iihij  ,1,,1  , the following rule is appropriate: 

 
 

 

 vih

uv

uh

vu

bv

bu

ij

ij

sgn

sgn

imag

real













 (4.23) 

Note that: 

   

 

ffp

fhp

ffp

fp
peepd

fphpehpc

dhcehpb

ij

ijij

ijijij

ijijij

,

,

,
,

,

,

2

00

\



















 (4.24) 

and that α can be rewritten as: 

   

 ffp

fphfhp ijijij

,

,\




  (4.25) 

Hence when a pixel state is changed, it may be updated according to the rule: 

 
 

ffp

fp
hh

ijold

ij

new

ij

oldnew

,


  (4.26) 
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Because the algorithm is classified as “greedy”, each pixel is visited and its state is 

determined according to the appropriate quantisation rule.  The rule requires 

knowledge of each variable evaluated by the algorithm, f, h, fp  , hp ; all 

variables depend on hologram configuration and need to be updated as the algorithm 

progresses.  The decision on when to update variables becomes critical and can either 

be updated after each pixel evaluation or at the completion of the quantisation pass.  

 

The pixel by pixel update of the variable h requires minimal effort which in turn 

allows for the update of hp  yielding: 

        ij

old

ij

new

ij

oldnew
ephhhphp   (4.27) 

especially useful when the filter kernel p is small.  The variable f, which depends on 

the phase of H, is best calculated through the Fast Fourier Transform (FFT) only 

after each full pass of the whole array.  The target may always be normalised so that

1,  ffp , saving on computational resources. 

 

4.2.1 Implementation 

POGED initiates by defining a target function captured in a NxN array, either grey 

level or binary.  Calculation of the mask function follows, executed using Dykstra’s 

Alternating Projections [60-61].  Once completed, a random grating structure is 

defined which assume one of two forms; a binary grating of only two-phase levels, 

 1,1ijh  or a phase grating of sub-multiple phase levels.  These phase levels are 

then defined as   
   

   
  for       where L is the number of quantised levels 
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which relates to a unit circle in the complex plane.  Either grating structure has the 

same dimensions as the target function.   At this stage, a calculation of the initial 

energy utilising a random grating and the mask function is performed, and the 

process for structuring POGED is ready. 

 

POGED begins by changing the phase of h, based upon a calculation of the cost 

function, followed by a comparison of the difference between the new and previous 

phase values of h to a specified tolerance level.  If the difference is greater, the phase 

change of h is accepted; if the difference is less, the change is rejected.  Once a pixel 

has been evaluated, the algorithm addresses the next pixel.  After one pass through 

the array, the phase of the target structure is updated and fp  recalculated.  In 

addition,  hp  is re-calculated to prevent accumulation of rounding-off errors.  The 

flow diagram for POGED is given in Figure 4.1 presenting each step of the 

algorithm.  The flow diagram for the filter function is covered in Section 4.4.  
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Figure 4.1 Flow diagram for POGED. 

 

4.3 Performance Metrics 

4.3.1 Diffraction Efficiency and Signal-to-Noise Ratio (SNR) 

The diffraction efficiency and Signal-to-Noise Ratio (SNR) are the two performance 

metrics used to evaluate holograms once all pixel values are fixed i.e. when the 

energy has been minimised.  

 

The diffraction efficiency evaluates how much energy is in the desired order and the 

SNR is a measure of background noise in relation to the intensity of the 

reconstructed image. These two metrics represent the overall quality of the 

reconstructed image and are routinely used by the community [18-20, 30-31, 38-39].   
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The metrics are calculated using the normalised total energy defined as: 

 
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 
 
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where the diffraction efficiency
2
    is defined as: 

 

 
21

,

,
2

E
HH

FF



   (4.29) 

and the SNR is defined as: 

 

    FHFH

FF
SNR








,

,
2

  (4.30)  

where  FH    is the error (noise) within the signal window,   the scaling factor, 

F  the target function, H  the reconstructed image and   the membership function 

of the signal window containing  Fsupp , η the diffraction efficiency and E the 

energy.  

When the normalised error: 

                                                 

2
 On discretisation, the inner-product is on a space of N×N square summable sequences. The 

sequences represent samples of one period of the continuous field. The ‘computational’ diffraction 

efficiency  as defined here implicitly neglects the energy directed into multiple diffraction orders and 

their suppression by a sinc
2
 envelop due to pixellation. The computed diffraction efficiency remains a 

useful performance measure but its value cannot be taken as the value of the physical diffraction 

efficiency. Indeed, the computed diffraction efficiency can exceed theoretical upper bounds on the 

physical diffraction efficiency of multi-level holograms [57] 
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    
 HH

FHFH

,

,2 



   (4.31) 

is minimised, the ratio of SNR to the diffraction efficiency: 

 
     2

1

,

,







FHFH

HHSNR
  (4.32) 

is maximised. 

 

A trade-off exists between SNR and diffraction efficiency. POGED can be tailored to 

either optimise the SNR or obtain a high diffraction efficiency through adjustment of 

the filter function.   

 

4.4 Filter Function 

The Section focuses on the design of the filter function which impacts on the relative 

contribution of errors at different locations in the reconstruction of the overall energy 

function.  

 

Where errors are deemed important, they are assigned a high positive weight within 

the signal window where they are most detrimental to the quality of the 

reconstruction.  When errors are deemed less important, they are assigned a low 

positive weight e.g. outside the signal window they have little effect on the quality of 

the reconstruction but reduce the diffraction efficiency and consequently should not 

be assigned a zero weight. 

 

The Fourier Transform of the filter is a convolution mask function, the primary 

purpose of which is in diffusing the quantisation errors across the structure, 
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producing a filtered hologram that is compared with the continuous target hologram 

in the calculation of the error.  

 

Ideally the ‘hard’ filter function should equal unity within the signal window i.e. 

everywhere the target function is non-zero and takes a small positive value (marked 

as   in Figure 4.2) outside the signal window to promote higher diffraction 

efficiency. The Fourier Transform of the discontinuous ‘hard’ filter function yields a 

corresponding ‘hard’ mask of unlimited extent. To reduce computational complexity, 

it is desirable that the mask has limited extent (a ‘soft’ mask) and hence the 

corresponding filter is a smooth continuous function (a ‘soft’ filter) that 

approximates the ‘hard’ filter as closely as possible. 

 

The hard filter can be derived using Equation 4.28 to Equation 4.32.  It is also clear 

that maximising the diffraction efficiency,  minimises the normalized error E, 

whereas σ is minimised when the SNR is maximised.  

 

A composite cost function may therefore be constructed according to [56, 68]: 

  
  

  
  

 

  
 (

 

  
  

 

  
)  

〈 (    ) (    )〉

〈   〉
 (4.33) 

where the subscript F denotes the upper limit of the target function.  

The hard weight P is then given by: 

     (   ) (4.34)  

where 

  
  

(     
 )

 (4.35) 
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 determines the trade-off between SNR (reconstruction fidelity) and diffraction 

efficiency ; small values of  , defined by the condition      
  , favour high SNRs 

at the expense of diffraction efficiency   In this case filter P is equal to 1 inside 

the signal window of the target, F, and has a small non-zero value of  outside the 

window.  However when  = 1, filter function P degenerates to a constant over the 

entire (x,y) plane, and the composite error   is equal to the normalized total 

reconstruction error    (Figure 4.2).  
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Figure 4.2 Illustration of the hard filter. 

 

 

In this research, the ‘hard’ filter function provides a target for the Alternating 

Projections on Convex Sets (POCS) algorithm [58-59] that identifies a positive 

function, the Fourier Transform of a mask of defined extent and the closest of all 

such functions to the target function. 



 56 

 

The basic POCS algorithm is performed on two constrained convex sets in order to 

find an element at the intersection of the two sets; the function is positive and is the 

Fourier Transform of a band-limited function i.e. the corresponding mask is of finite 

extent.  The soft convolution mask is then calculated by starting with the hard filter, 

taking the inverse Fourier Transform of the current filter function and by setting to 

zero all parts of the result that lie outside the desired support of the mask.  A Fourier 

Transform is then performed and all negative values are set to zero. This continues 

until the function is both positive and band-limited, (Figure 4.3).  The two 

constraints, sequences C+ and CL are defined as the ‘positivity’ constraint C+:  

 

 (4.36)

  

 and the ‘band limiting’ constraint CL: 

 

 (4.37) 

 

The POCS algorithm is then theoretically defined as: 
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where PB and PA are projections into space A and space B. 
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Figure 4.3 Flow diagram of the filter function implementation. 

 

Dykstra’s Alternating Projection is used to converge to a solution closer to the 

starting position [60-61].  Dykstra’s algorithm contains the original two sequences, 

C+ and CL, used in POCS along with two additional sequences qn and pn theoretically 

defined as: 

11

1

1

1

)(

)(

















Lnmn

nAL

njn

nLB

Cppp

pCPC

Cqpq

qCPC

 (4.39) 

where PB and PA are projections into the space A and B. 

 

The first two stages of Dykstra’s algorithm are to the same as in POCS, however 

convergence has not yet been reached and Dykstra’s algorithm adds additional stages 

to reach convergence.  After the above stages, the algorithm continues to reach an 
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even closer point since vector is neglected before it can be projected onto B, 

owing to the outward projecting normal of .   

 

4.5 Simulation Results 

4.5.1 Effect of the Filter Function 

The filter function depends on two parameters:  the size of the filter and 

regularisation parameter, ε, the latter allowing control of diffraction efficiency and 

SNR.   A number of trials varying ε and the size are carried out.  Figure 4.4 illustrates 

the hard filter in the form of the support of the target function used in evaluating 

POGED. 

 

01 qa 

0q
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Figure 4.4 (a) Target function for a single order of a binary grating or for a multi-

phase grating.  (b) Secondary target function for binary gratings to accommodate for 

the inversion symmetry of a binary grating structure. 

 

The target image used to evaluate the method for multi-phase grating structures and 

binary gratings is depicted in Figure 4.4(a).  However, for a binary grating it is 

possible to include the second image - arising out of inversion symmetry - into the 

calculations of the filter function (Figure 4.4(b)) allowing for both components of the 

reconstructed image to be considered in the calculation of the diffraction efficiency. 

 

Binary gratings are described by a real function; their Fourier Transforms are 

therefore Hermitian viz. the magnitude is inverted and symmetric.  Whichever filter 
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is used, the same results are achieved but calculation of the diffraction efficiency is 

incorrect by a factor of two because it does not account for the inverted image. 

Figure 4.5, is an example of both the hard and soft filter functions calculated using 

Dykstra’s Alternating Projections.   

  

(a) (b) 

Figure 4.5 (a) Soft filter function when only single signal window is used (in 

reconstruction plane)  (b) convolution mask with suppressed central peak (done for  

visual  purposes) corresponding to the soft-filter (a) (ε =0.1 and the width, pw = 27). 

 

The mask function can also be used to tailor the diffraction efficiency or the SNR.  

When the regularisation and size parameters change, the projection algorithm 

produces very different mask functions which can vary in size and have varying 

impact on diffraction efficiency and SNR.  A number of mask functions with 

different sizes and different regularisation parameters are generated to evaluate their 

effects on the quality of the grating structure (Figure 4.6). 
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a) (b) 

 

(c)  (d) 

Figure 4.6 Different soft mask functions, p, for different regularisation and size 

parameters; (a) ε is equal to 0.4 and the size of the filter function is 9 (b) ε is equal 

to 0.4 and the size of the filter function is 27 (c) the size of the filter function is 9 

and ε is 0.1 (d) the size of the filter function is 27 and ε is 0.1 

 

4.5.2 Binary Simulations 

To design a grating structure using POGED, a computer program was written in the 

software package Matlab [62], an interpreted software scripting language (not 
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complied).  The simulations are then executed on a Xeon 3.2GHz processor with 

3.2Gbytes of RAM under Windows XP.  For the purposes of the Thesis, the letter 

“T” is chosen to demonstrate inversion symmetry; the letter “T” is 21 pixels across 

the widest section and off-axis.  For the regularisation and size parameters of the 

mask function, one set of values is used throughout except when characterising the 

effect of varying parameters.  The offset, ε = 0.1 and the size, pw = 27.  The 

calculation time for an array of 256x256 pixels is one minute for an inverted and 

symmetric filter function; the diffraction efficiency obtained is 72% and the SNR is 

32dB.  When the filter function does not account for the twin image of the binary 

hologram, the computation time is over a minute with a diffraction efficiency of 36% 

and SNR of 33dB.  Because the method does not yield an unique solution, all of 

these values can vary by a small amount when the algorithm is seeded from different 

starting configurations since the method devotes a significant amount of time 

correcting a small number of pixels.  Specifying a different stop condition such as a 

tolerance on the cost function instead of the current condition of no more pixel flips, 

further improves calculation times; however this could result in a drop in the 

diffraction efficiency of 1%-2% and a 1dB-2 dB loss in SNR 

 

The results of the simulations shown in Figure 4.7 are for an off-axis “T” grating 

structure. The structure demonstrates distinct white and dark lines representing high 

and low segments of the grating surface relief.   
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Figure 4.7 Grating structure for the letter “T” generated using POGED. 

