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Abstract 

Mid-infrared (MIR) spectroscopy and nuclear magnetic resonance (NMR) 

spectroscopy are common laboratory techniques, but are not so widely used in process 

analysis. The high attenuation of MIR light inhibits the ability to locate delicate 

instruments away from harsh processes using long lengths of optical fibre, and the 

large size and cost of high-field NMR spectrometers prevent them from being easily 

installed in process plants. Recent advances in technology have led to the availability 

of miniaturised, robust MIR spectrometers and benchtop NMR spectrometers 

operating at low field. 

The performance of a novel, robust MIR spectrometer, designed for use in process 

environments, was assessed for the quantitative in situ analysis of liquids and was 

found to be comparable to a laboratory MIR spectrometer. A reaction was then 

monitored using the novel spectrometer and accurate predictions of concentration 

could be obtained by multivariate curve resolution. This demonstrates the suitability 

of the spectrometer for in situ process monitoring. Calibration transfer between the 

two MIR spectrometers was also performed, demonstrating the ability to build a model 

in the laboratory for subsequent application to a process. 

The instrumental stability of a low-field NMR spectrometer was evaluated, and when 

multiple samples were analysed, shifting of peaks and deterioration of lineshape 

occurred over time. To eliminate peak shift, a range of alignment methods were 

assessed. Alignment was successful for small peak shifts, but less effective when large 

peak shifts were present. However accurate predictions of concentration could still be 

obtained by PLS. Calibration transfer and reference deconvolution were compared as 

a solution to lineshape deterioration, and the transfer of PLS models between low-field 

NMR spectra collected under different conditions was demonstrated. Calibration 

transfer was found to be more effective overall, and produced accurate predictions of 

concentration. These results demonstrate the suitability of low-field NMR 

spectroscopy for quantitative analysis. 
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1 Introduction

Process analysis provides information which can be used to monitor and control 

chemical processes in industry. The ability to monitor processes in real time is 

important as it allows quality control, optimisation of the process and the ability to 

quickly detect and solve any problems which arise. This can save time and resources, 

as well as ensuring safety. Analysis can be performed off-line, at-line or on-line. In 

off-line analysis, samples from the process are transferred to a central laboratory 

located elsewhere. Although this allows the use of more sophisticated instruments, it 

results in a time delay so the measurements cannot be used for process control. At-line 

analysis is an alternative, in which samples are transported to an analyser located near 

the process to save time. However manual sampling is necessary, so the analysis 

cannot be automated.1-3 

On-line analysis involves the location of an analyser within the manufacturing 

environment, and allows measurements to be made in real time. Samples can be 

extracted from the process (e.g. using a flow system) or measurements can be carried 

out in situ, either non-invasively or by inserting a probe into the mixture (in-line 

analysis).1-3 The requirements of on-line process analysers differ to those of laboratory 

based instruments. Process environments are often harsh, therefore instruments need 

to be able to withstand vibrations and elevated temperature/pressure. Smaller 

instruments are more suitable as they are easier to install in process environments, and 

less flexibility is required as analysers normally have a dedicated application.4 

Optical spectroscopy techniques provide a number of advantages in process analysis. 

They are fast, non-destructive, do not require sample preparation or extractive 

sampling and can be used in situ.2, 5-7 This allows them to provide continuous 

information in real time. Near infrared (NIR) spectroscopy is one of the most widely 

used techniques in process analysis and is employed in a variety of industries, 

including the pharmaceutical industry,2, 8 the food industry,9 the chemical and 

petrochemical industry,10, 11 and the biotechnology industry.12 The low absorptivity of 

NIR light allows long pathlengths (in the order of mm), and NIR light can easily be 

transmitted through optical fibres made of silica or quartz to allow remote analyses to 

be carried out.5, 13, 14 This avoids exposure of the analyser to harsh conditions and 
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allows the use of a single analyser to carry out measurements from multiple sampling 

points. However NIR spectra arise from overtones and combinations of the 

fundamental molecular vibrations, thus peaks are broad and extensively overlapped. 

The interpretation of NIR spectra can therefore be challenging.5, 13, 15 

More detailed spectra can be obtained using Raman spectroscopy, which produces 

strong bands of high chemical specificity.2, 15, 16 Raman spectroscopy is therefore well 

suited to qualitative analysis and can be used to provide detailed information on the 

structures of molecules, e.g. in the pharmaceutical industry,16, 17 polymer analysis17, 18 

and biomedical analysis.17, 18 The weak scattering of water means that Raman 

spectroscopy can be easily applied to aqueous systems, making it particularly useful 

in bioprocess monitoring.15, 19 Fibre optics can also be used to allow remote 

analysis.16, 20 The main disadvantage of Raman spectroscopy is that fluorescence can 

produce noise in the spectra or even obscure the Raman signal.19, 21 Quantitative 

analysis can also be difficult as the intensity of the peaks is dependent on a number of 

factors in addition to concentration, such as the intensity of the incident light, the 

optical configuration of the instrument and the particle size of solid samples.16 

Gas chromatography, particularly when coupled to a mass spectrometer (GC-MS), has 

also been utilised extensively for on-line analysis, e.g. in the petrochemical industry 

and the food industry.2, 22 GC-MS is able to provide detailed information on the 

chemical composition of a variety of analytes, and can simplify the analysis of 

mixtures by separation of the components.2, 21 However extractive sampling is 

required, the technique is destructive and it is time consuming compared to optical 

spectroscopy.1, 19 This inhibits the ability to perform real-time monitoring of reactions. 

Mid-infrared (MIR) spectroscopy is a particularly sensitive form of optical 

spectroscopy and produces defined spectra with highly distinct peaks.5, 23, 24 This 

provides a major advantage over NIR spectroscopy. Quantitative information can be 

obtained more easily than with Raman spectroscopy (as the absorbance of an analyte 

is proportional to its concentration), and fluorescence is not an issue.21, 25 In addition, 

MIR spectroscopy provides complementary information to Raman spectroscopy, as 

functional groups which exhibit weak Raman scattering often produce strong infrared 

bands.21 
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A disadvantage of optical spectroscopy is that only functional groups can be detected, 

so it may not always be possible to deduce the full structure of molecules. Nuclear 

magnetic resonance (NMR) spectroscopy can be used to deduce molecular structure 

based on the chemical shifts and splitting patterns of peaks, which provides a major 

advantage over optical spectroscopy.26-28 NMR spectroscopy is also inherently 

quantitative.27, 28 In addition, it is non-destructive, highly reproducible and sample 

preparation is simple.29 However compared to other techniques such as optical 

spectroscopy, the sensitivity of NMR spectroscopy is relatively low.28-30 

Although MIR spectroscopy and NMR spectroscopy are common laboratory 

techniques, they have not been so widely used in process analysis. This is due to 

difficulties in locating the spectrometers in process environments. Traditional 

laboratory based MIR spectrometers are expensive, delicate and generally large, so are 

unsuitable for use in harsh environments.12, 31, 32 The fibre optic materials used for the 

transmission of NIR light are unsuitable for the transmission of MIR light, as 

attenuation is too high. This inhibits the ability to locate delicate instruments away 

from the process.5, 33 Chalcogenide glasses (based on As2S3) and polycrystalline silver 

halides (AgCl1–xBrx) are alternative materials which can transmit in the MIR 

region.5, 12, 25, 33 Chalcogenide glasses cover the range 1700 – 6700 cm–1 and 

polycrystalline silver halides cover the range 600 – 3300 cm–1.12, 34 However the usable 

length of fibre is limited to less than 5 m, as attenuation is high due to absorption and 

scattering, and increases with distance. Silver halide fibres also have short lifetimes, 

becoming opaque with time.5, 33  

The superconducting magnets used in high-field NMR spectrometers are extremely 

large and expensive, and require cryogenic cooling. Therefore these instruments are 

unsuitable for installation in process environments.30 Recent advances in technology 

have facilitated the availability of robust, miniaturised MIR spectrometers suitable for 

process analysis and benchtop NMR spectrometers capable of achieving sub-ppm 

resolution at low field. These advances are the focus of this research, and will be 

discussed in more detail in the following sections. 
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1.1 Mid-Infrared Spectroscopy 

1.1.1 Applications in Process Analysis 

The sensitivity and molecular specificity of MIR spectroscopy provide a major 

advantage in process analysis, and the use of MIR spectroscopy to monitor a variety 

of different reactions has been demonstrated. Examples include on-line35 and in situ36 

monitoring of esterification reactions, in situ monitoring of polymerisation 

reactions,37, 38 on-line39-41 and in situ42 monitoring of bioprocesses, and on-line 

monitoring of the kinetics of a consecutive organic reaction.43 A NIR/MIR dual region 

spectrometer has also been developed for the on-line analysis of ethanol 

fermentation.13 It has a transmission probe for NIR spectroscopy and an ATR probe 

for MIR spectroscopy, and the different probes can be used by switching the light path. 

The ability to perform quantitative analysis is also an advantage of MIR spectroscopy. 

To resolve the spectra of mixtures into their pure component contributions, calibration 

models such as partial least squares (PLS) are most commonly used. However 

calibration-free methods such as multivariate curve resolution (MCR) have also been 

demonstrated44-46 to avoid the need to build calibration models. These methods of data 

analysis will be described in more detail in Chapter 2.  

Some commercially available fibre-coupled MIR spectrometers have been designed to 

provide real-time in situ reaction monitoring, e.g. the Mettler-Toledo ReactIR47 and 

the Bruker MATRIX-MF.48 These instruments utilise diamond or silicon ATR 

crystals, silver halide fibre-coupled probes, mercury-cadmium-telluride (MCT) or 

deuterated triglycine sulfate (DTGS) detector technology and moving part 

interferometers. The use of the ReactIR spectrometer to monitor a range of different 

reactions in situ has been demonstrated, e.g. polymerisation,49-51 fermentation,52 active 

pharmaceutical ingredient manufacturing,53 and silicon network formation reactions.54 

The disadvantages of such spectrometers are that the presence of moving parts may 

result in sensitivity to vibrations, and the length of optical fibre which can be used is 

limited.  

In order for spectrometers to be robust enough to operate under particularly harsh 

process conditions (for example large amounts of vibration), an absence of moving 

parts is desirable. The majority of the above examples utilise FTIR spectrometers 
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containing moving part interferometers, therefore these instruments may not be able 

to withstand such environments. In addition, the miniaturisation of spectrometers 

would facilitate their installation in process environments. Over the past couple of 

decades, novel technologies such as quantum cascade lasers (QCLs), filters based on 

micro electro mechanical systems (MEMS) and uncooled detector arrays have become 

available. This has resulted in a drive towards the miniaturisation of spectrometers, to 

allow their use outwith laboratory environments and reduce their cost.55-57 The recent 

advances in each MIR spectrometer component will be discussed in turn. 

1.1.2 Advances in Instrumentation 

1.1.2.1 Light Sources 

Thermal blackbody light sources such as silicon carbide globars are conventionally 

used in MIR spectroscopy. They emit broadband light over the whole MIR region, but 

limited energy density is possible for a given wavelength.7, 25 Synchotron radiation is 

an alternative broadband MIR source, produced by ring accelerators or free-electron 

lasers. It allows generation of extremely bright radiation, but is not widely used due to 

the complexity of the setup.25 A disadvantage of broadband light sources is that the 

use of an interferometer or filter is required, which may make it more difficult to 

reduce the size of the spectrometer.25, 56 

QCLs have a number of advantages over broadband sources of MIR radiation. They 

are a type of semiconductor laser, first demonstrated in 1994 by Faist et al.58 

Semiconductor diode lasers, e.g. lead salt diode lasers, have been used in the past but 

required cryogenic cooling and were only able to operate at very low power levels.59, 60 

The operation of semiconductor diode lasers involves recombination of electrons from 

the conduction band and holes from the valence band to produce photons, with a 

wavelength dependent on the size of the band gap and thus the semiconductor material. 

QCLs, however, consist of a series of coupled quantum wells (heterostructured layers) 

of varying thickness, e.g. an InGaAs/AlInAs/InP system. The potential of the coupled 

quantum wells depends on the thicknesses of the layers present, so a “potential 

staircase” of energy subbands is formed. As electrons travel down the “potential 

staircase”, photons are emitted with each intersubband transition, as shown in Figure 

1.1. The emission wavelength is dependent on the thickness of the active layer rather 
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than the material used, thus can be easily altered without having to use different 

materials. QCLs are referred to as “unipolar lasers”, since the photons are generated 

by electrons alone.58, 60, 61 

 

Figure 1.1 - Operation of quantum cascade laser, reproduced from reference 62. 

Continuous-wave emission of QCLs was initially only possible at cryogenic 

temperatures, but significant advances have been made since they were first 

demonstrated and in 2001 the operation of QCLs at room temperature was first 

reported.63 The inclusion of a diffraction grating in the laser cavity to control the 

emitted wavelength gives an external cavity quantum cascade laser (EC-QCL). EC-

QCLs can be tuned to emit different wavelengths, and the linewidth of the emitted 

light is narrow, thus EC-QCLs are suitable for use as light sources in spectrometers.64 

High power continuous-wave EC-QCLs able to operate at room temperature are now 

commercially available across the MIR region up to approximately 3000 cm–1, and can 

be tuned through more than 100 cm–1 by rotation of the diffraction grating.59, 64-66 They 
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are ideal radiation sources for use in miniaturised spectrometers as they are compact, 

robust and sensitive.61, 67 A range of QCLs are commercially available, for example 

Daylight Solutions offers a range of fixed wavelength and tunable QCLs operating 

across the region 800 – 3000 cm–1 and tunable up to 1000 cm–1.68 Block Engineering 

offers QCL sources with the widest gap-free tuning range on the market, covering the 

region 780 – 1850 cm–1.69  

Widely tunable QCLs operating in the range 1100 – 1600 cm–1 without external 

cavities have recently been demonstrated.70 A broadband QCL wafer is monolithically 

integrated with an array of eight sampled grating distributed feedback (SGDFB) lasers 

and a beam combiner on a single chip, creating a compact laser system. The QCL 

wafer is heterogeneous with five cores, and functions as the laser gain medium. The 

use of SGDFB lasers broadens the QCL tunability by an order of magnitude. The 

system contains no moving parts and allows broadband spectroscopy to be carried out 

rapidly. Spectral measurement of methane was demonstrated using the laser system 

and the results were found to be comparable to those obtained using an FTIR 

spectrometer.70 

QCL based sensors were primarily used for analysis of gases initially, but the wider 

tuning range available with EC-QCLs has led to their use in analysis of liquids,71 e.g. 

human blood72, 73 and the determination of glucose and lactate in aqueous solution.61 

The use of EC-QCL spectroscopy for secondary structure analysis of proteins and 

polypeptides at low concentrations has recently been demonstrated,71, 74, 75 and the 

results were found to be comparable to those obtained using conventional FTIR 

spectroscopy. However, QCL based spectrometers cover limited spectral ranges and 

are generally designed for specific applications. 

Interband cascade lasers (ICLs) are also commercially available, covering the region 

between 1800 and 3400 cm–1. They operate in the same manner as QCLs, but involve 

interband transitions of electrons and holes, as for semiconductor diode lasers. Like 

QCLs, ICLs are able to provide continuous wave emission at room temperature and 

can be tuned across a wide range when an external cavity is incorporated into the 

design.76-81 Quantum dot lasers have also been demonstrated as light sources, e.g. by 

using quantum dots in place of quantum wells in QCLs82 or as single-photon sources.83 
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However cryogenic cooling is required and the majority of devices have not yet 

achieved emission wavelengths longer than the NIR range.25  

Laser frequency combs emit radiation as a series of equally spaced frequencies 

produced by laser pumping. Originally they were only able to emit NIR and visible 

radiation, but emission of MIR radiation has now become possible. Use of the 

technique is limited, however, due to the complexity of the instrumentation 

involved.25, 84, 85 Supercontinuum lasers generate bright radiation over the range 750 – 

7100 cm–1 by passing ultrashort laser pulses from praseodymium-doped fibre lasers 

into waveguides, but at present the technique is unsuitable for use in process 

environments.25, 86-89 Light emitting diodes (LEDs) are another suitable source of mid-

infrared radiation. Their advantages include small size, high brightness, low power and 

long lifetime. The wavelength and intensity of the output are susceptible to variation 

with temperature, however, and the output becomes gradually poorer during 

operation.90-92  

QCLs and ICLs therefore appear to be the most promising light source technology for 

the development of robust, miniature MIR spectrometers. However at present their 

high cost and limited spectral ranges are a major drawback, and have prevented them 

from becoming widely used as spectrometer light sources. 

1.1.2.2 Detectors 

Thermal or photon based detectors can be used for detecting radiation in the mid-

infrared range.7 The wavelength measured is dependent on the detector material and 

can be altered by changing its composition.93 Pyroelectric thermal detectors, e.g. 

DTGS or lithium tantalite, are the most commonly used detectors in the MIR region, 

operating at room temperature. However semiconductor photodetectors, e.g. MCT 

detectors, provide more sensitive, faster measurements.7, 25 Cryogenic cooling of MCT 

detectors is required to achieve the greatest sensitivity, but uncooled devices are now 

emerging.25, 94-96  

The use of detector arrays can increase the achievable performance.93, 97 For example, 

a pyroelectric array detector has been used in a miniature mid-infrared spectrometer, 

with a zippered configuration to avoid thermal crosstalk by increasing the spacing 

between elements without increasing the size of the detector.24 Quantum cascade or 
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quantum well photodetectors can also be used, based on heterostructures of group 

III – V materials, e.g. HgTe or GaAs/AlGaAs. Subband or intersubband transitions are 

used to detect MIR photons, as for QCLs/ICLs. This can aid in the integration of 

spectrometer components for miniature systems, as the same material can be used for 

the detector and light source. In addition, quantum dots can be used as MIR detectors, 

either alone or in combination with quantum wells. Although not widely used at 

present, such detectors provide great potential for the miniaturisation of MIR 

spectrometers in the future.25, 56, 97-99  

1.1.2.3 Filters 

The Michelson interferometer (Figure 1.2) is the most commonly used type of 

interferometer in FTIR spectrometers.12, 23, 32 In this design, the light from the source 

(1) is passed to a beam splitter (2), which directs two orthogonal beams to a stationary 

mirror (3) and a moving mirror (4). The beams are then directed back to the 

beamsplitter, where they interfere, and the interference pattern is measured as a 

function of time by the detector (5). The resolution of the spectrometer increases with 

the variation in the optical pathlength difference.32, 100  

 

Figure 1.2 - The Michelson interferometer, taken from reference 100. 

The combination of multi-channel MIR sensor systems with ATR technology has been 

demonstrated as an alternative to FTIR. Protype analysers have been designed for the 
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simultaneous in-line detection of ethanol and carbohydrates12 and the on-line 

monitoring of an esterification reaction.5 Such analysers are compact, robust, low cost 

and easy to install in process environments. However these advantages were achieved 

at the expense of spectral resolution and wavelength range. As operation is only 

possible within a narrow wavelength range, the analysers are limited to specific 

applications. 

The desire for smaller instruments has led to the development of MEMS 

spectrometers. MEMS are integrated systems in the millimetre to sub-micrometre size 

range, involving electrical and mechanical components.101 Both FTIR and grating 

based MEMS spectrometers have been demonstrated. The size of actuator travel 

initially limited the range and resolution achievable by FTIR devices, however rapid 

scanning MEMS FTIR spectrometers operating in the range 700 – 4000 cm–1 with 

resolution of 10 cm–1 have been demonstrated.102  

The mirrors in these instruments are prone to tilting during scanning, so a mirrorless 

MEMS Fourier transform spectrometer has been demonstrated for analysis in the NIR 

region. The spectrometer utilises electro-optic modulation by a Mach-Zehnder 

interferometer with LiNbO3 waveguides and push-pull electrodes.31 Splitting of the 

beam can also be carried out using a birefringent material such as a Wollaston prism, 

eliminating the need for beamsplitters or mirrors. A compact prototype Fourier 

transform spectrometer with no moving parts, operating in the near infrared region, 

has been demonstrated using Wollaston prisms.32 

The Czerny-Turner configuration is a compact, grating based MEMS configuration, 

suitable for use in miniature spectrometers. It consists of two concave mirrors and a 

flat diffraction grating. The first mirror directs emitted light to the diffraction grating, 

and the second directs the light from the diffraction grating to the detector. The spectral 

range and resolution achievable are dependent on the focal length of the mirrors.93 

Fabry-Pérot filters are also suitable for use in MEMS spectrometers, and consist of 

two mirrors with a cavity between, as shown in Figure 1.3. The wavelengths which 

interfere constructively within the cavity are passed through, and the cavity can be 

tuned by altering the distance between the mirrors.90, 101 The resolution has been 

improved by etching a grating on top of the Fabry-Pérot filter.103 MEMS based Fabry-



 11 

Pérot filters are available in two of the most useful MIR regions, 830 – 1250 cm–1 and 

2000 – 3300 cm–1.104-108  

 

Figure 1.3 - MEMS Fabry-Pérot interferometer, taken from reference 109. 

A thin-film dielectric Fabry-Pérot bandpass filter, known as a linear variable filter 

(LVF), is used as the dispersive element in a commercially available miniature NIR 

spectrometer, the MicroNIR™ Spectrometer.57, 110-112 The thickness of the thin-film 

coating, which varies along the length of the LVF, determines the centre wavelength 

of the filter. Therefore the wavelength that is transmitted varies with time across the 

length of the LVF rather than with position. The LVF is positioned at the surface of a 

128 element linear diode-array detector, enabling a different wavelength to be detected 

at each element and eliminating the need for moving parts.57, 110-112 A miniature ATR 

spectrometer with no moving parts has also been demonstrated using the LVF, 

operating in the MIR range 900 – 1800 cm–1. However the resolution achievable was 

lower than that of a laboratory ATR spectrometer.24 

Another alternative to the standard Michelson interferometer is the Sagnac 

interferometer. The Sagnac interferometer design contains no moving parts, and is 

illustrated in Figure 1.4. Light from the sample is split into two beams (1), however 

instead of varying the pathlength with moving mirrors, the beams are directed around 

a loop interferometer in opposite directions (2). The whole interferogram is formed 

simultaneously on the detector array (3) and any noise present from vibration is 

eliminated, as it will have the same effect on both beams. This makes the Sagnac 
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interferometer extremely robust, and it can even be utilised in space applications.113-116 

FTIR technology based on the Sagnac interferometer was originally developed to be 

attached to a satellite, but owing to advances in detector technology such as uncooled 

detector arrays, it is now possible to use this type of interferometer within a MIR 

spectrometer.100 This provides a promising alternative to the use of moving part 

interferometers. 

 

Figure 1.4 - The Sagnac interferometer, taken from reference 100. 

1.1.2.4 Waveguides 

An alternative waveguide material to chalcogenide glasses and polycrystalline silver 

halides are hollow core waveguides (HGWs). They consist of a silica outer layer and 

a metallic inner layer coated with a dielectric film. A core of air is present in the centre, 

through which the light propagates. The presence of the dielectric film significantly 

decreases losses at MIR wavelengths. The use of HGWs reduces insertion loss, non-

linearity and end reflection, and provides high power threshold. However, bending can 

cause high losses to occur.117-119  

Photonic crystal fibres (PCFs) have also become available in recent years. Light is 

corralled within a microscopic array of air holes, producing subtle differences in 

refractive index and allowing the light to travel along the fibre. They provide many 

advantages over conventional optical fibres including tailorable optical properties, 

higher power and a wide range of possible materials. In addition, they allow MIR light 
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to be transmitted over longer distances without the attenuation that occurs in silica 

fibres.7, 120 

Silicon exhibits low losses above 1250 cm–1, and is a promising material for MIR 

waveguides.90, 121-123 However, the silicon-on-insulator platform used in the 

transmission of NIR radiation (silicon with a SiO2 cladding) is unsuitable for use in 

the MIR range, as SiO2 strongly absorbs light below 2500 cm–1.121-123 Silicon-on-

sapphire platforms are an alternative which exhibit low losses in the MIR region, but 

they are expensive. The oxide layer can also be etched away to form a suspended 

platform, and MIR ring resonators have been demonstrated in the range 1900 – 

2900 cm–1 using this technique.123 A method of integrating silicon and any 

heterogeneous substance has also been demonstrated.122  

The integration of all spectrometer components on a single chip, whilst maintaining 

performance, is desirable for the development of compact systems. The use of single-

mode waveguides allows the characteristics of the radiation emitted from QCLs and 

ICLs to be preserved in such single chip systems.25, 124-126 Planar single-mode 

waveguides have been demonstrated using a variety of materials such as mercury-

cadmium-telluride (MCT),127 chalcogenide,128 silver nitrate,129 polymers (e.g. 

polyethylene and polypropylene)130, germanium on a silicon substrate124 and diamond 

(which is resistant to harsh conditions).25 The integration of a surface plasmon 

polariton (SPP) waveguide, in which radiation is directed along the interface between 

a metal and a dielectric material, with a QCL light source and detector has also been 

demonstrated.125, 126  

Another alternative is to attach the probe directly to the instrument to avoid the need 

for long lengths of waveguide to be used. This allows on-line and in-line MIR analysis 

to be carried out more easily. A miniaturised spectrometer with an ATR probe directly 

attached has been demonstrated for the in-line monitoring of esterification 

reactions33, 131 and the on-line batch process monitoring of a polymerisation 

reaction.132 Chalcogenide fibres were used within the probe to direct the radiation to 

the spectrometer unit, and the radiation was dispersed onto the detector using a 

diffraction grating. As the length of fibre required was significantly reduced by 

attaching the probe directly to the instrument, less light was lost through attenuation. 
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Miniaturisation was achieved by covering only a limited spectral region (1000 – 

2000 cm–1), and the spectral range used can be adapted to suit a specific process. 

Although the instrument was able to provide accurate and reproducible measurements, 

it lacked the robustness required for process monitoring.  

The Keit spectrometer is a recently developed compact, robust spectrometer with a 

probe directly attached. It utilises FTIR technology and operates in the MIR range. 

The robustness of the instrument is due to the use of the Sagnac interferometer (Figure 

1.4), which contains no moving parts. The spectrometer contains no fibre optics, and 

light within the instrument is instead guided using only mirrors and solid light pipes. 

The light source of the instrument is an etched silicon wafer MEMS device and the 

ATR crystal of the probe is made of AMTIR-1 (with AMTIR an acronym for 

amorphous material transmitting infrared radiation), a type of chalcogenide glass. An 

amorphous silicon based microbolometer detector array, designed for use in thermal 

imaging cameras, is also utilised within the instrument. The Keit spectrometer is 

therefore well suited to harsh environments, and would provide a solution to the issues 

associated with the use of MIR spectroscopy in process monitoring. A disadvantage 

of the instrument is that the diameter of the probe is large, so it is not suited for use 

with standard laboratory glassware. This restricts its use to process environments, 

inhibiting the ability to use the spectrometer in a laboratory environment for process 

development. 

1.1.3 Conclusions 

The desire for miniaturisation of MIR spectrometers has led to significant advances in 

technology. QCLs and ICLs are available over the majority of the MIR region, 

providing widely tunable light sources of high power and compact size. The use of 

planar single-mode waveguides allows the characteristics of these light sources to be 

preserved, and QCL/ICL materials can be used as detectors to aid in the integration of 

the spectrometer components. The availability of MEMS filters facilitates the 

miniaturisation of spectrometers, and several compact spectrometers based on MEMS 

technology have been demonstrated. Detector arrays operating at room temperature 

are also available, and can increase the performance of miniature spectrometers. 
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However at present, the majority of miniature MIR spectrometers have limited 

resolution or lack robustness due to the presence of moving parts. 

Although MIR spectroscopy is not widely used in process analysis compared to other 

techniques, a range of applications have been demonstrated. The development of novel 

technologies such as QCLs and MEMS filters overcomes many of the limitations 

which have prevented the widespread use of traditional MIR spectrometers in process 

environments. These advances in technology will allow MIR spectroscopy to become 

more widely utilised in process analysis in the future, by reducing the size and cost of 

instruments and increasing their sensitivity.  

A compact mid-infrared spectrometer, utilising a MEMS light source and uncooled 

detector array, has recently been developed for process monitoring. The spectrometer 

contains no moving parts so is not sensitive to vibrations, and has a probe directly 

attached to avoid the need for fibre optics. The instrument is therefore suitable for use 

in particularly harsh environments, and provides a promising solution to the issues 

which have limited the use of MIR spectroscopy in process monitoring. The 

performance of the spectrometer for quantitative in situ analysis will be evaluated in 

this work.  

1.2 NMR Spectroscopy 

1.2.1 Modes of Measurement 

The ability of NMR spectroscopy to provide details of molecular structure in addition 

to quantitative information provides a major advantage in process analysis. Various 

different modes of measurement can be used to monitor reactions by NMR 

spectroscopy. The reaction can be carried out within the NMR tube rather than a 

reaction vessel, known as static monitoring.133, 134 This method has been demonstrated 

for a variety of applications including common processes such as esterification and 

metalation,135 the hydrolysis of acetic anhydride,136 active pharmaceutical ingredient 

(API) development137 and biological reaction monitoring.138 However only very small 

scale reactions can be monitored using this approach, and mixing is difficult. Off-line 

or at-line monitoring can be performed by extracting samples from the reaction vessel 
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for analysis by an NMR spectrometer located elsewhere,133, 139, 140 but this results in a 

time delay so real-time analysis cannot be carried out. 

On-line reaction monitoring can be performed using flow NMR spectroscopy, in 

which a stream of the reaction mixture is allowed to flow from the vessel to the 

instrument (travelling through the bore of the magnet for analysis), at a controlled 

speed. After analysis, the sample can be transferred back to the vessel or discarded. 

Flow NMR spectroscopy has been used for on-line reaction monitoring in a range of 

different applications, for example pharmaceutical process development,141 the kinetic 

study of urea,142 the study of equilibria and kinetics of complex mixtures,143 and the 

study of esterification reaction kinetics.143, 144 A disadvantage of flow NMR 

spectroscopy is that specialised NMR probes or customised tubes are necessary, and 

that the reaction conditions (e.g. temperature) within the sample may alter during the 

time it is outside the reaction vessel.133, 145 Insulation of the flow tube with a 

thermostating fluid can prevent this issue.144 In addition the flow NMR spectroscopy 

method is not suitable for monitoring fast reactions, as there is a delay between mixing 

the reagents and beginning the measurement.146, 147  

Stopped-flow NMR spectroscopy can be used to monitor fast reactions (occurring 2.5 

– 100 ms after the reagents have been mixed). The reagents are passed to the 

spectrometer at a very high flow rate, via a mixing chamber. The flow is stopped in 

order for the NMR measurement to be made and the extent of the reaction can be 

determined. Different delay values can be used in the pulse sequence in order to 

measure different time points of the reaction. Again, specialised probes are 

required.133, 148 This technique has allowed the study of reaction kinetics,146, 147 the 

study of protein folding mechanisms149 and the study of short-lived intermediates.150 

The disadvantage of stopped-flow compared to continuous flow is that it is more 

difficult to control conditions such as temperature, pressure and viscosity, but an 

advantage is that it is not necessary to consider the effect of flow on the NMR signal. 

An alternative method for the monitoring of fast reactions (within the range 40 ms – 

1 s) is rapid injection NMR spectroscopy. A sample tube is placed in the NMR 

spectrometer, and the reagents are rapidly injected into the tube using an injection 

capillary. A disadvantage of this technique compared to flow NMR spectroscopy is 
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that cleaning is required before additional measurements can be carried out.133, 151 

Rapid injection NMR spectroscopy has also been demonstrated for the observation of 

short-lived intermediates,151, 152 the observation of protein unfolding,153 and the study 

of kinetics of fast organic reactions.154-156 

Although a number of different methods have been demonstrated for monitoring 

reactions by high-field NMR spectroscopy, the installation of high-field NMR 

spectrometers in process environments is inhibited by the large size and cost of 

superconducting magnets. This has prevented the widespread application of NMR 

spectroscopy in process monitoring.157 A more suitable alternative is low-field NMR 

spectroscopy, which will be discussed in the following section. 

1.2.2 Low-Field NMR Spectroscopy 

Conventional high-field NMR spectrometers utilise superconducting magnets of high 

magnetic field strength. These magnets produce strong homogeneous fields of up to 

23.5 T, providing frequencies of up to 1.1 GHz for 1H NMR spectroscopy and giving 

measurements of relatively high sensitivity and resolution.30, 158 However, they require 

cryogenic cooling and are very large and expensive, therefore high-field NMR 

spectrometers are normally situated in dedicated laboratories and cannot easily be 

installed in process environments.158, 159 

The sensitivity of NMR measurements can be enhanced by increasing the field 

strength, as shown in Equation 1.1 (where the left hand side represents the relative 

difference between the nuclear spin populations in the upper (n+) and lower (n–) energy 

states, h is Planck’s constant, γ is the gyromagnetic ratio, B is the magnetic field, kB is 

the Boltzmann constant and T is the temperature).30 In the past, the desire for increased 

sensitivity led to an increase in the size of the magnets used in NMR spectrometers, as 

larger magnets have larger field strengths. From the 1970s, electromagnet and 

permanent magnet based NMR spectrometers began to be replaced with those based 

on stronger cryogenically-cooled superconducting magnets.27, 160 Benchtop 

instruments based on permanent magnets were only available for measurement of 

relaxation times and diffusion coefficients in the time domain, as these instruments 

lacked the homogeneity required to achieve sufficient resolution in the frequency 

domain.27, 158 
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 (n– – n+)/(n– + n+) ≈ h γ B/(4 π kB	T) Equation 1.1 

Advances in magnet design, involving high precision correction of the stray field, has 

now led to the development of compact permanent magnets capable of achieving high 

homogeneity.27, 157, 158 This has facilitated the design of low-field NMR spectrometers 

operating in the frequency domain, which are significantly smaller than high-field 

instruments and can be situated on a benchtop or in a fume hood. Permanent magnet 

arrays made of materials such as NdFeB or SmCo are used in the spectrometers, 

providing field strengths of 1 – 2 T and frequencies of 40 – 80 MHz for 1H NMR 

spectroscopy.27, 157, 158 These instruments have become commercially available over 

the past few years.30 They are cheaper than high-field instruments and do not require 

cryogenic cooling so are easier to maintain.28 The reduced size, lower cost and lack of 

need for cryogenic cooling mean that low-field NMR spectrometers are far more suited 

to process environments than high-field instruments. 

The main drawback of low-field NMR spectroscopy compared to high-field is that the 

sensitivity is poorer. For a given chemical shift difference, the frequency difference 

will be lower at low field than at high field (e.g. at an operating frequency of 400 MHz, 

a difference of 1 ppm corresponds to a difference of 400 MHz, but at an operating 

frequency of 40 MHz, a difference of 1 ppm corresponds to a difference of 40 MHz). 

Therefore the chemical shift dispersion (i.e. the spread of the chemical shifts of the 

nuclei in frequency) is smaller and the separation of peaks is poorer, as illustrated in 

Figure 1.5.161 However, low-field NMR spectrometers are still capable of achieving 

measurements of sub-ppm resolution.28, 158 In addition, the magnetic field of alloys 

such as SmCo and NdFe varies with temperature162 and the isolation of the magnet 

from the sample is generally poor in low-field instruments. This means that the 

performance of low-field NMR spectrometers is sensitive to temperature.157, 158 

Therefore thermal management is important in order to maintain the homogeneity of 

the magnetic field and prevent deterioration of the spectra.28, 163 
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Figure 1.5 - Example NMR spectra of a complex biodiesel mixture acquired at different 

magnetic field strengths, taken from reference 161. 

1.2.2.1 Applications in Process Analysis 

Low-field NMR spectroscopy has been demonstrated for a variety of applications. A 

range of different organic reactions have been monitored by flow NMR spectroscopy 

using low-field instruments, such as esterification,134, 146, 164 polymerisation,165 

hydrogenation158, 166 and acetalisation.167 An esterification reaction, a Suzuki coupling 

and an oxime formation have also been monitored by injection into a low-field NMR 

spectrometer.134 The ability to locate the NMR spectrometer within a fume hood 

allows the on-line monitoring of hazardous reactions, for example the trimerisation of 

propionaldehyde.159 It is possible to monitor different nuclei simultaneously by low-

field NMR spectroscopy, and the monitoring of an esterification reaction by 19F and 
1H NMR spectroscopy simultaneously has been demonstrated.144, 168 Homonuclear and 
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heteronuclear 2D NMR spectroscopy experiments have also been carried out at low 

field to determine the structure of complex small molecules.157 In addition, 

hyphenation of low-field NMR spectroscopy with other techniques such as near 

infrared spectroscopy, rheometry and size exclusion chromatographic separation has 

been performed.169, 170 The insertion of an electrochemical cell into a low-field NMR 

spectrometer for in situ monitoring of electrochemical reactions has also been 

demonstrated.171 

It was possible to effectively follow the progress of these reactions by low-field NMR 

spectroscopy, however the sensitivity is lower than that of high-field NMR 

spectroscopy, and overlapping or complex structures are difficult to monitor.134, 158 In 

addition, if the spectrometer is located close to the reactor then the presence of a 

magnetic stirrer can interfere with the magnetic field of the instrument.158 Another 

drawback is that reactions usually have to be performed at a similar temperature to the 

magnet, as the performance of the magnet is sensitive to temperature.134 However a 

microreactor “probe head”, which allows reactions to be monitored at a broad range 

of temperatures has been demonstrated.146 The “probe head” contained a micromixer, 

reactor and NMR flow cell and was mounted inside the bore of an NMR spectrometer.  

High-field NMR spectroscopy can be used for the study of large biomolecules or 

complex mixtures of small biomolecules. Low-field NMR spectroscopy can also be 

used for the analysis of biomolecules, however only relatively simple solutions of 

small molecules can be studied due to the lower sensitivity and resolution of low-field 

NMR spectroscopy.27 Structural information has been determined using low-field 

NMR spectroscopy for biomolecules such as complex alkaloids172 and secondary 

metabolites.173 The monitoring of biotechnological processes such as fermentation has 

also been demonstrated.174 In addition, low-field NMR spectroscopy has been used in 

the petroleum industry for the real-time monitoring of biodiesel production,175, 176 

analysis of crude oils177 and determination of the liquid-liquid equilibrium in 

oxygenated fuel components,178 amongst other applications. Again, low-field NMR 

spectroscopy was found to be effective and the lack of sample preparation required 

was an advantage.  
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Low-field NMR spectroscopy has also been successfully applied in product and 

quality control, e.g. for detecting adulteration in the food industry179, 180 and validating 

the quality of rubber.181 Automated real-time quality control of pharmaceutical 

production using a low-field NMR sensor has recently been demonstrated.182 The 

sensor was able to monitor a metal-organic reaction, in addition to providing 

concentration data to iteratively optimise the plant performance and reference values 

to calibrate a NIR spectrometer. A configurable platform for in-line monitoring and 

control of organic reactions by flowing a small scale reaction mixture through a low-

field NMR spectrometer has also been presented.183 This platform was fully automated 

and able to monitor and control a range of reactions in real time, as well as performing 

self-optimisation.  

These applications demonstrate the potential of low-field NMR spectroscopy as a 

suitable alternative to high-field NMR spectroscopy in process analysis. However the 

temperature sensitivity of the magnet can lead to deterioration of the performance of 

the instrument,158, 184 and this is likely to be a major issue. Inhomogeneities in the 

magnetic field can produce problems such as variations in linewidth and shifting of 

peaks.27, 29 Peak shifts in NMR spectra can also occur due to a variety of other factors, 

such as interaction of components and changes in pH or temperature,185 and the smaller 

chemical shift dispersion at low field compared to high field will worsen the effect of 

such shifts. 

1.2.3 Conclusions 

Although NMR spectroscopy provides detailed structural information and is 

inherently quantitative, it has not been widely used in process monitoring due to the 

size and expense of high-field instruments and the necessity for cryogenic cooling. 

The recent availability of low-field benchtop NMR spectrometers capable of achieving 

sub-ppm resolution in the frequency domain provides a solution. These spectrometers 

can easily be located in process environments to facilitate on-line reaction monitoring, 

and are small enough to be situated in fume hoods for the analysis of hazardous 

materials. A variety of applications of low-field NMR spectroscopy have been 

demonstrated, including monitoring a range of different reactions, the study of 

biomolecules, and product and quality control. Low-field NMR spectroscopy therefore 
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provides a promising solution to the issues associated with high-field NMR 

spectroscopy, and will allow NMR spectroscopy to become more widely used in 

process analysis.  

A drawback of low-field NMR spectroscopy is that the sensitivity of permanent 

magnets to temperature is a major issue and can cause deterioration of the spectra. 

Investigation into the instrumental stability of low-field NMR spectrometers, 

particularly with respect to the insertion/removal of samples from the instrument, is 

therefore an important consideration for reaction monitoring. The issue has not been 

explored, so in this research the instrumental stability of a low-field NMR 

spectrometer will be investigated and the effectiveness of chemometric procedures for 

solving the problem of spectral deterioration will be evaluated. 

1.3 Aims 

The first aim of this work is to assess the performance of the Keit spectrometer (a 

novel MIR spectrometer designed for use in process environments) and a benchtop 

NMR spectrometer. The suitability of the Keit spectrometer for the quantitative in situ 

analysis of liquids will be evaluated and the ability of the instrument to monitor a 

reaction will then be assessed. The instrumental stability of the low-field NMR 

spectrometer will also be investigated and its suitability for quantitative analysis 

evaluated.  

The second aim is to utilise chemometric procedures for quantitative analysis of the 

data and the solution of problems. Calibration models will be used to compare the 

predictive ability of the Keit spectrometer to that of a laboratory based MIR 

spectrometer. As the Keit spectrometer is not designed for laboratory use, the transfer 

of calibration models between the two spectrometers will then be demonstrated. MCR 

will also be utilised as a calibration-free method of decomposing MIR reaction mixture 

spectra, and different MCR software programmes will be compared. To solve the 

problem of peak shift in low-field NMR spectra, a variety of alignment methods will 

be evaluated. The effectiveness of calibration transfer and reference deconvolution for 

solving the problem of lineshape deterioration will be compared, and these methods 

will be applied to low-field NMR spectra collected under different conditions in an 

attempt to eliminate the differences between the spectra. The effectiveness of reference 
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deconvolution for removing the variation between spectra acquired under the same 

conditions will also be investigated.
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2 Theory 

2.1 Mid-Infrared Spectroscopy 

Infrared spectroscopy involves the irradiation of a sample with infrared light. Certain 

wavenumbers of light are absorbed by the sample, and a spectrum of absorbance or 

transmittance versus wavenumber is produced. The wavenumbers of light absorbed 

correspond to vibrations of bonds in the molecule. Absorbance of light in the MIR 

region, 400 – 4000 cm–1, arises from fundamental vibrations. Different functional 

groups give rise to different vibrations, so the position of peaks can be used to 

qualitatively analyse the spectra.1, 2 

The concentration of an analyte can be calculated from the spectra to allow quantitative 

analysis to be carried out. Absorbance is related to concentration by the Beer Lambert 

law (Equation 2.1),3 where A is the spectral absorbance, c is the concentration of the 

component, D is the absorption pathlength and ε is the molar absorption coefficient. 

The absorbance can be defined in terms of transmittance (T) or intensity (I), where I0 

is the intensity of the incident light and I is the intensity of the transmitted light.  

 A = log "I0

I #  = log "1T#  = D c ε Equation 2.1 

The components of a MIR spectrometer typically include a light source, waveguides 

through which the light travels, a probe, a detector and a filter to control the 

wavenumber of light which is passed through the waveguides or into the detector.1, 3 

MIR spectrometers are traditionally either grating based or interference based (e.g. 

Fourier transform infrared (FTIR) instruments). In grating based instruments, the 

incident light is dispersed using a grating or prism. However they are now scarcely 

used, as FTIR instruments have significantly greater performance.1, 4 In FTIR 

spectroscopy, a difference in optical pathlength is introduced to the radiation and the 

interference of the signals is converted to a spectrum as a function of wavenumber. 

The difference in optical pathlength is usually introduced using a two-beam 

interferometer involving moving optical parts, e.g. mirrors.1, 5, 6 

Probes are used as the interface between the sample and the spectrometer, and are 

usually connected to the instrument by waveguides such as optical fibres. Optical 
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fibres consist of a high refractive index core with a low refractive index cladding. Light 

travels through the core by total internal reflection.1, 3 Attenuated total reflectance 

(ATR) probes are the most common type of probe in MIR spectroscopy. In ATR 

spectroscopy, radiation is directed into a crystal of high refractive index by a set of 

mirrors, and travels through the crystal by total internal reflection. The crystal is placed 

in contact with a sample and the evanescent wave penetrates a short distance into the 

sample, as shown in Figure 2.1. The radiation interacts with the sample and is guided 

to the detector by another set of mirrors.1, 7 The crystal is made of a material with 

significantly greater refractive index than the sample, for example ZnSe, Ge, ZrO2, Si 

or diamond. Diamond is the most suitable material, as it is extremely stable and lasts 

a long time, but it is very expensive.2, 8  

 

Figure 2.1 - Principle of ATR spectroscopy, reproduced from reference 2. 

