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Abstract

Matrix functions of the adjacency matrix are very useful for understanding important

structural properties of graphs and networks, such as communicability, node centrality,

bipartivity and many more. Here we propose a new matrix function based on the

Gaussianization of the adjacency matrix of a graph. This function gives more weight

to a selected reference eigenvalue λref, which may be located in any region of the

graph spectra. In particular, we study the Gaussian Estrada indices for two reference

eigenvalues 0 and -1 separately. In each case, we obtain bounds for this index in simple

graphs. We also obtain formulas for the Gaussian Estrada index of Erdős-Rényi random

graphs as well as for the Barabási-Albert graphs. Moreover, for λref = 0, we show that

in real-world networks this index is related to the existence of important structural

patterns, such as complete bipartite subgraphs (bicliques). Such bicliques appear

naturally in many real-world networks as a consequence of evolutionary processes giving

rise to them. In addition, we fold the graph spectrum at a given pair of reference

eigenvalues, then exponentiate the resulting folded graph spectrum to produce the

double Gaussian function of the graph adjacency matrix which give more importance

to the reference eigenvalues than to the rest of the spectrum. Based on evidence from

mathematical chemistry we focus here our attention on the reference eigenvalues ±1.

They enclose most of the HOMO (highest occupied molecular orbital) and LUMO

(lowest unoccupied molecular orbital) of organic molecular graphs. We prove several

results for the trace of the double Gaussian adjacency matrix of simple graphs–the

double Gaussian Estrada index– and we apply this index to the classification of polycyclic

aromatic hydrocarbons (PAHs) as carcinogenic or non-carcinogenic. We discover that

local indices based on the previously developed matrix function allow to classify correctly
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Chapter 0. Abstract

100% of the PAHs analyzed. In general, folding the spectrum of the adjacency matrix

of networks characterizes important structural information not described in previously

used matrix functions of graphs.
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Introduction

The study of graph spectra has emerged from applications in Chemistry and Physics.

The first mathematical paper on spectral graph theory dates back to 1957 by Collatz

and Sinogowitz and was motivated by the membrane vibration problem [1]. Previously,

the study of the eigenvalues and eigenvectors of the adjacency matrix of a graph was

implicit in the development of the so-called Hückel molecular orbital method since

1930 [2–4]. This method is based on a tight-binding Hamiltonian which is widely

used today for the study of certain classes of molecules and solids [5]. In more recent

years the study of graph spectra has been widely expanded to many other areas of

scientific research. The availability of information about large complex networked

systems, ranging from proteomic maps to the Internet has accelerated the application of

graph spectral techniques not only in Chemistry and Physics, but in Biology, Computer

Science, Economics, Social Sciences, Engineering [6]. Spectral graph theory is nowadays

a consolidated area of algebraic graph theory [7]. It is currently used to analyze the

structure of graphs and networks through the use of graph invariants that characterize

either the nodes, e.g., eigenvector centrality [8,9], pagerank centrality [10], or the global

structure of the network, e.g., graph energy [12]. In addition, it is intimately related to

many dynamical processes on networks [11], such as epidemic propagation, diffusion,

synchronization, among others.

A relatively new approach to study the graph spectra is to consider the analysis of

matrix functions, in particular functions of the adjacency matrix of a graph or network

[13, 45]. A matrix function is a function that maps a matrix to another matrix [15].

Although the resolvent of the adjacency matrix, (αI −A)−1 was used previously for

defining the so-called Katz index [16], it was not until the dawn of the XXI century
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that the systematic analysis of functions of the adjacency matrix was developed [17–26].

These analyses have given rise to the study of the exponential [26, 27], hyperbolic

functions [29], Ψ -functions [28], error function [31], modulus function [32], and sign

function [33] of the adjacency matrix of graphs and networks. The well-known concepts

of network communicability [27, 34], subgraph centrality [26], Estrada index [22–24],

bipartivity index [29, 44], spectral scaling [37, 38], and many more are products of

these analyses, which have found many applications in the applied sciences. A large

proportion of the matrix functions of the adjacency matrix–exp (A), exp (−A), sinh (A),

cosh (A), ψt (A), 1
2

[√
2πerf

(
A√
2

)
+ 2I

]
exp

(
A2/2

)
, |A|– give more weight to the

extreme eigenvalues (the largest and/or the smallest) of the adjacency matrix. The

problem is that the main structural information contained in other eigenvalues is then

hidden by such weighting scheme. For instance, if λ1 > λ2 ≥ · · · ≥ λn are the

eigenvalues of the adjacency matrix of a connected graph, then if the spectral gap λ1−λ2

is very large we have that exp (A) is mainly determined by λ1 and the corresponding

eigenvector. The information contained in the rest of the spectrum is almost completely

neglected. If we consider matrix functions of the type of f (A) =
∑∞

k=0 ckA
k and

consider a simple example, the trace of f (A) = exp (A) of a simple, connected network,

which can be written as tr exp (A) =
∑n

j=1 exp (λj), where n is the order of the graph

and λ1 > λ2 ≥ · · · ≥ λn are the eigenvalues of A. It is clear that if the spectral

gap of the adjacency matrix, λ1 − λ2, is very large, tr exp (A) depends only on the

largest eigenvalue λ1. This is not a strange situation in real-world networks, where it

is typical to find very large spectral gaps for their adjacency matrices. In these cases

the use of functions of the type f (A) makes the structural information contained in

the smaller eigenvalues and the corresponding eigenvectors of the adjacency matrix not

captured by the index. A similar situation happens if we consider f (−A), in this case

we give more weight to the smallest eigenvalue/eigenvector of the adjacency matrix and

the information contained in the largest ones is again lost. In this Thesis we propose

to investigate the information contained in the unexplored part of the spectrum of

the adjacency matrix of graphs and networks using a new adjacency matrix function.

We propose here the function f(A) = exp
[
−
∏
λref

(λrefI −A)2
]

where λref are the

2
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eigenvalues to which we want to give the largest weight in the function.

The first Chapter of this Thesis discusses genaral concepts in network theory and matrix

functions that will be used throughout this work.

In the second Chapter we study a Gaussian adjacency matrix function exp
(
−A2

)
as a

way to characterize the structural information of graphs giving more importance to the

eigenvalues/eigenvectors in the middle part of the graph spectrum. Similar Gaussian

operators may arise in quantum mechanics of many body systems [41] as well as for

the electronic partition function in renormalized tight binding Hamiltonians [42, 43].

We will motivate here the introduction of this function from a quantum-mechanical

approach to networks in which a particle is hopping through the nearest neighbor nodes

in a graph. We then study here properties of H = tr exp
(
−A2

)
. We show that although

the graph nullity—the multiplicity of the zero eigenvalue of the adjacency matrix of the

graph—plays an important role in the values of this index, the H index contains more

structural information than the graph nullity even for small simple graphs. We then

prove that among the graphs with n nodes, the maximum of the H index is always

obtained for the star graph followed by other complete bipartite graphs. Then, we

obtain analytic expressions for this index in random graphs with Poisson and power-

law degree distribution, showing that the last ones always display larger values of the

H index than the first ones. Finally, we study more than 60 real-world networks

representing a large variety of complex systems. We found that the networks with the

largest index correspond to those having relatively large bicliques—complete bipartite

subgraphs, which can be created by different evolutionary mechanisms depending on

the kind of complex system considered.

The third chapter is devoted to investigate the matrix function: exp
[
− (I +A)2

]
.

We obtain a few mathematical results for the trace of this matrix function for simple

graphs as well as two models of random graphs. Also, we prove that the trace takes

its maximum for the complete graph among all connected graphs of same number of

nodes.

Motivated by mathematical chemistry, we study the folding of the graph spectrum in

the fourth Chapter at a given pair of reference eigenvalues and then exponentiate the

3
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resulting folded graph spectrum. When studying molecules with the so-called tight-

binding Hamiltonians, e.g., the Hückel molecular orbital (HMO) approach [4], there are

two eigenvalues of the graph spectra which play a fundamental role in understanding

molecular properties. They are known as the highest occuppied (HOMO) and the lowest

unoccupied molecular orbitals (LUMO), respectively [122]. Fowler and Pisanski [123]

have called “normal” the molecular graphs for which +1 ≥ λHOMO ≥ λLUMO ≥ −1,

while the rest of molecular graphs are called “exceptional”. The reason for this is that

most of molecular graphs have their HOMO and LUMO within the ’chemical triangle’

of an HOMO-LUMO map [123]–a scatterplot of the middle eigenvalues of the graph–,

with vertices at (−1,−1), (+1,−1), (+1,+1). They proved that all chemical trees lie

within the triangle, as do all chemical graphs with up to 12 vertices [123]. Thereby,

we focus our attention on the reference eigenvalues ±1. They enclose most of the

HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular

orbital) of organic molecular graphs. We prove several results for the trace of the

double Gaussian adjacency matrix of simple graphs–the double Gaussian Estrada index.

Finally we apply this index to the classification of polycyclic aromatic hydrocarbons

(PAHs) as carcinogenic or non-carcinogenic. We discover that local indices based on the

double Gaussian matrix function allow to classify correctly 100% of the PAHs analyzed.

4



Chapter 1

Preliminaries

This chapter collects the basic definitions and concepts that we need in the Thesis.

The first part covers the essential material on graph theory and the second presents

the definition of matrix functions and relates it with network theory. The last part

presents a simple brief about the Hückel Molecular Orbital Theory. From now on, we

will use the terms graph and network interchangeably.

1.1 Graph Theory

Networks can always be thought of as a collection of items and the connection between

them. In order to give a formal definition we introduce some basic set notation. Let V

be a non-empty set and let E ⊆ V ×V , whose elements are not necessarily all distinct.

E is reflexive if (v, v) ∈ E for all v ∈ V , it is anti-reflexive if (v, v) /∈ E for all v ∈ V

and it is symmetric if (v1, v2) ∈ E =⇒ (v2, v1) ∈ E.

Definition 1.1.1. A network G is a pair (V,E) where V 6= ∅. Networks are also known

as graphs. V is called the vertex set of G; its elements are the vertices of G (also known

as nodes) and E is called the set of edges (or links).

• If E is symmetric then G is an undirected network.

• If E is symmetric, anti-reflexive and contains no duplicate edges then G is a

simple network.

5



Chapter 1. Preliminaries

• If E is nonsymmetric then G is a directed network.

Throughout the Thesis, only simple graphs are considered. In the following we list

some features of graphs that will be used in the this Thesis.

Definitions. • For a graph G, we denote n = |V (G)|, m = |E(G)|. The number

of vertices n is called the order of G, and m is the size of G.

• A walk of length k in G is a set of nodes v1, v2, . . . , vk, vk+1 such that for all

1 ≤ l ≤ k, (vl, vl+ 1) ∈ E. A closed walk is a walk for which v1 = vk+1. A path is

a walk with no repeated nodes. A cycle is a closed walk with no repeated nodes.

• The vertices v1, v2 ∈ V are called adjacent if (v1, v2) ∈ E.

• A graph is connected if there is a path between every pair of its vertices.

• The degree of a node i is the number of nodes to which it is connected, and is

denoted by ki.

• Gs = (Vs, Es) is a subgraph of G = (V,E) if Vs ⊆ V and Es ⊆ (Vs × Vs) ∩ E.

• Gs = (Vs, Es) is an induced subgraph of G = (V,E) if Vs ⊆ V and Es = (Vs ×

Vs) ∩ E.

The following theorem connects the degrees of the vertices and the number of edges.

It is the first theorem of graph theory [40].

Theorem 1.1.1. The sum of the degrees of the vertices of a graph is equal to twice

the number of its edges.

1.1.1 Some Special Graphs

The following definitions describe briefly a set of some known graphs that will be

mentioned later.

• A graph G = (V,E) is bipartite if the nodes can be divided into nonempty disjoint

sets V1 ∪ V2 such that (u, v) ∈ E =⇒ u ∈ Vi, v ∈ Vj , i 6= j.

6



Chapter 1. Preliminaries

• The path graph is a graph such that its set of vertices can be labeled in a way all

the edges are of the form (vi, vi+1) where i = 1, . . . , n− 1. A path graph with n

vertices is denoted by Pn.

• The cycle graph of n vertices is the graph obtained by adding the edge (vn, v1)

to Pn, and is denoted by Cn.

• The complete graph is a graph in which every two vertices are adjacent. A

complete graph with n vertices is denoted by Kn.

• The complete bipartite graph is a bipartite graph (V1∪V2, E) such that for every

two vertices u ∈ V1 and v ∈ V2, (u, v) ∈ E. A complete bipartite graph is denoted

by Kn1,n1 , where |V1| = n1, |V2| = n2.

• An independent set is a set of nodes in the graph in which no pair of them are

adjacent.

• A k-partite graph is a graph whose vertices are partitioned into k different

independent sets, and a complete k-partite graph is a k-partite graph in which

there is an edge between every pair of vertices from different independent sets.

• The star graph K1,n−1 is the connected complete bipartite graph in which there

is one node connected to n− 1 nodes.

• A tree is a connected graph with no cycles.

1.1.2 Adjacency Matrix of Graphs

One of the most commonly used representations of graphs is the adjacency matrix.

In a network with n vertices we can label each one with an element from the set

V = {v1, v2, . . . , vn} then the adjacency matrix associated with the network is defined

as follows:

Definition 1.1.2. Let G = (V,E) be a simple network where V = {v1, v2, . . . , vn}.

For 1 ≤ i, j ≤ n define

aij =

 1, if (vi, vj) ∈ E

0 if (vi, vj) /∈ E

7



Chapter 1. Preliminaries

Then the square matrix A = (aij) is called the adjacency matrix of G. The set of

eigenvalues of the adjacency matrix together with their multiplicities is called the

spectrum of the graph.

For any graphG, let λ1, λ2, . . . , λs be the distinct eigenvalues ofG with multiplicities

m1,m2, . . . ,ms respectively, then the spectrum of G can be written as

Sp(G) = {[λ1]m1 , [λ2]m2 , . . . , [λs]
ms} . (1.1)

In the particular case of an undirected network as the ones studied in this Thesis, the

associated adjacency matrix is real and symmetric, thus its eigenvalues are real. We

label the eigenvalues of A in a non-increasing order: λ1 ≥ λ2 ≥ . . . ≥ λn. Moreover,

since A is nonnegative, Perron-Frobenius theorem states that λ1 ≥ |λi| for all i =

1, . . . , n − 1 and there exists a corresponding eigenvector that is nonnegative. The

following Lemma states the spectrum of some known simple graphs [39].

Theorem 1.1.2. • Sp(Kn) =
{

[−1]n−1, [n− 1]1
}

.

• Sp(Kn1,n2) =
{

[−√n1n2]1, [0]n1+n2−2, [
√
n1n2]1

}
.

• Sp(Pn) =
{

2cos
(

πj
n+1

)
, j = 1, . . . , n

}
.

• Sp(Cn) =
{

2cos
(

2πj
n

)
, j = 1, . . . , n

}
.

The following definition is related to the spectrum of graphs

Definition 1.1.3. The nullity of a graph is the multiplicity of the eigenvalue zero in

the spectrum of the adjacency matrix of the graph.

We conclude the section by the following important theorem that connects the

powers of the adjacency matrix of a graph G to the walks in the graph.

Theorem 1.1.3. [40] For any integer k ≥ 1, the (i, j)-entry of the matrix Ak is equal

to the number of walks from the node vi to vj of length k, where A is the adjacency

matrix of the graph G.

8



Chapter 1. Preliminaries

1.1.3 Random Models of Networks

Random models of networks are used in the study of real-world networks as comparison

tools in order to understand the structure of complex networks. We introduce here two

simple and general models for generating random networks: the Erdős-Rényi model

and Barabási-Albert model.

The Erdős-Rényi model of random network

In this model, put forward by Erdős-Rényi in 1959, we start with n isolated nodes. We

then pick randomly and independently a pair of nodes and with probability p > 0 we

add a link between them. In practice we proceed as follow. First, we fix a parameter

p. Then, for each pair of nodes we generate a random number, s, uniformly from [0, 1]

and if p > s we add a link between them. In Figure 1.1 we illustrate some examples of

Erdős-Rényi random networks with 10 nodes and different linking probabilities. The

Erdős-Rényi (ER) random network is denoted by G(n, p). The G(n, p) random graphs

have a Poisson degree distribution (when n → ∞) and display the Wigner semi-circle

distribution [14] of eigenvalues when n→∞ of the form

ρ(λ) =


2
√
r2−λ2
πr2

,−r ≤ λ ≤ r

0, otherwise,

(1.2)

where r = 2
√
np(1− p) . This normalization factor r has been introduced previously

by Farkas et al. [35] for studying the spectra of random networks. An example of

the density distribution for a network generated with the ER model with parameters

n = 300 and p = 0.026 is illustrated in Figure 1.2 (a).

The Barabási-Albert model

The model was put forward by Barabási and Albert in 1999 [36] to generate networks

in which the probability of finding a node of degree k decays as a power law of the

degree. We initialize with a small network with m0 nodes, we can assume that our

initial random network is connected and of ER type. At each step we add a new node

9
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(a) p = 0 (b) p = 0.111

(c) p = 0.311 (d) p = 1

Figure 1.1: Erdős-Rényi random networks for different probabilities p.
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Figure 1.2: Spectral density for a network generated with the ER model (a) and the BA model
(b) with n = 300 and p ≈ 0.026.
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(a) m = 2 (b) m = 3

Figure 1.3: Barabási-Albert networks with n = 10 and m = 2 (a), m = 3 (b).

to the network and connect it to m ≤ m0 of the existing nodes with a probability that is

proportional to the degree of the existing nodes. This process is known as preferential

attachment. In this case, it is known that p =
2m

n− 1
. Thus, we can construct the

normalization factor r = 2
√
np(1− p) based on m0. Two examples of Barabási-Albert

networks are presented in Figure 1.3. The density of the eigenvalues of BA graphs

follow a triangular distribution [14] of the form

ρ(λ) =


λ+r
r2
, −r ≤ λ < 0

r−λ
r2
, 0 < λ ≤ r

0 otherwise.

