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Abstract

Multiple-input multiple output (MIMO) systems deploy multiple antennas at ei-

ther end of a communication link and can provide significant benefits compared

to traditional single antenna systems, such as increased data rates through spatial

multiplexing gain, and/or improved link reliability through diversity techniques.

Recently, the natural extension of utilising multiple antennas in relay networks,

known as MIMO relaying, has attracted significant research attention due to the

fact that the benefits of MIMO can be coupled with extended network cover-

age through the use of relaying devices. This thesis concentrates on the design

and analysis of different aspects of MIMO relay systems communicating over fre-

quency selective channels with the use of orthogonal frequency division multiplex-

ing (OFDM).

The first focus of this thesis is on the development of training based channel

estimation algorithms for two-hop MIMO OFDM relaying. In the first phase of

channel estimation the relay-destination channel is estimated using conventional

point-to-point MIMO estimation techniques. In the second phase, the source sends

known training symbols to the relay, which precodes the received symbols and for-

wards them to the destination. In order to estimate the source-relay channel at the

destination, an iterative algorithm is derived, which involves sequentially solving

a number of convex optimisation problems and has guaranteed convergence. Since

the proposed iterative algorithm may be too computationally complex for prac-

tical systems, a simplified approach is also derived where the channel estimation

processors can be calculated in closed form.

Under the assumption of perfect channel state information (CSI), we then de-

velop non-linear transceiver designs for MIMO OFDM relay systems, focusing

specifically on decision feedback equalisation (DFE) and Tomlinson Harashima

precoding (THP). The optimal source and relay precoding matrices are derived

that minimise the arithmetic mean square error (MSE) subject to source and re-

lay transmission power constraints, when either a zero forcing (ZF) or minimum

v



mean square error (MMSE) equaliser is used at the destination. Simulation results

demonstrate that the proposed non-linear solutions outperform linear transceivers

in terms of bit error rate (BER) and MSE.

For the case of imperfect CSI at all nodes, robust DFE and THP transceivers

are then considered that aim to minimise the expected artithmetic MSE subject

to the source and relay transmission power constraints. The channel estimation

errors are modelled as being drawn from matrix variate Gaussian distributions

with known mean and covariance. The source and relay precoder structures are

derived for the case that the optimal MMSE equaliser is used at the destination.

The derived precoder structures are shown to be optimal for the special case that

the channel estimation errors are uncorrelated. Simulation results demonstrate

the robustness of the proposed algorithms to channel estimation errors.
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ĥs estimate of source-relay channel impulse response vector

es source-relay channel estimation error vector

Res
source-relay channel estimation error covariance matrix

Rhs
source-relay channel covariance matrix

Hr[l] relay-destination MIMO channel matrix for lth delay path

Θr[l] relay-destination channel transmit side spatial correlation

matrix for lth delay path

Υr[l] relay-destination channel receive side spatial correlation

matrix for lth delay path

Hrw[l] spatially white relay-destination MIMO channel matrix for

lth delay path

σ2
hr
[l] variance of elements in Hrw[l]

hr relay-destination channel impulse response vector
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Chapter 1

Introduction

1.1 Motivation

The past couple of decades have witnessed a significant and rapid growth in wire-

less communications owing to improved technology, the development of advanced

digital signal processing (DSP) algorithms, as well as the ever increasing demand

for more sophisticated, high quality services. A typical example of such an evolu-

tion is in the mobile communications sector where systems have quickly evolved

from the first generation (1G) narrowband analogue systems, through to the cur-

rent pre-fourth generation (3.9G) wideband digital systems seen today. This trend

of constant and rapid growth is anticipated to continue in the coming years with

the next generation of wireless systems (4G and beyond) expected to have sub-

stantially greater capabilities than those of their predecessors.

One of the main requirements of current and future wireless communications

is the ability to reliably support higher data rates in order to provide a wide

variety of high quality applications. However, there is a fundamental limit to the

maximum data rate that a channel can support reliably or error free, which is

termed the channel capacity. In [1] Shannon derived the capacity for an additive

white Gaussian noise (AWGN) channel in terms of the available bandwidth and

the transmit signal power. It was shown that in order to increase the capacity

of a single antenna communications link, commonly termed single-input single-

output (SISO), one must either increase the utilised bandwidth and/or increase

the transmission power. Both bandwidth and power are limited and precious

resources. This has fuelled a number of innovative research efforts, with one of the

primary goals being to develop spectrally efficient techniques capable of providing

reliable high data rates with limited bandwidth and power consumption. The

use of antenna arrays, popularly referred to as multi-antenna systems, space-time

1
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(ST) communications, and more generally as MIMO communication [2–4], have

emerged as spectrally efficient methods of dealing with the limited bandwidth

availability of the wireless channel and have received significant interest from both

the academic and industrial communities.

1.2 Point-to-Point MIMO Communication

MIMO systems offer a number of benefits when compared to SISO systems and

are capable of providing array, diversity, and spatial multiplexing gains [2–5]. The

degree to which these gains can be exploited depends on the antenna configuration

and the availability of CSI. Traditionally, array and diversity gains have been

utilised to combat the adverse effects of the channel and to provide robustness

to fading. When CSI is available at the destination, array gain and/or diversity

gain can be achieved through a coherent combination of the received signals at

the destination [3]. When CSI is available at the source, these gains can also be

achieved through transmit processing techniques. In the absence of CSI at the

source, diversity can still be realised through space-time block coding (STBC) [5–

9] techniques, although in this case no array gain can be achieved. Whilst array

and/or diversity gains can be achieved in single-input multiple-output (SIMO) and

multiple-input single-output (MISO) configurations, the spatial multiplexing gain

can only be achieved when multiple antennas are employed at both ends of the

link [9–12] i.e. in“true” MIMO systems. Spatial multiplexing techniques open up

a number of parallel data pipes over which multiple independent data streams can

be transmitted. This gives rise to a dramatic increase in channel capacity and,

importantly, does so without bandwidth expansion. MIMO antenna configurations

can simultaneously provide array, diversity, and multiplexing gains. However, due

to their conflicting demands, it is not possible to fully leverage these gains at the

same time and there is a fundamental trade-off of between them [13–15].

To achieve the aforementioned potential benefits of MIMO systems, appro-

priate transceiver designs must be utilised. The introduction of a pre-equaliser

(a.k.a. precoder) at the source and/or equaliser (a.k.a. decoder) at the desti-

nation provides a convenient framework that offers a flexible trade-off between

realising array, diversity, and multiplexing gains. Such a framework also encom-

passes beamforming in MISO and SIMO antenna configurations as special cases.

The joint design of source precoding and destination equalisation is commonly

referred to as joint transceiver design and has attracted significant research atten-

tion. Linear transceiver designs have been considered to minimise the arithmetic

mean square error (AMSE) [16–20], maximise the channel capacity [16, 17, 20, 21],
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minimise the geometric signal-interference noise ratio (GSINR) [16, 17], and min-

imise the bit error rate (BER) [16, 17, 22, 23]. Non-linear techniques such as DFE

[24–31] and THP [32–35] have also received great interest, and have been shown

to provide improved performance compared to linear transceivers.

1.3 MIMO Relay Communication

More recently the topic of MIMO relaying has garnered a lot of attention. Differ-

ing from point-to-point MIMO, where transmission is carried out directly between

a source and destination, relaying networks make use of intermittent nodes to

forward the data from the source to destination. In addition to the benefits pro-

vided by the use of multiple antennas, the introduction of relaying devices has

been shown to increase network coverage and improve link reliability through the

spatial diversity offered by the relays [36–38].

Similar to point-to-point MIMO communications, appropriate transceiver de-

signs are needed to exploit the potential gains in MIMO relay networks. Transceiver

designs can be developed by introducing precoding at the source and relay termi-

nals and equalisation at the destination device. The transceiver design problem for

MIMO relaying becomes far more involved than that for the point-to-point MIMO

scenario (especially in the case of multi-hop networks) due to the increased num-

ber of variables (precoders and equalisers) as well as the additional relay power

constraints that must be satisfied. The problem is further complicated by the fact

that the relay transmission power depends on the transmit power of the preceeding

links, which results in optimisation problems where the constraints have coupled

variables [39]. Furthermore, due to relay precoding and noise propagation, the

noise seen at the destination antennas is no longer white, which makes transceiver

design more difficult. Thus the extension of point-to-point MIMO transceivers to

the case of MIMO relaying is not straightforward. Despite the problems associated

with MIMO relay designs, optimal linear transceiver solutions have been presented

to minimise the AMSE [40–45], maximise the channel capacity [45–49], and opti-

mise various other design criteria [45, 50]. Non-linear DFE and THP transceiver

designs have also been considered in [51–53] and [54, 55], respectively. Despite

the vast amount of research that has been conducted on MIMO relaying systems,

there are still a plentiful number of open problems. The following section briefly

describes the problems that we aim to solve in this thesis.
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1.4 Thesis Aims and Objectives

The main aims and objectives of this thesis are:

• MIMO OFDM Relay Channel Estimation: In order to design appro-

priate transceiver designs for MIMO relaying systems, CSI is required to be

available to different nodes in the network. CSI can be achieved through

channel estimation algorithms. Such algorithms have been developed for

narrowband MIMO relaying systems in [56–60] but have not yet been con-

sidered for MIMO OFDM relaying over frequency selective channels. The

first objective of this thesis is therefore to develop channel estimation algo-

rithms for the estimation of the channels in MIMO OFDM relay networks.

• DFE/THP Transceiver Designs with Perfect CSI: The main aim of

this thesis will be to derive the processors for non-linear transceiver designs in

two-hop MIMO relaying systems. Whilst such transceivers have been studied

in [51–55] for the case of narrowband MIMO relaying, we aim to design DFE

and THP transceivers for the case of MIMO relaying over frequency selective

channels utilising OFDM.

• DFE/THP Transceiver Designs with Imperfect CSI: The previously

mentioned DFE and THP designs in [51–55] all assume the availability of

perfect CSI. Robust THP transceiver designs have also been considered in

[61–63] for transmission over narrowband channels. The last objective of

this thesis is to extend these transceiver designs to the more complicated

scenario of MIMO OFDM relaying.

1.5 Thesis Contributions

The following contributions are made in Chapter 3:

• In Section 3.4 of Chapter 3 we derive an iterative algorithm for estimating

the source-relay channel in a two-hop MIMO OFDM relaying system. The

derivation of the iterative algorithm in this section is considered novel to the

best of our knowledge.

• In Section 3.5 of Chapter 3 we develop a suboptimal but simplified source-

relay channel estimation algorithm for two-hop MIMO OFDM relay systems.

The derivation of the simplified algorithm in Section 3.5, as well as the proof

in Section 3.8.4, is considered novel to the best of our knowledge.
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The following contributions made in Chapter 4 are considered novel to the best of

our knowledge:

• The design of ZF DFE/THP transceivers for two-hop MIMO OFDM relay

networks with perfect CSI of all channels.

• The design of MMSE DFE/THP transceivers for two-hop MIMO OFDM

relay networks with perfect CSI of all channels.

The following contributions made in Chapter 5 are considered novel to the best of

our knowledge:

• The design of robust MMSE DFE/THP transceivers for two-hop MIMO

OFDM relay networks with imperfect CSI of all channels.

1.6 Thesis Layout

The remainder of this thesis is organised as follows:

• Chapter 2: In Chapter 2 we introduce the signal model for a two-hop

MIMO relay network that consists of single source, relay, and destination

terminals that are each equipped with multiple antennas. In such a system,

assuming the use of a half-duplex relay, the communication process between

the source and destination is carried out over two orthogonal transmission

stages. In the first phase the source transmits data to the relay, whilst in

the second phase the relay forwards the received symbols to the destination.

In our model we assume the source-relay and relay-destination channels to

be frequency selective and we discuss the use of OFDM that enables the

communication of data over orthogonal narrowband subcarriers. We then

introduce DFE and THP transceivers, which are non-linear techniques, that

aim to combat the interference for each OFDM subcarrier. For both the DFE

and THP transceivers we formulate an optimisation problem to minimise

the arithmetic MSE subject to transmission power constraints at the source

and relay terminals. For the considered MIMO OFDM relaying system this

optimisation problem shall be the basis for the derivation of optimal DFE

and THP transceiver designs in Chapters 4 and 5.

• Chapter 3: In Chapter 3 we consider the task of MIMO OFDM relay chan-

nel estimation in order to estimate the source-relay and relay-destination

channels. Channel estimation for the MIMO relay system is divided into
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two phases. In the first phase the relay transmits known pilot/training sym-

bols to the destination allowing the receiver to estimate the relay-destination

channel. This is simply a point-to-point MIMO channel estimation problem

for which least squares (LS) and MMSE solutions are well known and are

discussed in this chapter. The estimation of the source-relay channel is car-

ried out in the second phase and depends on the processing capabilities of

the relaying device. If the relay can perform channel estimation then the

source-relay channel can be estimated at the relay in a similar manner to

the estimation of the relay-destination channel carried out in the first phase.

On the other hand, if the relay has limited processing capabilities then the

source-relay channel must be estimated by using measurements received at

the destination. In such a scenario, to estimate the source-relay channel in

the second phase, the source transmits known pilots to the relay, which then

forwards them to the destination. The destination can then perform chan-

nel estimation by utilising the relay-destination channel estimate acquired

from the first phase. Using the measurements at the destination we firstly

derive an iterative source-relay channel estimation algorithm which involves

sequentially solving a number of convex optimisation problems and as such

is guaranteed to converge to a locally optimal solution. Since the iterative al-

gorithm may be too computationally expensive for practical systems we also

discuss a suboptimal algorithm that has reduced complexity. Simulations

are provided showing the effectiveness of the proposed algorithms.

• Chapter 4: In this chapter we consider DFE and THP transceiver designs

for MIMO OFDM relaying under the assumption that perfect CSI is available

to all nodes in the network. We consider the optimisation of the processors

for minimising the arithmetic MSE subject to transmission power constraints

at the source and relay. The optimal source and relay precoder structures are

derived when either ZF or MMSE equalisation is utilised at the destination.

It is shown that, for both cases of ZF and MMSE equalisation, the optimal

source and relay precoding matrices decompose the original matrix valued

optimisation problem into a simpler power allocation problem that only in-

volves scalar variables. Power allocation algorithms are discussed to solve

the scalar valued optimisation problems. Simulation results are presented

comparing the performance of the proposed DFE and THP transceivers in

terms of both BER and MSE with various linear benchmarks proposed in

the literature. It is shown that our DFE and THP designs offer improvement

in both BER and MSE performance compared to linear transceivers.
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• Chapter 5: In Chapter 5 we consider robust DFE/THP transceiver de-

signs for dual-hop MIMO OFDM relaying systems with imperfect CSI. It is

shown that for various channel estimation algorithms, the OFDM subcar-

rier channels can be modelled as being drawn from matrix variate Gaussian

distributions with known mean and covariance. The distribution mean rep-

resents the subcarrier channel estimate, whilst the covariance accounts for

the estimation error. Due to the fact that the subcarrier channels are not

completely known, the direct minimisation of the arithmetic MSE cannot

be conducted. We therefore formulate the robust optimisation problem for

DFE/THP transceivers to minimise the expected arithmetic MSE subject to

a source power constraint and an expected relay power constraint thus mak-

ing the problem analytically tractable. It is shown that for general channel

estimation error covariance matrices the optimal solution is difficult to ob-

tain. However, for the special case of uncorrelated channel estimation errors

the optimal source and relay precoders are identified. Simulations highlight

the robustness of the proposed algorithms to channel estimation errors.

• Chapter 6: Finally, in Chapter 6 we summarise the main results of this

thesis and draw conclusions. Based on the results obtained in this thesis, a

number of possible future research topics are suggested and briefly discussed.



Chapter 2

MIMO OFDM Relay Signal

Models

2.1 MIMO Relay Signal Model

Throughout this thesis we shall consider a 3 node system consisting of a source

device with Ns antennas, a relay device with Nr antennas, and a destination device

with Nd antennas. It is worthwhile developing the signal model for such a system

here since it shall be extensively used throughout the remaining chapters of this

thesis. In our MIMO relaying model we consider all channels to be frequency

selective with the channel impulse response between each transmit and receive

antenna being modelled as a causal finite impulse response (FIR) filter of order

L (the length of the channel impulse responses are L + 1)1. Assuming the use of

a half-duplex relay, the transmission of data in such a system is seperated into

two time slots/phases. This is due to the fact that with a half-duplex relay the

relay device cannot transmit and receive in the same time slots. The use of a

half-duplex relay simplifies the design of the relay system since the source and

relay transmissions are orthogonal i.e. there is no interference between the signals

transmitted by the source and relay devices.

2.1.1 First Phase Transmission

In the first phase of transmission the source transmits data to the relay whilst the

relay remains silent as shown in Figure 2.1. The received signal at the relay device

1In general the impulse responses for the various channels shall be of different lengths. How-
ever we make the assumption that they have the same length for ease of notation. Furthermore,
the channel responses can be made to have the same number of taps by either appending the
shorter responses with zeros or truncating the longer channel impulse responses. The former
method is preferred as the latter technique may result in some ISI being unaccounted for.

8
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can be written as

r̄[n] =
L∑

l=0

Hs[l]s̄[n− l] + v̄s[n], (2.1)

where s̄[n] , [s̄1[n], ..., s̄Ns
[n]]T ∈ C

Ns is the vector of transmit symbols at the

nth signalling interval, with s̄i[n] ∈ C denoting the transmitted symbol from

the ith source antenna. In (2.1) r̄[n] , [r̄1[n], ..., r̄Nr
[n]]T ∈ C

Nr is the vector of

received symbols at the nth signalling interval, with r̄j[n] ∈ C denoting the received

symbol at the jth relay antenna, and v̄s[n] , [v̄s,1[n], ..., v̄s,Nr
[n]]T ∈ C

Nr contains

the complex noise samples added at the relay receiver antennas. The matrices

Hs[l] ∈ C
Nr×Ns in (2.1) characterise the frequency selective channel between the

source and relay device and are given by

Hs[l] =







hs,11[l] . . . hs,1Ns
[l]

...
. . .

...

hs,Nr1
[l] . . . hs,NrNs

[l]






, (2.2)

where hs,ji[l] ∈ C is the lth channel tap representing the complex fading gain

between the ith source antenna and the jth relay receiver antenna.

2.1.2 Second Phase Transmission

As depicted in Figure 2.2, in the second phase of transmission the source remains

silent whilst the relay forwards the data received from the source in the first stage

transmission to the destination device. The symbols received at the destination

in this transmission stage can be written as

ȳ[n] =
L∑

l=0

Hr[l]x̄[n− l] + v̄r[n], (2.3)

where ȳ[n] , [ȳ1[n], ..., ȳNd
[n]]T ∈ C

Nd and x̄[n] , [x̄1[n], ..., x̄Nr
[n]]T ∈ C

Nr are

the vectors of received symbols at the destination and relay transmit symbols,

respectively, and v̄r[n] , [v̄r,1[n], ..., v̄r,Nd
[n]]T ∈ C

Nd contains complex noise sam-

ples. The relay-destination channel matrices Hr[l] ∈ C
Nd×Nr contain the complex

fading gains between each transmit and receive antenna and are given by

Hr[l] =







hr,11[l] . . . hr,1Ns
[l]

...
. . .