 

The reconstructed image of the binary grating structure of Figure 4.8 shows clearly 

the off-axis “T”.  The images show good contrast with respect to the background, 

illustrating the high SNR of 32dB.  The errors surrounding the reconstructed images 

are not dominant and appear like “clouds” of no distinct shape.   
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Figure 4.8 Reconstructed image of the letter “T” illustrating both the desired 

reconstructed image and its inversion symmetric partner. 

 

Figure 4.9 shows the evolution of the cost function as a function of the number of 

iterations.  The progress of the algorithm is similar to SA - Chapter 3, Section 3.2 - 

without the uphill portion to escape any local minimum.  The other aspect to note is 

that most of the improvements are made in approximately the first 50 iterations and 

the largest fraction of the computation time is spent on correcting a small number of 

pixels. 
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Figure 4.9 Evolution of the cost as the algorithm progresses.  Most of the 

improvements are made in the first 50 iterations. 

 

Figure 4.10(b) illustrates how the diffraction efficiency evolves as the algorithm 

progresses.  In the first 50 iterations, a large increase in the computed diffraction 

efficiency is evident, levelling out for the remaining iterations, attributed to the 

algorithm trying to correct a small number of pixels to further improve diffraction 

efficiency.  Also evident on inspection of Figure 4.10 is that the largest increase in 

the diffraction efficiency occurs at the same time, whether or not the inverted image 

is included in the calculation of the filter function. 
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(a) 

 

(b) 

Figure 4.10 (a) Computed diffraction efficiency when the filter function is derived 

from the support of the target image.  (b)  Diffraction efficiency when the filter 

function is derived from the support of the target image and its inversion symmetric 

parameters.  
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The diffraction efficiency is 36.6% (Figure 4.10(a)) and if the energy in the twin 

image is neglected, the diffraction efficiency is 72% (Figure 4.10(b)).   

 

In the absence of a unique solution, it is possible to arrest the algorithm by 

establishing a tolerance value in the error function.  Although ending the algorithm 

early would substantially decrease computation time, some loss of SNR and a slight 

reduction of in the diffraction efficiency results. 

 

4.5.3 Multi-Phase Simulations 

Quaternary and continuous phase grating structures are simulated to demonstrate 

multiphase POGED operation.  This evaluation requires more time to implement 

because the algorithm no longer simply flips between two pixels but considers the 

phase step between the two states.  “T” is again used in the simulations carried out on 

the same computational resources.  

 

The quaternary grating structure is firstly implemented on a 256x256 pixel array.  

The computation time required is 5 minutes and 56 seconds, yielding a diffraction 

efficiency of 74% and SNR of 32dB.  The performance does not improve on 

comparison with the binary case, except that it is effective in suppressing the impact 

of the twin image. 

 

The reconstructed image for the quaternary grating shows the “T” structure visible in 

the upper right quadrant, close to the origin (Figure 4.11(a)).  Because the grating is 
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not continuous and is still close to the binary case, some errors are evident where a 

twin image would normally be present (Figure 4.11(b)).  

 

 

(a) 

 

(b) 

Figure 4.11  (a) Grating structure for a quaternary grating of an off-axis “T”. (b) 

Reconstructed image of a quaternary grating structure of an off-axis “T”. 

 

The computed diffraction efficiency for the quaternary is marginally higher than the 

binary structure viz.  74% compared to 72%.  The evolution of the diffraction 
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efficiency with iterations in the quaternary case follows the same pattern as that of 

the binary however, most of the rise in diffraction efficiency occurs in the first 100 

iterations, again owing to the absence of an unique solution and the possibility of 

screw dislocations (vortices) existing in the grating structure (Figure 4.12(a)) [63].  

The evolution of the cost function follows the same profile as that of the binary case 

where an initial sharp descent occurs as the iterations progress.  The stagnation 

evident in the binary case is also observed after the same number of iterations 

(Figure 4.12(b)). 
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(a) 

 

(b) 

Figure 4.12  (a) Diffraction efficiency as a function of the number of iterations.(b) 

Cost as a function of the number of iterations. 
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4.5.4 Continuous Phase Simulations 

For continuous phase holograms, the reconstructed image is the solid “T” structure 

with a few surrounding errors and no significant errors where the twin image should 

be present (Figure 4.13). 

 

 

(a) 

 

(b) 

Figure 4.13 (a) A continuous phase grating. (b) The reconstructed image.  
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For a continuous phase structure the stagnation observed in both the binary and 

quaternary cases also occurs.  All of the improvements are gained in the first 100 

iterations, after which only a few pixels are corrected resulting in small 

improvements to the diffraction efficiency (Figure 4.14(a)) and cost (Figure 4.14(b)).   
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(a) 

 

(b) 

Figure 4.14 (a) Evolution of the diffraction efficiency as a function of the number of 

iterations. (b) Evolution of the cost as a function of the number of iterations. 
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As the size and the regularisation parameter of the mask are varied, some distinct 

trends emerge.  When the size of the mask is increased, the SNR improves however 

the diffraction efficiency does not change significantly (Figure 4.15).  When the 

regularisation parameter value increases, a small decrease in the SNR and a small 

increase in the diffraction efficiency occurs.  Changes in the size of the mask do not 

affect overall calculation times of the algorithm leading to the decision on the size of 

the mask solely for optimization of the SNR or of the diffraction efficiency and not 

calculation times 
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(a) 

 

(b) 

Figure 4.15 Comparison between different sizes of the filter function and the offset 

value.  (a) Diffraction efficiency (b) SNR. 
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Tailoring the algorithm for higher diffraction efficiency (or SNR) through changing 

the regularisation parameter value is not an effective approach.  Changing the size of 

the mask to promote SNR however does yield good results when the filter is large 

and the regularisation parameter is small. 

 

4.6 Conclusions 

Figure 4.15 summarises the simulation results obtained for grating structures with 

different numbers of quantisation levels and the filter function.  Results show that the 

size of the filter function and the offset have an impact on the SNR; the largest filter 

and the smallest offset provide the best SNR for any quantisation level. The 

computed diffraction efficiency does not change significantly as a function of 

different size and offset values.  Consequently the optimum strategy is to tailor the 

filter function to maximise the SNR since it has negligible effect on diffraction 

efficiency. It is worth noting  - bearing in mind that these values cannot be taken as 

the theoretical diffraction efficiency as indicated in Footnote 2 - that the computed 

diffraction efficiency is close to theoretical values (Table 4.1). 
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Table 4.1 Comparison of computed diffraction efficiency to theoretical diffraction 

efficiency. 

 

 

Grating Type Time 
Computed 

Diffraction 

Efficiency (%) 

Theoretical 

Diffraction 

Efficiency 

(%) 

   

Binary 1:00 min 36 40.5 

4 Level 5:56 min 74 81 

8 Level 19:00 min 87 90 

16 Level 27:00 min 90 99 

 

The execution times vary from one minute to just under thirty minutes depending on 

the number of levels in the grating structure. Depending on the desired application, a 

solution can be found that offers the best compromises between time, SNR and 

diffraction efficiency 
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Chapter 5 

Fresnel Region Phase Optimised General 

Error Diffusion 

 

5.1 Introduction 

The Chapter focus is on the development and modifications required for POGED to 

operate in the near-field region.  Arguments as to why the defined theoretical 

approach is not appropriate as is are made and the adoption of the angular spectrum 

method is proposed and proven to circumvent the limitations. 

 

5.2 Fresnel Region 

A Fresnel Transform is a beam propagation method in the near field region, where 

the near field region is the region where z is small and thus scalar diffraction theory 

is valid [38].  Operation in this region is used in optical beam shaping [18-22], and in 

optical beam steering when propagation distances are small compared to the pixel 

size and less than the focal length of the system [64-68].  POGED is adapted to 

implement the Fresnel Transform through modifications to the algorithm.    

 

The theoretical formulation to execute the Fresnel Transform is given by; 
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where u2(x2,y2) is an amplitude distribution at a distance z from the input plane with 

input signal, u1(x1,y1), illuminated by a plane wave at wavelength λ. 

The amplitude distribution in the output plane can be rewritten as: 
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  (5.2) 

where  is the Fourier Transform operator and vx and vy are the spatial frequencies 

defined as vx = x2/λ and vy = y2/λ. 

 

Since the coordinates in the input (x1,y1) and output planes (x2,y2) are not equivalent 

and the output coordinates for the spatial frequencies require a scaling by 1/z, 

POGED requires an interpolation and re-sampling [65-66,68].  The z factor in the 

quadratic phase factor must also be examined further;  


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1
2
12

exp yx
z

ik
   (5.3) 

The z factor in the denominator leads to rapid oscillations as small variations in z 

lead to large phase changes.  To correct this, significant sampling of the input field is 

required [65-68], inferring that the theoretical method for performing the Fresnel 

Transform is not applicable to digital holography. 
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An alternative way of implementing Fresnel Transforms is to use the convolution 

approach relying on the decomposition of the input field into a number of plane 

waves.  The complex output field can then be represented as a convolution of the 

input field and an impulse response function h(x,y); 

),(),(1),(2 yxhyxuyxu   (5.4) 

where function h(x,y) is defined as;  
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 (5.5) 

Using the properties of the Fourier Transform, the convolution of the two functions 

becomes a multiplication in the object plane:  

),(),(1),(2 yvxvHyvxvUyvxvU   (5.6) 

where U2,U1 and H are the Fourier Transforms of u2, u1 and h. 

The Fourier Transform of the function h is now defined as: 














  22exp)exp(),( yvxvziikzyvxvH   (5.7) 

H now describes the retardation of the phase for each plane wave depending on the 

propagation angle and distance z.     

 

As both the input and output planes are now equivalent, no interpolation or re-

sampling of the fields is required and the phase transfer function is now linearly 

dependent on z; consequently small changes in z no longer represent rapid but 

dampened oscillations in frequency.  This is a compromise which allows for the 

correct sampling of the quadratic phase factor.  A critical distance, Zc, which depends 

on the pixel, DOE, image size and wavelength applies.  The integral method needs to 

be used when Z<Zc and the convolution approach when Z > Zc. 
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Fresnel POGED 

Using the above formulation allows the necessary modification to POGED to be 

made:  

       }},{;,{1},{, yxuzvuqyxuFryxU   (5.8) 

       }},{;,{1},{1, yxUzvuqyxUFryxu   (5.9) 

where  and 
1 represent the forward and inverse Fourier Transforms, q* is the 

complex conjugate to q, and the quadratic phase factor q(u,v,z) is defined in 

frequency space (u,v) dependent on wavelength  and propagation distance z as [61-

62]:  

    22exp;, vuzizvuq    (5.10) 

The key variables are the wavelength the propagation distance z and the pixel 

pitch at z=0 and z=Z.    

 

Since the convolution is no longer valid in the Fresnel region, the variables fp  

and hp  need to be redefined as;    

fppfhpph  ,  (5.11)  

In addition to the propagation operator becoming a Fresnel Transform, a number of 

other changes need to be made when the scaling factor or the function hp  is 

updated.  The update for the scaling function follows: 
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and the update for hp  follows: 
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Updates for hp  now involve a Fresnel Transform performed on every pass 

throughout the array, resulting in the slowing down of the algorithm. This is caused 

by the fact that the convolution is no longer valid in the Fresnel region.  In the 

Fourier region it was possible to simplify the update to hp  ; however in the 

Fresnel region hp  can no longer be simplified resulting in the pre-calculation of 

}}{{1
ijeFrPFr  to be stored in a lookup table.  Computer memory can then 

become a limitation, especially for 32-bit computers.  Other ways to speed up the 

calculation may be pursued but due to limits in time, they have not been investigated.   

 

5.3 Fresnel POGED Simulation Results 

The angular spectrum method is used to simulate the Fresnel Transform since it is 

more resilient to high frequency oscillations compared to the integral method [61-

62].  Results for the Fresnel Transform are generated using a Gaussian beam 

transformed into a flat top output beam (Figure 5.1) using a 16-level grating structure 

generated on a Xeon 3.2GHz processor with 3.2Gbytes of RAM under Windows XP 

(a 32-bit computer with a 3-bit version on Windows XP allowing the implementation 

of a look up table).  The amount of memory available placed a limit on the size of the 

grating structure; thus a 128x128 grating array structure is used. A comparison to the 

Gerchberg-Saxton Algorithm is made to verify the validity of the proposed method. 
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Figure 5.1 A Gaussian input beam is transformed into a flat top beam using POGED 

in the near field. 