In NIR spectroscopy, pathlengths are of the order of mm and transmittance probes are 

used to pass light straight through the sample.1, 9 But in MIR spectroscopy, molar 

absorptivity is much higher, thus pathlengths of the order of µm are necessary so that 

the relationship between absorbance and concentration is linear and corresponds to the 

Beer Lambert Law (Equation 2.1).9 The pathlength in ATR spectroscopy is dependent 

on the penetration depth of the evanescent wave times the number of internal 

reflections. The penetration depth is determined by the refractive indices of the crystal 

and sample, and the angle at which the light enters the crystal. It is usually around 

0.5 – 2 µm. The number of internal reflections depends on the crystal material and its 

geometry. ATR probes provide short pathlengths, around 0.5 – 5 µm, thus are suitable 

for mid-infrared spectroscopy.2, 7, 8 

ATR crystal

Sample

Infrared beam

Evanescent 
wave

To the detector
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2.2 NMR Spectroscopy 

NMR spectroscopy is based on the magnetic properties of nuclei. Nuclei possessing a 

non-zero spin quantum number, I, (e.g. 1H, 13C, 19F, 14N and 15N) have non-zero 

magnetic moments and are NMR active.10, 11 When a magnetic field, B0, is applied to 

such nuclei, the nuclear magnetic moments interact with the field. The lowest energy 

arrangement of the magnetic moments is in alignment with B0, so a net magnetisation 

is produced in this direction. The process of reaching this equilibrium is called 

relaxation.10-12 

If a short radio frequency (RF) pulse is applied (normally lasting a few microseconds), 

an oscillating magnetic field is produced transverse to B0. This alters the net 

magnetisation from the equilibrium, causing it to rotate around the new effective 

magnetic field at a constant angle (known as precession), before relaxing to the 

equilibrium state. The precession is detected as an oscillating current in a coil and 

gives rise to a free induction decay (FID) signal, measured in the time domain.10, 11, 13 

The measured FID is converted from the time domain to the frequency domain by 

Fourier transform to produce a spectrum of intensity versus frequency, or more 

conventionally, chemical shift.11-13 The chemical shift scale is independent of 

operating frequency and is based on a reference signal, e.g. tetramethylsilane (TMS). 

It conveys the measured frequency as a deviation from the reference in parts per 

million (ppm), as shown in Equation 2.2 (where υ is the operating frequency of the 

instrument, υref is the frequency of the reference signal and δ is the chemical shift).10 

 δ (ppm)	= 106 x 
υ – υref

υ  Equation 2.2 

Changing the electronic environment of the nuclei changes the way in which they 

interact with the magnetic field, therefore differences in chemical shift within the 

spectrum arise due to differences in the chemical environments of the nuclei.11 

Splitting of peaks can occur as a result of coupling of the spins of nearby nuclei, 

producing multiplets.10 The chemical shifts and splitting patterns can be used to deduce 

the structure of molecules.11, 14, 15 The area of each peak is proportional to the number 

of nuclei giving rise to the peak, so quantitative information on the composition of 

mixtures can also be obtained.14, 15 The use of 2D NMR spectroscopy is possible to 
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obtain more detailed structural information,10 however it has limited use for process 

monitoring so this work will focus on 1D NMR spectroscopy.  

The magnetic field is produced by a cryogenically cooled superconducting magnet in 

high-field instruments, or a permanent magnet in low-field instruments.14, 16, 17 RF 

pulses are produced by an RF transmitter coil, and the signals are detected by a receiver 

coil.10 In high-field spectrometers, these coils are contained in a probe, along with a 

number of other components. The probe is contained in the bore of the magnet and the 

sample is inserted into the probe. Alteration of the probe is possible, e.g. for different 

applications.10 In low-field spectrometers, the transmitter and receiver coils are built 

into the instrument and there is no removable probe. 

Inhomogeneities in the magnetic field can occur, and shimming is performed in order 

to correct for these variations. The process of shimming involves passing an electric 

current through a set of shim coils to adjust the magnetic field.10, 16, 17 Shimming must 

be performed regularly (usually either on every sample or daily), and if the magnetic 

field varies between shimming then the saved settings of shim will no longer correct 

the inhomogeneities present.16, 17 

To prevent slow drifts in the magnetic field over time, a field-frequency lock is 

employed. The lock is a feedback system, and in high-field instruments it is based on 

the signal of a deuterium reference sample. If the resonance of the deuterium signal 

changes, the magnetic field is adjusted.10 Low-field NMR spectrometers do not require 

the use of deuterated solvents to correct for drifts in magnetic field strength, as this 

can be achieved using a hardware lock which provides a magnetic field to 

automatically correct the frequency.18, 19 

2.3 Chemometrics 

Spectra are often complex and are usually a combination of several different 

components, so the use of chemometrics is necessary in order to perform quantitative 

analysis. Chemometrics allows the reduction of data matrices in order to simplify 

them. The reduced data contains the most useful information, reflecting the variation 

in the dataset, and redundant information is present in the residual.2, 7 Predictions (e.g. 

of concentration) can be carried out using methods such as classical least squares 
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(CLS), principal component regression (PCR) and partial least squares (PLS). 

Calibration using samples of known concentration is first carried out, and the 

calibration data is then used to build models for prediction of unknown 

concentrations.7 To transfer calibration models between spectra acquired using 

different instruments/sets of conditions without having to re-measure every calibration 

sample, calibration transfer can be performed. For NMR spectra, reference 

deconvolution can be applied to remove variations in lineshape. In addition, it is 

possible to perform calibration-free predictions of concentration using multivariate 

curve resolution (MCR). These methods will be described in the following 

subsections. 

2.3.1 Preprocessing 

Before building chemometric models, preprocessing of the data is usually performed 

so that only the most relevant information is used in the model. Mean-centring and 

derivatisation are examples of common preprocessing methods. Mean-centring 

involves subtracting the mean of each variable from every value of the variable, so 

that the intensity becomes relative and the variation in response is enhanced. 

Derivatisation allows removal of any baseline offset present in the spectra and the 

correction of sloping baselines.1, 2, 20 While these preprocessing techniques are 

normally sufficient for MIR spectroscopy, NMR spectra are prone to phase shifts, 

frequency shifts and distortions, and so usually require further treatment.21 

The first stage of processing NMR data is to perform a Fourier transform to convert 

the free induction decay (FID) from the time domain into a spectrum in the frequency 

domain.22 Zero filling of the spectrum can be carried out to improve the resolution, 

and involves adding zeros to the end of the FID signal. The number of points in the 

FID must equal a power of two in order for fast Fourier transform to be performed.22, 23 

Phase shifts can arise due to small time delays between switching off the pulse and 

beginning to record the signal. This can be corrected by phasing the spectra, which 

involves calculating a linear combination of the real and imaginary portions of the FID 

to find an angle which will correct the spectrum. Phasing can either be carried out 

manually, or automatically using an algorithm.23, 24 Distortion of the baseline may be 

present due to a variety of reasons related to the sample or the instrument, for example 
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large differences in relaxation time between different components of a sample or 

corruption in the first few data points of the FID. The baseline can be corrected in 

either the time or the frequency domain, using a range of methods e.g. iterative 

polynomial fitting or asymmetric least squares smoothing.12, 22, 23 Shifts of the spectra 

in the x direction (i.e. in chemical shift) can be corrected using various warping or 

alignment methods. These methods will be discussed in more detail in Chapter 5. 

2.3.2 Prediction Using Calibration Models 

2.3.2.1 Partial Least Squares 

PLS was used for the prediction of concentration in this work. PLS involves reduction 

of the data matrix to a lower dimension by creating latent variables (LVs). Latent 

variables are best fit lines which aim to simultaneously describe the variance present 

in the spectral response matrix X and the correlation between X and the concentration 

data matrix Y, i.e. the covariance. The first LV is in the direction of maximum 

covariance, and subsequent LVs are orthogonal, each capturing less covariance in the 

data than the previous LV, as shown in Figure 2.2.1, 20, 25 

 

Figure 2.2 - Example illustration of latent variables, taken from reference 25. 

LVs consist of scores (t) and loadings (p), as shown in Figure 2.3. Data points are 

projected onto the LV as shown in Figure 2.3 (a), and scores are the distances along 

First LV

Second LV
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the LV at which the projected points lie. They provide information on the relations 

between samples. Loadings are cosines of the angle at which a unit vector in the 

direction of the LV lies against the axes of the plot, as shown in Figure 2.3 (b). They 

describe how the variables relate to each other.20, 26 

 X = t1 p1
T + t2 p2

T + … + tA pA
T  + E Equation 2.3 

 

Figure 2.3 - Example illustration of (a) scores and (b) loadings, reproduced from reference 

20. 

PLS describes the response and concentration data matrices with separate scores and 

loadings, as shown in Equation 2.4 and Equation 2.5 (where T and P are the scores 

and loadings for the spectral response matrix X, U and Q are the scores and loadings 

for the concentration matrix Y, and E and F are the errors present in each 

matrix).20, 25, 26 It aims to determine the maximum variance in the response, whilst at 

the same time achieving maximum correlation between the two sets of scores using 

Equation 2.6 (where B represents the regression coefficients and H represents the error 

present in the model).20, 25, 26 The regression coefficients can be calculated using the 

pseudoinverse of T along with the known concentrations of a set of calibration samples 

(from which U can be determined using Equation 2.5). Equation 2.4 can then be used 

to calculate T for unknown samples given their spectral responses; T and the 

calculated regression coefficients can be used to calculate U based on Equation 2.6; 

and U can be used to calculate the concentrations of the samples based on Equation 
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2.5. There are two types of PLS model, PLS1 and PLS2. For PLS1 a separate model 

is built for each analyte, and for PLS2 a single model is built using all of the analytes.26  

 X = T PT + E Equation 2.4 

 Y = U QT + F Equation 2.5 

 U = T B + H Equation 2.6 

The number of LVs to retain in the model is usually chosen by cross validation, which 

involves predicting the residual error of several different sample subsets. The sample 

subsets are used to predict the analyte concentrations present in the samples which 

were left out, and the root mean square error of cross validation (RMSECV) is 

calculated as shown in Equation 2.7 (where ŷi and yiref are the predicted and reference 

concentrations of the component of interest in calibration sample i, and n is the number 

of calibration samples used to build the model).27 A graph of the RMSECV value 

versus the number of LVs used to build the model is plotted, and the optimum number 

of LVs to use is signified by the point at which the graph reaches a minimum or levels 

out.27, 28 

 

RMSECV =  Equation 2.7 

An advantage of PLS is that latent variables are chosen based on the variation in 

response which is relevant for predicting the concentration, rather than the variation in 

response alone. This is the main difference between PLS and PCR.20, 25, 29 It is assumed 

that the error arises from both the spectral responses and the concentrations, and this 

is an advantage over CLS (which assumes that the spectral responses are equal to the 

concentrations of the analytes present multiplied by their pure component spectra).25, 30 

In addition, the pure spectra of all components do not need to be known, and PLS can 

be used when the data is collinear.25, 26, 29 The effect of the error can be reduced by 

choosing an appropriate number of LVs, however it is possible for too few or too many 

LVs to be chosen, resulting in underfitting or overfitting of the model.20, 25 The main 

(y
∧

i− yi
ref )2

i=1

n

∑
n



 43 

disadvantage of PLS is that it is more complex than methods such as PCR and CLS, 

and PLS1 in particular is more time-consuming to carry out. 

2.3.2.2 Root Mean Square Error of Prediction 

In order to assess the effectiveness of a calibration model, the root mean square error 

of prediction (RMSEP) can be calculated. The RMSEP is a measure of the accuracy 

of prediction of a model. It is calculated using Equation 2.8, where ŷi and yi are the 

predicted and measured concentrations of the component of interest in test sample i, 

and n is the number of test samples.31 Comparison of RMSEP values can allow the 

effectiveness of different calibration models (or the effectiveness of including different 

numbers of LVs) to be compared, with lower RMSEP values indicating greater 

accuracy. 

 

RMSEP =  Equation 2.8 

2.3.2.3 Variance and Bias Indicators 

The use of cross validation to select the optimum number of LVs has some limitations. 

The RMSECV is an indicator of the bias present in a model, i.e. the level of accuracy 

to which predictions can be made. It does not take into account the variance of the 

model, i.e. the precision of predictions, thus is prone to overfitting.32 In addition, 

interpretation of RMSECV plots can be subjective. Green and Kalivas32 proposed that 

examination of variance indicators in conjunction with bias indicators is a more 

suitable method of selecting the optimum number of LVs than examination of bias 

indicators (e.g. RMSECV) alone. 

One example of a variance indicator is the Euclidean norm of the regression vector. 

The regression vector is estimated by Equation 2.9, where p is the vector of the 

regression coefficients, R is the matrix of spectral responses for the calibration 

samples, and c is the concentration (or other quantitative information to be predicted) 

of the analyte of interest in the calibration samples.32  
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 p$  = R+ c Equation 2.9 

An alternative bias indicator to the RMSECV is the root mean square error of 

calibration (RMSEC). The RMSEC is calculated using Equation 2.10, where ci and ĉi 

are the actual and predicted concentrations of the component of interest in calibration 

sample i using the model, and m is the number of calibration samples used to build the 

model.32 The advantage of using the RMSEC over the RMSECV is that it eliminates 

the need for cross validation to be carried out.32 

 

RMSEC =  Equation 2.10 

The Euclidean norm of the regression vector can be plotted against the RMSEC for 

each number of LVs to produce an L-shaped plot. The corner of the L-shape (the point 

at which the decrease in bias is small relative to a large increase in variance) represents 

the optimum number of LVs. These plots were found to be similar to those of the 

Euclidean norm of the regression coefficients against the RMSECV.32  

Determination of corners in the plots of Euclidean norm versus RMSEC can be 

subjective, so a variation of the method has been demonstrated in an attempt to remove 

ambiguity. The norm and RMSEC values are scaled and added together, as shown in 

Equation 2.11, to give a value (C1) ranging from 0 to 1. The C1 value is then plotted 

against Euclidean norm for each number of LVs, to produce a U-shaped curve. The 

minimum point of the U-curve represents the optimum number of LVs, with far less 

ambiguity than is present in the L-shaped plots.33-35 An example of each type of plot 

is displayed in Figure 2.4. 

 C1i = % &p$ i&'	‖p$‖min
‖p$‖max'	‖p$‖min

)+ % RMSECi'	RMSECmin
RMSECmax'	RMSECmin

)  Equation 2.11 
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Figure 2.4 - Example of (a) L-shaped and (b) U-shaped plots for determination of the 

optimum number of LVs. 

2.3.3 Calibration Transfer 

Calibration transfer allows the transfer of a calibration model between different 

instruments or sets of measurement conditions. It aims to remove any differences in 

the spectra which can be attributed to the changes in instrument/measurement 

conditions. This can save resources by allowing calibration models to be developed at 

laboratory scale and transferred to a process environment, where different instruments 

are likely to be used. In addition, it can account for instrumental differences without 

having to re-measure every calibration sample, which can be advantageous when the 

number of samples used in the model is large. A subset of calibration samples (known 

as the transfer samples) can be measured on both instruments/under both sets of 
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conditions, and a transfer function can be calculated using the two sets of transfer 

samples. The transfer function is then applied to test spectra collected using the new 

instrument/conditions, so that they resemble the spectra collected using the original 

instrument/conditions, and the original calibration model can be used.36-38 Calibration 

transfer can be performed using a variety of different methods, and some common 

methods which have been used in this work will be discussed. 

Direct standardisation (DS) and piecewise direct standardisation (PDS) are two of the 

most widely used methods of calibration transfer.39 In DS, the spectra acquired using 

one instrument/under one set of conditions (S1) are directly related to those collected 

using the other instrument/set of conditions (S2) by a linear relationship, as shown in 

Equation 2.12. F can be estimated using PCR or PLS. This assumes that all variation 

between the two sets of transfer spectra can be attributed to the changes in 

instrument/conditions, which may not be valid if variation in the chemical 

compositions of the samples is present.38, 40  

 S1 = S2 F Equation 2.12 

Unlike DS, where all wavelengths are treated simultaneously, PDS calculates 

correlations within small windows of the spectra. Regression vectors calculated for 

each window are combined to create the transfer function F. The window size can be 

defined by the user. The use of spectral windows allows the model to handle relative 

shifts between the two sets of transfer spectra along the wavelength axis, as well as 

differences in the intensity and widths of peaks.38, 40 

Spectral space transformation (SST) is a method of calibration transfer in which a 

subset of spectra is measured on each instrument (or under both sets of conditions), 

and the differences between the spectra are removed by transformation between the 

spectral spaces spanned by the two sets of spectra. The transformed spectra, xtrans, can 

be described by Equation 2.13, where xtest represents the measured test spectra before 

transformation and P1 and P2 are derived from the singular value decomposition of 

Xcomb (Equation 2.14), where Xcomb is the combined matrix of the transfer spectra 

collected using each instrument/set of conditions. In Equation 2.14, Ts = Us ∑s ; Ps = 

Vs; E = Un ∑n	Vn
T; Ps

T = [P1
T,	P2

T] and the subscripts s and n denote spectral information 
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and noise. Equation 2.13 is derived using Equation 2.14 and the Beer Lambert law, as 

described by Du et al.39  

xtrans = xtest (P2
T)

+
 P1

T + xtest (P2
T)

+
 P2

T Equation 2.13 

Xcomb	=	[Us, Un] ,
∑s 0
0 ∑n

-  [Vs, Vn]T	= Ts	Ps
T	+	E	= Ts	.P1

T, P2
T/	+	E Equation 2.14 

SST was shown by Du et al.39 to perform better than common methods of calibration 

transfer such as piecewise direct standardisation, univariate slope and bias correction 

and global partial least squares. The main advantage over PDS is that it is simpler to 

perform, as selection of an appropriate number of singular values is more 

straightforward than selection of an appropriate window size.39 

2.3.4 Reference Deconvolution 

In NMR spectroscopy, distortions from ideal lineshape can occur due to instrumental 

imperfections e.g. magnetic field inhomogeneity, radiofrequency pulse phase error and 

variation in receiver gain.41 Reference deconvolution is a method of correcting for 

these distortions in order to improve the lineshapes of NMR peaks. The concept of 

reference deconvolution is similar to that of calibration transfer. However unlike 

calibration transfer, the transformation is based on the differences between a reference 

peak in the spectrum and its ideal lineshape.42 

The reference signal used to perform reference deconvolution is normally a well-

resolved singlet peak. Fourier transformation (FT) and phase correction of the FID is 

first carried out to obtain an experimental NMR spectrum. The whole spectrum apart 

from the reference signal is then set to zero and an inverse Fourier transformation (IFT) 

is carried out to produce a spectrum of the reference signal in the time domain. This 

reference signal is divided by an ideal reference signal (based on e.g. a Lorentzian 

lineshape) to obtain a correction factor. The time-domain experimental spectrum is 

then divided by the correction factor to obtain a corrected FID, which can be 

transformed into a corrected frequency domain experimental spectrum.43-45 A diagram 

of this process is displayed in Figure 2.5. Although a singlet reference peak is 

desirable, reference deconvolution using multiplet reference peaks has also been 
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demonstrated.46 The main limitation of reference deconvolution is the requirement of 

a well resolved reference signal to be present in every sample. When no well resolved 

peaks are present it is necessary to add an internal standard, which can be impractical 

in reaction monitoring (e.g. when flow NMR spectroscopy is used). 

 

Figure 2.5 - The process of reference deconvolution, taken from reference 41. 

2.3.5 Calibration-Free Prediction 

In addition to the prediction of concentration using calibration models, it is also 

possible to utilise calibration-free methods such as multivariate curve resolution 

(MCR). MCR allows the decomposition of a matrix into its pure component 

contributions. It is based on Equation 2.15, where D is the measured experimental data 

matrix, C describes the variation in the rows of D (normally representing the 

contribution of each component to the total absorbance of the mixture, i.e. the relative 

concentration), S describes the variation in the columns of D (normally representing 

the pure spectra of each component), and E describes the error in the model. 

Decomposition of D into C and S is commonly carried out by iterative optimisation, 

using an algorithm such as alternating least squares (ALS). ALS involves two steps; 
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determination of the value of C which minimises || D – CST || given an initial estimate 

of S and a set of constraints, and determination of the value of S which minimises || D 

– CST || given an initial estimate of C and a set of constraints. These steps are repeated 

in an alternating manner until the standard deviations of the residuals between the 

calculated and experimental values reach a chosen convergence criterion.47-49 

 D = C ST + E Equation 2.15 

Initial estimates of C and S can be calculated using a variety of methods e.g. evolving 

factor analysis, pure variable detection and needle search.49, 50 Evolving factor 

analysis51 utilises factor analysis along with the order of the spectra in the data matrix 

to produce plots of eigenvalues as a function of elution time. The elution of a new 

component can be observed as the evolution of a new significant eigenvalue. This is 

repeated in the reverse direction and the profiles are connected to produce an estimate 

of C for each component. Pure variable detection is based on the SIMPLISMA 

(simple-to-use interactive self-modelling mixture analysis) method.52, 53 SIMPLISMA 

is a reference-free method of curve resolution which relies on the calculation of a 

purity function based on the ratio of the standard deviation to the mean in order to 

resolve the spectra into their pure component contributions.54 In the needle search 

method,55, 56 a narrow peak function is fitted to each time point in the data matrix using 

a least-squares fit. The residual sum of squares for each time point is displayed, and 

local minima are present at the points at which the maximum relative concentration of 

a component occurs. The detected local minima are displayed, and the user selects a 

local minimum for each component of the mixture (i.e. the time point at which the 

maximum relative concentration of each component is present). Alternatively the pure 

spectra and/or estimated relative concentration profiles can be used as initial estimates, 

if known.  

The number of components can be inputted manually or calculated using a method 

such as singular value decomposition.50, 57 Constraints can include non-negativity, 

unimodality (i.e. one maximum), closure (i.e. the sum of the component contributions 

is equal to a constant) and equality.48, 49 Gemperline and Cash49 developed a variation 

of the ALS method in which a least squares penalty function is applied to produce 

“soft” rather than “hard” constraints. The application of soft constraints allows 
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deviations in the estimates, providing greater flexibility. This will be discussed in more 

detail in Chapter 4. 

A major advantage of MCR is that it eliminates the need to build a calibration model, 

which can save time and resources. In addition, the identities of the pure components 

do not need to be known (although knowledge of the pure spectra will improve the 

predictions). However it is not possible to perform MCR when peak shift is present 

(as often occurs in low-field NMR spectra), and the method is unable to distinguish 

between different components which form at the same rate. The main limitation of 

MCR is that there may be a number of feasible solutions to the optimisation, therefore 

it is possible for the ALS algorithm to select an incorrect solution as the optimum. The 

application of appropriate constraints allows the number of possible solutions to be 

reduced, and can solve this issue.58 
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3 Performance Assessment of a Novel Mid-Infrared 

Spectrometer and Calibration Transfer Between 

Laboratory and Process Instruments 

3.1 Introduction 

As discussed in Chapter 1, the recent availability of novel technologies such as MEMS 

devices and uncooled detector arrays has facilitated the design of MIR spectrometers 

which are suited for use in process environments. The Keit spectrometer is one such 

instrument, and is particularly robust due to an optical design based on the Sagnac 

interferometer. In addition, it has a probe directly attached to avoid the need for fibre 

optics. There have not yet been any studies published on the performance of the Keit 

spectrometer, so this will now be assessed. The performance of the Keit spectrometer 

for the quantitative in situ analysis of liquids was compared to that of a laboratory 

based FTIR spectrometer with a fibre coupled probe (the MB3000). Laboratory based 

spectrometers provide greater sensitivity and flexibility than the Keit spectrometer, 

however they are larger and less robust due to the presence of delicate moving parts, 

so are not as suitable for process analysis. 

The diameter of the Keit spectrometer probe is large (25 mm), therefore the 

spectrometer is not suited for use with standard laboratory glassware. This makes it 

difficult to build calibration models in the laboratory using the Keit spectrometer and 

inhibits its use for process development. The ability to perform calibration transfer 

between laboratory and process instruments would therefore be advantageous, as it 

would allow calibration models built in the laboratory to be applied to spectra collected 

in a process environment. In addition, the development of a model in the laboratory as 

opposed to a process environment would save resources.  

Calibration transfer was described in section 2.3.3, and is extensively applied in optical 

spectroscopy.1, 2 The majority of examples utilise NIR spectroscopy, but calibration 

transfer has also been demonstrated between different MIR spectrometers, using 

methods such as DS, PDS and SST.3-6 However the transfer of calibration models 

between laboratory and process MIR spectrometers has not been demonstrated. The 

aims of this chapter are to assess the basic performance of the Keit spectrometer 
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against the MB3000, and to evaluate the effectiveness of calibration transfer between 

the MB3000 and Keit spectrometers. 

3.2 Experimental 

3.2.1 Instrumental Details 

In this work, the Echo+ model of the Keit spectrometer (Keit Ltd., Didcot, UK) and 

the MB3000 spectrometer (ABB, Zurich, Switzerland) were used. The Keit 

spectrometer is compact, as shown in Figure 3.1, with the unit measuring 204 mm x 

97 mm x 32 mm. The attached probe measures 257 mm in length, with a diameter of 

25 mm. The components of the spectrometer were detailed in section 1.1.2.4. It covers 

the spectral range 800 – 2000 cm–1, with a resolution of 16 cm–1, and the data are 

interpolated to give a data point every 8.28 cm–1. 

 

Figure 3.1 - The Keit spectrometer 

The MB3000 spectrometer is a benchtop FTIR spectrometer with a fibre-coupled ATR 

probe from Art Photonics, as displayed in Figure 3.2. The spectrometer unit measures 

370 mm x 435 mm x 280 mm. The probe is 10 mm in diameter with a diamond cone, 

and is coupled to the instrument using polycrystalline silver halide fibres. A Michelson 

interferometer, DTGS detector and ceramic globar light source are used in the 

instrument. The MB3000 spectrometer covers the range 485 – 8500 cm–1, and the 

range 600 – 1900 cm–1 is available with the current probe. The resolution of the 

MB3000 spectrometer can be altered from 1 – 64 cm–1, and a resolution of 16 cm–1 

was used in this work to match the resolution of the Keit spectrometer. The resolution 

of the MB3000 instrument is reduced by taking measurements at fewer wavenumbers, 

i.e. every 1 cm–1 at the highest available resolution and every 64 cm–1 at the lowest 



 56 

resolution. At each resolution, the data are interpolated to give approximately 2 data 

points per measurement (e.g. every 7.71 cm-1 at 16 cm-1 resolution and every 

1.93 cm-1 at 4 cm-1 resolution). 

 

Figure 3.2 - The MB3000 spectrometer 

3.2.2 Basic Performance Assessment 

In order to compare the basic performance of the Keit and MB3000 spectrometers, a 

single spectrum of acetone (≥ 99.8 %, VWR, Fontenay-sous-Bois, France) was first 

measured using each instrument. With both instruments, one scan was acquired at a 

resolution of 16 cm–1. The time for acquisition of a spectrum was 1.5 s and 0.8 s for 

the Keit and MB3000 spectrometers, respectively. The same spectral range, 

800 – 1800 cm–1, was used to compare the instruments. The region below 800 cm–1 

was not included as it is outside the range covered by the Keit spectrometer, and the 

region above 1800 cm–1 was not included due to the presence of noise in the MB3000 

spectrum. This will be discussed in more detail in the Results and Discussion section. 

Over the range 800 – 1800 cm–1, 121 data points were present in the Keit spectrum 

and 130 data points were present in the MB3000 spectrum. The signal to noise ratio 

was calculated for each spectrum by dividing the height of the peak at approximately 

1360 cm–1 by the standard deviation of the noise over the region 960 – 1040 cm–1. 
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3.2.3 Analysis of Solvent Mixtures 

In order to compare the predictive ability of each instrument, quantitative in situ 

analysis of ternary solvent mixtures was carried out using the Keit and MB3000 

spectrometers. Sixteen calibration samples and six test samples were prepared, 

containing varying concentrations of acetone (≥ 99.8 %, VWR, Fontenay-sous-Bois, 

France), ethanol (≥ 99.8 %, VWR, Fontenay-sous-Bois, France) and ethyl acetate 

(≥ 99.5 %, Sigma Aldrich, Steinheim, Germany) in units of % w/w, as shown in Table 

3.1. The samples were prepared by mass, to a precision of 0.0001 g. The compositions 

of the mixtures were chosen to span the range of the ternary diagram displayed in 

Figure 3.3. Each of the samples was analysed using the Keit spectrometer and the 

MB3000 spectrometer at 16 cm–1 resolution. Three repeat measurements were 

collected per sample, in a random order, and each measurement was an average of 19 

scans (based on the number of scans acquired by the Keit spectrometer over a 30 

second period). 

 

Figure 3.3 - Concentrations (in units of % w/w) of solvents in ternary mixtures, calibration 

samples shown in grey and test samples shown in red. 
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Table 3.1 - Concentrations of solvents in calibration and test samples. 

Sample 
Concentration/(% w/w) 

Acetone Ethanol Ethyl acetate 

Calibration sample 1 0.0 100.0 0.0 

Calibration sample 2 100.0 0.0 0.0 

Calibration sample 3 0.0 0.0 100.0 

Calibration sample 4 50.1 49.9 0.0 

Calibration sample 5 50.0 0.0 50.0 

Calibration sample 6 0.0 50.0 50.0 

Calibration sample 7 33.2 33.3 33.4 

Calibration sample 8 66.1 16.9 17.0 

Calibration sample 9 17.1 65.8 17.1 

Calibration sample 10 17.0 17.0 65.9 

Calibration sample 11 66.6 33.4 0.0 

Calibration sample 12 34.4 65.6 0.0 

Calibration sample 13 66.7 0.0 33.3 

Calibration sample 14 33.3 0.0 66.7 

Calibration sample 15 0.0 66.6 33.4 

Calibration sample 16 0.0 33.3 66.7 

Test sample 1 6.4 84.6 9.0 

Test sample 2 26.0 60.9 13.1 

Test sample 3 42.0 32.9 25.1 

Test sample 4 82.6 10.3 7.1 

Test sample 5 46.9 7.3 45.8 

Test sample 6 11.0 18.0 70.9 

 

3.2.4 PLS1 Models 

To compare the predictive ability of each spectrometer, PLS1 models were built using 

PLS Toolbox version 8.2.1 (Eigenvector, Washington, USA) in MATLAB 2016b 

(MathWorks, Massachusetts, USA). The spectra of the calibration samples were used 

to build the models, and the models were used to predict the concentration (in % w/w) 
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of each solvent present in the test samples. Mean centring of the data was carried out 

prior to modelling. A custom method of cross-validation was used based on contiguous 

blocks, where each block contained the three repeat measurements of each sample. 

Calibration samples 1 – 3 (the pure solvents) were included in every calculation, to 

give a total of thirteen splits.  

The number of latent variables to include in each model was chosen by examination 

of bias/variance plots of C1 against RMSEC (as described by Kalivas and Palmer7 and 

detailed in section 2.3.2.3) along with plots of RMSECV and RMSEP against the 

number of latent variables. These plots are displayed in Appendix 3. It was found that 

the total number of latent variables included in the plots of C1 against RMSEC could 

affect the point at which the minimum of the U-curve occurred, so the maximum 

possible number of latent variables (48, based on the number of calibration 

measurements) were included in these plots. Four latent variables were chosen as the 

optimum for each model, as this appeared to be the optimum number for the MB3000 

data. The optimum numbers for the Keit data were less clear (either three or five latent 

variables could have been chosen in most cases), so four latent variables were chosen 

so that the models would be comparable to those built using the MB3000 data.  

RMSEP values were calculated using PLS Toolbox, to compare the predicted and 

measured solvent concentrations. For each model, the predicted versus actual 

concentrations were plotted and the best fit lines and R2 values of the plots were 

calculated using the “fitlm” function in MATLAB. The ordinary, unadjusted R2 values 

were used. Residual error versus concentration was also plotted for each model. The 

average absolute relative error in the predictions was calculated by taking the absolute 

difference between each actual and predicted concentration, converting the value to a 

percentage and calculating the average for each solvent. 

3.2.5 Calibration Transfer 

3.2.5.1 Initial Method Comparison 

Calibration transfer between the MB3000 and Keit spectrometers was performed in 

order to make the spectra collected on the Keit spectrometer resemble those collected 

on the MB3000 spectrometer. Initially, the measurements of calibration samples 1, 2, 

3, 8, 9 and 10 acquired using the Keit and MB3000 spectrometers were used to 
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calculate a transfer function between the two spectrometers. The transfer samples were 

chosen to include each of the pure components and three additional samples which 

contained all of the components. Three different methods of calibration transfer were 

compared; DS, PDS and SST. A description of each method can be found in section 

2.3.3. 

DS and PDS were performed using PLS Toolbox version 8.6.2 (Eigenvector, 

Washington, USA) in MATLAB 2016b (MathWorks, Massachusetts, USA). SST was 

performed in MATLAB, using the algorithm described by Du et al.3 A SST algorithm 

incorporating a scaling step has also been demonstrated by McIntyre8 to improve the 

results of SST when large differences in absorbance are present between the two sets 

of spectra. The algorithm involves the application of a scaling factor to the data from 

the second dataset, and the scaling factor is calculated as shown in Equation 3.1 (where 

ydata1 represents the transfer samples from the first dataset, ydata2 represents the 

transfer samples from the second dataset, i represents each data point, and n is the total 

number of data points across all the transfer samples in one of the datasets).  

 

Scaling factor = 

01 ydata1i
2

n

i = 1

 

01 ydata2i
2

n

i	=	1
 

Equation 3.1 

The SST algorithms with and without scaling were both used, and the results 

compared. The spectra acquired using the Keit spectrometer were interpolated in 

MATLAB prior to calculating the transfer function so that the wavenumbers of the 

measurements would match those of the spectra acquired on the MB3000 

spectrometer. Interpolation was carried out using the MATLAB “interp1” function 

with the “spline” method. 

The PLS1 models built using the MB3000 calibration data (described in section 3.2.4) 

were used to predict the compositions of the test spectra acquired using the Keit 

spectrometer, first after interpolation only and then after interpolation followed by 

calibration transfer (using DS, PDS, SST without scaling and SST with scaling). The 

RMSEP values obtained for each model were compared in order to assess the effect of 
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calibration transfer on the PLS predictions and to compare the different methods of 

calibration transfer. Example transferred spectra for each method were also compared 

to the corresponding MB3000 spectra.  

In order to determine the optimum window size for PDS, PDS was carried out using 

each possible window size between 1 and 51 data points (every odd number) and the 

window size was plotted against RMSEP. The lowest RMSEP value was obtained for 

a window size of 41, so this value was used to build all PDS models. SST was 

performed using one to ten singular values, and the RMSEP values obtained for each 

were compared. Inclusion of five singular values was found to produce the minimum 

RMSEP value, so this number was used to compare SST to DS and PDS. The plots of 

RMSEP versus PDS window size and number of singular values can be found in 

Appendix 3. 

3.2.5.2 Transfer Sample Comparison 

3.2.5.2.1 Choice of Transfer Samples 

An investigation into the effect of changing the transfer sample set was also carried 

out for each method of calibration transfer. In order for calibration transfer to be 

effective, the transfer samples need to be representative of the whole dataset,9 therefore 

the transfer sample sets used in this work were chosen to symmetrically span the 

compositions covered by the ternary diagram (Figure 3.3). Retaining symmetry within 

the ternary diagram ensures that each component is equally represented. In order to 

compare the effects of including/excluding pure, binary and ternary samples, four 

different sets of six transfer samples were compared: calibration samples 1 – 3 and 8 

– 10 (pure and ternary); calibration samples 4 – 6 and 8 – 10 (binary and ternary); 

calibration samples 1 – 3, 12, 13 and 16 (pure and binary); and calibration samples 

11 – 16 (binary only).  

According to the PLS Toolbox “stdsslct” function, the six calibration samples with the 

highest leverage for the MB3000 spectrometer were samples 1 – 3 (pure components) 

and samples 4, 5 and 16 (binary mixtures). For the Keit spectrometer, samples 1 – 3 

(pure components) and samples 11, 14 and 16 (binary mixtures) had the highest 

leverage. Therefore for the transfer sample set consisting of pure and binary samples, 

calibration samples 1 – 3 and 16 were included, as these were shown to have the 
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highest leverage using both instruments. Calibration samples 12 and 13 were also 

included in order to retain the symmetry of the ternary diagram. For SST, the RMSEP 

values obtained for each possible number of singular values from one to ten were 

compared for each set of transfer samples. The overall optimum was again found to be 

five, so five singular values were used for all SST models in this work. The optimum 

PDS window size was not recalculated for the additional sets of transfer samples, as 

the number of possible window sizes was too large and the previous optimum of 41 

was found to be effective. 

The subset of samples used to calculate the transfer function may not always be 

included in the calibration model, as it is possible to select the transfer samples from 

the test dataset (the samples acquired using the second instrument) rather than the 

calibration dataset (the samples acquired using the first instrument).9 The RMSEP 

values obtained when the transfer samples were excluded from the PLS1 model (i.e. 

only ten calibration samples were used) were compared to the results obtained when 

the transfer samples were included (i.e. all sixteen calibration samples were used).  

3.2.5.2.2 Number of Transfer Samples 

The effect of changing the number of samples in the transfer set was then investigated. 

Du et al.3 state that the number of samples used to calculate the transfer function should 

be equal to at least the number of significant spectral variation sources. At least two 

sources of variation were present in this case, as the compositions of the samples were 

based on a ternary design with a total concentration of 100 % w/w. Therefore three 

transfer samples were chosen as the minimum number to examine, in order to retain 

the symmetry in the ternary diagram and to account for any non-linearity present in 

the measurements. Three transfer samples (calibration samples 8 – 10 or calibration 

samples 1 – 3), four transfer samples (calibration samples 7 – 10 or calibration samples 

1 – 3 and 7) and seven transfer samples (calibration samples 1 – 3 and 7 – 10) were 

compared to the results obtained using six transfer samples (calibration samples 1 – 3 

and 8 – 10). Each of these transfer sample sets were chosen to be as similar as possible 

to the initial set of six transfer samples, while retaining the symmetry within the ternary 

diagram. It was not possible to select five calibration samples which symmetrically 

spanned the range of the diagram, therefore no set of five transfer samples was 



 63 

included. As a benchmark, calibration transfer was also carried out using all sixteen 

calibration samples as the transfer set. 

3.3 Results and Discussion 

3.3.1 Basic Performance Assessment 

Spectra of acetone acquired using the MB3000 spectrometer (red) and the Keit 

spectrometer (blue) are displayed in Figure 3.4, in order to compare the basic 

performance of the instruments. An assignment of the main peaks present in the 

spectra is displayed in Table 3.2. In the spectrum acquired using the Keit spectrometer, 

the absorbance of the three largest peaks (at approximately 1220 cm–1, 1360 cm–1 and 

1710 cm–1) is lower than for the MB3000 spectrometer, particularly the peak at 

1710 cm–1 which is around 0.5 smaller in height. The smaller peaks have similar 

absorbance in each spectrum. As the same resolution was used to acquire both spectra, 

this is could be due to the pathlength of the light differing for each instrument, as the 

ATR crystals are made of different materials and may have different geometry. The 

calculated signal to noise ratios were 180.0 for the MB3000 spectrometer and 106.9 

for the Keit spectrometer. The signal to noise ratio is poorer in the spectrum acquired 

using the Keit spectrometer, but is still relatively high. This basic assessment suggests 

that the performance of the Keit spectrometer is comparable to that of the MB3000 

spectrometer. 
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Figure 3.4 - Single scan of acetone at 16 cm–1 resolution obtained using the MB3000 

spectrometer (red) and the Keit spectrometer (blue). 

Table 3.2 - Assignment of the main peaks in IR spectra of acetone acquired using the MB3000 

and Keit spectrometers.10 

Peak position/cm–1 Peak assignment 

1710 C=O stretch 

1430 CH3 deformation 

1360 CH3 deformation 

1220 C–C stretch 

 

A large amount of noise was present below 600 cm–1 and above 1800 cm–1 in the 

spectra acquired using the MB3000 spectrometer, with absorbance exceeding the 

detection limit of the instrument. (The full spectrum of acetone including the noise can 

be found in Appendix 3). Figure 3.5 displays the intensity of the MIR light measured 

by the detector of the MB3000 spectrometer through air (which was used as the 

background reference spectrum) and through acetone. There is no optical throughput 

in the regions where the noise was observed due to the limits of the fibre-coupled 

probe, which explains why absorbance could not be measured in these regions. 
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Figure 3.5 - Transmitted light intensity measured by the MB3000 spectrometer through air 

(blue) and acetone (red). 

Variations in the height of the peak at 1710 cm-1 were observed when repeat 

measurements were carried out using the MB3000 spectrometer. Experiments at 

4 cm-1 resolution showed that absorbance in this region exceeds the limit of the fibre-

coupled probe, as shown in Figure 3.6. The low throughput of light in this region can 

also be observed in Figure 3.5. This effect was not observed in the spectra acquired at 

16 cm-1 resolution, because at 16 cm-1 resolution, absorbance was only measured at 

every fourth wavenumber in the 4 cm-1 resolution spectra and the wavenumbers 

selected did not include the point at which the peak maximum occurred. For this 

reason, the spectral range 800 – 1600 cm-1 will be used to perform data analysis for 

both of the spectrometers. 
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Figure 3.6 - Spectrum of acetone (16 scans) obtained using the MB3000 spectrometer at 

16 cm–1 (blue) and 4 cm–1 (red) resolutions. 

3.3.2 Analysis of Solvent Mixtures 

The spectra of ethanol, acetone and ethyl acetate acquired using (a) the Keit 

spectrometer and (b) the MB3000 spectrometer are shown in Figure 3.7. The spectra 

of the other calibration and test samples can be found in Appendix 3. For both 

spectrometers, the spectra of each sample were as expected (when compared to the 

AIST Spectral Database for Organic Compounds, SDBS).11 An assignment of the main 

peaks in the ethanol and ethyl acetate spectra is displayed in Table 3.3 (and an 

assignment of the peaks in the acetone spectra can be found in Table 3.2). The peaks 

in the spectra acquired using the Keit spectrometer have slightly lower absorbance (up 

to 0.2 less) than those acquired using the MB3000 spectrometer, but otherwise the 

spectra are similar. There is significant overlap of the peaks for the different 

constituent components, particularly ethyl acetate which overlaps with ethanol at 

1050 cm–1 and acetone in the regions 1200 – 1300 cm–1 and 1350 – 1400 cm–1. 

Therefore, multivariate analysis is required to evaluate the changes in absorbance with 

concentration. 
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Figure 3.7 - Spectra of ethanol (blue), acetone (red) and ethyl acetate (green) obtained using 

(a) the Keit spectrometer and (b) the MB3000 spectrometer at 16 cm–1 resolution. Each 

spectrum is an average of 19 scans. 
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Table 3.3 - Assignment of the main peaks in IR spectra of ethanol and ethyl acetate acquired 

using the MB3000 and Keit spectrometers.12, 13 

Solvent Peak position/cm–1 Peak assignment 

Ethanol 

1250 – 1500 C–H bend 

1090 C–O stretch 

1040 C–O stretch 

880 C–C stretch 

Ethyl acetate 

1370 C–H bend 

1230 C–O stretch 

1040 C–O stretch 

 

As the sample compositions were based on a ternary mixture design with a total 

concentration of 100 % w/w, only two sources of variation should be present. 

Therefore it would be expected that two latent variables should be sufficient to 

describe the variation in the data. Mark et al.14, 15 have demonstrated that in 

electromagnetic spectroscopy, the absorbance of a component within a mixture is 

dependent on its volume fraction rather than its weight fraction, according to the Beer 

Lambert law. The weight fraction of each component in a mixture does not have a 

linear relationship with its volume fraction (as the weight fraction cannot be converted 

to the volume fraction using a single scaling factor). Therefore when concentration is 

measured by weight, a greater number of latent variables may be required to 

compensate for the non-linearity of the response. This provides a possible explanation 

as to why four latent variables are necessary to describe the variation in the data. 

Additional non-linearity could also have arisen as a result of the interaction between 

the solvents. Du et al.3 have built PLS models using a similar ternary system, and 

included four latent variables in order to account for possible background interference.  

The plots of predicted versus actual concentration for each solvent are displayed in 

Figure 3.8, Figure 3.9 and Figure 3.10. The equations of the best fit lines and R2 values 

are displayed in Table 3.4, along with the RMSEP values and average absolute relative 

errors in prediction for each model. For all three solvents, the predictions were accurate 

with all points in the plots of predicted versus actual concentration lying on or very 
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close to the y = x line. The equations of the best fit lines were very close to y = x in 

each case, with all R2 values greater than 0.998. Slightly more accurate predictions 

were obtained for the MB3000 models than the Keit models, but the differences were 

not large. In the plot of predicted versus actual concentration of ethyl acetate, the 

replicate measurements of test sample 6 (the test sample containing the highest 

concentration of ethyl acetate) acquired using the Keit spectrometer displayed poorer 

repeatability than the replicate measurements of the other test samples. This could be 

due to the high absorbance of ethyl acetate in the region 1200 – 1300 cm–1, as the 

absorbance of the pure sample exceeded 1 in this region. When this occurs, the 

relationship between absorbance and concentration described by the Beer Lambert law 

may begin to deviate from linearity.16 Each set of repeat measurements otherwise 

produced precise predictions.  

