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SUMMARY 

 

Cystic fibrosis (CF) is an inherited autosomal recessive disorder that is characterised by 

frequent lung infections commonly caused by P.aeruginosa. The standard treatment for this 

infection is an aminoglycoside combined with a β-lactam and patients often receive multiple 

courses of these antibiotics over many years. Aminoglycosides are narrow therapeutic index 

drugs where the margin between safety and toxicity is small. Therefore, it is important to 

monitor patients who are on aminoglycosides to ensure safety and efficacy of therapy and 

advise on current and future dosage regimens. The focus of this thesis was to use 

population pharmacokinetic methodologies to examine how aminoglycoside 

pharmacokinetic parameters change over time in this group of patients and to develop and 

evaluate dosing regimens and data interpretation methods.  

 

A population pharmacokinetic analysis was first conducted using the package NONMEM 

with the FOCE (parametric) algorithm.  Aminoglycoside concentration-time profiles were 

available from 166 patients treated within the Glasgow Cystic Fibrosis Unit and comprised 

1075 courses of therapy and 2238 concentration measurements collected over 15 years.  

The final, two compartment, population model identified an influence of height and 

creatinine clearance on clearance and height on volume of distribution of the central 

compartment.  Inclusion of these descriptors reduced between subject variability from 23 % 

to 18 % for clearance and 14 % to 12 % for volume of distribution of the central 

compartment. Within-subject variability was low at 11 %, and there were no changes in 

aminoglycoside clearance over time. Internal valuation of the population model using 

bootstrap, prediction corrected visual predictive check and normalised prediction 

distribution errors indicated that this model was stable and with good predictive ability. In 

addition, an external model evaluation was conducted using data from The Hague that 

comprised tobramycin concentration measurements from 165 patients who received 415 

courses of therapy.  The results of this analysis indicated good performance of the model in 

predicting pharmacokinetic parameters and concentrations in another group of patients 

with cystic fibrosis.  
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The combined Glasgow and The Hague datasets were subsequently analysed using a non-

parametric approach with the software Pmetrics (Neely MN et al., 2012).  In total, data from 

331 patients with 1490 courses of therapy and 3690 aminoglycoside concentration 

measurements were analysed. Despite the different assumptions of the two methods, the 

final models were the same and the final parameter estimates were very similar. 

 

The standard dose of aminoglycoside used in patients with cystic fibrosis is 10 mg/kg 

administered once daily. The typical daily area under the concentration-time curve (AUC) 

arising from this dose was determined using pharmacokinetic parameter estimates reported 

in the TOPIC study (Smyth A et al., 2005) and by examining the raw data from patients 

within The Hague dataset who received this dosage regimen.  The results of this analysis led 

to a target daily AUC of 106 mg.h/L (range 80-120 mg.h/L). A simulated dataset of 5000 

patients was created with clinical characteristics based on patients with cystic fibrosis from 

Glasgow and The Hague.  The final population model was then used to estimate 

pharmacokinetic parameters and to predict concentrations at defined time points according 

to the standard dose of 10 mg/kg/day and three alternative regimens (13 mg/kg/day lean 

body weight, 3 mg/cm/day and 326 mg/m2/day).  It was found that the dose based on 

height (3mg/cm/day) had the highest probability of achieving the combined targets of daily 

AUC range, peak concentrations of 20-30 mg/L and trough concentrations < 1 mg/L.  

 

For standard “once daily” aminoglycoside therapy, dosage adjustment nomograms are 

available that help clinicians to interpret aminoglycoside concentrations and advise on dose 

adjustments (Nicolau DP et al., 1995).  For adult patients with cystic fibrosis there is no 

dosage adjustment nomogram available for the 10 mg/kg aminoglycoside dose.  Therefore, 

one of the aims of the thesis was to develop an aminoglycoside (tobramycin) dosage 

adjustment nomogram that could be used with doses of 10 mg/kg/day and 3 mg/kg/day.  

The nomogram was derived from the concentration-time profiles that were generated from 

the simulation approach described above and consisted of three areas representing below, 

within and above the target ranges. Preliminary validation work indicated that the 

nomogram could identify patients with low, within and above target daily area under the 
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concentration-time curve range from one sample point. Importantly, the nomogram was 

able to identify patients with poor renal function. 

 

The goal for any antibacterial therapy is to ensure efficacy against treated organism and to 

achieve high probability of treatment success. In this thesis, the likelihood of treatment 

success for the 10 mg/kg and 3 mg/cm dosage regimens were determined against 

P.aeruginosa. This was achieved by determining the susceptibility breakpoint and 

cumulative fraction of response for these dosage regimens and comparing them with the 

breakpoints obtained from the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST) and the British Society for Antimicrobial Chemotherapy (BSAC). Breakpoints and 

cumulative fraction of response were also examined for doses of 12 mg/kg/day and 4 

mg/cm/day. The results showed that these regimens had similar MIC breakpoints of ≤ 2 

mg/L to achieve a Peak/MIC ratio ≥ 10, and MIC breakpoint of ≤ 0.5 mg/L for a daily AUC/ 

MIC ratio ≥ 100 mg.h/L against P.aeruginosa. However, they were lower than the EUCAST 

and BSAC susceptibility breakpoints against gram-negative pathogens (≤ 4 mg/L). Analysis of 

the cumulative fraction of response identified an overall treatment success of more than 90 

% with all regimens for a Peak/MIC ratio ≥ 10 against P.aeruginosa using the EUCAST MIC 

distribution. At a daily AUC/MIC ratio greater than 100, the cumulative fraction of response 

for tobramycin indicated a success rate between 70 - 80 % for all dosage regimens, with the 

higher values being observed with the doses of 12 mg/kg/day and 4 mg/cm/day. However, 

the 12 mg/kg/day dosage regimen was associated with high peak and daily exposure and 

might result in more toxicity compared with the high 4 mg/cm/day dosage regimen.   

 

The population model developed in this thesis was able to describe and predict the handling 

of aminoglycoside in patients with cystic fibrosis. The model was used to evaluate the 

current 10 mg/kg/day dosage regimen, develop a new dosage regimen and develop a 

dosage adjustment nomogram for clinical application. Furthermore, the model was used to 

predict the efficacy of the standard and new dosage regimens through determining the 

susceptibility breakpoints and cumulative fraction of response against gram-negative 

organisms.  In the future, the models could be used to help estimate individual 
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pharmacokinetic parameters and design individualised dosage regimens using both 

parametric and non-parametric clinical pharmacokinetic software. 
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1.1 LUNG INFECTION IN PATIENTS WITH CYSTIC FIBROSIS  

1.1.1 Influence of long-term aminoglycoside therapy in patients with cystic 

fibrosis 

Cystic fibrosis is an inherited autosomal recessive disorder that is characterised by frequent 

lung infections. With the improved survival seen in this patient group, concerns about the 

development of treatment-associated toxicity has increased over the years. Since the 

infecting organism is often P.aeruginosa, aminoglycoside antibiotics are frequently used in 

the management of lung infections in patients with cystic fibrosis. However, these 

antibiotics are known to be nephrotoxic. Bertenshaw et al (2007) reported the incidence of 

acute renal failure in patients with cystic fibrosis to be between 4.6 and 10.1 cases for every 

10 000 patients per year and that 80 % of the cases were associated with the administration 

of aminoglycosides. However, there is a lack of knowledge about the long-term effects of 

multiple courses of therapy of aminoglycoside in patients with cystic fibrosis. The only 

available study to date was conducted by Al-Aloul et al (2005), who investigated the 

influence of repeated aminoglycoside use on renal function in 80 adolescent and adult 

patients with cystic fibrosis. In their study, the aminoglycoside was administered with or 

without colistin. They used creatinine clearance as a measure of renal function and 

concluded that the frequent use of aminoglycosides in patients with cystic fibrosis was 

associated with a reduction in renal function. However, the doses used, number of courses 

and study follow up periods were not defined so it is difficult to assess the clinical relevance 

of these findings.  There is evidence that gentamicin is associated with more nephrotoxicity 

than tobramycin (Bertenshaw C et al., 2007, Smyth A et al., 2008) and failure to separate the 

effects related to gentamicin or tobramycin might have influenced their results.  

 

This thesis addresses the impact of multiple courses of aminoglycoside therapy by 

examining how aminoglycoside handling changes over time in patients with cystic fibrosis.  

A population pharmacokinetic approach using the software NONMEM (Beal SL et al., 2009) 

is used to determine factors that influence aminoglycoside clearance and volume of 

distribution, including the impact of multiple courses over long periods.  In addition, random 

variability in pharmacokinetic parameters within a patient at different times is examined.  
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Few studies have previously examined this “within-subject” variability in aminoglycoside 

handling. Matthews et al (2004) examined 2567 aminoglycoside concentrations from 697 

general medical patients who were treated with aminoglycoside.  They defined an occasion 

as a dose followed by at least one measured aminoglycoside concentration and found that 

the inclusion of within-subject variability in both clearance and volume of distribution of the 

peripheral compartment improved the model fit; however, their values were small at 8 and 

19 %. In patients with cystic fibrosis, two studies to date have included within-subject 

variability (Hennig S et al., 2007, Hennig S et al., 2013). They used the same definition as 

Matthews et al (2004), where one dosage interval with a subsequent measured 

concentration was considered as one occasion and also found that within-subject variability 

in clearance was small at 6.47% (Hennig S et al., 2007) and 12.6% (Hennig S et al., 2013). In 

this thesis, the nature and extent of within-subject variability in aminoglycoside 

pharmacokinetics in patients with cystic fibrosis is examined using a dataset with multiple 

courses of therapy, where an “occasion” is defined as a course of therapy, rather than a 

dosage interval.  This is the first time that aminoglycoside handling in patients with cystic 

fibrosis has been examined in this way. 

 

Model evaluation is an important step for population pharmacokinetic analysis and involves 

the examination of model performance and predictive ability.  Typically, this is conducted 

using the internal validation methods that are used in this thesis. Although the best way to 

evaluate a model is to test its predictive ability using a new independent dataset, this 

“external” evaluation approach was performed in only 7 % of published pharmacokinetic 

studies between 2002 to 2004 (Brendel K et al., 2007), probably reflecting difficulties in 

obtaining new datasets.  In addition to the internal evaluation, this thesis describes an 

external evaluation of the performance of the population model that was conducted using a 

new dataset. 

 

Pmetrics (Neely MN et al., 2012) is a new version of the USC-PACK (Jelliffe RW, 1991) 

population modelling software, which is developed and maintained by the Laboratory of 

Applied Pharmacokinetics at the University of Southern California (USC) in Los Angeles, 
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California.  It uses the nonparametric adaptive grid (NPAG) algorithm (Tatarinova T et al., 

2013) to estimate pharmacokinetic parameters.  To date, only one study has been published 

that compares results from NONMEM and Pmetrics (Tatarinova T et al., 2013). Therefore, in 

addition to the initial population pharmacokinetic analysis, a further analysis is performed 

using Pmetrics to determine whether different model and parameter estimates are 

obtained when a different approach is used.  

 

1.1.2 Aminoglycosides dosage regimen in patients with cystic fibrosis 

Aminoglycosides are concentration-dependent antibiotics for which either the peak 

concentration or the daily AUC can be used for monitoring. Although high peaks correlate 

with efficacy (Moore RD et al., 1987), daily AUC has been found to be a predictor of both 

efficacy (Nielsen EI et al., 2011, Vogelman B et al., 1988a) and nephrotoxicity (Rybak MJ et 

al., 1999, Croes S et al., 2012). In patients with cystic fibrosis, the target peak concentration 

for the standard aminoglycoside (tobramycin) dose of 10 mg/kg/day is 20 -30 mg/L and the 

trough concentration should be less than 1 mg/L. Although no target daily AUC has been 

established for this group of patients, some studies have arbitrarily defined a daily AUC 

target of 100 mg.h/L with an  80 to 125 % variability (Hennig S et al., 2007), while others  

(Coulthard KP et al., 2007, VandenBussche HL and Homnick DN, 2012) based their target of 

100 mg.h/L on the established target for the dose of 7 mg/kg/day used in general medical 

patients (Begg EJ et al., 1995). In this thesis, an aminoglycoside (tobramycin) target daily 

AUC is determined using data from patients who had been administered doses of 10 

mg/kg/day.  

 

A number of studies conducted in patients with cystic fibrosis have developed 

aminoglycoside dosage guidelines and the common factor among them is the use of weight 

as the scaling factor (Hennig S et al., 2007, Hennig S et al., 2013, VandenBussche HL and 

Homnick DN, 2012, Lam W et al., 2007). In the TOPIC study (Smyth A et al., 2005) the 

recommended dose of 10 mg/kg was restricted to a maximum of 660 mg, but there was no 

justification provided for this restriction. Only one study used body surface area as scaling 

factor for a twice daily regimen (Campbell D et al., 1999), while another study 
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recommended lean body weight to be the scaling factor (Touw DJ et al., 1994).  In this 

thesis, the population model is used to examine the impact of different body size 

measurements, including height, lean body weight and body surface area on the 

achievement of target concentrations and daily AUC.  

 

The “Hartford nomogram” was the first graphical plot designed to interpret aminoglycoside 

concentration measurements following a dose of 7 mg/kg/day (Nicolau DP et al., 1995). 

Although a tobramycin dosage adjustment nomogram is currently available for patients with 

cystic fibrosis, it was based on a 12 mg/kg daily dose in patients aged 9 months to 20 years 

(Massie J and Cranswick N, 2006).  There is currently no nomogram available for interpreting 

tobramycin concentrations in adults who receive the standard 10 mg/kg/day dose. The 

thesis describes how the population model was used to develop a dosage adjustment 

nomogram for clinical application.  

 

The aim of antimicrobial therapy is to kill infecting organisms, and evaluation of the 

likelihood of treatment success is therefore required. The efficacy of antimicrobial therapy is 

determined by the relationship between the antibiotic’s concentration-time profile or 

exposure and the minimum inhibitory concentration (MIC). Since aminoglycosides are 

concentration-dependent antibiotics, their bactericidal effect is associated with Peak/MIC 

and daily AUC/MIC ratios. One of the approaches that can be used to evaluate treatment 

success is to use pharmacokinetic/pharmacodynamic relationships to determine the 

antimicrobial susceptibility breakpoint for the administered dosage regimen against the 

target organism. Previous PK/PD studies conducted in patients with cystic fibrosis usually 

defined an MIC breakpoint and examined whether the PK/PD indices of the tested 

aminoglycoside dosage regimen was able to achieve that breakpoint (Beringer PM et al., 

2000, VandenBussche HL and Homnick DN, 2012). However, none of the available studies 

have determined the susceptibility breakpoint for a dose of 10 mg/kg/day. In the current 

thesis, the population model is used to determine the susceptibility MIC breakpoint for the 

standard aminoglycoside dose (10 mg/kg/day) and the new dosage guideline. Another 

approach that can be used to evaluate antimicrobial treatment success is to estimate the 
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overall treatment response against the organism. Therefore, the population model is also 

used to predict the efficacy of standard and new dosage regimens through determining the 

cumulative fraction of response against gram-negative organisms.  



  7    

 

 

 

 

 

 

 

CHAPTER 2: BACKGROUND 
 



  8    

 

2.1 CYSTIC FIBROSIS 

Cystic fibrosis is an inherited autosomal recessive disease that most commonly occurs in the 

white population with a reported incidence of 1 in 2000  in the US (Wright SW and Morton 

NE, 1968) and 1 in 2500 in the UK (Dodge JA et al., 1997).  The incidence is lower in other 

ethnic groups, for example, the incidence of cystic fibrosis has reported to be 1 in 90,000 in 

Asians (Wright SW and Morton NE, 1968) and 1 in 12,000 in mixed-race South Africans (Hill 

ID et al., 1988). In 2011, the Cystic Fibrosis Trust (Cystic Fibrosis Trust, 2013) reported that 

the total number of  patients had been diagnosed with cystic fibrosis and registered in their 

database in the UK was 9749. The diagnosis is usually made early in life at around 3 months 

(Cystic Fibrosis Trust, 2013). The disease is caused by a defect in chromosome 7 (Knowlton 

RG et al., 1985, Tsui L.-C et al., 1986), which encodes for the protein “cystic fibrosis 

transmembrane conductance regulator”. This protein normally transports electrolytes and 

water through chloride channels in epithelial cells and its absence may alter the volume or 

composition of the fluid secreted by the pancreas, hepatobiliary tree, reproductive tract, 

sweat glands and the airways. The majority of mutations are caused by a deletion of an 

amino acid on the gene position 508 (ΔF508) (Kerem B et al., 1989, Riordan JR et al., 1989). 

In the UK, the ΔF508 mutation accounts for 90.6 % of all mutations (Cystic Fibrosis Trust, 

2013). Previously the disease was associated with high mortality rate at early age; however, 

in more recent years the predicted survival has increased; from 35.2 in 2007 to 41.5 in 2011 

(Cystic Fibrosis Trust, 2013).   

  

The clinical manifestations of the disease are pancreatic insufficiency, abnormally high 

concentrations of sodium and chloride in sweat, and frequent lung infections. The 

consequence of pancreatic insufficiency is deficient secretion of pancreatic digestive 

enzymes, which leads to malabsorption of nutrients, malnutrition and possibly anaemia. In 

addition, because patients with cystic fibrosis are living longer, the number of patients 

treated for diabetes mellitus has been increasing; 18.3 % patients with cystic fibrosis were 

treated in the UK in 2011 (Cystic Fibrosis Trust, 2013) compared with 17.2 % in 2010 (Cystic 

Fibrosis Trust, 2012).   However, 15 % of patients with cystic fibrosis were reported to have 

pancreatic sufficiency, which was reflected by normal fat absorption (Corey M et al., 1984). 
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This led Kerman et al (Kerem B et al., 1989, Kerem E et al., 1990) and Kristidis et al (1992) to 

investigate the influence of the presence and absence of pancreatic insufficiency and the 

severity of the disease. They found a link between mutation genotype and the severity of 

the disease, where patients who had a homozygote ΔF508 genotype mutation were 

younger, had a higher sweat chloride concentration at the time of diagnosis, and had a 

more severe form of the disease, with pancreatic insufficiency and worse pulmonary 

disease. In contrast, patients who were heterozygotes or had another genotype mutation 

had a milder form of the disease.  These patients were diagnosed at an older age, had a 

lower sweat chloride concentration, no pancreatic insufficiency and better pulmonary 

function. In the UK, 52.0 % of patients with cystic fibrosis have a homozygous ΔF508 

mutation, 38.6 % have heterozygous ΔF508 mutation and 9.4 % have one of more than a 

thousand other genotype mutations (Cystic Fibrosis Trust, 2013). In addition, McKone et al  

(2006) developed another risk classification for patients with cystic fibrosis, according to the 

genotype functional defect.  They defined high and low risk groups, where the ΔF508 

mutation was considered as a high risk genotype and other low risk mutations. They found a 

difference in mortality and median age of death between the groups, where patients in the 

high risk group had low survival (median 36.3 years) compared with low risk patients 

(median 50 years). 

 

The clinical manifestation of the disease on sweat glands is the production of abnormally 

high concentrations of sodium and chloride, and the measurement of sweat chloride 

concentration is considered the diagnostic test for cystic fibrosis. The consequences of 

chloride transport defects in the pulmonary system are viscous secretions, leading to airway 

obstruction. Persistent airway obstruction with mucus provides a good culture medium for 

microorganism growth and is associated with recurrent lung infections. The most common 

bacterial pathogens in patients with cystic fibrosis are Staphylococcus aureus (S.aureus), 

Pseudomonas aeruginosa (P. aeruginosa) and Haemophilus influenzae (H. influenzae). The 

diversity of pathogens present in the airways of patients with cystic fibrosis that cause lung 

infections places a challenge to treat. In particular with the increase in survival, these 

patients are at risk for colonising more aggressive organisms such as Burkholderia cepacia 

complex (B.cepacia), non-tuberculosis mycobacteria species, and Aspergillus fumigates. In 
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the UK, lung infections caused by B.cepacia in patients with cystic fibrosis increased from 

3.2 % in 2010 (Cystic Fibrosis Trust, 2012) to 3.8 % in 2011 (Cystic Fibrosis Trust, 2013). 

Similarly, lung infections caused by non-tuberculosis mycobacteria increased from 3.4 % in 

2010 (Cystic Fibrosis Trust, 2012) to 3.9 % in 2011 (Cystic Fibrosis Trust, 2013). 

 

2.2 ANTIMICROBIAL THERAPIES FOR THE MANAGEMENT OF CYSTIC 

FIBROSIS 

2.2.1 Eradication therapy 

Antimicrobial therapy plays an important role in the management of cystic fibrosis. As a 

result of the airway obstruction, organisms colonise the airways causing frequent lung 

infection with the most common organism being P. aeruginosa (36.5% of all infections) 

(Cystic Fibrosis Trust, 2013). Recurrent infections were found to be associated with a more 

rapid decline in lung function and increased mortality (Emerson et al., 2005, Kerem E et al., 

1992). Therefore, Döring et al (2012) produced a recent consensus review with guidance for 

antibiotic treatment for lung infections in patients with cystic fibrosis. Based on the 

evidence they reviewed, they recommended the use of P. aeruginosa eradication therapy 

for 28 days when the P. aeruginosa culture is positive, without specifying a treatment 

protocol. They produce their recommendations based on the results of two randomised 

studies, the ELITE (Ratjen F et al., 2010) and EPIC (Treggiari MM et al., 2011) study. The 

ELITE study (Ratjen F et al., 2010) evaluated the use of inhaled tobramycin for early 

eradication of P. aeruginosa in 88 patients with cystic fibrosis. The eradication of P. 

aeruginosa was successful in 66 % of those who had 28 days treatment and 69 % in 56 days 

treatment and lasted for 27 months.  On the other hand, the EPIC study (Treggiari MM et 

al., 2011) examined the influence of early eradication of four treatment protocols in 304 

paediatric patients with cystic fibrosis. The examined protocols were; inhaled tobramycin 

combined with oral ciprofloxacin or oral placebo every three months, and inhaled 

tobramycin with ciprofloxacin or placebo when the quarterly culture was positive for P. 

aeruginosa. The success rate for the four examined protocols to eradicate P. aeruginosa was 

more than 80 % for 18 months with no difference between the administered protocols.    
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2.2.2 Management of chronic P. aeruginosa infection 

At early stages of the disease, P. aeruginosa can be eradicated and failure to do so could 

lead to chronic P. aeruginosa infection (Mayer-Hamblett N et al., 2012). In this case, long 

term inhaled antibiotics could be used (Ryan G et al., 2011, Flume PA et al., 2007).  A 

recently published Cochrane review examined the current evidence for the use of long term 

inhaled antibiotics in this group of patients (Ryan G et al., 2011). The authors concluded 

after reviewing 19 trials with 1724 patients that the use of inhaled antibiotics improved lung 

function and reduced exacerbation rates. Similarly, the Cystic Fibrosis Foundation (Flume PA 

et al., 2007) concluded from the evidence reviewed that chronic use of inhaled antibiotics 

reduced exacerbations and improved lung function, and hence they recommended the use 

of inhaled antibiotic in patients with chronic P. aeruginosa.  However, the Cochrane review 

also noted that there was an increased rate of resistance when long term inhaled antibiotics 

were used. 

 

2.2.3 Management of acute pulmonary exacerbation 

Patients with cystic fibrosis can also suffer from an acute pulmonary exacerbation, where 

systemic antimicrobial therapy is recommended (Döring et al., 2012, The UK Cystic Fibrosis 

Trust Antibiotic Working Group, 2009). Pulmonary exacerbation is usually characterised by 

an increased productive cough, breathlessness, decreased exercise tolerance, loss of 

appetite, change in appearance or volume of sputum, fever, and/or fall in respiratory 

function (The UK Cystic Fibrosis Trust Antibiotic Working Group, 2009). Intravenous 

antibiotics are preferred over oral or inhaled antibiotics to ensure achievement of high 

concentration of the antibiotic in the lung. The most common organism causing pulmonary 

exacerbations is P. aeruginosa and hence antibiotic therapy should be effective against it.  

Usually, a combination of antibiotics with different mechanisms of action is prescribed and a 

combination of β-lactam and aminoglycoside is commonly used (The UK Cystic Fibrosis Trust 

Antibiotic Working Group, 2009). Aminoglycoside therapy is the main focus of this thesis.   
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In addition to P. aeruginosa, other organisms colonise the airways in patients with cystic 

fibrosis including B.cepacia, non-tuberculosis mycobacteria species, and Aspergillus 

fumigates, which increase the virulence of P. aeruginosa. If these organisms are suspected 

to cause the exacerbation, then appropriate antimicrobial therapy should be considered 

(The UK Cystic Fibrosis Trust Antibiotic Working Group, 2009).  

 

2.2.4 Prophylaxis therapy 

Although the most common pathogen causing lung infection in patients with cystic fibrosis 

is P. aeruginosa, S.aureus is considered the second most common pathogen (15.7 %) (Cystic 

Fibrosis Trust, 2013).  Stutman et al (2002) examined the use of anti-staphylococcal 

antibiotics as prophylactic therapy for 7 years in infants and children with cystic fibrosis. 

They found that the growth of S.aureus was suppressed, but with an increased incidence of 

positive P. aeruginosa culture in the treated arm compared with placebo, leading to more 

incidences of pulmonary exacerbations. Therefore, routine anti-staphylococcal prophylaxis 

was not recommended in children with cystic fibrosis.   

 

2.2.5 Anti-inflammatory therapy 

Macrolides were recommended for the use as a long term therapy in patients with cystic 

fibrosis because of their anti-inflammatory effect and influence on P. aeruginosa biofilm 

formation (Flume PA et al., 2007, The UK Cystic Fibrosis Trust Antibiotic Working Group, 

2009). Long term treatment with macrolides (azithromycin) for 3 months and up to 24 

weeks was associated with 3.7 – 6.2  % improvement in lung function (Equi A et al., 2002, 

Wolter J et al., 2002, Saiman L et al., 2003) and was associated with a reduction in the 

incidence of pulmonary exacerbations (Saiman L et al., 2003). However, improvement in 

lung function was only seen in patients who were infected with P. aeruginosa and not in 

those uninfected with P. aeruginosa (Saiman L et al., 2010).  
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2.3 PHARMACOKINETICS IN PATIENTS WITH CYSTIC FIBROSIS 

The consequence of cystic fibrosis on drug handling was expected to alter as a result of the 

alteration in pathophysiology of gastrointestinal tract, liver and kidney.  Rey et al (1998) 

reviewed publications focused on examining pharmacokinetics in patients with cystic 

fibrosis. The authors hypothesized that drug absorption in patients with cystic fibrosis might 

be decreased as a result of gastric acid hypersecretion and bile acid malabsorption. 

However, the results from the reviewed studies indicated that the drug absorption was 

slower for some drugs and not changed for most of the drugs. Therefore, the authors 

recommended that these recommendations should not be generalised to all drugs used in 

this patient group.  

 

As a result of pancreatic insufficiency, these patients are usually malnourished, which might 

affect the distribution of drugs. Volume of distribution of drugs in patients with cystic 

fibrosis was found to be highly influenced by the body size measurement use for 

normalisation (Rey E et al., 1998).   This issue will be discussed further in the next section 

with a focus on aminoglycoside pharmacokinetics in patients with cystic fibrosis.  

 

Cystic fibrosis can also cause hepatic dysfunction, which affects hepatic enzyme production. 

Therefore elimination of hepatically metabolised drugs was expected to change in this 

group of patients in favour of increased elimination for some drugs (Rey E et al., 1998). 

Moreover, the influence of cystic fibrosis on renally cleared drugs has been extensively 

studied, showing conflicting results. Aminoglycosides are renally cleared drugs and their 

clearance in patients with cystic fibrosis has been shown to increase (Kearns GL et al., 1982, 

Mann HJ et al., 1985, Levy J et al., 1984)  or not change (Mann HJ et al., 1985, Hennig S et 

al., 2013).  The current thesis will examine aminoglycoside handling in patients with cystic 

fibrosis in detail.  
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2.4 AMINOGLYCOSIDES 

Aminoglycosides are one of the most frequently prescribed types of antibacterial agents for 

the treatment of pulmonary exacerbations in patients with cystic fibrosis. Aminoglycosides 

are hydrophilic antibiotics with poor oral absorption. They are mainly administered 

intravenously or intramuscularly for systemic indications (Schentag et al., 2006). When 

aminoglycosides are transported across bacterial cell membranes, they bind to 30S and 50S 

ribosomal subunits to cause misreading of genetic codes, which impairs bacterial protein 

synthesis. This induces membrane damage, and an increase in intracellular osmotic pressure 

and bacterial cell death. They are active against aerobic gram-negative organisms including 

Escherichia coli, Proteus, Enterobacter, Klebsiella, Acinetobacter, Pseudomonas, Serratia, 

and Providencia species (Schentag et al., 2006).   

 

2.4.1 Aminoglycoside pharmacokinetics, pharmacodynamics and toxicity  

2.4.1.1 Pharmacokinetics 

Aminoglycosides are polar drugs with low albumin binding ranging from zero for gentamicin 

and tobramycin to 35 % for streptomycin (Gordon RC et al., 1972, Myers DR et al., 1977), 

whose distribution is essentially limited to the extracellular fluid compartment, although 

they can diffuse into synovial, peritoneal and ascitic fluids (Dee TH and Kozin F, 1977, Gill 

MA and Kern JW, 1979, Marsh DCJr et al., 1974, Rodriguez V et al., 1970, Chow A et al., 

1971) and cross the placenta (Bernard B et al., 1977, Yoshioka H et al., 1972). Animal studies 

have demonstrated active transport into the inner ear and renal proximal tubule and 

accumulation in these tissues has been associated with the development of ototoxicity and 

nephrotoxicity.  Aminoglycosides have poor penetration into lung tissue and bronchial 

secretions (Levy J, 1986).  

 

Aminoglycosides are eliminated unchanged, mainly through renal elimination by glomerular 

filtration (Gyselynck AM et al., 1971, Plantier J et al., 1976, Kirby WM et al., 1976). They are 

also actively reabsorbed by the proximal tubule, which may lead to renal toxic effects (Luft 

FC and Kleit SA, 1974, Schentag JJ et al., 1977, Schentag JJ et al., 1982). Small amounts of 
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aminoglycoside have also been found in bile (Mendelson J et al., 1973, Pitt HA et al., 1973, 

Smithivas T et al., 1971). Table 2.1 shows summary of aminoglycosides (gentamicin, 

tobramycin and amikacin) pharmacokinetic parameters obtained from the literature for 

general medical patients.  

 

Table 2.1  Summary of aminoglycoside (gentamicin, tobramycin and amikacin) 
pharmacokinetic parameters for general medical patients obtained from the literature.  

Parameter Gentamicin Tobramycin Amikacin 

Volume of 
distribution (L/kg) 

0.31 ± 0.1 0.33 ± 0.04 0.27 ± 0.06 

Protein binding (%) ˂ 10 ˂ 10 4  

Clearance 
(mL/min/kg) 

0.82 CrCL + 0.11  0.98 CrCL ± 32 % 0.6 CrCL ± 0.14 

Elimination half-life 
(hour) 

2.0 – 3.0 2.2 ± 0.1 2.3 ± 0.4 

Reference: (Hardman JG et al., 2001) 
Key: CrCL is creatinine clearance. 

 

2.4.1.2 Pharmacodynamic and resistance patterns 

Aminoglycosides are bactericidal antibiotics that exhibit concentration dependent-killing, 

which is defined as a progressive increase in the killing rate with increasing antibacterial 

concentration (Sanchez-Navarro A and Sanchez Recio MM, 1999).  Achievement of a higher 

aminoglycoside peak level to MIC ratio is associated with a positive therapeutic outcome 

including decrease in high temperature, decrease in leukocyte counts and resolve of signs of 

infection at the site of infection (Moore RD et al., 1987), although, daily AUC to MIC ratio 

has also been suggested to be related to the antibacterial effect of aminoglycosides (Nielsen 

EI et al., 2011).   Furthermore, aminoglycosides have a post-antibiotic effect, which 

represents the time that inhibition of bacterial growth continues after exposure of the 

bacterium to an antibacterial, even though the antibacterial concentration has fallen below 

the bacterial MIC (Sanchez-Navarro A and Sanchez Recio MM, 1999). The duration of the 

aminoglycoside post-antibiotic effect has been reported as two to four hours in vitro and up 

to ten hours in vivo against gram negative bacilli  (Craig WA et al., 1991). However, in an in 

vitro pharmacokinetic model simulating human pharmacokinetics, the tobramycin post-
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antibiotic effect was observed to decrease as the concentration decreased during the 12 

hour dosing interval and it completely disappeared after the drug concentration reached the 

MIC for P. aeruginosa (Den Hollander JG et al., 1996). The authors therefore questioned the 

use of a long post-antibiotic effect as supportive evidence for prescribing aminoglycoside 

with an extended interval dosage regimen such as once daily. Aminoglycosides also exhibit a 

post-antibiotic leukocyte enhancement phenomenon, whereby the antibiotic enhances 

bacterial susceptibility to leukocyte phagocytosis and killing in the presence of white blood 

cells (neutrophils) (Fantin B et al., 1991, Kapusnik JE et al., 1988, Vogelman B et al., 1988b).  

 

Organisms that are initially sensitive to an aminoglycoside can develop resistance to the 

drug. Poole (2005) reviewed the current publications on P. aeruginosa resistance to 

aminoglycosides and reported that several possible mechanisms contributed to the 

resistance, including enzymatic and non-enzymatic mechanisms. An enzymatic mechanism 

through modifying enzymes such as aminoglycoside phosphoryl-transferase, aminoglycoside 

acetyl-transferase, and aminoglycoside adenyl-transferase, which inactivate the drug, is 

well-established. A non-enzymatic induced resistance is also another possible mechanism by 

affecting aminoglycoside permeability and reduction of its uptake by the bacterial cell.  

 

Another type of bacterial resistance to aminoglycosides that is influenced by the duration of 

antibiotic exposure and not to genetic mutation, is called adaptive resistance  (Barclay ML 

and Begg EJ, 2001). During the first several hours of aminoglycoside exposure, bacterial 

killing will be in a concentration dependant fashion. After a prolonged exposure to the 

aminoglycoside, the bacterial pathogen down-regulates aminoglycoside transport (Daikos 

GL et al., 1990, Jackson GG et al., 1990). However, this type of resistance is unstable and can 

be reversible within few hours, yielding pathogens that are fully susceptible to the 

aminoglycoside killing effect if they have a drug-free period. More recent in vitro work 

identified a multidrug efflux pump system, known as the MexXY efflux pump, as a possible 

explanation for the reduction of aminoglycoside accumulation within the bacterial cell and 

the occurrence of adaptive resistance (Sobel ML et al., 2003). The authors observed a fast 

activation of MeXY production (within 2 hours) after P. aeruginosa exposure to an 
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aminoglycoside and a reduction in the efflux pump expression when the organism was no 

longer exposed to the antibiotic.  

 

2.4.1.3 Toxicity 

The main aminoglycoside side effects are nephrotoxicity and ototoxicity, and also 

neuromuscular blockade to a small degree. The reported incidence of nephrotoxicity in 

general medical patients was up to 20 % (Kahlmeter G and Dahlager JI, 1984, Barza M et al., 

1996, De Jager P and Van Altena R, 2002). The predisposing factors for aminoglycoside 

induced nephrotoxicty are elevated serum trough levels (>2 mg/L), abnormal baseline renal 

function (Selby NM et al., 2009) and the use of concomitant nephrotoxic drugs, such as 

vancomycin (Rybak MJ et al., 1999) and furosemide (Prins JM et al., 1996). However, 

aminoglycoside dose and duration of course were not associated with the development of 

the nephrotoxic effect. Although aminoglycosides are eliminated mainly by glomerular 

filtration, a fraction of the dose is reabsorbed into the proximal tubule and this is thought to 

be the primary site for nephrotoxicity (Schentag JJ et al., 1979, Schentag JJ and Plaut ME, 

1980). Aminoglycosides are reabsorbed and transported into the renal proximal tubule by 

pinocytosis and sequestered in lysosomes, mitochondria and the body of the Golgi 

apparatus (Sundin DP et al., 2001). They induce cellular death by inhibiting protein synthesis 

and alteration of lysosomal membrane permeability, causing disruption of the membrane 

and release of lysosomal enzymes into the cytoplasm. Moreover, molecular studies have 

shown other possible mechanisms. Proximal tubule calcium  receptors  might be activated 

by the antibiotic leading to renal damage (Ward DT et al., 2002) but this requires further 

investigation. Another suggested mechanism is by reducing glucose reabsorption in kidney 

by reducing its transporters (Takamoto K et al., 2003).  

 

The incidence of aminoglycoside induced ototoxicity was small, less than 20 % (Kahlmeter G 

and Dahlager JI, 1984, De Jager P and Van Altena R, 2002). Aminoglycoside induced 

ototoxicity includes cochlear and vestibular dysfunction (Schentag et al., 2006). Cochlear 

toxicity may manifest as tinnitus, hearing loss, pressure, and sometimes pain in the ear, 
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while vestibular toxicity symptoms include dizziness, vertigo, ataxia, and nystagmus. 

Symptoms of aminoglycoside induced ototoxicity can occur as early as three to five days 

after starting therapy or even up to four to six weeks after stopping therapy. Several factors 

have been reported to predispose a patient to the drug’s ototoxic effect, including prior 

renal insufficiency, prior abnormal audiogram, older age, septicaemia, dehydration, high 

temperature, total cumulative dose, prolonged duration of therapy (2-3 weeks), prior 

aminoglycoside exposure, peak serum concentration, trough serum concentration, and 

concomitant administration of ototoxic drugs, such as loop diuretics. Current thinking 

regarding a possible predisposing factor for the antibiotic’s ototoxic effect is through genetic 

mutation. The predisposing mutation is the A1555G in the 12S ribosomal RNA gene  

(Prezant TR et al., 1993), and was associated with 30 % of hearing loss cases (Fischel-

Ghodsian N et al., 1997). The genetic mutation does not stop at the individual level, but can 

be inherited (Gardner JC et al., 1997, Hu DN et al., 1991). Gardner et al (1997) reported a 

Southern African family in which nine members went deaf following streptomycin 

treatment, while Hu et al (Hu DN et al., 1991) reported 36 Chinese families that had a family 

history of aminoglycoside-induced hearing loss. This suggests the need to take a family 

history before aminoglycoside administration. Guthrie (2008) reviewed in vitro and in vivo 

work to explain possible mechanisms for aminoglycoside ototoxicity. He reported that the 

possible molecular mechanism to induce vestibulocochlear damage was by formation of an 

aminoglycoside-iron complex that produced oxidative stress in the inner ear. Recently, the 

production of oxidative stress was found to be associated with genetic mutations at the 

oxidative stress-related gene ( pNOS3, GSTZ1, and GSTP1 gene) to induce aminoglycoside- 

vestibulotoxicity (Roth SM et al., 2008). Current research is moving towards finding possible 

protection strategies, for example, the use of iron chelators and free radical scavengers.  

 

Aminoglycoside induced neuromuscular blockade is a rare but potentially fatal adverse 

effect (Schentag et al., 2006). The effect can be clinically relevant in patients with pre-

existing neuromuscular disease, such as myasthenia gravis, patients who are hypocalcaemic 

or hypomagnesaemic, concomitant administration with other neuromuscular blocking drugs 

or anaesthetic agents, and patients receiving calcium channel blockers. The drug interferes 

with presynaptic uptake of calcium, thus reducing the release of acetylcholine, and binds to 
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the postsynaptic acetylcholine receptor-channel complex. Usually the toxicity can be 

reversible in mild cases by stopping the drug, whereas in more severe cases pharmacological 

intervention is needed, including administration of calcium gluconate or neostigmine.  

 

2.4.2 Aminoglycoside pharmacokinetics in patients with cystic fibrosis 

2.4.2.1 Volume of distribution in patients with cystic fibrosis 

A number of studies compared estimates of aminoglycoside volume of distribution in 

paediatric and young adult patients with and without cystic fibrosis and found that patients 

with cystic fibrosis had higher estimates of volume of distribution when normalised to body 

weight (Kearns GL et al., 1982, Levy J et al., 1984). On the other hand, other studies failed to 

find any difference between volume of distribution in patients with cystic fibrosis compared 

to those without the disease (Mann HJ et al., 1985, Hennig S et al., 2013). The reason may 

be related to participant characteristics, including nutritional state. Levy et al (1984) 

suggested that malnourished patients had higher extracellular volume on the basis of 

weight, and because aminoglycoside is a hydrophilic drug then it would distribute to 

extracellular fluid. Another possible explanation could be the influence of body size 

measurement used to normalised volume of distribution. For example, when Levy et al 

(1984) normalised volume of distribution to weight, a difference was observed. However, 

when volume of distribution was normalised to body surface area, no difference in volume 

of distribution was observed between patients with and without cystic fibrosis. Hennig et al 

(2013) used lean body weight (Janmahasatian S et al., 2005) to estimate volume of 

distribution and no difference was observed between patients with and without the disease. 

Patients with cystic fibrosis are usually malnourished and lack adipose tissue; this difference 

in body composition is taken into account in addition to body size when lean body weight 

was used compared with weight. Therefore, the use of lean body weight eliminated the 

difference between patients with cystic fibrosis and those without the disease.  
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2.4.2.2 Clearance in patients with cystic fibrosis 

Findings from several studies in paediatric and adult patients with cystic fibrosis supported 

higher aminoglycoside clearance values, both when compared to control and to historical 

estimates (Kearns GL et al., 1982, Mann HJ et al., 1985, Levy J et al., 1984). A possible 

explanation for these differences might be an additional, non-renal elimination pathway. 