(1.3)

An example of the density distribution for a network generated with the BA model

with parameters n = 300 and m = 4 is illustrated in Figure 1.2 (b).

1.2 Matrix Functions

There are many equivalent ways of defining matrix functions, we present one definition

that is related to the Jordan canonical form of a matrix. Other two equivalent definitions

based on polynomial interpolation and Cauchy integral theorem can be found in [15].

11
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Any matrix A ∈ Cn×n can be expressed in the Jordan canonical form:

Z−1AZ = J = diag(J1, J2, . . . , Jp)

Jk = Jk(λk) =


λk 1

λk
. . .

. . . 1

λk

 ∈ Cmk×mk ,
(1.4)

where Z is nonsingular and m1 +m2 + . . .+mp = n.

Denote by λ1, . . . , λs the distinct eigenvalues of A and let ni be the order of the largest

Jordan block in which λi appears. In order to give the definition of matrix functions

we need the following terminology.

Definition 1.2.1. The function f is said to be defined on the spectrum of A if the

values f j(λi), j = 0, . . . , ni − 1, where i = 1, . . . , s exist.

Definition 1.2.2. Let f be defined on the spectrum of A ∈ Cn×n and let A have the

Jordan canonical form 1.4. Then

f(A) := Zf(J)Z−1 = Zdiag(f(Jk))Z
−1

f(Jk) :=


f(λk) f ′(λk) · · · f (mk−1)(λk)

(mk−1)!

f(λk)
. . .

...

. . . f ′(λk)

f(λk)


(1.5)

The Jordan canonical form of a real symmetric matrix, which is the case of the

adjacency matrix of a simple network, is of the form A = QΛQT where Q is a real

orthonormal matrix with columns of which are eigenvectors of A , and Λ is real and

diagonal having the eigenvalues of A on the diagonal. Thus, definition (1.2.2) yields

f(A) = Qf(Λ)QT = Qdiag(f(λi))Q
T . Therefore f(A) has the same eigenvectors as A

and its eigenvalues are obtained by applying f to those of A. The following theorem

guarantees the validity of a matrix Taylor series if the eigenvalues of the ”increment”

lie within the radius of convergence of the associated scalar Taylor series.

12
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Theorem 1.2.1. [15] Suppose f has a Taylor series expansion

f(z) =
∞∑
k=0

f (k)(α)

k!
(z − α)k (1.6)

with radius of convergence r. If A ∈ Cn×n then f(A) is defined and is given by

f(A) =
∞∑
k=0

f (k)(α)

k!
(A− αI)k (1.7)

if and only if each of the distinct eigenvalues λ1, . . . , λs of A satisfies one of the following

conditions

(a) |λi − α| < r,

(b) |λi − α| = r and the series for f (ni−1)(λ) is convergent at the point λ = λi,

i = 1, . . . , s.

1.3 Functions of the Adjacency Matrix of Graphs

Matrix functions have emerged as an important mathematical tool for studying networks

[45]. The greatest appeal of the use of functions of the adjacency matrix for studying

graphs is that when representing them in terms of a Taylor series expansion: f (A) =∑∞
k=0 ckA

k, the entries of the kth power of the adjacency matrix provides information

about the number of walks of length k between the corresponding pair of (not necessarily

different) nodes. Functions of adjacency matrices are widely used as centrality and

communicability measures of a network. The notion of centrality measure of a node is

used in the determination of the most important nodes in a network [14], it quantifies

the relative importance of each node in the graph [13]. The communicability measure

between nodes in a network quantifies how well different parts of a network are connected

to one another [13]. In this section we provide a short review about the use of matrix

functions in the analysis of graphs and networks.
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1.3.1 Katz Centrality

A classical node centrality is the degree centrality which measures the ability of a node

to communicate directly with others. So with degree centrality, i is more central than

j if ki > kj . The degree of the node i counts the number of walks of length one from i

to every other node of the network. In 1953, Katz [16] extended this idea to count not

only the walks of length one, but those of any length starting at node i giving more

weight to shorter walks than to longer ones [14]. The Katz index is given by

Ki =
[(
α0A0 + αA+ α2A2 + . . .+ αkAk + . . .

)
e
]
i

=

[ ∞∑
k=0

(
αkAk

)
e

]
i

(1.8)

where e is a column vector of entries 1 and A is the adjacency matrix of the graph.

The value of the attenuation factor α has to be chosen such that it is smaller than the

reciprocal of the largest eigenvalue of A, i.e α < 1
λ1

, in order to get a convergence series.

In this case we have

Ki =
[
(I − αA)−1 e

]
i
. (1.9)

When deriving the index, we can ignore the contribution from A0 = I and instead use

Ki =
[(

(I − αA)−1 − I
)

e
]
i
. (1.10)

1.3.2 The Communicability Function

Katz centrality is computed from the entries of the matrix

K =
∞∑
k=0

αkAk. (1.11)
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The idea can be generalized to work with other weighted sums of powers of the

adjacency matrix, namely [14],

f(A) =
∞∑
k=0

ckA
k. (1.12)

The coefficients ck need to be selected in such a way that the series (1.12) converges.

Also, they should give more weight to small powers of the adjacency matrix than to

the larger ones. By selecting ck = 1
k! we have

f(A) =

∞∑
k=0

1

k!
Ak = eA. (1.13)

Subgraph centrality is the term used for measures that characterize the participation

of a node in the different subgraphs of a network, giving more importance to the

smaller than to the bigger ones. Due to the nature of closed walks in graphs, subgraph

centralities can be defined by using the diagonal entries of the matrix function of

the form f(A) =
∑∞

k=0 ckA
k. Estrada and Rodŕıguez-Velásquez [26] introduced the

subgraph centrality based on the exponential function of the adjacency matrix and is

defined by

EEi =

( ∞∑
k=0

1

k!
Ak

)
ii

=
(
eA
)
ii
. (1.14)

Using the spectral decomposition of the adjacency matrix, the subgraph centrality can

be presented in terms of the eigenvalues and eigenvectors of the adjacency matrix as

follows:

EEi =
n∑
k=1

qk(i)
2exp(λk), (1.15)

where qk is the eigenvector corresponding to the eigenvalue λk. The communicability

between two nodes p and q in a network is defined by

Gpq =

∞∑
k=0

1

k!

(
Ak
)
pq

= (exp(A))pq (1.16)

=

n∑
k=1

qk(p)qk(q)exp(λk) (1.17)
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which was first introduced by Estrada and Hatano [27]. It provides an effective measure

of the connectivity between pairs of nodes. The underlying intuition is that two nodes

p and q are well-connected if there are many walks in the graph G connecting p and q

with shorter walks being given more weight than longer ones.

The Estrada index of a network is defined to be the trace of f(A) = exp(A) and was

first proposed by Estrada in 2000 [30] as a way of characterizing the degree of folding

of proteins and in 2005 Estrada and Rodŕıguez-Velázquez [26] introduced this index for

studying complex networks. The index was then renamed by de la Peña et al. [23] as

the ‘Estrada index’ of a graph. The index can be expressed in terms of the eigenvalues

of the adjacency matrix as follows:

EE =
n∑
j=1

eλj . (1.18)

Then, the Estrada index can be defined as the sum of the subgraph centralities of the

network. The communicability function f(A) = eA has proved very useful in a number

of applications. Some recent examples include:

• Detection of communities in networks [52];

• Detection of brain strokes in humans [46];

• Cancer Therapeutics [47];

• Detection of human genetic diseases [48];

• Analysis of economic and financial systems [49];

• Deformation of granular materials [50];

• Navigation of autonomous vehicles [51].

The spectral moments of a graph G are defined as:

µk =
n∑
i=1

λki , (1.19)
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where µk is the kth spectral moment of G. Using spectral moments of the graph, the

Estrada index can be defined by a Taylor expansion of the form

EE(G) = µ0 + µ1 +
µ2

2!
+
µ3

3!
+ · · ·+ µk

k!
+ · · · . (1.20)

Then, by moving forward one step the spectral moments respect to the factorial denominators

we get

EE1(G) = µ0 +
µ1

2!
+
µ2

3!
+
µ3

4!
+ · · ·+ µk

(k + 1)!
+ · · · . (1.21)

which have the following spectral formula only in the case when no eigenvalue is equal

to zero

EE1(G) =
n∑
j=1

eλj − 1

λj
. (1.22)

Then EE1(G) can be obtained as the trace of the ψ1(A) matrix function [15]

EE1(G) = trψ1(A) = tr
[
A−1

(
eA − I

)]
, (1.23)

where A is a nonsingular matrix. The positive rescaling approach can be extended to

generate a series of indices characterizing a graph in terms of the spectral moments of

the adjacency matrix weighted by inverse factorials. That is

EEt(G) =
∞∑
k=0

µk
(k + t)!

(1.24)

which are related to matrix functions through the trace formula:

EEt(G) = trψt(A), (1.25)

where ψt(A) matrix functions have the following integral formula:

ψt(A) =
1

(t− 1)!

∫ 1

0
e(1−x)Axt−1dx. (1.26)
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A negative rescaling can be defined by

EE−t(G) =
t−1∑
s=0

µs +
∞∑
k=t

µk
(k − t)!

, (1.27)

which have the following spectral realization:

EE−t(G) =

n∑
j=0

(
t−1∑
s=0

λsj + λtje
λj

)
. (1.28)

And the generalized subgraph centrality indices defined by using positive and negative

rescaling [28] are:

EEt(i) = [ψt(A)]ii ; (1.29)

EE−t(i) =

(
t−1∑
s=0

As +AteA

)
ii

. (1.30)

By penalizing more the longest walks (positive rescaling) in the original definition

of the subgraph centrality, the concentration is more in the local environment of

the corresponding node. On the other hand, the negative rescaling decreases the

penalization imposed to the spectral moments in the original definition of the subgraph

centrality which corresponds to a zooming out of the surrounds of the corresponding

node. In this case we allow long walks to contribute to the index in such a way

that we obtain more global information about the environment of the node under

study [28]. The zooming out strategy (negative rescaling) gives a more global picture

of the topological surrounds of a node while the zooming in strategy (positive rescaling)

focuses more on the local topological environment of a node. The generalized Subgraph

centrality indices defined earlier were applied to the study of protein–protein interaction

(PPI) networks and have been able to identify more essential proteins in the yeast PPI

network than any of the other centrality measures studied in [28].

Moreover, a distance measure defined on the basis of the communicability function

was proposed by Estrada [53]. For any pair of nodes p and q in a network, the

communicability function (exp(A))pq accounts for a successive travel of information
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between the nodes p and q while (exp(A))pp and (exp(A))qq accounts for disrupted

information sent from p and q respectively, then the communicability distance between

the nodes p and q accounts for the amount of information disrupted minus the amount

of information that arrives at its destination. That is

ξpq =
√

(eA)pp + (eA)qq − 2 (eA)pq. (1.31)

The communicability distance was proven to be a Euclidean distance [53]. Moreover, it

induces an embedding of the graph G of size n into a hypersphere in an n-dimensional

space [54] which gives rise to the definition of the communicability angle [55] which is

defined by

cosθpq =

(
eA
)
pq√

(eA)pp (eA)qq

. (1.32)

The average communicability angle accounts for the spatial efficiency of networks and

it was used to identify the critical links in consensus dynamics problems [56].

1.3.3 Hyperbolic Matrix Functions

The communicability function of a graphG can be presented by separating the contributions

of odd and even walks, giving rise to expressions for the communicability function in

terms of hyperbolic matrix functions, that is

eA =

∞∑
k=0

1

k!
Ak

=

∞∑
k=0

1

(2k)!
A2k +

∞∑
k=0

1

(2k + 1)!
A2k+1

= cosh(A) + sinh(A). (1.33)
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The subgraph centralities based on hyperbolic communicability functions are defined

by

EEeveni = (cosh(A))ii =

( ∞∑
k=0

1

(2k)!
A2k

)
ii

; (1.34)

EEoddi = (sinh(A))ii =

( ∞∑
k=0

1

(2k + 1)!
A2k+1

)
ii

. (1.35)

And the Estrada index can be written as

EE = tr [cosh(A)] + tr [sinh(A)] =
n∑
j=1

cosh(λj) +
n∑
j=1

sinh(λj)

= EEeven(G) + EEodd(G). (1.36)

Then, EEeven(G) and EEodd(G) represent weighted sums of all odd and even closed

walks in the network, respectively, giving more weight to the small ones. It is easy to

see that every closed walk of odd length visits the nodes of at least one cycle of odd

length. That is, the subgraph associated with an odd closed walk contains at least

one odd cycle. However, closed walks of even length can be trivial in the sense that

the subgraphs associated with them do not necessarily contain cycles. This simple

fact is the foundation of the bipartivity measures based on hyperbolic matrix functions

knowing that a bipartite network does not contain any odd-length cycle. Estrada and

Rodŕıguez-Velázquez [44] proposed the following bipartivity measure

bs =
tr (cosh(A))

tr(eA)
=

∑n
j=1 cosh(λj)∑n
j=1 exp(λj)

. (1.37)

Another way of accounting for the global bipartivity of a network is to consider the

difference of the number of closed walks of even and odd length, and then to normalize

the index by the sum of closed walks. That is,

be =

∑n
j=1 cosh(λj)−

∑n
j=1 sinh(λj)∑n

j=1 cosh(λj) +
∑n

j=1 sinh(λj)
=
tr (exp(−A))

tr (exp(A))
. (1.38)
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In addition, EEodd(G) is proposed by Estrada [37] as a spectral scale method that

classifies complex networks into four theoretically possible topological structures.

1.3.4 The Double-Factorial Communicability Function

The new matrix function was proposed by Estrada and Silver [31] by suggesting double-

factorial penalization of walks between nodes in a graph as a way to increase the

contribution of longer walks in communicability-based functions for graphs and real-

world networks. The double factorial of a non-negative integer n is defined by

n!! =


n.(n− 2).(n− 4). . . . .5.3.1 n > 0 odd

n.(n− 2).(n− 4). . . . .6.4.2 n > 0 even

1 n = 0

(1.39)

Then, the double-factorial communicability function is defined as

f(A) =

∞∑
k=0

Ak

k!!
, (1.40)

which can be approximated by the matrix function:

D(A) =
1

2

[√
2πtanh

(
kA√

2

)
+ 2I

]
e
A2

2 , (1.41)

where k =
√

2ln(2). The study of the double-factorial subgraph centrality, [D(A)]ii,

showed that in networks where there are no structural holes, the double factorial indices

produce similar results as the single-factorial ones in ranking the nodes of the networks

while in networks containing significant chordless cycles or holes in their structures, the

centrality index based on single- as well as on the double-factorial penalization of the

walks produce significant differences in the ranking of the nodes.
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1.3.5 More on Adjacency Matrix Functions

The graph energy of a simple undirected graph G is defined as

E(G) =
n∑
j=1

|λj |. (1.42)

Estrada and Benzi [32] provided a structural interpretation of the graph energy using

the modulus matrix function. In particular, they prove that the graph energy can be

represented as a weighted sum of the traces of even powers of the adjacency matrix.

The main result is the following

E(G) = tr |A| = λ1

 ∞∑
k=0

2k

k

 (−1)k+1

22k(2k − 1)

(
A2

λ2
1

− I
)k . (1.43)

New bounds for the energy of graph obtained in terms of subgraphs contributing to it

were obtained using the previous expression of E(G).

Not only the modulus matrix function is used in the literature to obtain new expressions

of physical or chemical quantities. The matrix sign function is used to describe the

electron density matrix of the Hückel (tight-binding) molecular orbital (HMO) method.

Estrada [33] provided an analytical expression of the HMO charge-density matrix as

P = P0 =
1

2
(I + sgn(A)) , (1.44)

which can be expressed in terms of powers of the adjacency matrix A as

P =
1

2

(
I +

A

λ1

∞∑
k=0

(−1)k
(2k − 1)!!

(2k)!!

(
A2

λ2
1

− I
)k)

. (1.45)

In addition, a Euclidean distance based on the HMO charge-density matrix is defined

by

δ2
rs = Prr + Pss − 2Prs, (1.46)

which induces an embedding of a molecule into a high-dimensional Euclidean space

in which the separation between the atoms scales very well with the bond lengths of
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PAHs. The approach is extended to describe a quasi-correlated tight-binding model,

which quantifies the number of unpaired electrons and the distribution of effectively

unpaired electrons.

1.4 Hückel Molecular Orbital Theory

In the field of chemistry, one way to form molecules is when two or more atoms

fused together by sharing electrons and forming covalent bonds between them. The

Hückel molecular orbital theory (HMO) provides a simple but neat tool to describe

the molecular electronic structures and energies of such molecules based on quantum

mechanical models. Our aim here is to use HMO method as a metaphor that allows us

to interpret some of the mathematical concepts of graph theory in a chemical way. HMO

is only applied to conjugated hydrocarbons, thus we start by giving a brief description

of conjugated hydrocarbons and π-electrons which are of a special interest in HMO.

1.4.1 PAHs and π-electrons

Hydrocarbons are organic compounds that consist entirely of hydrogen and carbon

atoms. A hydrogen atom has one valence electron (electrons in the outer shell that

can form covalent bonds with other atoms) while the carbon atom has four. Thus, in

hydrocarbons, hydrogen atoms are always connected to carbon atoms through single

bonds while each carbon atom is capable to form four bonds to either other carbon

atoms or to hydrogen atoms. Atomic orbitals can be defined to be the space in the

atom where the presence of an electron can be predicted. A hydrogen atom has one

atomic orbital of 1s-type while a carbon atom has s,p-type atomic orbitals. The outer

shell of a carbon atom contains 4 electrons in 2s, 2p atomic orbitals. In order for

a carbon atom to make four covalent bonds, the 2s orbital and the three 2p orbitals

combine to form equivalent hybrid atomic orbitals: hybrid sp, hybrid sp2 or hybrid sp3.