 

Figure 3.8 - Predicted versus actual acetone concentration for the PLS1 models built using 

spectra obtained by the Keit and MB3000 spectrometers. 
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Figure 3.9 - Predicted versus actual ethanol concentration for the PLS1 models built using 

spectra obtained by the Keit and MB3000 spectrometers. 

 

Figure 3.10 - Predicted versus actual ethyl acetate concentration for the PLS1 models built 

using spectra obtained by the Keit and MB3000 spectrometers. 
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Table 3.4 - Equations of best fit lines and R2 values for predicted vs actual concentrations, 

RMSEP values and average absolute relative errors in prediction for the PLS1 models built 

using solvent mixture spectra acquired with the Keit and MB3000 spectrometers. 

Model 
Equation of best fit line 
for predicted vs actual 
concentration/(% w/w) 

R2 value 
RMSEP 
value/ 

(% w/w) 

Average 
absolute 
relative 
error/% 

Keit 

Acetone y = 0.9969 x + 0.2511 0.9983 1.06 6.18 

Ethanol y = 1.0080 x – 0.4054 0.9993 0.79 4.32 

Ethyl 
acetate y = 0.9912 x + 0.2627 0.9986 0.88 4.03 

MB3000 

Acetone y = 1.0059 x + 0.0820 0.9998 0.50 2.94 

Ethanol y = 1.0056 x – 0.6155 0.9999 0.53 3.14 

Ethyl 
acetate y = 1.0174 x – 0.3442 0.9999 0.48 1.46 

 

The RMSEP values for both instruments were low (less than 1.1 % w/w), 

demonstrating that each of the models produced accurate predictions. The average 

absolute relative error values were also low (less than 5 % for all models other than 

the Keit acetone model). The RMSEP values and average absolute relative errors of 

prediction for the MB3000 data were lower than those of the Keit data, however the 

results are comparable. For the Keit data, the average absolute relative error was higher 

for acetone than the other solvents. This is likely to be a result of increased relative 

error at low concentration, as small differences between predicted and actual 

concentration have a significantly greater effect on the relative error at low 

concentrations than at high concentrations (and lower concentrations of acetone were 

present in the test samples compared to the other solvents). This effect can be observed 

in the plots of absolute and percentage residual error versus concentration, which are 

displayed in Appendix 3. The similarity of the predictions obtained using the Keit and 

MB3000 spectrometers and the overall accuracy of the predictions demonstrate that 

the Keit spectrometer is suitable for the quantitative in situ analysis of liquids.  
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3.3.3 Calibration Transfer 

3.3.3.1 Initial Method Comparison 

It has been demonstrated that both the Keit and MB3000 spectrometers are capable of 

achieving accurate predictions of concentration. However the probe of the Keit 

spectrometer is too large to be used with standard laboratory glassware, so the ability 

to build a calibration model using the MB3000 spectrometer for application to spectra 

collected by the Keit spectrometer will now be explored. In this section, the 

effectiveness of DS, PDS and SST will be compared. 

The replicate measurements of test sample 2 acquired using the MB3000 spectrometer 

and the Keit spectrometer (with interpolation but without DS, PDS or SST) are shown 

in Figure 3.11. There was a noticeable difference in absorbance between the two sets 

of spectra, and deviations were also present below 860 cm–1 due to noise in the 

baseline of the Keit spectra in this region. Table 3.5 displays the RMSEP values of the 

PLS1 predictions obtained using the MB3000 calibration spectra and the following 

sets of test spectra; those acquired on the MB3000 spectrometer, those acquired on the 

Keit spectrometer with interpolation applied, and those acquired on the Keit 

spectrometer with each method of calibration transfer applied. Before the application 

of DS, PDS or SST, the RMSEP values for the Keit test spectra were more than an 

order of magnitude greater than those of the MB3000 test spectra. As expected, this 

demonstrates that the application of a transfer function is necessary in order to obtain 

accurate predictions of concentration from spectra acquired on the Keit spectrometer 

using a model built with the MB3000 spectrometer. The RMSEP value for acetone 

was the highest, followed by ethyl acetate, indicating the greatest variation in spectra 

between the two instruments. 



 73 

 

Figure 3.11 - Spectra of test sample 2 (3 repeats) acquired using the Keit spectrometer with 

interpolation (blue) and the MB3000 spectrometer (red) at 16 cm–1 resolution. Each 

spectrum is an average of 19 scans. 

Table 3.5 - RMSEP values for the PLS1 models built using the calibration solvent mixture 

spectra measured using the MB3000 spectrometer, applied to the test spectra measured using 

the MB3000 spectrometer, the Keit spectrometer with interpolation and the Keit 

spectrometer with calibration transfer by DS, PDS and SST. 

Model 
Acetone 
RMSEP/ 
(% w/w) 

Ethanol 
RMSEP/ 
(% w/w) 

Ethyl acetate 
RMSEP/ 
(% w/w) 

Mean 
RMSEP/ 
(% w/w) 

MB3000 0.50 0.53 0.48 0.50 

Keit after interpolation only 9.24 5.75 7.77 7.59 

Keit after DS 1.09 2.16 1.12 1.46 

Keit after PDS 0.68 1.38 0.92 0.99 

Keit after SST (unscaled) 0.69 1.14 0.96 0.93 

Keit after SST (scaled) 0.62 1.03 0.89 0.85 

 

After the application of DS (using the initial subset of six pure/ternary transfer 

samples), the spectra of test sample 2 acquired on the Keit spectrometer much more 
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closely resembled those acquired on the MB3000 spectrometer (Figure 3.12). A slight 

difference in the shape of the peak between 1200 cm–1 and 1300 cm–1 was present, but 

the two sets of spectra were otherwise similar. The application of PDS (Figure 3.13) 

produced similar results, with a slight improvement to the peak shape in the region 

1200 – 1300 cm–1, indicating that PDS may be a little more effective than DS. The 

transferred spectra of the other test samples can be found in Appendix 3. 

 

Figure 3.12 - Spectra of test sample 2 (3 repeats) acquired using the Keit spectrometer with 

calibration transfer by DS (blue) and the MB3000 spectrometer (red) at 16 cm–1 resolution. 

Each spectrum is an average of 19 scans. 
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higher than for the MB3000 test spectra (0.50 % w/w on average). The RMSEP values 

obtained with PDS (0.99 % w/w on average) were lower than for DS, confirming that 

PDS was the more effective method. For both methods, the lowest RMSEP value was 

obtained for acetone and the highest for ethanol. This indicates that DS and PDS were 

less effective for the ethanol peaks than the other solvent peaks, possibly due to the 
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presence of the broad regions between 1250 cm–1 and 1500 cm–1 and below 860 cm–1 

in the ethanol spectra. 

 

Figure 3.13 - Spectra of test sample 2 (3 repeats) acquired using the Keit spectrometer with 

calibration transfer by PDS (blue) and the MB3000 spectrometer (red) at 16 cm–1 

resolution. Each spectrum is an average of 19 scans. 

The spectra of test sample 2 with calibration transfer by SST are displayed in Figure 

3.14. The transformed spectra again resembled the MB3000 spectra, and the peak 

between 1200 cm–1 and 1300 cm–1 was more similar than for DS or PDS. Small 

deviations were present in the Keit spectra below 860 cm–1 due to noise in this region, 

however there was very little difference in the spectra overall. The RMSEP values 

obtained using SST were similar to those obtained for PDS, with a slight improvement 

in the ethanol prediction (1.14 % w/w compared to 1.38 % w/w). Between the solvents, 

the trend was similar to that observed for DS and PDS. The application of the scaling 

step during SST produced slightly improved RMSEP values compared to when the 

scaling step was absent (0.85 % w/w on average compared to 0.93 % w/w on average), 

however the difference was not significant. This was as expected, since the difference 

in absorbance between the Keit and MB3000 spectra was not particularly large (no 

more than around 0.2 in difference within the spectral region used) and thus scaling 
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was not necessary. In situations where a larger difference in absorbance is present 

between the two sets of spectra, the scaling step would be more advantageous.  

 

Figure 3.14 - Spectra of test sample 2 (three repeats) acquired using the Keit spectrometer 

with calibration transfer by SST (blue) and the MB3000 spectrometer (red) at 16 cm–1 

resolution. Each spectrum is an average of 19 scans. 

The improvements in RMSEP observed and the similarity of the spectra clearly 

demonstrate the effectiveness of calibration transfer. Based on this initial comparison, 

PDS and SST appear to be the most effective methods of calibration transfer as they 

produced similar predictions, of greater accuracy than DS. However, the advantage of 

DS is that input of parameters such as window size or number of singular values are 

not necessary, which increases the ease of use of the method and removes subjectivity. 

The main advantage of SST over PDS is that selection of an appropriate number of 

singular values is easier and less time consuming than selection of an appropriate 

window size (since the number of possible window sizes greatly exceeds the possible 

numbers of singular values which would be sensible to use). In addition, Du et al.3 

have stated that when the number of transfer samples used is small then the number of 

singular values to include in the calculation of the transfer function can be taken as 

equal to the number of transfer samples. 
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3.3.3.2 Transfer Sample Comparison 

3.3.3.2.1 Choice of Transfer Samples 

To determine the most suitable subset of samples to use for calculation of the transfer 

function, the results obtained using different sets of transfer samples were compared. 

The RMSEP values obtained when DS, PDS and SST (without scaling) were 

performed using different sets of six transfer samples are shown in Table 3.6. All PLS1 

models were built using the full set of calibration spectra acquired on the MB3000 

spectrometer, and used to predict the concentration of each solvent present in the 

transformed test spectra acquired on the Keit spectrometer. It would be expected that 

a transfer sample set of pure and ternary samples would be the most effective, as 

ternary mixtures are the most representative of the test samples and the inclusion of 

the pure components ensures that the transfer sample set spans the full range of the 

ternary diagram. A transfer sample set containing only binary samples would be 

expected to be the least effective.  

For DS, the poorest RMSEP values were obtained using the pure/ternary (calibration 

samples 1 – 3 and 8 – 10) and binary only (calibration samples 11 – 16) sample subsets 

for calculation of the transfer function. The best predictions were obtained using the 

binary/ternary (calibration samples 4 – 6 and 8 – 10) and pure/binary (calibration 

samples 1 – 3, 12, 13 and 16) transfer sample sets. No clear trend was observed 

between the solvents upon changing the transfer sample set used for DS. The majority 

of the RMSEP values were low (with the mean RMSEP value below 1.5 % w/w for 

all transfer sample sets), however, suggesting that relatively accurate predictions can 

be obtained by DS regardless of which six transfer samples are chosen. 

When PDS was applied, the RMSEP values were generally lower than those obtained 

using DS, by up to 0.5 % w/w. However the RMSEP values obtained when the 

pure/binary transfer sample set was used to calculate the PDS transfer function were 

significantly higher (2.24 % w/w on average compared to 0.96 % w/w on average for 

DS). This indicates that examination of leverage is not always the best method of 

choosing the transfer samples. The mean RMSEP values obtained using the other 

transfer sample sets were all below 1 % w/w, demonstrating the effectiveness of PDS. 

These results suggest that although DS is less effective than PDS overall, it may be 
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more effective at modelling the differences between the spectra when the transfer 

sample set is not representative of the test samples. However when the transfer sample 

set consisting of binary samples only (which is not representative of the test samples 

either) was used for PDS, accurate predictions were obtained (with a mean RMSEP 

value of 0.89 % w/w). For SST, similar RMSEP values to PDS were obtained and the 

trend observed upon changing the transfer sample set was also very similar to PDS. 

The only significant difference was that the poorest transfer sample set (calibration 

samples 1 – 3, 12, 13 and 16) was more effective for ethanol and less effective for 

acetone and ethyl acetate than when PDS was used.  

Table 3.6 - RMSEP values for the PLS1 models built using the calibration solvent mixture 

spectra (transfer samples included) measured with the MB3000 spectrometer, applied to the 

test spectra measured using the Keit spectrometer after DS, PDS and SST with different 

transfer sample subsets. 

 

For PDS and SST, the most accurate predictions were obtained when the 

binary/ternary transfer sample set was used (with a mean RMSEP of 0.68 % w/w for 

PDS and 0.80 % w/w for SST). This is presumably because these samples are most 

Method 
Calibration 

samples used for 
transfer 

Acetone 
RMSEP/ 
(% w/w) 

Ethanol 
RMSEP/ 
(% w/w) 

Ethyl acetate 
RMSEP/ 
(% w/w) 

Mean 
RMSEP/ 
(% w/w) 

DS 

1–3 and 8–10 1.09 2.16 1.12 1.46 

4–6 and 8–10 1.12 0.77 1.03 0.97 

1–3, 12, 13 and 16 1.11 0.94 0.83 0.96 

11–16 1.36 1.36 1.53 1.42 

PDS 

1–3 and 8–10 0.68 1.38 0.92 0.99 

4–6 and 8–10 0.61 0.68 0.76 0.68 

1–3, 12, 13 and 16 1.58 3.37 1.78 2.24 

11–16 0.52 1.10 1.04 0.89 

SST 

1–3 and 8–10 0.69 1.14 0.96 0.93 

4–6 and 8–10 0.79 0.71 0.90 0.80 

1–3, 12, 13 and 16 2.09 1.14 2.72 1.99 

11–16 0.63 0.91 1.23 0.92 
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similar to the test samples. The increase in RMSEP upon including pure rather than 

binary samples (as observed when samples 1 – 3 and 8 – 10 were compared to samples 

4 – 6 and 8 – 10, and when samples 1 – 3, 12, 13 and 16 were compared to samples 

11 – 16), suggests that inclusion of the pure components may slightly worsen the 

model. This is likely to be because the pure component samples differed the most to 

the test samples. Therefore it appears that the similarity of the transfer samples to the 

test samples has a greater effect on the results than the leverage of the transfer samples. 

However the differences observed are only small (with the mean RMSEP value 

varying by no more than 0.3 % w/w for all transfer sample sets other than the poorest). 

The overall similarity of the RMSEP values for each transfer sample set indicates that 

the choice of sample subset to use for calibration transfer does not significantly affect 

the predictions obtained. Inclusion of the pure components in the transfer sample set 

in addition to mixtures reduces the amount of sample preparation required and also 

ensures that the transfer sample set spans the range of the ternary diagram, so may be 

advantageous, despite the small increase in RMSEP observed. Again, the performance 

of PDS and SST appeared to be similar and better than the performance of DS.   

A plot of the number of singular values versus the average RMSEP value obtained 

using each set of transfer samples is shown in Figure 3.15. The plots containing the 

individual RMSEP values for each solvent can be found in Appendix 3. Seven singular 

values appears to be the optimum for the pure/binary transfer sample set, but even with 

seven singular values the RMSEP did not improve beyond the other transfer sample 

sets. The optimum number of singular values was found to be five for the pure/ternary 

and binary only sample sets (however for the binary only sample set, five singular 

values provided only a very small improvement over four), and four for the 

binary/ternary sample set. This provides further indication that the pure/binary transfer 

sample set was less effective than the others. 
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Figure 3.15 - Average RMSEP value (for acetone, ethanol and ethyl acetate) versus number 

of singular values for PLS1 models built using MB3000 calibration data and applied to Keit 

test data with SST, when different sets of six calibration samples were used as transfer 

samples. 

Table 3.7 displays the RMSEP values acquired when the transfer samples were 

excluded from the calibration models. For DS, this appears to have made little 

difference to the results obtained. For PDS and SST, the RMSEP values were slightly 

poorer (0.05 – 0.15 % w/w higher) when the sample sets containing ternary samples 

were used for transfer and excluded from the calibration model compared to when they 

were included in the calibration model. However for the two sample sets which did 

not contain ternary samples, a slight improvement in RSMEP (of 0.08 – 0.14 % w/w) 

was observed upon exclusion of the transfer samples from the calibration model. This 

was unexpected, as it would be thought that the inclusion of fewer samples in the 

calibration model would worsen the RMSEP values obtained in every case. However 

the differences in RMSEP were only small, so may not be significant.  

These results suggest that accurate predictions can still be obtained when the transfer 

samples are not included in the calibration model (e.g. when the transfer samples were 

taken from the test set rather than the calibration set), although slightly poorer results 
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were obtained when the calibration samples became less representative of the test 

samples (i.e. when fewer ternary mixtures were included). In practice, there would be 

no reason to exclude the transfer samples from the calibration model as their spectra 

will already have been obtained on the primary instrument in order to perform 

calibration transfer and inclusion of more calibration samples should, in theory, 

improve the model.  

Table 3.7 - RMSEP values for the PLS1 models built using the calibration solvent mixture 

spectra (transfer samples excluded) acquired with the MB3000 spectrometer, applied to the 

test spectra acquired using the Keit spectrometer after DS, PDS and SST with different 

transfer sample subsets. 

 

3.3.3.2.2 Number of Transfer Samples 

The effect of changing the number of transfer samples was then compared. This 

knowledge is important, as too few transfer samples will not be effective, and the 

inclusion of an unnecessary number of transfer samples will make the process of 

calibration transfer more time consuming. The RMSEP values obtained when the 

number of samples included in the transfer set was varied are shown in Table 3.8. As 

Method 
Calibration 

samples used for 
transfer 

Acetone 
RMSEP/ 
(% w/w) 

Ethanol 
RMSEP/ 
(% w/w) 

Ethyl acetate 
RMSEP/ 
(% w/w) 

Mean 
RMSEP/ 
(% w/w) 

DS 

1–3 and 8–10 1.25 1.82 1.13 1.40 

4–6 and 8–10 1.19 0.75 1.01 0.98 

1–3, 12, 13 and 16 1.15 1.00 0.72 0.96 

11–16 1.45 1.22 1.54 1.40 

PDS 

1–3 and 8–10 0.96 1.14 1.02 1.04 

4–6 and 8–10 0.70 0.73 0.80 0.74 

1–3, 12, 13 and 16 2.09 2.99 1.22 2.10 

11–16 0.42 0.99 1.01 0.81 

SST 

1–3 and 8–10 0.86 1.17 1.21 1.08 

4–6 and 8–10 0.77 0.77 1.25 0.93 

1–3, 12, 13 and 16 1.13 1.87 2.64 1.88 

11–16 0.80 0.69 0.91 0.80 
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before, the PLS models were built using the full set of calibration spectra acquired on 

the MB3000 spectrometer and used to predict the concentration of each solvent present 

in the transformed test spectra acquired on the Keit spectrometer. As expected, the 

inclusion of more transfer samples generally improved the RMSEP values. The worst 

results were obtained when only the pure components (calibration samples 1 – 3) or 

the pure components and calibration sample 7 were used to calculate the transfer 

function, particularly when DS and PDS were used. This is because the pure 

component samples were least representative of the test samples, which were all 

ternary mixtures. The predictions obtained when all sixteen calibration samples were 

used to calculate the transfer function are the best, as would be expected. Although the 

full calibration set would not be used to calculate the transfer function in practice as it 

negates the effect of calibration transfer, it demonstrates the theoretical optimum 

result, which can be used as a benchmark.  

For DS, the other combinations of transfer samples all produced similar results (with 

mean RMSEP values ranging from 1.63 % w/w for three transfer samples to 

1.23 % w/w for seven transfer samples). With PDS and SST, there was a more 

noticeable improvement in RMSEP as the number of transfer samples was increased 

(with mean RMSEP values decreasing from 1.47 % w/w to 0.94 % w/w and from 

1.97 % w/w to 0.90 % w/w for PDS and SST respectively upon switching from three 

to seven transfer samples). However all RMSEP values were relatively low (less than 

2 % w/w) other than when calibration samples 1 – 3 (the pure components) or 

calibration samples 1 – 3 and 7 were used, suggesting that calibration transfer can still 

be relatively effective when as few as three transfer samples are used. However, it may 

be that different results are observed with more complex sample sets and this would 

be a suggestion for future work.  

For SST, the RMSEP values obtained using seven transfer samples were similar to 

those obtained when all sixteen calibration samples were used in the transfer function, 

and for PDS they were only slightly higher. The RMSEP values obtained for SST and 

PDS using six and seven transfer samples were similar, therefore six would be 

suggested as the optimum. When larger numbers of transfer samples were used (e.g. 

above four), the most accurate predictions were generally obtained for acetone and the 

poorest for ethanol, but when smaller numbers of transfer samples were used, the best 
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predictions were generally obtained for ethanol. This suggests that altering the number 

of transfer samples had a lesser effect on the predictions of ethanol than of the other 

solvents, as it appears that ethanol can be modelled relatively well with only a few 

components. 

Table 3.8 - RMSEP values for the PLS1 models built using the calibration solvent mixture 

spectra measured with the MB3000 spectrometer, applied to the test spectra measured using 

the Keit spectrometer after DS, PDS and SST with different numbers of transfer samples. 

Method 
Number 

of transfer 
samples 

Calibration 
samples used 
for transfer 

Acetone 
RMSEP/ 
(% w/w) 

Ethanol 
RMSEP/ 
(% w/w) 

Ethyl 
acetate 

RMSEP/ 
(% w/w) 

Mean 
RMSEP/ 
(% w/w) 

DS 

3 8–10 1.61 1.79 1.49 1.63 

3 1–3 7.65 3.77 5.14 5.52 

4 7–10 1.61 1.46 1.25 1.44 

4 1–3 and 7 5.81 2.02 4.85 4.23 

6 1–3 and 8–10 1.09 2.16 1.12 1.46 

7 1–3 and 7–10 1.12 1.79 0.77 1.23 

16 All 0.54 0.83 0.78 0.72 

PDS 

3 8–10 1.72 1.24 1.44 1.47 

3 1–3 7.56 2.91 5.07 5.18 

4 7–10 1.58 1.27 1.48 1.44 

4 1–3 and 7 5.30 1.49 5.24 4.01 

6 1–3 and 8–10 0.68 1.38 0.92 0.99 

7 1–3 and 7–10 0.71 1.29 0.83 0.94 

16 All 0.46 0.78 0.62 0.62 

SST 

3 8–10 2.76 1.14 2.00 1.97 

3 1–3 4.19 1.67 3.11 2.99 

4 7–10 1.03 1.10 1.00 1.04 

4 1–3 and 7 3.86 1.49 3.09 2.81 

6 1–3 and 8–10 0.69 1.14 0.96 0.93 

7 1–3 and 7–10 0.63 1.15 0.93 0.90 

16 All 0.50 0.98 0.99 0.83 
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Du et al.3 have compared PDS and SST for the transfer of PLS models built using MIR 

spectra of similar ternary mixtures acquired with two different probes. Three samples 

were used to calculate the transfer function (one pure, one binary and one ternary 

mixture). Larger RMSEP values were obtained for PDS (0.80 – 1.55 % w/w) than SST 

(0.69 – 1.35 % w/w), and the values were in the same range as those obtained using 

four or more transfer samples in this work. The ability to obtain lower RMSEP values 

using only three transfer samples may be because the spectra were more similar to 

begin with. Less of a difference was observed between the performance of PDS and 

SST in this work. Du et al. observed that once the number of transfer samples reaches 

a certain threshold then the inclusion of more transfer samples has little effect on the 

predictions obtained. Although this was observed to some extent in this work, as the 

decrease in RMSEP upon including six or more transfer samples was not large, there 

was still a noticeable decrease in RMSEP when sixteen calibration samples were 

included compared to six or seven.  

3.4 Conclusions 

The performance of a novel, robust spectrometer for the quantitative in situ analysis 

of liquids has been demonstrated. The use of the Sagnac interferometer within the 

instrument eliminates sensitivity to vibrations, making the spectrometer ideal for use 

in harsh environments. The absence of optical fibres overcomes the issues associated 

with transmission of MIR light over long lengths of fibre optics, and the robustness 

and compact size of the spectrometer allow it to be used within process environments. 

The accuracy of the predictions of solvent mixture composition and the similarity of 

the predictions to those obtained using the MB3000 spectrometer demonstrate the 

potential of the novel spectrometer for the quantitative in situ analysis of liquid 

processes. This will allow MIR spectroscopy to be more easily applied in process 

monitoring. 

The overall accuracy of the predictions which can be obtained by calibration transfer 

clearly demonstrate its effectiveness, and show that it is possible to build calibration 

models in the laboratory for subsequent application to a process. This would avoid the 

need to build calibration models within the process environment, saving time and 

resources. SST and PDS were the most effective methods, as overall they produced 
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similar predictions, of greater accuracy than DS. SST would be recommended for 

future use, as selection of an appropriate number of singular values is easier than 

selection of an appropriate window size. The choice of transfer samples appears to 

have a greater effect than the number of transfer samples, and the most accurate 

predictions were obtained when the transfer samples were representative of the test 

samples (i.e. contained ternary mixtures). However, the RMSEP values generally 

improved with the inclusion of more transfer samples and six appeared to be the 

optimum.  
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4 Application of Novel Mid-Infrared Spectrometer to 

Reaction Monitoring 

4.1 Introduction 

In Chapter 3, the basic performance of the Keit spectrometer for the in situ analysis of 

liquids was assessed. In order to further assess the performance of the Keit 

spectrometer, its suitability for in situ reaction monitoring will now be evaluated. The 

instrument was used to monitor the esterification reaction between acetic anhydride 

and butan-1-ol, with a pyridine catalyst, forming butyl acetate and acetic acid. This 

reaction was selected as it is simple and has been well-studied.1-7 A mechanism for the 

reaction has been proposed by Richards et al.,2 and is shown in Figure 4.1. 

Nucleophilic attack of the acetic anhydride by the pyridine first takes place, to form 

an activated tetrahedral intermediate. Butan-1-ol then attacks the intermediate, 

releasing pyridine and forming acetic acid and 1-butyl acetate.  

The reaction has been monitored by NIR spectroscopy,2-4 and has been used to 

demonstrate the performance of a thermal vaporiser for process mass spectrometry1 

and reaction calorimeters.7, 8 Monitoring of the reaction by MIR spectroscopy has also 

been demonstrated using a reaction calorimeter with an integrated ATR probe, coupled 

via mirrors to a MIR spectrometer (the Bruker Equinox 55 FTIR spectrometer).8 The 

reaction has been used to assess the performance of the SpectraProbe Linx 5-10,1 a 

MIR spectrometer which has a probe directly attached and utilises short lengths of 

optical fibre within the spectrometer unit. However the instrument lacked the 

robustness required for process monitoring. The Keit spectrometer is extremely robust 

and contains no fibre optics or moving parts, as discussed in Chapter 1, which provides 

an advantage over the MIR spectrometers previously used. 
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Figure 4.1 - Proposed mechanism for esterification reaction between acetic anhydride and 

butan-1-ol, reproduced from reference 2. 

Multivariate curve resolution (MCR) can be used to resolve the spectra of reaction 

mixtures into their pure component contributions. This produces spectral and 

concentration profiles for each component (where the “concentration” is a measure of 

the relative contribution of each component to the total absorbance of the mixture), 

and a description of the method is given in section 2.3.5. A major advantage of MCR 

over PLS is that it avoids the need to build a calibration model, which can save time 

and resources. The use of MCR to resolve reaction mixture spectra acquired using a 

variety of different techniques has been demonstrated, including MIR,9-11 NIR,12-14 

Raman,15, 16 NMR,17, 18 ultraviolet-visible19-21 and fluorescence22, 23 spectroscopies. 

However there have been few applications involving real-time reaction monitoring, as 
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optimisation of a large number of constraints and parameters is necessary, therefore 

guidance in this area would be valuable. 

The most commonly used software for MCR is the MCR-ALS toolbox,24, 25 as it is 

freely available online. However the use of GUIPRO software has also been 

demonstrated for a number of applications.2, 26, 27 GUIPRO is an MCR toolbox 

developed by Gemperline and Cash,26 which utilises least squares penalty functions. 

This involves the application of a penalty function weighting factor (i.e. a sensitivity 

value) between 0.01 (soft) and 20 (hard) to the spectral and concentration constraints 

in order to alter the hardness/softness with which they are applied. Hard constraints do 

not allow any deviation from the defined conditions, whereas soft constraints allow 

small deviations. The application of soft constraints can reduce distortion and the lack 

of fit of the model, improving results. The performance of GUIPRO has been 

compared to that of MCR-ALS for analysis of the esterification reaction between 

acetic anhydride and butanol by NIR spectroscopy,2 and the use of GUIPRO with soft 

constraints was found to produce the most accurate results. An MCR function is also 

available in PLS Toolbox and it allows the application of weightings to the constraints, 

based on the same algorithm as GUIPRO.  

The available constraints and parameters differ between MCR-ALS, GUIPRO and the 

MCR function in PLS Toolbox, so in this chapter the three toolboxes will be compared 

and the parameters optimised. The most effective toolbox will then be used to 

decompose the esterification reaction mixture spectra acquired by the Keit 

spectrometer into their pure component contributions. The aims of this chapter are to 

evaluate the performance of the Keit spectrometer for reaction monitoring, and to 

compare the effectiveness of different MCR toolboxes for the analysis of MIR spectra. 

4.2 Experimental 

4.2.1 Esterification Reaction 

The esterification reaction discussed in section 4.1 was monitored using the Keit 

spectrometer. 125 mL of acetic anhydride (99+ %, Acros Organics, Geel, Belgium) 

was added to a 250 mL reaction vessel (Reactor-Ready, Radleys, Essex, UK), stirring 

at a speed of 150 rpm using a stirrer (Eurostar digital, IKA, Oxford UK). The probe of 
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the Keit spectrometer was inserted into the reaction vessel and spectra were recorded 

every 1.6 seconds until the end of the reaction. Each spectrum consisted of a single 

scan, with an acquisition time of 1.5 seconds. The vessel was heated to 40 °C using a 

water jacket connected to a heater/cooler unit (Brookfield TC-502, AMETEK 

Brookfield, Essex, UK) and allowed to equilibrate at this temperature for 5 minutes. 

10 mL of pyridine (≥ 99 %, Sigma Aldrich, Steinheim, Germany) was added, and the 

mixture was allowed to equilibrate for another 5 minutes. 121 mL of butan-1-ol (99 %, 

Acros Organics, Geel, Belgium) was then added and the reaction was allowed to 

progress for an hour. This reaction was repeated a further twice at 40 °C, once at 50 °C 

and once at 20 °C. Spectra of pure acetic anhydride, butan-1-ol, acetic acid (99 – 

100 %, Sigma Aldrich, Steinheim, Germany) and butyl acetate (≥ 99.5 %, Sigma 

Aldrich, Steinheim, Germany) were collected at 40 °C for reference.  

The products formed at the same rate during the reaction, so in order for the MCR 

model to distinguish between the two products, the correlation must be broken. Dosing 

of one component can be used to eliminate linear dependency,3 therefore addition of 

one of the products to the reaction mixture at the end of the reaction will break the 

correlation. The esterification reaction was repeated at 40 °C, with extra acetic acid 

dosed into the vessel after one hour. The temperature profile of this reaction was 

recorded using a thermocouple (YC-747UD 4 Channel Data Logger Thermometer, 

YCT), which was inserted into the reaction mixture. The consumption of the reactants 

was anti-correlated to the formation of the products, and was overcome by beginning 

the spectral acquisitions before butanol was added to the reaction vessel. 

4.2.2 Data Analysis 

4.2.2.1 Multivariate Curve Resolution Software Comparison 

In order to determine the most effective MCR toolbox for analysis of the esterification 

reaction data, three different MCR toolboxes were compared; GUIPRO (version GP 

2016b),26 MCR-ALS GUI 2.024, 25 and the MCR function in PLS Toolbox version 8.6.2 

(Eigenvector, Washington, USA). GUIPRO and PLS Toolbox were used in MATLAB 

2016b (MathWorks, Massachusetts, USA) and MCR-ALS was used in MATLAB 

2014b (MathWorks, Massachusetts, USA). Each toolbox was used to perform MCR 

on the spectra collected during the esterification reaction at 40 °C with extra acetic 
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acid dosed in at the end. The differences between each toolbox will be discussed in 

section 4.3.1.  

The first 1000 seconds of the reaction, in which the acetic anhydride was being heated, 

were not included. The spectral region between 1070 cm–1 and 1170 cm–1 was also 

removed since the absorbance of acetic anhydride was very high in this region. 

Pyridine was not included when building the model due to its low concentration. The 

reference spectra collected at 40 °C were used as spectral equality constraints. The 

concentration equality constraints for butanol, acetic acid and butyl acetate were set to 

zero in the region of time when only acetic anhydride and pyridine were present. Non-

negativity constraints were applied to the spectra and concentration profiles. The effect 

of changing each of the other possible constraints/parameters was investigated for each 

toolbox, and the optimum settings determined.  

The results obtained from each toolbox were then compared in order to determine 

which toolbox was the most effective at resolving the esterification reaction spectra 

into their pure component contributions. Concentration profiles published in the 

literature were used to assess the results, as the reaction has been well studied and the 

expected profiles are known. The difference between the estimated and reference pure 

component spectra was quantified by calculating the root mean square spectral 

residual, in order to determine the extent of deviation of the estimated spectra from the 

references. This involved calculating the square root of the sum of squares of the 

residual (i.e. the difference between the estimated and reference spectrum) for each 

component. 

4.2.2.2 Evaluation of Esterification Reaction Data 

To resolve the spectra acquired during the rest of the esterification reactions into their 

pure component contributions, GUIPRO software26 was used. A spectral constraint 

sensitivity of 0.1 (soft) and a concentration constraint sensitivity of 20 (hard) were 

used. The maximum number of iterations was set to 500 and the convergence tolerance 

(i.e. the difference between iterations required in order for the algorithm to converge 

to a solution) was set to 1 x 10–4. These parameters were chosen based on the results 

of the MCR software comparison (section 4.3.2). The root mean square spectral 

residual was again calculated for each of the spectral estimates.  
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The average rate of formation of butyl acetate was measured over the first five minutes 

of the reactions performed at 20 °C, 40 °C (using the reaction in which acetic acid was 

dosed in) and 50 °C. For each reaction, the relative concentration of butyl acetate 

estimated by GUIPRO (i.e. its contribution to the total absorbance of the mixture) five 

minutes after the addition of butanol was divided by time, to obtain a measure of 

average reaction rate in a.u./min. Five consecutive estimates of relative butyl acetate 

concentration were used in each case and an average was taken, due to the presence of 

noise in the concentration profiles. 

4.2.3 Product Ratio Analysis 

4.2.3.1 Mid-Infrared Spectroscopy 

Butyl acetate and acetic acid are expected to form in a 1:1 molar ratio during the 

reaction,1 however the results of the MCR analysis indicated that the concentration of 

butyl acetate present at the end of the reaction was approximately double the 

concentration of acetic acid. It was hypothesised that the difference observed was due 

to absorbance in electromagnetic spectroscopy being dependent on the volume fraction 

rather than the molar fraction of the components.28, 29 This will be discussed in more 

detail in section 4.3.4.1. To determine whether the results acquired using the Keit 

spectrometer were in agreement with the literature, two reference mixtures were 

prepared; a 1:1 molar mixture of acetic acid and butyl acetate, and a 1:1 mixture of 

acetic acid and butyl acetate by volume. The spectrum of each mixture was measured 

five times using the Keit spectrometer. 

To resolve the spectra of the reference mixtures, MCR was performed using GUIPRO. 

The reference spectra of each product were used as the spectral equality constraints, 

and the same parameters and constraints were used as for the reaction mixtures. The 

estimates of relative concentration obtained for the reference mixtures were then 

compared to the estimates of relative concentration obtained at the end of the 

esterification reaction. 
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4.2.3.2 Low-Field NMR Spectroscopy 

4.2.3.2.1 Esterification Reaction 

To provide further confirmation that the composition of the reaction mixtures 

measured by the Keit spectrometer was accurate, low-field NMR spectroscopy was 

used as a complementary technique. An additional esterification reaction was carried 

out at 40 °C, and 1 mL aliquots of the reaction mixture were removed from the reaction 

vessel at 5 minutes, 30 minutes and 1 hour after the addition of butanol. 0.2 mL of 

each aliquot was added to 4.8 mL of chloroform to inhibit the progress of the reaction, 

and 0.6 mL of each resulting mixture was transferred to an NMR tube for analysis by 

low-field 1H NMR spectroscopy.  

A Magritek Spinsolve Carbon NMR spectrometer operating at 43 MHz was used, 

operated via Spinsolve Expert software. The receiver gain was set to 31 dB, the dwell 

time was set to 200 µs and the number of scans was set to 4, with a repetition time of 

70 s. An acquisition delay of 20 µs, an acquisition time of 3.2768 s, a bandwidth of 

5 kHz and a 90° pulse duration of 11.1 µs were used. Each NMR spectrum consisted 

of 32,768 points, which was zero filled to 131,072 points in order to increase the digital 

resolution of the spectra. Automatic phase correction was performed by the software, 

consisting of an unoptimised first order correction which is automatically applied to 

all spectra and a zero order correction optimised for each spectrum. 

4.2.3.2.2 Reference Mixtures 

For comparison to the sample extracted at the end of the esterification reaction, two 

reference mixtures were prepared. The first reference mixture contained 45 % acetic 

acid, 45 % butyl acetate, 5 % acetic anhydride and 5 % butanol by molarity (the 

expected mixture at the end of the esterification reaction if the products formed in a 

1:1 ratio), and the second contained 60 % butyl acetate, 30 % acetic acid, 5 % acetic 

anhydride and 5 % butanol by molarity (the expected mixture at the end of the reaction 

if the products formed in a 2:1 ratio). For each reference mixture, 0.1 mL was added 

to 4.9 mL of chloroform and 0.6 mL of this mixture was then transferred to an NMR 

tube. Low-field 1H NMR spectroscopy was performed using the settings described in 

section 4.2.3.2.1. 
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4.3 Results and Discussion 

4.3.1 Description of MCR Toolboxes 

In order to determine the most effective MCR toolbox for evaluation of the 

esterification reaction data, GUIPRO, MCR-ALS and the MCR function in PLS 

Toolbox were compared. All three methods of MCR are based on an ALS algorithm, 

as described in section 2.3.5. A summary of the key features of each MCR toolbox are 

shown in Table 4.1, and these features will be discussed in more detail in the following 

sections. The settings and constraints available within each toolbox differ, and these 

will be compared for analysis of the esterification reaction data. 

4.3.1.1 GUIPRO 

In GUIPRO software, the number of components present in the spectra can be chosen 

manually or determined by an F-test. Initial estimates of concentration are determined 

either by a needle search or by evolving factor analysis. A matrix of initial estimates 

(e.g. reference spectra) cannot be supplied, which is a disadvantage of GUIPRO. 

Within GUIPRO, curve resolution can be applied using two different methods of factor 

analysis (automated window factor analysis30 and iterative target transformation factor 

analysis31), non-negative ALS or constrained ALS. Constrained ALS allows the user 

to define the constraints which are applied to the spectral and concentration estimates, 

while the other methods do not, therefore constrained ALS is the method which was 

used in this work.  

Non-negativity, closure and unimodality constraints can be applied to the 

concentration data, but only non-negativity can be applied to the spectral data. 

However it is possible to load matrices as equality constraints for the concentration 

and/or spectral data. In addition, it is possible to apply separate spectral/concentration 

constraints to each of the components in the mixture, which is an advantage of 

GUIPRO. For each component, the spectral/concentration equality constraint is 

entered as a vector the same length as the data matrix in the spectral/time dimension 

respectively.   
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Table 4.1 - Summary of features of MCR toolboxes. 

Feature PLS Toolbox MCR-ALS GUIPRO 

Determination of 
number of 

components 
Manual 

Manual 

Singular value 
decomposition 

Manual 

F-test 

Initial estimates 

Manual 

Euclidean distance 

Normalisation 

Manual 

Pure variable 
detection 

Evolving factor 
analysis 

Needle search 

Evolving factor 
analysis 

Concentration 
constraints 

Non-negativity 

Closure 

Equality 

Non-negativity 

Unimodality 

Closure 

Equality 

Non-negativity 

Unimodality 

Closure 

Equality 

Spectral constraints 
Non-negativity 

Equality 

Non-negativity 

Unimodality 

Closure 

Equality 

Non-negativity 

Equality 

Ability to treat each 
component 
separately 

Yes No Yes 

Penalty functions Yes No Yes 

Kinetic fitting No Yes Yes 

Ability to modify 
input data No No Yes 

Ability to save 
parameters 

Yes (as variable in 
MATLAB 
workspace) 

No Yes 

Graphical user 
interface 

Reduced 
functionality 
compared to 

command line 

Yes Yes 
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If equality constraints are only desired in certain regions of the data matrix (e.g. it 

might be desirable to apply a concentration equality constraint of zero when a 

component is known to be absent but no equality constraint when it is known to be 

present) then “NaN” can be entered in the equality constraint matrix. If the intervals 

between the reference concentration/spectral data inputted as the equality constraints 

do not match those of the data matrix, nearest neighbours or interpolation can be used 

by selecting “discrete” or “continuous” respectively. In addition, kinetic fitting is 

possible. The maximum number of iterations and the convergence tolerance (the 

relative change in residual sum of squares between iterations) can be specified. 

An advantage of GUIPRO is the ability to modify the data matrix within the graphical 

user interface, for example altering the wavelength and time ranges, removing outliers, 

adjusting the baseline, normalising and scaling the data. Wavelength and time axes 

can also be loaded, and are applied to the graphical output. Another advantage of 

GUIPRO is that the graphical user interface containing the inputted data and 

parameters can be saved and reloaded for future use. The output plots of concentration 

and spectral estimates can be saved as an image or MATLAB figure, and the estimates 

can be exported to the MATLAB workspace as matrices.  

The greatest advantage of GUIPRO is the ability to apply penalty functions to the 

constraints. Sensitivity values between 0.01 (soft, i.e. small deviations from the 

constraints) and 20 (hard, i.e. no deviations from the constraints) can be chosen for the 

spectral and concentration constraints. The ability to apply soft constraints allows 

deviations of the estimates from the constraints, providing greater flexibility in the 

model. For example, the pure component spectra can be applied as spectral equality 

constraints, allowing deviation to account for interactions between components during 

the reaction. NWAY penalty-ALS2 can also be applied in GUIPRO, to allow the 

application of penalty-ALS to multi-batch data. 

4.3.1.2 MCR-ALS 

In the MCR-ALS toolbox, the number of components can either be determined by 

singular value decomposition or inputted manually. Initial estimates of either 

concentration or spectra can be inputted manually or calculated using pure variable 

detection or evolving factor analysis. The ability to manually input a matrix of initial 
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estimates is an advantage over GUIPRO. An uncertainties estimation can be added by 

providing a matrix containing a standard deviation estimate of the uncertainty for each 

value in the data matrix. It is also possible to upload an augmented dataset and split 

the data into multiple matrices within the graphical user interface.  

Spectral and concentration constraints of non-negativity (forced to zero, non-negative 

least squares or fast non-negative least squares), unimodality (vertical, horizontal or 

average) and closure (with the condition “equal than”, “least squares closure” or 

“lower or equal than”) are possible. Unimodality can be applied to individual 

components but the other constraints cannot, unlike in GUIPRO.  

An advantage of MCR-ALS over GUIPRO is that the user can input a matrix as an 

equality constraint and specify whether the results should be “equal than” or “lower or 

equal than”. If a component is known to be absent in a certain time region (e.g. before 

it has been added to the reaction vessel), an equality constraint of less than or equal to 

zero can be applied to its concentration profile, while equality constraints of less than 

or equal to e.g. one (i.e. the highest possible relative concentration) can be applied to 

the concentration profiles of the components known to be present. However the ability 

to apply equality constraints with varying sensitivity values is absent, which is the 

main disadvantage of the MCR-ALS toolbox. The spectral/concentration equality 

constraints must be inputted as a matrix matching the spectral/time dimension 

(respectively) of the data matrix by the number of components. “NaN” can be entered 

for the points at which equality constraints are not desired, as for GUIPRO. Advanced 

constraints of correlation and kinetic hard modelling can also be applied to the 

concentration data. 

At the final stage, normalisation of the pure component spectra can be performed. The 

available normalisation options are “spectra equal height”, “spectra divided by total 

sum norm” and “spectra divided by Euclidean norm”. The maximum number of 

iterations and the convergence criterion (the minimum percentage difference in the 

standard deviations of the residuals between two iterative cycles required for the 

algorithm to achieve convergence32) of the ALS algorithm can also be specified. 

Unlike in GUIPRO, the data matrix cannot be modified within the graphical user 

interface and wavelength/time axes cannot be inputted for application to the graphical 
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output. It is not possible to save the output plots as an image, however the 

concentration and spectral estimates can be exported to the MATLAB workspace as 

in GUIPRO. Another disadvantage over GUIPRO is that it is not possible to save the 

inputted data/parameters to reload for future use, so they must all be manually entered 

again. 

4.3.1.3 PLS Toolbox 

An MCR function is also available within PLS Toolbox. It is necessary to input either 

an initial estimate of concentration/spectra (in the form of a matrix) or the number of 

components present in the data matrix. Evolving factor analysis or evolving window 

factor analysis (which is similar to EFA but utilises a moving window of defined 

width) can be performed within PLS Toolbox prior to MCR to calculate the initial 

estimates, but they are separate to the MCR function. If the number of components is 

inputted then an initial guess of concentration or spectral data is generated 

automatically by selecting samples outside the dataspace either based on Euclidean 

distance or after normalising the samples. An initial guess of the minimum norm value 

can also be defined.  