Sputum has been suggested as an alternative route of aminoglycoside elimination, 

particularly for tobramycin (Levy J et al., 1984). Because mucus plugs in patients with cystic 

fibrosis are composed of negatively charged glycoproteins, positively charged compounds, 

such as tobramycin, could bind and be eliminated (Levy J, 1986, Hunt BE et al., 1995, 

Ramphal R et al., 1988). In contrast, MacDonald et al (1983) suggested that the severity of 

the disease might influence aminoglycoside pharmacokinetics, where patients with mild 

disease had higher drug clearance.  In contrast, a recent study conducted in eight centres 

did not find any difference in clearance in patients with cystic fibrosis compared to the 

general population (Hennig S et al., 2013).  The difference in results could be related to the 

sample size; studies that observed an increased aminoglycoside clearance in patients with 

cystic fibrosis included less than 30 patients and the age group was limited to paediatric and 

young adults (less than 18 years old) (Kearns GL et al., 1982, Mann HJ et al., 1985, Levy J et 

al., 1984). However, in the study of Hennig et al (2013), a total of 732 patients were 

included with a wide range of age (0.01 to 66.4 years old). Usually, paediatric patients have 

higher clearance compared with adults and because the mean age of Kearns et al (1982), 

Mann et al (1985) and  Levy et al  (1984) was between 11 and 16 years old, that might 

explain the increased aminoglycoside clearance that was observed. In addition, the method 

used to estimate renal function might influence the results. Levy et al  (1984) used two 

methods to estimate renal function; clearance of iothalamate and creatinine clearance by 

measuring creatinine concentration in the urine. Mann et al (1985) estimated creatinine 

clearance by the Cockcroft and Gault equation with no information on how to handle low 

serum creatinine. There is some evidence showed that the use of low serum creatinine 

values (less than 60 µmol/L) to estimate creatinine clearance by the Cockcroft and Gault 

equation might result in overestimation of creatinine clearance (Touw DJ et al., 1996).  On 

the other hand,  Kearns et al (1982) used 12 or 24 hour urine collection to estimate 

creatinine clearance. However, Hennig et al (2013) used the serum creatinine, age and lean 
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body weight, which take into account body size and composition, to estimate 

aminoglycoside clearance.   

 

2.5 AMINOGLYCOSIDE USE IN PATIENTS WITH CYSTIC FIBROSIS  

Patients with cystic fibrosis suffer from frequent lung infections caused mainly by P. 

aeruginosa (Cystic FibrosisTrust, 2013) and  the UK Cystic Fibrosis Trust recommend the use 

of intravenous antibiotics to treat pulmonary exacerbations or low grade symptoms which 

are not responding to oral antibiotics (The UK Cystic Fibrosis Trust Antibiotic Working 

Group, 2009). The Trust recommends a combination of antibiotics with different 

mechanisms of action to be prescribed and a combination of ceftazidime and tobramycin is 

commonly used.  

 

2.5.1 Aminoglycoside dosing 

2.5.1.1 Extended interval dosing 

Traditionally, aminoglycosides were administered every six or eight hours, but further 

understanding of their pharmacodynamics has moved dosing regimens towards extended 

interval, twelve hourly and particularly once daily administration. The rationale behind this 

change is that aminoglycosides have concentration-dependent activity so high peaks 

correlate better with efficacy. They also have a long post-antibiotic effect, from three to ten 

hours against P.aeruginosa (Fantin B et al., 1991, Vogelman B et al., 1988b, Craig WA, 1993), 

which is even more prolonged in the presence of neutrophils (Kapusnik JE et al., 1988). Once 

daily administration reduces the development of adaptive resistance, although the exact 

duration is still unknown (Daikos GL et al., 1991, Gilleland LB et al., 1989, Daikos GL et al., 

1990). Moreover, once daily aminoglycoside dosing has been associated with less drug 

being accumulated in the kidney and hence a reduced risk of nephrotoxicity (De Broe ME et 

al., 1991, Verpooten GA et al., 1989).  
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The efficacy and safety of once daily aminoglycoside dosing was compared with three times 

daily dosing in a meta-analysis conducted by  Munckhof et al  (1996), who evaluated 20 

studies including 2881 adult patients. The authors found that once daily dosing resulted in a 

small improvement in clinical efficacy with a difference of 3.5 % (95% confidence interval, 

0.5 to 6.5 %; p = 0.027) compared with three time daily dosing, but with a similar rate of 

nephrotoxicity (difference: 1.3 %; 95 % confidence interval, -3.1 to 5 %; p = 0.19) and 

ototoxicity assessed by audiometry (difference 0.7 %; 95 % confidence interval, – 3.1 to 4.5 

%; p = 0.84). In addition, Hatala et al (1996) evaluated thirteen randomised controlled trials 

that compared the efficacy and safety of aminoglycoside once and three times daily dosage 

regimens in adult general medical patients. The results from the meta-analysis showed that 

both regimens had equivalent efficacy with risk ratio of 1.02 (95 % confidence interval, 0.99 

to 1.05). However, although the differences were non-significant, the once daily dosage 

regimen was associated with a relative risk reduction of nephrotoxicity of 13 %, a relative 

risk reduction of ototoxicity of 33 %, and a relative risk reduction of 9 % for mortality 

compared with three times daily.  Furthermore, Contopoulos-Ioannidis et al (2004) 

examined 24 studies that compared the efficacy and safety of once and three times daily 

dosage regimens in paediatric patients treated with aminoglycosides.  The results indicated 

a trend for better efficacy associated with once daily compared with three times daily 

dosing with a risk ratio of 0.71 (95 % confidence interval, 0.45 to 1.11; p = 0.13) and with 

comparable rate of nephrotoxicity, risk ratio 0.97 (95% confidence interval, 0.55 to 1.69; p 

=0.90) and ototoxicity, risk ratio 1.06 (95% confidence interval, 0.51 to 2.19; p = 0.92).  

Moreover, aminoglycoside associated nephrotoxicity was compared for twice and once daily 

dosage regimen in general medical patients (Rybak MJ et al., 1999). The authors reported six 

cases of nephrotoxicity in the twelve hourly dosing and no cases in the once daily dosage 

regimen group. These results confirmed that less frequent aminoglycoside dosing was 

associated with reduced risk of nephrotoxicity. The available evidence encouraged the use 

of extended interval aminoglycoside dosing in different patient groups treated for 

susceptible infections.  
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2.5.1.2 Aminoglycoside dosing in patients with cystic fibrosis  

The dose recommended by the cystic fibrosis Trust for both children and adults is 

tobramycin 10 mg/kg/day every 24 hours by infusion over 30 minutes up to a maximum of 

660 mg.  This dose should be administered for two weeks with “trough” levels being 

monitored before the second and eighth doses.  The target concentration for samples taken 

18 hours post dose is <1 mg/L (The UK Cystic Fibrosis Trust Antibiotic Working Group, 2009). 

In addition, plasma creatinine should be monitored before the first dose of tobramycin and 

again before the eighth dose. It is recommended that baseline audiometry is performed at 

the beginning of each  treatment with intravenous tobramycin, i.e. within the first two days 

after the first dose (Scheenstra RJ et al., 2010). However, not all cystic fibrosis units follow 

these guidelines. The current practice in Glasgow is to prescribe a tobramycin dose of 120 

mg/m2 twice daily, according to the work of Campbell et al (1999), aiming for a peak of 8-12 

mg/L and trough less than 1 mg/L (Personal Communication,  cystic fibrosis pharmacist at 

Gartnavel Hospital, Glasgow, May 11, 2010).  

 

The Cystic Fibrosis Trust recommendations resulted from cumulative evidence supporting 

the effectiveness and safety of once daily tobramycin. One piece of evidence came from the 

TOPIC study (Smyth A et al., 2005), which contained 219 patients given a dose of 10 mg/kg 

tobramycin once daily or eight hourly for 14 days.  This is considered as one of the largest 

clinical trials comparing once to three times daily dosing of aminoglycosides in patients with 

cystic fibrosis.  There was no difference in efficacy in patients with acute pulmonary 

exacerbations but a tendency for a greater increase in serum creatinine concentrations was 

observed in adult patients with cystic fibrosis in the once daily group. In addition, patients 

from the TOPIC study were further investigated for the occurrence of ototoxicity assessed 

by audiometry (Mulheran M et al., 2006). The analysis showed no difference in the 

incidence of ototoxicity between once and three times daily dosing. In addition, Scheenstra 

et al  (2010) examined the incidence of ototoxicity for tobramycin dose of 10 mg/kg/day 

administered in two divided doses, and found no hearing loss in patients with cystic fibrosis.  
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 The results from the TOPIC study are in agreement with other publications that showed an 

equivalent improvement in lung function with once daily and three times daily dosing of 

tobramycin with no difference in nephro- or ototoxicity in patients with cystic fibrosis (Bates 

RD et al., 1997, Vic P et al., 1998, Master V et al., 2001, Burkhardt O et al., 2006). However, 

Vic et al (1998) favoured once daily dosing as it reached higher tobramycin sputum 

concentrations compared with three times daily dosing. In addition, although the difference 

was small, patients treated with three times daily dosing had higher microglobulinuria on 

day 14 compared with the once daily group, suggesting better renal tolerance for once daily 

dosing. Bates et al (1997) reported also an increase in blood urea nitrogen level but without 

nephrotoxicity following once daily dosing. However, blood urea nitrogen is not a specific 

indicator for nephrotoxicity and the authors suggested a high protein diet effect or 

corticosteroid administration might have caused this increased level. On the other hand, 

Master et al (2001) reported ototoxicity in the form of tinnitus as a result of rapid 

administration of tobramycin with both three times daily and once daily dosing.  

 

Despite the evidence supporting once daily administration of tobramycin in patients with 

cystic fibrosis,  Beringer et al (2000) and Burkhardt et al (2006) raised some concerns about 

administering once daily aminoglycosides in these patients. Although the pharmacokinetic 

/pharmacodynamic index of peak to MIC ratio was greater with once daily compared to 

twelve or eight hourly, and it had greater bactericidal activity, the time below the MIC for P. 

aeruginosa with once daily dosing exceeded the post-antibiotic effect in both in vitro and in 

vivo studies in adult patients with cystic fibrosis (Beringer PM et al., 2000). The authors were 

concerned about a possible emergence of P. aeruginosa resistance following once daily 

dosing as a result of the prolonged time below the MIC. This may allow greater bacterial re-

growth during the dosing interval and the development of resistance. This observation was 

supported by  the study of Burkhardt et al (2006) in patients with cystic fibrosis. They found 

an increase in the MIC of P. aeruginosa after 24 hourly dosing, whereas the MIC after 8 

hourly dosing did not change. In addition, Master et al  (2001) reported that both once and 

three times daily tobramycin dosage regimens led to an increase in MIC against P. 

aeruginosa  where the once daily tobramycin dosage regimen resulted in a statistical 

significant increase with multiple courses of the antibiotic. This raises another concern 



  25    

 

about developing resistance because patients with cystic fibrosis have recurrent lung 

infections and would require more frequent treatment with aminoglycoside. Further 

evidence comes from a UK evaluation susceptibility test study in a range of patients, which 

showed that P. aeruginosa  resistance rates to the β-lactam, aminoglycoside and quinolone 

agents was low, less than twelve per cent (Henwood et al., 2001). However, a patient sub-

group analysis showed that high resistance rates were reported for isolates from patients 

with cystic fibrosis.  



  26    

 

 

 
 

 

 

 

 

CHAPTER 3: WITHIN SUBJECT VARIABILITY IN 

AMINOGLYCOSIDE PHARMACOKINETICS IN PATIENTS WITH 

CYSTIC FIBROSIS 
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3.1 INTRODUCTION 

Cystic fibrosis is an inherited autosomal recessive disease characterised by viscous 

secretions within the respiratory tract leading to persistent airway obstruction with mucus, 

which provides a good culture medium for microorganism growth. Chronic and intermittent 

infections with P. aeruginosa commonly occur in this group of patients (Cystic FibrosisTrust, 

2013) and are typically treated with a combination of an aminoglycoside (usually 

tobramycin) and a β-lactam, such as ceftazidime (The UK Cystic Fibrosis Trust Antibiotic 

Working Group, 2009).  Since patients with cystic fibrosis now live longer, with a median 

survival of 41 years reported in 2010 and 2011 compared with 34 years in 2009 (Cystic 

FibrosisTrust, 2013), they are potentially at increased risk of developing aminoglycoside 

induced renal toxicity through exposure to multiple courses of therapy over a prolonged 

period of time.  

 

The incidence of acute renal failure has been reported as 4.6-10.5 per 10 000 patients with 

cystic fibrosis per year in the UK, and 88 % of these patients were prescribed an 

aminoglycoside (Bertenshaw C et al., 2007). Previous studies have mainly focused on 

nephrotoxicity arising from single courses of aminoglycoside therapy and have studied 

patients within a range of clinical specialties, including cystic fibrosis (Prestidge C et al., 

2011, Smyth A et al., 2005), general medicine (Drusano GL and Louie A, 2011, Sweileh WM, 

2009), critical illness (Galvez R et al., 2011), and tuberculosis (De Jager P and Van Altena R, 

2002). However, there is currently little information on the impact of multiple courses of 

aminoglycoside therapy on renal function in patients with cystic fibrosis.   

 

3.2 AIMS OF STUDY 

The aims of the present study were as follows: 

 to investigate the influence of covariates on aminoglycoside pharmacokinetic 

parameters in patients with cystic fibrosis. 

 to determine the nature and extent of within-subject variability in aminoglycoside 

pharmacokinetics in patients with cystic fibrosis.  
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 to determine how pharmacokinetic parameters change over time in patients with cystic 

fibrosis who have received multiple courses of therapy and their impact on future 

dosage recommendations. 

 

 

3.3 METHODS 

3.3.1 Patient data and setting 

The study was a retrospective analysis of data contained within a database of 

aminoglycoside therapeutic drug monitoring for adult patients with cystic fibrosis data 

covering the period 1993 to 2009. A total of 219 courses of therapy from 51 of these 

patients, collected between 1993 and 1997, have been analysed and reported previously 

(Campbell D et al., 1999). In addition, data from a maximum of 2 courses from 163 patients 

were included in a recent population meta-analysis that compared tobramycin 

pharmacokinetics in children and adults with and without cystic fibrosis (Hennig S et al., 

2013). The project was conducted using the data that were routinely collected by the 

therapeutic drug monitoring service provided by clinical pharmacists to the Adult Cystic 

Fibrosis Unit, Gartnavel General Hospital, Glasgow. The number of active patients within the 

unit in 2011 was 217 (Cystic FibrosisTrust, 2013).  All files containing therapeutic drug 

monitoring data from patients who were treated in the cystic fibrosis unit with an 

aminoglycoside antibiotic and were stored within the database in the pharmacy department 

were eligible for inclusion in the study. Aminoglycoside dose and concentration data are 

routinely analysed using a MAP Bayesian pharmacokinetic package, OPT (Kelman et al., 

1982). Hard copies of OPT data collection forms and output are stored within the pharmacy 

department and electronic copies of OPT files are stored on the hospital computer network.  

 

The database was constructed using the spreadsheet package Excel. The following clinical 

data were entered into the database and summarised: anonymised patient identification 

number, date of start of therapy, time of drug administration, duration of therapy, age, sex, 

actual weight, height, and serum creatinine concentrations. If clinical characteristics were 

missing, the median of the patient group was imputed.  No patient identification data were 

stored in the final database. The following pharmacokinetic data were also entered into the 
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database: drug name, administered dose amounts, dates, times and rates of infusion, dates 

and times of concentration measurements. Ethical approval was obtained from the West of 

Scotland Research Ethics Service committee (Reference number 09/S0709/50). A copy of 

the ethics approval letter is shown in APPENDIX I.  Patient consent was not obtained since 

the data were retrospective and had been anonymised by clinical pharmacists before entry 

into the database. 

 

3.3.2 Serum creatinine and drug assay 

Serum creatinine was measured by the Jaffé method and there was no change over time in 

the analytical method. Aminoglycoside concentrations were measured by the clinical 

microbiology laboratory of the hospital using Fluorescence Polarization Immunoassay (TDx, 

Abbott Laboratories) with no change in methodology over the data collection period. The 

limit of quantification was 0.1 mg/L and 2.5 % of the concentrations were reported as 0.1 

mg/L. Five concentration measurements were below this limit were excluded from the 

analysis. The inter-assay coefficients of variation were 6.3% at 1 mg/L, 3.7% at 4 mg/L and 

4.3% at 8 mg/L.  

 

3.3.3 Population data analysis 

The data were analysed using the population pharmacokinetic  software NONMEM (Beal SL 

et al., 2009). The modelling approach within NONMEM is divided into three sub-models: 

structural, statistical and covariate model.  The structural sub-model describes the time 

course of the drug in the body in a specific individual (the drug behaviour in the body), 

which is decided based on the available drug concentration data to follow one or multi-

compartment model, using fixed effects parameters. The fixed effect parameters include 

the typical population estimates of pharmacokinetic parameters such as clearance and 

volume of distribution, that can be a function of various covariates  (Sheiner LB and Beal SL, 

1981a).  A covariate is any variable that is specific to an individual and may influence the 

pharmacokinetics or pharmacodynamic of a drug including age, weight, dose, and presence 

of concomitant medication. The statistical sub-model accounts for the random effect 

parameter, which are the amount of pharmacokinetic variability including between-subject 
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variability (BSV), within-subject variability (WSV) and residual variability, e.g. assay error, 

doses times, and incorrect pharmacokinetic model.   

 

 3.3.3.1 Structural model 

In the current study, one compartment and two compartment linear models were 

compared. They were tested using NONMEM version 7.1 (Beal SL et al., 2009) using the first 

order conditional estimation with interaction algorithm (FOCE I). The FOCE is an estimation 

algorithm that conditions the linearization of the model around each individual parameter 

estimate for the between-subject variability random effects. In addition, the Stochastic 

Approximation Expectation Maximization (SAEM) algorithm was tried. The SAEM algorithm 

is a stochastic approximation version of the expectation maximization algorithm linked to a 

Monte Carlo procedure to estimate the maximum likelihood (Kuhn E and Lavielle M, 2005).  

To define a compartment model in NONMEM, an “ADVAN” subroutine should be selected, 

and to re-parameterise these parameters to the pharmacokinetic parameters requested by 

the modeller the “TRANS” subroutines could be selected also. There are several re-

parameterisation options available within NONMEM, and TRANS 2 was chosen for the one 

compartment model.  This converts the basic parameters k (the elimination rate constant) 

and V (the volume of distribution) into clearance (CL) and volume of distribution (V) 

according to the following relationship 

k = CL/V 

 

For the two compartment model, ADVAN 3 was used with TRANS 4, which re-parameterised 

the basic pharmacokinetic parameters for ADVAN 3 to: 

 

CL  clearance 

V1  central volume 

Q  intercompartmental clearance 

V2  peripheral volume 

 

according to the following relationships 
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k10 = CL/V1 

k12 = Q/V1 

k21 = Q/V2 

 

Initial values for the pharmacokinetic parameters were obtained from the paper by 

Campbell et al (1999). The initial estimate of clearance used for the one-compartment 

model was 4.3 L/h and the volume of distribution estimate was 14 L. For the two 

compartment parameters, both clearance and volume of distribution of the central 

compartment values were similar to those used in the one compartment model. Different 

initial estimates for volume of distribution of the peripheral compartment and inter-

compartmental clearance values were tried.   

 

Between-subject variability was modelled using an exponential model because 

pharmacokinetic data are usually right-skewed (Lacey LF et al., 1997) and log- normal 

distribution is assumed, and to force the parameters to be greater than zero (to get positive 

parameters) as follows; 

CLi = TVCL exp (ɳi) 

Where CLi is clearance for ith subject, TVCL is the typical population clearance estimate; ɳi is 

the deviation from the typical for the ith subject with zero mean and variance ω2. The initial 

values for all BSV variance were set at 0.05. The block matrix was tried and was retained in 

the model if it improved the fit of the data. Because log-normal distribution was assumed 

the estimated variance is in log scale, it should be converted to the original scale by 

estimating a coefficient of variation. The coefficient of variation can be estimated then using 

the following formula:  

 

 

Within-subject variability (WSV) was then added to the structural model applying the 

Karlsson and Sheiner model (Karlsson MO and Sheiner LB, 1993) as follow: 
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CLi = TVCL exp (ɳi + ɳj1 OCC1 + ɳj2 OCC 2 + .....ɳjn OCCj) 

Where j is the occasion number e.g. j=1,2...O.; ɳjn is the deviation from the population 

typical estimate due to variability from occasion j. It is assumed that each ɳjn has zero mean 

and variance ω2j. A coefficient of variation can be estimated using the CV formula previously 

stated. The value of the WSV variance was constant across all occasions; APPENDIX II shows 

an example of a control file that contains the coding for WSV. The definition of one occasion 

was one aminoglycoside treatment course. Residual error was also modelled where 

additive, proportional and combined error models were tried and compared using the base 

model. 

 

The criteria set for choosing the structural model were: first, a significant reduction in the 

difference in objective function value (∆OFV) = 13.82 for two degree of freedom, P < 0.001.  

Secondly, an improvement in the goodness of fit plots, such as observed versus population 

and individual predicted concentrations, and conditional weighted residual errors (CWRES) 

versus time after dose and population predicted concentrations. CWRES is the weighted 

difference between the model prediction and data calculated using the FOCE method 

(Hooker AC et al., 2007). Scatter plots for the measured versus predicted concentrations 

were examined for agreement.  

 

In order to decide on which algorithm to be taken forward and used for covariate modelling, 

run times for the FOCE I and SAEM algorithms were compared. In addition bias and 

imprecision in pharmacokinetics and individual concentration predictions were examined 

using the Sheiner et al approach (1981b).  The algorithm which was fast and produced 

unbiased and precise predictions was used for covariate modelling.  

 

Bias and imprecision were estimated for the pharmacokinetic parameters of interest, 

clearance and V1, and the measured versus population predicted concentrations. Bias was 

defined as mean difference in prediction error if the results were normally distributed  or 
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median if they were not (Sheiner LB and Beal SL, 1981b). Lower bias indicates higher 

accuracy in model predictions.  Bias was then assessed by comparing mean prediction errors 

with zero using the Student’s t test if  the data were normally distributed and the median 

prediction using the Wilcoxon signed rank test otherwise with statistical significance set at p 

<0.05. The 95% confidence interval of the difference was also examined using Minitab 

Version 15 (Minitab Ltd.). The following formulas were used to estimate the prediction 

errors for pharmacokinetic estimates and concentrations; 

 

 

 

 

Imprecision was based on the root mean squared prediction error if the data were normally 

distributed, or the median absolute (unsigned) error if the data were non-normally 

distributed. A lower value indicates higher precision in model predictions.  

 

3.3.3.2 Covariate model 

The covariates tested were age, weight, height and serum creatinine concentration. In 

addition, other derived covariates were tested, including lean body weight (LBW) 

(Janmahasatian S et al., 2005), and body surface area (BSA) (Mosteller RD, 1987). Patient’s 

nutrition status was determined using the body mass index (BMI) (World Health 

Organisation, 2011) grouped according to the World Health Organisation categorisation into 

four groups; underweight (BMI < 18.5 kg/m2), normal weight (BMI = 18.5 to 24.99 kg/m2), 

overweight (BMI = 25 to 29.99 kg/m2), and obese (BMI ≥ 30 kg/m2) (World Health 

Organisation, 2011).  The formulas used to determine the derived body size measurements 

and body mass index are as follow;  
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In addition, renal function was another tested covariate and it was estimated by the 

Cockcroft and Gault equation (1976) using three approaches. The first approach was to use 

the measured concentration and the second was to fix serum creatinine concentration to 60 

µmol/L if the measured concentration was less than 60 µmol/L, as recommended by Duffull 

et al (1997) and Rosario et al  (1998).  

 

 

 

 

 

A further approach was to multiply the Cockcroft and Gault estimate of creatinine clearance 

by 0.69 for individuals who were underweight by 15% or more (Khuu T et al., 2010). Weight 

was used in the Cockcroft and Gault formula. The methodology of Khuu et al (2010) was 

followed whereby ideal body weight was determined by the Devine method (Devine BJ, 

1974), then percent underweight was calculated as follows: 
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The mechanistic model proposed by Matthews et al (2004) and Anderson and Holford 

(2009), which separates drug clearance into renal and non-renal components, was also 

investigated. This model assumes different creatinine production rates for patients whose 

creatinine concentration is above or below 60 µmol/L. A full mechanistic model, in which all 

model parameters were estimated from the dataset, and a model that included the fixed 

parameters for creatinine clearance reported by Matthews et al (2004) were compared. An 

example of the control file used for this model is shown in APPENDIX III. In addition, other 

potential covariates including aminoglycoside type (gentamicin or tobramycin), the number 

of courses of therapy and the time since the first course were evaluated.  

 

The relationships between individual pharmacokinetic estimates and covariates were 

visually examined by scatter plots using the NONMEM post-processing package Xpose 4 

(version 4.3.5) (Jonsson and Karlsson, 1999) implemented in R (version 2.15.1) (R Core 

Team, 2012). Covariates that were identified as having a potentially strong relationship with 

a pharmacokinetic parameter were included in the model first. In addition, a generalised 

additive model (GAM) (Mandema JW et al., 1992) analysis of covariates and parameters was 

performed using Xpose 4. Covariates suggested by the GAM analysis with the lowest Akaike 

number were added to the model.  

 

There is no consensus of how best to do covariate modelling when WSV is to be used, 

before or after the addition of WSV. In the current study, the addition of covariates was 

modelled first without WSV. Within-subject variability was then added to the potential final 

covariate models. The reason behind this decision was to avoid the long computation time 

associated with the very complex model. Covariates were retained in the model when a 

statistically significant improvement in the fit of the model to the data was observed. This 

significant improvement was defined as a reduction in the OFV of 6.63 (P ˂ 0.01) during the 
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stepwise addition of covariates and an increase in OFV of ≥10.3 (P ˂ 0.001) during the 

stepwise removal of covariates. Furthermore, an increase in goodness-of-fit caused by the 

introduction was examined by the measured and predicted concentrations, and conditional 

weighted residuals against time after dose and population predicted concentrations. The 

addition of more covariates into the model was decided after examining parameter 

variability (etas) plots against covariates to assess whether anything was missing from the 

model.  

 

Linear and allometric relationships with weight and power relationships for time and course 

number were tested.  In addition, clinical factors were centred or scaled to their median 

value as appropriate. The following different structures for modelling covariates were used 

singly or in combination: 

 

Linear modelling: 

CLi = (TVCL (1+Ɵn+1 (Covariate - Median)) EXP (ηi) 

CLi = (TVCL x Body size measurement (1+Ɵn+1(Covariate - Median)) EXP (ηi) 

CLi = (Ɵn+1 x Body size measurements + Ɵn+1 (Covariate - Median)) EXP (ηi) 

 

Non-linear model: 

CLi = (TVCL ((Covariate/Median) Ɵn+1)) EXP (ηi) 

 

Allometric scale model: 

CLi = (TVCL (Weight/70)0.75) EXP (ηi) 

 

Mechanistic model: 

CLi=(Ɵn+1(LBW/70)0.75+Ɵn+1(CrCL(L/h)/7.26 L/h/70 kg x (LBW+0.211(Weight–LBW) /70)0.75)) 

EXP(ηi)    

 

Where CLi is the clearance value for the ith subject, TVCL is the typical clearance estimate, 

Ɵn+1 is the proportional change of typical value per unit of covariate, ηi is between-subject 
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variability and represents the difference between the individual parameter and the typical 

population  value for the ith subject with zero mean and variance ω2. The term “7.26 

L/h/70kg” in the mechanistic model refers to the standard GFR for an adult patient weighing 

70 kg, and the 0.211 is a correction term for the contribution of fat mass to GFR.  

 

Models investigated for V1 included direct linear relationships with body size 

measurements, linear relationships with an intercept, non-linear relationships and 

allometric scaling as presented below: 

 

Linear model: 

V1i = (TVV1 x Body Size) EXP (ηi) 

V1i = (TVV1 (1+ Ɵn+1(body size - median))) EXP (ηi) 

 

Non-linear model: 

V1i = (TVV1 (body size / median) Ɵn+1) EXP (ηi) 

 

Allometric scale model: 

V1i = (TVV1 (Weight / 70) EXP (ηi) 

 

Mechanistic model: 

V = (TVV1 x (LBW+ (WT-LBW)/70))) EXP (ηi) 

V = (TVV1 (1+ Ɵn+1 (LBW+ (WT-LBW)/70))) EXP (ηi) 

 

Where V1i is the volume of distribution of the central compartment of the ith subject, TVV1 is 

the typical population value for V1, Ɵn+1 is the proportional change of typical value per unit 

of covariate, ηi is between-subject variability and represents the difference between the 

individual parameter and the typical population value for the ith subject with zero mean and 

variance ω2. An example of a covariate modelling control file is shown in APPENDIX II and III.  

 

In addition, time since the first course was modelled as covariates. A non-linear (power) 

relationship was used to test relationships between CL and time as follow; 
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IF(OBST.EQ.0)THEN 
CLi= TVCL x EXP (ηi) 
ELSE 
CLi= TVCL x ((OBST/Median)Ɵn+1) EXP (ηi) 
ENDIF 
Where CLi is the clearance of the ith subject, TVCL is the typical population value for CL, Ɵn+1 

is the proportional change of typical value per unit of covariate, ηi is between-subject 

variability and represents the difference between the individual parameter and the typical 

population value for the ith subject with zero mean and variance ω2, OBST refers to the 

observation time in years. 

 

3.3.3.3 Distribution and elimination half-lives estimates 

The individual parameter estimates obtained with the final model were used to calculate 

individual estimates of distribution and elimination half-life. For the one compartment 

model, the elimination half-life was estimated as follows: 

 

 

Where k is the elimination rate constant, as discussed in the structural model section. 

 

 For the two-compartment model, the distribution half-life was estimated as follows: 

 

Where λ1 was calculated with the following formula: 

 

The elimination half-life was estimated with the following formula: 

 

Where λ2 was calculated with the following formula:  
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where k12 and k21 are the transfer rate constants from central to peripheral compartment 

and vice versa and k10 is the elimination rate constant from V1.  These parameters were 

estimated from: 

 

 

 

3.3.3.4 Pharmacokinetic parameter changes over time 

The influence of multiple courses of therapy on aminoglycoside clearance was examined 

visually by plotting individual clearance estimates against course number for all patients 

who received more than one and more than 10 courses of therapy and by comparing first 

and final clearance estimates in patients who received at least 10 courses of therapy (paired 

Student’s t-test, p<0.05 significant). Data were plotted using Minitab version 15, (Minitab 

Ltd, Coventry, UK).  

 

3.4 RESULTS 

3.4.1 Patient characteristics 

Aminoglycoside concentration-time data were available from 166 patients of whom 81 were 

male and 85 female. The demographic and clinical characteristics of all 166 patients and 

grouped according to gender are summarized in Table 3.1. The majority of patients were 

young, with a median age of 23 years. Although the eldest patient was 66 years of age, 

patients were typically less than 40 years of age for most of their courses of therapy, as 

shown in the histogram plot of age in Figure 3.1. Information from 22 patients (58 courses) 

was available when they were more than 40 years old. One female patient had a missing 

height, so the median female height was used. Since the highest estimate of BMI was 29 

kg/m2, none of the patients was obese, but patients were defined as overweight (BMI = 25 
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to 29.99 kg/m2) in 4% of courses and underweight (BMI < 18.5 kg/m2) in 40% of courses. 

Tobramycin was used in 96% of courses and gentamicin in 4%. Females were significantly 

smaller in body size compared to males with median weights and heights of 48 kg and 158 

cm versus 55 kg and 171 cm respectively (P <0.001). Figure 3.2 shows patients’ 

characteristics as a matrix plot. The difference in body size measurements because of 

gender is clearly seen in lean body weight as expected from Janmahasatian et al (2005) 

equation against weight and body surface area. These matrix plots indicated also a poor 

correlation between weight and height in this group of patients. 

 

Twenty nine of the measured serum creatinine concentrations had already been fixed to 60 

when the data were collected and the actual values were not available.  Of 1075 creatinine 

concentration measurements, 136 (13%) were < 60 mol/L and were fixed to 60 mol/L for 

the purpose of calculating creatinine clearance. Patients typically had normal renal function; 

however, one patient had moderate renal impairment with an estimated creatinine 

clearance that ranged between 35 and 48 mL/min during different courses of therapy. No 

trend was observed in this patient’s renal function over time. A frequency distribution of the 

measured serum creatinine concentrations and creatinine clearance estimated by the 

Cockcroft and Gault equation for all courses is shown in Figure 3.3.  
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Table 3.1  Summary of the demographic and clinical characteristics for Glasgow patients 
as overall and group based on gender. 

Patient Characteristic 
Glasgow data 

Median (Range) 
Male 

Median (Range) 
Female 

Median (Range) 

Number* 166 81 85 

Age (years)** 23 (14 - 66) 24 (14 – 66) 22 (14 – 56) 

Weight (kg)** 50 (30-  86) 55 (32 – 86) 48 (30 – 80) 

Height (cm)** 163 (139 - 191) 171 (150 – 191) 159 (139 – 174) 

Serum creatinine 
(µmol/L)** 

71 (29 - 203) 76 (38 – 203) 67 (29 – 112) 

BSA (m2)** 1.5 (1.07 – 2.08) 1.6 (1.2 – 2.1) 1.4 (1.1 – 1.9) 

LBW (kg)** 37.4 (22.1 - 65.8) 48 (32 – 66) 33 (22 – 46) 

BMI (kg/m2)** 19.1 (11.5 - 29.3) 19 (12 – 28) 19 (13 – 29) 

CGCL (ml/min)** 92 (35 - 181) 104 (35 – 181) 85 (50 – 128) 

EGCL (mL/min)** 93 (35 - 228) 105 (35 – 181) 86 (50 – 228) 

FGCL (mL/min)** 82.4 (24.3 – 227) 82 (24 – 181) 82 (40 – 228) 
Key: BSA= Body Surface Area, LBW= Lean Body Weight, BMI= Body Mass Index, CGCL= Corrected estimated creatinine clearance using 
the Cockcroft and Gault equation  (C&G) (Cockcroft DW and Gault MH, 1976) with minimum serum creatinine concentration fixed to 60 
µmol/L (Duffull SB et al., 1997, Rosario MC et al., 1998), ECGCL= estimated creatinine clearance using C&G (Cockcroft DW and Gault 
MH, 1976) and the reported serum creatinine, FGCL= estimated creatinine CL using C&G and a factor for individuals who were  15 % and 
more underweight (Khuu T et al., 2010). 
*based on number of patients = 166 
**based on total number of courses = 1075 

 

 

Figure 3.1  Frequency histogram of patient age in the Glasgow dataset. 
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Figure 3.2  Matrix plots of patient characteristics grouped according to gender. 
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Key: The black open circles indicate females and the red open circle indicated males. 
WT= Weight (kg), HT= Height (cm), BSA= Body Surface Area (m2) (Mosteller RD, 1987), LBW= Lean Body Weight (kg) (Janmahasatian S et al., 2005), serum creatinine (µmol/L), Creatinine clearance estimated by 
Cockcroft and Gault equation(1976) with serum creatinine concentrations below to 60 µmol/L fixed to 60 µmol/L (Duffull SB et al., 1997, Rosario MC et al., 1998). 
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Figure 3.3  Frequency distribution of serum creatinine and creatinine clearance 
estimates from 1075 courses in 166 patients. 
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In total, there were 1075 courses of therapy, ranging from 1 to 28 per patient with a median 

of 5 occasions, as illustrated in Figure 3.4. Of the 166 patients, 38 (23%) had only one course 

of aminoglycoside therapy, 57 (34%) had up to 5 courses, 38 (23%) had up to 10 courses, 25 

(15%) had up to 20 courses and 8 (5 %) more than 20 courses. 

 

Figure 3.4  Number of occasions versus patient identification number. 
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3.4.2 Aminoglycoside doses and concentrations 

Aminoglycoside doses were administered by bolus injection or 5 minute infusion.  The 

median dose was 360 mg/day and ranged from 120 to 660 mg/day.  Overall, 44 (4 %) of the 

courses were administered 8 hourly, 1022 (95 %) 12 hourly and 9 courses (1%) 24 hourly. A 

total of 2238 aminoglycoside serum concentrations were available and the number of 

samples per occasion per patient ranging from 1 to 11, with a median of 2. Table 3.2 shows 

a summary of the peak, mid-dose and trough measured concentrations. The majority of 

samples were peak concentrations (49%, typically 1 hour post dose, median 9.3 mg/L, range 

2.6 – 18 mg/L) or trough concentrations (37%, median 0.4 mg/L, range 0.1 – 3.2 mg/L) and 

most (83%) were withdrawn within 72 hours of starting drug therapy. The measured 

concentration versus time after dose plot is presented in Figure 3.5. 

 

Table 3.2  Summary of the measured aminoglycoside concentrations (n = 2238). 

Aminoglycoside Concentrations Median Range 

Peak Concentration (mg/L)* 
(n = 1086) 

9.3 2.6 - 18 

Mid-dose Concentration (mg/L) 

(n = 316) 
0.8 0.1 – 8.9 

Trough Concentration (mg/L) 

(n = 836) 
0.4 0.1 – 3.2 

Key: * “Peak” concentrations were measured within the first 2 hours after the infusion 
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Figure 3.5  Scatter plot of the Glasgow observed aminoglycoside concentrations versus 

time after dose. 

 
 

3.4.3 Population pharmacokinetic analysis 

3.4.3.1 Structural model 

A two-compartment model (OFV 33 for FOCE I and 30 for the SAEM algorithm) provided a 

better fit of the data than a one compartment model (OFV 177 for FOCE I and 168 for the 

SAEM algorithm). Although the OFV indicated an advantage in using a two compartment 

model, this was not clearly observed in scatter plots of the measured concentrations plotted 

against predicted concentrations with either the FOCE I (Figure 3.6 above) or SAEM 

algorithms (Figure 3.6 below). With both models, there was more variability in the higher 

concentrations. There was no difference between the FOCE I and SAEM algorithms in regard 

to model preference or parameter estimates, as shown in Table 3.3. However, run times 

were longer using the SAEM algorithm (1715 for the one and 9922 seconds for the two 
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compartment model) compared with the FOCE I algorithm (12.9 for the one and 79.6 

seconds for the two compartment model) regardless of the compartment model used.   

 

The FOCE I algorithm produced unbiased clearance (-0.02 L/h (95 % confidence interval; -

0.07, 0.03)) and inter-compartmental clearance (-0.001 L/h (95 % confidence interval; -

0.003, 0.002)) estimates with high precision (0.6 and 0.02 L/h), whereas the SAEM algorithm 

produced biased clearance (0.06 L/h (95 % confidence interval; 0.006, 0.11)) estimates but 

with high precision (0.6 L/h). On the other hand, the FOCE I algorithm produced biased V1 

estimates (-0.165 L (95 % confidence interval; -0.28, -0.06) compared with the SAEM 

algorithm (-0.10 L (95 % confidence interval; -0.22, 0.006)) and slightly lower imprecision 

(1.15 L and 1.19 L). Both algorithms produced biased V2 estimates (0.15 L (95 % confidence 

interval; 0.08, 0.21) and 1.44 L (95 % confidence interval; 1.15, 1.75)) but the SAEM 

algorithm produced less precise estimates compared with the FOCE I algorithm (2.78 vs 0.79 

L). The FOCE I algorithm produced unbiased population concentration predictions (0.015 

mg/L (95 % confidence interval; -0.01, 0.046), whereas the SAEM algorithm produced biased 

population concentration predictions (-0.042 mg/L (95 % confidence interval; -0.071, 0.013)) 

but both algorithms were highly precise (0.38 mg/L). 

  

The conditional weighted residual versus time after dose plots shown in Figure 3.7 (a and b) 

did not indicate any improvement in fit with the more complex model since both plots had a 

random distribution around zero and an acceptable range of error ( -4 to 4). Both models 

tended to under-predict concentrations 15 hours after administration; however, this trend 

was less pronounced for the two-compartment model. The conditional weighted residuals 

against population model predictions plot indicated that both models predicted 

concentrations with a few outliers whose conditional weighted residuals were greater than 

±4. Since there was no difference between the FOCE I and the SAEM algorithms and the run 

time was much longer using the SAEM algorithm, the FOCE I algorithm was used for 

covariate modelling. Eta shrinkage using FOCE I algorithm was low for drug clearance (7.4%) 

and volume of distribution of the central compartment (V1) (18.5%) but high for volume of 
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distribution of the peripheral compartment (V2) (75%) and inter-compartmental clearance 

(Q) (69%) in comparison to a typical accepted shrinkage value of less than 30 %. 

 

Table 3.3  One and two compartment structural model comparison using the FOCE I and 
the SAEM algorithms. 