 

The design parameters to create the necessary output beam are as follows: beam 

wavelength = 632.8 nm, initial (z=0) beam 1/e amplitude radius of 1mm, distance to 

target plane z=Z=496 mm.  Hologram  h has M=16 discrete phase levels and is 

simulated as a 128x128 square array with side width of 8 mm, giving a pixel size of 

62.5 microns.  The target amplitude F0 considered is a 2x2 mm square.  However, 

when the grating structures are coded into the algorithm, a dimensionless quantity for 

the z value is used.   

 

Figure 5.2(a), illustrates the phase function that generates a flat top beam from a 

Gaussian beam.  Because the propagation distance is in the near field, the shape of 

the reconstructed image is embedded in the phase function.  The reconstructed image 

that corresponds to the phase grating, (Figure 5.2(b)) exhibits a square shape with 

few errors surrounding the image governed by the ε value.  There are some errors 
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inside the image - black lines - since at this value of ε, the diffraction efficiency is 

being promoted to the detriment of the SNR.   

 

 

 

Figure 5.2 (a) Phase function that shapes a Gaussian beam to a flat top beam. (b) The 

flat top beam produced by the corresponding phase function with (c) as the y-slice of 

the reconstructed image. 

 

The performance metrics used to evaluate the grating structure are again the 

diffraction efficiency and SNR.  Figure 5.3(a) shows the energy function as it 

evolves whilst Figure 5.3(b) depicts the evolution of the diffraction efficiency.  For 

both metrics, the bulk of the improvements are completed within the first ten 
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iterations.  If calculation time is deemed more important, the algorithm can be 

modified to exit when the change in energy is less than a specified tolerance. 

 

 

 

 

Figure 5.3 (a) Evolution of the cost function and (b) of the diffraction efficiency as a 

function of the number of iterations. 
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the filter function is to use a square enclosing an area larger than the target image 

(Figure 5.4(b)), labeled as P1 in future analysis These two methods were evaluated 

determining which shape of filter would produce optimal results for the SNR and 

diffraction efficiency. 

 

  
(a) 

 

(b) 

Figure 5.4 Examples of different hard masks. (a) A hard mask function in the shape 

of the output image. (b) Hard mask that encompasses an area larger than the target 

image that is in the shape of a square  
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When calculating the filter function two variables can be changed; the values of ε, 

the offset from zero, or the size, pw.  Variation of ε tailors the SNR and the 

diffraction efficiency whilst varying the size of the filter function, changes the time 

owing to the necessity of using a lookup table to store hp and the precision of the 

algorithm.    Figure 5.5 shows the filter function for ε =0.2 on a 128x128 array, the 

total size of the grating structure.  The hard filter is the function used to generate the 

soft filter using Dykstra’s Alternating Projection, described in Chapter 4 Section 4.4.  

A few ripples are evident in the soft filter directly attributable to the value of ε which 

in turn governs SNR and diffraction efficiency. 

 

 

Figure 5.5 (a) Soft filter function (b) Y-Slice of soft filter function, plotted on a 

128x128 array. 

Significant ripples start to appear when the grating structure width of the filter 

function is halved and ε is set at 0.2, causing a degradation in the SNR and an 
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Figure 5.6 Demonstration of the effects of the size of the filter and the offset on (a) 

diffraction efficiency and (b) SNR 

 

POGED is compared to the single stage Gerchberg-Saxton (GS) algorithm in Figure 

5.6. The GS algorithm is used for comparison purposes since it is a relatively 

straightforward formulation and results can be generated in a comparatively short 

period of time.  POGED has not to date, been effectively implemented in the near-

field region and GS is a valid alternative for the purpose of performance comparison. 
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The GS algorithm, for the same variables and the same number of levels, produces a 

lower SNR than obtained by POGED whilst the diffraction efficiency is comparable.  

 

5.4 Conclusions 

The POGED algorithm has been successful adapted to operate in the near-

field/Fresnel region.  The modifications to the algorithm are necessary to treat the 

high frequency oscillations observed owing to the 1/z term in the quadratic phase 

factor and in how the update of hp  is performed.  Updates are time consuming 

and the use of a lookup table was successful in reducing the calculation time; the 

demonstration of the principle was nevertheless restricted by available computer 

memory.  The update process will further reduce the calculation time if this hardware 

restriction is removed.   

 

The best results for the SNR occur when the filter function is large and the offset is 

small.  This trend is a distinct property of POGED, clearly observed in the near field 

implementation also. The characteristic leads to the ability to tailor the DOE to the 

performance required for the overall system.  If diffraction efficiency is important, 

than the offset needs to be large with a small filter and if SNR is important the offset 

should be small and the filter large. 
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Chapter 6 

Fabrication of Diffractive Optical Elements 

 

6.1 Methods 

The primary methods used to fabricate DOEs are focused ion beam lithography [74], 

electron beam (e-beam) lithography [73], laser ablation [75], and photolithography 

[69-70].  A sub-category of photolithography is ‘step and repeat’ lithography, one of 

the methods used to produce the grating structures in this work.  An overview of the 

lithographic processes is outlined in the Chapter; a more detailed review of the 

process for photolithography can be found in [69] and for electron beam lithography 

in [66]. Each method has a number of disadvantages, and a comparison of the 

techniques is provided to illustrate why some methods are better suited for specific 

applications. 

 

6.1.1 Fabrication Process 

The Section describes the fabrication of the grating structures generated using 

POGED.  For simplicity and governed by the ease of access, two lithographic 

methods are used.  

 

Figure 6.1 illustrates the important steps of the fabrication process [40, 69-70].  The 

first step is the selection of the wafer, either quartz initially coated with chrome or a 

polished wafer of Si or GaAs covered either by an oxide or nitride layer.  Glass is 
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used for transmission whereas a semiconductor substrate can be used effectively in 

transmission mode if the design wavelength is in the infrared, since in this spectral 

region, semiconductor material is transparent [76]. 

 

Figure 6.1 General outline of the steps involved in the fabrication of a grating 

structure by a lithographic method.  Steps involved are deposit photoresist, expose 

with an energy source, develop, etch and then strip away photoresist. 
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Once the wafer material is selected, the surface is cleaned and stripped of all 

contaminants.  A photoresist layer is spin coated onto the wafer after the deposition 

of an oxide layer.   

 

Next in the sequence is the exposure step executed by photolithography or electron 

beam lithography. These lithography techniques are chosen primarily governed by 

the ease of access; other methods are thus not reviewed. After exposure, the 

photoresist is developed, removing the exposed - or unexposed - resist as appropriate 

to the type of resist.  The wafer is then baked in an oven to remove residual solvents 

which also brings an added advantage of hardening the resist that remains to better 

withstand the etching process.  Once baked, the wafer is etched by reactive ion (dry) 

or by acid etching (wet).  The photoresist is then removed and protective coatings are 

applied in preparation for dicing or cleaving. 

 

6.1.1.1 Spin Coating  

The photoresist creates a relief structure on the substrate, central in subsequent 

processing steps.  The photoresist Poly Methyl Methacrylate (PMMA) is exposed 

with a lithographic method and developed, forming a “template” structure directly on 

the sample, defining the areas to be etched. Spin coating is performed by placing a 

drop of liquid resist on a clean substrate and spinning the substrate at speeds in the 

range of 2000 rpm-4000 rpm to produce an even coating.  The rate at which the 

substrate rotates determines the layer thickness deposited on the surface.  Subsequent 

baking in an oven ensures that no solvent remains within the PMMA.   
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There are two types of photoresist viz. positive or negative; the former dissolves, 

whereas the latter remains after the development process.  Either type of resist can be 

used, the choice dependent on proximity and under-cutting effects [69-70]. 

 

 

Figure 6.2 Schematic of the apparatus used in spin coating the photoresist onto the 

sample.  Photoresist coats a sample as it spins between 2000-4000 rpm. 

 

6.1.1.2 Lithography   

The lithographic process exposes the coated wafer to energy from two sources: light 

in the UV or deep UV depending on the desired resolution, or electrons.  Each source 

applies different optics since e-beam systems are direct write and UV systems are 

projection methods. Figure 6.3 shows a general photolithographic setup, the sample 

illuminated using a point source. Exposure time is dependent on resist type and 

thickness [69].  
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6.1.1.3 Photolithography  

Photolithography [69] exposes the substrate with ultraviolet light, for a 

predetermined period of time through a mask re-imaged onto the substrate.  The 

mask is the same size as the desired area and can be expensive depending on desired 

features and complexity. In some applications, many masks and exposures may be 

needed but for the research, since a binary DOE is fabricated, only one mask with 

one processing step is required, reducing the cost of manufacture and limiting errors 

associated with the use of multiple masks. 

 

 

Figure 6.3 Schematic of a general lithographic method.  Energy from a source 

illuminates a photo mask projected through optics onto a wafer coated with 

photoresist that is subsequently processed. 
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6.1.1.3.1 ‘Step and Repeat’ Lithography 

‘Step and repeat’ lithography is similar to photolithography except that the wafer is 

exposed across small areas and then stepped across to expose the entire wafer rather 

than all at once.  These areas are referred to as dies and are tiled across the wafer 

(Figure 6.4).  The process uses a mask or reticle stepped across the entire surface of 

the wafer, but only a single die is exposed at one time.  Only a small pattern needs to 

be created instead of one that encompasses the entire surface area of the wafer.  

 

Figure 6.4 Die pattern of a wafer that is used in step and repeat lithography.  The 

lines represent the boundaries of the “images”. 

To expose the wafer, light is projected through the reticle (Figure 6.5) onto the wafer 

at specific die locations.  The most common type of stepper is a reduction stepper 

where images on the reticle are larger than the image to be written onto the wafer; 

projection optics reduce the size of the desired image before it reaches the wafer.  
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The advantage of this type of stepper is that the resolution for the lithography is not 

limited by the size of the image on the reticle.  The most common types of reduction 

magnification for steppers are 1×, 4×, 5×, 10×; in this work, a 1× stepper is used. 

 

Figure 6.5  A schematic of the step and repeat lithography method.  The method 

scans across a wafer to different die locations which are patterned lithographically.  

The technique allows for a smaller mask to be fabricated and is useful when a large 

number of features are repeated on the same wafer. 

 

Another feature of the stepper is alignment markers, usually written on the outside of 

the image and core to aligning the reticle to the wafer.  They are not transferred 

during the lithographic process.  Usually two types of alignment markers are used: 
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one to align the reticle to the stepper column, the other to align the reticle to the 

wafer.  Once the first “image” is transferred, the alignment process is simply a 

translation across the wafer. An example of these markers is shown in Figure 6.6. 

 

Figure 6.6 Example of an alignment marker used to aligning the mask to the wafer.  

These markers guarantee that the “images” are all aligned to each other and that they 

are properly spaced without overlap. 

 

6.1.1.3.1.1 Electron Beam Lithography 

Electron beam (e-beam) lithography is a maskless method that exposes a photoresist 

layer directly with an electron beam.  The method scans a beam of electrons across 

the wafer, coated with photoresist sensitive to the energy of the electron beam e.g. 

PMMA, exposing it with a specific dose.  The dose is the amount of electrons needed 

to penetrate the resist to the required depth.   

 

One of the errors with e-beam approaches is the proximity effect which can lead to 

discrepancies in features.  This is a result of the shape of the electron beam – a tear 

drop – since once it penetrates the sample, secondary electrons are generated (Figure 

6.7). Irregular and small features require a different dose than larger features; if the 

dose is too large some features are lost.  Another error is scattering from primary 
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electrons, which can be scattered multiple times in the photoresist layer over a large 

area, leading to exposure away from desired locations. 

 

 

Figure 6.7: Profile of the secondary electrons as they penetrate and scatter into the 

wafer, highlighting why the dose of the electron beam is important and why 

proximity errors occur. 

 

6.1.1.4 Etching methods 

Two of the most commonly used etching methods are segmented as ‘wet’ and ‘dry’.  

Wet etching is most readily distinguished by the chemical used, producing either an 

isotropic profile that etches uniformly in all directions (but does not produce vertical 

sidewalls) or an anisotropic profile which etches along certain crystallographic 

planes (Figure 6.8).      
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(a) (b) 

Figure 6.8  Difference between wet etch techniques and how the particular etching 

method progresses. (a) Anisotropic etch produces sidewalls that follow the 

crystallographic axis.  (b) Isotropic etch, producing sidewalls rounded in the corners. 

 

The research considered using an anisotropic etch - hydro fluoric (HF) acid - which 

etches at a rate that does not depend upon the exposed features, at least for the 

feature sizes utilised. For SiO2, HF etching results in a sidewall angle of 53
o
, which 

yields poor reconstructed images and was therefore not used. 