Normalisation of the data is required (to unit area, unit length or unit maximum), 

unless equality constraints are applied. Equality constraints can be inputted as a matrix 

the same size as the data matrix, with “NaN” entered in the cells where they are not 

applied. It is possible to apply weights to the concentration and spectral equality 

constraints (based on the penalty ALS algorithm used in GUIPRO), as either a scalar 

value between zero and infinity (with infinity corresponding to hard constraints and a 

value of one corresponding to the weight which has the same influence as the average 

single variable in the data) or a vector of values. Non-negativity constraints can be 

applied to the spectral and concentration data using fast non-negative least squares, 

forcing negative values to zero after least squares (called “reset”), or “reset” with 

polynomial baseline fitting. Closure can be applied to the concentration data and 

weights can be applied to the closure constraints, as for the equality constraints. A 

contrast constraint can also be applied to the spectra of images. Unimodality 

constraints are not available.  
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The tolerance on non-negativity and convergence can be altered, and a maximum 

number of iterations or maximum time for iterations can be specified. The ability to 

specify a maximum time is an advantage, as this may be more useful than specifying 

a maximum number of iterations. Norm conditioning (i.e. conditioning each 

spectrum/contribution to its norm) can be applied to the spectral and concentration 

data before each regression step to stabilise the regression when large differences in 

magnitude are present between the components. The way rank deficiencies are handled 

can also be specified (for example dropping the deficient components from the model, 

resetting them to the initial guess, replacing them with a random vector or stopping 

the analysis). 

Although there is an MCR graphical user interface in PLS Toolbox, it is designed for 

use with calibration and validation X and Y block data, thus it is not clear how to use 

it for decomposition of a data matrix by MCR. Therefore the PLS Toolbox MCR 

function was accessed via the command line. The lack of usable graphical user 

interface is a disadvantage for inexperienced users, as performing MCR via the 

command line is less intuitive than using MCR-ALS or GUIPRO. The necessity for 

normalisation if no equality constraints are applied is another disadvantage, as 

normalisation may not be desired. A disadvantage of the PLS Toolbox MCR function 

over GUIPRO is the inability to alter the inputted data matrix, as (unlike in GUIPRO) 

pre-processing functions such as the ability to crop the data matrix, the ability to adjust 

the baseline and the ability to remove outliers are not available. The ability to apply 

weightings to the constraints is an advantage over the MCR-ALS toolbox, and the 

ability to input a matrix (e.g. reference spectra) as an initial estimate is an advantage 

over GUIPRO. 

4.3.2 Comparison of MCR Toolboxes 

To compare the performance of the three MCR toolboxes, analysis of the esterification 

reaction mixture spectra acquired by the Keit spectrometer (from the reaction at 40 °C 

in which extra acetic acid was added) was performed using each toolbox. The reaction 

mixture spectra are displayed in Figure 4.2 (with black representing the start of the 

reaction and red representing the end), and an assignment of the main peaks present in 

each compound is displayed in Table 4.2. The absorbance of the acetic anhydride 
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peaks significantly decreased during the course of the reaction (from up to 2.1 to less 

than 0.3 in absorbance), and the product peaks at 1200 – 1300 cm–1 and 1700 – 

1800 cm–1 (each of which arise due to both products overlapping) increased in 

absorbance. The spectrum of butanol was of relatively low absorbance and the peaks 

were obscured by the other components. Due to the large extent of peak overlap 

present, multivariate curve resolution is necessary to decompose the spectra into their 

pure component contributions.  

 

Figure 4.2 - Spectra collected during esterification reaction at 40 °C with acetic acid dosed 

in approximately one hour after the addition of butanol (last 240 spectra), acquired using 

the Keit spectrometer (single spectrum measured every 1.6 seconds). Black represents the 

start of the reaction and red represents the end of the reaction.  

The concentration and spectral estimates obtained using each toolbox were compared 

by visual inspection of the plots and comparison to those published in the literature, as 

poor estimates produced obvious deviations from the expected results. Concentration 

profiles obtained by CLS of the same esterification reaction, monitored by direct liquid 

sampling mass spectrometry, have been published by Owen et al.1 and are displayed 

in Figure 4.3. The reactants were present in a 1:1 molar ratio and their concentrations 

are expected to decrease at the same rate, as the products form. The concentrations of 

the products are expected to increase at the same rate, as they form in a 1:1 molar ratio.  
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Table 4.2 - Assignment of the main peaks in the IR spectra collected during the esterification 

reaction using the Keit spectrometer.33, 34 

Component Peak position/cm–1 Peak assignment 

Acetic anhydride 

890 C–O stretch 

990 C–O stretch 

1120 C–O stretch 

1760 C=O stretch 

1830 C=O stretch 

Butanol 1000 – 1100 C–O stretch 

Acetic acid 

1290 C–O stretch 

1410 C–O stretch and O–H 
deformation 

1710 C=O stretch 

Butyl acetate 

1030 C–O stretch 

1230 C–O stretch 

1740 C=O stretch 

 

 

Figure 4.3 - Estimated concentration profiles by Owen et al. of components present during 

esterification reaction monitored by direct liquid sampling mass spectrometry, taken from 

reference 1. 
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Richards et al.2 utilised GUIPRO with soft constraints to obtain concentration profiles 

of the reaction, monitored by NIR spectroscopy. They obtained similar profiles to 

Owen et al., however they treated the two products together as one pseudo-product. 

The reference spectrum of each component is displayed in Figure 4.4 (with the region 

between 1070 cm–1 and 1170 cm–1 removed due to the high absorbance of acetic 

anhydride in this region). The estimated spectra are expected to be similar to the 

references, with small differences present due to interaction of the components. 

It is not possible to compare the three toolboxes using the same settings, as the 

parameters within each toolbox differ. PLS Toolbox automatically normalises the 

spectra unless equality constraints are applied. The available normalisation options 

differ for each toolbox so the normalised data cannot be directly compared. Equality 

constraints can be applied to the concentration profiles using all three toolboxes, but 

the MCR-ALS “lower or equal than” function is not available in GUIPRO or PLS 

Toolbox, so the constraints would have to be hard (as soft constraints are not available 

in the MCR-ALS toolbox). It is undesirable to apply hard constraints to the 

concentration profiles of every component, as in the case of the esterification reaction 

(and the majority of reactions which would be monitored) the concentrations present 

in every step of the reaction are not known precisely, and the purpose of MCR is 

usually to obtain these concentration profiles.  

The initial estimates of spectra/concentration in GUIPRO cannot be supplied manually 

and have to be determined by a needle search or evolving factor analysis. It would be 

possible to perform evolving factor analysis to obtain the initial estimates for each 

toolbox (using the evolving factor analysis function external to the MCR function in 

PLS Toolbox to obtain the estimates), but it would then not be possible to supply the 

pure component spectra to the MCR-ALS model (except for as a hard spectral 

constraint), which would reduce its effectiveness. In addition, MCR-ALS utilises a 

convergence criterion of a different order of magnitude to the convergence tolerance 

values used by GUIPRO and PLS Toolbox.  

Therefore in order to compare the toolboxes, a variety of constraints were applied to 

determine the optimum settings for each toolbox, and the results obtained using the 

best settings for each method were then compared. For all methods, the estimated 
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concentrations were relative values between 0 and 1, dependent on their contributions 

to the absorbance. 

 

Figure 4.4 - Reference spectra of components present in esterification reaction mixture, 

acquired using the Keit spectrometer (with the region between 1070 cm–1 and 1170 cm–1 

excluded). 
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4.3.2.1 GUIPRO 

When GUIPRO was applied to the esterification reaction spectra, the reference spectra 

were used as spectral equality constraints and non-negativity was applied to both the 

spectral and concentration profiles (as it would be inaccurate for either to fall below 

zero). Concentration constraints of zero were applied to butanol, acetic acid and butyl 

acetate in the time region before butanol was added. A matrix of equality constraints 

was applied, using zero in the regions where each component was known to be absent 

and “NaN” (i.e. no constraint) when it known to be present in the reaction mixture. 

This eliminated the noise present in the butanol, acetic acid and butyl acetate profiles 

in the region where only acetic anhydride and pyridine were present, but otherwise did 

not affect the results. 

A sensitivity value of 20 was applied to the concentration constraints, as non-

negativity was the only constraint used and deviation in this constraint would be 

undesirable. For the spectral constraints, a range of sensitivity values were applied; 

0.01, 0.1, 0.2, 0.5, 1 and 20. Poor estimates were obtained using the sensitivity value 

of 0.01, as shown in Figure 4.5. The concentrations of the reactants are expected to 

decrease at the same rate,1, 2 but the concentration estimate of acetic anhydride 

immediately dropped to less than 0.2 a.u. upon the addition of butanol, while the 

concentration of butanol was as high as 0.8 a.u. A large difference was present between 

the concentration estimates of the products (which are expected to form in a 1:1 ratio1), 

and when extra acetic acid was dosed into the reaction (at approximately 88 minutes), 

the concentration estimate of acetic acid dropped and the concentration estimate of 

butyl acetate increased. A large amount of noise was also present in the profiles. 

Therefore, the sensitivity value of 0.01 appeared to allow too much deviation from the 

constraints. The other sensitivity values used produced sensible results, so the 

sensitivity value of 0.1 was chosen in order to allow the greatest possible deviation 

from the reference spectra while still producing accurate estimates of concentration. 



 105 

 

Figure 4.5 - Estimated concentration profiles (by GUIPRO) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C with acetic acid 

dosed in approximately one hour after the addition of butanol (acquired using the Keit 

spectrometer), with a sensitivity of 0.01 applied to the spectral constraints. 

When unimodality was applied to the concentration profiles, the estimates 

significantly worsened, even when very soft sensitivity values were used. This is 

presumably due to the presence of noise in the spectra, which results in multiple 

maxima. An example is shown in Figure 4.6, in which the concentration estimate of 

butanol increased to almost double the initial relative concentration of acetic anhydride 

(i.e. the total relative concentration possible) and the concentration of butyl acetate 

was estimated as zero throughout the course of the reaction.  
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Figure 4.6 - Estimated concentration profiles (by GUIPRO) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C with acetic acid 

dosed in approximately one hour after the addition of butanol (acquired using the Keit 

spectrometer), with unimodality applied to the concentration estimates. 

Convergence tolerance values of 1 x 10-3 or lower produced similar results, so 1 x 10-4 

was chosen as it is the default value. Values of 0.1 and 0.01 produced less accurate 

results. The needle search method was used to obtain the initial estimates rather than 

EFA because for a large dataset such as this, the EFA window takes a significantly 

long time to load (approximately 10 minutes using a MacBook Air with OS version 

10.13.6, a 1.7 GHz Intel Core i7 processor and 8 GB memory, compared to a couple 

of seconds for the needle search method). The choice of peak locations to use as initial 

estimates by needle search was not found to affect the final estimate. In addition, it is 

difficult to select the same points every time, as they could only be selected manually 

from a large number of overlapping points. Therefore the points chosen as initial 

estimates were an approximation of the points at which the maximum concentration 

of each component occurred.  
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are shown in Figure 4.7 and Figure 4.8 respectively. The profiles are as expected,1, 2 

other than the apparent difference in concentration of the products, which will be 

investigated in section 4.3.3. These concentration profiles will also be discussed in 

more detail in section 4.3.3. 

 

Figure 4.7 - Estimated concentration profiles (by GUIPRO) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C with acetic acid 

dosed in approximately one hour after the addition of butanol (acquired using the Keit 

spectrometer), using the chosen optimum parameters. 
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Figure 4.8 - Estimated pure spectra (by GUIPRO, using the chosen optimum parameters) 

of components present in the reaction mixture spectra collected during esterification 

reaction at 40 °C with acetic acid dosed in approximately one hour after the addition of 

butanol (solid lines) and reference pure component spectra (dashed lines), all acquired 

using the Keit spectrometer. 
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4.3.2.2 MCR-ALS 

With the MCR-ALS toolbox, the reference spectra were used as initial estimates. A 

matrix of concentration equality constraints was applied using the “lower or equal 

than” option, with a value of 1 set when a component was known to be present and 0 

when it was known to be absent. Non-negativity using the fast non-negative least 

squares option was selected for the concentration and spectral data. The default 

convergence criterion value of 0.1 was used, as smaller values either failed to converge 

or produced inaccurate estimates such as Figure 4.9, in which the butanol 

concentration sharply dropped to zero at 50 minutes. 

 

Figure 4.9 - Estimated concentration profiles (by MCR-ALS) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C with acetic acid 

dosed in approximately one hour after the addition of butanol (acquired using the Keit 

spectrometer), with a convergence criterion of 0.01 applied. 

The MCR-ALS toolbox was significantly slower than GUIPRO and PLS Toolbox, 

taking 45 seconds to perform 50 iterations, compared to less than 3 seconds for 

GUIPRO and less than 1 second for PLS Toolbox (using a MacBook Air with OS 

version 10.13.6, a 1.7 GHz Intel Core i7 processor and 8 GB memory). However less 

than 5 iterations were generally required to produce accurate results (presumably 
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because little variation from the reference spectra was required and these were 

provided as the initial estimate). When the algorithm failed to converge within the first 

few iterations (< 10) then the estimates typically deviated further from the expected 

results, and if the fit did not improve for 20 consecutive iterations then the algorithm 

automatically stopped. 

When no unimodality constraint was applied to the concentration profiles, the 

algorithm did not converge for 69 iterations, producing the estimates shown in Figure 

4.10. A large amount of noise was present in the profiles and the concentration profile 

of butanol was inaccurate, starting at nearly double the relative concentration of acetic 

anhydride and sharply increasing at the point at which acetic acid was dosed into the 

reaction vessel.  Unimodality was more effective than in GUIPRO, since a tolerance 

value could be applied. The tolerance is entered as a number greater than 1, with 1.1 

representing 10 % and 1.2 representing 20 %, etc. A range of different tolerance values 

were applied (within reason) and there did not appear to be an upper limit. The 

“average” implementation was selected and unimodality was applied to all 

components. The most accurate results were obtained using tolerance values of 1.3, 

1.4, 1.7 and 2.0 (all converging after three iterations). The tolerance value of 1.3 was 

chosen as the overall best, as the magnitude of the noise present in the butanol profile 

was slightly less in this case. When equality constraints were not applied to the 

concentration profiles, convergence was not achieved until iteration 138, producing 

inaccurate results. Normalisation also reduced the accuracy of the results, and when 

the “spectra divided by Euclidean norm” normalisation option was chosen then an 

error occurred.  
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Figure 4.10 - Estimated concentration profiles (by MCR-ALS) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C with acetic acid 

dosed in approximately one hour after the addition of butanol (acquired using the Keit 

spectrometer), with no unimodality applied. 

The chosen optimum results were therefore obtained by applying the reference spectra 

as initial estimates, manually inputting the number of components, and applying non-

negativity to the spectral and concentration profiles, unimodality with a tolerance 

value of 1.3 to the concentration profiles and concentration equality constraints using 

the “lower or equal than” function. The convergence criterion was set to 0.1, the 

maximum number of iterations was set to 500 (although the algorithm did not reach as 

many iterations as that for any of the settings applied) and no normalisation was 

applied.  
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the parameters as described above did not result in a better estimate, therefore 

GUIPRO was more effective at resolving the reaction mixture spectra than MCR-ALS.  

The spectral profiles obtained using MCR-ALS are shown in Figure 4.12. The 

estimated spectra are similar to the references, however they differ to the references 

slightly more than the GUIPRO estimates did. The root mean square spectral residuals 

are displayed in Table 4.3, and the mean value for the MCR-ALS estimates was 

approximately double that of the GUIPRO estimates (0.347 compared to 0.180). The 

butanol estimate (with a root mean square spectral residual of 0.470) differed the most 

to the corresponding reference spectrum and was relatively poor. Peaks from the other 

components, particularly acetic anhydride, appear to have interfered with the butanol 

profile and caused extra peaks to appear (e.g. at 1000 cm–1, 1250 cm–1 and just above 

1800 cm–1). This again suggests that MCR-ALS was less effective at resolving the 

components than GUIPRO, and that better estimates can be obtained by applying the 

reference spectra as soft equality constraints than as initial estimates.  

 

Figure 4.11 - Estimated concentration profiles (by MCR-ALS) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C with acetic acid 

dosed in approximately one hour after the addition of butanol (acquired using the Keit 

spectrometer), using the chosen optimum parameters. 

20 30 40 50 60 70 80 90 100

Time/minutes

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
la

ti
v

e
 c

o
n

c
e
n

tr
a

ti
o

n
/a

.u
.

Acetic anhydride

Butanol

Acetic acid

Butyl acetate



 113 

 

Figure 4.12 - Estimated pure spectra (by MCR-ALS, using the chosen optimum 

parameters) of components present in the reaction mixture spectra collected during 

esterification reaction at 40 °C with acetic acid dosed in approximately one hour after the 

addition of butanol (solid lines) and reference pure component spectra (dashed lines), all 

acquired using the Keit spectrometer. 
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Table 4.3 - Root mean square spectral residual values of estimated pure spectra (by GUIPRO 

and MCR-ALS, using the chosen optimum parameters) of components present in 

esterification reaction mixture spectra (from the reaction at 40 °C with acetic acid dosed in 

approximately one hour after the addition of butanol) acquired using the Keit spectrometer. 

Component 
Root mean square spectral residual 

GUIPRO MCR-ALS 

Acetic anhydride 0.077 0.091 

Butanol 0.135 0.470 

Acetic acid 0.180 0.430 

Butyl acetate 0.326 0.396 

Mean value 0.180 0.347 

 

4.3.2.3 PLS Toolbox 

In PLS Toolbox, the reference spectra can be supplied as an initial estimate, equality 

constraints (with or without weightings) or both. If they are not supplied as an initial 

estimate then the number of components can be entered as the initial input instead. 

When the reference spectra were applied as initial estimates but not as equality 

constraints, the algorithm did not achieve convergence. When the reference spectra 

were applied as equality constraints, using the number of components as the initial 

input and using the reference spectra as the initial estimate produced the same results. 

However convergence was achieved with fewer iterations when the reference spectra 

were supplied as the initial estimate, as the initial estimate more closely resembled the 

optimum result.  

Non-negativity was applied to the spectral and concentration estimates using fast non-

negative least squares and the non-negativity tolerance values were left as the default 

of 1 x 10–5. The default convergence tolerance of 1 x 10–8 was used, and the maximum 

number of iterations was set to 1000. A variety of different weightings were applied 

to the spectral constraints. When weightings less than or equal to 1 were applied 

(values of 0, 0.1 and 1 were used) then the algorithm failed to converge before it 

reached the maximum number of iterations. For weightings above 1 (values of 10, 20, 

100, 1000, 10,000, 100,000 and 1,000,000 were used), convergence was achieved but 



 115 

the results were poor. An example is shown in Figure 4.13, in which a weighting of 20 

was used and the relative concentration of acetic anhydride was significantly higher 

than expected in comparison to butanol (approximately 1 a.u. greater). When a 

weighting of infinity (hard) was applied, relatively accurate results were obtained. 

However no deviation from the reference spectra can occur when hard spectral 

equality constraints are applied, so the model is not able to account for any deviation 

due to the interaction of components.  

 

Figure 4.13 - Estimated concentration profiles (by PLS Toolbox) of components present in 

the reaction mixture spectra collected during esterification reaction at 40 °C with acetic 

acid dosed in approximately one hour after the addition of butanol (acquired using the Keit 

spectrometer), with a weighting of 20 applied to the spectral constraints. 

As for GUIPRO, a matrix of equality constraints was applied to the concentration data, 

using zero in the regions where each component was known to be absent and “NaN” 

(i.e. no constraint) when it was known to be present in the reaction mixture. Again, 

this eliminated the noise present in the butanol, acetic acid and butyl acetate profiles 

in the region where only acetic anhydride and pyridine were present, but otherwise did 

not affect the results.  
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Normalisation is not applied by the toolbox when equality constraints are present and 

is always applied when equality constraints are absent. When the reference spectra 

were used as initial estimates and not as equality constraints, the algorithm failed to 

achieve convergence regardless of which method of normalisation was used. Norm 

conditioning also did not improve the results when soft spectral equality constraints 

were applied. Changing the convergence tolerance to 1 x 10–4 (the value used in 

GUIPRO) did not improve the results either. Therefore the optimum results were 

obtained when the reference spectra were applied as hard spectral equality constraints 

and zero was applied as a hard concentration equality constraint whenever a 

component was known to be absent from the reaction mixture.  

The concentration and spectral profiles obtained using the chosen optimum parameters 

are displayed in Figure 4.14 and Figure 4.15 respectively. The spectral estimates were 

the same as the reference spectra, since hard constraints were applied (therefore the 

root mean square spectral residual values were all equal to 0). The concentration 

profiles appeared relatively accurate compared to those expected.1, 2 However the 

relative concentration of butanol was slightly lower than that of acetic anhydride 

throughout the whole reaction (particularly at the start when it was approximately 

0.04 a.u. less). Although the concentration profiles were more accurate than those 

obtained using MCR-ALS, no deviation from the reference spectra was allowed using 

these parameters. The inability to achieve accurate results using soft spectral equality 

constraints was a major disadvantage of using the PLS Toolbox MCR function to 

decompose this dataset. Therefore the use of GUIPRO software produced the most 

accurate results of the three toolboxes, and was most suitable for analysis of this data. 
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Figure 4.14 - Estimated concentration profiles (by PLS Toolbox) of components present in 

the reaction mixture spectra collected during esterification reaction at 40 °C with acetic 

acid dosed in approximately one hour after the addition of butanol (acquired using the Keit 

spectrometer), using the chosen optimum parameters. 
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Figure 4.15 - Estimated pure spectra (by PLS Toolbox, using the chosen optimum 

parameters) of components present in the reaction mixture spectra collected during 

esterification reaction at 40 °C with acetic acid dosed in approximately one hour after the 

addition of butanol (solid lines) and reference pure component spectra (dashed lines), all 

acquired using the Keit spectrometer. 
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4.3.2.4 Conclusions 

Of the three toolboxes evaluated, GUIPRO was the most effective for decomposition 

of the esterification reaction mixture spectra. This was due to the ability to apply the 

reference spectra as soft equality constraints to allow small deviations. Although the 

application of weightings to the constraints was also possible in PLS Toolbox, it 

worsened the results. In the MCR-ALS toolbox, it was not possible to apply soft 

constraints so the reference spectra had to be inputted as initial estimates rather than 

equality constraints. The choice of sensitivity value/weighting was an important 

consideration in GUIPRO and PLS Toolbox, as it affected the accuracy of the results 

obtained and the ability to achieve convergence. The choice of convergence 

tolerance/criterion value was also important, as was the application of non-negativity 

in all three toolboxes and the application of unimodality in MCR-ALS. 

4.3.3 Esterification Reactions at 40 °C 

In the previous section, GUIPRO was found to be the most effective of the three MCR 

toolboxes. This toolbox will now be used to evaluate data from the esterification 

reactions conducted under different conditions. The spectra collected during the course 

of one of the esterification reactions at 40 °C using the Keit spectrometer were shown 

in Figure 4.2 and discussed in section 4.3.2, and the spectra collected during the course 

of the other repeat reactions at 40 °C were similar and can be found in Appendix 4. 

The estimated concentration profiles and spectra of the first esterification reaction at 

40 °C are displayed in Figure 4.16 and Figure 4.17 respectively. These profiles were 

calculated by GUIPRO, using the optimised parameters described in section 4.3.2. The 

estimated concentration profiles and spectra of the other reactions carried out at 40 °C 

can be found in Appendix 4. 
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Figure 4.16 - Estimated concentration profiles (by GUIPRO) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C (first repeat) using 

the Keit spectrometer. 
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Figure 4.17 - Estimated pure spectra (by GUIPRO) of components present in the reaction 

mixture spectra collected during esterification reaction at 40 °C (first repeat) using the Keit 

spectrometer (solid lines), and reference pure component spectra collected using the Keit 

spectrometer (dashed lines).  
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At the start of the reaction, only acetic anhydride (blue) was present. A slight decrease 

in concentration was observed at just after 20 minutes, due to the addition of pyridine. 

When butanol (green) was added, the relative concentration of acetic anhydride halved 

and became equal to that of butanol. The concentrations of the two reactants then 

decreased at the same rate (rapidly in the first fifteen minutes after the addition of 

butanol), as the concentrations of the products increased. Noise was present in the 

profiles due to variation of the spectra between scans, as the data consisted of 

unaveraged single scans. The noise can be reduced by averaging the spectra or by 

increasing the number of scans at the expense of temporal resolution, if desired. The 

noise was absent when hard concentration equality constraints of zero were applied 

(i.e. in the concentration profiles of butanol, butyl acetate and acetic acid before 

butanol was added to the reaction vessel), and was greatest in the butanol profile due 

to the low relative absorbance of butanol compared to the other components.  

The concentration profiles obtained during the reaction were similar to those described 

by Owen et al.1 and Richards et al.2, however the relative concentration of butyl acetate 

(purple) formed during the reaction was estimated as double the relative concentration 

of acetic acid (turquoise) rather than the same. It was hypothesised that the observed 

difference could be due to absorbance in electromagnetic spectroscopy being 

dependent on the volume fraction rather than the molar fraction of the components.28, 29 

Owen et al.1 used mass spectrometry to monitor the reaction, and Richards et al.2 used 

NIR spectroscopy but treated the two products together as one pseudo-product. This 

hypothesis will be investigated in section 4.3.4. The estimated final concentration of 

each reactant was similar, as expected. Acetic anhydride and butanol have similar 

volume and molar ratios (as 125 mL of acetic anhydride and 121 mL of butanol are 

equimolar), so this observation is consistent with the hypothesis.  

The spectral estimates of each component (Figure 4.17) were similar to the references, 

however slight variations were observed. This was due to interaction of the 

components within the reaction mixture (which will not be observed in the reference 

spectra). The ability to apply the reference spectra as soft equality constraints during 

MCR allows for this deviation, and is an advantage of GUIPRO. The root mean square 

spectral residual values for the three repeat reactions at 40 °C are displayed in Table 

4.4 and were similar overall for each repeat, with the mean value differing by no more 
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than 0.035. The value obtained for acetic anhydride in the first reaction was higher 

than for the second and third reactions, however the difference was less than 0.1 and 

no other significant differences in root mean square spectral residual were observed 

between the repeats. This further illustrates that the predictions obtained by GUIPRO 

were reproducible. 

Table 4.4 - Root mean square spectral residual values of estimated pure spectra (by 

GUIPRO) of components present in esterification reaction mixture spectra acquired at 40 °C 

(three repeats) using the Keit spectrometer. 

Component 
Root mean square spectral residual 

1st repeat 2nd repeat 3rd repeat 

Acetic anhydride 0.160 0.068 0.073 

Butanol 0.133 0.137 0.130 

Acetic acid 0.172 0.173 0.165 

Butyl acetate 0.372 0.327 0.329 

Mean value 0.209 0.176 0.174 

 

4.3.3.1 Addition of Acetic Acid 

As the products formed at the same rate, an additional reaction was performed at 40 °C, 

in which extra acetic acid was dosed into the vessel at the end of the reaction. This was 

to break the rank deficiency of the spectra, to ensure that it had not caused inaccuracies 

in the concentration estimates of the products. The estimated concentration profile of 

this reaction is shown in Figure 4.18, overlaid with the temperature profile of the 

reaction. The spectra collected during the course of the reaction were displayed in 

Figure 4.2. The concentration estimates obtained were similar to those observed in 

Figure 4.16. The point at which acetic acid was added can be observed by a sharp 

decrease in the butyl acetate concentration accompanied by a sharp increase in the 

acetic acid concentration, just before 90 minutes. 
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Figure 4.18 - Estimated concentration profiles (by GUIPRO) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C with acetic acid 

dosed in approximately one hour after the addition of butanol (acquired using the Keit 

spectrometer), and temperature profile recorded using a thermocouple. 

The relative concentration of butyl acetate at the end of the reaction was still 

approximately double that of acetic acid, until the point where extra acetic acid was 

dosed into the reaction (after which the relative concentrations of the two products 

were similar). The estimated spectra of the components (Figure 4.8) were also similar 

to those observed when acetic acid was not dosed into the reaction vessel. This 

indicates that the dosing of extra acetic acid into the reaction mixture had little effect 

on the estimates, and that GUIPRO was able to resolve the two products effectively 

based on their reference spectra alone.  

Changes in temperature during the course of the reaction may affect the spectra, 

therefore the temperature profile of the reaction mixture was measured and overlaid 

with the concentration estimates (Figure 4.18). Initially the temperature was stable at 

40 °C, with a marginal decrease observed when pyridine was added, before the 

temperature returned to 40 °C again. When butanol was added (at approximately 30 

minutes), the temperature significantly decreased to around 20 °C. However the 

reaction was exothermic and the temperature rapidly increased, reaching almost 65 °C 
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before the water jacket was able to cool the reaction mixture. Although the cooling 

was initially rapid, it slowed once the reaction mixture reached 45 °C and the mixture 

did not reach 40 °C again until approximately 30 minutes after the butanol was added. 

A small decrease in temperature (approximately 5 °C) was also observed when acetic 

acid was dosed into the vessel at the end of the reaction, and the temperature was again 

slow to recover.  

Reference spectra of each product were measured at 70 °C to investigate whether the 

increase in temperature affected the GUIPRO estimates. The concentration profiles 

obtained when the reference spectra collected at 70 °C were used instead of those 

collected at 40 °C are shown in Figure 4.19 and the corresponding spectral estimates 

can be found in Appendix 4. Similar estimates were obtained as to when the reference 

spectra were collected at 40 °C, with a slightly larger difference in estimated 

concentration between the two products (around 0.09 a.u. greater). This confirms that 

the increase in temperature was not the cause of the differences observed between the 

estimated acetic acid and butyl acetate concentration profiles. 
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Figure 4.19 - Estimated concentration profiles (by GUIPRO) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C with acetic acid 

dosed in approximately one hour after the addition of butanol (acquired using the Keit 

spectrometer). Product reference spectra collected at 70 °C. 
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GUIPRO, are shown in Figure 4.20. The measured spectra of the reference mixtures 

can be found in Appendix 4. There was a small amount of variation between each set 

of five repeat measurements (< 0.05 a.u.), but overall the concentration estimates of 

each repeat were similar.  

 

Figure 4.20 - Estimated concentration profiles (by GUIPRO) of 1:1 mixture by volume of 

acetic acid and butyl acetate (first five data points) and 1:1 molar mixture of acetic acid and 

butyl acetate (last five data points) measured using the Keit spectrometer. 
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compared to 0.62 ± 0.02 a.u. and 0.33 ± 0.01 respectively at the end of the reaction). 

This suggests that at the end of the reaction the products were present in a 1:1 molar 

ratio, as expected. The small difference observed (approximately 0.06 a.u.) could be 

due to the presence of the reactants and catalyst in the reaction mixture, as interaction 

of the products with these components may produce small alterations to the spectra. 

1 2 3 4 5 6 7 8 9 10

Measurement number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
la

ti
v

e
 c

o
n

c
e
n

tr
a

ti
o

n
/a

.u
.

Acetic acid

Butyl acetate



 128 

Table 4.5 - Estimated relative concentrations by GUIPRO of acetic acid and butyl acetate 

present in spectra of 1:1 mixture by molarity, 1:1 mixture by volume and the last five spectra 

acquired during the esterification reaction at 40 °C before the addition of extra acetic acid, 

all acquired using the Keit spectrometer. 

Mixture Relative concentration of 
acetic acid/a.u., n = 5 

Relative concentration of 
butyl acetate/a.u., n = 5 

1:1 by molarity (1:2.3 by 
volume) 0.39 ± 0.02 0.68 ± 0.03 

1:1 by volume (1:0.43 by 
molarity) 0.63 ± 0.02 0.42 ± 0.03 

End of reaction 0.33 ± 0.01 0.62 ± 0.02 

 

For the 1:1 mixture of the products by volume, the estimated relative concentration of 

butyl acetate was lower than that of acetic acid (0.42 ± 0.03 a.u. and 0.63 ± 0.02 a.u. 

respectively). If absorbance in MIR spectroscopy is dependent on volume fraction, the 

ratio of the estimated concentrations should be 1:1. The difference observed could be 

due to change in the volume fraction upon mixing the components. Alternatively it 

could have been caused by experimental error or by inability to fully resolve the 

components by GUIPRO. The corresponding estimated spectra are shown in Figure 

4.21 and were similar to the estimates of the product spectra at the end of the 

esterification reaction (Figure 4.8 and Figure 4.17), although a slight difference (< 0.1 

in absorbance) was observed between the estimated and reference acetic acid peaks at 

approximately 1300 cm–1 and 1700 cm–1. The root mean square spectral residuals of 

the estimates were 0.287 and 0.305 for acetic acid and butyl acetate respectively, 

confirming that the difference between the estimated and reference spectra was 

relatively small.  
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Figure 4.21 - Estimated pure spectra (by GUIPRO) of acetic acid and butyl acetate present 

in 1:1 mixtures by volume and molarity measured using the Keit spectrometer (solid lines), 

and reference pure component spectra measured using the Keit spectrometer (dashed 

lines). 

4.3.4.2 Low-Field NMR Spectroscopy 

To further assess the accuracy of prediction of the product concentrations by the Keit 

spectrometer, low-field NMR spectroscopy was used. The low-field 1H NMR spectra 
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after the addition of butanol to the reaction mixture are shown in Figure 4.22. The MIR 

spectra collected during the course of the reaction and the concentration profiles and 

pure component spectra estimated by GUIPRO can be found in Appendix 4.  
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mixture as the reaction progressed.  
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Figure 4.22 - Low-field 1H NMR spectra of esterification reaction mixture samples in 

chloroform, extracted at 5 minutes, 30 minutes and 1 hour after the addition of butanol. 
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Table 4.6 - Assignment of the main peaks in low-field 1H NMR spectra of samples extracted 

from esterification reaction mixture.  

Peak position/ppm Multiplicity Peak assignment 

0.5 – 2.0 Overlapping multiplets Butyl groups of butanol and butyl acetate 

2.03 Singlet Acetyl group of butyl acetate 

2.07 Singlet Acetyl group of acetic acid 

2.20 Singlet Acetyl group of acetic anhydride 

3.5 – 4.3 Overlapping multiplets Butyl groups of butanol and butyl acetate 

5.65, 8.10 or 8.90 Singlet OH group of acetic acid 

7.26 Singlet Chloroform 

 

The low-field 1H NMR spectrum of the mixture expected at the end of the reaction 

(containing 45 % by molarity of each product and 5 % of each reactant) is shown in 

Figure 4.23. This spectrum approximately resembled the spectrum of the reaction 

mixture collected at one hour, confirming that the products formed in a 1:1 ratio during 

the reaction. The only difference between the two spectra was that the OH peak 

appeared at lower chemical shift in the expected mixture (just below 8 ppm compared 

to just below 9 ppm), and this can be attributed to a difference in pH between the two 

mixtures due to the absence of pyridine in the reference mixture. 
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Figure 4.23 - Low-field 1H NMR spectra of expected mixture at end of esterification 

reaction (45 % acetic acid, 45 % butyl acetate, 5 % acetic anhydride and 5 % butan-1-ol by 

molarity, in chloroform). 

The low-field 1H NMR spectrum of the mixture containing 60 % butyl acetate, 30 % 

acetic acid and 5 % of each reactant (by molarity) is shown in Figure 4.24. This is the 

approximate composition which would be expected if the estimates of relative 

concentration obtained using the Keit spectrometer represented the molar ratios of the 

components present at the end of the esterification reaction. The acetyl singlet peak at 

lowest chemical shift (butyl acetate) now has a higher intensity than the adjacent acetyl 

singlet (acetic acid). In the spectrum of the mixture at the end of the esterification 

reaction, the acetic acid singlet peak had a higher intensity than the butyl acetate 

singlet. In addition, the chemical shift of the OH peak in Figure 4.24 was significantly 

lower than at the end of the reaction (just below 7 ppm compared to just below 9 ppm). 

These results confirm that butyl acetate and acetic acid formed in a 1:1 molar ratio 

rather than a 2:1 molar ratio, and that the difference in concentration observed in the 

GUIPRO estimates can be attributed to absorbance being dependent on the volume 

ratio of the components present in the MIR spectra. Therefore the Keit spectrometer 

was able to provide accurate predictions of concentration during the esterification 

reaction. 
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Figure 4.24 - Low-field 1H NMR spectra of 60 % butyl acetate, 30 % acetic acid, 5 % acetic 

anhydride and 5 % butan-1-ol (by molarity) in chloroform. 
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indicating that the reaction had not fully progressed to completion after an hour. 
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Figure 4.25 - Estimated concentration profiles (by GUIPRO) of components present in the 

reaction mixture spectra collected during esterification reaction at 50 °C using the Keit 

spectrometer. 

 

Figure 4.26 - Estimated concentration profiles (by GUIPRO) of components present in the 

reaction mixture spectra collected during esterification reaction at 20 °C using the Keit 

spectrometer. 
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The root mean square spectral residuals are displayed in Table 4.7, with the values 

obtained for the reaction at 40 °C in which extra acetic acid was added shown for 

comparison. The estimated spectra can be found in Appendix 4. Similar values were 

obtained for the reactions performed at 40 °C and 50 °C, but the values were slightly 

larger for the reaction performed at 20 °C (0.234 on average, compared to 0.180 and 

0.160). This indicates that small changes in the spectra occurred due to the difference 

in temperature (as the reference spectra were acquired at 40 °C), and that GUIPRO 

was able to estimate these changes. 

Table 4.7 - Root mean square spectral residual values of estimated pure spectra (by 

GUIPRO) of components present in esterification reaction mixture spectra acquired at 20 °C, 

40 °C and 50 °C (with reference spectra acquired at 40 °C) using the Keit spectrometer. 

Component 
Root mean square spectral residual 

20 °C 40 °C 50 °C 

Acetic anhydride 0.136 0.077 0.066 

Butanol 0.251 0.135 0.100 

Acetic acid 0.177 0.180 0.167 

Butyl acetate 0.371 0.326 0.305 

Mean value 0.234 0.180 0.160 

 

The average rates of formation of butyl acetate over the first five minutes of the 

reactions performed at 20 °C, 40 °C and 50 °C are shown in Table 4.8. At 40 °C, the 

average rate of formation of butyl acetate was 0.062 a.u./min, and at 50 °C the average 

rate increased by 0.013 a.u./min. The average rate of formation of butyl acetate was 

significantly lower at 20 °C (0.034 a.u.); nearly half the average rate calculated at 

40 °C and less than half the average rate calculated at 50 °C. This corresponds to the 

differences observed in the concentration profiles of the reactions performed at 

different temperatures and is as expected, since increasing the temperature of the 

vessel should increase the rate of the reaction. These results demonstrate the 

effectiveness of the Keit spectrometer at measuring concentration changes throughout 

the course of a reaction and detecting differences in reaction rate. The Keit 

spectrometer is therefore suitable for in situ reaction monitoring of liquid processes. 
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Table 4.8 - Average rate of butyl acetate formation over first five minutes of the esterification 

reactions performed at 20 °C, 40 °C and 50 °C, based on the relative concentration of butyl 

acetate estimated by GUIPRO after 5 minutes (average of 5 consecutive data points). 

Reaction 
temperature/°C 

Relative butyl acetate concentration after 
5 min/a.u. 

Average reaction 
rate/(a.u./min) 

20 0.173 ± 0.019 0.034 

40 0.309 ± 0.017 0.062 

50 0.375 ± 0.025 0.075 

 

4.4 Conclusions 

The suitability of the Keit spectrometer for in situ reaction monitoring has been 

demonstrated. The concentration changes occurring during the course of the 

esterification reaction could be measured accurately, and were in agreement with those 

obtained using low-field NMR spectroscopy. It was also possible to detect differences 

in reaction rate due to changes in the temperature of the reaction vessel. These results 

confirm the ability of the Keit spectrometer to effectively monitor liquid processes in 

situ, providing new opportunities for process monitoring in the mid-infrared region. 

Multivariate curve resolution has been shown to be suitable for decomposition of the 

spectra collected during the course of the esterification reaction into their pure 

component contributions. Of the three MCR toolboxes used, GUIPRO was found to 

be the most effective due to the ability to apply penalty functions to the constraints. 

Although it was also possible to apply penalty functions using PLS Toolbox, this 

produced poorer results than when the reference spectra were applied as hard equality 

constraints. GUIPRO would therefore be recommended for the decomposition of MIR 

reaction mixture spectra in future. The choice of sensitivity value and convergence 

tolerance also affected the results obtained, so these parameters are important to 

consider. 
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5 Alignment of Low-Field NMR Spectra 

5.1 Introduction  

The commercial availability of benchtop NMR spectrometers operating in the 

frequency domain at low field provides a promising solution to some of the limitations 

that have prevented the widespread use of NMR spectroscopy in process monitoring, 

e.g. the size and cost of high-field instruments (as discussed in Chapter 1). However 

one issue with NMR spectroscopy is that the shifting of peaks occurs to a much greater 

extent than in optical spectroscopy. Peak shifts can arise due to a variety of factors, 

such as interaction of components and changes in pH or temperature.1 Deviations from 

the optimum operating conditions of the instrument can also cause peaks to shift.2 The 

effect of peak shifts on the spectra is likely to be more detrimental at low field than at 

high field due to the smaller chemical shift dispersion.  

The shifting of peaks of the same analyte between spectra can produce problems when 

chemometrics is performed.1, 3 It can reduce the effectiveness of calibration models, 

e.g. PLS, as the algorithm may not recognise shifted peaks as the same analyte. This 

will also prevent multivariate curve resolution from working. In calibration transfer, 

peak movement can cause difficulties in calculating the transfer function, and 

application of the transfer function to the test spectra may not be successful if peaks 

have shifted.  

Bucketing (or binning) is a common solution to the problem of peak shift. It involves 

reduction of the spectra by dividing them into regions called buckets, within which the 

data points are combined. The bucketed spectra therefore consist of fewer data points 

than the original spectra, and the variation between the spectra is reduced. This also 

has the advantage of decreasing the size of the dataset, making it easier to handle 

computationally.4, 5 In conventional bucketing, each bucket is the same size, therefore 

some peaks may be split across different buckets.4 An optimised bucketing algorithm 

has been demonstrated by Sousa et al.4 as a solution to this issue. This algorithm allows 

variation in the boundaries of buckets by the inclusion of a slackness parameter. The 

slackness defines the amount of movement allowed by the bucket boundary, as a 

percentage of the bucket width. Local minima are selected as the boundaries between 

buckets, using user-defined bucket size and slackness values, and the resulting buckets 
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vary in size. However if one of the local minima occurs within a multiplet peak, it may 

still be possible for peaks to be split across different buckets. A drawback of bucketing 

is that the fine structure of the peaks is lost due to the inclusion of fewer data points. 

In addition, it can only eliminate peak shifts which are small enough to occur within 

the spectral range of a bucket, so when large peak shifts are present then large bucket 

sizes are necessary and more of the peak structure will be lost. 

An alternative solution to the issue of peak shift is to perform alignment of the peaks 

in the spectra. A variety of methods have been demonstrated for alignment of peaks in 

high-field NMR spectra, but there is no information in the literature on their 

effectiveness at low field. In this chapter, a selection of alignment methods used at 

high field have been evaluated for the alignment of peaks in low-field NMR spectra. 

Two different sets of spectra were used, one exhibiting little peak movement or overlap 

and the other exhibiting a large amount of peak movement and overlap. The 

performance of the alignment methods was assessed in each case. The alignment 

methods evaluated are described in the following subsections, and were chosen 

because the algorithms are publicly available and they have been shown to be effective 

at high field. Bucketing was also performed on each set of spectra, as a comparison.  

5.1.1 Description of Alignment Methods 

5.1.1.1 Correlation Optimised Warping 

Correlation optimised warping (COW)6 was originally developed for the alignment of 

chromatographic peaks. It separates spectra into segments of equal length, and uses 

piecewise linear stretching and compression (warping) of the segments to align peaks 

to those of a target spectrum. The peaks are warped by linear interpolation in the x 

direction only and the algorithm aims to match peak shape. The sections are prevented 

from overlapping and their order is retained. The optimum solution is determined 

through the use of dynamic programming, a programming method which calculates 

the global optimum by examination of all possible solutions one by one. Correlation 

coefficients between the warped and target spectra are calculated for each segment, 

and the combination of warpings which produces the largest total correlation 

coefficient is selected as the optimum. The segment length, slack (the maximum 

amount of warping allowed) and target spectrum can be chosen manually by the user. 
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Although COW was designed for the alignment of chromatographic peaks, it has also 

been demonstrated for the alignment of peaks in high-field NMR spectra.7-9 In some 

cases it was necessary to split the spectra into regions before COW was performed in 

order for it to work effectively. 

5.1.1.2 Peak Alignment by FFT and Recursive Alignment by FFT 

Peak alignment by FFT (PAFFT) and recursive alignment by FFT (RAFFT)10 both use 

fast Fourier transform (FFT) cross-correlation to optimise the alignment of spectral 

segments to those of a reference spectrum. They were developed for the alignment of 

chromatographic and spectral data (demonstrated on gas chromatography and mass 

spectrometry datasets). In PAFFT, the spectra are split into segments of equal size, 

which are then aligned. In RAFFT the whole spectrum is first aligned, then it is divided 

into two segments which are aligned again. This process is repeated until a minimum 

segment size is reached. The minimum segment size is determined automatically in 

RAFFT, which reduces the number of input parameters required, and the initial global 

alignment of the spectra reduces the extent of local alignment necessary. In both 

methods, the spectra are aligned by shifting rather than warping and the segments are 

treated independently. The absence of warping eliminates peak distortion, however 

insertion/deletion of data points at the segment boundaries is necessary and can 

produce artefacts in the spectra.  