What we call a σ-bond is a covalent bond resulted from end-to-end overlap of the s and

hybrid atomic orbitals in two different atoms. π-bonds are the result of the side-to-side

overlap of pz-orbitals which are perpendicular to other atomic orbitals which are in the

same plane. Figure 1.4 shows examples of end-to-end and side-by-side overlaps. Single
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Figure 1.4: Examples of end-to-end bond (left) and side-by-side bond (right)

bonds in hydrocarbon molecules are σ-bonds while double bonds between two carbon

atoms are the result of one σ-bond and one π-bond. A conjugated hydrocarbon is a

molecule where the single and double bonds between carbon atoms alternates. The

benzene molecule C6H6 is an example of a conjugated hydrocarbon molecule where the

hybrid sp2 carbon atoms connect to form a planar hexagonal ring with six π-electrons

form three π-bonds. Polycyclic aromatic hydrocarbns (PAHs) are planar compounds

formed by fusing two or more benzene rings.

1.4.2 Hückel Method

Quantum mechanics is the study of the mechanical properties of very small particles

like electrons. The spatial distribution of electrons are expressed as wave functions and

the quantum mechanical equations that are used to calculate the properties of such

functions are based on a set of fundamental postulates that are given bellow [4,14]:

1. Any state of a system of n particles (such as molecule) is described by a wave

function Ψ, which is a function of the spatial coordinates of the particle and the

time. The quantity ΨΨ∗dτ gives the probability of finding the particle in the

volume dτ , where Ψ∗ is the complex conjugate of Ψ. In this work, wave functions

do not contain complex parts, thus ΨΨ∗ reduces to Ψ2. Ψ must be everywhere

finite, single-valued and Ψ2 is an integrable function. When

∫ ∞
0

Ψ2dτ = 1, (1.47)
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the function Ψ is said to be normalized.

2. For every observable property of a system that is described by some Ψ, there

exists a linear Hermitian operator where the physical properties we are interested

in can be obtained from the operator and the wave function.

3. In any measurement of the observable associated with an operator P̂ , the only

values that will be observed are the eigenvalues λ, which satisfy the eigenvalue

equation

P̂Ψ = λΨ. (1.48)

4. The expectation value of the physical quantity associated with the observable P̂

is given by

〈λ〉 =

∫
ΨP̂Ψdτ∫

Ψ2dτ
, (1.49)

where the integrals are taken over all space.

5. If we consider the total energy E of a system and the associated total energy

operator, or the Hamiltonian operator Ĥ, then the time evolution of a state is

determined by the time-dependent Schrödinger equation

i~
dΨ

dt
= ĤΨ, (1.50)

where, ~ is the reduced Planck constant. If the Hamiltonian is independent of

time, the energy levels are obtained from the eigenvalue equation

ĤΨ = EΨ. (1.51)

Since the energies and electron densities are time-independent, we will deal only

with equation (1.51).

Molecular orbital theory states that in a molecule, valence electrons are delocalized and

they can move in the whole molecule. Each electron is assigned a wave function that

determines its properties, ΨMO, the molecular orbital which according to the LCAO
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method is the linear combination of a set of atomic orbitals ΦAOs that are similar in

definition of ΨMO but describe the properties of electrons in the atom. That is, for a

system of n electrons, each molecular orbital is expressed as

Ψj = Cj1Φ1 + Cj2Φ2 + · · ·+ CjnΦn, (j = 1, 2, · · · , n) (1.52)

In a simple molecule like benzene (C6H6) we get thirty molecular orbitals expressed in

terms of thirty atomic orbitals and it gets more complicated for larger molecules. The

HMO method simplifies the equations by considering only the π-electrons in conjugated

hydrocarbons. Then, each ΨMO is the linear combination of 2pz-type atomic orbitals.

For the Hamiltonian operator of the π-system, the energy levels satisfy the set of

equations (Postulate 5)

Ĥψj = Ejψj . (1.53)

The expected value of Ej is

〈Ej〉 = εj =

∫
ψjĤψjdτ∫
ψ2
jdτ

, where ψj =
n∑
i=1

Cjiφi (1.54)

and it is required to minimize 〈Ej〉 for each j. This is done by minimizing with respect

to each coefficient Cji for each value of j. Now, the problem is to find sets of Cji such

that

∂εj/∂Cji = 0 (1.55)

for each value of i up to n. Substituting equation 1.52 in equation 1.54 yields

ε =

∫
ψĤψdτ∫
ψ2dτ

=

∫
(
∑n

i=1Ciφ) Ĥ (
∑n

i=1Ciφ) dτ∫
(
∑n

i=1Ciφ)2 dτ
. (1.56)
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Recall that the Hamiltonian is a linear operator, thus we have

ε =

∑n
i=1Ci

∫
φiĤφidτ∑n

i=1Ci
∫

(φi)2dτ

=

∑n
i=1

∑n
k=1CiCk

∫
φiĤφkdτ∑n

i=1

∑n
k=1CiCk

∫
φiφkdτ

. (1.57)

Putting Hik =
∫
φiĤφkdτ and Sik =

∫
φiφkdτ and arranging equation 1.57

n∑
i=1

n∑
k=1

CiCkHik −

(
n∑
i=1

n∑
k=1

CiCkSik

)
ε = 0. (1.58)

Now, differentiating equation 1.58 with respect to each Ci produces the following linear

system of n equations

n∑
i=1

Ci (Hji − εSji) = 0, j = 1, · · · , n, (1.59)

which can be represented in matrix notation

(H − εS)C = 0. (1.60)

The matrix elements Hii are called coulomb integrals and for all carbon atoms that

are part of the π-system are set equal to some particular numerical value α. The off-

diagonal matrix elements Hij are called bond (or resonance) integrals. These are set

equal to some particular numerical value β if atoms i and j are directly σ-bonded to

each other and set equal to zero otherwise. The terms Sij are called overlap integrals

and are set equal to unity if i = j, otherwise they are set equal to zero. equation 1.60

becomes

(βA+ αI)C = εC, (1.61)

where A is the adjacency matrix of the corresponding molecular graph where the nodes

are the carbon atoms and the edges are the σ-bonds between them.
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1.4.3 HOMO and LUMO

As seen in the previous section, for a conjugated hydrocarbon with n carbon atoms, we

can construct n molecular orbitals containing n π-electrons. we distribute the electrons

over the molecular orbitals starting with the lowest-energy (least eigenvalue) orbital

and obeying the Pauli principle; that is, placing only two electrons with opposite spin

in each orbital. The highest occupied molecular orbital (HOMO) is the highest energy

orbital that has electrons in it and the lowest unoccupied molecular orbital (LUMO) is

the lowest energy orbital that is empty. These frontier orbitals are the most important

orbitals with respect to reactivity.
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Gaussian Communicability

Function e−A
2

We consider a network G = (V,E) whose adjacency matrix is designated by A. Then,

the spectrum of the graph satisfies the following equation:

Aqj = λjqj , (2.1)

where qj is the eigenvector associated to the eigenvalue λj .

Then, we consider an approach known as the Folded Spectrum Method (FSM) [57]

whose main idea is the following. An eigensolution (λj ,qj) of (2.1) also satisfies

(A− λrefI)2 qj (r) = (λj − λref)
2 qj (r) , (2.2)

where λref is a given eigenvalue. If we select λref = 0, we have

A2qj (r) = λ2
jqj (r) . (2.3)

This process of ’folding’ the spectrum of a network is illustrated in Figure 2.1, which

is inspired by a similar one displayed by Canning et al [58]. In the left-hand side of

the Figure we show the standard spectrum of the network, in which the eigenvalues are

represented on the line as dots. We then squared the eigenvalues and represent them
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Figure 2.1: Illustration of the folded spectrum method. The eigenvalues of the adjacency matrix
of the network are folded at λref into the spectrum of (A− λref)2. The eigenvalues closest to

zero are now the lowest states in the spectrum of (A− λref)2.

in a new line on the right-hand side of the Figure. The first consequence of this folding

process is that now all the eigenvalues are nonnegative, with the smallest ones being

the zeros of the network spectrum. As can be seen in the Figure, the eigenvalues closest

to zero, here designated as λref±1, becomes the lowest state in the spectrum of A2. As

we will see later this will imply that we can obtain important structural information

about the network which is encoded by these eigenvalues of the adjacency matrix. In

this Thesis we will call

G̃ =

∞∑
k=0

(
−A2

)k
k!

= exp(−A2) (2.4)

the Gaussian matrix function of A, G̃pq the Gaussian communicability function between

the nodes p and q based on −A2 and

H = Tr(exp(−A2)) (2.5)

the Gaussian Estrada index of the graph. The term G̃pp is the Gaussian subgraph

centrality based on the same matrix function.
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Figure 2.2: (a) Plot of graph nullity versus H index for all connected graphs with 8 nodes. (b)
Graph with the largest H index among all the connected graphs with 8 nodes and nullity zero.
(c) The same as in (b) for all connected graphs with nullity one.

2.1 Mathematical Analysis

Using the spectral decomposition of the adjacency matrix we can express the Gaussian

communicability function and the Gaussian Estrada index as

G̃pq =

n∑
j=1

ψj,pψj,q exp
(
−λ2

j

)
, (2.6)

H =
n∑
j=1

exp
(
−λ2

j

)
. (2.7)

Let η (A) be the nullity of the adjacency matrix A. Then, it is obvious that the H

index is related to η as follows:

H ≥ η, (2.8)

with both indices identical if and only if λj = 0, for all j, which is attained only for the

trivial graph, i.e., the graph with n nodes and no edges. Indeed,

H = η +
∑
λj 6=0

exp
(
−λ2

j

)
. (2.9)

Then, it is interesting at least empirically, to explore the relation between H and η

for simple graphs. We investigate all the connected graphs with n ≤ 8 for which we

obtain both H and η. The correlation between both indices for the 11,117 connected

31



Chapter 2. Gaussian Communicability Function e−A
2

(a)
0 1 2 3

Nullity

1

1.5

2

2.5

3

H
 in

de
x

(b)

0 1 2 3 4
Nullity

1

2

3

4

H
 in

de
x

(c)

0 1 2 3 4 5 6
Nullity

1

2

3

4

5

H
 in

de
x

Figure 2.3: Plot of graph nullity versus H index for all connected graphs with (a) 5 nodes, (b)
6 nodes, (c) 7 nodes.

graphs with 8 nodes is illustrated in Figure 2.2. Although the correlation is statistically

significant—the Pearson correlation coefficient is 0.74—it hides the important differences

between the two indices. For instance, there are 5,724 graphs with zero nullity among

all the connected graphs with 8 nodes. For these graphs 1.484 ≤ H ≤ 3.629, which

represents a wide range of values taking into account that the minimum and maximum

values of H for all connected graphs with 8 nodes are 1.484 and 6, respectively. It is also

easy to see that there are graphs having nullity zero which have larger H indices than

some graphs having nullity one, two or three. The results are very similar for n < 8

and they are shown in Figure 2.3. In Figure 2.2 we show the graphs with the largest

H indices among all connected graphs with 8 nodes and nullity zero or one. These

graphs show a common pattern containing several complete bipartite subgraphs. For

instance, every yellow node in the Figure 2.2 is connected to every red ones, every red

is connected to every blue and every blue is connected to the green one, while there is

no yellow-yellow, red-red or blue-blue connections. This pattern will be revealed when

we study the mathematical properties of this index and its importance will be analyzed

for real-world networks.
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2.2 H Index of Graphs

2.2.1 Elementary Properties

In the following we show some results about G̃pq of some elementary graphs which

will help us to interpret this measure when applied to more complex structures. In

particular, we study the path Pn, the cycle Cn, the star graph K1,n−1, the complete

graph Kn and the complete bipartite graph Kn1,n2 . Here we give expressions for the

H (G) index of the before mentioned graphs in the form of Lemmas.

Lemma 2.2.1. Let Kn be the complete graph of n nodes. Then

H (Kn) = e−(n−1)2 +
n− 1

e
. (2.10)

Proof. The spectrum of Kn is σ(Kn) =
{

[n− 1]1 , [−1]n−1
}

with the eigenvector q1 =

1√
n

(1, 1, . . . , 1) so we have

G̃pq (Kn) = q1(p)q1(q)e−(n−1)2 +

n∑
j=2

qj(p)qj(q)e
−1, (2.11)

and since the eigenvector matrix has orthonormal rows and columns we have
n∑
j=2

qj(p)qj(q) =

− 1
n if p 6= q and n−1

n if p = q. Thus,

G̃pq (Kn) =
e−(n−1)2

n
− 1

ne
(2.12)

when p 6= q. Now, if p = q then G̃pp (Kn) = q2
1(p)e−(n−1)2 +

n∑
j=2

q2
j (p)e

−1 = e−(n−1)2

n +

n−1
ne . Then, it is straightforward to realize that

H (Kn) =
n∑
j=1

(
e−(n−1)2

n
+
n− 1

ne
)

= e−(n−1)2 +
n− 1

e
. (2.13)
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Let

Iγ(x) =
1

π

∫ π

0
cos(γθ) exp(x cos θ)dθ − sin(γπ)

π

∫ ∞
0

exp(−x cosh t− γt)dt, (2.14)

be the modified Bessel function of the first kind. Then, we have the following result.

Lemma 2.2.2. Let Pn be a path having n nodes. Then, asymptotically as n→∞

H (Pn) ∼ I0(2)

e2
(n+ 1)− e−4. (2.15)

Proof. The eigenvalues of Pn are: 2 cos πj
n+1 , j = 1, . . . , n. By substituting the eigenvalues

and eigenvectors of the path graph into the expression for G̃pp (Pn) we obtain

G̃pp (Pn) =
2

n+ 1

n∑
j=1

sin2

(
jπp

n+ 1

)
exp

(
−4 cos2

(
jπ

n+ 1

))

=
e−2

n+ 1

n∑
j=1

[
1− cos

(
2jπp

n+ 1

)]
exp

(
−2 cos

(
2jπ

n+ 1

))
. (2.16)

Now, when n→∞ the summation in 2.16 can be approached by the following integral

G̃pp (Pn) =
e−2

π

∫ π

0
exp(−2 cos θ)dθ − e−2

π

∫ π

0
cos (pθ) exp(−2 cos θ)dθ, (2.17)

where θ = 2jπ
n+1 . Thus, when n→∞ we have

G̃pp (Pn) ∼ e−2 (I0(−2)− Ip(−2)) , (2.18)

which by using Iγ(−x) = (−1)γIγ(x) [59] gives

G̃pp (Pn) ∼ e−2 (I0(2)− (−1)pIp(2)) .
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Let n be even. Then due to the symmetry of the path we have

H (Pn) = 2

n/2∑
p=1

G̃pp (Pn)

= 2

n/2∑
p=1

e−2 [I0(2)− (−1)pIp(2)]

=
nI0(2)

e2
− 2

e2

n/2∑
p=1

(−1)pIp(2). (2.19)

For n→∞ we have
∞∑
γ=1

(−1)γIγ(x) =
1

2

(
e−x − I0(x)

)
. (2.20)

Then, we can write for n→∞

H (Pn) ∼ nI0(2)

e2
− 1

e2

(
e−2 − I0(2)

)
=
I0(2)

e2
(n+ 1)− e−4. (2.21)

Now, when n is odd we can split the path into two paths of lengths n+1
2 and n−1

2 ,

respectively. Then, we write

H (Pn) =

n+1
2∑

p=1

G̃pp (Pn) +

n∑
p=n−1

2

G̃pp (Pn)

=
(n+ 1)I0(2)

2e2
− 1

e2

n+1
2∑

p=1

(−1)pIp(2) +
(n− 1)I0(2)

2e2
− 1

e2

n∑
p=n−1

2

(−1)pIp(2).

(2.22)

When n → ∞ we can consider that the summation in the second and fourth terms of

2.22 are both equal to
(
e−2 − I0(2)

)
/2, which then gives the final result.

Lemma 2.2.3. Let Cn be a cycle having n nodes. Then, asymptotically as n→∞

H(Cn) ∼ nI0(−2)

e2
. (2.23)
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Proof. The eigenvalues of Cn are: 2 cos 2πj
n , j = 1, . . . , n. By substituting the eigenvalues

of the cycle graph into the expression for H(Cn) we obtain

H(Cn) = tr
(
e−A

2
)

= n

(
tr(e−A

2
)

n

)

= n

 1

n

n∑
j=1

e−4 cos2( 2πj
n

)


= ne−2

 n∑
j=1

1

n
e−2 cos 4πj

n

 . (2.24)

Now, when n→∞ the summation in 2.24 can be approached by the following integral

H(Cn) ∼ ne−2 1

π

∫ π

0
e−2cosθdθ, (2.25)

where θ = 2jπ
n . Thus, when n→∞ we have

H(Cn) ∼ ne−2I0(−2). (2.26)

Lemma 2.2.4. Let Kn1,n2 be the complete bipartite graph of n1 + n2 nodes. Then

H (Kn1,n2) = 2e−n1n2 + n1 + n2 − 2. (2.27)

Proof. The spectrum of Kn1,n2 is σ(Kn1,2) =
{[√

n1n2

]1
, [0]n1+n2−2 ,

[√
n1n2

]1}
and

the eigenvectors associated with the largest and the smallest eigenvalues are, respectively:

ϕ1 =
1√
2n2

(√
n1n2

n1
,

√
n1n2

n1
, . . . ,

√
n1n2

n1
, 1, . . . , 1

)
(2.28)

where the first n1 components are
√
n1n2

n1
and the last n2 components are 1. similarily:

ϕn1+n2 =
1√
2n2

(
−√n1n2

n1
, . . . ,

−√n1n2

n1
, , 1, . . . , 1

)
. (2.29)
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From the orthonormality of the eigenvectors of the adjacency matrix we have:

n1+n2−1∑
j=2

[qj (p)]2 = 1− 1

n1
, p ∈ V1, (2.30)

n1+n2−1∑
j=2

[qj (p)]2 = 1− 1

n2
, p ∈ V2. (2.31)

Hence, if p ∈ V1

G̃pp (Kn1,n2) =

n1+n2∑
j=1

[qj (p)]2 exp(−λ2
j )

= e−n1n2

(
n1n2

2n1n2
2

+
n1n2

2n2n2
1

)
+

n1+n2−1∑
j=2

[qj (p)]2

= e−n1n2

(
1

n1

)
+ 1− 1

n1
=

1

n1

(
e−n1n2 − 1

)
+ 1, (2.32)

and similarly we have G̃pp (Kn1,n2) = 1
n2

(e−n1n2 − 1) + 1 when p ∈ V2. Then

H (Kn1,n2) =

n1+n2∑
j=1

G̃pp

=

n1∑
j=1

G̃pp +

n1+n2∑
j=m+1

G̃pp

= n1

(
1

n1
(e−n1n2 − 1) + 1

)
+ n2

(
1

n2
(e−n1n2 − 1) + 1

)
= 2e−n1n2 + n1 + n2 − 2. (2.33)

The following corollary will be of importance in the following section of this work.