Parameter 
One compartment Two compartments 

FOCE I SAEM FOCE I SAEM 

OFV 177 168 33.1 30.1 

CL (SE) (L/h) 4.56 (0.08) 4.51 (0.09) 4.63 (0.10) 4.60 (0.09) 

V1 (SE) (L) 14.7 (0.19) 14.6 (0.21) 14  (0.22) 13.7 (0.26) 

V2 (SE) (L) - - 6.81 (1.79) 5.64 (1.52) 

Q (SE) (L/h) - - 0.37 (0.04) 0.48 (0.08) 

Additive error 
(SE) (mg/L) 

0.17 (0.01) 0.17 (0.01) 0.16 (0.01) 0.15 (0.01) 

Proportional 
error (SE) (%) 

16.9 ( 0.007) 16.9 (0.007) 16.9 (0.007) 16.9 (0.007) 

Key: FOCE I= First order conditional estimation with Interaction, SAEM= Stochastic Approximation Expectation Maximization, OFV= 
Objective function value, CL= Clearance, V1= Volume of distribution of the central compartment, V2= Volume of distribution of the 
peripheral compartment, Q= Inter-compartmental clearance, SE= Standard error.
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Figure 3.6  Observed versus predicted aminoglycoside concentrations panel a) one compartment model using FOCE I (above)  and SAEM 
(below algorithms, and panel b) two compartment structural models using FOCE I (above) and SAEM (below) algorithms. The black line is the 
line of unity and the black dashed line is a smooth. 

   

 

a)  b) 
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Figure 3.7  Scatter plot of conditional weighted residual versus time after dose and population predicted concentrations for the one 
comaprtmnet model (panel a) and two compartment model (panel b) using FOCE I (above) and SAEM (below) algorithms. 

  

 

  

a) 
b) 



  50        50        

 

3.4.3.2 Covariate model 

Figures 3.8 and 3.9 shows scatter plots of individual estimates of clearance against the 

various covariates. The strongest relationships with clearance were seen with estimated 

creatinine clearance using actual serum creatinine values (EGCL) and when creatinine 

concentrations below 60 mol/L were fixed to 60 µmol/L (CGCL). Negative trends were seen 

with serum creatinine.  Body size measurements, including weight, height, body surface 

area, and lean body weight showed weaker correlations with aminoglycoside clearance. 

Figure 3.10 (a and b) shows the GAM analysis results for potential covariates for clearance 

that resulted in the lowest Akaiki values and residuals versus potential covariates. The 

suggested covariates on clearance were height and a non-linear relationship with estimated 

creatinine clearance (CGCL). In Figure 3.11 the individual influence on the GAM fit showed 

that two patients (40 and 89) had a high influence on the fit and the certainty in the fit 

would depend on these data points.  
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Figure 3.8  Scatter plots of individual estimates of clearance versus serum creatinine, 
creatinine clearance measurements, and age. The grey line represents a smooth through the 
data points. 

 

 

Key: CREA= serum creatinine in µmol/L, CGCL= estimated creatinine clearancein mL/min using the Cockcroft and Gault equation (1976) 

with the lowest serum creatinine set to 60 mol/L (Duffull SB et al., 1997, Rosario MC et al., 1998), EGCL= estimated creatinine 
clearance in mL/min using the Cockcroft and Gault equation (1976) using the actual serum creatinine values, FGCL= estimated 
creatinine clearance in mL/min using the Cockcroft and Gault equation using a factor for patients with serum creatinine less than 60  

mol/L (Khuu T et al., 2010),Clearance  is in L/h, and  Age is in years. 
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Figure 3.9  Scatter plots of individual estimates of clearance versus the different body 
size measurements. The grey line represents a smooth through the data points. 

 

Key: WT= weight in kg, HT= height in cm, BSA= body surface area (Mosteller RD, 1987) in m2, LBW= lean body weight (Janmahasatian S 

et al., 2005) in kg. 
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Figure 3.10   Clearance GAM analysis showing a) Akaike value for different covariate models and b) residuals versus potential covariates. 

 

 

 

a) b) 
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Figure 3.11  Individual influence on GAM fit for clearance. 

 

 

Relationships between covariates and aminoglycoside V1 are illustrated in Figure 3.12. 

Although there was a trend with weight, the plots suggested that height, body surface area 

and lean body weight were better descriptors. The GAM analysis suggested height, a non-

linear relationship with lean body weight and estimated creatinine clearance (CGCL) as 

potential covariates for V1 (Figure 3.13). In Figure 3.14 the individual influence on GAM fit 

showed that two patients (89 and 127) had high influence on the fit and the certainty in the 

fit would depend on these data points.  
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Figure 3.12  Scatter plots for V1 versus covariates. The grey line is a smooth. 

 

 

 

Key: WT= weight in kg, HT= height in cm, BSA= body surface area (Mosteller RD, 1987) in m2, LBW= lean body weight (Janmahasatian S 

et al., 2005) in kg.  
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Figure 3.13  V1 GAM analysis showing a) Akaki values for different covariate models and b) residuals versus potential covariates.  

 

LBW 
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Figure 3.14  Individual influence on GAM fit for V1. 

 

For V2 the GAM analysis showed that height and a non-linear relationship with creatinine 

clearance (CGCL) could be potential covariates. The potential covariates for Q were a non-

linear relationship with height and serum creatinine. The scatter plots for V2 and Q against 

the different covariates failed to identify any trends. 

 

Table 3.4 shows the results obtained when covariates were added singly and in combination 

into the population model. A reduction in the OFV was obtained when the different renal 

function estimates (FGCL, CGCL and EGCL) were added to clearance model. Although 

estimated creatinine clearance using actual serum creatinine measurements (EGCL) 

produced the lowest OFV, there was no difference in BSV and residual errors obtained from 

models using the actual serum creatinine (EGCL) or setting a minimum serum creatinine 

level (CGCL). Weight was also included into clearance model using allometric scaling, the 

OFV increased to 193 with no change in BSV when the power was fixed to 0.75. However, 

when the power was estimated the OFV reduced to 22. The addition of body size 
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measurement to the V1 model resulted in further reduction in OFV and BSV. When clinical 

factors were combined in the population model, statistically significant improvements in fit 

were identified with CGCL and height on clearance and height in the V1 model. These 

reduced BSV from 23 to 20 % for clearance and 14 to 10 % for V1. This model is highlighted 

in red in Table 3.4. When height in clearance model was centred on median height, an 

additional parameter was required that was close to 0 and did not improve the fit (change in 

objective function value = 0). The simpler model was therefore chosen. Using actual weight 

or lean body weight rather than height to describe clearance again produced a poor fit with 

an increase in OFV from -77 to 184 with actual weight and to 57 with lean body weight. BSV 

also increased, from 23% to 24.5% with actual weight and to 25% with lean body weight. 

Using body surface area, a slight improvement was seen in the model fit (OFV 33 to 10). An 

additional model in which age was modelled as categorical variable with a cut off at 18 years 

old was also tested. However, OFV (33) did not change and both group of patients had 

similar clearance estimates of 4.6 L/h. 

 

With the mechanistic model, a better fit was obtained when CrCL parameters were 

estimated rather than taken from the model of Matthews et al (2004) (OFV -75 vs -63) and 

reduced BSV from 23 to 20 %, and height was a better descriptor than allometrically scaled 

size for “non-renal” clearance (OFV -75 compared to -39). For both the empirical and the 

mechanistic models, CrCL only had a small influence on clearance. Estimated CrCL using 

both the mechanistic approach and the Cockcroft and Gault equation were highly 

correlated, as shown in Figure 3.15. However, patients whose serum creatinine was 60 

µmol/L or less tended to have higher estimates of CrCL using the mechanistic approach 

(maximum 264 mL/min) compared with the Cockcroft and Gault equation (maximum 181 

mL/min).   

 

Although the effect was less pronounced, with both the empirical and the mechanistic 

models, V1 was also better described using height rather than actual weight or lean body 

weight. BSV estimates for V2 and Q were poorly characterised and removal of these 

parameters had no effect on OFV or other model parameter estimates. A series of analyses 
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in which V2 and Q were assumed to be related to size consistently found that such 

assumptions produced poorer fits of the data, rounding errors, unsuccessful minimisations 

and/or unrealistic parameter estimates. 

 

Neither the number of courses of therapy nor time since the first course had any influence 

on aminoglycoside clearance. Aminoglycoside type (gentamicin or tobramycin) had no 

influence on the model. The main population pharmacokinetic model parameter estimates 

for the empirical and mechanistic models are listed in Table 3.4.  
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Table 3.4  Summary of covariate sub-model building results. 

OFV CL model (L/hr) BSVCL % V1 model (L) BSVV1 % 

Empirical approach (no WSV) 

33.1 4.63 23 14.0 14 

22.8 4.84 x (WT/70)0.14 22 13.9 14 

-13.3 4.60 + 0.007(FGCL-82) 21 14.0 14 

-16.2 4.60 + 0.011 (CGCL-92) 20 14.0 14 

-18.7 4.58 + 0.009 (EGCL-93) 20 14.0 14 

184 0.088 x WT+ 0.00003 (CGCL-92) 24.5 13.6 x (1 + 0.0158 (WT-50)) 11 

58.1 0.116 x LBW + 0.0003 (CGCL-92) 25 12.0 x (1 + 0.214 (LBW-37)) 11 

10.5 2.98 x BSA + 0.001 (CGCL-92) 21 9.07 x BSA 10 

-6.14 5.04 x (WT/70)0.28 22 15.5 x (WT/70)0.35 11 

-57.6 4.58 x (1+ 0.00264 x (CGCL-92)) 20 13.8 x(1+0.00820x(HT -163)) 10 

-77.1 0.0278 x HT + 0.0112 (CGCL-92) 20 13.7 x (1 + 0.0109 (HT-163)) 10 

Mechanistic approach (no WSV) 

-38.6 
5.24 x (LBW/70)0.75 

+ 0.704 x (CrCL (L/h)/ 7.26 L/h/70 kg x 
(LBW+0.211(Weight–LBW) /70)0.75)) 

19 
8.39 x (1+0.879  

x (LBW+(WT-LBW)/70)) 
11 

-62.6 
0.022 x HT 

+ 0.866 x (CrCL (L/h)/ 7.26 L/h/70 kg x 
(LBW+0.211(Weight–LBW) /70)0.75)) 

20 13.8 x (1+0.00939(HT-163)) 11 

-75.4 
0.0225 x HT 

+ 0.654 x (CrCL (L/h)/ 7.26 L/h/70 kg x 
(LBW+0.211(Weight–LBW) /70)0.75)) 

20 13.7 x (1+ 0.00949 (HT-163)) 11 

Key: OFV= Objective function value, CL= clearance, BSVCL= Between-subject variability in clearance, V1= Volume of distribution of the 

central compartment, BSVV1= Between-subject variability in V1, WSV= Within-subject variability, WT= weight in kg, CGCL= estimated 

creatinine clearance in mL/min using the Cockcroft and Gault equation (1976) with the lowest serum creatinine is 60 mol/L (Duffull SB 

et al., 1997, Rosario MC et al., 1998), HT= height in cm, BSA= body surface area (Mosteller RD, 1987) in m2, LBW= Lean body weight 

(Janmahasatian S et al., 2005) in kg, CrCL= creatinine clearance estimated using the mechanistic approach (Matthews et al., 2004, 

Anderson BJ and Holford NHG, 2009). 
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Figure 3.15  Scatter plot of creatinine clearance estimated by the mechanistic approach 
against the estimates from the Cockcroft and Gault equation. 
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Key: The black open circle is patients whose serum creatinine was greater than 60 µmol/L. The red open circles are patients whose 
serum creatinine was 60 µmol/L or less. CrCL= creatinine clearance estimated by mechanistic approach (Anderson BJ and Holford NHG, 
2009, Matthews et al., 2004). CGCL= estimated creatinine clearance using the Cockcroft and Gault equation (Cockcroft DW and Gault 

MH, 1976) with the lowest serum creatinine is 60 mol/L (Duffull SB et al., 1997, Rosario MC et al., 1998). 

 

3.4.3.3 Within -subject variability 

The inclusion of WSV on clearance achieved a further improvement in fit (OFV -304), before 

the addition of covariates, with a reduction in the BSV from 23 to 21 % and the residual 

error from 0.16 mg/L and 17 % to 0.08 mg/L and 15 %, but adding WSV to V1 had no effect. 

The creatinine clearance (CGCL) alone reduced BSV from 21 to 18.5% and the addition of 

height reduced it further to 18 %. A similar improvement in fit was obtained when WSV was 

added to the mechanistic model (OFV -310) but CrCL parameters could not be estimated 

and instead were fixed to the values obtained using the model without WSV.   

 

The final population pharmacokinetic model parameter estimates for the empirical and 

mechanistic models are listed in Table 3.5. The empirical model identified a typical clearance 

estimate of 4.65 L/h at the median height of 163 cm and median CrCL of 92 mL/min. The 

typical V1 was 13.3 L and changed by 11% for every 10 cm difference from 163 cm. Similar 

results were obtained with the mechanistic model. Using the final empirical model, the 

aminoglycoside distribution and elimination half-lives were estimated. The first estimated 
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population half-life (t 
λ1

1/2) was 1.74 hours (range 1.19-3.26) and the second population half-

life (t λ2
1/2) was 12.5 hours (10.8-15.2).  

 

Table 3.5  Summary of model with within subject variability included. 

OFV CL model (L/hr) 
BSVC

L % 
WSVCL 

% 
V1 model (L) 

BSVV1 
% 

Empirical approach (full model with WSV) 

-210 4.72 (0.0942) 21 11 13.6 (0.225) 16 

-304 
0.0285 (0.000504)xHT+ 0.0114 

(0.00221) (CGCL-92) 
18 11 

13.3(0.189)(1+0.0113 
(0.00127) (HT-163)) 

12 

Mechanistic approach (full model with WSV) 

-256 
5.07 (0.289) x (LBW/70)0.75+ 0.83 
(0.100)x (CrCL/ 7.26 L/h/70 kg x 

(LBW+0.211(Weight–LBW) /70)0.75)) 
17 11 

8.84 (0.953) (1+0.718 
(0.223)x (LBW+(WT-

LBW)/70)) 
13 

-303 
0.0216 ( 0.00143) x HT+ 1.01               

(0.192)x (CrCL/7.26 L/h/70 kg x 
(LBW+0.211(Weight–LBW) /70)0.75)) 

18 11 
13.4 (0.199)(1+ 0.00958 

(0.000123) (HT-163)) 
12 

-310 
0.0226 (0.00117) x HT+0.709              

(0.126)x (CrCL/7.26 L/h/70 kg x 
(LBW+0.211(Weight–LBW) /70)0.75)) 

18 11 
13.4 (0.192) (1+0.00974 

(0.00105) (HT-163)) 
12 

Key: OFV= Objective function value, CL= clearance, BSVCL= Between-subject variability in clearance, V1= Volume of distribution of the 

central compartment, BSVV1= Between-subject variability in V1, WSV= Within-subject variability, WT= weight in kg, CGCL= estimated 

creatinine clearance in mL/min using the Cockcroft and Gault equation (1976) with the lowest serum creatinine is 60 mol/L (Duffull SB 

et al., 1997, Rosario MC et al., 1998), HT= height in cm, BSA= body surface area (Mosteller RD, 1987) in m2, LBW= Lean body weight 

(Janmahasatian S et al., 2005) in kg, CrCL= creatinine clearance estimated using the mechanistic approach (Matthews et al., 2004, 

Anderson BJ and Holford NHG, 2009). Standard errors of each parameter estimate are shown in italics. 

 

Figures 3.16 and 3.17 show the measured concentrations versus final model population and 

individual predictions and the conditional weighted residuals against time after dose and 

population predicted concentrations. There is a close correlation between measured and 

predicted concentrations although the model tended to over predict concentrations greater 

than 10 mg/L. It had also the tendency for higher prediction errors with samples obtained 

after 15 hours of aminoglycoside administration, as shown in the CWRES plot versus time 

after dose. Both the conditional weighted residual plots contained a few outliers whose 

conditional weighted residuals were outside ±4. In addition, the absolute individual 

weighted residual plot shown in Figure 3.18 does not show any trend and confirmed that 

the residual error model is adequate.  
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Figure 3.16  Measured versus predicted aminoglycoside concentration plots using the 
final model. The solid black line is the line of unity and the dotted black line is a smooth. 

 
 

Figure 3.17  Plot of conditional weighted residual versus time after dose (left) and 
population predicted concentrations (right) using the final model. 
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Figure 3.18  The absolute individual weighted residuals versus individual concentration 
predictions using the final model. The grey line is a smooth. 

 
 

3.4.4 Clearance change over time 

Figure 3.19 shows serum creatinine concentration and aminoglycoside clearance plotted 

against the number of courses of therapy for the 128 patients who had more than one 

course and the 43 patients who had at least 10 courses of therapy. No trend can be seen 

with either group.  Furthermore, there was no significant change in clearance in those 

patients who had at least 10 courses of therapy (mean (SD) 4.71 (0.80) L/h first course vs 

4.88 (0.99) L/h last course, p = 0.139, 95 % confidence interval; -0.39 to 0.057). 
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Figure 3.19  Scatter plots of (a and c) serum creatinine and (b and d) aminoglycoside clearance versus the number of courses of therapy for 
(a and b) the 128 patients who had more than one course of therapy and (c and d) the 43 patients who had 10 or more courses of therapy. 
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3.5 DISCUSSION 

3.5.1 Introduction 

The aim of the current study was to investigate factors that influence aminoglycoside 

pharmacokinetics and examine how these parameters vary over time in a group of patients 

with cystic fibrosis who received multiple courses of therapy. Height and creatinine 

clearance were the best descriptors for clearance and height for V1. These descriptors 

reduced between-subject variability from 23% to 18 % for clearance and 14% to 12 % for V1. 

The model included between occasion variability in clearance; however, the value was only 

11 %. The results also indicated that aminoglycoside clearance did not change over time, 

despite multiple courses of therapy.    

 

3.5.2 Patients 

This study is one of the largest population pharmacokinetic analyses in patients with cystic 

fibrosis, as it included 1075 different courses of aminoglycoside therapy from 166 patients. 

The age range included in the current analysis was wide compared with previously 

published studies with 13 % of patients older than 40 years old. The patients had similar 

weight range with other published studies in this group of patients (Campbell D et al., 1999, 

Touw DJ et al., 2007, Burkhardt O et al., 2006).   However, 40% of the patients were 

underweight at one or multiple courses. In the current study, patients with high serum 

creatinine were included, whereas previously published population pharmacokinetic studies 

excluded such patients (Burkhardt O et al., 2006, Touw DJ et al., 2007). Although a wider 

range for patients’ estimated creatinine clearance were included in the current study 

compared to previously published population pharmacokinetic studies in patients with 

cystic fibrosis (Campbell D et al., 1999, Touw DJ et al., 2007, Aminimanizani A et al., 2002), 

only one patient had a creatinine clearance estimate below 50 mL/min.   

 

3.5.3 Structural model 

Aminoglycoside pharmacokinetics are known to be best described by a multi-compartment 

model as reported by Schentag et al (1977), who identified a long terminal elimination half-

life of 100  hours. In the present study, the two-compartment model produced a lower OFV 
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than a one-compartment model (difference in OFV = -144). Although the plots of observed 

versus predicted concentration were very similar, the conditional weighted residual versus 

time after dose plot indicated a small trend for the two-compartment model to produce less 

biased predictions at later times. This was confirmed using both FOCE I and SAEM 

algorithms, which performed similarly in the present study with the FOCE I algorithm 

running faster.  Gibiansky et al (2012) compared the performance of a number of algorithms 

available in NONMEM 7 and found that SAEM algorithm provided similar parameter 

estimates and standard error to the FOCE I algorithm. In addition, Plan et al (2012) found 

that the FOCE I algorithm in NONMEM was fast, robust, accurate and precise. Therefore, the 

FOCE I algorithm was used to develop the covariate model in the present work. A two-

compartment model provided a better fit in the present population analysis and this is 

consistent with  findings from other studies in patients with cystic fibrosis (Aminimanizani A 

et al., 2002, Burkhardt O et al., 2006), cancer (Rosario MC et al., 1998) and general medical 

conditions (Matthews et al., 2004). However, a one-compartment model is often assumed 

for aminoglycoside therapeutic drug monitoring data (Campbell D et al., 1999, Touw DJ et 

al., 2007, Touw DJ et al., 1997).   

 

 Using an extensive sampling strategy, Aminimanizani et al (2002) characterised a 

distribution half-life of 0.4 hours following a single daily dosing regimen of tobramycin in 6 

patients with cystic fibrosis. The apparent distribution half-life reported in the present study 

was 1.75 hours, which is closer to the typical elimination half-life of 3 hours reported 

elsewhere (Aminimanizani A et al., 2002), and is therefore likely to reflect a mixture of 

distribution and elimination. Moreover, the apparent elimination half-life of 12.5 hours 

reported in the present study probably represents a mixture of the principal elimination 

phase and the slow terminal elimination that occurs with aminoglycoside antibiotics 

(Schentag JJ et al., 1977). Similar issues have been reported in previous population studies 

of aminoglycoside pharmacokinetics that used sparse data (Matthews et al., 2004, Rosario 

MC et al., 1998). This could be related to limitation in study design, which prevented the 

identification of a longer elimination half-life. The last sample in the study of Aminimanizani 

et al (2002) was withdrawn within 8 hours after administration. On the other hand, 

concentration measurements in the current study were withdrawn within 24 hour post-dose 
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with the majority within the first 2 hours and at 10-12 hour post-dose and no concentration 

measurements were available after 24 hours. In aminoglycoside treated patients a third 

compartment has been demonstrated with half-lives of 100 hours (Schentag JJ et al., 1977).  

This phase results from re-distribution of the drug from deeper tissues including within the 

kidney and might be associated with the risk of toxicity (Schentag and Jusko, 1977, Schentag 

JJ et al., 1977, Fabre J et al., 1976). The reported elimination half-life in the current study 

was shorter (12.5 vs 100 hours), because most of the concentration measurements were 

withdrawn within the first three days of therapy and drug tissue accumulation would not be 

complete.  

 

3.5.4 Identification of the covariate model  

Patient height and creatinine clearance provided the best description of aminoglycoside 

pharmacokinetic parameters. Creatinine clearance was an expected covariate because 

aminoglycosides are hydrophilic drugs and eliminated mainly by glomerular filtration, which 

makes renal function a good predictor for drug clearance and was consistent with previous 

publications (Matthews et al., 2004, Rosario MC et al., 1998, Levy J et al., 1984, Touw DJ et 

al., 1996). However, creatinine clearance was estimated using the Cockcroft and Gault 

equation (1976) with serum creatinine concentrations below 60 µmol/L fixed to 60 µmol/L 

(Duffull SB et al., 1997, Rosario MC et al., 1998).  Using serum creatinine values less than 60 

µmol/L can result in an overestimate of creatinine clearance (Touw DJ et al., 1996), and an 

improvement in the population predictions of gentamicin clearance was reported when 

serum creatinine concentrations below 60 µmol/L were fixed to 60 µmol/L (Duffull SB et al., 

1997, Rosario MC et al., 1998). A small reduction in OFV (-3.2) was observed in the current 

study when the actual serum creatinine measurements were used to estimate creatinine 

clearance. However, since only 136 of 1075 creatinine concentration measurements were 

less than 60 µmol/L, a fixed minimum serum creatinine value had little impact.  

 

An alternative approach was also investigated to estimate creatinine clearance in patients 

whose serum creatinine was less than 60 µmol/L.  This involved including a factor for 

patients who were 15% and more underweight in the Cockcroft and Gault equation (1976), 
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as recommended by Khuu et al (2010). Although the author suggested that using an 

adjustment factor for estimating renal function in underweight patients was more precise 

and less biased than using a fixed serum creatinine concentration (Khuu T et al., 2010), the 

difference was not statistically significant.  Both methods were found to be superior to 

estimating renal function using the measured serum creatinine concentration.  However, in 

the current population pharmacokinetic analysis, both estimating creatinine clearance using 

the actual creatinine concentration and fixing serum creatinine measurements less than 60 

µmol/L to 60 µmol/L produced a lower OFV compared with using an adjustment factor. The 

little improvement observed when the Khuu et al (2010) approach was applied might be 

related to body weight not being closely related to serum creatinine in the studied group. 

Underweight patients had a wide range of serum creatinine concentrations and did not 

always have low levels. 

 

The typical aminoglycoside clearance estimate of 4.65 L/h reported from the analysis is in 

agreement with values ranging from 4.28 to 5.4 L/h that were found in other studies in this 

group of patients (Campbell D et al., 1999, Beringer PM et al., 2000, Touw DJ et al., 1994, 

Touw DJ et al., 1996), but lower than the estimates of 5.5 L/h reported elsewhere 

(Burkhardt O et al., 2006, Aminimanizani A et al., 2002). Although between subject 

variability in clearance was lower than has been reported in a general population of hospital 

patients who receive aminoglycosides (Matthews et al., 2004), it was consistent with values 

of 12-14% reported in other cystic fibrosis studies (Campbell D et al., 1999, Hennig S et al., 

2007). This difference probably reflects the narrow range of clinical characteristics 

compared to a general patient population in which age, weight, renal function, co-

morbidities and co-medications are more variable.  

 

 The final model indicated that creatinine clearance had low contribution to aminoglycoside 

clearance as it only reduced BSV from 23% to 18.5 %. This probably reflects the narrow 

range of serum creatinine concentrations (96 % were below 100 mol/L) available and the 

observation that only one patient had poor renal function in the current database. 

Difficulties in characterising relationships between aminoglycoside clearance and renal 
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function in this patient group have been reported previously (Touw DJ et al., 1997, Soulsby 

N et al., 2010, Campbell D et al., 1999, Hennig S et al., 2007, Touw DJ et al., 1996, Hennig S 

et al., 2013). Hennig et al (2007) were unable to identify any factor other than size as 

influencing clearance and Soulsby et al (2010) found no relationship between tobramycin 

clearance and measured glomerular filtration rate. Consequently, the population model 

cannot be used to predict aminoglycoside clearance in patients with cystic fibrosis who also 

have renal insufficiency. 

 

The present study provided no evidence that adult patients with cystic fibrosis have higher 

estimates of aminoglycoside clearance than other patient groups. Kirkpatrick et al (1999) 

reported a typical clearance of 4.0 L/h (range 0.68 to 12.5 L/h) in 957 general medical 

patients with a wide range of renal function. Recently, Hennig et al (2013) compared 465 

paediatric and adult patients with cystic fibrosis with 267 paediatric and adult patients 

without cystic fibrosis, and found no difference in tobramycin pharmacokinetics in patients 

with and without cystic fibrosis. In addition, Hendeles et al (1987) found no difference in 

pharmacokinetic parameters in patients with cystic fibrosis and without cystic fibrosis.  In 

contrast to other studies that reported higher aminoglycoside clearances in patients with 

cystic fibrosis, which were typically conducted in small groups of paediatric and young adult 

patients (Kearns GL et al., 1982, Levy J et al., 1984, Mann HJ et al., 1985) and were not 

adequately corrected for size.  

 

In the current study, height produced a better OFV than weight when used to describe 

aminoglycoside clearance. Although height only provided a small improvement in fit, 

reducing BSV from 18.5% with creatinine clearance alone to 18% with the combination, 

when weight was included in the clearance model, the OFV increased substantially to 184. 

Although a wide range of weights was available in the raw data, they were not mirrored by a 

wide range of clearance estimates, which more closely matched the narrow range of 

heights. In addition, there was a poor correlation between weight and height in this patient 

group; some patients with low heights had relatively high weights, whereas some tall 

patients had low weights.  Additionally, there was no relationship between low weight and 
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low creatinine concentration, i.e. low serum creatinine concentrations were seen at a wide 

range of weight values. Substituting lean body weight had similar issues; when lean body 

weight was included into clearance model the OFV value increased. Similar results were 

obtained when the mechanistic approach was applied; height proved a better descriptor of 

clearance than allometric scaling with weight. A better relationship was observed with 

height because it had a narrower range and was constant within an individual patient over 

time.   

 

Height was also the best V1 descriptor, which is the first time this finding has been 

documented in this group of patients, but was documented recently in critically ill patients 

(Conil J-M et al., 2010). Usually weight (Massie J and Cranswick N, 2006, Touw DJ et al., 

2007)  is the covariate explaining between subject variability in aminoglycoside or other 

derived body size measures such as body surface area (Campbell D et al., 1999) or lean body 

weight (Touw DJ et al., 1994). The previous papers used a one-compartment model, which 

might account for the difference in findings, as Wade et al (1994) pointed out. They 

concluded from their work with quinidine and netilmicin that the choice for a “correct” 

covariate and statistical sub-models is highly depending on the structural model. For 

example, weight and gestation age were found to influence V when a one-compartment 

model was used to describe netilmicin data in neonates. However, the influence of these 

covariates was lost when a two-compartment model was used. In the present study, height 

provided a better fit than total body weight and lean body weight (Janmahasatian S et al., 

2005) on V1. This finding might be related to the observation that a high proportion of the 

patients were underweight (40% at one or multiple courses). The lean body weight formula 

used in the current study was developed from  a total of 373 subjects who were 70 % 

overweight or obese and no underweight subjects were included (Janmahasatian S et al., 

2005).  

 

Since the data used in the present study were collected over 15 years and included patients 

who grew up during this time period age might have been expected to influence 

aminoglycoside pharmacokinetics. However, there was no relationship between clearance 
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(or V1) and age. In addition, there was no difference in clearance estimates when age was 

modelled as categorical variable. No effect of age was seen in the current analysis, which is 

not surprising since renal function matures by one year of age, and the majority of the 

patients were mainly young adults.  In the present study, 69 patients (207 courses) were 

under 18 years old with the youngest patient 14 years old and the median age was 23 years. 

A similar finding was documented by VandenBussche et al (2012), who found no difference 

in pharmacokinetic parameters between paediatric patients and young adults (less than 18 

years old) or adults (greater than 18 years old). On the other hand, Hennig et al (2013) 

found that patient age influenced tobramycin clearance. They were able to find an effect 

because their study more paediatric patients with cystic fibrosis (351 patients) and over a 

wider range of age (0.01 to 17.9 years old) were included compared to the present study. 

Therefore, the main focus of the present work was on adult patients with cystic fibrosis. 

Using height as a covariate is an advantage of the model, because it is easy to measure and 

practical to use in clinical setting compared with using derived body size measurements. In 

addition, derived body size measurements usually have more than one method for 

estimation and there is a higher chance of calculation error.  

 

The results with the mechanistic model were similar to those obtained with the empirical 

approach.  Renal function explained much of the variability in clearance and height was 

again superior to allometric scaled weight for both clearance and V1. The apparent “non-

renal” component of clearance was very similar for the mechanistic and empirical models.   

 

The typical value of V1, 13.3 L, was consistent with other studies (Burkhardt O et al., 2006, 

Aminimanizani A et al., 2002, Campbell D et al., 1999, Touw DJ et al., 1994, Touw DJ et al., 

1996), but slightly  lower than estimates of 15.7 L obtained by Beringer et al (2000). This 

could be explained by the patients in the Beringer study being slightly bigger in size with 

median weight of 54 kg. Touw et al (2007) found that volume of distribution decreased with 

increasing age, which they suggested was related to aminoglycosides being water soluble 

drugs that distribute into the extracellular fluid, which decreases with increasing age. This 

observation was not found in the current analysis because the patient group included were 
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mainly young adults. However, in the Touw et al (2007) analysis, both paediatric and young 

adult patients were included and hence there was more scope to identify a  reduction in 

volume of distribution. There was no evidence in the current study that patients with cystic 

fibrosis had higher estimates of aminoglycoside volume of distribution than other patients, 

which contrasts with some (paediatric and young adults) studies (Levy J et al., 1984, Kearns 

GL et al., 1982)  but is consistent with others (MacDonald NE et al., 1983, Mann HJ et al., 

1985, Hennig S et al., 2013).  

 

The V2 and Q estimates, 6.62 L and 0.45 L/h, were in agreement with the values reported by 

Aminimanizani et al (2002). However, it was difficult to characterise between subject 

variability for V2 and Q, which indicates that the sparse data used in this analysis did not 

contain enough information to quantify this parameter. Therefore, between-subject 

variability in V2 and Q were removed from the final model. In the current study, no 

difference in pharmacokinetics between gentamicin and tobramycin was found, which is in 

agreement with Bauer et al (1983). 

 

3.5.5 Within subject variability 

A unique aspect of the present study was the availability of data from patients who were 

administered several courses of aminoglycoside over a prolonged period of time, which 

facilitated the estimation of within-subject variability. Karlsson et al (1993) recommended 

including within-subject variability into the population pharmacokinetic model, because 

they found that including within-subject variability in a previously published covariate model 

led to explaining some of the variabilities. In another example, the effect of a covariate was 

highly dependent on the inclusion of within-subject variability (Karlsson MO and Sheiner LB, 

1993). The authors concluded that failure to include within-subject variability might bias the 

parameter estimates. The magnitude of within-subject variability can be valuable for 

decisions regarding drug therapy. Two studies to date included within-subject variability in 

patients with cystic fibrosis examined data from 35 patients with an average of 4 to 5 

occasions (Hennig S et al., 2007) and 465 patients with an average of 4 to 7 occasions 

(Hennig S et al., 2013), but defined an “occasion” as one dosing interval within a single 
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course of therapy rather than one course of therapy. The reported within-subject variability 

in clearance was small at 6.47% (Hennig S et al., 2007) and 12.6% (Hennig S et al., 2013), 

which indicated that patients’ pharmacokinetic parameters are stable from one dosage 

interval to another. Therefore in the present study, an “occasion” was defined as a course of 

therapy rather than a dosage interval to examine how the pharmacokinetics of 

aminoglycosides vary between different courses of therapy in patients with cystic fibrosis.  

Although the addition of within-subject variability in the present study improved the fit, its 

magnitude was small at 11 %, indicating little variability within a patient between courses of 

aminoglycoside therapy. This indicated a little variation in dose requirements within a 

patient over time and reflects the stable nature of this particular patient group. 

 

3.5.6 Clearance change over time  

The long duration of this study (up to 15 years) with up to 28 courses of therapy allowed the 

long term risks of nephrotoxicity to be evaluated. No changes in aminoglycoside clearance 

were identified with multiple courses of therapy. These findings contrast with the results of 

the TOPIC study (Smyth A et al., 2005), in which a trend towards an increase in serum 

creatinine was identified during a two week course of treatment with once daily 

tobramycin. However, renal damage has previously been found to resolve after stopping 

treatment (Steinkamp G et al., 1986, Bertenshaw C et al., 2007) and the present study is 

consistent with these findings. The lower aminoglycoside doses used (median 7.2 

mg/kg/day compared to 10 mg/kg/day in the TOPIC study) may also have contributed. 

Smyth et al (2008) investigated the risk factors for developing acute renal failure in patients 

with cystic fibrosis. They found no influence of cumulative exposure to aminoglycosides 

during the previous year on the development of acute renal failure. In contrast, Al-Aloul et 

al (2005) did find an association between repeated aminoglycoside use and long-term renal 

damage. However, it is difficult to compare their results with the findings of the present 

study since they did not document the aminoglycoside doses used or the study time scale. 

In addition, Andrieux et al (2010) followed 112 paediatric patients with cystic fibrosis over 8 

years and found no correlation between the cumulative aminoglycosides dose and 

glomerular filtration rate. They found also a low renal impairment regardless of 

aminoglycoside used. However, they raised the question of what is the best method to 
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estimate or measure glomerular filtration rate in cystic fibrosis patients.   Halacova et al 

(2008) evaluated the use of serum cystatin C and creatinine and their clearances to estimate 

glomerular filtration rate in patients with cystic fibrosis on amikacin.  They found that serum 

cystatin C and cystatin C clearance were better predictors of glomerular filtration rate in 

patients with cystic fibrosis than serum creatinine and creatinine clearance.  

 

3.5.7 Conclusions 

A two-compartment model that included within subject variability in clearance provided the 

best fit of the data 

 The covariate model for clearance included estimated creatinine clearance using the 

Cockcroft and Gault equation with serum creatinine concentrations below 60 µmol/L 

fixed to 60 µmol/L and height. 

 The V1 covariate model included height.  

 The impact of within subject variability was small from a clinical perspective. 

 Clearance did not change over multiple administrations of aminoglycoside in patients 

with cystic fibrosis. 

Although creatinine clearance was a statistically significant clinical characteristic in 

explaining variability in clearance, it was not a powerful factor due to its narrow range. 

Because of the few data points collected, usually peak and trough measurements, NONMEM 

faced some difficulties in estimating V2 and Q values and their BSV. Modelling within subject 

variability yielded a more stable model; however, its magnitude was not of clinical 

significance. Multiple dosing did not influence aminoglycoside clearance over time. 
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4.1 INTRODUCTION 

Basic model performance can be investigated by examining the standard diagnostic plots as 

discussed and illustrated in Chapter 3. However, more sophisticated model diagnostic 

methods, for example simulation-based numerical and graphical diagnostics can provide 

additional information.  

 

Bootstrap analysis is an example of a numerical diagnostic and was first introduced by Efron 

for general model evaluation (Efron B, 1979). It provides information on model robustness 

and assesses statistical accuracy and precision.  Bootstrapping involves creating new 

datasets by random sampling with replacement from the original data then applying the 

same analysis steps to each of the new datasets as was performed on the original data. The 

purpose of applying the bootstrap with re-sampling is to assess the stability of the final 

parameter estimates.  The resulting distributions from a large number of bootstrap samples 

are then used to provide confidence intervals for the parameter estimates. The main 

drawback of bootstrap is the extensive computation time to evaluate hundreds of datasets.  

 

Another simulated-based method, the “Visual Predictive Check” (VPC) suggested by Holford 

et al (Holford, 2005, Karlsson M and Holford N, 2008), is to generate a set of simulated 

datasets using the model to be evaluated. The purpose of a VPC is to assess whether the 

model can reproduce the median and variability in the observed data graphically when 

plotted against an independent variable (Bergstrand M et al., 2011). A number of 

simulations with the model of interest are performed, typically using at least 1000 simulated 

datasets. Then, the real data observations are compared with the distribution of the 

simulated observations graphically by plotting them against an independent variable, 

usually time or time after dose.  The percentiles of the simulated data are compared to the 

corresponding percentiles of the observed data graphically.  

 

VPC plots show the level of agreement between observations and simulated predictions. 

However, there are some drawbacks with the traditional VPC methods if doses, dosing 
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times, observation times, and/or covariate values vary between subjects (Bergstrand M et 

al., 2011). Under these circumstances, stratification by important variables might be 

necessary (Karlsson M and Savic RM, 2007). However, a number of strata might be required 

and diagnosis for each stratum might become less informative as the number of graphs 

increases and the amount of data available per graph decreases. Bergstrand et al (2011) 

developed another VPC method that tries to account for these limitations and known as the 

prediction corrected VPC (pcVPC).  In this approach, concentrations are subjected to 

prediction correction before the statistics are calculated (Bergstrand M et al., 2011). The 

purpose of a pcVPC is to correct for the differences within a bin due to independent 

variables, such as time and dose, and due to covariates that are included in the model.  The 

approach facilitates diagnosis of model misspecifications in both fixed and random effects. 

However, this advantage is dependent on how large the differences are in expected 

variability between observations in a specific bin.  

 

Normalised prediction distribution error (npde) is another simulation-based model 

evaluation technique, developed by Comets et al (2008).  It is a normalised version of the 

prediction discrepancies developed by Mentré and Escolano (2006), which is the percentile 

of an observation and its prediction distribution with the assumption that the evaluated 

model adequately describes the data. Using npde is preferred over prediction discrepancies 

(Mentré F and Escolano S, 2006), because prediction discrepancies were found to be 

affected by within-subject correlation, while npde had the advantage of decorrelating 

multiple observations per subject (Comets E et al., 2008, Brendel K et al., 2010). This is an 

important issue to be considered in the present study, where multiple observations per 

subject and multiple courses of therapy were included. 

 

The previous model diagnostic methods evaluated model performance internally. However, 

a more powerful method involves testing model performance with a new, independent 

dataset. This is done by estimating model predictions then determining the bias and 

precision of these predictions. In addition, the previous simulation based methods, pc VPC 
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and npde, can be used to evaluate the adequacy of the population model to describe a new 

dataset. 

 

4.2 AIMS 

To evaluate the adequacy of the developed empirical and mechanistic models listed in Table 

4.1 to describe the data, using internal and external validation methods. The internal 

validation methods were bootstrapping, prediction corrected visual predictive check and 

normalised prediction distribution error. The external validation was conducted using a 

dataset that was generated in the Netherlands.  

 

Table 4.1 Different covariate models tested using the validation datasets. 

OFV CL model (L/hr) 
BSVC

L % 
WSVCL 

% 
V1 model (L) 

BSVV1 
% 

Empirical approach  

-304 0.0285 x HT+ 0.0114 x (CGCL-92) 18 11 13.3 x (1+0.0113 x (HT-163)) 12 

Mechanistic approach  

-310 

0.0226 x HT+0.709  
x (CrCL (L/h)/ 7.26 L/h/70 kg x 

(LBW+0.211(Weight–LBW) /70)0.75)) 
 

18 11 13.4 x (1+0.00974 x (HT-163)) 12 

-256 
5.07 x (LBW/70)0.75+ 0.83  

x (CrCL (L/h)/ 7.26 L/h/70 kg x 
(LBW+0.211(Weight–LBW) /70)0.75)) 

17 11 
8.84 (1+0.718  

x (LBW+(WT-LBW)/70)) 
13 

Key: CGCL= estimated creatinine clearance in mL/min using the Cockcroft and Gault equation (1976) with the lowest serum creatinine 

set at 60 mol/L (Duffull SB et al., 1997, Rosario MC et al., 1998), HT= height in cm,  LBW= Lean body weight (Janmahasatian S et al., 

2005) in kg, CrCL= creatinine clearance estimated using the mechanistic approach (Anderson BJ and Holford NHG, 2009, Matthews et 

al., 2004). 