The maximum shift allowed for each segment can be defined in both algorithms, and 

for PAFFT, the minimum size of each segment must also be defined. In RAFFT a 

“lookahead” parameter can be applied, which allows the algorithm to “look ahead” a 

certain number of iterations and check for local misalignments after the global 

optimum has been determined. The use of PAFFT and RAFFT has been demonstrated 

for the alignment of high-field NMR spectra. These methods were shown to be faster 

than COW (as FFT is faster than dynamic programming) and produced comparable 

results, with RAFFT performing best.11 

5.1.1.3 Recursive Segment-Wise Peak Alignment 

Recursive segment-wise peak alignment (RSPA)12 utilises a recursive algorithm to 

align segments by FFT, first globally then locally, like RAFFT. It differs to RAFFT 
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through the use of a segmentation method designed to keep multiplets within the same 

segment and align them together instead of as separate peaks. The sample with peaks 

most closely matching the other spectra can be chosen as the reference by the 

algorithm, through the calculation of a “closeness index” based on the correlation 

coefficients of the spectra. The segments are again treated independently. The 

parameters which can be altered are the peak height and J-coupling constant thresholds 

during the segmentation step, the minimal segment size and validation of segment 

alignment (measured as the correlation between scaled reference and test segments) 

during the recursive alignment step, and the maximal shift size and alignment 

acceptance criterion (to prevent local misalignment).  

RSPA has been demonstrated for the alignment of high-field NMR spectra of 

metabolites.12-14 The performance of RSPA was compared to that of COW and 

PAFFT, but not RAFFT. RSPA was found to align smaller peaks more effectively than 

PAFFT due to the local recursion step. The advantages of RSPA over COW were that 

the shapes of peaks were preserved (due to the use of shifting instead of warping) and 

that the RSPA algorithm was computationally faster. 

5.1.1.4 Interval Correlation Shifting 

Interval correlation shifting (icoshift) was designed for the alignment of 1D NMR 

spectra.3 The spectra are split into segments, which are independently shifted in order 

to maximise the cross-correlation to a target spectrum using FFT, similar to PAFFT 

and RAFFT. However the advantage of icoshift is that it is possible to customise the 

intervals of the segments so that they do not necessarily have to be the same length. 

This can help to avoid the occurrence of artefacts. Like most methods, it is not possible 

to change the order of the peaks. The method is rapid, as all spectra are aligned 

simultaneously. The target spectrum, number/length of intervals and maximum shift 

correction can be specified. It is also possible to calculate the target spectrum from the 

inputted spectra in a number of ways (e.g. averaging the spectra or selection of the 

corresponding spectrum having the maximum features for each segment), apply the 

algorithm to the whole spectrum with no intervals, shift the spectra according to 

reference signals, choose between using the previous point or “NaN” to fill the gaps 
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in the spectra, and carry out a co-shift preprocessing step (similar to icoshift but the 

whole spectrum is aligned globally rather than splitting into intervals).  

There are a number of examples of icoshift being used to align peaks in high-field 

NMR spectra,15-19 and a couple of examples of it being applied to low-field NMR 

spectra.20, 21 However the success of its performance at low field has not been 

discussed. At high field, icoshift has been found to be comparable to PAFFT and 

RAFFT,11 and more effective than COW for the alignment of metabolomic spectra.3 

It has also been compared to RSPA for the alignment of metabolomic spectra3, 14 and 

was more effective in some cases, but less effective in other cases. In addition, the 

icoshift algorithm was computationally faster than COW and RSPA.3  

5.1.1.5 Progressive Consensus Alignment of NMR Spectra 

In progressive consensus alignment of NMR spectra (PCANS),22 peak profiles 

(consisting of the heights, widths and chemical shifts of peaks) are created for each 

spectrum. Similar pairs of peak profiles are first identified by calculation of the 

correlation, and naive alignment of the peaks in these profiles is then performed. The 

naive alignment step involves the alignment of corresponding peaks in each pair of 

profiles (those in which all peak attributes exhibit ≥ 90 % similarity). Crossover of 

peaks is not allowed and the maximum movement of peaks is limited to a user defined 

chemical shift value. The unaligned regions of the resulting spectra are then aligned 

using dynamic programming recursion, which involves the assignment of similarity 

scores for each alignment based on the height, width and chemical shift position for 

each peak, with penalties inflicted for unaligned peaks. This produces a consensus 

spectrum, and pairs of consensus spectra are aligned as before until a final consensus 

spectrum is obtained. A number of different parameters can be altered, including 

maximum expected chemical shift, minimum separation, number of points in peaks, 

number of neighbouring points, percentage of neighbours kept, gap penalty, boundary 

penalty, minimum similarity for match, minimum similarity for naive alignment and 

zero fill value. The final consensus spectrum is used to align the original spectra, and 

eliminates the need for a reference. PCANS has been demonstrated for the alignment 

of small peak shifts in high-field NMR spectra of metabolites.22 
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5.2 Experimental 

5.2.1 Solvent Mixture Analysis 

5.2.1.1 Toluene, Octene and Dibutyl Ether Mixtures 

To produce a set of spectra on which to perform a comparison of the alignment 

methods, sixteen calibration samples and six test samples were prepared. The samples 

contained varying concentrations of toluene (≥ 99.3 %, Sigma Aldrich, Steinheim, 

Germany), octene (≥ 98 %, Sigma Aldrich, Steinheim, Germany) and dibutyl ether 

(≥ 99.0 %, Merck KGaA, Darmstadt, Germany) in units of % w/w, as detailed in Table 

5.1. A ternary diagram of the solvent concentrations is displayed in Figure 5.1 and is 

the same as for the solvent mixture analysis performed by MIR spectroscopy (section 

3.2.3), with toluene in place of acetone, octene in place of ethanol, and dibutyl ether 

in place of ethyl acetate. These mixtures were chosen as each component has at least 

one clearly resolvable peak, and a small amount of peak shift was present between the 

samples (< 0.2 ppm). 

 

Figure 5.1 - Concentrations (in units of % w/w) of solvents in ternary mixtures, calibration 

samples shown in grey and test samples shown in red.  
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Table 5.1 - Concentrations of toluene, octene and dibutyl ether present in mixtures. 

Sample 
Concentration/(% w/w) 

Toluene Octene Dibutyl ether 

Calibration sample 1 0.0 100.0 0.0 

Calibration sample 2 100.0 0.0 0.0 

Calibration sample 3 0.0 0.0 100.0 

Calibration sample 4 50.2 49.8 0.0 

Calibration sample 5 50.1 0.0 49.9 

Calibration sample 6 0.0 50.1 49.9 

Calibration sample 7 33.0 33.4 33.6 

Calibration sample 8 65.7 17.0 17.3 

Calibration sample 9 17.7 64.5 17.8 

Calibration sample 10 18.3 17.4 64.3 

Calibration sample 11 66.7 33.3 0.0 

Calibration sample 12 33.4 66.6 0.0 

Calibration sample 13 66.8 0.0 33.2 

Calibration sample 14 34.0 0.0 66.0 

Calibration sample 15 0.0 66.7 33.3 

Calibration sample 16 0.0 34.2 65.8 

Test sample 1 6.0 83.6 10.4 

Test sample 2 26.9 60.0 13.1 

Test sample 3 40.4 34.1 25.5 

Test sample 4 81.6 11.0 7.5 

Test sample 5 46.3 7.2 46.6 

Test sample 6 11.2 18.7 70.1 

 

Each mixture was prepared to a total mass of 5 g, and 150 µl of TMS (≥ 99.5 %, Sigma 

Aldrich, Steinheim, Germany) was then added as an internal reference. The internal 

reference was added in order to provide a peak of known chemical shift to which the 

spectra could be globally aligned and a singlet reference peak for reference 

deconvolution (which will be discussed in Chapter 6). After the addition of TMS, 
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0.6 mL of each sample was added to an NMR tube for analysis by low-field 1H NMR 

spectroscopy. 

A Magritek Spinsolve Carbon NMR spectrometer with a proton channel operating at 

43 MHz was used throughout this work, operated via Spinsolve Expert software. The 

receiver gain was set to 31 dB and the dwell time was set to 200 µs. An acquisition 

delay of 20 µs, an acquisition time of 3.2768 s, a bandwidth of 5 kHz and a 90° pulse 

duration of 11.1 µs were used. Each measurement was a single scan consisting of 

16,384 data points, and was zero filled to 65,536 data points in order to improve the 

digital resolution of the spectra. Automatic phase correction was performed by the 

software, consisting of an unoptimised first order correction which is automatically 

applied to all spectra and a zero order correction optimised for each spectrum. 

Shimming was performed using a standard containing 90 % D2O and 10 % H2O, 

supplied by Magritek. The frequency of the transmitter and receiver were set to the 

frequency of the peak in the spectrum of the D2O/H2O sample used for shimming. 

In order to minimise the effect of sample temperature on the instrument, each tube was 

heated in a water bath at approximately 30 °C for two minutes before insertion into 

the NMR spectrometer. This should allow the sample to reach approximately the 

temperature of the magnet (28.5 °C) by the time the tube was removed from the water 

bath, dried and taken to the instrument for analysis (as measured using a thermocouple 

inserted into an NMR tube containing an example mixture). Between analyses, the 

tubes were stored in a freezer at approximately –20 °C to prevent evaporation of the 

solvents. Before analysis, each sample was left in the instrument for five minutes to 

ensure that it had reached the temperature of the magnet and to allow time for 

polarisation to occur. This will be discussed in more detail in Chapter 6. Each sample 

was analysed three times and the measurements were made in a random order to avoid 

the effect of systematic instrumental changes over time.  

5.2.1.2 Toluene, Ethanol and Ethyl Acetate Mixtures 

An additional set of ternary mixtures, exhibiting greater peak shift than the toluene, 

octene and dibutyl ether mixtures (up to 1.5 ppm) were then analysed in order to further 

evaluate the effectiveness of the alignment methods. These mixtures contained varying 

concentrations of toluene (≥ 99.3 %, Sigma Aldrich, Steinheim, Germany), ethanol 
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(99.9 %, VWR, Fontenay-sous-Bois, France) and ethyl acetate (≥ 99.5 %, Sigma 

Aldrich, Steinheim, Germany), as detailed in Table 5.2.  

Table 5.2 - Concentrations of toluene, ethanol and ethyl acetate present in solvent mixtures. 

Sample 
Concentration/(% w/w) 

Toluene Ethanol Ethyl acetate 

Calibration sample 1 0.0 100.0 0.0 

Calibration sample 2 100.0 0.0 0.0 

Calibration sample 3 0.0 0.0 100.0 

Calibration sample 4 50.2 49.8 0.0 

Calibration sample 5 50.0 0.0 50.0 

Calibration sample 6 0.0 50.0 50.0 

Calibration sample 7 33.3 33.1 33.7 

Calibration sample 8 64.4 17.8 17.9 

Calibration sample 9 17.3 65.7 17.0 

Calibration sample 10 17.3 16.9 65.7 

Calibration sample 11 66.7 33.3 0.0 

Calibration sample 12 33.7 66.3 0.0 

Calibration sample 13 66.6 0.0 33.4 

Calibration sample 14 33.4 0.0 66.6 

Calibration sample 15 0.0 66.3 33.7 

Calibration sample 16 0.0 33.7 66.3 

Test sample 1 6.6 84.5 9.0 

Test sample 2 26.1 60.6 13.4 

Test sample 3 41.9 33.2 24.9 

Test sample 4 82.3 10.4 7.4 

Test sample 5 47.0 7.2 45.8 

Test sample 6 11.2 18.2 70.6 

 

The compositions of the mixtures can be described by the ternary diagram in Figure 

5.1, with ethanol in place of octene and ethyl acetate in place of dibutyl ether. Each 

sample was prepared to a mass of 10 g in total, and 300 µl of TMS (≥ 99.5 %, Sigma 
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Aldrich, Steinheim, Germany) was added. Analysis was performed as for the toluene, 

octene and dibutyl ether mixtures (section 5.2.1.1). 

5.2.1.3 Alteration of Shim Settings 

Spectra with different lineshapes were generated in order to simulate the effect of 

changing instrument/conditions (which will be discussed in more detail in Chapter 6). 

In this chapter, the effectiveness of optimising the alignment parameters under one set 

of conditions and applying these optimised parameters to spectra of the same samples 

acquired under different conditions was assessed. This will be described in section 

5.2.2. In Chapter 6, these datasets will be used to compare the effectiveness of 

calibration transfer and reference deconvolution. In order to generate spectra with 

different lineshapes, previously saved shims which are not optimal can be loaded. With 

this instrument, similar spectra are produced when the shim is optimised prior to 

analysis on different days, therefore changes in lineshape were produced by loading 

previously saved shims. Such changes in lineshape may occur if an instrument is 

changed or repaired, or if a long process is monitored (and shimming during the 

process is not practical). 

Analysis of each mixture set was first performed using a shim optimised before 

analysis, and was repeated on a different day using sub-optimal shim settings. For the 

toluene, ethanol and ethyl acetate mixture set, previously saved shims were loaded. 

The loaded shims had been optimised one week, one month and four months prior to 

analysis. When the toluene, octene and dibutyl ether mixture set was analysed, suitable 

shims were not available to load so a simulated shim was loaded instead. The simulated 

shim was calculated by multiplying the difference between a newly acquired shim and 

a shim saved seven months previously by 0.3, then adding the result to the newly 

acquired shim. All shimming was performed using the D2O/H2O standard sample, and 

analysis using each shim was performed on a different day due to the length of time 

required to analyse the samples. 

The variation in lineshape within each set of spectra was measured by the mean and 

standard deviations of the width of the TMS peak at 50 % peak height, and these values 

are displayed in Table 5.3. The spectra of the calibration samples containing toluene, 

octene and dibutyl ether were analysed again on a different day using optimal shim 
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settings (this analysis will be described in section 6.2.1.3), and the TMS peak widths 

obtained for these spectra are also included in the table. The similarity of the values in 

the first two rows of the table demonstrates that the instrument is capable of achieving 

relatively similar linewidths on different days.  

For the toluene, ethanol and ethyl acetate mixture set, the shim optimised one week 

before analysis produced a mean TMS peak width similar to those produced by the 

shims optimised just before analysis, and the shim optimised four months before 

analysis produced extremely large peak widths (a mean value of 3.61 Hz compared to 

0.73 Hz when the shim was optimised just before analysis). Therefore the dataset 

acquired using the shim optimised one month before analysis was used in this work. 

A summary of the shim settings used to acquire each dataset analysed in this work is 

displayed in Table 5.4, along with the linewidth at 50 % peak height of the peak in the 

D2O/H2O standard spectrum acquired before each analysis.  

Table 5.3 - Mean and standard deviation values of TMS peak width at 50 % peak height 

within sets of spectra acquired using different shim settings. 

Mixture set Shim 
Mean width at 
50 % height of 
TMS peak/Hz 

Standard deviation of 
width at 50 % height 

of TMS peak/Hz 

Toluene, 
octene and 

dibutyl ether 

Optimised before analysis 0.96 0.26 

Optimised before analysis 
on different day 

(calibration samples only) 
1.20 0.25 

Simulated 1.92 0.49 

Toluene, 
ethanol and 
ethyl acetate 

Optimised before analysis 0.73 0.38 

Optimised one week 
before analysis 1.08 0.27 

Optimised one month 
before analysis 1.89 0.20 

Optimised four months 
before analysis 3.61 0.24 
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Table 5.4 - Summary of shims used to acquire each low-field NMR dataset used in this work, 

and linewidths of the peak in the D2O/H2O standard spectrum acquired before analysis. 

Dataset Mixture set Shim Linewidth of D2O/H2O peak at 
50 % peak height/Hz 

1 Toluene, octene and 
dibutyl ether 

Optimised before 
analysis 0.49 

2 Toluene, octene and 
dibutyl ether Simulated 1.56 

3 Toluene, ethanol 
and ethyl acetate 

Optimised before 
analysis 0.42 

4 Toluene, ethanol 
and ethyl acetate 

Optimised one month 
before analysis 2.06 

 

5.2.2 Alignment 

The effectiveness of each alignment method described in section 5.1.1 was assessed 

for the datasets detailed in Table 5.4. Datasets 1 and 2 exhibited small amounts of peak 

shift (< 0.2 ppm) and datasets 3 and 4 exhibited large peak shifts (up to 1.5 ppm). For 

each set of solvent mixtures, the objective was to optimise the parameters of each 

alignment method using one dataset, and apply the alignment methods with these 

optimised parameters to the other dataset. The results were used to compare the 

performance of the alignment methods. The performance of each method was assessed 

based on the ability of the method to align the peaks in the spectra and the effect on 

the RMSEP values when PLS was performed. The speed and ease of use of each 

method was also evaluated. 

For all datatsets, global alignment of each spectrum was first performed by setting the 

position of the TMS peak to 0 ppm, so that only intra-spectral shifts were present. The 

spectral regions below 0.27 ppm and above 9.35 ppm were then removed in order to 

eliminate the TMS peak and reduce the size of the dataset. All alignment methods were 

performed on the calibration and test spectra simultaneously. One of the replicate 

spectra of calibration sample 7 was used as the target spectrum in all methods, as this 

sample contained equal amounts of each component. 
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5.2.2.1 Dataset 1 

The parameters of each alignment method were first optimised for dataset 1 (the 

toluene, octene and dibutyl ether mixture spectra acquired using an optimal shim). A 

full factorial design of experiments (DoE) was performed for COW, PAFFT and 

RAFFT in order to optimise the two parameters present in each case. The values of 

segment length and slack displayed in Table 5.5 were initially used in the DoE for 

COW. The ratio of slack to segment length was used rather than the slack value, so 

that the relative slack would be comparable between segment lengths.  

Table 5.5 - Values of segment length and slack used in initial DoE for COW. 

Segment length Slack Ratio of slack to segment length 

50 10 0.2 

50 20 0.4 

50 30 0.6 

50 40 0.8 

100 20 0.2 

100 40 0.4 

100 60 0.6 

100 80 0.8 

200 40 0.2 

200 80 0.4 

200 120 0.6 

200 160 0.8 

500 100 0.2 

500 200 0.4 

500 300 0.6 

500 400 0.8 

 



 152 

COW was performed using PLS Toolbox version 8.6.2 (Eigenvector, Washington, 

USA) in MATLAB 2016b (MathWorks, Massachusetts, USA). The units of segment 

length and slack are the interval between two adjacent data points in the spectrum (and 

each spectrum contained 5181 data points). PLS1 models were built in PLS Toolbox 

using the aligned calibration spectra, and used to predict the concentration (in % w/w) 

of each solvent present in the aligned test spectra. The RMSEP values of the PLS1 

models were then calculated (Equation 2.8) in order to compare the effectiveness of 

each set of COW parameters. For each set of parameters, PLS1 was performed using 

one to ten latent variables, and the number of latent variables was included as a third 

factor in the DoE. 

The DoE was then repeated using segment lengths of 50, 100, 150 and 200 and slack 

to segment length ratios of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, in order to refine the results. 

Segment lengths above 200 and slack to segment length ratios above 0.6 were not 

included in the refined DoE, as they were found to significantly increase the 

computation time with no improvement to the results. (For example, the computation 

time increased from 25 s to 2 min 36 s upon changing the segment length from 100 to 

500 with a slack to segment length ratio of 0.1, and the computation time increased 

from 25 s to 43 min 36 s upon changing the slack to segment length ratio from 0.1 to 

0.8 with a segment length of 100. These times were measured using a MacBook Air 

with OS version 10.13.6, a 1.7 GHz Intel Core i7 processor and 8 GB memory.) A 

slack value of 1 was also included for each segment length in order to evaluate the 

effect of minimum slack. The minimum segment length chosen was 50, as values 

below 50 would not allow sufficient movement to align the toluene peak between 

2 ppm and 2.3 ppm. The number of latent variables (from one to ten) to include in the 

PLS1 models was again included as a third factor in the DoE. The combinations of 

parameters used in the refined DoE were found to be more effective than those used 

in the initial DoE, so only the results of the refined DoE will be considered. 

The PAFFT and RAFFT algorithms developed by Wong et al.10 were obtained from 

the University of New South Wales website.23 To optimise PAFFT, a DoE was 

performed using minimum segment length values of 1, 100, 200, 300, 400, 500, 600, 

700, 800, 900 and 1000 and maximum shift to minimum segment length ratios of 0.2, 

0.4, 0.6, 0.8 and 1. The units of minimum segment length and maximum shift are data 



 153 

points of the spectrum. PLS1 models were built for each set of parameters, as for 

COW, and the number of latent variables (from one to ten) was included as a third 

factor in the DoE. The RMSEP values were again used to compare the effectiveness 

of each set of parameters. For RAFFT, maximum shift values of 10, 20, 30, 40, 50, 60, 

70, 80, 90 and 100 and lookahead values of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 

100 were used, and DoE was performed as before. The DoE was then repeated using 

maximum shift values of 0, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000. 

Lower RMSEP values were obtained using the range of maximum shift values in the 

first DoE, so the results of the second DoE will not be discussed.  

RSPA was performed using the algorithm in the Imperial Metabolic Profiling and 

Chemometrics Toolbox for Spectroscopy (IMPaCTS).24 This algorithm utilises the 

function described by Veselkov et al.,12 but does not allow alteration of any parameters 

other than selection of the target spectrum and normalisation. Normalisation was found 

to distort the spectra, so was not used. Calibration sample 7 was selected as the target 

spectrum and RSPA was applied using the default parameters.  

The icoshift algorithm (version 3.0) was downloaded from the website link25 provided 

by Savorani et al.3 in the paper in which the algorithm is described. The intervals were 

manually defined as four regions (0.27 – 2.67 ppm, 2.67 – 4.13 ppm, 4.13 – 6.32 ppm 

and 6.32 – 9.35 ppm), chosen to prevent the splitting of peaks across different 

intervals. When a specified number of equal intervals was used instead, then either 

alignment was poor or artefacts were introduced, and when icoshift was applied to the 

whole spectrum without intervals then alignment was poor. The maximum shift was 

set to “best”, as defining a maximum shift value did not improve the results. When the 

target spectrum was automatically chosen, poorer results were obtained due to the 

absence of certain peaks therefore the target spectrum was selected manually, as for 

the other methods. The co-shift preprocessing step did not affect the results obtained, 

so was not used.  

The PCANS algorithm was downloaded from the link in the supplementary 

information of the PCANS paper by Staab et al.22 The algorithm was operated in 

Python 2.7.15 (Python Software Foundation, Delaware, USA). However the output of 

the algorithm did not contain the aligned spectra, and instead consisted of files 
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containing the chemical shift positions, heights and widths of the peaks, along with 

the numbers of peaks present at each chemical shift position. As the aligned spectra 

were not in a suitable format for quantitative analysis, PCANS was not used in this 

work.  

5.2.2.2 Dataset 2 

COW, PAFFT, RAFFT and icoshift were then applied to dataset 2 (the toluene, octene 

and dibutyl ether mixture spectra acquired using a sub-optimal shim), with the 

optimised settings for dataset 1. PLS1 models were built as before, using the aligned 

calibration spectra from dataset 2 to predict the concentration of each solvent present 

in the aligned test spectra from dataset 2, and the RMSEP values were used to compare 

the effectiveness of alignment in each case. RSPA was not applied to dataset 2, as it 

was found to be ineffective for alignment of the peaks in dataset 1 due to the inability 

to change the parameters. 

5.2.2.3 Dataset 3 

The effectiveness of COW, PAFFT, RAFFT and icoshift was evaluated for the 

alignment of dataset 3 (the toluene, ethanol and ethyl acetate spectra acquired using 

an optimal shim). For COW, PAFFT and RAFFT, a full factorial DoE was performed 

as described in section 5.2.2.1, using the same parameters as for the toluene, octene 

and dibutyl ether mixtures. Again, the range of maximum shift values in the first DoE 

for RAFFT produced lower RMSEP values than those in the second DoE, so only the 

results of the first DoE for RAFFT will be considered. Icoshift was also performed as 

described in section 5.2.2.1, using manually defined intervals of 0.27 – 1.64 ppm, 

1.64 – 2.90 ppm , 2.90 – 6.06  ppm and 6.06 – 9.35 ppm (chosen to prevent splitting 

of peaks across different intervals). The co-shift preprocessing step was found to 

improve the results obtained for this dataset, so it was applied. PLS1 models were built 

as in section 5.2.2.1, and the RSMEP values obtained were used to compare the 

methods.  

5.2.2.4 Dataset 4 

PAFFT, RAFFT and icoshift were then applied to dataset 4 (the toluene, ethanol and 

ethyl acetate spectra acquired using a sub-optimal shim), with the optimum settings 
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determined for dataset 3. COW was not performed on dataset 4, as for dataset 3 it was 

extremely slow in comparison to the other alignment methods and no more effective. 

PLS1 models were built using each set of aligned calibration samples, as before, and 

used to predict the concentration of each solvent present in the corresponding aligned 

test samples. 

5.2.3 Bucketing 

5.2.3.1 Dataset 1 

Bucketing was performed as a comparison to alignment, using the optimised bucketing 

algorithm described by Sousa et al.4 (downloaded from the website link in the paper26). 

In order to determine the optimum bucket size and slackness values for dataset 1, a 

full factorial DoE was performed on the spectra, using bucket sizes of 0.01, 0.05, 0.1, 

0.25, 0.5, 0.75 and 1 ppm with slackness values of 0, 0.01, 0.025, 0.05, 0.075, 0.1, 

0.25, 0.5, 0.75 and 1. The slackness values are a ratio of the bucket size (with e.g. 0.01 

corresponding to 1 %) and the slackness value of 0 causes the algorithm to perform 

conventional bucketing. The output of the algorithm consists of the bucketed spectra, 

the chemical shifts of each set of bucket boundaries and the size of each bucket. PLS1 

models were built as described in section 5.2.2.1, and the RMSEP values obtained 

were calculated to assess the predictive ability of the bucketed spectra and to compare 

the effectiveness of bucketing and alignment.  

5.2.3.2 Dataset 2 

The optimum bucket size and slackness values for dataset 1 were not directly applied 

to dataset 2, as the optimised bucketing algorithm produces buckets of varying size, 

so the resulting spectra would contain a different number of data points to the spectra 

in dataset 1 (and the spectra in each dataset require equal numbers of data points in 

order to perform calibration transfer). Instead, the outputted chemical shift intervals of 

the buckets obtained using the optimum parameters for dataset 1 were used to 

manually perform bucketing on the spectra in dataset 2. For each bucket, trapezoidal 

numerical integration of the data points within the bucket region was performed using 

the “trapz” function in MATLAB 2016b (MathWorks, Massachusetts, USA) and the 

first data point in the bucket was subtracted (to account for the repetition of the data 
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points at the edges of the buckets), apart from for the first bucket. This is the same 

calculation used in the optimised bucketing algorithm. PLS1 models were again built 

with the resulting bucketed spectra, and RMSEP values were calculated.  

5.2.3.3 Datasets 3 and 4 

Optimised bucketing was performed on dataset 3 as for the toluene, octene and dibutyl 

ether mixtures, using a full factorial DoE to determine the optimum parameters. The 

intervals of the buckets produced using these optimum parameters were then used to 

manually perform bucketing on dataset 4, as described in section 5.2.3.2. The RMSEP 

values obtained by PLS1 were used to compare the performance of bucketing and 

alignment, as before.  

5.2.3.4 Bucketing of Overlapping Spectra 

To investigate the effectiveness of bucketing at removing the variation between spectra 

which exhibit a greater extent of peak overlap than the two mixture sets described 

above, bucketing was also applied to the low-field NMR spectra of the samples 

extracted from the esterification reaction mixture (described in section 4.2.3.2). 

Bucketing was performed using the optimised bucketing algorithm with the following 

parameters; a bucket size of 0.1 ppm and slackness value of 1 (the optimum parameters 

for dataset 1); a bucket size of 0.75 ppm and slackness value of 0.25 (the optimum 

parameters for dataset 3); and a bucket size of 1 ppm and slackness value of 0.25. 

5.3 Results and Discussion 

5.3.1 Dataset 1 

The aims of this section are to optimise the parameters of each of the alignment 

methods for dataset 1, and to evaluate the effectiveness of each method when small 

amounts of peak shift (< 0.2 ppm) are present. The spectra in dataset 1 are shown in 

Figure 5.2, after global alignment using the TMS peak but before application of any 

of the alignment methods. The molecular structure of each solvent is displayed in 

Figure 5.3, and an assignment of the peaks present in each spectrum is displayed in 

Table 5.6. Although overlap was present below 2.5 ppm (of the multiplet peaks in 

octene and dibutyl ether and the singlet peak in toluene), no overlap was present 
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elsewhere and the spectrum of each analyte contained clearly resolvable peaks. Small 

peak shifts of up to 0.15 ppm can be observed between the spectra, particularly of the 

toluene peak at approximately 2 ppm. Therefore alignment of the spectra is necessary 

in order to perform chemometric analyses, e.g. PLS and calibration transfer. 

 

Figure 5.2 - 1H low-field NMR spectra of calibration and test samples in dataset 1, without 

alignment (other than global alignment using the TMS peak). 

 

Figure 5.3 - Molecular structures of toluene, octene and dibutyl ether 
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Table 5.6 - Assignment of the main peaks in low-field 1H NMR spectra of toluene, octene and 

dibutyl ether mixtures. 

Peak position/ppm Multiplicity Peak assignment 

0.5 – 2.4 Overlapping multiplets Protons attached to unsaturated carbons in 
octene and dibutyl ether 

2.0 – 2.3 Singlet CH3 group of toluene 

3.1 – 3.6 Triplet O–CH2 groups in dibutyl ether 

4.5 – 6.5 Overlapping multiplets CH=CH2 group in octene 

6.9 – 7.2 Singlet Aromatic protons of toluene 

 

5.3.1.1 Optimisation of Parameters 

In order to optimise the parameters for COW, PAFFT and RAFFT, the RMSEP values 

for dataset 1 obtained using each combination of parameters in the DoE are plotted in 

Figure 5.4, Figure 5.5 and Figure 5.6 respectively. Only the results obtained using two 

to four latent variables are shown for ease of plotting, as the inclusion of just one latent 

variable produced poor results and more than four latent variables are generally 

unnecessary for a three component mixture set, so would produce overfitting of the 

model. The y axis range was reduced to 0 – 4 % w/w for COW and PAFFT in order 

for differences in RMSEP to be more easily observed, therefore some of the poorer 

predictions lie outwith the range of the plots. For toluene, the spread in RMSEP value 

upon changing the parameters was generally smaller than for octene and dibutyl ether, 

and the RMSEP values were lower overall. This is because the spectrum of toluene 

contains only singlet peaks (Table 5.6), so alignment is more straightforward than for 

the octene and dibutyl ether spectra, which contain multiplet peaks.  

In general for COW, higher slack values produced poorer RMSEP values (differing 

by over 2 % w/w in some cases) due to distortions in peak area caused by greater 

amounts of warping. This effect was observed to a greater extent when larger segment 

lengths were used, as the same ratio of slack to segment length resulted in a higher 

slack value for larger segment lengths. Changing the segment length had a lesser effect 

on the RMSEP value, and no clear trend was observed. 
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For PAFFT, there was no clear trend in RMSEP with minimum segment length or 

maximum shift value. However certain combinations of parameters produced 

significantly poorer predictions, e.g. high maximum shift ratios (≥ 0.6) with minimum 

segment lengths of 500, 800, 900 or 1000 and two latent variables produced RMSEP 

values outwith the range of the plots for octene and dibutyl ether. For some values of 

minimum segment length (e.g. 300, 400, 600 and 700), the value of maximum shift 

did not affect the result obtained, indicating that only small shifts were necessary to 

produce the best alignment. When the minimum segment length of 1 was used then 

the results did not differ from the unaligned spectra. 

The results obtained for each of the different maximum shift values in the RAFFT DoE 

were relatively similar for toluene (differing by no more than 0.5 % w/w), but for 

octene and dibutyl ether the spread in RMSEP between latent variables became larger 

for higher maximum shift values (differing by over 1 % w/w). However less variation 

in results was observed upon altering the parameters than for COW or PAFFT, which 

is an advantage of RAFFT. Lower RMSEP values were generally obtained when 

lookahead was applied compared to when it was not applied, however each of the 

different lookahead values used (from 10 to 100) produced the same results, indicating 

that values greater than 10 were not necessary. Therefore out of these three alignment 

methods, RAFFT appears to be the easiest to use since optimisation of the parameters 

is less important. 
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Figure 5.4 - RMSEP values obtained for PLS1 models built using dataset 1 with alignment 

by COW. DoE used to optimise segment length, slack and number of latent variables. 
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Figure 5.5 - RMSEP values obtained for PLS1 models built using dataset 1 with alignment 

by PAFFT. DoE used to optimise minimum segment length, maximum shift and number of 

latent variables. 
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Figure 5.6 - RMSEP values obtained for PLS1 models built using dataset 1 with alignment 

by RAFFT. DoE used to optimise maximum shift, lookahead and number of latent 

variables. 
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When bucketing was applied using each combination of parameters in the DoE (Figure 

5.7), no clear trend was observed. The predictions were generally more accurate for 

bucket sizes greater than 0.01 ppm, particularly for dibutyl ether (for which the 

RMSEP values obtained with all slackness values were above 1 % w/w when the 

bucket size of 0.01 ppm was used, and RMSEP values of less than 0.4 % w/w could 

be achieved when larger bucket sizes were used). This is unsurprising, as peak shifts 

of up to 0.15 ppm were present so the bucket size of 0.01 ppm was insufficient to 

remove the shifts. Larger slackness values (e.g. 0.5 – 1) generally produced lower 

RMSEP values, but for some bucket sizes, smaller slackness values (≤ 0.5) produced 

RMSEP values as low as 0.5 % w/w or less when four latent variables were used. 

Poorer predictions (of up to 3 % w/w) were obtained for octene and dibutyl ether when 

bucket sizes of 0.25 or 0.5 ppm and slackness values greater than 0.1 were used with 

two latent variables, but the results improved when more latent variables were 

included. 
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Figure 5.7 - RMSEP values obtained for PLS1 models built using dataset 1 with optimised 

bucketing. DoE used to optimise bucket size, slackness and number of latent variables. 
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The optimum parameters chosen for each method are displayed in Table 5.7. The 

optimum ratio of slack to segment length for COW corresponds to a slack value of 10, 

and the optimum ratio of maximum shift to minimum segment length for PAFFT 

corresponds to a maximum shift value of 60. When multiple combinations of 

parameters produced similar results then the lowest values were chosen for simplicity. 

This is particularly important for COW, as larger values of segment length and slack 

were found to significantly increase the computation time (as mentioned in section 

5.2.2.1).  

Table 5.7 - Optimum parameters determined by DoE for each method of alignment of 

dataset 1. 

Method 

Parameter 1 Parameter 2 Optimum number of LVs 

Name Optimum 
value Name Optimum 

value Toluene Octene Dibutyl 
ether 

COW Segment 
length 100 Slack ratio 0.1 2 2 2 

PAFFT 
Minimum 
segment 
length 

100 Maximum 
shift ratio 0.6 4 4 4 

RAFFT Maximum 
shift 10 Lookahead 10 4 4 4 

Bucketing Bucket 
size 0.1 ppm Slackness 1 3 3 3 

 

The computation times for each method (using the optimum parameters) are displayed 

in Table 5.8, along with the computation times for each DoE. RSPA was the slowest 

method (taking 40 seconds to align the spectra), followed by COW (which took 25 

seconds using the optimum parameters). However optimisation of the parameters was 

not necessary for RSPA and was extremely slow for COW, taking more than 4.5 hours. 

This is the main disadvantage of COW compared to the other methods. PAFFT, 

RAFFT, icoshift and bucketing were significantly faster, each taking no more than 2 

seconds to align/bucket the spectra using the optimum parameters. Bucketing was the 

fastest method, taking 39 seconds to perform the full DoE, and PAFFT was more than 

three times faster than RAFFT due to the absence of the recursive method.  
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Table 5.8 - Computation times of DoEs used to optimise parameters of alignment methods 

and computation times of alignment using the optimum parameters for each method (using 

a MacBook Air with OS version 10.13.6, a 1.7 GHz Intel Core i7 processor and 8 GB 

memory). 

Method Computation time of full DoE Computation time of method using 
optimum parameters/s 

COW 4 hours 38 min 25 

PAFFT 3 min 20 s < 1 

RAFFT 10 min 52 s ~ 2 

RSPA n/a 40 

icoshift n/a < 2 

Bucketing 39 s < 1 

 

5.3.1.2 Aligned Spectra 

The spectra in dataset 1 aligned using COW, PAFFT, RSPA and icoshift are displayed 

in Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11 respectively, to illustrate the 

effectiveness of each method. Similar spectra were obtained for PAFFT and RAFFT, 

so the spectra aligned using RAFFT can be found in Appendix 5. For COW, PAFFT 

and RAFFT, the optimum parameters displayed in Table 5.7 were used.  

After the application of COW, the spectra were generally well aligned, although the 

toluene singlet peak just above 2 ppm in one of the repeat measurements of calibration 

sample 2 was out of alignment by 0.14 ppm. PAFFT and RAFFT were able to align 

all peaks, and appear to have been very effective (for example the toluene singlet peak 

just above 2 ppm which exhibited shifts of up to 0.15 ppm before alignment only 

exhibited shifts of 0.007 ppm after alignment by PAFFT). However for PAFFT, 

artefacts were present in the spectra due to the insertion/deletion of points, as shown 

in Figure 5.12. Such artefacts were also present to a smaller extent in the spectra 

aligned by RAFFT, and an artefact resembling part of a very small peak was present 

in the baseline of many of the spectra aligned by icoshift. This is a disadvantage of the 

insertion/deletion method of alignment utilised by PAFFT, RAFFT and icoshift over 

the warping method of alignment used by COW. The ability to manually define the 



 167 

segments used in icoshift helps to reduce the occurrence of artefacts compared to 

PAFFT and RAFFT, and this is an advantage of icoshift. 

Icoshift was effective at aligning all peaks, except for the peak just below 1 ppm 

(which exhibited shifts of up to 0.1 ppm). This is because it lies in the same segment 

as the peak just above 2 ppm (because overlap was present between the peaks in this 

segment), and alignment of both these peaks simultaneously does not appear to have 

been possible. This is a disadvantage of icoshift compared to the other methods. RSPA 

does not appear to have been successful at aligning the spectra, as similar amounts of 

peak shift were present as to when no alignment method was applied. The 

ineffectiveness of RSPA is likely to be due to the inability to alter the parameters using 

this algorithm. The bucketed spectra using the optimum parameters are shown in 

Figure 5.13. Significantly fewer data points were present after the application of 

bucketing (81 compared to 5181 data points), and the structure of the peaks was lost. 

However peaks corresponding to each solvent could still be clearly resolved.  

 

Figure 5.8 - 1H low-field NMR spectra of calibration and test samples in dataset 1 with 

alignment by COW using optimum parameters determined by DoE (segment length = 100 

and slack = 10). 
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Figure 5.9 - 1H low-field NMR spectra of calibration and test samples in dataset 1 with 

alignment by PAFFT using optimum parameters determined by DoE (minimum segment 

length = 100 and maximum shift = 60). 

 

Figure 5.10 - 1H low-field NMR spectra of calibration and test samples in dataset 1 with 

alignment by RSPA. 

012345678

Chemical shift/ppm

Calibration sample 1

Calibration sample 2

Calibration sample 3

Calibration sample 4

Calibration sample 5

Calibration sample 6

Calibration sample 7

Calibration sample 8

Calibration sample 9

Calibration sample 10

Calibration sample 11

Calibration sample 12

Calibration sample 13

Calibration sample 14

Calibration sample 15

Calibration sample 16

Test sample 1

Test sample 2

Test sample 3

Test sample 4

Test sample 5

Test sample 6

012345678

Chemical shift/ppm

Calibration sample 1

Calibration sample 2

Calibration sample 3

Calibration sample 4

Calibration sample 5

Calibration sample 6

Calibration sample 7

Calibration sample 8

Calibration sample 9

Calibration sample 10

Calibration sample 11

Calibration sample 12

Calibration sample 13

Calibration sample 14

Calibration sample 15

Calibration sample 16

Test sample 1

Test sample 2

Test sample 3

Test sample 4

Test sample 5

Test sample 6



 169 

 

Figure 5.11 - 1H low-field NMR spectra of calibration and test samples in dataset 1 with 

alignment by icoshift using manually defined intervals (0.27 – 2.67 ppm, 2.67 – 4.13 ppm, 

4.13 – 6.32 ppm and 6.32 – 9.35 ppm). 

 

Figure 5.12 - Example of artefacts present in spectra aligned by PAFFT. 
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Figure 5.13 - 1H low-field NMR spectra of calibration and test samples in dataset 1 with 

optimised bucketing using optimum parameters determined by DoE (bucket size = 0.1 ppm 

and slackness = 1). 
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Table 5.9 - RMSEP values for PLS1 models built using dataset 1 without alignment (other 

than global alignment using the TMS peak), with alignment (by COW, PAFFT, RAFFT, 

RSPA and icoshift) and with bucketing. 

Alignment 
method 

Toluene Octene Dibutyl ether 

LVs RMSEP/ 
(% w/w) LVs RMSEP/ 

(% w/w) LVs RMSEP/ 
(% w/w) 

None 4 0.79 3 1.50 3 1.44 

COW 2 0.77 2 1.25 2 1.24 

PAFFT 4 0.45 4 0.40 4 0.53 

RAFFT 4 0.44 4 0.51 4 0.51 

RSPA 4 0.69 4 1.17 4 1.40 

icoshift 3 0.55 3 0.86 3 0.73 

Bucketing 3 0.46 3 0.41 3 0.34 

 

After the application of COW, only two latent variables were required for each solvent, 

indicating that COW has reduced the non-linearity present in the spectra. The RMSEP 

value of toluene was similar to that obtained before alignment, but the RMSEP values 

of octene and dibutyl ether were around 0.2 % w/w lower. PAFFT and RAFFT 

produced similar RMSEP values, both reducing the RMSEP values of octene and 

dibutyl ether by a factor of 3 and the RMSEP value of toluene by a factor of 2. 

However four latent variables were required for each solvent, suggesting that these 

methods may have increased the non-linearity of the variation in the octene and dibutyl 

ether contributions. The presence of artefacts in the spectra did not appear to worsen 

the RMSEP values, and the insertion/deletion process of alignment appears to be more 

effective than the warping process. 

Four latent variables were also necessary after RSPA, and no significant difference 

was observed in the RMSEP values for toluene or dibutyl ether (with a reduction of 

0.3 % w/w observed for octene). Icoshift produced lower RMSEP values than COW 

or RSPA, but higher RMSEP values than PAFFT and RAFFT (0.55 % w/w, 

0.86 % w/w and 0.73 % w/w for toluene, octene and dibutyl ether respectively). 

However one less RMSEP value was necessary for each solvent compared to PAFFT 
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and RAFFT. Overall the most effective alignment methods for this data appear to be 

PAFFT and RAFFT, however icoshift was also more effective than COW or RSPA. 

After bucketing, the RMSEP values obtained for each solvent were very low 

(≤ 0.46 % w/w). This indicates that despite the loss of structure, bucketing was 

successful at improving the predictive ability of the model due to removal of the 

variation in peak position. However this may be because little peak overlap was 

present, so all components could still be clearly distinguished. For toluene and octene, 

bucketing produced similar RMSEP values to PAFFT and RAFFT, but for dibutyl 

ether, bucketing produced a lower RMSEP value than any of the alignment methods 

(over four times less than before alignment). Fewer latent variables were also required 

than for than for PAFFT or RAFFT (three rather than four). Therefore for this set of 

mixtures, bucketing appears to perform better than the alignment methods, particularly 

RSPA and COW. 

5.3.2 Dataset 2 

In this section, COW, PAFFT, RAFFT and icoshift were applied to the spectra in 

dataset 2, using the parameters optimised for dataset 1. Bucketing was also performed, 

using the intervals optimised for dataset 1. An example spectrum of calibration sample 

7 (containing equal concentrations of toluene, octene and dibutyl ether) acquired with 

the settings of shim used in dataset 1 and dataset 2 is displayed in Figure 5.14 to 

illustrate the differences between the two datasets. The rest of the spectra in dataset 2 

can be found in Appendix 5. In dataset 2, the peaks were broader and less defined than 

in dataset 1 (with the mean TMS peak linewidths given in Table 5.3), as the shim was 

no longer optimal. 
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Figure 5.14 - 1H low-field NMR spectrum of calibration sample 7 in datasets 1 and 2. 