...

hr,Nr1
[l] . . . hr,NrNs

[l]






, (2.4)



Chapter 2. MIMO OFDM Relay Signal Models 11

R
x

ȳ
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where hr,ji[l] ∈ C is the lth channel tap representing the complex gain between

the ith relay transmit antenna and jth destination antenna.

It is worth highlighting that in our signal model we have assumed that there

is no direct link between the source and destination devices. In a practical sys-

tem the direct link will be negligible when the source and destination devices are

seperated by a substantially large enough distance or when the source-destination

channel experiences strong shadowing. In fact, one of the main potential ben-

efits of relaying is that it can provide coverage to a destination device in cases

where a point-to-point transmission between the source and destination is infea-

sible. Thus, relays are likely to feature far more prominently in scenarios where

the effect of a direct link can be assumed to be negligible. In any case, since the

relay transmission is seperated into two orthogonal time slots, the effect of the

direct link can be made negligible by having the destination device discard any

information received from the source device in the first time slot.

2.1.3 Spatially Correlated MIMO Channels

We assume that the source-relay and relay-destination channel taps given in (2.2)

and (2.4), respectively, are spatially correlated on both the transmit and receive

sides and can be modelled according to the Kronecker product model (see e.g.

[12, 64–66]). To define such a model let us firstly introduce the definition of a

matrix variate Gaussian distribution:

Definition 1: [67] A random matrixA ∈ C
N×M is said to have a matrix variate

Gaussian distribution with mean Ā ∈ C
N×M and covariance matrix B⊗C, where

B ∈ C
M×M and C ∈ C

N×N , if it satisfies

vec [A] ∼ CN
(
vec[Ā],B ⊗C

)
, (2.5)

where

E{A} = Ā (2.6)

E

{(
vec [A]− vec

[
Ā
]) (

vec [A]− vec
[
Ā
])H

}

= B ⊗C. (2.7)

The matrix variate Gaussian distribution of the random matrix A is denoted by

A ∼ CN (Ā,B ⊗C).

According to the Kronecker spatial correlation model the source-relay and relay-

destination MIMO channel taps characterised by (2.2) and (2.4), respectively, can
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be decomposed as

Hs[l] = Υ 1/2
s [l]Hsw[l]Θ

T/2
s [l] (2.8)

Hr[l] = Υ 1/2
r [l]Hrw[l]Θ

T/2
r [l], (2.9)

where Υs[l] ∈ H
Nr×Nr
++ and Υr[l] ∈ H

Nd×Nd
++ are the positive definite receive side

spatial correlation matrices for the lth MIMO channel taps, with the correspond-

ing positive definite transmit side spatial correlation matrices being represented

by Θs[l] ∈ H
Ns×Ns
++ and Θr[l] ∈ H

Nr×Nr
++ . The spatial correlation matrices repre-

sent the second order statistics of the MIMO channels and depend on parameters

such as the average angle of arrival/departure, angle spread, antenna spacing, and

wavelength [12, 64–66, 68]. Although each delay path is spatially correlated on

both the transmit and receive side, we assume that the different delay paths are

uncorrelated. Thus the matrices Hsw[l] ∈ C
Nr×Ns and Hrw[l] ∈ C

Nd×Nr in (2.8)

and (2.9) are modelled as having independently identically distributed (i.i.d.) com-

plex Gaussian entries with zero mean and variances σ2
hs
[l] ∈ R+ and σ2

hr
[l] ∈ R+,

respectively. In other words these matrices have matrix variate complex Gaussian

distibutions given by

Hsw[l] ∼ CN
(
0Nr×Ns

, σ2
hs
[l]INs

⊗ INr

)
(2.10)

Hrw[l] ∼ CN
(
0Nd×Nr

, σ2
hr
[l]INr

⊗ INd

)
. (2.11)

Using Definition 1, the Kronecker product structures in (2.8)-(2.9), and the matrix

variate Gaussian distributions in (2.10)-(2.11), it is straightforward to show that

Hs[l] ∼ CN
(
0Nr×Ns

, σ2
hs
[l]Θs ⊗ Υs

)
(2.12)

Hr[l] ∼ CN
(
0Nd×Nr

, σ2
hr
[l]Θr ⊗ Υr

)
. (2.13)

To obtain (2.12)-(2.13) we have used the rules vec[AXB] = (BT ⊗ A)vec[X],

(A ⊗B)(C ⊗D) = (AC ⊗BD), (A ⊗B)H = (AH ⊗BH), as well as the fact

that the spatial correlation matrices are positive definite Hermitian matrices.

2.2 MIMO OFDM Relay Signal Model

As is evident from the input-output relationships for the source-relay and relay-

destination transmissions described in equations (2.1) and (2.3), respectively, the

received symbols are corrupted by both spatial and temporal interferences caused

by the use of multiple antennas as well as the frequency selective nature of the
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wireless channels. In order to realise the potential benefits of enhanced data rates

provided by spatial multiplexing of several data streams over the same commu-

nication medium, appropriate signal processing must be performed at the source,

relay, and destination devices to combat these interferences. A first step is to

deal with the temporal interference or ISI caused by frequency selectivity. OFDM

has emerged as one of the most popular techniques in dealing with such inter-

ference and is widely regarded along with MIMO transmission to be one of the

key components for realising the required high data rates of current and future

generation wireless systems. OFDM must be employed for both the source-relay

and relay-destination transmission stages in order to decouple the frequency selec-

tive channels into parallel non-frequency selective subcarriers. Since the OFDM

transmit and receive stages for the source-relay and relay-destination transmission

stages are similar, in the following we only give detailed analysis of the processing

performed at the source transmission and relay receive stages as an example.

2.2.1 Source OFDM Transmission

The main processing stages for the utilisation of OFDM at the source device are

depicted in Figure 2.3. Without loss of generality (w.l.o.g.) we focus on the

transmission of a single OFDM block a ∈ C
N̄ given by

a ,

[

aT
1 , ...,a

T
K

]T

, (2.14)

where ak ∈ C
Nk is the source transmit vector for the kth subcarrier, 1 ≤ k ≤ K

denotes the subcarrier index, K is the total number of OFDM subcarriers, Nk

is the number of symbols to be transmitted on the kth subcarrier, and we define

N̄ ,
∑K

k=1 Nk as the total number of symbols over all subcarriers. The data vector
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a is then precoded in some manner by the source device to produce the transmit

vector s ∈ C
KNs given by

s ,

[

sT1 , ..., s
T
K

]T

, (2.15)

where sk ∈ C
Ns is the transmit vector for the kth subcarrier. The precoded

symbols are then re-arranged into Ns vectors s̆i ∈ C
K which are to be transmitted

from the ith transmit antenna. Each vector s̆i is obtained by stacking the ith

element from each subcarrier vector sk into a column vector and is given by

s̆i = [[s1]i, ..., [sK ]i]
T . (2.16)

Here we use the notation [sk]i to denote the ith element of sk. By further stacking

each s̆i into a single column vector s̆ ∈ C
KNs given by

s̆ ,

[

s̆T1 , ..., s̆
T
Ns

]T

, (2.17)

we can see that the elements of s̆ are simply a permutation of those in s. As

shown in Figure 2.3, s̆ in (2.17) can equivalently be obtained from

s̆ = Pss, (2.18)

where Ps ∈ R
KNs×KNs
+ is a permutation matrix2 such that (2.16) holds. Given

(2.16) and (2.17) it can be shown that the permutation matrix Ps is

Ps =
[

e
(s)
1 , e

(s)
K+1, ..., e

(s)
(Ns−1)K+1, e

(s)
2 , e

(s)
K+2, ..., e

(s)
(Ns−1)K+2, e

(s)
K , e

(s)
2K , ..., e

(s)
KNs

]

,

(2.19)

where e
(s)
i ∈ R

KNs
+ is the elementary unit vector containing all zero elements with

only the ith element being equal to 1. After the permutation of the symbols, on

each antenna branch, an inverse discrete Fourier transform (IDFT) is performed

to transform the frequency domain symbols of s̆i into the time domain symbols

s̃i ∈ C
K×K given by

s̃i = F
H s̆i, (2.20)

2A permutation matrix is a square matrix where every row and every column contains only
one element equal to 1 with all other elements being 0.
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where F ∈ C
K×K is the normalised K point discrete Fourier transform (DFT)

matrix given by

F =
1√
K












1 1 1 . . . 1

1 e−j2π/K e−j4π/K . . . e−j2π(K−1)/K

1 e−j4π/K e−j8π/K . . . e−j4π(K−1)/K

...
...

...
. . .

...

1 e−j2π(K−1)/K e−j4π(K−1)/K · · · e−j2π(K−1)
2
/K












. (2.21)

The scaling factor in (2.21) ensures that F is unitary i.e. FF
H = F

H
F = IK .

We note that since F is the normalised DFT matrix then F
H is the normalised

IDFT matrix. For later convenience let us now define a vector s̃ ∈ C
KNs as

s̃ ,

[

s̃T1 , ..., s̃
T
Ns

]T

. (2.22)

With the definition of s̃ in (2.22) and that of s̆ in (2.17) we can write (2.20) over

all antenna branches compactly as

s̃ =
(

diag{FH}Ns

i=1

)

s̆ (2.23)

=
(

INs
⊗F

H
)

s̆, (2.24)

where we have used the fact that, for a matrix A ∈ C
N×M , IP ⊗ A produces a

PN × PM block diagonal matrix with A on each diagonal block.

After performing the IDFT a cyclic prefix (CP) is added to each s̃i, which acts

as a guard interval to eliminate interblock interference (IBI). With the channel

impulse responses being of order L, the CP is required to be of length L in order

to completely eliminate IBI. The CP is added by taking the last L symbols from

s̃i and appending them to the start of the block to produce the vector ŝi ∈ C
K+L.

The addition of the CP can be written using matrix-vector notation as

ŝi =






0L×K+L IL

IK−L 0K−L×L

0L×K−L IL






︸ ︷︷ ︸

Cs

s̃i. (2.25)

Finally, the symbols contained in ŝi are converted from parallel to serial for trans-

mission, resulting in the sequence si[n], which is then transmitted from the ith

source antenna to the relaying device.
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2.2.2 Relay OFDM Reception

The receive side processing performed at the relay device for the first stage trans-

mission is depicted in Figure 2.4. The relay acquires the vectors r[n], characterised

by (2.1), over n = K+L signalling intervals. On each relay receiver antenna branch

the vectors r̂j ∈ C
K+L are produced by stacking the symbols rj[n] over K + L

intervals into column vectors. The CP that was added by the source is then re-

moved by discarding the first L symbols in r̂j to produce the vectors r̃j ∈ C
K+L.

The removal of the CP ensures the complete elimination of IBI since, assuming

the CP was of length L, the IBI is restricted to the first L samples of r̂j. The CP

removal can be written as

r̃j =
[

0K×L IK

]

︸ ︷︷ ︸

C̄r

r̂j. (2.26)

The DFT is then performed on (2.26) to produce the frequency domain symbols

r̆j ∈ C
K given by

r̆j = F r̃j, (2.27)

which over all antenna branches can be written compactly as

r̆ =
(

diag{F}Nr

j=1

)

r̃ (2.28)

=
(
INr

⊗F
)
r̃. (2.29)
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Here we define the vectors r̆ ∈ C
KNr and r̃ ∈ C

KNr as

r̆ ,

[

r̆T
1 , ..., r̆

T
Nr

]T

(2.30)

r̃ ,

[

r̃T
1 , ..., r̃

T
K

]T

. (2.31)

We note that to obtain (2.29) we have again used the fact that for a matrix

A ∈ C
N×M we have IP ⊗A = diag{A}Pi=1. The relay now undoes the permutation

that was applied to the frequency domain symbols s by the source device (see

(2.16)-(2.19)). Similar to the process carried out by (2.16)-(2.19), the received

vector over all subcarriers r ∈ C
KNr is produced by

r = P̄rr̆, (2.32)

where the received vector r and the permutation matrix P̄r ∈ R
KNr×KNr
+ are

defined as

r ,

[

rT
1 , ..., r

T
K

]T

(2.33)

P̄r ,

[

e
(r)
1 , e

(r)
Nr+1, ..., e

(r)
(K−1)Nr+1, e

(r)
2 , e

(r)
Nr+2, ..., e

(r)
(K−1)Nr+2, e

(r)
Nr
, e

(r)
2Nr

, ..., e
(r)
KNr

]

.

(2.34)

In (2.33) rk signifies the received vector at the relay for the kth subcarrier. This

concludes the OFDM processing for the source-relay transmission stage.

2.2.3 Source-Relay OFDM Subcarriers

We now show that the previously described source transmit and relay receive

processing results in the frequency domain source transmit symbols effectively

being transmitted over orthogonal frequency domain channels. In other words we

show that the use of OFDM decomposes the frequency selective MIMO source-

relay channel into a number of parallel non frequency selective subcarriers. To

this end we note that the additon of the CP at the source and its removal at the

destination converts the channel convolution into a block circular convolution and

the input-output relationship between r̃ and s̃ can be expressed as

P̄rr̃ = HsP
H
s s̃+ ṽs, (2.35)
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where ṽs ∈ C
KNr is the vector of additive time domain noise samples. In (2.35)

we define the block circulant matrix Hs ∈ C
KNr×KNs as

Hs ,


















Hs[0] 0Nr×Ns
· · · 0Nr×Ns

Hs[L] · · · Hs[1]

Hs[1] Hs[0]
. . . . . . . . .

...
... Hs[1]

. . . . . . . . . Hs[L]

Hs[L]
...

. . . . . . . . . 0Nr×Ns

0Nr×Ns
Hs[L]

. . . . . . . . .
...

...
. . . . . . . . . . . . 0Nr×Ns

0Nr×Ns
· · · 0Nr×Ns

Hs[L] · · · Hs[1] Hs[0]


















. (2.36)

Block circulant matrices are fully defined by their first block column and have

the property that they can be block diagonalised through pre multiplication with

F ⊗ I and post multiplication by F
H ⊗ I. We now note that by substituting

(2.18) into (2.24) it can be shown that

s̃ =
(

INs
⊗F

H
)

Pss, (2.37)

= Ps

(

FH ⊗ INs

)

s, (2.38)

where to obtain (2.38) we have utilised the structure of Ps given in (2.19). Simi-

larly, by substituting (2.29) into (2.32) we can show the relationship

r̃ = P̄H
r

(

F
H ⊗ INr

)

r. (2.39)

Upon substituting (2.38) and (2.39) into (2.35) we obtain

r =
(
F ⊗ INr

)
Hs

(

FH ⊗ INs

)

︸ ︷︷ ︸

Hs

s+
(
F ⊗ INr

)
ṽs

︸ ︷︷ ︸

vs

, (2.40)

where vs ∈ C
KNr is the frequency domain noise vector and can be partitioned as

vs ,

[

vT
s,1, ...,v

T
s,K

]T

, (2.41)

with vs,k ∈ C
Nr representing the noise added on the kth subcarrier. It is worth

noting here that, due to the unitary nature of F , the noise vector in the frequency

domain has the exact same statistical properties of the noise in the time domain.

Resulting from the block circulant structure of Hs in (2.36), the matrix Hs in
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(2.40) is block diagonal and can be expressed as

Hs = diag{Hs,k}Kk=1, (2.42)

where the matrix Hs,k ∈ C
Nr×Ns for the kth subcarrier is given by

Hs,k =
L∑

l=0

Hs[l]e
−j2π(k−1)l/K . (2.43)

It is clear from (2.40), that with the block diagonal structure of Hs in (2.42) and

with the definitions of s and r in (2.15) and (2.33), that we can write

rk = Hs,ksk + vs,k. (2.44)

It is evident from (2.44) that the use of OFDM processing has elegantly converted

the frequency selective source-relay channel transmission into the transmission of

data over orthogonal frequency domain subcarriers characterised by (2.43).

2.2.4 Relay-Destination OFDM

As previously remarked, the processing performed by the relay and destination in

the second stage MIMO OFDM relay transmission is similar to that for the first

stage transmission just described. For completeness, the MIMO relay transmit-

ter structure is shown in Figure 2.5 and the destination structure is depicted in

Figure 2.6. The previous analysis can easily be carried out for the second stage

transmission simply by replacing the signals and processors in Figures 2.3 and 2.4

with those in Figures 2.5 and 2.6, respectively. We also note that the substitu-

tions Ns → Nr and Nr → Nd should be used. Similar to our previous analysis
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the use of OFDM results in the relay transmit symbols being communicated over

parallel subcarrier channels. Specifically, for the kth subcarrier, we have

yk = Hr,kxk + vr,k, (2.45)

where yk ∈ C
Nd is the vector of received symbols on the kth subcarrier, xk ∈ C

Nr

is the symbols transmitted by the relay on the kth subcarrier, and vr,k ∈ C
Nd

is the noise vector for the kth subcarrier. The kth relay-destination subcarrier

channel matrix Hr,k ∈ C
Nd×Nr is given by

Hr,k =
L∑

l=0

Hr[l]e
−j2π(k−1)l/K . (2.46)

By making the definitions

y ,

[

yT
1 , ...,y

T
K

]T

(2.47)

x ,

[

xT
1 , ...,x

T
K

]T

(2.48)

vr ,

[

vT
r,1, ...,v

T
r,K

]T

(2.49)

Hr , diag{Hr,k}Kk=1, (2.50)

we can express the received signal in (2.45) over all subcarriers compactly as

y = Hrx+ vr. (2.51)

From (2.51) (or equivalently from (2.45)) it can again be seen that the frequency

selective relay-destination channel has been decoupled into the transmission of

data over orthogonal subcarriers given in (2.46).

2.2.5 Equivalent MIMO OFDM Relay Model and Statis-

tical Assumptions

From equations (2.40), (2.44), (2.45), and (2.51), we see that the MIMO OFDM

relay system depicted in Figures 2.3-2.6 can be written solely in terms of frequency

domain components. This leads to the simplified interpretation of the MIMO

OFDM relay system shown in Figure 2.7. Throughout the remainder of this thesis

we shall find it convenient to focus on this simplified model as opposed to the more

complicated underlying structure given in Figures 2.3-2.6.
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Figure 2.7: Equivalent MIMO OFDM relay model.

