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Abstract 
 
 
Preventive maintenance consists of activities performed to maintain a system in a 

satisfactory functional condition. Condition Based Maintenance (CBM) aims to 

reduce the cost of preventive maintenance by supporting decisions on performing 

maintenance actions, based on information reflecting a system’s health condition.  In 

practice, the condition related information can be obtained in various ways, including 

continuous condition monitoring performed by sensors, or subjective assessment 

performed by humans. An experienced engineer might provide such subjective 

assessment by visually inspecting a system, or by interpreting the data collected by 

condition monitoring devices, and hence give an “expert judgement” on the state of 

the system.  There is limited academic literature on the development of CBM models 

incorporating expert judgement. This research aims to reduce this gap by developing 

models that formally incorporate expert judgement into the CBM decision process.  

A Coupled Hidden Markov Model is proposed to model the evolutionary relationship 

between expert judgement and the true deterioration state of a system. This model is 

used to estimate the underlying condition of the system and predict the remaining 

time to failure. A training algorithm is developed to support model parameter 

estimation. The algorithm’s performance is evaluated with respect to the number of 

expert judgements and initial settings of model parameters.  

A decision-making problem is formulated to account for the use of expert judgement 

in selecting maintenance actions in light of the physical investigation of the system’s 

condition. A Partially Observable Markov Decision Process is proposed to 

recommend the most cost-effective decisions on inspection choice and maintenance 

action in two consecutive steps. An approximate method is developed to solve the 

proposed decision optimisation model and obtain the optimal policy. The sensitivity 

of the optimal policy is evaluated with respect to model parameters settings, such as 

the accuracy of the expert judgement.  
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1 Introduction 
 

The goal of this research is to develop a modelling framework that formally 

incorporates expert judgement into the Condition Based Maintenance (CBM) 

decision process. The industrial motivation for this research is grounded in the case 

of CBM in a large engineering company operating fans.  The gap in scientific 

knowledge is established through a review of the existing literature on CBM and the 

relevant model classes. This chapter describes the context of the research, introduces 

key definitions and scopes the research objectives.  An overview of the remainder of 

the thesis is presented at the end of this chapter. 

1.1 Introduction to Condition Based Maintenance 

Maintenance is defined as “the combination of all technical and associated 

administrative actions intended to retain an item or system in, or restore it to, a state 

in which it can perform its required function” (EN 13306, 2001). The terms “retain it 

in” and “restore it to” in this definition imply the broad classification of maintenance 

types into “preventive” and “corrective”.  Preventive maintenance can be further 

classified according to the approaches of scheduling and performing the maintenance 

actions as “Time Based” and “Condition Based” maintenance, and “direct condition 

monitoring” and “indirect condition monitoring” as seen in Figure 1.1. 
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Figure 1.1: A Classification of the maintenance types. 

 

In corrective maintenance, the actions are performed after the occurrence of a failure 

to restore a system to a condition where it can carry out its required function 

(Knezevic 1987; Saranga and Knezevic 2000).  

In contrast to corrective maintenance, preventive maintenance consists of activities 

performed before a failure occurs. Preventive maintenance actions are utilised to 

maintain a system in a satisfactory functional condition, or prevent a defect from 

developing into more severe conditions. Preventive maintenance is motivated by the 

need to avoid the significant economic impacts of loss of system availability, quality 

or safety, caused by failure. For example, in manufacturing processes there are 

critical components whose failure can lead to the breakdown of the whole production 

line. In addition to loss of production, the failure of some equipment or systems can 

decrease safety, and hence cause irreparable damages. Therefore, preventive 
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maintenance, whose aim is to repair or replace the components before a failure 

occurs, is extremely important.  

In Time Based Maintenance, maintenance actions are scheduled based on the 

calendar time, or operational age, such as “cycles” or “cumulative load” (Cooke and 

Bedford 2002). In practice, a system is exposed to random disruptions such as 

unexpected changes of operational conditions or work schedules. These random 

variations cause uncertainty in the system operational characteristics. In Time Based 

maintenance the changes in the operational characteristics are not taken into account 

when scheduling maintenance action. This can lead to substantial failure costs, or 

high maintenance costs caused by a too conservative maintenance policy. 

CBM can reduce the cost of preventive maintenance by systematically taking 

maintenance actions when evidence of abnormal behaviour is observed from the 

information collected through “monitoring the condition” of a system (Campbell and 

Jardine 2001).  

Systems subject to condition monitoring are classified into two categories: 

completely observable systems and partially observable systems (Wang and Christer, 

2000; Jardine et al., 2006). For completely observable systems, the health condition 

can be completely identified through condition monitoring. The process through 

which the actual condition of a system (e.g. depth of a tooth crack in a gear) is 

observed is called “direct condition monitoring ” (Wang 2008). 

Sometimes it is not possible to observe the true condition of a system, i.e. to measure 

the exact amount of deterioration, during the process. For instance, the health 

condition of a system might include the conditions of various internal unobservable 

components. In addition, sensors used to measure the deterioration may give noise-

corrupted readings. Finally, the exact deterioration level may be costly to measure. 

For instance, it may require stopping the system from operating and this can cause a 

substantial loss of production.  In this case some parameters stochastically correlated 

with the actual health condition of the system are collected, that is “indirect condition 

monitoring”. Vibration signals, cutting forces in a machining process or temperature 

are examples of information obtained by “indirect condition monitoring”. The terms 

“covariate” or “ condition data” have been used in literature to represent variables 
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measured by indirect condition monitoring (Jardine et al. 1998; Wang 2008; Heng et 

al. 2009). The focus of this research will be on indirect condition monitoring; 

henceforward we use the term “condition data” to denote the measurements that are 

related to the health condition of a system subject to indirect condition monitoring.  

1.2 Condition Based Maintenance Decision Support 

CBM systems and what they typically involve have been discussed by various 

researchers (Chinnam and Baruah, 2004; Jardine et al., 2006; Thurston, 2001; Wang, 

2008). A CBM system, in general, consists of four stages: (1) Data Acquisition; (2) 

Data Cleaning and Processing; (3) Diagnostics and Prognostics; (4) Decision-

Making. A brief discussion of these stages follows in this section.  

1.2.1 Data Acquisition 

At the first stage, the information relevant to system’s health condition is obtained, 

that is condition monitoring. The European maintenance terminology standard (EN 

13306, 2001) defines monitoring as “activity, performed either manually or 

automatically, intended to observe the actual state of an item”. As seen in this 

definition, condition monitoring can be performed “manually” or “automatically”, 

this includes subjective assessment performed by human, or continuous monitoring 

performed by autonomous sensors.   

1.2.2 Data Cleaning and Processing 

Data collected through condition monitoring are typically contaminated with noise 

caused by changes of environmental condition (e.g. temperature or torque load) and 

error in data recording (e.g. caused by the sensors collecting the data or by human 

error entering data manually). After cleaning condition data, to remove noise and 

error, cleaned data are analysed and transformed into useful information (e.g. some 

statistical feature values), and that is data processing.  

1.2.3 Diagnostics and Prognostics 

Diagnostics consists of the tasks performed to indicate whether something is wrong 

in the monitored system and if so, to determine the nature of the fault; these tasks are 

referred to as  “fault detection” and “fault identification” respectively  (Campbell and 
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Jardine 2001).  For example, in a CBM system, vibration signals can be collected and 

analysed in order to indicate a fault in a piece of equipment (e.g. a gearbox) and 

identify the nature of the fault (e.g. a gear tooth fracture). 

Prognostics, on the other hand, refers to the tasks carried out before a fault or a 

failure occurs, to estimate how soon it will happen. For example, in the same CBM 

system mentioned above, the vibration signals could be also used to estimate the 

likelihood of having a tooth fracture over a specific duration of time. The result of 

prognostics can be either provided as the expected value or the probability 

distribution function of the remaining time to failure ( Jardine et al. 2006; Peng et al. 

2010; Si et al. 2011).  

1.2.4 Maintenance Decision-Making 

The main purpose of diagnostics and prognostics is to use condition data to provide 

useful information to support decision-making on performing maintenance actions 

(e.g. repair or replacement) with the aim to reduce downtime and preventive 

maintenance costs. This can be accomplished, for example, by incorporating the 

information obtained from diagnostics and prognostics into an optimisation model. 

Maintenance optimisation models are defined as “mathematical models whose aims 

are to find the optimum balance between the costs and benefits of maintenance, 

while taking all kinds of constraints into account” (Dekker, 1996). CBM optimisation 

models can be of help in maintenance decision-making, given the information 

obtained from condition monitoring, in order to “maintain the system in a cost 

effective way” (Wang 2008). 

1.3 Expert Judgement: Experienced Engineer’s Assessment of  

System’s Condition 

As mentioned in Sub-Section 1.2.1 condition data can be obtained in various ways. 

This includes subjective assessments that lead to qualitative results. For instance, the 

deterioration condition of an auto-greaser in a fan can be assessed by visual 

inspection of the colour of the grease.  
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The data cleaning and processing stage is especially important when condition data 

are continuously recorded by autonomous condition monitoring devices such as 

vibration sensors. In such systems, condition data are first “cleaned” of noise, and 

then they are interpreted and transformed into useful information about the system’s  

condition – i.e. data processing is carried out. Interpretation of condition data can 

also be carried out by a subjective assessment performed by an experienced engineer, 

that is “expert judgement”. For example, this assessment may be done for CBM 

applications where more than one parameter (e.g. vibration and temperature) is 

measured to monitor a system’s condition. Since these parameter values could 

contradict one another, an expert might carefully examine the recorded data, along 

with other available information (e.g. previous condition data or visual inspection 

results) to gain insight into the system’s condition. The result of this subjective 

assessment, i.e. expert judgement, can be used as the basis for taking further 

maintenance actions (e.g. performing a more accurate inspection).  

The condition monitoring and data interpretation methods explained above have been 

witnessed in a practical CBM implementation that will be described in Chapter 2. 

Figure 1.2 aims to represent different stages of a CBM decision-support process 

where expert judgement might play a role in condition monitoring or data processing.  

 

 

Figure 1.2: Possible roles of expert judgement in the first two stages of a Condition 
Based Maintenance decision-support process.  
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Figure 1.2 implies that expert judgement is used for assessing a system’s condition 

and so can contribute to answering questions such as “what is the chance that the 

system is in a specific health condition?” and “what is the chance of failure within a 

specific time interval?”.  

Incorporation of expert judgement in CBM decision support process, as described 

above, has not been widely addressed in literature. An example is presented by Wang 

and Zhang (2008) who addressed the incorporation of expert judgement in prognostic 

modelling. They assumed that expert judgement is provided based on the current 

condition data and is an indirect assessment of the residual life of a system. Given 

the possible roles of expert engineering judgement in an industrial practice, and the 

lack of coverage in the academic literature, we aim to explore the development of 

models with expert judgement in a CBM context. 

1.4 Research Aims and Objectives 

The overall aim of this research is to develop a modelling framework to support 

CBM decision-making by formally incorporating expert judgement together with 

other relevant data about the deterioration condition of a system.  Diagnostics, 

prognostics and further decisions on maintenance actions are to be supported. To 

achieve this aim we require both a stochastic model of the condition of the system 

and a means of making optimal decisions based on a cost-benefit analysis of 

maintenance policies. This leads us to state the following initial objectives: 

 

1. To develop a stochastic model that captures the evolutionary relationship 

between expert judgement and the underlying deterioration condition of a 

system in order to estimate the true deterioration condition  and to predict the 

remaining time to failure; 

 

2. To develop a parameter estimation method for the stochastic model and 

evaluate its performance with respect to potential application issues that 

might be faced in practice, such as the number of expert judgements; 
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3. To develop an optimisation model to select cost-effective maintenance 

policies based on a trade-off between the costs and benefits of alternative 

maintenance actions, using the diagnostic and prognostic information 

provided by the stochastic model; 

 

4. To examine the sensitivity of the optimal maintenance policies with respect to 

changes in system failure rate, cost and the accuracy of the expert judgement. 

 

Based on a review of the literature relating to both CBM and mathematical modelling 

relevant to this context, as discussed in Chapters 3 and 4, we shall be able to position 

this research and refine the statement of objectives. 

1.5 Thesis Overview 

The thesis is organised in 9 chapters as illustrated in Figure 1.3. 
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Figure 1.3: Organisation of the thesis chapters. Arrows depict the 
information flow among the chapters. 
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An overview of the remainder of the thesis is as follows:  

Chapter 2 reports an industrial application that has motivated this research. The 

maintenance event database and the decision-making process in this CBM 

application are described and the key observations and possible research directions 

are summarised. Chapter 3 provides a review of diagnostics and prognostics models 

in literature. The emphasis is on modelling frameworks for capturing the interaction 

between condition data and the underlying deterioration condition of a monitored 

system, and how they are used for diagnostics and prognostics. Chapter 4 clarifies 

the research gaps and prepares the ground for introducing the specific architecture of 

Hidden Markov Models, which is established and formulated in Chapter 5. The CBM 

optimisation models for partially observable systems are reviewed, and the research 

gaps, which are addressed in Chapter 7, are identified.  

In Chapter 5 a Coupled Hidden Markov Model (CHMM) is developed to model the 

evolution of, and capture the stochastic relationship between, expert judgement and 

the underlying condition of a system. This model is used as a basis for diagnostics 

and prognostics to estimate the systems’ deterioration state given all expert 

judgements made to date and predict the remaining time to failure. A training 

algorithm is developed to estimate the CHMM parameters. In Chapter 6 this training 

algorithm is demonstrated and evaluated by numerical experiments. The effect of 

some potential implementation issues (e.g. limited number of training observation 

sequences) on performance of the algorithm is investigated through experimental 

sensitivity analysis.  

Chapter 7 describes how the intervention of maintenance actions and observations 

obtained from physical inspections can be incorporated into the model developed in 

Chapter 5. Motivated from the decision-making mechanism in the CBM application 

described in Chapter 2, a two-step decision optimisation model is formulated as a 

Partially Observable Markov Decision Process (POMDP). In Chapter 8 an algorithm 

is developed to solve the decision optimisation model formulated in Chapter 7. The 

solution procedure and the optimal policy are demonstrated through numerical 

experiments. An experimental sensitivity analysis is conducted to study the effect of 
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the influential parameters on the optimal policy. The structural characteristics of the 

optimal policy, that can ease its implementation in practice, are explored.  

Chapter 9 provides a summary of the research to conclude how the research aims 

have been achieved. Suggestions for future research are discussed.  

Details of MATLAB codling are provided in the appendices. Appendix A provides 

the MATLAB computer codes developed to train the CHMM. Appendix B provides 

the MATLAB computer codes written to solve the POMDP and illustrate the result. 
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2 Research Motivation: A Condition Based 

Maintenance Industry Application 
 

A goal of this research is to align with industry needs so that future tools can be 

developed from this research. This chapter provides an insight into the Condition 

Based Maintenance system implemented in a large engineering company operating 

fans. The main purpose of this chapter is to justify the models developed in this 

research and, as discussed in Chapter 9, provide direction for future research.  

2.1 Description of the Maintenance System of Fans  

The large engineering company consists of four independent generating units. In 

each unit there are two fans, and the failure of one fan will cause a huge loss of 

generation, which would result in a substantial loss of revenue. The company has 

established a maintenance strategy in 2005 that includes a “control-limit” CBM 

policy for these fans. This CBM policy, which is currently implemented at the 

company, is briefly described in Section 2.1.1.  

2.1.1 The Maintenance Policy Implemented at the Company 

The failure of bearings has been found to be the predominant cause of failure of the 

fans over the past few years. An online vibration and temperature monitor is installed 

on the motor bearings. Data on the amplitude of the vibration and the temperature of 

the bearings are continuously collected and recorded every second. The maintenance 

policy is based on alarm levels, referred to as “control-limits” in literature, so that 

when the vibration or temperature reaches a predetermined level a necessary action is 

carried out. These alarm levels have been set with a view to provide a managed 
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approach that maximises the available time to decide the best course of action and 

also to minimise the loss of generation and damage to the fans. 

The thresholds and the corresponding actions of the policy are summarised as 

follows:  

Expected operating range: No action is taken while the vibration level is within this 

range.  

Suspicious level: The engineers are called to verify the situation and perform 

additional inspections.  

Alarm level: A short notice is given to reduce the unit load and the engineers perform 

the necessary operations regarding the condition verification as soon as possible.  

Action level: Operations are performed for taking mills out of service and preparing 

to stop fans. 

Trip level: Operations are carried out to stop fans immediately.  

 

When the vibration amplitude reaches the ‘suspicious level’, an experienced engineer 

is called to verify the situation by performing additional inspections. He will then 

decide to either leave the equipment and keep it running until the next inspection 

occasion, plan for load drop to inspect the bearings, or take the fans out of service 

immediately. The decision on what action to take is based not just on the overall 

level and temperature, but also on the frequency and the amplitudes of the harmonics 

of the vibration signals. This processed information regarding the vibration signals is 

held on a system administrated by a third party. 

2.1.2 Maintenance Event Database  

We refer to an assessment made by the engineer as an “expert judgement” hereafter. 

Expert judgements are not recorded directly but the information regarding the 

maintenance interventions are recorded in a database called “Work Order Cards 

(WOCs)”, which are considered to be very reliable for fans. The WOCs associated 

with primary air fan bearings of three units for the duration of July 2008 to 

September 2010 were supplied. WOCs for six fans (two fans per unit for the total of 
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three units) were available in the form of a table comprising a short description of 

work orders, the work type, the scheduled start and the target completion dates. 

There were 29 works orders in total related to bearings. An example of a WOC 

extracted for a primary air fan is given in Table 2.1. For confidentiality reasons, the 

details of the work orders have been disguised; however, despite the slight changes, 

they remain coherent with the original information. 

The work types recorded in WOCs are categorised as “corrective maintenance”, 

“emergency maintenance”, “outage” and “minor outage”. The “scheduled start” 

refers to the date at which the works were planned to be carried out. The time 

intervals during which the works were planned to be completed are recorded as “the 

target completion”, which ranges from 24 hours to 1 month. This is the ordered time 

duration for completing the work from the scheduled start, without taking into 

account any commissioning or interlock checks. The status of the works have been 

recorded as “open”, “close” and “cancelled”, where open states that the work is not 

yet complete and close means the work has been done. Cancelled means the work 

was not carried out under the WOC reference, although another WOC may have 

been used instead. 

 



 15 

Table 2.1: Overview of the work orders of a fan, for the period 01/07/2008–
30/08/2010. The details have been disguised for confidentiality reasons. 

Scheduled 
Start 
(date) 

Work  
Type 

Work Order Target 
Completion 

Status/Notes after the work 
completion 

16/07/2008 CM Check all PA fan 
bearings auto greasers, 
replace as required 

1 Month + Close 

28/08/2009 CM Remove/Replace 
bearings 

24 Hours Renewed NDE bearing and lab 
seals. 
Refitted coupling guard 

18/10/2009 CM Carry out alignment 
check on motor/fan 

24 Hours Alignment Check carried out ok 

23/03/2010 OU Bearings remove top 
halves, investigate, 
grease and box up.  

1 Week Opened up bearings ok, re-greased 
and boxed up. Unblocked grease 
holes in top half. 

14/04/2010 CM Remove/Replace 
bearings as required 

1 Week PA fan lined up. Coupling springs 
re-greased and boxed up. Guard 
refitted. NDE bearing opened up 
and inspected all ok. Bearings 
cleaned and re-greased and 
refitted. 

20/05/2010 CM Check all  PA fan 
bearings auto greasers, 
replace as required 

1 Month + Closed WOC to comply with KPIs 

02/08/2010 CM Check all  PA fan 
bearings auto greasers, 
replace as required 

1 Month + Ready 

18/08/2010 OUMIN Open up and 
inspect/replace 
bearings 

24 Hours Bearings opened up and inspected. 
Bearings ok. Bearings re-greased 
and boxed up.  
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2.2 Expert Judgement in the Maintenance Policy 

This section clarifies the significance of expert judgements in the CBM system 

practiced in this industry application, and how they are recorded and used in 

maintenance decision-making. 

2.2.1 Expert Judgement on System’s Condition State 

The work orders are results of the experienced engineers’ assessments, i.e. expert 

judgements, of the condition of bearings. A discussion with the maintenance 

managers revealed that although expert judgements on equipment condition are 

provided, mostly at two-week to two-month intervals, they are not always recorded. 

When the bearings operate normally in the expert’s opinion, the result of the 

assessment and the time that the expert is called are not recorded in WOCs. In fact, 

an expert judgement is recorded when the engineer schedules further investigation. 

The combination of the type of actions and their target completion dates recorded in 

WOCs imply the states of bearings in the expert’s opinion.  

Table 2.2 shows the works recorded in WOCs, categorised according to the type of 

maintenance actions and their scheduled completion times. To demonstrate the 

suggested expert judgement states, the actions are marked by different patterns. 

These patterns illustrate the expert judgements classified as discrete states. These 

states represent the severity of the health condition of bearings, in the expert’s 

opinion; that is, the more severe the defect, the higher the number of the state. The 

discrete expert judgement states can be represented by integer numbers from 1 to N , 

where 1 represents the non-defective, and N  represents the most defective condition. 

The description of the discrete states is depicted in Table 2.3. When the conditions of 

the bearings of both fans in a unit are assessed as the worst condition, i.e. action type 

“outage”, both fans are stopped for further investigation. Both action types “outage” 

and “outage” minor suggest the same bearings condition in the expert’s opinion, 

hence they are classified as the same state.  
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Table 2.2: Expert judgements as discrete states according to the action type and 
target completion. 

    Action Type 
 
 
Target 
Completion 

Corrective 
Maintenance 

Emergency 
Maintenance 

Outage 
Minor 
(Action to be 
taken on 1 of the 
2 fans of a unit) 

Outage 
(Action to be 
taken on 
both fans of a 
unit) 

1 Month 1-Check auto 
greasers and 
replace if required 
2-Monitor bearings 

   

1 Week 1-Open up and 
inspect bearings, 
replace if required 
2-Autolube line is 
detached, 
investigate/replace 
3-Bearing cartridge 
is turning, replace 
cartridge 
4-Remove/replace 
bearing as required 

 1-Inspect bearings, 
vibration level 
rising 
 
2- Bearings slack, 
investigate/replace 

1-Remove top 
half of 
bearings, 
investigate, 
grease and box 
up 
 

24 Hours 1-Remove/replace 
bearings 
2-Bearings open 
up, tighten inner 
race and box up 
3-Carry out 
alignment check 
4-Clean 
coupling/area prior 
to alignment check 
5-Grease lines 
reported blocked 

1-Bearing 
temperature high 
(at 80° C) 
Investigate/inspect 
 

1-Open up and 
inspect /replace 
bearings 
 
2-Carry out 
alignment check 

 

 

Table 2.3: Description of the expert judgement discrete states  

State Description Action Type 

1 Operating normally, no action is taken No action is taken 

2 The condition is not as good as new, monitor bearings  Corrective Maintenance 

3 Additional investigation is carried out as soon as possible Emergency 

4 Additional investigation is carried out by stopping one fan  Outage Minor 

4 Additional investigation is carried out by stopping both fans Outage 
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2.2.2 The Structure of the Expert Judgement-Based Maintenance Policy 

In this CBM industry application, expert judgement is used to assess the condition of 

equipment, e.g. bearings. Based on this assessment, the decision regarding further 

investigation and maintenance action is made.  

Based on the underlying mechanism observed from WOCs, the maintenance policy 

implemented in this industry application can be described as follows. The 

temperature and vibration, are continuously monitored by operators. Once they reach 

the “suspicious” level, the engineer is called for further inspection and verification of 

any abnormal changes of the condition data. If he diagnoses the condition of 

equipment to be normal, no action is taken. This is when his assessment is classified 

as State 1, recalling the state descriptions in Table 2.3. If he is suspicious of the fan 

bearings being faulty, he orders an action. This action is recorded in WOCs as 

“corrective maintenance” that might be followed by physical inspection, which is 

recorded as “emergency”, “outage” or “outage minor”. The structure of this 

maintenance policy is graphically depicted in Figure 2.1. In this picture 

y! 1,2,...,N{ }  denotes the expert judgement provided as an integer number, where 

N = 4  represents the worst health condition. 
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2.3 Discussion of Research Objectives in this Application Context 

This section describes the research objectives in this application context, which were 

identified through examining the CBM system in this industry practice.  

Temperature Vibration 

Engineer’s Assessment 

y  

Additional 

inspection is 

scheduled 

Additional 

inspection is 

done ASAP  
ASs\\soon as 

possible 

Both fans of the 

unit are stopped 

for investigation 

Fan is stopped 

for further 

investigation 

Necessary action is taken and 

engineer’s assessment is updated 

 

No Action is 

taken 

y = 4
  

 

y = 2
 

y = 3
 

y = 4
 

1=y  

 

Figure 2.1: Structure of the CBM policy practiced at the company operating fans. 
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2.3.1 Expert Judgement-Based Diagnostics and Prognostics  

As already noted, the results of expert assessments are recorded as work orders along 

with the scheduled start and target completion dates. The status of some WOCs have 

been recorded as cancelled and other work orders, mainly flagged as emergency, 

have been raised instead. This is mostly due to the fact that the potential faults 

propagated to a worse condition before the scheduled investigation was carried out. 

This demonstrates that knowledge regarding the variations in the system’s condition 

would be helpful for the maintenance managers when scheduling the actions as 

“target completion” in WOCs. In other words, the information in terms of the 

likelihood of having a fault and how soon it will propagate to failure would support 

decision-making in terms of planning for further investigation.  

This key observation was the motivation for developing a modelling framework to 

estimate the true condition of a system and the time to failure based on the available 

expert judgements. The need for a prognostic model was also stated by the 

maintenance managers at the preliminary meeting held at this company. 

2.3.2 Maintenance Decision Optimisation  

As explained earlier, the action types along with the target completions imply the 

severity of the condition of the fan bearings in the expert’s opinion. The actions are 

mostly recorded as further inspections, meaning that the necessary corrections or 

replacements need to be carried out based on additional inspection of fan bearings. 

The information recorded in WOCs shows that some work orders have been recorded 

for further investigation by stopping the fans, but after undertaking this costly action, 

physical inspection has confirmed that the system is not in a faulty condition. 

Different preparations need to be made for further investigation, according to each 

category of actions. Specifically, to carry out an additional inspection recorded as 

“monitor bearings”, the unit load needs to be dropped. Physical inspection recorded 

as “minor outage” requires the necessary preparations for stopping the fan, which is 

much more costly than dropping the load.  

Once further investigation is carried out and the engineer verifies the system to be 

faulty, he either performs minor corrections, such as reconnecting auto greasers, or 

replaces the bearing with a new spare. If he verifies that the fan is not faulty he either 
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does nothing or conducts preventive maintenance, such as greasing the bearings 

manually.  

The scenario explained above is the motivation for establishing a decision model to 

support cost-effective decision-making with regard to the inspection choice and 

maintenance action type. The decision choices are optimised by making a trade-off 

between the cost due to unnecessary actions and the cost of consequences of 

unexpected fault propagation and failure.  

2.4 Summary and Conclusion 

The CBM system practiced at a large engineering company operating fans was 

described in this chapter. A careful examination of the maintenance event database 

from the past two years demonstrated the role of expert judgement in the CBM 

decision support process.  

As mentioned in Sub-Section 2.1.2, the Work Order Cards associated with six fans 

from the duration of July 2008 to September 2010 were supplied; data related to the 

time before July 2008 is not available since the data management system has been 

changed in 2008. The failure of bearings has been found to be the predominant cause 

of failure of the fans. The average lifetime of bearings is almost two years. In total 

three lifetime data sets of expert judgements related to bearings could be extracted 

from the available data.  However, the data does not contain expert judgements 

during normal operation of the fans, as data is currently only collected in connection 

with maintenance interventions.  

Furthermore, a simulation study is conducted in Chapter 6 to examine the effect of 

the number of expert judgement sequences, and the quantity of data associated with 

equipment condition states, on the performance of the proposed model. The 

simulation results confirm that the amount of real data available are not enough for 

training reliable models and hence cannot be used for quantitative evaluation of the 

models proposed in this thesis. Hence, for these two reasons, the CBM system in this 

industry application is used as a motivation for formulating plausible models, but it is 

not used further to populate the models.   
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In order to formally incorporate expert judgement into the CBM decision-support 

process, a stochastic model is needed to relate it to the underlying system’s 

condition. Chapter 3 reviews the existing modeling approaches in literature for 

capturing the interaction between condition data and the underlying deterioration 

condition of a monitored system.  
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3 Condition Based Maintenance Diagnostics and 

Prognostics Modelling Approaches 
 

This chapter reviews existing modelling approaches in the literature used for 

diagnostics and prognostics, with emphasis on statistical modelling techniques. The 

aim is to obtain an insight into the methods used for establishing the stochastic 

relationship between the underlying condition of a system and condition data, and 

find potential modelling methods for incorporating expert judgement into the CBM 

decision support process.  

Section 3.1 presents a brief review of diagnostics and prognostics approaches and 

highlights their merits and limitations for different problem situations. Sections 3.2 to 

3.5 review the modelling approaches for establishing the stochastic relationship 

between condition data and the unobservable condition of a monitored system. 

Section 3.6 concludes the chapter by highlighting the gaps in literature. 

3.1 Diagnostics and Prognostics Approaches 

Recall from Section 1.2 that diagnostics and prognostics are two important aspects of 

CBM that use condition data to provide useful information in order to support 

decision-making on performing maintenance actions. Diagnostics consists of the 

tasks performed to indicate whether something is wrong in the monitored system and 

if so, to determine the nature of the fault. Prognostics refers to the tasks carried out 

before a fault or a failure occurs, to estimate how soon it will happen. Depending on 

the implementation objective of CBM, condition data can be used for diagnostics, 

prognostics, or both.  

Diagnostics and prognostics approaches have been broadly classified into three 

groups: Physics-based models, data-driven, and hybrid approaches (Jardine et al., 
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2006; Heng et al., 2009; Pecht, 2008). The classification of different diagnostics and 

prognostics approaches is illustrated in Figure 3.1.  

 

 

                                 Figure 3.1: Diagnostics and prognostics approaches. 
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obtain diagnostic and prognostic information. In this approach, the initiation and 

propagation of a fault, e.g. crack growth, is modelled based on known properties of 

the dynamics of a fault, drawn from the fields of physics or mechanics. Since the 

underlying degradation processes are not physically observable in indirectly 

monitored systems, residual generation methods, such as the Kalman filter, are used 

to obtain useful information from condition data, i.e. residuals, and relate them to the 

fault type and its physical severity, e.g. size of a crack. An example of this modelling 

approach for prognostics is reported by Qiu et al. (2002), in which the natural 

frequency and acceleration amplitude of a bearing is related to its stiffness. The 

relationship between the operating time, the failure time and the stiffness is 

established from damage mechanics, and subsequently the residual life of a bearing 

is predicted based on vibration measurements. Other examples of the application of 
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physics-based models have been reported for diagnostics and prognostics of crack 

growth in rotor shafts (Oppenheimer and Loparo, 2002), fracture growth on gas 

turbine blades (Kumar, 2010), fracture in helicopter gearboxes (Kacpryznski et al., 

2004) and prognostics of the failure mechanisms of electronic products (Pecht and 

Gu, 2009). 

Although physics-based modelling has the advantage of accuracy for diagnostics and 

prognostics, it is not practical to use this method for complex systems because of the 

hard to model relationships between the failure mechanisms of different components 

in such systems (Heng et al., 2009). Also, these models are developed based on 

mechanistic knowledge of specific mechanical component degradations, with regard 

to the material and geometrical features of the component. In other words, these 

models are tailored for individual components with specific degradation processes, 

and this limits generalising their application to other types of components 

(Brotherton et al., 2000; Oppenheimer and Loparo, 2002; Kumar, 2010). 

3.1.2 Data-Driven Approach 

In data-driven approaches, prognostics and diagnostics are performed by direct 

analysis of condition data without requiring knowledge of physics or engineering 

principles (Heng et al., 2009; Si et al., 2011). Data-driven methods can be further 

classified into two categories: statistical modelling and machine learning approaches.  

In the statistical modelling approach, prognostics and diagnostics are performed by 

fitting a model to available lifetime failure data and condition data (Si et al., 2011). 

Recall from Chapter 1 that the focus of this thesis is on CBM for partially observable 

systems. For such systems, since the actual system’s condition is not observable, a 

stochastic model is needed to relate condition data to the unobserved condition of a 

monitored system. This model is used for estimating the actual system’s condition 

and predicting the time to failure, given condition data. In Sections 3.2 to 3.5 we 

review the existing modelling approaches for capturing the stochastic relationship 

between condition data and the underlying system’s condition, and how they are used 

for diagnostics and prognostics.  

In machine learning techniques the complex non-linear relationship between 

condition data and the system’s condition is approximated, i.e. learned by repetitive 
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examples. In contrast to statistical modelling, the machine learning approach does 

not require distributional assumptions about the underlying failure and the stochastic 

relationship between condition data and system’s actual condition; hence it can avoid 

“potentially large errors” due to incorrect assumptions (Tse and Atherton, 1999). 

However, machine learning approaches require a relatively large amount of data to 

provide accurate results (Heng et al., 2009). For some applications it might be 

feasible to use accelerated life tests and obtain a large amount of condition data (e.g. 

vibration signals). However, for most CBM applications it is not practical to obtain 

these amount of data, and this can limit the implementation of machine learning 

approaches.  

A comprehensive recent review of machine learning diagnostic and prognostic 

techniques can be found in Pandian and Ali, 2010. The most commonly known 

machine learning technique for diagnostics and prognostics is Artificial Neural 

Networks (ANNs) (Jardine et al., 2006; Heng et al., 2009; Pandian and Ali, 2010). 

An ANN consists of a layer of input nodes, one or more layers of intermediate 

hidden nodes, at least one layer of output nodes, and connecting weights. The 

unknown functions that relate the inputs to outputs are trained by adjusting the 

connecting weights, with repetitive observations of inputs and outputs.  

ANNs have been demonstrated to capture the complicated relationship between 

condition data and the actual health condition of a system without requiring a prior 

knowledge of the physics or distributional assumptions regarding their stochastic 

evolution (Rao et al., 2012). Also, their ability to perform “robustly” in noisy 

environments has made them a popular technique in diagnostics based on waveform 

type condition data (e.g. vibration signals) that are contaminated with noise (Jardine 

et al., 2006; Rao et al., 2012). However, the main limitation of ANNs is their “lack of 

transparency” or “black box” nature (Heng et al., 2009; McNaught and Zagorecki, 

2011). According to McNaught and Zagorecki (2011) this would particularly be a 

problem for applications with the “training” intention.  

3.1.3 Hybrid Approaches 

Hybrid approaches attempt to combine various methods, in order to apply the merits 

of them, and utilise all useful information such as mechanistic knowledge of a 
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system’s degradation process or maintenance event data along with condition data, to 

increase accuracy in diagnostics and prognostics.  

An example of a hybrid diagnostics and prognostics approach is Dynamic Bayesian 

Networks (DBN), in which probabilistic graphical models are combined with 

Bayesian statistics. Bayesian Networks (BNs) are probabilistic graphical models 

representing the joint probability distributions over a sequence of random variables 

(Pearl, 1997; Jensen, 2001). DBNs are an extension of standard BNs that model the 

evolution of variables of BNs over time. The flexible structure of a DBN allows the 

incorporation of other useful information, such as the effect of changes in operational 

conditions (e.g. load) and maintenance actions, in addition to condition data, to 

support diagnostics and prognostics. DBN-based prognostics have been investigated 

by Dong and Yang (2008), and McNaught and Zagorecki (2009).   

Other hybrid approaches combining data-driven approaches with physics-based 

modelling have been reviewed in Jardine et al., 2006; Pecht, 2008; Heng et al., 2009; 

and Peng et al., 2010. An example of combining machine learning and statistical 

modelling is proposed by Mohanty et al. (2008).  

In the following sections we review the existing statistical modelling approaches for 

capturing the stochastic relationship between condition data and the underlying 

system’s condition, and discuss how they are used for diagnostics and prognostics. 

The classification of these modelling approaches is illustrated in Figure 3.2.  
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         Figure 3.2: Statistical modelling approaches for diagnostics and prognostics. 