Corollary 2.2.1. Let K1,n−1 be the star graph of n nodes. Then

H (K1,n−1) = 2e1−n + n− 2. (2.34)
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2.2.2 Graphs with Maximum H Index

We are mainly interested in understanding why certain networks display large values

of the H index. Then, we prove that among the connected graphs with n nodes, the

maximum value of the H index is always obtained for the star graph K1,n−1. We start

this section by obtaining an upper bound of H, then we prove a general result for trees,

which is needed to prove the upper bound. Michele Benzi, Gene H. Golub and Paola

Boito [60, 61] obtained bounds for the entries of matrix function f(A) by representing

them in terms of Riemann–Stieltjes integrals and by approximating such integrals by

Gaussian quadrature rules. Consider an interval [a, b] contains the eigenvalues of A,

then if ϕ(x, y) = (A)ii(f(x)−f(y))+xf(y)−yf(x)
x−y and f is strictly completely monotonic

function on the interval [a, b], that is, f (2j)(x) > 0 and f (2j+1) < 0 on [a, b] where f (k)

denotes the kth derivative of f and f (0) ≡ f then [60]

(f(A))ii ≤ ϕ(a, b)

≤ (A)ii (f(a)− f(b)) + af(b)− bf(a)

a− b
. (2.35)

The following theorem gives an upper bound of the H index.

Theorem 2.2.1. LetG be a graph with n nodes andm edges and letH = tr exp
(
−A2

)
.

Then,

H (G) ≤
n∑
i=1

[
ki(e

−b − 1)

b
+ 1

]
= 2m

(e−b − 1)

b
+ n. (2.36)

where ki is the degree of the node i in the graph G and b ∈ R such that λ2
1 ≤ b.

Proof. If we consider the matrix A2, where A is the adjacency matrix of a graph G and

f(x) = e−x we have ω1 = ki and [a, b] = [0, b] since A2 has nonnegative eigenvalues.

Hence,

(e−A
2
)ii ≤

ki(1− e−b)− b
−b

=
ki(e

−b − 1)

b
+ 1.

To find the bound of the trace of e−A
2

we take the summation from 1 to n on the

previous inequality, which by Lemma 1.1.1 gives the final result.
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Lemma 2.2.5. Let Tn be a tree of n nodes, then

H(Tn) ≤ H(K1,n−1). (2.37)

Proof. We have the following upper bound

H(G) ≤ 2m
(e−λ

2
1 − 1)

λ2
1

+ n, (2.38)

Perron-Frobenius theorem states that λ1 ≥ |λi| for all i = 1, . . . , n− 1 where m is the

number of edges and [0, b] is the interval that contains all the eigenvalues of A2. Let

λ1 be the eigenvalue with the maximum absolute value among all eigenvalues (Perron-

Frobenius theorem). Now, Let Tn be a tree with n ≥ 2, then Collatz and Sinogowitz [1]

have proved that

λ1(Tn) ≤ λ1(K1,n−1) =
√
n− 1, (2.39)

where the equality holds if Tn is the star graph. Thus, the interval [0, n − 1] contains

all the eigenvalues of any tree Tn. Now, substituting in (2.38)

H(Tn) ≤ 2(n− 1)
(e1−n − 1)

n− 1
+ n = n− 2 + 2e1−n. (2.40)

Thus, for any tree of n nodes H(Tn) ≤ H(K1,n−1) .

Now we prove an important result for general connected graphs, which also allow

us to understand the nature of the index H when studying real-world networks.

Theorem 2.2.2. Let G be connected graph of n nodes, then

H(G) ≤ H(K1,n−1). (2.41)

Proof. The largest eigenvalue of any graph G is less than or equal the maximum degree.

Thus the interval [0, (n − 1)2] contains all the eigenvalues of A2 and we get from the

quadrature-rule bound

H(G) ≤ n− 2m
(1− e−(n−1)2)

(n− 1)2
. (2.42)
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Now, H(G) is maximum when m is the lowest possible for a connected graph. That is,

H(G) ≤ n− 2
(1− e−(n−1)2)

n− 1
. (2.43)

A connected graph with n− 1 edges is a tree. Then, because of Lemma 2.2.5 we have

H(G) ≤ H(K1,n−1). (2.44)

The previous result is true for any connected graph with any (finite) number of

nodes n. In addition, when n → ∞, it is easy to see that H (K1,n−1) ∼ n − 2. In a

similar way, when n→∞

H (Kn1,n2) ∼ n1 + n2 − 2 = n− 2. (2.45)

Among the connected graphs with n nodes, as proved here, the maximum value is

always reached for the star graph K1,n−1. Moreover, for all connected graphs of n ≤ 8

nodes, it is followed by the complete bipartite graph K2,n−2, then K3,n−3, and so forth.

For instance, in the case n = 8 we have H (K1,7) ≈ 6.001824; H (K2,6) ≈ 6.000012;

H (K3,5) ≈ 6.000001; H (K4,4) ≈ 6.000000. This observation will play a fundamental

role in the analysis of random graphs and real-world networks in the next sections of

this Chapter.

2.2.3 Graphs with Minimum H Index

As we have seen before, an important contribution to the H index is made by the graph

nullity η and by the eigenvalues which are relatively close to zero. Let x > 0 be a real

number such that exp
(
−x2

)
∼ 0 . Then,

H ≈
λj≤x∑
λj≥−x

exp
(
−λ2

j

)
. (2.46)
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Figure 2.4: Illustration of the graphs having minimum H index among all connected graphs
with n = 4, 5, 6, 7, 8.

Consequently, the graphs with minimum H index are those having very small density

of eigenvalues in the interval (−x, x). For instance, the graph having the smallest H

index among all connected graphs with 8 nodes has eigenvalues: -2.0000, -1.7321, -

1.0000, -1.0000, -0.8136, 1.4707, 1.7321, 3.3429, which produces H ≈ 1.4845, which is

well approximated if we consider only the eigenvalues in the interval (−1.5, 1.5). The

graphs with minimum H index among all connected graphs with n = 4, 5, 6, 7, 8 are

illustrated in the Figure 2.4. As can be seen, there is no specific description of the

graphs but it calls the attention the existence of bow-tie subgraphs in most of these

graphs.

2.2.4 H Index of Random Networks

In this section we study two different models of random graphs, the Erdős-Rényi model

of random network and the Barabási-Albert model. Using the previous mentioned

distributions of the spectrum of these models we obtain the following results.

Theorem 2.2.3. For an Erdős-Rényi random graph G(n, p) with lnn
n � p we have

H (ER) ∼ ne
−r2
2 (I0(

r2

2
) + I1(

r2

2
)) (2.47)

almost surely, as n→∞, where r = 2
√
np(1− p) and In is the modified Bessel function
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of the first kind.

Proof. We know that the spectral density of G(n, p) converges to the semicircular

distribution (1.2) as n → ∞. Also, Krivelevich and Sudakov [62] showed that the

largest eigenvalue λ1 of G(n, p) is almost surely (1 + o(1))np provided that np� lnn.

Then,

H (ER) = exp(−λ2
1) +

n∑
i=2

exp(−λ2
i )

= e−λ
2
1 + n

(
1

n

n∑
i=2

e−λ
2
i ρ(λ)

)
. (2.48)

When n→∞ we have

H (ER) ∼ n
∫ r

−r
ρ(λ)e−λ

2
dλ

=
4n

πr2

∫ r

0

√
r2 − λ2e−λ

2
dλ

=
4n

πr2

∫ π
2

0
r2 cos2 θe−r

2 sin2 θdθ

=
4n

π

∫ π
2

0

1

2
(1 + cos 2θ)e

−r2
2

(1−cos 2θ)dθ

= 2ne
−r2
2 (

1

π

∫ π
2

0
e
r2

2
cos 2θdθ +

1

π

∫ π
2

0
cos 2θe

r2

2
cos 2θdθ)

= ne
−r2
2 (

1

π

∫ π

0
e
r2

2
cosudu+

1

π

∫ π

0
cosue

r2

2
cosudu)

= ne
−r2
2 (I0(

r2

2
) + I1(

r2

2
)). (2.49)

We now consider the case of the Barabási-Albert (BA) model. We prove the

following result.

Theorem 2.2.4. Let G be a BA random network. Then, when n→∞, the H index

of a BA network is bounded as

H (BA) ∼ n

r2

(√
πrerf (r) + e−r

2 − 1
)
, (2.50)
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where r = 2
√
np(1− p) and erf (· · · ) is the error function.

Proof. We know that the density of BA graphs follows a triangular distribution (1.3).

Thus

H (BA) =
n∑
j=1

ρ(λj)e
−λ2j

= n

 1

n

n∑
j=1

ρ(λj)e
−λ2j

 . (2.51)

When n→∞ we have

H (BA) ∼ n
(∫ r

−r
ρ(λ)e−λ

2
dλ, as n→∞

)
= n

(∫ 0

−r

λ+ r

r2
e−λ

2
dλ+

∫ r

0

r − λ
r2

e−λ
2
dλ

)
=

n

r2

(√
πrerf (r) + e−r

2 − 1
)
. (2.52)

In Figure 2.5(a) we illustrate the results obtained for the H index of ER random

graphs GER (1000, p) in which p is systematically changed from 0.008 to 0.04. The

results are shown for both, the formula (2.47) and the calculation using the function

’expm’ implemented in Matlab R©. As can be seen for ER networks, as soon as the

probability increases, such that np� lnn, the two results quickly converge to a common

value, i.e., the error decays quickly with the increase of p. In Figure (2.5(b)) we also

plot similar results for the BA model using GBA (1000,m) = GBA (1000, (n− 1) p/2)

in which m is systematically varied from 2 to 14. In this case we plot the results

using the values of p instead of m to make the plot comparable to the one of the ER

networks. In this case the behavior is more complex as there is a crossing point between

the two curves. This difference between the behavior of the theoretical function (2.50)

for low and large densities of the graphs may be due to the fact that the eigenvalue

distribution of the BA networks is different at these two density regimes. According to

our computational experiments, it is only true that the BA networks display triangular
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Figure 2.5: (a) Change of the H index with the increase of the probability p in ER random
graphs GER (1000, p) obtained using the formula 2.47 (empty circles and solid line) and using
the function ’expm’ in Matlab (squares and broken line). (b) Change of the H index with the
increase of m in BA random graphs GBA (1000,m) obtained using the formula (2.50) (empty
circles and solid line) and using the function ’expm’ in Matlab (squares and broken line). All
the calculations are the average of 100 random realizations.

eigenvalue distributions for relatively small edge densities and deformations of it occurs

for larger densities, which may produce the observed deviations from the theoretical and

computational results. In Appendix A, we show the eigenvalue distribution of samples

of networks generated using the BA model for different values of m and it shows that

the distribution does not follow equation (2.50) as m grows. More theoretical work

is needed to understand completely the eigenvalue distribution of these networks at

different density regimes. Such studies are out of the scope of the Thesis.

It is easy to show that for a given value of r, H (BA) > H (ER) . That is, for the same

network density the network having power-law degree distribution has larger value of

the H index than the analogous one with Poisson degree distribution. This result

is somehow expected from the qualitative analysis of the eigenvalues distributions of

these two classes of random networks. While the ER networks display a semicircle

distribution of eigenvalues, the BA networks for small values of r displays a triangular

distribution peaked at λj = 0. In other words, the nullity of the BA graphs is larger

than that of the ER ones, and the concentration of eigenvalues close to zero is also

44



Chapter 2. Gaussian Communicability Function e−A
2

larger for the BA networks than for the ER. Both characteristics give rise to larger

values of the H index in the BA networks. The question that arises here is what this

difference implies from the structural point of view. We will analyze this question in

the remaining part of this section.

We have already seen that the largest values of the H index occurs in graphs having

complete bipartite structures. Then, in order to understand the main structural differences

giving rise to the larger H index in BA networks than in ER ones we consider the

existence of such subgraphs in both networks. In particular, we will consider the

existence of complete bipartite subgraphs, known as bicliques, in both kind of networks.

Let us start by the analysis of the BA networks. These networks are created from an

initial seed of m0 nodes connected randomly and independently according to the ER

model. Then, at each stage of the evolution of the network, a new node is connected

preferentially to m ≤ m0 nodes. The connection probability is proportional to the

degree of the existing nodes. Because an ER network is uncorrelated the probability

that the highest degree nodes are connected to each other is relatively low. Then, when

a new node is added and connected to m of the highest degree existing nodes there is

a high probability that a biclique is formed. Such a process is continued as more nodes

are added to the graph, resulting a large bicliques with high probability (see Figure

2.6). The creation of an ER network follows a completely different process in which

pairs of nodes are connected randomly and independently, which does not generates any

preferred subgraphs, thus not producing a large number of bicliques. This qualitative

analysis explaining structurally the existence of networks with high values of the H

index will be very useful in the next section of this thesis where we will analyze real-

world networks.

In order to corroborate the hypothesis that the presence of complete bipartite structures

on networks play a fundamental role on the high values of the H index we developed the

following experiment. We consider complete bipartite graphs Kn1,n2 with n = n1 + n2

equal to 100, and 200, respectively. Then, we rewire randomly and independently a

small percentage of the edges of these graphs and compute the average value of the

H index after 100 random rewirings. These rewirings are produced by keeping the
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Figure 2.6: Illustration of the evolution of a graph under the BA model to sketch how bicliques
are formed in such kind of networks. (a) Seed of m0 = 7 nodes created with a Poissonian degree
distribution to start the BA evolution process. (b) Given m = 2 the new node (red one) is
preferentially attached to those with the highest degree among the existing m0 ones (marked
as blue). (c) Second iteration of the process, which creates a biclique K2,2 (red and blue nodes
joined by dotted lines).

same degree of each of the nodes in the original graphs. In Figure 2.7 we illustrate

graphically the results of this experiment. We keep the rewiring probability low to

avoid the appearance of other effects produced by the total negletion of the original

complete bipartite structure. As can be seen for each of the complete bipartite graphs

studied, the rewiring of the edges, which necessarily implies the destruction of the

complete bipartivity, decays significantly the values of H index. We have studied two

sizes of the graphs and observed that there are no significant differences in the results

when the size of the graphs is doubled from 100 to 200. However, there is a significant

change in the shape of the decaying function of the H index as a function of the rewiring

probability for different kinds of complete bipartite structures. That is, when n1 = n2

there is a much faster decay to the H index as a consequence of the rewiring than

when n1 � n2. In the last case, the number of nodes in one of the two disjoint sets

of the bipartite graphs is relatively small in relation to the number of edges rewired.

Consequently, these nodes can be totally saturated by a few rewirings that connect

almost every pair of the nodes in this set. Thus, such small set is transformed into

a random subgraph more quickly than a larger set of nodes, which is the case when

n1 = n2.

In closing, we have provided theoretical and empirical evidence showing that the H

index accounts for the existence of complete bipartite subgraphs in a network. Such

subgraphs can appear naturally in preferential attachment processes, like the Barabási-

Albert model, but they may also emerge as a consequence of other natural or man-made
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Figure 2.7: Effects of rewiring the edges of complete bipartite graphs Kn1,n2
by keeping the

degree of the nodes on the H index. In the left panel we illustrate graphs with 100 nodes and
in the right panel we shown results for graphs with 200 nodes. Every point in the curves is
obtained from the average of 100 random rewirings of the edges of each graph that keeps the
same degree of the nodes.

processes giving rise to the actual structure of networks.

2.3 Studies of Real-World Networks

In this section we study a group of real-world networks representing a variety of

social, environmental, technological, infrastructural and biological complex systems.

A description of the networks and their main characteristics are given in Appendix B.

The sizes of the networks studied here range from 29 to 4,941 nodes. Together with

the H index we have also calculated the Estrada index EE = tr (exp (A)), the graph

nullity η, and the Newman degree assortativity coefficient r [112] then we obtained the

linear correlation coefficient among every pair of variables for the group of networks

studied and the results are given in Table 2.2. The assortativity coefficient r is given

by:

r =

1
m

∑
(i,j)∈E kikj −

(
1

2m

∑
(i,j)∈E(ki + kj)

)2

1
2m

∑
(i,j)∈E(k2

i + k2
j )−

(
1

2m

∑
(i,j)∈E(ki + kj)

)2 . (2.53)
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n H EE η r

n 1 0.942 0.283 0.734 0.203
H 1 0.202 0.915 0.064
EE 1 0.030 -0.027
η 1 -0.077
r 1

Table 2.1: Pearson correlation coefficients among every pair of variables studied in this work
(see (2.2)).

It measures the degree-degree Pearson correlation coefficient. The networks where

r > 0 are known as assortative and those for which r < 0 are known as disassortative.

Networks with r = 0 are known as neutral. The index indicates the tendency of high-

degree nodes to be connected to each other (assortative networks) or to low degree

nodes (disassortative networks).

As can be seen, the H index displays a significant correlation with the network size.

Then, in order to avoid any size influence, we normalize the H index by dividing it

by the number of nodes of the network. We will call Ĥ the normalized index. The

normalized index Ĥ ranges from about 0.14 to about 0.75 for the studied networks,

indicating that real-world networks cover most of the values that this index can take

(see table 2.2). The scatterplot of the normalized nullity versus the normalized H

index for the 61 real-world networks studied here (see Fig 2.8(b)) reveals that although

both indices follow the same trend, there are important differences among them. In

particular, we can observe that there are 9 networks with zero nullity which display

values of Ĥ ranging from about 0.14 (the lowest Ĥ index) to about 0.36 (ranked 25th

in increasing order of Ĥ index).