Hitherto we have made no particular assumptions on the statistical properties

of the transmit or noise symbols. However, in the remainder of this thesis we shall

find it convenient to make the following standard assumptions:

(A1.) The transmit symbols contained in a, defined in (2.14), are assumed to be

drawn from zero mean M -QAM signal constellations and are white with unit

energy resulting in Ra , E{aaH} = IN̄ . From the definition of a in (2.14)

this means that the covariance matrix of ak is Ra,k , E{aka
H
k } = INk

.

Furthermore, the cross covariance matrix between ak and aj is given by

Ra,kj , E{aka
H
j } = 0Nk×Nj

, ∀k 6= j.

(A2.) The elements of the additive noise vector vs, defined in (2.41), are drawn

from i.i.d. Gaussian distributions with zero mean and variance σ2
vs

∈ R+.

The noise vector therefore has covariance matrix Rvs
, E{vsv

H
s } = σ2

vs
IKNr

which from (2.41) implies that Rvs,k
, E{vs,kv

H
s,k} = σ2

vs
INr

, as well as

Rvs,kj
, E{vs,kv

H
s,j} = 0Nr×Nr

, ∀j 6= k.
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(A3.) The elements of the additive noise vector vr, defined in (2.49), are drawn

from i.i.d. Gaussian distributions with zero mean and variance σ2
vr

∈ R+. We

thus haveRvr
, E{vrv

H
r } = σ2

vr
IKNd

which from (2.49) implies that we have

the covariance matrices Rvr,k
, E{vr,kv

H
r,k} = σ2

vr
INd

for each subcarrier,

and the cross covariance matrices Rvr,kj
, E{vr,kv

H
r,j} = 0Nd×Nd

, ∀j 6= k.

(A4.) The vectors vs and vr are uncorrelated with each other and we have

E{vs,kv
H
r,j} = 0Nr×Nd

, ∀k, j, as well as E{vr,kv
H
s,j} = 0Nd×Nr

, ∀k, j. Further-
more, the noise vectors are uncorrelated with the transmit vector a and we

have E{akv
H
s,j} = 0Nk×Nr

, ∀k, j, and E{vs,ka
H
j } = 0Nr×Nk

, ∀k, j, as well as
E{akv

H
r,j} = 0Nk×Nd

, ∀k, j, and E{vr,ka
H
j } = 0Nd×Nk

, ∀k, j.

Hitherto, we have established that the use of OFDM results is the transmission

of data over orthogonal subcarriers as depicted by the equivalent MIMO OFDM

relay model in Figure 2.7. Although OFDM has been utilised to combat temporal

interference in our MIMO relay system, it is evident there is still interference

present for each OFDM subcarrier. In order for the reliable detection of symbols

at the destination, appropriate transceiver designs must be employed to combat the

remaining interference. Transceivers for MIMO systems can be either linear or non-

linear depending on the type of transmit and receive processing that is performed.

It is well known for point-to-point MIMO systems that non-linear transceivers

such as DFE and THP can offer significant improvement in performance when

compared to linear transceiver designs [24–35]. This motivates the study of non-

linear techniques for the considered MIMO OFDM relaying system.

2.3 Non-linear Transceiver Models

In this section we discuss the signal models for DFE and THP transceivers to

combat the interference that still remains in the MIMO OFDM relaying system

of Figure 2.7. Such transceivers can either be subcarrier non-cooperative or sub-

carrier cooperative depending on the structure of the global transmit and receive

processors [16, 45]. For subcarrier non-cooperative transceivers the processors are

restricted to operate independently for each subcarrier, whereas subcarrier coop-

erative transceivers allow for data to be mixed between subcarriers. As discussed

in [16, 45] the subcarrier non-cooperative approach results in the most general

problem formulation and subcarrier cooperative designs can be straightforwardly

obtained from the subcarrier non-cooperative optimisation problem. We therefore

restrict our attention to subcarrier non-cooperative DFE and THP transceivers.
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Figure 2.8: Signal Model for MIMO OFDM relay system with DFE.

In the following, we firstly discuss the DFE and THP signal models for the consid-

ered MIMO OFDM relay model and derive the error covariance matrix for these

transceivers. The error covariance matrices will play a vital role in formulating

the optimisation problem for deriving the optimal DFE and THP processors since

most commonly used design criteria are inherently related to the elements of the

error covariance matrix [16, 17, 45, 50].

2.3.1 DFE Signal Model and Error Covariance Matrix

In the DFE transceiver for the MIMO OFDM relay model in Figure 2.7 we intro-

duce linear precoders at the source and relay, as well as a DFE at the receiver, for

each subcarrier. This configuration is illustrated in Figure 2.8 for the kth subcar-

rier. We stress that this transceiver configuration is utilised for every subcarrier

of the MIMO OFDM relay model in Figure 2.7. In the following we discuss the

processing performed for a single subcarrier. At the source the symbols ak are

linearly precoded by Fk ∈ C
Ns×Nk and are transmitted over the source-relay sub-

carrier channel Hs,k, which is given in (2.43). The received symbols rk at the relay

device are then given by

rk = Hs,kFkak + vs,k, (2.52)

where vs,k is the AWGN vector. At the relay device the received symbols in (2.52)

are linearly precoded by Gk ∈ C
Nr×Nr and the resulting symbols are transmitted

over the relay-destination subcarrier matrix Hr,k, which is characterised in (2.46).

The symbols yk received at the destination are then given by

yk = Hr,kGkrk + vr,k, (2.53)

with vr,k being the AWGN vector added by the relay-destination transmission.

The symbols yk are processed by the DFE feedforward matrix Wk ∈ C
Nk×Nd to
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produce zk = Wkyk ∈ C
Nk , which using (2.52) and (2.53) results in

zk = Wk

(
Hr,kGk

(
Hs,kFkak + vs,k

)
+ vr,k

)
. (2.54)

Decision feedback detection is then performed where the DFE receiver consists of

a decision detection unit D(.) and a strictly upper right triangular feedback matrix

Bk ∈ C
Nk×Nk . The action of the DFE receiver is to successively detect symbols

and then subtract their interference from the remaining undetected symbols. This

process is known as successive interference cancellation (SIC) and can be stated

mathematically as [24–31]

[ãk]m = D
(

[zk]m −
Nk∑

n=m+1

[Bk]mn ãn

)

, m = Nk, Nk − 1, ..., 1, (2.55)

where ãk ∈ C
Nk is the vector of detected symbols. The SIC performed in (2.55)

is equivalent to successively making decision on the symbols âk ∈ C
Nk given by

âk = zk −Bkãk (2.56)

= Wk

(
Hr,kGk

(
Hs,kFkak + vs,k

)
+ vr,k

)
−Bkãk, (2.57)

where we have used (2.54) to obtain (2.57). The error between the input to the

decision device, given in (2.57), and the transmitted data vectors ak provides a

useful measure of performance quality for the DFE transceiver and is constructed

as ek , âk − ak ∈ C
Nk which using (2.57) can be expanded as

ek = Wk

(
Hr,kGk

(
Hs,kFkak + vs,k

)
+ vr,k

)
−Bkãk − ak (2.58)

=
(
WkHr,kGkHs,kFk −Uk

)
ak +WkHr,kGkvs,k +Wkvr,k. (2.59)

To obtain (2.59), we have made the standard assumption that previous symbols

have been detected correctly, i.e. ãk = ak (see e.g. [24–31]), and we have defined

Uk , Bk + INk
, which by construction is a unit diagonal upper right triangular

matrix (recall that Bk is a strictly upper right triangular matrix). We now define

the error covariance matrix Re,k , E{eke
H
k } ∈ C

Nk×Nk , which using the error

signal in (2.59) can be written as

Re,k =
(
WkHr,kGkHs,kFk −Uk

) (
WkHr,kGkHs,kFk −Uk

)H

+Wk

(

Hr,kGkG
H
k H

H
r,kσ

2
vs
+ σ2

vr
INd

)

WH
k . (2.60)
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Figure 2.9: Signal Model for MIMO OFDM relay system with THP.

To obtain (2.60) we have used the assumptions that ak are white with unit vari-

ance and are uncorrelated with the noise signals, as well as the assumption that

the noise vectors vs,k and vr,k have elements drawn from independent complex

Gaussian distributions with zero mean and variances σ2
vs

and σ2
vr

respectively (see

the statistical assumptions in (A1.)-(A4.) of Section 2.2.5).

2.3.2 THP Signal Model and Error Covariance Matrix

A main drawback of DFE transceivers is that, due to the action of successively

making decisions on symbols and using the detected symbol for interference can-

cellation, they can suffer from error propagation when symbols are detected incor-

rectly. The level of error propagation that occurs in DFE transceivers depends on

the size of the data block that is to be detected, with larger data blocks having

the potential for severe error propagation. THP is a non-linear precoding tech-

nique that can circumvent this problem, and does so by essentially moving the

DFE feedback device to the transmitter where all signals are completely known

and as such error propagation does not occur. THP was originally proposed in

[69, 70] for the mitigation of ISI in frequency selective SISO systems and has since

been extensively studied for point-to-point MIMO systems in e.g. [32–35].

We consider the use of THP for the MIMO OFDM relay model in Figure

2.7. For each subcarrier a TH precoder is introduced at the source along with

a linear precoder at the relay and linear equalisation at the destination. This

configuration is shown in Figure 2.9 for the kth subcarrier. We again emphasise

that this configuration is utilised for every subcarrier. The TH precoder consists of

a feedback loop comprising a strictly upper right triangular matrix3 Bk as well as a

modulo device M(.). The use of THP is tightly related to the signal constellation

of the data symbols ak, which are assumed to be drawn from a zero mean, unit

3Traditionally the feedback matrix for THP is assumed to be strictly lower left triangular
[33–35]. However for the purpose of formulating a unified optimisation problem for both the DFE
and THP transceivers we consider the feedback matrix to be strictly upper right triangular.



Chapter 2. MIMO OFDM Relay Signal Models 27

variance, M-QAM signal constellation (see assumption (A1.) of Section 2.2.5).

The Voronoi region U of this constellation is a square of side length D [32]. To

highlight the need of the non-linear modulo operator let us firstly analyse the

THP system in its absence. In this case the elements of the vector uk ∈ C
Nk are

recursively computed according to [33, 34]

[uk]m = [ak]m −
Nk∑

n=m+1

[Bk]mn[uk]n, m = Nk, Nk − 1, ..., 1, (2.61)

which can be equivalently written using vector/matrix notation as

uk = U−1
k ak. (2.62)

In (2.62) we again define Uk , Bk + INk
which is a unit diagonal upper right

triangular matrix since Bk is a strictly upper right triangular matrix. We now

note that a direct transmission of the data vector ak results in the average power

consumption of the source being given by

tr
{

E

{

aka
H
k

}}

= tr
{
INk

}
= Nk, (2.63)

where we have used the statistical assumption of the data vector ak given in (A1.)

of Section 2.2.5. On the other hand, the average transmit power consumed by the

transmission of the vector uk in (2.62) is given by

tr
{

E

{

uku
H
k

}}

= tr
{

U−1
k E

{

aka
H
k

}

U−H
k

}

(2.64)

= tr
{

U−1
k U−H

k

}

(2.65)

= Nk +
∑

∀m>n

∣
∣
[
U−1

k

]

mn

∣
∣
2

(2.66)

To obtain (2.66) we have used the statistical assumption for ak given in (A1.) of

Section 2.2.5, as well as the fact that Uk is unit diagonal triangular. By comparing

(2.66) and (2.63) it is clear that the power consumed by the transmission of uk

is higher than that for a direct transmission of ak. In order to limit this increase

of transmission power the modulo operator M(.) is introduced into the THP

feedback loop. With the inclusion of the modulo operator the symbols in uk are

now recursively computed according to

[uk]m = M
(

[ak]m −
Nk∑

n=m+1

[Bk]mn[uk]n

)

, m = Nk, Nk − 1, ..., 1. (2.67)
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Figure 2.10: Equivalent THP transmitter structure.

The effect of the modulo operator in (2.67) is equivalent to the addition of integer

multiples of D to both the real and imaginary components of ak and is such that,

after processing by the THP feedback loop, the symbols in uk are bounded by the

region U thus limiting the transmission power [32–35, 54]. The elements of uk in

(2.67) can therefore be equivalently written as

[uk]m = [ak]m + [dk]m −
Nk∑

n=m+1

[Bk]mn[uk]n, m = Nk, Nk − 1, ..., 1, (2.68)

where the real and imaginary components of the elements in dk ∈ C
Nk are ap-

propriate integer multiples of D such that the elements of uk are bounded by U .
This observation leads us to the equivalent THP transmitter structure depicted

in Figure 2.10. The selection of the elements in dk is done implicitly through the

action of the modulo unit. The addition of the vector dk results in the modified

data symbols z̃k = ak + dk ∈ C
Nk , which are drawn from an extended version of

the signal constellation A, being fed to the feedback unit. The vector uk in (2.68)

can be written using vector/matrix notation as

uk = U−1
k z̃k. (2.69)

It is important to note that, although the use of the modulo operator in THP

limits the increase in transmission power, their is still a slight increase in transmit

power due to the linear prefiltering by U−1 in (2.69). However for moderate to

high M-QAM signal constellations this slight increase becomes negligible [32–35])

and we can make the statistical assumption

E

{

uku
H
k

}

= E

{

aka
H
k

}

= INk
. (2.70)

Before proceeding, we illustrate the effect of THP processing in Figure 2.11,
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Figure 2.11: (a) Original signal constellation A for 4-QAM symbols. (b) Extended
signal constellation

where we consider the use of a 4-QAM signal constellation. Figure 2.11 (a) de-

picts the original constellation A, from which the elements of the data vector ak

are selected from, along with the Voronoi region U which bounds the elements of

uk that result from THP processing. Figure 2.11 (b) depicts the extended sig-

nal constellation from which the elements of the modified data symbols in z̃k are

drawn. All points that are seperated in the real and/or imaginary planes by an

integer multiple of D represent the same symbol from the original signal constel-

lation in Figure 2.11 (a).

The symbols uk produced from TH precoding are then linearly precoded by

the source precoding matrix Fk before being transmitted over the source-relay

subcarrier channel Hs,k. The resulting signal at the relay is then given by

rk = Hs,kFkuk + vs,k. (2.71)

The received symbols rk at the relay are precoded by the relay matrix Gk and

transmitted over the relay-destination subcarrier channel matrix Hr,k resulting in

the received vector at the destination

yk = Hr,kGkrk + vr,k. (2.72)
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At the destination linear equalisation is performed to produce zk = Wkyk, which

using (2.71) and (2.72) can be expanded as

zk = Wk

(
Hr,kGk

(
Hs,kFkuk + vs,k

)
+ vr,k

)
. (2.73)

Ideally the symbols in (2.73) should be identical to those in z̃k. The symbols in

(2.73) can then be passed to a modulo device M(.) which serves to compensate for

the effect of the periodic extension to the original signal constellation that resulted

due to the modulo operator at the transmitter. In other words the elements of

zk are modulo reduced such that they lie within the Voronoi region U (see e.g.

[32–35, 54]). Finally the resulting symbols are quantised to the nearest symbol

in the original signal constellation A to obtain ãk, which is the estimate of the

original data symbols ak.

We now derive the error covariance matrix for the THP transceiver. Differing

from the DFE system, where an error signal was defined in terms of the source

symbols ak, the error signal for the THP transceiver is defined in terms of the

modified data symbols zk. The error signal for the THP transceiver is thus defined

as ek , zk − z̃k ∈ C
Nk , which using (2.73) and (2.69) can be expanded as

ek =
(
WkHr,kGkHs,kFk −Uk

)
uk +WkHr,kGkvs,k +Wkvr,k. (2.74)

We can now define the error covariance matrix as Re,k , E{eke
H
k } ∈ C

Nk×Nk ,

which using the error signal in (2.74) can be written as

Re,k =
(
WkHr,kGkHs,kFk −Uk

) (
WkHr,kGkHs,kFk −Uk

)H

+Wk

(

Hr,kGkG
H
k H

H
r,kσ

2
vs
+ σ2

vr
INd

)

WH
k , (2.75)

where we have used the statistical assumptions in (A1.)-(A4.) of Section 2.2.5 as

well as the statistical assumption in (2.70) to obtain (2.75). Interestingly, despite

the differences in the DFE and THP models, both transceivers result in error

covariance matrices with the same structure (c.f. (2.60) and (2.75)). This is a

very appealing property since it shall allow us to derive the optimal processors for

both systems using a single optimisation problem.

2.4 Minimum MSE Problem Formulation

A popular and one of the most commonly used criterion for transceiver designs that

shall be considered throughout this thesis is the minimisation of the arithmetic

MSE (also referred to as the minimisation of the sum MSE or more loosely simply
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as the minimisation of the MSE). In this section we formulate this optimisation

problem for both the DFE and THP MIMO OFDM relay transceivers, which

can be done in a unified manner since the error covariance matrices for both

transceivers have the same structure. The arithmetic MSE for the kth subcarrier

is given by the arithmetic mean of the diagonal elements of Re,k and can be

written mathematically as
∑Nk

i=1[Re,k]ii/Nk or equivalently as tr
{
Re,k

}
/Nk. As

well as minimising the arithmetic MSE we also wish to limit the average transmit

power consumed by the source and relay terminals. For the DFE model in Figure

2.8 and the THP model in Figure 2.9 the transmit power consumed by the source

on the kth subcarrier is

tr
{

E

{

Fkaka
H
k F

H
k

}}

= tr
{

E

{

Fkuku
H
k F

H
k

}}

= tr
{

FkF
H
k

}

, (2.76)

where we have used the assumptions in (A1.) and (2.70). It can also be straight-

forwardly shown that the transmit power consumed by the relay on the kth sub-

carrier for both the DFE and THP models is

tr
{

E

{

Gkrkr
H
k G

H
k

}}

= tr
{

Gk

(

Hs,kFkF
H
k HH

s,k + σ2
vs
INr

)

GH
k

}

, (2.77)

where rk is given in (2.52) for the DFE transceiver and in (2.71) for the THP

transceiver. To obtain (2.77) we have also used the assumptions (A1.), (A2.),

(A4.), as well as (2.70)4. With the power consumed on the kth subcarrier by the

source and relay terminals given in (2.76) and (2.77), respectively, we can now

formulate the constrained optimisation problem to minimise the arithmetic MSE

for both DFE and THP MIMO OFDM relay transceivers as

min
Fk,Gk,Wk,Uk

1

K

K∑

k=1

tr
{
Re,k

}

Nk

(2.78)

s.t.
K∑

k=1

tr
{

FkF
H
k

}

≤ Ps (2.79)

K∑

k=1

tr
{

Gk

(

Hs,kFkF
H
k HH

s,k + σ2
vs
INr

)

GH
k

}

≤ Pr. (2.80)

The objective function in (2.78) is the arithmetic MSE averaged over all subcar-

riers, whilst (2.79) and (2.80) impose the source and relay power constraints over

4We note that for the THP model, (2.70) is only reasonable for moderate to large M-QAM
constellations and thus the power consumed in (2.76) and (2.77) are only reasonable for moderate
to large M-QAM constellations. In fact for small sized constellation, THP will consume more
transmit power than (2.76) and (2.77)
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all subcarriers with Ps and Pr being the corresponding available power budgets.