 

Dry etching relies on a combination of chemical reaction and ion bombardment.  The 

most widely used technique is reactive ion beam etching (RIE) which produces 

vertical sidewalls, but owing to surrounding features and the geometry of those 

features, variations in etch depth may occur (Figure 6.9).   
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Figure 6.9  A reactive ion etch chamber. 

 

6.1.1.5 Fabrication Process; Conclusions 

Because photolithography is a replication technique, it is possible to produce a large 

number of elements with only one mask.  In high volume production environments, 

Nano-imprint lithography is the best choice for fabricating diffraction gratings in an 

production environment however due to limited availability this method was not used 

in the fabrication of any DOE’s for this thesis. When prototyping, electron beam 

lithography is a good choice because the fine resolution of the beam promotes 

accuracy and obviates the need to produce a quality photomask. 

 

The required optical quality of the fabricated grating must be considered before 

selecting a particular etching method.  If the image produced by the grating structure 

is viewed by eye only, a wet etch might be more preferable because it is of lower 
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quality and less expensive.  If higher quality is required, a more expensive dry etch 

must be used.  

 

6.2 Fabrication of Grating Structures 

A number of samples were fabricated at the CPFC (Canadian Photonics Fabrication 

Center) using the step and repeat method and both wet and dry etching, to determine 

the quality of the grating structures. The structures are in the form of a 2×2, a 4×4, an 

8×8 arrays together with a grid and circular patterns.  The POGED method is used to 

generate the grating structures where all of the pixels with a value of one are 

extracted from a text file.  Because the extracted files are in a text format, a 

conversion into a format that could be read by the Canadian Photonic Faction Center 

(CPFC) facility is required.  The preferred software package is Design Workshop 

2000 (DW2000) operating on a GDSII file formats.   When importing files into 

DW2000, some information may need to be corrected, such as changing the layer 

information or the units to micrometres (Figure 6.10).  
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Figure 6.10 Outline of a grating structure that produces a 4×4 array generator.   The 

image is a screen shot from the design package DW2000. 

 

Once all of the separate GDSII files are on the same layer - layer 10 in this case - and 

the units are correct, the final file is assembled by merging the imported GDSII file 

into the template provided for the fabrication process. 

 

The grating is then laid out. A square centred at 0,0 outlines the optimal area for the 

reticle, approximately 15 mm per side and comprising the six “images” placed in 

their required specific centre values (Table 6.1).  The outline square and all images 

must be centred about 0,0 for the mask to be fabricated correctly. 
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Table 6.1 Location of each of the images as they are represented in DW2000.  The 

correct locations of the images are crucial to mask fabrication. 

Image Name 

Image Coordinates 

Image Center Image Size 

Top Left Bottom Right 

1 -5850 6500 -1650 3500 -3750 5000 4200 3000 

2 1650 6500 5850 3500 3750 5000 4200 3000 

3 -5850 1500 -1650 -1500 -3750 0 4200 3000 

4 1650 1500 5850 -1500 3750 0 4200 3000 

5 -5850 -3500 -1650 -6500 -3750 -5000 4200 3000 

6 1650 -3500 5850 -6500 3750 -5000 4200 3000 

 

 

 

Figure 6.11 Template used to layout grating structures. 
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Once the entire layout process is complete, a decision on regions that are chrome and 

which are glass is reached.   Owing to the chosen data extraction method, the chrome 

on the reticle is displayed in green (Figure 6.12) and individual squares represent 

individual pixels.  These are the regions that remain after etching whereas the glass 

regions are the areas exposed and etched. 

 

 

 

Figure 6.12 Example of what is written and what is not; the 

green part is chrome, the black part is glass. 

 

6.2.1.1 Design Parameters 

The GDSII files are all separated and named in a fashion that provides a description 

of the shape e.g. a ‘twobytwob’ is a file representing a 2×2 array generator.  An 

example of file listings is given below, in addition designating the inner dimensions 
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of the grating as repeated.  The grating comprises 9 separate structures laid out in a 

3×3 pattern to help eliminate speckle.  The total size of the grating is also listed. 

 

‘2x2’ 

A – ‘twobytwob’ is a GDSII file of a grating with inner section of 128×128 pixels; 

Size = 384 μm × 384 μm 

 

B – ‘twobytwo_new’ is a GDSII file of a grating with inner section of 256×256 

pixels  and uses an updated version of how the pixels flips were performed; Size = 

768 μm × 768 μm 

 

C – ‘twobytwo_256’ is a GDSII file of a grating with inner section of  256×256 

pixels uses the original method for flipping  in the binary case; Size = 768 μm × 768 

μm 

 

The elements are separated by 9 mm in the vertical and 5 mm in the horizontal 

direction, also representative of the size of the die. Thus elements are separated by 

two die locations in either direction. The etch depth is determined by the material 

characterised by its index of refraction [36-37].  The etch depth is calculated as:  

(n-1)d = λ/4 (6.1) 

for a reflection grating, where λ = 632 nm,  n = 1.457 for SiO2 and d = etch depth. 

For reflection mode gratings – as opposed to transmission – a ¼ wavelength path 

difference is sought (instead of ½ wavelength); thus dSiO2 = 345.68nm for a reflection 

grating in SiO2 (Figure 6.13). 
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Figure 6.13 Example of fabricated binary grating structure.  For a multiphase 

structure, the SiO2 follows a triangular staircase shape. 

 

Figure 6.14 shows the image distributions on the reticle.  The pattern follows 1, 2, 

3… for the first level, repeated across the entire wafer.  The next level begins where 

the previous level finishes e.g. if the previous level ends at 4, the next level begins at 

5. A letter indicates the image placement on the reticle.  Once fabricated, the wafer is 

diced or cleaved into individual “images”.  At the centre of each image (the six 

separate squares in the centre of the larger one) is a label displaying a numeric value 

which distinguishes each piece on wafer cleaving.    
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Figure 6.14 Placement of the grating structure as six “images”.  Each grating 

structure is separated by 2 mm in the vertical direction and 1.5 mm in the horizontal.  

The images are separated by 1 mm so that there is no effect from secondary electron 

during the exposure process. 

6.3 Conclusions 

Due to the availability of equipment, electron beam lithography and step and repeat 

lithography are chosen for the manufacture of static DOEs.  Both of these methods 

are capable of achieving the desired resolution of a 1 μm pixel size. 
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Electron beam lithography is a direct write technique that does not require the use of 

a mask; however there are a number of errors associated with it, most notably 

proximity effects and secondary electron exposure.  The technique also requires that 

samples be charged and any features made on a glass substrate also incur an 

additional metal coating step.  

 

Step and repeat lithography follows the same initial processing steps as in electron 

beam lithography, but requires a mask followed by exposure to UV light and is not 

subject to the same errors. Masks a can be expensive depending on the resolution of 

the features sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 109 

Chapter 7 

Manufactured Grating Characterization 

Methods and Results 

7.1 Introduction 

The Chapter focuses on a series of experiments that evaluate the structural and 

optical quality of the manufactured gratings.  The techniques used to determine 

structural quality of the gratings are: white light interferometry [77], atomic force 

microscopy (AFM) [78], and scanning electron microscopy (SEM) [79].  A beam 

profiler [80] is used to further characterise the optical quality of the output beam 

produced by the gratings. CCD images are also used to view the reconstructed 

images for qualitative purposes only.  Sidewall angle tolerances achieved are within 

±3
o
 from 90

o
 with a sidewall surface roughness of 1 pm.  The tolerance achieved on 

the etch depth was ±5nm about the nominal value of 346nm.   

 

7.2 Structural Characterisation  

7.2.1 High Resolution Optical Microscopy 

High resolution microscopy allows the fully fabricated grating structure to be viewed 

and compared to the original design in order to evaluate discrepancies between the 

two e.g. a region where there should be a void but remains filled in during the 
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lithographic process (referred to as the proximity effect when electron beam 

lithography is used). 

 

To acquire a high resolution microscope image requires the sample to be fixed on a 

stage, with the camera and light source mounted above.  The camera utilised is an 

Olympus with a broadband light source [81] providing a 50x magnification, able to 

capture most of the grating structure; the amount of structure recorded depends on 

the desired magnification and the overall size of the grating.  If the full grating 

structure is too large, only a corner needs to be examined as it is replicated in the 

fabrication process (to minimise speckle).  

 

7.2.2 Atomic Force Microscopy 

Atomic Force Microscopy (AFM) assists in determining the structural quality of the 

fabricated grating, key features being sidewall verticality, surface roughness and etch 

depth.  It is also possible to determine any cracks in the structure, how deep they 

might be as well as any residual resist.  Etch depth and sidewall verticality are 

important since errors in these parameters contribute to a high DC level and a loss in 

diffraction efficiency [39-40].   

 

AFM scans a sample using a very fine probe, in the order of 10-20nm in diameter 

and a length of 30 m to 500 m depending on the type of element being examined. 

The probe is mounted on a tuning fork/cantilever  at a height between  50 m to 500 

m and length of 300 m to 1000 m. The force exerted by the probe onto the 
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sample is in the range of 1-20 N/m, at a resonant frequency of between 20 kHz to 

390 kHz. An example of a probe and cantilever is illustrated in Figure 7.1 

 

Figure 7.1 Views of the AFM probe made of optical fibre.  The optical fibre is heated 

and manipulated to achieve a bend.  The tip is formed by heating the fibre and 

carefully shaping into a small point on the order of nm [78]. 

 

To acquire an image, the probe scans over the surface recording the difference in 

probe force, which is then translated into a voltage that in turn represents a height.  

The speed at which the probe moves is important; if the probe moves too quickly the 

tip could break or the resolution of the measurement degrades.  One other impact of 

probe speed is its effect on the measurement of sidewall verticality.  When the probe 

scans across a sample, it “falls” off edges and “climbs” the other sidewall.  If the 

probe moves too quickly, the edge appears ‘rounded’, resulting in an inaccurate 

measurement of the edge verticality. 

 

Glass 
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7.2.3 White Light Interferometry 

White light interferometry is a non-contact method used to measure surface 

roughness. The principle behind white light interferometry is similar to that of a 

classical interferometry [77], however a broadband source is used instead of a 

coherent laser source. A basic schematic of a white light interferometer is illustrated 

in Figure 7.2 .  Three to five measurements of the intensity per fringe per pixel are 

taken so that the phase can be extracted; the phase is used to calculate the 

height/surface roughness. 

 

 

 

Figure 7.2 Schematic of a white light interferometer.  A white light source 

propagates to a beam splitter where a reference beam splits off whilst the object 

beam propagates to the sample stage where it is reflected back and collected. 
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These types of interferometer have become very popular in profiling surface 

roughness in semiconductor materials [77], and is currently used routinely in many 

industries. 

 

7.3 Structural Measurement Results 

The Section reviews the structural quality of the designed gratings fabricated using 

electron beam and step and repeat lithography.  Errors originating during the 

fabrication process are identified along with a full interpretation of the 

characterisation results.  Results comprise Scanning Electron Microscopy (SEM) 

images, AFM images and white light interferometry, the latter used to validate the 

AFM images.   

 

7.3.1 Electron Beam Lithography Fabrication Results 

Figure 7.3 illustrates gratings fabricated using electron beam lithography.  The circle 

in the bottom right hand corner of the simulated grating structure represents the 

optical image of the corresponding fabricated structures.  The dark yellow lines 

shown in the optical image correspond to the black lines in the simulated structure 

and the light yellow lines correspond to the white lines.  The circled area captures a 

comparison between the simulated and fabricated grating.  Some differences are 

apparent in this region, directly attributable to fabrication errors. 
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(a) Simulated grating structure. (b) Optical image of grating 

structure fabricated by electron 

beam lithography. 

 

Figure 7.3 Comparison image between the simulated and fabricated grating structure 

using electron beam lithography where 1 pixel has dimensions of 1μm x1μm. 

 

The differences highlighted by circles in Figure 7.34 clearly accentuate the errors 

that occurred during the fabrication process. Because these grating structures are 

fabricated by electron beam lithography, the errors are attributed to the proximity 

effect, resulting in features that are either too large or too small compared to the 

design.  These types of errors are not uncommon and need to be evaluated on an 

individual basis as they reduce the optical quality of the grating structure. 
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(a) Small section of simulated grating  (b) Section of grating structure 

fabricated  by electron beam lithography. 

Figure 7.4 Areas with errors. (a) illustrates a region of the  grating structure defined 

by the design tools. (b) Illustrates the same region of the fabricated grating structure.  

The areas enclosed by circles identify fabrication errors where 1 pixel has dimensions 

of 1μm x1μm. 

 

AFM images of the same grating (Figure 7.5) demonstrate that both the vertical 

sidewalls and surface roughness are within tolerance.  In these particular images, the 

pixellation of the grating is clearly visible.    