Name H Ĥ EE η r

Ants 30.998 0.4189 2.64E+02 14 -0.102

Benguela 9.573 0.3301 4.11E+06 0 0.021

BridgeBrook 56.018 0.7469 9.20E+08 48 -0.668

Canton 40.333 0.3735 3.12E+08 24 -0.226

CatCortex 12.636 0.2430 8.95E+09 0 -0.044

Centrality literature 42.976 0.3642 2.44E+08 9 -0.202
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Chesapeake 13.240 0.4012 4.71E+02 3 -0.196

Coachella 10.984 0.3661 7.61E+07 0 0.035

ColoSpg 182.077 0.5620 1.15E+03 142 -0.295

CorporatePeople 228.395 0.1440 1.27E+10 0 0.268

Dolphins 20.845 0.3362 2.06E+03 2 -0.044

Drugs 279.467 0.4537 6.91E+07 131 -0.117

Electronic1 37.694 0.3090 4.84E+02 0 -0.002

Electronic2 77.982 0.3095 1.04E+03 8 -0.006

Electronic3 158.658 0.3099 2.17E+03 24 -0.030

ElVerde 51.696 0.3314 4.76E+13 5 -0.174

Galesburg 9.519 0.3071 4.36E+02 1 -0.135

GD 90.440 0.3632 1.60E+04 15 0.098

Geom 1462.396 0.4039 4.04E+12 537 0.168

Hi tech 10.975 0.3326 2.95E+03 1 -0.087

Internet1997 2148.635 0.7126 6.17E+13 1883 -0.229

Internet1998 2473.122 0.7022 1.42E+15 2158 -0.210

LittleRockA 117.772 0.6507 5.32E+17 93 -0.234

MacaqueVisualCortex 9.665 0.3020 1.26E+06 1 0.008

Neurons 69.083 0.2467 1.31E+10 3 -0.069

ODLIS 1131.046 0.3903 1.54E+19 270 -0.173

PIN Afulgidus 16.366 0.5114 9.91E+01 12 -0.472

PIN Bsubtilis 53.144 0.6327 3.52E+02 46 -0.486

PIN Ecoli 102.189 0.4443 8.30E+06 57 -0.015

PIN Hpyroli 397.649 0.5601 4.60E+04 316 -0.243

PIN KSHV 18.119 0.3624 1.82E+03 2 -0.058

PIN Malaria 83.377 0.3641 2.25E+04 13 -0.083

PIN Yeast 1135.731 0.5107 1.94E+08 754 -0.105

Power grid 1907.307 0.3860 2.13E+04 593 0.003

PRISON 20.325 0.3034 7.08E+02 0 0.103

ReefSmall 12.888 0.2578 2.07E+10 0 -0.193

49



Chapter 2. Gaussian Communicability Function e−A
2

Roget 264.570 0.2662 2.38E+05 2 0.174

Sawmill 12.307 0.3419 2.57E+02 2 -0.071

ScotchBroom 103.975 0.6752 2.46E+06 90 -0.311

Shelf 20.724 0.2559 1.60E+18 2 -0.094

Skipwith 15.023 0.4292 3.87E+09 7 -0.319

SmallWorld 115.730 0.4967 1.27E+09 70 -0.303

College 8.049 0.2515 5.36E+02 0 -0.119

Software Abi 575.133 0.5557 1.65E+05 418 -0.086

Software Digital 82.277 0.5485 1.31E+03 63 -0.228

Software Mysql 648.971 0.4385 2.70E+09 282 -0.083

Software VTK 440.251 0.5710 1.11E+05 324 -0.195

Software XMMS 478.168 0.4924 4.64E+04 294 -0.114

StMarks 13.607 0.2835 1.43E+05 0 0.111

StMartin 14.438 0.3281 2.78E+05 2 -0.153

Stony 41.359 0.3693 7.23E+09 30 -0.222

Termite 1 206.581 0.4075 1.92E+03 75 -0.046

Termite 2 116.912 0.4497 7.32E+02 58 -0.150

Termite 3 100.975 0.3768 1.89E+03 23 0.045

Trans Ecoli 214.517 0.6540 1.06E+04 184 -0.265

Trans urchin 22.218 0.4937 9.12E+02 13 -0.207

Transc yeast 478.315 0.7225 3.59E+04 440 -0.410

USAir97 142.765 0.4300 8.08E+17 58 -0.208

Ythan1 58.374 0.4356 1.86E+07 23 -0.263

Ythan2 41.326 0.4492 7.07E+06 22 -0.322

Zackar 15.994 0.4704 1.04E+03 10 -0.476

Table 2.2: Dataset of real-world networks studied in this thesis, their size n, Gaussian Estrada
index H, exponential Estrada index EE, graph nullity η, and degree assortativity r.

The largest value of Ĥ corresponds to the food web of Bridge Brook, which displays

the second highest normalized nullity, i.e., the nullity divided by n. It is followed by the
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transcription network of yeast (displaying the highest value of the normalized nullity)

and the versions of Internet at Autonomous System (AS) of 1997 and 1998. The three

networks display triangular eigenvalue distributions peaked at the zero eigenvalue which

explains their large values of the Ĥ index. However, while the yeast transcription

network and the Internet at AS have fat-tailed degree distributions, the Bridge Brook

food web displays a uniform one. Thus, the existence of large values of the Ĥ index

is not tied up to the existence of fat-tailed degree distributions. Most of the networks

(75.4%) have values of the Ĥ index below 0.5. That is, only 15 networks out of 61 have

Ĥ ≥ 0.5. Among these 15 networks there are 4 of the 7 protein-protein interaction

networks (PINs) studied and two of the three transcription networks studied. Thus,

almost half of the networks with Ĥ ≥ 0.5 represent biological systems containing

proteomic or transcriptomic information. The other transcription network studied has

Ĥ ≈ 0.494 and the other 3 PINs have values of Ĥ ranging between 0.36 and 0.44. It is

interesting to explore the main structural causes for these high values of the Ĥ index.

In previous sections we have found that the main structural characteristic determining

the high values of this index is the presence of bicliques, e.g. the highest value of Ĥ is

obtained for complete bipartite graphs, also the BA networks display larger Ĥ index

than the ER ones due to the presence of complete bipartite subgraphs created during the

evolution of the preferential attachment mechanism. Consequently, we should expect

that such kind of subgraphs appear in those real-world networks having the largest Ĥ

index. In the case of the food web of Bridge Brook we have found a biclique consisting

of two sets of nodes V1 and V2 with cardinalities of 6 and 35 nodes, respectively (see

Figure 2.8(a)). This subgraph represents a biclique K6,35 which contains 55% of the

total number of nodes in the network. There are also other smaller bicliques in this

network (one of them is a biclique K7,15), which together with the K6,35 contribute to

the large Ĥ value observed. We have corroborated the differences between these two

kind of systems by plotting the decay of the H index as a function of the rewiring

probability. As shown in figure 2.8(c) we observed that the network of Bridge Brook

displays a significant decay of the H index for relatively small rewiring probabilities,

while theH index of the cat visual cortex network remains almost constant after random
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rewiring.

In the cases of the yeast transcription network and the Internet at AS, the networks

are characterized by having a few hubs connected to many nodes of degree one, then

producing bicliques of the type K1,n2 . In fact, almost 90% of the induced subgraphs of

size 5 in both Internet networks studied here are K1,4 and almost 70% of the induced

subgraphs of size 6 are K1,5. In general these findings can be understood on the

basis of different mechanisms which give rise to the existence of bicliques in real-world

networks. For instance, in some food webs there are top predators which compete for a

group of preys. If for this group of species there are no prey-prey nor predator-predator

trophic interactions, the corresponding subgraph is a biclique as the one observed for

the Bridge Brook network previously considered. In the cases of transcription and PINs

the bicliques can be formed as a consequence of lock-and-key kind of interaction. That

is, a group of proteins (genes) can act as locks (activators) that physically interact with

other proteins (activate other genes) acting as keys. Such kind of interactions is prone

to produce relatively large bicliques in the structure of the networks resulting from

them. On the other hand, among the networks with Ĥ ≤ 0.3 we find the network of

corporate directors, the three neuronal networks studied, i.e., macaque and cat visual

cortex and the neuronal network of C. elegans, as well as some social networks and

food webs. Also, the three electronic circuits studied here also display values of Ĥ

index around 0.3. These networks are characterized by the lack of complete bipartite

subgraphs and they may represent a variety of topologies difficult to be reproduced by

a single mechanism.

2.4 Further Researches

We would like to remark a few important characteristics of the Gaussian matrix function

of a network that point out to the necessity of further studies of it for real-world

networks and simple graphs in general. The first, is our observation that although

networks with fat-tailed degree distribution may give rise to high values of the Ĥ

index, it is not a necessary condition for a network to display such a characteristic.

We have seen that networks with exponential and even uniform degree distributions
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Figure 2.8: (a) Representation of the food web of Bridge Brook. Layer 1 and layer 2 form a
biclique K6,35. Layers 3 and 4 form a biclique K7,15. (b) scatterplot of the normalized nullity
versus the normalized H index for the 61 real-world networks studied here. (c) Effect of rewiring
the edges of the Bridge Brook and cat cortex networks by keeping the degree of the nodes on
the H index. Every point in the curves is obtained from the average of 100 random rewirings
of the edges of each graph that keeps the same degree of the nodes.
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display large values of the Ĥ index. Another structural parameter that could be related

to the Ĥ index is the degree assortativity, i.e., the Pearson correlation coefficient of the

degree-degree distribution of a network. We have explored such relation between the

Ĥ index and the assortativity for the 61 networks studied here. We have found that

the two parameters are negatively correlated. That is, high values of the Ĥ index

in general implies that the networks are disassortative, i.e., there is a trend of high

degree nodes to be connected to low degree ones. This is understandable on the basis

of our findings that bicliques of the type K1,n2 play a fundamental role in the value of

the Ĥ index. However, the correlation is very weak and displays a Pearson correlation

coefficient of -0.68. Thus, further explorations—both theoretical and computational—of

the relation of the Ĥ index and other network parameters are necessary for a complete

understanding of this index and its application in network theory.
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Chapter 3

Gaussian Communicability

Function e−(A+I)
2

The previous chapter was devoted to the reference eigenvalue λref = 0. In this Chapter

we generalize the concept of folding the spectrum around any chosen reference eigenvalue.

Thus for any reference eigenvalue λref, an eigensolution (λj ,qj) of (2.1) also satisfies

(λrefI −A)2 qj = (λref − λj)2 qj , (3.1)

where λref is a given reference eigenvalue. This process of ’folding’ the spectrum of a

network is illustrated in Figure 3.1. In the left-hand side of the Figure we shown the

normal spectrum of the network, in which the eigenvalues are represented on the line as

dots. The reference eigenvalue λref is marked with a star in the axis. We then consider

(λref − λj)2 and represent the squared differences in a new line on the right-hand side of

the Figure. The first consequence of this folding process is that now all the eigenvalues

are nonnegative, with the smallest one corresponding to λref, which obviously takes now

the value of zero. Now, as we want to give more weight to λref in the matrix function,

we transform the spectrum in a way that for every eigenvalue we obtain a Gaussian of

the form exp
[
− (λref − λj)2

]
. The result of this Gaussian spectrum of the adjacency

matrix is given in the right-hand sided panel of the Figure 3.1. As can be seen the

entry corresponding to λref receives the largest weight, which is equal to one, and the
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Figure 3.1: Illustration of the folded spectrum method. The eigenvalues of the adjacency matrix
of the network are folded at λref into the spectrum of (λrefI −A)

2
. Then we exponentiate them

to give more weight to λref.

rest of the eigenvalues receive weights smaller than one. We will call

G̃ (λref) =
∞∑
k=0

(
− (λrefI −A)2

)k
k!

= exp
[
− (λrefI −A)2

]
(3.2)

the Gaussian adjacency matrix, G̃pq the Gaussian communicability function between

the nodes p and q and

Hλref = trG̃ (λref) (3.3)

the Gaussian Estrada index of the graph. The term G̃pp is the Gaussian subgraph

centrality based on the same matrix function. This chapter is dedicated to λref = −1

motivated by the importance of it in graphs. It is well known that the complete graph

Kn has an eigenvalue -1 with multiplicity n − 1. The next results characterize other

extreme cases.

Proposition 3.0.1. [116] Let G be a graph on n vertices having an eigenvalue −1

with multiplicity n− 2. Then G is the disjoint union of two complete graphs.

The following result is attributed in [116] to an unpublished result by Van Dam,
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Figure 3.2: (a)Histogram of the multiplicity of the eigenvalue λref = −1 of the adjacency matrix
of all 11,117 connected graphs with 8 nodes. (b) Scatterplot of the multiplicity of the eigenvalue
λ = −1 vs. the index H−1 for the 11,117 connected graphs with 8 nodes.

Haemers and Stevanović.

Proposition 3.0.2. Let G be a graph with n vertices having an eigenvalue −1 with

multiplicity n − 3. Then G = Kn \ K`,m, where `,m ≥ 1, ` + m ≤ n − 1, or G =

Kk +K` +Km, where k, `,m ≥ 1, k + `+m = n.

Proposition 3.0.3. [117] Let G be any graph. If G includes n1 mutually adjacent

vertices sharing the same closed neighborhood, then the spectrum of the adjacency

matrix of G contains the eigenvalue −1 with multiplicity n1 − 1.

In order to illustrate how frequently λ = −1 appears in graphs we study all the

connected graphs having n = 8 vertices. Among the 11,117 connected graphs with 8

nodes, 55.9% have no eigenvalue λ = −1, 30.1% has multiplicity 1 for this eigenvalue,

10.6% have multiplicity 2, 2.4% have multiplicity 3, 0.5% have multiplicity 4, and only

12 graphs have multiplicity 5 and the complete graph that has multiplicity 7 (see the

histogram in Figure 3.2 (a). Another type of graphs in which the eigenvalue λ = −1

also appears is in the study of benzenoid systems [114]. Benzenoid systems are formed

by fusing together hexagonal cycles forming different shapes. They may represent
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Figure 3.3: A benzenoid system in which the multiplicity of the eigenvalue λ = −1 depends on
the size of the system and the number of perylene units.

molecules, like polycyclic aromatic compounds, or radicaloids such as triangulenes [113,

115]. It is known that linear benzenoid systems have λ = −1 with multiplicity 1 or 2,

for even or odd number of hexagons, i.e., the single hexagon (benzene) has multiplicity

2 for this eigenvalue. There are systems like triphenylene where the multiplicity of

this eigenvalue is zero, while others have multiplicity 3 (coronene), 4 (perylene) or

a multiplicity that depends on the size of the system. For instance, the benzenoid

system [114] illustrated in Figure 3.3 where the number of perylene units are designated

by N has multiplicity of the eigenvalue λ = −1 equal to 3j + 4, where j is an integer

determining the number N as N = 3j + 1. Although the multiplicity of the eigenvalue

λ = −1 makes an important global contribution to the index H−1, it is important to

remark that this index accounts for the global influence of the eigenvalues of the graph

giving more weight to those close to the eigenvalue λ = −1. This is clearly observed

on the plot of multiplicity of the eigenvalue λ = −1 vs. the index H−1 for the 11,117

connected graphs with 8 nodes in Figure 3.2 (b). For instance, notice that among the

graphs with zero multiplicity of the eigenvalue λ = −1 there are some graphs having

values of the index H−1 which range between 1.5 to more than 5. Consequently, there

are graphs with no eigenvalues λ = −1 which have larger values of H−1 than others

having multiplicity 5 for this eigenvalue.

3.1 H−1 Index of Graphs

3.1.1 Elementary Properties

Here we will investigate some mathematical properties of the index H−1, in particular

some analytical formulas for specific types of graphs.
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Lemma 3.1.1. Let Kn be the complete graph of n nodes. Then

H−1 (Kn) = e−n
2

+ n− 1. (3.4)

Proof. The spectrum of Kn is σ(Kn) =
{

[n− 1]1 , [−1]n−1
}

, thus we have

H−1 (Kn) =

n∑
j=1

e−(1+λj)
2

= (n− 1)e0 + e−n
2

= e−n
2

+ n− 1. (3.5)

Lemma 3.1.2. Let Kn1,n2 be the complete bipartite graph of n1 + n2 nodes. Then

H−1 (Kn1,n2) = e−1
(
2e−n1n2 cosh(2

√
n1n2) + n1 + n2 − 2

)
. (3.6)

Proof. The spectrum of Kn1,n2 is σ (Kn1,n2) =
{[√

n1n2

]1
,
[
−√n1n2

]1
, [0]n1+n2−2

}
,

thus we have

H−1 (Kn1,n2) =

n1+n2∑
j=1

e−(1+λj)
2

= (n1 + n2 − 2)e−1 + e−(1+
√
n1n2)2 + e−(1−√n1n2)2

=
n1 + n2 − 2

e
+
e−n1n2

e

(
e−2
√
n1n2 + e2

√
n1n2

)
= e−1

(
2e−n1n2 cosh(2

√
n1n2) + n1 + n2 − 2

)
. (3.7)

Corollary 3.1.1. Let K1,n−1 be the star graph of n nodes. Then

H−1 (K1,n−1) = e−1
(
e1−n cosh(2

√
n− 1) + n− 2

)
. (3.8)

In order to give the formula for the path and cycle graph we use the following known

59



Chapter 3. Gaussian Communicability Function e−(A+I)2

Lemma.

Lemma 3.1.3. Let f and g be defined on the interval [a, b] with g continuous, f ≥ 0,

and f is integrable. Then there is a point x0 ∈ (a, b) such that
∫ b
a f(x)g(x)dx =

g(x0)
∫ b
a f(x)dx.

Proof. We can assume that g ([a, b]) = [m,M ] because g is a continuous function. Since

f ≥ 0 on [a, b] we can write:

∫ b

a
g(x)f(x)dx−m

∫ b

a
f(x)dx =

∫ b

a
(g(x)−m) f(x)dx ≥ 0. (3.9)

In a similar way, we get

M

∫ b

a
f(x)dx−

∫ b

a
g(x)f(x)dx =

∫ b

a
(M − g(x)) f(x)dx ≥ 0. (3.10)

Thus, the inequality holds

m

∫ b

a
f(x)dx ≤

∫ b

a
g(x)f(x)dx ≤M

∫ b

a
f(x)dx. (3.11)

That yields to the following:

m ≤ 1∫ b
a f(x)dx

∫ b

a
g(x)f(x)dx ≤M. (3.12)

Then, by the intermediate value theorem there exists x0 ∈ (a, b) such that

g(x0) =
1∫ b

a f(x)dx

∫ b

a
g(x)f(x)dx.