The RMSEP values obtained for the PLS1 models built using the spectra in dataset 2 

without alignment (other than global alignment using the TMS peak), with alignment 
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RMSEP values of octene and dibutyl ether were lower than those obtained for dataset 

1. This indicates that the broadening of the peaks has removed some of the variation 

between spectra without deteriorating the predictive ability. For toluene, the RMSEP 

values obtained using datasets 1 and 2 were similar. 
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predictive ability, with higher RMSEP values obtained for toluene (0.1 % w/w higher) 

and octene (0.3 % w/w higher) compared to the results obtained without alignment, 

and a similar RMSEP value obtained for dibutyl ether. However for octene and dibutyl 

ether, fewer latent variables were necessary (two for each solvent compared to four 

and three before alignment). For toluene, more latent variables were required (four 

compared to three).  
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Table 5.10 - RMSEP values for PLS1 models built using dataset 2 without alignment (other 

than global alignment using the TMS peak), with alignment (by COW, PAFFT, RAFFT and 

icoshift) and with bucketing. Parameters optimised using dataset 1. 

Alignment 
method 

Toluene Octene Dibutyl ether 

LVs RMSEP/ 
(% w/w) LVs RMSEP/ 

(% w/w) LVs RMSEP/ 
(% w/w) 

None 3 0.83 4 0.95 3 1.17 

COW 4 0.95 2 1.25 2 1.15 

PAFFT 4 0.56 4 1.00 3 1.07 

RAFFT 2 0.66 3 1.01 2 1.10 

icoshift 4 0.44 3 0.98 3 0.75 

Bucketing 3 0.75 3 0.69 3 0.38 

 

When PAFFT was applied, the RMSEP values of toluene and dibutyl ether improved 

compared to those of the unaligned spectra (by 0.3 % w/w and 0.1 % w/w 

respectively), but the RMSEP value of octene remained similar. One extra latent 

variable was required for toluene, but the number of latent variables required for 

octene and dibutyl ether did not change. The RMSEP values obtained for RAFFT were 

similar to those obtained for PAFFT, but fewer latent variables were necessary (two 

for toluene and dibutyl ether and three for octene). Therefore although PAFFT and 

RAFFT were very effective at aligning relatively narrow, well-defined peaks, these 

methods do not appear to work as well for overlapping peaks in spectra with poorer 

lineshapes. However, this could be because the optimised parameters for dataset 1 

were not the optimum for dataset 2. Performing separate optimisations for data 

collected under different conditions would be time consuming so is not ideal, 

particularly if a calibration model built using one set of data is then applied to a smaller 

number of samples from a different dataset (e.g. if alignment is performed before 

calibration transfer).  

The absence of parameters which require optimisation is an advantage of icoshift. For 

dataset 2, icoshift performed best of the four alignment methods, however the RMSEP 

value of octene still did not improve compared to before alignment. One more latent 

variable was required for toluene, but one less latent variable was required for octene 
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compared to before alignment. Bucketing was less effective than icoshift, PAFFT or 

RAFFT for toluene (but still reduced the RMSEP by 0.1 % w/w), however for octene 

and dibutyl ether it performed significantly better, with RMSEP values as low as 

0.38 % w/w achieved (three times lower than before bucketing). This indicates that 

bucketing may be more effective than any of the alignment methods at improving the 

predictive ability of low-field NMR spectra exhibiting little overlap or peak shift. 

However it is not as easy to apply as icoshift, as determination of the optimum bucket 

size and slackness value is necessary. 

Therefore for the toluene, octene and dibutyl ether mixtures, bucketing was the most 

effective method overall and icoshift was the most effective of the alignment methods. 

PAFFT and RAFFT were effective at aligning the spectra in dataset 1, but were not as 

effective for dataset 2. COW produced poorer RMSEP values than the other methods 

due to the warping process of alignment, and RSPA was the least effective method due 

to the inability to alter the parameters. 

5.3.3 Dataset 3 

To evaluate the effectiveness of each alignment method when large peak shifts (up to 

1.5 ppm) are present, the methods will be applied to the spectra in dataset 3. The 

spectra are displayed in Figure 5.15 (after global alignment had been performed using 

the TMS peak, but before the application of any alignment methods), the molecular 

structures of ethanol and ethyl acetate are shown in Figure 5.16, and an assignment of 

the peaks in the spectra is displayed in Table 5.11. Overlap of the triplets at 1 ppm and 

the multiplets between 3 ppm and 6 ppm was present and large amounts of peak shift 

occurred between spectra, particularly of the triplet around 5 ppm which shifted by up 

to 1.5 ppm due to hydrogen bonding and differences in the pH of the mixtures. In the 

other regions of the spectra (below 3 ppm and above 6 ppm), shifts of up to 0.3 ppm 

were present (with the ethyl acetate singlet peak just below 2 ppm the worst affected). 

Alignment of the peaks in these spectra is therefore more challenging than alignment 

of the peaks in the toluene, octene and dibutyl ether mixture spectra.  
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Figure 5.15 - 1H low-field NMR spectra of calibration and test samples in dataset 3, without 

alignment (other than global alignment using the TMS peak). 

 

Figure 5.16 - Molecular structures of ethanol and ethyl acetate 

Table 5.11 - Assignment of the main peaks in low-field 1H NMR spectra of toluene, ethanol 

and ethyl acetate mixtures.  

Peak position/ppm Multiplicity Peak assignment 

0.8 – 1.5 Triplets CH3 group adjacent to CH2 group in 
ethanol and ethyl acetate 

1.7 – 2.1 Singlet CH3 group adjacent to C=O in ethyl 
acetate 

2.0 – 2.4 Singlet CH3 group of toluene 

3.0 – 5.6 Overlapping multiplets 
and triplet 

CH2 groups of ethanol and ethyl acetate 
(multiplets), OH group of ethanol (triplet) 

6.9 – 7.2 Singlet Aromatic protons of toluene 
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5.3.3.1 Optimisation of Parameters 

To determine the optimum parameters for the alignment of dataset 3 using COW, 

PAFFT and RAFFT, the RMSEP values obtained using each combination of 

parameters in the DoE are shown in Figure 5.17, Figure 5.18 and Figure 5.19 

respectively. Again, only the results for two to four latent variables are displayed and 

the y axis scale for each plot was limited to RMSEP values below 6 % w/w for ease 

of comparison of the parameters. 

For COW, no clear trend was observed in the RMSEP values obtained using different 

parameters. For segment lengths less than 150, the slack to segment length ratio of 0.1 

generally produced better RMSEP values, presumably because higher values of slack 

distorted the peaks, but for the segment length of 200 it generally worsened the 

RMSEP values, presumably because it no longer allowed enough movement to align 

the peaks. Ratios of slack to segment length above 0.4 generally produced worse 

RMSEP values than lower slack ratios, but not in every case. For example, ratios of 

0.2 and 0.3 produced the poorest RMSEP values for toluene and ethanol when the 

segment length of 50 was used, but produced the lowest RMSEP values for the 

segment length of 200. This could be because for small segment lengths, the increase 

in RMSEP due to distortion of the peaks outweighed the improvement in RMSEP due 

to aligning the peaks, while at larger segment lengths the improvement in RMSEP due 

to alignment outweighed the increase in RMSEP due to distortion.  

When the minimum PAFFT segment length of 1 was used, the results again did not 

differ from the unaligned spectra. For minimum segment lengths above 600, the 

RMSEP values were poorer than for the unaligned spectra regardless of the maximum 

shift value, but for minimum segment lengths less than 300, lower RMSEP values 

could be obtained in some cases when maximum shift values greater than or equal to 

0.4 were used. For RAFFT, lower RMSEP values were again obtained when lookahead 

was applied compared to when it wasn’t applied, but the lookahead values of 10 to 100 

produced the same results. Increasing the maximum shift value improved the results 

for values up to 40, but beyond this value little variation was observed. The spread of 

results for toluene upon changing the parameters was significantly lower than for 
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ethanol or ethyl acetate (a range of approximately 1 % w/w for toluene and 4 % w/w 

for ethanol and ethyl acetate).  

 

Figure 5.17 - RMSEP values obtained for PLS1 models built using dataset 3 with alignment 

by COW. DoE used to optimise segment length, slack and number of latent variables. 
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Figure 5.18 - RMSEP values obtained for PLS1 models built using dataset 3 with alignment 

by PAFFT. DoE used to optimise minimum segment length, maximum shift and number of 

latent variables. 
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Figure 5.19 - RMSEP values obtained for PLS1 models built using dataset 3 with alignment 

by RAFFT. DoE used to optimise maximum shift, lookahead and number of latent 

variables. 
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When bucketing was applied (Figure 5.20), slackness values less than 0.25 generally 

produced poorer predictions (particularly for the bucket size of 0.75 ppm), as did 

bucket sizes less than 0.1 ppm. As peak shifts of up to 1.5 ppm were present, this was 

unsurprising. The optimum parameters chosen for each method are displayed in Table 

5.12, with the optimum ratio of slack to segment length for COW corresponding to a 

slack value of 10, and the optimum ratio of maximum shift to minimum segment length 

for PAFFT corresponding to a maximum shift value of 120. The optimum values of 

minimum segment length (PAFFT), maximum shift (RAFFT) and bucket size were 

larger than for dataset 1, however the optimum parameters for COW were the same as 

for dataset 1. It is unsurprising that the optimum values were generally larger, as much 

larger peak shifts (up to 1.5 ppm compared to less than 0.2 ppm) were present in 

dataset 3. 

Table 5.12 - Optimum parameters determined by DoE for each method of alignment of 

dataset 3. 

Method 

Parameter 1 Parameter 2 Optimum number of LVs 

Name Optimum 
value Name Optimum 

value Toluene Octene Dibutyl 
ether 

COW Segment 
length 100 Slack ratio 0.1 3 4 4 

PAFFT 
Minimum 
segment 
length 

200 Maximum 
shift ratio 0.6 3 4 4 

RAFFT Maximum 
shift 40 Lookahead 10 3 4 3 

Bucketing Bucket 
size 0.75 ppm Slackness 0.25 4 4 3 
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Figure 5.20 - RMSEP values obtained for PLS1 models built using dataset 3 with optimised 

bucketing. DoE used to optimise bucket size, slackness and number of latent variables. 
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5.3.3.2 Aligned Spectra 

The spectra of dataset 3 are shown after alignment by COW, PAFFT, RAFFT, icoshift 

and bucketing (using the optimised parameters for COW, PAFFT, RAFFT and 

bucketing) in Figure 5.21, Figure 5.22, Figure 5.23 and Figure 5.24 respectively. After 

the application of COW, the triplet peaks just above 1 ppm and the singlet peaks just 

above 7 ppm appeared well aligned (shifting by less than 0.009 ppm). The two singlet 

peaks just above and below 2 ppm were less well aligned (shifting by up to 0.11 ppm). 

The multiplets around 4 ppm appear to have been aligned to some extent, however 

alignment of the ethanol triplet peak around 5 ppm has not been successful and shifts 

as large as 1 ppm were still present. 

When PAFFT was applied, the three singlet peaks were well aligned in all spectra 

(only shifting up to 0.03 ppm) and the triplets just above 1 ppm were well aligned in 

most spectra (with shifts of up to 0.2 ppm present in the others). However alignment 

of the multiplet peaks between 3 ppm and 6 ppm was unsuccessful (with shifts as large 

as 1 ppm present). Similar spectra were obtained when RAFFT was applied, and the 

spectra aligned by RAFFT can be found in Appendix 5. With icoshift, the singlet peak 

just above 7 ppm was well aligned (shifting by no more than 0.004 ppm), the peaks 

below 3 ppm were relatively well aligned (shifting by no more than 0.08 ppm), and 

between 3 ppm and 6 ppm alignment was once again unsuccessful (with shifts of up 

to 1.5 ppm present). Therefore none of the alignment methods which were successful 

for small peak shifts (< 0.2 ppm) appear to be capable of handling peak shifts as large 

as 1.5 ppm. 

After the application of optimised bucketing, the spectra only contained twelve data 

points each, with four or five maxima corresponding to the peaks. Although extreme, 

this combination of bucketing parameters produced the most accurate predictions of 

concentration overall. The optimum bucket size is significantly larger than for the 

toluene, octene and dibutyl ether dataset (0.75 ppm compared to 0.1 ppm), as larger 

buckets were required to reduce the effect of peak shift on RMSEP. 
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Figure 5.21 - 1H low-field NMR spectra of calibration and test samples in dataset 3 with 

alignment by COW using optimum parameters determined by DoE (segment length = 100 

and slack = 10). 

 

Figure 5.22 - 1H low-field NMR spectra of calibration and test samples in dataset 3, with 

alignment by PAFFT using optimum parameters determined by DoE (minimum segment 

length = 200 and maximum shift = 120). 
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Figure 5.23 - 1H low-field NMR spectra of calibration and test samples in dataset 3 with 

alignment by icoshift using manually defined intervals (0.27 – 1.64 ppm, 1.64 – 2.90 ppm , 

2.90 – 6.06  ppm and 6.06 – 9.35 ppm). 

 

Figure 5.24 - 1H low-field NMR spectra of calibration and test samples in dataset 3, with 

optimised bucketing using optimum parameters determined by DoE (bucket size = 

0.75 ppm and slackness = 0.25). 
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5.3.3.3 RMSEP Values 

The RMSEP values obtained for the PLS1 models built using dataset 3 without 

alignment, with alignment by each method and with bucketing (using the optimised 

parameters in each case) are displayed in Table 5.13, in order to compare the effect of 

each method on the predictive ability of the spectra. Without alignment, the RMSEP 

values for toluene and ethanol were in the same range as those obtained for the toluene, 

octene and dibutyl ether mixtures (0.8 – 1.5 % w/w), however the ethyl acetate RMSEP 

value was almost 1 % w/w higher due to the peak shifts present.  

After the application of COW, the RMSEP values for toluene and ethanol increased 

by 0.1 % w/w and 0.3 % w/w respectively, but the RMSEP value for ethyl acetate 

decreased by almost 1 % w/w. For PAFFT the value for toluene was similar to that 

obtained using COW, but the values for ethanol and ethyl acetate were both less than 

without alignment (with the value for ethyl acetate decreasing by more than a factor 

of 3). However for COW and PAFFT, four latent variables were necessary for ethanol 

and ethyl acetate (compared to two and three latent variables without alignment). 

Similar results to PAFFT were obtained for RAFFT, but the RMSEP value for ethyl 

acetate was 0.4 % w/w higher and required one less latent variable. Therefore both 

these methods were more effective at increasing the predictive ability of the spectra 

than COW, even though the spectra could not be fully aligned. 

Table 5.13 - RMSEP values for PLS1 models built using dataset 3 without alignment (other 

than global alignment using the TMS peak), with alignment (by COW, PAFFT, RAFFT and 

icoshift) and with bucketing. 

Alignment 
method 

Toluene Ethanol Ethyl acetate 

LVs RMSEP/ 
(% w/w) LVs RMSEP/ 

(% w/w) LVs RMSEP/ 
(% w/w) 

None 3 1.12 2 1.53 3 2.35 

COW 3 1.24 4 1.81 4 1.43 

PAFFT 3 1.27 4 1.27 4 0.73 

RAFFT 3 1.34 4 1.15 3 1.11 

icoshift 3 0.90 4 2.47 4 2.92 

Bucketing 4 0.51 4 0.43 3 0.62 
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Of the four alignment methods, only icoshift reduced the RMSEP value of toluene (by 

0.1 % w/w). However icoshift exhibited the poorest performance for ethanol and ethyl 

acetate, increasing the RMSEP value of ethyl acetate by 0.6 % w/w and increasing the 

RMSEP value of ethanol by almost 1 % w/w. In addition, four latent variables were 

required for both these solvents. This may be because the segment lengths used in 

icoshift were larger than for the other methods (since they were manually defined in 

order to treat each spectral region separately), meaning that more peaks were present 

within each segment. If peaks within the segment shift to different extents, then 

alignment of all peaks will not be possible. Ethanol and ethyl acetate experienced 

greater peak overlap than toluene, therefore the icoshift algorithm experienced greater 

difficulty in aligning these components. PAFFT and RAFFT exhibited the overall best 

performance of the alignment methods for dataset 3, with PAFFT producing the lowest 

RMSEP value for ethyl acetate and RAFFT producing the lowest RMSEP value for 

ethanol. 

The RMSEP values obtained for the bucketed spectra would be expected to be poor in 

this case, as all peak structure was lost. However the RMSEP values for all three 

solvents were low (≤ 0.62 % w/w), and the results were better than for any of the 

alignment methods (for which the lowest RMSEP values achieved were 0.90 % w/w 

for toluene, 1.15 % w/w for ethanol and 0.73 % w/w for ethyl acetate). This suggests 

that accurate predictions of concentration can still be obtained with only a few data 

points, as long as maxima corresponding to each component are present. Therefore it 

may be possible to perform accurate quantitative analysis with low resolution 

instruments. The ability to achieve low RMSEP values when large peak shifts were 

present further demonstrates the suitability of low-field NMR spectroscopy for 

quantitative analysis. 

5.3.4 Dataset 4 

PAFFT, RAFFT, icoshift and bucketing were then applied to the spectra in dataset 4, 

using the parameters optimised for dataset 3. COW was not included, as the 

computation time for COW was significantly longer than for the other methods (Table 

5.8) and it was less effective at aligning the spectra in dataset 3. Example spectra of 

calibration sample 7 (containing equal concentrations of toluene, ethanol and ethyl 
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acetate) from datasets 3 and 4 are shown in Figure 5.25 to illustrate the differences 

between the datasets. The spectra of the rest of the samples in dataset 4 are displayed 

in Appendix 5. As for the toluene, octene and dibutyl ether datasets, the use of a sub-

optimal shim to acquire the spectra has caused broadening of the peaks, a decrease in 

intensity and loss of fine structure.  

 

Figure 5.25 - 1H low-field NMR spectrum of calibration sample 7 in datasets 3 and 4. 

The RMSEP values obtained for the PLS1 models built using the spectra in dataset 4 

without alignment (other than global alignment using the TMS peak), with alignment 

by PAFFT, RAFFT and icoshift, and with bucketing are displayed in Table 5.14. 

Without alignment, the RMSEP value for toluene was similar to that obtained for 

dataset 3, and the ethanol and ethyl acetate values were 0.14 % w/w and 0.31 % w/w 

lower respectively. This again suggests broadening of the peaks has removed some of 

the variation between the spectra, improving their predictive ability. However four 

rather than three latent variables were required for ethyl acetate.  

PAFFT and RAFFT both decreased the RMSEP values for all solvents by 0.14 – 

0.98 % w/w, with RAFFT performing slightly better for toluene and ethanol (by 

around 0.1 % w/w) and PAFFT performing slightly better for ethyl acetate (by 

0123456789
Chemical shift/ppm

0

2

4

6

In
te

ns
ity

/a
.u

.

Dataset 3

0123456789
Chemical shift/ppm

0

2

4

6

In
te

ns
ity

/a
.u

.

Dataset 4



 189 

0.07 % w/w). Four latent variables were required for all solvents, an increase from the 

numbers required for toluene and ethanol before alignment. This indicates that the 

ineffectiveness of PAFFT and RAFFT at reducing the RMSEP values for dataset 2 

was a result of the parameters used, rather than an inability of the method to align 

spectra of poorer lineshape. Icoshift worsened the RMSEP values for all three solvents 

by 0.09 – 0.68 % w/w, and for ethanol a greater number of latent variables was required 

after icoshift (four compared to two). This corresponds to the results observed for 

dataset 3, confirming that icoshift is less effective than PAFFT or RAFFT when large 

peak shifts (of up to 1.5 ppm) are present, despite being effective for small amounts of 

peak shift (< 0.2 ppm).  

Table 5.14 - RMSEP values for PLS1 models built using dataset 4 without alignment (other 

than global alignment using the TMS peak), with alignment (by PAFFT, RAFFT and icoshift) 

and with bucketing. Parameters optimised using dataset 3. 

Alignment 
method 

Toluene Ethanol Ethyl acetate 

LVs RMSEP/ 
(% w/w) LVs RMSEP/ 

(% w/w) LVs RMSEP/ 
(% w/w) 

None 3 1.11 2 1.39 4 2.04 

PAFFT 4 0.97 4 1.18 4 1.06 

RAFFT 4 0.89 4 1.08 4 1.13 

icoshift 3 1.20 4 1.97 4 2.72 

Bucketing 4 0.54 4 0.40 3 0.58 

 

Bucketing again produced lower RMSEP values than any of the alignment methods 

(0.40 – 0.58 % w/w), as the variation in peak position between the spectra was 

eliminated. Therefore, although alignment was able to improve the predictive ability 

of the spectra when large peak shifts were present, bucketing was more effective 

despite the fact the bucketed spectra contained only twelve data points. However, in 

this work the analytes were chosen so that each had a clearly distinguishable peak, and 

bucketing may not produce such accurate predictions of concentration when greater 

amounts of peak overlap are present. 
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5.3.5 Bucketing of Overlapping Spectra 

To determine whether bucketing is as effective at removing variations in peak position 

between spectra which exhibit greater amounts of overlap than the ternary mixtures 

used in this work, optimised bucketing was also applied to the esterification reaction 

mixture spectra presented in section 4.3.4.2. The resulting spectra are displayed in 

Figure 5.26. When the optimum bucketing parameters for dataset 1 (a bucket size of 

0.1 ppm with a slackness value of 1) were applied to these spectra, the bucket size was 

clearly too small to remove the shifts of the acetic acid OH peak (present just below 

6 ppm, just above 8 ppm and just below 9 ppm). At this bucket size, acetic acid, 

butanol and butyl acetate could still be resolved but the acetic anhydride singlet peak 

at 2.2 ppm was combined with the butyl acetate and acetic acid singlet peaks just above 

2 ppm. Therefore acetic anhydride could no longer be resolved from the other 

components.  

The optimum bucketing parameters for dataset 3 (a bucket size of 0.75 ppm with a 

slackness value of 0.25) were also insufficient to remove the shifts of the OH peak. 

When these parameters were applied, the butanol and butyl acetate multiplets around 

4 ppm were combined, so none of the components other than acetic acid could be 

resolved. Increasing the bucket size to 1 ppm still did not remove the OH peak shifts 

(with the peak present at around 6.6 ppm after 5 minutes and around 8.5 ppm after 30 

minutes and one hour). At this bucket size, almost all other spectral information has 

been lost and it was again not possible to distinguish any of the components other than 

acetic acid. Therefore quantitative analysis using such spectra would not be possible. 

These results confirm that for spectra exhibiting greater overlap than the ternary 

mixtures used in this work, bucketing is not suitable for removing peak shifts and the 

use of alignment methods is necessary.  
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Figure 5.26 - Low-field 1H NMR spectra of esterification reaction mixture samples in 

chloroform, extracted at 5 minutes, 30 minutes and 1 hour after the addition of butanol; 

without bucketing and with bucketing using three different sets of parameters. 
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5.4 Conclusions 

Although none of the alignment methods were able to fully align the low-field NMR 

spectra when peak shifts of up to 1.5 ppm were present, it was still possible to improve 

the performance of PLS using alignment. This demonstrates the suitability of the 

spectrometer for quantitative analysis, as it was possible to achieve low RMSEP values 

for spectra exhibiting both little (< 0.2 ppm) and large (up to 1.5 ppm) amounts of peak 

shift. Of the alignment methods examined, RAFFT and PAFFT performed best 

overall. However, RAFFT and PAFFT did not perform particularly well for dataset 2. 

This is likely to be due to the parameters chosen, which were optimised for dataset 1. 

The requirement for optimisation of the parameters is a disadvantage of PAFFT, 

RAFFT and COW, as optimisation can be time consuming and the optimum 

parameters for spectra collected under different conditions may vary.  

A major advantage of icoshift is that it is not necessary to optimise parameters such as 

segment length or shift. Icoshift performed best of the alignment methods when peak 

shifts of less than 0.2 ppm were present (especially for dataset 2), but was not effective 

when large amounts of peak shift and overlap were present. This is likely to be because 

the spectra were split into four manually defined segments (to avoid the introduction 

of artefacts, which can occur when peaks are split across different segments), meaning 

that the segments used in icoshift were larger than for the other methods. 

Although COW was relatively effective at aligning peaks (except when large shifts of 

up to 1.5 ppm were present), the distortion of peaks tended to decrease the predictive 

ability of the spectra. In addition COW was significantly slower than PAFFT, RAFFT, 

icoshift and bucketing, sometimes taking several hours rather than seconds or minutes 

to perform the computation. RSPA was not effective due to the inability to alter 

parameters within the algorithm which was used, but if the parameters could be altered 

as described by Veselkov et al.12 then the method may be more effective. However it 

is unlikely that RSPA would be able to align the large amounts of peak shift present 

in the toluene, ethanol and ethyl acetate mixture spectra due to its similarity to RAFFT. 

In addition, RSPA was also significantly slower than PAFFT, RAFFT, icoshift and 

bucketing (taking 40 seconds to perform, compared to 2 seconds or less). 
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Optimised bucketing was able to significantly improve the predictive ability of the 

spectra for both datasets (producing RMSEP values ≤ 0.75 % w/w for all models), as 

it eliminated the peak shifts between the spectra. However bucket sizes of 0.75 ppm 

were necessary when large peak shifts were present, so the majority of the spectral 

information was lost. Despite this, bucketing of the spectra produced more accurate 

predictions than alignment. The application of bucketing to the esterification reaction 

mixture spectra suggested that bucketing would not be as effective at removing peak 

shifts between spectra exhibiting greater overlap. Therefore the alignment methods 

evaluated in this work would be more suitable. Analysis of the variance between the 

results obtained using each alignment method could be carried out next, in order to 

determine how significant the observed differences were. In addition, the combination 

of bucketing and alignment could be investigated. 
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6 Evaluation of Calibration Transfer and Reference 

Deconvolution as a Solution to Lineshape Deterioration in 

Low-Field NMR Spectroscopy 

6.1 Introduction 

The reduced size and cost of low-field NMR spectrometers make them far more 

suitable for use in process monitoring than high-field instruments, however there are 

a number of instrumental issues which may arise, and these can have a detrimental 

effect on the spectra. Variations in the magnetic field can occur over time, and 

shimming is performed in order to correct for these variations. However if the 

magnetic field varies between shimming then the saved shim settings will no longer 

correct the inhomogeneities present.1, 2 The magnets used in low-field NMR 

spectrometers are sensitive to temperature and the temperature of the magnet is 

controlled to the order of thousandths of a degree Celsius. Any deviations caused by 

variation in room temperature or sample temperature can therefore cause the 

performance of the instrument to deteriorate.1, 3  

Deviations from the optimum operating conditions of the instrument can have a 

number of effects on the spectra, such as broadening and reduction in the intensity of 

peaks, deterioration in lineshape and loss of fine structure, and shifts in peak position. 

In extreme cases, the lock signal may be lost or inhomogeneities in the magnetic field 

may become so severe that shimming must be performed again. Therefore the 

instrumental stability of the low-field NMR spectrometer used in Chapter 5 was 

investigated in this chapter, to examine the deterioration of its performance over time. 

Spectra acquired under different conditions may vary in lineshape, for example if a 

different instrument is used, if the magnetic field drifts over the course of analysis (e.g. 

during the monitoring of a long process when shimming might be challenging) or if 

an instrument is unable to obtain the same lineshape on different days. The instrument 

used in this work is capable of obtaining similar lineshapes on different days (as shown 

in Table 5.3), therefore previously saved shims which are no longer optimal were 

loaded in order to produce spectra of different lineshapes, as described in Chapter 5. 

This simulates the effect of acquiring spectra on different instruments. The ability to 
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apply a model built under one set of conditions (e.g. one instrument) to spectra 

collected under a different set of conditions (e.g. a different instrument) would save 

time and resources, as it would prevent the need to re-analyse every calibration sample 

under the new set of conditions. Thus in this chapter two different methods, reference 

deconvolution and calibration transfer, will be compared for the elimination of 

differences between low-field NMR spectra of different lineshapes.  

6.1.1 Reference Deconvolution 

Reference deconvolution (described in section 2.3.4) is commonly used to improve the 

lineshape of peaks in NMR spectra. It has been utilised in both high-field4-7 and 

low-field NMR spectroscopy.1, 8 In order to perform reference deconvolution, it is 

necessary for a reference peak to be present in every sample. Usually a singlet peak is 

chosen, as reference deconvolution is unable to supply information when the reference 

signal falls to zero in the time domain (i.e. within multiplets), but it is also possible to 

perform interpolation to allow the use of multiplet reference signals.9 However the 

reference signal must be well-resolved, and artefacts can be introduced if the reference 

peak is contaminated by other signals in the spectrum.4 Therefore unless a suitable 

reference peak is present in every spectrum, the addition of a standard is required, 

which inhibits the use of reference deconvolution in on-line reaction monitoring. 

Artefacts can also be introduced due to truncation of the reference signal, baseline 

errors, random noise or temperature gradients within the sample. In addition, reference 

deconvolution is only able to correct for errors in linewidth which are the same for all 

signals in the spectrum.4, 9  

The ideal reference signal is usually based on either a Lorenzian lineshape, a Gaussian 

lineshape or a combination of the two. A line broadening factor can also be applied to 

the ideal lineshape in order to increase or decrease the widths of the peaks in the 

spectrum. Increasing the linewidth can improve the signal to noise ratio of the 

spectrum at the cost of resolution, and decreasing the linewidth has the opposite 

effect.4, 6 Ebrahimi et al.6 have demonstrated that for high-field 1H NMR spectra of 

metabolites, reference deconvolution produces more accurate predictions of 

concentration than the application of line broadening alone. 
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6.1.2 Calibration Transfer 

An alternative to reference deconvolution is calibration transfer, described in section 

2.3.3, which has been used extensively in optical spectroscopy.10, 11 Calibration 

transfer by methods such as SST, DS and PDS (detailed in section 2.3.3) involve 

analysing a small number of calibration samples under each set of conditions in order 

to calculate a transfer function, which can then be used to correct the lineshape of the 

peaks. This allows a calibration model built under one set of conditions to be applied 

to spectra collected under a different set of conditions. The main advantage of 

calibration transfer over reference deconvolution is that the presence of a well resolved 

reference peak is not necessary. In addition, it is able to correct for differences other 

than linewidth, e.g. intensity changes.12 However a limitation is that the effectiveness 

of the method depends on the choice of samples used to calculate the transfer function, 

and these samples must be representative of the dataset as a whole. In complex 

mixtures, some components may be underrepresented or absent from the transfer 

samples, so calibration transfer will not be effective for these components.12, 13 The 

shifting of peaks of the same component between samples may also mean that the 

component is no longer accurately represented by the model, as shifted peaks may no 

longer be recognised as the same component. 

Calibration transfer is not widely used in NMR spectroscopy, but some examples have 

been demonstrated. At high field, DS and PDS have been demonstrated for the transfer 

of calibration models between different NMR spectrometers and instrumental 

configurations,12, 14 and these methods have also been compared to double-window 

PDS (an extension of the PDS method involving two windows)13 and hybrid 

calibration (in which the FIDs from each instrument are added together and the 

regression vector recalculated).11 DS, PDS and double-window PDS were all found to 

be effective. PDS produced the lowest RMSEP values for the transfer of PLS models 

built for authenticity control of sunflower lecithin between different instruments, with 

DS producing comparably low RMSEP values but introducing noise into the spectra. 

Hybrid calibration was the least effective of the methods.11 For the transfer of PLS 

models built with metabolic data acquired using different instrumental configurations, 

DS was found to be more effective than PDS, but required a greater number of transfer 

samples.13  
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At low field, DS, PDS and hybrid calibration have been compared for the transfer of 

calibration models between a measured set of FIDs and the same set of FIDs with 

alterations made to simulate a different instrument.15 PDS was found to be the most 

effective method. However, the instrument only provided information in the time 

domain. In the study carried out by Alam et al.,13 reference deconvolution was applied 

as a preprocessing technique before calibration transfer (by DS, PDS and double-

window PDS) at high field, and this was found to be more effective for the prediction 

of metabolite concentrations than the application of reference deconvolution alone. 

However calibration transfer alone has not been compared to reference deconvolution 

at high field, and no comparisons have been performed at low field.  

The aims of this chapter are to investigate the instrumental stability of the low-field 

NMR spectrometer and to compare the effectiveness of calibration transfer and 

reference deconvolution to correct for differences between low-field NMR spectra 

collected under different conditions. The combination of reference deconvolution and 

calibration transfer was also evaluated. In addition, the ability of reference 

deconvolution to eliminate short-term variation between spectra collected under the 

same conditions was investigated. 

6.2 Experimental 

6.2.1 Instrumental Stability 

6.2.1.1 Stability Over Time 

In order to examine the extent of peak shift and linewidth deterioration over time and 

to determine the cause of these issues, an investigation into the instrumental stability 

of the Magritek Spinsolve Carbon NMR spectrometer (with a proton channel operating 

at 43 MHz) used in Chapter 5 was performed. The stability of the instrument over time 

was first monitored, using a single sample which was not removed from the 

spectrometer between spectral acquisitions. This will determine whether any changes 

observed upon the consecutive analysis of samples can be attributed to the insertion 

and removal of the samples from the instrument. 

A sample of methanol (ISOTEC NMR reference standard for low temperature 

calibration, supplied by Sigma Aldrich, Steinheim, Germany) was inserted into the 
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instrument and a 1H NMR spectrum was measured every hour over a period of 63 

hours. The parameters used were the same as for the solvent mixture analysis described 

in section 5.2.1, however in this case each measurement was a single scan consisting 

of 32,768 data points, and was zero filled to 524,288 data points so that the positions 

of the maxima of the peaks could be determined as accurately as possible. The 

instrument was operated via Spinsolve Expert software, as before. 

The experiment was carried out after the instrument had been switched off for a couple 

of weeks over the Christmas break (after shimming to obtain a sufficiently narrow 

linewidth of < 0.5 Hz) in order to measure the deterioration of the linewidth over time, 

and was repeated a week later using the same parameters. The linewidth of each peak 

in the methanol spectrum at 50 % of the peak height was calculated, and used to 

compare the stability of the instrument during each experiment. 

6.2.1.2 Sample Temperature 

As sample temperature can affect the spectrum obtained,16 the length of time taken for 

the temperature of a sample to reach the temperature of the magnet was measured. The 

methanol sample was used, as it is possible to calculate the temperature of methanol 

from the chemical shift separation of the peaks in its 1H NMR spectrum.17 The sample 

was inserted into the instrument at room temperature and its 1H NMR spectrum was 

measured every 30 seconds for 20 minutes. The experiment was carried out using the 

standard Spinsolve software rather than Spinsolve Expert in order for the magnet 

temperature to be observed. The standard software allows less flexibility in altering 

the instrumental parameters, but the magnet temperature cannot be recorded using 

Spinsolve Expert. A receiver gain value of 28 dB, dwell time of 200 µs, acquisition 

delay of 39.47958 µs, bandwidth of 5 kHz and 90° pulse duration of 11.1 µs were 

used. For each measurement, a single scan consisting of 32,768 data points was 

collected and zero filled to 524,288 data points (in order to determine the positions of 

the maxima of the peaks as accurately as possible). Zero order phase correction was 

automatically applied by the software, optimised for each spectrum. 

The experiment was then repeated using the same procedure as for the solvent mixture 

analysis described in Chapter 5. The tube containing the methanol sample was cooled 

in the freezer at approximately –20 °C for an hour, then removed from freezer and 
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heated in a water bath at approximately 30 °C for two minutes before insertion into 

the spectrometer. This should confirm whether the solvent mixture samples had been 

left in the instrument for a sufficient length of time before analysis. 

The 1H NMR spectrum of methanol consists of two singlet peaks (corresponding to 

the CH3 and OH groups), and for each measured spectrum, the chemical shift 

difference between the maxima of the two peaks was measured. The sample 

temperature was then calculated using Equation 6.1, as described by Ammann et al.17 

(where Δδ is the chemical shift difference between the two peaks in the spectrum of 

methanol).  

 T (K) (methanol) = 409.0 – 36.54	Δδ – 21.85	(Δδ)2 Equation 6.1 

6.2.1.3 Magnet Temperature 

It was hypothesised that the insertion/removal of samples may affect the temperature 

of the magnet, which can produce deterioration in peak shape and linewidth. To 

examine the effect of insertion/removal of samples on the magnet temperature, the 

calibration samples from the toluene, octene and dibutyl ether dataset (Table 5.1) were 

analysed as described in section 5.2.1, while recording the temperature of the magnet.  

The standard Spinsolve software was used, with the settings described in section 

6.2.1.2. For each measurement, a single scan consisting of 32,768 data points was 

collected and zero filled to 65,536 data points in order to improve the digital resolution 

of the spectra. Zero order phase correction was again automatically applied by the 

software, optimised for each spectrum. Measurements of magnet temperature were 

acquired every minute and smoothing was performed using the “smooth” function in 

the MATLAB 2016b (MathWorks, Massachusetts, USA) Curve Fitting Toolbox 3.5.4. 

The Savitzky-Golay method was used, with 21 data points included in the calculation.  

The temperature of the magnet was also recorded over a 24 hour period when the 

instrument was not in use, for reference. In this case, measurements of magnet 

temperature were acquired every 15 seconds. Smoothing was performed as before, 

with 81 data points included in the calculation (since the measurements were acquired 

four times more frequently than in the previous experiment).  
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6.2.2 Short-Term Variation 

6.2.2.1 Toluene, Octene and Dibutyl Ether Mixtures 

To correct for the short-term variation of low-field NMR spectra (i.e. changes which 

occur between spectra of the same dataset during the course of analysis), reference 

deconvolution can be applied. The low-field 1H NMR datasets detailed in Chapter 5 

were used, and the toluene, octene and dibutyl ether mixtures (which exhibited 

< 0.2 ppm of peak shift) will be discussed first. The compositions of the mixtures, 

which were split into calibration and test samples, were given in Table 5.1 and Table 

5.2. The samples were analysed under two different sets of conditions; a shim 

optimised before analysis (dataset 1) and a loaded shim which was not optimal (dataset 

2). Details of the acquisition of these datasets and the differences in lineshape present 

were given in section 5.2.1. For both datasets, the same method of analysis was applied 

to all spectra.  

Reference deconvolution was performed on each spectrum in MATLAB 2016b, using 

code from the GNAT software package.18 The region from –0.2 ppm to 0.2 ppm (in 

which the TMS peak was present), consisting of 230 data points, was used as the 

reference peak in each spectrum. The ideal lineshape was based on a Lorentzian curve 

with a line broadening factor of 1 Hz. Ebrahimi et al.6 state that the use of a Lorentzian 

target lineshape with a width close to that of the experimental reference peak should 

allow errors to be corrected without significantly altering the appearance of the 

spectrum. Therefore a line broadening factor of 1 Hz was used, since this linewidth (at 

50 % peak height) is the threshold below which the performance of the instrument is 

considered acceptable when shimming is performed in Spinsolve.  

For each dataset, PLS1 models were built in PLS Toolbox version 8.6.2 (Eigenvector, 

Washington, USA) with the deconvoluted calibration spectra and used to predict the 

concentration (in % w/w) of each solvent present in the corresponding deconvoluted 

test spectra. RMSEP values (Equation 2.8) were then calculated to assess the 

predictive abilities of the models. The number of latent variables to include in each 

PLS1 model was determined by examination of the RMSEP values obtained using one 

to ten latent variables. Before PLS was performed, the spectra were globally aligned 

to the TMS peak and the spectral regions below 0.27 ppm and above 9.35 ppm were 
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removed to eliminate the TMS peak and reduce the size of the dataset. The linewidth 

at 50 % peak height of the toluene singlet peak at 7 ppm was measured for the test 

samples, and the mean and standard deviation values obtained for each dataset with 

and without reference deconvolution were compared. This peak was chosen as it is a 

well-resolved singlet. 

Alignment of the deconvoluted spectra was performed using icoshift, as described in 

section 5.2.2. Icoshift was chosen over the other alignment methods as it produced the 

overall lowest RMSEP values for the toluene, octene and dibutyl ether mixtures. 

Although other alignment methods such as RAFFT could equally have been used, the 

method which gave the overall lowest RMSEP values for each dataset was chosen, as 

this information was already available based on the comparison carried out in Chapter 

5. Optimised bucketing was also performed after reference deconvolution, using the 

optimised bucket widths obtained for dataset 1 without reference deconvolution, as 

described in section 5.2.3. PLS1 models were built and the RMSEP values were used 

to compare the models.  

The same analysis method was then repeated for dataset 2. When bucketing was 

performed, the optimised bucket widths obtained for dataset 1 without reference 

deconvolution were applied to the deconvoluted spectra of dataset 2.  

6.2.2.2 Toluene, Ethanol and Ethyl Acetate Mixtures 

Reference deconvolution was then applied to the toluene, ethanol and ethyl acetate 

spectra (which exhibited up to 1.5 ppm of peak shift) in datasets 3 and 4 using the 

same procedure as for datasets 1 and 2, in order to correct for variation within each 

dataset. Dataset 3 was acquired using an optimal shim and dataset 4 was acquired using 

a loaded sub-optimal shim. Further details are given in section 5.2.1. 

After the application of reference deconvolution, alignment was performed using 

RAFFT. RAFFT was chosen based on the results of Chapter 5, as RAFFT and PAFFT 

were found to produce the lowest RMSEP values for this mixture set and RAFFT 

required fewer latent variables than PAFFT in several cases. The RAFFT parameters 

optimised for dataset 3 without reference deconvolution, as described in section 5.2.2, 

were applied to the deconvoluted spectra from datasets 3 and 4. Bucketing was also 
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performed after reference deconvolution using the optimised bucket widths obtained 

for dataset 3 without reference deconvolution, as described in section 5.2.3. 

6.2.3 Long-Term Variation 

6.2.3.1 Toluene, Octene and Dibutyl Ether Mixtures 

Both calibration transfer and reference deconvolution can be used to correct for long-

term variation of spectra (i.e. variation between different datasets). Calibration transfer 

was performed in order to make the toluene, octene and dibutyl ether spectra in dataset 

2 resemble those in dataset 1. The spectra of calibration samples 1 – 3 and 8 – 10 in 

each dataset were used to calculate a transfer function by SST. This subset of samples 

was chosen to symmetrically span the range of the ternary diagram displayed in Figure 

5.1, in order for each solvent to be represented equally, and included the three pure 

component samples and three ternary mixtures. SST was chosen as the method of 

calibration transfer to use, since it had been found to be more effective than DS for the 

transfer of MIR spectra between different instruments in Chapter 3 and was easier to 

implement than PDS. 

SST was performed in MATLAB 2016b (MathWorks, Massachusetts, USA) with the 

algorithm described by Du et al. (without scaling),19 using each possible number of 

singular values from one to ten. The spectral regions below 0.27 ppm and above 

9.35 ppm were removed prior to calibration transfer. The transfer function was then 

applied to the test spectra in dataset 2. PLS1 models were built in PLS Toolbox using 

the calibration spectra in dataset 1, and used to predict the concentration (in % w/w) 

of each component present in the transferred test spectra of dataset 2. RMSEP values 

were calculated as before, and these values were used to assess the effectiveness of 

calibration transfer. The PLS1 models were also used to predict the concentration of 

each component present in the test spectra of dataset 2 without SST, and the 

predictions obtained without and with SST were compared. The optimum number of 

singular values to include in the SST calculation was determined by comparison of the 

RMSEP values obtained for the PLS1 models when each number of singular values 

from one to ten were used. The plots of RMSEP versus number of singular values can 

be found in Appendix 6.  
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Calibration transfer was initially performed on the spectra without alignment (which 

had been aligned globally using the TMS peak as described in section 5.2.2 but to 

which no alignment method had been applied), and was then repeated after alignment 

by icoshift and after optimised bucketing (as described in section 6.2.2.1). PLS1 

models were built using the aligned/bucketed spectra from dataset 1, and applied to 

the aligned/bucketed test spectra from dataset 2 (with and without SST). The width at 

50 % peak height of the toluene singlet peak at 7 ppm was measured for the test spectra 

in dataset 1, dataset 2 without SST, dataset 2 with SST, and dataset 2 with alignment 

and SST. For each set of test spectra, the mean and standard deviation of these widths 

were calculated. 

As a comparison to SST, reference deconvolution was also used to correct for variation 

between the datasets. Reference deconvolution was performed as described in section 

6.2.2.1, but in this case, the PLS1 models were built with the deconvoluted calibration 

spectra from dataset 1 and used to predict the concentration of each solvent present in 

the deconvoluted test spectra from dataset 2. This procedure was repeated with icoshift 

performed after reference deconvolution, then with optimised bucketing performed 

after reference deconvolution. The RMSEP values obtained for bucketing alone were 

also compared to those obtained for SST and for reference deconvolution, in order to 

assess the effectiveness of bucketing at removing the variation between the datasets. 

The combination of reference deconvolution and calibration transfer was then 

examined, in order to assess the effect of applying both methods. SST was repeated 

with the spectra obtained by reference deconvolution, using the same procedure as for 

the spectra without reference deconvolution. The analysis was again performed 

without alignment, with alignment by icoshift and with optimised bucketing. Icoshift 

and bucketing were applied after reference deconvolution, but before SST. A summary 

diagram of the analysis methods applied to the toluene, octene and dibutyl ether 

mixture spectra is displayed in Figure 6.1. 
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Figure 6.1 - Summary of analysis methods applied to 1H low-field NMR spectra of toluene, 

octene and dibutyl ether mixtures 

6.2.3.2 Toluene, Ethanol and Ethyl Acetate Mixtures 

Calibration transfer between the toluene, ethanol and ethyl acetate spectra in datasets 

3 and 4 was then performed using the procedure described in section 6.2.3.1 (with 

dataset 3 in place of dataset 1 and dataset 4 in place of dataset 2). PLS1 models were 

built as before, with the calibration spectra from dataset 3, and used to predict the 

concentrations of each solvent present in the test spectra from dataset 4. For these 

datasets, RAFFT was used to align the spectra as described in section 6.2.2.2. 