 

 

4.3 METHODS 

4.3.1 Internal model validation 

4.3.1.1 Bootstrap 

One thousand bootstrap data sets were generated using Perls-Speaks NONMEM (PsN 

version 3.2.12) (Lindbom L et al., 2004, Lindbom et al., 2005) then the parameter estimates 

for each of the 1000 samples were re-estimated using NONMEM version 7.1 (Beal SL et al., 
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2009) for the empirical model listed in Table 4.1. The median and 95th and 5th percentiles of 

the median obtained for each of the parameters with the bootstrap samples were then 

compared with the NONMEM estimates from the empirical population model. The following 

is an example of the command used to perform the bootstrap: 

bootstrap  -samples=1000  -seed=4361  -dir=Boot-dir2  Run436b.mod  -threads=5  

The meaning of the command is as follow: 

bootstrap   To call PsN to run bootstrap  

-samples=N   To set the number of bootstrap datasets to generate 

-seed=N  A seed to generate a random number   

-dir=   The directory name where the output run would be stored 

Run436b.mod   Name of the model file  

-threads=N  The number of parallel processes   

 

4.3.1.2 Prediction-corrected visual predictive checks 

The pc VPC was performed using NONMEM 7.1 (Beal SL et al., 2009) and PsN 3.2.12  

(Lindbom et al., 2005, Lindbom L et al., 2004) with 1000 simulated replicates of the original 

dataset.  In the current study, prediction-corrected VPC was performed using the –predcorr 

option. Binning can help to visualise the results better when observation times are 

heterogeneous between subjects and a range of binning approaches were tried. One 

method involved binning the independent variable such as time after dose with equal 

intervals, an alternative is to have equal number of measured concentrations in each bin. 

The data had variability in sampling times between subjects and hence binning based on a 

defined list of values of the independent variable (sampling schedule binning) was also 

tested. Time after dose was used as the independent variable in the current study. An 

example of pc VPC command is shown below: 

VPC Run436bVPC.mod -samples=1000 -idv=TAD -predcorr -bin_by_count=0 
-bin_array=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 
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The meaning of the command is as follow: 

VPC      To call PsN to run VPC 

Run436bVPC.mod    Name of the model file 

-samples=N     The number of simulated datasets to generate 

-idv     The independent variable to bin on  

-predcorr     Perform prediction correction of dependent variable 

values  

-bin_by_count=0  -bin_array=1,…  Bins based on a defined list of values of the 
independent variable 

 

The output from PsN was graphically presented using the package Xpose 4 in R version 

2.15.1 (R Core Team, 2012). In the pc VPC plots, the observed and simulated data were 

presented as median (50th percentile) and 2.5th and 97.5th percentiles, which corresponded 

to a 95% prediction interval.  Bins correspond to the 95% confidence interval of simulated 

datasets. To plot pc VPC the following command was used in R following loading the xpose 4 

package:   

Library(xpose4) 

then 

xpose.VPC() 

to generate more customised VPC plot, the following options were added in the command 

line: 

xpose.VPC(main=NULL,PI.real="lines",PI.real.up.col=1,PI.real.down.col=1,PI.real.med.col=1,t

ype="n",xlb="Time after dose (hours)", ylb=" Concentrations (mg/L)", PI.ci="area", 

PI.ci.up.arcol="gray70", PI.ci.down.arcol="gray70",PI.ci.med.arcol="gray22",ylim=c(-2,22)) 

main    Plot title 

PI.real    Plot the percentiles of the real data in the various bins 

PI.real.up.col   The colour of the upper PI.real 

PI.real.down.col  The colour of the lower PI.real 

PI.real.med.col   The colour of the median PI.real 
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PI.ci    Plot the prediction interval of the simulated data's percentiles for 
each bin.    

They can be plotted as lines or area or both  

PI.ci.up.arcol   The colour of the upper PI.ci 

PI.ci.down.arcol  The colour of the lower PI.ci 

PI.ci.med.arcol   The colour of the median PI.ci 

Type    Character used to show the observation on the plot. To not show the  
observation on the plot, then use the character “n”  

xlb, ylb    Label for x- and y-axis 

ylim    to set up y-axis limits 

 

4.3.1.3 Normalised prediction distribution error (npde)  

The normalised prediction distribution error was performed using the add on package for R 

version 1.2 (Comets E et al., 2008). Two files were required to compute npde, the dataset to 

be evaluated and called the “observed data”, and a simulated data file. Three important 

columns should be included in the npde data file, patient identification, the independent 

variable (xobs or xsim) such as time after dose which was used in the present study, and the 

dependent variable (yobs or ysim) such as concentration. In addition, a missing data column 

might be required, where a code of 1 indicated missing data and 0 indicated observed data. 

Other columns might be present in the file but would not be used by the program. The files 

should be saved as a text file (.tab file).  The simulations were performed using NONMEM 

7.1 (Beal SL et al., 2009), where 1000 simulated datasets were generated using the 

$SIMULATION option. The evaluated model parameter estimates listed in Table 4.1 were 

used. An example of the control file used to generate the npde simulations is attached in 

APPENDIX IV. The function used to compute npde within R is as follow: 

Library(npde) 

x<-autonpde ("Obsdata.tab","Simdata12.tab",iid=1,ix=2,iy=3,imdv=4, boolsave=TRUE, 

namsav = "npde12", output = TRUE) 

autonpde  The function used to call npde 
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Obsdata.tab   Name of data file to be evaluated 

Simdata12.tab  Name of the simulated data 

iid    Number of column in which ID is located in the observed data file 

ix   Number of column in which the independent variable is located in the  
observed data file 

iy   Number of column in which the dependent variable is located in the  
observed data file 

imdv   Number of column in which the missing data variable is located in the  
observed data file 

boolsave  Whether to save the graphs and results in to a file  

namsav   Name of the file in which results should be saved 

output   Whether the function returns the results 

 

The assumption used in npde is that the model concentration predictions follow a normal 

distribution with a mean of zero and variance of 1 (Comets E et al., 2008). The program is 

setup to do the following default statistical tests; the Wilcoxon signed rank test to test 

whether the mean is different from zero, the Fisher test of variance to test whether the 

variance is different from 1, and the Shapiro-Wilks test to assess whether the distribution is 

different from a normal distribution. The authors of the program used another test called a 

global test, which combines the p values from the previous three tests with a Bonferroni 

correction and reported a p value multiplied by 3. To say that the model describes the data 

adequately, the results from the statistical test should be non-significant.  In addition to the 

numerical results, four graphs are plotted following computing npde; the QQ-plot of the 

npde, the histogram of the npde, a scatter plot of npde versus the independent variable (x), 

and scatter plot of the npde versus the predicted dependent variable (Y). If the model is 

adequate then no trend should be seen in the scatter plots.  

 



  84         84 

 

4.3.2 External model validation 

A new set of data from adult patients with cystic fibrosis was received from the Apotheek 

Haagse Ziekenhuizen and Haga Teaching Hospital in The Netherlands. In the Netherlands, 

ethical approval is needed when the patient undergoes a procedure or an intervention. 

Since these data were routinely monitored data, anonymised and no intervention or 

procedure was performed, ethical approval was not required (Personal Communication, Dr 

Touw, the Apotheek Haagse Ziekenhuizen and Haga Teaching Hospital, the Netherlands, 

October 05, 2013). The database included patients with cystic fibrosis who had received 

tobramycin.  The data were supplied in an Excel spreadsheet format exported from the 

software MWPharm (Mediware, Groningen, The Netherlands) (Proost JH and Meijer DKF, 

1992). The file initially contained 500 different courses of therapy.  The first task was to 

identify which courses came from the same patient (but at different times). Patients who 

had the same date of birth were assumed to be the same individual. Courses of therapy that 

contained insufficient data or suspected errors were removed from the dataset. For 

example, a course of therapy was excluded if date of birth was not documented, if the 

patient had the same date of birth but different sex or if the patient was less than 14 years 

old. Further exclusions included cases for which the course of therapy was not clear or was 

repeated with different concentration measurements at the same sampling times. 

 

The dataset comprised clinical and demographic data, the dosage regimen(s) and a list of 

measured concentrations. This format was not suitable for a NONMEM analysis since 

dosage information is required before each measured concentration.  Lack of detailed 

dosage information required some assumptions to be made.  These were as follows: 

 “Peak” concentrations were assumed to be measured one hour after starting the 

infusion.  

 If a measured concentration was recorded without information about the previous dose, 

a dose was assumed to be administered similar to a previous recorded dose and dosage 

interval.  

 Steady state coding was added to the data file.  Samples taken at least 60 hours 

following the start of therapy were assumed to be at steady state. 
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These assumptions were confirmed as valid by Dr Touw, who had supplied the data from 

the Apotheek Haagse Ziekenhuizen and Haga Teaching Hospital, the Netherlands. External 

evaluation was performed for the models listed in Table 4.1. The control file contained the 

population model and parameter estimates for fixed and random parameters. The 

estimation step was omitted by using the code MAXEVAL = 0. Population pharmacokinetic 

parameters and concentrations were estimated for each course of therapy and individual 

parameters and concentrations were also obtained (using the POSTHOC option in the 

estimation step). An example of the control file used is shown in APPENDIX V. In addition, pc 

VPCs and npdes were performed for the evaluated models using the new dataset. The 

Hague dataset was then combined with the Glasgow dataset and the parameters of the final 

model were re-estimated.  

 

4.3.2.1 Serum creatinine and drug assay 

The Jaffé method was used to measure serum creatinine concentration over the data 

period. Concentrations measured in The Hague (external validation data set) were also 

measured using FPIA but on an AxSym platform (Abbott Laboratories). On this system, the 

assay error was described by the following equation: SD = 0.011596 + 0.042146*C + 

0.002791*C2. The reported limit of quantification was 0.3 mg/L. The data set contained 10 

concentrations below this value; the lowest was 0.1 mg/L. 

 

4.3.3 Statistical analysis of the external validation 

The Mann-Whitney test was applied to compare the characteristics of the patients in the 

model development and validation datasets.  Statistical significance was set at a p value 

<0.05.  

Bias and imprecision were estimated for the pharmacokinetic parameters of interest, 

clearance and V1, and the measured versus population predicted concentrations. The 

analysis was conducted according to the Sheiner method for measuring predictive 

performance (Sheiner LB and Beal SL, 1981b).  Bias was defined as mean difference in 

prediction error if the results were normally distributed  or median if they were not (Sheiner 
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LB and Beal SL, 1981b). Lower bias indicates higher accuracy in model predictions.  Bias was 

then assessed by comparing mean prediction errors with zero using the Student’s t test if 

the data were normally distributed and the median using the Wilcoxon signed rank test 

otherwise, with statistical significance set at p <0.05. The 95% confidence interval of the 

difference was also examined using Minitab Version 15 (Minitab Ltd.). The following 

formulas were used to estimate the prediction errors for pharmacokinetic estimates and 

concentrations; 

 

 

Imprecision was based on the root mean squared prediction error if the data were normally 

distributed, or the median absolute (unsigned) error if the data were non-normally 

distributed. A lower value indicates higher precision in model predictions.  

 

4.4 RESULTS  

4.4.1 Internal model validation 

4.4.1.1 Bootstrap  

In total, 166 runs out of the 1000 runs terminated with rounding errors. The median, 95th 

and 5th percentiles for each parameter were estimated by the bootstrap samples using all 

replicates and only those replicates which minimised successfully, and are shown in Table 

4.2 . The results obtained with the bootstrap and the empirical model coincided well with a 

narrow confidence interval range. This indicates good precision in the empirical model 

parameter estimates. There was no difference in the median and percentile confidence 

interval of the parameter estimates obtained from all replicates or replicates which 

minimised successfully.  
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Table 4.2  The empirical model parameter estimates and bootstrap results using all and 
minimised successfully replicates. 

Parameter 
Final 

population 
model 

All Minimised successfully 

Bootstrap 
median 

estimate 

Bootstrap 
5th and 95th 
percentiles 

Bootstrap 
median 

estimate 

Bootstrap 5th 
and 95th 

percentiles 

OFV -304 -322 -567, -81.8 -319 -559, -80.3 

HT CL (L/h) 0.0285 0.0284 0.0276, 0.0293 0.0284 0.0276, 0.0293 

renal CL (L/h) 0.0114 0.0112 0.0077, 0.0149 0.0112 0.0077, 0.0149 

BOV (CL) 11.4% 11.0% 9.68%, 12.3% 11.0% 9.48%, 12.2% 

BSV (CL) 18.0% 17.9% 14.8%, 21.4% 17.8% 14.8%, 21.3% 

V1 (L) 13.3 13.4 13.1, 13.7 13.3 13.0, 13.6 

HT V1 0.0113 0.0114 0.0091, 0.0134 0.0114 0.0089, 0.0133 

BSV (V1) 11.6% 11.4% 9.49%, 13.2% 11.5% 9.48%, 13.2% 

V2 (L) 6.62 6.69 5.19, 8.62 6.54 5.16, 8.39 

Q (L/h) 0.452 0.447 0.379, 0.522 0.449 0.381, 0.522 

Additive error 
(mg/L) 

0.086 0.0846 0.0665, 0.118 0.0852 0.0662, 0.118 

Proportional 
error (CV %) 

14.8 14.8 13.8, 15.8 14.7 13.8, 15.7 

 

4.4.1.2 Prediction-corrected visual predictive checks 

 

Figure 4.1 shows the pc VPC for the empirical model using different binning approaches. 

Binning by width and dividing the intervals by hourly intervals resulted in more informative 

pc VPC plots. There was no difference between the empirical and mechanistic model pc 

VPCs as shown in Figure 4.2, which indicated that the evaluated models provided a 

satisfactory description of the data. 
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Figure 4.1  Prediction corrected Visual Predictive Check using the empirical model after 
binning the data by count (a) and by width (b). 

 

 
Key: The black dotted lines are the 97.5th and 2.5th percentiles for the observed concentrations and correspond to 95% prediction 
interval. The black solid line represents the median of the observed concentrations. The shaded areas represent the binning and 
correspond to the 95% confidence intervals for the 97.5th, 50th and 2.5th percentiles of the simulated dataset. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) 10 binning interval b) Hourly interval 
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Figure 4.2  Prediction corrected Visual Predictive Check using (a) the empirical model, 
the mechanistic model (b) with height and with (c) allometric scale of weight after binning 
the data by width in normal (right) and logarithmic (left) scale. 

  

  

  
Key: The black dotted lines are the 97.5th and 2.5th percentiles for the observed concentrations and correspond to 95% prediction 
interval. The black solid line represents the median of the observed concentrations. The shaded areas represent the binning and 
correspond to the 95% confidence intervals for the 97.5th, 50th and 2.5th percentiles of the simulated dataset. 

a) 

b) 

c) 
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4.4.1.4 Normalised prediction distribution error  

There was no difference in the distribution of npde and the statistical tests when the three 

models were evaluated, as illustrated in Table 4.3. The values of mean, skewness and 

kurtosis were close to zero and slightly higher than 1 for the variance of the examined 

models. Although the Fisher variance test, Shapiro- Wilks test, and the global tests were 

significant, the quantile-quantile and histogram of npde plots in Figure 4.3 showed that the 

normality assumption was not rejected. The npde scatter plots against the independent 

variable (time after dose) and the predicted concentrations plots were satisfactory in 

general and did not show any trend. However, npde scatter plots against the independent 

variable shows more positive npdes for samples obtained after 15 hours following the start 

of infusion for the evaluated models.   

 

Table 4.3  Results for the distribution of npde and statistical tests used to evaluate the 
assumption of normality. 

Npde test 

Independent variable (Time after dose) 

Empirical model 

Mechanistic approach 

With height 
With allometric 
scale of weight 

Distribution of npde    

Mean 0.016 -0.012 0.008 

Variance 1.45 1.47 1.47 

Skewness 0.191 0.165 0.177 

Kurtosis 0.157 0.129 0.092 

Statistical tests    

Wilcoxon signed rank test 0.700 0.183 0.556 

Fisher variance test 0.001 0.001 0.001 

Shapiro- Wilks test ˂ 0.001 ˂ 0.001 ˂ 0.001 

Global test 0.001 0.001 0.001 
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Figure 4.3  The npde graphical output using (a) the empirical model and (b) the mechanistic approach with height (c) the mechanistic 
approach with an allometric scale of weight. Quantile-quantile plot of npde versus expected standard normal distribution (upper left); 
Histogram of npde with density of overlaid standard normal distribution (upper right); Scatter plot of npde versus independent variable X (time 
after dose) (lower left); scatter plot of npde versus predicted Y (concentration) (lower right). 

 

 
 

a) 
b) c) 

Time after dose (hour) Time after dose (hour) Time after dose (hour) Predicted concentration 
(mg/L) 

Predicted concentration 
(mg/L) 

Predicted concentration 
(mg/L) 
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4.4.2 External validation 

4.4.2.1 Demographics, dosage history and concentration measurement results 

The final validation dataset comprised 165 patients and 415 courses of therapy, ranging 

from 1 to 13 with a median of 2 courses per patient. Table 4.4 shows a summary of patient 

characteristics for both the Glasgow and The Hague datasets. Patients in the validation 

dataset were significantly older, taller and heavier than patients in the model development 

dataset but there was no difference in the distributions of serum creatinine. Figure 4.4 

shows box plots summarising the clinical characteristics of the patients in each dataset and 

shows clearly the difference between the datasets in age, weight, height and creatinine 

clearance, in addition to a few outliers.  

 

Table 4.4  Summary of patient characteristics in the Glasgow and The Hague datasets. 

Patient 
characteristics 

Glasgow 
(n = 166 patients) 

The Hague 
  (n = 165 patients) P value 

Median Range Median Range 

Age (years) 23 14 - 66 32 14  – 88 ˂ 0.001 

Weight (kg) 50 30 - 86 60 35 – 108 ˂ 0.001 

Height (cm) 163 139 – 191 174 150 – 194 ˂ 0.001 

Serum creatinine 
(µmol/L) 

71 29 – 203 70 19 – 209 0.06 

Creatinine clearance 
(mL/min) 

92 35 – 181 104 26 – 174 ˂ 0.001 

Key: Creatinine clearance estimated by the Cockcroft and Gault equation (1976) with the lowest serum creatinine value fixed to 60 

µmol/L (Duffull SB et al., 1997). 
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Figure 4.4  Box plots illustrating the distributions of clinical characteristics of patients in 
the Glasgow and The Hague datasets.   
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Key: The box lines represent the first, median and third quartile from bottom to top. The black solid line represents the inter-quartile 
range and the starts represent the outliers. 

 

There was only one 8 hourly aminoglycoside course in The Hague dataset, and had a   210 

mg daily dose (70 mg 8 hourly).  Twelve hourly dosing accounted for 33 % of courses with a 

median daily dose of 560 mg (240 – 880), and 24 hourly dosing for 65 % with a median daily 

dose of 500 mg (120 – 800).  Three courses were 36 hourly and two patients had 48 hourly 

dosing and were administered doses of 240 to 300 mg daily.  Figure 4.5 shows the 

distribution of the daily doses divided according to the dosage interval.  In total, 1452 

concentration measurements were available. Peak concentrations accounted for 37 %, 
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troughs accounted for 8 % and the majority (54%) of samples were mid-dose.  The 

concentration-time profiles are presented in Figure 4.6.  Table 4.5 shows a summary of the 

measured concentrations categorised according to the dosage intervals.  

 

Figure 4.5  The distribution of daily doses divided by dosage interval. 
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Figure 4.6  Scatter plot for The Hague concentration-time profile. 
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Table 4.5  Summary of The Hague measured concentrations in general and according to 
dosage interval. 

Variable 
Number of 

samples 
Median Range 

Peak concentration (mg/L) 544 17.0 4.20- 40.0 

Mid-dose concentration (mg/L) 790 1.80 0.10 – 31.0 

Trough concentration (mg/L) 118 0.40 0.10 – 4.60 

8 hourly (n = 1 courses) 

Peak concentration (mg/L) - - - 

Mid-dose concentration (mg/L) 1 1.60 - 

Trough concentration (mg/L) 1 4.60 - 

12 hourly (n = 137 courses) 

Peak concentration (mg/L) 306 15.0 4.20 -28.0 

Mid-dose concentration (mg/L) 251 1.90 0.10 – 18.0 

Trough concentration (mg/L) 67 0.52 0.10 – 4.60 

24 hourly (n=272 courses) 

Peak concentration (mg/L) 229 21.0 8.80 – 40.0 

Mid-dose concentration (mg/L) 526 1.60 0.15 – 31.0 

Trough concentration (mg/L) 49 0.21 0.10 – 1.20 

36 hourly (n= 3 courses) 

Peak concentration (mg/L) 7 13.0 11.0 – 19.0 

Mid-dose concentration (mg/L) 9 2.50 1.40 – 4.20 

Trough concentration (mg/L) 1 1.40 - 

48 hourly (n =2 courses) 

Peak concentration (mg/L) 2 14.5 9.00 – 20.0 

Mid-dose concentration (mg/L) 3 3.20 2.80 – 14.0 

Trough concentration (mg/L) - - - 
Key: Peak concentration was defined as samples obtained within the first 2 hours after starting the infusion.  Mid- dose concentration 
was defined as samples obtained between 2 to 9.9 hours for 12 hour dosing, 2 to 17.9 hour for 24 hour dosing, and after 2 to 24 hour 
for 36 and 48 hour dosing. Trough concentration was defined as samples obtained 10 hours post dose for 12 hourly dosing and 18 hours 
for 24 hourly dosing.  
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4.4.2.2 Model performance  

Figure 4.7 shows the measured concentrations against population and individual predicted 

concentrations for the different models tested. The three evaluated models showed good 

agreement between the measured concentrations and predicted concentrations with no 

favour for one model over another. Figure 4.8 shows the population and individual 

predictions for clearance and V1 using the different covariate models. All models provided a 

narrow range for clearance and V1 population predictions that ranged from 2.39 to 6.49 L/h 

for clearance and 11.3 to 18.6 L for V1. However a problem was identified with the 

mechanistic model for creatinine clearance estimate where patients who were older than 

70 years had negative estimates as shown in Figure 4.9. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  97         97 

 

Figure 4.7  Measured concentrations versus population and individual predictions for (a) 
empirical model, (b) mechanistic model with height and (c) mechanistic model with 
allometrically scaled weight. 

 

 

 

b

) 
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Figure 4.8  Population versus individual estimates of clearance and volume of the central 
compartment for (a) empirical model, (b) mechanistic model with height and (c) mechanistic 
model with allometric scale weight. 
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Figure 4.9  Scatter plot for creatinine clearance estimated using the mechanistic 
approach by parameter estimates generated from the model using (a) height and (b) 
allometric scale versus age. 
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Tables 4.6 and 4.7 show the results for bias calculations using the evaluated models.  The 

empirical model and the mechanistic model with the allometric scale produced unbiased 

predictions for clearance with similar imprecision of 0.5 L/h. However, the mechanistic 

model with height produced biased clearance predictions, P < 0.05, but with low imprecision 

of 0.6 L/h. All three models produced biased V1 predictions, with the empirical model being 

the lowest, and comparable imprecision of 1 L.  Predicted population concentrations from 

the mechanistic approach with either height or an allometric scale of size were biased for 

peak and mid-dose concentrations, while accurate predictions were produced from the 

empirical model with comparable imprecision values around 2.7 and 0.6 mg/L. Unbiased 

trough concentrations were predicted using the mechanistic approach models compared 

with biased predictions from the empirical model with low imprecision value around 0.18 

mg/L.  Figures 4.10 and 4.11 shows the distribution of imprecision (absolute prediction 

error) arising from the evaluated models.   

 

 

 

 

 

 

 

 

a) b) 
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Table 4.6  Median prediction error calculation results for clearance and V1 predictions 
when the different covariate models were used. 

Model 
Median Prediction 

error 
95% Confidence interval 

Clearance (n = 415 courses) 

Empirical model -0.08 L/h -0.16, 0.00 

Mechanistic model with HT  0.15 L/h 0.06, 0.26* 

Mechanistic model with allometric 
scale  

0.04 L/h -0.04, 0.13 

V1 (n = 415 courses) 

Empirical model 0.36 L 0.19, 0.52* 

Mechanistic model with HT  0.44 L 0.28, 0.61* 

Mechanistic model with allometric 
scale  

0.53 L 0.33, 0.69* 

*indicates p ˂ 0.05. 

 

Table 4.7  Median prediction error calculation results for the population predicted 
concentration when the different covariate models were used divided by sampling time into 
peak, mid-dose and trough concentrations. 

Model Median Prediction error 
95% Confidence 

interval 

Peak conc = 544 

Empirical model -0.06 mg/L -0.42, 0.30 

Mechanistic model with HT -0.40 mg/L -0.78, -0.04* 

Mechanistic model with allometric 
scale  

-0.50 mg/L -0.86, -0.14* 

Mid conc = 790 

Empirical model -0.03 mg/L -0.09, 0.04 

Mechanistic model with HT -0.25 mg/L -0.33, -0.16* 

Mechanistic model with allometric 
scale 

-0.10 mg/L -0.18, -0.03* 

Trough conc =118 

Empirical model 0.06 mg/L 0.00, 0.11*  

Mechanistic model with HT -0.00 mg/L -0.06, 0.06 

Mechanistic model with allometric 
scale 

0.04 mg/L -0.01, 0.09 

*indicates p ˂ 0.05. 
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Figure 4.10  Imprecision for clearance and V1 predictions using the tested models 
presented as box plots for (1) empirical model, (2) mechanistic model with height and (3) 
mechanistic model with allometric scale size. 
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Figure 4.11  Imprecision for population concentration divided according to sampling time 
for (a) peak, (b) mid-dose and (c) trough concentrations, using the tested models presented 
as box plots for (1) empirical model, (2) mechanistic model with height and (3) mechanistic 
model with allometric scale size. 
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Figure 4.12 shows the results from pc VPC using The Hague dataset with the different 

evaluated models and indicated no model preference. The pc VPC indicated a tendency of 

the model to under-predict concentrations, particularly at 2 to 5 hours following the start of 

infusion.  Similarly, there was no difference in the distribution of npde and the statistical 

tests were observed when the three models were evaluated, as shown in Table 4.8. The 

values of mean, skewness and kurtosis were close to zero and higher than 1 for the 

variances of the examined models. Although the Fisher variance test, Shapiro- Wilks test, 

and the global tests were significant, the quantile-quantile and histogram of npde plots in 

Figure 4.13 showed that the normality assumption was not rejected. The npde scatter plots 

against the independent variable (time after dose) was satisfactory and did not show any 

trend, whereas the npde versus predicted concentration plots showed a negative npde for 

concentrations higher than 30 mg/L. However, the histogram of npde with the density of 

the standard normal distribution overlaid indicated that more observations had value of 3 

for the empirical model and the mechanistic approach using allometric scaling compared 

with the model using mechanistic approach with height.  
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Figure 4.12  Prediction corrected Visual Predictive Check using (a) empirical model, (b) 
mechanistic model with height and (c) mechanistic model with allometric scale weight in 
normal (left and log (right) scale. 

 

 

 
Key: The black dotted lines are the 97.5th and 2.5th percentiles for the observed concentrations and correspond to 95% prediction 
interval. The black solid line represents the median of the observed concentrations. The shaded areas represent the binning and 
correspond to the 95% confidence intervals for the 97.5th, 50th and 2.5th percentiles of the simulated datasets.

a) 

b) 

c) 
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Table 4.8  Results for the distribution of npde and statistical tests used to evaluate the 
normality assumption using The Hague dataset. 

Npde test 

Independent variable (Time after dose) 

Empirical model 

Mechanistic approach 

With height 
With allometric 
scale of weight 

Distribution of npde    

Mean 0.007 -0.052 -0.034 

Variance 2.30 2.16 2.16 

Skewness 0.074 0.112 0.108 

Kurtosis -0.518 -0.440 -0.432 

Statistical tests    

Wilcoxon signed rank test 0.914 0.082 0.211 

Fisher variance test 0.001 0.001 0.001 

Shapiro- Wilks test ˂ 0.001 ˂ 0.001 ˂ 0.001 

Global test 0.001 0.001 0.001 
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Figure 4.13  The npde graphical output using (a) the empirical model and (b) the mechanistic approach with height (c) the mechanistic 
approach with allometric scale weight using The Hague dataset. Quantile-quantile plot of npde versus expected standard normal distribution 
((upper left); Histogram of npde with density of overlaid standard normal distribution (upper right); Scatter plot of npde versus independent 
variable X (time after dose) (lower left); scatter plot of npde versus predicted Y (concentration) (lower right). 

 

 
 

a) b) c) 

Time after dose (hour) Time after dose (hour) Predicted concentration  
(mg/L) 

Time after dose (hour) Predicted concentration  
(mg/L) 

Predicted concentration  
(mg/L) 
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Table 4.9 shows the parameter estimates from the empirical model based on the Glasgow 

dataset and the estimates from the combined Glasgow and The Hague datasets. There was 

no difference between the parameter estimates obtained from the Glasgow dataset and 

when The Hague dataset was added. The residual error slightly increased when The Hague 

dataset was added.   

 
 
Table 4.9  Summary the Glasgow compared with combing both Glasgow and The Hague 
datasets parameter estimates using the final empirical model. 

Parameter Glasgow dataset Combined datasets 

ƟHT CL (L/h)  0.0285 0.0286 

Ɵrenal  CL (L/h) 0.0114 0.0135 

BOV (CL) 11.4 12.0 

BSV (CL) 18.0 19.1 

ƟV1 (L) 13.3 13.2 

ƟHT V1  0.0113 0.0118 

BSV (V1) 11.6 12.4 

V2 (L)  6.62 6.68 

Q (L/h) 0.452 0.583 

Additive error (mg/L) 0.086 0.0872 

Proportional error (%) 14.8 20.2 
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4.5 DISCUSSION 

The results from various model evaluation methods confirmed the adequacy of the 

empirical model in describing the data and are encouraging to support further work with 

the model for clinical applications.  

 

4.5.1 Bootstrap 

Bootstrap was used to test the performance of the population model and its predictive 

accuracy. Bootstrap parameter estimates were found to be sensitive to the number of 

replicates and in order to obtain stable estimates the minimal recommended number of 

replicates is 1000 (Gastonguay MR and El-Tahtawy A, 2005, Efron and Tibshirani, 1993).  

Therefore, 1000 bootstrap samples were generated and the 95th and 5th percentiles were 

estimated. The results from bootstrapping confirmed that the parameter estimates values 

coincided well and were stable. In the current bootstrap, the results obtained using all 

replicates, regardless of their termination status, and only those replicates which 

terminated successfully, were examined. There was no difference in parameter estimates 

and confidence intervals obtained from both approaches. Holford et al (2006) 

recommended using all successful bootstrap samples and found that it provided accurate 

and precise description of NONMEM estimates, while Gastonguay et al (2005) found that 

minimisation status had minimal impact on bootstrap results. They recommended the use 

of all replicates regardless of their minimisation for the 95% confidence interval estimation. 

Bootstrapping has the advantage of evaluating the entire tested model dataset and is a 

useful technique for evaluating the stability of parameter estimates in a population 

pharmacokinetic model (Ette EI, 1997). However, it does not indicate whether the model 

adequately describes the data. Prediction-corrected visual predictive checks and normalised 

prediction distribution errors are more powerful because they provided a visual 

representation of the data and simulations. 
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4.5.2 Prediction-corrected visual predictive check 

Bergstrand et al (2011) illustrated the usefulness for pc VPC methodology in a number of 

examples over the traditional VPC. In pc VPC, the dependent variable was subject to 

prediction correction before calculating the statistics. The aim of these corrections was to 

correct for differences arising from the independent variable, which would facilitate picking 

up model misspecifications in both parameter estimates and variabilities. In the present 

study, the pc VPC plots for the evaluated models did not show any obvious differences with 

the tendency of poor ability to predict concentrations at late time points, which might 

indicate a poor ability of the model to predict patients with renal impairment. In the 

Glasgow dataset, only one patient with renal impairment was included and hence little 

information was available on the performance of the model in patients with renal 

impairment. Therefore the developed model should not be used in patients with renal 

impairment. There was a gap in the pc VPC between 18 and 22 hours, which reflected a lack 

of concentrations at these time points, as shown in Figure 3.5. 

 

4.5.3 Normalised prediction distribution errors 

Another method used to evaluate the models was npde (Comets E et al., 2008). The 

recommended number of simulated datasets is 1000 (Comets E et al., 2008) and hence 1000 

simulated datasets were generated in the present study. Although the normality 

assumption was rejected and the variance was significantly different from 1, the mean was 

not different from zero. These assumptions appeared to be rejected because of the large 

sample size in the present study. However, the npde plots for all examined models 

described the data well and did not show deviation from normality or model 

misspecification. The problem with failing the statistical tests despite having plots that look 

satisfactory is recognised as an issue when very large datasets are analysed (personal 

communication – from Emmanuelle Comets).   
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4.5.4 External validation 

External evaluation is the most powerful method for testing the predictive ability of a model 

because it allows testing the developed model using an independent dataset with different 

patient characteristics. However, external evaluation was performed in only 7 % of 

published pharmacokinetic studies between 2002 to 2004 (Brendel K et al., 2007). 

Fortunately, a new dataset from patients with cystic fibrosis from the Netherlands was 

available for analysis.  

 

Patients from The Hague were significantly bigger than the Glasgow patients who comprised 

the model development dataset. In addition, in The Hague dataset, one patient managed to 

live up to 88 years with cystic fibrosis. In general, patients with cystic fibrosis tended to have 

short life spans; the current median survival rate is 41.5 years old (95 confidence interval; 

35.7, 46.0) in the UK (Cystic FibrosisTrust, 2013). However, this patient’s long survival could 

be explained by having a “mild” CFTR genotype, as suggested by Mckone et al (2006).  They 

classified the five cystic fibrosis mutations according to the mechanism by which they 

disrupt chloride channel function into two broader genetic risk groups, high-risk and low-risk 

groups, based on the effect of the mutation functional class on phenotype and mortality 

(McKone EF et al., 2003, McKone EF et al., 2006). They found that there was a difference in 

survival and median age at death. However, these differences in survival were not fully 

explained by clinical measures of lung function, nutrition, and pancreatic insufficiency, 

suggesting that the CFTR genotype was an independent predictor of survival. The authors 

concluded that patients having a milder CFTR genotype were more likely to have a less 

severe clinical course. In the Netherlands, A455E is the most common cystic fibrosis 

mutation (Kazazian HH, 1994). This mutation was found to be associated with less frequent 

P.aeruginosa colonisation and mild lung disease (Gan K-H et al., 1995, McKone EF et al., 

2003), and could explain having a patient who managed to live with cystic fibrosis for 88 

years. In contrast, 52.0 % of mutations in the UK are homozygous with the ΔF508 mutation 

(Cystic FibrosisTrust, 2013), which is classified as a high-risk CFTR genotype group (McKone 

EF et al., 2006)  and characterised by more severe clinical manifestations (Kerem E et al., 

1990). 



  111         111 

 

Bias and imprecision calculations indicated the accuracy and precision of the empirical 

model in predicting clearance, peak and mid-dose concentrations. However, the 

mechanistic model with either height or allometric scale of weight resulted in biased 

clearance and peak and mid-dose concentrations. Problems were encountered with the 

mechanistic model when applied to The Hague dataset. Since one of the age parameters for 

creatinine clearance was 70, negative estimates were obtained with older patients. This 

problem resulted in limited use of the mechanistic model for the Glasgow data only.  

 

 Results from the diagnostic plots, pc VPC and npde, failed to show model preference.  The 

examined models had the tendency to under-predict concentrations obtained 2 to 5 hours 

after the start of infusion, which might be related to the absence of concentrations at these 

time points in the Glasgow dataset as shown in the concentration-versus-time profile. 

Checking the data showed clear outliers between the documented measured and predicted 

concentrations, which raised the issue for sampling or documentation errors.  When the 

Glasgow and The Hague datasets were combined and the empirical model was used, no 

difference in the parameter estimates was identified with the exception of the residual 

errors. There was slight increase in the proportional error component, which could be 

related to the quality of data collected or difference in assay measurements.  

 

The strength behind the current validation is the use of an independent dataset with 

comparable sample size with the model development datasets (165 vs 166 patients) and 

with multiple aminoglycoside courses of therapy.  Few population pharmacokinetic studies 

have performed external validation using independent datasets. The majority of researchers 

perform bootstrapping and VPC and a minority use data splitting. All these model 

diagnostics involve using the model development dataset. However, there were some 

limitations for the current analysis that need to be considered when interpreting the results.  

Firstly, the data were from an external source and, unlike the development dataset, it was 

impossible to return to the raw data and check individual patient records. A number of 

assumptions had to be made about the dose and sample times, which might have 

introduced data errors and increased variability.  
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4.5.5 Conclusion 

In conclusion, both internal and external validation methods aided in choosing the final 

model and showed good predictions of pharmacokinetic parameters and concentration 

measurements. However, despite the fact that the populations were very different, the 

empirical model fitted the data well. The mechanistic model was limited by the age 

parameter used to estimate renal function. The empirical model including height and 

creatinine clearance in CL and height in V1 was chosen as the final model. The validation 

results encourage the use of the developed model for clinical applications. 
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5.1 INTRODUCTION 

Pmetrics (Neely MN et al., 2012) is the new developed software by the Laboratory of 

Applied Pharmacokinetics at the University of Southern California (USC) in Los Angeles, 

California, and uses the nonparametric adaptive grid (NPAG) algorithm (Tatarinova T et al., 

2013), which is a nonparametric methods to estimate pharmacokinetic parameters. The lab 

developed the first program in the early 1990s and it was known as the USC-PACK  (Jelliffe 

RW, 1991), which used the  nonparametric expectation maximization  (NPEM) algorithm 

(Schumitzky A, 1991). Then further development was performed to include in addition to 

the NPEM algorithm the NPAG algorithm and renamed the MM-USCPACK. The NPEM 

algorithm was used to develop population pharmacokinetic model in patients with epilepsy 

treated with carbamazepine (Bondareva IB et al., 2006) and valporic acid (Bondareva IB et 

al., 2004), and tramadol in post-operative orthopaedics patients (Gan SH et al., 2004).  

However, the NPEM algorithm required a powerful computer and long time to obtain the 

results. Therefore, a new algorithm,  NPAG, was developed by Leary et al (Leary RH et al., 

2002, Tatarinova T et al., 2013). The NPAG algorithm required less computational time 

(Bustand A et al., 2006).  

 

In this approach, no assumptions are made about the shape of the parameter distributions 

while in the parametric approach a normal or log-normal distribution of parameters is 

assumed.  The advantages of using nonparametric methods was illustrated in a paper by 

Neely et al (2012).  They showed a simulation example of a group of patients who included 

slow and rapid metabolisers and outlier. Although the nonparametric and parametric 

approaches were able to identify the true central tendency of the data, the nonparametric 

approach was able to identify the subpopulations and fitted the outlier in a small group of 

patients (50 subjects).  In addition, the nonparametric approach produces discrete support 

points (one for each subject) where each point has a set of the model parameter estimates 

and its associated probability (Tatarinova T et al., 2013, Neely MN et al., 2012).  The sum of 

all support points probabilities is one. The obtained support points would allow the use of 

multiple-model design of dosage regimen (Tatarinova T et al., 2013, Jelliffe R et al., 2000, 
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Bayard DS et al., 1994). However, a major disadvantage of nonparametric approach is the 

inability to estimate confidence limits (Neely MN et al., 2012). 

 

5.2 AIMS 

The aims of the present study were to develop a population pharmacokinetic model using 

nonparametric method with aminoglycoside data from Glasgow and The Hague and 

compare the results with those obtained from the parametric FOCE I method implemented 

in NONMEM.  

 

5.3 METHODS 

The present analysis focused on population pharmacokinetic modelling using a 

nonparametric approach with the software Pmetrics (Neely MN et al., 2012). Pmetrics can 

be downloaded from the website of the Laboratory of Applied Pharmacokinetics, University 

of Southern California (http://www.lapk.org/) as a zip file then installed into R (R Core Team, 

2012). In the current study, Pmetrics version 0.3 was used within R version 2.15.1 (R Core 

Team, 2012).  

 

There were two algorithms used with Pmetrics to estimate pharmacokinetic parameters, 

one was the parametric iterative 2-stage Bayesian (IT2B) algorithm, and the other was the 

nonparametric algorithm, Nonparametric Adaptive Grid (NPAG) (Neely MN et al., 2012). The 

aim of the IT2B is to estimate initial ranges for the parameters, which can then be used in 

the NPAG run. 

 

The data file was reformatted within an Excel spread-sheet to be suitable for Pmetrics 

analysis. The data file included the patients’ dosage histories, measured concentrations 

(column name was “OUT”), and the covariates. An example of the Pmetrics data file used is 

shown in Figure 5.1.  

http://www.lapk.org/
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Figure 5.1  Pmetrics data file. 

 

 

Variabilities within Pmetrics can be separated into assay error and other environmental 

sources of variability.  The program is set up to estimate the assay standard deviation using 

a polynomial model and hence the coefficients of the assay error polynomial for each 

concentration was required to be included in the data file (Neely MN et al., 2012). The 

program assay standard deviation polynomial model was as follows;  

SD = C0 + C1 x (obs) + C2(obs) 2 + C3(obs) 3 

Where SD is the assay standard deviation and C0 to C3 represent the coefficients of the 

polynomial for concentration. Obs represents the measured serum concentration, obs2 is 

the concentration squared and obs3 is the concentration cubed.  If there is no available 

information for these coefficients, then the user can estimate them using the “ERRrun” 

script within R and before running NPAG.  This approach was applied in the present study.  