Lemma 3.1.4. Let Cn be a cycle having n nodes. Then, asymptotically as n→∞

H−1(Cn) ∼ ne−3e−4 cos cI0(−2), for some c ∈ (0, π). (3.13)
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Proof.

H−1 (Cn) = n

(
tr(e−(I+A)2)

n

)

= n

 1

n

n∑
j=1

e−(1+2 cos( 2πj
n

))2


= e−3n

 n∑
j=1

1

n
e4 cos( 2πj

n
)e−2 cos( 4πj

n
)

 . (3.14)

Now, when n→∞ the summation can be approximated by the following integral

H−1 (Cn) ∼ e−3n

2π

∫ 2π

0
e−4 cos θ

2 e−2 cos θdθ

=
e−3n

π
e−4 cos c

∫ π

0
e−2 cos θdθ, for some c ∈ (0, π)

= ne−3e−4 cos cI0(−2), for some c ∈ (0, π). (3.15)

Lemma 3.1.5. Let Pn be a path having n nodes. Then, asymptotically as n→∞

H−1 (Pn) ∼ e−3e−4 cos c
(
(n+ 1) I0(2)− e−2

)
, for some c ∈ (0,

π

2
). (3.16)

Proof. By substituting the eigenvalues and eigenvectors of the path graph into the

expression for G̃pp (Pn) we obtain

G̃pp (Pn) =
2

n+ 1

n∑
j=1

sin2

(
jπp

n+ 1

)
exp

[
−
(

1 + 2 cos

(
jπ

n+ 1

))]2

=
e−3

n+ 1

n∑
j=1

[
1− cos

(
2jπp

n+ 1

)]
e(−4 cos( jπ

n+1)−2 cos( 2jπ
n+1)). (3.17)
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Now, when n→∞ the summation in (3.17) can be approached by the following integral

G̃pp (Pn) ∼ e−3

π

∫ π

0

(
e(−4 cos θ

2
−2 cos θ) − cos (pθ) e(−4 cos θ

2
−2 cos θ)

)
dθ

=
e−3

π
e(−4 cos c

2)
∫ π

0

(
e(−2 cos θ) − cos (pθ) e(−2 cos θ)

)
dθ, for some c ∈ (0, π)

where θ = 2jπ
n+1 . Thus, when n→∞ we have

G̃pp (Pn) ∼ e−3 exp (−4 cos c) (I0(−2)− Ip(−2)) , for some c ∈ (0,
π

2
). (3.18)

Completing the proof as in the proof of Lemma 2.2.2 will produce the final result.

The most important thing about the formulas for H−1 (Cn) and H−1 (Pn) is that

they show a linear increase of the index with the number of nodes in the graph. That

is, H−1 (Cn) ≈ 0.3595n and H−1 (Pn) ≈ 0.3593n+ 0.2239.

Another analytical expression of the H−1 index for the paths and cycles is in the

following Lemma.

Lemma 3.1.6. Let Pn be a path having n nodes. Then, asymptotically as n→∞

H−1 (Pn) ∼ n+ 1

π

∫ π

0
e−(2 cos θ+1)2dθ − 1

2

(
e−1 + e−9

)
. (3.19)

Proof. The spectrum of Pn consists of the numbers 2 cos jπ
n+1 , j = 1, 2, . . . , n. The

angles jπ
n+1 do not cover the entire interval [0, π]. Therefore when employing an integral

approximation we need to compensate for the missing near-zero and near-π contributions

[118]. It is done as follows:

H−1 (Pn) =
n∑
j=1

e−(λj+1)2

=
n∑
j=1

e−(2 cos( jπ
n+1)+1)2

=
1

2

n∑
j=0

e−(1+2 cos( jπ
n+1))

2

+
1

2

n+1∑
j=1

e−(1+2 cos( jπ
n+1))

2

− 1

2
e−9 − 1

2
e−1. (3.20)
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Now, when n→∞ the summation can be approached by the following integral

H−1 (Pn) ∼ n+ 1

π

∫ π

0
e−(2 cos θ+1)2dθ − 1

2

(
e−1 + e−9

)
. (3.21)

Lemma 3.1.7. Let Cn be a cycle having n nodes. Then, asymptotically as n→∞

H−1 (Cn) ∼ n

π

∫ π

0
e−(2 cos θ+1)2dθ. (3.22)

Proof.

H−1 (Cn) = n

 tr
(
e−(A+I)2

)
n


= n

 1

n

n∑
j=1

e−(1+2 cos( 2πj
n ))2

 (3.23)

Now, when n→∞ the summation in 3.23 can be approached by the following integral

H−1(Cn) ∼ n 1

2π

∫ 2π

0
e−(1+2 cos θ)2dθ

= n
1

2π
(2)

∫ π

0
e−(1+2 cos θ)2dθ (3.24)

where θ = 2jπ
n . Thus, when n→∞ we have

H−1(Cn) ∼ n

π

∫ π

0
e−(2 cos θ+1)2dθ. (3.25)

3.1.2 Graphs with Maximum H−1 Index

In this section we will prove that among all connected graphs with n nodes, the index

takes its maximum for the complete graph. First we list two results from spectral graph

theory that will be used to prove the main theorem in this section.
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Theorem 3.1.1. [120] A graph has exactly one positive eigenvalue if and only if its

non-isolated vertices form a complete multipartite graph.

Theorem 3.1.2. [121]

1. The p − 1 negative eigenvalues λn−p+1, . . . , λn of a complete p-partite graph

K(pi) with p partition numbers pi and t distinct partition numbers p̄i satisfy

the inequalities p1 ≤ −λn−p+2 ≤ p2 ≤ λn−p+3 ≤ . . . ≤ pp−1 ≤ −λn ≤ pp.

2. Moreover, for t−1 of the negative eigenvalues λ∗i (i = 2, . . . , t), the strict inequalities

p̄1 < −λ∗2 < p̄2 < −λ∗3 < . . . < p̄t−1 < −λ∗t < p̄t hold, and together with λ1 they

are the roots of the equation 1−
∑t

i=1
tip̄i
x+p̄i

= 0.

It is straighforward to realize that the nullity of the complete p-partite graph, i.e.,

the multiplicity of the zero eigenvalue, is η(K(pt11 , . . . , p
tr
r )) = n − p, where n is the

number of nodes and p is the number of partitions. Now we give the main result of this

section.

Theorem 3.1.3. Let G be a simple connected graph with n nodes. Then,

H−1 (G) ≤ e−n2
+ n− 1. (3.26)

where the equality holds if and only if G = Kn.

Proof. In order to prove the inequality (3.26), it is enough to find two eigenvalues λ, µ

such that e−(1+λ)2 + e−(1+µ)2 ≤ 1 and that implies
∑n

j=1 e
−(1+λj)

2 ≤ (n − 2) + 1 =

n − 1 ≤ n − 1 + e−n
2
. According to Eq. (3.4) this bound corresponds to the index

of the complete graph. First, it is known that λ1 ≥ χ(G) − 1 ≥ 1 where χ(G) is the

chromatic number of G (the number of the least coloring needed to color the graph

G) [39]. Hence, e−(1+λ1)2 ≤ e−4 < e−1. Now, if λ2 > 0, then e−(1+λ1)2 < e−1 and

e−(1+λ1)2 + e−(1+λ2)2 ≤ 2e−1 < 1. If λ2 ≤ 0, then by theorem 3.1.1, G is a complete

multipartite graph and from the interlacing Theorem for complete multipartite graphs

(Theorem 3.1.2,1) we get pp−1 ≤ −λn so λn ≤ −pp−1. If pp−1 ≥ 2 then e−(1+λn)2 ≤ e−1.

If pp−1 = 1 then G = K(1k, s) which has nullity s− 1. Now, if s ≥ 2 then there exists
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an eigenvalue λ = 0 and e−(1+λ)2 = e−(1)2 = e−1. If s = 1 then G is the complete graph

and we get the equality.

3.1.3 H−1 of Random Graphs

we have the following results for the H−1(ER) index.

Theorem 3.1.4. For an Erdős-Rényi random graph G(n, p) with lnn
n � p then, for

significantly large r, we have

H−1(ER) ∼ 2n
√
r2 − 1

r
er

2
erfc(r). (3.27)

almost surely as n → ∞, where r = 2
√
np(1− p) and erfc (r) = 1 − erf(r) is the

complimentary error function of r.

Note that er
2
erfc(r) ∼ 1√

πr
, thus we can write H−1(ER) ∼ 2n

√
r2 − 1√
πr2

. Before we

prove this result we need the following two auxiliary Lemma.

Lemma 3.1.8. Let x > 0, x 6= 1. As x→∞ we have

√
x2 − a2e−(1+a)2 ∼ x2

√
x2 − 1

e−(1+a)2

(1 + a)2 + x2
(3.28)

for any constant a satisfying |a| < x.

Proof. By taking the limit of
√
x2−a2e−(1+a)2

x2
√

1−x2 e−(1+a)2

(1+a)2+x2

as x → ∞ and using L’Hôpital rule we

get

lim
x→∞

√
x2 − a2e−(1+a)2

x2
√
x2 − 1 e−(1+a)2

(1+a)2+x2

= lim
x→∞

√
x2 − a2(
x2
√
x2−1

(1+a)2+x2

)
= lim

x→∞

x2 − 2a2 − (1 + a)2

x2 − 2

√
x2 − 1

x2 − a2

= 1 (3.29)
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Lemma 3.1.9. [119]

∫ ∞
0

e−a
2x2

x2 + b2
dx =

π

2b
(1− erf(ab)) ea

2b2 , b > 0

=
π

2b
(erfc(ab)) ea

2b2 .

(3.30)

Proof. Let x = bt, then

∫ ∞
0

e−a
2x2

x2 + b2
dx =

1

b

∫ ∞
0

e−a
2b2t2

t2 + 1
dt. (3.31)

Let f(c) =
∫∞

0
e
−c2(t2+1)
t2+1

dt, where c = ab. Differentiating f(c) with respect to c yields

f ′(c) =

∫ ∞
0

(
t2 + 1

)
(t2 + 1)

(−2ce−c
2(t2+1)dt

= −2ce−c
2

∫ ∞
0

e−(ct)2dt

= −2ce−c
2

√
π

2c

= −e−c2
√
π. (3.32)

By integrating equation 3.32 with respect to c we get

f(c) = −
√
π

(
1

2

√
πerf(c)

)
+ c0 = −π

2
erf(c) + c0. (3.33)

Now, f(0) =
∫∞

0
1

t2+1
dt = π

2 which implies c0 = π
2 . substitute f(c) in equation 3.31

gives the wanted result.

Now we proceed with the proof of the result about the ER graphs.

Proof. We know that the spectral density of G(n, p) converges to the semicircular

distribution as n → ∞ and the largest eigenvalue λ1 of G(n, p) is almost surely
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(1 + o(1))np provided that np� lnn. Then,

H−1 (ER) = exp(−(1 + λ1)2) +

n∑
i=2

exp(−(1 + λi)
2)

= e−(1+λ1)2 + n

(
1

n

n∑
i=2

e−(1+λi)
2
ρ(λi)

)
. (3.34)

When n→∞ we have

H−1(G(n, p)) ∼ n
∫ r

−r
ρ(λ)e−(1+λ)2dλ

=
2n

πr2

∫ r

−r

√
r2 − λ2e−(1+λ)2dλ (3.35)

which can be rewritten using Lemma 3.1.8 as

H−1(G(n, p)) ∼ 2n

πr2

∫ r

−r
r2
√
r2 − 1

e−(1+λ)2

(1 + λ)2 + r2
dλ, as r →∞

=
2n

π

√
r2 − 1

∫ 1+r

1−r

e−x
2

x2 + r2
dx. (3.36)

By applying Lemma 3.1.9 on the equation (3.36) we have

H−1(G(n, p)) ∼ 4n

π

√
r2 − 1

∫ ∞
0

e−x
2

x2 + r2
dx

=
2n

r

√
r2 − 1er

2
erfc(r). (3.37)

We now obtain the formula for the H−1 index for the Barabási-Albert (BA) random

graphs.

Theorem 3.1.5. Let G be a BA random network. Then, when n→∞, the H−1 index

of a BA network is

H−1 (G) ∼ n

r2

(
e−1−r2 cosh(2r) +

√
π

2
((1− r)erf(1− r) + (1 + r)erf(1 + r))

−
√
πerf(1)− e−1

) (3.38)
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where r = 2
√
np(1− p) and erf (· · · ) is the error function.

Proof. Let G be a BA random network, then

H−1(G) =

n∑
j=1

e−(1+λj)
2

(3.39)

as n→∞, we have

H−1(G) ∼ n
∫ r

−r
ρ(λ)e−(1+λ)2dλ

= n

(∫ 0

−r

r + λ

r2
e−(1+λ)2dλ+

∫ r

0

r − λ
r2

e−(1+λ)2dλ

)
(3.40)

Making the substitution x = 1 + λ and put a = 1 − r, b = 1 + r , the last equation

becomes

H−1(G) ∼ n

r2

(∫ 0

a
(x− a)e−x

2
dx+

∫ b

0
(b− x)e−x

2
dx

+

∫ 1

0
(x− a)e−x

2
dx−

∫ 1

0
(b− x)e−x

2
dx

)
=

n

r2
(S1 + S2 + S3 + S4) .

(3.41)

Now we have:

S1 =

∫ 0

a
xe−x

2
dx− a

∫ 0

a
e−x

2
dx

=

[
−1

2
e−x

2

]0

a

+ a

∫ a

0
e−x

2
dx

= −1

2
+

1

2
e−a

2
+

√
πa

2
[erf(x)]a0

= −1

2
+

1

2
e−a

2
+

√
πa

2
erf(a). (3.42)
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Moreover,

S2 = −1

2
+

1

2
e−b

2
+

√
πb

2
erf(b). (3.43)

S3 =
1

2
− 1

2
e−1 −

√
πa

2
erf(1). (3.44)

S4 =
1

2
− 1

2
e−1 −

√
πb

2
erf(1). (3.45)

By substituting the values into equation (3.41) we have the final result.

In Figure 3.4 we compare the values of the H−1 index calculated by using the

function “expm” of Matlab with those obtained by the formulas 3.27 and 3.38 for the

ER and BA random graphs, respectively. In this case we fixed the number of nodes to

n = 1000 and change the values of p. As can be seen the results for the ER are very

good with a complete correspondence between the “exact” values and those obtained

by the formula 3.27. In the case of the BA graphs the fit between both approaches is

not so good. As mentioned previously, we are assuming that the eigenvalues of a BA

network follows the triangular distribution found by [35] for BA networks constructed

by using 2 ≤ m ≤ 5. Thus, outside this regime there are deviations from the triangular

distribution of eigenvalues that obviously affect our prediction.
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Figure 3.4: Comparison of the index H−1 obtained by using the formulas 3.27 and 3.38 for the
ER (a) and BA (b) graphs, respectively, with the “exact” values obtained by using the function
’expm’ from Matlab. The results from the formulas 3.27 and 3.38 are represented by filled
circles and those from the function ’expm’ are represented as filled squares. All the results are
the average of 100 random realizations.
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Chapter 4

The Double Gaussian

Communicability Function

e−(A
2−I)2

In several scenarios, for instance in the study of conjugated molecules, the importance

of pairs of specific eigenvalues may be relevant for understanding the structure and

function of these systems. When studying molecules with the tight-binding Hamiltonians,

e.g., the Hückel molecular orbital (HMO) approach [4], there are two eigenvalues of the

graph spectra which play a fundamental role in understanding molecular properties.

The highest occupied (HOMO) and the lowest unoccupied (LUMO) molecular orbitals,

respectively [122]. These “molecular orbitals” are schematically illustrated in Figure

4.1 (left panel) where we indicate their importance as electron donor and acceptor,

respectively. Our goal in this Thesis is then to “fold” the graph spectra such that two

eigenvalues, like for instance the HOMO and LUMO, have the largest contribution to

the corresponding matrix function. Therefore, we define double Gaussian functions of

the graph spectra:

G̃ (λref1 , λref2) = exp
[
− (λref1I −A) 2 (λref2I −A) 2

]
. (4.1)
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Figure 4.1: Scheme illustrating the double-Gaussian transformation of the spectrum of a graph
representing the energy levels of a molecule.

The schematic process of the double Gaussianization of the graph spectra is illustrated

in Figure 4.2. In the case of alternant conjugated molecules with n atoms and graph

eigenvalues λ1 < λ2 ≤ · · · ≤ λn, the HOMO/LUMO correspond to the eigenvalue

∓λn/2, respectively. Therefore, here we will focus on the case in which λref1 = −λref2 ,

but the formulation is general enough as to consider any further case. Additionally,

Fowler and Pisanski [123] has called “normal” the molecular graphs for which +1 ≥

λHOMO ≥ λLUMO ≥ −1, while the rest of molecular graphs are called “exceptional”.

The reason for this is that most of molecular graphs have their HOMO and LUMO

within the ’chemical triangle’ of an HOMO-LUMO map [123]–a scatterplot of the

middle eigenvalues of the graph–, with vertices at (−1,−1), (+1,−1), (+1,+1). They

proved that all chemical trees lie within the triangle, as do all chemical graphs with up

to 12 vertices [123]. Therefore, we will focus here on the case λref1 = 1, λref2 = −1.
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Figure 4.2: Schematic illustration of the double Gaussianization of thge graph spectra. In
the extreme left we illustrate the graph spectra where the eigenvalues are represented as dots
in a vertical line. In the central panel we illustrate the bifolding of the spectrum where the
reference eigenvalues occupy the lowest position in a vertical line. Finally (extreme right) we
exponentiate the bifolded spectrum and the reference eigenvalues make the highest contribution
to the matrix function.