3.2 Proportional Hazard Model (PHM) 

The Proportional Hazard Model (PHM) is a popular model in CBM for partially 

observable systems, in which both age and condition data are taken into account to 

determine the underlying condition of a system (Wang 2008; Heng et al. 2009). In 

this model hazard rate is used as a measure to represent the underlying health 

condition of a system, and is assumed to change proportionally with factors termed 

as “covariates”. Covariates could be parameters indicating operational and 

environmental conditions that affect system’s degradation (e.g. temperature, or 

torque load), or condition data reflecting system’s condition, depending on the model 

application. The basis of the PHM is the simple assumption that the hazard rate is 

affected by covariates in a multiplicative way. This model was first initiated by Cox 

(1972) and started to be used in the area of CBM in the 1980s (Bendell et al., 1991; 

Jardine et al., 1987).  

The hazard rate at age t  is given by the following function: 

( ) ( ) ( )0 1 1exp ( ) ... ( ) ,n nh t h t z t z tγ γ= + +                                                                               

where 0 ( )h t  is a baseline hazard function, 1( ),...., ( )nz t z t  are covariates at time t , and 

1,.... nγ γ  are constant coefficients. A common parametric form used for the baseline 
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hazard function is Weibull, which is given in the form of ( )
1

0 ,th t
ββ

α α

−
⎛ ⎞= ⎜ ⎟⎝ ⎠

 where 

 and β α  are “shape” and “scale” parameters, respectively. The covariates 

1( ),..... ( )nz t z t  can be any condition data such as features extracted from vibration 

data through signal processing, or measurements of operational and environmental 

conditions influencing system’s degradation such as cutting force in a machining 

process.  

It is important to note that in PHMs only the current condition data is used, as 

opposed to other methods such as stochastic filtering method and Hidden Markov 

Models where previous condition data is also considered for diagnostics and 

prognostics. We will discuss these modelling frameworks later in this chapter.  

PHMs have been applied to different types of condition data, such as metal particle 

levels in engine oil (Jardine et al., 1987) and the significant condition indicators 

extracted from vibration signals (Lin et al., 2004; Banjevic et al., 2001; Mazzuchi, 

2008; Vlok et al., 2002). Jardine et al. (Jardine et al., 1997; Banjevic and Jardine, 

2006) used the PHM for calculating the reliability function and the remaining 

residual life of rolling element bearings and engine given the condition data. They 

used a Weibull hazard function and a non-homogeneous Markov process to model 

the evolution of condition data. 

Based on this framework, optimal maintenance policies were also proposed to 

support the maintenance decision-making, in a series of works (Makis and Jardine, 

1992; Jardine et al., 1997; Vlok et al., 2002; Tian and Liao, 2009; Wong et al., 2011). 

These PHM-based optimal policies were proposed as control-limit policies where 

some thresholds are set for the hazard rate and once the hazard rate reaches these 

thresholds, maintenance actions such as replacement are carried out accordingly. A 

software program called EXACT (Jardine et al., 1997) was developed to compute the 

optimal policy for hazard rate thresholds and inspection intervals, given the cost 

values and the historical reliability and maintenance event (lifetime data) and 

condition data.   

Maximum Likelihood Estimation (MLE) is used to estimate the parameters of a 

PHM, based on lifetime data and condition data. To estimate reliable parameter 
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values for a PHM, large data sets are required. However, these data are often limited 

in practice due to the monitored components being replaced before failure, and this 

can restrict the use of PHMs in practice (Gorjian, 2009; Heng et al., 2009; Sun et al., 

2006). Recently a parameter estimation method based on expert’s prior knowledge of 

the model has been proposed by Zuashkiani et al. (2008) to overcome this problem. 

According to Gorjian et al. (2009) and Wang (2008), PHM mixes different types of 

covariates and this can cause problems. For instance, the changes of vibration signals 

are caused by the changes of the health condition of a system, i.e. vibration signals 

are influenced by the hazard rate. Some other covariates, such as the amount of metal 

particles measured in oil analysis, are influenced by the deterioration condition of a 

monitored system (e.g. an engine) and hence represent condition data reflecting 

system’s health condition. These metal particles may also accelerate the deterioration 

process. PHMs assume that covariates that are influenced by system’s condition (e.g. 

vibration signals), covariates that have bilateral relationship with system’s condition 

(e.g. metal particles in oil analysis) and covariates representing environmental 

conditions  (e.g. temperature), all affect the hazard rate in a multiplicative way.  

3.3 Proportional Covariate Model 

As mentioned above, PHMs assume that the hazard rate changes proportionally with 

condition data, which are termed as covariates. In other words condition data are 

assumed to be “explanatory variables” and the hazard rate is the response variable in 

a PHM. Sun et al. (2006) argued that in practice, condition data changes due to 

changes of the underlying system’s condition, which is represented by the hazard rate 

in a PHM. They proposed the Proportional Covariate Model (PCM) in which 

condition data is modelled as “explanatory variables” and the hazard rate is modelled 

as the “response variable”. A function of condition data, denoted by ! z t( )( )  in 

PCM, is expressed as follows: 

! z t( )( ) = C t( )h t( ),   
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where z t( )  denotes the covariate at time t , and C t( )  represents a baseline covariate 

function used to describe the relationship between the covariates and the hazard rate, 

and h t( )  denotes the hazard rate. 

According to Sun et al. (2006), since the baseline covariate functionC t( )  in PCM is 

dependent on “both historical failure data and historical condition data and can be 

updated according to newly observed failure data and covariates”, it can be applied 

when the historical failure data are limited. They demonstrated the implementation of 

this model for estimating the hazard rate of gears using vibration data obtained 

through an accelerated life test.  

Recently Cai et. al. (2012) applied PCM to estimate the failure rate of cutting tools 

based on vibration signals. They obtained the baseline of the covariate function from 

a small sample of historical failure data.   

3.4 Stochastic Filtering   

In the stochastic filtering based methods, the unobservable condition of a monitored 

system given condition data is estimated through recursive equations over time. As 

opposed to the PHMs and PCM where only the current condition data is considered, 

,in this method the whole history of condition data is used to estimate the system’s 

condition and predict its value in future.  

3.4.1 Stochastic Filtering Method Based on a One-Stage Failure Process 

Christer et al. (1997) employed the Kalman filter to estimate and predict the erosion 

level of the inductors in an induction furnace, using all condition data to date. Let xt  

be the unobservable system’s condition and z t( )  be the measured condition data at 

time t . Christer et al. (1997) assumed that both xt  and z t( )  are stochastic processes 

and their evolutionary relationship follows the state space model defined as 

xt =! xt"1 + # t  and z t( ) = !xt +"t , where !  and "  are state space parameters and 

! t  and "t are Gaussian noises. They employed Kalman filter to estimate the actual 
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system’s condition xt , and predict its value at any time in future, given 

Zt = z 1( ), z 2( ),..., z t( ){ }  that is the condition data obtained to date.  

Wang and Christer (2000) proposed a stochastic filtering method that relaxes the 

Gaussian and linear assumptions of the Kalman filtering approach proposed by 

Charister et al. (1997). In this method, the underlying condition of a system, xt , is 

modelled as the conditional residual life, that is the interval from any time point that 

condition monitoring information is obtained, to the time that the system “may be 

declared to be failed” given Zt = z 1( ), z 2( ),..., z t( ){ } , in the absence of maintenance 

interventions. They assumed that the relationship between the conditional residual 

life at time t  and the conditional residual life at time t + !  can be described as 

xt+! = xt " ! , where !  is the condition monitoring interval. They assumed that there 

is a negative correlation between xt  and Z t( )  throughout the lifetime of a system. 

Consequently they showed that the probability distribution function of the 

conditional residual life could be updated through the following recursive equation:  

pt xt Z t( )( ) = p z t( ) xt( ) pt!" xt + " Z t ! "( )( )
p z t( ) xt( ) pt!" xt + " Z t ! "( )( )dxt0

#

$
.  

Wang (2002) applied this filtering approach to vibration signals of rolling element 

bearings obtained from a laboratory fatigue experiment. 

3.4.2 Stochastic Filtering Method Based on a Two-Stage Failure Process 

In the stochastic filtering based method described in Sub-Section 3.4.1, it is assumed 

that there is a negative correlation between the actual system’s condition and 

condition data. However, the operating process of equipment can be classified into 

two stages, namely “normal” and “defective”, where this negative correlation is only 

valid at the defective stage. This is due to the fact that when the system is in the 

normal condition, the value type conditions data (e.g. temperature) and the features 

extracted from waveform type condition data (e.g. kurtosis of the residual signal) are 

stable and fluctuate around a constant value. But when a defect initiates, and 

propagates in the second stage, condition data show abnormal changes and trend.  
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Wang (2003) improved the stochastic filtering based method by incorporating a two-

stage failure process, known as the “delay time concept” in literature. 

The delay time concept considers the failure process as a two-stage stochastic 

process. The first stage is the initiation of the defect where a detectable defect arises, 

while during the second stage a defect propagates and leads to a failure. The time 

between when a defect is identified until a failure occurs is called “delay time” 

(Baker and Wang, 1993; Christer and Waller, 1984). The delay time is a random 

variable, which is not directly measurable. Rather, it is a characteristic of the 

inspected system, the nature and type of the inspection, and sometimes of the person 

carrying out the inspection. For example, the initiation of a fault might be 

recognisable at different times according to different inspection methods. 

Wang and Zhang (2008) applied  the above stochastic filtering method to predict the 

residual life of a system over the failure delay time, for the scenario when the 

judgements provided by maintenance engineers are used as condition data. They 

assumed that an experienced engineer provides judgement on system’s condition 

state as an integer number and there is a negative correlation between this number 

and the residual life of the system during the failure delay time. To establish the 

relationship between the expert judgement and the residual life, they proposed for the 

expert judgement a Normal probability distribution function with a constant variance, 

! ,  and a mean that varies against the residual life, µ = A + Be!Cxt , where xt  is the 

residual life at time t , and A,  B and C  are constant values. The discrete expert 

judgement variable is converted into a continuous variable by dividing the 

continuous space into integer intervals, where each interval represents a discrete 

expert judgement value.  

Carr and Wang (2010) used the stochastic filtering based method and the delay time 

concept for the prediction of a residual life of a component subject to different failure 

modes. In this method, an individual stochastic filter is used to predict the residual 

life according to each potential failure mode and then the outputs from each filter are 

weighted with respect to the probability that the failure mode is the actual underlying 

failure mode. This stochastic filtering based model was extended by Wang et al. 

(2010) to predict the residual life and recommend the best inspection time for a 
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system with multiple components subject to different failure modes. Wang et al. 

(2010) proposed modelling each component and failure mode individually and then 

pooling them together to form the system inspection model.  

The successful application of stochastic filtering based method in prognostics relies 

heavily on specifying the right distribution form of the conditional probability of the 

condition data given the residual life. The formulation of the general likelihood 

function for parameter estimation of this method was given by Wang (2007). The 

author explored the choice between Weibull and Gamma distributions as the best-

fitted model for the probability distribution function of the condition data given the 

residual life, based on experimental vibration signals of rolling element bearings. 

The failure delay time is a natural methodology within the maintenance-engineering 

context because of its” easy to understand” nature. However, the application of this 

concept along with the stochastic filtering method requires the specification of the 

functions and parameter estimation for the probability distribution of the time 

duration of the two stages, in addition to the distribution form and parameter 

estimation of the conditional probability of the condition data given the residual life. 

The beginning of the second stage, the defect initiation, is often hard to identify and 

is usually not recorded in practice, and this can restrict the application of the 

stochastic filtering based prognostics (Heng et al. 2009).  

3.5 Hidden Markov Models (HMMs) 

A Markov process is a discrete random process with Markov properties, that is, the 

probability distribution of the system state at any time, given the state in the previous 

time step, is independent from all other previous states. A Hidden Markov Model 

(HMM) is a Markov process “observed in noise” i.e. the Markov process is not 

directly observable (Cappé et al., 2005). What is available to the observer is another 

stochastic process whose distribution is determined by the Hidden Markov process. 

This modelling framework fits well with the hidden process of fault progression of 

mechanical systems that goes through different deterioration phases before failure, 

and the observations obtained from monitoring their condition.  
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Because of the rich mathematical structure and the availability of computer 

implementation of HMMs, this framework has become a very popular technique for 

temporal pattern recognition such as speech recognition (Rabiner, 1989), handwriting 

recognition (Brown and Turin, 1996) and gesture recognition (Marcel et al., 1997). 

The success of HMM in the area of pattern recognition motivated Bunks and 

McCarthy (2000) to investigate the use of this method in CBM modelling. They 

studied the feasibility of utilising HMMs in machine health diagnostics and 

prognostics by comparing CBM to speech processing. It was demonstrated that this 

model can be applied to the problem of machine health monitoring by treating fault 

classes as hidden states in the HMM and by condition data such as vibration 

measurements as the observations process. Their study concluded that HMM is a 

powerful framework for CBM, particularly because of its ability to differentiate 

between the changes in condition data due to defects and changes due to operational 

conditions such as torque loads. 

3.5.1 Theoretical Background of Hidden Markov Models 

A schematic representation of a first-order HMM rolled out in time is depicted in 

Figure 3.3. The square nodes represent the observation variables and circular nodes 

represent the hidden state variables. The horizontal arrows denote the conditional 

probabilities between two consecutive hidden states, while the vertical arrows denote 

the conditional dependency between hidden states and observations. 
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Figure 3.3: Schematic representation of Hidden Markov Models 
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HMMs can be classified into continuous and discrete models, according to the 

observations and hidden processes. Since the model developed in this research is 

based on a discrete-time discrete-state HMM, the theoretical background of this type 

of HMMs is given in this section.   

3.5.1.1 Elements of an HMM With Discrete States and Observations 

A discrete-time, discrete-state HMM can be characterised by the following 

parameters (Rabiner, 1989): 

N  is the number of states in the model. The states are interconnected 

according to the specific topology of the model. The set of discrete hidden 

states is denoted by .  is a time-indexed discrete 

variable denoting the state of the system at time  

M  is the number of distinct observation symbols per state. The observation 

symbols represent the physical output of the system modelled as an HMM. 

The individual symbols, denoted by .  are time 

indexed discrete variables denoting the output of the system at time  

 is the state-to-state transition probability distribution, where each 

element  in Matrix  is the probability of making a transition from State 

 to State  , that is: 
  
aij = P qt+1 = S j qt = Si( ) ,   1! i, j ! N .   

 is the observation probability distribution in State , where 

   

 is the initial state probability distribution, where 

   

S = S1,S2,....,SN{ } tq S∈

.t

{ }MvvvV ,....,, 21= Vot ∈

.t

{ }ijaA =

aij A,

i j

{ })(kbB j= j

bj k( ) = P ot = ! k qt = Sj( ),  1" j " N ,  1" k " M .

! = ! i{ }
! i = P q1 = Si( ),  1" i " N .
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All the parameters listed above are required for a complete specification of an HMM. 

A compact representation of an HMM denoted by  is used to indicate 

the complete set of parameters for the model. 

3.5.2 Hidden Markov Models Implementation for Diagnostics  

HMMs have been applied as a diagnostic method for fault recognition and 

classification of tools in drilling processes, which are subject to gradual wear 

(Baruah and Chinnam, 2005; Akhilesh Kumar et al., 2011). The diagnostic model 

assesses the health state of the cutting tool during the machining process based on 

thrust-force and torque signals. In this method, HMM states represent different 

phases the equipment might go through before failure. In other words, the higher 

indexed states represent the higher level of severity of a defect. Diagnostics is 

performed by solving the decoding problem, described in Paragraph 3.5.6.2, to 

estimate the current health state given a sequence of observations. Similar 

applications of HMMs for CBM have been also investigated for bearing wear and 

structural damage (Rammohan and Taha, 2005). 

A different method of using an HMM in CBM has been reported by Ocak et al., 

(2007) for bearing wear tracking. In this method, an HMM with three states is trained 

to represent a normal (non-defective) bearing, using the vibration signals collected 

through an accelerated life test while it is working in a normal condition. The 

condition of a bearing in this method is assessed by the probability of the features 

extracted from the vibration signals given the normal HMM. As bearing wear 

increases, this probability, which represents the similarity between the current signals 

and those related to a normal bearing, decreases. Ocak et al. (2007) proposed to use 

this probability value as a measure indicating the severity of a defect. Their 

experiment showed that this probability drops gradually as a defect initiates and 

propagates and hence could be a predictive indication of an upcoming failure.   

3.5.3 Coupled Hidden Markov Models (CHMMs) 

3.5.3.1 General Architecture and Modelling 

CHMMs are an extension of HMMs that contain multiple Hidden Markov chains and 

observation processes. The interaction between Hidden Markov chains is modelled 

),,( BAπλ =
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by introducing conditional dependencies between their states, across time. A widely 

used class of CHMMs, referred to as “ standard fully coupled” in the literature, was 

introduced by Brand (1997) to capture the interactions among multiple HMMs in 

action recognition. The CHMM topology proposed by Brand is illustrated in Figure 

3.4.  

 

 

 

 

  

 

 

 

 

 

 

In this model, multiple processes are coupled by bridging their states across time. In 

other words, the state of each process depends on the states of all of the processes, 

including itself, at the previous time slice. Each process has individual observation 

outputs. The state transition probability for C  HMMs coupled together is given by 

the joint conditional dependency ( )1 2
1 1 1, ,...,c C

t t t tP q q q q− − − , where c
tq  is the state of the 

th ,  1 ,c c C≤ ≤  HMM. In Brand’s formulation (Brand, 1997), this joint conditional 

dependency is given by the product of all marginal conditional probabilities, 

represented by: ( ) ( )1 2
1 1 1 1

1

, ,..., .
C

c C c c
t t t t t t

c
P q q q q P q q ′

− − − −
′=

=∏  

This topology of CHMMs have been applied to human action recognition (Brand et 

al., 1997), image processing (Gai et al., 2007), suspect interaction modelling (Brewer 

et al., 2006), freeway traffic modelling (Kwon and Murphy, 2000) and more recently 

Hidden States 

Hidden States 

Observations 

Observations 

      ...       ... 

Figure 3.4: Topology of Standard Coupled Hidden Markov Model. 
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to rotating machinery diagnostics (Xiao et al., 2011) (this will be discussed in 

Paragraph  3.5.3.2).  

A different formulation of CHMMs, based on the architecture depicted above, was 

proposed by Zhong and Ghosh (2001). They assumed that the HMMs can influence 

each other in different levels, as opposed to the standard fully coupled HMMs, and 

the level of coupling is directly characterised by some parameters. They introduced 

the new parameter “Coupling Coefficient” to model the degree of coupling between 

two HMMs. The authors proposed to model the joint conditional dependency of C  

HMMs coupled together as “a linear combination of all marginal dependencies”, i.e. 

( ) ( )1 2
1 1 1 1

1
, ,..., ,

C
c C c c
t t t t c c t t

c
P q q q q P q qθ ′

′− − − −
′=

=∑  where c cθ ′ is the coupling coefficient 

representing the level of influence from model c′  on model .c   

We will introduce a new topology of CHMMs in Chapter 5 to capture the interaction 

between expert judgement and the deterioration process of a system. The formulation 

of our CHMM has the advantage of reduced parameter space compared to the 

CHMMs mentioned above. 

3.5.3.2  CHMMs Implementation for Diagnostics  

In many CBM applications more than one condition monitoring method is used, in 

order to obtain more accurate diagnostics. An example is multi-channel vibration 

signals collected from rolling bearings for fault diagnostics (Jardine et al., 2006). In 

this case HMMs are not appropriate for modelling CBM diagnostics since there is 

only one process to describe the underlying failure mechanism and one process to 

model the observation.  

Recently the standard fully coupled HMM depicted in Figure 3.4 has been used in 

rotating machinery diagnostics. Xiao et al. (2011) used the CHMM to combine the 

features extracted from horizontal and vertical vibration signals for fault diagnostics 

of bearings. Each observation sequence corresponds to a feature sequence extracted 

from the vibration signals of one channel. A separate CHMM was trained for all 

possible bearing conditions, i.e. normal and three different fault types. The diagnosed 

condition is the one associated with the model that maximises the likelihood of the 

observation data. Their experiment on data from a rolling bearing vibration test 
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machine validated the feasibility of this method and its effectiveness for the fault 

diagnostics of rotating machinery based on multi-channel fusion monitoring. In this 

experimental study, 80 datasets were used to train the model. However, in real 

practice the number of observation sequences available for training the model is 

much more limited. This is mainly due to replacements carried out before failure. It 

would be interesting to see the effect of limited datasets on the trained model and 

hence its diagnostic performance. 

3.5.4 HMMs Represented as Dynamic Bayesian Networks 

The hidden state in a DBN is modelled in terms of a set of variables, instead of a 

single random variable; this allows a flexible structure for the interaction between 

hidden states for complex systems. Murphy (2002) proposed a method of 

representing multiple interacting HMMs as DBNs. This method has the advantage of 

reduced computational complexity of inference. Camci and Chinnman (2005) used 

this method of implementing HMMs by DBNs to estimate the health state of the 

drill-bits on a CNC drilling machine, using the thrust-force and torque sensors as 

monitoring information. More recently, Tobon-Meja et al. (2012) used this modelling 

framework for the prognostics and diagnostics of the cutting tools in a CNC 

machine. They modelled the evolution of wear in the cutting tools by a Mixture of 

Gaussian Hidden Markov Models (MoG-HMMs) represented by a DBN and used the 

features extracted from condition data to train this model. As condition data are 

continuously collected, the current health condition of the cutting tools is 

continuously estimated online and the residual life is predicted, based on the DBN 

inference algorithms provided by Murphy (2002).  

3.5.5 Hidden Semi Markov Models 

One limitation of HMMs is that this framework is unable to explicitly model the time 

spent in each state. Based on the Markovian property, in an HMM the probability of 

staying in State i  for d  time units is computed as the joint probability of the self-

transition in State i  for 1d −  unit times and an outgoing transition once, or 

( )1 1d
ii iia a− − , which is the geometric distribution function of d . Since in most real 

practices the state duration does not follow this function, Hidden Semi Markov 

Models (HSMM) were introduced to overcome this drawback by explicitly 
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modelling the state durations using an appropriate probability density function 

(Russel and Moore, 1985). An HSMM can be represented by the compact form of 

( ), , ,A B Dλ π=  where D  is the state duration probability distribution and, as for the 

standard HMM, A  is the transition matrix, B  is the observation matrix and π  is the 

initial probability distribution. Unlike an HMM in which each hidden state generates 

a single observation, each state in an HSMM can emit a sequence of observations.  

Since an HSMM allows modelling the time duration of each hidden state, it has the 

potential capability of performing prognostics – that is, of estimating the residual 

useful life. Dong et al. (2006) proposed a diagnostics and prognostics approach based 

on HSMM method. An individual HSMM is trained for all possible fault types in 

addition to the HSMM for normal conditions. After training the models, the state 

durations are estimated from the training data. Given a sequence of observations a 

fault can be diagnosed using the standard HMM classification technique. After 

identifying the fault type and estimating the current health state, the residual life of 

the system is computed using a recursive equation. Dong and He (2007) evaluated 

the proposed methodology through an experimental case study on hydraulic pumps 

and showed that the HSMM-based diagnostics is superior to HMM-based 

diagnostics. Recently, a non-stationary version of this model has been proposed by 

Peng and Dong (2011) to improve the prognostic performance of this method. In this 

model, the probabilities of transition to less healthy states increase by aging. Hazard 

rate is used to combine the aging factor with the state transition probabilities. Using 

the same experimental data, the prognostic performance of this method has been 

evaluated and has been shown to be an improvement over the HSMM used without 

the aging factor.  

3.5.6 Three Basic Problems in HMMs 

In order to utilise HMMs in CBM modelling, three basic problems have to be solved. 

These problems along with their best-known solutions in literature are given in the 

following paragraphs.  
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3.5.6.1 Evaluation (Classification) 

Consider the problem where there are a number of HMMs. Given a sequence of 

observations of length  , the problem is to find out which HMM 

most likely generated the given sequence of observations. In other words, for a 

HMM, the problem is to compute the probability of the observation sequence 

( )P O λ , and hence choose which HMM was the most likely to have produced that 

sequence. In the industry application described in Chapter 2, O  denotes the sequence 

of expert judgements, where ot  denotes the expert judgement provided at time t  as 

an integer number. 

A naive method of calculating the probability of the observation sequence would be 

to consider the probability of this sequence given all possible sequences of 

hidden states. Calculation in this way is computationally expensive, particularly for 

models with a large number of states or long observation sequences. Rather, an 

efficient procedure called the forward algorithm, based on dynamic programming, is 

used to calculate the probability of an observation sequence given a particular HMM 

(Rabiner, 1989; Cappe, 2005). The forward algorithm uses the forward variable, 

denoted by , that represents the joint probability of observations up to time  

and , . In other words,  is the probability of 

observing the partial sequence   and the system being in State i  at time .t   

The name of this algorithm originates from the way it processes a sequence of 

observations. It moves forward from the first observation in the sequence to the last. 

At each single observation in the sequence, probabilities to be used for calculations 

at the next observation are computed. The algorithm comprises the following steps: 

Initialisation: Define  as:  

  

Induction: Compute the forward variable at each time  through 

the following recursive equation:  

T , ToooO ,...,, 21=

TN

)(itα t

iqt = ( )λα iqoooPi ttt == ,,...,,)( 21 )(itα

tooo ,...,, 21

)(1 iα

!1 i( ) = " ibi o1( ),   1# i # N .

11 −≤< Tt
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1 1
1

( ) ( ) ( ),  1 .
N

t t ij j t
i

j i a b o j Nα α+ +
=

⎡ ⎤= ≤ ≤⎢ ⎥⎣ ⎦
∑  

Termination: The probability of the observation sequence is given by 

summing the likelihood on all possible paths, that is, 

 
1

( | ) ( ).
N

T
i

P O iλ α
=

=∑  

The complexity of this method is proportional to , while the direct calculation 

mentioned before has an exponential complexity. When there is a collection of 

HMMs and a sequence of observations, the model with the maximum is 

chosen as the model that most likely generated the observation sequence.  

3.5.6.2 Decoding (Recognition) 

Another problem, which is usually of most interest, is to find the hidden states that 

generated a sequence of observations. Within the context of CBM, this problem is 

solved for diagnostics to estimate the current health state of a system given condition 

data (Baruah and Chinnam, 2005; Akhilesh Kumar et al., 2011). Recalling the 

industry application described in Chapter 2, this corresponds to finding the actual 

condition state of the system, given a sequence of expert judgements.   

Given a sequence of observations , and an HMM, the problem is to 

find the most likely sequence of hidden states. We could do this by listing all 

possible sequences of hidden states and finding the probability of the observed 

sequence for each of the combinations. The most probable sequence of hidden states 

is then that combination that maximises the probability of the observation sequence 

given the hidden state combination. This approach of exhaustively calculating each 

combination is computationally expensive.  

The Viterbi algorithm is a dynamic programming algorithm used to determine the 

most probable sequence of hidden states given a sequence of observations and an 

HMM (Forney, 2005). It defines the partial probability  as the probability of 

reaching a particular intermediate state in the trellis. This probability is different 

from the one in the forward algorithm, since it represents the probability of the most 

TN 2

)( λOP

ToooO ,...,, 21=

δ
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probable path to a state at time t,  and not the total over all possible paths to the state. 

 is defined as the maximum probability of all sequences ending in State  at 

time  and the best partial path is the sequence that achieves this maximum 

probability. Each state at time will have a partial probability and a partial best 

path. The Viterbi algorithm finds the overall best path by choosing the state with the 

maximum partial probability and choosing its partial best path.  

At each intermediate and end state we know the partial probability . However, 

the aim is to find the most probable sequence of states; therefore we need some way 

of recording the partial best paths through the trellis. This recording is carried out by 

holding, for each state, a back pointer, denoted by , which points to the 

predecessor state that optimally provokes the current state. The following steps 

formally define the Viterbi algorithm: 

Initialisation: Calculate and  for  as: 

  

Induction: Calculate  and , for , using the following 

recursive equations, where the operator “argmax” selects the index that 

maximises the bracketed expression: 

  

Termination: Find the most likely final state , by selecting the highest

: 

  

Back tracing: Find the most likely sequence of states by back tracing, 

starting from  via the back pointers: 

)(itδ i

t

Tt =

)(itδ

)(itΨ

)(itδ )(itΨ 1=t

!1 i( ) = " ibi o1( ),
#1 i( ) = 0,    1$ i $ N .

)( jtδ )( jtΨ 2 ! t ! T

! t j( ) = max
1"i"N

! t#1 i( )aij$% &'bj ot( ),
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! t#1 i( )aij$% &',      1" j " N ,  2 " t " T .
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The Viterbi algorithm looks at the whole sequence, before deciding on the most 

likely final state and then tracing back through the pointers to indicate how it might 

have arisen. This algorithm makes the assumption that the most likely sequence of 

hidden states up to time t  must depend only on the observation at time t , and the 

most likely sequence of states at time t !1 . This assumption is satisfied in a first-

order HMM. 

3.5.6.3 Training (Learning) 

The training or learning problem is to adjust the HMM parameters to maximise the 

probability of a given observation sequence (training sequence), i.e. to maximise 

 where . The problem of computing the optimal parameters, or a 

set of parameters that globally maximise , is intractable in practice (Chen et 

al., 2010). However, using some iterative procedure such as the Expectation 

Maximisation algorithm (EM), it is possible to improve the model parameters to 

locally maximise (Baum, 1970; Cappé et al., 2005; Rabiner, 1989). In this 

paragraph we discuss the Baum–Welch algorithm (Welch, 2003), which is the most 

successful, widely cited, HMM training method in the literature.  

The Baum–Welch algorithm is a generalised Expectation Maximisation (EM) 

algorithm that locally maximises . Using an initial guess of model parameters, 

the Baum–Welch algorithm first estimates the likelihood of hidden states given the 

observation sequence, and then uses the expected counts of state transitions and 

observations to estimate the parameters. Since the expected counts can be derived 

from the parameters and vice versa, the procedure can be iterated to move from an 

initial guess of the parameters to a better estimate that (locally) maximises ( )P U λ
(Cappé et al., 2005). The Baum–Welch algorithm uses forward and backward 

variables to calculate the expected counts. The calculation of the forward variable 

 is given in paragraph 3.5.6.1. The backward variable  is defined as the 

qt
! = " t+1 qt+1

!( ),   t = T #1,T # 2,...,1.

)( λOP ),,( BAπλ =

)( λOP

)( λOP

)( λOP

! t i( ) )(itβ
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probability of the partial observation sequence  given that the current 

state is i :  

.           

The backward algorithm starts from the last observation in the sequence and moves 

backward to the first observation. As in the case of the forward variable, a recursive 

equation is used to calculate : 

!T i( ) = 1,  1" i " N ,      

1 1
1

( ) ( ) ( ), 1 , 1,...,1.
N

t ij j t t
j

i a b o j i N t Tβ β+ +
=

=        ≤ ≤        = −∑   

To re-estimate the parameters the new variable  is defined as the probability 

of a path being in State  at time  and in State  at time , given the observation 

sequence  and the model: 

. 

Using Bayes’ rule, can be given by: 

   

From the definitions of forward and backward variables, can be given by: 

 

where accounts for the partial observation sequence  ending in State 

 at time ;  represents the transition to State ;  represents observing  

at time ; and  accounts for observing the partial observation sequence

.  
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By summing  over , we obtain the probability of being in State  at time  

given the observation sequence and the model, denoted by : 

. 

By summing  over the time index , we get a quantity that can be interpreted as 

the expected number of times that State  is visited or the expected number of 

transitions made from state : 

! t i( ) =
t=1

T "1

#   
Expected number of transitions made from State i.   

Also, the quantity we get from summation of  over the time index from  

to  can be interpreted as the expected number of transitions made from State 

 to State : 

 Expected number of transitions made from State  to State . 

Based on the concept of counting the event occurrences, and using the above 

formulas, the parameters of the model can be re-estimated given the training 

observation sequence as follows: 

= The expected frequency, or number of times, in State  at time  

     = ; 

aij =
Expected number of transitions from State i to State j  

Expected number of transitions from State i 

    =
!t i, j( )

t=1

T "1

#
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bj k( ) = Expected number of times visiting State j  and observing symbol ! k

Expected number of times visiting State j 

         =

" t j( )
      t=1
s.b. ot=!k

T #1

$

" t j( )
t=1

T #1

$
;

  

The Baum-Welch algorithm starts from the initial model  to compute 

the forward and backward variables and then re-estimates the parameters using the 

above formula. Denoting the re-estimated model as , Baum and his 

colleagues (1970) proved that , that is, the probability of the 

observation sequence given the re-estimated model is greater than or equal to the 

probability of the observation sequence given the initial model. Using  in place of 

 iteratively and repeating the re-estimation calculation forms an expectation 

maximisation algorithm that, when repeated until convergence, adjusts the 

parameters of an HMM corresponding to a local maximum in model likelihood.  

By following the steps analogous to the Baum-Welch algorithm, in Section 5.3 we 

develop an algorithm to train the proposed CHMM using sequences of expert 

judgements.  

3.5.7 Challenges in Implementing HMMs in Condition Based Maintenance 

A challenge associated with implementing HMM in practice that yet needs to be 

investigated is training the models. An issue associated with implementing EM 

training algorithms (such as the Baum–Welch algorithm, and other event occurrence-

based parameter estimation methods in general) in CBM is the availability of the 

training data. In practice, there is often insufficient number of event occurrences to 

train reliable model parameters, since systems are subject to preventive maintenance 

and a replacement is most likely carried out before a failure occurs. Therefore, there 

are usually a small number of observations available for training, particularly for 

higher indexed states representing worse levels of deterioration.  

For some specific applications it might be feasible to use accelerated life tests and 

obtain the condition data related to all condition states of a machine. However, for 

),,( BAπλ =

! = " ,A,B( )
P O !( ) " P O !( )

!
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most CBM applications it is not practical to experimentally obtain the condition data 

associated with all of the deterioration states and operational conditions that a 

machine undergoes. An example of this would be complex systems for which the 

accelerated life test is impractical, or when the condition monitoring is contracted 

out. Therefore, it is important to investigate the amount of training data required for 

training reliable models in order to have effective diagnostics and prognostics 

performance.  

We will examine this implementation issue for our proposed CHMM in Chapter 6. 

The effect of the number of observation sequences on the trained model will be 

examined and possible solutions to improve the training performance will be 

discussed. 

3.6 Summary of Research Gaps 

This chapter reviewed the existing modelling approaches for diagnostics and 

prognostics with emphasis on how they model the relationship between condition 

data and the underlying health condition of a monitored system. 

Recall from Section 1.4, that one of the objectives of this research is to estimate the 

true condition of a system and to predict the remaining time to failure given expert 

judgements. In Section 2.4 the role of expert judgement in assessing the system’s 

condition in an industrial practice was described. The subjective assessment of 

systems’s condition leads to qualitative results that can be can be stated by discrete 

measures, such as grades or classes, and this results in the definition of discrete 

states.  

Incorporation of expert judgement in prognostics and diagnostics has not been 

widely addressed in academic literature. As mentioned in Sub-Section 3.4.2, Wang 

and Zhang (2008) addressed the use of expert judgement in prognostics. They 

considered that expert judgement is provided based on the current condition data and 

is an indirect assessment of the residual life of a system. Thus, they assumed that the 

current expert judgement is independent of previous judgements, given the current 

residual life. They used a stochastic filtering based method to predict the residual life 

of a monitored system at regular time epochs given expert judgements. The 
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application of this method requires the specification of the probability distribution 

function and parameter estimation of the probability of expert judgement given the 

residual life, i.e. P Yt xt( )  in addition to the probability distribution function of the 

delay time.  

HMMs can provide a flexible way to model the evolutionary relationship between 

expert judgement and the underlying condition of a system. The stochastic evolution 

of the actual system’s state and the stochastic relationship between expert judgement 

and the underlying condition state can be described by the transition and observation 

probability matrices whose elements can be estimated by the well-established HMMs 

training algorithm, such as the one described in Paragraph 3.5.6.3. In Chapter 5, we 

will propose a new CHMM formulation to model the stochastic relationship between 

expert judgement and the unobservable deterioration condition of a system.  

Chapter 4 reviews the models that are related to the final stage of CBM that is 

maintenance decision-making given the information available from diagnostics and 

prognostics. 
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4 Condition Based Maintenance Optimisation  
 

In Chapter 3, we reviewed the models that describe the stochastic relationship 

between condition data and the actual condition of a monitored system, to be used as 

a basis for diagnostics and prognostics. These models are related to the technical 

interpretation of the condition data answering the question “how should the condition 

monitoring results be interpreted?” (Campbell and Jardine, 2001). This chapter is 

focused on the final stage of CBM, that is, maintenance decision-making given that 

the condition data and their interpretation are available. In other words, this chapter 

reviews the models answering the question “how should the condition monitoring 

results be acted on?”. The aim is to provide an insight on, and identify the existing 

gaps of CBM optimisation models for partially observable systems.  