 

Since the grating is fabricated in just resist with no etching into the Si layer, cracks 

appear in the bottom left hand corner, forming an artificial feature in the structure. 

The origins of these cracks have not been traced but most likely appear when a 

sample is developed. In addition, scratching of the soft resist surface is possible e.g. 

from handling by tweezers used to mount the sample or from the AFM probe if the 

latter comes into contact with the sample.  
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Incorporation of the fabrication errors in simulations is a powerful approach to 

verifying their impact on performance; however this is highly challenging because 

relating the exact fabrication error to a specific impairment is very difficult [39-40, 

72].  Etch depth errors result in a higher DC content and lower diffraction efficiency; 

departures from a 90
o
 sidewall contribute to stray light exiting the system; surface 

roughness results in scattered light; and stitching errors result in a cross patterning in 

the reconstructed image.  

 

 

Figure 7.5 AFM image of the grating structure fabricated by electron beam 

lithography. 

 

Cracks, scratches, proximity errors and errors in the etch depth all contribute to loss 

of signal quality resulting in a high DC content and scatter.  
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7.3.2 Step and Repeat Lithography Fabrication Results 

Step and Repeat lithography results presented and analysed in this Section 

characterise the structural quality of the fabricated samples derived from a similar 

series of measurements viz. SEM, AFM and white light interferometry.   SEM 

measurements determine the etch depth of the fabricated gratings, the uniformity of 

the etch depth, and permit an evaluation of sidewall verticality.  AFM and white light 

interferometer measurements verify the SEM data.   

 

SEM images show that the gratings are pixelated and uniform in height and structure 

(Figure 7.6).  The etch depth is measured at 345 nm into the SiO2 layer, 1nm 

different from the designed height indicating an optimum readout wavelength of 

635nm, marginally longer than the design wavelength of 632nm (corresponding to an 

etch depth of 346nm).  The sidewall verticality of the gratings is within specified 

tolerance, independently verified using AFM measurements and white light 

interferometry. Surface roughness and etch depth uniformity are also determined 

using the same techniques. Visually, the gratings are well defined and small features 

are evident, not the case with the gratings produced by electron beam lithography 

which suffered from proximity problems.  
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 (a)  (b) 

  

(d) (c) 

 

Figure 7.6 A number of SEM images are illustrated.  These images demonstrate the 

design from different angles and at different zoom position (a) and (c) are at different 

angles illustrating the sidewall verticality and (b) and (d) show the design as it would 

be viewed at incidence. 

 

7.3.2.1 Atomic Force Microscopy Measurements 

AFM measurements are used to verify etch depth and sidewall vertically and yield 

information on scratches, cracks and leftover resist.      

 

AFM images (Figure 7.7) show regular shapes with some errors owing to fabrication.  

In the bottom centre of Figure 7.7 (a), some resist remains on the structure, 

corroborated in the 3D version of the AFM image (Figure 7.7 (b)).  The straight lines 
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running across the AFM images are an artefact of the probe moving across the 

sample, verified by rotating the sample by 90
o
 when these lines change direction 

(horizontal to vertical).   

 

 

 

Figure 7.7 AFM images of a grating fabricated by step and repeat lithography.  Two 

views are depicted; a top view (a) where some errors are noted in the centre at the 

bottom.  (b) a 3D view showing the errors more clearly. 

 

Profile measurement (Figure 7.8) records the presence of the raised portions of the 

grating and further confirmation of leftover resist from the fabrication process.  

Profile measurements also confirm that sidewalls are vertical, evident on the left 

hand side of the profile image.   

 

0.71 Volts

-0.50 Volts

2.0µm
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Figure 7.8 Profile measurements from AFM demonstrating both sidewall verticality 

and the error from the raised portion. 

 

Figure 7.9 highlights two close raised portions owing to incomplete etched areas due 

to an exposure error or the geometry and separation of the feature.  
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Figure 7.9 AFM measurement profile illustrating an incorrect etch depth.. 

 

AFM measurements confirm that both sidewall verticality and surface roughness are 

within tolerance; however some errors originate from the fabrication.  These are 

common to the fabrication process and are difficult to quantify their effect on the 

optical quality of the gratings.  Most of these errors however result in a higher DC 

content, un-diffracted light, and scattering of the signal.  How much these errors 

contribute to a loss in signal requires a more in-depth analysis; distinguishing what 

error contributes to what loss and how by much remains an on-going challenge [39-

40, 72].  Some other errors e.g sidewall verticality on one side, lines across the 

sample are the result of the measurement process and are easily explained and 

confirmed.     

 

7.3.2.2 White Light interferometry 

White light interferometry measurements were performed using a Zygo NewView 

5000 [83] in tandem with the analysis software MetroPro [83].   Samples measured 
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using the white light interferometer are coated with a gold layer of thickness 35nm, 

necessary since SiO2 is transparent and since both the SiO2 and the Si layer are being 

viewed simultaneously.  Figure 7.10 depict high resolution optical images of two of 

the grating structures - circle and a “T”- showing distinct high and low regions (blue: 

low area; red: high area). 

 

 

 

Figure 7.10  White light interferometry images of a circle grating and a “T”. 
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A slice through the relief maps of the two grating shows that the structures have 

vertical sidewalls of height 351nm (Figure 7.11(a)) and 357.5 nm (Figure 7.11(b)).  

A 35 nm gold coating was added to minimise any stray reflection occurring between 

the SiO2 layer and the Si layer.  This layer may have resulted in small errors into the 

reported etch depth as it varies slightly in the trenches. 

 

 

 

Figure 7.11 Profile measurement for two grating structure measured by white light 

interferometry. 

 

Figure 7.11 is a line profile of the fabricated gratings illustrated in Figure 7.10.  The 

two profile sidewalls and surface roughness are within tolerances, as specified in 

Section 7.1.  These measurements correlate well to measurements recorded by AFM 

and SEM. The single spot indicates that the sample has not etched to the correct 

depth because of the geometry surrounding the spots.    
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7.4 Optical Measurement 

The Section details the characterisation framework to measure the optical 

performance of the grating structures and reviews results obtained.  Optical 

measurements are targeted towards determining diffraction efficiency, the quality of 

the output beam and a qualitative measurement of the reconstructed image.   

7.4.1 Beam Profiling 

A laser beam profiler (Newport LBP1) [80] measures the power of the output beam 

directly in real time and as it offers a large active sensor area,  a large portion of 

image can be characterised. The active sensor area of the profiler is 6.47mm wide by 

4.83 mm high, at a sensitivity of 5nW/cm
2
, and is thus capable of viewing very low 

power output beams, core to the characterisation of errors surrounding the 

reconstructed image. 

 

The profiler produces 2D and 3D maps of output images.  The cross section of the 

output beam profile is a least-square fit of the Gaussian function; the following is 

used to calculate the Gaussian fit:  

  2








 


 

cx

VeI  (7.1) 

where I is the intensity of a pixel at location x, V is the maximum intensity of the 

fitted Gaussian curve (peak intensity), c is the centre of the Gaussian fit peak 

(centroid), σ is the radius of the Gaussian fit curve at the 1/e² intensity level 

(diameter). 
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Figure 7.12 is schematic of the experimental setup for beam profiler measurements, 

illuminated by a HeNe laser emitting 5mW of power.  The laser beam impinges on a 

beam splitter directing the beam to the sample, the reflection redirected at a 90˚ angle 

since operation is in reflection mode.  An iris is used for alignment purposes to 

guarantee that the beam enters and returns at the same angle. The beam profiler is 

mounted on a translation stage to view different section of the reconstructed image. 

 

Figure 7.12 Laser beam profiler measurements schematic. 

 

7.5 Optical Measurement Results 

7.5.1 Fabricated Grating by Electron Beam Lithography 

The optical results for the grating fabricated by electron beam lithography have an 

etch depth of 390nm.  The original image encoded in the grating structure is a “T” to 
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demonstrate the inversion symmetry of the reconstructed image from a binary 

grating.  

 

Inspection of the diffracted field reveals a spatially discrete - not continuous -image, 

a consequence of the 3x3 replication of one unit cell (with pixel number equal to the 

FFT length used) of the grating structure (Figure 7.13). 

 

 

 

Figure 7.13 Reconstructed “T” image taken using a 6Mpixel camera on a black 

screen. 

 

The reconstructed image shows a DC component at its centre, between the two “T” 

structures.  The bright spot represents the DC level as a result of Fresnel reflection 

losses occurring because a metal layer was unintentionally omitted during the 

fabrication process.  These losses occur because as light propagates between two 
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different media with different indices of refraction, both refraction and reflection can 

occur, calculated as    (    ) (     ) ⁄  [94].  These Fresnel reflections will 

occur at the interface of the SiO2 layer and the Si bulk layer and is on the order of 

16%.  Another contributor to the high DC content results from the fact that the 

illumination beam may have been circumscribed instead of inscribed. The horizontal 

and vertical lines directly in the center of the image are the result of stitching errors 

attributed to the electron beam lithography process. Any hysteresis in the scan results 

in the misalignment of pixels.  Some of the errors that are visible in individual 

beamlets are the result of poor quality optics in the camera used to capture the image 

(6 Mpixel by Cannon) [80]. 

 

Figure 7.154 is an image for a “T” grating structure taken at a distance of 25.3 cm 

from the sample using a beam profiler, conducted to determine the shape of the 

output beam and record errors surrounding the beamlets.   
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Figure 7.14 Measurement from a diffractive optical element using a beam profiler at 

a distance of 25.3 cm away. 

When a smaller section of the reconstructed image is viewed, the individual beamlets 

become more visible; measurement of the grating structure at a distance of 18.5 cm 

from the detector highlights the errors surrounding the beamlets (Figure 7.15).   The 

errors present in the system appear to be defocus errors caused by the distance in 

which the samples were measured.  These samples were measured at a short distance 

to accommodate the size of the detector.  To improve upon these measurements a 

lens could be used to reduce the focal length of the DOE. 
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Figure 7.15 Measurement of the grating structure at a distance of 18.5 cm from the 

detector.  The primary beam and a defocused beam are highlighted. 

 

 

7.5.2 Step and Repeat Optical Results 

7.5.2.1 Beam Profiler Measurements 

Beam profiler results for gratings fabricated using step and repeat lithography are 

recorded in this Section.  The beam profiler facilitates the evaluation of the shape and 

intensity of output beamlets; owing to the mismatch between the size of the image 

and that of the detector, only sections of the reconstructed images are evaluated. 

Defocused 

Beamlet Primary 

Beamlet 
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Results for a 2×2 binary array generator are recorded at a distance of 18.5 cm to the 

detector, illuminated using the arrangement described in Section 7.4.  Beamlets 

emitted by the grating are circular in shape, of intensity following a Gaussian radial 

profile.  There are negligible errors in the shape but because of the fabrication 

constraints on the gratings, small errors such as these are expected.  Only half of the 

reconstructed image is evaluated in order to achieve a more granular view of the 

individual beamlets, given the size of the output image.  The other portion of the 

reconstructed image produced by a binary grating is identical in shape and output.  A 

DC component, common to most grating structures, is also visible in the overall 

output and is of relatively high intensity; this high DC level results from Fresnel 

reflection losses occurring at the interface of the SiO2 to the Si bulk layer and 

because the illumination beam was circumscribed instead of inscirbed (Figure 7.16). 
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(a) 

 

(b) 

Figure 7.16 Views of the reconstructed image from a 2x2 array generator at a 

distance of 18.5 cm to the detector.  The beamlets that make up the 2x2 array 

generator can are Gaussian in form. (a) 3D view. (b) 2D view. 

 

A second set of measurements were carried out on a reconstructed image of a section 

of a circle with multiple circles within it, evaluated because of its size and 

complexity.  The 3D map (Figure 7.17) of the output beam shows many small 
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beamlets constituting the desired output shape.  These beamlets however vary in 

height and defocused beamleats are evident between the peaks attributed to a defocus 

error present in the test setup [39-40].   

        

(a) 

 

(b) 

Figure 7.17 (a) A 3D output intensity profile of a portion of a reconstructed circle.  

(b) A 2D view of a portion of the reconstructed circle. 

 



 133 

Results indicate that the 2x2 array generator produces the best quality with uniform 

images and few errors.  The grating structure for the 2x2 array generator is the 

easiest to produce and the most regular in shape, bringing benefits owing to an easier 

fabrication process when features are regular and the spacing between the raised and 

the lower portions is large.  These benefits translate into sidewalls that are vertical, 

an etch depth that is uniform and no errors in the mask fabrication process.  All 

errors result in discrepancies in the reconstructed image and are harder to control 

when grating structures are fine and the shape of the structure is not as regular as that 

of the 2x2 array generator. 

 

7.6 Conclusions 
 

It is clear from measurements that the fabricated DOEs produce the designed shapes.  