2.5 Chapter Summary and Conclusions

This chapter introduced the signal model for data transmission in a two-hop

MIMO relaying system where the source-relay and relay-destination channels are

frequency selective which result in the received symbols being corrupted by ISI.

The use of OFDM was then discussed and shown to convert the frequency selective

MIMO relay channels into a number of narrowband subcarriers. We then discussed

non-linear transceivers to deal with the interference for the MIMO OFDM subcar-

riers. Specifically, we introduced DFE and THP transceivers where the processors

were restricted to operate independently on each subcarrier. The optimisation

problem for minimising the arithmetic MSE subject to source and relay transmit

power constraints was then formulated which can be solved to derive the proces-

sors for both DFE and THP transceivers. In Chapters 4 and 5 we shall revisit

this problem and derive solutions to the optimisation problem. These solutions

depend on the level and quality of CSI available to the source, relay, and destina-

tion channels. In order to make CSI available to these nodes channel estimation

algorithms must be utilised, which shall be discussed in the next chapter.



Chapter 3

MIMO OFDM Relay Channel

Estimation Algorithms

3.1 Introduction

To realise the potential higher data rates in MIMO systems through spatial mul-

tiplexing gain CSI is required, which can be obtained through channel estimation.

Channel estimation is therefore a vital component in MIMO systems and has

attracted significant research interest, with training based solutions being partic-

ularly well studied [66, 71–74]. In training based channel estimation, which is also

referred to as supervised training, known training sequences or pilot symbols are

transmitted from the source to the destination. The destination can then use the

received symbols from which, under favourable conditions, an accurate channel

estimate can be obtained through appropriate signal processing.

Various estimators for spatially correlated narrowband point-to-point MIMO

channels are studied in [71, 72], with the various algorithms differing in terms

of their computational complexity, required a priori knowledge of the channel,

and estimation MSE performance. The authors firstly derive the optimal train-

ing sequences for LS channel estimation. It is shown that the LS solution does

not require any a priori statistical knowledge of the MIMO channel, and that the

optimal training matrix is a scaled unitary matrix. The authors suggest that the

optimal LS training matrix can be selected as an appropriately chosen scaled DFT

matrix. The optimal LS training algorithm does not provide the best MSE per-

formance due to the fact that it does not utilise any a priori channel information.

The authors therefore suggest another LS solution that they refer to as a scaled LS

(SLS) algorithm. This algorithm requires the knowledge of the trace of the chan-

nel covariance matrix and provides an improved channel estimate compared to

33
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the LS design, which comes at the expense of increased computational complexity.

Neither the LS or SLS utilise the full channel covariance matrix. If knowledge of

this matrix is available then it is shown in [71, 72] that MMSE channel estimators

provide a further improvement in terms of channel estimation performance.

As well as the study of channel estimation for narrowband MIMO systems,

channel estimation of frequency selective channels with the use of OFDM have

also been considered in e.g. [66, 73, 74]. The optimal training design for LS chan-

nel estimation is discussed in [73] where, similar to the case of narrowband systems,

it is shown that the optimal training sequences are orthogonal. For the case of

MMSE channel estimation in MIMO OFDM systems, where the frequency selec-

tive delay paths are spatially correlated on both the transmit and receive sides,

conditions for optimality of training sequences are derived in [74]. Whilst the con-

ditions of optimality are established in this work for general spatial correlation,

the optimal solutions are only identified for special cases of spatial correlation.

Specifically, the optimal training matrix design for the cases that the transmit

correlation matrices for each delay path are the same and the case that there is

one dominant MIMO delay path. In both these cases the optimal transmit matrix

structure is derived in [74] and only depends on a single transmit spatial correla-

tion matrix. It is shown that the optimal training matrix structure results in a

complicated power allocation problem for which there is no closed form solution

in general. The authors therefore derive power allocation solutions for the high

and low signal-noise ratio (SNR) regimes. For high SNR it is shown that the opti-

mal power allocation is an equal power allocation (EPA), whilst at low SNR only

a single eigenmode is used. For the case of general spatial correlation in MIMO

OFDM systems, the optimal MMSE training solution has recently been derived in

[66]. Using the optimality conditions established in [74], the authors of [66] derive

the optimal training matrix structure for general spatial correlation. Under an ap-

propriate change of variable the optimisation problem for the training matrix is

reformulated as a semi-definite program (SDP), which is a standard convex opti-

misation problem and can be efficiently solved using interior point methods [39].

In [66] suboptimal solutions are also suggested based on minimising tight upper

and lower bounds of the channel estimation MSE objective function. Interestingly,

it is shown that the suboptimal solutions provide comparable performance to the

optimal approach but at a reduced computationaly complexity.

More recently, channel estimation has also been considered for two-hop MIMO

relaying systems over narrowband channels in [57, 58, 75, 76]. Since a two-hop re-

laying system consists of a source-relay and relay-destination channel, the channel

estimation problem becomes far more involved compared to the case point-to-point
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systems. For a fixed relay precoding matrix, the compound channel between the

source and destination can be estimated using standard point-to-point channel es-

timation algorithms. However, transceiver designs based only on the knowledge of

the compound channel do not utilise all degrees of freedom that the relay channel

offers and can result in poor performance. Elegant channel estimation algorithms

that can seperately estimate the source-relay and relay-destination channels is

therefore of paramount importance in such systems. In [75] a LS channel esti-

mation approach is suggested to estimate the source-relay and relay-destination

channels from the observation of the composite MIMO channel between the source

and destination. The authors in [76] also focus on deriving both channels from

the observation of the compound MIMO channel at the destination. The main

drawback with the algorithms in[75] and [76] is that their is a scalar ambiguity be-

tween the estimates of the source-relay and relay-destination channels. A different

approach is adopted in [58], where the channel estimation process is divided into

two seperate phases. In the first phase the relay sends known training symbols

to the destination, allowing the receiver to estimate the relay-destination channel.

In the second phase the source sends pilot symbols to the relay, which precodes

the received symbols and forwards them to the destination. Under the assump-

tion that the relay-destination channel was estimated accurately in the first phase,

the authors then derive the MMSE source training matrix and relay precoder for

the source-relay channel estimation problem. The optimal solution is derived for

the case that the narrowband MIMO source-relay channel is uncorrelated on the

receiver side. It is shown that the assumption of the relay-destination channel

is estimated perfectly is only reasonable when the SNR during the first phase of

channel estimation is sufficiently large. If this is not the case then the resulting

channel estimation error will adversely affect the source-relay channel estimate.

Due to the adverse impact that the relay-destination estimation error has on the

obtained source-relay estimate, the authors of [57] propose a robust source-relay

channel estimation algorithm that takes into account the channel estimation er-

ror. Similar to [58] the solution derived in [57] is only optimal for a specific case

of source-relay channel covariance.

Similar to the works of [58] and [57], in this chapter we consider the task

of channel estimation for MIMO relaying where the estimation process is divided

into two seperate phases. However, differing from these works we consider the task

of channel estimation of more general frequency selective source-relay and relay-

destination channels with the use of OFDM. Furthermore, our solutions are derived

for general spatial correlation of the frequency selective MIMO delay paths. For

the relay-destination channel estimation problem we discuss known LS and MMSE
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solutions in Section 3.2. In Section 3.3 we introduce the problem of estimating

the source-relay channel at the destination device. Similar to [58] we simplify this

problem by making the assumption that the relay-destination channel is estimated

perfectly in the first phase of channel estimation. An iterative source-relay channel

estimation solution in then derived in Section 3.4. The proposed iterative approach

involves solving a number of convex optimisation problems in a sequential fashion

and is shown to have guaranteed convergence. Due to its iterative nature this

proposed solution may have a high computational complexity. For this reason we

then consider a suboptimal strategy in Section 3.5 where all channel estimation

processors can be derived in closed form. The simplified approach is derived using

a high SNR approximation and is optimal for the case of high SNR in the source-

relay link. In Section 3.6 simulation results are presented that demonstrate the

effectiveness of the proposed solutions.

3.2 Relay-Destination Channel Estimation

For the two-hop MIMO OFDM relaying system introduced in Chapter 2, the

task of channel estimation is seperated into two main phases. In the first phase

the relay device sends known training symbols to the destination which allows

the destination to obtain an estimate of the relay-destination channel. This is a

point-to-point channel estimation problem for which solutions are well known. In

this section we firstly introduce the signal model for the relay-destination channel

estimation before discussing known LS and MMSE algorithms.

3.2.1 Signal Model and Problem Formulation

The signal model for estimating the relay-destination channel for the considered

two-hop MIMO OFDM relaying system is depicted in Figure 3.1. For the kth sub-

carrier the relay transmits the training vector xk ∈ C
Nr over the relay-destination

subcarrier channel Hr,k ∈ C
Nd×Nr , resulting in the received signal yk ∈ C

Nd at the

destination being given by

yk = Hr,kxk + vr,k, (3.1)

where vr,k ∈ C
Nd is the AWGN noise vector for the kth subcarrier, which we

assume satisfies the statistical properties stated in (A2.)-(A4.) in Section 2.2.5

of the previous chapter. For convenience we also recall that Hr,k is related to the
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Hr,K

vr,K

Hr,1

vr,1

ĥr
W

x1

RELAY DESTINATION

xK
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SOURCE

Figure 3.1: Signal model for relay-destination channel estimation.

underlying time domain channel matricesHr[l] ∈ C
Nd×Nr through the relationship

Hr,k =
L∑

l=0

Hr[l]e
−j2π(k−1)l/K , (3.2)

which can be equivalently written in the more compact matrix form

Hr,k = [Hr[0], ...,Hr[L]]







e−j2π(k−1)0/KINr

...

e−j2π(k−1)L/KINr






. (3.3)

We reiterate that the time domain channel matrices Hr[l] are modelled accord-

ing to the Kronecker spatial correlation model described in Section 2.2.5 of the

previous chapter. This is an important point to stress since the inclusion of spa-

tial correlation can significantly complicates the derivation of the optimal channel

estimate. In fact, the optimal point-to-point MIMO MMSE channel estimate for

the case of spatially correlated channels appears to have only recently been solved

in [66]. Substituting (3.3) into (3.1) we can write yk as

yk = [Hr[0], ...,Hr[L]]







xke
−j2π(k−1)0/K

...

xke
−j2π(k−1)L/K






+ vr,k. (3.4)

=
([

xT
k e

−j2π(k−1)0/K , ...,xT
k e

−j2π(k−1)L/K
]

⊗ INd

)

hr + vr,k, (3.5)
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where we define the relay-destination channel vector hr ∈ C
NrNd(L+1) as

hr , vec [Hr[0], ...,Hr[L]] . (3.6)

To obtain (3.5) from (3.4) we have used the rule vec[AXB] = (BT ⊗A)vec[X].

Collecting all received subcarrier vectors yk in (3.5) into a single vector y ∈ C
KNd

defined as y , [yT
1 , . . . ,y

T
K ]

T , it can be straightforwardly shown that

y =













xT
1 e

−j2π00/K . . . xT
1 e

−j2π0L/K

...
. . .

...

xT
Ke

−j2π(K−1)0/K . . . xT
Ke

−j2π(K−1)L/K






⊗ INd







hr + vr, (3.7)

where we define the total relay-destination AWGN noise vector vr ∈ C
KNd as

vr , [vT
r,1, . . . ,v

T
r,K ]

T . By also defining a diagonal matrix Fl ∈ C
K×K and the

relay training matrix X ∈ C
K×Nr as

Fl ,







e−j2π0l/K 0
. . .

0 e−j2π(K−1)l/K







(3.8)

X , [x1, ...,xK ]
T , (3.9)

we can further write (3.7) equivalently as

y =



[F0X, ...,FLX]
︸ ︷︷ ︸

Mx

⊗INd



hr + vr. (3.10)

From the received signal in (3.10) the task now is to estimate the time domain

channel matrices Hr[l] which, from the definition in (3.6), is clearly equivalent

to estimating the vector hr. As depicted in Figure 3.1, in order to facilitate

the computation of a channel estimate ĥr ∈ C
NrNd(L+1) of the relay-destination

channel vector hr, a linear processor W ∈ C
KNd×NrNd(L+1) is employed at the

destination. Using (3.10) the channel estimate ĥr is therefore obtained from

ĥr = Wy (3.11)

= W
(
Mx ⊗ INd

)
hr +Wvr, (3.12)

where the matrix Mx ∈ C
K×Nr(L+1) was defined in (3.10). Since the problem of

computing ĥr is a standard point-to-point MIMO channel estimation problem,



Chapter 3. MIMO OFDM Relay Channel Estimation Algorithms 39

LS and MMSE algorithms are well known and shall be discussed in the follow-

ing sections. We shall note here that, as well as being of use to compute the

relay-destination channel estimate, the algorithms covered in the following sec-

tions will also be useful in deriving our proposed suboptimal solutions for the

source-relay channel estimation problem, which shall be discussed later in Section

3.5. Therefore, whilst the following LS and MMSE algorithms are well known, it

is worthwhile discussing them in detail since it shall later facilitate the discussion

of our proposed suboptimal source-relay channel estimation solutions.

3.2.2 LS Channel Estimation

LS algorithms for point-to-point MIMO channel estimation have been studied in

e.g. [71, 72, 77]. In this section we discuss an LS solution for computing the relay-

destination channel estimate ĥr in (3.12). We note that our problem formulation

differs from those in [71, 72, 77] and the optimal solution is therefore reached in

a slightly different manner. Nevertheless, our approach to identifying the optimal

solution follows similar arguments made in [71, 72, 77] and we obtain analogous

results.

The optimal processor W for the LS estimate of the relay-destination channel

vector is given by

W =
(
Mx ⊗ INd

)†
(3.13)

=
((

Mx ⊗ INd

)H (
Mx ⊗ INd

))−1 (
Mx ⊗ INd

)H
(3.14)

=
(

MH
x Mx ⊗ INd

)−1 (

MH
x ⊗ INd

)

(3.15)

where (3.14) is obtained from the fact that the Moore Penrose pseudo-inverse of

a matrix A ∈ C
M×N , with M ≥ N , is given by A† = (AHA)−1AH . To obtain

(3.15) from (3.14) we have also made use of the fact that (A⊗B)H = (AH ⊗BH)

and for matrices of commensurate dimension (A ⊗B)(C ⊗D) = (AC ⊗BD).

Substituting (3.15) into (3.12) we obtain the channel estimate

ĥr = hr +
(

MH
x Mx ⊗ INd

)−1 (

MH
x ⊗ INd

)

vr. (3.16)

Defining an error er ∈ C
NrNd(L+1) between the channel estimate ĥr and the true

channel vector hr as er = ĥr − hr, we directly have from (3.16) that

er =
(

MH
x Mx ⊗ INd

)−1 (

MH
x ⊗ INd

)

vr. (3.17)
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Using the error signal in (3.17) we can now derive the relay-destination channel

estimation error covariance matrix Rer
, E{ere

H
r } ∈ H

NrNd(L+1)×NrNd(L+1)
+ as

Rer
= σ2

vr

(

MH
x Mx ⊗ INd

)−1

(3.18)

With the error covariance matrix given in (3.18) the objective function for min-

imising the MSE is given by tr{Rer
}, which can be written as

tr
{
Rer

}
= tr

{

σ2
vr

(

MH
x Mx ⊗ INd

)−1
}

(3.19)

= Ndtr

{

σ2
vr

(

MH
x Mx

)−1
}

, (3.20)

where we have used (A⊗B)−1 = (A−1 ⊗B−1) and tr{(A⊗B)} = tr{A}tr{B}
to obtain (3.20) from (3.19). As well as minimising the MSE given by (3.20) we

also wish to constrain the relay transmit power, which is given by tr{XXH}. We

can thus formulate the constrained optimisation problem

min
X

tr

{

σ2
vr

(

MH
x Mx

)−1
}

(3.21)

s.t. tr
{

XXH
}

≤ Pr, (3.22)

where Pr ∈ R++ is the power budget available to the relay during the first phase of

channel estimation, and we note that Mx is a function of X through the definition

in (3.10). From (3.21)-(3.22) we see that, in order to optimise the transmit training

matrix X, we require no prior knowledge of the relay-destination channel. As will

be seen later on, this differs from the case of MMSE channel estimation algorithms,

which require a priori statistical knowledge of the channel vector hr. Since the

LS algorithm does not require such a priori knowledge, it is very appealing for

practical systems.

Theorem 1: The optimal training matrix X that minimises the objective

function in (3.21) whilst satisfying the relay power constraint in (3.22) is given by

X =

√

Pr

Nr

Q, (3.23)
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where Q ∈ C
K×Nr is a semi-unitary matrix that satisfies the properties

QHFH
m FnQ = 0Nr×Nr

∀m 6= n (3.24)

QHFH
l FlQ = INr

∀l (3.25)

QHQ = INr
. (3.26)

Proof: See Section 3.8.1 on page 77.

From Theorem 1 we see that in order to compute the optimal training matrix

X we require to construct a semi-unitary matrix Q that satisfies (3.24)-(3.26). It

is shown in [66] and [74] that the matrix Q which satisfies these properties can be

constructed as follows: Let us firstly partition Q as

Q =
[
q1, ..., qNr

]
, (3.27)

where qi ∈ C
K denotes the ith column of the matrix Q. Now let the first column

of Q be given by

q1 =

√

1

K
1K . (3.28)

The kth element of the remaining columns of Q can then be constructed as

[qi]k =

√

1

K
e−j2π⌊K/Nr⌋(i−1)(k−1)/K , (3.29)

where we note thatK ≥ Nr⌊K/Nr⌋. With the columns ofQ constructed according

to (3.28) and (3.29) it can be verified that the conditions in (3.24)-(3.26) are

satisfied. This concludes the LS relay-destination channel estimation design.

3.2.3 Optimal MMSE Channel Estimation

It is well known that MMSE channel estimation algorithms have the capability of

providing improved channel estimates compared to LS algorithms. For the case of

point-to-point MIMO OFDM systems, the optimal MMSE channel estimation of

spatially correlated channels has recently been derived in [66]. In this section we

discuss the optimal MMSE channel estimation algorithm proposed in [66].