4.1 Introduction 

A maintenance optimisation model is defined as “a mathematical model in which 

both costs and benefits of maintenance are quantified and an optimum balance 

between both is obtained” (Dekker, 1996). In this definition maintenance costs 

include all the costs incurred by activities “intended to retain an item or system in, or 

restore it to, a state in which it can perform its required function” (EN 13306, 2001). 

These include, for instance, the costs of performing repairs or conducting 

inspections. Maintenance benefits consist of the savings on costs that are prevented 

by maintenance (e.g. costs of replacement of failed equipment, or production loss 

due to unscheduled breakdowns). The outcome of maintenance optimisation models 

can be obtained as optimal maintenance policies, or derived as analytical results 

regarding their structural characteristics (e.g. stationary control-limit policy) (Dekker 

et al., 1997).  
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Maintenance optimisation models originated in the early sixties with models 

optimising Time Based maintenance policies, such as the well-known “Age 

replacement” and “block replacement” models (Barlow and Proschan, 1965). A 

number of surveys of Time Based maintenance optimisation models and their 

applications have been presented by several researchers: Barlow and Proschan 

(1965), Valdez and Feldman (1989), McCall (1965), Dekker (1996), Scarf (1997), 

Wang (2002), Nakagawa (2006), and more recently Ahmad and Kamaruddin (2012). 

In Time Based maintenance, maintenance actions (e.g. preventive replacements) are 

scheduled based on calendar time, or operational age, such as “cycles” or 

“cumulative load” (Cooke and Bedford, 2002). Nakagawa (2006) classifies Time 

Based optimisation models according to the factor used for scheduling the 

maintenance actions: (1) “time-dependent models” i.e. maintenance actions are 

scheduled based on the total amount of calendar time the system has been in 

operation; and (2) “number-dependent models” i.e. maintenance actions are 

scheduled based on the number of cycles completed by a property of the system. 

CBM uses condition data to determine “more precisely the most advantageous 

moment” for performing maintenance actions (Campbell and Jardine, 2001). Hence 

CBM optimisation models can help to indicate the best decisions regarding 

maintenance actions, given the information available from condition monitoring. 

Recall from Chapter 1 that systems subject to condition monitoring fall into two 

categories: completely observable systems and partially observable systems. The 

focus of this research is CBM for partially observable systems, i.e. the system’s 

condition cannot be fully observed or identified through condition monitoring. As 

discussed and reviewed in Chapter 3, a model is needed to describe the stochastic 

relationship between condition data and the underlying condition of the monitored 

system. This model (e.g. PHM, HMM) is used as a basis for diagnostics and 

prognostics, i.e. to estimate the actual system’s condition and its residual life, given 

condition data. When optimising maintenance policies, interventions of maintenance 

activities are incorporated into diagnostics and prognostics. This “makes the situation 

more complicated since extra effort is needed to describe the nature of maintenance 

policies” (Jardine et al., 2006). 
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Depending on problem context, CBM optimisation models for partially observable 

systems have different structures. Apart from the modelling approach for describing 

the stochastic relationship between condition data and the underlying system’s 

condition, there are some influential factors that characterise these models. We will 

discuss these factors in Section 4.3. In Section 4.2 we first discuss some general 

aspects and features in maintenance optimisation models. We will address these later 

in Section 4.4 to review the CBM optimisation models for partially observable 

systems and clarify the gaps in literature.  

4.2 General Aspects in Maintenance Optimisation Models 

According to Dekker (1996), the following aspects are generally covered by 

maintenance optimisation models: 

1. Description of a technical system (e.g. a simple item or a complex 

mechanical system). 

2. Modelling the deterioration of system in time and the possible consequences 

(e.g. failure probability and costs of replacement or repair of failed equipment 

and production loss during unscheduled breakdown). 

3. Description of the available information about the system and the actions 

open to management (e.g. replacement and physical inspections revealing the 

actual deterioration condition of system). 

4. An objective function and an optimisation technique that helps in finding the 

best balance (e.g. the total expected discounted cost over a finite horizon 

minimised by dynamic programming). 

These aspects, along with the modelling approaches for addressing them, 

characterise maintenance optimisation models. For instance, the deterioration of a 

system can be considered as continuous stochastic process and modelled as a gamma 

process or assumed to be a discrete-state stochastic process and modelled as a 

Markov process. The admissible action could be considered as replacement and 

inspection conducted at discrete time epochs revealing the actual deterioration 

condition. Among these aspects, there are some that are specifically related to CBM, 

such as the types of condition monitoring (e.g. perfect or imperfect). We will discuss 
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these in Section 4.3. There are also some aspects in maintenance optimisation models 

that are applied to all types of maintenance, i.e. possible maintenance actions in a 

policy and the planning horizon for policy optimisation. We discuss these aspects in 

the following sub-sections.   

4.2.1 Planning Horizon 

Maintenance policies can be optimised over finite or infinite planning horizons and 

the optimal policies can be obtained as “stationary” or “dynamic” policies (Dekker et 

al., 1997; Nicolai and Dekker, 2008).  

According to Wagner (1970), when optimising “investment” decisions that are 

repeated in future, it is better to consider an infinite horizon and include the long-

term future consequences. Since the optimisation situations (e.g. systems behaviour) 

usually become steady over the long-term, optimising maintenance policies over an 

infinite planning horizon makes it possible to obtain a stationary optimal policy. A 

stationary policy is provided as static decisions for maintenance actions that do not 

change over the planning horizon. This facilitates derivation of the analytical 

expressions that specify the optimal policy, as well as its implementation in practice. 

However, a stationary policy is only valid for a steady situation and hence “short-

term” variations such “unexpected opportunities” cannot be taken into account 

(Dekker et al., 1997) .  

When short-term, time-dependent variations need to be taken into account the 

policies are optimised over a finite horizon and the optimal policy is obtained as a 

dynamic (time-dependent) policy that may vary over the planning horizon (Dekker et 

al., 1997). For instance, season-based environmental condition variations such as 

weather climate can significantly change the lead time to prepare repair resources 

and hence change the availability of wind turbines (McMillan and Ault, 2008; Byon 

and Ding, 2010). Therefore, when modelling the policy optimisation, the 

consequences of short-term availability variations (i.e. production loss) need to be 

taken into account. This can be done, for instance by assuming varied failure cost in 

the maintenance optimisation model. In a manufacturing company (e.g. producing 

ice-cream) the revenue loss could vary due to the short-term changes of the 
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production demand (e.g. reduced demand of ice-cream during winter). These short-

term variations can be captured in a dynamic maintenance policy. 

4.2.2 Effectiveness of Maintenance Actions 

When optimising maintenance policies, maintenance actions with different levels of 

effectiveness can be considered. Maintenance effectiveness is the degree to which 

the condition of a system is restored. Pham and Wang (1996) classify maintenance 

actions according to their effectiveness as : 

• Perfect maintenance: the operating condition of a system is restored to “as 

good as new” condition, meaning that the lifetime distribution, deterioration 

level and failure rate are the same as a brand new system after the 

maintenance action.  

• Minimal repair or minimal maintenance: the operating condition of a system 

is restored to “as bad as old” meaning that the failure rate of a system is not 

changed and is the same as before performing the maintenance action.  

• Imperfect repair or imperfect maintenance: the operating condition of a 

system is restored to somewhere between “as good as new” and “as bad as 

old”.  

• Worse repair or worse maintenance: the deterioration level of a system or the 

failure rate increases by performing a maintenance action, but the system 

does not break down. 

• Worst repair or worst maintenance: performing the maintenance action 

causes a breakdown. 

In reality most preventive maintenance actions (e.g. cleaning or greasing fan 

bearings) and repairs (e.g. realigning fan bearings) fall into the category of imperfect 

maintenance, i.e. if effectively done, they can improve the system health condition. 

In general, the effectiveness of admissible maintenance actions depends on the 

system complexity and the maintenance resources available. For instance, for simple 

non-repairable components (e.g. gears), when preventive maintenance actions such 

as greasing are not available, the maintenance action choices in an optimisation 

model are limited to “replacement” and “no action”. 
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4.3 Condition Based Maintenance Optimisation Models for 

Partially Observable Systems 

CBM optimisation models try to optimise the choices of maintenance actions or the 

time for performing them on the basis of the information collected through condition 

monitoring. Here we characterise CBM optimisation models by the choices of 

decisions to be optimised (i.e. maintenance action choices, or the time of performing 

them) and by the control factors (e.g. residual life) on the basis of which the 

decisions are optimised. The control factors and decision choices basically depend on 

the mechanism of the condition monitoring technique. Figure 4.1 illustrates this 

suggested  characterization.  
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Figure 4.1: Condition Based Maintenance optimisation models. 
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The decision variables optimised depend on the condition monitoring mechanism. 

For instance, when the condition data are collected continuously (e.g. continuously 

recorded vibration signals), the optimisation model tries to optimise the “triggering 

threshold” for performing maintenance actions. For a system whose condition is 

monitored through sequential inspections (e.g. oil analysis), the optimisation model 

can be applied to optimise the time of conducting the inspections and/or the choices 

of maintenance actions on the basis of the inspection outcomes. For such systems 

condition monitoring is considered a costly activity and decisions as to what 

maintenance action to perform and when to conduct the next inspection (i.e. 

condition monitoring conducted at discrete time epochs) are optimised, on the basis 

of the condition monitoring outcome. These decisions are limited to the maintenance 

action choices, if the cost incurred by condition monitoring is not considered in the 

optimisation models – that is, condition monitoring is assumed to be carried out at 

predetermined intervals.  

A large class of CBM optimisation models assumes that the optimal policy has a 

control-limit structure and tries to optimise the policy decision variables according to 

this structure. A “control-limit” policy is defined by a set of thresholds such that if a 

control factor reaches the threshold certain maintenance actions are carried out. 

Control-limit optimal CBM policies for completely observable systems are obtained 

as optimal thresholds of the system deterioration level for performing maintenance 

actions or scheduling the condition monitoring intervals, see for example Wang 

(2000); Barata et al. (2002); Dieulle et al. (2003); and Huynh et al. (2011). 

For partially observable systems, however, the exact deterioration level is unknown. 

Several CBM optimisation models for partially observable systems consider 

condition data (e.g. temperature) or a function of them (e.g. proportional hazard rate) 

as thresholds to be optimised. In a category of these models referred to as “hazard 

control-limit type” the optimal CBM policy is obtained as optimal thresholds of 

hazard rate for performing maintenance actions (Makis and Jardine, 1992; Kumar 

and Westberg, 1997; Jardine et al., 1999; Vlok et al., 2002). In this approach PHM 

(see Section 3.5) is used to model the hazard rate as a combination of age and 

condition data; hence the optimal policy is defined as control-limits over these two 

factors.  
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Hazard “control-limit” models were criticised by Scarf (1997), Christer et al. (1997) 

and Wang (2003) in that only the current value of condition data are taken into 

account and the rest of the condition history is ignored in maintenance decision-

making. To address this problem, Christer et al. (1997) used a state space model and 

the Kalman filter to estimate and predict the erosion level of the inductors in an 

induction furnace conditional on all condition data to date. A dynamic optimal policy 

was proposed to determine the optimal time to perform preventive replacement, on 

the basis of the estimated erosion condition, when the latest condition data becomes 

available. Wang (2003) applied a stochastic recursive control model to predict the 

residual life given all the condition data available and proposed a dynamic policy to 

determine the monitoring intervals given the predicted residual life distribution.  

The Partially Observable Markov Decision Process (POMDP) (Monahan, 1982) is 

another approach to modelling CBM optimisation in which the whole history of 

information, including all maintenance actions and condition data, is taken into 

account. When optimising maintenance policies, POMDPs do not assume certain 

predetermined structural characteristics of the optimal policies. Hence results can be 

either obtained as optimal policies, or their structural characteristics, or both. In the 

following section, we review POMDP models applied to CBM optimisation for 

partially observable systems. 

4.4 Partially Observable Markov Decision Processes (POMDPs) 

When system’s conditions are monitored at discrete time epochs, CBM policies can 

be described as a sequential decision-making process through which decisions 

regarding maintenance activities are made, given the information available from 

condition monitoring. To exemplify such sequential decision-making, consider a 

system whose deterioration level can be classified into N  discrete states. At each 

decision time epoch t , the system is in a state { }1,2,...,tx N∈ , and an action  at !"  

has to be made, where !  denotes the set of all actions available to the decision 

maker. Taking the action ta  makes the system randomly move to a new state  !xt , 

incurring a corresponding cost that is dependent on the current state, the new state, 

and the action taken. The goal is to find the optimal policy for taking the actions, to 
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optimise an objective function, such as the minimum expected total cost over a finite 

planning horizon. Markov Decision Processes (MDPs) (Puterman, 1994; Sheskin, 

2010) enable maintenance policies to be formulated as sequential decision processes; 

and they find the optimal policy by evaluating a trade-off between immediate and 

future benefits and costs. These models are originally based on the basic sequential 

decision model introduced by Derman (1962).  

POMDPs (Monahan, 1982; Lovejoy, 1991) are generalisations of MDPs in which it 

is not assumed that the system state at each decision time epoch is precisely known. 

Hence, they provide a natural way for formulating CBM policies for partially 

observable systems. States in POMDPs, i.e. “belief states”, are represented by the 

conditional probability distributions of the current condition states given the 

historical observations (e.g. condition data and maintenance actions).  

In what follows we discuss the POMDPs applied to CBM optimisation for partially 

observable systems in two categories classified according to the nature of the 

obtained results. The first category uses the POMDP to establish conditions under 

which the optimal policy has certain structural characteristics. The second category 

obtains the optimal policy without assuming a particular structure.  

4.4.1 Results on the Optimal Policy Structure  

There are many structural results on POMDP models that suggest, given some fairly 

realistic assumptions about the model parameters such as increasing failure rate, that 

the optimal policy has a control-limit structure. This feature allows the optimal 

policy to be represented by a collection of decision rules characterised by functions 

that relate the belief states to maintenance actions. A control-limit policy for partially 

observable systems is basically defined as follows (Ohnishi et al., 1986): For each 

action, there exists a region (control-limit) denoting the sets of all the belief states at 

which this action is optimal. The regions for POMDPs with two condition states, 

namely “good” and “bad”, are expressed as fixed probability rules stating that if the 

posterior probability of the system operating in the “good” condition is less than or 

equal to some threshold value, then a certain action should be taken (Shiryaev, 

1968). The regions for POMDPs with more than two states are defined with respect 

to “likelihood ratio ordering” (Rosenfield, 1976) between the belief states. 
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Some of the earliest papers investigating the structure of optimal maintenance 

policies for a two-state discrete time production processes were reviewed by 

Monahan (1982). Among them, Ross (1971) and White (1979) studied the POMDP 

for quality control problems for production processes with two condition states. The 

actions to be optimised at decision epochs were considered as inspection, do nothing 

or replacement. They analysed the optimal discounted cost over a finite horizon and 

derived conditions under which the optimal policies have monotone control-limit 

structures. Ohnishi et al. (1986) extended these models by introducing the concept of 

condition monitoring and investigated an optimal inspection and replacement policy. 

However, they assumed that inspection reveals the exact state of a system. They 

studied the characteristics of the optimal policy that minimises the expected total 

discounted cost over an infinite horizon and they showed that under certain 

conditions it has a “monotonic control-limit” structure. Grosfeld-Nir (1996) 

investigated the replacement policy optimisation for a two-state production process 

and derived simple equations to find the control-limit policy, under the assumption 

that the observed value follows a uniform distribution. 

Ohnishi et al. (1994) generalised the previous POMDPs by including minimal-repair 

as a maintenance action choice. The deterioration was modelled as a discrete-time, 

discrete-state Markov process stochastically related to condition data through a 

known observation probability matrix. They assumed that the system could be in 

“available” condition or fail to “unavailable condition” with a certain probability 

depending on the current deterioration state. Minimal-repair was assumed to recover 

the system to an available condition preserving it in the same deterioration state. 

They obtained the condition under which the policy that minimises the expected total 

discounted cost over an infinite horizon has a control-limit structure.  

Ivy and Pollock (2005) included the concept of imperfect repair into the POMDP 

model and studied the structure of the optimal policy over a finite horizon. They 

modelled the system deterioration process as a Markovian discrete-time, discrete-

state process and used a binomial distribution to describe the stochastic relationship 

between condition data and the system deterioration condition. Failures were 

assumed to be “silent”, meaning that the system could continue to operate under the 

failed condition unless some action is taken, and they considered a cost associated 
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with such operation. They established conditions under which the policy that 

minimises the total expected cost has a control-limit structure. Tamura et al. (2010) 

also included imperfect repair into a POMDP for a partially observable system with 

two deterioration conditions, namely “good” and “bad”. Imperfect maintenance was 

assumed to transfer the system to the “good” state with a state-dependent probability, 

i.e. the result of repair was assumed to be uncertain. They showed that under some 

constraints of the model parameters, the optimal maintenance policy has monotone 

properties and can be classified into one of six specified structures.  

4.4.2 Derivation of the Optimal Policy 

Another class of POMDPs focuses on the applicability of the POMDP models in 

practice rather than the theoretical results, and obtains the optimal CBM policy by 

solving the model using approximate methods without assuming a predetermined 

structure.  

Maillart (2006) formulated a POMDP for the optimisation of a CBM policy, 

including inspection as a decision choice, in addition to replacement. She studied the 

problem for both perfect inspection, revealing the actual system’s condition, and 

imperfect inspection, obtaining condition data, and obtained the policy that 

minimises the total expected cost per unit time over an infinite horizon by 

numerically solving the proposed POMDP. She also derived a closed-form heuristic 

expression for the perfect inspection problem.  

Ghasemi et al. (2007) studied a replacement policy optimisation model formulated as 

a POMDP in which the stochastic relationship between the condition data and the 

actual system’s condition was modelled by PHM (see Section 3.4). Based on the 

results obtained by White (1979) and Ohnishi (1994) they derived the optimality 

conditions for the replacement policy that minimises the long-run expected cost per 

unit time. They used dynamic programming methods to numerically solve the 

proposed POMDP.  

Recently Zhou et al. (2011) proposed a POMDP with an extended decision space, 

modelled as a combination of the maintenance action choice (inspection; imperfect 

repair; replacement) and their corresponding waiting time. To optimise the time to 

perform actions, instead of the classic Markovian deterioration process they 
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considered a continuous-state deterioration process and adopted a Gamma-based 

state space model (Zhou et al., 2009) to describe its stochastic behaviour. They used 

a combination of Monte Carlo-based density projection (Brooks et al., 2006) and 

policy iteration (Puterman, 1994) to optimise the choices of maintenance actions and 

the corresponding waiting durations to minimise the long-run expected cost per unit 

time.  

4.5 Summary of Research Gaps 

The focus of this chapter was on the decision-making stage of CBM systems, where 

decisions regarding maintenance actions are made on the basis of the information 

available from condition monitoring. The existing modelling approaches in CBM 

policy optimisation, with the focus on partially observable systems, have been 

reviewed.  

The big gap between theory and practice in the field of maintenance optimisation 

modelling has been pointed out by several researchers who reviewed maintenance 

optimisation models (Dekker, 1996; Dekker et al., 1997; Sherwin, 2000; Nicolai and 

Dekker, 2008; Horenbeek et al., 2010; Sharma et al., 2011). Dekker (1996), and 

Nicolai and Dekker (2008) specifically concluded that case studies are not well 

represented in maintenance optimisation literature, although this field is applied 

mathematics. Several papers reported mathematical extensions of existing models, 

obtained by relaxing some assumptions or adding new features. The papers 

presenting new models developed or validated based on case studies are very few. 

Therefore, one of the objectives of this research is to develop a CBM decision 

optimisation model motivated from an industry application. 

In the following paragraphs we discuss a few research directions that have been 

motivated from the CBM decision-making mechanism described in Section 2.3, and 

which have not been addressed in literature.  

One of the important observations arising from studying the maintenance event 

database in Chapter 2 was a two-step decision-making procedure carried out at time 

epochs when an experienced engineer (i.e. expert) interprets the condition data. The 

result of this decision-making procedure is logged as an inspection (e.g. direct 
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monitoring of the condition of the fan bearings) followed by a maintenance action 

(e.g. replacement or cleaning the fan bearings). In this CBM policy, an expert’s 

assessment of the system’s condition is provided at discrete time epochs, and based 

on this a choice of inspection is selected to further investigate and verify the system’s 

condition. If an inspection is carried out, a maintenance action is then selected on the 

basis of the inspection outcome. Such a sequential procedure is also applicable to 

other CBM systems, where different condition monitoring techniques with different 

costs and precision, and different maintenance action types with different costs and 

effectiveness are performed. In such situations, a policy optimisation model can be of 

help to support cost-effective decision-making with regard to the inspection choices, 

and maintenance action choices selected on the basis of the inspection results. 

POMDPs provide a natural way for formulating and optimising sequential CBM 

decision-making procedures for partially observable systems, when the condition 

data or their interpretations are provided at discrete time epochs. Many POMDP 

models have been proposed and developed for CBM optimisation, with a wide 

variety of underlying assumptions (as reviewed in Section 4.4). However, the 

sequential decision-making throughout a decision interval, i.e. selection of the 

inspection types followed by selection of the maintenance actions, has not been 

investigated within this body of literature.  

Maillart (2006) addressed the problem of sequential decision-making during a 

decision period but with limited action choices. She only considered “no action”, 

“imperfect inspection” and “replacement” as the action choices at the beginning of a 

decision period, and “no action” and “replacement” as the admissible action choices 

after the inspection (if any) is performed. Most of the CBM optimisation models 

developed as POMDPs assume replacement as the only admissible maintenance 

action. Although in reality most of the preventive maintenance actions and repairs 

are classified as imperfect maintenance, very few considered imperfect maintenance 

as an action choice in the POMDPs. For instance, Zhou et al. (2011) included 

imperfect repair into the POMDP model, but, similar to Maillart (2006), they only 

considered one type of inspection and assumed that the selection of inspection and 

maintenance actions is made at a single decision step.  
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Motivated by the CBM industry application in Chapter 2, we develop a CBM 

optimisation model in Chapter 7 that explicitly addresses the gaps discussed above. 

Essentially, we propose to model a POMDP where at the beginning of sequential 

decision time epochs, followed by expert judgement, the decisions regarding 

inspection choices and maintenance actions are made in two consecutive steps. 

Particularly, we consider “no inspection”, “perfect inspection” and “imperfect 

inspection” as the inspection choices, and “no action”, “imperfect repair” and 

“replacement” as the maintenance action choices admissible after the inspection. We 

obtain the optimal policy over a finite planning horizon and explore its structural 

characteristics in Chapter 8.   
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5 A Coupled Hidden Markov Model Capturing the 

Interaction Between Expert Judgement and the 

Deterioration Condition of a System 
 

In this chapter a new Coupled Hidden Markov Model (CHMM) formulation is 

proposed to model the stochastic relationship between expert judgement and the 

underlying deterioration state of the system. The proposed CHMM aims to enrich the 

capabilities of standard HMMs by introducing a new modelling structure while 

utilising the well-established methodologies of HMMs (e.g. forward-backward 

procedure). 

Consider a mechanical system subject to deterioration and sudden failure, where the 

deterioration condition of the system can be classified into unobservable states, 

with State 1 representing the “as good as new” condition and State denoting the 

worst health condition of the system. The system can be a component (e.g. a gear) or 

a piece of mechanical equipment (e.g. a gearbox). We assume an experienced 

engineer assesses the condition of the system at regular discrete time epochs. We 

refer to the experienced engineer’s assessment on the system’s state as “expert 

judgement state” and we assume that it is provided as a positive integer number, 

{ }1,2,...,ty N∈  at time .t   

In Section 5.1 we describe the conceptual architecture of the problem we are 

concerned with. In Section 5.2 we present the formulation of the proposed CHMM. 

In Section 5.3 we develop a training algorithm to estimate the model parameters. The 

derivation of the conditional probability distribution of the remaining time to failure, 

based on the proposed modelling approach, is presented in Section 5.4.  

N

N
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5.1 Conceptual Architecture of the Model 

Let { }1,2,...,tx N∈  denote the system’s deterioration state at time t . In this 

modeling framework, we assume that the state transition of the deterioration process 

takes place at the beginning of a time epoch. When assessing the system’s condition 

at the beginning of a time epoch, the expert is also influenced by his judgement at the 

previous time epoch. That is, the expert judgement state at time t , is dependent on 

the expert judgement state at the previous time epoch  and the deterioration state 

of the system  We also assume that system’s failure occur at the beginning of a 

time epoch, and if it occurs, it will be detected by the expert when evaluating the 

system’s condition. Hence, an observation in this model is considered to be the 

combination of the expert judgement state, i.e. a positive integer number, and the 

status of the system as failed or survived. 

The probabilistic inference graph in Figure 5.1, which is rolled out in time, illustrates 

the interaction between the true deterioration state of the system and the expert 

judgement over discrete time intervals. The square nodes represent the observation 

variable tu  and the circular nodes represent the true deterioration state of the system 
and the expert judgement state , at time . The horizontal arrows represent the 

conditional probabilities between variables. The vertical arrows coming from  to 

 and tu  model the influence imposed by the system’s deterioration state to the 

expert judgement state and the observation.  

An alternative assumption, which could generalise this modelling framework, would 

be assuming that the assessments are carried out by multiple experts. This, for 

example, could represent the scenario when engineers with different levels of 

experience, or different general viewpoints (e.g. optimist or pessimist), assess the 

deterioration condition of the system. In this case, multiple expert judgement 

processes would be considered. Therefore, the interaction between the expert 

judgement states and the system’s deterioration states, across time, would be 

modeled by different conditional probabilities.  

,ty
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Figure 5.1: Probabilistic inference graph demonstrating the interaction between the 
true states of the system, expert judgement states and observations over regular 
discrete time intervals. 

5.2 Theoretical Structure  

We assume that the evolution of the system’s condition and expert judgement follow 

a Markovian stochastic process. The Markov process is chosen because of its ability 

to graphically and mathematically describe the evolution of the system and expert 

judgement with discrete states over time. In this section we formulate the hierarchical 

structure depicted in Figure 5.1 as a CHMM in which the deterioration condition of 

the system and expert judgement are considered as coupled Markov processes, and 

an observation process is affected by both expert judgement and systems’ 

deterioration processes. These two processes are coupled by introducing the 

conditional probabilities between their state variables. Let ( ),t tX Y  denote the joint 

state of the proposed CHMM at time .t   and Yt tX  are random variables, and 

 and t tx y  denote their realisations. To simplify the notation we usually drop the 

random variables; so for example ( )1 1 1 1, ,t t t t t t t tP X x Y y X x Y y− − − −= = = =  will be 

written as ( )1 1, ,t t t tP x y x y− − . The transition probabilities between the joint states and 
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the observation probabilities for the proposed CHMM are obtained in Sub-Section 

5.2.1 and 5.2.2 respectively.  

5.2.1 Transition Probabilities 

The probabilistic inference graph in Figure 5.1 describes the underlying assumption 

regarding the interaction between the true deterioration states of the system and 

expert judgement states. The vertical arrows coming from  to  represent the 

probabilistic relationship between the current expert judgement state and the current 

deterioration state of the system. The transition probability between the joint states 

over one time unit can be given as follows, using the chain rule: 

( ) ( ) ( )1 1 1 1 1 1, , , , , .t t t t t t t t t t tP x y x y P y x x y P x x y− − − − − −=             (5.1)

           

As illustrated in Figure 5.1, the current expert judgement is only dependent on the 

current true state of the system and the expert judgement state provided in the 

previous time epoch. Also, the deterioration process of the system is assumed to 

follow Markovian evolution, and hence the probability of the current system’s 

deterioration state, given the system’s deterioration state in the previous time epoch, 

is independent of other information. Therefore Equation (5.1) can be simplified to 

( ) ( ) ( )1 1 1 1, , , .t t t t t t t t tP x y x y P y x y P x x− − − −=               (5.2) 

We assume that the true state of the system, i.e. the system’s deterioration state, can 

either degrade to the next deterioration state or remain in the same state, over one 

time unit. This assumption implies that the system cannot improve on its own 

(without any maintenance intervention). Assuming that the system is in State 

 at time 1t − , let denote the probability of the system remaining at the 

same state and not moving to another state, at the end of the time epoch starting at 

time 1t − , and  be the complementary probability of ,  

( )
( )

1

1

,

,   1 .
i t t

i t t

p P x i x i

p P x i x i i N
−

−

= = =

= ≠ = ≤ ≤
               (5.3) 

tx ty

,  1 ,i i N≤ ≤ ip

ip ip
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The above assumption regarding the transition of the system’s deterioration states is 

valid in practice if the time unit is defined small enough (e.g. as a day). Alternatively, 

we could assume that the system could degrade to any higher indexed states, over 

one time unit. In this case the transition probabilities between the deterioration states 

would be represented by the elements of an upper triangular matrix.  

The final state is considered to be the absorbing state, i.e. 1Np = . Figure 5.2 

graphically shows the evolution of the true state of the system as a “Left-to-Right” 

Markov process with  discrete states. The oval nodes represent the state labels 

while the arrows represent the transition probabilities between the states.  

 

 

 

   

 

 

 

 

As for the deterioration process, we assume that the evolution of the expert 

judgement also follows Markovian behaviour. As seen in Figure 5.1, it is assumed 

that the expert judgement state at time t , is dependent on the expert judgement 

state at the previous time epoch,  and the current true state of the system,  We 

introduce  to denote the probability that the expert judgement 

remains in State  if it was in this state at the previous time epoch, given that the 

system is in State . Note that in this definition the timing has been considered to 

reflect the assumption that the state transition of the deterioration process takes place 

at the end of the time epoch starting at time 1t − , just before expert judgement ty  is 

provided at the beginning of the time epoch starting at time t . Let  be the 

complementary probability of , they are formally defined as 

N

,ty

1,ty − .tx

,  1 , ,i
kq i k N≤ ≤

k

i

i
kq

i
kq

1 2 

 1p  2p

 1p  2p

…  N
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 i
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 ip

 ip

Figure 5.2: State transition diagram of the deterioration process of a system 
with N states. 
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( )
( )

1

1

, ,

, ,  1 , .

i
k t t t

i
k t t t

q P y k y k x i

q P y k y k x i i k N
−

−

= = = =

= ≠ = = ≤ ≤
              (5.4) 

As for the deterioration process, the final expert judgement state, State  is 

considered to be the absorbing state,  Defining the transition 

probabilities for the expert judgement states in this manner comes directly from the 

conceptual structure of dependencies depicted in Figure 5.1. It reflects the modelling 

assumption that the expert judgement process has its own internal dynamic while still 

being influenced by the deterioration process of the system. Particularly, it implies 

that the expert makes only “degrading judgements” meaning that he believes the 

condition of the system cannot be improved over time without any maintenance 

intervention. Hence assuming that 1 ,  1 ,ty k k N− = ≤ ≤  ty  will either remain in State 

k  or degrades to the next state. Figure 5.3 demonstrates the state transition of the 

expert judgement  as a “Left-to-Right” Markov process. The oval nodes represent the 

expert judgement state labels, and the arrows represent the transition probabilities 

between the expert judgement states, with  representing the current deterioration 

state of the system.  

 

 

 

 

 

 

 

Returning to the joint state transition probability in Equation (5.2), we introduce

 as the transition probability from the joint state  

to the joint state  over a unit of time, 

( ), 1 1, , ,   1 , , , .ik jl t t t ta P x j y l x i y k i j k l N+ += = = = = ≤ ≤             (5.5) 

,N

1,   1 .i
Nq i N= ≤ ≤

i

, ,  1 , , , ,ik jla i j k l N≤ ≤ ( ),t tx i y k= =

( )1 1,t tx j y l+ += =
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Figure 5.3: State transition diagram of the expert judgement process, given 
that the system is in State .i   
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According to the definitions in Equations (5.3) and (5.4) the transition probability 

between the joint states can be explicitly given by the model parameters as: 

( ), 1 1

   

, ,

  if   and ,

if  1 and ,

        if   and 1,     1 , , , ,  

  if  1 and 1,
0       otherwise.                  

ik jl t t t t

j
i k
j

i k
j

i k
j

i k

a P x j y l x i y k

p q j i l k
p q j i l k
p q j i l k i j k l N
p q j i l k

+ += = = = =

⎧ = =
⎪

= + =⎪
⎪= = = + ≤ ≤⎨
⎪ = + = +⎪
⎪⎩

       

             

(5.6) 

5.2.2 Observation Probabilities 

Recall from Section 5.1, we assume that failures will be only identified by the expert 

when evaluating the condition of the system at discrete time epochs, and hence the 

observation in this model is considered to be a combination of the expert judgement 

state and the status of the system as failed or survived. Thus we define the set of 

observation symbols, denoted by  as 

  V = kS ,kF{ },  1! k ! N ,                 (5.7) 

where  means that the expert judgement is in State  and the system is 

still working, and means that the expert judgement is in State k  and the system 

has failed.  

We assume that the system fails in State  with probability , and  

denotes its complementary probability or the probability of survival in State i,  i.e. 

  

Let ( )ik tb u  be the probability of observing tu  given that the Coupled Hidden Markov 

process is in the joint State  hence the probability of the 

observation symbols is given by 

( ) ( )
( ) ( )

, ,

, ,   1 , .
ik t t t t i

ik t t t t i

b u kS P u kS x i y k F

b u kF P u kF x i y k F i k N

= = = = = =

= = = = = = ≤ ≤            
 (5.8) 

,V

kS ,  1 ,k k N≤ ≤

kF

,  1 ,i i N≤ ≤ iF iF

1 .i iF F= −

( ), ,  1 , ,t tx i y k i k N= = ≤ ≤
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As presented in this section, the dimensionality of the problem is reduced 

considerably by the way in which the transition and observation probabilities are 

parameterised. Gathering together all the parameters, the model can be indicated by a 

set of parameters, as 

{ }, , ,  1 , ,i
i k ip q F i k Nλ = ≤ ≤                 

(5.9) 

where  is the complete set of parameters and is used to represent the proposed 

CHMM. The initial probabilities across the states are not crucial for this model. This 

is because we assume that the deterioration process of the system starts in time 0 

when the system is put into service in the “as good as new” condition, i.e. State 1.  

5.3 CHMM Training Algorithm 

Given an observation sequence 1 2, ,... TU u u u= , where tu V∈  is the observation 

symbol at time ,t  the problem is to find the optimal set of model parameters that 

maximises the probability of the observation sequence given the model, ( ).P U λ  

Recall from Paragraph 3.5.6.3 that there is no known way for an HMM to 

analytically solve this problem. However, using some iterative procedure such as the 

Expectation Maximisation algorithm (EM), known as Baum–Welch for the standard 

HMMs, it is possible to improve the model parameters to locally maximise the 

likelihood of the observation sequence (Baum, 1970; Cappé et al., 2005; Rabiner, 

1989) 

Using an initial guess of model parameters, the Baum–Welch algorithm first 

estimates the likelihood of hidden states given the observation sequence, and then 

uses the expected counts of state transitions and observations to estimate the 

parameters. Since the expected counts can be derived from the parameters and vice 

versa, the procedure can be iterated to move from an initial guess of the parameters 

to a better estimate that (locally) maximises ( )P U λ (Cappé et al., 2005). Dempster 

et al. (1977) proved that the EM algorithm is guaranteed to increase the likelihood of 

the observation sequence at each iteration until a local maximum is reached. In 

practice, convergence is declared when the difference of the probabilities of the 

λ
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observation sequence given the trained model parameters at consecutive iterations 

becomes less than a predefined convergence threshold. 

In this section we develop an EM algorithm to train the proposed CHMM by 

following steps analogous to the Baum–Welch algorithm (as described in Paragraph 

3.5.6.3). In Sub-Section 5.3.1 we derive forward and backward variables, to perform 

the inference for our CHMM (forward and backward variables for standard HMMs 

were defined in Sub-Section 3.5.6). In Sub-Section 5.3.2 we introduce and derive the 

posteriori probability measures using the forward and backward variables. The 

computation of the forward and backward variables and the posteriori probability 

measures form the E (expectation) step of the EM algorithm. At the M 

(maximisation) step, the parameters are re-estimated using the probability measures 

computed at the E step. In Sub-Section 5.3.3 we derive the re-estimation formulas for 

our CHMM parameters by intuitive Bayesian posteriori re-estimation.  