Structurally, samples are within the specified tolerance demonstrating good side wall 

verticality and depth tolerances within the specified range.  There is however errors 

present such as cracks, resist not fully removed, unintentionally omission of the 

metallisation layer that have resulted in Fresnel losses at the layer transition and 

stitching errors originating from the raster scanning process of the e-beam 

lithography and mask fabrication.  As the state of the art in fabrication evolves, these 

errors can be controlled but to fully understand their full effect on image quality 

requires a full rigorous characterisation of the fabrication process which falls out 

with the scope of the Thesis.   
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Chapter 8 

Free Space Optical Interconnects (FSOIs) 

8.1 Introduction 

An application of POGED is in optical beam steering for Free Space Optical 

Interconnects (FSOIs) [5-11] as it produces high quality reconstructed images with 

high SNR and diffraction efficiency.  The Chapter concerns the demonstration of the 

application of POGED in a noteworthy application rather than a detailed FSOI 

performance characterisation. 

 

Although it is acknowledged that a number of FSOI architectures have been reported 

and indeed deployed [3-12, 85-86], the particular architecture that forms the focus of 

the feasibility analysis of the use of POGED was reported first by Marsden et al. 

[85]. The architecture relies on the transposition of inputs to outputs through free 

space optics, developed further by Milojkovic et al [86] (Figure 8.1).   Both 

architectures employ two sets of meso-lenses in an imaging configuration separated 

by the distance 2f+2F, where f is the focal length of the meso-lenses and F is a 

distance determined by the number and spacing of beamlets composing the 

transpose.  The input meso-lenses are arranged in the form of a two-dimensional 

array that steers optical beams to a corresponding output set of meso-lenses which 

direct the beam to the appropriate output port location.  However due to the extreme 

off-axis geometry of the system, a number of aberrations are introduced that result in 

increased insertion loss in systems terminated by single mode optical waveguides. 
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Cross-talk resulting from beam divergence and clipping by the second set of meso-

lenses must also be monitored to minimise noise.  

 

8.2 Central Fourier Transform Lens Architecture 

The proposed architecture utilises a Fourier Transform lens at its center and two sets 

of meso-lenses [85-86], one set at the source, the other at the detector/optical fibre 

(Figure 8.2). A Spatial Light Modulator (SLM) can be deployed at the focal spots of 

the meso-lenses to perform active beam steering.  

 

 

Figure 8.1 Free-space optical interconnect based on the design in [81]. 

 

The focus in the Chapter is on the design and evaluation of the central Fourier 

Transform lens performing the transposition to angularly multiplex beamlets [89].  

The meso-lenses at the input array of the system perform the initial space-to-angle 

multiplex, with the output meso-lenses executing the output angle-to-space de-
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multiplex.  The architecture grows to a three stage system, the second stage being the 

central lens [87-88]. 

 

The architecture can be designed so that the beam waists at the input and output are 

equal and matched to input and output devices.   

 

Figure 8.2 Free-space optical interconnect that utilises a Fourier Transform lens at its 

center. 

 

Due to the limitations inherent to the optical modelling software, Micro-Electro-

Mechanical Systems (MEMS) based scanning mirrors [88] are used for the beam 

steering function in the feasibility evaluation instead of the POGED-generated DOE. 

The MEMS emulation decreases the complexity of the code required to manageable 

bounds without loss of significance. 
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8.3 Central Fourier Transform Lens Design  

On embarking on the design of a lens system, best practice dictates the setting of the 

target parameters viz. focal length, spacing according to the first order paraxial and 

thin lens approximations [93-94].  Although the approach does not yield a well 

corrected system, it is nevertheless core to determining the f-number and back focal 

length [93-94].   

 

The principles from Bieren [92] are used as a starting position for the design of 

asymmetrical and symmetrical Fourier Transform lenses. The symmetrical Fourier 

Transform lens comprises six thin lenses capable of six degrees of freedom for 

correcting spherical, coma, astigmatism and field curvature.  The fifth aberration, 

distortion, is corrected through the sine condition for the image and the symmetry of 

the lens system.  Symmetry also allows the implementation of a reflective geometry 

[87-88].  

 

Code V [95] is used to produce the first order layout for the Central Fourier 

Transform lens (Figure 8.3), assuming “perfect” thin lenses at the outset where 

thickness and the curvature effects are ignored and the first order paraxial 

calculations are applied.   
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Figure 8.3 First order layout of the center lens system for optical interconnects. 

 

To analyse the quality of the central Fourier transform lens or that of the FSOI, a 

number of performance metrics are used.  The metrics are derived from ray tracing 

techniques and are described detail in the following references [93-94]. 

 

8.4 Central Fourier Transform Lens Design 

A triplet design is used as a starting point where the negative elements are in the first 

and last positions and the positive element lies in the central position [89-90].  The 

separation between the ‘input lens group’ and ‘output lens group’ is approximately 

equal the focal length of the Fourier Transform lens (FT lens).  The entrance pupil 

for the FT lens is in front of the lens where the micro-lens array is placed. To limit 

the size of the apertures, a field angle of 20˚ is used; this is an arbitrary value that can 

be larger or smaller depending on the desired complexity of the device. For 
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simplicity, this particular design considered a monochromatic source; the HeNe line 

is assumed to be the system wavelength. However the air gaps can be re-adjusted to 

wavelengths compatible with the low loss transmission region of optical fibres [97]. 

 

 The aberrations of the lens system are minimised using RMS wavefront error, 

defined as the difference between the ideal and the aberrated wavefronts - these 

aberrations are described in Section 8.3 - with the entrance pupil set at 20 mm and 

fields set at 0 degrees, 7.5 degrees and 10 degrees.  The focal length of the system is 

set to 20 mm and the overall length is also constrained to 60 mm; these two 

constraints are fixed to restrict system extent. If they are not fixed, the system or the 

focal length grow too large, yielding a system that may have high aberrations or it 

may not fit in the desired mechanical layout.  Another dimension of the design is the 

separation between the two sets of lenses which must remain large, in the order of 

the focal length of the system [92]. 

 

Curvatures are optimised first and when the design is close to being diffraction 

limited, the thicknesses are then optimised. The optimisation progresses until only 

fractional improvements to the error function are being made.  The design for the 

Fourier Transform lens is detailed in the data listed in Appendix A and illustrated in 

Figure .   
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Figure 8.4 Symmetric Fourier Transform lens. 

8.4.1 Performance of the Fourier Transform Lens 

The system is evaluated using three techniques; ray aberration curves, the shape and 

magnitude of the curve determining the aberrations present in the system; RMS spot 

diagrams indicating aberrations through the shape of the focal spot the system 

produces; and the Modulation Transfer Function (MTF) which determines the 

resolution of the system [93-94]. 

 

The MTF for the Fourier Transform lens is presented in Figure 5, indicating that the 

system is diffraction limited out to 120 lp/mm.   If multiple wavelengths are 

considered in the design, the MTF degrades and the system needs to be re-optimised 

due to chromatic aberrations.  The SAG and TAN where the sagittal plane is the 

vertical plane and tangential is the horizontal plane, are illustrated in Figure 4 for 

different field positions.  A separation of these two curves represents a number of 
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different aberrations such as astigmatism, lateral colour [93-94] and are only 

properly evaluated using ray aberration or through RMS spot size plots.  In this case 

no separation is apparent.   

 

Figure 8.5 MTF for the Fourier Transform lens.  The curve represents a diffraction-

limited system.  

 

Inspection of the ray aberration curve at different field angles (Figure 8.6) indicates 

that the fifth order spherical aberration dominates the system. However, the scale of 

these aberrations is less than one micron and does not significantly affect the quality 

of the transpose.  Some astigmatism is also present but again, at a scale considered to 

be negligible.  
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Figure 8.6 Ray aberration curves for different field angles of the Fourier Transform 

lens. 

 

Figure 8.7 illustrates that the RMS spot sizes are free from monochromatic 

aberrations and are tightly focused, indicative of negligible levels of aberrations.  For 

significant aberrations the focal spots are not as tightly focused e.g.  for coma the 

spot follows a distinct comet like pattern that grows in size as the field angles 

become larger and for astigmatism the focal spot follows a distinct linear pattern in x 

or in y.  The determination of lateral colour is not relevant in the design since 

monochromatic inputs are considered.  
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Figure 8.7 Spot diagram of Fourier Transform lens at different field points.  

 

A symmetric diffraction limited Fourier Transform lens of 1 um focal spot size 

following the design principles detailed in [90] has been successful designed and its 

performance verified. Even though the system has been designed and analysed for an 

operational wavelength of 632 nm, it is possible to achieve a well corrected system at 

1550 nm, most readily accomplished through changing the air gaps within the system 

to refocus.   
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8.5 Free Space Optical Interconnects (FSOIs) 

The validation of the performance of the Central Fourier Transform lens generated 

using POGED and the ability of the DOE to effectively steer and shape an optical 

beam is the foundation for the modelling of the representative FSOI application.  For 

modelling purposes in Code V, a MEMS scanning mirror based approach is adopted 

to demonstrate the feasibility of system operation.  MEMS devices steer the input 

beam at the required angles to match the second set of meso-lenses and guide the 

outputs to either an optical fibre for onward transmission or to a detector.  The 

second set of MEMS is also used to correct misalignment losses induced by the 

Fourier Transform lens but are not able to shape the beam or filter any stray light that 

may plague the system.   

 

MEMS devices provide a way of emulating the beam steering functions within the 

FSOI through changes in the angle at which the beam is directed through the Fourier 

Transform lens.  The mirrors are placed at the focal point of the meso-lens to 

maintain system symmetry.  The second set of mirrors is placed at an equal spacing 

to the mirrors of the centre lens system, which in this case is also the location of the 

focus. The use of the DOE allows the beam to be reshaped.  The mirrors are then re-

oriented angularly to align with the optical axis in order to strike the detector at its 

required output port location (Figure 8). 
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Figure 8.8 Layout for an unfolded FSOI. 

Micro-lenses emulate Gaussian beam propagation, their design governed by both the 

type of micro-lens and the output optical fiber; in this case a Corning SMF-28e fiber 

is assumed [97]. Because the selected optical fiber operates at 1550 nm, the design is 

refocused to operate at this wavelength. The optical fiber has a mode field diameter 

of 10.4 µm at 1550nm and a Numerical Aperture (NA) of 0.14 [97]. The micro-

lenses [98] are fused silica of thickness of 0.9mm, radius of curvature of 0.33 and 

NA of 0.17.  The lenses are in an array form; but for the purpose of the emulation, 

only one is used. 

 

8.5.1 Gaussian Beam Propagation 

The beam synthesis software is used to propagate a Gaussian beam through the 

system from the output of the first to the input of the second micro lens array to 

verify beam shape and size.   
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Figure  shows a Gaussian beam traced through the system.  As it encounters the 

second set of MEMS mirrors, the beam has reached its focused position and is 

beginning to diverge.  The second set of mirror lenses is placed just before the 

diameter of the beam becomes too large, causing the apertures of the mirrors to grow 

in size and interfere with mirrors adjacent to it.  Figure  shows the beam just before it 

enters the second set of micro lenses. 

 

Figure 8.9 Gaussian beam propagating through the lens system starting from the 

output of the first to the input of the second micro lens. 

 

The beam has a strong central peak surrounded by a large ring with an intensity of 

half the central peak. Figure 8.10.  The ring around the central peak is produced by 

small aberrations in the system and the MEMS mirrors.  With the current version of 

Code V, the coupling efficiency is calculated to be 25%; this however could be 

improved with a different program designed to optimise the coupling efficiency. 
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Figure 8.10 Output beam before the second micro lens array. 

 

Overall the system is well corrected with few aberrations present in the Central 

Fourier Transform lens.  The MEMS mirrors are steering the beam into the desired 

output positions and although slightly modulating the shape of the beam, it is 

nevertheless effectively coupled through the second micro lens array and in turn into 

the output optical fiber.   

 

8.6 Conclusions 

A symmetric Central Fourier transform lens has been designed and its performance 

validated. The lens is corrected for all primary aberration through the six lenses 

tandem and is diffraction limited with a 1 um focal spot size. 
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The lens is modelled within an FSOI application utilising MEMS as the beam 

steering mechanism in place of the desired DOE due to the limitation imposed by the 

available optical design software.  The FSOI architecture is capable of steering the 

input beams to desired output locations with minimal aberrations present.  Even if 

the aberrations present in the emulated system proved to be excessive, the use of the 

DOE located in the output plane would enhance performance since it provides the 

additional capability to reshape the beam correctly minimising existing aberrations. 
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Chapter 9 

Conclusions and Future Work 

9.1 Conclusions 

The Thesis centres on the development of the Phase Optimised General Error 

Diffusion (POGED) algorithm for creating Diffractive Optical Elements (DOEs).  