The error between the channel estimate ĥr and the actual channel vector hr is

given by er = ĥr − hr ∈ C
NrNd(L+1), which using (3.12) results in

er = W
(
Mx ⊗ INd

)
hr +Wvr − hr. (3.30)
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By defining the relay-destination channel estimation error covariance matrix as

Rer
, E{ere

H
r } ∈ H

NrNd(L+1)×NrNd(L+1)
+ , it is straightforward to show that

Rer
= W

(

Mx ⊗ INd

)

E

{

hrh
H
r

}(

MH
x ⊗ INd

)

WH + E

{

hrh
H
r

}

−W
(

Mx ⊗ INd

)

E

{

hrh
H
r

}

− E

{

hrh
H
r

}(

MH
x ⊗ INd

)

WH +WWHσ2
vr
,

(3.31)

In (3.31) we require to compute the expectation E{hrh
H
r } which is the relay-

destination channel covariance matrix. Using hr = vec[Hr[0], ...,Hr[L]] from

(3.6), as well as the matrix variate Gaussian distributions ofHr[l] described in Sec-

tion 2.2.5 in Chapter 2, we can show that Rhr
, E{hrh

H
r } ∈ H

NrNd(L+1)×NrNd(L+1)
+

is given by

Rhr
, E{hrh

H
r } =







σ2
hr
[0]Θr[0]⊗ Υr[0] 0NrNd×NrNd

. . .

0NrNd×NrNd
σ2
hr
[L]Θr[L]⊗ Υr[L]






, (3.32)

where we recall that σ2
hr
[l] is the variance of the lth relay-destination MIMO delay

path, with Θr[l] ∈ C
Nr×Nr and Υr[l] ∈ C

Nd×Nd being the corresponding transmit

and receive side spatial correlation matrices, respectively. We assume that σ2
hr
[l],

Θr[l], and Υr[l] are known to all nodes in the network. We see that, unlike the

LS algorithm discussed in the previous section, the MMSE channel estimation

algorithm requires prior knowledge of the relay-destination channel in terms of

the covariance matrix in (3.32). Substituting (3.32) into (3.31) let us firstly write

the error covariance matrix as

Rer
= W

(

Mx ⊗ INd

)

Rhr

(

MH
x ⊗ INd

)

WH +Rhr

−W
(

Mx ⊗ INd

)

Rhr
−Rhr

(

MH
x ⊗ INd

)

WH +WWHσ2
vr
, (3.33)

and formulate the constrained optimisation problem for minimising the channel

estimation MSE subject to the transmission power constraint at the relay as

min
X,W

tr
{
Rer

}
(3.34)

s.t. tr
{

XXH
}

≤ Pr. (3.35)

The objective function (3.34) is a function of the destination processor W and

the relay transmit matrix X (note that Mx in (3.33) is a function of X through
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the definition in (3.10)) which we require to optimise. In order to solve the op-

timisation problem in (3.34)-(3.35) we can begin by deriving the optimal MMSE

processor W . This is due to the fact that

min
x,y

f(x,y) = min
x

min
y

f(x,y), (3.36)

i.e. in solving an optimisation problem with several variables, we can find the

optimal solution to the problem by firstly minimising over some variables and

then optimising over the remaining ones [22, 39]. Thus to solve (3.34)-(3.35) we

firstly minimise over W . Since the constraint in (3.35) is independent of W , the

optimal solution is given by the unconstrained problem of minimising the objective

function in (3.34). Furthermore, since the objective function is convex quadratic

[39] in W , there exists only a single minima. The optimal processor can therefore

be found by setting the derivative of tr{Rer
} with respect to (w.r.t.) W ∗ to zero

and solving the resultant equation for W . This gives the optimal solution

W = Rhr

(

MH
x ⊗ INd

)
(
(

Mx ⊗ INd

)

Rhr

(

MH
x ⊗ INd

)

+ σ2
vr
IKNd

)−1

. (3.37)

Substituting the optimal processor W into the error covariance matrix given in

(3.33) we can write Rer
more compactly as

Rer
= Rhr

−Rhr

(

MH
x ⊗ INd

)((

Mx ⊗ INd

)

Rhr

(

MH
x ⊗ INd

)

+ σ2
vr
IKNd

)−1

×
(

Mx ⊗ INd

)

Rhr
(3.38)

=

(

R−1
hr

+
1

σ2
vr

(

MH
x Mx ⊗ INd

)
)−1

, (3.39)

where to obtain (3.39) from (3.38) we have applied the matrix inversion lemma

as well as some basic Kronecker product rules. Substituting (3.39) into (3.34) we

can restate the problem as

min
X

tr







(

R−1
hr

+
1

σ2
vr

(

MH
x Mx ⊗ INd

)
)−1






(3.40)

s.t. tr
{

XXH
}

≤ Pr. (3.41)

The optimal structure of the relay transmit matrix X is now established in the

following theorem (c.f. [66]):



Chapter 3. MIMO OFDM Relay Channel Estimation Algorithms 44

Theorem 2: The optimal X as the solution to (3.40)-(3.41) is given by

X = QX̄, (3.42)

where X̄ ∈ C
Nr×Nr is a matrix yet to be determined and Q ∈ C

K×Nr is a semi-

unitary matrix that satisfies

QHFH
m FnQ = 0Nr×Nr

∀m 6= n (3.43)

QHFH
l FlQ = INr

∀l (3.44)

QHQ = INr
, (3.45)

which are precisely the same conditions as (3.24)-(3.26) and as such the matrix Q

can be constucted in the same manner as for the previously discussed LS algorithm.

Proof: See Section 3.8.2 on page 78.

We see that the optimal structure of the MMSE training matrix given in (3.42)

has a more general structure than the optimal LS training matrix in (3.23). Specif-

ically, (3.23) can be obtained from (3.42) with X̄ =
√

Pr/NrINr
. This is in fact

unsurprising since it is well known that the performance of LS channel estimation

algorithms converge to that of MMSE algorithms with increasing SNR.

With the definition of Mx in (3.10) along with the structure of X given in

(3.42) of Theorem 2, we now note that

MH
x Mx =







X̄HQHFH
0 F0QX̄ . . . X̄HQHFH

0 FLQX̄
...

. . .
...

X̄HQHFH
L F0QX̄ . . . X̄HQHFH

L FLQX̄







(3.46)

=







X̄HX̄ 0Nr×Nr

. . .

0Nr×Nr
X̄HX̄






, (3.47)

where to obtain (3.47) we have utilised the fact that Q satisfies the properties

in (3.43)-(3.45). Substituting (3.47) and (3.42) into (3.40)-(3.41), and using the

structure of the relay-destination channel covariance matrix Rhr
in (3.32), we can

now write the problem as

min
X̄

L∑

l=0

tr







(

1

σ2
hr
[l]
Θ−1

r [l]⊗ Υ−1
r [l] +

1

σ2
vr

X̄HX̄ ⊗ INd

)−1





(3.48)

s.t. tr
{

X̄X̄H
}

≤ Pr. (3.49)
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Furthermore, with the variable change

X̂ = X̄HX̄, (3.50)

where X̂ ∈ H
Nr×Nr
+ is a Hermitian positive semi-definite matrix to be determined,

the problem in (3.48)-(3.49) is equivalent to the following problem in X̂

min
X̂

L∑

l=0

tr







(

1

σ2
hr
[l]
Θ−1

r [l]⊗ Υ−1
r [l] +

1

σ2
vr

X̂ ⊗ INd

)−1





(3.51)

s.t. tr
{

X̂
}

≤ Pr (3.52)

X̂ � 0Nr×Nr
, (3.53)

where the additional constraint in (3.53) results from the fact that X̄HX̄ is a

Hermitian positive semi-definite matrix. It can be shown that the problem (3.51)-

(3.52) is a convex optimisation problem and thus the optimal solution to X̂ is

readily obtainable through convex programming [39]. In order to find the op-

timal solution let us firstly introduce the auxilliary matrices Zl ∈ H
Nr×Nr
+ and

equivalently write the problem as

min
X̂,{Zl}

L
l=0

L∑

l=0

tr{Zl} (3.54)

s.t. tr
{

X̂
}

≤ Pr (3.55)

X̂ � 0Nr×Nr
(3.56)

(

1

σ2
hr
[l]
Θ−1

r [l]⊗ Υ−1
r [l] +

1

σ2
vr

X̂ ⊗ INd

)−1

� Zl. (3.57)

We can now transform (3.54)-(3.57) into a semi-definite programming (SDP) prob-

lem based on the following lemma:

Lemma 1: [39] Given a matrix D partitioned as

D =

[

A B

BH C

]

, (3.58)

then D � 0 if both C � 0 and A −BC−1BH � 0. This condition is known as

the Schur complement lemma.
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Applying the Schur complement lemma to the constraint in (3.57), we can write

the problem (3.54)-(3.57) in standard SDP form as

min
X̂,{Zl}

L
l=0

L∑

l=0

tr{Zl} (3.59)

s.t. tr
{

X̂
}

≤ Pr (3.60)

X̂ � 0Nr×Nr
(3.61)





Zl INrNd

INrNd

1

σ2
hr
[l]
Θ−1

r [l]⊗ Υ−1
r [l] +

1

σ2
vr

X̂ ⊗ INd



 � 02NrNd×2NrNd
.

(3.62)

The optimal solution X̂ to the SDP in (3.59)-(3.62) can be found using interior

point algorithms [39]. Once the optimal X̂ is identified, we can recover X̄ from

(3.50) as X̄ = X̂1/2, and finally the optimal relay transmit matrix X is then given

by (3.42) of Theorem 2.

3.2.4 Suboptimal MMSE Channel Estimation

Whilst the algorithm in the previous section provides the optimal solution for the

relay-destination channel estimation problem, it requires solving the SDP prob-

lem in (3.59)-(3.62) using interior point methods and may be too computationally

complex for practical implementation. The authors of [66] therefore also suggested

a suboptimal solution to the optimisation problem in (3.40)-(3.41) for which the

the training matrix X can be calculated in closed form, and is thus more compu-

tationally efficient. The suboptimal solution in [66] is discussed in this section.

Assuming that the training matrix is constructed as X = QX̄ as given in

Theorem 2, then as discussed previously, the optimisation problem reduces to

that in (3.48)-(3.49), which we repeat here for convenience

min
X̄

L∑

l=0

tr







(

1

σ2
hr
[l]
Θ−1

r [l]⊗ Υ−1
r [l] +

1

σ2
vr

X̄HX̄ ⊗ INd

)−1





(3.63)

s.t. tr
{

X̄X̄H
}

≤ Pr. (3.64)

To obtain a suboptimal solution to this problem that can be derived in closed

form we shall consider minimising an upper bound of the objective function. It is

shown in Section 3.8.3 on page 80 that an upper bound of the objective function
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in (3.63) is given by

L∑

l=0

tr







(

1

σ2
hr
[l]
Θ−1

r [l]⊗ Υ−1
r [l] +

1

σ2
vr

X̄HX̄ ⊗ INd

)−1






≤ tr







((
L∑

l=0

σ2
hr
[l]Θr[l]

)−1

⊗ Ῡ−1
r +

1

(L+ 1)σ2
vr

X̄HX̄ ⊗ INd

)−1





, (3.65)

where we define the diagonal matrix Ῡr ∈ R
Nd×Nd
++ as

Ῡr ,








max
(

{υr,1[l]}Ll=0

)

0

. . .

0 max
(

{υr,Nd
[l]}Ll=0

)







, (3.66)

with υr,i[l] ∈ R++ being the ith largest eigenvalue of Υr[l]. Replacing the objective

function in (3.63) with the upper bound in (3.65) we now pose the following

optimisation problem

min
X̄

tr







((
L∑

l=0

σ2
hr
[l]Θr[l]

)−1

⊗ Ῡ−1
r +

1

(L+ 1)σ2
vr

X̄HX̄ ⊗ INd

)−1





(3.67)

s.t. tr
{

X̄X̄H
}

≤ Pr. (3.68)

The optimal solution to (3.67)-(3.68) will obviously, in general, provide a subop-

timal solution to the original problem in (3.63)-(3.64) due to the fact that we are

minimising an upper bound of the original objective function. However, as we will

see in the following, the solution to (3.67)-(3.68) can be computed in closed form

and thus this suboptimal approach is computationally efficient. Before establish-

ing the optimal solution to (3.67)-(3.68) let us introduce the eigendecomposition

(
L∑

l=0

σ2
hr
[l]Θr[l]

)−1

= UtΛtU
H
t , (3.69)

where Ut ∈ C
Nr×Nr is unitary and the diagonal matrix Λt ∈ R

Nr×Nr
++ contains

the positive eigenvalues {λt,i}Nr

i=1 ∈ R++ of (
∑L

l=0 σ
2
hr
[l]Θr[l])

−1. Substituting the
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eigendecomposition (3.69) into (3.67) it is straightforward to show that

tr







((
L∑

l=0

σ2
hr
[l]Θr[l]

)−1

⊗ Ῡ−1
r +

1

(L+ 1)σ2
vr

X̄HX̄ ⊗ INd

)−1





(3.70)

= tr







(

Λt ⊗ Ῡ−1
r +

1

(L+ 1)σ2
vr

UH
t X̄HX̄Ut ⊗ INd

︸ ︷︷ ︸

Ē

)−1







, (3.71)

where we have used the fact that (A⊗B)(C⊗D) = (AC⊗BD). To establish the

optimal structure of X̄ as the solution to (3.67)-(3.68) let us recall the following

lemma:

Lemma 2: [78] For a Hermitian positive definite matrix A ∈ H
N×N
++ we have

tr
{
A−1

}
≥

N∑

i=1

[
A−1

]

ii
. (3.72)

where equality holds if A is a diagonal matrix.

From Lemma 2 it is straightforward to conclude that the objective function in

(3.71) is minimised when Ē in (3.71) is diagonal. This occurs when the matrix X̄

is given by

X̄ = ΓUH
t , (3.73)

where Γ ∈ R
Nr×Nr
+ is a diagonal matrix with non-negative diagonal elements

{γi}Nr

i=1 ∈ R+. Substituting the structure of X̄ given in (3.73) into (3.67)-(3.68),

and using the eigendecomposition in (3.69), the problem reduces to the scalar

valued optimisation problem

min
γ

Nr∑

i=1

Nd∑

j=1

1

λt,iυ
−1
r,j + γ2

i

(
(L+ 1)σ2

vr

)−1 (3.74)

s.t.

Nr∑

i=1

γ2
i ≤ Pr (3.75)

γ2
i ≥ 0, 1 ≤ i ≤ Nr, (3.76)

where γ , [γ1, ..., γNr
]T . Unfortunately the optimal solution to (3.74)-(3.76) is still

difficult to obtain in closed form. To proceed further we again consider minimising

a simpler upper bound of the objective function in (3.74). To obtain an upper
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bound we firstly note that the function f(x) = (x−1 + a)−1 is concave in x > 0

(this is a particular case of Lemma 6 given in Section 3.8.3 on page 81). From

Jensens inequality [39] we can therefore obtain the upper bound

Nr∑

i=1

Nd∑

j=1

1

λt,iυ
−1
r,j + γ2

i

(
(L+ 1)σ2

vr

)−1

≤
Nr∑

i=1

Nd

Ndλt,iai + γ2
i

(
(L+ 1)σ2

vr

)−1 , (3.77)

where we define the scalar ai ∈ R++ as

ai =

(
Nr∑

j=1

υr,j

)−1

. (3.78)

Replacing the objective function in (3.74) with the upper bound of (3.77) we have

the simplified optimisation problem

min
γ

Nr∑

i=1

Nd

Ndλt,iai + γ2
i

(
(L+ 1)σ2

vr

)−1 (3.79)

s.t.

Nr∑

i=1

γ2
i ≤ Pr (3.80)

γ2
i ≥ 0, 1 ≤ i ≤ Nr. (3.81)

It can be shown that the objective function in (3.79) is convex and furthermore the

constraints in (3.80) and (3.81) are also convex. Thus (3.79)-(3.81) is a standard

convex optimisation problem and the optimal solution can be found from the KKT

conditions and is given by

γ2
i = (L+ 1)σ2

vr

[√

Nd

µr(L+ 1)σ2
vr

−Ndλt,iai

]+

, (3.82)

where µr is the Lagrangian multiplier required to be calculated to ensure that the

relay power constraint in (3.80) is satisfied, and can be efficiently computed using

the waterfilling algorithm in [79].

3.2.5 Relay-Destination Channel Estimation Error

Before proceeding to developing the proposed source-relay channel estimation al-

gorithms in the next sections, we briefly note that the relay-destination channel
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estimates obtained from the preceeding algorithms are in general imperfect i.e.

channel estimation errors exist. The relay-destination channel estimate ĥr given

by (3.12) yields the time domain estimates Ĥr[l] ∈ C
NrNd(L+1) given by (c.f. (3.6))

ĥr , vec
[

Ĥr[0], ..., Ĥr[L]
]

. (3.83)

Similarly, the time domain channel estimation error matrices Er[l] ∈ C
NrNd(L+1)

can be obtained from

er , vec [Er[0], ...,Er[L]] . (3.84)

Analagous to (3.2) the time domain channel estimate in (3.83) and the correspond-

ing channel estimation error in (3.84) lead to the kth OFDM subcarrier estimate

Ĥr,k ∈ C
Nd×Nr and the kth OFDM subcarrier estimation error Er,k ∈ C

Nd×Nr

being given by

Ĥr,k =
L∑

l=0

Ĥr[l]e
−j2π(k−1)l/K (3.85)

Er,k =
L∑

l=0

Er[l]e
−j2π(k−1)l/K . (3.86)

Based on the fact that er = ĥr − hr we clearly have the relationship

Hr,k = Ĥr,k −Er,k, (3.87)

where Hr,k is the true kth subcarrier channel matrix given by (3.2). Over all

subcarriers we can express this relationship compactly as

Hr = Ĥr −Er, (3.88)

where Ĥr ∈ C
KNd×KNr and Er ∈ C

KNd×KNr are the channel estimate and the

corresponding channel estimation error matrices over all subcarriers, respectively,

and are defined as

Ĥr ,







Ĥr,1 0Nd×Nr

. . .

0Nd×Nr
Ĥr,K






, Er ,







Er,1 0Nd×Nr

. . .

0Nd×Nr
Er,K






. (3.89)

It will be shown in Section 3.6.1 that the relay-destination channel estimation error

in (3.88) will adversely effect the accuracy of the source-relay channel estimate.
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v̄r,K
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sK

r1

rK

G

Figure 3.2: Signal model for source-relay channel estimation.

3.3 Source-Relay Channel Estimation Problem

Having discussed the problem of estimating the relay-destination channel in the

first phase of channel estimation, and having characterised the resulting channel

estimation error, we now focus on developing novel algorithms for estimating the

source-relay channel. In this section we firstly formulate the optimisation problem

for obtaining the MMSE source-relay channel estimate before deriving iterative

and simplified solutions to this problem in subsequent sections.