Reference deconvolution was performed as for the toluene, octene and dibutyl ether 

mixtures (section 6.2.3.1), and the analysis was repeated with RAFFT performed prior 

to PLS and optimised bucketing performed prior to PLS, as before. 

Bucketing was not performed prior to SST for these mixtures, as the optimum bucket 

size determined in Chapter 5 was large enough to remove the differences between 

datasets 3 and 4, therefore calibration transfer would no longer be necessary. The effect 

of bucketing after reference deconvolution will still be examined for this dataset, 

however, as reference deconvolution changes the shape of the peaks so the results of 

bucketing may be different. The effectiveness of bucketing at removing the variation 

between the datasets was also compared to that of calibration transfer and reference 

deconvolution. 
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SST was then repeated with the spectra obtained by reference deconvolution, using the 

same procedure as before. The analysis was performed using the spectra without 

alignment, and repeated using the spectra aligned by RAFFT (with RAFFT performed 

after reference deconvolution but before SST). A summary of the analysis methods 

applied to the toluene, ethanol and ethyl acetate mixture spectra is given in Figure 6.2. 

 

Figure 6.2 - Summary of analysis methods applied to 1H low-field NMR spectra of toluene, 

ethanol and ethyl acetate mixtures 

6.3 Results and Discussion 

6.3.1 Instrumental Stability 

6.3.1.1 Stability Over Time 

To investigate the stability of the low-field NMR spectrometer, the spectra of methanol 

collected over time were evaluated. The methanol spectra collected every hour over a 

period of 63 hours after the instrument had recently been switched off are shown in 

Figure 6.3. A shift in peak position (of around 0.1 ppm) and a decrease in peak height 

(of up to 5 a.u.) can be observed over the course of analysis. When the experiment was 

repeated a week later (Figure 6.4), the spectra did not appear to change over time. 

Figure 6.5 displays the linewidths at 50 % height for each of the two peaks. In the first 

experiment, the linewidth increased by up to 0.06 ppm over the course of the 

experiment, indicating rapid deterioration of performance as the homogeneity of the 

magnetic field decreased. After the instrument had been on for a week, however, the 
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linewidth remained relatively stable over the course of the experiment and an 

improvement of up to 0.005 ppm could even be observed with time. 

These results demonstrate that the stability of the instrument greatly deteriorates after 

it has been switched off, and despite being able to achieve desirable linewidths by 

shimming after it has been turned back on, the performance will not last. It is therefore 

necessary for the spectrometer to remain on for a period of several days before use. 

The stability of the linewidths observed in the second experiment demonstrate that the 

instrument is capable of achieving reproducible results over time, indicating that any 

deterioration observed during consecutive analysis of different samples can be 

attributed to the insertion/removal of the samples from the instrument. 

 

Figure 6.3 - Low-field 1H NMR spectra of methanol collected every hour for 63 hours when 

the instrument had just been switched on (black represents the start of the experiment and 

red represents the end of the experiment). 
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Figure 6.4 - Low-field 1H NMR spectra of methanol collected every hour for 63 hours one 

week after the instrument had been switched on (black represents the start of the 

experiment and red represents the end of the experiment). 
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Figure 6.5 - Linewidth at 50 % peak height for the peaks in low-field 1H NMR spectra of 

methanol collected every hour after the instrument had just been switched on (red) and one 

week later (blue). Solid line represents the peak at approximately 0.5 ppm (peak 1) and 

dashed line represents the peak at approximately 2 ppm (peak 2). 

6.3.1.2 Sample Temperature 

In order to determine the length of time required for a sample to reach the temperature 

of the instrument, the time taken for a sample of methanol to reach the magnet 

temperature was investigated. Plots of methanol sample temperature (calculated from 

the 1H NMR spectra using Equation 6.1) versus time, upon insertion of the sample into 

the spectrometer at room temperature and upon insertion of the sample after heating 

to approximately the temperature of the magnet are shown in Figure 6.6. The 

corresponding 1H NMR spectra can be found in Appendix 6.  

When the methanol sample was heated prior to analysis, the sample temperature 
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results, it is therefore necessary either to heat the sample before insertion or to wait at 

least 8 minutes (possibly longer if the temperature of the room varies) before analysis 

is performed.  

 

Figure 6.6 - Sample temperature versus time for a sample of methanol starting from room 

temperature (blue) and approximately 28.5 °C (red) after insertion into low-field NMR 

spectrometer. 

It is difficult to heat the sample tube to exactly the same temperature as the magnet, as 

heat is lost upon removal of the sample from the water bath/heating apparatus. In 

addition the magnet temperature is controlled to the order of thousandths of a degree 

Celsius, so it is impossible for samples to be exactly the same temperature as the 

magnet upon insertion. This is the reason that the tubes containing the solvent mixtures 

analysed in Chapter 5 were heated to approximately 30 °C (allowing for a small 

decrease in temperature after removal from the water bath) and left in the NMR 

spectrometer for five minutes prior to analysis. The plot of sample temperature against 

time for the methanol sample which was heated in the same manner as the solvent 

mixtures (shown in red) confirms that the solvent mixtures should have reached the 

temperature of the magnet by the time the spectra were acquired. 
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6.3.1.3 Magnet Temperature 

To investigate the stability of the magnet temperature, the temperature of the magnet 

while analysing the calibration samples (of the mixture set containing toluene, octene 

and dibutyl ether), and for several hours before/after the analysis, was plotted against 

time (Figure 6.7). During the period in which the samples were analysed (illustrated 

by the arrows), a small decrease in magnet temperature was observed, with the average 

value (as estimated by smoothing) falling to approximately 28.498 – 28.499 °C. This 

is presumably due to cooling of the magnet upon the consecutive insertion of a large 

number of sample tubes, and a time lag in the response of the magnet heater. The 

magnet temperature then began to rise again as the heater became more effective. After 

the experiment was finished, the magnet temperature continued to rise (as the heater 

overcompensated) and reached an average of approximately 28.501 – 28.502 °C 

before the magnet began to cool. 

  

Figure 6.7 - Magnet temperature (black represents smoothed data and blue represents raw 

data) of low-field NMR spectrometer while analysing calibration samples (regions 

represented by arrows). Red line represents point at which sample with poorest spectrum 

was inserted into the instrument. 
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The spectra of the calibration samples acquired while the magnet temperature was 

monitored are shown in Figure 6.8, with the spectral region containing the TMS peak 

displayed in Figure 6.9 to allow closer observation of the lineshape. The intensity scale 

differed by several orders of magnitude compared to that of the spectra acquired using 

Spinsolve Expert because Spinsolve Expert applies scaling to account for changes in 

receiver gain (so that spectra acquired using different values of receiver gain will have 

the same area) and the standard Spinsolve software does not. In some spectra, the 

lineshape deteriorated so that the TMS peak became broader and was no longer a 

singlet. No clear trend was observed with time, as spectra with poor lineshape were 

acquired at various different points in time throughout the experiment, however overall 

fewer spectra with poor lineshape were observed at the start of the experiment.  

 

Figure 6.8 - Low-field 1H NMR spectra of calibration samples (toluene, octene and dibutyl 

ether mixtures) collected while magnet temperature was monitored. Black represents the 

start of the experiment, green represents the end of the experiment and red represents the 

spectrum with poorest lineshape. 
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Figure 6.9 - TMS peak in low-field 1H NMR spectra of calibration samples (toluene, octene 

and dibutyl ether mixtures) collected while magnet temperature was monitored. Black 

represents the start of the experiment, green represents the end of the experiment and red 

represents the spectrum with poorest lineshape. 

A spectrum with a particularly poor lineshape is highlighted in red. The TMS peak 

was broad and severely misshapen, and loss of fine structure of the multiplet peaks can 

be observed in the full spectrum. The time point at which this sample was inserted into 

the spectrometer before the poorest spectrum was acquired is illustrated as a red line 

in Figure 6.7 (with the spectrum acquired five minutes later). This time point 

corresponds to the point at which the magnet temperature had dropped the lowest, 

indicating that the deterioration in lineshape observed is a result of the deviation of the 

magnet temperature from its optimum value. The lack of clear trend with time may be 

due to the continual fluctuations in the measurements of magnet temperature (as 

observed in the raw magnet temperature measurements represented by the blue 

markers), or it may be due to the contribution of other instrumental factors which 

cannot easily be measured. These results illustrate the importance of stable magnet 

temperature, as changes as small as one or two thousandths of a degree can produce 

significant deterioration in performance. 
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The temperature of the magnet over a 24 hour period when the instrument was not in 

use is plotted against time in Figure 6.10. Although the magnet temperature readings 

continually fluctuated, the smoothed data demonstrates that the average temperature 

remained stable over time and the deviations observed in Figure 6.7 lay outwith the 

magnet temperature range observed when the instrument was not in use. Therefore the 

deviations in magnet temperature can be attributed to the insertion/removal of samples 

from the instrument, despite the attempt to heat the samples to the same temperature 

as the magnet before insertion. This is a major issue, as it is likely that users of the 

spectrometer will want to analyse a number of samples consecutively, and an 

autosampler is available from Magritek for this purpose.20  

 

Figure 6.10 - Magnet temperature (black represents smoothed data and blue represents 

raw data) of low-field NMR spectrometer when instrument was not in use. 

A solution may be to leave each sample in the instrument for longer before analysis in 

order to minimise the disturbance to the magnet temperature, however experiments 

involving large numbers of samples will then become significantly more time 

consuming. As well as the implications for building calibration models, this issue may 

cause problems in reaction monitoring by low-field NMR spectroscopy. At-line 

analysis is likely to involve the continual insertion/removal of samples, and flowing a 
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reaction mixture through the instrument during on-line analysis may also affect the 

magnet temperature. Heating/cooling of the reaction mixture to the magnet 

temperature before it is flowed through the instrument may be a solution, however this 

would alter the reaction rate so the sample may no longer be representative of the 

reaction mixture. Investigation of the extent to which the magnet temperature is 

affected by flowing the reaction mixture through the instrument would therefore be 

recommended before flow NMR spectroscopy at low field is used to monitor a 

reaction. 

6.3.2 Short-Term Variation 

6.3.2.1 Toluene, Octene and Dibutyl Ether Mixtures 

In this section, the effectiveness of reference deconvolution at reducing the variation 

within datasets 1 and 2 (the toluene, octene and dibutyl ether mixture spectra analysed 

using different shim settings) was assessed. The low-field 1H NMR spectra of the 

calibration and test samples in these datasets (without reference deconvolution) can be 

found in Appendix 5, and an example spectrum from each dataset is displayed in 

Figure 5.14. A spectrum of calibration sample 7 (which contained equal concentrations 

of toluene, octene and dibutyl ether) from dataset 1 is shown in Figure 6.11, with and 

without reference deconvolution. With reference deconvolution, the peaks in the 

spectra were of lower intensity (less than 2.5 a.u. compared to up to 4 a.u.) and the 

multiplet structures were more defined. The bottom edges of the peaks also changed 

shape to increase sharply rather than gradually. A spectrum of the same sample from 

dataset 2 is displayed with and without reference deconvolution in Figure 6.12. 

Reference deconvolution enhanced the fine structure of the peaks and decreased their 

intensity (by up to 1 a.u.), but to a lesser extent than in dataset 1, as the peaks were of 

lower intensity to begin with (less than 3 a.u.).  
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Figure 6.11 - 1H low-field NMR spectrum of calibration sample 7 from dataset 1, without 

(blue) and with (red) reference deconvolution. 

 

Figure 6.12 - 1H low-field NMR spectrum of calibration sample 7 from dataset 2, without 

(blue) and with (red) reference deconvolution. 
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The mean and standard deviations of the linewidths at 50 % height for the aromatic 

toluene peak in the test spectra of datasets 1 and 2, without and with reference 

deconvolution, are displayed in Table 6.1. For dataset 1, the mean values obtained 

when reference deconvolution was applied were similar to those obtained without 

reference deconvolution (decreasing by only 4.6 x 10–3 ppm). However the application 

of reference deconvolution to dataset 2 decreased the mean linewidth by a factor of 

1.7, since the line broadening factor used was less than the width of the peaks in the 

original spectra. The standard deviation of the linewidths decreased for both datasets 

when reference deconvolution was applied, by a factor of 1.8 for dataset 1 and a factor 

of 4 for dataset 2. This demonstrates the effectiveness of reference deconvolution at 

reducing the variation within datasets, particularly for spectra of poor lineshape. The 

effectiveness of reference deconvolution at reducing the variation between the datasets 

will be discussed in section 6.2.3. 

Table 6.1 - Mean and standard deviation values of the width at 50 % peak height of the 

toluene peak at 7 ppm within the test spectra of datasets 1 and 2, without and with reference 

deconvolution. 

Dataset Reference 
deconvolution 

Mean width at 50 % 
height of toluene peak at 

7 ppm/ppm 

Standard deviation of width at 
50 % height of toluene peak at 

7 ppm/ppm 

1 
Without 0.0387 0.0055 

With 0.0341 0.0031 

2 
Without 0.0569 0.0105 

With 0.0336 0.0026 

 

In the first repeat measurement of calibration sample 2 in dataset 2, the application of 

reference deconvolution introduced a large amount of noise (up to 0.4 a.u. in intensity) 

into the baseline (shown in Figure 6.13), as a result of particularly poor TMS peak 

shape. This measurement was therefore excluded from the PLS1 models built using 

the deconvoluted calibration spectra in dataset 2. This is a disadvantage of reference 

deconvolution, as changes in the homogeneity of the magnetic field (which cause the 

shim settings to no longer be optimal) often produce distortion in the shape of the TMS 

peak, as discussed in Chapter 5, which can lead to this effect. The presence of 
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temperature gradients within the sample (e.g. as a result of the magnet temperature 

deviations discussed in Chapter 5) can also introduce noise when reference 

deconvolution is applied, as they will affect the lineshape of each signal differently.4 

In addition, the peaks in this spectrum may have become so broad due to deterioration 

of the shim that the penalty in the signal to noise ratio outweighed the benefits of 

resolution enhancement (as described by Morris et al.4, 6) when the line broadening 

factor of 1 Hz was used. The spectra of the rest of the samples in datasets 1 and 2 with 

reference deconvolution can be found in Appendix 6.  

 

Figure 6.13 - 1H low-field NMR spectrum of calibration sample 2 (first repeat 

measurement) from dataset 2, with reference deconvolution. 

The RMSEP values obtained when PLS1 was performed (using the calibration spectra 

from the same dataset as the test spectra) without and with reference deconvolution 

are shown in Table 6.2 and Table 6.3, for datasets 1 and 2 respectively. For dataset 2, 

the spectrum containing the noise was excluded from the calibration models built with 

the deconvoluted spectra. The results obtained without reference deconvolution were 

discussed in more detail in Chapter 5. Lower RMSEP values were generally obtained 

for toluene than for the other two solvents, as the spectrum of toluene contains only 

singlet peaks which are easier to model. 
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Table 6.2 - RMSEP values for PLS1 models built using dataset 1 without and with reference 

deconvolution; without alignment, with alignment and with bucketing. 

Alignment Reference 
deconvolution 

Toluene Octene Dibutyl ether 

LVs RMSEP/ 
(% w/w) LVs RMSEP/ 

(% w/w) LVs RMSEP/ 
(% w/w) 

None 
Without 4 0.79 3 1.50 3 1.44 

With 3 1.13 3 1.35 3 1.42 

icoshift 
Without 3 0.55 3 0.86 3 0.73 

With 3 0.46 3 0.74 3 0.58 

Bucketing 
Without 3 0.46 3 0.41 3 0.34 

With 3 0.29 3 0.36 3 0.27 

 

Table 6.3 - RMSEP values for PLS1 models built using dataset 2 without and with reference 

deconvolution; without alignment, with alignment and with bucketing. 

Alignment Reference 
deconvolution 

Toluene Octene Dibutyl ether 

LVs RMSEP/ 
(% w/w) LVs RMSEP/ 

(% w/w) LVs RMSEP/ 
(% w/w) 

None 
Without 3 0.83 4 0.95 3 1.17 

With 4 0.83 3 1.38 4 1.30 

icoshift 
Without 4 0.44 3 0.98 3 0.75 

With 3 0.57 3 0.72 3 0.61 

Bucketing 
Without 3 0.75 3 0.69 3 0.38 

With 3 0.41 3 0.39 3 0.20 

 

For dataset 1 without alignment, the application of reference deconvolution decreased 

the RMSEP value for octene by 0.15 % w/w but increased the RMSEP value for 

toluene by around 0.2 % w/w. However one less latent variable was required for 

toluene after reference deconvolution. The RMSEP value obtained for dibutyl ether 

was similar to that obtained without reference deconvolution. For dataset 2, the toluene 

RMSEP value remained similar, but the octene and dibutyl ether RMSEP values 

increased by around 0.4 % w/w and 0.1 % w/w respectively when reference 
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deconvolution was applied (with one more latent variable required for toluene and 

dibutyl ether compared to without reference deconvolution, but one less latent variable 

required for ethanol).  

This suggests that reference deconvolution may have decreased rather than increased 

the predictive ability of the spectra, particularly for dataset 2. As the shim was not 

optimal for this dataset, the peaks were broader than in dataset 1 (with a mean TMS 

peak width of 1.92 Hz at 50 % peak height compared to 0.96 Hz) and less variation 

was present between the spectra without reference deconvolution (with RMSEP values 

≤ 1.17 % w/w obtained compared to ≤ 1.50 % w/w). The application of reference 

deconvolution caused the peaks to become narrower and more similar to those of 

dataset 1 (as will be discussed in section 6.2.3), explaining the increase in RMSEP 

observed. 

When alignment was performed after reference deconvolution, the RMSEP values for 

dataset 1 decreased by around 0.1 % w/w compared to the RMSEP values obtained 

after alignment alone. For dataset 2 with alignment, the application of reference 

deconvolution appears to have been more effective at reducing the variation between 

the spectra than it was when alignment was not applied. The RMSEP values of octene 

and dibutyl ether decreased by around 0.3 % w/w and 0.1 % w/w respectively 

(compared to the values obtained for alignment without reference deconvolution) and 

one less latent variable was required for toluene. However the RMSEP value obtained 

for toluene increased by around 0.1 % w/w. 

The application of reference deconvolution and bucketing produced the overall lowest 

RMSEP values for both datasets, ranging from 0.2 % w/w to 0.4 % w/w. For dataset 1, 

a reduction in RMSEP of 0.05 – 0.2 % w/w was observed compared to bucketing 

alone, and for dataset 2, a reduction in RMSEP of 0.2 – 0.3 % w/w was obtained. These 

results again suggest that the use of reference deconvolution to reduce the variation 

within the datasets was successful. 

6.3.2.2 Toluene, Ethanol and Ethyl Acetate Mixtures 

The effectiveness of reference deconvolution at reducing the variation within datasets 

3 and 4 (the toluene, ethanol and ethyl acetate mixture spectra acquired using different 

shim settings) was then assessed. Example spectra from each dataset are displayed in 
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Figure 5.25, and the full sets of spectra (without reference deconvolution) can be found 

in Appendix 5. Figure 6.14 displays a spectrum of calibration sample 7 (which 

contained equal concentrations of toluene, ethanol and ethyl acetate) from dataset 3, 

with and without reference deconvolution. When reference deconvolution was 

applied, the shape of the peaks again changed so that the points where the edges met 

the baseline (particularly between the peaks of multiplets) were more defined with 

greater separation. The peaks in the spectrum with reference deconvolution were also 

of lower intensity (less than 3 a.u. compared to more than 5 a.u. without reference 

deconvolution).  

 

Figure 6.14 - 1H low-field NMR spectrum of calibration sample 7 from dataset 3, without 

(blue) and with (red) reference deconvolution. 

A spectrum of calibration sample 7 from dataset 4 is shown with and without reference 

deconvolution in Figure 6.15. The peaks in the spectrum again became more defined 

after reference deconvolution and the intensity of the peaks decreased from just under 

3.5 a.u. to just above 2 a.u. When reference deconvolution was applied to the spectra 

in dataset 4, two of the spectra (the first repeat measurement of calibration sample 3 

and the second repeat measurement of calibration sample 7) had a large amount of 

noise present in the baseline (up to 0.45 a.u.) due to distortion of the TMS peak shape, 
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as shown in Figure 6.16. These spectra were therefore not included in the calibration 

models built using dataset 4. The rest of the spectra from datasets 3 and 4 with 

reference deconvolution are displayed in Appendix 6. 

 

Figure 6.15 - 1H low-field NMR spectrum of calibration sample 7 from dataset 4, without 

(blue) and with (red) reference deconvolution. 
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Figure 6.16 - 1H low-field NMR spectra of calibration samples 3 (first repeat measurement) 

and 7 (second repeat measurement) from dataset 4, with reference deconvolution. 

With reference deconvolution, the mean linewidth of the aromatic toluene peak at 

50 % height for the test spectra in dataset 3 (Table 6.4) was similar to the value 

obtained without reference deconvolution (decreasing by only 2.2 x 10–3 ppm). A 

greater difference was observed for dataset 4 (as the peaks of the original spectra were 

broader since the shim was not optimal), with reference deconvolution causing the 

mean linewidth to decrease by a factor of 1.6. The standard deviation of the linewidths 

decreased by a factor of 3 upon the application of reference deconvolution to dataset 

3, and by a factor of 2 for dataset 4. This corresponds to the results observed for 

datasets 1 and 2, further demonstrating that reference deconvolution is able to reduce 

the short-term variation of spectra within the same dataset. 
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Table 6.4 - Mean and standard deviation values of the width at 50 % peak height of the 

toluene peak at 7 ppm within the test spectra of datasets 3 and 4, without and with reference 

deconvolution. 

Dataset Reference 
deconvolution 

Mean width at 50 % 
height of toluene peak at 

7 ppm/ppm 

Standard deviation of width at 
50 % height of toluene peak at 

7 ppm/ppm 

3 
Without 0.0356 0.0079 

With 0.0334 0.0025 

4 
Without 0.0546 0.0056 

With 0.0336 0.0024 

 

The RMSEP values for PLS1 (using the calibration spectra from the same dataset as 

the test spectra in each case), without and with reference deconvolution, are shown in 

Table 6.5 and Table 6.6 for datasets 3 and 4 respectively. For datasets 3 and 4 without 

alignment, the application of reference deconvolution decreased the RMSEP value of 

ethanol by 0.2 % w/w, but increased the RMSEP values of toluene and ethyl acetate 

by 0.6 – 0.7 % w/w and 0.2 – 0.3 % w/w respectively. For dataset 4, one more latent 

variable was required for toluene with reference deconvolution but one less latent 

variable was required for ethyl acetate. Reference deconvolution therefore appears to 

have worsened the predictive abilities of the spectra. As reference deconvolution was 

able to decrease the variation in linewidth of the spectra, it may be that the relative 

areas of the peaks were altered in the process (particularly the singlet peaks), 

explaining the decrease in the predictive ability of the spectra.  

When RAFFT was applied, the RMSEP values of toluene decreased by 

0.2 – 0.4 % w/w compared to without reference deconvolution, but the RMSEP values 

of ethanol and ethyl acetate each increased by a factor of 2 or 3. For dataset 3, two less 

latent variables were necessary for ethanol but one more latent variable was necessary 

for ethyl acetate compared to without reference deconvolution. For dataset 4, two less 

latent variables were required for toluene compared to without reference 

deconvolution. As RAFFT (or any of the other alignment methods evaluated in 

Chapter 5) was unable to remove the peak shifts of ethanol and ethyl acetate between 

3 and 6 ppm, this suggests that reference deconvolution has increased the differences 
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caused by peak shift. Therefore although reference deconvolution is able to reduce the 

variation between spectra when only small peak shifts (< 0.2 ppm) are present, it is not 

particularly effective when large peak shifts (up to 1.5 ppm) are present. The 

application of bucketing to the deconvoluted spectra made no significant difference to 

the RMSEP values for either dataset, as they differed by no more than 0.03 % w/w. 

Table 6.5 - RMSEP values for PLS1 models built using dataset 3 without and with reference 

deconvolution; without alignment, with alignment and with bucketing.  

Alignment Reference 
deconvolution 

Toluene Ethanol Ethyl acetate 

LVs RMSEP/ 
(% w/w) LVs RMSEP/ 

(% w/w) LVs RMSEP/ 
(% w/w) 

None 
Without 3 1.12 2 1.53 3 2.35 

With 3 1.82 2 1.30 3 2.59 

RAFFT 
Without 3 1.34 4 1.15 3 1.11 

With 3 0.94 2 3.44 4 3.00 

Bucketing 
Without 4 0.51 4 0.43 3 0.62 

With 4 0.53 4 0.44 3 0.64 

 

Table 6.6 - RMSEP values for PLS1 models built using dataset 4 without and with reference 

deconvolution; without alignment, with alignment and with bucketing. 

Alignment Reference 
deconvolution 

Toluene Ethanol Ethyl acetate 

LVs RMSEP/ 
(% w/w) LVs RMSEP/ 

(% w/w) LVs RMSEP/ 
(% w/w) 

None 
Without 3 1.11 2 1.39 4 2.04 

With 4 1.70 2 1.18 3 2.47 

RAFFT 
Without 4 0.89 4 1.08 4 1.13 

With 2 0.70 4 2.99 4 2.86 

Bucketing 
Without 4 0.54 4 0.40 3 0.58 

With 4 0.53 4 0.41 3 0.55 
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6.3.3 Long-Term Variation 

The aim of this section is to compare the effectiveness of calibration transfer and 

reference deconvolution for elimination of the differences between spectra acquired 

under different conditions. The comparison will first be carried out for the toluene, 

octene and dibutyl ether spectra (datasets 1 and 2), which exhibited peak shifts 

< 0.2 ppm, and repeated using the toluene, ethanol and ethyl acetate spectra (datasets 

3 and 4), which exhibited peak shifts up to 1.5 ppm. 

6.3.3.1 Toluene, Octene and Dibutyl Ether Mixtures 

6.3.3.1.1 Calibration Transfer 

SST was applied to the test spectra in dataset 2, in order to make them resemble the 

test spectra in dataset 1. The spectra of the test samples in dataset 2 are shown with 

SST in Figure 6.17. One singular value was included in the SST calculation, as this 

number produced the overall lowest RMSEP value (illustrated by the plots of RMSEP 

versus number of singular values in Appendix 6). This is likely to be because one 

singular value dominated the spectral space due to shifting of peaks between the 

spectra. Distortions consisting of small negative regions and noise were observed at 

the edges of some peaks, e.g. the toluene singlet peaks at 7 ppm and just above 2 ppm. 

This is a result of peak shifts between the transfer spectra and/or the test spectra, which 

caused the transfer spectra to no longer be representative of the test spectra in the 

regions where peak shifts occurred.  

When alignment of the spectra was performed before the application of SST (Figure 

6.18), the peaks no longer appeared distorted. However a sharp negative peak was 

present just below 1 ppm in the spectra of test sample 4 due to misalignments of the 

peaks in this region. In this case, the inclusion of six singular values produced the 

lowest RMSEP value (illustrated in the plots in Appendix 6). The application of 

alignment meant that the first singular value no longer described the majority of the 

variation between the datasets, so a larger number of singular values was required. 

When bucketing was applied before SST (Figure 6.19), no noise was produced in the 

baseline when calibration transfer was performed due to elimination of the effect of 

peak shift, and three singular values were found to be the optimum. 
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Figure 6.17 - 1H low-field NMR spectra of test samples in dataset 2 (no alignment), with 

calibration transfer by SST (using 1 singular value). 

 

Figure 6.18 - 1H low-field NMR spectra of test samples in dataset 2, with alignment by 

icoshift and calibration transfer by SST (using 6 singular values). 
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Figure 6.19 - 1H low-field NMR spectra of test samples in dataset 2, with optimised 

bucketing and calibration transfer by SST (using 3 singular values). 

An example spectrum of test sample 2 from dataset 2 is shown without and with SST 

in Figure 6.20, overlaid with a spectrum of the same sample from dataset 1. Without 

SST, the peaks in the spectrum from dataset 2 appeared broader than the peaks in the 

spectrum from dataset 1 and the singlet peaks were of lower intensity (up to 1.5 a.u. 

less). The shape of the peaks was also less defined. With SST applied to dataset 2, the 

shape of the peaks became more defined. However the toluene singlet peaks were still 

of much lower intensity (around 1 a.u. less) than in dataset 1, and noise was introduced 

into the edge of the peak just above 2 ppm. This may be due to inability of SST to 

handle peak shifts, as the toluene singlet peaks exhibited the greatest shifts and covered 

a smaller region of the x axis (as they were narrower), so the transformation of these 

peaks will have been more challenging.  

The mean and standard deviations of the linewidths at 50 % height of the aromatic 

toluene peak in the test spectra (from dataset 1, dataset 2 without SST, dataset 2 with 

SST, and dataset 2 with alignment and SST) are displayed in Table 6.7. Without SST, 

the mean linewidths for dataset 2 were higher than those of dataset 1 by a factor of 1.5, 

and the standard deviation was higher by a factor of 2. The application of SST with no 

alignment made little difference to the linewidths (with the mean value decreasing by 
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1.3 x 10–3 ppm and the standard deviation increasing by 2.9 x 10–3 ppm). This indicates 

that SST is not particularly effective at removing the variation between datasets when 

peak shifts are present. 

 

Figure 6.20 - 1H low-field NMR spectrum of test sample 2 in dataset 1 (blue) and dataset 2 

without and with calibration transfer by SST (red), no alignment (1 singular value 

included). 

Table 6.7 - Mean and standard deviation values of the width at 50 % peak height of the 

toluene peak at 7 ppm within the test spectra of dataset 1 and of dataset 2 without SST, with 

SST and with icoshift followed by SST. 

Data Mean width at 50 % height of 
toluene peak at 7 ppm/ppm 

Standard deviation of width at 50 % 
height of toluene peak at 

7 ppm/ppm 

Dataset 1 0.0387 0.0055 

Dataset 2 0.0569 0.0105 

Dataset 2 with 
SST 0.0556 0.0134 

Dataset 2 with 
icoshift and SST 0.0379 0.0054 
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When alignment was performed prior to calibration transfer (Figure 6.21), the 

spectrum from dataset 2 became more similar to the spectrum from dataset 1, with 

peaks of higher intensity (around 3 a.u.) and more defined shape so that the multiplets 

were more apparent. The mean linewidth of the aromatic toluene peak in the test 

spectra decreased by a factor of 1.5 and the standard deviation decreased by a factor 

of 2, compared to the values obtained without SST. These values were more similar to 

those obtained for dataset 1 (3.79 x 10–2 ppm compared to 3.87 x 10–2 ppm for the 

mean, and 5.4 x 10–3 ppm compared to 5.5 x 10–3 ppm for the standard deviation). The 

application of icoshift alone does not alter the linewidths of the peaks, therefore the 

values displayed for datasets 1 and 2 without alignment or SST were the same as those 

obtained for datasets 1 and 2 with alignment. These results demonstrate the 

effectiveness of SST at reducing the differences between well-aligned spectra acquired 

under different conditions. However the spectra were not identical, due to variations 

in the repeat measurements of the transfer and test samples within the same dataset. 

When bucketing was performed (Figure 6.22), the spectra of test sample 2 from each 

dataset were almost identical without SST, and the application of SST produced no 

noticeable difference in the spectra.  
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Figure 6.21 - 1H low-field NMR spectrum of test sample 2 in dataset 1 (blue) and dataset 2 

without and with calibration transfer by SST (red), aligned by icoshift (6 singular values 

included). 
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Figure 6.22 - 1H low-field NMR spectrum of test sample 2 in dataset 1 (blue) and dataset 2 

without and with calibration transfer by SST (red), with optimised bucketing (3 singular 

values included). 

6.3.3.1.2 Reference Deconvolution 

The effectiveness of reference deconvolution at removing the differences between the 

spectra in datasets 1 and 2 was then evaluated. Spectra of calibration sample 7 from 

datasets 1 and 2 with reference deconvolution are shown overlaid in Figure 6.23. The 

same spectra without reference deconvolution were displayed in Figure 5.14, and the 

differences were discussed in section 5.3.2. With reference deconvolution, these 

differences were no longer observed and the two spectra appeared almost identical.  

When the mean linewidth of the aromatic toluene peak in the test spectra of dataset 2 

(given in Table 6.1) was compared to that of dataset 1, the values differed by a factor 

of 1.5 when reference deconvolution was not applied but became similar with 

reference deconvolution (differing by only 5 x 10-4 ppm). The standard deviation in 

the linewidths also became similar, decreasing by a factor of 4 to become only 

5 x 10-4 ppm lower than for dataset 1. This illustrates that reference deconvolution 

was successful in eliminating the differences between the spectra from datasets 1 and 

2. The RMSEP values obtained with SST and with reference deconvolution will be 
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discussed in section 6.3.3.1.4, in order to assess the effectiveness of these methods 

when PLS1 models built using one dataset were applied to another dataset. 

 

Figure 6.23 - 1H low-field NMR spectrum of calibration sample 7 from datasets 1 (blue) and 

2 (red), with reference deconvolution. 

6.3.3.1.3 Reference Deconvolution and Calibration Transfer 

To evaluate the combination of reference deconvolution and calibration transfer, a 

spectrum of test sample 2 from dataset 2 with reference deconvolution applied is 

shown without/with SST in Figure 6.24, overlaid with the same spectrum from dataset 

1 with reference deconvolution applied. Little difference was observed between 

datasets 1 and 2, with or without SST. When icoshift was performed before SST, 

similar results were observed, and the plot can be found in Appendix 6. The mean and 

standard deviation values of the linewidths at 50 % peak height of the aromatic toluene 

peak are displayed in Table 6.8, and were also similar in all cases (differing by no 

more than 5 x 10–4 ppm). This indicates that reference deconvolution alone was 

sufficient to remove the variation between the datasets, and that the application of SST 

made little difference to the spectra.  
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Figure 6.24 - 1H low-field NMR spectrum of test sample 2 in dataset 1 (blue) and dataset 2 

without and with calibration transfer by SST (red), no alignment (1 singular value 

included). With reference deconvolution applied to datasets 1 and 2 before SST. 

Table 6.8 - Mean and standard deviation values of the width at 50 % peak height of the 

toluene peak at 7 ppm within the test spectra of dataset 1 and of dataset 2 without SST, with 

SST and with icoshift followed by SST. With reference deconvolution applied to datasets 1 

and 2 before SST. 

Data (all with 
reference 

deconvolution) 

Mean width at 50 % height 
of toluene peak at 

7 ppm/ppm 

Standard deviation of width at 
50 % height of toluene peak at 

7 ppm/ppm 

Dataset 1 0.0341 0.0031 

Dataset 2 0.0336 0.0026 

Dataset 2 with SST 0.0337 0.0026 

Dataset 2 with icoshift 
and SST 0.0336 0.0026 

 

When bucketing was applied prior to SST (after reference deconvolution), a difference 

of up to 11 a.u. was introduced between the spectra of test sample 2 from datasets 1 

and 2 (Figure 6.25). Without SST, the spectra appeared similar. This suggests that the 
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application of SST increased the variation between the two datasets, compared to the 

application of reference deconvolution and bucketing without SST.  

 

Figure 6.25 - 1H low-field NMR spectrum of test sample 2 in dataset 1 (blue) and dataset 2 

without and with calibration transfer by SST (red), with optimised bucketing (1 singular 

value included). With reference deconvolution applied to datasets 1 and 2 before SST. 

Only one singular value was necessary in all cases, indicating that only one major 

source of variation between the two datasets was present after the application of 

reference deconvolution and SST. The rest of the test spectra with reference 

deconvolution and SST applied (without alignment, with alignment and with 

bucketing) are displayed in Appendix 6.  

6.3.3.1.4 Comparison of RMSEP Values 

The RMSEP values for the PLS1 models built using the calibration spectra from 

dataset 1, applied to the test spectra from dataset 2 (without SST or reference 

deconvolution, with SST, with reference deconvolution and with both reference 

deconvolution and SST), are displayed in Table 6.9. Without SST or reference 

deconvolution, higher RMSEP values were obtained with alignment compared to 

without alignment (≤ 2.71 % w/w compared to ≤ 1.53 % w/w) and one less latent 
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variable was required for toluene and octene. This is likely to be due to the difference 

between the two sets of spectra increasing as a result of alignment, causing the RMSEP 

values to worsen when the PLS models built using dataset 1 were applied to spectra 

from dataset 2. 

Table 6.9 - RMSEP values for PLS1 models built using calibration spectra from dataset 1 

and applied to test spectra from dataset 2 (without alignment, with alignment and with 

bucketing); without calibration transfer or reference deconvolution, with calibration 

transfer, with reference deconvolution, and with both reference deconvolution and 

calibration transfer. 

Alignment Transformation 

Toluene Octene Dibutyl ether 

LVs RMSEP/ 
(% w/w) LVs RMSEP/ 

(% w/w) LVs RMSEP/ 
(% w/w) 

None 

None 4 1.15 4 1.44 3 1.53 

SST (1 SV) 3 0.95 4 1.15 4 1.41 

Reference 
deconvolution 4 1.00 3 1.40 3 1.42 

Reference 
deconvolution and 

SST (1 SV) 
3 1.09 3 1.37 3 1.42 

icoshift 

None 1 2.71 3 2.06 3 1.24 

SST (6 SVs) 3 0.40 3 1.11 3 0.96 

Reference 
deconvolution 3 0.59 3 0.74 3 0.68 

Reference 
deconvolution and 

SST (1 SV) 
3 0.50 3 0.72 3 0.67 

Bucketing 

None 3 0.46 3 0.41 3 0.34 

SST (3 SVs) 3 0.59 3 0.57 3 0.39 

Reference 
deconvolution 3 0.36 3 0.32 3 0.28 

Reference 
deconvolution and 

SST (1 SV) 
1 4.71 2 0.34 2 4.70 
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With no alignment, SST reduced the RMSEP values of all three solvents by 0.1 – 

0.3 % w/w. One less latent variable was required for toluene but one more latent 

variable was required for ethyl acetate after SST. With alignment, the RMSEP value 

for toluene decreased by 2.3 % w/w (although two more latent variables were 

required), the value for octene decreased by 1 % w/w and the value for dibutyl ether 

decreased by 0.3 % w/w. This clearly demonstrates the effectiveness of SST at 

reducing the variation between the datasets. 

Reference deconvolution was less effective than SST when alignment was not 

performed, producing similar RMSEP values (when the PLS models built with the 

calibration spectra from dataset 1 were applied to the test spectra from dataset 2) to 

SST for toluene and dibutyl ether, and an RMSEP value 0.3 % w/w higher than SST 

for octene. One less latent variable was required for octene and dibutyl ether compared 

to SST, and one more latent variable was required for toluene. With alignment, 

however, reference deconvolution produced lower RMSEP values (by 0.3 – 

0.4 % w/w) than SST for octene and dibutyl ether. For toluene, the RMSEP value was 

0.2 % w/w higher for reference deconvolution than SST (but still 4.5 times lower than 

for alignment without reference deconvolution or SST). Therefore reference 

deconvolution also appeared to be effective, particularly when alignment of the spectra 

was performed afterwards. The application of SST after reference deconvolution had 

little effect on the results (although one less latent variable was required for toluene 

when no alignment was performed). This again indicates that SST is unnecessary if 

reference deconvolution has been performed.  

When bucketing was performed without SST or reference deconvolution, the RMSEP 

values (obtained when PLS1 models built with the calibration samples from dataset 1 

were applied to the test spectra from dataset 2) decreased to 0.34 – 0.46 % w/w, 

compared to 1.15 – 1.53 % w/w without bucketing. This indicates that bucketing was 

able to reduce the variation between the datasets to a greater extent than SST or 

reference deconvolution. However as discussed in Chapter 5, the spectrum of each 

component used in this work contained clearly distinguishable peaks and bucketing is 

not likely to produce such accurate predictions when this is not the case.  
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The application of SST after bucketing produced an increase in the RMSEP values of 

all three solvents of 0.39 – 0.59 % w/w. As no noticeable difference could be observed 

in the bucketed spectra with and without SST (shown in Figure 6.22), and lower 

RMSEP values were obtained without SST, calibration transfer appears to be 

unnecessary after bucketing using these parameters. The application of bucketing after 

reference deconvolution produced the lowest RMSEP values of all (0.28 – 

0.36 % w/w). However these values were no more than 0.1 % w/w different than from 

when bucketing was applied to the spectra without reference deconvolution (and the 

same number of latent variables were necessary for all components).  

When SST was performed after reference deconvolution and bucketing, the toluene 

and dibutyl ether RMSEP values significantly worsened (increasing as high as 

4.71 % w/w). This may have been because the combination of reference deconvolution 

and bucketing introduced differences to the toluene and dibutyl ether spectra between 

the datasets, and these differences were not fully reflected in the transfer samples. 

Fewer latent variables were required compared to without SST, indicating that SST 

has reduced the number of sources of variation in the spectra. For octene, the RMSEP 

value was similar to that obtained for reference deconvolution and bucketing without 

SST, but one less latent variable was required. Therefore the use of bucketing alone 

appears to be sufficient for removing long-term variation between spectra exhibiting 

little peak shift or overlap. 

6.3.3.2 Toluene, Ethanol and Ethyl Acetate Mixtures 

6.3.3.2.1 Calibration Transfer 

The effectiveness of SST at removing the differences between the test spectra in 

datasets 3 and 4 was then examined. The spectra of the test samples from dataset 4 

(toluene, ethanol and ethyl acetate mixtures) are shown with SST in Figure 6.26. Noise 

consisting of small negative distortions was again present at 2 ppm and 7 ppm, as a 

result of shifts between the transfer spectra and/or test spectra. Just above 5 ppm, noise 

resembling a multiplet peak was present in the baseline of test sample 6. This is a result 

of the large shifts (up to 1.5 ppm) of the multiplet peaks between 3 ppm and 6 ppm, 

and is an issue with using calibration transfer when peak shifts are present. The 

application of RAFFT (Figure 6.27) removed the noise at 2 and 7 ppm, but worsened 
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the noise just above 5 ppm (with negative peaks up to 0.6 a.u. in intensity present). 

This is due to the inability of RAFFT to align the peaks in this region. The number of 

singular values required to produce the lowest RMSEP values increased from two to 

three upon the application of RAFFT, presumably due to domination of the spectral 

space by low numbers of singular values when the spectra exhibited greater amounts 

of peak shift. 

 

Figure 6.26 - 1H low-field NMR spectra of test samples in dataset 4 (no alignment), with 

calibration transfer by SST (using 2 singular values). 
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Figure 6.27 - 1H low-field NMR spectra of test samples from dataset 4, with alignment by 

RAFFT and calibration transfer by SST (using 3 singular values). 

A spectrum of test sample 2 from dataset 4 is shown without and with SST in Figure 

6.28, overlaid with the same spectrum from dataset 3. The application of SST 

introduced noise into the singlet peak just below 2 ppm and into the baseline at the 

edge of the triplet peak just above 5 ppm. The intensity of the peaks increased by up 

to 1.5 a.u. with SST, but the spectrum still differed from dataset 3. The mean and 

standard deviations of the linewidths of the aromatic toluene peak present in the test 

samples (for dataset 3, dataset 4 without SST, dataset 4 with SST and dataset 4 with 

alignment) are displayed in Table 6.10. The mean linewidth for dataset 4 was similar 

with and without SST (differing by only 3.5 x 10–3 ppm), and was still higher than that 

of dataset 3 by a factor of 1.4. The standard deviation of the linewidths increased by a 

factor of 2 with SST (compared to without SST), indicating that the variation of the 

toluene peak increased as a result of calibration transfer. 
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Figure 6.28 - 1H low-field NMR spectrum of test sample 2 in dataset 3 (blue) and dataset 4 

without and with calibration transfer by SST (red), no alignment (2 singular values 

included). 

Table 6.10 - Mean and standard deviation values of the width at 50 % peak height of the 

toluene peak at 7 ppm within the test spectra of dataset 3 and of dataset 4 without SST, with 

SST and with RAFFT followed by SST. 

Data Mean width at 50 % height of 
toluene peak at 7 ppm/ppm 

Standard deviation of width at 
50 % height of toluene peak at 

7 ppm/ppm 

Dataset 3 0.0356 0.0079 

Dataset 4 0.0546 0.0056 

Dataset 4 with 
SST 0.0511 0.0101 

Dataset 4 with 
RAFFT and SST 0.0384 0.0046 

 

When RAFFT was performed prior to calibration transfer (Figure 6.29), the spectrum 

became more similar to that of dataset 3, with peaks of higher intensity (within 1 a.u. 

of the spectrum from dataset 3) and greater definition. The noise just below 2 ppm was 
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no longer present, but the noise just above 5 ppm worsened, resembling extra peaks in 

the multiplet ranging from 0.8 a.u. to –0.6 a.u. in intensity. The mean linewidth of the 

aromatic toluene peak in the test spectra was more similar to that of dataset 3 (differing 

by only 2.8 x 10–3 ppm), and the standard deviation of the linewidth was 1 x 10–3 ppm 

less. As for icoshift, the application of RAFFT does not alter the linewidths of the 

peaks, so the values displayed for datasets 3 and 4 without alignment or SST were the 

same as those obtained for datasets 3 and 4 with RAFFT. These results again 

demonstrate that SST is effective at removing the long-term variation between spectra 

when peak shifts are not present, but that the movement of peaks can cause problems. 