These DOEs can be used in number of different application such beam steering, 

beam shaping, image projection, and phase retrieval, applications that require the 

reconstructed image to be of high quality and established in a relatively short time 

scale.   

 

Simulated Annealing (SA) and the Direct Binary Search (DBS) algorithms have been 

extensively analysed and their associated limitation are well recorded viz.  the DBS 

algorithm produces low SNR resulting from trapping within a local minimum and 

even though the SA algorithm is capable of finding a  superior local minimum, the 

time required to find it is on the order of tens of minutes (Table 9.1). Although these 

algorithms are similar to POGED, their calculations are not executed in the same 

plane; POGED is calculated in the Fourier plane whilst the other algorithms are 

calculated in the plane of the target image.  POGED also incorporates the use of a 

filter function that is continually updated as the algorithm progresses, whereas the 

DBS and SA algorithms utilise a fixed signal window.  
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Table 9.1 Comparison Table for DBS and SA for a binary DOE. 

Algorithm Time Computed 

Diffraction 

Efficiency (%) 

SNR (dB) 

DBS 0:1:38 68% 10 dB 

SA 0:21:38 69% 26dB 

 

POGED has also been developed for operation on the far-field (Fraunhofer) and 

near-field (Fresnel) regions.   In the far field region, characterisation through 

simulation for a number of different phase levels, ranging from binary to multi-level 

grating structures for a number of shapes for two performances metrics, diffraction 

efficiency and SNR has been carried out.  Results indicate that the diffraction 

efficiencies are comparable to theoretical maximums and the SA algorithm, coupled 

to high fidelity manifest through high SNRs.  A fourfold improvement in the 

calculation times is observed for POGED compared to SA (Table 9.2).    

 

Table 9.2 Comparison Table for SA and POGED for a binary DOE. 

Algorithm Time Computed 

Diffraction 

Efficiency (%) 

SNR (dB) 

SA 0:21:38 69% 26dB 

POGED  0:01:00 72% 33dB 

 

POGED has been modified for operation in the near-field region using the 

convolution/angular spectrum method for performing the transform.  The method is 

selected because it eliminates high oscillation in frequency space caused by the 1/z 

factor embedded within the integral method.  The near field POGED produces 
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holograms comparable in diffraction efficiency with higher SNR to the benchmark 

Gerchbert-Saxton (GS) algorithm.   

 

The time required to implement POGED in the near-field region is an order of 

magnitude larger than for the far-field region. The increase in the calculation time 

stems from the need to update function ph, describing the “diffusion” of errors 

created by the phase change at a specific pixel location in respect to its neighbours.  

If the function cannot be stored in memory via a lookup table, calculation times 

increase. The extent of the lookup table is in turn, limited by memory; a 32bit 

computer imposes limits to a 128x128 pixel structure.  An analytical method for the 

update of the ph function would decrease calculation times. 

 

Measurable improvements in fidelity and diffraction efficiency occur within the first 

100 iterations, the remainder of the time spent correcting a small number of pixels 

with little further improvement in performance.  The behaviour allows flexibility in 

controlling the exit condition, with concomitant decreases in calculation times.  The 

same trend is observed with GS algorithms, however the POGED offers higher 

diffraction efficiency and fidelity.  

  

The POGED mask function was investigated to determine optimal shape, size and 

offset value; the shapes investigated were a square, circle and the object.  A range of 

mask sizes and offset values have been tested.  Results identify trends; the larger the 

offset value, the higher the diffraction efficiency at the expense of a degraded SNR.  

The size and shape of the filter also plays a role in setting the diffraction efficiency 
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and SNR.  For objects considered in this work, a square filter 10 pixels larger than 

the object improves performance.  The filter must be carefully evaluated for the 

appropriate application, no matter the region of interest. 

 

The enhanced features of POGED offering high fidelity, high diffraction efficiency 

in shorter time scales, act as a stimulus to a number of new and enhanced 

applications. An example of one application is Free Space Optical Interconnects 

(FSOIs) where beam steering and shaping DOE’s can be utilised because time scales 

and quality of the reconstructed image are critical to performance.    The FSOI 

feasibility evaluation utilised a Fourier Transform lens at its center to reduce 

aberrations and clipping caused the by the extreme off-axis geometry of some of the 

output ports.  The Fourier Transform lens design is proven to be diffraction limited 

and corrected for primary aberrations, allowing for the minimisation of any 

aberrations induced by the lens system.  Even though it is only modelled for 

monochromatic inputs, it is easily adapted for polychromatic operation.  Due to 

incompatibilities with the optical design software it was not possible to include any 

DOEs generated by POGED; however an emulation to characterise the Fourier 

Transform lens through a MEMS scanning mirror based approach provides an 

indication of the feasibility of a DOE generated by POGED. 

9.2 Future Work 

The availability of multiple cores on graphical processing units (GPU) and parallel 

computing toolboxes brings great benefit through significant reductions in POGED 

calculation times.  The utilisation of the advanced hardware/software will however 

require some modifications to the algorithm in respect of the appropriate execution 
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of the loop used in verification of the error function, stemming from the fact that 

GPUs must be programmed in parallel to take full advantage of the multiple cores.  

Other changes to the algorithm could also be investigated to take full advantage of 

the enhanced processing capabilities; one route is to partition the problem into 

smaller segments and recombine the results periodically for evaluation.   

 

An application area where POGED could be potentially bring significant impact is in 

the field of optical metrology where algorithms are required to produce high quality 

data.  The Iterative Fourier Transform Algorithm (ITFA) [26-27] and the Conjugate 

Gradient (CG) method [50] are two methods in current use.  In practice however, the 

ITFA suffers from stagnation, leaving CG as the only practical option.  It would be 

worthwhile investigating if POGED can be adapted to this application and compare 

performance with the incumbent CG method. 

 

The ability to generate any high quality DOE in shorter time scales opens up a raft 

new applications where they can be effectively used. 
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Appendix A 
%function poged%function poged 
% GED algorithm 
% Multi-levels 
% Phase optimisation 
% Greedy quantisation 
% FTs with origin at array centre 

  
% The PCS algorithm is run first to construct a mask 
% In general for a fixed signal window this can be done off-line and 

the mask read-in 

  
clear all 
close all 

  
%------------------------------------------------------------------- 
% Algorithm setup parameters 
%-------------------------------------------------------------------  
pi     = 4*atan(1);  
n      = 128; 
m = 128; 
nc     = fix(n/2)+1;   %central pixel 
dia    = 2;       %Grid size, dimensionless 
a_beam = 3;       %beam radius, dimensionless 
dx     = dia/n;   %Grid step = pixel size 
df     = 1/dia;   %Grid step in Freq domain = Freq pixel size in 

Fourier plane 
z      = 0.05;    %dimensionless propagation distance 
%NOTE: 
% x_dimensionless = X/a_beam, where a_beam = effective radius of the 

beam 
% z_dimensionless = Z/Zd, where Zd=k*BeamRad^2 and k=2pi/lambda 
eps    = 0.1;     %regularazation parameter 
nit    = 1000;    %iterations limit for Filter generation 
it_max = 50;     %iterations limit for Hologram generation 
%amplitude at z=0 and z=Z 
beam0type = 1;    %0=uniform, 1=gauss, 2=rect super-gauss, 3=circle 

super-gauss 
beamztype = 3;    %0=gauss, 1=rect super-gauss, 2=circle super-

gauss, 
                  %3=letter T on-axis, 4= letter T off axis                  
init_phase= 0;    % 0=zero, 1 = random in  +/-(init_range)*pi 
init_range= 0.5;  % range of random phase: +/-(init_range)*pi 

  
debug     = 0;    % print (=1) or not intermediate results 

  
%parameters for Target 
t_type     = 0; % t_type = define type of target to create (0=cross, 

1= letter T)  
adjustL    = 1; %if 0 use nBorder=3, nHalfWidth=10 for 21x21 grid of 

Target  
nHalfWidth = fix(a_beam/dx); % 
nBorder    = 3; %border width in poxels 

  
% hoe phase parameters 
levels = 16;      % number of quantisation levels in n-ary case 
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step   = 2*pi/levels; 
tol    = 0.5*step; % tolerance 

  
[x,y]   = meshgrid((-0.5*dia) : dx : 0.5*dia-dx); 
[fx,fy] = meshgrid((-0.5*n*df): df : 0.5*n*df-df);  
qphase  = z*(fx.^2+fy.^2); 
qph     = ifftshift(qphase); 
qf      = exp(1i*2*pi^2*qph); 
Cqf     = conj(qf); 

  
%defines Filter window size at z=0. 
widthx=n/4; %16; % recognisable 
widthy=n/4; %16; % recognisable 
% co-ordinates 
bigorgx   = nc; 
bigorgy   = nc; 
smallorgx = fix(widthx/2)+1; 
smallorgy = fix(widthy/2)+1; 
lx        = bigorgx-smallorgx+1; 
ly        = bigorgy-smallorgy+1; 
ux        = lx+widthx-1; 
uy        = ly+widthy-1; 

  

  
%initialize arrays for history of Hologram error and Diffraction 

efficiency 
errH_norm = (1:it_max); 
errH_norm = errH_norm*0.0; 
errPH_norm  = (1:it_max); 
errPH_norm  = errPH_norm*0.0; 

  
%h0=field amplitude at z=0, F0=required (target) amplitude at z=Z 
% h0    = zeros(n,n); 
F0    = zeros(n,n); 
x2    = (x/a_beam).^2; 
y2    = (y/a_beam).^2; 
rad2  = x2+y2; 
if beam0type == 0 
  h0 = ones(n,n); 
elseif beam0type == 1 
  h0 = exp(-rad2);         %gauss 
elseif beam0type == 2 
  h0 = exp(-x2.^10).*exp(-y2.^10);     %rect super-gauss 
else 
  h0 = exp(-rad2.^10);    %circle super-gauss  
end 
% normalize energy to 1 
% h0 = h0/sqrt(sum(sum(h0.^2))); 
% h0 = ones(n,n); %for test only 
% h0 = phase; 
fprintf('\n <h,h> = %g', sum(sum(h0.^2))); 

  
offnc   = 0; 

  
[T,nL]    = CreateTarget(t_type,nHalfWidth, nBorder, adjustL); 
% load psf_irr2 
% T = psf_irr2; 
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[dxx,dyy] = size(T); 

  
% if beamztype == 0 
%   F0 = exp(-rad2);         %gauss 
% elseif beamztype == 1 
%   F0 = exp(-x2.^10).*exp(-y2.^10);  %rect super-gauss 
% elseif beamztype == 2 
%   F0 = exp(-rad2.^10);     %circle super-gauss  
% elseif beamztype == 3      % Letter T embedded in larger array 

(on-axis) 
% %   co-ordinate of LLH corner of signal window relative to origin 
%   offx          = -fix(dxx/2); 
%   offy          = offx;     
%   offnc         = 0; %fix(dxx/2)+1; 
% %   offx & offy = co-ordinate of LLH corner of signal window 

relative to origin 
%   nearx         = bigorgx+offx; 
%   neary         = bigorgx+offy; 
%   farx          = nearx+dxx-1; 
%   fary          = neary+dyy-1; 
%   F0(nearx:farx,neary:fary)=T; 
% else                        % Letter T embedded in larger array 

(off-axis) 
% %   co-ordinate of LLH corner of signal window relative to origin 
%   offx=0; 
%   offy=0;     
%   offnc         = fix(dxx/2)+1; 
% %   offx & offy = co-ordinate of LLH corner of signal window 

relative to origin 
%   nearx         = bigorgx+offx; 
%   neary         = bigorgx+offy; 
%   farx          = nearx+dxx-1; 
%   fary          = neary+dyy-1; 
%   F0(nearx:farx,neary:fary)=T;     
% end 
[D, F0, h0, phi] = Zer_FT(n, dia, -0.006, 0.006, -0.01, 0.014, -

0.335, -.305, .21, -.505, -.166, -.014, .425, .11, -.079, -.09, 

.193, -.007, .069, .051, .043, -.11, -.216, .118, .015, -.065, -

.036, .002, .003, -.033, -.07, .037, .075, .092, -.066, .004, .034, 

.000); 
%  
phi = angle(D); 

  

  
% normalize energy to 1 
F0 = F0/sqrt(sum(sum(F0.^2))); 
fprintf('\n <F,F> = %g', sum(sum(F0.^2))); 
Fcutoff      = 0.01; %cutoff at 1% 
a            = zeros(n,n); 
a(F0>Fcutoff*max(max(F0)))= 1-eps; 
a = a + eps; 
d=a; 
% display hard filter 
figure(1); 
D=a+eps; 
D = 255*D/max(max(D)); 
image(D); 
colormap(gray(256)); 
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axis square; 
axis xy; 