The signal model for the source-relay channel estimation phase is depicted in

Figure 3.2. Whilst the relay remains silent, on the kth subcarrier the source

transmits the known training symbols sk ∈ C
Ns over the source-relay subcarrier

Hs,k ∈ C
Nr×Ns . The received vector at the relay over all subcarriers given by

r , [rT
1 , ..., r

T
K ]

T ∈ C
KNr , where rk ∈ C

Nr is the vector received on the kth

subcarrier, can be written as (c.f. (3.10))

r =



[F0S, ...,FLS]
︸ ︷︷ ︸

Ms

⊗INr



hs + vs, (3.90)

where Fl were given in (3.8) and we define the source training matrix S ∈ C
K×Ns ,

the source-relay channel vector hs ∈ C
NsNr(L+1), and the source-relay AWGN noise
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vector vs ∈ C
KNr as

S , [s1, ..., sK ]
T (3.91)

hs , vec [Hs[0], ...,Hs[L]] (3.92)

vs ,

[

vT
s,1, . . . ,v

T
s,K

]T

. (3.93)

Here Hs[l] is the lth MIMO channel tap of the source-relay channel, which was

characterised in Section 2.2.5 of the previous chapter, and we also recall that the

noise vector vs is assumed to satisfy the statistical assumptions (A3.) and (A4.)

made in Section 2.2.5 in Chapter 2.

It is worth remarking here that if the relay has the capability of performing

channel estimation then based on the received signal given in (3.90) the relay can

estimate the source-relay channel using either the LS, optimal MMSE, and subop-

timal MMSE, algorithms described in Sections 3.2.2, 3.2.3, and 3.2.4, respectively.

However we shall assume that, similar to [56–60], the task of channel estimation is

dedicated to the destination. The relay therefore only performs a linear precoding

operation on the received symbols in (3.90) and forwards the resulting precoded

symbols to the destination. Using (3.90) the received symbols at the destination

ȳ ∈ C
KNd , [ȳT

1 , ..., ȳ
T
K ]

T ∈ C
KNd , where ȳk ∈ C

Nd are the symbols received on

the kth subcarrier, are

ȳ = HrG
(
Ms ⊗ INr

)
hs +HrGvs + v̄r, (3.94)

where G ∈ C
KNr×KNr is the relay precoder, Ms ∈ C

K×Ns(L+1) was defined in

(3.90), and v̄r , [v̄T
r,1, ..., v̄

T
r,K ]

T ∈ C
KNd is the collection of AWGN noise vectors

over all subcarriers. The noise vector is assumed to satisfy assumptions (A2.)-

(A4.) made in Section 2.2.5 of the previous chapter. At the destination the

source-relay channel estimate ĥs ∈ C
NsNr(L+1) can be obtained from the received

signal in (3.94) through

ĥs = W̄ ŷ (3.95)

= W̄HrG
(
Ms ⊗ INr

)
hs + W̄HrGvs + W̄ v̄r, (3.96)

where W̄ ∈ C
KNd×NsNr(L+1) is the linear processor at the destination that facil-

itates the computation of the source-relay channel estimate. Defining the error

signal es , ĥs − hs ∈ C
NsNr(L+1) we have

es = W̄HrG
(
Ms ⊗ INr

)
hs + W̄HrGvs + W̄ v̄r − hs, (3.97)
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from which we can derive the source-relay channel estimation error covariance

matrix Res
, {ese

H
s } ∈ H

NsNr(L+1)×NsNr(L+1)
+ as

Res
= W̄HrG

(

Ms ⊗ INr

)

Rhs

(

MH
s ⊗ INr

)

GHHH
r W̄H

− W̄HrG
(

Ms ⊗ INr

)

Rhs
−Rhs

(

MH
s ⊗ INr

)

GHHH
r W̄H +Rhs

+ W̄HrGGHHH
r W̄Hσ2

vs
+ W̄W̄Hσ2

v̄r
. (3.98)

In (3.98) σ2
vs

∈ R+ and σ2
v̄r

∈ R+ are the variances of the source-relay and relay-

destination noise vectors, respectively. The source-relay channel covariance matrix

Rhs
, {hsh

H
s } ∈ H

NsNr(L+1)×NsNr(L+1)
++ in (3.98) is given by

Rhs
=







σ2
hs
[0]Θs[0]⊗ Υs[0] 0NsNr×NsNr

. . .

0NsNr×NsNr
σ2
hs
[L]Θs[L]⊗ Υs[L]






, (3.99)

which is obtained based on the matrix variate Gaussian distributions of Hs[l]

described in Section 2.2.5 in Chapter 2.

Unfortunately from (3.98) we find that the channel estimation error covariance

matrix depends directly on the relay-destination OFDM block diagonal channel

matrix Hr. According to (3.88) Hr is, in general, not completely known due to

the channel estimation error Er that results from the estimation of Hr in the

first phase of channel estimation. Therefore an analytically tractable optimisa-

tion problem cannot be formulated using Res
in (3.98). A possible approach to

this problem is to average the objective function over the channel estimation er-

ror matrix to obtain a robust channel estimate as done in e.g. [56] and [57] for the

simpler case of narrowband MIMO relay channel estimation. However, using such

an approach for MIMO OFDM relay channel estimation results in a formidable

problem that is more difficult than the case of narrowband channels. Further-

more, this would require the statistics of the channel estimation error to be known

to all nodes which may be unknown. For simplicity, we shall thus make the as-

sumption that the relay-destination OFDM channel estimate Ĥr, obtained from

the first phase of channel estimation, is sufficiently accurate that the estimation

error matrix in (3.88) can be neglected i.e. we assume that Ĥr = Hr. Such an as-

sumption can be validated when the relay transmit power Pr in the first phase of

channel estimation is sufficiently larger than the noise variance as shall be shown

through numerical simulations in Section 3.6. With the assumption Ĥr = Hr we
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define a new error covariance matrix R̂es
∈ H

NsNr(L+1)×NsNr(L+1)
++ as

R̂es
, W̄ ĤrG

(

Ms ⊗ INr

)

Rhs

(

MH
s ⊗ INr

)

GHĤH
r W̄H

− W̄ ĤrG
(

Ms ⊗ INr

)

Rhs
−Rhs

(

MH
s ⊗ INr

)

GHĤH
r W̄H +Rhs

+ W̄ ĤrGGHĤH
r W̄Hσ2

vs
+ W̄W̄Hσ2

v̄r
, (3.100)

which is obtained from (3.98) simply by using the substitution Ĥr = Hr. Using

(3.100) we can now formulate a tractable problem for minimising the source-relay

channel MSE subject to the source and relay transmision power constraints. The

transmit power consumed by the source in the second phase of channel estimation

is tr{SSH}, whilst the transmit power consumed by the relay is tr{GrrHGH},
where r is given in (3.90). We see that the transmit power consumed by the relay

depends on the source channel vector hs which is currently unknown. We shall

thus limit the expected transmit power which can be expressed as

tr
{

GE

{

rrH
}

GH
}

= tr
{

G
((

Ms ⊗ INr

)

Rhs

(

MH
s ⊗ INr

)

+ σ2
vs
IKNr

)

GH
}

, (3.101)

where Rhs
is given in (3.99). Taking into account the source and relay transmit

power constraints we can formulate the optimisation problem for minimising the

MSE of the source-relay channel estimate as

min
S,G,W̄

tr
{

R̂es

}

(3.102)

s.t. tr
{

SSH
}

≤ Ps (3.103)

tr
{

G
((

Ms ⊗ INr

)

Rhs

(

MH
s ⊗ INr

)

+ σ2
vs
IKNr

)

GH
}

≤ P̄r, (3.104)

where Ps ∈ R++ and P̄r ∈ R++ are the available power budgets to the source and

relay, respectively, during the second phase of channel estimation.

Even with the simplifying assumption that Ĥr = Hr, the constrained optimisa-

tion problem in (3.102)-(3.104) is still a challenging problem since it is non-convex

in the design variables S, G, and W̄ , and obtaining the globally optimal solu-

tion is therefore difficult to achieve. In the following sections we firstly propose

an iterative algorithm that is shown to be guaranteed to achieve at least a locally

optimal solution to (3.102)-(3.104). Due to its iterative nature such an algorithm

may be too computationally expensive for practical implementation. We there-

fore then proceed to deriving a suboptimal but simplified approach, which has the

possibility of a reduced computational expense.
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3.4 Iterative Source-Relay Channel Estimation

Algorithm

The optimal solution to (3.102)-(3.104) cannot be obtained in closed form since

the optimisation problem is not jointly convex in the design variables S, G, and

W̄ . However, when any two of the variables are fixed the resulting optimisation

problem can be shown to be a convex optimisation problem for the remaining

variable. This suggests that each variable can be iteratively updated until the

objective function converges to (at least) a locally optimal solution. Let us denote

Si, Gi, and W̄i as being the variables for the ith iteration (a single iteration refers

to the updating of the triplet {Si,Gi, W̄i} and not just to the updating of a single

variable) of the proposed iterative algorithm, and define the cost function with

these variables as

Ψ
(

Si,Gi, W̄i

)

, tr
{

W̄iĤrGi

(

Ms,i ⊗ INr

)

Rhs

(

MH
s,i ⊗ INr

)

GH
i Ĥ

H
r W̄H

i

}

− tr
{

W̄iĤrGi

(

Ms,i ⊗ INr

)

Rhs

}

− tr
{

Rhs

(

MH
s,i ⊗ INr

)

GH
i Ĥ

H
r W̄H

i

}

+ tr
{

W̄iĤrGiG
H
i Ĥ

H
r W̄H

i σ2
vs

}

+ tr
{

W̄iW̄
H
i σ2

v̄r

}

+ tr
{
Rhs

}
, (3.105)

where we also define

Ms,i , [F0Si, ...,FLSi] . (3.106)

3.4.1 Updating the Source Training Matrix

We focus firstly on updating the source training matrix Si given the variables

Gi−1 and Wi−1. As previously mentioned, when Gi−1 and Wi−1 from the last

iteration are fixed, the optimisation problem in (3.102)-(3.104) for Si is convex and

the optimal solution can therefore be found. The problem for finding the source

training matrix on the ith iteration is to minimise Ψ(Si,Gi−1, W̄i−1) subject to

the source and relay transmission power constraints. To proceed let us firstly write

the cost function for updating the source training matrix in terms of Frobenious
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norms as

Ψ
(

Si,Gi−1, W̄i−1

)

=

∥
∥
∥
∥
∥
∥
∥
∥







(

W̄i−1ĤrGi−1

(
Ms,i ⊗ INr

)
R

1/2
hs

−R
1/2
hs

)T

(

W̄i−1

(

ĤrGi−1G
H
i−1Ĥ

H
r σ2

vs
+ σ2

v̄r
IKNd

)1/2
)T







T∥
∥
∥
∥
∥
∥
∥
∥

2

F

.

(3.107)

The power constraints in (3.103) and (3.104) can also be equivalently written as

‖Si‖2F ≤ Ps (3.108)
∥
∥
∥Gi−1

(
Ms,i ⊗ INr

)
R

1/2
hs

∥
∥
∥

2

F
≤ P̄r − tr

{

Gi−1G
H
i−1σ

2
vs

}

. (3.109)

Given the precoder Gi−1 and the destination processor Wi−1 the problem in

(3.102)-(3.104) for the source training matrix can therefore be written as

min
Si

∥
∥
∥
∥
∥
∥
∥
∥







(

W̄i−1ĤrGi−1

(
Ms,i ⊗ INr

)
R

1/2
hs

−R
1/2
hs

)T

(

W̄i−1

(

ĤrGi−1G
H
i−1Ĥ

H
r σ2

vs
+ σ2

v̄r
IKNd

)1/2
)T







T∥
∥
∥
∥
∥
∥
∥
∥

2

F

(3.110)

s.t. ‖Si‖2F ≤ Ps (3.111)
∥
∥
∥Gi−1

(
Ms,i ⊗ INr

)
R

1/2
hs

∥
∥
∥

2

F
≤ P̄r − tr

{

Gi−1G
H
i−1σ

2
vs

}

. (3.112)

By introducing an auxilliary variable t ∈ R+ we can equivalantly write this optimi-

sation problem as the following second order conic programming (SOCP) problem

[39]

min
Si,t

t (3.113)

s.t. ‖Si‖2F ≤ Ps (3.114)
∥
∥
∥Gi−1

(
Ms,i ⊗ INr

)
R

1/2
hs

∥
∥
∥

2

F
≤ P̄r − tr

{

Gi−1G
H
i−1σ

2
vs

}

(3.115)

∥
∥
∥
∥
∥
∥
∥
∥







(

W̄i−1ĤrGi−1

(
Ms,i ⊗ INr

)
R

1/2
hs

−R
1/2
hs

)T

(

W̄i−1

(

ĤrGi−1G
H
i−1Ĥ

H
r σ2

vs
+ σ2

v̄r
IKNd

)1/2
)T







T∥
∥
∥
∥
∥
∥
∥
∥

2

F

≤ t. (3.116)

Since SOCP problems are standard convex optimisation problems, we can find the

optimal solution to (3.113)-(3.116) using interior point methods [39].
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3.4.2 Updating the Relay Precoder

Given the training matrix Si from solving (3.113)-(3.116), and given the variable

Wi−1 from the previous iteration, we now focus on updating the relay precoding

matrix Gi. The optimisation problem for updating the relay precoding matrix is

min
Gi

Ψ
(

Si,Gi, W̄i−1

)

(3.117)

tr
{

Gi

((

Ms,i ⊗ INr

)

Rhs

(

MH
s,i ⊗ INr

)

+ σ2
vs
IKNr

)

︸ ︷︷ ︸

Ti

GH
i

}

≤ P̄r. (3.118)

The objective function in (3.117) is convex w.r.t. the relay precoding matrix Gi

and thus the optimisation problem is a standard convex optimisation problem. It

is worthwhile mentioning that the optimisation problem for the relaying precoder

in (3.117)-(3.118) can be formulated as a SOCP and solved using interior point

methods. However, since there is only one constraint in the problem, a simpler

solution can be derived based on the KKT conditions with reduced complexity

compared to a SOCP. To this end we consider the Lagrangian associated with the

problem in (3.117)-(3.118) which is given by

L
(
Gi, µr,i

)
= Ψ

(

Si,Gi, W̄i−1

)

+ µr,i

(

tr
{

GiTiG
H
i

}

− P̄r

)

, (3.119)

where µr,i ∈ R+ is the KKT multiplier associated with the relay power constraint

in (3.118). Since (3.117)-(3.118) is a convex optimisation problem, the following

KKT conditions [39] are necessary and sufficient for obtaining the optimal solution

to (3.117)-(3.118):

∂L
(
Gi, µr,i

)

∂G∗
i

= 0KNr×KNr
(3.120)

tr
{

GiTiG
H
i

}

− P̄r ≤ 0 (3.121)

µr,i

(

tr
{

GiTiG
H
i

}

− P̄r

)

= 0 (3.122)

µr,i ≥ 0 (3.123)

The optimal precoding matrix structure can be obtained by solving the condition

in (3.120). Using (3.119), then solving (3.120) for Gi results in

Gi =
(

ĤH
r W̄H

i−1W̄i−1Ĥr + µr,iIKNr

)−1

ĤH
r W̄H

i−1Rhs

(

MH
s,i ⊗ INr

)

T−1
i .

(3.124)
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The remaining task now is to compute the KKT multiplier which is required to

ensure that the power constraint in (3.118) is satisfied. Substituting (3.124) into

(3.118) we require to compute µr,i such that

tr
{

GiTiG
H
i

}

= tr

{(

ĤH
r W̄H

i−1W̄i−1Ĥr + µr,iIKNr

)−2

Ci

}

≤ P̄r, (3.125)

where for convenience we define

Ci , ĤH
r W̄H

i−1Rhs

(

MH
s,i ⊗ INr

)

T−1
i

(

Ms,i ⊗ INr

)

Rhs
W̄i−1Ĥr. (3.126)

We now note that the condition in (3.122) can only be satisfied if either µr,i = 0

or if tr{GiTiG
H
i } − P̄r = 0. Since (3.125) is a monotonically decreasing function

of µr,i it is straightforward to see that if µr,i = 0 satisfies (3.121) then it can be

the only possible solution that also satisfies (3.122) and (3.123). If on the other

hand µr,i = 0 does not satisfy (3.121) then we require to compute some positive

value of µr,i to satisfy tr{GiTiG
H
i }− P̄r = 0, such that the condition in (3.122) is

met. Thus, in this case, we require to compute µr,i such that (3.125) holds with

equality. An appropriate µr,i that satisfies (3.125) with equality can be computed

using the method of bisection. In order to utilise the method of bisection we

require an upper and lower bound for µr,i. An obvious lower bound for µr,i comes

directly from the KKT condition in (3.123). An upper bound for µr,i can be

straightforwardly derived from (3.125) and the bounds for µr,i are given by

0 ≤ µr,i ≤
√

tr{Ci}
P̄r

. (3.127)

Once the value of µr,i is computed using the method of bisection, the optimal relay

precoding matrix is given by (3.124).

3.4.3 Updating the Destination Processor

We lastly focus on updating the destination linear processor W̄i given the source

training matrix Si and the relay precoder Gi. Since the source and relay power

constraints are independent of W̄i (see (3.103) and (3.104)), the optimal destina-

tion processor can be derived by solving the unconstrained problem

min
W̄i

Ψ
(

Si,Gi, W̄i

)

. (3.128)
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Furthermore, since Ψ(Si,Gi, W̄i) is a convex quadratic in W̄i the optimal solution

can be found by setting the derivative of Ψ(Si,Gi, W̄i) w.r.t. W̄ ∗
i to zero and

solving for W̄i which results in the solution

W̄i = Rhs

(

MH
s,i ⊗ INr

)

GH
i Ĥ

H
r

(

ĤrGiTiG
H
i Ĥ

H
r + σ2

v̄r
IKNd

)−1

. (3.129)

3.4.4 Summary of Iterative Algorithm and Convergence

Having discussed how to update the individual components, we now summarise

the proposed iterative algorithm and prove that it is guaranteed to converge to at

least a locally optimal solution of the problem. The main steps of the proposed

iterative algorithm for computing the source, relay, and destination processors for

source-relay channel estimation is summarised in Algorithm 1:

Algorithm 1 : Iterative algorithm to compute S, G, and W , for source-relay
channel estimation.
Initialisation: Set i = 0. Initialise S0 and G0 to satisfy (3.103) and (3.104) and
initialise W0.

repeat
Set i = i+ 1.
Update Si by solving the SOCP in (3.113)-(3.116).
Compute the matrix Ti in (3.118 ).
Compute the matrix Ci in (3.126).
if tr{(ĤH

r WH
i−1Wi−1Ĥr)

−2Ci} ≤ P̄r then
Set µr,i = 0.

else
Solve tr{(ĤH

r WH
i−1Wi−1Ĥr+µr,iIKNr

)−2Ci} = P̄r for µr,i using the method
of bisection.

end if
Update Gi using (3.124).
Update Wi using (3.129).

until |Ψ̂(Si,Gi,Wi)− Ψ̂(Si−1,Gi−1,Wi−1)| ≤ ǫ.
Set S = Si, G = Gi, and W = Wi.