5.3.1 Extended Forward-backward Procedure  

Let 1 2, ,... TU u u u=  be a sequence of observations where tu V∈  is the observation 

symbol at time .t  To solve the likelihood ( )P U λ  and compute the posteriori 

probability measures, we modify the standard forward-backward procedure for our 

CHMM. Let  denote the set of an initial guess of model parameters, i.e. 

. Given the initial parameter values, the transition and observation 

probabilities, denoted by  and,    
!bik (ut ) , can be computed using Equations (5.6) 

and (5.8). 

Given a sequence of observations 1 2, ,... TU u u u=  at each time t , we define the 

forward variable  as the joint probability of the observations up to time  and 

the coupled states  given the model  !! . That is  

   
! t (ik) = P(u1,u2 ,...ut ,xt = i, yt = k | !"),  1 , ,1 .i k N t T≤ ≤ < ≤            (5.10) 

Starting from the first observation at time 1t = , we have 

 !!

   
!! = !pi , !qk

j , !Fi{ }

   
!aik , jl

( )t ikα t

( ),t tx i y k= =
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!1(ik) = P(u1,x1 = i, y1 = k | !")

          = P(x1 = i, y1 = k | !")P(u1 | x1 = i, y1 = k, !"),   1# i,k # N .
          (5.11) 

As mentioned before, it is assumed that the deterioration and the expert judgement 

processes start in the “as good as new” state, therefore we have: 

   
!1(ik) =

!bik (u1)   for i,k = 1 and

0          otherwise.

"
#
$

%$
             (5.12) 

At each time ,t  we can calculate the forward variable  as: 

   

! t+1( jl) = P u1,u2 ,...,ut+1,xt+1 = j, yt+1 = l !"( )
= P u1,u2 ,...,ut ,ut+1,xt = i, yt = k,xt+1 = j, yt+1 = l !"( )

k=1

N

#
i=1

N

#

= P u1,u2 ,...,ut ,xt = i, yt = k !"( )
k=1

N

#
i=1

N

# P ut+1,xt+1 = j, yt+1 = l u1,u2 ,...,ut ,xt = i, yt = k, !"( )
Term 1

" #$$$$$$$$$ %$$$$$$$$$
.

                                                                                                       
 

      (5.13) 

Term 1 in Equation (5.13) can be given as follows, using the chain rule: 

   

P ut+1,xt+1 = j, yt+1 = l u1,u2 ,...,ut ,xt = i, yt = k, !!( )
= P xt+1 = j, yt+1 = l u1,u2 ,...,ut ,xt = i, yt = k, !!( )
                    " P ut+1 xt+1 = j, yt+1 = l,u1,u2 ,...,ut ,xt = i, yt = k, !!( ).

         (5.14) 

 

As seen in Figure 5.1, it is assumed that the observation at each time period, given 

the current deterioration and expert judgement states, is independent of previous 

observations and coupled states. Also, according to Markovian evolution of the 

coupled states, Equation (5.13) can be given as 

   

! t+1( jl) = P u1,u2 ,...,ut ,xt = i, yt = k !"( )
k=1

N

#
i=1

N

# P xt+1 = j, yt+1 = l xt = i, yt = k, !"( )
                            $ P ut+1 xt+1 = j, yt+1 = l, !"( ),              1% j,l % N ,  1< t % T ,

  

(5.15) 

1 ,t T< ≤ 1( )t jlα +



 

 

75 

and therefore, based on the definitions in Equations (5.6), (5.8) and (5.10), the 

forward variable at each time ,  1 ,t t T< ≤  can be computed through the following 

recursive equation: 

   
! t+1( jl) = ! t (ik) !aik , jl

k=1

N

"
i=1

N

"#
$
%

&

'
( !bjl (ut+1),           1) j,l ) N ,  1< t ) T .

         
(5.16) 

It follows from the definition of the forward variable that the likelihood of the 

observation sequence given the model λ  can be given by 

( ) ( )

( )

1 2
1 1

1 1

, ,..., , ,

             = .

             

N N

T T T
i k
N N

T
i k

P U P u u u x i y k

ik

λ λ

α

= =

= =

= = =∑∑

∑∑            (5.17) 

We define the backward variable  as the probability of the partial observation 

sequence 1 2, ,...,t t Tu u u+ +  given the coupled states  and the model   !!.  

Starting from the last observation in the sequence, and going back to the first one, 

 is formally defined as: 

 ( )1 2( ) , ,..., , , ,  1 , ,  1 ,t t t T t tik P u u u x i y k i k N t Tβ λ+ += = = ≤ ≤ ≤ <           

and ( ) 1T ikβ =  for all  

       

(5.18)At 

each time ,  1 ,t t T≤ <  we can compute the backward variable  as follows: 

   

!t ik( ) = P ut+1,ut+2 ,...,uT xt = i, yt = k, !"( )
  = P xt+1 = j, yt+1 = l,ut+1,ut+2 ,...,uT xt = i, yt = k, !"( )

l=1

N

#
j=1

N

#

 = P xt+1 = j, yt+1 = l xt = i, yt = k, !"( )
l=1

N

#
j=1

N

# P ut+1,ut+2 ,...,uT xt+1 = j, yt+1 = l,xt = i, yt = k, !"( )
Term 1

" #$$$$$$$$$ %$$$$$$$$$
,

 

                  (5.19) 

( )t ikβ

( ),t tx i y k= =

( )t ikβ

1 , .i k N≤ ≤

( )t ikβ
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Using the chain rule, Term 1 in Equation (5.19) can be given as 

 

 

   

P(ut+1,ut+2 ,...uT | xt+1 = j, yt+1 = l,xt = i, yt = k, !!)

= P(ut+1 | xt+1 = j, yt+1 = l,xt = i, yt = k, !!)P(ut+2 ,...,uT | ut+1,xt+1 = j, yt+1 = l,xt = i, yt = k, !!)  

 

                 (5.20) 

Recall that the observation at each time given the current coupled state is 

independent of previous coupled states and observations, thus Equation (5.20) can be 

simplified to 

   

P(ut+1,ut+2 ,...uT | xt+1 = j, yt+1 = l,xt = i, yt = k, !!)

= P(ut+1 | xt+1 = j, yt+1 = l, !!)P(ut+2 ,...,uT | xt+1 = j, yt+1 = l, !!)
         (5.21) 

By substituting Equation (5.21) into (5.19), the backward variable, for 1 t T≤ < , can 

be computed by recursion as 

   

!t (ik) = P ut+1,ut+2 ,...,uT xt = i, yt = k, !"( )
         = P xt+1 = j, yt+1 = l xt = i, yt = k, !"( )

l=1

N

#
j=1

N

#

                      $ P ut+1 xt+1 = j, yt+1 = l, !"( )P ut+2 ,...,uT xt+1 = j, yt+1 = l, !"( )
         = !aik , jl

!bjl (ut+1)!t+1( jl)
l
#

j
# ,         1% i,k % N ,  1% t < T .

        (5.22) 

5.3.2 Posteriori Probability Measures 

Given the observation sequence, initial model and the corresponding 

transition and observation probabilities 
   
!aik , jl  and !bik u( ) , we introduce two posteriori 

probabilities to compute the expected counts needed for parameter re-estimation. 

   
!! = !pi , !qk

j , !Fi{ }
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Let ( ),t ik jlξ  be the probability of being in the joint state  at time  

and in the joint state  at time , given the observation sequence 

and the model parameters, that is 

( )
( )

( )
( )

( )

1 1

1 1

1 1

1 1
1 1 1 1

( , ) , , , ,

, , , ,
             

, , , ,
             .

, , , ,

t t t t t

t t t t

t t t t
N N N N

t t t t
i j k l

ik jl P x i y k x j y l U

P x i y k x j y l U
P U

P x i y k x j y l U

P x i y k x j y l U

ξ λ

λ
λ

λ

λ

+ +

+ +

+ +

+ +
= = = =

= = = = =

= = = =
=

= = = =
=

= = = =∑∑∑∑
     

(5.23) 

From the definitions of the forward and backward variables,  ( ),t ik jlξ  can be given 

by 

   

!t (ik, jl) =
" t (ik) !aik , jl

!bjl (ut+1)#t+1( jl)

" t (ik) !aik . jl
!bjl (ut+1)#t+1( jl)

l=1

N

$
k=1

N

$
j=1

N

$
i=1

N

$
,                                                 (5.24) 

where  accounts for the partial observation sequence 1 2, ,..., tu u u , ending at the 

joint state  at time ;  
   
!aik , jl  represents the transition to the joint state 

 from the joint state ( ),t tx i y k= =  ;  
   
!bjl (ut+1)  represents observing 

1tu +  at time ; and accounts for observing the partial observation 

sequence 2 3, ,...,t t Tu u u+ + . 

By summing  over the joint state  we obtain the 

probability of being in the joint state  at time , given the observation 

sequence and the model parameters, denoted by  

( )
1 1

( ) , , ( , ).
N N

t t t t
j l

ik P x i y k U ik jlγ λ ξ
= =

= = = =∑∑
          

 (5.25) 

The quantity obtained from summing  over the time index for  can 

be interpreted as the expected number of times that the joint state  is visited or 

( ),t tx i y k= = t

( )1 1,t tx j y l+ += = 1t +

( )t ikα

( ),t tx i y k= = t

( )1 1,t tx j y l+ += =

1+t 1( )t jlβ +

( , )t ik jlξ ( )1 1,t tx j y l+ += =

( ),t tx i y k= = t

( ),t ikγ

( )t ikγ 1 1t T≤ ≤ −

( ),i k
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the expected number of transitions made from the joint state , given the 

observation sequence and  !! , 

 = Expected number of transitions from the coupled state       (5.26) 

 

Similarly, if we sum  over time, 1 1t T≤ ≤ − , we obtain a quantity that can 

be interpreted as the expected number of transitions from the joint state ( ),i k  to the 

joint state ( ),j l  given the observation sequence U , and model  !! , 

1

1
( , )T
tt
ik jlξ−

=
=∑  Expected number of transitions from the joint state ( ) ( ),  to , .i k j l  

      (5.27) 

5.3.3 Parameter Re-Estimation 

The probability measures in Equations (5.24) to (5.27) are computed using the initial 

value of the parameters; . Based on the concept of event occurrences, it is 

possible to re-estimate the parameters using the posteriori probabilities computed in 

Sub-Section 5.3.2. 

Recall from Equation (5.3) that  is the probability of the system remaining at State 

 over one unit of time. Based on the concept of frequencies of event occurrences, 

the estimated value of , denoted by , is given by 

  
p̂i =

Expected number of times that the system remains in State i 
and does not move to another state at the begining of the next time epoch.

Expected number of times that State i is visited.
. (5.28) 

This equation can be expressed in terms of the transitions between the coupled states: 

( ) ( )

( )
1 1

1

Expected number of transitions from the joint State ,  to ,
ˆ .

Expected number of transitions from the joint State ,  

N N

k l
i N

k

i k i l
p

i k

= =

=

=
∑∑

∑
 (5.29) 

Using Equations (5.26) and (5.27), we have: 

( ),i k

1

1
( )T
tt
ikγ−

=∑ ( ), .i k

( , )t ik jlξ

   !pi , !qk
j , !Fi

ip

i

ip ˆ ip
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1

1 1 1
1

1 1

( , )
ˆ .

( )

T N N

t
t l k

i T N

t
t k

ik il
p

ik

ξ

γ

−

= = =
−

= =

=
∑∑∑

∑∑
                          (5.30) 

Recall from Equation (5.4) that  is the probability that the expert judgement 

remains in State k  if it was in this state at the previous time epoch, given that the 

system is in State j . Based on the concept of frequencies of event occurrences, the 

estimated value of j
kq , denoted by ˆ jkq , can be computed using the expected number 

of transitions between the joint states as: 

( ) ( )

( ) ( )
1

1 1

Expected number of transitions from the joint State ,  to ,
ˆ .

Expected number of transitions from the joint State ,  to ,

N

j i
k N N

i l

i k j k
q

i k j l

=

= =

=
∑

∑∑
(5.31) 

From the definitions in Equation (5.27), Equation (5.31) can be given as: 

( )

( )

1

1 1
1

1 1 1

,
ˆ .

,

T N

t
j t i
k T N N

t
t i l

ik jk
q

ik jl

ξ

ξ

−

= =
−

= = =

=
∑∑

∑∑∑
                           (5.32) 

Finally, , i.e. the probability of failure at State , based on the concept of 

frequencies of event occurrences, can be estimated as: 

 Expected number of times that the system fails in State ˆ .
Expected number of times that State  is visitedj

jF
j

=           (5.33) 

This expression can be given in terms of the events according to the joint states: 

( )

( )
1

1

ˆ

Expected number of times that the system fails in the joint State ,  
.

 Expected number of times that the joint State ,  is visited

j

N

l
N

l

F

j l

j l

=

=

=

∑

∑

      (5.34) 

 

As defined in Equation (5.7) the observation symbol  means that the expert 

judgement state is  and the system has failed. Assuming that the system 

j
kq

jF j

kF

,  1 ,k k N≤ ≤
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cannot improve on its own, and upon a failure a replacement is carried out, the 

observation symbol  can only be observed at the end of an observation sequence, 

i.e. tu kS=  for all  where is the length of the observation sequence. In 

other words, the last observation is either Tu kF=  when the observation sequence 

has ended with a failure, or Tu kS=  when the observation sequence completed 

before failure occurred. 

We previously defined  as the probability of being in the joint state 

 at time  and in the joint state  at time , given 

the observation sequence and the model parameters. Therefore, if we sum  

over time 1,  for 1 1  that tt t T u lF+≤ ≤ − = , we obtain a quantity that can be 

interpreted as the expected number of transitions from the joint state to the joint 

state  and observing 1tu lF+ = . If we sum this quantity again over the joint state 

 we obtain what could be interpreted as the expected number of times that the 

joint state  is visited and the symbol lF  is observed, i.e. the expected number of 

times that the joint state ( ),j l  is visited and the system fails in the deterioration State 

j . Hence Equation (5.34) can be given by: 

( )

( )
1

1

   1 1 1 1
   . .

1

1 1 1 1

,

ˆ .
,

t

T N N N

t
t i k l
s b

u lF
j T N N N

t
t i k l

ik jl

F
ik jl

ξ

ξ
+

−

= = = =

=
−

= = = =

=

∑ ∑∑∑

∑∑∑∑
                         (5.35) 

 

5.3.4 Summarising the Training Algorithm 

Through Equations (5.10)–(5.35) we developed an Expectation Maximisation 

procedure, by following steps analogous to the Baum-Welch algorithm. To 

summarise, starting with an initial set of parameter values,  we first 

compute the forward and backward variables and the posteriori probability measures, 

kF

1 ,t T≤ < T

( , )t ik jlξ

( ),t tx i y k= = t ( )1 1,t tx j y l+ += = 1t +

( , )t ik jlξ

( ),i k

( ),j l

( ),i k

( ),j l

   
!! = !pi , !qk

j , !Fi{ },
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and then re-estimate the parameter values . Since the expected event 

counts in the re-estimation equations are derived from the parameters and vice versa, 

we can iteratively use  in place of  in the right hand side of Equations (5.10)-

(5.22) to move from an initial guess of the parameters to a better estimate that 

(locally) maximises P U !( ) .  

The Baum-Welch algorithm could not be applied directly, because our model has 

coupled states, i.e. xt , yt( ) , and the Markov transition probabilities are 

parameterized; Baum-Welch assumes single hidden states, and an unconstrained 

Markov transition matrix.  

We developed this training algorithm by following steps analogous to the Baum–

Welch algorithm, which is the most successful, widely cited, method for training the 

standard HMMs. To perform the inference for our CHMM, in Sub-Section 5.3.1, we 

modified the standard forward-backward procedure described in Paragraph 3.5.6.3. 

This modification was made with regard to the joint states, i.e. xt , yt( ) , based on the 

model assumptions according to their conditional dependency across time. Similar 

modification was also made to derive the posteriori probability measures in Sub-

Section 5.3.2. The final step of the Baum-Welch algorithm is re-estimating the 

elements of the transition and observation probability matrices. In the proposed 

training algorithm we derived the re-estimation formulas for our CHMM parameters, 

i.e.   pi ,qk
i , Fi  ,  1! i,k ! N .  

Baum et al. (1970) and Cappe et al. (2005) described the derivation of the re-

estimation formulas for the HMM parameters in the Baum-Welch algorithm, by 

standard optimization method. A self-mapping transformation is constructed based 

on the optimality equations from the Lagrange multiplier method, and it is proved by 

Baum and his colleagues (1970) that this transformation leads to an increase in the 

objective function, i.e. P U !( ). The re-estimation formulas in the Baum-Welch 

algorithm can be also explained by intuitive Bayesian posteriori re-estimation and the 

concept of counting event occurrences. Based on this interpretation, we defined the 

re-estimation formulas for the proposed CHMM.  

)ˆ,ˆ,ˆ(ˆ
i

j
ki Fqp=λ

λ̂ λ~
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Note that in the proposed training algorithm the model parameters, pi ,qk
j ,Fi , are re-

estimated directly, instead of the joint state transition and observation probabilities, 

aik , jl  and bik o( ) . Thus, the total number of parameters re-estimated at each iteration is 

 

N !1
     pi  
! + N N !1( )

qki
"#$ %$ + N

Fi
! = N N +1( )!1, instead of 

 

N 2 ! N 2( )
aik , jl

! "# $#
+ N 2 ! 2N( )

bik o( )
! "# $# = N 3 N + 2( )

, and this has two advantages. First, the training algorithm is considerably faster and 

hence more efficient. For a model with a small number of deterioration states (e.g. 

N = 3 ) this would be a matter of a few seconds. However, for a relatively larger 

model (e.g. N = 6 ) and dataset (e.g. T = 100 ) our algorithm will be several minutes 

faster. Secondly, the trained model is more robust. This is greatly important for 

implementing the model in practice where there are usually insufficient lifetime data 

available for training the models (as discussed in Sub-Section 3.5.7). What counts in 

training HMMs (or the proposed CHMM in particular) is not the total number of 

observation sequences, but the number of sample data per parameter. Therefore, 

when the number of parameters is reduced, a training dataset is shared among less 

number of statistics and hence the estimated model parameters will be more robust. 

The algorithm presented in the next page codifies the training method explained 

above. In this training algorithm we declare the convergence when the difference 

between the probabilities of the observation sequence given the trained model 

parameters, P U !̂( ) , at consecutive iterations becomes less than a predefined 

threshold. 
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Proposed CHMM Training Algorithm 

Given a sequence of observations 1 2, ,..., TU u u u=   and an initial guess of model 

parameters , 

Repeat: 

E Step: 

1. Compute 
   
!aik , jl  and !bik u( ) ,  !i,k, j,l " 1,2,..., N{ }  and !u "V .   

2. Compute ( )t ikα  and  !t jl( ) , { } { }, , , 1,2,...,  and 1,2,..., .i k j l N t T∀ ∈ ∀ ∈  

3. Compute 
  
P U !!( )  and, Return  if 

  
P U !!( )  has converged. 

4. Compute ( ),t ik jlξ  and ( )t ikγ  { } { }, , , 1,2,...,  and 1,2,..., .i k j l N t T∀ ∈ ∀ ∈  

 

M Step: 

5. Compute ˆ ˆ ˆ, , ,ii i kF p q  { }, 1,2,..., .i k N∀ ∈  

6. Use { }ˆ ˆˆ ˆ, ,ii k ip q Fλ =  in place of . 

 

5.3.5 Multiple Observation Sequences 

Because of the “Left-to-Right” transient nature of the proposed CHMM only a small 

number of observations for each state will be available in a single observation 

sequence. Recall from Sub-Section 3.5.6 that in maintenance practice this is 

specifically an issue for higher indexed states representing worse levels of 

deterioration, due to preventive replacements performed before failure.  Therefore, in 

   
!! = !pi , !qk

j , !Fi{ }

   
!! = !pi , !qk

j , !Fi{ }

   
!! = !pi , !qk

j , !Fi{ }
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order to have sufficient data to estimate reliable model parameters, multiple 

observation sequences need to be used as training data.  

 Let ( ) ( ) ( )1 2, ,..., GU U U U⎡ ⎤= ⎣ ⎦  denote the set of G  independent sequences of 

observations, which could be different in length, where ( ) ( ) ( ) ( )
1 2, ,...,  

g

g g g g
TU u u u=  is the 

observation sequence number ,  1 ,g g G≤ ≤  with length of gT . Levinson et al. 

(1983) presented an EM algorithm for training the standard HMMs based on multiple 

independent observation sequences. Since the re-estimation formulas in Baum–

Welch algorithm are obtained based on the concept of frequencies of event 

occurrence, the re-estimation formulas for multiple observation sequences are 

modified by adding together the event counts associated with individual observation 

sequences. Levinson et al. (1983) proved that the re-estimation equations modified in 

this way guarantee the convergence of ( ) ( )( )
1

ˆ
G

g

g
P U P Uλ λ

=

=∏  to local maxima.  

Since we obtained the re-estimation formulas for the proposed CHMM based on the 

concept of frequencies of event occurrence, we can modify them based on the 

method that Levinson et al. used, to train the model based on multiple observation 

sequences. Let  denote the set of an initial guess of model parameters. Let 
( ) ( ),g
t ik jlξ  denote the probability of being in the joint state  at time  

and in the joint state  at time , given the observation sequence 

( ) ,  1 ,gU g G≤ ≤  and  !! , which can be obtained using Equation (5.24). As given by 

Equation (5.27), if we sum ( ) ( ),g
t ik jlξ  over time, 1 1gt T≤ ≤ − , we obtain a quantity 

that can be interpreted as the expected number of transitions from the joint state 

( ),i k  to the joint state ( ),j l  given the observation sequence ( )gU , and  !! . If we 

compute ( ) ( ),u
t ik jlξ  for all of the independent observations sequence in the data set 

( ) ( ) ( )1 2, ,..., GU U U⎡ ⎤⎣ ⎦  and add them together, we obtain a quantity that can be 

interpreted as the expected number of transitions from the joint state ( ),i k  to the 

joint state ( ),j l  given the data set ( ) ( ) ( )1 2, ,..., GU U U⎡ ⎤⎣ ⎦ , and  !! . By modifying the 

 !!

( ),t tx i y k= = t

( )1 1,t tx j y l+ += = 1t +
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corresponding expected event counts in Equations (5.30), (5.32) and (5.35) in this 

manner, the re-estimation equations for multiple observation sequences can be given 

as follows: 

  

p̂i =
!t

g( ) ik, jl( )
k=1

N

"
l=1

N

"
t=1

Tg#1

"
u=1

G

"

$ t
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"
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"
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(5.36)
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(5.38) 

5.4 Conditional Probability Distribution of Time to Failure 

Modelling the evolutionary interaction between expert judgement and the 

deterioration state of a system within the HMM framework allows us to use the 

established methods of this framework, such as the Viterbi algorithm (as described in 

Paragraph 3.5.6.2), to find the most likely sequence of deterioration states based on a 

particular sequence of observations. As mentioned in Section 3.5.3, this problem is 

related to diagnostics, i.e. to estimate the current system’s deterioration state given a 

sequence of expert judgement states.  

Another problem, usually of most interest in maintenance management, concerns 

predicting the remaining time to failure, given the current deterioration state of a 

system. This is particularly important when cost-effective decisions need to be taken 

regarding the maintenance actions (as described in Chapter 7). In this section, we 

explain how to derive the probability density function of the remaining time to 

failure given the estimated deterioration state. 
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Suppose that the model has been diagnosed to be in State ,  We introduce 

the random variable  to denote the time to failure. Let  denote the probability 

distribution function of the remaining time to failure given that the system is 

currently in State , that is, the probability of the system failing in t  discrete time 

units, given that it is in State i.  

  
fi(t) = P Tf = t x0 = i( ),  1! i ! N .               (5.39) 

    

Assuming that the current deterioration state of the system is 0 ,x i=  the system will 

either remain at the current state until it fails, or it will move to a higher indexed state 

and then fail. Since it is assumed that the system cannot improve on its own, 

Equation (5.39) can be given as: 

( ) ( )0 0( ) , , ,  1 .i f t f tf t P T t x i x i P T t x i x i i N= = = = + = > = ≤ ≤           (5.40)
  

Recall from Section (5.1) that, the state transition is assumed to take place at the 

beginning of a time epoch. Given that the system is in State ,i  the probability that 

the system remains at the current state for  time units and then fails in this state is: 

( ) ( )0, ,   1 ,
t

f t i i iP T t x i x i F p F i N= = = = ≤ ≤            (5.41) 

where iF  is the probability of failure when the system is in State i  and iF  is the 

complementary probability of iF .  

Now consider a situation when the system fails in a higher indexed state, given that it 

is currently in State i . In this case, for 1,t ≥  the system can remain in State i  for 

,  1 ,s s t≤ ≤  time units before moving to the next state, 1.i +  Once it moves to State 

1,i +  the probability of the remaining time to failure will be   fi+1(t ! s) . Therefore, 

given that the system is in State i , the probability that it fails in 1t ≥  time units in a 

higher indexed state is: 

( ) 1
0 1

1
, ( ),  1 ,  1.

t
s s

f t i i i
s

P T t x i x i F p p f t s i N t−
+

=

= > = = − ≤ < ≥∑          (5.42) 

i   1! i ! N .

fT ( )tf i

i

t
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By substituting Equations (5.41) and (5.42) into Equation (5.40), the probability of 

the system failing in 1t ≥  discrete time units, given that it is in State ,i  can be given 

by the following iterative equations: 

  

fi t( ) = Fi pi( )t
Fi + F s pi

s!1

s=1

t

" pi fi+1(t ! s),   1# i < N ,  

fN t( ) = FN
t FN ,

                      (5.43) 

where iF  is the instant failure or the probability of the system failing in zero time 

units, when it is in State .i  

5.5 Summary 

In this Chapter we proposed a CHMM to describe the evolutionary relationship 

between expert judgement and the unobservable deterioration condition of a system. 

The proposed formulation has the advantage of reduced parameter space compared to 

standard CHMMs in literature (as reviewed in Sub-Section 3.5.3). To estimate the 

model parameters, we developed a training algorithm by following steps analogous 

to Baum-Welch algorithm. The performance of the training algorithm will be 

experimentally evaluated in Chapter 6. The experimental results in Chapter 6 

empirically confirm that the proposed training algorithm converges to a local 

maximum and thus it can be used as an efficient practical method for training the 

proposed CHMM. However, there remains an opportunity to prove that theoretically.  
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6 Experimental Evaluation of the Coupled Hidden 

Markov Model Training Algorithm 
 

The algorithm developed to train the proposed CHMM in Chapter 5 is demonstrated 

and evaluated in this chapter by numerical experiments. The performance of the 

training algorithm is evaluated in terms of fitting the training data to the trained 

model, and the deviation of the trained parameter values from the original parameter 

values (which are used to generate the training data). The training algorithm is first 

illustrated and its performance is explored by numerical experiments in Section 6.2. 

The effect of the number of training observation sequences and the initial parameter 

values on the performance of the algorithm is then investigated by experimental 

sensitivity analysis in Section 6.3 and Section 6.4, respectively.  

6.1 Experimental Setup 

A program was coded using the MATLAB software package to execute the training 

algorithm developed in Section 5.3. The program code is presented in Appendix A. 

As summarised in Sub-Section 5.3.4, starting with an initial model  !! , the algorithm 

iteratively updates the parameter values until the difference between the probabilities 

of the training data given the trained model, P U !̂( ) , at consecutive iterations 

becomes less than a predefined threshold. For the simulation studies in this chapter 

we set the convergence threshold of the log-likelihood, log P U !̂( )( ) , to 0.0001 and 

if convergence does not take place, the re-estimation procedure is repeated for a 

maximum number of 100 times. Running the training algorithm with several 

different parameter settings and different number of observation sequences showed 

that the convergence often takes place when the re-estimation procedure is repeated 



 

 

89 

less than 50 times.  Therefore, the limit of 100 times is set as a reasonable 

compromise way of terminating the algorithm.   

To conduct the numerical experiment and the sensitivity analysis, random sequences 

of observations are generated in MATLAB to be used as the training data. The 

parameter values used to generate the data are assigned with regard to the following 

assumptions. These assumptions, which only applied to the model parameters 

generating the training data, are made to help the intuitive representation of real 

lifetime data.  

Assumption 1:  i.e. the probability of the system failing in State , is 

non-decreasing in i,  meaning that the system is more likely to fail in a higher 

indexed deterioration level reflecting a worse condition. 

Assumption 2:  i.e. the probability of self-transition when the system is 

in State i,  is non-increasing in . This means that, as the deterioration level becomes 

worse, it is more likely to make a transition to a higher indexed deterioration level 

over one time unit. Note that this assumption does not apply to State , i.e. the 

absorbing state, where  

Assumption 3:  the probability of the expert judgement making a self-transition 

in State  given that the system is in State i , is non-increasing in  for  

and  This implies that the expert is assumed to provide reasonable 

judgement tracing the actual state of the system. Therefore, given that the expert 

judgement is in State , if the system degrades to a worse condition, i.e. a higher 

indexed State , then the expert judgement is less likely to stay in the same state, 

that is  

6.2 Numerical Experiment Results 

First, to illustrate the training algorithm and explore its performance in training the 

model, numerical experiments are conducted. Consider a simple model where the 

deterioration condition of a system is classified into three states, i.e.  Ten 

random sequences of observations are generated to be used as training data (detail 

,  0 i N,iF ≤ ≤ i

,  1 i< N,ip ≤

i

N

1.Np =

,ikq

k i 1 k N≤ <

1 .i N≤ ≤

k

j i>

 for   .j i
k kq q j i≤ >

3.N =
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on generating observation sequences is included in Appendix A). We have 

performed further numerical studies for different values of N , but these studies 

show qualitatively similar behaviour, and for space reasons are not presented. The 

effect of the number of observation sequences on the performance of the training 

algorithm is examined through a numerical sensitivity analysis presented in Section 

6.4.  

The values assigned to the model parameters, referred to as original parameter 

values, are listed in Table 6.1. To help the intuitive representation of a real scenario, 

we assigned a relatively large value to the probability of self-transition when the 

system is in the least deteriorated condition, i.e. p1 , and a small value to the 

probability of the system failing in this condition, i.e. F1 . Based on these values, we 

then set the other parameter values according to the assumptions listed in Section 

6.1. The maximum length of the sequences is set to 30, sufficiently large enough to 

have sequences ending with a failure given the original parameter values. 

Sequences not ending with a failure represent censored data. 

 

Table 6.1: Original parameter values assigned to the model for generating the 
training data. 

Parameter            

Value 0.95 0.85 0.8 0.2 0.15 0.7 0.7 0.2 0.03 0.1 0.3 

 

The initial values assigned to the model parameters, along with the output parameter 

values, are given in Table 6.2. The log-likelihood increased at every iteration and 

converged after 23 iterations to the model parameter values given below. Figure 6.1 

shows the log-likelihood as a function of the number of iterations. 

 

Table 6.2: The initial, and output parameter values after the convergence of the 
algorithm . The training algorithm converged after 23 iterations. 

Parameter            

1p 2p
1
1q

2
1q

3
1q

1
2q

2
2q

3
2q 1F 2F 3F

1p 2p
1
1q

2
1q

3
1q

1
2q

2
2q

3
2q 1F 2F 3F
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Initial 

guess 

0.8 0.7 0.7 0.4 0.3 0.7 0.4 0.3 0.1 0.3 0.5 

Output 

parameter 

0.8144 0.7593 0.5832 0.6152 0.0293 0.7369 0.8009 0.2182 0.1175 0.0106 0.2004 

 

 

 

Figure 6.1: Log-likelihood of the model as a function of the algorithm iteration. 

 

The numerical experiment was repeated using different setups for parameter values 

and different numbers of observation sequences. A summary of the results of this 

extensive simulation study is as follows: 

1. The numerical experiments with different setups empirically confirm that the 

training algorithm converges to a local maximum.  

2. When the number of observation sequences is reduced, some of the 

parameters are adjusted to unreasonable values. Parameters with small 

original values,  and  in particular, are mostly adjusted to when three 

or fewer observation sequences are used to train the model. This happens 

even when the initial values are assigned to be very close to the original 

values, which is suggestive of overfitting because of insufficient training 

data. An experimental sensitivity analysis is given in Section 6.3 to 

investigate the sensitivity of performance of the algorithm to the number of 

observation sequences. 
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3. As mentioned in Section 5.3, the training algorithm is only able to find the 

local maximum. Therefore, the performance of the trained model is sensitive 

to the initial model. The numerical experiments show that the algorithm 

converges to inaccurate models when the model is initialised improperly, i.e. 

when the initial parameter values are largely deviated from the true values. 

To study the effect of the initial parameter values on the performance of the 

training algorithm, a numerical sensitivity analysis is presented in Section 

6.4. 

6.3 Experimental Sensitivity Analysis of the Training Algorithm 

with Regard to the Number of Observation Sequences 

6.3.1 Simulation Procedure 

To investigate the sensitivity of the training algorithm with regard to the number of 

observation sequences an experimental sensitivity analysis is conducted. The 

experimental setup explained in Section 6.1 and the original parameter values listed 

in Table 6.1 are used to generate the training data. The initial parameter values listed 

in Table 6.2 are used to initialise the model. We will study the effect of the initialised 

model on the performance of the algorithm in Section 6.4. The Absolute Deviation 

(AD) between the estimated and the actual parameter values is used as a measure to 

evaluate the efficiency of the training algorithm, i.e. ! "! ,  where !  denotes the 

actual parameter value and !̂  represents the estimated value of a parameter. The AD 

represents the validation error of the trained model to perform well on unseen data, 

and not only on the training data. 

The experimental sensitivity analysis is conducted as follows. First, 50 random 

observation sequences are generated based on the original parameter values given in 

Table 6.1. Then, based on the initial parameter values listed in Table 6.2, at each step 

the first  observation sequences, in the same order, are used to train the 

model. The AD between the estimated and the original values is calculated for all of 

the parameters at each step.  

n = 1,2,...,50
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6.3.2 Results and Discussion 

The simulation results are illustrated in Figure 6.2–Figure 6.12. 

 

 

Figure 6.2: Absolute Deviation between the original and estimated value of 
 according to the number of the training sequences. 

 

 

Figure 6.3: Absolute Deviation between the original and estimated value of 
 according to the number of the training sequences. 

 

 
Figure 6.4: Absolute Deviation between the original and estimated value of  
according to the number of the training sequences. 
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Figure 6.5: Absolute Deviation between the original and estimated value of  
according to the number of the training sequences. 

 

 
Figure 6.6: Absolute Deviation between the original and estimated value of  
according to the number of the training sequences. 

 
 

 

Figure 6.7: Absolute Deviation between the original and estimated value of  
according to the number of the training sequences. 

 

 

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

Number of the training sequences

Ab
so

lut
e D

ev
iat

ion

F2 = 0.1

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

Number of the training sequences

Ab
so

lut
e D

ev
iat

ion

F3 = 0.3

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

Number of the training sequences

Ab
so

lut
e 

De
via

tio
n

q1
1 = 0.8



 

 

95 

 

Figure 6.8: Absolute Deviation between the original and estimated value of  
according to the number of the training sequences. 

 

 

Figure 6.9: Absolute Deviation between the original and estimated value of 
 according to the number of the training sequences. 

 

 

 

Figure 6.10: Absolute Deviation between the original and estimated value of 
 according to the number of the training sequences. 
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Figure 6.11: Absolute Deviation between the original and estimated value of 

 according to the number of the training sequences. 

 
 

 
Figure 6.12: Absolute Deviation between the original and estimated value of 

 according to the number of the training sequences. 

 

The results of this experimental sensitivity analysis show that in general as the 

number of the observation sequences increases, the Absolute Deviation between the 

true and the estimated parameter values decreases. This means that, as expected, the 

greater the quantity of training data used to train the model, the better the algorithm 

will perform in terms of training a generalised model. 

As seen from the above figures, the validation error for the larger probabilities 

reaches its minimum faster than for the relatively lower probabilities. For example, 

as shown in Figure 6.2, the AD of , with the original value of 0.95, reduces to less 

than 0.005 when 10 sequences are used to train the model and it becomes almost 
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more observation sequences are used. The relatively large validation error of  with 

the original value of 0.15, and with the original value of 0.2, is also suggestive of 

overfitting, where the parameter values converge to unreasonable values, even when 

the initial values are close to the original values.  