In addition, other environmental sources of error, such as errors in preparation and 

administration of the drug and documentation errors of samples and doses were taken into 

account. The environmental error can be modelled using proportional or additive models by 

multiplying (gamma) or adding (lambda) the error to the assay error polynomial. In the 
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present study, both gamma and lambda terms were tested.  The initial estimate was set at 5 

for gamma or 0.4 (5 times C0) for lambda.  The script used to estimate the coefficients of the 

assay error polynomial within Pmetrics was as follows; 

Library(Pmetrics) 

then 

ERRrun(model=”1comp.txt”, data=”Comb10.csv”, instr = “PMCom2instr1”) 

ERRrun   To run assay error module 

model   Name of the control file 

data   Name of the data file 

instr   Name of the instruction file 

 

A model file was also required to run Pmetrics, which consists with a series of “blocks”. The 

default setting in Pmetrics has the primary parameters as rate constants and volume of 

distribution. For the current analysis, the primary variables were parameterised as CL and V 

for the one compartment model and CL, V1, V2 and Q for the two compartment model.  To 

achieve this, the rate constants were re-parameterised within the “secondary variables” 

block as follows: Ke=CL/V1; K12=Q/V1; K21=Q/V2.   Examples of the default control file and the 

modified model control file used in the current study are shown in Figure 5.2 (a, b) to 

illustrate the difference. 
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Figure 5.2  An example of Pmetrics model file using (a) the default setting and (b) when 
the elimination rate constant for a one compartment model was re-parameterised to CL and 
V. 

 

 

 

 

 

 

 

 

 

 

 

In addition, to run iterative 2-stage Bayesian (IT2B) or NPAG an instruction file is required. In 

case a file was not available, before running IT2B or NPAG the user need to answer 

questions and supply some necessary information. These instructions were saved as text file 

and were used to run other models. The instruction file was modified as required. Before 

running NPAG, the IT2B method, which is a parametric algorithm, was used to estimate 

initial ranges of parameter values to be used in NPAG run. The scripts used to run IT2B and 

NPAG after loading Pmetrics were as follows: 

Library(Pmetrics) 

then 

ITrun(model=”1comp.txt”, data=”Comb10.csv”, instr=-99) 

ITrun   To run IT2B 

model   Name of the control file 

data   Name of the data file 

b) a) 
#Pri 
CL 
V 
 
#Cov 

AGE 
GEN 
WT 
HT 
LBW 
ACREA 
CGCL 

#Sec 
Ke=CL/V 
 
#Out 
Y(1)=X(1)/V 

#Pri 
Ke 
V 
 
#Cov 

AGE 
GEN 
WT 
HT 
LBW 
ACREA 
CGCL 

#Sec 
 
 
#Out 
Y(1)=X(1)/V 
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instr   Name of the instruction file, if available 

 

NPrun(model=”1comp.txt”, data=”Comb10.csv”, instr =”PMCom2instr1”) 

NPrun   To run NPAG 

model   Name of the control file 

data   Name of the data file 

instr   Name of the instruction file, if available 

 

5.3.1 Identification of structural model 

The datasets from Glasgow and The Hague had previously been analysed using a traditional 

parametric population modelling approach using NONMEM with the FOCE algorithm 

(version 7) (Beal SL et al., 2009), as described in Chapters 3 and 4.  These combined datasets 

were used to develop the model using Pmetrics with the NPAG algorithm. Both one and two 

compartment models were examined.  

 

5.3.2 Identification of covariate model 

The influence of covariates was investigated using the NPAG algorithm. Several covariates 

were examined for their influence on the model fit, including demographic and biomedical 

data, such as weight, height and serum creatinine. In addition, derived covariates were 

examined, including lean body weight (Janmahasatian S et al., 2005), body surface area 

(Mosteller RD, 1987) and creatinine clearance (Cockcroft DW and Gault MH, 1976). Serum 

creatinine concentrations less than 60 µmol/L was set to 60 µmol/L for the estimation of 

creatinine clearance (Rosario MC et al., 1998, Duffull SB et al., 1997). The median covariate 

values from the combined data (Glasgow and The Hague) were used to normalise the 

models.  These covariates were modelled using both the empirical approach and the 

mechanistic approach described by Matthews et al  (2004) and Anderson et al (2009). In 

addition, clearance estimates using age with a cut off at 18 years old, and the influence of 
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gender and different populations (Glasgow and The Hague) were examined as categorical 

variables.  

 

The program was set up to perform a stepwise linear regression analysis to examine 

relationships between covariates and Bayesian posterior parameters using the “step ()” 

function in the statistics package R (R Core Team, 2012).  The relationships between each 

covariate and parameter in the model were tested in a step-wise multivariate linear 

regression with forwards inclusion and backwards elimination. This analysis would generate 

a P value for the relationship of covariates to Bayesian posterior parameter value. A value of 

“NA” would indicate that the variable was not retained in the final model.  

 

An improvement in model fit was based on an increase in the likelihood (a reduction in the -

2 log likelihood value) with improvement in model bias and precision values for the 

individual predicted concentrations.  Bias was determined as the mean prediction error of 

observation subtracted from individual predicted concentration. Bias was then assessed by 

comparing mean prediction errors with zero using the Student’s t test with statistical 

significance set at p <0.05. The 95% confidence interval of the difference was also examined 

using Minitab Version 15 (Minitab Ltd.). Imprecision in the observed compared to the 

predicted concentration was evaluated using the root mean squared error of the prediction 

error. In addition, plots of the measured against the predicted concentrations and the 

residual error were examined for any improvement in model fit. The model with the highest 

likelihood and lowest bias and imprecision was chosen to be the final model.  

 

5.3.3 Comparison of Pmetrics with NONMEM results 

Equivalent models were compared between Pmetrics and NONMEM. The parameter 

estimates and the measured versus predicted concentrations were compared for both the 

base two compartment model without within-subject variability and the final covariate 

model without within-subject variability. Bias and imprecision of Pmetrics and NONMEM 

individual predicted concentrations were also compared. 
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5.4 RESULTS 

5.4.1 Description of the data file 

Table 5.1 shows a summary of the Glasgow and The Hague patients’ characteristics. The full 

dataset included 331 patients with 1490 courses of aminoglycoside therapy (for more 

details refer to Chapters 3 and 4). In brief, Glasgow patients were younger and smaller in 

size compared to patients from The Hague, and both groups had good renal function. In 

total, the full dataset included 3690 aminoglycoside concentration measurements, where 

44% of the measured concentrations were peak, 23 % were mid samples and 33 % were 

trough concentrations.  

 

Table 5.1  Summary of patient characteristics in the Glasgow and The Hague datasets. 

Patient characteristics 

Glasgow data 
(n = 166 patients) 

The Hague data 
  (n = 165 patients ) 

Median Range Median Range 

Age (years) 23 14 - 66 32 14  – 88 

Weight (kg) 50 30 - 86 60 35 – 108 

Height (cm) 163 139 – 191 174 150 – 194 

Serum creatinine 
(µmol/L) 

71 29 – 203 70 19 – 209 

Creatinine clearance* 
(mL/min) 

92 35 – 181 104 26 – 174 

Key: *Creatinine clearance estimated by the Cockcroft and Gault equation (Cockcroft DW and Gault MH, 1976) with the lowest serum 
creatinine value fixed to 60 µmol/L (Duffull SB et al., 1997, Rosario MC et al., 1998). 

 

 

5.4.2 Identification of the structural model  

The IT2B run converged successfully for both one and two compartment base model with a 

wide range of parameters initial ranges as shown in Table 5.2. However, NPAG would not 

run with these initial ranges. Therefore, the initial ranges of the parameters were obtained 

from the results of the NONMEM analysis performed in Chapter 3. The two compartment 

model was superior to the one compartment model with an improvement in the negative 

log likelihood value from 9618 to 9004.  In addition, although both models produced 
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significantly biased predictions, bias and imprecision in predictions were lower for the two 

compartment model (0.29 and 1.48 mg/L vs 0.35 and 1.54 mg/L). The inclusion of 

proportional error gave a better the model fit compared with additive error (9004 vs 9049) 

and with value of 1.11. There was also a slight improvement in the measured versus 

predicted concentration where the smooth line of the data was closer to the line of unity for 

the two compartment compared with one compartment model as shown in Figure 5.3. 

Although the residual error plots shown in Figure 5.4 for one and two compartment model 

were similar, the mean weighted prediction error for the two compartment model was 

comparable to the one compartment model (0.16 vs 0.20 mg/L). The residual error plot did 

not indicate any trend with the errors all were within the range -4 to 4 and there were few 

outliers with errors above -4. There were 42 and 46 support points for the population joint 

parameters generated from the one and two compartment base models, respectively.  Each 

support point had a value for each parameter and its probability. The highest probably was 

0.122 with clearance and volume of distribution values of 4.56 L/h and 13.7 L using the one 

compartment model. For the two compartment model, the highest probability was 0.105 

and was for clearance, V1, V2and Q values of 4.59 L/h, 13.2 L, 7.99 L and 0.3 L/h.  

 

Table 5.2  The initial parameters ranges for one and two compartment base model 
following IT2B. 

Parameter One compartment Two compartment 

Clearance (L/h) 1 x10-8- 11.1 1 x10-8– 10.9 

V1 (L) 1.32 - 29.5 1 x10-8 – 28.9 

Q (L/h) - 1 x10-8 – 2.32 

V2 (L) - 1 x10-8 – 33.5 
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Figure 5.3  Scatter plots of measured versus population and individual predicted 
concentrations from the one (a) and two (b) compartment base models using Pmetrics. The 
black solid line is the line of unity and the black dashed line is a smooth line through the 
data. 

 

 

 

 

 

a) 

b) 
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Figure 5.4  The residual error plot for the (a) one and (b) two compartment base models. 
Panels 1 and 2 show the weighted residual error versus the individual predicted 
concentrations and time. Panel 3 shows the distribution of the weighted residual errors. 

 

 

 

a) 

b) 
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Figure 5.5 shows the distribution of the two compartment model parameter estimates 

following the NPAG run in Pmetrics. There was a wide range of clearance estimates with 

high probability for a value of 4.5 L/h, but few patients had clearance less than 3 L/h. On the 

other hand, V1 ranges were narrower with the highest probability value being around 13.5 L. 

There were a few outliers with low (less than 10 L) and high (greater than 20 L) V1 estimates. 

There were clearly two groups of Q estimates, one with low (0.3 L/h) and another with high 

(0.5 L/h) estimates. Similarly, V2 estimates were grouped with low (6 L) and high (8 L) values.   

 

Figure 5.5  The probability distribution of the two compartment model parameters 
following NPAG run in Pmetrics. 

 

Table 5.3 shows the parameter estimates following the Pmetrics run compared with the 

NONMEM run results for the base model. Parameter estimates following NPAG are shown 

as mean and median, and they had similar values.  Parameter estimates and variabilities 

from the Pmetrics analysis were close to the NONMEM values.  However, the mean 

clearance estimate obtained from Pmetrics was slightly higher (5.24 L/h) compared with the 

NONMEM estimate (4.85 L/h). Between-subject variability in clearance was close for both 

approaches (23 % for Pmetrics and 25 % for NONMEM), but slightly higher for variability in 

V1 estimated from Pmetrics (21 % for Pmetrics and 15 % for NONMEM). On the other hand, 

variabilities in Q (79 % and 21 %) and V2 (59 % and 13 %) were higher for NONMEM 
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compared with Pmetrics. The measured versus predicted concentrations from Pmetrics and 

NONMEM were also very close. However, predictions generated by Pmetrics were closer to 

the line of unity, as shown in Figure 5.6. 

 

Table 5.3  Parameter estimates obtained using Pmetrics and NONMEM for the two 
compartment base model. 

Parameter 
Pmetrics NONMEM  

Mean Median BSV (CV %) Typical value BSV (CV %) 

CL (L/h) 5.24 5.22 23 % 4.85 25 % 

V1 (L) 14.8 14.7 21 % 14.1 15 % 

Q (L/h) 0.434 0.499 21 % 0.596 79 % 

V2 (L) 7.08 7.99 13.8 % 7.18 59 % 
Key: BSV= between subject-variability 
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Figure 5.6  Scatter plot of measured versus population and individual predicted 
concentration from base two compartment model using (a) Pmetrics and (b) NONMEM. The 
black solid line is the line of unity and the black dashed line is a smooth line. 

 

 
 

5.4.3 Covariate model 

The stepwise covariate parameter regression analysis was performed for the two 

compartment base model and the results are shown in Table 5.4. This analysis suggested 

weight, height and creatinine clearance to be potential covariates for clearance. For V1, 

gender and creatinine clearance were suggested as potential covariates. For Q, the only 

potential covariate was creatinine clearance whereas for V2 gender was the potential 

covariate.  

 

a) 

b) 
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Table 5.4  The multi-variate P values for the relationship between pharmacokinetic 
parameter and covariates using the stepwise linear regression analysis for two 
compartment base model. 

Covariate CL V1 Q V2 

Age (years) NA NA NA NA 

Gender NA 0.0005 NA 0.028 

Weight (Kg) 0.016 NA NA NA 

Height (cm) 0.036 NA NA NA 

Lean body weight (kg) NA NA NA NA 

Serum creatinine 
(µmol/L) 

NA 0.005 NA NA 

Creatinine clearance 
(mL/min) 

˂ 0.001 ˂ 0.001 ˂ 0.001 0.06 

Key: NA = not applicable and indicates that the variable was not retained in the final model. 

 

Scatter plots of parameters against covariates are shown in Figures 5.7 and 5.8. A clear 

relationship was observed between clearance versus creatinine clearance, and clearance 

versus height compared with clearance versus weight and lean body weight.  The scatter 

plot of clearance and age showed that there was no relationship between clearance and 

patients younger than 40 years old, whereas a negative relationship started to appear after 

40 years of age. On the other hand, plots of V1 versus covariates showed a slight trend with 

weight, height and lean body weight and no trend with age. These plots showed clearly a 

separation of V1 estimate into two groups. In contrast, scatter plots of Q and V2 did not 

show any trend with covariates.  
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Figure 5.7  Scatter plots of clearance versus covariates. The black solid line is a smooth 
line. 

 

 

  
Key: Creatinine clearance estimated by the Cockcroft and Gault equation (Cockcroft DW and Gault MH, 1976) with the lowest serum 
creatinine value fixed to 60 µmol/L (Duffull SB et al., 1997, Rosario MC et al., 1998). 
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Figure 5.8  Scatter plots of volume of distribution of the central compartment versus 
covariates. The black solid line is a smooth line. 

 

  
 

The inclusion of age as categorical variable with a cut off at 18 years old resulted in an 

improved log  likelihood, but there was no difference in clearance estimates between the 

groups (median clearance:  5.2 and 5.1 L/h).  These findings were consistent with the 

NONMEM results reported in Chapter 3. Similarly, clearance estimates for patients from 

Glasgow and The Hague were similar (median clearance: 5.14 and 5.07 L/h). Gender was 

modelled as categorical variable where males and females had different V1 estimates; 

however, the model did not improve the fit; there was no change in log likelihood value 

(9004) or model prediction bias and imprecision (0.28 and 1.47 mg/L).  On the other hand, 

when the estimate of V1 was divided into two groups based on population (Glasgow or The 
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Hague patients), the log likelihood improved (from 9004 to 8730) but the parameter 

estimate distributions and mean values were similar (14.5 L for Glasgow and 14.9 L for The 

Hague patients).  

 

Table 5.5 shows the covariate model building. Including weight as covariate in both 

clearance and V1 improved the log likelihood value (from 9004 to 8989), but it increased 

concentration prediction bias from 0.29 to 0.32 and imprecision from 1.48 to 1.56. In 

contrast, including lean body weight resulted in a worse log likelihood function (from 9004 

to 9061) and the imprecision increased from 1.48 to 1.51. Including body surface area 

improved the model fit from log likelihood 9004 to 8675. Although the mechanistic model 

using the creatinine clearance parameter estimates reported in Matthews et al  (2004) 

paper improved the log likelihood with a value of 8789, between-subject variability in 

clearance and V1 increased to 33 and 34 %. Therefore, creatinine clearance parameters 

were estimated, but the run did not converged despite reaching the maximum number of 

cycles allowed in Pmetrics or ended with a hessian error. The best model fit with the lowest 

bias and imprecision was achieved when both height and creatinine clearance were 

included in the model for clearance and height in the model for V1 (8568). Including 

creatinine clearance as covariate on Q improved the model fit, but with no improvement in 

model predictions based on bias and imprecision. However, there was a difference between 

the mean and median Q estimates (0.009 and 0.006 L/h) and the estimate of variability 

increased. Therefore, the values of Q and V2 were fixed in the final model. There were 49 

supports points generated from the final covariate model.  The final model gamma value 

was small at 1.06. The distribution of the final model parameters is shown in Figure 5.9. The 

final model identified a mean clearance estimate of 4.98 L/h at the median height of 166 cm 

and median CrCL of 94 mL/min. The mean V1 was 14.2 L and changed by 11% for every 10 

cm difference from 166 cm. 
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Table 5.5  Summary of covariate models, likelihood values, parameter estimates and 

between-subject variabilities obtained using Pmetrics. 

Likelihood 
Clearance (L/h)  

Mean 
BSVCL  

% 
V1 (L)  
Mean 

BSVV1 
% 

9004 5.24 ( 0.06) 23 14.8 (0.17) 21 

9061 
0.12 ( 0.002)x LBW + 0.01 (0.001) (CGCL- 

94) 
25 

14.2 (0.11) (1+0.01                
(0.0002) (LBW-40)) 

15 

8989 
0.09 (0.001)x WT +  0.01 ( 0.0004)(CGCL- 

94) 
24 

13.8 (0.13)(1 + 0.02 (0.001) 
(WT - 53)) 

17 

8789 
5.35 (0.09)(LBW/70)0.75 +1.35 ( 0.04)x 

(CrCL/7.26 L/h/70 kg x 
(LBW+0.211(Weight–LBW) /70)0.75)) 

33 
6.28 (0.12) (1+0.03 (0.001) 

(LBW+           
(WT-LBW)/70)) 

34 

8675 3.20 (0.04) x BSA + 0.01 (0.001) (CGCL- 94) 22 
14.5 (0.14) (1+0.75                
(0.014)(BSA - 1.6)) 

17 

8568 0.03 (0.0003)x HT + 0.02(0.001) (CGCL- 94) 20 
14.2 (0.13) (1 + 0.01 

(0.001)(HT - 166)) 
17 

Key: LBW= Lean body weight in kg (Janmahasatian S et al., 2005), CGCL= Creatinine clearance in mL/min estimated by the Cockcroft and 
Gault equation (1976) with the lowest serum creatinine value fixed to 60 µmol/L (Duffull SB et al., 1997, Rosario MC et al., 1998), WT= 
Weight in kg, CrCL= creatinine clearance in L/h estimated using the mechanistic approach (Matthews et al., 2004, Anderson BJ and 
Holford NHG, 2009), BSA= Body surface area m2 (Mosteller RD, 1987), HT= Height in cm. Standard errors of each parameter estimate 
are shown in italics. 

 

Figure 5.9  The probability distribution of the final model parameters following an NPAG 
run in Pmetrics. 

 
Key: CL0= represents the intercept of clearance, CLs= represent the slop of clearance, V0= represents intercept of V1, Vs= represents of V1.   
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5.4.4 Comparison of results from Pmetrics and NONMEM 

The covariates chosen for the final model were the same for Pmetrics and NONMEM. In 

addition, the parameter estimates obtained with Pmetrics and NONMEM were similar, as 

shown in Table 5.6. Although NONMEM produced lower and non-significant bias in 

predictions of individual concentrations (0.05mg/L; 95% confidence interval: -0.01, 0.10) 

compared with Pmetrics predictions (0.28 mg/L; 95% confidence interval:  0.24, 0.32), 

imprecision was higher for NONMEM at 1.89 mg/L compared to 1.48 mg/L with Pmetrics. 

Figure 5.10 shows scatter plots of the measured versus the predicted concentrations 

obtained from the Pmetrics final model and those obtained from NONMEM. Predictions 

obtained from Pmetrics were closer to the line of identity and with fewer outliers compared 

with NONMEM predictions. Figure 5.11 shows concentration predictions obtained from 

Pmetrics and NONMEM. The plots show good agreement in predictions obtained from 

Pmetrics and NONMEM and with few outliers where NONMEM had the tendency to over-

predict concentration that was more pronounced at concentrations greater than 20 mg/L.  

 

Table 5.6   Comparison of the final model parameter estimates obtained from Pmetrics 
and NONMEM. 

Parameter Pmetrics (mean values) NONMEM  

CL (L/h) 0.0311  x HT + 0.0184  x (CGCL - 94) 0.0287  x HT+ 0.0135 x (CGCL  - 94) 

V1 (L) 14.2 x(1 + 0.0127 x (HT - 166)) 13.9 x(1 + 0.0108 x(HT - 166)) 

Q (L/h) 0.600 0.602 

V2 (L) 8.00 5.79 

Key: HT= Height in cm, CGCL=  Creatinine clearance in mL/min estimated by the Cockcroft and Gault equation (1976) with the lowest 
serum creatinine value fixed to 60 µmol/L (Duffull SB et al., 1997, Rosario MC et al., 1998). 
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Figure 5.10  Scatter plots of the measured versus population and individual predicted 
aminoglycoside concentrations using the final model from (a) Pmetrics (b) NONMEM. The 
dashed line is a smooth line of the data.     

 

 

 

Figure 5.11  Scatter plots of Pmetrics versus NONMEM predicted (a) population and  (b) 
individual predicted concetrations.  
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5.5 DISCUSSION 

In the current study, population pharmacokinetic modelling was performed using the 

nonparametric approach implemented in Pmetrics (Neely MN et al., 2012) and compared 

with the results from parametric approach performed using NONMEM (Beal SL et al., 2009).  

Both approaches yielded similar final models, where height and creatinine clearance in 

clearance and height in V1 model were the best descriptors. Parameter estimates were very 

close; however, clearance parameter estimates were slightly higher for Pmetrics. In 

addition, individual concentration predictions were more precise using the nonparametric 

approach.  

 

In order to obtain the initial parameter estimates for the NPAG run, an IT2B was first used. 

However, NPAG would not run with these initial ranges, whereas the use of parameter 

ranges obtained by from previous NONMEM analysis resulted in successful run. This could 

be related to the wide range of parameter estimates obtained following the IT2B run 

compared with constraining a narrower range of the parameter when obtained from 

previous knowledge with NONMEM results. In addition, this reflected how sensitive NPAG is 

for the initial range estimates. 

 

A two compartment model fitted the aminoglycoside data better than one compartment 

model, which is in agreement with NONMEM analysis performed previously in Chapter 3 

and with other publications in this patient group (Aminimanizani A et al., 2002, Burkhardt O 

et al., 2006). Clearance estimates obtained from NPAG were higher compared with 

NONMEM but with similar between-subjects variability (23 and 25 %). V1 estimates were 

similar using both approaches; however, the nonparametric approach produced higher 

variability in V1 compared with the parametric approach (21 and 15 %). In addition, Q and V2 

estimates obtained from Pmetrics and NONMEM were similar, but variabilities were higher 

for NONMEM Q (79 % from NONMEM and 21 % from Pmetrics) and V2 (59 % from 

NONMEM and 13 % from Pmetrics) compared with Pmetrics. The results showed that 

Pmetrics (NPAG) faced difficulty to estimate Q and V2, which was reflected in the 

distribution of estimates and being divided into two district groups. This reflected the sparse 
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nature of data where majority of samples were peak (44 %) and trough (33 %) 

concentrations, which did not contain enough information to quantify this parameter. 

 

The difference seen in clearance estimates and variabilities obtained from Pmetrics versus 

NONMEM could be related to the method of estimation, where the nonparametric 

approach does not assume a shape for parameter distribution and thus allowing the 

detection of subpopulations and outliers within the examined group of patients (Neely MN 

et al., 2012, Bustand A et al., 2006). Prémaud et al (2011) documented a similar finding 

when they compared the parametric and nonparametric approach using mycophenolic acid 

data from 34 paediatric renal transplant patients. They found that parameter estimates 

obtained from NPAG were higher than those obtained from the FOCE algorithm. In addition, 

Tatarinova et al (2013) illustrated the advantage of NPAG algorithm in detecting outliers in a 

simulation study of 35 infants who were administered zidovudine. They found that both 

NPAG and FOCE algorithms were able to find the same pharmacokinetic parameter typical 

values, but NPAG was able to estimate the true pharmacokinetic parameter distribution and 

detected two group of patients with slow and rapid drug clearance. The FOCE algorithm that 

is used in NONMEM was not able to find this true distribution and subsequently was not 

able to identify these two groups of patients. 

 

Moreover, Carlsson and his colleagues (2009)  developed a gabapentin population 

pharmacokinetic model in 16 adult patients with chronic neuropathic pain using parametric 

and nonparametric approaches,  and found no difference in gabapentin parameter 

estimates obtained from the FOCE algorithm and the NPAG algorithm. In addition, Bustad et 

al (2006) found following their study in 16 adult patients treated with amikacin for urinary 

tract infection, that between-subject variability obtained from the parametric approach 

(IT2B) was narrower compared to the nonparametric approaches (NPEM and NPAG) 

suggesting that the narrow range of parameter estimates arose as a result of the normality 

assumption. They also performed another simulation study to evaluate the ability of the 

nonparametric approach to detect subpopulations. Twenty subjects were simulated with 

two groups, slow and rapid metabolises. They showed that the NPEM algorithm was able to 
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detect the two groups even without including covariates in the model. In addition, Bustad et 

al (2006) performed another simulation study for amikacin with between 25 to  800 

simulated subjects to assess the consistency of parametric and nonparametric algorithms in 

estimating the true parameter values. They found that as the number of subjects increased, 

the estimated mean by NPAG algorithm was closer to the true parameter value.  However, 

the mean value estimated by the IT2B and FOCE algorithms deviated from the true value as 

the number of simulated subjects increased. These results indicated that the NPAG 

algorithm had had consistent behaviour. In addition, their results showed that less bias and 

more precise concentration predictions was obtained by using the nonparametric method 

compared with the parametric method.  

 

Measured versus predicted concentration plots from both Pmetrics and NONMEM were 

similar. Although bias was low for both algorithms, NONMEM produced non-significant 

predictions and hence was more accurate compared with Pmetrics. On the other hand, 

Pmetrics produced more precise individual concentration predictions. The current study 

finding was in agreement with Prémaud et al (2011) who found that more precise 

concentration predictions were obtained from the nonparametric (NPAG) approach 

compared with parametric (FOCE) approach.  

 

The data included patients with a wide range of age (14 – 88 years old) and hence age was 

examined for its influence on aminoglycoside pharmacokinetics. However, the results 

showed no difference in clearance estimates for adolescents (less than 18 years old) and 

adults (greater than 18 years old). This was shown previously in NONMEM analysis 

performed in Chapter 3 and is consistent with the finding of VandenBussche et al 

(VandenBussche HL and Homnick DN, 2012). Although, scatter plots for V1 against different 

body size measurements showed a possible two groups that could be related to gender 

effect, modelling gender did not improve the model fit. Although data from Glasgow and 

The Hague were combined, there was no difference in clearance and V1 estimates. Including 

weight improved the model fit; however, bias and imprecision in concentration predictions 

increased. A similar observation was documented in NONMEM analysis in Chapter 3, where 
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weight worsened the  model fit with an increase in OFV from 33 to 184 and an increase in 

between-subject variability from 23 % to 25 %. The best model fit was obtained when height 

and creatinine clearance were included into clearance and height into the V1 model.  

Although weight slightly improved the model fit, height had a better model fit and produced 

lower bias and imprecision. On the other hand, including lean body weight worsened the 

model fit. A similar problem was observed in the previous NONMEM analysis conducted in 

Chapter 3. Including lean body weight worsened the model fit, OFV increased from 33 to 58, 

and between-subject variability increased from 23 % to 25 %. The second best model was 

when body surface area and creatinine clearance were included into clearance and body 

surface area in V1 models with comparable bias and imprecision to the height model. 

However, similar model in NONMEM resulted in a worse model fit.  

 

An important advantage of the parametric method is the ability to separate variabilities into 

between-subject, within-subject and residual variability whereas the nonparametric 

approach separated variabilities into  assay error and environmental variability (Neely MN 

et al., 2012, Bustand A et al., 2006). A unique aspect of the available dataset was the 

availability of multiple courses of aminoglycoside therapy over 15 years and the influence on 

within-subject variability could be examined. This was examined by NONMEM in Chapter 3. 

However, modelling within-subject variability is not feasible in the current version of 

Pmetrics. This issue was discussed with the Pmetrics developer, who stated that future 

versions of Pmetrics may include this option. In the present study, the overall source of 

variability without the assay error was estimated in the form of gamma. A value of 1 

suggests no other source of variability (or noise) than the assay error (Bustand A et al., 

2006). In the current study gamma value for the final model was 1.06 and this suggested a 

small environmental noise.  

 

The mechanistic model described by Matthews et al  (2004) and Anderson et al (2009) 

improved the model fit but resulted in increase in between subject variability. In Pmetrics, 

creatinine clearance parameters estimates from Matthews et al  (2004) study were used, 

which  might contribute to the increase in between subject variabilities in clearance and V1. 
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Attempts to estimate these parameters resulted in maximum cycle been reached but the 

run did not converged or the run ended with a hessian error.  

 

The strength with the parameteric software NONMEM is the ability to evaluate the model 

internally using a variety of methods. However, in the nonparametric software Pmetrics, 

these methods are under development namely bootstrap and visual predictive check. 

 

By using the nonparametric approach to estimate the parameters, discrete support points 

were obtained where each point had a set of the model parameter estimates and its 

associated probability and represented possible different models for the patients (Neely MN 

et al., 2012, Tatarinova T et al., 2013). One application of this type of population model is to 

including it within software that aids dose optimisation of individual patients (Tatarinova T 

et al., 2013, Jelliffe R et al., 2000, Bayard DS et al., 1994). For example, population models 

were used within the multiple-model design of dosage regimen (Bayesian adaptive dosage)  

algorithm (Bayard DS et al., 1994) that was previously implemented within the USC-PACK 

package (Jelliffe RW, 1991) developed and maintained by the Laboratory of Applied 

Pharmacokinetics, University of Southern California.  With the new development and 

improvements in their nonparametric population pharmacokinetic program, Pmetrics, the 

clinical software is now available separately as a Windows program and renamed 

“BestDose”, although it still uses the same approach.  

 

In the present study, the model included 49 support points. The small number of support 

points obtained from the current analysis despite the relatively large number of patients 

(331 patients) reflected the low variability within the studied group of patients. The final 

model could be used in the clinical program “BestDose” to individualise dosage regimens for 

adult patients with cystic fibrosis treated with tobramycin. In order to illustrate the 

usefulness of the multiple-model design of dosage regimen for therapeutic drug monitoring 

and to advise on the initial and future dosage regimens to achieve a defined target goal,  

Neely et al (2008) presented four cases of patients who were treated with antiretroviral 
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drugs (efavirenz, nelfinavir, amprenavir, and atazanavir). The method had proven its 

usefulness through the identification of patient with unexpected pharmacokinetics such as 

low drug clearance or high volume of distribution and to develop an individualised dosage 

schedule to fit patient’s need to ensure adherence.  

 

A potential future study would be to evaluate the performance of the model within the 

“BestDose” software and compare the results with current practice, which involves using a 

different software package, a MAP Bayesian method call OPT (Kelman et al., 1982). Data 

have been collected from 40 new patients with 63 courses of therapy.  However, at present, 

this study is not feasible because the current version of BestDose only accepts a model that 

contains with rate constants and volume of distribution, whereas the final model of the 

current study re-parameterised the rate constants to clearance and volume of distribution. 

In addition, the current version of BestDose only allows creatinine clearance to be used as 

covariate for clearance and weight as a covariate for volume of distribution.  This was not 

the case in the present final model where height and creatinine clearance were the 

covariates for clearance and height for volume of distribution. The BestDose developers are 

planning to change the current program format and made future versions more flexible to 

accept different models with different parameterisations and covariates but this is still in 

the development stage and the timescale for completion of this work is unknown.  

 

5.5.1 Conclusion 

In conclusion, the current analysis indicated that both parametric and nonparametric 

approaches performed similar when were used to analyse aminoglycoside data from 

patients with cystic fibrosis. The results obtained following nonparametric analysis 

confirmed the results from parametric analysis where the final model that best fitted that 

data was a two compartment model and included height and creatinine clearance in 

clearance and height in V1. Although, parameter estimates were very close, clearance 

parameter estimates were slightly higher for the nonparametric approach, which indicated 

that the nonparametric approach was able to detect subpopulations and outliers within the 
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examined group of patients. In addition, individual concentration predictions were more 

precise using the nonparametric approach. 
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CHAPTER 6: DEVELOPMENT AND VALIDATION OF A 

TOBRAMYCIN DOSAGE ADJUSTMENT NOMOGRAM FOR 
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6.1 INTRODUCTION 

Nicolau et al (1995) were the first group to propose “once daily” or “extended interval” 

dosing of aminoglycoside antibiotics.  Their guidelines of a fixed 7 mg/kg dose and a dosage 

interval based on the patient’s calculated creatinine clearance were intended for use in 

general medical patients. The regimen was designed to produce a peak concentration at one 

hour of 20 mg/L, approximately ten times an MIC of 2 mg/L.  To allow easy interpretation of 

drug concentration measurements, they also proposed a dose adjustment nomogram with a 

single random blood sample obtained between 6 and 14 hours after the start of infusion.  

 

In patients with cystic fibrosis, however, a higher aminoglycoside dose of 10 mg/kg/day has 

been recommended to ensure that high concentrations, that are likely to be active against 

P.aeruginosa, are achieved at the site of infection, which is the lung in this case (Smyth A et 

al., 2005, The UK Cystic Fibrosis Trust Antibiotic Working Group, 2009). Current monitoring 

of these high doses is typically based on a peak concentration between 20 and 30 mg/L, 

obtained 30 minutes after a 30-minute infusion and a trough (pre-dose) concentration ≤1 

mg/L. There is currently no dosage adjustment nomogram available to help clinicians 

interpret aminoglycoside concentration measurements associated with this high dose. In 

Australia, daily exposure is the recommended monitoring approach to monitor once daily 

tobramycin (Begg EJ et al., 1995). They have a defined target daily AUC for general medical 

patients but there is no daily AUC target for CF patients yet. Aminoglycosides dose are 

usually scaled based on weight in patients with cystic fibrosis (Aminimanizani A et al., 2002, 

Beringer PM et al., 2000, Kearns GL et al., 1982, Massie J and Cranswick N, 2006). However, 

other body size measurements such as body surface area (Campbell D et al., 1999) and lean 

body weight (Touw DJ et al., 1994) were used to scale the dose in this patient group.  In this 

chapter, different dosage scaling factors including weight would be evaluated for the best 

that achieve target concentrations and exposure of tobramycin.  
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6.2 AIMS 

 To determine a daily area under the concentration-time curve (daily AUC) target. 

 To determine which dosage scaling factor provides the best opportunity to achieve 

target concentrations and exposure of tobramycin. 

  To develop tobramycin dosage adjustment nomograms for patients with cystic fibrosis 

given a dose of 10 mg/kg every 24 hours and given a dose based on the best scaling 

factor. 

 To validate the weight scale based dose nomogram using routine tobramycin 

concentration-time measurements obtained from a new set of patients with cystic 

fibrosis. 

 

6.3 METHODS 

6.3.1 Identification of daily exposure target and range using real data  

Since a target range for tobramycin daily exposure in patients with cystic fibrosis was not 

available from the literature, the range was derived from routine clinical data. Daily doses 

and individual CL estimates from the Glasgow and The Hague datasets were used to predict 

daily AUC ranges by estimating daily AUCs for each patient. The daily AUC was calculated 

from daily dose/individual CL estimate. The TOPIC study (Smyth A et al., 2005) is the largest 

randomised controlled trail conducted in patients with cystic fibrosis to compare the safety 

and efficacy of a 10 mg/kg dose administered once daily or in three divided doses. In that 

study, 219 patients from 21 cystic fibrosis centres in the UK, 15 paediatric and six adult 

centres, were included.  A pharmacokinetic analysis was performed using 136 patients who 

had complete data on tobramycin doses, administration dates and times, and tobramycin 

concentrations with recorded sampling times (Touw DJ et al., 2007). Therefore, the typical 

daily AUC value obtained with the recommended daily dose of 10 mg/kg/day tobramycin 

was estimated from the TOPIC (Touw DJ et al., 2007) study using their mean estimates of  

elimination rate constant  (0.318 h-1) and V (0.294 L/kg). The target daily AUC and ranges 

were then used as the monitoring parameter for once daily tobramycin to determine the 

dose scaling factors and develop the nomogram. 
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The Glasgow dataset included 166 adult patients with cystic fibrosis and 1075 courses of 

aminoglycoside therapy. The median dose was 360 mg/day and ranged from 120 to 660 

mg/day.  Overall, 44 (4 %) of the courses were administered 8 hourly, 1022 (95 %) 12 hourly 

and 9 courses (1%) 24 hourly.   The Hague dataset comprised 165 patients with 415 courses 

of tobramycin. These patients received a median dose of 500 mg/day (range 120 to 880 

mg/day). One course was administered 8 hourly, 137 (33 %) of the courses were 12 hourly, 

272 (65 %) were 24 hourly, 3 were 36 hourly and 2 were 48 hourly.  

 

To determine a possible daily AUC range for the 10 mg/kg/day dose, data from patients in 

The Hague dataset who received 24, 36 or 48 hourly doses were selected for further 

analysis. The daily AUC range was determined after first identifying the doses that achieved 

the target peak concentrations of 20-30 mg/L and troughs ≤ 1 mg/L (Smyth A et al., 2005). 

For the purpose of this analysis, “peak” concentrations were defined as measurements 

obtained between 0.95 to 1.5 hours and “trough” concentrations between 17.5 to 20 hours 

after the start of the infusion.  The daily AUC distributions associated with peak and trough 

concentrations below, within and above these targets were identified and used to 

determine the lower and upper daily AUC range.  

 

6.3.2 Creation of simulated patient dataset  

Five thousand simulated patients with age, weight, height, serum creatinine, and CrCL 

distributions that mirrored the combined datasets were created using NONMEM (Beal SL et 

al., 2009).  A log normal distribution for the variance of these clinical characteristics from 

combining the Glasgow and The Hague datasets was used to ensure similar distributions to 

the raw data characteristics. The categorical variable, gender, was simulated and the 

NONMEM code was constrained to simulate 50% of patients to be males and 50% to be 

females. The typical relationship between weight, height and gender was identified by 

regression analysis and included in the simulation to ensure that the combinations of weight 

and height within a patient made physiological sense. Creatinine clearance was estimated 

by the Cockcroft and Gault (Cockcroft DW and Gault MH, 1976) equation using the 

simulated values of gender, age, weight and serum creatinine. The minimum serum 
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creatinine value was fixed at 60 µmol/L (Duffull SB et al., 1997, Rosario MC et al., 1998). The 

simulation data file included the following information for one patient: the median age, 

weight, height, serum creatinine and CrCL values derived from the combined dataset. Figure 

6.1 shows the data file used to simulate the weight scaled dose (10 mg/kg).  In order to 

avoid simulated clinical characteristics that were outside the range of characteristics in the 

combined datasets, the ranges were limited using the “IF” code.  This indicated that if the 

simulated value was lower than the minimum or greater than the maximum value in the 

combined dataset then it should be replaced with the median value that was included in the 

simulation data file. The NONMEM coding that was used to generate the simulated patients’ 

characteristics is presented in Figure 6.2. 

 

A dosage adjustment factor (F1) was included in the control file to correct the dose included 

in the data file.  F1 is the fraction of  the patient’s simulated scaling factor such as simulated 

weight, height, lean body weight or body surface area and  the median scaling factor (e.g. 

weight, height, lean body weight or body surface area) used in the data file 

(F1=SIMWT/WT).  

 

Then the simulated amount would be the amount used in the data file multiplied by the 

dosage adjustment factor (F1) value (AMT2=AMT*F1).The final two compartment model 

and  pharmacokinetic estimates derived from the analysis of the model development 

datasets were used to generate 5000 simulated patients using the “$SIMULATION” code. 

Figure 6.2 shows the control file used to generate weight scaled dose (10 mg/kg) 

simulations. 

 

Different dosing scaling factor options were examined including the current weight scaled 

dose (10 mg/kg with and without restricting the daily dose to 660 mg/day) (Smyth A et al., 

2005) and the  height, LBW (Janmahasatian S et al., 2005) and BSA (Mosteller RD, 1987)  

scaled doses. For each examined dosage regimen, a new data file was created with only 

change in the dose, which is based on the scaling factor to be used such as LBW, height or 



                                                                                                                                                                              147 

 

BSA. For the derived body size measurements, LBW and BSA, their formulas were coded 

within the NONMEM control file to estimate their values from the simulated weight and 

height values generated. Tobramycin concentrations were predicted for each simulated 

patient at 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 hours after the start of the infusion. 

 

Figure 6.1   Example of the data file used to generate the simulated patients and 

concentrations. 