Then, we study the function

G̃ (−1, 1) = exp
[
− ((−1) I −A)2 (I −A)2

]
= exp

[
−
(
A2 − I

)2]
, (4.2)

and in particular the corresponding double Gaussian Estrada index of this function:

H−1,1 = trG̃ (−1, 1)

=

n∑
j=1

e−(λ2j−1)
2
, (4.3)
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4.1 H−1,1 Index of Graphs

4.1.1 H−1,1 Index for Graphs with All but Two Eigenvalues Equal to

±1

Three infinite families of connected graphs have been reported [124] to have eigenvalues

r > 1 and s < −1, and all other eigenvalues equal to ±1. The adjacency matrix and

spectra of these families are as follows. Let O be an all-zeros matrix, J an all-ones

matrix and Ih the h× h identity matrix. Let R2k be the adjacency matrix of k copies

of K2, i.e., the disjoint union of k edges.

Theorem 4.1.1. [124] The infinite families of graphs having the following adjacency

matrices and spectra are the only ones having all but two eigenvalues equal to ±1:

(i)

 O J − Im

J − Im O

 (m ≥ 3) with spectrum
{
±(m− 1), 1m−1,−1m−1

}
;

(ii)

 J − Ia J

J R2k

 (a ≥ 1, k ≥ 2) with spectrum
{
a
2 ±

1
2

√
a2 + 8ak − 4a+ 4, 1k−1,−1a+k−1

}
.

When a = 1, the resulted family is the frindship graphs;

(iii)

 R2` J

J R2m

 (` ≥ m ≥ 2) with spectrum
{

1± 2
√
`m, 1`+m−2,−1`+m

}
.

Then we have the following result.

Theorem 4.1.2. The H−1,1 index of the previous families is presented as follows

(i)

H−1,1 = 2e−m
2(m−2)2 + 2m− 2. (4.4)

(ii)

H−1,1 = e−
a2

4
(a+4k+b−2)2 + e−

a2

4
(a+4k−b−2)2 + (a+ 2k)− 2, (4.5)

where b =
√
a2 + 8ak − 4a+ 4.

(iii)

H−1,1 = e−16(`m+
√
`m)

2

+ e−16(`m−
√
`m)

2

+ 2 (`+m)− 2. (4.6)
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Proof. (i)

H−1,1 =

n∑
j=1

e−(λ2j−1)
2

= e−((m−1)2−1)
2

+ e−((1−m)2−1)
2

+m− 1 +m− 1

= e−m
2(m−2)2 + e−m

2(m−2)2 + 2m− 2

= 2e−m
2(m−2)2 + 2m− 2. (4.7)

(ii) let b =
√
a2 + 8ak − 4a+ 4 for more simplification, then

H−1,1 =

n∑
j=1

e−(λ2j−1)
2

= e
−
(
(a2 + 1

2
b)

2−1
)2

+ e
−
(
(a2−

1
2
b)

2−1
)2

+ k − 1 + a+ k − 1

= e−
a2

4
(a+4k+b−2)2 + e−

a2

4
(a+4k−b−2)2 + (a+ 2k)− 2. (4.8)

(iii)

H−1,1 =
n∑
j=1

e−(λ2j−1)
2

= e
−
(
(1+2

√
`m)

2−1
)2

+ e
−
(
(1−2

√
`m)

2−1
)2

+ `+m− 2 + `+m

= e−16(`m+
√
`m)

2

+ e−16(`m−
√
`m)

2

+ 2 (`+m)− 2.

4.1.2 H−1,1 Index of Simple Graphs

Here we prove some results for simple graphs which may be useful in understanding

further structure-spectra relations in general graphs.

Lemma 4.1.1. Let Kn be the complete graph of n nodes. Then

H−1,1 (Kn) = n− 1 + e−n
2(n−2)2 . (4.9)
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Proof. The spectrum of Kn is σ(Kn) =
{

[n− 1]1 , [−1]n−1
}

so we have

H−1,1 (Kn) =
n∑
j=1

e−(λ2j−1)2

= (n− 1)e0 + e−((n−1)2−)12

= n− 1 + e−n
2(n−2)2 .

Lemma 4.1.2. Let Kn1,n2 be the complete bipartite graph of n1 + n2 nodes. Then

H−1,1 (Kn1,n2) =
n1 + n2 − 2

e
+ 2e−(n1n2−1)2 . (4.10)

Proof. The spectrum of Kn1,n2 is σ (Kn1,n2) =
{[√

n1n2

]1
,
[
−√n1n2

]1
, [0]n1+n2−2

}
so

we have

H−1,1 (Kn1,n2) =

n1+n2∑
j=1

e−(λ2j−1)2

= e−(n1n2−1)2 + e−(n1n2−1)2 + (n1 + n2 − 2) e−1

=
n1 + n2 − 2

e
+ 2e−(n1n2−1)2 . (4.11)

Corollary 4.1.1. Let K1,n−1 be the star graph of n nodes. Then

H−1,1 (K1,n−1) =
n− 2

e
+ 2e−(n−2)2 . (4.12)

Lemma 4.1.3. Let Pn be a path having n nodes. Then, asymptotically as n→∞

H−1,1 (Pn) ∼ n+ 1

π

∫ π

0
e−(2 cos θ+1)2dθ − e−9. (4.13)

Proof. By following the same approximating method in the proof of Lemma 3.1.6 we

76



Chapter 4. The Double Gaussian Communicability Function e−(A2−I)2

have

H−1,1 (Pn) =
n∑
j=1

e−(λ2j−1)2

=
n∑
j=1

e−(4 cos2( jπ
n+1)−1)2

=

n∑
j=1

e−(1+2 cos( 2jπ
n+1))

2

=
1

2

n∑
j=0

e−(1+2 cos( 2jπ
n+1

))
2

+
1

2

n+1∑
j=1

e−(1+2 cos( 2jπ
n+1))

2

− 1

2
e−9 − 1

2
e−9

=
1

2

n∑
j=0

e−(1+2 cos( 2jπ
n+1))

2

+
1

2

n+1∑
j=1

e−(1+2 cos( 2jπ
n+1))

2

− e−9. (4.14)

Now, when n→∞ the summation in (4.14) can be approached by the following integral

H−1,1 (Pn) ∼ 1

2

n+ 1

π

∫ π

0
e−(2 cos θ+1)2dθ +

1

2

n+ 1

π

∫ π

0
e−(2 cos θ+1)2dθ − e−9

=
n+ 1

π

∫ π

0
e−(2 cos θ+1)2dθ − e−9. (4.15)

Lemma 4.1.4. Let Cn be a cycle having n nodes. Then, asymptotically as n→∞

H−1,1 (Cn) ∼ n

π

∫ π

0
e−(2 cos θ+1)2dθ. (4.16)

Proof. By following the same approximating method in the proof of Lemma 3.1.7 we

have

H−1,1(Cn) = n

 tr
(
e−(A2−I)2

)
n


= n

 1

n

n∑
j=1

e−(4 cos2( 2πj
n )−1)2


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= n

 n∑
j=1

1

n
e−(2+2 cos( 4πj

n )−1)
2


= n

 n∑
j=1

1

n
e−(1+2 cos 4πj

n )
2

 . (4.17)

Now, when n→∞ the summation in 4.17 can be approached by the following integral

H−1,1(Cn) ∼ n 1

4π

∫ 4π

0
e−(1+2 cos θ)2dθ

= n
1

4π
(2)

∫ 2π

0
e−(1+2 cos θ)2dθ

= n
1

4π
(2) (2)

∫ π

0
e−(1+2 cos θ)2dθ

where θ = 4jπ
n . Thus, when n→∞ we have

H−1,1 (Cn) ∼ n

π

∫ π

0
e−(1+2 cos θ)2dθ. (4.18)

Corollary 4.1.2. Asymptotically, as n→∞,

1. H−1,1 (Pn) ∼ H−1 (Pn).

2. H−1,1 (Cn) ∼ H−1 (Cn).

3. H−1,1 (Kn) ∼ H−1 (Kn).

4. H−1,1 (Kn1,n2) ∼ H−1 (Kn1,n2).

5. H−1,1 (K1,n−1) ∼ H−1 (K1,n−1).

Proof. Let us write the following limits of the ratios of both indices:

1)

lim
n→∞

H−1,1 (Cn)

H−1 (Cn)
=

n
π

∫ π
0 e−(2 cos θ+1)2dθ

n
π

∫ π
0 e−(2 cos θ+1)2dθ

= 1.

2)

lim
n→∞

H−1,1 (Pn)

H−1 (Pn)
=

n+1
π

∫ π
0 e−(2 cos θ+1)2dθ − e−9

n+1
π

∫ π
0 e−(2 cos θ+1)2dθ − 1

2 (e−1 + e−9)
= 1
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3)

lim
n→∞

H−1,1 (Kn)

H−1 (Kn)
=
n− 1 + e−n

2(n−2)2

n− 1 + e−n2 = 1.

4) when n→∞ we have also n1 + n2 = n→∞ and n1n2 →∞, thus

lim
n→∞

H−1,1 (Kn1,n2)

H−1 (Kn1,n2)
= lim

n→∞

n1+n2−2
e + 2e−(n1n2−1)2

n1+n2−2
e + e−n1n2−1

(
e2
√
n1n2+e−2

√
n1n2

2

)
= lim

n→∞

n1+n2−2
e + 2e−(n1n2−1)2

n1+n2−2
e +

(
e2
√
n1n2−(n1n2+1)+e−2

√
n1n2−(n1n2+1)

2

)
= 1

5) We proved the general case in (4).

4.1.3 Extremal Graphs for H−1,1 Index

Let us start here by stating a result from Cioabă et al. [124]. Define G to be the set of

connected graphs with eigenvalues r > 1 and s < −1, and all other eigenvalues equal

to ±1. Then, Cioabă et al. [124] proved the following result.

Lemma 4.1.5. No graph in G has one of the graphs presented in Figure 4.3 as an

induced subgraph.

We calculated the H−1,1 index for all 11,117 connected graphs with 8 nodes and

determined those with the largest values of the index. These graphs are illustrated

in Figure 4.4. The largest value of H−1,1 is obtained for the complete graph K8 (not

illustrated in the Figure 4.4). We have verified that for graphs Gn≤8, H−1,1 (Gn) <

H−1,1 (Kn). Therefore we have the following.

Conjecture 4.1.1. Let G be any connected graph of n nodes, then

H−1,1 (G) ≤ H−1,1 (Kn) . (4.19)

In addition, none of the graphs in Figure 4.4 contains any of the graphs in Figure

4.3 as an induced subgraph. We then explore the graphs with the smallest values of

H−1,1 among all 11,117 connected graphs with 8 nodes. the 10 ones with the smallest
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Figure 4.3: Illustration of the forbidden induced subgraphs found by Cioabă et al. We use the
same labeling as in the paper of Cioabă et al.

Figure 4.4: Illustration of the 10 graphs (K8 is the number 1, which is omitted) with the largest
values of H−1,1 (G) among all connected graphs with 8 nodes.
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Figure 4.5: Illustration of the 10 graphs with the minimum values of H−1,1 (G) among all
connected graphs with 8 nodes.

values of this index are illustrated in Figure 4.5. We have calculated the number of

each of the forbidden induced subgraphs in these 10 graphs displaying the minimum

values of H−1,1 (G). We have found that 11 out of the 18 forbidden induced subgraphs

appear very frequently in these 10 graphs. The results are illustrated in Figure 4.6. for

instance, the graph with the least value of H−1,1 (G) has the forbidden induced sugraph

B 8 times, D 6 times and L 2 times. Others, like graph 10 in Figure 4.6 contains only

one forbidden subgraph, i.e., subgraph B 24 times.

Lemma 4.1.6. Let G be connected bipartite graph of n nodes, then

H−1,1 (G) ≤ H−1,1 (Kn) . (4.20)

Proof. For any graph G we have λ1 ≥ dave where λ1 is the principal eigenvalue and

dave is the average degree of the graph G [39]. Then we have

λ1 ≥ dave =
2m

n

≥ 2 (n− 1)

n
.

(4.21)

Suppose that n ≥ 5 (it is easy to check that the statement is true for all graphs of
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Figure 4.6: Frequency with which some of the forbidden induced subgraphs appear in the
connected graphs with 8 nodes which display the minimum values of the index H−1,1 (G). The
induced subgraphs are given in Figure 4.3 and graphs are shown in Figure 4.5. The forbidden
induced subgraphs not depicted in the figure do not appear in the graphs considered.

nodes less than 5) then we have λ1 ≥ 2(n−1)
n ≥ 2(4)

5 = 1.6. Thus, (λ2
1 − 1)2 ≥ 2.4336

and that implies exp
[
−(λ2

1 − 1)2
]
≤ exp(−2.4336). If G is bipartite, then we will have

a symmetry in the spectra of G and we get λn ≤ −1.6. Following the same steps we

end with exp
[
−(λ2

n − 1)2
]
≤ exp(−2.4336). Now

H−1,1(G) =
n∑
j=1

e−(λ2j−1)2 =

n−1∑
j=2

e−(λ2j−1)2 + e−(λ21−1)2 + e−(λ2n−1)2

≤ n− 2 + 2e−2.4336

< n− 2 + 1 = n− 1 ≤ n− 1 + e−n
2(n−2)2 = H−1,1 (Kn) .

4.1.4 H−1,1 Index of Random Networks

In this section, we give a bound for the H−1,1 index in two models of random graphs.

We start by the following theorem that sets a bound for the index in ER random graphs.

Theorem 4.1.3. For an Erdős-Rényi random graphG(n, p) with lnn
n � p, theH−1,1(ER)
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is bounded as

H−1,1 (ER) ≤ 4n

πr
. (4.22)

almost surely, as n→∞, where r = 2
√
np(1− p).

Proof. As n→∞ we have

H−1,1 (ER) = n

∫ r

−r
ρ(λ)e−(λ2−1)2dλ

=
4n

πr2

∫ r

0

√
r2 − λ2e−(λ2−1)2dλ

≤ 4n

πr2

∫ r

0

√
r2e−(λ2−1)2dλ

≤ 4n

πr

∫ ∞
0

e−(λ2−1)2dλ

≤ 4n

πr
(1) =

4n

πr
. (4.23)

Now we give the bound for BA random graphs.

Theorem 4.1.4. Let G be a BA random network. Then, when n→∞, the H−1,1(BA)

is bounded as

H−1,1 (BA) ≤ 2n

r
, (4.24)

where r = 2
√
np(1− p).

Proof. We know that the density of BA graphs follows a triangular distribution. Thus

H−1,1 (BA) =
n∑
j=1

ρ(λj)e
−(λ2j−1)2

= n

 1

n

n∑
j=1

ρ(λj)e
−(λ2j−1)2

 . (4.25)
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As n→∞ we have

H−1,1(BA) =

∫ r

−r
ρ(λ)e−(λ2−1)2dλ

= n

(∫ 0

−r

λ+ r

r2
e−(λ2−1)2dλ+

∫ r

0

r − λ
r2

e−(λ2−1)2dλ

)
=

n

r2

(
2

∫ r

0
re−(λ2−1)2dλ− 2

∫ r

0
λe−(λ2−1)2dλ

)
=

2n

r2

(
r

∫ r

0
e−(λ2−1)2dλ− 1

2

∫ r2−1

0
e−λ

2
dλ

)

≤ 2n

r2

(
r

∫ r

0
e−(λ2−1)2dλ

)
≤ 2n

r
. (4.26)

In Figure 4.7 we compare the values of the H−1,1 index calculated by using the

function “expm” of Matlab with the bounds obtained in theorems 4.1.4 and 4.1.3 for

the ER and BA random graphs, respectively. In this case we fixed the number of nodes

to n = 1000 and change the values of p.