Overfitting takes place when the parameter values are adjusted to random features of 

the training data. Recall from Sub-Section 6.3.1, at each step of this simulation study 

the first n = 1,2,...,50  observation sequences are used in the same order. The high 

peaks in some of the figures are due to the high level of variability that some of these 

observation sequences show. These high peaks are mostly observed when less than 

20 number of observation sequences are used to train the model. As more sequences 

are added to the training dataset, the number of sample data, i.e. event counts, for re-

estimating the parameter values increases and sensitivity to individual sequences 

decreases. Therefore, the ADs become almost steady afterwards.  

Although the structure of the proposed CHMM has the advantage of a small 

parameter space and consequential computation efficiency, the possibility of 

overfitting still exists, particularly for small probabilities. This is because the model 

is trained by maximising its performance on the training data while its efficiency is 

evaluated by its performance on unseen data, and not the training data, that is 

represented by the deviation of the parameters from their true values.  

Overfitting is particularly a problem for parameters with smaller values since, 

compared to other parameters, the training data contain smaller amount of sample 

data for re-estimating their values. In this situation the training algorithm iteratively 

adjusts these parameters to the specific random features of the training data. Thus, 

the performance of the trained model, i.e. the log-likelihood, increases iteratively 

while the performance on new data, i.e. AD, decreases. 

Intuitively, the most generalised and fitted model trained with this training algorithm 

would be where the generalisation error over unseen data has its global minimum. A 

solution would be to define a generalisation performance (or validation error) for the 

model and use that as a condition to terminate the re-estimation algorithm. 

q1
3

q2
3
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Some methods in literature have used model entropy as a measure of generalising 

performance to overcome overfitting in training standard HMMs (Brand, 1999; 

Walder, Kootsookos, and Lovell, 2003). The entropy of an observation sequence of 

length  produced by model  is given by 
 
H !,T( ) = " P U !( )

#U$ !UT
% log U !( ),   

where   !UT is the set of all sequences of length  that can be produced by model 

(Walder et al., 2003). A brief discussion on these methods and how they can be 

applied to the proposed training algorithm is presented in Sub-Section 9.2.2. 

Another solution to the problem of overfitting would be to add constraints to the 

training algorithm such that, at each iteration, the estimated parameter values would 

not fall below specific values. However, a prior knowledge of the model is needed in 

order to apply this method of dealing with lack of training data.  

6.4 Experimental Sensitivity Analysis of the Training Algorithm 

with Regard to the Initial Parameter Values 

6.4.1 Simulation Procedure 

The proposed training algorithm converges to a local maximum and therefore it is 

sensitive to the random values assigned to model parameters at initialisation of 

training. In this section we study the effect of initialising the parameters on the 

performance of the training algorithm, on both the training and unseen data. Log-

likelihood is used to evaluate the performance of the algorithm on training data. To 

assess the performance of the trained model on unseen data we use the Absolute 

Deviation between the estimated and the actual parameter values. 

The experimental setup explained in Section 6.1 and the original parameter values 

listed in Table 6.1 are used to generate the training data. First, 30 random observation 

sequences were generated based on the parameter values given in Table 6.1, to train 

the model. To study the effect of initialising individual parameters on the training 

performance, at each simulation step the initial value of one parameter is varied 

while the value of the rest of the parameters are initialised as their original values. 

The initial value of the parameters with relatively higher original values, 

, are varied between 0.1 and 1.0 with steps of 0.02, 

T !

T !

p1 = 0.95,  p2 = 0.85 and q1
1 = 0.8
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while the initial value of the parameters with relatively smaller original values, 

, are varied between 0.01 and 0.5 with steps of 0.01.  

6.4.2 Results and Discussion 

The simulation results for some of the parameters follow in the next page in Figure 

6.13 and Figure 6.14. The log-likelihoods of the trained model according to the 

initial value of the parameters are shown in Figure 6.13. The Absolute Deviation 

between the original and estimated values of the parameters according to their initial 

values are shown in Figure 6.14. The log-likelihood and Absolute Deviation for each 

simulation are displayed in the same row, and the parameter for which the initial 

value is varied is tagged along with its original value.  

q1
2 = 0.2 and F1 = 0.03
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Figure 6.13: Log-likelihood of the 
trained model according to the initial 
value of the parameters. The original 
value of the parameter, for which the 
initial value is varied, is shown on 
each diagram.  

 

 

 

 

Figure 6.14: Absolute Deviation 
between the original and estimated 
values of the parameters according to 
their initial values. 

 

The simulation results show that while the performance of the training algorithm has 
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significantly lower when their initial values are assigned close to their original 

values. For example, the Absolute Deviation error of varies between 0.0001 and 

0.2, i.e. between 0.01% and almost 21% of its original value, with the lowest 

Absolute Deviation around its original value of 0.95. But for , with the original 

value of 0.8, the AD error only varies between 0.02 and 0.03. This means that the 

training algorithm for this parameter performs most robustly with the lowest level of 

sensitivity to the initial value.  

The results for  and with relatively lower original values, are different. For  

while the log-likelihood shows slight variations, the AD error varies between 0.2 and 

0.001. For  with an original value of 0.03, the AD error varies between 0.2 and 

0.029. This means that the algorithm performance on unseen data, irrespective of 

their initial values, is not satisfactory for these parameters.  

The fluctuation of log-likelihood over the range of the initial values, even around the 

original value of the parameters, reflects the fact that the training algorithm 

converges to a local maximum. This property of the training algorithm makes its 

performance on training data sensitive to the initial model. When model training is 

repeated for different setups, changing the original and initial parameter values 

randomly, it is observed that when the model parameters are initialised such that the 

order between their true values are preserved, the training algorithm performs better 

than when the model is initialised randomly. Therefore, using prior knowledge of the 

model in initialising the parameters will improve the performance of the training 

algorithm.  

A superior choice of initialisation could be obtained by (1) using the expert 

knowledge to initialise some models; (2) evaluating the quality of the initialised 

models on the basis of the probability of each model generating the training data, i.e. 

 
P U !!( ) , using Equation (5.17); and (3) train the model by starting with the 

initialised model having the largest 
 
P U !!( ) . This will have the effect of initialising 

the model closer to the global maximum, and hence the algorithm has a higher 

chance of converging to it. Although this method of initialisations is computationally 

p1

q1
1

q1
2 F1 q1

2

F1
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expensive, it can be considered in practice when the quality of the trained model 

outperforms its computation cost.  

6.5 Summary and Conclusion 

The performance of the proposed training algorithm for the CHMM, and its 

sensitivity to initial parameter values and the number of training observation 

sequences were evaluated using simulated data. The observation sequences were 

generated based on some assumptions with regard to model parameters in order to 

intuitively represent real data. The numerical experiments empirically confirmed that 

the training algorithm converges to a local maximum. Therefore, if the initial model 

is chosen near the global maximum, the algorithm performs better in terms of fitting 

to both the training and unseen data. Initialisation becomes more important when 

there are insufficient data available for training the model.  

Although the structure of the proposed CHMM has the advantage of a small 

parameter space and consequently computation efficiency, the possibility of 

overfitting still exists, particularly for parameters with small values. When there are 

limited training data available, the parameter values are adjusted to the specific 

random features of the training data and hence the performance of the trained model 

on new (unseen) data is reduced. This motivates us to investigate alternative methods 

for training the proposed CHMM in future research. In Sub-Section 9.2.2, a brief 

discussion on the existing training algorithms in literature, that aim to solve the 

problems mentioned above for the standard HMMs, is presented.  
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7 A Two-Step Partially Observable Markov 

Decision Process  
 

In Chapter 5 a model was developed to describe the stochastic relationship between 

the deterioration condition of a system and expert judgement, in the absence of 

maintenance intervention.  Motivated from the maintenance policy described in 

Section 2.2, we now consider a decision-making problem where upon expert 

judgements, decisions regarding physical investigation of the system’s condition and 

maintenance actions are to be made.  In this chapter we formulate the decision 

optimisation problem as an MDP with partially observable states. 

We first describe the maintenance policy as a two-step decision-making process in 

Section 7.1. We then take the CHMM, developed in Chapter 5, a step further by 

incorporating the intervention of maintenance actions. The evolution of the 

deterioration process and expert judgement process subject to maintenance actions 

are described in Section 7.2. In Section 7.3 we present the formulation of the 

decision problem as a two-step POMDP. Detailed derivation of the optimal cost by 

dynamic programming is given in Section 7.4.  

7.1 Description of a Maintenance Policy as a Two-Step Decision 

Process 

We assume that an experienced engineer, i.e. expert, is called at predetermined 

regular discrete time decision epochs ,...,...,2,,0 ΔΔΔ= kt  to assess the condition of a 

system based on the monitoring information such as temperature and vibration. He 

provides his assessment as a positive integer number, { }1,2,...,y N∈ . We refer to 
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this preliminary assessment as “expert judgement” in order to distinguish from 

inspection. 

Following a preliminary assessment it is then decided either to leave the system until 

the next decision occasion, to carry out simple inspection, or to conduct accurate 

inspection. Performing an inspection allows the expert to more accurately determine 

the condition of the system; however, the level of accuracy of the inspections 

depends on the chosen inspection type. An accurate inspection is assumed to provide 

perfect information revealing the true condition of the system through precise 

physical investigations. A simple inspection is assumed to provide partial 

information, meaning that only the probability of being in each health condition state 

could be derived from the outcome of the inspection. A simple inspection costs less 

than an accurate inspection due to their different types of preparation. For example, 

the system load needs to be dropped in order to conduct a simple inspection, but the 

system has to be stopped altogether to be able to perform an accurate inspection.  

Based on the outcome of the inspection, the maintenance manager will select one of 

the following actions: to leave the system; to carry out imperfect maintenance action; 

or to replace the system. When an imperfect maintenance action is carried out, the 

system is restored to an intermediate state between the “as good as new” and the pre-

maintenance state, with different probabilities governing which restored state is 

likely to be attained. If the monitored system is non-repairable, the imperfect 

maintenance refers to some preventive maintenance action that can decrease the 

failure rate, if it is performed effectively. For example, consider the maintenance 

practice described in Section 2.2. Although bearings could be considered to be non-

repairable systems, unblocking the grease holes or correcting the shaft misalignment 

can decrease the failure rate. If the monitored system is repairable then imperfect 

maintenance implies both corrective and preventive actions. Therefore we use the 

term “imperfect maintenance” to denote both corrective and preventive maintenance 

actions that transfer a system to an intermediate state. It is assumed that the system 

can fail from within any state and upon failure, replacement is carried out which 

returns the system to “as good as new” condition, State 1.  
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This two-step decision process, as described above, is graphically illustrated in 

Figure 7.1. 

Since the exact state of the system is unknown at each decision time epoch, it is first 

inferred from the expert judgement. Following a preliminary diagnosis, the first step 

of decision-making is to select which type of inspection is to be carried out. Let Ia  

denote the decision variable regarding the inspection choice. If the decision is to not 

conduct any inspection then 0=Ia ; in this case nothing is done until the next time 

the expert is called to assess the system. 

When the simple inspection is chosen then 1Ia =  and the system is observed 

partially through a simple inspection procedure. The outcome of the simple 

inspection is assumed to be a positive integer value { }1,2,...,o Z∈  that is observed 

with probability ( )obi  when the system is in the true State i,  1! i ! N . 

The second step of decision-making is carried out when the maintenance action is 

selected, conditioned on the observations obtained from the inspection, if any. The 

decision regarding the maintenance action will be based on the belief derived from 

the inspection regarding the true deterioration state of the system. Let aM  be the 

decision variable denoting the maintenance action choice; 0=Ma  when the decision 

is to do nothing, 1=Ma  when the decision is to perform an imperfect maintenance, 

and 2=Ma  when the decision is to carry out a preventive replacement.  

If the decision is to conduct an accurate inspection, 2=Ia , the true state of the 

system, x ! 1,2,...,N{ }  is determined through precise physical inspection, and so the 

maintenance action decision is made in light of the true state of the system.  

Let FC  be the cost of a failure replacement, SC  the cost incurred to conduct a simple 

inspection, AC  the cost of an accurate inspection, MC  the cost of an imperfect 

maintenance and RC  the cost of carrying out a replacement. We wish to find the 

optimal policy for choosing inspection types and maintenance actions so that the 

total expected discounted cost over a finite planning horizon is minimised. 

Discounting future costs means that all future costs are re-calculated to the 
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equivalent value at the present time.  Therefore, costs incurred far in the future will 

not affect current decision-making since the present value of these costs is small.  

In Section 7.3, we will formulate the maintenance optimisation problem described 

above as a POMDP. Modelling the problem using an MDP framework enable us to 

evaluate a trade-off between immediate and future costs and benefits. 

As shown in Figure 7.1, the decision process consists of two steps at each decision 

period:  

Step 1: the selection of inspection type; and  

Step 2: the selection of maintenance actions. 
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Figure 7.1: Decision process for selecting inspection type and maintenance action. !   
represents the flow of information;     symbolises decision-making;  !  represents  
performing inspection or maintenance action. 
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7.2 Description of the Maintained System Behaviour 

In this section we describe the behaviour of a maintained system that is subject to 

imperfect maintenance. It was mentioned in the previous section that imperfect 

maintenance means that, after a maintenance action, the system is restored to an 

intermediate state between the “as good as new” and the pre-maintenance condition. 

The evolution of the system’s deterioration and the expert judgement is assumed to 

follow a Markovian stochastic process. The Markov process is chosen because of its 

ability to graphically and mathematically describe the evolution of a system that 

enters different discrete states over time. This also makes it convenient to model the 

effect of maintenance actions in a plausible way. In the following sub-sections the 

intervention of imperfect maintenance action is incorporated into the evolution of 

deterioration of the system and expert judgement that was modelled in Chapter 5.  

7.2.1 Evolution of the Deterioration Process 

Recall that in Chapter 5 we considered a system with ! non-observable deterioration 

states, where State 1 represents the “as good as new” condition and State N  is the 

absorbing state, which is considered the final state with respect to deterioration. 

Suppose that the system is in State { }1,2,...,i N∈  at time !; then in the absence of 

any maintenance action, we assume that the system either degrades to the next 

deterioration state with probability ip  or remains at the current state with probability

ip , at time 1t + , where ip  is the complementary probability of ip . In other words, 

the system cannot improve on its own. As defined in Chapter 5, we have: 

( )1i t tp P x i x i+= = =  , 

( )1i t tp P x i x i+= ≠ =  , 1 .i N≤ ≤                 (7.1) 

Based on Equation (7.1) we define the transition probability matrixΡ , the probability 

transition matrix of the system states over one discrete time unit, as: 

( )1 ,1 , ,ij t tP p P x j x i i j N+⎡ ⎤= = = = ≤ ≤⎣ ⎦                  (7.2) 

where: 



109 

 

  for 
  for 1

0   Otherwise.

i

ij i

p j i
p p j i

=⎧
⎪= = +⎨
⎪
⎩  

                 (7.3)

  

Since the expert judgement is provided at decision time epochs ,...,...,2,,0 ΔΔΔ= kt , 

we consider the evolution of the system deterioration over Δ  time units. Since the 

evolution of the true state of the system is assumed to follow a time-homogeneous 

Markov chain, the Δ -step transition probability matrix can be computed as the Δ  
power of the transition matrix P, thus: 

( ) ,   1 , .ijP p i j NΔΔ ⎡ ⎤= ≤ ≤⎣ ⎦                                 (7.4) 

In the absence of maintenance interventions, the system will transit to State ! with 

probability ( )
ijp
Δ

 at the end of the decision period k , given that it is in State ! at the 

beginning of this decision period k:  

  
P xk!+! = j xk! = i( ) = p !( )

ij .                                 (7.5) 

 

 

If a failure occurs, a corrective replacement is taken which always restores the 

system to “as good as new” condition, State 1. When an imperfect maintenance 

action is carried out, the system is restored to an intermediate state between the pre-

maintenance state and State1  with different probabilities accordingly. We define kx′  
as the true state of the system after an imperfect maintenance action at period !. 

Given that the system is in State ! at period !, it is assumed that an imperfect 

maintenance action restores it to an intermediate state, jxk =′ ,1! j ! i , with 

probability ijr , thus: 

Convention: Since the decisions are made at regular intervals, to simplify the 

notation we drop !  from the time index; for example: 

   
P xk!+! = j xk! = i( ) = P xk+1 = j xk = i( ) . 



110 

 

  
rij = P !xk = j xk = i,ak

M = 1( ),  1" i, j " N ,
              

(7.6) 

where M
ka denotes the decision variable at period k  regarding the maintenance action, 

and 1M
ka = indicates that an imperfect repair is carried out at period k . It is assumed 

that the maintenance action does not worsen the condition of the system, i.e. 

0  for .ijr j i= >   

For example, suppose that the system is in State 4. Then performing an imperfect 

maintenance action transfers the system to the intermediate States 2 with 

probabilities 42r . The state transition for a system with ! deterioration states subject 

to imperfect maintenance is graphically depicted in Figure 7.2. 

 

 

 

 

 

 

 

Figure 7.2: State transition diagram of a system subject to imperfect maintenance. 

 

7.2.2 Evolution of the Expert Judgement Process 

We assume that the true state of the system is not observable and expert judgement at 

period k  is provided as a positive integer number   yK ! 1,2,..., N{ },  and that the 

expert judgement process possesses Markovian properties. We also assume that the 

transitions of the expert judgement states occur at the beginning of the decision 

intervals. Given that the expert believes that the system is in State l  at period k , and 

the system at period 1k +  is in State   i, we define the transition probability i
lmq  as the 
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probability that the expert judgement moves to State m at the beginning of the 

decision period 1k + , shown as:  

  
qlm

i = P yk+1 = m xk+1 = i, yk = l( ),  1! i,l,m ! N .                          (7.7)  

Suppose that at decision period k  the system is in State ,i  ,kx i= and the expert 

believes that the system is in State l , i.e. ,ky l=  1 .l N≤ ≤  When an imperfect 

maintenance action is conducted the system is restored to State j ,   1! j ! i ! N ,  

with probability ijr . This probability reflects the uncertainty related to the 

effectiveness of the imperfect maintenance action. We assume that the expert is 

aware of this uncertainty and hence, after an imperfect maintenance, he provides a 

judgement regarding the state of the system as the most likely state that the system is 

restored to by an imperfect maintenance action. We define ky′   as the expert 

judgement state at period ! after an imperfect maintenance. Assuming that, at 

decision period !,  the expert believes that the system is in State l , i.e. ,ky l=  

1 ,l N≤ ≤  we have: 

  
!yk = m = argmax

j
rlj( ),   1" l, j " N ,                    (7.8) 

where, ijr  is defined in Equation (7.6). In other words, after an imperfect repair, the 

expert judgement moves from State l  to State   m,  1! l,m ! N ,  so that if the system 

was actually in State l  the imperfect maintenance action would most likely restore it 

to State m , that is ( )max .lm ljj
r r=   

7.3 Formulation of a Two-Step Partially Observable Markov 

Decision Process  

7.3.1 State Space 

Since the true deterioration state of the system is hidden, we should infer it from the 

history including all past expert judgements, observations and maintenance actions. 

The conditional probability distribution of the system state is defined as: 
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( )1 2, ,..., ,k k k k
Nπ π π π=   

  
! i

k = P xk = i H k( ),1" i " N  and k = 0,1,2,3,...                  (7.9) 

where k
iπ  denotes the probability of the system being in State i  at period k , i.e. 

time Δ= kt  given all the information available at the beginning of period k . We 

refer to !
k

 as the “belief state” hereafter. Let kΗ  represent all information available 

at the beginning of period k , comprising the sum of knowledge regarding the 

starting situation, all actions performed, all expert judgements made and all 

observations made up to time t k= Δ . We assume that at the beginning of the process 

the system is in “as good as new” state and we define: 

  
! i

0 =
1   for i=1,
0  otherwise.
"
#
$

                           (7.10) 

7.3.2 Decision Space 

We define the decision space of the two decision steps as follows: 

Step 1: Select inspection 

Let { }2,1,0∈Ia  be the decision variable, where: 

0=Ia  means to not conduct any inspection, 

1=Ia  means to conduct a simple inspection, and 

2Ia =  means to carry out an accurate inspection.  

Let ak
I  denote the decision variable for the inspection choice at period k . 

 

Step two: Select maintenance action 

Let { }2,1,0∈Ma  denote the decision variable, where: 

0Ma =  means to not take any maintenance action, 

1=Ma  means to perform imperfect repair, and 
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2Ma =  means to replace the system.  

Let M
ka  denote the decision variable for the maintenance action at period k . 

7.3.3 State Transition 

The conditional probability distribution of the system state is updated when an action 

is taken or information is obtained. That is, when new expert judgement is provided, 

an inspection is conducted, or a maintenance action is performed. The sequence of 

obtaining the information over a decision interval is illustrated in Figure 7.3. Note 

that the time taken for the decision to be made, the inspection to be conducted and 

the imperfect maintenance action to be carried out, are assumed to be negligible 

compared to the length of a discrete decision period. For example, consider a 

situation when expert judgement is provided every month, after which observation 

from inspection is obtained and imperfect maintenance action is carried out in less 

than 24 hours. Considering the discrete time unit, t,  as a day, that is 30Δ = , the 

time taken for the decision to be made, the inspection to be conducted and imperfect 

maintenance action to be carried out is negligible. If this time is assumed to be non-

negligible, the probability of the deterioration state transition over this time duration 

need to be taken into account when updating the conditional probability distribution 

of the system state.   

 

 

 

 

 

 

 

 

 

 
Figure 7.3: Sequence of obtaining the information during a decision period. 

t k= Δ  ( )1t k= + Δ
 kH  

Decision period k  

ky   ky′
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We assume that after a replacement the system is recovered to ‘as good as new’ state 

(State  1), and it takes almost one decision period to carry out the replacement due to 

its complicated preparations. Hence, when a replacement is carried out at decision 

period k , the history at the beginning of decision period 1k +  will the same as the 

history at the beginning of the decision-making process, that is, 0H . 

Let  !
k yk( )  represent the conditional probability distribution of the system at 

decision period k  updated after the expert judgement is provided,   !
k yk ,ok( )  denote 

the conditional probability distribution of the system at decision period k  updated 

after a simple inspection is conducted,  !
k SM( )  denote the conditional probability 

distribution of the system at decision period k  updated when an imperfect 

maintenance action is carried out after a simple inspection and  !
k AM( )  denote the 

conditional probability distribution of the system at decision period k  updated when 

an imperfect maintenance action is carried out after an accurate inspection.  

Further definitions and calculations of these conditional probability distributions 

follow for each in turn. 

7.3.3.1 Updating the Conditional Probability Distribution of a System when 

Expert Judgement is Provided at the Beginning of a Decision Period 

At period 1+k , when the expert judgement 1+ky  is provided, the conditional 

probability distribution of the system is updated. We define ( )1
1

k
j kyπ +

+  as the 

probability that the system is in State j  at period 1+k , given the expert judgement 

provided at period 1+k and all information available at the beginning of this period: 

  
! j

k+1 yk+1( ) = P xk+1 = j H k+1 , yk+1( ).                           (7.11)  

Using Bayes’ theorem gives,  
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! j
k+1 yk+1( ) = P xk+1 = j H k+1, yk+1( ) = P xk+1 = j, yk+1 H k+1( )

P yk+1 H k+1( ) =
P xk+1 = j, yk+1 H k+1( )

P xk+1, yk+1 H k+1( )
xk+1

"
.

   
                                    (7.12)
  

As illustrated in Figure 7.3, 1+kH , the history at the beginning of period 1+k , is 

equal to the history available at the beginning of period k  plus the information 

obtained during period k . The information obtained during period k  depends on the 

decisions made during this period regarding the inspections and maintenance actions. 

Possible scenarios that could take place at each decision period and the 

corresponding history are listed in Table 7.1. 

 

Table 7.1: Possible histories at the beginning of decision period k+1, based on the 
decisions made at period k. 

Scenario 

Number 

I
ka   ak

M  Decision choices taken at period k  History of information 

at the beginning of 

period 1+k  

1 0 0 No inspection and no maintenance 

action  
k

kk yHH ,1 =+
 

2 1 0 Simple inspection followed by no 

maintenance action 

1 , ,k k
k kH H y o+ =  

3 1 1 Simple inspection followed by an 

imperfect maintenance action 

1 , , ,k k
k k kH H y o y+ ′=  

4 1 2 Simple inspection followed by a 

replacement 

01 HH k =+  

5 2 0 Accurate inspection followed by no 

maintenance action  
kk

kk xyHH ,,1 =+
 

6 2 1 Accurate inspection followed by an 

imperfect maintenance action 
kkk

kk yxyHH ′=+ ,,,1
 

7 2 2 Accurate inspection followed by a 01 HH k =+  
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replacement 

 

For each scenario in Table 7.1, we can calculate the updated conditional probability 

distribution of the system after the expert judgement is provided at the beginning of a 

decision period. We take each row of Table 7.1 in turn. 

 

Scenario 1 – No inspection is conducted at period k  

First consider a scenario when at decision period k   it is decided to not conduct any 

inspection or maintenance action, as shown in the first row of Table 7.1. In this 

scenario, the numerator of the right hand side of Equation (7.12) can be written as: 

  
P yk+1,xk+1 H k+1( ) = P yk+1,xk+1 H k , yk( ).                          (7.13) 

 

Using the chain rule, we have:  

  
P yk+1,xk+1 H k , yk( ) = P yk+1 xk+1, H k , yk( )P xk+1 H k , yk( ).                      (7.14)

  

It is assumed that (1) the expert judgement, given the current true state and the expert 

judgement at the previous decision time epoch, is independent of the rest of the 

history of expert judgements and true states and (2) that the true state of the system 

follows Markovian evolution and is independent of the history of expert judgements 

and the true deterioration states, given the previous true state. Recalling that kH  

includes all the information available at the beginning of period k , Equation (7.14) 

can be given by the following, using the chain rule: 

  

P yk+1,xk+1 H k , yk( ) = P yk+1 xk+1, yk( )P xk+1 H k , yk( )
         = P yk+1 xk+1, yk( )P xk+1 xk , H k , yk( )

xk

! P xk H k , yk( )
        = P yk+1 xk+1, yk( )P xk+1 xk( )

xk

! P xk H k , yk( ).
                     (7.15)
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Based on the definitions in Equations (7.5) and (7.7), Equation (7.15) can be given 

by: 

  
P xk+1 = j, yk+1 = m H k , yk = l( ) = qlm

j pij
!( )

i=1

N

" # i
k yk = l( ),  1$ j,l,m $ N .                 (7.16)

 

By incorporating Equation (7.16) into Equation (7.12), we can calculate ( )1k
j kyπ +  

when no inspection is conducted at decision period 1k +  as: 

  

! j
k+1 yk+1 = m( ) = P xk+1 = j H k , yk = l, yk+1 = m( )

                      =
qlm

j pij
"( )! i

k yk = l( )
i=1

N

#

qlm
n pin

"( )! i
k yk = l( )

i=1

N

#
n=1

N

#
,      1$ l,m, j $ N .

                      (7.17) 

Scenario 2 – Simple inspection is conducted at period k , followed by no 

maintenance action 

In this scenario the history at the beginning of period k +1  includes all the history 

available at the beginning of decision period k  and the expert judgement and the 

outcome of the simple inspection obtained in this decision period. In this case the 

numerator of Equation (7.12) can be written as: 

  
P yk+1,xk+1 H k+1( ) = P yk+1,xk+1 H k , yk ,ok( ),                         (7.18) 

which can be given as follows, using the chain rule: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1
1 1 1 1 1

1 1 1

1 1 1

, , , , , ,

                             = , , , , , , , ,

                            = , , , .
k

k

k k k
k k k k k k k k k

k k k
k k k k k k k k k k k

x

k
k k k k k k k k

x

P y x H P y x H y o P x H y o

P y x H y o P x x H y o P x H y o

P y x y P x x P x H y o

+
+ + + + +

+ + +

+ + +

=

∑

∑
 

              (7.19) 

Using the definitions in Equations (7.5) and (7.7), Equation (7.19) can be given by: 

  
P yk+1 = m,xk+1 = j H k , yk = l,ok( ) = qlm

j pij
!( )

i=1

N

" # i
k yk = l,ok( ),  1$ j,l,m $ N ,        (7.20) 
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in which   ! i
k yk ,ok( ) is the belief state of the system at decision period   k, updated 

based on the expert judgement  yk and the simple inspection outcome  ok
. Further 

definition and calculation of ( ),k
i k ky oπ will be given in Paragraph 7.3.3.2. By 

substituting Equation (7.20) into Equation (7.12) we can calculate ( )1
1

k
j kyπ +

+  for 

Scenario 2 as: 

  

! j
k+1 yk+1 = m( ) = P xk+1 = j H k , yk = l, yk+1 = m,ok( )

                    =
qlm

j pij
"( )

i=1

N

# ! i
k yk = l,ok( )

qlm
n pin

"( )
i=1

N

# ! i
k yk = l,ok( )

n=1

N

#
,         1$ l,m, j $ N .

                     (7.21)

  

Scenario 3 – Simple inspection is conducted at period k , followed by an imperfect 

repair 

In this scenario, the history at the beginning of period 1k + includes all the history 

available at the beginning of period   k,  and the expert judgement, the outcome of the 

simple inspection, and ky′  that is the expert judgement state updated after an 

imperfect maintenance action is carried out at period k . Therefore, 

( )11 1, k
k kP y x H +
+ +  in Equation (7.12) is given by: 

  
P yk+1,xk+1 H k+1( ) = P yk+1,xk+1 H k , yk ,ok , !yk( ).                        (7.22) 

which can be given as follows, using the chain rule: 

  
P yk+1,xk+1 H k+1( ) = P yk+1 xk+1, H k , yk ,ok , !yk( )P xk+1 H k , yk ,ok , !yk( ),          (7.23)

 
Again it is assumed that the expert judgement is dependent only on the current true 

state of the system and the expert judgement at the previous decision epoch. 

Therefore, the probability of 1+ky  given 1+kx  and ky′ is independent of other 

information and hence, Equation (7.23) can be simplified to: 

  

P yk+1,xk+1 H k+1( ) = P yk+1 xk+1, !yk( )P xk+1 H k , yk ,ok , !yk( ).
                             

                        (7.24) 
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Recall from Sub-Section 7.2.1 that kx′  is the deterioration state of the system after an 

imperfect maintenance action at period !. Using the chain rule, Equation (7.24) can 

be given as: 

  

P yk+1,xk+1 H k+1( ) = P yk+1 xk+1, !yk( )P xk+1 !xk , H k , yk ,ok , !yk( )P !xk H k , yk ,ok , !yk( )
!xk

"

             = P yk+1 xk+1, !yk( )P xk+1 !xk( )P !xk H k , yk ,ok , !yk( )
!xk

"

             = P yk+1 xk+1, !yk( )
!xk

" P xk+1 !xk( )P !xk xk , H k , yk ,ok , !yk( )P xk H k , yk ,ok , !yk( )
xk

"

             = P yk+1 xk+1, !yk( )
!xk

" P xk+1 !xk( )P !xk xk( )P xk H k , yk ,ok( ).
xk

"

  

                        (7.25) 

Based on the definitions in Equations (7.5) and (7.7), Equation (7.25) can be given 

by: 

  

P yk+1 = m,xk+1 = n H k , yk ,ok , !yk = l( )
= P yk+1 = m xk+1 = n, !yk = l( )

j=1

N

" P xk+1 = n !xk = j( )P !xk = j xk = i( )P xk = i H k , yk ,ok( )
i=1

N

"

= qlm
n p jn

#( )rij$ i
k yk ,ok( ),  1% l,m,n % N

j=1

N

"
i=1

N

" ,

 

                  (7.26) 

where ( ),k
i k ky oπ is the belief state of the system at decision period ,k updated based 

on the expert judgement ky and the simple inspection outcome ko . The calculation of 

( ),k
i k ky oπ will be given in Paragraph 7.3.3.2.  

By incorporating Equation (7.26) into Equation (7.12), we can calculate ( )1k
j kyπ +  

when a simple inspection and an imperfect maintenance action are conducted at 

decision period 1k +  as: 

  

! j
k+1 yk+1 = m( ) = P xk+1 = n H k , yk+1 = m,ok( ) =

qlm
n p jn

"( )rij! i
k yk ,ok( )

j=1

N

#
i=1

N

#

qlm
s p js

"( )rij! i
k yk ,ok( )

j=1

N

#
i=1

N

#
s=1

N

#
.        (7.27) 
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Scenario 4 – A replacement, after a simple inspection, is carried out at decision 

period k  

Recall that after a replacement the system is recovered to the ‘as good as new’ state, 

State  1 . It is also assumed that it takes almost one decision period to carry out the 

replacement due to the complicated nature of its preparations, and hence when a 

replacement is carried out at decision period k , the history at the beginning of 

decision period 1k +  is the same as the history at the beginning of the process, 0H . 

In other words, at the beginning of period 1k +  the system will be in State1, when a 

replacement is carried out at decision period k . Therefore, the conditional probability 

distribution of the system at the beginning of decision period 1k +  is as follows:  

  
! j

k+1 yk+1( ) = ! j
0 =

1   for j = 1,
0  otherwise.
"
#
$

.

 

              (7.28) 

Scenario 5 – Accurate inspection is conducted at period k , followed by no 

maintenance action 

In this scenario the history at the beginning of period 1k + includes all the history 

available at the beginning of period ,k  the expert judgement and the true state of the 

system at this decision period revealed by accurate inspection. Therefore: 

( )11 1, k
k kP y x H +
+ +  in Equation (7.12) is 

  
P yk+1,xk+1 H k+1( ) = P yk+1,xk+1 H k , yk ,xk( ),

  
           (7.29) 

which can be given as follows, using the chain rule: 

  
P yk+1,xk+1 H k+1( ) = P yk+1 xk+1, H K ,xk , yk( )P xk+1 H k ,xk , yk( ),            (7.30)

 
Since the true state of the system is assumed to follow Markovian evolution, it is 

independent of the history of information given the previous true state. Also, it is 

assumed that the expert judgement, given the current true state and the expert  

judgement at the previous decision period, is independent of the rest of the history of 

expert judgements and true states. Therefore, Equation (7.30) can be simplified to:
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P yk+1 = m,xk+1 = j H k+1( ) = P yk+1 = m xk+1 = j, yk = l( )P xk+1 = j xk = i( )
                                          = qlm

j pij
!( )     , 1" i, j,l,m " N .

           (7.31)

  

Based on Equation (7.12), the conditional probability distribution of the system at the 

beginning of decision period 1k + for this scenario is given as follows: 

  

! j
k+1 yk+1( ) = P xk+1 = j H k , yk = m,xk = i, yk+1 = l( ) = qlm

j pij
"( )

qlm
n pin

"( )
n=1

N

#
,  1$ i, j,l,m $ N .(7.32) 

Scenario 6 – Accurate inspection is conducted at period k , followed by a repair 

In this scenario the history at the beginning of period 1k +  includes all the history 

available at the beginning of period ,k  the expert judgement, the true state of the 

system and also the updated expert judgement after the imperfect maintenance action 

during this decision period. Recalling from Section 7.2.2, on the assumption that the 

system is in State xk = i  at decision period  k , after an imperfect maintenance the 

expert judgement will be   !yk = l,  1" l " i,  where 
  
l = argmax

j
rij( ) . The numerator of 

the right hand side of Equation (7.12) for this scenario is: 

  
P yk+1,xk+1 H k+1( ) = P yk+1,xk+1 H k , yk ,xk , !yk( ).              (7.33) 

Again, the expert judgement is dependent only on the current true state of the system 

and the expert judgement at the previous decision epoch and hence the probability of 

1+ky , given 1+kx  and ky′ , is independent of other information. Therefore, using the 

chain rule, Equation (7.33) can be given as: 

  

P yk+1 xk+1, H k , yk ,xk , !yk( )P xk+1 H k , yk ,xk , !yk( )
                      = P yk+1 xk+1, !yk( )P xk+1 H k , yk ,xk , !yk( )
                      = P yk+1 xk+1, !yk( )P xk+1 !xk , H k , yk ,xk , !yk( )P !xk H k , yk ,xk , !yk( )

!xk

"

                       = P yk+1 xk+1, !yk( )P xk+1 !xk( )P !xk xk( )
!xk

" ,            

 

                 (7.34) 
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that is: 

  

P yk+1 = m,xk+1 = n H k , yk ,xk = i, !yk = l( )
       = P yk+1 = m xk+1 = n, !yk = l( )P xk+1 = n !xk = j( )P !xk = j xk = i( )

j=1

N

"

       = qlm
n p jn

#( )rij ,   1$ i,n,l,m $ N .
j=1

N

"

         (7.35)

  

Substituting Equation (7.35) into Equation (7.12) yields the conditional probability 

distribution of the system at the beginning of decision period 1k +  for this scenario 

as: 

  

! n
k+1 yk+1( ) = P xk+1 = n H k , yk ,xk = i, "yk = l, yk+1 = m( )

                 =
qlm

n p jn
#( )rij

j=1

N

$

qlm
s p js

#( )rij
j=1

N

$
s=1

N

$
,   1% i,n,l,m % N .