 

Figure 6.29 - 1H low-field NMR spectrum of test sample 2 in dataset 3 (blue) and dataset 4 

without and with calibration transfer by SST (red), aligned by RAFFT (3 singular values 

included). 

6.3.3.2.2 Reference Deconvolution 

To evaluate the effectiveness of reference deconvolution at removing the differences 

between the test spectra in datasets 3 and 4, a spectrum of calibration sample 7 from 

each dataset with reference deconvolution is overlaid in Figure 6.30. The spectra 

without reference deconvolution were discussed in section 5.3.4. When reference 

deconvolution was applied the spectra appeared almost identical, with an intensity 
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difference of less than 0.03 a.u. present. The mean and standard deviations of the 

linewidths of the aromatic toluene peak in the test spectra of datasets 3 and 4 were 

given in Table 6.4. Without reference deconvolution, the mean linewidth for dataset 4 

was greater than that of dataset 3 by a factor of 1.5, but with reference deconvolution 

the values were similar (differing by only 2 x 10–4 ppm). The standard deviations of 

the linewidths also differed by a factor of 1.4 without reference deconvolution, but 

only by 1 x 10–4 ppm with reference deconvolution. Reference deconvolution therefore 

appears to have been effective at removing the differences between the two sets of 

spectra. 

 

Figure 6.30 - 1H low-field NMR spectrum of calibration sample 7 from dataset 3 (blue) and 

dataset 4 (red), with reference deconvolution. 

6.3.3.2.3 Reference Deconvolution and Calibration Transfer 

An example spectrum of test sample 2 from dataset 4 with reference deconvolution is 

shown without/with SST in Figure 6.31, overlaid with the same sample from dataset 3 

with reference deconvolution. Without SST the spectra were similar, and the 

application of SST appeared to have little effect. The same plots are shown with 

RAFFT applied prior to SST in Figure 6.32. Again the spectra were similar, however 

012345678

Chemical shift/ppm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty
/a

.u
.

Dataset 3

Dataset 4



 245 

SST introduced noise in the form of a small negative peak (around 0.2 a.u. in intensity) 

into the spectrum. This was due to the presence of noise in this region of the baseline 

of several of the spectra (introduced as a result of deterioration of the TMS peak 

lineshape).  

The mean and standard deviations of the linewidths at 50 % peak height of the aromatic 

toluene peak in the test samples are displayed in Table 6.11. Again, the application of 

SST does not appear to have affected the results (with the mean value differing by no 

more than 3 x 10-4 ppm and the standard deviations differing by no more than 

2 x 10-4 ppm). This corresponds to the results obtained for the toluene, octene and 

dibutyl ethyl mixtures, and indicates that the application of SST after reference 

deconvolution is unnecessary.   

 

Figure 6.31 - 1H low-field NMR spectrum of test sample 2 in dataset 3 (blue) and dataset 4 

without and with calibration transfer by SST (red), no alignment (3 singular values 

included). With reference deconvolution applied to datasets 3 and 4 before SST. 
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Figure 6.32 - 1H low-field NMR spectrum of test sample 2 in dataset 3 (blue) and dataset 4 

without and with calibration transfer by SST (red), aligned by RAFFT (1 singular value 

included). With reference deconvolution applied to datasets 3 and 4 before SST. 

Table 6.11 - Mean and standard deviation values of the width at 50 % peak height of the 

toluene peak at 7 ppm within the test spectra of dataset 3 and of dataset 4 without SST, with 

SST and with RAFFT followed by SST. With reference deconvolution applied to datasets 3 

and 4 before SST. 

Data Mean width at 50 % height of 
toluene peak at 7 ppm/ppm 

Standard deviation of width at 
50 % height of toluene peak at 

7 ppm/ppm 

Dataset 3 0.0334 0.0025 

Dataset 4 0.0336 0.0024 

Dataset 4 with 
SST 0.0337 0.0025 

Dataset 4 with 
RAFFT and SST 0.0335 0.0026 
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6.3.3.2.4 Comparison of RMSEP Values 

When the PLS1 models built using the calibration spectra from dataset 3 were applied 

to the test spectra in dataset 4 (without SST or reference deconvolution, with SST, 

with reference deconvolution and with both reference deconvolution and SST), the 

RMSEP values displayed in Table 6.12 were obtained. Before SST, the RMSEP value 

for toluene was fairly low (1.46 % w/w) and the RMSEP values for ethanol and ethyl 

acetate were higher (2.84 % w/w and 2.52 % w/w respectively). The application of 

RAFFT had no significant effect on the RMSEP value for toluene, but increased the 

RMSEP values for ethanol and ethyl acetate by 0.5 % w/w and 0.8 % w/w respectively. 

This indicates that alignment caused the differences between the spectra in datasets 3 

and 4 to become more pronounced, perhaps because the peaks in each dataset were 

shifted to a different extent. However one less latent variable was required after 

RAFFT. 

When SST was applied to the test spectra of dataset 4, the RMSEP values for all 

solvents decreased by up to 1.1 % w/w without RAFFT and up to 2.3 % w/w with 

RAFFT. The number of latent variables required remained the same in most cases, but 

one extra latent variable was necessary after SST for ethanol in dataset 4. Lower 

RMSEP values could be obtained when RAFFT was applied before SST, compared to 

SST alone (≤ 1.01 % w/w compared to ≤ 1.75 % w/w). This again indicates that 

alignment has improved the performance of SST, and that SST has been successful 

despite the noise caused by peak movement. 

Without alignment, the application of reference deconvolution decreased the RMSEP 

value of ethanol by a factor of 2 (when the PLS models were built using the calibration 

spectra from dataset 3 and applied to the test spectra from dataset 4), but increased the 

RMSEP values of toluene and ethyl acetate by up to 0.4 % w/w. This may be because 

the large peak shifts exhibited by ethanol were caused by the interaction of components 

and so were similar for the two datasets, therefore reference deconvolution reduced 

the differences between the ethanol peaks by removing the variation in lineshape. For 

the other components, reference deconvolution appears to have increased the 

difference in predictive ability between the two sets of spectra. However two less latent 

variables were required for ethanol and one less latent variable was required for ethyl 
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acetate compared to without reference deconvolution. As the variation in the linewidth 

of the aromatic toluene peak between the two datasets decreased upon reference 

deconvolution, it would be expected that the RMSEP values would decrease. 

Therefore it is possible that the application of reference deconvolution may have 

altered the areas of the peaks to different extents, reducing the predictive abilities of 

the toluene and ethyl acetate spectra.  

Table 6.12 - RMSEP values for PLS1 models built using calibration spectra from dataset 3 

and applied to test spectra from dataset 4 (without alignment, with alignment and with 

bucketing); without calibration transfer or reference deconvolution, with calibration 

transfer, with reference deconvolution, and with both reference deconvolution and 

calibration transfer. 

Alignment Transformation 

Toluene Ethanol Ethyl acetate 

LVs RMSEP/ 
(% w/w) LVs RMSEP/ 

(% w/w) LVs RMSEP/ 
(% w/w) 

None 

None 3 1.46 4 2.84 4 2.52 

SST (2 SVs) 3 1.33 4 1.74 4 1.75 

Reference 
deconvolution 3 1.85 2 1.41 3 2.68 

Reference 
deconvolution and 

SST (3 SVs) 
4 1.68 2 1.17 3 2.50 

RAFFT 

None 3 1.42 3 3.23 3 3.36 

SST (3 SVs) 3 0.83 4 1.01 3 1.01 

Reference 
deconvolution 3 0.87 2 3.36 4 2.97 

Reference 
deconvolution and 

SST (1 SV) 
3 0.59 2 3.24 4 3.12 

Bucketing 
None 4 0.50 4 0.42 3 0.54 

Reference 
deconvolution 4 0.51 4 0.42 3 0.56 

 

When RAFFT was applied after reference deconvolution, the RMSEP values of 

toluene and ethyl acetate decreased by 0.5 % w/w and 0.4 % w/w respectively 
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(compared to the values obtained for RAFFT alone), and the RMSEP value of ethanol 

increased by 0.1 % w/w. One less latent variable was required for ethanol and one 

more latent variable was required for ethyl acetate compared to when RAFFT was 

applied without reference deconvolution. This indicates that reference deconvolution 

decreased the differences between the two sets of spectra to an extent. However the 

RMSEP values were significantly higher than those obtained using SST (≤ 3.36 % w/w 

compared to ≤ 1.01 % w/w with RAFFT, and ≤ 2.68 % w/w compared to ≤ 1.75 % w/w 

without RAFFT). This suggests that when large amounts of peak shift are present, 

calibration transfer is more effective than reference deconvolution at removing the 

differences between spectra acquired under different conditions, despite the presence 

of noise in the transferred test spectra. It is unsurprising that calibration transfer was 

more effective than reference deconvolution at removing the differences between the 

datasets, as the transfer function in reference deconvolution was calculated from a 

reference peak within the same spectrum, therefore differences between the datasets 

were not taken into account. In SST, on the other hand, spectral information obtained 

using both datasets was used to calculate the transfer function. 

When both reference deconvolution and SST were applied, the RMSEP values 

decreased by a small amount (up to 0.2 % w/w) compared to the values obtained for 

reference deconvolution alone. However, one more latent variable was required for 

toluene and the RMSEP value was higher than before reference deconvolution. When 

RAFFT was also applied, the RMSEP values of toluene and ethanol decreased by 

0.3 % w/w and 0.1 % w/w respectively when SST was performed after reference 

deconvolution (compared to the results obtained with reference deconvolution and no 

SST), but the RMSEP value for ethyl acetate increased by 0.15 % w/w. Therefore the 

application of SST after reference deconvolution made little difference to the results, 

and more accurate predictions could be obtained using SST without reference 

deconvolution. This again suggests that reference deconvolution has been successful 

at removing the variation between the spectra, but that small differences in relative 

area were introduced into the peaks, worsening the RMSEP values. The application of 

SST to the deconvoluted spectra therefore made little difference, as the variation 

between the datasets had already been removed. 
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The application of bucketing significantly reduced the RMSEP values obtained for all 

solvents (from ≤ 1.46 % w/w to ≤ 0.54 % w/w) when the PLS1 model built with dataset 

3 was applied to the test spectra of dataset 4. These values were lower than those 

obtained for SST or reference deconvolution, again indicating that bucketing was more 

effective at removing long-term variation than calibration transfer or reference 

deconvolution for this data. The application of bucketing after reference deconvolution 

produced similar RMSEP values to those obtained for bucketing alone (differing by 

≤ 0.02 % w/w), again indicating that the application of reference deconvolution in 

addition to bucketing was unnecessary. However as discussed in Chapter 5, very large 

bucket sizes (0.75 ppm with a slackness of 0.25) were required in order to eliminate 

the peak shift in this dataset, with the resulting spectra consisting of only 12 data 

points. These bucket sizes are so large that the shape of the peaks is no longer 

important, so the success of bucketing at removing the variation between the datasets 

is unsurprising. The components present in these mixtures can still be distinguished 

from the bucketed spectra (as they were chosen so that each component had at least 

one clearly resolvable peak) but for other datasets exhibiting greater overlap, the 

RMSEP values are likely to become poorer when such large bucket sizes are used. In 

these cases, the use of calibration transfer or reference deconvolution may be more 

effective than bucketing in allowing the transfer of calibration models between spectra 

acquired under different conditions.  

6.4 Conclusions 

The performance of the low-field NMR spectrometer appeared to be stable over time 

(provided the instrument had been switched on for several days prior to analysis), 

however performance began to deteriorate when samples were continually inserted 

and removed from the instrument. This is believed to be due to deviations in the 

magnet temperature from its optimum value, although the lack of a clear correlation 

between magnet temperature and lineshape deterioration suggests that other factors 

may also have contributed. These could include temperature gradients within the 

sample or instrument and the temperature at other points within the instrument which 

cannot easily be measured. Despite attempting to control the temperature of the 

samples upon insertion into the instrument and to ensure that the samples had reached 
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the temperature of the magnet before spectra were acquired, deviations in magnet 

temperature of one or two thousandths of a degree Celsius were observed and produced 

a noticeable deterioration in lineshape. These findings suggest that flowing a reaction 

mixture through the instrument during on-line reaction monitoring may have a similar 

effect on the magnet temperature. Therefore investigation of the extent of this effect 

during flow analysis would be recommended before performing on-line NMR 

spectroscopy with the instrument. 

The effectiveness of reference deconvolution for removing the short-term variation of 

spectra within the same dataset has been evaluated. The variation in linewidth 

(measured using the aromatic toluene peak in the test samples) was found to decrease 

upon the application of reference deconvolution and when the spectra were well-

aligned, the RMSEP values of the PLS1 models also decreased. However reference 

deconvolution was not effective at reducing the RMSEP values when peak shifts were 

present. This further demonstrates the importance of alignment, as discussed in 

Chapter 5. As a decrease in the linewidth variation was observed when peak shifts 

were present but an improvement in RMSEP was not, it may be that reference 

deconvolution altered the areas of the peaks to different extents, reducing the 

predictive ability of the spectra. 

For elimination of the long-term variation between spectra acquired under different 

conditions, calibration transfer and reference deconvolution were compared. There are 

both advantages and disadvantages associated with each method. The main advantage 

of calibration transfer is that no reference peak is required, so it is not necessary to add 

a standard. The necessity for a well resolved reference peak in reference deconvolution 

means that unless a suitable peak is present in every sample, a standard (e.g. TMS) 

must be added. This inhibits the use of reference deconvolution in on-line reaction 

monitoring. However, a disadvantage of calibration transfer is that shifting of peaks 

within the transfer or test sample sets can produce noise and distortions in the 

transformed spectra, as the transfer sample set is no longer representative of the test 

spectra in the regions where peak shifts occur. An advantage of using reference 

deconvolution instead of calibration transfer is that no measurement of calibration 

samples is required under the new set of conditions. However, distortion of the 

lineshape of the reference peak can introduce large amounts of noise when reference 
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deconvolution is carried out, as the distorted reference peak may no longer resemble a 

singlet and the extent of distortion may differ for each signal. This is a major problem 

when the stability of the instrument decreases over the course of analysis, as it prevents 

the application of reference deconvolution when the lineshape of the spectra has 

deteriorated. 

When little peak shift was present in the spectra (< 0.2 ppm), calibration transfer and 

reference deconvolution both reduced the RMSEP values obtained when a model built 

with dataset 1 was applied to dataset 2, particularly when alignment was also 

performed. The linewidths of the peaks in the spectra (measured using the aromatic 

toluene peak in the test samples) also became more similar. For the spectra exhibiting 

large amounts of peak shift (up to 1.5 ppm), calibration transfer was more effective 

than reference deconvolution at allowing PLS1 models built with dataset 3 to be 

applied to dataset 4 (particularly for ethanol and ethyl acetate after alignment), despite 

the presence of noise and distortions in the transformed spectra. However, reference 

deconvolution was able to reduce the difference in linewidth between the two sets of 

spectra. The application of calibration transfer after reference deconvolution produced 

similar results to reference deconvolution alone. 

Bucketing of the spectra was more effective than calibration transfer or reference 

deconvolution, as the spectrum of each component contained clearly distinguishable 

peaks. However bucketing is not likely to be as successful when greater overlap of 

peaks is present. Calibration transfer would be recommended for use in these cases, 

with alignment of the spectra performed prior to transfer. The next step in assessing 

the suitability of the low-field NMR spectrometer for process monitoring would be to 

monitor a reaction using the instrument and to apply these findings to the spectra 

collected. 
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7 Conclusions and Further Work 

7.1 Mid-Infrared Spectroscopy 

The performance of a novel, robust MIR spectrometer designed for use in process 

environments has been assessed. The spectrometer contains no fibre optics and its 

robustness is due to the use of the Sagnac interferometer, which contains no moving 

parts. This provides a solution to some of the issues which have prevented the 

widespread use of MIR spectroscopy in process analysis. Accurate predictions of 

concentration could be obtained using the instrument and its performance was 

comparable to that of a laboratory based MIR spectrometer. The novel spectrometer is 

therefore suitable for the quantitative in situ analysis of liquids and opens up new 

opportunities for process monitoring in the MIR region, for example the ability to 

utilise MIR spectroscopy in particularly harsh environments.  

Calibration transfer between the laboratory and process MIR spectrometers was 

effective, demonstrating the ability to build a model in the laboratory for application 

to a process. This can save time and resources, as it eliminates the need to acquire a 

full set of calibration spectra within the process environment. PDS and SST were 

found to be more effective at transferring the models than DS. SST would be 

recommended for future use, as it is easier to determine an optimum number of 

singular values than an optimum PDS window size since there is a smaller number of 

possible values. Altering the transfer sample set did not significantly affect the 

predictions obtained, as long as the subset of samples used for transfer was 

representative of the test samples. Six transfer samples appeared to be the optimum 

number to include, however the number of transfer samples was less important than 

the choice of transfer samples.  

A suggestion for future work would be to repeat the comparison of different calibration 

transfer methods and transfer sample subsets using more complex mixtures, to 

determine whether the same trends are observed. In addition, calibration transfer 

between different Keit spectrometers could be performed by building a model using 

one instrument and transferring it to the others. This would eliminate the need to build 

separate calibration models with each instrument, and the effectiveness of the models 

should not change over time due to the robustness of the instruments. 
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The ability of the novel MIR spectrometer to monitor an esterification reaction has 

also been demonstrated to further evaluate its performance. Accurate profiles of 

relative concentration could be obtained from the spectra using multivariate curve 

resolution, therefore the spectrometer appears to be suitable for in situ reaction 

monitoring. Differences in reaction rate upon changing the temperature of the reaction 

vessel could also be detected. The next step could be to monitor a range of different 

reactions, in order to further verify the suitability of the spectrometer for in situ 

monitoring of liquid processes. 

Of the three MCR toolboxes evaluated for decomposition of the esterification reaction 

mixture spectra into their pure component contributions, GUIPRO was the most 

effective due to the ability to apply penalty functions to the constraints. The MCR-

ALS toolbox was less effective as only hard constraints could be applied, and in PLS 

Toolbox the application of penalty functions produced poorer predictions than the 

application of hard constraints. GUIPRO would therefore be recommended for the 

analysis of MIR reaction mixture spectra, with reference spectra applied as soft 

equality constraints and non-negativity applied to both the concentration and spectral 

data. The choice of sensitivity value is important to consider, and the convergence 

tolerance can also affect the results obtained. These findings could facilitate the 

application of MCR to MIR reaction mixture spectra acquired during process 

monitoring. The use of MCR rather than calibration based methods such as PLS saves 

resources and time, as it is no longer necessary to build a calibration model. 

In addition to robustness, the increased sensitivity and resolution of MIR 

spectrometers would be desirable for process analysis. Miniaturisation would also 

facilitate the installation of MIR spectrometers in process environments. At present 

the majority of miniature MIR spectrometers have limited resolution or lack robustness 

due to the presence of moving parts. However advances in technology such as QCLs, 

MEMS filters and uncooled detector arrays provide a potential solution. QCLs are 

compact, robust and capable of achieving high sensitivity and specificity. The use of 

MEMS filters facilitates the miniaturisation of spectrometers and uncooled detector 

arrays can increase the achievable performance. These advances will aid the 

development of miniature MIR spectrometers capable of achieving high sensitivity 
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and resolution, and it is likely that this will lead to MIR spectroscopy becoming more 

widely used in process analysis in the future. 

7.2 NMR Spectroscopy 

The instrumental stability of a low-field NMR spectrometer was evaluated, and the 

performance was found to be stable over time (as long as the instrument had been left 

on for several days prior to analysis). However the continual insertion and removal of 

samples caused the performance to deteriorate, producing spectra of poor lineshape. 

This effect is believed to have been caused by small changes in magnet temperature 

(of one or two thousandths of a degree Celsius). Despite best efforts to keep the magnet 

temperature under control (by heating each sample to the temperature of the magnet 

before insertion and ensuring that the sample temperature had stabilised before spectra 

were acquired), drifts in magnet temperature occurred over time due to a lag in the 

effect of the heater/cooler system within the instrument. No obvious correlation 

between magnet temperature and lineshape deterioration was observed, although the 

poorest lineshape corresponded to the time region in which the magnet temperature 

was lowest. Therefore it is possible that the lineshape deterioration was due to a 

combination of factors (e.g. changes in temperature at different points inside the 

instrument or temperature gradients within the sample/instrument) rather than purely 

the magnet temperature.  

As well as the ability to analyse a number of samples consecutively (e.g. when building 

a calibration model or using an autosampler), these findings have implications on the 

ability to monitor reactions using the instrument. At-line analysis also normally 

requires the consecutive analysis of different samples, and flowing a reaction mixture 

through the instrument during on-line analysis is likely to have a similar effect on the 

magnet temperature. Investigation of this effect would therefore be recommended 

before flow NMR spectroscopy is performed using the spectrometer. 

As a solution to the issues of peak shift and lineshape deterioration in low-field NMR 

spectra, chemometrics was utilised. A range of alignment methods which had been 

shown to be successful at high field were evaluated to solve the problem of peak shift. 

Of these methods, RAFFT, PAFFT and icoshift were the most effective. The 

advantage of icoshift over the other methods is that optimisation of parameters (such 



258 

as segment length and slackness) is not necessary. Icoshift was found to perform well 

when little peak shift was present within the spectra (< 0.2 ppm), but was not 

particularly effective when large amounts of peak shift were present (up to 1.5 ppm). 

RAFFT and PAFFT were more effective in this case (with RAFFT performing best 

overall), however it was still not possible to fully align the peaks with these methods. 

Despite this, significant improvements in RMSEP could be obtained.  

Optimised bucketing of the spectra was found to produce the greatest improvement in 

RMSEP, however when peak shifts of up to 1.5 ppm were present then very large 

bucket sizes were necessary and almost all spectral information was lost. The 

effectiveness of bucketing in this case was believed to be due to each component 

containing at least one clearly resolved peak, which produced a maximum in the 

bucketed spectra. When bucketing was performed on the low-field NMR spectra 

collected during the esterification reaction (which exhibited greater overlap), the 

components could no longer be resolved at the bucket sizes required to remove the 

peak shifts. Therefore bucketing is not likely to produce such accurate predictions of 

concentration in cases where the components exhibit greater peak overlap. The 

application of both bucketing (using smaller bucket sizes) and alignment to the spectra 

may further improve the results, and is a suggestion for future work.  

To solve the problem of lineshape deterioration, calibration transfer and reference 

deconvolution were evaluated. The effectiveness of reference deconvolution for 

removing the short-term variation between samples acquired under the same 

conditions was first assessed. Reference deconvolution was found to reduce the 

variation in linewidth within each dataset, and improved the results of PLS when the 

spectra were well-aligned. However when peak shifts were present, the RMSEP values 

did not improve. These results suggest that reference deconvolution was successful at 

reducing the variation between spectra, but altered the relative areas of the peaks, 

which affected the predictive abilities of the spectra. 

The performance of calibration transfer and reference deconvolution was then 

compared for the removal of long-term variation between spectra collected under 

different conditions. Reference deconvolution is more commonly used in NMR 

spectroscopy, however it requires the presence of a well resolved reference peak in 
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every sample, so an internal standard may have to be added. This is undesirable, as it 

inhibits the use of reference deconvolution in reaction monitoring (e.g. by flow NMR 

spectroscopy). In addition, deterioration in the lineshape of the reference peak can 

introduce large amounts of noise into the spectra. The main advantage of calibration 

transfer is that the presence of a reference peak is not required. However it is necessary 

to analyse a subset of calibration samples to use as transfer samples, and the shifting 

of peaks can introduce noise into the spectra.  

When little peak shift (< 0.2 ppm) was present, both calibration transfer and reference 

deconvolution were found to be effective at allowing a calibration model built under 

one set of conditions (an optimal shim) to be applied to spectra collected under a 

different set of conditions (a sub-optimal shim, loaded to simulate the effect of 

changing instrument/conditions). For the dataset exhibiting large peak shifts (up to 

1.5 ppm), calibration transfer was more effective than reference deconvolution despite 

the presence of noise in some of the spectra. The application of calibration transfer 

after reference deconvolution made little difference to the spectra (compared to 

reference deconvolution alone). Bucketing again produced the most accurate 

predictions, as it eliminated the differences between spectra acquired with different 

shims. However, as mentioned before, it is not likely to be so effective for spectra with 

greater peak overlap. Calibration transfer would therefore be recommended as a 

solution to lineshape deterioration.  

Therefore it is suggested that if variation is present within a low-field NMR dataset 

then reference deconvolution should be applied, and if variation between datasets is 

present then calibration transfer would be more suitable. When small peak shifts 

(< 0.2 ppm) are present then icoshift should be applied after reference 

deconvolution/before calibration transfer, and when larger peak shifts are present then 

RAFFT should be used instead.  

The effectiveness of different methods of calibration transfer could be evaluated in the 

future (as only SST was used in this work), and investigation into changing the transfer 

sample set used in SST could be carried out to determine whether the trend is the same 

as for the mid-infrared spectra. Singh et al.1, 2 have utilised high-field NMR 

spectroscopy to supply reference values of concentration for PLS models built at low 
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field, but the suitability of calibration transfer between high and low-field NMR 

spectrometers could also be investigated. This would allow calibration models built 

using a high-field instrument to be applied to spectra collected in a process 

environment. However the resolution of peaks is likely to be different at high and low 

field, and resolving the peaks would be a challenge. The effectiveness of reference 

deconvolution using different ideal reference peaks (i.e. a Gaussian lineshape and/or 

different line broadening factors) could also be evaluated. 

The ability to obtain accurate predictions of concentration despite the issues 

encountered demonstrates the effectiveness of low-field NMR spectroscopy for 

quantitative analysis. The reduced size and cost of low-field NMR spectrometers 

compared to high-field instruments facilitates their installation in process 

environments, providing a solution to some of the issues which have prevented the 

widespread use of NMR spectroscopy in process analysis. However there are still 

drawbacks, for example the low sensitivity compared to other techniques (e.g. optical 

spectroscopy) and the temperature sensitivity of the magnet. In order to analyse 

complex mixtures by low-field NMR spectroscopy, an improvement in resolution 

would also be necessary. Further advances in magnet technology may help to solve 

these problems in the future. 

A number of applications of low-field NMR spectroscopy in process monitoring have 

already been demonstrated, and the results of this work suggest that NMR 

spectroscopy has the potential to become far more widely used in process analysis in 

the future. The next step would be to investigate the extent of the lineshape 

deterioration and peak movement present during on-line reaction monitoring. The 

effectiveness of the solutions demonstrated in this work could then be assessed for 

application to low-field NMR spectra collected during reactions. 
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Appendices 

Appendix 3: Additional Figures Corresponding to Chapter 3 

 

Figure 3.16 - Spectra of calibration samples containing acetone, ethanol and ethyl acetate 

obtained using the MB3000 spectrometer at 16 cm–1 resolution, average of 19 scans. 

 

Figure 3.17 - Spectra of test samples containing acetone, ethanol and ethyl acetate obtained 

using the MB3000 spectrometer at 16 cm–1 resolution, average of 19 scans. 

600 800 1000 1200 1400 1600 1800

Wavenumber/cm
-1

0.0

0.5

1.0

1.5

2.0

A
b

s
o
r
b

a
n

c
e

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Sample 7

Sample 8

Sample 9

Sample 10

Sample 11

Sample 12

Sample 13

Sample 14

Sample 15

Sample 16

600 800 1000 1200 1400 1600 1800

Wavenumber/cm
-1

0.0

0.5

1.0

1.5

2.0

A
b

s
o
r
b

a
n

c
e

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6



 

 A-2 

 

Figure 3.18 - Spectra of calibration samples containing acetone, ethanol and ethyl acetate 

obtained using the Keit spectrometer at 16 cm–1 resolution, average of 19 scans. 

 

Figure 3.19 - Spectra of test samples containing acetone, ethanol and ethyl acetate obtained 

using the Keit spectrometer at 16 cm–1 resolution, average of 19 scans. 
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Figure 3.20 - C1 value versus Euclidean norm of regression vector for acetone PLS1 models 

built using Keit and MB3000 data (> 20 LVs not labelled due to overlap). 

 

Figure 3.21 - C1 value versus Euclidean norm of regression vector for acetone PLS1 models 

built using Keit and MB3000 data, zoomed in on minimum so labels can be read. 
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Figure 3.22 - RMSECV versus number of latent variables for acetone PLS1 models built 

using Keit and MB3000 data. 

 

Figure 3.23 - RMSEP value versus number of latent variables for acetone PLS1 models 

built using Keit and MB3000 data. 
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Figure 3.24 - C1 value versus Euclidean norm of regression vector for ethanol PLS1 models 

built using Keit and MB3000 data (> 20 LVs not labelled due to overlap). 

 

Figure 3.25 - C1 value versus Euclidean norm of regression vector for ethanol PLS1 models 

built using Keit and MB3000 data, zoomed in on minimum so labels can be read. 
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Figure 3.26 - RMSECV versus number of latent variables for ethanol PLS1 models built 

using Keit and MB3000 data. 

 

Figure 3.27 - RMSEP versus number of latent variables for ethanol PLS1 models built 

using Keit and MB3000 data. 
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Figure 3.28 - C1 value versus Euclidean norm of regression vector for ethyl acetate PLS1 

models built using Keit and MB3000 data (> 20 LVs not labelled due to overlap). 

 

Figure 3.29 - C1 value versus Euclidean norm of regression vector for ethyl acetate PLS1 

models built using Keit and MB3000 data, zoomed in on minimum so labels can be read. 
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Figure 3.30 - RMSECV value versus number of latent variables for ethyl acetate PLS1 

models built using Keit and MB3000 data. 

 

Figure 3.31 - RMSEP value versus number of latent variables for ethyl acetate PLS1 

models built using Keit and MB3000 data. 
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Figure 3.32 - Residual error in predictions of acetone concentration versus actual acetone 

concentration for the PLS1 models built using spectra obtained by the Keit and MB3000 

spectrometers. 

 

Figure 3.33 - Residual error in predictions of ethanol concentration versus actual ethanol 

concentration for the PLS1 models built using spectra obtained by the Keit and MB3000 

spectrometers. 
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Figure 3.34 - Residual error in predictions of ethyl acetate concentration versus actual ethyl 

acetate concentration for the PLS1 models built using spectra obtained by the Keit and 

MB3000 spectrometers. 

 

Figure 3.35 - Percentage residual error in predictions of acetone concentration versus 

actual acetone concentration for the PLS1 models built using spectra obtained by the Keit 

and MB3000 spectrometers. 
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Figure 3.36 - Percentage residual error in predictions of ethanol concentration versus 

actual ethanol concentration for the PLS1 models built using spectra obtained by the Keit 

and MB3000 spectrometers. 

 

Figure 3.37 - Percentage residual error in predictions of ethyl acetate concentration versus 

actual ethyl acetate concentration for the PLS1 models built using spectra obtained by the 

Keit and MB3000 spectrometers. 
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Figure 3.38 - Spectra of test samples acquired using the Keit spectrometer after calibration 

transfer by DS, average of 19 scans. 

 

Figure 3.39 - Spectra of test samples acquired using the Keit spectrometer after calibration 

transfer by PDS (window size = 41), average of 19 scans. 
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Figure 3.40 - RMSEP versus PDS window size for PLS1 models built using MB3000 

calibration data and applied to Keit test data after PDS. 

 

Figure 3.41 - Spectra of test samples acquired using the Keit spectrometer after calibration 

transfer by SST using 5 singular values, average of 19 scans. 

5 10 15 20 25 30 35 40 45 50

PDS window size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
M

S
E

P
/(

%
 w

/w
)

Acetone

Ethanol

Ethyl acetate

Average

800 900 1000 1100 1200 1300 1400 1500 1600

Wavenumber/cm
-1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
b

s
o

r
b

a
n

c
e

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6



 

 A-14 

 

Figure 3.42 - RMSEP versus number of singular values for PLS1 models built using 

MB3000 calibration data and applied to Keit test data after SST when calibration samples 

1 – 3 and 8 – 10 were used as transfer samples. 

 

Figure 3.43 - RMSEP versus number of singular values for PLS1 models built using 

MB3000 calibration data and applied to Keit test data after SST when calibration samples 

11 – 16 were used as transfer samples. 
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Figure 3.44 - RMSEP versus number of singular values for PLS1 models built using 

MB3000 calibration data and applied to Keit test data after SST when calibration samples 

4 – 6 and 8 – 10 were used as transfer samples. 

 

Figure 3.45 - RMSEP versus number of singular values for PLS1 models built using 

MB3000 calibration data and applied to Keit test data after SST when calibration samples 

1 – 3, 12, 13 and 16 were used as transfer samples.
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Appendix 4: Additional Figures Corresponding to Chapter 4 

 

Figure 4.27 - Spectra collected during esterification reaction at 40 °C (first repeat) using the 

Keit spectrometer (single spectrum measured every 1.6 seconds). Black represents the start 

of the reaction and red represents the end of the reaction. 

 

Figure 4.28 - Spectra collected during esterification reaction at 40 °C (second repeat) using 

the Keit spectrometer (single spectrum measured every 1.6 seconds). Black represents the 

start of the reaction and red represents the end of the reaction. 
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Figure 4.29 - Estimated concentration profiles (by GUIPRO) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C (second repeat) 

using the Keit spectrometer. 
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Figure 4.30 - Estimated pure spectra (by GUIPRO) of components present in the reaction 

mixture spectra collected during esterification reaction at 40 °C (second repeat) using the 

Keit spectrometer (solid lines), and reference pure component spectra collected using the 

Keit spectrometer (dashed lines). 
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Figure 4.31 - Spectra collected during esterification reaction at 40 °C (third repeat) using 

the Keit spectrometer (single spectrum measured every 1.6 seconds). Black represents the 

start of the reaction and red represents the end of the reaction. 

 

Figure 4.32 - Estimated concentration profiles (by GUIPRO) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C (third repeat) 

using the Keit spectrometer. 
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Figure 4.33 - Estimated pure spectra (by GUIPRO) of components present in the reaction 

mixture spectra collected during esterification reaction at 40 °C (third repeat) using the 

Keit spectrometer (solid lines), and reference pure component spectra collected using the 

Keit spectrometer (dashed lines).  
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Figure 4.34 - Estimated pure spectra (by GUIPRO) of components present in the reaction 

mixture spectra collected during esterification reaction at 40 °C with acetic acid dosed in 

approximately one hour after the addition of butanol (solid lines) and reference pure 

component spectra (dashed lines), all acquired using the Keit spectrometer. Product 

reference spectra collected at 70 °C. 
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Figure 4.35 - Spectra of 1:1 mixtures of acetic acid and butyl acetate by molarity (red) and 

by volume (blue), measured using the Keit spectrometer. 

 

Figure 4.36 - Spectra collected during esterification reaction at 40 °C using the Keit 

spectrometer (single spectrum measured every 1.6 seconds), with samples removed for 

NMR analysis at 5, 30 and 60 minutes after the addition of butanol. Black represents the 

start of the reaction and red represents the end of the reaction. 
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Figure 4.37 - Estimated concentration profiles (by GUIPRO) of components present in the 

reaction mixture spectra collected during esterification reaction at 40 °C using the Keit 

spectrometer, with samples removed for NMR analysis at 5, 30 and 60 minutes after the 

addition of butanol. 
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Figure 4.38 - Estimated pure spectra (by GUIPRO) of components present in the reaction 

mixture spectra collected during esterification reaction at 40 °C with samples removed for 

NMR analysis at 5, 30 and 60 minutes after the addition of butanol (solid lines) and 

reference pure component spectra (dashed lines), all acquired using the Keit spectrometer.  
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Figure 4.39 - Spectra collected during esterification reaction at 50 °C using the Keit 

spectrometer (single spectrum measured every 1.6 seconds). Black represents the start of 

the reaction and red represents the end of the reaction. 
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Figure 4.40 - Estimated pure spectra (by GUIPRO) of components present in the reaction 

mixture spectra collected during esterification reaction at 50 °C using the Keit 

spectrometer (solid lines), and reference pure component spectra collected using the Keit 

spectrometer (dashed lines). 
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Figure 4.41 - Spectra collected during esterification reaction at 20 °C using the Keit 

spectrometer (single spectrum measured every 1.6 seconds). Black represents the start of 

the reaction and red represents the end of the reaction. 
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Figure 4.42 - Estimated pure spectra (by GUIPRO) of components present in the reaction 

mixture spectra collected during esterification reaction at 20 °C using the Keit 

spectrometer (solid lines), and reference pure component spectra collected using the Keit 

spectrometer (dashed lines)
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Appendix 5: Additional Figures Corresponding to Chapter 5 

 

Figure 5.27 - 1H low-field NMR spectra of calibration and test samples in dataset 1 with 

alignment by RAFFT using optimum parameters determined by DoE (maximum shift = 10 

and lookahead = 10). 

 

Figure 5.28 - 1H low-field NMR spectra of calibration and test samples in dataset 2, without 

alignment. 
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Figure 5.29 - 1H low-field NMR spectra of calibration and test samples in dataset 3 with 

alignment by RAFFT using optimum parameters determined by DoE (maximum shift = 40 

and lookahead = 10). 

 

Figure 5.30 - 1H low-field NMR spectra of calibration and test samples in dataset 4, without 

alignment. 
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Appendix 6: Additional Figures Corresponding to Chapter 6 

 

Figure 6.33 - Low-field 1H NMR spectra of methanol collected every 30 seconds for 20 

minutes starting from approximately 28.5 °C. Black represents the start of the experiment 

and red represents the end of the experiment. 

 

Figure 6.34 - Low-field 1H NMR spectra of methanol collected every 30 seconds for 20 

minutes starting from room temperature. Black represents the start of the experiment and 

red represents the end of the experiment. 

-1012345

Chemical shift/ppm

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

In
te

n
si

ty
/a

.u
.

10
4

-1012345

Chemical shift/ppm

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

In
te

n
si

ty
/a

.u
.

10
4



 

 A-32 

 

Figure 6.35 - 1H low-field NMR spectra of calibration and test samples in dataset 1, after 

reference deconvolution. 

 

Figure 6.36 - 1H low-field NMR spectra of calibration and test samples in dataset 2, after 

reference deconvolution. 
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Figure 6.37 - 1H low-field NMR spectra of calibration and test samples in dataset 3, after 

reference deconvolution. 

 

Figure 6.38 - 1H low-field NMR spectra of calibration and test samples in dataset 4, after 

reference deconvolution. 
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Figure 6.39 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1, applied to the test samples in dataset 

2 after SST (no alignment, 2 LVs included). 

 

Figure 6.40 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1, applied to the test samples in dataset 

2 after SST (no alignment, 3 LVs included). 
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Figure 6.41 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1, applied to the test samples in dataset 

2 after SST (no alignment, 4 LVs included). 

 

Figure 6.42 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1, applied to the test samples in dataset 

2 after SST (aligned with icoshift, 2 LVs included). 
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Figure 6.43 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1, applied to the test samples in dataset 

2 after SST (aligned with icoshift, 3 LVs included). 

 

Figure 6.44 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1, applied to the test samples in dataset 

2 after SST (aligned with icoshift, 4 LVs included). 
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Figure 6.45 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1, applied to the test samples in dataset 

2 after SST (with bucketing, 2 LVs included). 

 

Figure 6.46 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1, applied to the test samples in dataset 

2 after SST (with bucketing, 3 LVs included). 
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Figure 6.47 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1, applied to the test samples in dataset 

2 after SST (with bucketing, 4 LVs included). 

 

Figure 6.48 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1 with reference deconvolution, applied 

to the test samples in dataset 2 with reference deconvolution and SST (no alignment, 2 LVs 

included). 

1 2 3 4 5 6 7 8 9 10

Number of singular values

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
M

S
E

P
/(

%
 w

/w
)

Toluene

Octene

Dibutyl ether

Average

1 2 3 4 5 6 7 8 9 10

Number of singular values

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
M

S
E

P
/(

%
 w

/w
)

Toluene

Octene

Dibutyl ether

Average



 

 A-39 

 

Figure 6.49 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1 with reference deconvolution, applied 

to the test samples in dataset 2 with reference deconvolution and SST (no alignment, 3 LVs 

included). 

 

Figure 6.50 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1 with reference deconvolution, applied 

to the test samples in dataset 2 with reference deconvolution and SST (no alignment, 4 LVs 

included). 
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Figure 6.51 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1 with reference deconvolution, applied 

to the test samples in dataset 2 with reference deconvolution and SST (aligned with icoshift, 

2 LVs included). 

 

Figure 6.52 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1 with reference deconvolution, applied 

to the test samples in dataset 2 with reference deconvolution and SST (aligned with icoshift, 

3 LVs included). 
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Figure 6.53 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1 with reference deconvolution, applied 

to the test samples in dataset 2 with reference deconvolution and SST (aligned with icoshift, 

4 LVs included). 
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Figure 6.54 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1 with reference deconvolution, applied 

to the test samples in dataset 2 with reference deconvolution and SST (with bucketing, 2 

LVs included, only RMSEP values < 30 % w/w shown so worst values lie outwith range of 

plot). 
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Figure 6.55 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1 with reference deconvolution, applied 

to the test samples in dataset 2 with reference deconvolution and SST (with bucketing, 3 

LVs included, only RMSEP values < 30 % w/w shown so worst values lie outwith range of 

plot). 
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Figure 6.56 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 1 with reference deconvolution, applied 

to the test samples in dataset 2 with reference deconvolution and SST (with bucketing, 4 

LVs included, only RMSEP values < 30 % w/w shown so worst values lie outwith range of 

plot). 

 

Figure 6.57 - 1H low-field NMR spectra of test samples in dataset 2 (no alignment), with 

reference deconvolution and calibration transfer by SST (using 1 singular value). 
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Figure 6.58 - 1H low-field NMR spectra of test samples in dataset 2, with reference 

deconvolution, alignment by icoshift and calibration transfer by SST (using 1 singular 

value). 

 

Figure 6.59 - 1H low-field NMR spectra of test samples in dataset 2, with reference 

deconvolution, optimised bucketing and calibration transfer by SST (using 1 singular 

value). 
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Figure 6.60 - 1H low-field NMR spectrum of test sample 2 in dataset 1 (blue) and dataset 2 

without and with calibration transfer by SST (red), aligned by icoshift (1 singular value 

included). With reference deconvolution applied to datasets 1 and 2 before SST. 

 

Figure 6.61 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3, applied to the test samples in dataset 

4 after SST (no alignment, 2 LVs included, only RMSEP values < 10 % w/w shown so worst 

values lie outwith range of plot). 
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Figure 6.62 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3, applied to the test samples in dataset 

4 after SST (no alignment, 3 LVs included, only RMSEP values < 10 % w/w shown so worst 

values lie outwith range of plot). 

 

Figure 6.63 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3, applied to the test samples in dataset 

4 after SST (no alignment, 4 LVs included, only RMSEP values < 10 % w/w shown so worst 

values lie outwith range of plot). 
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Figure 6.64 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3, applied to the test samples in dataset 

4 after SST (aligned with RAFFT, 2 LVs included, only RMSEP values < 10 % w/w shown 

so worst values lie outwith range of plot). 

 

Figure 6.65 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3, applied to the test samples in dataset 

4 after SST (aligned with RAFFT, 3 LVs included). 
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Figure 6.66 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3, applied to the test samples in dataset 

4 after SST (aligned with RAFFT, 4 LVs included). 

 

Figure 6.67 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3 with reference deconvolution, applied 

to the test samples in dataset 4 with reference deconvolution and SST (no alignment, 2 LVs 

included). 
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Figure 6.68 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3 with reference deconvolution, applied 

to the test samples in dataset 4 with reference deconvolution and SST (no alignment, 3 LVs 

included). 

 

Figure 6.69 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3 with reference deconvolution, applied 

to the test samples in dataset 4 with reference deconvolution and SST (no alignment, 4 LVs 

included). 
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Figure 6.70 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3 with reference deconvolution, applied 

to the test samples in dataset 4 with reference deconvolution and SST (aligned with 

RAFFT, 2 LVs included). 

 

Figure 6.71 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3 with reference deconvolution, applied 

to the test samples in dataset 4 with reference deconvolution and SST (aligned with 

RAFFT, 3 LVs included). 
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Figure 6.72 - RMSEP versus number of singular values for PLS1 models built using 1H low-

field NMR spectra of calibration samples in dataset 3 with reference deconvolution, applied 

to the test samples in dataset 4 with reference deconvolution and SST (aligned with 

RAFFT, 4 LVs included). 

 

Figure 6.73 - 1H low-field NMR spectra of test samples in dataset 4 (no alignment), with 

reference deconvolution and calibration transfer by SST (using 3 singular values). 
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Figure 6.74 - 1H low-field NMR spectra of test samples in dataset 4, with reference 

deconvolution, alignment by RAFFT and calibration transfer by SST (using 1 singular 

value).
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