4.2 Carcinogenicity of Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbns (PAHs) are compounds formed by carbon in fused

hexagonal shapes and hydrogen, for which the eigenvalues ±1 play an important role

[114]. The excessive exposure to PAHs may result in cancer in humans. The general

mechanism by which PAHs produce cancer is by their metabolic activation which leads

to the formation of the active carcinogens like diol-epoxides, radical cations, and o-

quinones (see first line in Figure 4.8) [125]. These metabolites then react with DNA

forming DNA adducts which results in DNA mutations, alteration of gene expression

profiles, and tumorigenesis (see second line in Figure 4.8). The metabolic activation

of PAHs depends on the chemical reactivity of these compounds, and their electron

donation/acceptance capacities, which are mainly determined by their HOMO and

LUMO. Then, it is not strange to find reports on the use of these frontier molecular
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Figure 4.7: (a) Change of the H index with the increase of the probability p in ER random
graphs GER(1000, p) obtained using the function ’expm’ in Matlab (squares and solid line) and
the bound obtained in theorem 4.1.3 (circles and broken line). (b) Change of the H index
with the increase of the probability p in ER random graphs GBA(1000,m0) obtained using the
function ’expm’ in Matlab (squares and solid line) and the bound obtained in theorem 4.1.4
(circles and broken line). All the calculations are the average of 100 random realizations.

orbitals or electronic parameters like superdelocalizability in explaining the carcinogenic

power of PAHs [126]. However, because chemical reactions occur at some specific

atoms in a molecule, different atomic regions may have distinct contributions to the

carcinogenicity of PAHs. This has been widely recognized in the literature where four

main atomic regions have been identified with different contributions to the carcinogenic

activity of PAHs. These regions are defined by the number of CH bonds in the ring

and known as K, L, M and N. An L region is a ring with single CH bonds whereas K

region is the ring with HC−CH bond. N regions are identified by the HC−CH−CH

bond and M region is the ring with HC−CH−CH−CH bond. All regions are illustrated

in Figure 4.8. The regions K and L where proposed by Pullman and Pullman [127] and

have proved to be predictive for the carcinogenicity of a large number of PAHs. Due to

more recent findings the other two regions, M and N, where proposed and studied in

quantitative structure-carcinogenicity activity of PAHs for instance by Vijayalakshmi

and Suresh [128]. Here we use the series of 28 PAHs for which the carcinogenic power

has been reported and studied by Vijayalakshmi and Suresh [128]. The list of PAHs
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Figure 4.8: Schemetaic illustration of the metabolic activation of a PAH (first line) and the
reaction of the reactive metabolite with a DNA base producing alteraions in DNA (second line).

and their carcinogenic activity (CA) is reported in Table 4.1. We consider here the

H−1,1 index split as follows:

H−1,1 = H−1,1 (K) +H−1,1 (L) +H−1,1 (M) +H−1,1 (N) +H−1,1 (F ) , (4.27)

where H−1,1 (K) is the sum of the contributions of the atoms in the region K to the

global H−1,1 index, and the term F is used for the atoms in the frame of the PAHs,

i.e., those not in any of the four mentioned regions. We recall that the contribution of

an atom p to the H−1,1 index is:

H−1,1 (p) =
n∑
j=1

ψ2
j (p) exp

(
−
(
λ2
j − 1

)2)
. (4.28)

We use here the average of the atomic contributions for each region H̄−1,1 whose values

for the 28 PAHs analyzed are given in Table 4.1. We grouped the carcinogenic activity

(CA) of these 28 PAHs into two categories, which correspond to the class I which

groups inactive and the class A, which groups PAHs with CA ranging from + to ++++

(see Table 4.1). the main reason is that a classification based on the strength of the
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carcinogenic activity is impossible as some of the classes contain only one member, e.g.,

CA +++. We now focus in classification techniques that allow to split the set of PAHs

into the two groups devised here on the basis of the regional H̄−1,1 indices. For that

purpose we explore the use of discriminant analysis, classification trees and K-nearest

neighbors (KNN) techniques, all implemented in the “classification learner” toolbox of

Matlab R2018b. In all cases we observe that the use of the H̄−1,1 indices for the K and

L regions are enough for the classification of these compounds, with no improvement

by adding information about M and N regions. Linear discriminant analysis (LDA)

classifies correctly 85.7% of PAHs in the two classes. From the carcinogenic compounds

it classifies correctly 87.5% of PAHs and 83.3% of inactive ones. In Figure 4.10

(a and b) we illustrate the results for the LDA. The classification tree improves a

little bit the previous results and classifies correctly 93.75% of carcinogenic PAHs (see

Figrue 4.10 (c and d). The best results are obtained by using KNN which classifies

correctly 100% of compounds in the two classes as illustrated in Figure 4.10 (e and

f). Our analysis has no exception like in the case of Vijayalakshmi et al. [128] for

which 5 PAHs were excluded from the analysis as outliers (phenanthrene, chrysene,

triphenylene, naphthalene and coronene). Figure 4.9 shows the confusion charts for the

results obtained by classifying the PAHs using the H̄−1,1 indices for the K, L, M and

N regions. These results coincide with those published long time ago by Pullman and

Pullman [127] which shown that the K and L regions are enough to classify correctly

PAHs into carcinogenic/inactive classes. As can be observed in Figure 4.10 (a, c,

and e) carcinogenic compounds are those having large values of H̄−1,1 (K) as well as

of H̄−1,1 (L) (red regions in the mentioned plots). This indicates that carcinogenic

PAHs have large contributions of the HOMO/LUMO eigenvalues are those close to

them, which parallel the idea of compounds of high reactivity. In fact, the three only

PAHs having the strongest carcinogenicity, i.e., “++++”, are the ones having the

largest values of H̄−1,1 (K): dibenzo[a,i]pyrene (0.5474); dibenzo[a,h]pyrene (0.5410);

benzo[a]pyrene (0.5299). However, in general having low values of either H̄−1,1 (K) or

H̄−1,1 (L) result in inactive compounds althout the other index display large values.

This result possibly indicates that a combined intervention of both regions, K and
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N0. compound
H−1,1 CA Class
K L M N

1 dibenzo[a,i]pyrene 0.5474 0.3511 0.5243 0 ++++ A

2 dibenzo[a,h]pyrene 0.541 0.3582 0.5229 0 ++++ A

3 benzo[a]pyrene 0.5299 0.3531 0.5266 0.4902 ++++ A

4 tribenzo[a,e,i]pyrene 0.5244 0.3806 0.5233 0 ++ A

5 dibenzo[a,e]pyrene 0.5024 0.379 0.5222 0.4903 +++ A

6 naphtho[2,3,a]pyrene 0.4899 0.393 0.5088 0.5066 ++ A

7 benzo[g,h,i]perylene 0.4799 0 0 0.488 ++ A

8 dibenzo[a,h]anthracene 0.4234 0.4388 0.5088 0 ++ A

9 dibenzo[a,j]anthracene 0.4192 0.4363 0.5087 0 ++ A

10 dibenzo[a,c]anthracene 0 0.4229 0.5192 0 ++ A

11 peropyrene 0.5372 0 0 0.4832 + A

12
benzo[e]naphtho[3,4,a]
pyrene

0.5007 0.4011 0.5138 0.4861 + A

13
benzo[a]naphtho[2,1,8,h,i,j
naphthacene

0.4914 0.417 0.5081 0.485 + A

14 benzo[a]anthracene 0.4255 0.3947 0.5106 0 + A

15 tribenzo[a,c,h]naphthacene 0.4225 0.4316 0.5207 0 + A

16 dibenzo[a,c]naphthacene 0 0.4157 0.5214 0 + A

17 pyrene 0.5183 0 0 0.4783 - I

18 coronene 0.4934 0 0 0 - I

19 anthanthrene 0.4833 0.4123 0 0.495 - I

20 benzo[e]pyrene 0.48 0 0.5161 0.48 - I

21 chrysene 0.4301 0 0.5091 0 - I

22 phenanthrene 0.3975 0 0.5072 0 - I

23 triphenylene 0 0 0.5258 0 - I

24 dibenzo[e,l]pyrene 0 0 0.5224 0.4889 - I

25 tetracene 0 0.3881 0.515 0 - I

26 anthracene 0 0.3525 0.5114 0 - I

27 naphthalene 0 0 0.4723 0 - I

28 perylene 0 0 0 0.5008 - I

Table 4.1: Names of the PAHs studied here, their carcinogenic action (CA), the values of H̄−1,1

for the four atomic regions of PAHs.
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Figure 4.9: Confusion charts for the results obtained with the three classification methods:
LDA (a), classification tree (b) and KNN (c) using the H̄−1,1 indices for the K, L, M and N
reigons
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Figure 4.10: Illustration of the classification plots for carcinogenic PAHs (white circles) and
inactive ones (white squares) using LDA (a), classification tree (c) and KNN (e). Confusion
charts for the results obtained with the three classification methods used: LDA (b), classification
tree (d) and KNN (f).
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L, are important for the diverse processes giving rise to the carcinogenicity of these

compounds.
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Chapter 5

Conclusion

The study of spectral properties of adjacency matrices represents an entire area of

research in algebraic graph theory. Most of the works using matrix functions for

studying graphs are concentrated on the use of the exponential and the resolvent of the

adjacency matrix of the graph. Other functions such as the hyperbolic sine and cosine,

and ψ-matrix functions have also been reported. All these matrix functions give more

weight to the largest eigenvalue and the corresponding eigenvector of the adjacency

matrix than to the rest of eigenvalues/eigenvectors. In many real-world networks, where

the spectral gap is relatively large, this situation gives rise to discarding important

structural information contained in the other parts of the graph spectra. Thus, in

this Thesis we have introduced a new adjacency matrix communicability function, the

Gaussian communicability function which gives more weight to a selected reference

eigenvalues λref, which may be located in any region of the graph spectra which opens

the door to study the unexplored parts of the spectra of graphs and their hidden

structural properties.

We have studied the Gaussian matrix function f(A) = exp
[
− (λrefI −A)2

]
which

accounts for the information contained in the eigenvalues/eigenvectors close to λref in

the graph spectra. In particular, we have investigated the properties of the Gaussian

Estrada index H = tr (f(A)) for two reference eigenvalues λref = 0 and λref = −1

separately.

In the case when λref = 0, we found analytic expressions for the Gaussian Estrada index
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of some elementary graphs as well as for two known models of random networks, the

Erdős-Rényi model and the Barabási-Albert model. We also proved that among the

connected graphs with n nodes, the maximum of the H index is always obtained for

the star graph followed by other complete bipartite graphs. We have shown that the

Gaussian Estrada index is related to the existence of important structural patterns in

graphs such as the existence of relatively large complete bipartite subgraphs (bicliques).

Such bicliques appear naturally in many real-world networks as well as in the Barabási-

Albert graphs and other networks with fat-tailed degree distributions. Also, we have

considered λref=-1 as a representative of the negative eigenvalues of the adjacency

matrix. We found an analytic expressions for the index of some elementary graphs as

well as for the Erdős-Rényi model and the Barabási-Albert model of random networks.

We also proved that among the connected graphs with n nodes, the maximum of the

H−1 index is always obtained for the complete graph.

Finally, we have generalized the Gaussian matrix function of the adjacency matrix of a

graph to account for the spectral folding at two eigenvalues. We have concentrated on

the pair −1, 1 motivated by the role played by these two eigenvalues in the spectra of

molecular graphs. We found analytic expressions of a group of known graphs. useful

upper bounds for the index in the two studied models of random graphs were obtained.

also, we have shown that the indices derived from double Gaussianization of the graph

spectra describe very well the carcinogenicity of PAHs.

Overall, we can say that the Gaussian matrix function allows us to explore the structural

information encoded in certain unexplored parts of the graph spectrum that was not

studied before which opens new research interests in the study of matrix functions for

the structural characterization of graphs. One way to proceed this work is to consider

the double Gaussian function resulted from the spectral folding at the pair 0,-1 which

is defined by

f(A) = exp
[
−A2 (I +A)2

]
. (5.1)

It is interesting to explore the structural properties that can arise in networks due to the

multiplicity of this important pair of reference eigenvalues and the eigenvalues near it.

A set of analytic expressions can be obtained for some elementary graphs and random
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models of networks studied here together with proving the following conjectures:

Conjecture 5.0.1. The complete graph Kn has the maximum value of H0,−1 among

all connected graphs with the same number of vertices.

Conjecture 5.0.2. Let Tn be a tree of n nodes, then

H0,−1(Pn) ≤ H0,−1(Tn) ≤ H0,−1(K1,n−1). (5.2)

Another area of research can be pursued is to consider the distance and the angle

[53, 55] of the Gaussian communicability function. As proved before [54] that for any

positive semidefinite matrix fαk(A), the quantity

ηp,q =
[
(fαk(A))pp + (fαk(A))qq − 2 (fαk(A))pq

] 1
2
, (5.3)

defines a Euclidean distance between the nodes p and q of the graph. Also, we can

define a communicability angle based on the Gaussian matrix function. For instance,

the Gaussian communicability distance and angle for the Gaussian matrix function

f(A) = exp
(
−A2

)
are defined as follows:

ξpq =
√(

e−A2
)
pp

+
(
e−A2

)
qq
− 2

(
e−A2

)
pq
. (5.4)

cosθpq =

(
e−A

2
)
pq√(

e−A2
)
pp

(
e−A2

)
qq

. (5.5)

The average Gaussian communicability distance and angle for graphs are defined by

Υ =
∑
p,q

ξpq. (5.6)

〈θ〉 =
2

n(n− 1)

∑
p<q

θpq. (5.7)

Figure 5.1 shows a scatter plot between the average Gaussian communicability distance

(the average Gaussian communicability angle) and the normalized H index for all

graphs with 8 nodes. The scatter plot even if it is not mathematically sufficient to
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Figure 5.1: Scatter plot of the normalized H index versus the average Gaussian communicability
distance (a) and the average Gaussian communicability angle (b).

demonstrate the significance of these indices, but it suggests the existence of hidden

potentials worth studying in detail. Also, a comparison of the average Gaussian distance

and angle between the Gaussian communicability matrices defined in this Thesis may

open the door to discover more about the structure of graphs and networks.
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Appendix A

In the following, the eigenvalue distribution of some graphs generated using the Barabási-

Albert model with n = 1000 and m0 = 4, 5, 10, 15, where the dashed red line presents

the eigenvalue distribution of the sample generated graph and the solid blue line

presents the triangular distribution in equation 1.3. As can be seen, the BA networks

display triangular eigenvalue distributions for relatively small edge densities and deformations

of it occurs for larger densities.
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Appendix B

Datasets of Real-World Networks

Studied in Chapter Two

Brain networks

• Neurons: Neuronal synaptic network of the nematode C. elegans. Included all

data except muscle cells and using all synaptic connections [63]; Cat and macaque

visual cortices: the brain networks of macaque visual cortex and cat cortex, after

the modifications introduced by Sporn and Kötter [64].

Ecological networks

• Benguela: Marine ecosystem of Benguela off the southwest coast of South Africa

[65]; Bridge Brook: Pelagic species from the largest of a set of 50 New York

Adirondack lake food webs [66]; Canton Creek: Primarily invertebrates and algae

in a tributary, surrounded by pasture, of the Taieri River in the South Island

of New Zealand [67]; Chesapeake Bay: The pelagic portion of an eastern U.S.

estuary, with an emphasis on larger fishes [68]; Coachella: Wide range of highly

aggregated taxa from the Coachella Valley desert in southern California [69]; El

Verde: Insects, spiders, birds, reptiles and amphibians in a rainforest in Puerto

Rico [70]; Grassland: all vascular plants and all insects and trophic interactions

found inside stems of plants collected from 24 sites distributed within England

and Wales [71]; Little Rock: Pelagic and benthic species, particularly fishes,
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zooplankton, macroinvertebrates, and algae of the Little Rock Lake, Wisconsin,

U.S. [72]; Reef Small: Caribbean coral reef ecosystem from the Puerto Rico-

Virgin Island shelf complex [73]; Scotch Broom: Trophic interactions between the

herbivores, parasitoids, predators and pathogens associated with broom, Cytisus

scoparius, collected in Silwood Park, Berkshire, England, UK [74]; Shelf: Marine

ecosystem on the northeast US shelf [75]; Skipwith: Invertebrates in an English

pond [76]; St. Marks: Mostly macroinvertebrates, fishes, and birds associated

with an estuarine seagrass community, Halodule wrightii, at St. Marks Refuge in

Florida [77]; St. Martin: Birds and predators and arthropod prey of Anolis lizards

on the island of St. Martin, which is located in the northern Lesser Antilles [78];

Stony Stream: Primarily invertebrates and algae in a tributary, surrounded by

pasture, of the Taieri River in the South Island of New Zealand in native tussock

habitat [79]; Ythan 1: Mostly birds, fishes, invertebrates, and metazoan parasites

in a Scottish Estuary [80] ;Ythan 2: Reduced version of Ythan1 with no parasites

[81].

• Termite: The networks of three-dimensional galleries in termite nests [82]; Ant:

The network of galleries created by ants [83]; Dolphins: social network of frequent

association between 62 bottlenose dolphins living in the waters off New Zealand

[84];

Informational networks

• Centrality: Citation network of papers published in the field of Network Centrality

[85, 86]; GD: Citation network of papers published in the Proceedings of Graph

Drawing during the period 1994-2000 [87]; ODLIS: Vocabulary network of words

related by their definitions in the Online Dictionary of Library and Information

Science. Two words are connected if one is used in the definition of the other

[88]; Roget: Vocabulary network of words related by their definitions in Roget’s

Thesaurus of English. Two words are connected if one is used in the definition

of the other [89]; Small World: Citation network of papers that cite S. Milgram’s

1967 Psychology Today paper or use Small World in title [90].
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Biological networks

• Protein-protein interaction networks in: Kaposi sarcoma herpes virus (KSHV)

[91]; P. falciparum (malaria parasite) [92]; S. cerevisiae (yeast) [93,94]; A. fulgidus

[95]; H. pylori [96]; E. coli [97] and B. subtilis [98].

• Trans E.coli: Direct transcriptional regulation between operons in Escherichia

coli [99, 100]; Trans sea urchin: Developmental transcription network for sea

urchin endomesoderm development. [99]; Trans yeast: Direct transcriptional regulation

between genes in Saccaromyces cerevisae. [63, 99].

Social and economic networks

• Corporate: American corporate elite formed by the directors of the 625 largest

corporations that reported the compositions of their boards selected from the

Fortune 1000 in 1999 [101]; Geom: Collaboration network of scientists in the field

of Computational Geometry [90]; Prison: Social network of inmates in prison

who chose “What fellows on the tier are you closest friends with?” [102]; Drugs:

Social network of injecting drug users (IDUs) that have shared a needle in the

last six months [103]; Zachary: Social network of friendship between members of

the Zachary karate club [104]; College: Social network among college students

in a course about leadership. The students choose which three members they

wanted to have in a committee [105]; ColoSpring: The risk network of persons

with HIV infection during its early epidemic phase in Colorado Spring, USA,

using analysis of community wide HIV/AIDS contact tracing records (sexual and

injecting drugs partners) from 1985-1999 [106]; Galesburg: Friendship ties among

31 physicians [86]; High Tech: Friendship ties among the employees in a small

high-tech computer firm which sells, installs, and maintain computer systems [86,

107]; Saw Mills: Social communication network within a sawmill, where employees

were asked to indicate the frequency with which they discussed work matters with

each of theircolleagues [86,108];

Technological and infrastructural networks
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• Electronic: Three electronic sequential logic circuits parsed from the ISCAS89

benchmark set, where nodes represent logic gates and flip-flop [63]; USAir97:

Airport transportation network between airports in US in 1997 [90]; Internet:

The internet at the Autonomous System (AS) level as of September 1997 and of

April 1998 [109]; Power Grid: The power grid network of the Western USA [110].

Software networks

• Collaboration networks associated with six different open-source software systems,

which include collaboration graphs for three Object Oriented systems written

in C++, and call graphs for three procedural systems written in C. The class

collaboration graphs are from version 4.0 of the VTK visualization library; the

CVS snapshot dated 4/3/2002 of Digital Material (DM), a library for atomistic

simulation of materials; and version 1.0.2 of the AbiWord word processing program.

The call graphs are from version 3.23.32 of the MySQL relational database system,

and version 1.2.7 of the XMMS multimedia system. Details of the construction

and/or origin of these networks are provided in Myers [111].
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