#ID TIME AMT RATE EVID AGE WT HT GEN CREA CGCL DV

1 0 530 1060 1 24.6 53 166 0 70 94 0

1 1 0 0 0 24.6 53 166 0 70 94 0

1 2 0 0 0 24.6 53 166 0 70 94 0

1 4 0 0 0 24.6 53 166 0 70 94 0

1 6 0 0 0 24.6 53 166 0 70 94 0

1 8 0 0 0 24.6 53 166 0 70 94 0

1 10 0 0 0 24.6 53 166 0 70 94 0

1 12 0 0 0 24.6 53 166 0 70 94 0

1 14 0 0 0 24.6 53 166 0 70 94 0

1 16 0 0 0 24.6 53 166 0 70 94 0

1 18 0 0 0 24.6 53 166 0 70 94 0

1 20 0 0 0 24.6 53 166 0 70 94 0

1 22 0 0 0 24.6 53 166 0 70 94 0

1 24 0 0 0 24.6 53 166 0 70 94 0
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Figure 6.2  An example of the control file used to generate weight scaled dose (10 
mg/kg) simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key: SIMHT = simulated height, HT= median height value in the data file, ETA = log normal distribution variance obtained for the 
combined datasets, SIMWT = simulated weight, GEN1 = simulated gender, WT, median weight, F1 = dosage adjustment factor, AMT2 = 
doses adjusted for the simulated scaling factor value (e.g. weight) 

$PROB NOMOGRAM DEVELOPMENT BY SIMULATION 

$INPUT ID TIME AMT RATE EVID AGE WT HT GEN CREA CGCL DV  

$DATA C:\Nomogramsimulations\COMBINEDNOMOGRAM.CSV IGNORE=# 

$SUBROUTINE ADVAN3 TRANS4 

$PK   

     

SIMHT=HT*EXP(ETA(4)) 

IF(SIMHT.LT.139)SIMHT=HT 

IF(SIMHT.GT.194)SIMHT=HT 

 

IF(ICALL.EQ.4.AND.NEWIND.NE.2) THEN 

GEN1=0 ;MALE 

CALL RANDOM(2,R) 

GENDER=R 

IF(GENDER.LT.0.50) THEN 

GEN1=1 ;FEMALE 

ENDIF 

ENDIF 

 

SIMAGE=AGE*EXP(ETA(5)) 

IF(SIMAGE.LT.14)SIMAGE=AGE 

IF(SIMAGE.GT.88)SIMAGE=AGE 

 

SIMCREA=CREA*EXP(ETA(6)) 

IF(SIMCREA.LT.60)SIMCREA=60 

IF(SIMCREA.GT.209)SIMCREA=CREA 

 

SIMWT=(-67.1+1.09 *GEN1+0.731*SIMHT)*EXP(ETA(7))   

IF(SIMWT.LT.30)SIMWT=WT 

IF(SIMWT.GT.108)SIMWT=WT 

F1=SIMWT/WT ; DOSING ADJUSTMENT FACTOR       

AMT2=AMT*F1 

IF(GEN1.EQ.1) THEN 

SIMCGCL=((1.04*(140-SIMAGE)*SIMWT)/SIMCREA)*EXP(ETA(8)) ; LOGCRCL VARAINACE  

ELSE 

SIMCGCL=((1.23*(140-SIMAGE)*SIMWT)/SIMCREA)*EXP(ETA(8)) ;LOGCRCL VARIANCE  

ENDIF 

 

IF(SIMCGCL.LT.26.3)SIMCGCL=CGCL 

IF(SIMCGCL.GT.181.4)SIMCGCL=CGCL 

 

         TVCL=THETA(1)*SIMHT*+THETA(2)*(SIMCGCL-92) 

         TVV1=THETA(3)*(1+THETA(4)*(SIMHT-163)) 

         TVV2=THETA(5) 

         TVQ=THETA(6) 

         CL=TVCL*EXP(ETA(1)+ETA(2)) 

         V1=TVV1*EXP(ETA(3)) 

         V2=TVV2 

         Q=TVQ 

         S1=V1 

         AUC=AMT2/CL 

 

$ERROR   IPRED=F 

$ERROR   W=SQRT(THETA(7)**2+THETA(8)**2*F**2) 

         IRES=DV-IPRED 

         IWRES=IRES/W 

         Y=IPRED+W*ERR(1)  

 

$THETA   0.0285 0.0114 13.3 0.0113 6.62 0.452 0.086 0.148 

$OMEGA   0.0129  ;IOV CL     

$OMEGA BLOCK(2) 0.0325 0.0140 0.0134;IIV CL BLOCK MATRIX IIV V1 

$OMEGA   0.003 0.112 0.042 0.035 0.05 ;LOG NORMAL DISTRIBUTION VARIANE VALUE FOR ETA 4 5 6 7 8  

$SIGMA 1 FIX 

$SIMULATION (22032012) (812 UNIFORM)ONLYSIM SUBPROBLEMS=5000 

$TABLE ID TIME AMT2 EVID DV GEN1 SIMAGE SIMWT SIMHT SIMCREA SIMCGCL TVCL TVV1 TVV2 TVQ CL AUC V1 V2 Q 

NOPRINT ONEHEADER FILE=Simcombine12B2.TAB 
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6.3.3 Creation of simulated datasets with a range of dosing scalers 

The median dose required to achieve the typical daily AUC was calculated using the median 

CL estimate obtained with the population pharmacokinetic model (4.92 L/h) and using the 

following formula; 

Median dose (mg) = Typical daily AUC (mg.h/L) x Clearance (L/h) 

This median dose was then scaled by dividing the median values of lean body weight (LBW) 

(Janmahasatian S et al., 2005), height and body surface area (BSA) (Mosteller RD, 1987) 

obtained from the combined datasets, to create three dosage regimens, i.e. 

Dose per kg LBW = Median dose (mg)/40 kg = LBW dose mg/kg 

Dose per cm height = Median dose (mg)/166 cm = Height dose mg/cm 

Dose per m2 BSA = Median dose (mg)/1.6 m2 = BSA dose mg/m2 

 

Five data files and control files were prepared to generate 5000 simulated patients who 

were administered restricted and unrestricted weight, LBW, height and BSA scaled doses. 

Figure 6.2 shows the control file used to generate weight scaled dose (10 mg/kg) 

simulations and control files used to generate the other dose scaling factors including LBW, 

height and BSA are shown at APPENDIX VI (a, b and c). In addition, Figure 6.3 shows a 

summary of the simulation method presented as a workflow diagram.  
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Figure 6.3  The simulations workflow diagram to evaluate the different dosage regimens 

and develop dosage nomogram. 

 

 

6.3.4 Analysis of peak and daily AUC estimates obtained with the simulated 

data  

The predicted daily AUC was calculated for each patient from simulated daily 

dose/simulated individual CL estimate and compared with the target ranges determined 

from the literature and the analysis of real patient data. The daily doses and tobramycin CL 

estimates were compared among patients whose daily AUC estimates were below, within 

and above the target for each dose scaler. In addition the daily doses, daily AUC and peak 

concentration were compared for the examined dosage regimens. The comparison was 

performed using the non-parametric Kruskal-Wallis test implemented in Minitab version 

15, (Minitab Ltd, Coventry, UK). Statistical significance was set at p < 0.05. Simulated 

patients who achieved the target peak concentration of 20 – 30 mg/L 1 hour after starting 

the infusion were also determined.  
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The proportions of patients who achieved both the peak and daily AUC targets with the 

different scaling factors were compared with the proportions obtained with the current 

recommended dose (10 mg/kg with or without a maximum of 660 mg).  The comparison 

was performed using the Chi-Square test in Minitab version 15, (Minitab Ltd, Coventry, 

UK).   

 

6.3.5 Development of nomograms for interpreting tobramycin 

concentrations  

The nomogram was designed to identify patients who would fall outside the targets of peak 

concentration 20 – 30 mg/L, concentration < 1 mg/L at 18 hours post dose and daily AUC 

within the typical range identified from the real patient data.  Concentration measurements 

from patients whose CrCL estimate was < 50 mL/min were excluded. The simulated patients 

whose concentrations achieved the target daily AUC and target peak (20 – 30 mg/L) ranges 

were selected from the currently recommended weight scaled dose and an alternative 

dosage regimen that achieved the highest proportion of patients within the target daily AUC 

and peak concentration ranges.  From these data, the 97.5th, 95th, 2.5th and 5th percentiles of 

the simulated concentrations at each time point were plotted against time after start of 

therapy.   

 

6.3.6 Validation of the nomogram for interpreting tobramycin 

concentrations 

6.3.6.1 New dataset 

A new, independent dataset comprising data from patients with cystic fibrosis who had 

been treated with tobramycin was received from a hospital laboratory in The Netherlands. 

The data were supplied in an Excel spreadsheet format exported from the software 

MWPharm (Mediware, Groningen, The Netherlands). Patients who had the same gender 

and date of birth were assumed to be the same individual. Courses of therapy that 

contained insufficient data or suspected errors were removed from the dataset. Courses 

administered to patients who were less than 14 years old were excluded. Patients in the 

new dataset were then compared with patients who were included in the model validation 
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dataset used in Chapter 4 and any who appeared in both datasets were removed from the 

new dataset.  

 

The dataset comprised clinical and demographic data, the dosage regimen(s) and a list of 

measured concentrations. The original format was not suitable for nomogram validation 

since dosage information was required before each measured concentration.  Consequently, 

some assumptions had to be made.  These were as follows: 

 “Peak” concentrations were assumed to be measured one hour after starting the 

infusion.  

 If a measured concentration was recorded without information about the previous dose, 

the dose amount and time were assumed to be consistent with the previous dose and 

dosage interval.  

 

Concentration measurements between 6 and 12 hours after the start of the infusion were 

plotted on the draft nomogram and the dosage recommendation noted. The 

recommendations arising from the nomogram were compared with the actual dosage 

decision that had been made from a MAP Bayesian (MWPharm) interpretation of the 

concentration measurements for the following dose. In addition, individual daily AUC was 

estimated using the administered dose and the individual clearance estimate (daily AUC= 

daily dose/ individual clearance) obtained following a POSTHOC analysis using the final 

empirical model with height parameter estimates.  Data arising were analysed and plotted 

using Microsoft office Excel (Microsoft Office 2007), Minitab version 15, (Minitab Ltd, 

Coventry, UK), and GraphPad Prism (version 6). 

 

6.3.6.2 Glasgow and The Hague dataset 

The Glasgow and The Hague datasets used for model development and validation were 

combined, and their weight and individual pharmacokinetic estimates predicted from the 

final model run were used to predict concentrations at 6, 9, 12 hours after start of therapy 

following a 10 mg/kg/day (maximum 660 mg/day)  dose . The estimation step was omitted 
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by using the code MAXEVAL = 0.  Then concentrations were plotted on the developed 

weight scaled nomogram to ensure that the developed nomogram is able to identify 

patients with low, within and above target AUC range.  

 

6.4 RESULTS 

6.4.1 Daily exposure target and range using real data 

The estimated target daily AUC from the TOPIC study was 106 mg.h/L. The daily doses and 

daily AUC estimates for the real datasets are listed in Table 6.1.  The tobramycin doses given 

to the Glasgow patients were lower than doses administered to The Hague patients. 

Similarly, daily AUCs were lower for the Glasgow patients with up to 179 mg.h/L compared 

with daily AUCs from The Hague patients that were up to 268 mg.h/L. Patients in the 

Glasgow dataset who were administered doses between 9 and 11 mg/kg/day had a median 

daily AUC of 84.6 mg.h/L, which was lower than median value for patients from the Hague 

(106 mg.h/L). As shown in Figure 6.3 (a), none of the predicted peak concentrations in the 

Glasgow dataset achieved the target concentration and hence were excluded from further 

analysis. On the other hand, 120 out of 492 peak concentrations from The Hague achieved 

the target (20 -30 mg/L) as shown in Figure 6.4 (b).  

 

Table 6.1  Median (range) daily doses and daily AUC estimates from the Glasgow and 
The Hague datasets. 

 
Glasgow dataset 
n = 1075 courses 

The Hague dataset 
n = 415 courses 

Daily dose (mg/day) 360 (120 - 660) 500 (120 – 880) 

Daily dose (mg/kg/day) 7.17 (2.46 – 13.3) 8.64 (2.40 – 14.7) 

Daily AUC (mg.h/L) 77.8 (36.9 – 179) 103 (42.2 – 267) 

Daily AUC for courses   
of 9 – 11 mg/kg/day 

n = 81 n = 165 

84.6 (56.5 – 128) 106 (68.9 – 267) 
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Figure 6.4  Scatter plots of the measured peak concentrations in the (a) Glasgow and (b) 

The Hague datasets. 
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The distribution of daily doses and daily AUC values for The Hague patients who were 

administered once daily and extended interval tobramycin are shown in Table 6.2, in groups 

based on peak concentrations. In total, 202 peak concentrations were available from 77 

patients (135 courses) of which 48% achieved the target peak concentration, 41 % were 

below and 11 % were above the target. The median daily AUC for patients who had peaks < 

20 mg/L was 84.6 mg.h/L and hence 80 mg.h/L was chosen as a possible lower limit for the 

target daily AUC. Since the median daily AUC values for patients whose peak concentrations 

were within or above the target range were similar, it was difficult to identify an upper limit 

for daily AUC.  There were 27 trough concentrations measured in 21 patients (25 courses) 

between 17.5 and 20 hours after the tobramycin dose. Three of these concentrations were 

above 1 mg/L and all were in patients who had low tobramycin CL estimates (2.37, 2.91 and 

3.22 L/h). The daily AUC frequency histogram shown in Figure 6.5 for patients with troughs 

<1 mg/L suggested an upper daily AUC limit of 120 mg.h/L.  

 

 

 

 

 

a) b) 
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Table 6.2  Distributions of peak concentrations, dose and daily AUC values from 
patients in The Hague dataset who were administered 24 hourly doses  (n = 385). 

 
Peak <20 mg/L 

n = 81 
Peak 20-30 mg/L 

n = 95  
Peak >30 mg/L  

n = 21  

Dose (mg/kg/day) 
5.0 

(2.86 – 10.3) 
8.67 

(4.12– 11.4) 
9.80 

(7.74 – 11.9) 

Daily AUC 
(mg.h/L) 

84.6 
(42.2 – 157) 

102 
(65.0 – 252) 

113 
(84.9 – 180) 

 

 

Figure 6.5  Frequency distribution of daily AUC split into patients whose 24 hour post 

dose trough concentrations were below or above 1 mg/L for The Hague dataset patients. 
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6.4.2 Creation of simulated patients  

The distribution of patients’ characteristics generated from the simulations was consistent 

with those of the real datasets, as shown in Figure 6.6. The simulation generated an excess 

of patients with the median values because the control file replaced simulated values that 

were above the upper limits and below the lower limits for each clinical characteristic with 

the median value. In addition, the lower limit for serum creatinine was fixed to 60 µmol/L 

and hence many simulated patients had this value.    

 



                                                                                                                                                                              156 

 

Figure 6.6  Distributions of age, weight, height, creatinine concentration and creatinine 

clearance in the real and simulated datasets. 
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6.4.3 Development and evaluation of simulated datasets with a range of 

dosing scalers  

Using the estimated target daily AUC based on the TOPIC (Touw DJ et al., 2007) study of 106 

mg.h/L, the estimated median dose was 521.5 mg/day . The scaled doses were 13 mg/kg for 

LBW, 3 mg/cm for height and 326 mg/m2 for BSA.  
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When the current weight scaled dose of 10 mg/kg was unrestricted, 477 (9 %) of the 

simulated patients had a daily AUC below 80 mg.h/L, 2392 (48 %) had a daily AUC within the 

target range and 2131 (43 %) had a daily AUC above the target range.  Twenty per cent of 

the simulated patients had doses greater than 660 mg (range 661 to 1054 mg). Restricting 

the daily dose to 660 mg produced only a slight increase (to 50%) in the proportion of 

patients who achieved the target daily AUC and a slight reduction (to 40%) in the proportion 

above the target range. Patients whose daily AUC was estimated to be below the target had 

lower doses and had higher CL estimates than patients whose daily AUC estimates were 

within or above the target range (p < 0.0001 for 10 mg/kg with maximum of 660 mg).  

Conversely, patients whose daily AUCs were above the target, received higher doses and 

had lower CL estimates than patients whose daily AUC were below or within target (p < 

0.0001 for 10 mg/kg with maximum of 660 mg).   

 

When daily doses were unrestricted, the majority of patients (77%) whose daily AUC 

estimate was below the target were underweight (BMI ≤ 18.5 kg/m2) compared with those 

within (45%) or above the target daily AUC (15%). No overweight or obese patients had a 

daily AUC below the target, whereas 26% were overweight or obese in the within and above 

target daily AUC groups, respectively.  When the maximum dose was fixed, the values were 

slightly different. In the below target daily AUC group, 2.5 % of patients were overweight 

and none were obese, while 8 % were overweight and obese in within target daily AUC 

group. In the above the target daily AUC group, 18 % of patients were overweight or obese.  

 

When the predicted peak concentrations were analysed, the percentages of patients whose 

concentrations were below (8%), within (41%) and above (51%) the target ranges were 

similar for both weight dosage groups. Results were also similar when the distributions of 

BMI were examined; 85 % of patients with low peaks were underweight, 15 % were normal 

weight and one patient was overweight.  
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Figure 6.7 shows the distributions of the doses, peak concentrations and daily AUC for the 

simulated weight (10 mg/kg with 660 mg/day maximum daily dose), LBW (13 mg/kg), height 

(3 mg/cm) and BSA (326 mg/m2) scaled doses. A narrower range of doses were obtained 

when they were scaled according to height (up to 581 mg) compared with weight (up to 

1054 mg)  or  restricted weight (up to 660 mg). The difference was statistically significant at 

p < 0.0001. The maximum daily AUC was lower when height was the dose scaling factor 

rather than weight, or restricted weight. Similarly, the maximum peak concentration was 

also lower when height was used as the dose scaling factor compared with weight and 

restricted weight. 
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Figure 6.7  The distributions of daily doses, daily AUC, and predicted peak concentration 

using doses scaled by weight (10 mg/kg unrestricted and limited to 660 mg/day), LBW (13 

mg/kg), height (3 mg/cm) and BSA (326 mg/m2). 
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Key: WT= weight, LBW= lean body weight, HT, height, BSA= body surface area 
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Figure 6.8 shows the number of simulated patients whose concentrations were below, 

within and above the target daily AUC range. A higher proportion of patients achieved the 

target daily AUC concentration with a height scaled dose (61%) compared with weight, LBW 

or BSA scaled doses (50 - 58%). This difference was statistically significant at p < 0.0001.  

Furthermore, a lower proportion of patients had their daily AUC above the target range (> 

120 mg.h/L) with a height scaled dose (27%) compared with weight, LBW, or BSA (33 - 40%). 

Similar results were obtained with peak concentrations (Figure 6.9) where 63% achieved the 

target with a height-scaled dose compared to 41-56% with other size measurements. Only 

30% of patients had their peak concentration greater than the target concentration (> 30 

mg/L) with a height scaled dose compared with weight, LBW, or BSA (38 - 51%). This 

difference was statistically significant at p < 0.0001.   

 

Figure 6.8  The numbers of simulated patients whose concentrations were below, within 
and above the target daily AUC range with for a range of dose scaling factors. 
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Figure 6.9  The distribution of simulated patients whose peak concentration were below, 
within and above the target peak concentration (20 - 30 mg/L) with the different dose 
scaling factors. 
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Figure 6.10 and 6.11 shows the distributions of tobramycin doses and CL estimates in the 

simulated patients, categorised by daily AUC range. There was no correlation between 

doses and daily AUCs when dose was scaled for height, whereas a clear correlation can be 

seen between the administered doses and expected daily AUC with doses scaled to weight, 

LBW and BSA. On the other hand, correlation between the expected daily AUC and 

tobramycin CL was observed regardless of the scaling factor in the different daily AUC 

groups.  The distribution of doses was similar in all daily AUC groups when scaled according 

to height, and tobramycin clearance ranges were narrower compared with the other scaled 

doses. In general, patients who had daily AUC estimates above 120 mg.h/L had lower drug 

clearance estimates (median 3.67 L/h, range 1.99 - 4.79), while patients who had below the 

target daily AUC had high drug clearance (median 6.91L/h and ranged 5.61-10.5). As a result 

of the encouraging findings from the height scaled dose, it was chosen to develop a new 

tobramycin dosage adjustment nomogram in patients with cystic fibrosis. 
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Figure 6.10  The distribution of daily doses categorised by daily AUC estimate for (a) 
weight, (b) LBW, (c) Height and (d) BSA scaled doses. 
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Figure 6.11  The distribution of tobramycin CL categorised by daily AUC estimate for (a) 
weight, (b) LBW, (c) Height and (d) BSA scaled doses. 
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6.4.4 Development of dosage adjustment nomograms  

6.4.4.1 Weight scaled dosage adjustment nomogram 

The results obtained from the 10 mg/kg/day dose with a maximum set to 660 mg/day were 

examined and the data from the 1421 simulated patients who achieved both a daily AUC of 

80 -120 mg.h/L and a peak of 20-30 mg/L were used to develop the nomogram. Figure 6.12 

shows the proposed dosage adjustment nomogram. The lower nomogram bound 

represented the 2.5th percentile line for simulated patients with normal renal function who 

had a daily AUC of 80 -120 mg.h/L and a peak of 20-30 mg/L. A measured concentration 

below the lower bound shaded area represents a patient with a daily AUC less than 80 

mg.h/L and/or peak tobramycin concentration less than 20 mg/L. On the other hand, the 

upper nomogram bound represented the 97.5th percentiles line for patients with normal 

renal function and whose daily AUC and peak concentrations were within the target range. A 

measured concentration above the shaded area is consistent with having daily AUC and/or 

peak concentration above the target. However, a measured concentration within the shaded 

area is consistent with being within the target daily AUC and/or peak concentration ranges.  
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Figure 6.12  The 2.5th and 97.5th and percentiles of all tobramycin concentration 
measurements at each time point for 10 mg/kg (maximum 660 mg). 
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Key: 
Below the shaded represents concentrations consistent with a daily AUC < 80 mg.h/L and/or a peak < 20 mg/L  
Within shaded area represents concentrations consistent with a daily AUC of  80 -120 mg.h/L and a peak of 20 – 30 mg/L 
Above the shaded area represents concentrations consistent with a daily AUC > 120 mg.h/L and/or a peak > 30 mg/L 

 

6.4.4.2 Height scaled dosage adjustment nomogram 

The concentration-time profiles obtained from the 3 mg/cm/day dose simulations were used 

to create the nomogram and the data from the 2065 patients who achieved both a daily AUC 

of 80-120 mg.h/L and a peak of 20-30 mg/L were used to develop the nomogram. Figure 

6.13 shows the dosage adjustment nomogram with cut off daily AUC percentile. The lower 

bound was based on the 2.5th percentile from patients with normal renal function who had 

their daily AUC and peak concentration within the target range. The upper bound was based 

on the 97.5th percentile of patients with normal renal function who had their daily AUC and 

peak concentration within the target. The height scaled dosage adjustment nomogram and 

the weight scaled nomogram were plotted on the top of each other and are shown in Figure 

6.14.   
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Figure 6.13  The 2.5th and 97.5th percentiles of all tobramycin concentration 
measurements at each time point for 3 mg/cm dose. 
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Key: 
Below the shaded area represents concentrations consistent with a daily AUC < 80 mg.h/L and/or a peak < 20 mg/L  
Within the shaded area represents concentrations consistent with a daily AUC of 80 -120 mg.h/L and a peak of 20 – 30 mg/L 
Above the shaded area represents concentrations consistent with a daily AUC > 120 mg.h/L and/or a peak > 30 mg/L 

 

Figure 6.14  The 2.5th and 97.5th and percentiles of all tobramycin concentration 
measurements at each time point for 10 mg/kg (max 660 mg/day) and 3 mg/cm dose. 
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6.4.5 Validation of the nomogram for interpreting tobramycin 

concentration measurements 

6.4.5.1 New dataset 

In total, data from 18 patients (10 males) with 25 different courses of tobramycin were 

available for nomogram validation. Table 6.3 summarises the clinical characteristics of the 

patients.  Overall, they were young and had good renal function.  

 

Table 6.3   Clinical characteristics of patients in the nomogram validation dataset. 

 Median Range 

Age (years) 19.0 14.1 – 78.4 

Weight (kg) 57.0 41.3 – 84.2 

Height (cm) 170 134 - 184 

Serum creatinine (µmol/L) 54.0 26.0 – 83.0 

Creatinine Clearance* 
(mL/min) 

110 62.4 - 154 

Dose (mg/day) 520 400 - 720 

Dose (mg/kg/day) 9.46 7.62 – 10.3 

Key: * Cockcroft and Gault equation (Cockcroft DW and Gault MH, 1976) with the lowest serum creatinine value fixed to 60 µmol/L 
(Duffull SB et al., 1997, Rosario MC et al., 1998) 

 

Eighty measured concentrations were available for analysis of which 12.5 % were peaks 

(1.00 – 1.50 hours after starting the infusion), 85 % were mid-dose concentrations (1.53 – 

18.8 hours after starting the infusion) and 2.5 % were trough concentrations (21.8 -23.9 

hours after starting the infusion). Concentrations obtained between 6 and 12 hours after 

the start of therapy were available from 11 patients and were selected to validate the 

nomogram (17 concentrations). Figure 6.15 shows the measured concentrations plotted on 

the weight scaled nomogram. Table 6.4 shows the distribution of measured concentrations 

categorised to the different nomogram areas, the interpretation of the results and the 

corresponding MWPharm interpretation. In 3 of the 4 samples that lay below the shaded 

area, 6 of 9 were within the shaded area and 1 of 4 were above the shaded area, there was 

agreement between the MWPharm and nomogram dose recommendations. In addition, 
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patients’ daily AUCs were consistent with the daily AUC targets of 80 -120 mg.h/L. The 

median daily AUC for patients who had their concentrations below the shaded area was 

low, 77.4 mg.h/L, and for those who had their concentrations within shaded area the 

median value was within the target 85.5 mg.h/L. However, measurements that lay in area 3 

were all from the same patient, and were high daily AUC value, 163 mg.h/L. Overall, 59 % of 

the nomogram recommendations matched the action taken. 

 

Figure 6.15  Validation for the 10 mg/kg (maximum 660 mg) dosage adjustment 

nomogram using Dutch patients. 
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Key: 
Below the shaded area represents concentrations consistent with a daily AUC < 80 mg.h/L and/or a peak < 20 mg/L  
Within the shaded area represents concentrations consistent with a daily AUC of 80 -120 mg.h/L and a peak of 20 – 30 mg/L 
Above the shaded area represents concentrations consistent with a daily AUC > 120 mg.h/L and/or a peak > 30 mg/L 
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Table 6.4  Comparison between The Hague and nomogram interpretations for 
concentrations obtained within nomogram target sampling time (6 and 12 hours after 
starting tobramycin infusion). 

 

Nomogram 
area 

Number 
of concs 

MWPharm 
interpretations 

Nomogram 
recommendation 

Daily 
AUC 

mg.h/L 

Matching 
nomogram 

recommendation 

Below 
shaded 

area 
4 

 Increased 
subsequent 
dose (3) 

 No change (1) 
 

 Increase 
subsequent 
dose 

77.4 
(73.5 – 
81.8) 

3 out of 4 

within 
shaded 

area 
9 

 Increased 
subsequent 
dose (2) 

 No change (6) 

 Decreased 
subsequent 
dose (1) 

 Continue 
with the 
same dose 
every 24 
hours 

85.5 
(80.7 – 

120) 
6 out of 9 

above 
shaded 

area 
4 

 Increased 
subsequent 
dose (1) 

 No change (2) 

 Decreased 
subsequent 
dose (1) 

 Decrease the 
dose or 
extend 
dosage 
interval 

163 
(130 – 
163) 

1 out of 4 

 

6.4.5.2 Glasgow and The Hague dataset 

The combined dataset included 331 patients with 1490 course of aminoglycoside therapy.  

Thirty-eight patients had AUCs below, 239 patients had daily AUCs within and 163 patients 

had daily AUCs above the target daily AUC range of 80 – 120 mg.h/L. Patients whose AUCs 

were below the target had doses less than 600 mg/day and tended to have higher drug 

clearance (6.02 L/h) as shown in Table 6.5. Figure 6.16 (a-c) shows the predicted 

concentrations at the different time points plotted on the weight scaled nomogram for 

patients whose daily AUCs were below, within and above the target.  The majority of 

patients who had below target daily AUCs had their concentrations within the shaded area 

but towards its lower end (Figure 6.16 (a)). These patients had a slightly lower drug 

clearance (5.62 L/h) compared with patients who had their concentrations below the 

shaded area (6.68 L/h). However, all patients who had their daily AUCs within target range 

had their concentrations within the shaded area. 
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In total 163 patients (433 courses) had daily AUC > 120 mg.h/L. However, not all 

concentrations were above the shaded area as shown in Figure 6.16 (c). Patients who had 

high daily AUC were sub-divided into four groups. Patients with daily AUCs between 120 to 

130, 130 to 140, 140 to 150 and greater than 150 mg.h/L. Patients who had daily AUCs 

ranged 120 to 130 mg.h/L, had the highest CL values (median 4.81 L/h) as shown in Table 

6.6.  Patients whose daily AUC ranged from 120 to 140, had their concentrations within the 

shaded area as shown in Figure 6.17 (a and b). However, patients whose daily AUC was 

between 140 and 150 had their concentrations within and slightly above the shaded area for 

the nomogram as shown in Figure 6.17 (c). On the other hand, all patients who had their 

daily AUCs greater than 150 mg.h/L had their concentrations above the shaded area as 

shown in Figure 6.17 (d).  Seven patients with 14 courses of therapy in the full dataset had 

creatinine clearances less than 50 mL/min. These patients had their concentrations above 

the nomogram shaded area, shown in Figure 6.16 (d), and were consistent with their high 

daily AUCs value (260 mg.h/L (148 – 353)).   

 

Table 6.5  Doses and pharmacokinetic parameter estimates arising from simulated 
patients who received 10 mg/kg/day tobramycin, grouped according AUC range. 

Variable 
˂ 80 mg.h/L 

38 patients (100 
courses) 

80 – 120 mg.h/L 
 239 patients (957 

course) 

> 120 mg.h/L 
163 patients (433 

courses) 

Dose 
(mg/day) 

432 (320 – 577) 514 (300 – 660) 610 (300 - 660) 

V1 (L) 13.7 (10.6 – 16.5) 13.4 (7.60 – 19.4) 13.8 (7.60 – 19.4) 

CL (L/h) 6.02 (4.47 – 8.38) 5.18 (2.96 – 7.73) 4.14 (1.36 – 5.49) 
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Figure 6.16  Tobramycin dosage adjustment nomogram using 10 mg/kg (max 660 
mg/day). The open circles are the predicted concentrations for patients who were 
administered 10 mg/kg and had AUCs a) below, b) within and c) above target range, and d) 
patients with CrCL less than 50 mL/min. 
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Key: 
Below the shaded area represents concentrations consistent with a daily AUC < 80 mg.h/L and/or a peak < 20 mg/L  
Within the shaded area represents concentrations consistent with a daily AUC of 80 -120 mg.h/L and a peak of 20 – 30 mg/L 
Above the shaded area represents concentrations consistent with a daily AUC > 120 mg.h/L and/or a peak > 30 mg/L 

 
 

Table 6.6  Doses and pharmacokinetic parameter estimates arising from simulated 
patients who received 10 mg/kg/day tobramycin and had a daily AUCs ˃ 120 mg.h/L, 
grouped according AUC range. 

Variable 

AUC > 120 mg.h/L 

AUC 120-130  
(156 courses) 

AUC 130-140  
(89 courses) 

AUC 140-150  
(65 courses) 

AUC > 150  
(123 courses) 

Dose 
(mg/day) 

600 (300 -660) 600 (336 – 660) 600 (420 – 660) 635 (418 – 660) 

V1 (L) 14.0 (7.60 – 19.4) 
13.9 (8.00 – 

18.2) 
13.9 (9.30 – 18.4) 13.2 (9.3 – 16.6) 

CL (L/h) 4.81 (2.48 – 5.49) 
4.45 (2.56 – 

5.07) 
4.13 (2.85 – 4.71) 

3.44 (1.36 – 
4.37) 

 
 

c) d) 

a) b) 
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Figure 6.17  Weight based dose (10 mg/kg max 660 mg/day) nomogram. The open circle 
the predicted concentrations for patients who were administered 10 mg/kg and had a) AUC 
120 -130 mg.h/L, b) AUC 130 -140 mg.h/L, c) 140 -150 mg.h/L, d) AUC > 150 mg.h/L. 
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Key: 
Below the shaded area represents concentrations consistent with a daily AUC < 80 mg.h/L and/or a peak < 20 mg/L  
Within the shaded area represents concentrations consistent with a daily AUC of 80 -120 mg.h/L and a peak of 20 – 30 mg/L 
Above the shaded area represents concentrations consistent with a daily AUC > 120 mg.h/L and/or a peak > 30 mg/L 

 

a) b) 

c) d) 
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6.5 DISCUSSION 

6.5.1 Introduction  

This study aimed to examine whether a weight based dosing regimen is optimal in cystic 

fibrosis patients and to develop a tobramycin dosage adjustment nomogram for the 

recommended 10 mg/kg dose (max 660 mg/day) in patients with cystic fibrosis. The 

recommended monitoring strategy for such a high dose is a 30 minute peak concentration 

between  20 – 30 mg/L after a 30 minute infusion and trough (pre-dose) concentration less 

than 1 mg/L (Smyth A et al., 2005, Touw DJ et al., 2007). However, the definition of trough 

concentration was not clear regarding whether it was a real (24 hours) or 18 hour post dose 

trough. The typical daily AUC and ranges for the current tobramycin dose were 106 mg.h/L 

(80-120). In the current study, different weight dosage regimens were compared and the 

height based dosage regimen was found to achieve the highest peak concentration and daily 

AUC range.  

 

There are a number of reasons why the measurement of trough or 18 hour post-dose 

concentrations is not the ideal approach when monitoring “once daily” dosing of 

tobramycin.  Firstly, a 24 hour trough concentration would typically be less than 0.3 mg/L for 

a patient with normal renal function, which is too low to be detected by conventional 

aminoglycoside assays (Hennig S et al., 2007, Begg EJ et al., 1995). Furthermore, a limitation 

highlighted by Begg et al (1995) is that aminoglycosides have a multi-compartment 

disposition and therefore concentrations at 24 hours reflect the slow terminal elimination of 

the drug from deeper compartments (“gamma” phase) and not the “beta” phase, where 

most of the elimination of the drug from plasma occurs. Coulthard et al (2007) compared 

the daily AUC and the trough concentration ( < 1 mg/L)  monitoring approaches of 

tobramycin in adults and paediatric patients with cystic fibrosis. They confirmed that 

targeting a trough < 1 mg/L following a 10 mg/kg daily dose was inappropriate, because 

patients with either decreased or increased tobramycin clearance might be missed since 

both are likely to achieve trough concentrations less than 1 mg/L. Therefore, this approach 

might place these patients at risk of over- or under-exposure.  Instead, they encouraged the 

use of an AUC approach with a target of 100 mg.h/L to monitor once daily tobramycin.  
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With aminoglycoside antibiotics, the rate and extent of bacterial killing is concentration-

dependant and hence either Cmax or AUC can be used as aminoglycoside monitoring 

parameters. Vogelman et al   (1988a) found that AUC was the important pharmacokinetic 

parameter for aminoglycoside to ensure efficacy against a gram negative organism 

(P.aeruginosa) in an animal model. A recent in vitro study that evaluated the 

pharmacokinetic/pharmacodynamic indices for six antibacterial drugs, including gentamicin, 

found that the AUC/MIC ratio was  better correlated with gentamicin  antibacterial effect 

than the Cmax/MIC ratio (Nielsen EI et al., 2011).  Burkhardt et al (2006) investigated the 

relationship between once and three times daily tobramycin 

pharmacokinetic/pharmacodynamic parameters and clinical outcome in 33 adult patients 

with cystic fibrosis. They found good correlation between Cmax/MIC and daily AUC/MIC 

ratios and lung function (Forced expiratory volume in 1 second, FEV1%) in both once and 

three times daily dosing. However, it showed dosage regimen dependency where for equal 

values of daily AUC/MIC, the once daily tobramycin showed better improvement in lung 

function (Forced expiratory volume in 1 second, FEV1%) than three times daily. In a similar 

context,  Mouton et al (2005) looked at 13 paediatric and young adult patients with cystic 

fibrosis with an infectious exacerbation due to P.aeruginosa. They found that tobramycin 

pharmacodynamic index (daily AUC/MIC and Cmax/MIC ratios) were correlated with effect 

(lung function (FEV1% and FVC %)) and correlation was slightly better for daily AUC/MIC 

ratio.   

 

Rybak et al (1999) examined the safety of twice vs once daily aminoglycoside therapy in 74 

general medical patients and found that the daily aminoglycoside AUC was a predictor of 

nephrotoxicity. Similarly Croes et al (2012) examined simulations of aminoglycoside doses of 

7 mg/kg/day administered using varying dosage regimens. They reported that the onset of 

nephrotoxicity could be predicted from daily AUC over the course of therapy regardless of 

the different dosage regimens used.  In summary, all the previous evidence supports the use 

of daily aminoglycoside exposure as the monitoring approach for once daily dosing instead 

of the traditional peak and (especially) trough concentrations.  
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Begg et al (1995) suggested a target daily AUC range between 72 and 101 mg.h/L to monitor 

aminoglycosides in general medical patients. They defined the target daily AUC as the daily 

aminoglycoside exposure in a patient with a typical V of 0.25 L/kg and an elimination half-

life of 2.5 hours for a dose range of 5 - 7 mg/kg/day (Begg EJ et al., 1995). This daily AUC 

range cannot be applied to cystic fibrosis patients because the recommended dose is much 

higher (10 mg/kg/day) and the target peak is also higher (20-30 mg/L vs 10-20 mg/L in 

general medical patients). Therefore, there was a need to define a target daily exposure and 

range for aminoglycosides in patients with cystic fibrosis. It has been reported that in the 

US, 20% of CF centres use a target of 100 mg.h/L (Prescott  JrWA, 2011), which is estimated 

from two samples for daily tobramycin exposure,  The origins of this value are not clear. 

 

6.5.2 Daily exposure target and range using real data 

The daily AUC values observed in clinical practice determined from Glasgow and The Hague 

datasets were compared with the target derived from the TOPIC study (Touw DJ et al., 2007) 

(106 mg.h/L).  It was found that the median daily exposure for patients from The Hague who 

had their daily doses between 9 and 11 mg/kg/day was consistent with this target value.   

 

None of the measured peak concentrations achieved the target concentration, because the 

target peak in the Glasgow dataset was low (8 -12 mg/L) and patients were administered 

low doses (median 360 mg/day). On the other hand, 120 peak concentrations achieved the 

target peak in The Hague dataset, where 95 of these concentrations were withdrawn from 

once daily dosing. Patients who had concentration measurements below the target peak 

concentration also had a lower daily exposure limit of 84.6 mg.h/L and hence 80 mg.h/L was 

chosen as the lower limit of the range. Looking at the median daily exposure values for 

patients who achieved or had their peak concentrations above the target did not help to 

decide on an upper limit, because the values were similar (102 and 113 mg.h/L). However, 

patients who had their trough concentrations greater than 1 mg/L had daily exposure 

greater than 120 mg.h/L and that those patients had a relatively low drug clearance. 

Therefore, 120 mg.h/L was chosen to be daily exposure upper limit.  This range was slightly 

higher than the Australian ranges (72 and 101 mg.h/L) (Begg EJ et al., 1995). Since the dose 
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in patients with cystic fibrosis is higher than that for other medical conditions, higher daily 

tobramycin exposure was expected. 

 

6.5.3 Weight-scaled dose simulations 

In the TOPIC study (Smyth A et al., 2005) the daily dose was restricted to 660 mg, but there 

was no justification provided in the study for this restriction. Therefore, both an 

unrestricted dose of 10 mg/kg and with an upper limit of 660 mg were tested in the 

simulations. Because the pre-dose trough concentration is usually undetectable for patients 

with good renal function, an 18 hour trough concentration less than 1 mg/L was used to 

monitor daily tobramycin dose in the current study. A very slight improvement in the 

proportion of patients who would achieve the target daily AUC range was observed when 

restricting the dose but there was no difference in the proportion of patients achieving the 

target peak concentration. Similarly, dose restriction did not influence the proportion of 

patients who achieved satisfactory trough concentrations at 18 hours after the dose. 

Restricting the dose to 660 mg/day is more likely benefits patients with high body weight ( > 

66 kg) and those patients are few in the cystic fibrosis population. In the current study, only 

20% of simulated patients had their weight 66 kg and above. This could be the reason 

behind the small influence of restricting the dose to 660 mg/day seen from the simulations.  

 

Based on the current results, restricting the daily dose of tobramycin was appropriate 

because it was found that daily AUC increased as weight increased and this was a particular 

problem if the patient had a BMI above 25 kg/m2. However, overweight and obesity are rare 

in the cystic fibrosis population. In the UK, the median and inter-quartile range of BMI in 

patients with cystic fibrosis (16 – 50+ years old) has been reported as 21.9 kg/m2 (19.9 – 

24.3) (Cystic FibrosisTrust, 2013). In the present study, the median BMI was 20.0 kg/m2 

(17.5 – 22.5).  The current simulations identified some limitations for using weight as the 

scaling factor to individualise doses in patients with cystic fibrosis. Firstly, weight scaled 

dose led to a very wide range of doses. Secondly, analysis of daily AUC estimates found that 

underweight patients (BMI ≤ 18.5 kg/m2) were at risk for tobramycin under dosing, which 

might lead to treatment failure or the need to use tobramycin for longer than 14 days. In 
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term of safety, a high proportion of patients (40 %) had their daily exposure above the 

target and might be at risk of nephrotoxicity. These findings highlighted the need to identify 

an alternative approach to determining the daily dose of tobramycin.  