  
%------------------------------------------------------------------- 
% construction of soft mask & filter function module 
% Dykstra's alternating projections algorithm 
%------------------------------------------------------------------- 

  
% acc=eps/10; % slow 
acc=eps/2; % faster 
nit=1000; 
c=0; 
it=0; 
finished=0; 
while ( not(finished) & (it<nit)) 
   it=it+1; 

    
   % project a onto set of functions > 0  
   b=a+c; 
   k=find(a<0);  
   c=b; 
   b(k)=0; 
   c=c-b; 

  
   % project onto the subspace of bandlimited functions 
   p=ift(b); 

    
   q=zeros(n,m); 
   q(lx:ux,ly:uy)=p(lx:ux,ly:uy); 

    
   a=real(ft(q)); 

    
   if (min(min(a))>-acc) 
      finished=1; 
   end    
end 

  
% check the similarity 
similarity=sum(sum(a.*d))/(sqrt(sum(sum(a.*a)))*sqrt(sum(sum(d.*d)))

) 

  
P=a+eps; 
peak=max(max(P)); 
trough=min(min(P)); 

  
Pmax = peak; 
Pmin = trough; 
fprintf('\n Filter function generated in %d iterations',it); 
fprintf('\n Pmax = %g, Pmin = %g, Similarity = 

%g',Pmax,Pmin,similarity); 
fprintf('\n'); 

  
% extract mask p 

  
q=ift(P); 
p=q(lx:ux,ly:uy); 
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% display soft filter and mask 
%  
% % soft filter 
% figure(2); 
% D = P; 
% D = 255*D/max(max(D)); 
% image(D); 
% colormap(gray(256)); 
% axis square; 
% axis xy; 
%  
% % soft mask with supressed central peak 
% figure(3); 
% D=abs(p); 
% D(smallorgx,smallorgy)=0; 
% D = 255*D/(max(max(D))); 
% image(D); 
% colormap(gray(256)); 
% axis square; 
% axis xy; 
% %----------------------------------------------------------------- 
% % poged module 
% %----------------------------------------------------------------- 
% t1=cputime; 
% rand('state',sum(100*clock)); 
%  
% % fixed parameters 

  
pi=4.0*atan(1); 
levels = 16; % number of quantisation levels in n-ary case 
tol = pi/64; % tolerance (~ 128 levels) 
step = 2*pi/levels; 

  
p00=p(smallorgx,smallorgy); 
x=(1:widthx)-smallorgx-1; 
y=(1:widthy)-smallorgy-1; 

  
% initialise target 
F = F0; 
% F = abs(F).*(exp(complex(0,2*rand(n)*pi))); % complexify with a 

random phase 
F = abs(F).*(exp(complex(0,1))); % complexify with a random phase 
F = F/sqrt(sum(sum(P.*(F.*conj(F))))); % normalise too simplify 

expression for alpha 

  
f = n*ift(F); % new target object 

  
% initialise hologram as hard-clipped target 

  
% binary 

  
h=sign(real(f)); 

  
% quaternary 

  
%for i=1:n 
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    %for j=1:n 
         %hr=real(f(i,j)); 
         %hi=imag(f(i,j)); 
         %if abs(hr)>abs(hi) 
             %h(i,j)=complex(sign(hr),0); 
         %else 
             %h(i,j)=complex(0,sign(hi)); 
         %end 
    %end 
%end 

  
% n-ary 

  
% h = h0.*exp(complex(0,step*mod(round(atan2(imag(f),real(f))/step), 

levels))); 
% h = h0.*exp(complex(0,step*mod(round(phi/step), levels))); 
% continuous 
% h=h0.*exp(complex(0,atan2(imag(f),real(f)))); 

  
% initial reconstruction 

  
H =  ft(h)/n; % the normalisation is to ensure transform is 

isometric 
              % note that this will require multiplication by n 

using  
              % the inverse transform h=n*ift(U) 

  

  
it = 0; 
flip = 1; 

  
while flip && (it<it_max) % iterate until no pixel flips are 

accepted 

     
    it = it+1; 
    flip = 0; 
    flips = 0; 

     
    % initialise / update smoothed target 
    pf=n*ift(P.*F); 

     
    % initialise / refresh smoothed hologram and alpha   
    ph=n*ift(P.*H); 

     
    alpha = sum(sum(h.*conj(pf))); 
    pff   = sum(sum(pf.*conj(f))); % constant 
%     alpha = sum(sum(ph.*conj(f))) / pff; 
%     alpha = sum(sum(ph.*conj(f))); 
%     alpha = sum(sum(h.*conj(pf)));     

     
    % optional report of  energy 

     
    beta = sum(sum(ph.*conj(h))); 
    energy = real(beta-alpha*conj(alpha)) 

     
    % report of total normalized error in z=Z (target) plane  
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    sH        = sum(sum(H.*conj(H))); 
    sF        = sum(sum(F.*conj(F))); 
    a_en      = sum(sum(H.*conj(F)))/sF; 
    errH_norm(it) = 1 - abs(a_en)^2 * sF/sH; 
    diff_eff(it)  = 1 - errH_norm(it); 

     
    alphaH  = sum(sum(P.*(H.*conj(F))))/sum(sum(P.*(F.*conj(F)))); 
    fprintf('\n Iter # %d,  errH_norm= %g,  diff_eff= 

%g',it,errH_norm(it),diff_eff(it)); 
    fprintf('\n          pff = %g,  alpha = %g, alphaH =%g', pff, 

alpha, alphaH);     

     
    % optional display of evolution 

     
    % hologram 

     
    %figure(4); 

     
    %D = atan2(imag(h),real(h)); 
    %D = D-min(min(D)); 
    %D = D/(max(max(D))); 

     
    %D = 255*D; 
    %image(D); 
    %colormap(gray(256)); 
    %axis square; 
    %axis xy; 

     
    %pause 

     
    % reconstruction 

     
    %figure(5); 
    %D = abs(H); 
    %D = D/(max(max(D))); 
    %D = 255*D; 
    %image(D); 
    %colormap(gray(256)); 
    %axis square; 
    %axis xy; 

     
    %pause 

     
    % quantisation in object domain 

     
    % visit every pixel 

     
    for i = 1:n 
        for j = 1:n 

             
            hold =h (i,j); 
            h0ij = h0(i,j);  % field amplitude at pixel = (i,j)  

             
            % quantise 

             
            c=ph(i,j)-alpha*pf(i,j); 
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            d=p00-conj(pf(i,j))*pf(i,j); 
            b=c-d*hold; 

             
            % binary 

             
            hnew=sign(real(-b)); 

             
            % quaternary 

             
            %br=real(-b); 
            %bi=imag(-b); 
            %if abs(br)>abs(bi) 
                %hnew = complex(sign(br),0); 
            %else 
                %hnew = complex(0,sign(bi)); 
            %end 

             
            % n-ary 

             
%             hnew = h0ij*exp(complex(0,step*mod(round(atan2(imag(-

b),real(-b))/step), levels))); 

             
            % continous  

             
%             hnew=h0ij*exp(complex(0,atan2(imag(-b),real(-b)))); 

             
            % update state information on a pixel flip 

             
            dh = hnew - hold; 
            b2     = mod(round(atan2(imag(-b),real(-

b))/step),levels); 
            b1     = 

mod(round(atan2(imag(hold),real(hold))/step),levels);             
            b3     = 

mod(round(atan2(imag(hnew),real(hnew))/step),levels); 

  
            if i==nc && j==nc 
              fprintf('\n          At i=j=nc: abs(dh)/abs(hold)= %g, 

tol= %g, abs(hnew)=%g',abs(dh)/abs(hold),tol,h0ij); 
              fprintf('\n          At i=j=nc: c=%g, d=%g, b=%g, 

arg(-b)= %d, arg(hold)=%d, arg(hnew)=%d',c,d,b,b2,b1,b3); 
            end             

             

             
            if (abs(dh) > tol*h0ij) 

                 
                flip = 1; 
                flips = flips+1; 

                 
                % update hologram               
                h(i,j) = hnew; 

                 
                % update alpha               
                alpha = alpha + dh*conj(pf(i,j)); 
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                % update ph 

                 
                u=mod(x+i,n)+1; 
                v=mod(y+j,n)+1; 

                 
                ph(u,v)=ph(u,v)+dh*p; 

  
            end 
        end 
    end 

  
    iterations = it; 
    number_of_flips = flips; 
    fprintf('\n          Flips = %d',number_of_flips); 

     
    % phase optimisation in Fourier domain 

     
    % update reconstruction 

     
    H =  ft(h)/n; 

     
    % update target reconstruction phase 

     
    F = abs(F).*(exp(complex(0,atan2(imag(H),real(H))))); 

     
    % update target object 

     
    f = n*ift(F);  

  
end 

  
% computation_time = cputime-t1 

  
%------------------------------------------------------------------- 
% reporting module 
%-------------------------------------------------------------------  
% signal to noise ratio & diffraction efficiency 

  
total = real(sum(sum(H.*conj(H)))); % this is a known number and 

really does not need to be calculated 

  
alpha = sum(sum(H.*conj(F)))/(sum(sum(F.*conj(F)))); 
G = H-alpha*F; 
error=G.*conj(G); 

  
support=find(F); 
noise=sum(error(support)); 

  
signal= real(alpha*conj(alpha)*sum(sum(F.*conj(F)))); 

  

  
snr = signal/noise 

  
difraction = signal/total 
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% display hologram 

  
figure(4); 
D = h0.*atan2(imag(h),real(h)); 
% D = 255*D/(max(max(D))); 
% D = D-min(min(D)); 
imagesc(D); 
% colormap(gray(256)); 
axis square; 
axis xy; 

  
% display reconstruction 

    
figure(5); 
D = abs(H); 
% D = 255*D/(max(max(D))); 
imagesc(D); 
% colormap(gray(256)); 
axis square; 
axis xy; 

  
% figure(6); 
% plot(errH_norm(1:it)); 
% figure(7); 
% plot(diff_eff(1:it)); 

  
return 
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Appendix B 
 

                                FABRICATION DATA 

 

    Fourier Transform Lens 

 

    ELEMENT   RADIUS OF CURVATURE                    APERTURE DIAMETER 

    NUMBER    FRONT        BACK       THICKNESS       FRONT      BACK        GLASS 

    -------------------------------------------------------------------------------------------------- 

 

    OBJECT            INF              INFINITY 

                                     APERTURE STOP         8.4932 

                                         7.7595 

      1    -15.4492 CC    38.7187 CC     4.0000      10.8806    13.5628    FK5 Schott 

                                         1.0000 

      2   -209.6547 CC   -24.2127 CX     5.0000      13.8478    15.9495    SF4 Schott 

                                         0.1000 

      3     33.4579 CX  -188.4024 CX     6.0000      17.1217    17.2167    SF4 Schott 

                                        17.4280 

      4    188.4024 CX   -33.4579 CX     6.0000      16.6266    16.3539    SF4 Schott 

                                         0.1000 

      5     24.2127 CX   209.6547 CC     5.0000      15.1687    12.9474    SF4 Schott 

                                         1.0000 

      6    -38.7187 CC    15.4492 CC     4.0000      12.5486     9.8429    FK5 Schott 

               IMAGE DISTANCE =          6.9225 

     IMAGE            INF CX                               7.5080 

 

    -------------------------------------------------------------------------------------------------- 

 

     NOTES - Positive radius indicates the center of curvature is to the right 

             Negative radius indicates the center of curvature is to the left 

           - Dimensions are given in millimeters 

 

           - Thickness is axial distance to next surface 

 

           - Image diameter shown above is a paraxial value, 

             it is not a ray traced value 

 

           - Other glass suppliers can be used if their materials are 

             functionally equivalent to the extent needed by the design; 

             contact the designer for approval of substitutions. 
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    -------------------------------------------------------------------------------------------------- 

 

    REFERENCE WAVELENGTH =        632.8 NM 

 

    -------------------------------------------------------------------------------------------------- 

 

     INFINITE CONJUGATES 

       EFL          =    21.2330 

       BFL          =     6.4431 

       FFL          =     1.3164 

       F/NO         =     2.5000 

       IMAGE DIST   =     6.9225 

       OAL          =    57.3875 

       PARAXIAL 

         IMAGE HT   =     3.7439 

       SEMI-FIELD 

         ANGLE      =    10.0000 

       ENTR PUPIL 

         DIAMETER   =     8.4932 

         DISTANCE   =     0.0000 

       EXIT PUPIL 

         DIAMETER   =   136.9883 

         DISTANCE   =   348.9137 

 

-------------------------------------------------------------------------------------------------- 

 

    NOTES - FFL is measured from the first surface 

          - BFL is measured from the last surface 

 

-------------------------------------------------------------------------------------------------- 