                                                       

            (7.36) 

Scenario 7 – Accurate inspection is conducted at period k , followed by a 

replacement 

When a replacement is carried out after an accurate inspection, for the same reason 

explained for Scenario 4, the system will be in State 1 at the beginning of decision 

period 1k +  and hence, the conditional probability distribution of the system will be 

as given in Equation (7.10). 

7.3.3.2 Updating the Conditional Probability Distribution of System Based on 

the Outcome of an Inspection 

At decision period  k  after the expert judgement ky  is provided and before 

conducting the inspection, the probability of observing the simple inspection 

outcome ko  through the simple inspection, given all the information available is 

given by: 

  
P ok H k , yk( ) = P ok ,xk = i H k , yk( )

i=1

N

! .              (7.37) 
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Using the chain rule, 
  
P ok ,xk = i H k , yk( )  can be given by: 

  

P ok ,xk = i H k , yk( ) = P ok xk = i, H k , yk( )P xk = i H k , yk( )
                                =P ok xk = i( )P xk = i H k , yk( ) = bi ok( )! i

k yk( ),
          (7.38) 

where ( )i kb o  is the probability of observing ko as the output of the simple inspection 

when the system is in State i . Incorporating Equation (7.38) into Equation (7.37) 

yields: 

  
P ok H k , yk( ) = bi ok( )

i=1

N

!  " i
k yk( ).               (7.39) 

Assuming that the outcome of the simple inspection at period k  is ko , the belief 

state of the system is updated based on the outcome of the simple inspection, that is: 

  
! i

k ok , yk( ) = P xk = i H k , yk ,ok( ).                 (7.40)

   

Using Bayes’ theorem, Equation (7.40) can be given by: 

( ) ( )
( )
, ,

, .
,

k
k k kk

i k k k
k k

P x i o H y
o y

P o H y
π

=
=              (7.41)

  

Substituting Equation (7.38) and Equation (7.39) into Equation (7.41) yields: 

  

! i
k ok , yk( ) = ! i

k yk( )bi ok( )
! j

k y k( )bj ok( )
j=1

N

"
.              (7.42) 

When an accurate inspection is conducted, the true state of the system is revealed. 

Therefore the outcome of the accurate inspection at period k  will be the true state of 

the system, kx . In other words, the conditional probability of the system upon an 

accurate inspection is updated as, 

  
! i

k xk( ) = P xk = i H k , yk ,xk = j( ) = 1   for i = j,
0  otherwise,
"
#
$

  1% i, j % N .            (7.43)
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7.3.3.3 Updating the Conditional Probability Distribution of System after 

Imperfect Maintenance Action  

7.3.3.3.1 Imperfect Maintenance Action Conducted after Simple Inspection 

First, consider the scenario where an imperfect maintenance action is conducted after 

simple inspection. Again, the belief state of the system is updated based on all the 

information available after carrying out an imperfect maintenance action. The history 

after a simple inspection at period k  consists of the history at the beginning of 

period k , expert judgement and the outcome of the simple inspection at this period. 

Let ( )k
j SMπ  denote the updated conditional probability of the system being in State 

j  given all the information available after conducting an imperfect maintenance 

action, where “SM ” implies simple inspection followed by imperfect maintenance 

action. ( )k
j SMπ  is defined as: 

  

! j
k SM( ) = P "xk = j H k , yk ,ok( )

             = P xk = i H k , yk ,ok( )P "xk = j xk = i, H k , yk ,ok( ),
i=1

N

#
          (7.44) 

where kx′  denotes the deterioration state of the system after an imperfect 

maintenance action at decision period k . As defined in Equation (7.6), given that the 

system is =kx i  at period k , it is assumed that an imperfect maintenance action 

transfers the system to an intermediate state jxk =′  with probability rij . Therefore 

( )k
j SMπ  can be given by: 

  
! j

k SM( ) = P xk = i H k , yk ,ok( )P "xk = j xk = i( )
i=1

N

# =
i=1

N

# ! i
k ok , yk( )rij .          (7.45) 

7.3.3.3.2 Imperfect Maintenance Action Conducted after Accurate 

Inspection 

When an accurate inspection is conducted, the true state of the system is revealed. 

Let ( )k
j AMπ  be the updated probability of the system at period k  when imperfect 

maintenance action is carried out after accurate inspection, where “AM ” implies 

accurate inspection followed by imperfect maintenance action. Then: 
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! j

k AM( ) = P "xk = j H k , yk ,xk = i( ) = P "xk = j xk = i( ) = rij .             (7.46)

    

7.3.4 Conditional Reliability of the System over a Decision Period   

Recalling from Chapter 5 that the underlying deterioration process of the system is 

assumed to follow discrete-time, discrete-state Markovian evolution, the probability 

distribution of the time to failure given that the system is in State i , ( )tf i , is given 

by: 

  

fi t( ) = Fi pi( )t
Fi + F s pi

s!1

s=1

t

" pi fi+1(t ! s),   1# i < N ,  

fN t( ) = FN
t FN ,

            (7.47)

   

where fT  denotes the random variable representing the time to failure, iF  denotes 

the probability of failure when the system is in State i  and iF  is the complementary 

probability of iF . 

The probability that the system survives for at least t  time units, given that it is in 

State i  at the beginning of period k , is denoted by ( ), ,R k i t : 

  
R k,i,t( ) = P Tf > k! + t Tf > k!,xk = i( ).              (7.48) 

Based on the definition of ( )if t  in Equation (7.47), ( )tikR ,,  can be calculated as: 

R k,i,t( ) = 1! P Tf " k# + t Tf > k#, xk = i( ) = 1! fi s( )
s=k#

k#+t

$ .            (7.49) 

Let ( )Δ,, kkR π  denote the conditional reliability of the system over one decision 

period – i.e. the probability that the system is still working at the beginning of period 

1+k , given the probability distribution of the true state of the system kπ :  

 
( ) ( )

1
, , , , .

N
k k

i
i

R k R k iπ π
=

Δ = Δ∑               (7.50)  
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7.4 Calculation of the Optimal Cost Function 

We introduce the notation V .,.( )  to represent the optimal cost function, that is, the 

minimum expected total discounted cost over a finite horizon. Let K  be the total 

number of periods in the decision-making horizon. We define ( )kkV π,  as the 

minimum expected total discounted cost incurred over K k−  periods, 1! k ! K , 

given that the belief state is  !
k at period k . We wish to find the optimal inspection 

and maintenance action choice at each decision epoch so that the expected total 

discounted cost over the horizon of K  decision periods is minimised.  

According to the optimality principle in dynamic programming, also known as 

“Bellman’s optimality principle”, ( )kkV π,  can be stated in a recursive form that 

relates it to the optimal cost function at the next decision epoch. To clarify this 

optimality principle, let us consider a classical POMDP model with a single decision 

step per decision period. At the beginning of decision period k , observation zk , is 

obtained. Once this observation is obtained, a decision choice a  from a set of 

admissible actions, must be selected so that the total expected discounted cost over  

K  period planning horizon is minimised. Let ( )kkV π,  denote the corresponding 

optimal cost function at decision period k , and ! " k , zk+1,a( )  denote the belief state 

updated based on the observation zk+1  given that the decision choice a  has been 

selected at decision period k . Let !  denote the discount rate, according to the 

optimality principle in dynamic programming, ( )kkV π,  satisfies the following 

recursive equation (Lovejoy, 1991): 

 

V k,! k( ) = min
a
! Cimd ! k ,a( )

Term1
" #$ %$

+" P zk+1 !
k ,a( )V k +1,# ! k , zk+1,a( )( )

Term 2
" #$$$$$$ %$$$$$$zk+1

$
%

&

'
'

(

)

*
*
,        (7.51) 

where Term 1 denotes the immediate cost incurred by selecting the decision choice 

a , in the belief state  !
k , at the beginning of the decision period k .  The bracket 

term specifies the expected future discounted cost incurred by selecting the decision 
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choice a  in the belief state  !
k , at decision epoch k , and making optimal decisions 

afterwards. 

In the context of our problem, Bellman’s optimality principle implies that the optimal 

inspection and maintenance action choice must be selected by taking into account the 

costs that are immediately incurred by acting on these choices, and the expected 

future costs from the beginning of the next decision epoch incurred by making 

optimal decisions afterwards. In what follows we compute the optimal cost functions 

according to each decision step, by breaking them down into immediate and future 

expected costs.   

7.4.1 Decision step 1: Inspection Type Selection 

At the beginning of the decision period k  the conditional probability distribution of 

the system is updated based on the expert judgement, ( )k
kyπ . Recall Section 7.1 

that, following the expert judgement at the beginning of a decision period, the 

decision choices are (1) to leave the system until the next decision occasion; (2) to 

carry out simple inspection; and (3) to conduct accurate inspection.  

Let ( )( )k
kI ykW π,  denote the expected total discounted cost over K ! k  periods if it 

is chosen to not conduct any inspection but wait until the next decision period when 

the next expert judgement is provided and make optimal decisions afterwards, 

S k,! k yk( )( )  denote the expected total discounted cost over K ! k  periods when 

simple inspection is conducted at decision period k  and optimal decisions are made 

afterwards, and A k,! k yk( )( )  denote the expected total discounted cost over K ! k  

periods when at decision period k  accurate inspection is conducted and optimal 

decisions are made afterwards.  

The optimal cost function ( )( ), k
kV k yπ  

satisfies the following optimality equation 

according to the optimality principle in dynamic programming: 

V k,! k yk( )( ) = min W I k,! k yk( )( ),S k,! k yk( )( ),A k,! k yk( )( )"# $%,            (7.52)
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The calculation of ( )( )k
kI ykW π, , ( )( )k

k ykS π,  and ( )( )k
k ykA π,  is given in the 

following paragraphs.  

7.4.1.1 No Inspection Selected 

( )( )k
kI ykW π,  in Equation (7.52) is the minimum expected total discounted cost over 

K k−  periods when at decision period k  it is decided to not conduct any 

inspection, that is, when the inspection decision variable 0I
ka =  (recall Figure 7.1). 

Based on the optimality principle in dynamic programming, it is equal to the 

expected cost of a failure occurring before period 1+k , plus the minimum expected 

future cost starting from period 1+k . To evaluate the future cost we should consider 

all possible expert judgement outcomes at period 1+k , the likelihood of their 

occurrence ( )kk
k yHyP ,1+ , and their resulting future minimum expected discounted 

cost, ( )( )1,1 1 ++ +
k

k ykV π , given that the system is still working at the beginning of 

decision period 1+k : 

  
W I k,! k yk( )( ) = C F +"V k +1,! 0( )( ) 1# R k,! k yk( ),$( )( )   

  
  
+! P yk+1 H k , yk( )V k +1," k+1 yk+1( )( )

yk+1

#
$

%
&

'

(
) R k," k yk( ),*( ) ,                     (7.53) 

where !  is the discount rate. ( )( )01,FC V kϕ π+ +
 
is the expected discounted cost of 

a failure replacement, i.e. the immediate cost of failure plus the future expected 

discounted cost. Recall from Paragraph 7.3.3.1 that a replacement renews the system 

to “good as new” condition and hence the belief state is updated to  !
0 . 

( )( ), ,k
kR k yπ Δ  is the conditional reliability of the system over decision period k

given the belief state ( )k
kyπ  , and ( )( )( )Δ− ,,1 k

k ykR π  is the probability of having a 

failure at period k . Then ! P yk+1 H
k , yk( )V k +1," k+1 yk+1( )( )

yk+1

#
$

%&
'

()  
is the expected 

discounted future cost at the beginning of decision period 1+k  when the next expert 

judgement is provided, given that the system has survived. 
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7.4.1.2 Simple Inspection Selected  

Returning to Equation (7.52), ( )( )k
k ykS π,  is the total expected discounted cost, if a 

simple inspection is conducted after expert judgement is provided at decision interval

k . It is equal to the immediate cost of conducting a simple inspection plus the future 

expected discounted cost. To calculate the future cost, we need to consider all 

possible conditional probability distributions of the system. As given in Equation 

(7.42), when a simple inspection is conducted, the conditional belief state is updated 

based on the inspection outcome. Therefore we need to take an expectation over all 

possible observations and their resulting future costs, thus: 

  
S k,! k yk( )( ) = CS + P ok H k , yk( )

ok

"  V S k,! k yk ,ok( )( ),                       (7.54) 

where CS
 is the immediate cost of conducting a simple inspection; 

( ) ( )( ),  , ,
k

k S k
k k k k

o
P o H y V k y oπ∑  is the future expected cost if we choose to 

conduct a simple inspection; and ( )( ), ,S k
k kV k y oπ  is the minimum future expected 

discounted cost once the observation ko  is provided through the simple inspection 

(and will be calculated in Paragraph 7.4.2.1). Equation (7.54) can be given as: 

( )( ) ( ) ( ) ( )( )
1

, ,  , , , ,
k

N
k S k k S k

k k k k k k k k
o i

S k y C P x i H y P o x H y V k y oπ π
=

= + =∑∑  

 
            

= CS + P xk = i H k , yk( )
i=1

N

!  P ok xk( )V S k," k yk ,ok( )( )
ok

!  

                     =
  
CS + ! i

k yk( )
i=1

N

"  bi ok( )V S k,! k yk ,ok( )( )
ok

"  .                      (7.55) 

7.4.1.3 Accurate Inspection Selected 

Returning to Equation (7.52), ( )( )k
k ykA π,  is the total expected discounted cost if we 

choose to conduct an accurate inspection at period k , after the expert judgement is 

provided. It is equal to the immediate cost of conducting an accurate inspection plus 

the expected future cost. The expected future cost is computed by taking the 
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expectation over all the possible outcomes of the accurate inspection and their 

corresponding costs. Recalling that the accurate inspection reveals the true state of 

the system, we have:  

A k,! k yk( )( ) = CA + P xk = i H
k , yk( )

i=1

N

"  V A k, xk = i( )

                     = CA + ! i
k yk( )

i=1

N

"  V A k, xk = i( ),
                      (7.56) 

where AC is the immediate cost incurred by an accurate inspection; ( )ixkV k
A =,  is 

the minimum total expected discounted cost, assuming that the output of the accurate 

inspection is the true state xk = i  (and will be calculated in Paragraph 7.4.2.2); and 

! i
k yk( )

i=1

N

"  V A k, xk = i( )  is the future expected cost if an accurate inspection is 

conducted at period ,k after the expert judgement is provided.  

7.4.2 Decision Step 2: Maintenance Action Selection 

7.4.2.1  Selecting Maintenance Action after a Simple Inspection 

At the second decision step, when the choice of the maintenance action is to be 

selected, let ( )( ), ,S k
k kV k y oπ  denote the minimum expected total discounted cost 

over K ! k  periods, given that the simple inspection has been conducted and the 

output of the simple inspection is ko . Based on the optimality principle in dynamic 

programming, ( )( ), ,S k
k kV k y oπ  satisfies the following optimality equation: 

  
V S k,! k yk ,ok( )( ) = min W S k,! k yk ,ok( )( ), M S k,! k yk ,ok( )( ),r k( )"

#
$
% ,        (7.57) 

where, ( )( ), ,S k
k kW k y oπ  

is the expected cost if, after a simple inspection at period 

k , it is chosen to not perform any maintenance action and instead wait until the next 

decision epoch; ( )( ), ,S k
k kM k y oπ  is the expected cost if, at period k , an imperfect 

maintenance action is performed upon a simple inspection; and ( )r k  is the expected  

cost if a preventive replacement is carried out at decision period k . The calculations 

of these costs are given in the following paragraphs.  
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7.4.2.1.1 No Maintenance Action Carried Out after a Simple Inspection 

( )( ), ,S k
k kW k y oπ  is the expected cost if it is chosen to not perform any 

maintenance action and instead wait until the next decision epoch, after a simple 

inspection is conducted at decision period .k  It is calculated as the expected cost of 

having a failure before period 1+k  plus the expected future cost starting from period 

1+k . To evaluate the future cost we should consider all expert judgements at period

1+k , the likelihood of their occurrence given all the information available,

( )kk
k

k oyHyP ,,1+ , and their resulting future expected cost, ( )( )1,1 1 ++ +
k

k ykV π , 

provided that the system is still working at the beginning of period 1+k . Thus: 

  

W S k,! k yk ,ok( )( ) = C F +"V k +1,! 0( )( ) 1# R k,! k yk ,ok( ),$( )( )
              +" P yk+1 H k , yk ,ok( )V k +1,! k+1 yk+1( )( )

yk+1

%
&

'
(

)

*
+ R k,! k yk ,ok( ),$( ),

      (7.58) 

where ( )( )01,FC V kϕ π+ +
 

is the total expected discounted cost of a failure 

replacement; ( )( ), , ,k
k kR k y oπ Δ  is the probability that the system is still working at 

the beginning of period 1+k , given the probability distribution of the true state of 

the system updated based on the simple inspection outcome ( ),k
k ky oπ ; 

( )( )( )1 , , ,k
k kR k y oπ− Δ  is the probability of having a failure at decision period k ; 

and P yk+1 H
k , yk ,ok( )V k +1,! k+1 yk+1( )( )

yk+1

"
#

$%
&

'(  
is the expected future cost at the 

beginning of period 1+k when the expert judgement 1+ky is provided, given that the 

system has survived. The likelihood of the expert judgement 1+ky  given all the 

information available after a simple inspection is conducted at period k  is calculated 

as follows: 

( )=+ kk
k

k oyHyP ,,1 ( )
1

1 1, , , .
k

k
k k k k

x
P y x H y o

+

+ +∑                        (7.59) 

Using Equation (7.20), Equation (7.59) can be given by: 
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P yk+1 = m H k , yk = l,ok( ) = P yk+1 = m,xk+1 = j H k , yk = l,ok( )
j=1

N

!

                                         = qlm
i pij

"( )
i=1

N

! # i
k yk = l,ok( ),  1$ l,m $ N .

j=1

N

!
         (7.60) 

7.4.2.1.2 Imperfect Maintenance Action Carried Out after a Simple 

Inspection 

Returning to Equation (7.57), ( )( ), ,S k
k kM k y oπ  is the expected total discounted 

cost if imperfect maintenance action is carried out after a simple inspection at period 

k . It is equal to the immediate cost of performing an imperfect maintenance action 

plus the future expected cost. To calculate the future cost, we need to consider all the 

possible belief states and their corresponding future costs. Therefore, we take the 

expectation over all possible expert judgements at the next decision epoch, given all 

the information available after the imperfect maintenance action, which includes the 

updated expert judgement ky′ . Thus: 

  

M S k,! k yk ,ok( )( ) = C M + C F +"V k +1,! 0( )( ) 1# R k,! k SM( ),$( )( )
            +" P yk+1 H k , yk ,ok , %yk( )V k +1,! k+1 yk+1( )( )

yk+1

&
'

(
)

*

+
, R k,! k SM( ),$( ),

      

(7.61) 

where MC  is the immediate cost incurred by performing an imperfect maintenance 

action; ( )k SMπ  is the conditional probability distribution of the system updated 

when an imperfect maintenance action is performed after a simple inspection, and is 

given by Equation (7.45), ( )( ), ,kR k SMπ Δ  is the probability that the system is still 

working at the beginning of period 1+k  given the updated conditional probability 

distribution of the system ( )k SMπ , and is computed by substituting the updated 

probability distribution ( )k SMπ  in place of ! k  in Equation (7.50); 
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C F +!V k +1," 0( )( )  is the expected total discounted cost of a failure occurring 

before period 1+k ; 
  

P yk+1 H k , yk ,ok , !yk( )V k +1," k+1 yk+1( )( )
yk+1

#
$

%
&

'

(
)  is the expected 

future cost at period 1+k , given that the system is still working at the beginning of 

this decision period; and ( )kkk
k

k yoyHyP ′+ ,,,1  is the probability of the expert 

judgement at period 1k + , given all the information available after an imperfect 

maintenance action is performed at period k . That is: 

( ) ( )
1

1 1 1, , , , , , , .
k

k k
k k k k k k k k k

x
P y H y o y P y x H y o y

+

+ + +′ ′=∑                       (7.62) 

Recalling Scenario 3 in Table 7.1, Equation (7.62) can be given as follows, using 

Equation (7.26): 

  

P yk+1 = m H k , yk ,ok , !yk = l( ) = P yk+1 = m,xk+1 = n H k , yk ,ok , !yk = l( )
n=1

N

"

                                               = qlm
n p jn

#( )rij$ i
k yk ,ok( ),  1% l,m % N

j=1

N

"
i=1

N

" .
n=1

N

"
            (7.63)

 7.4.2.1.3 Replacement Carried Out after a Simple Inspection 

Returning to Equation (7.57), ( )r k  is the total expected discounted cost if, upon an 

inspection at period k , a preventive replacement is carried out. It is evaluated as the 

immediate cost incurred by a preventive replacement plus the expected future cost 

once a replacement is carried out. That is: 

  
r k( ) = C R +!V k +1," 0( ),                (7.64)
   

where RC  is the immediate cost incurred by a preventive replacement and  

  
!V k +1," 0( )  is the expected future discounted cost once a replacement is carried out 

at decision period .k  
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7.4.2.2 Selecting Maintenance Action after an Accurate Inspection 

At decision Step 2, when selecting maintenance action after an accurate inspection, 

let ( ),A
kV k x  denote the minimum expected total discounted future cost, given that 

an accurate inspection has been conducted at period k  and the output of the accurate 

inspection is the true state of the system kx . Based on the optimality principle in 

dynamic programming we have: 

  
V A k,xk( ) = min W A k,xk( ), M A k,xk( ),r k( )!" #$ ,           (7.65) 

 

where ( )kA xkW ,  is the expected cost if, after conducting an accurate inspection, no 

maintenance action is performed; ( ),A
kM k x  is the expected cost if an imperfect 

maintenance action is carried out after an accurate inspection  at period k ; and ( )r k  

is the expected cost if a preventive replacement is carried out at period k  as given by 

Equation (7.64). The calculations of the costs in Equation (7.65) are given in the 

following paragraphs.  

7.4.2.2.1 No Maintenance Action Carried Out after an Accurate Inspection 

( )kA xkW ,  is the expected cost if, after conducting an accurate inspection, no 

maintenance action is performed. It is computed as the expected cost of a failure 

occurring before period 1+k , plus the expected future cost if the system survives 

until period 1+k , given all the information available after conducting the accurate 

inspection. To compute the future expected cost starting from period 1+k , we need 

to take an expectation over all possible expert judgements at period 1+k , given all 

the information available, and the costs according to each value of the future expert 

judgement. Thus: 

  

W A k,xk( ) = C F +!V k +1," 0( )( ) 1# R k,xk ,$( )( )
         +! P yk+1 H k ,xk , yk( )V k +1," k+1 yk+1( )( )

yk+1

%
&

'
(

)

*
+ R k,xk ,$( ),            

            (7.66) 
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where 
  
C F +!V k +1," 0( )( )  

is the total expected discounted cost of a failure 

replacement; ( )Δ,, kxkR  is the probability that the system is still working at period 

1+k , given that the system is in State kx  during the previous period k , and is given 

by Equation (7.50); ( )( )1 , ,kR k x− Δ  is the probability of a failure occurring while 

the system is in State kx  at period k , before period 1+k  is reached; and 

( ) ( )( )
1

1
1 1, , 1,

k

k k
k k k k

y

P y H x y V k yπ
+

+
+ +

⎛ ⎞
+⎜ ⎟⎜ ⎟⎝ ⎠

∑  is the expected future cost at period 

1+k  provided that the system is still working at the beginning of period 1+k . 

( )1 , ,k
k k kP y H x y+  is the probability of the expert judgement at period 1k + , once an 

accurate inspection is conducted at period k  and is given as follows: 

  
P yk+1 H k ,xk , yk( ) = P yk+1,xk+1 H k ,xk , yk( )

xk+1

! ,             (7.67)
 

and using Equation (7.31) can be simplified to: 

  
P yk+1 = m H k ,xk = i, yk = l( ) = qlm

j

j=1

N

! pij
"( ) ,  1# i,l,m # N .          

(7.68) 

7.4.2.2.2 Imperfect Maintenance Action Carried Out after an Accurate 

Inspection 

When an imperfect maintenance action is conducted after an accurate inspection, the 

conditional probability distribution of the system is updated to ( )k AMπ , as defined 

in Equation (7.46). ( ),A
kM k x  in Equation (7.65) is the expected cost of conducting 

an imperfect maintenance action after an accurate inspection at period k  and is 

calculated as: 

  

M A k,xk( ) = C M + C F +!V k +1," 0( )( ) 1# R k," k AM( ),$( )( )
     +! P yk+1 H k , yk ,xk , %yk( )V k +1," k+1 yk+1( )( )

yk+1

&
'

(
)

*

+
, R k," k AM( ),$( ),

           (7.69) 
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where MC  is the immediate cost of performing an imperfect maintenance; 

  
C F +!V k +1," 0( )( )  is the expected discounted cost of a failure occurring at period 

k , given that an imperfect maintenance action has been carried out after an accurate 

inspection at period k ; and 

  
P yk+1 H k , yk ,xk , !yk( )V k +1," k+1 yk+1( )( )

yk+1

#
$

%
&

'

(
)  is the expected future cost at period 

1+k  given that the system is still working at the beginning of period 1k + . 

( )kkk
k

k yxyHyP ′+ ,,,1  is the probability of the expert judgement at period 1k + , 

given all the information available after an accurate inspection is conducted at period 

k  followed  by an imperfect maintenance action, and is given by: 

( ) ( )
1

1 1 1, , , , , , , ,
k

k k
k k k k k k k k k

x
P y H y x y P y x H y x y

+

+ + +′ ′=∑                       (7.70) 

where ky′  is the updated expert judgement after an imperfect maintenance action  is 

conducted at decision period k . Based on Equation (7.35) we have: 

  

P yk+1 = m H k , yk ,xk = i, !yk = l( )
          = P yk+1 = m xk+1 = n, !yk = l( )P xk+1 = n !xk = j( )

j=1

N

" P !xk = j xk = i( )
n=1

N

"

          = qlm
n

j=1

N

"
n=1

N

" pjn
#( )rij ,      1$ i,l,m $ N .

      (7.71) 

 

The breakdown of the minimum expected total discounted cost at period k,  
according to the choices of inspection and maintenance action at the two decision 

steps, is depicted in Figure 7.4.  
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Figure 7.4: Breakdown of the minimum expected total cost at decision period k according 
to the choices of inspection at decision Step 1 and maintenance action at decision Step 2. 
The block arrows represent the flow of the information obtained through inspections. 
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7.5 Summary 

A maintenance decision optimisation model, formulated as a Partially Observable 

Markov Decision Process (POMDP), was developed in this chapter. Since the true 

deterioration state of the maintained system is unknown, it is inferred from the 

history of all information available at discrete time decision epochs. We thus 

introduced the “belief state” that is the conditional probability distribution of the 

deterioration state given all past expert judgements, observations and maintenance 

actions. As illustrated in Figure 7.1, at each decision epoch, the decision regarding 

the maintenance policy is made in a maximum of two steps. Following each decision 

step, the belief state is updated so that the updated belief state at Step 1 will be the 

control factor for Step 2. According to the optimality principle in dynamic 

programming, we obtained the optimal cost as a function of the belief state for each 

decision step over a finite planning horizon. The breakdown of the optimal cost 

according to the choices of inspection at Step 1 and maintenance action at Step 2 of a 

decision epoch is illustrated in Figure 7.4. The optimal policy can be theoretically 

obtained by recursion from Equations (7.52)–(7.71). However, since the number of 

belief states is infinite, it is computationally unfeasible to update all of them given a 

choice of action. In Chapter 8, we develop an approximation method to solve the 

decision optimisation model.  
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8 Derivation and Sensitivity Analysis of the Optimal 

Policy 
 

In this chapter we propose an approximation method to find the optimal policy for 

the two-step Partially Observable Markov Decision Process (POMDP) formulated in 

Chapter 7. Recall from Section 4.4 that POMDPs (Monahan, 1982; Lovejoy, 1991) 

are generalisations of Markov Decision Processes (MDPs) in which it is not assumed 

that the system state at each decision time epoch is precisely known. A policy for a 

Markov Decision Process (MDP) is a rule that specifies which action should be taken 

in each state. Solving an MDP means finding an optimal policy with respect to an 

objective function. An MDP over a finite planning horizon can be numerically solved 

by backward induction (Puterman, 1994), which is also called “value iteration” for 

solving MDPs (Sheskin, 2010). For the proposed POMDP the belief states are 

defined as the conditional probability distribution of the system’s deterioration state. 

Since the number of these states is infinite, it is computationally not feasible to 

update all of them given a choice of action. We hence propose an approximation 

method to find the optimal policy, in which the prior probability distribution of the 

system states is discretised so that the computation of the optimal cost is only applied 

to specific belief states.  

The approximation solution procedure is first described in Section 8.1. To illustrate 

the optimal policy and to explore its potential structural features, a numerical 

example is given in Section 8.2. The sensitivity of the optimal policy and the optimal 

cost to the parameter values is empirically evaluated in Section 8.3. Experimental 

sensitivity analyses are conducted in three sections investigating what influence (1) 

variation in cost parameters, (2) failure rate and (3) accuracy of the expert 

judgement, have on the optimal policy and the optimal cost. 
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8.1 Solution Procedure: Backward Induction Algorithm  

To find the optimal policy minimising the expected total discounted cost over a finite 

horizon, we solve the POMDP using backward induction. Since the belief (state) 

space in our POMDP is the probability distribution of the system state and it is 

continuous, we first approximate the belief space by discretising it using regular 

grids. The optimal cost values are then computed and the optimal policy is found for 

the finite number of belief states in the grid. Let ′Ω  denote the discretised belief 

state. We assume that each grid point in ′Ω  represents a belief state at the beginning 

of a decision period. In other words, at the beginning of each decision period k , the 

prior conditional probability distribution of the system state given all information 

available before obtaining the expert judgement, ! k , is represented by the finite 

number of grids in ′Ω .  

As seen in Equations (7.52)–(7.71), the optimal cost at decision Step 1 of each period 

depends on the optimal cost at the next decision period as well as the costs associated 

with the maintenance actions at decision Step 2 in the same period. The breakdown 

of these costs is illustrated in Figure 7.4. To find the optimal grid-based policy over a 

finite planning horizon we step backward from the last decision period in the 

planning horizon, finding first the optimal maintenance action at decision Step 2 and 

then the optimal inspection choice at decision Step 1.  

For each decision period  k , 1! k ! K , and xk ! 1,2,...,N{ }  we first compute the 

expected total discounted cost associated with the preventive replacement performed 

after an accurate inspection, i.e. ( )r k ; the expected total discounted cost associated 

with imperfect maintenance action conducted after an accurate inspection, i.e. 
( , )A

kM k x ; and the expected total discounted cost incurred by taking no action after 

an accurate inspection, i.e. ( , )A
kW k x , using the minimum expected total discounted 

cost at decision period k +1 , i.e. 
  
V k +1,! k+1 yk+1( )( ) . The optimal maintenance 

action according to the system state at this decision period is then found, as given by 

Equation (7.65). At this step the optimal maintenance action ak
M  is determined for 

each accurate inspection outcome, i.e. true state of the system. In other words, for 

each decision period in the planning horizon, first each true system state 
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xk ! 1,2,...,N{ }  is mapped to an action ak
M ! 0,1,2{ } . Then, for each simple 

inspection outcome   ok ! 1,2,...,Z{ } , the optimal cost functions ( )( ), ,S k
k kM k y oπ  

and ( )( ), ,S k
k kW k y oπ  

are computed for all the grid points in  !" .  The optimal policy 

for each point in the grid according to each simple inspection outcome is then found 

using Equation (7.57).  

Having computed the optimal cost functions ( ),A
kV k x  and ( )( ), ,S k

k kV k y oπ  for 

decision period k , we then compute the cost functions ( )( ), k
kA k yπ , ( )( ), k

kS k yπ ,

( )( ),I k
kW k yπ  

and finally find the optimal inspection choice for each point in !"  

using Equation (7.52).  

The algorithm presented in the next page codifies the procedure of the backward 

induction explained above; it finds the two-step grid-based optimal policy for a 

planning horizon containing K  decision intervals. 
  
V K +1,! K+1 yK+1( )( )  

denotes the 

optimal cost value at the beginning of the decision period K +1, i.e. at the end of the 

planning horizon. The value of 
  
V K +1,! K+1 yK+1( )( )  

can be assigned according to 

the application situation; for instance the salvage value of the maintained system 

might be taken into account. Setting 
  
V K +1,! K+1 yK+1( )( ) = 0,  "! K+1 yK+1( ), implies 

that, when making optimal decisions, at the final decision period, K ,  only the costs 

incurred over this decision period are taken into account. 
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Backward Induction Algorithm: an Approximated Solution for the Two-Step 

POMDP 

For a given value of the parameters, ( ), , , , , , , , ,S A M R F
iP F r B Q i C C C C C and the 

terminal cost value 
  
V K +1,! K+1 yK+1( )( ) , do the following steps: 

• For   k = K , K !1,...,1 repeat: 

1 Compute the expected total discounted cost associated with preventive 

replacement, i.e.   r k( ).  

2 For 1,2,...,kx N=  compute ( , )A
kM k x  and ( , )A

kW k x , and then find the 

optimal cost   V
A k,xk( )  and the optimal maintenance action. 

3 For 1,2,...,ky N=  and ( )k
kyπ ′∀ ∈Ω  repeat: 

a For 1,2,...,ko Z=  compute   
W S k,! k yk ,ok( )( )  and 

  
M S k,! k yk ,ok( )( )  and then find the optimal cost   

V S k,! k yk ,ok( )( )  

and the optimal maintenance action. 

b Compute   
W I k,! k yk( )( ) ,   

S k,! k yk( )( )  and   
A k,! k yk( )( ) , and then 

find the optimal cost   
V k,! k yk( )( )  and the optimal inspection type. 

 

Note that in the proposed procedure the discrete approximation is only applied to the 

prior probability distribution. When computing the optimal cost, the posterior 

probabilities, i.e. probability of the system states updated based on the information 

obtained in a decision period, are not approximated. At the beginning of each 

decision period, the prior distribution probability ! k  gives the probability of the 

system state as a grid in  !" .  At decision Step 1 the approximated ! k  represented by 

a grid, together with the expert judgement yk , indicate the optimal inspection choice. 

At decision Step 2, if a simple inspection has been conducted, the simple inspection 
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outcome ok , together with the approximated ! k
 and the expert judgement yk , 

specify the optimal maintenance action. If an accurate inspection is conducted, the 

true deterioration state xk  is revealed which indicates the optimal maintenance 

action. This policy is demonstrated in Section 8.2.  

8.2 Numerical Experiment 

In this section we demonstrate the two-step optimal policy using a numerical 

example. The optimisation procedure mentioned above has been coded in MATLAB 

(presented in Appendix B). The MATLAB software package has also been used to 

illustrate the results graphically. The code written to illustrate the proposed two-step 

optimal policy has been also included in Appendix B. 

8.2.1 Assumptions 

To conduct the numerical experiment and the sensitivity analysis, we assign the 

parameter values based on the following assumptions. These assumptions are made 

to help the intuitive representation of a real scenario.    

Assumption 1:  CS ! C A ! C M ! C R ! C F . This assumption states that: (1) 

conducting an accurate inspection is more costly than a simple inspection,  CS ! C A . 

This is because of the more complicated, more expensive preparations needed for an 

accurate inspection. (2) Since conducting a maintenance action results in a longer 

period of downtime compared to an inspection, causing more revenue to be lost, the 

cost of conducting an accurate inspection is assumed to be less than carrying out an 

imperfect maintenance action,  C A ! C M . (3) An imperfect maintenance action is less 

costly than a preventive replacement,  C M ! C R . (4) A replacement caused by a 

failure is much more costly than a preventive replacement,  C R ! C F . 