 

6.5.4 Development of new dosage guidelines 

The results obtained with weight-related dosing suggested that an alternative dosage 

regimen was required that would have less variation in doses and a higher probability of 

achieving the target daily AUC. Lean body weight, height and body surface area were tested 

as potential dose scaling factors and compared with the current weight scaled dosing. Using 

height as the scaling factor resulted in more patients achieving the target peak 

concentration and daily AUC ranges (63 % and 61 %) compared with using the existing 

weight scaled dosing (41 % and 50 %), estimated LBW (46 % and 51 %) or BSA (56 % and 58 

%) scaled dosing. This made sense because height was less variable between patients and 

had a narrow range. In addition, it was evident from the early model development that 

height was a better descriptor of aminoglycoside clearances and volume of distribution of 

the central compartment. In a recent study of  24 paediatric and adult cystic fibrosis patients 

who were administered  a 10 mg/kg tobramycin dose (VandenBussche HL and Homnick DN, 

2012), the proportion of patients who achieved the target peak concentration was 42 %, 

which is similar to the present results (41 %).  

 

Height scaled dosing resulted in a narrower range of daily doses with fewer daily AUC 

outliers. In contrast to doses scaled according to weight, LBW and BSA, the maximum daily 

dose when scaled for height was 581 mg/day and hence there was no need to define an 

upper limit. Interestingly, the distribution of doses, daily exposure and peak concentrations 

were similar for the weight and LBW scaling doses. Even when the maximum daily weight 

scaled dose was restricted to 660 mg, more patients had high predicted daily AUC or peak 

concentration values than with the height scaled dose (40 % compared to 27%). Since it has 

been shown that aminoglycoside exposure was correlated with nephrotoxicity (Croes S et 

al., 2012, Rybak MJ et al., 1999) the reduction in the proportion of  patients with a daily  

AUC greater than 120 mg.h/L is an important advantage.  
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There was no relationship between the administered doses and daily exposure when doses 

were scaled for height but it was found that daily exposure increased with size when the 

scaling factor was weight or LBW and, to a lesser extent, BSA. On the other hand, a clear 

indirect relationship was found between tobramycin clearance and daily exposure for the 

four different doses. These observations could be explained by the narrow range of height 

scaled doses, which reduced the influence of amount administered and led to CL being the 

most important factor influencing daily AUC.  This was confirmed by having more patients 

with impaired renal function (94 patients) achieving high daily AUC (>120 mg.h/L) compared 

with weight (52 patients), LBW (54 patients) and BSA (65 patients).  

 

 6.5.5 Development of weight and  height scaled tobramycin dosage 

adjustment nomogram  

The “Hartford nomogram” was the first graphical plot designed to interpret aminoglycoside 

concentration measurements.  It was developed using a prospective evaluation of a 7 mg/kg 

dose in 20 patients who had at least two concentration measurements (Nicolau DP et al., 

1995). However, there were several limitations in the development of  Hartford nomogram 

(Nicolau DP et al., 1995).  Firstly, the investigators used published pharmacokinetic 

parameters based on a one compartment model to determine the dose and the “peak” 

concentration was based on the predicted value at the end of a 60-minute infusion, without 

consideration of the distribution phase.  Furthermore, they extrapolated the 

aminoglycosides, gentamicin and tobramycin, concentration-time profile from only small 

number of patients (20 patients) to develop the nomogram. 

 

In patients with cystic fibrosis, a tobramycin dosage adjustment nomogram was developed 

by Massie and Cranswick (2006)  for a 12 mg/kg daily dose using data from  44 paediatric 

and young adult patients (9 months to 20 years old). They predicted concentrations at 

different times after the dose using individual aminoglycoside pharmacokinetic parameter 

estimates derived from a post hoc analysis based on a one compartment model they had 

developed previously. The nomogram consisted of three lines: a central line that 

represented the mean predicted tobramycin plasma concentration and two lines that 
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represented a 20% variation around this line.  Their target sampling time was between 1 

and 6 hours. However, there was no validation study conducted for their nomogram.  

 

In the current study, a tobramycin dosage adjustment nomogram was developed to identify 

potential under dosing, unexpected overdosing or to confirm that the dose is appropriate. 

The nomogram was developed using the 2.5th and 97.5th percentiles of the concentration 

profiles derived from 1421 simulated patients for weight scaled dose and 2065 simulated 

patients for height scaled dose who achieved the daily AUC and peak concentration targets. 

Interestingly the height scaled nomogram was identical to the weight scaled nomogram and 

although it was developed from a larger patient group. This observation was expected 

because simulated patients were generated from similar distribution and there was a large 

overlap in patients.   Since the population model was not suitable for patients with renal 

impairment, simulated patients with CrCL of 50 mL/min and less were excluded from 

developing the nomogram. The target sampling time was chosen to be between 6 and 12 

hours to avoid concentrations that might be lower than the limit of assay quantification, 

usually at the end of dosage interval. This wide sampling window offers flexibility when 

withdrawing samples and would be more practical for nursing staff.  

 

The generated nomogram consists of three areas. If measured concentrations are below the 

shaded area, then daily AUC and peak concentration would be below the target and these 

patients might benefit from an increase in the dose. The majority of simulated patients (77 

%) whose concentrations lay in this area were underweight and had high median 

tobramycin CL. VandenBussche and his colleagues (2012) documented a similar observation. 

They found that patients who had below the target peak concentration were young 

patients. If the measured concentrations are within the shaded area then they said to be 

within target daily AUC and/or peak concentrations, and those patients would be 

administered the same dose every 24 hours. However, measured concentrations above the 

shaded area indicated that daily AUC and/or peak concentration are above the target. These 

patients would benefit from reducing the administered dose, extending the dosage interval 

or withhold until the concentration falls below 1 mg/L. 
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6.5.6 Nomogram validation  

 A new independent dataset for cystic fibrosis patients administered 10 mg/kg/day 

tobramycin from The Hague was used to validate tobramycin dosage adjustment nomogram 

for the weight scaled dose. The nomogram validation showed reasonable agreement 

between the MWPharm interpretation and nomogram recommendation.  

 

Moreover, the results from patients from Glasgow and The Hague who were administered 

the 10 mg/kg (maximum 660 mg/day) showed that the nomogram was able to predict 

patients whose daily AUCs were below, within and  above the target daily AUC range from 

one sample point. Importantly, the nomogram was able to predict patients with poor renal 

function. However, some patients whose AUCs were greater than 120 mg.h/L were within 

the shaded area. Close examination of these patients showed that these patients had higher 

drug clearance and their AUCs were between 120 and 150 mg.h/L. Based on Croes et al 

work (2012), nephrotoxicty (a 50 % or more reduction in creatinine clearance) was observed 

when daily AUC was 150 mg.h/L. Therefore, we can say that a safe daily AUC upper limit is 

less than 150 mg.h/L, and hence the lower AUCs (120 -150 mg.h/L) are considered 

acceptable in the current analysis.  

 

The strengths behind the current analysis are the use of pharmacokinetic parameter 

estimates from a large dataset comprising 331 patients from two independent sites to 

develop daily AUC range and generate the simulations. This provides wider applicability for 

the nomogram. In addition, using a simulation approach facilitated generation of a large 

sample size (5000 patients) with a distribution of clinical characteristics that mimicked the 

actual patient population. However, validation of the nomogram was conducted using 

retrospective concentration data and no clinical outcome data were available. In addition, 

the number of patients (11) and tobramycin concentrations (17) used to validate the 

nomogram were small, which considered a limitation. However, a second validation was 

conducted using the available full dataset using the known individual pharmacokinetics 

estimates predicted from the final model run developed in Chapter 3, and were 

administered the tested dose weight scaled dose (10 mg/kg). Moreover, there were 7 
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patients with poor renal function in the combined dataset, which helped to evaluate 

whether the nomogram was able to predict them using one sample.   

 

Results from the current simulations confirmed the superiority of height over weight as 

dose scaling factor. For future work, validation of the derived target daily AUC and range is 

required and link them to clinical outcomes such as daily AUC/MIC ratio and/or lung 

function. In addition, comparison study between the proposed height scaled dose and the 

current dosage guideline is required.  

 

6.5.7 Conclusion 

In conclusion, a daily AUC range for tobramycin was proposed using actual concentration-

time profile data.  Evaluation of the current dosage guidelines (10 mg/kg/day) identified a 

high number of patients with daily AUCs >120 mg.h/L (40%). An alternative dosage guideline 

was therefore developed to overcome this problem, using height as a scaling factor. A 

tobramycin dosage adjustment nomogram for a dose of 10 mg/kg up to 660 mg/day was 

developed and validated using daily AUC and peak targets.  
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ANALYSIS OF WEIGHT AND HEIGHT SCALED DOSAGE 

REGIMENS FOR ADULT PATIENTS WITH CYSTIC FIBROSIS 
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7.1 INTRODUCTION 

Pharmacokinetic-pharmacodynamic (PK-PD) indices correlate pharmacokinetic parameters 

with response, which facilitate drug efficacy predictions. It is important to take into account 

patient to patient variability when predicting the probability of successful treatment.  

Drusano and colleagues  (Drusano GL et al., 2001) were the first to apply Monte Carlo 

simulations to examine microbiological breakpoints. In this approach, population 

pharmacokinetic and microbiological susceptibility information are combined. The approach 

has become the standard methodology to set breakpoints and has been used by the 

European Committee on Antimicrobial Susceptibility Testing (EUCAST) since 2002 (Mouton 

JW et al., 2012). One of the parameters that can be estimated using Monte-Carlo 

simulations is the probability of target attainment (PTA). PTA is the probability that at least a 

specific value of a pharmacodynamic index, usually the minimum inhibitory concentration, is 

achieved at a certain concentration (Mouton JW et al., 2012). Another parameter that can 

be predicted using Monte-Carlo simulations is the cumulative fraction of response (CFR). 

CFR is calculated from the proportion of the population achieving a certain PK-PD value, e.g. 

Peak/MIC ratio ≥ 10 based on simulations that consider the typical MIC distribution of the 

target microorganism. This value helps to assess the likelihood of antimicrobial treatment 

response.  

 

Aminoglycosides are concentration-dependent antibiotics, and both Peak/MIC and daily 

AUC/MIC ratio are the PK-PD indices associated with their antibacterial effect. Their 

bactericidal activity  increases at higher concentrations relative to the MIC and hence the 

ratio of peak concentration to MIC is the most important PK-PD parameter to predict 

response (Blaser J et al., 1987, Moore RD et al., 1987). In patients with cystic fibrosis, the 

main organism causing lung infections is P. aeruginosa, which accounts for 36.5 % of 

infections in all age groups and for 55.8 % in adults (Cystic FibrosisTrust, 2013). The present 

study uses the approach of Drusano et al (2001) to predict aminoglycoside dosage regimen 

breakpoint or treatment success in patients with cystic fibrosis.  The likelihood of treatment 

success is examined using the current dosing aminoglycoside dosing regimen (Smyth A et al., 

2005) (10 mg/kg restricted to 660 mg/day) and the new height based dosage regimen 

proposed in Chapter 6.  
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7.2 AIMS 

 To determine the probability of target attainment for tobramycin for a Peak /MIC ratio ≥ 

10 and a range of AUC/MIC ratios for organisms with different MICs in adult patients 

with cystic fibrosis. 

 To determine the cumulative fraction of response for gram negative organisms 

encountered in patients with cystic fibrosis based on the current tobramycin and 

gentamicin weight scaled dosage regimen (10 mg/kg/day) and the new height scaled 

dosage regimen (3 mg/cm/day). 

 

7.3 METHODS 

The simulations performed in Chapter 6 were used to predict the peak concentration (at 1 

hour) to MIC ratio and the daily AUC to MIC ratio. In brief, 5000 patients were simulated to 

be administered doses of 10 mg/kg/day (maximum 660 mg/day) and 3 mg/cm/day for both 

tobramycin and gentamicin. The following higher doses were also examined: 12 mg/kg/day; 

3.5 mg/cm/day; and 4 mg/cm/day. Patients’ demographic and biochemical data, including 

age, weight, height and serum creatinine were simulated. Log normal distributions for the 

variance of these data were used to generate new patients who mirrored the combined 

datasets. Simulations were created using NONMEM version 7.1 (Beal SL et al., 2009).  

Creatinine clearance was estimated by the Cockcroft and Gault equation (1976) using the 

simulated values of gender, age, weight and serum creatinine. The minimum serum 

creatinine value was fixed at 60 µmol/L (Duffull SB et al., 1997, Rosario MC et al., 1998). 

Simulated demographics and biochemical data  were limited to the values observed in the 

combined data, i.e. weight 30 -108 kg; height 139 – 194 cm; age 14 – 88 years, serum 

creatinine 60 -209 µmol/L; creatinine clearance 26 -181 mL/min.   

 

In the Glasgow dataset used to develop the population model, 96 % of patients were 

administered tobramycin and 4 % were administered gentamicin. However, aminoglycoside 

type had no influence on the model (for details see Chapter 3). Therefore, gentamicin and 

tobramycin pharmacokinetics were assumed to be similar. 
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7.3.1 Probability of target attainment 

The probability of achieving the target pharmacokinetic – pharmacodynamic response was 

calculated for each patient. A target peak to MIC ratio ≥ 10 (Kashuba ADM et al., 1999) was 

chosen for the gram negative organisms e.g. P.aeruginosa and H.influenzae. The peak 

concentration was defined as a 30 minute post dose sample obtained after a 30 minute 

infusion. In addition, a target daily AUC to MIC ratio ≥ 100 was chosen, but also other 

published targets were examined, including ≥ 50 and 150 for gram negative organisms 

(Kashuba ADM et al., 1999, Mouton JW et al., 2005, Smith PF et al., 2001). The predicted 

one hour peak concentration to MIC and daily AUC to MIC ratios were calculated for each 

simulated patient at a wide range of MICs (0.002 to 512 mg/L) as per the EUCAST available 

MICs distributions. For each tobramycin regimen, the highest MIC at which the regimen 

achieved PTA ≥ 90% was defined as the PK-PD susceptibility breakpoint.  

 

7.3.2 Cumulative fraction of response 

Tobramycin and gentamicin MIC distributions against P.aeruginosa and H.influenzae were 

obtained from the EUCAST website (European Committee on Antimicrobial Susceptibility 

Testing). The cumulative fraction of response determined the expected overall response of 

each organism to tobramycin or gentamicin for each tested dosage regimen. The fraction of 

patients who were expected to achieve the target PK-PD index was multiplied by the 

fraction of the organism distribution at a particular MIC. The fraction of cumulative 

response was then calculated as the sum of all fraction products at each MIC value (Drusano 

GL et al., 2001). Table 7.1 shows an example of calculating the cumulative fraction of 

response against P.aeruginosa for the 10 mg/kg/day dose.  
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Table 7.1  An example of calculating the cumulative fraction of response against 

P.aeruginosa for the 10 mg/kg/day (maximum 660 mg/day) dose. 

MIC 
mg/L 

Number 
of isolates 

Percentage of 
distribution at the 

indicated MIC 

Fraction target attainment 
(Peak/MIC ≥10) at the MIC 

Percentage 
products 

0.002 0 0 1 0 

0.004 0 0 1 0 

0.008 0 0 1 0 

0.016 3 0.0121 1 0.0121 

0.032 6 0.0241 1 0.0241 

0.064 12 0.0482 1 0.0482 

0.125 383 1.54 1 1.54 

0.25 2682 10.8 1 10.8 

0.5 10473 42.1 1 42.1 

1 7145 28.7 0.9998 28.7 

2 2063 8.29 0.9818 8.14 

4 540 2.17 0.3458 0.75 

8 347 1.39 0.001 0.00139 

16 451 1.81 0 0 

32 335 1.35 0 0 

64 225 0.904 0 0 

128 74 0.297 0 0 

256 36 0.145 0 0 

512 116 0.466 0 0 

Sum 24891 100 - 92.1 
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7.4 RESULTS 

7.4.1 Simulated patients 

Table 7.2 shows the median and ranges of daily doses, peak concentrations and daily AUCs 

for the weight and height scaled dosage regimens. For the 10 mg/kg/day doses, the 

maximum daily dose was restricted to 660 mg, according to standard clinical practice. 

However, a dose restriction was not applied to the higher weight scaled dose (12 

mg/kg/day), and the maximum daily dose was 1296 mg. No restrictions were applied to the 

height scaled doses.  The maximum daily dose for 3 mg/cm/day was 581 mg, 3.5 mg/cm/day 

was 679 mg and 4 mg/cm/day was 776 mg. The median peak concentration increased as the 

dose scalar increased; the highest peak value (98 mg/L) was achieved with the 12 

mg/kg/day dosage regimen. However, for the highest height scaled dose of 4 mg/cm/day, 

the predicted maximum peak concentration was 68.7 mg/L. The maximum daily AUC for the 

12 mg/kg/day dose was 410 mg.h/L and was greater than observed for the 4 mg/cm/day 

dose (303 mg.h/L).  

 

Table 7.2  Median and ranges of daily doses, peak concentrations and daily AUC for a 
range of weight and height scaled dosage regimens. 

 
10 

mg/kg/day 
12 

mg/kg/day 
3 

mg/cm/day 
3.5 

mg/cm/day 
4 

mg/cm/day 

Daily Dose 
(mg/day) 

550 
(300 - 660) 

656 
(365 - 1296) 

498 
(418 - 581) 

581 
(487 - 679) 

664 
(556 – 776) 

Peak 
Concentration 

(mg/L) 

30.1 
(9.74 -79.3) 

35.6 
(9.59-98.3) 

27.2 
(11.8-52.1) 

31.7 
(12.7-60.1) 

36.2 
(14.5-68.7) 

Daily AUC 
(mg.h/L) 

112 
(45.1- 260) 

137 
(53.8- 410) 

104 
(48.1-227) 

121 
(52.6-265) 

139 
(60.1-303) 

 

 

7.4.2 Probability of target attainment 

The percentages of patients predicted to achieve Peak/MIC ratios ≥ 10 for the different 

tobramycin dosage regimens are shown in Figure 7.1. As observed from all PTA Figures, the 

PTA was close to 100 % at low MICs (less than 0.125 mg/L), and then decreased rapidly to 0 
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at high MICs (greater than 8 mg/L). Therefore, for simplicity, only the results from MICs 

0.125 to 8 mg/L are shown in PTA Figures 6.1 and 6.2. For the current weight scaled dose, 

more than 90 % of patients were expected to achieve the target Peak/MIC if the MIC was 2 

mg/L or less. If the MIC was 3 or 4 mg/L, only 50 % and 14 % of patients were expected to 

achieve the target. For the higher, weight scaled dose, at least 90 % of patients were 

expected to achieve the target Peak/MIC if the MIC was 2.5 mg/L or less.  For higher MICs of 

3 or 4 mg/L, the percentage of patients achieving the target decreased to 73 % and 35 % 

respectively.  

 

Similarly for height scaled doses of 3 and 3.5 mg/cm/day, more than 90 % of patients were 

expected to achieve the target Peak/MIC ≥ 10 when the MIC was 2 mg/L or less and 30% 

and 60 %, respectively, of patients were expected to achieve the target when the MIC was 3 

mg/L. At an MIC of more than 4 mg/L, then less than 2 % of patients given the 3 mg/cm/day 

dose and less than 10 % given the 3.5 mg/cm/day dose were expected to achieve the target. 

In contrast, with a dose of 4 mg/cm/day, more than 80 % of patients were expected to 

achieve the target if the MIC was 3 mg/L or less but only 30 % of patients if the MIC was 4 

mg/L. Therefore, the PK-PD susceptibility breakpoint for the current tobramycin dose (10 

mg/kg/day) and height scaled doses of 3 and 3.5 mg/cm/day is ≤ 2 mg/L and the PK-PD 

susceptibility breakpoint for the higher doses of 12 mg/kg/day and 4 mg/cm/day is ≤ 2.5 

mg/L.  
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Figure 7.1  Percentage probability of achieving a target Peak/MIC ratio ≥ 10 with weight (10 and 12 mg/kg/day) and height (3, 3.5 and 4 
mg/cm/day) scaled doses over a range of MIC values. 
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Key: The black line represents the 10 mg/kg/day dose, the red line represents the 12 mg/kg/day dose, the green line represents the 3 mg/cm/day dose, the blue line represents the 3.5 

mg/cm/day dose, and the orange line represents the 4 mg/cm/day dose. 



                                                                                                                                                                              190 

 

The percentages of patients predicted to achieve target daily AUC/MIC ratios for the 

different tobramycin dosage regimens are shown in Figure 7.2 a-c. For the weight scaled 

dosage regimens, more than 90% of patients were expected to achieve daily AUC to MIC 

ratios ≥ 50 when the MIC value was 1.5. For an MIC of 2 mg/L, only 67 % (10 mg/kg/day) and 

88 % (12 mg/kg/day) of patients were expected to achieve a target daily AUC to MIC ≥ 50. If 

the MIC was 4 mg/L, only 0.8 % of patients were expected to achieve a daily AUC to MIC ≥ 

50 for the 10 mg/kg/day dose, while 8.5 % of patients were expected to achieve the targets 

for the 12 mg/kg/day dose.  For higher daily AUC to MIC targets (≥ 100 and ≥ 150), more 

than 90 % of patients were expected to achieve the target at MIC 0.5 mg/L for both weight 

scaled doses. When the MIC was greater than 2 mg/L, less than 10 % of patients were 

expected to achieve the target. Therefore the PK-PD breakpoints for both weight scaled 

doses were 1.5 mg/L for a ratio of ≥ 50, and 0.5 mg/L for ratios of ≥ 100 and ≥ 150.  

 

More than 90% of patients were expected to achieve a daily AUC to MIC ratio ≥ 50 with 

doses of 3 and 3.5 mg/cm/day when the MIC was ≤ 1.5 mg/L.  On the other hand, a dose of 

4 mg/cm/day achieved this target when the MIC was ≤ 2 mg/L. For higher ratios (≥ 100 and 

150), more than 90 % of patients were expected to achieve the target with the all doses if 

the MIC was ≤ 0.5 mg/L except for a dose of 4 mg/cm/day, where 90 % of patients achieved 

target daily AUC to MIC ratio ≥ 100 when MIC was ≤ 1 mg/L. As the MIC increased, fewer 

patients were expected to achieve the target even with an increase in dose. For example, 

when the MIC was ≥ 4 mg/L, <5% of patients were expected to achieve a ratio ≥ 50 for the 

three height scaled doses.  However, when the MIC was ≥ 2 mg/L, less than 5 % of patients 

were expected to achieve ratios above 100 with all three height scaled doses and no 

patients were expected to achieve the target for ratios above 150. Therefore the PK-PD 

breakpoints for 3 and 3.5 mg/cm/day doses were 1.5 for a daily AUC/MIC ratio ≥ 50, and 0.5 

mg/L for ratios of ≥ 100 and ≥ 150. The PK-PD breakpoints for 4 mg/cm/day were 2 mg/L for 

a daily AUC/MIC ratio ≥ 50, 1 mg/L for a ratio ≥ 100, and 0.5 mg/L for ratios ≥ 150. 
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Figure 7.2  Percentage probability of achieving the target daily AUC/MIC ratios (a) > 50, (b) > 100, (c) > 150, with weight (10 and 12 

mg/kg/day) and height (3, 3.5 and 4 mg/cm/day) scaled doses over a range of MIC values. 
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Key: The black line represents the 10 mg/kg/day dose, the red line represents the 12 mg/kg/day dose, the green line represents the 3 mg/cm/day dose, the blue line represents the 3.5 
mg/cm/day dose, and the orange line represents the 4 mg/cm/day dose. 

a) 
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The gap between the PTA lines for the 10 mg/kg/day and 3 mg/cm/day doses shown in 

Figure 7.1 indicates that more patients who were administered the 10 mg/kg/day dose 

achieved a Peak/MIC ratio greater than 10  than patients who were administered the 3 

mg/cm/day dose. This gap started clearly at an MIC of 2.5 mg/L.  Patients’ who had a 

Peak/2.5 ratio less than 10 and those whose Peak/2.5 was greater than 10 were then 

examined in more detail.   As shown in Figure 7.3, 26 % of patients whose Peak/2.5 was 

greater than 10 and were administered the 10 mg/kg/day dose had higher doses (up to 660 

mg/day) which was associated with 69 % of patients had peak concentrations above 30 

mg/L. On the other hand, there was no difference in doses administered based on height 

with 45 % had peak concentrations greater than 30 mg/L. Similar observations arise from 

Figure 7.2, where a better achievement of daily AUC to MIC above 50, 100, and 150 was 

observed for weight over height scaled dose that started clearly at MIC of 1 mg/L and was 

also related to the amount of dose administered. To illustrate the difference and derive an 

explanation for these findings, patients who had daily AUC/1 below and above 100 were 

examined in more details. Figure 7.4 shows that 25 % of patients whose daily AUC/1 was 

greater than 100 and were administered the 10 mg/kg/day regimen had daily doses up to 

660 mg/day with and 59 % of these patients had a daily AUC above the upper limit of 120 

mg.h/L, and with no difference in doses administered based on height. These results 

indicated that the greater chance of efficacy seen from the weight based dose occurred at a 

higher risk of toxicity.  
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Figure 7.3  Box plots of doses (top) and peak concentrations (bottom) categorised according to Peak/2.5 mg/L MIC ratios < 10 and > 10 for 
(a) weight (10 mg/kg/day) and (b) height (3 mg/cm/day) scaled dosage regimens. 
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Figure 7.4  Box plots of doses (top) and daily AUCs (bottom) categorised according to  daily AUC/1 mg/L MIC ratios ˂ 100 and > 100 for (a) 
weight (10 mg/kg/day) and (b) height (3 mg/cm/day) scaled dosage regimens. 
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7.4.3 Cumulative fraction of response 

Table 7.3 shows the cumulative fractions of response for the weight and height scaled 

dosage regimens against a range of gram negative organisms, assuming a target Peak to MIC 

ratio ≥ 10. All dosage regimens were expected to achieve more than 90 % of target response 

against P.aeruginosa. There was no difference in the predicted response for the current and 

developed regimens (91 % for 10 mg/kg/day and 3 mg/cm/day) against P.aeruginosa.  When 

the tobramycin dose was increased to 12 mg/kg/day and 4 mg/cm/day, the CFR value 

increased slightly to 92 % for both regimens against P.aeruginosa. However, the CFR value 

was less than 64 % for all dosage regimens against H.influenzae.  

 

Table 7.3  Cumulative fraction of response to achieve a Peak/MIC ratio of at least 10 for 

weight and height scaled dosage regimens of tobramycin against P.aeruginosa and 

H.influenzae (the MIC distribution data were obtained from the EUCAST database). 

Organisms 
Target 

Peak/MIC 
Ratio 

Cumulative fraction of response (%) 

10 
mg/kg/day 

12 
mg/kg/day 

3 
mg/cm/day 

3.5 
mg/cm/day 

4 
mg/cm/day 

P.aeruginosa 10 91 92 91 91 92 

H.influenzae 10 51 64 46 51 62 

 

Table 7.4 shows the cumulative fraction of response to achieve a Peak to MIC ratio ≥ 10 for 

gentamicin against gram negative pathogens. All gentamicin dosage regimens were 

expected to achieve a less than 71 % response for P.aeruginosa.  The lowest CFR value 

occurred with the 3 mg/cm/day dose and the highest with the 12 mg/kg/day and 4 

mg/cm/day doses. Similarly, all gentamicin dosage regimens were expected to achieve more 

than 80% response for H.influenzae. Overall, the predicted responses for all weight and 

height based dosage regimens were similar.  
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Table 7.4  Cumulative fraction of response to achieve target Peak/MIC ratio for weight 
and height scaled dosage regimens of gentamicin against P.aeruginosa and H.influenzae 
(the MIC distribution was obtained from the EUCAST database). 

Organisms 
Target 

Peak/MIC 
ratio 

Cumulative fraction of response (%) 

10 
mg/kg/day 

12 
mg/kg/day 

3 
mg/cm/day 

3.5 
mg/cm/day 

4 
mg/cm/day 

P.aeruginosa 10 65 71 63 67 71 

H.influenzae 10 88 92 87 89 92 

 

Table 7.5 shows the cumulative fraction of response to achieve the target daily AUC to MIC 

ratios for the different gram negative pathogens at the tested dosage regimens for 

tobramycin. More than 80 % of patients were expected to achieve target daily AUC to MIC 

ratios ≥ 50 against P.aeruginosa for the five tested dosage regimens. However, this 

probability decreased as the ratio increased.  For a ratio ≥ 100, more than 70 % of patients 

were expected to achieve the target against P.aeruginosa for both weight and height scaled 

doses. However for the higher ratio of ≥ 150, less than 70 % of patients were expected to 

achieve the target against P.aeruginosa for the five tested dosage regimens with the lowest 

probability of 53 % for the 3 mg/cm/day dose.  The predicted response for the five tested 

tobramycin dosage regimens against H.influenzae was low (≤ 46 %) even with the higher 

doses.  

 

Table 7.6 shows daily AUC to MIC ratio results for gentamicin. The predicted response for 

weight and height scaled dosage regimens against P.aeruginosa was low (≤ 63 %) for all five 

dosage regimens at the different daily AUC/MIC ratios. However, the response was higher (≥ 

80 %) against H.influenzae when the ratio was ≥ 50 for both weight scaled doses (10 and 12 

mg/kg/day) and for the higher height scaled doses (3.5 and 4 mg/cm/day) but lower for the 

3 mg/cm/day dose (77 %). The response decreased as the ratio increased. In general, the 

predictive response for the current weight scaled dose was slightly higher than the new 

height scaled dose (10 mg/kg/day vs 3 mg/cm/day). However, increasing the height scale 

dose produced higher predicted responses against the tested organisms.  
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Table 7.5  Cumulative fraction of response to achieve target AUC/MIC ratio for weight and height scaled dosage regimens of tobramycin 
against P.aeruginosa and H.influenzae based on MIC distributions from the EUCAST database. 

Organisms 
Target AUC/MIC 

ratio 

Cumulative fraction of response (%) 

10 mg/kg/day  12 mg/kg/day 3 mg/cm/day 3.5 mg/cm/day 4 mg/cm/day 

P.aeruginosa 50 89 90 88 90 91 

H.influenzae 50 35 42 31 40 47 

P.aeruginosa 100 74 79 71 78 81 

H.influenzae 100 7.9 10 6.8 9.3 12 

P.aeruginosa 150 55 60 53 59 65 

H.influenzae 150 2.6 3.6 1.9 3.1 4.8 

 
 
Table 7.6  Cumulative fraction of response to achieve target AUC/MIC ratio for weight and height scaled dosage regimens of gentamicin 
against P.aeruginosa and H.influenzae, (MIC distribution was obtained from the EUCAST database). 

Organisms 
Target AUC/MIC 

ratio 

Cumulative fraction of response (%) 

10 mg/kg/day  12 mg/kg/day 3 mg/cm/day 3.5 mg/cm/day 4 mg/cm/day 

P.aeruginosa 50 53 60 49 58 63 

H.influenzae 50 80 85 77 84 87 

P.aeruginosa 100 22 25 20 24 28 

H.influenzae 100 49 56 45 55 61 

P.aeruginosa 150 10 13 9.1 12 15 

H.influenzae 150 26 31 23 29 36 
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7.5 DISCUSSION 

The aim of the current work was to estimate and evaluate the probability of achieving the 

PK-PD indices with the current tobramycin dosage regimen of 10 mg/kg/day  (The UK Cystic 

Fibrosis Trust Antibiotic Working Group, 2009, Smyth A et al., 2005) and the developed 

height scaled dose of 3 mg/cm/day in adults with cystic fibrosis.  Additional studies 

examined the impact of increasing the weight based dose to 12 mg/kg/day and the height 

based dose to 3.5 or 4 mg/cm/day. 

 

In the current study, the maximum daily dose for the weight scaled dose (10 mg/kg/day) 

was restricted to 660 mg as per the TOPIC study recommendation (Smyth A et al., 2005). 

The maximum daily dose following the higher dose of 12 mg/kg/day was 1296 mg/day and 

was associated with excessive exposure with some daily AUC estimates above 400 mg.h/L 

and some peak concentrations greater than 90 mg/L. This problem particularly occurred 

with overweight and obese patients.  Other studies have suggested that patients who are 

categorised as being overweight (BMI= 25-29.99 mg/m2) or obese (BMI > 30 mg/m2) (World 

Health Organisation, 2011)  can be dosed based on ideal body weight (Devine method) 

(Devine BJ, 1974) instead of their actual body weights.  Alternatively, restricting daily doses 

for the weight based doses has been used to avoid having very high doses and subsequently 

high daily exposure and/or peak concentrations. However, the appropriate upper limit to 

use is unclear.  In The Hague dataset used for model validation in Chapter 4, six patients 

were administered doses greater than 660 and up to 800 mg/day for once daily tobramycin 

(9 -11 mg/kg/day). These were associated with daily exposures of 112 and 161 mg.h/L and a 

very high daily exposure of 252 mg.h/L was associated with one patient whose creatinine 

clearance was less than 50 mL/min. However, no evidence of renal function deterioration 

was available from The Hague dataset.   

 

Moreover, tobramycin doses above 10 mg/kg/day have been used in previous studies in 

patients with cystic fibrosis.  No ototoxicity or nephrotoxicity was documented when a dose 

of 15 mg/kg/day was administered over 30 or 60 minute infusion (Vic P et al., 1998, 

Bragonier R and Brown NM, 1998, Master V et al., 2001, Bates RD et al., 1997). These 
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findings indicate that a 660 mg/day restriction might not be an appropriate limit for higher 

weight scaled dose. Since the maximum daily dose of 660 mg/day is related to a weight of 

66 kg, if we assume similar maximum weight, an 800 mg/day dose might be a suitable limit 

for the 12 mg/kg/day dose.  On the other hand, no restriction would be required when the 

dose was scaled according to height because the maximum daily dose was less than 800 

mg/day for all three height scaled doses that were examined. Furthermore, there was no 

difference in the height based dose administered for overweight and obese patients, and 

underweight and normal weight patients. The explanation for this finding might be that 

because tobramycin is a water soluble drug it distributes mainly into plasma and not to any 

great extent into fat.  Since in the current study none of the patients were obese, these 

finding cannot be extrapolated to obese patients.  

 

Higher peak concentrations were achieved with the dose of 12 mg/kg/day (up to 98 mg/L) 

compared with the dose of 4 mg/cm/day (up to 69 mg/L). From previous studies, 

tobramycin peak concentrations ˃ 30 mg/L (up to 56 mg/L) were well tolerated in most 

patients with no evidence of oto- or nephrotoxicity (Vic P et al., 1998, Bragonier R and 

Brown NM, 1998, Master V et al., 2001). These studies included in total 42 paediatric and 

adolescent patients with cystic fibrosis (age 5 – 19 years old) who were administered 

tobramycin dose of 8 -15 mg/kg/day over 5 , 15 or 30 minutes (Bragonier R and Brown NM, 

1998, Vic P et al., 1998, Master V et al., 2001). However, a few patients experienced 

ototoxicity in the form of dizziness and tinnitus, which responded to an increase in the 

infusion time, a reduction of the dose or stopping the antibiotic (Master V et al., 2001, 

Bragonier R and Brown NM, 1998, VandenBussche HL and Homnick DN, 2012). 

VandenBussche et al (2012) found that female patients were more susceptible to 

aminoglycoside ototoxicity and suggested using different weight-based doses for older 

female patients. Similar suggestions were made by Lam et al (2007). They  found that 

female patients older than 14 years old had high peak concentrations and suggested a lower 

dose of 7 mg/kg/day with a target peak concentration of 25 - 35 mg/L (Lam W et al., 2007). 

No information on ototoxicity was available in the current study.  
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VandenBussche and his colleagues (VandenBussche HL and Homnick DN, 2012) suggested  

increasing the target peak concentration range up to 35 mg/L for a tobramycin dose of 12 

mg/kg/day. In the current study, if the accepted maximum tobramycin peak concentration 

was increased to 35 mg/L, 53 % of patients who were administered 12 mg/kg/day would 

have peak concentrations above the target compared with 73 % of patients if the limit was 

set at 30 mg/L. Similarly, with a dose of 4 mg/cm/day, 57 % of patients would have a peak 

concentration above 35 mg/L compared with 81 % above 30 mg/L. Such high peaks would 

also maximise the tobramycin pharmacodynamic effect against gram negative pathogens. 

For the current 10 mg/kg/day and 3 mg/cm/day doses, peak ranges of 20 - 30 mg/L are 

acceptable. However, for higher doses (12 mg/kg/day and 4 mg/cm/day) a higher peak 

range (25 – 35 mg/L) might be more appropriate.   

 

The maximum daily AUC for the 12 mg/kg/day dose was 410 mg.h/L and greater than for 

the 4 mg/cm/day dose (303 mg.h/L). Limited information is available on the safety of such 

high daily aminoglycoside AUC values. Croes et al (2012) found that following the 

administration of 7 mg/kg/day aminoglycoside, creatinine clearance tended to decrease by 

day 10 of a 14 day course. This was linked with a daily AUC greater than 100 mg.h/L. They 

defined nephrotoxicity as a 50 % or more reduction in creatinine clearance, which was 

observed on day 14 of therapy when the daily AUC was 150 mg.h/L. These results suggest 

that a safe daily AUC upper limit is less than 150 mg.h/L. Since daily AUC ranges of 80 - 120 

mg.h/L are acceptable for the current weight and developed height scaled doses, higher 

daily AUC ranges, such as 85 – 125 mg.h/L, might be more appropriate for the higher doses. 

For the 12 mg/kg/day dose, there was only a small reduction in the percentage of patients 

whose daily AUC above the target when the daily exposure upper limit was increased from 

120 mg.h/L (69 %) to 125 mg.h/L (63 %). Similar observations occurred with the 4 

mg/cm/day dose, where 67 % of patients would have had a daily AUC above 125 mg.h/L 

compared with 74 % with 120 mg.h/L. Looking at these daily exposure percentages might 

falsely indicate that the high weight based dose is safer than the high height based dose, 

particularly for daily exposure greater than 120 mg.h/L. However, a sub-analysis of patients 

whose predicted daily exposure was greater than 120 indicated that 54 % of them had more 

than 150 mg.h/L whereas 49 % had more than 150 mg.h/L with the high height based dose.  
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As previously discussed and according to Croes et al (2012), daily exposure between 120 and 

150 mg.h/L were considered acceptable in the present study.  

 

7.5.1 Probability of Target Attainment 

Aminoglycosides are active against aerobic gram-negative bacilli including Escherichia coli,  

Proteus, Enterobacter, Klebsiella, Acinetobacter, Pseudomonas, Serratia, and Providencia 

species (Schentag et al., 2006).  According to the UK Cystic Fibrosis Trust annual report 

(2013), P.aeruginosa infections account for 36.5 % for all lung infections at all age group and 

for 55.8 % in adults , followed by S.aureus infections (gram positive infection) 15.7 % and to 

a least percentage  H.influenzae (gram negative) infection which accounts for 6.2 %.   

Therefore in the current study, the gram negative, P.aeruginosa and H.influenzae organisms 

were chosen to evaluate the effect of aminoglycosides against them.  

 

The rate and extend of killing is highly dependent on the concentration of an 

aminoglycoside antibiotic. Mouton et al (2005) examined the relationship between the 

pharmacodynamic index and the effect of aminoglycosides in 13 paediatric and young adult 

patients with cystic fibrosis. They reported that the maximum effect of tobramycin was 

achieved with a peak to MIC ratio of 5 for tobramycin administered 8 hourly. This Peak/MIC 

ratio is lower than ratios documented from other researchers who reported values ranging 

from 8 to 10 against gram negative pathogens (Kashuba ADM et al., 1999, Blaser J et al., 

1987, Moore RD et al., 1987). Mouton et al  (2005) derived this low ratio from a multiple 

dosage regimen of tobramycin rather than once daily (3.3 mg/kg three times a day), and 

hence it was not used in the current study. However, they reported a daily AUC to MIC ratio 

≥ 50 to achieve the maximum effect of tobramycin for a daily tobramycin dose of 9.9 mg/kg. 

In contrast, others reported higher daily AUC/MIC ratios of ≥ 100 and ≥ 150 to predict 

tobramycin treatment success, regardless of the infection site or pathogen type (Smith PF et 

al., 2001, Kashuba ADM et al., 1999).  The very high AUC/MIC ratio reported by Kashuba et 

al (1999) was derived from isolates obtained from patients with nosocomial pneumonia 

with MIC ranges of 1 to 4 mg/L. 
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The approach of Drusano et al (2001) was applied in the present study to predict 

aminoglycoside dosage regimen breakpoint or treatment success in patients with cystic 

fibrosis.  Previous PK-PD studies in patients with cystic fibrosis usually defined an MIC 

breakpoint and examine whether the tested dosage regimen was able to achieve that 

breakpoint (Beringer PM et al., 2000, VandenBussche HL and Homnick DN, 2012). However, 

Drusano et al (2001) used simulation approach and examined the distribution of a wide 

range of MICs against particular organism to determine breakpoints and treatment success.  