The iterative algorithm begins by initialising the source training matrix, the

relay precoder, and the destination processors1. The initialisation of the source

training matrix and of the relay precoder should be such that the power constraints

in (3.103) and (3.104) are satisfied with equality. On the ith iteration the source

training matrix Si is firstly updated by solving the SOCP in (3.113)-(3.116). Since

this is a convex optimisation problem, after updating the training matrix it is

1In practice there are numerous choices for initialising the matrices S0, G0, and W0. The
impact of different initialisation points shall be considered in Section 3.6
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guaranteed that

Ψ
(

Si,Gi−1, W̄i−1

)

≤ Ψ
(

Si−1,Gi−1, W̄i−1

)

. (3.130)

In other words, the updating of the source training matrix can only decrease or

maintain the objective function value. The relay precoding matrix Gi is then up-

dated according to (3.124) where the parameter µr,i is computed to satisfy the

relay power constraint in (3.104). Since the derivation of the relay precoding ma-

trix resulted from solving a convex optimisation problem, the updating of Gi can

only decrease or maintain the objective function value and we have the inequality

Ψ
(

Si,Gi, W̄i−1

)

≤ Ψ
(

Si,Gi−1, W̄i−1

)

. (3.131)

Finally, the destination processor Wi is updated according to (3.129). Again,

since this processor was derived from solving a convex quadratic function it is

guaranteed that

Ψ
(

Si,Gi, W̄i

)

≤ Ψ
(

Si,Gi, W̄i−1

)

. (3.132)

The training matrix, relay precoder, and destination processor are repeatedly up-

dated in this fashion until some termination criterion is met e.g. the objective

function value reaches some specified threshold or a maximum number of itera-

tions is reached. Due to the fact that the updating of the individual components

result in the inequalities (3.130)-(3.132) as well as the fact that the channel es-

timation MSE is lower bounded by 0, the algorithm is guaranteed to converge.

The convergence of the proposed iterative algorithm shall also be demonstrated

through numerical simulations in Section 3.6.

3.5 Simplified Source-Relay Channel Estimation

Algorithm

In the previous section we established an iterative algorithm to compute the source-

relay channel estimate that was shown to be guaranteed to converge to (at least)

a locally optimal solution. Due to its iterative nature such an algorithm may be

too computationally expensive for practical implementation since it may require

a large number of iterations to converge to a reasonable solution. In this section

we therefore propose a suboptimal channel estimation algorithm that has reduced

computational complexity compared to the proposed iterative algorithm. Before
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proceeding let us firstly define the matrix

T ,

((

Ms,i ⊗ INr

)

Rhs

(

MH
s,i ⊗ INr

)

+ σ2
vs
IKNr

)

, (3.133)

which upon substituting into R̂es
in (3.100) results in

R̂es
= W̄ ĤrGTGHĤH

r W̄H − W̄ ĤrG
(

Ms ⊗ INr

)

Rhs

−Rhs

(

MH
s ⊗ INr

)

GHĤH
r W̄H +Rhs

+ W̄W̄Hσ2
v̄r
. (3.134)

With the definition of T in (3.133) we can now equivalently write the optimisation

problem in (3.102)-(3.104) as

min
S,G,W̄

tr
{

R̂es

}

(3.135)

s.t. tr
{

SSH
}

≤ Ps (3.136)

tr
{

GTGH
}

≤ P̄r. (3.137)

In solving the optimisation problem (3.135)-(3.137) in the following sections, we

shall firstly derive the optimal destination processing matrix W̄ . Based on a high

SNR approximation for the source-relay channel we then derive a suboptimal so-

lution for the source training matrix S. With the given source training matrix

we can then derive the optimal relay precoder G. The suboptimality of the pro-

posed algorithm therefore results due to the training matrix being derived under

a high SNR approximation. However, we shall note that the following algorithm

is asymptotically optimal with increasing SNR of the source-relay channel.

3.5.1 Optimal Destination Processor

As has previously been established, the optimal solution for W̄ is the solution to

the unconstrained problem of minimising tr{R̂es
} and is given by

W̄ = Rhs

(

MH
s ⊗ INr

)

GHĤH
r

(

ĤrGTGHĤH
r + σ2

v̄r
IKNd

)−1

. (3.138)

Substituting (3.138) into (3.134), and utilising the matrix inversion lemma, we

can write the source-relay channel estimation error covariance matrix in a more
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concentrated manner as

R̂es
=

(

R−1
hs

+
1

σ2
vs

(

MH
s Ms ⊗ INr

)
)−1

︸ ︷︷ ︸

E1

+Rhs

(

MH
s ⊗ INr

)
(

1

σ2
v̄r

TGHĤH
r ĤrGT + T

)−1
(

Ms ⊗ INr

)

Rhs

︸ ︷︷ ︸

E2

.

(3.139)

We see from (3.139) that the error covariance matrix is the summation of the two

seperate matrices E1 ∈ C
NsNr(L+1)×NsNr(L+1) and E2 ∈ C

NsNr(L+1)×NsNr(L+1). The

matrix E1 is the MSE matrix associated with the source-relay link, whilst E2 rep-

resents the increment in the MSE due to the forwarding of the pilot symbols over

the relay-destination link. Similar observations have been made in [41] and [45],

in the context of linear transceiver designs for two-hop MIMO relay systems, as

well as in [80] for linear transceivers designs in a multi-hop multi-user MIMO re-

lay network. It is shown in [41] and [80] that in a high SNR environment the

decomposition of the error covariance matrix into two seperate MSE matrices can

greatly simplify linear transceiver designs. For the case of low SNR the resulting

linear transceivers are suboptimal but nevertheless have been shown in [41] and

[80] to have comparable performance to optimal solutions. In the following we

shall show that, under a high SNR approximation, the decomposition of the error

covariance matrix according to (3.139) can greatly simplify the source-relay chan-

nel estimation problem in the sense that it allows the relay precoder G and the

training matrix S to be calculated from two seperate optimisation problems. As

such the resulting simplified algorithm is non-iterative and should have reduced

complexity compared to the iterative algorithm proposed in Section 3.4. Before

proceeding we note that with the error covariance now given by (3.139) we can

write the optimisation problem in (3.135)-(3.137) as

min
S,G

tr{E1}+ tr{E2} (3.140)

s.t. tr
{

SSH
}

≤ Ps, (3.141)

tr
{

GTGH
}

≤ P̄r. (3.142)
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3.5.2 Suboptimal Source Training Matrix Design

We focus firstly on deriving the source training matrix S. Since the optimal

training matrix as the solution to (3.140)-(3.142) cannot be computed in closed

form, and our main interest here is to derive a computationally efficient channel

estimation algorithm, we adopt a suboptimal approach for which a closed form

solution is available. To this end let us assume for the moment that the relay

precoding matrix G can be decomposed as

G = LRhs

(

MH
s ⊗ INr

)

T−1, (3.143)

where L ∈ C
KNr×NsNr(L+1) is an arbitrary matrix yet to be determined. It shall

be shown later that the optimal relay precoder as the solution to (3.140)-(3.142)

does indeed have the structure given in (3.143). It is interesting to note that, with

the definition of the matrix T given in (3.133), then (3.143) can be written as

G = LRhs

(

MH
s ⊗ INr

)((

Ms,i ⊗ INr

)

Rhs

(

MH
s,i ⊗ INr

)

+ σ2
vs
IKNr

)−1

︸ ︷︷ ︸

WG

.

(3.144)

We see that the relay precoding matrix is comprised of two main components.

The matrix WG ∈ C
NsNr(L+1)×KNr represents the optimal MMSE receiver for the

first hop channel, whilst L represents a subsequent precoding operation. Thus,

the relay firstly minimises the MSE of the received symbols r (see Figure 3.2 and

equation (3.90)) using the optimal MMSE receive filter WG, prior to performing

a linear precoding through the transmit precoding matrix L. Substituting (3.143)

into E2 defined in (3.139) and using the matrix inversion lemma we can write

E2 =

(

1

σ2
v̄r

LHĤH
r ĤrL+

(

Rhs

(

MH
s ⊗ INr

)

T−1
(

Ms ⊗ INr

)

Rhs

)−1
)−1

.

(3.145)

It is now straightforward to show that

lim
σ
2

vs
→0

(

Rhs

(

MH
s ⊗ INr

)

T−1
(

Ms ⊗ INr

)

Rhs

)−1

= R−1
hs
, (3.146)
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and consequently we have

lim
σ
2

vs
→0

E2 =

(

1

σ2
v̄r

LHĤH
r ĤrL+R−1

hs

)−1

. (3.147)

In other words for the case of high SNR of the source-relay channel E2 only

depends on the relay transmit variable L. Similarly, using the structure of the

relay precoder in (3.143) it is also straightforward to show that

lim
σ
2

vs
→0

tr
{

GTGH
}

= tr
{

LRhs
LH

}

, (3.148)

where we again observe that for the scenario of high source-relay channel SNR

the transmit power consumed by the relay depends only on the variable L. With

these observations we can decompose the original problem in (3.140)-(3.142) and

optimise the source training matrix S by solving

min
S

tr







(

R−1
hs

+
1

σ2
vs

(

MH
s Ms ⊗ INr

)
)−1






(3.149)

s.t. tr
{

SSH
}

≤ Ps. (3.150)

It is interesting to observe that, under the high SNR approximation, the opti-

misation of S according to (3.149)-(3.150) does not require any knowledge of

the relay-destination channel estimate Ĥr. Since the problem (3.149)-(3.150) has

been obtained based on the high SNR approximations of (3.146) and (3.147) it

is obvious that any solution to (3.149)-(3.150) will, in general, be a suboptimal

solution to the original problem (3.140)-(3.142). However, since (3.149)-(3.150)

is independent of L, and is therefore independent of the relay precoder G, it is

a significantly easier problem to handle. In fact, we note that the optimisation

problem has precisely the same structure as that for obtaining the MMSE solution

for the relay-destination channel estimation problem (c.f. (3.40)-(3.41)). There-

fore the optimal and suboptimal MMSE algorithms discussed in Sections 3.2.3 and

3.2.4, respectively, can be used to optimise the training matrix S. Furthermore,

if the source has no information of the covariance matrix Rhs
, then we can set

R−1
hs

= 0NsNr(L+1)×NsNr(L+1) and then (3.149)-(3.150) reduces to a problem that

has the same structure as that in (3.21)-(3.22). In this case the matrix S can be

optimised using the LS algorithm discussed in Section 3.2.2.
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3.5.3 Optimal Relay Precoder

We now focus on deriving the relay precoding matrix G given any training matrix

S. Whilst the source training matrix design was simplified by using a high SNR

approximation, no such approximation shall be used in deriving the relay precoder.

In other words we shall compute the optimal relay precoder as the solution to

(3.140)-(3.142). We note firstly that the matrix E1 defined in (3.139) and the

source power constraint in (3.150) are both independent of G. Thus the optimal

solution to (3.140)-(3.142) can be found from solving

min
G

tr{E2} (3.151)

tr
{

GTGH
}

≤ P̄r. (3.152)

To derive the optimal relay precoder let us consider the following singular value

decompositions (SVD’s)

T−1/2
(
Ms ⊗ INr

)
Rhs

= UtΛV H
t (3.153)

Hr = Ur∆V H
r , (3.154)

where Ut ∈ C
KNr×KNr and Vt ∈ C

NsNr(L+1)×NsNr(L+1) are unitary matrices, and

the diagonal matrix Λ ∈ R
KNr×NsNr(L+1)
+ contains the non-zero singular values

{λi}Rt

i=1 ∈ R++, with Rt , rank{Λ}, on its upper left main diagonal. Similarly,

Ur ∈ C
KNd×KNd and Vr ∈ C

KNr×KNr , are unitary and ∆ ∈ R
KNd×KNr
+ is diagonal

containing the non-zero singular values {δi}Rr

i=1 ∈ R++, with Rr , rank{∆}, on
its upper left main diagonal. The singular values in Λ and ∆ are assumed w.l.o.g.

to be arranged in descending order.

Theorem 3: The structure of the optimal relay precoder G as the solution to

the problem in (3.151)-(3.152) is given by

G = VrΦ
(

ΛT
)†

V H
t Rhs

(

MH
s ⊗ INr

)

T−1, (3.155)

where Φ ∈ R
KNr×KNr
+ is a diagonal matrix satisfying R , rank{Φ} ≤ min(Rt, Rr),

and has non-negative diagonal elements {φi}Ri=1 ∈ R+ yet to be determined.

Proof: See Section 3.8.4 on page 83.

Before proceeding we note that by defining L , VrΦ(ΛT )†V H
t , the optimal

relay precoder in (3.155) matches the structure that was assumed in (3.143). This

validates the derivation of the suboptimal training matrix design in the previous
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section. Substituting the optimal relay precoder structure of (3.155) into (3.141)-

(3.142), and using the decompositions in (3.153) and (3.154), then after some

straightforward deductions it can be shown that the matrix valued optimisation

problem reduces to

min
φ

R∑

i=1

λ2
iσ

2
v̄r

φ2
i δ

2
i + σ2

v̄r

(3.156)

s.t.
R∑

i=1

φ2
i ≤ P̄r (3.157)

φ2
i ,≥ 0 1 ≤ i ≤ R. (3.158)

This is a standard convex optimisation problem for which the optimal solution can

be found using the KKT conditions of optimality [39]. The optimal solution can

be shown to be given by

φ2
i =





√

λ2
iσ

2
v̄r

µrδ
2
i

− σ2
v̄r

δ2i





+

, (3.159)

where µr ∈ R+ is the KKT multiplier which is required to be computed to sat-

isfy the relay power constraint in (3.157) and can be efficiently found using the

waterfilling algorithm in [79].

3.6 Simulation Results

In this section we evaluate the performance of the discussed channel estimation

algorithms through numerical simulations.

3.6.1 General Simulation Parameters

In all examples we consider a two-hop MIMO OFDM relaying system equipped

with Ns = Nr = Nd = 2 antennas at the source, relay, and destination devices.

The frequency selective paths between each transmit and receive antenna pair is of

length L+1 = 10 and we assume that the MIMO channel delay paths are spatially

correlated on both the transmit and receive sides, but are temporally uncorrelated.

The lth MIMO channel taps of the source-relay and relay-destination channels are
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therefore modelled as (see Sections 2.1.3 of Chapter 2)

Hs[l] = Υ 1/2
s [l]Hsw[l]Θ

T/2
s [l] (3.160)

Hr[l] = Υ 1/2
r [l]Hrw[l]Θ

T/2
r [l]. (3.161)

The transmit spatial correlation matrices Θs[l] and Θr[l], and the receive spatial

correlation matrices Υs[l] and Υr[l], are modelled using the exponential model (see

e.g. [81–84]) and have elements given by

[Θs[l]]mn = ρs[l]
|m−n| (3.162)

[Θr[l]]mn = ρr[l]
|m−n| (3.163)

[Υs[l]]mn = ̺s[l]
|m−n| (3.164)

[Υr[l]]mn = ̺r[l]
|m−n|, (3.165)

where the correlation co-efficients ρs[l], ρr[l], ̺s[l], and ̺r[l], which are selected

from the interval [0, 1], define the level of spatial correlation with lower values

signifying low correlation and vice versa. The elements of Hsw[l] and Hrw[l] in

(3.160) and (3.161) are drawn from i.i.d. complex Gaussian distributions with

zero mean and variances σ2
hs
[l] and σ2

hr
[l], respectively, and in all simulations we

set σ2
hs
[l] = σ2

hr
[l] = 1/(L + 1). The SNR of the source-relay channel is given by

SNRs = Ps/(Kσ2
vs
) and the SNR of the relay-destination link during the relay-

destination channel estimation phase is SNRr = Pr/(Kσ2
vr
). Similarly, the SNR

of the relay destination link during the source-relay channel estimation phase is

SNRr = P̄r/(Kσ2
v̄r
). Unless stated otherwise, the number of OFDM subcarriers is

set at K = 32 in all examples.

3.6.2 Comparison of Relay-Destination Channel Estima-

tion Algorithms

We firstly assess the performance of the optimal LS, optimal MMSE, and subop-

timal MMSE algorithms discussed in Sections 3.2.2, 3.2.3, and 3.2.4, respectively,

which are used to estimate the relay-destination channel in the first phase of chan-

nel estimation. We also include the performance of another suboptimal MMSE

estimation algorithm that utilises an equal power allocation (EPA). For this algo-

rithm the destination processor W is given by (3.37) whilst the relay training ma-

trix is given by (3.23). The performance metric used to assess the quality of channel

estimate obtained by these algorithms is MSE , tr{Rer
}/(NrNd(L + 1)), where
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Rer
is given in (3.18) and (3.39) for the LS and various MMSE algorithms, respec-

tively. Figure 3.3 shows the MSE performance of the various algorithms against

varying SNRr with the spatial correlation co-efficients set as ρr[l] = ̺r[l] = 0.2,

which signifies a low degree of correlation. We see that all MMSE channel estima-

tion algorithms significantly outperform the optimal LS algorithm at low SNRr,

with the performance of the LS algorithm approaching that of the MMSE algo-

rithms in the high SNRr range. It can also be seen that, interestingly, the subopti-

mal MMSE solution provides almost the exact same performance across all SNRr

values as the optimal MMSE solution. This comparable level of performance is

achieved at a substantially reduced computional complexity, making the subop-

timal MMSE solution a very attractive option. We also observe from Figure 3.3

that both the suboptimal and optimal MMSE algorithms provide only a slightly

improved channel estimate compared to the suboptimal MMSE EPA solution.

Figure 3.4 shows the channel estimation MSE results for the optimal LS, MMSE

EPA, suboptimal MMSE, and optimal MMSE algorithms with the spatial corre-

lation co-efficients now set as ρr[l] = ̺r[l] = 0.8, which signifies high spatial

correlation. The same trends to the previous results can be observed. Comparing

the results of Figure 3.3 and Figure 3.4 we see that the level of spatial correlation

does not affect the performance of the LS algorithm. This can be explained by

the fact that the LS error covariance matrix (see (3.18)) does not depend on the

relay-destination channel covariance. On the other hand, the performance of all

MMSE solutions is improved with higher spatial correlation. We also see from Fig-

ure 3.4 that the gap between the MMSE EPA and the MMSE optimal/suboptimal

solutions increases with increased spatial correlation.