Assumption 2:  Fi ,  1! i ! N ,  i.e. the probability of the system failing in State  is 

non-decreasing in i,  meaning that the system is more likely to fail in a higher 

indexed deterioration level reflecting a worse condition. 

Assumption 3:  i.e. the probability of self-transition when the system is 

in State i,  is non-increasing in . This means that, as the deterioration level becomes 

i

,  1 i< N,ip ≤

i
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worse, the system is more likely to make a transition to a higher indexed 

deterioration level over one time unit.  

Assumption 4: During a simple inspection, we are more likely to observe a higher 

indexed inspection outcome when the system is in a higher deterioration state. We 

interpret this assumption in the sense of likelihood ratio, that is, the ratio between the 

elements of the stochastic matrix that specifies the probabilistic relation between the 

deterioration state and the output of the simple inspection, i.e.

  
B = bi o( );  1! i ! N , 1! o ! Z"# $% ,  

  

bj !( )
bj o( ) "

bi !( )
bi o( )   for  1# i # j # N   and   1# o #! # Z ,

 

where ( )ib o  is the probability of observing the simple inspection outcome o  given 

that the system is in State .i  This property of the stochastic matrices is referred to as 

their being “totally positive of order 2 ” , or 2TP  in short, in the related literature 

(Rosenfield, 1976). 

Assumption 5: The N N× transition probability matrix that reflects the efficiency of 

the imperfect maintenance action, i.e. 
  
r = rij ;  1! i, j ! N"# $% , is assumed to be a lower 

triangle matrix. This means that the imperfect maintenance action does not worsen 

the condition of the system. It is also assumed that as the deterioration level becomes 

higher it is less likely to recover the system to a lower deterioration level. We state 

this in the sense of likelihood ratio between the entries of the stochastic matrix r , as 

follows: 

  for  1  and 1 m n N ,jn in

jm im

r r i j N
r r

≥ ≤ ≤ ≤ ≤ ≤ ≤  

where ijr  is the probability of restoring the system from State   i to j  by performing 

an imperfect maintenance action. 

Assumption 6: When the expert’s assessment is that the system is in a worse 

condition, yk = j,  1! l ! j ! N , the ratio of the likelihood that the next expert 
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judgement state is in a higher indexed state, to the likelihood that it is in a lower 

indexed state is greater than the reverse, that is 

P yk+1 = n yk = k, xk+1 = i( )
P yk+1 = m yk = k, xk+1 = i( ) !

P yk+1 = n yk = l, xk+1 = i( )
P yk+1 = m yk = l, xk+1 = i( ) ,  

1" m " n " N   and 1" l " k " N .

 

Let  Q i( )  denote the transition probability matrix of the expert judgement states over 

one decision period, i.e. ( ) ( )1 1, ,  1 , ,i
lm k k kQ i q p y m y l x i i l m N+ +⎡ ⎤= = = = = ≤ ≤⎣ ⎦ . 

We can state this assumption in the sense of likelihood ratio between the elements of 

the matrix   Q i( ),  1! i ! N ,  that is  

 
  

qkn
i

qkm
i !

qln
i

qlm
i  for  1" l " k " N  and 1" m " n " N .

 

8.2.2 Parameter Values 

Assuming the time unit t  to be a week, we consider decision-making on a monthly 

basis, i.e. 4.Δ =  In order to illustrate the optimal policy in a schematic way and 

hence to observe the possible structural properties, we consider a system with three 

deterioration states, i.e. 3.N =   

Based on the assumptions given earlier in this section, the following parameter 

values are considered for the numerical experiment.  

The values considered for vectorsP  and F , assigned according to Assumptions 2 

and 3, are given in Table 8.1. 
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Table 8.1: Values for the probability of failure and self-transition of the system 
states. 

Stat

e 

Probability of remaining at 

the same state over a time 

unit 

Probability of failure over a 

time unit 

i  ip  iF  

1 0.99  0.001  

2  0.98  0.009  

3  1.0  0.1  

 

Based on Equation (7.4) in Section 7.2.1, using the above parameter values, the 

monthly-based transition probability matrix  P! , is computed as: 

  

P! =
0.9606 0.0382 0.0012

0 0.9224 0.0776
0 0 1.0000

"

#

$
$
$

%

&

'
'
'
.

 

Also, as given in Sub-Section 7.3.4, since the transition probabilities are assumed to 

be stationary, the reliability of the system over a decision period will be stationary 

too, i.e. independent of the decision period. The parameter values in Table 8.1 yield 

the following reliability vector that is the probability of the system to not failing over 

a four week period: 

  
R = 0.9739 0.6524 0.5905!" #$ . 

The values assigned to the stochastic matrices   B,Q i( )  and r  are as follows. Note 

that the values of these matrices are assigned so that the stochastic relationship 

between their elements stated in Assumptions 4, 5 and 6 in the  sense of likelihood 

ratio, is satisfied.  

  

B =
0.85 0.14 0.01
0.1 0.8 0.1
0.01 0.19 0.8

!

"

#
#
#

$

%

&
&
&

,      r =
1 0 0

0.8 0.2 0
0.1 0.7 0.2

!

"

#
#
#

$

%

&
&
&

,
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Q 1( ) =
0.85 0.14 0.01
0.2 0.7 0.1
0.1 0.4 0.5

!

"

#
#
#

$

%

&
&
&

,   

Q 2( ) =
0.15 0.8 0.05
0.05 0.7 0.25
0.01 0.19 0.8

!

"

#
#
#

$

%

&
&
&

,   Q 3( ) =
0.1 0.3 0.6

0.01 0.14 0.85
0.01 0.14 0.85

!

"

#
#
#

$

%

&
&
&
.  

The cost parameters are given by the following values (in £), according to 

Assumption 1: 

  C
S = 1500,   C A = 3000,  C M = 5000,  C R = 20000 and C F = 50000.  

The discount rate !  is given by 0 !" = 1
1+ r

!1  where r  is the interest rate 

(Chiang, 1984).  Since we consider decision-making on a monthly basis, that is 

 ! = 4 , we set the discount rate close to 1, 0.95ϕ = , implying a relatively low 

monthly interest rate, 0.052r = . This means that the costs associated with the next 

decision period, have present values almost equivalent to their values in the next 

month.  

8.2.3 Results 

Using the above parameter values, we can numerically solve the two-step POMDP 

over a two-year planning horizon, i.e. 24.K =   

We set the terminal cost, i.e. the expected cost at the beginning of the decision period

1K + , to zero, that is ( )( ) ( )1 1
1 11, 0,  K K

K KV K y yπ π+ +
+ + ′+ = ∀ ∈Ω . To execute the 

proposed backward induction algorithm, the belief states 1 2 3,  and π π π  are 

discretised on a lattice with increments of 0.1 . The optimal cost functions between 

the lattice points are approximated using bilinear interpolation (Press et al., 2007). 

The two-step grid-based optimal policy is obtained for the decision periods 

1,2,..., 24k = , resulting in the total expected discounted cost of £32,846 over the 

two-year planning horizon. 

Figure 8.1 illustrates the grid-based optimal policy, at decision Step 1, for the final 

decision period,   k = 24 . The X-axis denotes 1π , i.e. the conditional probability of the 
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system being in State 1 and the Y-axis denotes 2π , i.e. the conditional probability of 

the system being in State 2 . Since 1 2 3 1π π π+ + = , then the discretised belief space 

can be represented by the grids within the triangular area surrounded by the X-axis, 

the Y-axis and the line 1 2 1π π+ = . Each point in the figure denotes an updated belief 

state, after the expert judgement is provided, that is the conditional probability of the 

system given the expert judgement ky , and all other information available at period 

24k = . To demonstrate the optimal decision rule, the grids have been marked 

according to their optimal policy.  

 

 

Figure 8.1: Optimal inspection rule at period k=24. ×  represents no inspection 
and  !  represents simple inspection.  

 

Note that in the schematic optimal policy, the inspection policy is not shown for the 

belief states at ( ) ( ) ( )1,0 , 0,1  and 0,0 , which represent the situation when the system 

is in States 1,2 and 3 respectively, with probability of 1. With such certainty, there is 

no need to conduct an inspection to obtain information about the condition of the 

system. Recall from Chapter 7 that we assume that such certainty happens when the 

decision maker has access to the true state of the system, and this is only when an 

accurate inspection is conducted, or when a replacement is carried out, which 

transfers the system to State 1.   

Based on this grid-based policy, at period 24k = , first the expert judgement ky  is 

obtained and then the corresponding optimal inspection choice is looked up in the 

grid-based optimal inspection policy in Figure 8.1 and the optimal inspection type, if 

any, is conducted accordingly. At this decision period the grid-based optimal policy 
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is partitioned into two sub-regions for which the corresponding optimal action is to 

not conduct any inspection or to conduct simple inspection.  

Once the optimal inspection type is conducted, if the optimal action at decision Step 

1 is to conduct an inspection, the optimal maintenance action is carried out given the 

outcome of the inspection. Figure 8.2 illustrates the optimal decision rule at decision 

Step 2 for the final period, 24k = , corresponding to the outcome of the simple 

inspection, ko . Note that the optimal action at decision Step 2 is only shown for the 

belief states for which the optimal action at decision Step 1 is to conduct a simple 

inspection.   

Figure 8.2: Optimal maintenance action rule, after a simple inspection, for k=24, 
with ×  representing no action,  !  representing imperfect maintenance action and •  
representing replacement.  
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The optimal policy, at decision Step 2, according to the outcome of an accurate 

inspection, i.e. the true state of the system, is indicated in Table 8.2. 

Table 8.2: Optimal maintenance action, given the outcome of the accurate inspection 
at k=1,2,…,24. 

State Optimal maintenance action 

i  M
ka  

1 No action 

2  Imperfect maintenance action 

3  Replacement 

 

Given the parameter values mentioned above, executing the backward induction 

algorithm yields a stationary maintenance policy for decision Step 2, according to the 

outcome of the accurate inspection. As shown in Table 8.2, the optimal policy 

indicates that the same decision will always be made according to the true state of the 

system, irrespective of the decision period, k . Based on this decision rule, in every 

decision epoch, when the system is at State 1, the optimal action is to not take any 

action and wait until the next decision epoch. The optimal maintenance action when 

the system is revealed to be in State 2  or State 3  is to carry out an imperfect 

maintenance action and replacement, respectively. 

In this example, the optimal grid-based policy specifies the same decision for a given 

belief state in the grid, at decision periods 1,2,...,18k = . In other words, when there 

are more than five decision periods to go, given the assigned parameter values, the 

grid-based optimal policy is stationary. The optimal grid-based policy for decision 

Steps 1 and 2 for decision periods 1,2,...,18k =  are illustrated in Figure 8.3 and 

Figure 8.4, respectively.  
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Figure 8.3: The optimal inspection rule for k=1,2,…,18, with !  representing no 
inspection,  !  representing simple inspection and • representing accurate inspection 
as the optimal policy.  

 

 

Figure 8.4: The optimal maintenance action rule, after a simple inspection, for 
k=1,2,...,18, with !  representing no action,  !  representing imperfect maintenance 
action and •  representing replacement. 
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Figure 8.3 demonstrates that at any decision epoch 18k ≤ , as the deterioration state 

ascertained by the expert judgement, ky , increases, the optimal inspection policy 

recommends a more conservative decision for the belief states in the grid. In other 

words, the number of the belief states in the grid for which the optimal decision is to 

wait until the next decision epoch or to conduct a simple inspection decreases, while 

the number of the belief states for which accurate inspection is specified as the 

optimal decision increases. 

The same feature applies to the optimal maintenance policy for decision Step 2. As 

seen in Figure 8.4, as the expert judgement ky , and the observation ko , increase, the 

number of the belief states for which the optimal action is to do nothing or to carry 

out an imperfect maintenance action decreases, while the number of the grids 

indicating a replacement increases. 

8.3 Experimental Sensitivity Analysis of the Optimal Policy 

In this section, the sensitivity of the optimal policy and the expected total discounted 

cost to the parameter values is evaluated empirically. This experimental sensitivity 

analysis is conducted in three sections which investigate what influence (1) variation 

in cost parameters, (2) failure rate and (3) the expert judgement transition probability 

matrix, have on the optimal policy and the optimal cost. 

8.3.1 Sensitivity of the Optimal Policy to Cost Parameters 

In this section, the effect of cost values on decision choices at decision Step 1 is 

explored. The objective of this sensitivity analysis is to find out how much the 

optimal policy is affected by the operational changes in inspection and maintenance 

action costs. 

8.3.1.1 Simple Inspection Versus Accurate Inspection 

First, the sensitivity of preference of the simple inspection over accurate inspection 

to the inspection costs  and S AC C  is explored. First we explore this through a 

numerical experiment. We obtain the grid-based optimal policy using the parameter 

values given in Sub-Section 8.2.2, decreasing the cost of conducting a simple 

inspection by 50%, i.e. 750.SC =  Note that this value is chosen, as an example, to 
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illustrate the changes of the optimal policy caused by reducing the simple inspection 

cost through the schematic optimal policy. We will then, examine the sensitivity of 

the optimal cost and the optimal policy by varying the simple inspection cost 

between 0  and CA . To compare the obtained optimal policy with that associated 

with the original parameter value 1500SC = , we present the schematic stationary 

optimal policy, that is, the optimal policy for the decision period 19k ≤ . The grid-

based optimal policy for these decision periods is given in Figure 8.5 and Figure 8.6, 

illustrating the optimal inspection, and maintenance action rule after a simple 

inspection, respectively. The optimal maintenance action rule after an accurate 

inspection remains the same as the action rule given in Table 8.2. The expected total 

discounted cost associated with this optimal policy is £30,994 for the two-year 

planning horizon. This is approximately 5% less than the optimal cost computed 

based on the original parameter values.  

 

Figure 8.5: The optimal inspection rule for k=1,2,…,19 when   C
S = £750 , with !  

representing no inspection,  !  representing simple inspection and •  representing 
accurate inspection as the optimal policy. 
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Figure 8.6: The optimal maintenance action rule, after a simple inspection, at 
k=1,2,...,19 when   C

S = £750 , with !  representing no action,  !  representing 
imperfect maintenance action and •  representing replacement. 
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discounted cost as a function of the ratio of simple inspection to accurate inspection 

cost, 
S

A

C
C

. 

 

 

Figure 8.7: Variation of the optimal cost with ratio of simple inspection to accurate 
inspection cost.   C A = £3000  and  CS

 is varied between 0 and  £3000 , with increment 
of  £100 . 

 

As seen in Figure 8.7, the optimal cost loses its sensitivity to the simple inspection: 

accurate inspection ratio when the simple inspection cost rises to approximately more 

than 65% of an accurate inspection cost, that is when 0.65 or 1950
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≥  

8.3.1.2 Imperfect Maintenance Action Versus Replacement 

The sensitivity of the optimal policy to imperfect maintenance action cost  MC  is 

explored next. We obtain the grid-based optimal policy using the parameter values 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5
x 104

Ratio of simple to accurate inspection cost, CS/CA

To
ta

l e
xp

ec
te

d 
di

sc
ou

nt
ed

 c
os

t 

 

 

£ 27 881

£ 32 880 



 156 

given in Sub-Section 8.2.2, reducing the cost of conducting an imperfect 

maintenance action to 3000MC = . To compare the obtained optimal policy with that 

associated with the original parameter values, i.e. 5000MC = , we present the 

schematic stationary optimal policy that is the optimal policy for the decision period 

20k ≤ . The grid-based optimal policy for these decision periods is given in Figure 

8.8 and Figure 8.9, illustrating the optimal policies for inspection and maintenance 

action after a simple inspection, respectively. The optimal maintenance action policy 

after an accurate inspection is given in Table 8.3. The expected total discounted cost 

associated with this optimal policy is £31,549 for the two-year planning horizon. 

This is approximately 4% less than the optimal cost computed based on the original 

parameter values.  

 

 

Figure 8.8: The optimal inspection rule for k=1,2,…,20   C
M = £3000 , with !  

representing no inspection,  !  representing simple inspection and •  representing 
accurate inspection as the optimal policy. 
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Figure 8.9: The optimal maintenance action rule, after conducting a simple 
inspection, at k=1,2,...,20 when   C

M = £3000 , with !  representing no action,  !  
representing imperfect maintenance action and •  representing replacement. 

 

Table 8.3: The optimal maintenance action rule, given the outcome of the accurate 
inspection. 

State Optimal maintenance action 

i  1,2,..., 23k =  24k =  

1 No action No action 

2  Imperfect maintenance action Imperfect maintenance action 

3  Replacement Imperfect maintenance action 
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As expected, as the cost of carrying out an imperfect maintenance action reduces, the 

number of belief states for which imperfect maintenance action is recommended as 

the optimal action increases. This can be seen by comparing the obtained 

maintenance action rule in Figure 8.9 with that obtained for 5000MC =  in Figure 

8.4. Also, as seen in Figure 8.8, the number of belief states for which the optimal 

inspection rule is to do nothing reduces as the cost of an imperfect maintenance 

action decreases. This is because for some belief states, for which the optimal 

inspection rule given the original parameter values was to do nothing, it becomes 

cost effective to carry out an imperfect maintenance action when the cost of carrying 

it out reduces. Since an imperfect maintenance action can be carried out only after 

conducting an inspection, for such belief states an inspection is recommended so that 

it can be followed by an imperfect maintenance action.  

To explore the influence of variations of the imperfect maintenance action cost on 

the expected total discounted cost, we obtain the optimal policy by varying the 

imperfect maintenance action cost from zero to its upper bound, that is the 

replacement cost, i.e.   0 ! C M ! C R , as given in Assumption 1. Figure 8.10 plots the 

variation of the total expected discounted cost as a function of the ratio of imperfect 

maintenance action to replacement cost, i.e. 
 
C M

C R . 
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Figure 8.10: Variation of the optimal cost with the ratio of imperfect maintenance 
action to replacement cost.   C R = £20000  and  C M

 is varied between 0 and  £20000  
with increments of  £100.  

 

As seen in Figure 8.10, the optimal cost loses its sensitivity to the ratio of the 

imperfect maintenance action to replacement cost when the imperfect maintenance 

action costs rise to approximately more than 55% of the replacement cost, that is, 

when 
  
C M

C R ! 0.55 or C M !11000 . This implies that the structure of the optimal 

policy also loses its sensitivity to the imperfect maintenance action cost when

  
C M

C R ! 0.55 . This means that, given the parameter values in Sub-Section 8.2.2, the 

imperfect maintenance action is not recommended by the stationary optimal policy 

when 
  
C M

C R ! 0.55.  

8.3.2 Sensitivity of the Optimal Policy to Failure Rate 

To explore the changes in the optimal policy when the failure rate varies, we increase 

the failure rates given in Table 8.1 to the failure rates shown in          Table 8.4.  
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         Table 8.4: Increased failure rates from the original values. 

Stat

e 

Original values of probability 

of failure over a time unit 
Increased values of probability 

of failure over a time unit 

i  iF  iF  

1 0.001  0.001  

2  0.009  0.02  

3  0.1  0.5  

 

The increased failure rates yields the following reliability vector, as computed in 

Sub-Section 7.3.4:  

[ ]0.9152 0.0658 0.0313 .R =  

As the failure rate increases, the reliability over a decision period is reduced, so we 

expect to have a more conservative policy. Figure 8.11 and Figure 8.12 illustrate the 

obtained optimal inspection and maintenance action rule after a simple inspection, 

respectively. The optimal maintenance action rule after an accurate inspection 

remains the same as the action rule given in Table 8.2. The expected total discounted 

cost associated with this optimal policy is £76,945. 

 

 

Figure 8.11: The optimal inspection rule for k=1,2,…,20 with increased failure rates, 
with !  representing no action,  !  representing imperfect maintenance action and •  
representing replacement. 

 

 

0 0.5 1
0

0.5

1

π1

π 2

0 0.5 1
0

0.5

1

π1

π 2

0 0.5 1
0

0.5

1

π1

π 2

yk=1 yk=2 yk=3



 161 

 

Figure 8.12: The optimal maintenance action rule, after a simple inspection, at 
k=1,2,...,20 with increased failure rates, with !  representing no inspection,  !  
representing simple inspection and •  representing accurate inspection as the optimal 
policy. 
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( ) ( )1 1, ,  1 , , .i
lm k k kQ i q p y m y l x i i l m N+ +⎡ ⎤= = = = = ≤ ≤⎣ ⎦  

To increase the accuracy of expert judgement, we increase the transition probability 

of expert judgement to the true state of the system. Assuming that the current expert 

judgement is   yk = l,  1! l ! N ,  we change the entries of the stochastic matrix   Q i( ),  
so that the probability of the expert judgement matching the true system state, i.e. 

1 1k ky x i+ += = , increases. Denoting this probability with i
liq , we have 

( )1 1, ,  1 , .i
li k k kq p y i y l x i i l N+ += = = = ≤ ≤  

We change the original value of the expert judgement transition probability matrices 

to the values below, so that the accuracy of the expert judgement increases as 

explained. 

  

Q 1( ) =
0.85 0.14 0.01
0.4 0.5 0.1
0.3 0.5 0.2

!

"

#
#
#

$

%

&
&
&
,   

Q 2( ) =
0.15 0.8 0.05
0.05 0.7 0.25
0.01 0.7 0.29

!

"

#
#
#

$

%

&
&
&
,   Q 3( ) =

0.1 0.3 0.6
0.01 0.14 0.85
0.01 0.14 0.85
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"

#
#
#

$

%

&
&
&

 

 

We obtain the optimal policy over a two-year planning horizon. The optimal policy 

becomes stationary when there are more than three decision periods to go, that is for 

k=1,2,…,21. Figure 8.13 and Figure 8.14 illustrate the stationary optimal inspection, 

and maintenance action rule after a simple inspection, respectively. The optimal 

maintenance action rule after an accurate inspection remains the same as the action 

rule given in Table 8.2. The expected total discounted cost associated with this 

optimal policy is £32,777, which is less than the expected total discounted cost 

associated with the optimal policy obtained in Section 8.2, for the “less accurate” 

expert judgement. This makes sense as when the expert judgement is provided more 

accurately (e.g. by a very experienced senior engineer), the optimal policy is 

expected to cost less. However, using a more accurate expert judgement could cost 

more (e.g. higher level of payments to a senior engineer) and hence this cost should 

be taken into account when optimising the decision process in practice. 
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Figure 8.13: The optimal inspection rule for k=1,2,…,21 with the expert judgement 
transition matrix changed, with !  representing no inspection,  !  representing simple 
inspection and •  representing accurate inspection as the optimal policy. 
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Figure 8.14: The optimal maintenance action rule, after a simple inspection, at 
k=1,2,...,21 with the expert judgement transition matrix changed, with !  
representing no action,  !  representing imperfect maintenance action and •  
representing replacement. 

 

As expected, when the expert judgement accuracy increases so that it is more likely 

to equate to the true state of the system, the number of the belief states for which an 

inspection is recommended by the optimal policy, decreases. 

8.4 Summary and Conclusion 

In this chapter we developed an approximate method to numerically solve the 

proposed two-step POMDP. In this method the prior probability distribution of the 

system state is discretised using regular grids, and thus the computation of the 

optimal policy is only applied to a specific number of belief states. The proposed 

two-step grid-based optimal policy was illustrated through numerical experiments, 

with parameter values assigned according to the assumptions given in Sub-Section 

8.2.1 to help the intuitive representation of a real scenario.  

Earlier, in Section 7.1, we described the two-step decision process and illustrated the 

underlying decision mechanism in Figure 7.1. Having formulated the decision 

optimisation model in Section 7.4 and provided a method for solving it in this 

chapter, we can now summarise the procedure regarding how to use the optimal 

policy in practice as depicted in Figure 8.15. 

As seen in the schematic grid-based optimal policy depicted in Figure 8.1–Figure 

8.9, the discretised belief state space is partitioned into sub-regions corresponding to 

different inspection choices at decision Step 1 and different maintenance actions at 

decision Step 2. The size of these regions can be denoted by the number of the grids 

marked according to inspection and maintenance action choices. At the beginning of 

each decision period k,  first the expert judgement yk  is obtained and then the 

optimal inspection choice is looked up in the corresponding grid-based optimal 

inspection policy. The optimal inspection type is found by checking in which region 

the prior distribution probability of the system ! k
 falls. In situations when ! k  falls 

on the borderlines, i.e. surrounded by grids marked according to different inspection 
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choices, the inspection type of the grid ! g = !1
g ,! 2

g ,! 3
g( )  that is the closest in terms 

of the distance between the coordinates !1
k ,! 2

k( )  and !1
g ,! 2

g( )  is selected. The same 

procedure can be followed when finding the optimal maintenance action in the grid-

based optimal maintenance action policy.  
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Obtain expert judgement 

yk  

Look up the schematic grid-based 

inspection policy corresponding to yk  and 

find the optimal inspection type by 

checking in which region ! k  falls 

 

Conduct no 

inspection; 

estimate  

! k+1  using 

Equation 

(7.17) 

 

Conduct accurate 

inspection and 

obtain xk  

Conduct simple 

inspection and 

obtain ok   

 

Look up the 

maintenance action 

policy table and find 

the optimal 

maintenance action 

type corresponding 

to xk  

 

Look up the grid-

based maintenance 

action policy 

corresponding took  

and yk , and find the 

optimal maintenance 

action type by 

checking in which 

region ! k  falls 

 

Perform  imperfect 

maintenance action; 

estimate ! k+1  using 

Equation (7.36) 

 

Perform preventive 

replacement; 

estimate ! k+1  using 

Equation (7.28) 

 

Perform preventive 

replacement; 

estimate ! k+1  using 

Equation (7.28) 

 

Perform  imperfect 

maintenance action; 

estimate ! k+1  using 

Equation (7.27) 

 

Take no 

action; 

estimate 

! k+1  using 

Equation 

(7.32) 

 

Take no 

action; 

estimate 

! k+1  using 

Equation 

(7.21) 

 

Figure 8.15: Procedure of using the proposed optimal policy at decision period k . 
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The numerical experiment results provided an insight into the structure of the 

optimal policy. In the paragraphs below we discuss some observed structural features 

that once established, can speed the computation and simplify the implementation of 

optimal policy.  

As the deterioration state of the system, xk , degrades, the optimal maintenance action 

becomes more conservative. For example, as shown in Table 8.2, when the system is 

in State 1 the maintenance action recommended by the optimal policy is to take no 

action. As the deterioration level degrades to State 2, the optimal action is to perform 

an imperfect repair, and it is a preventive replacement when the system is in the 

worst condition, State 3. This implies that the optimal policy has a “control-limit” or 

“threshold-based” structure with respect to the deterioration state of the system. In 

other words, the optimal maintenance action at decision period k , denoted by ak
M , 

can be indicated by the maximum number of two thresholds x 1( )  and x 2( )  as follows: 

ak
M =

0  if  xk
0( ) ! xk ! xk

1( ),

1  if  xk
1( ) ! xk ! xk

2( ),

2  if  xk
2( ),

"

#
$$

%
$
$

  

where 0Ma =  means to not take any maintenance action, 1=Ma  means to perform 

imperfect maintenance action, and 2Ma =  means to perform a replacement. 

The same structural feature is also observed of the optimal inspection policy with 

respect to expert judgement yk , and the optimal maintenance action policy with 

respect to both the simple inspection outcome ok  and expert judgement yk . For 

example, as seen in Figure 8.3, as the deterioration level ascertained by the expert 

degrades, the inspection policy becomes more conservative. That is, as yk  increases, 

the sub-regions corresponding to “no inspection” and “simple inspection” become 

smaller while the sub-region corresponding to “accurate inspection” becomes larger. 

Also, as seen for example in Figure 8.9, as the expert judgement yk  increases across 

the simplexes from left to right, and the observation ok  increases across the 

simplexes from up to down, the optimal maintenance action becomes more 

conservative.  
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The suggestive “control-limit” feature can significantly speed the computation and 

increase the accuracy of the optimal policy in such a way that instead of finding an 

approximated optimal policy for each grid in a discretised belief state space, the 

optimal thresholds are calculated instead. 

Another important observation is the stationary behaviour of the optimal policy. For 

example, for the numerical example conducted in Section 8.2 the optimal policy 

becomes stationary when there are more than five decision periods to go. In other 

words, for any decision period k !18 , the optimal policy is independent of k . This 

observation is suggestive of a stationary optimal policy when the expected total 

discounted cost is minimised over an infinite planning horizon. This means that in 

order to solve the POMDP over an infinite horizon we only need to find the 

stationary policy. Note that the convergence of the total expected discounted cost 

minimised over an infinite planning horizon is guaranteed by discounting the cost 

values using a discount rate 0 !" <1 . 

The sensitivity analyses conducted in Section 8.3 showed that changing the model 

parameters affect the size of the regions corresponding to inspection and 

maintenance action choices in the grid-based optimal policy. For example, as seen in 

Figure 8.7, when a simple inspection costs more than 65% of the cost of an accurate 

inspection, CS ! 0.65CA , for all decision periods k ! 20  an accurate inspection is 

always selected over a simple inspection. In other words, under such conditions the 

sub-region corresponding to simple inspection is merged with the one related to an 

accurate inspection. Another interesting observation from the numerical experiments 

is that when the accuracy of the expert judgement compared to the accuracy of a 

simple inspection is reduced to some point, the expert judgement is no longer a 

control factor for selecting the optimal maintenance action. For example, in Figure 

8.2 the grid-based inspection polices according to different expert judgements and 

same observation outcomes in each row are the same. This can significantly speed 

the computation of the optimal cost and the procedure of using it in practice. 

The observations mentioned in the above paragraph imply that the relationship 

between the cost parameters and the probability parameters (e.g. the relationship 

between the elements of the expert judgement transition matrix in the sense of 
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likelihood ratio as stated in Assumption 6) affect the maximum number of the 

regions that specify a “control-limit” optimal policy.  The suggestive “stationary” 

and “control-limit” characteristics of the optimal policy observed through numerical 

experiments can be theoretically validated in future research under some conditions, 

such as the assumptions listed in Sub-Section 8.2.1.  

While our results have used a particular discrete grid, similar results were obtained 

using a finer grid. This indicates that the results are robust to the choice of grid size. 

In particular, the sensitivity to changes in parameters is similar for different grid 

sizes. 
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9    Conclusions and Further Research 
 

The main contribution of this thesis is to Condition Based Maintenance (CBM) 

modelling, through formally incorporating expert judgement into the decision 

support process. The inspiration for model developments was taken from a real CBM 

system within a large engineering company operating fans, as discussed in Chapter 2. 

To create manageable models, simplifications and assumptions have been made. 

Hence, one possible direction for expanding this research is to extend the developed 

models by removing some of the simplifications and relaxing some of the 

assumptions. The research scope could also be expanded according to the 

observations of the case study. 

We discuss how each of the four research objectives, as stated in Chapter 1, has been 

addressed in Sections 9.1 to 9.4.  As well as summarizing the contributions to 

knowledge for each objective, some suggestions for future research to extend the 

proposed models and algorithms are presented. In Section 9.5, we conclude by 

suggesting more fundamental directions to future research 

9.1 Research Objective 1 

Recall from Section 1.4 that the first research objective was to develop a stochastic 

model that captures the evolutionary relationship between expert judgement and the 

underlying deterioration condition of a system.  

9.1.1 Contribution to Knowledge 

A model was developed in Chapter 5 to capture this evolutionary relationship, to be 

used as a framework for diagnostics and prognostics. This model was formulated as a 
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Coupled Hidden Markov Model (CHMM) with discrete time and discrete states. The 

proposed CHMM enhances the capabilities of the standard Hidden Markov Models 

(HMMs) by introducing a new structure for the interaction among two hidden 

Markov processes and an observation process, while utilising the well-established 

methodologies of this modelling framework (e.g. forward-backward procedure). The 

new CHMM formulation has the advantage of reduced number of parameters 

compared to the CHMMs in literature (discussed in Section 4.3).  

9.1.2 Suggestions for Future Research 

In the proposed CHMM time is modelled discretely and hence the duration spent in 

system’s states, i.e. the sojourn time, is characterised by a geometrically decaying 

function. The probability distribution function of sojourn time is explicitly modelled 

in Hidden Semi Markov Models (HSMMs) (as described in Sub-Section 3.5.5). The 

proposed CHMM can be further expanded based on a HSMM to allow the sojourn 

time follow other distribution functions. Therefore, an appropriate parametric 

distribution function can fit to real data when they are available in practice and this 

can improve the prognostic ability of the model.   

9.2 Research Objective 2 

The second objective of this research was to develop a parameter estimation method 

for the stochastic model, and to evaluate its performance with respect to potential 

application issues that might be faced in practice, such as the number of expert 

judgements.  

9.2.1 Contribution to Knowledge 

In Chapter 5, a training algorithm was developed to train the CHMM, by following 

steps analogous to the Baum–Welch algorithm. We defined re-estimation formulas 

for the CHMM parameters based on the concept of frequencies of event occurrence. 

This algorithm was demonstrated and evaluated by numerical experiments in Chapter 

6. The experimental results empirically confirmed that the proposed training 

algorithm converges to local maxima; therefore it can be used as an efficient 
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practical method for training the proposed CHMM. There remains an opportunity to 

prove that theoretically.  

The effect of the number of training observation sequences and the initial parameter 

values on the performance of the training algorithm was investigated through 

experimental sensitivity analysis. Although the structure of the proposed CHMM has 

the advantage of a small parameter space and therefore the advantage of computation 

efficiency, the experimental results showed that possibility of overfitting still exists 

for parameters with relatively small values (e.g. F1 = 0.03 ). When a small number of 

datasets (e.g. three) are used to train the model, the parameter values are adjusted to 

specific random features of the training data largely deviated from their true values; 

the result is an “overfitted” model, as opposed to a “generalised” model in which the 

parameter values are close to their true values. 

9.2.2 Suggestions for Future Research 

Recall from Sub-Section 5.3.4 that the proposed training algorithm iteratively 

updates the parameter values until the difference between the probabilities of the 

training data given the trained model, P U !̂( ) , at consecutive iterations becomes less 

than a predefined threshold. The overfitting issue mentioned above could be 

managed by defining a generalisation (validation) error for the model, and using that 

as a condition to terminate the re-estimation procedure, which aims to fit the model 

to the training data.  

Some methods have been developed to overcome overfitting in standard HMMs by 

using model entropy as a measure of generalising performance. The entropy of an 

observation sequence of length  produced by model  is given by 

 
H !,T( ) = " P U !( )

#U$ !UT
% log U !( ),  where  !UT  is the set of all sequences of length 

 that can be produced by model  (Walder, Kootsookos, and Lovell, 2003). An 

example of such methods is proposed by Walder et al. (2003). In their proposed 

method, an HMM model is trained by maximising a linear combination of model 

entropy and model likelihood in which a free parameter is used to balance the desired 

level of generality of the model.  

T !

T !
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Another method of dealing with overfitting would be to refine the re-estimation 

equations of our proposed algorithm, given in Sub-Section 5.3.5. These equations are 

defined based on the concept of frequencies of event occurrence. In the proposed 

training algorithm all of the sequences in the training data are used to compute the 

expected event counts, and then they are added together at the adjusting iterations, to 

re-estimate the model parameters.  

Rabiner and Juang (1993) proposed a refinement for training standard HMMs using 

multi-sequence training. At updating iterations, the event occurrence counts are 

computed using each sequence. The parameters are then re-estimated using a 

weighted average of the expected event counts computed for each observation 

sequence. In this way, the contribution of each sequence to updating the model is 

proportional to the probability of observing this sequence by the current estimated 

model.  

Another method of dealing with overfitting for multi-sequence training data is 

“Ensemble training” (Mackay, 1997), in which a separate model is trained for each 

training sequence and a weighted combination of an ensemble of trained parameters is 

computed. Later, Davis and Lovell (2004) proposed the Viterbi Path Counting 

method, in which the training sequences are used individually in turn and the model 

parameters are re-estimated by counting the states and transitions in the current 

observation sequence using the Viterbi algorithm (described in Paragraph 3.5.6.2). 

They compared this method with “Ensemble training” and Rabiner and Juang’s 

multi-sequence training methods, and their experiments demonstrated that the choice 

of best training method depends on the structure of the HMM and the number and 

length of the training observation sequences. 