 

In this study, the PK-PD susceptibility breakpoint for a Peak/MIC ratio ≥ 10 for the current 

tobramycin dose (10 mg/kg/day) and two of the height scaled doses (3 and 3.5 mg/cm/day) 

was ≤ 2 mg/L against gram negative pathogens. However, the PK-PD susceptibility 

breakpoint for the higher doses (12 mg/kg/day and height 4 mg/cm/day) was ≤ 2.5 mg/L. Vic 

and his colleagues (1998) found that a tobramycin MIC of 2 mg/L was required to inhibit the 

growth of 50 % of P.aeruginosa isolates. Based on those findings, the dosage regimens 

examined in the current study should be able to inhibit the growth of 50 % P.aeruginosae. 

However, Milne et al (2010) examined 315 P.aeruginosa isolates from 76 patients with 

cystic fibrosis, and reported a higher MIC breakpoint value for tobramycin of ≥ 3 mg/L. Both 

MIC breakpoints reported previously, 2 and 3 mg/L (Milne KEN and Gould IM, 2010, Vic P et 

al., 1998),  were lower than the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST) and the British Society for Antimicrobial Chemotherapy (BSAC) breakpoint value 

for Pseudomonas spp. for tobramycin of ≤ 4 mg/L (British Society for Antimicrobial 

Chemotherapy, 2013, European Committee on Antimicrobial Susceptibility Testing). 

Similarly, Lam and his colleagues (2007) reported that the majority of P.aeruginosa isolates 

had MICs ≤ 4 mg/L and around 80 % had an MIC ≤ 2 mg/L. The reason behind the slight 

variation in MIC breakpoints for P.aeruginosa seen in previous publications might be the 

formation of biofilms in the studied sample. Lopes et al (2012) studied the MIC breakpoint 

for P.aeruginosa in addition to other organisms including  Inquilinus limosus and 

Dolosigranulum pigrum in patients with cystic fibrosis. They found that P.aeruginosa 

biofilms were more resistant to antibiotics, including tobramycin and gentamicin, than 

Inquilinus limosus and Dolosigranulum pigrum biofilms. The presence of Inquilinus limosus 

and Dolosigranulum pigrum in addition to P.aeruginosa could enhance antibiotic resistance. 
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Recent evidence showed that P.aeruginosa isolated from patients with cystic fibrosis were 

more resistant to tested antibiotics, including aminoglycosides, β-lactams, ciprofloxacin and 

colistin than isolates from patients without cystic fibrosis (Milne KEN and Gould IM, 2010, 

Rao P et al., 2012).  

 

For the daily AUC/MIC ratios, the MIC breakpoints for both weight scaled (10 and 12 

mg/kg/day) and height scaled (3 and 3.5  mg/cm/day) dosage regimens were 1.5 mg/L for a 

ratio ≥ 50,  and 0.5 mg/L for ratios ≥ 100, and  for the 4 mg/cm/day the breakpoint was 2 

mg/L for ratios ≥ 50, 1 mg/L for ratios ≥ 100, and 0.5 mg/L for ratios ≥ 150. Although the 

effect was less pronounced, more patients were predicted to achieve  PTA target with the 

weight scaled dose compared with the height scaled at MIC greater  2 and less than 8 mg/L, 

which could be related to the amount of dose administered. This observation was seen 

when analysing Peak/MIC and daily AUC/MIC ratios results. These breakpoints are lower 

than the EUCAST and BSAC breakpoints against P.aeruginosa (MIC ≤ 4 mg/L), which 

indicated that if the daily AUC/MIC is used then high tobramycin dosage regimen is required 

(4 mg/cm/day) is required to achieve MIC ≤ 2 mg/L.  In addition, more patients in the weight 

scaled dose had above target peak concentration of 30 mg/L (51 % versus 30 %) and daily 

AUC of 120 mg.h/L (40 % versus 27 %) compared with the height scaled dosage regimen. 

These results indicated a greater chance of efficacy but with higher risk of toxicity 

associated with the weight scaled dose.  

 

7.5.2 Cumulative Fraction of Response 

Infection with P.aeruginosa accounts for 36.5 % for all lung infections at all age groups 

(Cystic FibrosisTrust, 2013) and was found by Lam et al (2007) to account for the majority of 

isolates (48 %) in 102 paediatric and young adult patients with cystic fibrosis.  These isolates 

were susceptible to tobramycin. Therefore, the current analysis supported the use of 

tobramycin in cystic fibrosis patients suffering from lung infections regardless of age with 

the current weight or developed height scaled dosage regimens. In the current study, all 

examined tobramycin dosage regimens were expected to achieve more than a 90 % 

response for a Peak/MIC ratio ≥ 10 against P.aeruginosa. At low daily AUC/MIC ratios of 50, 
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tobramycin CFR value was between 88 - 90 % against P.aeruginosa for all examined dosage 

regimens. However, at high daily AUC/MIC ratios (greater than 100 and 150) tobramycin 

CFR value was lower and between 50 - 80 % for all dosage regimens examined against 

P.aeruginosa. However, the treatment of success for tobramycin against H.influenzae was 

low for all dosage regimens, less than 64 % for target Peak/MIC ≥ 10 and less than 50 % for 

target daily AUC/MIC ratios.  

  

On the other hand, H.influenzae accounts for 8.7 % of infections in paediatric patients with 

cystic fibrosis (Cystic FibrosisTrust, 2013). However, in adulthood H.influenzae accounts for 

only 4.4 % of the causative pathogens for lung infections (Cystic FibrosisTrust, 2013).  Hence 

gentamicin can be used for highly sensitive strains of H.influenzae. The simulation results 

showed that gentamicin is not the antibiotic of choice to treat infections caused by 

P.aeruginosa, because the CFR value was less than 70 % for a Peak/MIC ratio ≥ 10 and less 

than 63% at all AUC/MIC ratios were above the target for all dosage regimens. Milne and his 

colleagues (Milne KEN and Gould IM, 2010) found that colistin was the most effective 

antimicrobial against P.aeruginosa, followed by tobramycin, whereas gentamicin had the 

lowest susceptibility. On the other hand, the treatment of success for gentamicin against 

H.influenzae for the examined dosage regimens was high for a Peak/MIC ratio ≥ 10, ranging 

from 87 % to 92 %. However, the percentage was lower using daily AUC/MIC ratios of 50, 

which achieved less than 87 %. This percentage reduced to 60 % and less at daily AUC/MIC 

ratios of 100 or more.  

 

7.5.3 Conclusion 

Overall, the current tobramycin dose of 10 mg/kg/day and the developed height scaled dose 

of 3 mg/cm/day had similar MIC breakpoints of ≤ 2 mg/L to achieve a Peak/ MIC ratio ≥ 10 

and ≤ 0.5 mg/L for a daily AUC/ MIC ratio ≥ 100 mg.h/L against P.aeruginosa. However, they 

were lower than the susceptibility breakpoints for the EUCAST and BSAC against gram 

negative pathogens (≥ 4 mg/L). Both dosage regimens were able to achieve more than a 90 

% treatment success against P.aeruginosa using the EUCAST MIC distributions. When the 

tobramycin dose was increased, breakpoints and treatment success increased slightly. 
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However, high weight scaled dose was associated with high peak and daily exposure and 

might result in more toxicities compared with the high height scaled dosage regimen.    
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CHAPTER 8: GENERAL CONCLUSIONS AND FUTURE WORK 
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8.1 GENERAL CONCLUSIONS 

The aim of this thesis was to use population pharmacokinetic methodology to examine how 

aminoglycoside pharmacokinetic parameters change over time in patients with cystic 

fibrosis who receive multiple courses of therapy and how this would affect future dosage 

recommendations. The conducted analysis in 166 adult patients with cystic fibrosis with 

1075 courses of aminoglycoside therapy identified that aminoglycoside pharmacokinetics 

were influenced by height and creatinine clearance. Even though height and creatinine 

clearance were the best descriptors, they had small effect on between-subject variability 

with a reduction from 23 % to 18 % for clearance and 14 % to 12 % for the volume of 

distribution of the central compartment. This reflects the narrow range of patient 

characteristics within patients with cystic fibrosis. In addition, the relationship between 

creatinine clearance and clearance was unexpectedly poor for a drug like aminoglycoside, 

which is known to be cleared renally. These finding raises the question about the adequacy 

of using creatinine based methods to estimate renal function in patients with cystic fibrosis 

where underweight is common and hence had low creatinine production, and the use of an 

alternative method of estimating renal function might be required. In the Glasgow dataset, 

40 % of patients were underweight of whom 26 % had low serum creatinine. These findings 

were confirmed using two methods of estimation, the parametric FOCE I implemented in 

NONMEM and when a larger dataset with 331 adult patients and 1490 courses of 

aminoglycosides were analysed using the nonparametric NPAG implemented in Pmetrics. 

Although the data were collected over 15 years, within-subject variability was low at 11 %, 

which indicated that aminoglycoside pharmacokinetics is stable in this group of patients. 

This indicated that the patients can be started with the previous individualised tobramycin 

dosage regimen if a new therapy is required. The results also showed that multiple courses 

of therapy did not influence aminoglycoside clearance over time. In addition, the population 

model was able to predict pharmacokinetics well using another population from The Hague. 

This is quite important particularly if the population model would be used to develop 

dosage guidelines.  
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In this thesis, a target daily area under the concentration-time curve value of 106 mg.h/L, 

range 80-120 mg.h/L was established for the standard 10 mg/kg/day dosage regimen, which 

is the first time this target has been defined in this patient group. High proportion of 

patients on the 10 mg/kg/day dose had their daily AUC above the target 80 - 120 mg.h/L (40 

%), which raises concern about safety of such dose particular the nephrotoxic effect of 

aminoglycoside (tobramycin). A new dosage guideline was developed which used height as 

a scaling factor (3 mg/cm/day). The proposed height based dosage guideline enable more 

patients to achieve the target concentration (63 vs 41 %) and daily AUC target (61 vs 50 %) 

compared with the weight scaled dosage regimen (10 mg/kg/day). In addition, the height 

scaled dosage regimen was expected to be less toxic compared with weight scaled dosage 

regimen because fewer patients (27 %) had their daily AUC greater than 120 mg.h/L 

compared with the weight scaled dosage regimen (40 %).  

 

A nomogram for interpreting tobramycin concentrations was also developed for the first 

time for both the weight (10 mg/kg/day) and height (3 mg/cm/day) scaled dosage regimens. 

The nomogram was able to predict patients with low, within and above the target daily area 

under the concentration-time curve using the Glasgow and The Hague patients who were 

simulated to be administered the 10 mg/kg/day dose and using new patients from The 

Hague who was on 10 mg/kg/day dosage regimen. In addition, the nomogram was able to 

identify patients with poor renal function. The results from using patients from The Hague 

showed that the recommendations generated from the nomogram were in agreement with 

the clinical decisions that had actually been made for these patients during routine clinical 

use.  

 

For the first time, the susceptibility breakpoints for the 10 mg/kg/day dose and 3 

mg/cm/day dose were determined against gram negative organisms in this group of 

patients. The results from the pharmacokinetic-pharmacodynamic analysis showed that 

both the 10 mg/kg/day and 3 mg/cm/day dosage regimens had MIC breakpoints of ≤ 2 mg/L 

to achieve a Peak/ MIC ratio ≥ 10 against gram negative organism (P.aeruginosa), which was 

lower than the clinical breakpoint of MIC ≤ 4 mg/L for the EUCAST and BSAC.  In addition, 
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the analysis showed that both regimens are effective against P.aeruginosa with more than 

90 % of treatment response. However, when the tobramycin dose was increased to 12 

mg/kg/day and 4 mg/cm/day, breakpoints and treatment success increased slightly. 

However, the 12 mg/kg/day dosage regimen was associated with high peaks and daily 

exposures and might result in more toxicity compared with the 4 mg/cm/day dosage 

regimen.   

 

The proposed height based dosage guideline (3 mg/cm/day) achieved adequate 

concentration and daily AUC and provided a good overall treatment success against gram 

negative organism (P.aeruginosa). The use of height is an advantage of the model and the 

dosage guideline as it would enable reduction of calculations error. In addition, height is 

usually stable for adult patients, which reduce the need to measure each time the patient 

required aminoglycoside (tobramycin) therapy and is consistence with the finding that these 

patients had stable pharmacokinetics and patients can be started with the previous dosage 

regimen.  In addition, the use of height is not surprising for dosing aminoglycosides, the 

dose of aminoglycosides is usually based on ideal body weight, which is based on height. 

Therefore the proposed guideline would eliminate the need to estimate ideal body weight 

and doses directly using patient’s height.  

 

8.2 FUTURE WORK 

The proposed height based dosage regimen (3 mg/cm/day) can be used in clinical practice 

and be monitored by the developed tobramycin dosage adjustment nomogram to advise on 

the subsequent dose and dosage interval. In addition, a prospective study would be a nice 

extension of the work to evaluate both the height dosage guideline and the dosage 

adjustment nomogram.  

 

In the present study, between-subject variability in V2 and Q were difficult to characterise 

because of the sparse nature of data. Therefore, the population model can be used to 

determine optimal design for future studies.  The main aim of the optimal design for 
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population pharmacokinetic studies is to maximise parameter estimates precision and 

minimise the amount of information required. The optimal study design is a useful 

technique to determine the required number of subjects and number and times of samples 

to be obtained from each subject, which is expected to contain the most information. 

Another area that could be explored further is to look at the effect of cystic fibrosis 

genotype mutation as a covariate and how it influence aminoglycoside handling in patients 

with cystic fibrosis. 
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APPENDIX II: NONMEM CONTROL FILE INCLUDING WITHIN-SUBJECT 

VARIBILITY 

$PROB NEW CYSTIC DATA OCT 2009 

$INPUT ID TIME AMT RATE DV OCC EVID AGE GEN WT HT BMI BSA LBW CREA 

EGCL FGCL CGCL CODE=DROP DRUG 

$DATA  C:\CFNONMEM\CFdata362010.CSV IGNORE=# 

$SUBROUTINE ADVAN3 TRANS4 

$ABBREVIATED DERIV2= NOCOMMON 

$ABBREVIATED DERIV2= NO 

$PK      IF (AMT.GT.0)THEN 

         TDOSE=TIME 

         TAD=0.0 

         ENDIF 

         IF(AMT.EQ.0)TAD=TIME-TDOSE 

         OCC1=0 

         OCC2=0 

         OCC3=0 

         OCC4=0 

         OCC5=0 

         OCC6=0 

         OCC7=0 

         OCC8=0 

         OCC9=0 

         OCC10=0 

         OCC11=0 

         OCC12=0 

         OCC13=0 

         OCC14=0 

         OCC15=0 

         OCC16=0 

         OCC17=0 

         OCC18=0 

         OCC19=0 

         OCC20=0 

         OCC21=0 

         OCC22=0 

         OCC23=0 

         OCC24=0 

         OCC25=0 

         OCC26=0 

         OCC27=0 

         OCC28=0 

         IF(OCC.EQ.1) OCC1=1 

         IF(OCC.EQ.2) OCC2=1     

         IF(OCC.EQ.3) OCC3=1 

         IF(OCC.EQ.4) OCC4=1 

         IF(OCC.EQ.5) OCC5=1 

         IF(OCC.EQ.6) OCC6=1 

         IF(OCC.EQ.7) OCC7=1 

         IF(OCC.EQ.8) OCC8=1 

         IF(OCC.EQ.9) OCC9=1 

         IF(OCC.EQ.10) OCC10=1 

         IF(OCC.EQ.11) OCC11=1 

         IF(OCC.EQ.12) OCC12=1 
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         IF(OCC.EQ.13) OCC13=1 

         IF(OCC.EQ.14) OCC14=1 

         IF(OCC.EQ.15) OCC15=1 

         IF(OCC.EQ.16) OCC16=1 

         IF(OCC.EQ.17) OCC17=1 

         IF(OCC.EQ.18) OCC18=1 

         IF(OCC.EQ.19) OCC19=1 

         IF(OCC.EQ.20) OCC20=1 

         IF(OCC.EQ.21) OCC21=1 

         IF(OCC.EQ.22) OCC22=1 

         IF(OCC.EQ.23) OCC23=1 

         IF(OCC.EQ.24) OCC24=1 

         IF(OCC.EQ.25) OCC25=1 

         IF(OCC.EQ.26) OCC26=1 

         IF(OCC.EQ.27) OCC27=1  

         IF(OCC.EQ.28) OCC28=1  

         IOCL=ETA(1)*OCC1+ETA(2)*OCC2+ETA(3)*OCC3+ETA(4)*OCC4  

         IOCL=IOCL+ETA(5)*OCC5+ETA(6)*OCC6+ETA(7)*OCC7 

         IOCL=IOCL+ETA(8)*OCC8+ETA(9)*OCC9+ETA(10)*OCC10 

         IOCL=IOCL+ETA(11)*OCC11+ETA(12)*OCC12+ETA(13)*OCC13 

         IOCL=IOCL+ETA(14)*OCC14+ETA(15)*OCC15+ETA(16)*OCC16 

         IOCL=IOCL+ETA(17)*OCC17+ETA(18)*OCC18+ETA(19)*OCC19 

         IOCL=IOCL+ETA(20)*OCC20+ETA(21)*OCC21+ETA(22)*OCC22 

         IOCL=IOCL+ETA(23)*OCC23+ETA(24)*OCC24+ETA(25)*OCC25 

         IOCL=IOCL+ETA(26)*OCC26+ETA(27)*OCC27+ETA(28)*OCC28 

         TVCL=THETA(1)*HT+THETA(7)*(CGCL-92)) 

         TVV1=THETA(2)*(1+THETA(8)*(HT-163)) 

         TVV2=THETA(3) 

         TVQ=THETA(4) 

         CL=TVCL*EXP(ETA(29)+IOCL) 

         V1=TVV1*EXP(ETA(30)) 

         V2=TVV2 

         Q=TVQ 

         S1=V1 

$ERROR   IPRED=F 

$ERROR   W=SQRT(THETA(5)**2+THETA(6)**2*F**2) 

         IRES=DV-IPRED 

         IWRES=IRES/W 

         Y=IPRED+W*ERR(1)  

$THETA   (0,0.05) (0,14) (0,7) (0,0.5) 0.2 0.2 0.005 0.01 

$OMEGA BLOCK(1) 0.02  ;IOV CL    1 

$OMEGA BLOCK(1) SAME ;2 

$OMEGA BLOCK(1) SAME ;3 

$OMEGA BLOCK(1) SAME ;4 

$OMEGA BLOCK(1) SAME ;5 

$OMEGA BLOCK(1) SAME ;6 

$OMEGA BLOCK(1) SAME ;7 

$OMEGA BLOCK(1) SAME ;8 

$OMEGA BLOCK(1) SAME ;9 

$OMEGA BLOCK(1) SAME ;10 

$OMEGA BLOCK(1) SAME ;11 

$OMEGA BLOCK(1) SAME ;12 

$OMEGA BLOCK(1) SAME ;13 

$OMEGA BLOCK(1) SAME ;14 

$OMEGA BLOCK(1) SAME ;15 

$OMEGA BLOCK(1) SAME ;16 
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$OMEGA BLOCK(1) SAME ;17 

$OMEGA BLOCK(1) SAME ;18 

$OMEGA BLOCK(1) SAME ;19 

$OMEGA BLOCK(1) SAME ;20 

$OMEGA BLOCK(1) SAME ;21 

$OMEGA BLOCK(1) SAME ;22 

$OMEGA BLOCK(1) SAME ;23 

$OMEGA BLOCK(1) SAME ;24 

$OMEGA BLOCK(1) SAME ;25 

$OMEGA BLOCK(1) SAME ;26 

$OMEGA BLOCK(1) SAME ;27 

$OMEGA BLOCK(1) SAME ;28 

$OMEGA BLOCK(2) 0.04 0.02 0.02  

$SIGMA 1 FIX 

$ESTIMATION MAX=9999 METHOD=1 INTERACTION SIG=3 PRINT=5 NOABORT 

$COVAR 

$TABLE ID TIME TAD IPRED IRES IWRES NOPRINT ONEHEADER FILE=SDTAB433 

$TABLE ID CL V1 V2 Q ETA(1) ETA(29) ETA(30) TVCL TVV1 TVV2 TVQ 

NOPRINT ONEHEADER FILE=PATAB433 

$TABLE ID AGE WT HT BMI BSA LBM CREA EGCL FGCL CGCL NOPRINT 

ONEHEADER FILE=COTAB433 

$TABLE ID GEN DRUG NOPRINT ONEHEADER FILE=CATAB433 

$TABLE ID TIME TAD AMT RATE DV OCC EVID AGE GEN WT CREA DRUG 

TVCL TVV1 TVV2 TVQ CL V1 V2 Q ETA(1) ETA(29) ETA(30) IPRED IRES 

IWRES NOPRINT ONEHEADER FILE=433.TAB 

$SCAT OMIT 
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APPENDIX III: THE MECHANISTIC MODEL NONMEM CONTROL FILE 

$PROB NEW CYSTIC DATA OCT 2009 

$INPUT ID TIME AMT RATE DV OCC EVID AGE GEN WT HT LBW BSA CREA ACREA 

CGCL EGCL FGCL DRUG 

$DATA  C:\Mechanisticmodel\CFdata6.CSV IGNORE=# 

$SUBROUTINE ADVAN3 TRANS4 

$PK      IF (AMT.GT.0)THEN 

         TDOSE=TIME 

         TAD=0.0 

         ENDIF 

         IF(AMT.EQ.0)TAD=TIME-TDOSE 

 

; THE CODING ARE FROM ANDERSON & HOLFORD, DRUG METAB PK 2009 

 

CL_FFAT=0 ;FRACTION OF FAT MASS FOR CL 

NFMCL=LBW+CL_FFAT*(WT-LBW); NORMAL FAT MASS CL 

FSZCL=(NFMCL/70)**0.75 ; ALLOMETRIC SIZE CL 

 

V_FFAT=1 ;FRACTION OF FAT MASS FOR V 

NFMV=LBW+V_FFAT*(WT-LBW);NORMAL FAT MASS V 

FSZV=NFMV/70 ;ALLOMETRIC SCALED V 

 

CPR_FFAT=1 ;FRACTION FAT MASS CREATININE PRODUCTIOM RATE (CPR) 

NFMCPR=LBW+CPR_FFAT*(WT-BW) ; NORMAL FAT MASS CPR 

FSZCPR=NFMCPR/70 ; ALLOMETRIC SIZE CPR 

 

GFR_FFAT=0.211 ;FRACTION FAT MASS FOR GFR 

NFMGFR=LBW+GFR_FFAT*(WT-LBW); NORMAL FAT MASS GFR 

FSZGFR=(NFMGFR/70)**0.75 ; ALLOMETRIC SIZE GFR 

GFRNRM=7.26*FSZGFR; 7.26 IS GFR STD IN L/h/70kg  

 

IF(CREA.GT.60)THEN 

IF(GEN.EQ.1.04)THEN; FEMALE 

FSEX=THETA(9) ;0.82 

ELSE 

FSEX=1 

ENDIF 

FCPR=(THETA(10)-AGE)*FSEX/(THETA(10)-40) ;112 

ELSE; LOW CREA (<60 MOCROMOL/L) 

FCPR=(THETA(11)-AGE)*THETA(12)/(THETA(11)-40);119 , 0.7 

ENDIF 

 

CPR=516*FCPR*FSZCPR ; 516=STD CPR IN MICROMOL/L IN 70 KG ADULT ;AGED 

40 YRS 

 

CRCL=CPR/CREA ; L/h 

 

RF=CRCL/GFRNRM ;RENAL FUNCTION 

 

TVCL=THETA(1)*FSZCL+THETA(2)*RF 

TVV1=THETA(3)*(1+THETA(4)*FSZV) 

TVV2=THETA(5) 

TVQ=THETA(6) 

CL=TVCL*EXP(ETA(1)) 
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V1=TVV1*EXP(ETA(2)) 

V2=TVV2*EXP(ETA(3)) 

Q=TVQ*EXP(ETA(4)) 

S1=V1 

$ERROR   IPRED=F 

$ERROR   W=SQRT(THETA(7)**2+THETA(8)**2*F**2) 

         IRES=DV-IPRED 

         IWRES=IRES/W 

         Y=IPRED+W*ERR(1)  

$THETA (0,2) (0,1) (0,14) (0,0.005) (0,7.5) (0,0.5) (0,0.2) (0,0.2) 

(0,0.802) (0,73.4) (0,197) (0,1.07) 

$OMEGA BLOCK(2) 0.005 0.002 0.05  

$OMEGA 0.05 0.05 

$SIGMA 1 FIX 

$ESTIMATION MAX=4000 METHOD=1 INTERACTION SIG=3 PRINT=5 NOABORT 

$COVAR 

$TABLE ID TIME TAD IPRED IRES IWRES CWRES NOPRINT ONEHEADER 

FILE=SDTAB285Y2 

$TABLE ID CL V1 V2 Q ETA(1) ETA(2) ETA(3) ETA(4) TVCL TVV1 TVV2 TVQ 

NOPRINT ONEHEADER FILE=PATAB285Y2 

$TABLE ID AGE WT HT FFM BSA LBM4 CREA CGCL NOPRINT ONEHEADER 

FILE=COTAB285Y2 

$TABLE ID GEN DRUG NOPRINT ONEHEADER FILE=CATAB285Y2 

$TABLE ID TIME AMT RATE TAD DV OCC EVID AGE GEN WT FFM FSZCL FSZV 

FSZCPR GFRNRM FCPR CPR CRCL CGCL RF CREA  

TVCL TVV1 TVV2 TVQ CL V1 V2 Q IPRED NOPRINT ONEHEADER FILE=285Y2.TAB 

$SCAT OMIT 
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APPENDIX IV: NONMEM CONTROL FILE TO GENERATE SIMULATIONS 

FOR NPDE 

$PROB NPDE simulations 

$INPUT ID TAD TIME AMT RATE DV MDV OCC EVID AGE GEN WT HT BSA LBW 

CREA CGCL DRUG   

$DATA  C:\npde\Simdata.CSV IGNORE=# 

$SUBROUTINE ADVAN3 TRANS4 

$PK   

         TVCL=THETA(1)*HT+THETA(2)*(CGCL-92) 

         TVV1=THETA(3)*(1+THETA(4)*(HT-163)) 

         TVV2=THETA(5) 

         TVQ=THETA(6) 

         CL=TVCL*EXP(ETA(1)+ETA(2)) 

         V1=TVV1*EXP(ETA(3)) 

         V2=TVV2 

         Q=TVQ 

         S1=V1 

 

$ERROR   IPRED=F 

$ERROR   W=SQRT(THETA(7)**2+THETA(8)**2*F**2) 

         IRES=DV-IPRED 

         IWRES=IRES/W 

         Y=IPRED+W*ERR(1) 

         FSIM=Y  

 

$THETA   0.0285 0.0114 13.3 0.0113 6.62 0.452 0.086 0.148 

$OMEGA  0.0129  ;IOV CL     

$OMEGA BLOCK(2) 0.0325 0.014 0.0134;IIV CL BLOCK MATRIX IIV V1  

$SIGMA 1 FIX 

$SIMULATION (06032012) (909 UNIFORM)ONLYSIM SUBPROBLEMS=1000 

$TABLE ID TAD FSIM IPRED NOPRINT NOHEADER NOAPPEND 

FILE=SimData10.tab 
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APPENDIX V: NONMEM CONTROL FILE TO RUN THE EXTERNAL 

VALIDATION 

$PROB External validation 

$INPUT ID OCC OLD=DROP ID=DROP TIME AMT RATE DV EVID SS II II2 WT 

CREA AGE GEN HT CGCL LBW BMI 

$DATA  C:\R436bvalidation\CFVALIDATION.CSV IGNORE=# 

$SUBROUTINE ADVAN3 TRANS4 

$ABBREVIATED DERIV2= NOCOMMON 

$ABBREVIATED DERIV2= NO 

$PK      IF (AMT.GT.0)THEN 

         TDOSE=TIME 

         TAD=0.0 

         ENDIF 

         IF(AMT.EQ.0)TAD=TIME-TDOSE 

       

         TVCL=THETA(1)*HT+THETA(2)*(CGCL-92) 

         TVV1=THETA(3)*(1+THETA(4)*(HT-163)) 

         TVV2=THETA(5) 

         TVQ=THETA(6) 

         CL=TVCL*EXP(ETA(1)+ETA(2)) 

         V1=TVV1*EXP(ETA(3)) 

         V2=TVV2 

         Q=TVQ 

         S1=V1 

$ERROR   IPRED=F 

$ERROR   W=SQRT(THETA(7)**2+THETA(8)**2*F**2) 

         IRES=DV-IPRED 

         IWRES=IRES/W 

         Y=IPRED+W*ERR(1)  

$THETA   0.0285 0.0114 13.3 0.0113 6.62 0.452 0.086 0.148  

$OMEGA 0.0129  ;IOV CL    1 

$OMEGA BLOCK(2) 0.0325 0.014 0.0134 

$SIGMA 1 FIX 

$ESTIMATION MAX=0 POSTHOC 

$COVAR OMIT 

$TABLE ID TIME TAD IPRED IRES IWRES CWRES NOPRINT ONEHEADER 

FILE=SDTAB436bV 

$TABLE ID CL V1 V2 Q ETA(1) ETA(2) ETA(3) TVCL  TVV1 TVV2 TVQ 

NOPRINT ONEHEADER FILE=PATAB436bV 

$TABLE ID AGE WT HT LBM4 CREA CGCL NOPRINT ONEHEADER FILE=COTAB436bV 

$TABLE ID GEN NOPRINT ONEHEADER FILE=CATAB436bV 

$TABLE ID OCC II2 TIME AMT RATE TAD DV EVID AGE GEN WT CREA 

TVCL TVV1 TVV2 TVQ CL V1 V2 Q ETA(1) ETA(2) ETA(3) IPRED IRES IWRES 

NOPRINT ONEHEADER FILE=436bV.TAB 

$SCAT OMIT 
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APPENDIX VI: NONMEM CONTROL FILE TO GENERATE SIMULATIONS 

FOR THE DOSAGE GUIDELINE  

a) USING LEAN BODY WEIGHT AS THE SCALING FACTOR 

# $PROB SIMULATION ;13 mg/LBW 
$INPUT ID TIME AMT RATE EVID AGE WT HT LBW GEN CREA CGCL DV  

$DATA  C:\Nomogramsimulations\LBWscaledose.CSV IGNORE=# 

$SUBROUTINE ADVAN3 TRANS4 

$PK   

     

SIMHT=HT*EXP(ETA(4)) 

IF(SIMHT.LT.139)SIMHT=HT 

IF(SIMHT.GT.194)SIMHT=HT 

 

 

IF(ICALL.EQ.4.AND.NEWIND.NE.2) THEN 

GEN1=0 ;MALE 

CALL RANDOM(2,R) 

GENDER=R 

IF(GENDER.LT.0.50) THEN 

GEN1=1 ;FEMALE 

ENDIF 

ENDIF 

 

SIMAGE=AGE*EXP(ETA(5)) 

IF(SIMAGE.LT.14)SIMAGE=AGE 

IF(SIMAGE.GT.88)SIMAGE=AGE 

 

SIMCREA=CREA*EXP(ETA(6)) 

IF(SIMCREA.LT.60)SIMCREA=60 

IF(SIMCREA.GT.209)SIMCREA=CREA 

 

SIMWT=(-67.1+1.09 *GEN1+0.731*SIMHT)*EXP(ETA(7))   

IF(SIMWT.LT.30)SIMWT=WT 

IF(SIMWT.GT.108)SIMWT=WT 

 

BMI=SIMWT/(SIMHT/100)**2 

 

IF(GEN1.EQ.1) THEN 

SIMLBW=(9270*SIMWT)/(8780+(244*BMI)) 

ELSE 

SIMLBW=(9270*SIMWT)/(6680+(216*BMI)) 

ENDIF 

 

F1=SIMLBW/LBW ; DOSING ADJUSTMENT FACTOR       

AMT2=AMT*F1 

 

IF(GEN1.EQ.1) THEN 

SIMCGCL=((1.04*(140-SIMAGE)*SIMWT)/SIMCREA)*EXP(ETA(8)) ; LOGCRCL 

VARAINACE  

ELSE 

SIMCGCL=((1.23*(140-SIMAGE)*SIMWT)/SIMCREA)*EXP(ETA(8)) ;LOGCRCL 

VARIANCE  

ENDIF 
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IF(SIMCGCL.LT.26.3)SIMCGCL=CGCL 

IF(SIMCGCL.GT.181.4)SIMCGCL=CGCL 

 

 

         TVCL=THETA(1)*SIMHT+THETA(2)*(SIMCGCL-92) 

         TVV1=THETA(3)*(1+THETA(4)*(SIMHT-163)) 

         TVV2=THETA(5) 

         TVQ=THETA(6) 

         CL=TVCL*EXP(ETA(1)+ETA(2)) 

         V1=TVV1*EXP(ETA(3)) 

         V2=TVV2 

         Q=TVQ 

         S1=V1 

         AUC=AMT2/CL 

 

$ERROR   IPRED=F 

$ERROR   W=SQRT(THETA(7)**2+THETA(8)**2*F**2) 

         IRES=DV-IPRED 

         IWRES=IRES/W 

         Y=IPRED+W*ERR(1)  

 

$THETA   0.0285 0.0114 13.3 0.0113 6.62 0.452 0.086 0.148 

$OMEGA   0.0129  ;IOV CL     

$OMEGA BLOCK(2) 0.0325 0.0140 0.0134;IIV CL BLOCK MATRIX IIV V1 

$OMEGA   0.003 0.112 0.042 0.035 0.05;LOG NORMAL DISTRIBUTION 

VARIANE VALUE FOR ETA 4 5 6 7 8  

$SIGMA 1 FIX 

$SIMULATION (22032012) (812 UNIFORM)ONLYSIM SUBPROBLEMS=5000 

$TABLE ID TIME AMT2 EVID DV GEN1 SIMAGE SIMWT SIMHT BMI SIMLBW 

SIMCREA SIMCGCL CL AUC V1 V2 Q NOPRINT ONEHEADER FILE=mgperLBW.TAB 
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b) USING HEIGHT AS THE SCALING FACTOR 

$PROB NOMOGRAM DEVELOPMENT BY SIMULATION ;3mg/cm 

$INPUT ID TIME AMT RATE EVID AGE WT HT GEN CREA CGCL DV  

$DATA  C:\Nomogramsimulations\COMBINEDNOMOGRAM2.CSV IGNORE=# 

$SUBROUTINE ADVAN3 TRANS4 

$PK   

     

SIMHT=HT*EXP(ETA(4)) 

IF(SIMHT.LT.139)SIMHT=HT 

IF(SIMHT.GT.194)SIMHT=HT 

F1=SIMHT/HT ; DOSING ADJUSTMENT FACTOR       

AMT2=AMT*F1 

 

IF(ICALL.EQ.4.AND.NEWIND.NE.2) THEN 

GEN1=0 ;MALE 

CALL RANDOM(2,R) 

GENDER=R 

IF(GENDER.LT.0.50) THEN 

GEN1=1 ;FEMALE 

ENDIF 

ENDIF 

 

SIMAGE=AGE*EXP(ETA(5)) 

IF(SIMAGE.LT.14)SIMAGE=AGE 

IF(SIMAGE.GT.88)SIMAGE=AGE 

 

SIMCREA=CREA*EXP(ETA(6)) 

IF(SIMCREA.LT.60)SIMCREA=60 

IF(SIMCREA.GT.209)SIMCREA=CREA 

 

SIMWT=(-67.1+1.09 *GEN1+0.731*SIMHT)*EXP(ETA(7))   

IF(SIMWT.LT.30)SIMWT=WT 

IF(SIMWT.GT.108)SIMWT=WT 

 

 

IF(GEN1.EQ.1) THEN 

SIMCGCL=((1.04*(140-SIMAGE)*SIMWT)/SIMCREA)*EXP(ETA(8)) ; LOGCRCL 

VARAINACE  

ELSE 

SIMCGCL=((1.23*(140-SIMAGE)*SIMWT)/SIMCREA)*EXP(ETA(8)) ;LOGCRCL 

VARIANCE  

ENDIF 

 

IF(SIMCGCL.LT.26.3)SIMCGCL=CGCL 

IF(SIMCGCL.GT.181.4)SIMCGCL=CGCL 

 

 

TVCL=THETA(1)*SIMHT+THETA(2)*(SIMCGCL-92)              

TVV1=THETA(3)*(1+THETA(4)*(SIMHT-163)) 

         TVV2=THETA(5) 

         TVQ=THETA(6) 

         CL=TVCL*EXP(ETA(1)+ETA(2)) 

         V1=TVV1*EXP(ETA(3)) 

         V2=TVV2 
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         Q=TVQ 

         S1=V1 

         AUC=AMT2/CL 

 

$ERROR   IPRED=F 

$ERROR   W=SQRT(THETA(7)**2+THETA(8)**2*F**2) 

         IRES=DV-IPRED 

         IWRES=IRES/W 

         Y=IPRED+W*ERR(1)  

 

$THETA   0.0285 0.0114 13.3 0.0113 6.62 0.452 0.086 0.148 

$OMEGA   0.0129  ;IOV CL     

$OMEGA BLOCK(2) 0.0325 0.0140 0.0134;IIV CL BLOCK MATRIX IIV V1 

$OMEGA   0.003 0.112 0.042 0.035 0.05;LOG NORMAL DISTRIBUTION 

VARIANE VALUE FOR ETA 4 5 6 7 8  

$SIGMA 1 FIX 

$SIMULATION (22032012) (812 UNIFORM)ONLYSIM SUBPROBLEMS=5000 

$TABLE ID TIME AMT2 EVID DV GEN1 SIMAGE SIMWT SIMHT SIMCREA SIMCGCL 

TVCL TVV1 TVV2 TVQ CL AUC V1 V2 Q NOPRINT ONEHEADER 

FILE=Simcombine2A.TAB 
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c) USING BODY SURFACE AREA AS THE SCALING FACTOR 

 
 $PROB SIMULATION ;326 mg/BSA 
$INPUT ID TIME AMT RATE EVID AGE WT HT BSA GEN CREA CGCL DV  

$DATA  C:\Nomogramsimulations\BSAscaledose.CSV IGNORE=# 

$SUBROUTINE ADVAN3 TRANS4 

$PK   

     

SIMHT=HT*EXP(ETA(4)) 

IF(SIMHT.LT.139)SIMHT=HT 

IF(SIMHT.GT.194)SIMHT=HT 

 

 

IF(ICALL.EQ.4.AND.NEWIND.NE.2) THEN 

GEN1=0 ;MALE 

CALL RANDOM(2,R) 

GENDER=R 

IF(GENDER.LT.0.50) THEN 

GEN1=1 ;FEMALE 

ENDIF 

ENDIF 

 

SIMAGE=AGE*EXP(ETA(5)) 

IF(SIMAGE.LT.14)SIMAGE=AGE 

IF(SIMAGE.GT.88)SIMAGE=AGE 

 

SIMCREA=CREA*EXP(ETA(6)) 

IF(SIMCREA.LT.60)SIMCREA=60 

IF(SIMCREA.GT.209)SIMCREA=CREA 

 

SIMWT=(-67.1+1.09 *GEN1+0.731*SIMHT)*EXP(ETA(7))   

IF(SIMWT.LT.30)SIMWT=WT 

IF(SIMWT.GT.108)SIMWT=WT 

 

SIMBSA=SQRT(SIMHT*SIMWT/3600) 

F1=SIMBSA/BSA ; DOSING ADJUSTMENT FACTOR       

AMT2=AMT*F1 

 

IF(GEN1.EQ.1) THEN 

SIMCGCL=((1.04*(140-SIMAGE)*SIMWT)/SIMCREA)*EXP(ETA(8)) ; LOGCRCL 

VARAINACE  

ELSE 

SIMCGCL=((1.23*(140-SIMAGE)*SIMWT)/SIMCREA)*EXP(ETA(8)) ;LOGCRCL 

VARIANCE  

ENDIF 

 

IF(SIMCGCL.LT.26.3)SIMCGCL=CGCL 

IF(SIMCGCL.GT.181.4)SIMCGCL=CGCL 

 

 

         TVCL=THETA(1)*SIMHT+THETA(2)*(SIMCGCL-92)               

         TVV1=THETA(3)*(1+THETA(4)*(SIMHT-163)) 

         TVV2=THETA(5) 

         TVQ=THETA(6) 
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         CL=TVCL*EXP(ETA(1)+ETA(2)) 

         V1=TVV1*EXP(ETA(3)) 

         V2=TVV2 

         Q=TVQ 

         S1=V1 

         AUC=AMT2/CL 

 

$ERROR   IPRED=F 

$ERROR   W=SQRT(THETA(7)**2+THETA(8)**2*F**2) 

         IRES=DV-IPRED 

         IWRES=IRES/W 

         Y=IPRED+W*ERR(1)  

 

$THETA   0.0285 0.0114 13.3 0.0113 6.62 0.452 0.086 0.148 

$OMEGA   0.0129  ;IOV CL     

$OMEGA BLOCK(2) 0.0325 0.0140 0.0134;IIV CL BLOCK MATRIX IIV V1 

$OMEGA   0.003 0.112 0.042 0.035 0.05;LOG NORMAL DISTRIBUTION 

VARIANE VALUE FOR ETA 4 5 6 7 8  

$SIGMA 1 FIX 

$SIMULATION (22032012) (812 UNIFORM)ONLYSIM SUBPROBLEMS=5000 

$TABLE ID TIME AMT2 EVID DV GEN1 SIMAGE SIMWT SIMHT SIMBSA SIMCREA 

SIMCGCL TVCL TVV1 TVV2 TVQ CL AUC V1 V2 Q NOPRINT ONEHEADER 

FILE=mgperBSA.TAB 

 

 

 