Liu et al. (2004) also evaluated the three methods mentioned above, using hand 

gesture data. Their experiment showed that the Viterbi Path Counting (Davis and 

Lovell, 2004) performs better and has less dependency on the initial model, for 

training Left-to-Right models, than does Ensemble training (Mackay, 1997) and the 

method proposed by Rabiner and Juang (1993). Since the evolution of the 

deterioration of a system in our proposed CHMM follows the Left-to-Right Markov 

chain characteristics (as described in Sub-Section 5.2.1) it motivates us to consider 
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applying the Viterbi Path Counting to the specific structure of the CHMM in future 

research. 

 

9.3 Research Objective 3 

The third research objective was to develop a model to support cost-effective 

decision-making based on a trade-off between the cost and benefit of alternative 

maintenance actions, using the information provided by the stochastic model.  

9.3.1 Contribution to Knowledge 

Motivated by the CBM industry application described in Chapter 2, a two-step 

decision optimisation model was developed in Chapter 7 within the framework of a 

POMDP. This model makes a contribution to the CBM optimisation literature by 

modelling both simple and accurate inspection and both imperfect and perfect 

(replacement) maintenance action types as the decision choices. The selections of 

inspection types and maintenance actions are made at two consecutive steps at 

decision periods, conditioned on all the information available, such that the expected 

total discounted cost is minimised over a finite horizon.  

9.3.2 Suggestions for Future Research 

In the proposed decision optimisation model we assumed that expert judgements are 

provided at predetermined regular intervals t = !,2!,...,k!,... . This model can be 

extended by considering the cost associated with expert judgement and modelling the 

times at which the expert judgements are provided, as decisions to be optimised. The 

cost-effectiveness of using expert judgements as additional information is 

particularly important when further assessment of condition monitoring data is 

contracted out. 

9.4 Research Objectives 3 and 4 

The final research objective was to examine the sensitivity of the optimal 

maintenance policies with respect to changes in parameter settings. 
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9.4.1 Contribution to Knowledge 

 In Chapter 8 we developed an approximate solution to numerically solve the 

proposed POMDP and obtain the optimal policy. In this method the prior probability 

distribution of the system state is discretised and thus the computation of the optimal 

cost is only applied to a specific number of prior belief states. The proposed two-step 

grid-based optimal policy was evaluated through numerical experiments, with 

parameter values assigned according to some assumptions to help the intuitive 

representation of a real scenario. The results of the numerical experiments led us to 

some important intuitive conclusions about the structural features of the optimal 

policy. As discussed in Section 8.4, the experiment results suggest that the optimal 

policy holds “stationary” and “control-limit” features under specific conditions. 

These features, when established, can speed the computation of the optimal policy 

and simplify utilising it in practice.  

9.4.2 Suggestions for Future Research 

The intuitive conclusions drawn from the numerical experiments can be theoretically 

validated in future research under some conditions such as those stated by the 

assumptions in Sub-Section 8.2.1.  

9.5 Fundamental Direction for Future Research 

Another possible direction for future research could be to expand the scope of this 

research based on an interesting observation obtained from the CBM system 

described in Chapter 2. It was mentioned in Chapter 2 that the large engineering 

company consists of four generating units and there are two fans in each unit. The 

failure of one fan will cause a substantial loss of revenue. Studying the maintenance 

event database of the generating units revealed that sometimes an action is carried 

out on both fans of a unit. In such situations, the transition of a fan to a worse 

deterioration condition sometimes makes a right truncation to the history of the other 

fan of the same unit. Therefore, the observation sequences related to the fans of one 

unit cannot be considered as independent sequences for training the model. 

The dependency between two fans of a unit can be addressed by modelling the fans 

as two dependent systems. The interaction between their hidden deterioration states, 
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in the simplest case, can be described as a pair of fully coupled HMMs (as described 

in Sub-Section 3.5.3) with the joint state (xA , xB )where xA  and xB  denote the 

deterioration states of fans A and B in a unit, respectively. The deterioration process 

of each fan at every discrete state is subject to censoring with a probability that is 

dependent on the other fan’s probability of failure. 
A modeling framework was proposed in this thesis to support diagnostics, 

prognostics and CBM decision-making, based on “expert judgement” on the state of 

the system. A goal was to align with industry needs so that future tools could be 

developed from this research. To ensure that the models proposed in this thesis are 

applicable to industrial practice, possible ways of dealing with model implementation 

challenges need to be explored. In particular, an issue that might be encountered in 

practice is the availability of expert judgement datasets.  

In Chapter 2, the CBM system implemented in a large engineering company was 

described. This industry application was used as a motivation for formulating 

plausible models; however the original data from this industry application could not 

be used to populate the models. As discussed in Section 2.4, the expert judgements 

are only recorded in connection with maintenance interventions. Therefore, the 

expert judgement datasets, which could be extracted from the maintenance event 

database, do not contain expert judgements during normal operation of the fans. An 

important step that could significantly improve the usability of the models proposed 

in this thesis, is exploring possible ways of recovering the missing expert 

judgements.  
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Appendix A 

 

MATLAB Computer Codes for 

Experimental Evaluation of the 

Coupled Hidden Markov Model  

Training Algorithm 
 

 

 

A.1 Generating the Training Data 

% Input: Number of deterioration states of a system 

N=3; 

 

% Input: Original parameter values for generating observation 

%sequences   

p=[0.1 0.7]; 

q=[0.7 0.4 0.3;0.7 0.4 0.3]; 

f=[0.1 0.3 0.5]; 

 

% Compute joint transition probability matrix  

q=[q;1 1 1]; 

p=[p 1]; 

  

a=zeros(N,N,N,N); 

  

for i=1:N 

    for k=1:N 
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        for j=1:N 

            for l=1:N 

                if j==i&&l==k;a(i,k,j,l)=p(i)*q(k,j);end 

                if j==i+1&&l==k;a(i,k,j,l)=(1-p(i))*q(k,j);end 

                if j==i&&l==k+1;a(i,k,j,l)=p(i)*(1-q(k,j));end 

                if j==i+1&&l==k+1;a(i,k,j,l)=(1-p(i))*(1-

q(k,j));end 

            end 

        end 

    end 

end 

 

% Compute joint observation probability matrix  

b= zeros(N,N,2*N); 

b(1,1,1)=1-f(1); 

b(1,1,2)=f(1); 

b(1,2,3)=1-f(1); 

b(1,2,4)=f(1); 

b(1,3,5)=1-f(1); 

b(1,3,6)=f(1); 

b(2,1,1)=1-f(2); 

b(2,1,2)=f(2); 

b(2,2,3)=1-f(2); 

b(2,2,4)=f(2); 

b(2,3,5)=1-f(2); 

b(2,3,6)=f(2); 

b(3,1,1)=1-f(3); 

b(3,1,2)=f(3); 

b(3,2,3)=1-f(3); 

b(3,2,4)=f(3); 

b(3,3,5)=1-f(3); 

b(3,3,6)=f(3); 

 

%Input: Number of observation sequences 

numex=10; 

 

 %Generate training data with maximum length of 50 
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for i=1:numex 

    seqs{i}=hmmgenerate(50,a,b); 

end 

 

A.2 Training Algorithm 

%Re-estimation is repeated for maximum number of iteration or 

%until threshold is reached 

 

%maximum number of iteration 

max_iter=100; 

%Convergence threshold 

thresh=1e-4; 

 

% Input: Initial guess of parameter values 

p=[0.1 0.7]; 

q=[0.7 0.4 0.3;0.7 0.4 0.3]; 

f=[0.1 0.3 0.5]; 

  

previous_loglik=-inf; 

converged=0; 

num_iter=1; 

 

a=zeros(N,N,N,N); 

b=zeros(N,N,2*N); 

 

%Repeat re-estimation until convergence or maximum number of 

iteration 

while(num_iter<=max_iter)&& ~converged 

 

%Compute joint transition matrix 

 

a(3,3,3,3)=1; 

a(1,1,1,1)=p(1)*q(1,1); 

a(1,1,1,2)=p(1)*(1-q(1,1)); 
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a(1,1,2,1)=(1-p(1))*q(1,2); 

a(1,1,2,2)=(1-p(1))*(1-q(1,2)); 

a(1,2,1,2)=p(1)*q(2,1); 

a(1,2,1,3)=p(1)*(1-q(2,1)); 

a(1,2,2,2)=(1-p(1))*q(2,2); 

a(1,2,2,3)=(1-p(1))*(1-q(2,2)); 

a(1,3,1,3)=p(1); 

a(1,3,2,3)=1-p(1); 

a(2,1,2,1)=p(2)*q(1,2); 

a(2,1,2,2)=p(2)*(1-q(1,2)); 

a(2,1,3,1)=(1-p(2))*q(1,3); 

a(2,1,3,2)=(1-p(2))*(1-q(1,3)); 

a(2,2,2,2)=p(2)*q(2,2); 

a(2,2,2,3)=p(2)*(1-q(2,2)); 

a(2,2,3,2)=(1-p(2))*q(2,3); 

a(2,2,3,3)=(1-p(2))*(1-q(2,3)); 

a(2,3,2,3)=p(2); 

a(2,3,3,3)=1-p(2); 

a(3,1,3,1)=q(1,3); 

a(3,1,3,2)=1-q(1,3); 

a(3,2,3,2)=q(2,3); 

a(3,2,3,3)=1-q(2,3); 

 

% Compute joint observation matrix  

b(1,1,1)=1-f(1); 

b(1,1,2)=f(1); 

b(1,2,3)=1-f(1); 

b(1,2,4)=f(1); 

b(1,3,5)=1-f(1); 

b(1,3,6)=f(1); 

b(2,1,1)=1-f(2); 

b(2,1,2)=f(2); 

b(2,2,3)=1-f(2); 

b(2,2,4)=f(2); 

b(2,3,5)=1-f(2); 

b(2,3,6)=f(2); 

b(3,1,1)=1-f(3); 

b(3,1,2)=f(3); 
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b(3,2,3)=1-f(3); 

b(3,2,4)=f(3); 

b(3,3,5)=1-f(3); 

b(3,3,6)=f(3); 

 

 loglik=0; 

 

%Define Denominator and numerator of parameter re-estimation 

%formulas  

num_p=zeros(1,N-1); 

den_p=zeros(1,N-1); 

num_f=zeros(1,N); 

den_f=zeros(1,N); 

num_q=zeros(N-1,N); 

den_q=zeros(N-1,N); 

  

%Repeat calculation for all sequences 

for ex=1:numex 

     

%Obtain length of observation sequences 

obs1=seqs{ex}; 

T=length(obs1)+1; 

obs=zeros(1,T); 

obs(1)=1; 

  

%Add 1 at the beginning of each sequence to denote joint State 

%(1,1) 

for t=1:T-1 

obs(t+1)=obs1(t); 

end 

  

%Finish each sequence with failure, if there is any in the 

%sequence 

fail_time=T; 

for t=1:T 

if obs(t)==2 |obs(t)==4|obs(t)==6 
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fail_time=t; 

break; 

end 

end 

T=fail_time; 

  

%Execute forward-backward procedure to compute posteriori 

%probabilities  

 

alfa=zeros(N,N,T); 

beta=zeros(N,N,T); 

gama=zeros(N,N,T-1); 

alfbeta=zeros(N,N,N,N,T-1); 

xi=zeros(N,N,N,N,T-1); 

xii_tlk=zeros(1,N-1); 

xikj_ti=zeros(N-1,N); 

xi_til=zeros(N-1,N); 

gama_tk=zeros(1,N-1); 

gama_tkf=zeros(1,N); 

num_i_visited=zeros(1,N); 

xiik_sum=zeros(N,N); 

  

%Make the entries of a (multidimensional) array sum to 1 

scale=ones(1,T); 

t=1; 

alfa(1,1,t)=b(1,1,obs(t)); 

[alfa(:,:,t),scale(t)]=normalise(alfa(:,:,t)); 

  

%Forward variable  

for t=2:T 

    mm=zeros(N,N); 

    for j=1:N 

        for l=1:N 

            for i=1:N 

                for k=1:N 

                    m=alfa(i,k,t-1)*a(i,k,j,l); 
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                    mm(j,l)=mm(j,l)+m; 

                end 

            end 

            alfa(j,l,t)=mm(j,l)*b(j,l,obs(t)); 

        end 

    end 

    [alfa(:,:,t),scale(t)]=normalise(alfa(:,:,t)); 

end 

  

  

if any(scale==0) 

    ll=-inf; 

else 

   ll=sum(log(scale)); 

end 

  

%Backward Variable 

beta(:,:,T)=ones(N,N,1); 

for t=T-1:-1:1 

     for j=1:N 

        for l=1:N 

            bb=(beta(j,l,t+1)*b(j,l,obs(t+1))*a(:,:,j,l)); 

            beta(:,:,t)=beta(:,:,t)+bb(:,:); 

        end 

     end 

    beta(:,:,t)=normalise(beta(:,:,t)); 

end 

  

for t=1:T-1 

    for i=1:N 

        for k=1:N 

            for j=1:N 

                for l=1:N 

                    

alfbeta(i,k,j,l,t)=alfa(i,k,t)*a(i,k,j,l)*b(j,l,obs(t+1))*beta

(j,l,t+1); 
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                end 

            end 

        end 

    end 

  xi(:,:,:,:,t)=normalise(alfbeta(:,:,:,:,t)); 

end 

  

for t=1:T-1 

    for i=1:N 

        for k=1:N 

            xiikt=xi(i,k,:,:,t); 

            gama(i,k,t)=sum(xiikt(:)); 

        end 

    end 

end 

  

 

%Compute expected value of event counts to re-estimate 

%parameters 

 

% numerator and denominator of p 

for i=1:N-1 

    xii=xi(i,:,i,:,:); 

    xii_tlk(i)=sum(xii(:)); 

    gamai=gama(i,:,:); 

    gama_tk(i)=sum(gamai(:)); 

end 

  

% numerator and denominator of q 

for k=1:N-1 

    for j=1:N 

        xikj=xi(:,k,j,k,:); 

        xikj_ti(k,j)=sum(xikj(:)); 

        xikj=xi(:,k,j,:,:); 

        xi_til(k,j)=sum(xikj(:)); 

    end 
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end 

  

% numerator and denominator of F 

k=0; 

if obs(T)==2;k=1; 

elseif obs(T)==4;k=2; 

elseif obs(T)==6;k=3; 

end 

  

fail_atstate=zeros(1,N); 

if ~k==0 

    for i=1:N 

    xi_ikT=xi(:,:,i,k,T-1); 

    fail_atstate(i)=sum(xi_ikT(:)); 

    end 

end 

  

 for i=1:N 

    xiii=xi(:,:,i,:); 

    num_i_visited(i)=sum(xiii(:)); 

end 

  

loglik=loglik+ll; 

  

%Re-estimate the parameters 

num_p=num_p+xii_tlk; 

den_p=den_p+gama_tk; 

num_f=num_f+fail_atstate; 

den_f=den_f+num_i_visited; 

num_q=num_q+xikj_ti; 

den_q=den_q+xi_til; 

end 

  

%Display log-likelihood and number of iteration 

fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik) 

loglik_value(num_iter)=loglik; 
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num_iter_value(num_iter)=num_iter; 

num_iter=num_iter+1; 

converged=em_converged(loglik,previous_loglik,thresh); 

previous_loglik=loglik; 

p=num_p./den_p; 

q=num_q./den_q; 

f=num_f./den_f; 

end 

 

%Return number of iterations and estimated parameter values 

num_iter=num_iter-1; 

p 

q 

f 

 

%Plot log-likelihood as a function of algorithm iteration 

disp(num_iter) 

plot(num_iter_value,loglik_value) 

 

A.3   Functions Called in the Training Algorithm 

A.3.1  normalise 
 

%This function makes the entries of a (multidimensional) array 

%sum to 1 

 

function [M, z] = normalise(A, dim) 

% [M, c] = normalise(A) 

% c is the normalising constant 

% 

% [M, c] = normalise(A, dim) 

% If dim is specified, normalise the specified dimension only, 

otherwise normalise the whole array. 

  

if nargin < 2 
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  z = sum(A(:)); 

  % Set any zeros to one before dividing 

  s = z + (z==0); 

  M = A / s; 

elseif dim==1 % normalise each column 

  z = sum(A); 

  s = z + (z==0); 

  %M = A ./ (d'*ones(1,size(A,1)))'; 

  M = A ./ repmatC(s, size(A,1), 1); 

else 

    z=sum(A,dim); 

  s = z + (z==0); 

  L=size(A,dim); 

  d=length(size(A)); 

  v=ones(d,1); 

  v(dim)=L; 

  %c=repmat(s,v); 

  c=repmat(s,v'); 

  M=A./c; 

end 

 

 
A.3.2  em_converged 
 

%This function checks the convergence of log-likelihood 

function [converged, decrease] = em_converged(loglik, 

previous_loglik, thresh) 

% EM_CONVERGED Has EM converged? 

% [converged, decrease] = em_converged(loglik, 

previous_loglik, %threshold) 

% 

% converged if 

%   |f(t) - f(t-1)| / avg < threshold, 

% where avg = (|f(t)| + |f(t-1)|)/2 and f is log lik. 

% threshold defaults to 1e-4. 
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if nargin < 3 

  thresh = 1e-4; 

end 

  

converged = 0; 

decrease = 0; 

 if loglik - previous_loglik < -1e-3 % allow for a little 

imprecision 

  fprintf(1, '******likelihood decreased from %6.4f to 

%6.4f!\n', previous_loglik, loglik); 

  decrease = 1; 

end 

  

% The following stopping criterion is in page 423 of (Press et 

al., %2007) 

delta_loglik = abs(loglik - previous_loglik); 

avg_loglik = (abs(loglik) + abs(previous_loglik) + eps)/2; 

if (delta_loglik / avg_loglik) < thresh, converged = 1; end 
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Appendix B 

 

MATLAB Computer Codes for 

Solving the Partially Observable Markov Decision 

Process 

 

B.1 Discretising the Belief States 

 

% Discretise the belief state space of a system with N=3, 

using %regular grids with steps of 0.1  

N=3; 

[pi1,pi2]=meshgrid(0:0.1:1); 

  

%Change arrays to vector 

pi1=pi1(:);pi2=pi2(:); 

pi3=1-(pi1+pi2); 

pi1=pi1(pi3>=0); 

pi2=pi2(pi3>=0); 

pi3=pi3(pi3>=0); 

  

%Make the pi array which contains the discretised belief state 

%space 

  

pii=[pi1,pi2,pi3]; 
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plot(pi1,pi2,'ks'); 

 

 

  

B.2   Reliability Function over one Decision Period 

 
% Transition probability , p(i)=probability of remaining in 

%State i  

N=3; 

 

%del=duration of a decision period=4 weeks 

del=4; 

 

%weekly transition probability  

p_i=[0.99;0.98;1]; 

  

%Monthly transition probability  

p=zeros(N,N); 

  

for i=1:N 

    for j=1:N 

        if i==j;p(i,j)=p_i(i);end 

        if j==i+1;p(i,j)=1-p_i(i);end 

    end 

end 
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p=p^del 

  

% R(k,i,Delta), probability of survival of the system when it 

is % in state i at period k. Since the model is stationary and 

we %know delta then we use R(i)instead of f(i,t) that is the 

%probability of failure in t unit time when the system is in 

State i,  

 

%F(i) probability of failure at state i 

  

F=[0.001 0.02 0.5]; 

 

%f(i,t) for t=1:del 

f=zeros(N,del); 

  

%Calculate f(N,t) for t=1:del 

for t=1:del 

    f(N,t)=F(N)*((1-F(N))^(t)); 

end 

  

%Calculate f(i,t) for t=1 

for i=1:N-1 

    f(i,1)=(1-F(i))*p(i)*F(i)+(1-F(i))*(1-p(i))*F(i+1); 

end 

  

%Calculate f(i,t) for t=2:del 

for i=N-1:-1:1 

    for t=2:del 
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        a=0; 

        for s=1:t-1 

            a=a+(1-F(i))^(s)*p(i)^(s-1)*(1-p(i))*f(i+1,t-s); 

        end 

        f(i,t)=((1-F(i))*p(i))^t*F(i)+a+((1-F(i))^(t)*p(i)^(t-

1)*(1-p(i))*F(i+1)); 

    end 

end 

  

%Calculate R(i) for a known delta 

R=zeros(N,1); 

  

for i=1:N 

   sum_f=0;  

for t=1:del 

    sum_f=sum_f+f(i,t); 

end 

R(i)=1-sum_f-F(i); 

end 

R 

 

 

B.3  Updating the Belief States  

 

%Expert judgement and the actual state of the system at k+1 

%conditioned on decisions aI and aM at k 
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N=3; 

Z=3; 

q(1,:,:)=[0.85 0.14 0.01;0.4 0.5 0.1;0.3 0.4 0.3]; 

q(2,:,:)=[0.15 0.8 0.05;0.05 0.7 0.25;0.01 0.19 0.8]; 

q(3,:,:)=[0.1 0.3 0.6;0.01 0.14 0.85;0.01 0.14 0.85]; 

r=[1 0 0;0.8 0.2 0;0.1 0.7 0.2]; 

b=[0.85 0.14 0.01;0.1 0.8 0.1;0.01 0.19 0.8]; 

G=size(pii,1); 

 

%y_m(N)=expert judgement after the repair=y' 

[rmax,y_m]=max(r,[],2); 

  

y_1=zeros(G,N,N); 

x_1=zeros(G,N,N,N); 

y_2_1=zeros(G,Z,N,N); 

x_2_1=zeros(G,Z,N,N,N); 

y_2_2=zeros(G,Z,N,N); 

x_2_2=zeros(G,Z,N,N,N); 

y_3_1=zeros(N,N); 

x_3_1=zeros(N,N,N); 

y_3_2=zeros(N,N); 

x_3_2=zeros(N,N,N); 

piio=zeros(G,Z,N); 

  

  

%y_3_1(xk,yk+1) (i,m) Wait after an accurate inspection aI=3, 

%aM=1 
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for m=1:N 

    for i=1:N 

        sum=0; 

        for j=1:N 

            sum=sum+p(i,j)*q(j,i,m); 

        end 

        y_3_1(i,m)=sum; 

    end 

end 

  

%x_3_1(xk,yk+1,xk+1) (i,m,j) 

  

for j=1:N 

    for m=1:N 

         

            for i=1:N 

                der=y_3_1(i,m)+(y_3_1(i,m)==0); 

                x_3_1(i,m,j)=(p(i,j)*q(j,i,m))/der; 

            end 

        

    end 

end 

%normalise x_3_1 and y_3_1 on the last dimension so that the 

sum %of the conditional probabilities would be 1 

x_3_1=normalise(x_3_1,3);y_3_1=normalise(y_3_1,2); 
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%y_3_2(xk,yk+1) (i,m) expert judgement at k+1 when aI=3 and 

aM=2 

 rp=r*p; 

for i=1:N 

    l=y_m(i); 

    for m=1:N 

        sum=0; 

        for n=1:N 

         sum=sum+rp(i,n)*q(n,l,m); 

        end 

        y_3_2(i,m)=sum; 

     end 

end 

 

%x_3_2(xk,yk+1,xk+1) (i,m,n) x at k+1 when aI=3 and aM=2 

for i=1:N 

    l=y_m(i); 

    for m=1:N 

        for n=1:N 

            der=y_3_2(i,m)+(y_3_2(i,m)==0); 

            x_3_2(i,m,n)=(rp(i,n)*q(n,l,m))/der; 

        end 

    end 

end 

  

%Normalise x_3_2 and y_3_2  

y_3_2=normalise(y_3_2,2);x_3_2=normalise(x_3_2,3); 
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%y_1 (xk,yk,yk+1) (g,l,m) y at k+1 when aI=1, since we do not 

conduct an accurate inspection we have a belief state and 

hence %G probabilities according to each grid 

  

%piip(g,j)=pii(g,i)*p(i,j) 

piip=pii*p; 

  

for m=1:N 

    y_1(:,:,m)=piip*q(:,:,m); 

end 

  

% x_1(xk,yk,yk+1,xk+1) (g,l,m,j) x at k+1 when aI=1 

 for g=1:G 

    for l=1:N 

        for m=1:N 

            for j=1:N 

                der=y_1(g,l,m)+(y_1(g,l,m)==0); 

                x_1(g,l,m,j)=(piip(g,j)*q(j,l,m))/der; 

            end 

        end 

    end 

end 

 

%normalise x_1 and y_1  

y_1=normalise(y_1,3);x_1=normalise(x_1,4); 
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%y_2_1(ok,yk,yk+1) (g,o,l,m) expert judgement at k+1 when aI=2 

%and aM=1  

  

%piib(g,o)=pii(g,i)*b(i,o) 

piib=pii*b; 

  

%piio(g,o,i)=p(xk|yk,ok) since there are same belief state for 

%each j, j is not considered-pii(g,i) is the same for each j 

  

for g=1:G 

    for o=1:Z 

        for i=1:N 

            der=piib(g,o)+(piib(g,o)==0); 

            piio(g,o,i)=(pii(g,i)*b(i,o))/der; 

        end 

    end 

end 

  

for g=1:G 

    for o=1:Z 

        for l=1:N 

            for m=1:N 

                sum=0; 

                for j=1:N 

                    for i=1:N 

                        sum=sum+piio(g,o,i)*p(i,j)*q(j,l,m); 

                    end 

                end 
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                y_2_1(g,o,l,m)=sum; 

            end 

        end 

    end 

end 

  

%x_2_1(ok,yk,yk+1,xk+1) (g,o,l,m,j) x at k+1 when aI=2 and 

aM=1  

 for g=1:G 

    for o=1:Z 

        for l=1:N 

            for m=1:N 

               for j=1:N 

                   sum=0; 

                    for i=1:N 

                        sum=sum+piio(g,o,i)*p(i,j)*q(j,l,m); 

                    end 

                    der=y_2_1(g,o,l,m)+(y_2_1(g,o,l,m)==0); 

                    x_2_1(g,o,l,m,j)=sum/der; 

                end 

             end 

        end 

    end 

end 

  

y_2_1=normalise(y_2_1,4);x_2_1=normalise(x_2_1,5);piio=normali

se(piio,3); 
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%y_2_2(g,ok,yk,yk+1) (g,o,l,m) y at k+1 when aI=2 and aM=2  

  for g=1:G 

    for o=1:Z 

        for l=1:N 

            ll=y_m(l); 

            for m=1:N 

                sum=0; 

                for n=1:N 

                    for j=1:N 

                        for i=1:N 

                          

sum=sum+piio(g,o,i)*r(i,j)*p(j,n)*q(n,ll,m); 

                        end 

                    end 

                end 

                y_2_2(g,o,l,m)=sum; 

            end 

        end 

    end 

end            

  

 %x_2_2(g,ok,yk,yk+1) (g,o,l,m,n) x at k+1 when aI=2 and aM=2     

 for g=1:G 

    for o=1:Z 

        for l=1:N 

            ll=y_m(l); 

            for m=1:N 
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                for n=1:N 

                    sum=0; 

                    for j=1:N 

                        for i=1:N 

                        

sum=sum+piio(g,o,i)*r(i,j)*p(j,n)*q(n,ll,m); 

                        end 

                    end 

                    der=y_2_2(g,o,l,m)+(y_2_2(g,o,l,m)==0); 

                    x_2_2(g,o,l,m,n)=sum/der; 

                end 

            end 

        end 

    end 

end            

  

  

y_2_2=normalise(y_2_2,4);x_2_2=normalise(x_2_2,5); 

 

B.4  Backward Induction  

%POMDP with regular discrete grids, finite horizon, using 

%backward induction, ai=choices of inspection-1=no inspection-

%2=simple inspection-3=accurate inspection, am=choices of 

%manitenance=1=no action-2=imperfect-3=replacement 

  

c_s=1500 ;c_a=3000 ; 

c_m=5000 ;c_r=20000; 
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c_f=50000; 

  

%dr=discount Rate 

dr=0.95; 

%K=number of periods 

K=24; 

  

Rpii=pii*R; 

%R(pii(AM)) Nx1 conditional reliability when aI=3, aM=2 

rR=r*R; 

  

%v=value function v(g,j,k) is the total expected cost at point 

g %at period k when the 

%current expert judgement is j, yk=j 

v=zeros(G,N,K+1); 

v_A=zeros(N,K+1); 

policy=zeros(G,N,K+1); 

policy_A=zeros(N,K+1); 

v_S=zeros(G,Z,N,K+1); 

policy_S=zeros(G,Z,N,K+1); 

Q=zeros(G,N,3); 

Q_A=zeros(N,3); 

Q_S=zeros(G,Z,N,3); 

   

cpu_time=cputime; 

  

%Calculate the optimal total expected cost and the optimal 

%policy at period k, for each point and expert judgement 
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for k=0:K-1 

    f_cost=c_f+dr*v_A(1,K-k+1); 

    r_cost=c_r+dr*v_A(1,K-k+1); 

    v_interp1=TriScatteredInterp(pii(:,1),pii(:,2),v(:,1,K-

k+1)); 

    v_interp2=TriScatteredInterp(pii(:,1),pii(:,2),v(:,2,K-

k+1)); 

    v_interp3=TriScatteredInterp(pii(:,1),pii(:,2),v(:,3,K-

k+1)); 

     

    % Decision Step 2-Accurate Inspection V_A 

           for i=1:N 

 

%Q_A(i,1) W_A wait after accurate inspection 

               

ex_cost=y_3_1(i,1)*v_interp1(x_3_1(i,1,1),x_3_1(i,1,2))+y_3_1(

i,2)*v_interp2(x_3_1(i,2,1),x_3_1(i,2,2))+y_3_1(i,3)*v_interp3

(x_3_1(i,3,1),x_3_1(i,3,2)); 

Q_A(i,1)=f_cost*(1-R(i))+dr*R(i)*ex_cost; 

                

%Q_A(i,2) M_A imperfect repair after accurate %inspection 

               

ex_cost=y_3_2(i,1)*v_interp1(x_3_2(i,1,1),x_3_2(i,1,2))+y_3_2(

i,2)*v_interp2(x_3_2(i,2,1),x_3_2(i,2,2))+y_3_2(i,3)*v_interp3

(x_3_2(i,3,1),x_3_2(i,3,2)); 

Q_A(i,2)=c_m+(f_cost*(1-rR(i)))+dr*rR(i)*ex_cost; 

                

%Q_A(i,3) replacement after accurate inspection 
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 Q_A(i,3)=r_cost; 

 [w,x]=min(Q_A(i,:),[],2); 

 v_A(i,K-k)=w; 

  policy_A(i,K-k)=x; 

            end 

    for l=1:N 

        

        for g=1:G 

         

           %Decision Step1 -Simple Inspection 

           

               %V_S 

               %sum v-S on ok 

               sum_v_S(g,l)=0; 

               for o=1:Z 

%Q_S(g,o,l,1) W_S wait after simple inspection Ro(g,o) 

R(pii(yk,ok)) Conditional reliability 

                   sum=0; 

                   for i=1:N 

                       sum=sum+(piio(g,o,i)*R(i)); 

                   end 

                   Ro(g,o)=sum; 

                   

ex_cost=y_2_1(g,o,l,1)*v_interp1(x_2_1(g,o,l,1,1),x_2_1(g,o,l,

1,2))+y_2_1(g,o,l,2)*v_interp2(x_2_1(g,o,l,2,1),x_2_1(g,o,l,2,

2))+y_2_1(g,o,l,3)*v_interp3(x_2_1(g,o,l,3,1),x_2_1(g,o,l,3,2)

); 

Q_S(g,o,l,1)=f_cost*(1-Ro(g,o))+dr*Ro(g,o)*ex_cost; 



 219 

                    

%Q_S(g,o,l,2) M_S imperfect repair after simple inspection 

%RSM(g,o) R(pii(SM)) Conditional reliability  

                   sum=0; 

                   for j=1:N 

                       for i=1:N 

                           sum=sum+(piio(g,o,i)*r(i,j)*R(j)); 

                       end 

                   end 

                   RSM(g,o)=sum; 

                   

ex_cost=y_2_2(g,o,l,1)*v_interp1(x_2_2(g,o,l,1,1),x_2_2(g,o,l,

1,2))+y_2_2(g,o,l,2)*v_interp2(x_2_2(g,o,l,2,1),x_2_2(g,o,l,2,

2))+y_2_2(g,o,l,3)*v_interp3(x_2_2(g,o,l,3,1),x_2_2(g,o,l,3,2)

); 

Q_S(g,o,l,2)=c_m+f_cost*(1-RSM(g,o))+dr*RSM(g,o)*ex_cost; 

                    

%Q_S(g,o,l,3) replacement after simple inspection 

                   Q_S(g,o,l,3)=r_cost; 

                    

                   [w,x]=min(Q_S(g,o,l,:),[],4); 

                   v_S(g,o,l,K-k)=w; 

                   policy_S(g,o,l,K-k)=x; 

                    

                   %sum_V_S(g,l) on ok 

                   

sum_v_S(g,l)=sum_v_S(g,l)+piib(g,o)*v_S(g,o,l,K-k); 
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               end 

                

%Decision step 1 

 

%Q(g,l,1) No inspection is conducted 

               

ex_cost=y_1(g,l,1)*v_interp1(x_1(g,l,1,1),x_1(g,l,1,2))+y_1(g,

l,2)*v_interp2(x_1(g,l,2,1),x_1(g,l,2,2))+y_1(g,l,3)*v_interp3

(x_1(g,l,3,1),x_1(g,l,3,2)); 

               Q(g,l,1)=f_cost*(1-Rpii(g))+dr*Rpii(g)*ex_cost; 

                

  %Q(g,l,2) Simple inspection is conducted 

   Q(g,l,2)=c_s+sum_v_S(g,l); 

                

  %Q(g,l,3) Accurate inspection is conducted 

               sum_v_A=0; 

               for i=1:N 

                   sum_v_A=sum_v_A+pii(g,i)*v_A(i,K-k); 

               end 

              Q(g,l,3)=c_a+sum_v_A; 

               

               

              [w,x]=min(Q(g,l,:),[],3); 

              v(g,l,K-k)=w; 

              policy(g,l,K-k)=x; 

        end 

         

    end 
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end 

                    

cpu_time=cputime-cpu_time 

  

% The total expected cost over K decision periods, at time 

k=0, %x0 &y0=1 and no actions is taken 

v_interp1=TriScatteredInterp(pii(:,1),pii(:,2),v(:,1,1)); 

v_interp2=TriScatteredInterp(pii(:,1),pii(:,2),v(:,2,1)); 

v_interp3=TriScatteredInterp(pii(:,1),pii(:,2),v(:,3,1)); 

  

f_cost=c_f+dr*v_A(1,1); 

  

ex_cost=y_3_1(1,1)*v_interp1(x_3_1(1,1,1),x_3_1(1,1,2))+y_3_1(

1,2)*v_interp2(x_3_1(1,2,1),x_3_1(1,2,2))+y_3_1(1,3)*v_interp3

(x_3_1(1,3,1),x_3_1(1,3,2)); 

Total_expected_cost=(f_cost*(1-R(1)))+(dr*R(1)*ex_cost) 

 

B.5   Illustrating the grid-based optimal policy 

 

%Input: decision period  

k=20; 

  

%belief states for which there is no uncertainty 

 

%Figure(1) 

%First decision step 

%Plot the policy(g,l,k)at pi1 and pi2 
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figure(1) 

for l=1:N 

    subplot(1,N,l) 

            

         for g=[2:10 12:65] 

              

                if policy(g,l,k)==1 

                   scatter(pi1(g),pi2(g),'kx');hold on; 

                    

                else if policy(g,l,k)==2 

                       scatter(pi1(g),pi2(g),'ko');hold on; 

                        

                    else 

                       

scatter(pi1(g),pi2(g),'bo','filled');hold on; 

                         

                    end 

                end 

         end 

        axis([0 1 0 1]); 

        xlabel('\pi_{1}'); 

        ylabel('\pi_{2}'); 

        hold off; 

end 

    

  figure(2) 
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  for o=1:Z 

      for l=1:N 

          pp=l+3*(o-1); 

          subplot(Z,N,pp); 

              for g=[2:10 12:65] 

                  if policy(g,l,k)==2 

                  if policy_S(g,o,l,k)==1 

                     scatter(pi1(g),pi2(g),'kx');hold on; 

                  else if policy_S(g,o,l,k)==2 

                          scatter(pi1(g),pi2(g),'ko');hold on; 

                    else 

                       

scatter(pi1(g),pi2(g),'bo','filled');hold on;  

                    end 

                  end 

                  end 

              end 

              hold off; 

              axis([0 1 0 1]); 

              xlabel('\pi_{1}'); 

              ylabel('\pi_{2}'); 

              hold off; 

       end 

         

  end       
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