The LS and MMSE algorithms discussed in Sections 3.2.2, 3.2.3, and 3.2.4 all

utilise the same training matrix structure given by X = QX̄ (c.f. (3.23) and

(3.42)) and only differ in their selection of X̄. It was shown that the structure

X = QX̄ is optimal for the LS and both the optimal and suboptimal MMSE so-

lutions (note that the suboptimality of the suboptimal MMSE solution results due

to the choice of X̄ and not due to the structure X = QX̄). In our next simulation

example we compare the performance of the optimal LS and MMSE algorithms

to suboptimal LS and MMSE solutions that do not utilise the training matrix

structure X = QX̄. These suboptimal solutions simply transmit QPSK modu-

lated random training symbols (RTS), that are of course known to the destination,

and are scaled to satisfy the relay transmit power constraint with equality. The

same random QPSK symbols are used for both the LS RTS and MMSE RTS algo-

rithms. Figure 3.5 shows the MSE results for the LS and MMSE algorithms with

the channel spatial correlation co-efficients set as ρr[l] = ̺r[l] = 0.5. It is evident
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that the structure of the training matrix X significantly impacts the quality of

channel estimation, with the LS and MMSE designs that utilise the optimal train-

ing matrix structure outperforming their counterparts that use random training

symbols. Interestingly, the gap between the optimal LS and LS RTS algorithms

remains almost constant over all SNRr values, whereas the gap between the opti-

mal MMSE and MMSE RTS solutions gets larger with increasing SNRr. It is also

interesting to see that the optimal LS algorithm obtains a better channel estimate

than the MMSE RTS solution at mid to high SNRr values.

In the last example of this section we consider the impact that the number of

subcarriers K has on channel estimation performance. The suboptimal MMSE

algorithm discussed in Section 3.2.4 is used to demonstrate the effect of varying

the number of subcarriers. The spatial correlation co-efficients are set as in the

last simulation example at ρr[l] = ̺r[l] = 0.5. Figure 3.6 shows the performance

of the suboptimal MMSE algorithms for K = {32, 64, 128, 256, 512, 1024}. It is

evident from these results that increasing the number of subcarriers leads to an

improved channel estimation performance. This is due to the fact that with more

OFDM subcarriers there are more training symbols being used to estimate the

time domain channel matrices and consequently an improved channel estimate

can be obtained.

3.6.3 Comparison of Source-Relay Channel Estimation Al-

gorithms

We now assess the performance of the proposed iterative and simplified source-

relay channel estimation algorithms. In all examples the simulation parameters

are chosen as in Section 3.6.1 with ρs[l] = ̺s[l] = ρr[l] = ̺r[l] = 0.5. For the

proposed simplified algorithm the source training matrix S is designed using the

suboptimal MMSE algorithm discussed in Section 3.2.4.

In our first examples we consider that SNRr is sufficiently high such that

Ĥr = Hr i.e. the relay-destination channel is estimated perfectly during the

first phase of channel estimation. The effect of channel estimation error during

the first phase of estimation shall be demonstrated in later simulations. Fig-

ure 3.7 shows the convergence of the proposed iterative algorithm for the case of

SNRs = {0dB, 15dB} and SNRr = 15dB. In this example the initial source train-

ing matrix S0 and the inital relay precoder matrix G0 are chosen as random

matrices that are scaled to satisfy the source and relay power constraints. The

destination processor initialisation W0 is selected as in (3.129). For comparison
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purposes, Figure 3.7 also shows the achievable MSE of the proposed simplified al-

gorithm. We observe that the proposed iterative algorithm does indeed converge,

but that the final solution is poorer than our simplified algorithm. The poorer per-

formance of the iterative algorithm in this case can be explained by the fact that

the source training matrix and relay precoder were randomly initialised. A better

approach is to initialise these matrices using the solution from the proposed simpli-

fied algorithm. Figure 3.8 shows the convergence of the iterative algorithm in this

case with SNRs = −5dB and SNRr = 15dB. In this case we see that the iterative

algorithm provides improved performance compared to the simplified algorithm.

However, the performance improvement is very small, which indicates that the

proposed simplified algorithm is close to (at least) a locally optimal solution.

In our next examples we compare the performance of the proposed chan-

nel estimation solutions to various benchmarks. The proposed algorithms are

compared to MMSE designs where the destination processor is given by (3.138)

and a naive amplify forward (NAF) relay precoder is used, which is given by

G =
√

P̄r/tr{T }IKNr
. The source training matrix S for these benchmark algo-

rithms is selected as the previously discussed RTS or EPA training matrices. Fig-

ure 3.9 shows the MSE performance of the various algorithms against SNRs(dB)

with SNRr = 30dB. We see that both proposed algorithms outperform the bench-

mark MMSE NAF RTS and MMSE NAF EPA solutions with the iterative algo-

rithm providing a slightly better channel estimate than the proposed simplified

solution. Figure 3.10 shows the MSE performance where SNRr is now lowered to

SNRr = 20dB. We see that the proposed iterative algorithm, the proposed simpli-

fied algorithm, the MMSE NAF RTS, and MMSE NAF EPA solutions all suffer a

loss in performance caused by the lower SNR of the relay-destination channel.

In practice, if the SNR during the first phase of channel estimation is not suf-

ficiently high, then the relay-destination channel will be estimated imperfectly

which shall affect the performance of the proposed channel estimation schemes.

We now investigate the effects of the source-relay channel estimation errors. In all

proceeding examples the suboptimal MMSE algorithm discussed in Section 3.2.4

is used to estimate the relay-destination channel during the first phase of chan-

nel estimation. Figure 3.11 shows the MSE results of the proposed and bench-

mark source-relay channel estimation algorithms against varying SNRs(dB) with

SNRr = 30dB and the SNR during the relay-destination estimation phase set as

SNRr = 20dB. Figure 3.11 shows the corresponding MSE results when the SNR

during the relay-destination estimation phase is lowered to SNRr = 10dB. We see

that all algorithms suffer a loss in performance due to the mismatch between the

estimated relay-destination channel and the actual relay-destination channel.
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Figure 3.3: MSE against SNRr(dB) of LS and MMSE relay-destination channel
estimation algorithms for a system with Nr = Nd = 2, L + 1 = 10, K = 32,

σ2
hr
[l] = 1/(L+ 1), and ρr[l] = ̺r[l] = 0.2.
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Figure 3.4: MSE against SNRr(dB) of LS and MMSE relay-destination channel
estimation algorithms for a system with Nr = Nd = 2, L + 1 = 10, K = 32,

σ2
hr
[l] = 1/(L+ 1), and ρr[l] = ̺r[l] = 0.8.
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Figure 3.5: MSE against SNRr(dB) of LS and MMSE relay-destination estimation
algorithms with optimal or suboptimal training matrix structure for a system with

Nr = Nd = 2, L+ 1 = 10, K = 32, σ2
hr
[l] = 1/(L+ 1), and ρr[l] = ̺r[l] = 0.5.
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Figure 3.6: MSE against SNRr(dB) of the suboptimal MMSE relay-destination
channel estimation algorithm for a system with Nr = Nd = 2, L+ 1 = 10, σ2

hr
[l] =

1/(L+ 1), ρr[l] = ̺r[l] = 0.5, and K = {32, 64, 128, 256, 512, 1024}.
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Figure 3.7: Convergence of iterative source-relay estimation algorithm, initialised
with random matrices, for a system with Ns = Nr = Nd = 2, L+ 1 = 10, K = 32,
SNRs = {0dB, 15dB}, SNRr = ∞, SNRr = 15dB, σ2

hs
[l] = σ2

hr
[l] = 1/(L + 1), and

ρs[l] = ̺s[l] = ρr[l] = ̺r[l] = 0.5.
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Figure 3.8: Convergence of iterative source-relay estimation algorithm, initialised
with simplified MMSE solution, for a system with Ns = Nr = Nd = 2, L+ 1 = 10,
K = 32, SNRs = −5dB, SNRr = ∞, SNRr = 15dB, σ2

hs
[l] = σ2

hr
[l] = 1/(L+ 1), and

ρs[l] = ̺s[l] = ρr[l] = ̺r[l] = 0.5.



Chapter 3. MIMO OFDM Relay Channel Estimation Algorithms 74

−5 0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

SNRs(dB)

M
S
E

MMSE NAF RTS

MMSE NAF EPA

Simplified MMSE

Iterative MMSE

−4.002 −4 −3.998
10

−1.1381

10
−1.1373

Figure 3.9: MSE against SNRs(dB) of MMSE source-relay channel estimation
algorithms for a system with Ns = Nr = Nd = 2, L + 1 = 5, K = 32, SNRr = ∞,
SNRr = 30dB, σ2

hs
[l] = σ2

hr
[l] = 1/(L+ 1), and ρs[l] = ̺s[l] = ρr[l] = ̺r[l] = 0.5.
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Figure 3.10: MSE against SNRs(dB) of MMSE source-relay channel estimation
algorithms for a system with Ns = Nr = Nd = 2, L+ 1 = 10, K = 32, SNRr = ∞,
SNRr = 20dB, σ2

hs
[l] = σ2

hr
[l] = 1/(L+ 1), and ρs[l] = ̺s[l] = ρr[l] = ̺r[l] = 0.5.
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Figure 3.11: MSE against SNRs(dB) of MMSE source-relay channel estimation
algorithms for a system with Ns = Nr = Nd = 2, L+1 = 10, K = 32, SNRr = 20dB,
SNRr = 30dB, σ2

hs
[l] = σ2

hr
[l] = 1/(L+ 1), and ρs[l] = ̺s[l] = ρr[l] = ̺r[l] = 0.5.
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Figure 3.12: MSE against SNRs(dB) of MMSE source-relay channel estimation
algorithms for a system with Ns = Nr = Nd = 2, L+1 = 10, K = 32, SNRr = 10dB,
SNRr = 30dB, σ2

hs
[l] = σ2

hr
[l] = 1/(L+ 1), and ρs[l] = ̺s[l] = ρr[l] = ̺r[l] = 0.5.
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3.7 Chapter Summary and Conclusions

In this chapter we considered the task of channel estimation for two-hop MIMO

OFDM relaying systems. Specifically we focused on developing algorithms for es-

timating the frequency selective source-relay and relay-destination channels using

training based methods. The task of channel estimation was divided into two

phases. In the first phase the relay-destination channel was estimated by sending

known training symbols from the relay to the destination device. It was high-

lighted that this is a standard point-to-point MIMO channel estimation problem

and well known LS and MMSE algorithms were discussed in detail. The optimal

LS training matrix and both optimal and suboptimal MMSE training matrices

were derived. In the second phase of channel estimation the source-relay channel

was estimated at the destination using known training symbols from the source-

device. In this phase of channel estimation, the source training symbols were

transmitted from the source to the relay, which then precoded the received sym-

bols and forwarded them to the destination. Since the source training symbols

were forwarded by the relay to the destination, it was highlighted that the des-

tination required knowledge of the relay-destination channel in order to obtain

a source-relay channel estimate. For tractability of the source-relay channel es-

timation problem we assumed that the relay-destination channel was estimated

perfectly in the first phase of channel estimation. We then firstly proposed an

iterative algorithm to obtain the source-relay channel estimate where the destina-

tion processor, the relay precoder, and the source training matrix were updated

sequentially. It was shown through theoretical analysis that the proposed iterative

algorithm was guaranteed to converge to at least a locally optimal solution. The

convergence of the proposed iterative algorithm was also demonstrated through

numerical simulations. We also proposed a suboptimal source-relay channel esti-

mation algorithm where all processors could be calculated in closed form solution.

The suboptimal solution was derived under a high SNR approximation, which al-

lowed the derivation of the source training matrix to be decoupled from the relay

precoder and as such could be derived in closed form. Despite the suboptimal-

ity of this approach it was demonstrated through numerical simulations that its

performance was comparable to that of the iterative algorithm at a substantially

reduced computational complexity. Simulation results also revealed that both the

proposed iterative and suboptimal algorithms outperformed competing channel

estimation algorithms in terms of achievable MSE.
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3.8 Chapter Derivations and Proofs

This section provides some chapter derivations.

3.8.1 Proof of Optimal LS Relay Training Matrix

In this section we prove the structure of the optimal LS training matrix X given

in (3.23) of Theorem 1. The proof follows similar lines of argument as those made

in e.g. [71, 72, 77]. The proof is heavily reliant on the following lemma:

Lemma 3: [78] For a Hermitian positive definite matrix A ∈ H
N×N
++ we have

tr
{
A−1

}
≥

N∑

i=1

[
A−1

]

ii
. (3.166)

where equality holds if A is a diagonal matrix.

Before utilising Lemma 3 we shall find it convenient to decompose the training

matrix X w.l.o.g. as

X = QX̄, (3.167)

where Q ∈ C
K×Nr is a semi-unitary matrix and X̄ ∈ C

Nr×Nr is arbitrary. From

Lemma 3 it is straightforward to see that the optimal solution to the problem

(3.21)-(3.22) should result in the product MH
x Mx being diagonal. Using (3.167)

as well as the definition of Mx in (3.10) we therefore require that

MH
x Mx =







X̄HQHFH
0 F0QX̄ . . . X̄HQHFH

0 FLQX̄
...

. . .
...

X̄HQHFH
L F0QX̄ . . . X̄HQHFH

L FLQX̄






, (3.168)

is a diagonal matrix, which clearly holds if Q satisfies the properties stated in

(3.24)-(3.26). For the moment we shall assume this to be true (it shall be shown

later how such a matrix can be constructed). Assuming Q satisfies the properties

stated in (3.24)-(3.26) then MH
x Mx in (3.168) can be written as

MH
x Mx =







X̄HX̄ 0Nr×Nr

. . .

0Nr×Nr
X̄HX̄






, (3.169)

Clearly (3.169) is a diagonal matrix only if X̄HX̄ is diagonal, and we can therefore

assume w.l.o.g. that X̄ = Λx for some diagonal matrix Λx ∈ R
Nr×Nr
+ (note that
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with X̄ = Λx for some diagonal Λx, then X̄HX̄ = ΛH
x Λx ∈ R

Nr×Nr
+ and we can

therefore assume w.l.o.g. that Λx has non-negative real diagonal entries). The

remaining task to prove Theorem 1 is then to show that Λx has equal diagonal

elements given by Pr/Nr. To this end we firstly note that with X̄ = Λx, the

optimisation problem in (3.21)-(3.22) reduces to

min
λx

Nr∑

i=1

σ2
vr

λ2
x,i

(3.170)

s.t.

Nr∑

i=1

λ2
x,i ≤ Pr, (3.171)

λ2
x,i ≥ 0 1 ≤ i ≤ Nr, (3.172)

where λx , [λx,1, ..., λx,Nr
]T , with λx,i being the ith diagonal element of Λx. Let

us now introduce the following lemma:

Lemma 4: For positive scalars {ai}Ni=1 ∈ R+ we have the inequality

1

N

N∑

i=1

ai ≥
N∏

i=1

a
1/N
i , (3.173)

where equality holds if {ai}Ni=1 are all equal. This is the well known arithmetic-

geometric mean inequality.

From Lemma 4 the objective function in (3.170) is lower bounded by

Nr∑

i=1

σ2
vr

λ2
x,i

≥ N

Nr∏

i=1

(

σ2
vr

λ2
x,i

)1/N

, (3.174)

and we see that the objective function is minimised when {λx,i}Nr

i=1 are all equal.

Furthermore, since the objective function in (3.170) is a decreasing function of

{λx,i}Nr

i=1 it is straightforward to derive from the constraint in (3.171) that the

optimal solution is λx,i =
√

Pr/Nr, ∀i. We therefore have X̄ =
√

Pr/NrINr
,

which upon substituting into (3.167) results in the training matrix being given by

X =
√

Pr/NrQ and completes the proof of Theorem 1.

3.8.2 Proof of Optimal MMSE Relay Training Matrix

In this section we prove the optimal MMSE relay-destination channel training

matrix X as stated in Theorem 2. The proof of Theorem 2 is similar to that of

the optimal training matrix structure derived in [66].
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The proof proceeds similarly to the proof of the optimal LS channel training

matrix. Let us firstly write the training matrix w.l.o.g. as

X = QX̄, (3.175)

whereQ ∈ C
K×Nr is a semi-unitary matrix and X̄ ∈ C

Nr×Nr is arbitrary. To prove

Theorem 2 we require to show that Q satisfies the properties in (3.43)-(3.45). To

this end let us consider the following lemma:

Lemma 5: For a Hermitian positive definite matrix A ∈ H
N×N
++ we have

tr
{
A−1

}
≥

P∑

i=1

tr
{
B−1

i

}
. (3.176)

where Bi ∈ H
M×M
++ is the ith diagonal submatrix of A and N = MP . Equality

holds in (3.176) if A is a block diagonal matrix with each diagonal block being

Hermitian positive definite.

Before utilising Lemma 5 let us recall that the relay-destination channel covari-

ance matrix is given by

Rhr
, E{hrh

H
r } =







σ2
hr
[0]Θr[0]⊗ Υr[0] 0NrNd×NrNd

. . .

0NrNd×NrNd
σ2
hr
[L]Θr[L]⊗ Υr[L]






, (3.177)

where we note that the diagonal blocks in (3.177) are of dimension NrNd ×NrNd.

Now, applying Lemma 5 to the objective function in (3.40) we have the inequality

tr







(

R−1
hr

+
1

σ2
vr

(

MH
x Mx ⊗ INd

)
)−1







≥
L∑

l=0

tr







(

1

σ2
hr
[l]
Θ−1

r [l]⊗ Υ−1
r [l] +

1

σ2
vr

Nl

)−1





, (3.178)

where we define N , MH
x Mx ⊗ INd

with Nl denoting the lth NrNd × NrNd

diagonal submatrix of N . From the inequality in (3.178) we find that the optimal

solution to (3.40)-(3.41) should result in the training matrix X having a structure

such that N , MH
x Mx ⊗ INd

is a block diagonal matrix with NrNd × NrNd

dimensional diagonal blocks. Using the definition Mx , [F0X, ...,FLX] in (3.10)



Chapter 3. MIMO OFDM Relay Channel Estimation Algorithms 80

as well as the training matrix decomposition in (3.175) we can expand

MH
x Mx ⊗ INd

=







X̄HQHFH
0 F0QX̄ . . . X̄HQHFH

0 FLQX̄
...

. . .
...

X̄HQHFH
L F0QX̄ . . . X̄HQHFH

L FLQX̄






⊗ INd

(3.179)

=







X̄HQHFH
0 F0QX̄ ⊗ INd

. . . X̄HQHFH
0 FLQX̄ ⊗ INd

...
. . .

...

X̄HQHFH
L F0QX̄ ⊗ INd

. . . X̄HQHFH
L FLQX̄ ⊗ INd






.

(3.180)

In order for MH
x Mx ⊗ INd

to be a block diagonal matrix with NrNd × NrNd

dimensional diagonal blocks we clearly require that

X̄HQHFH
m FnQX̄ ⊗ INd

= 0NrNd×NrNd
∀m 6= n, (3.181)

which holds if

QHFH
m FnQ = 0Nr×Nr

∀m 6= n. (3.182)

This is precisely the same condition given in (3.43) of Theorem 2. Assuming that

(3.182) holds we can write (3.180) as

MH
x Mx ⊗ INd

=







X̄HQHQX̄ ⊗ INd
0NrNd×NrNd

. . .

0NrNd×NrNd
X̄HQHQX̄ ⊗ INd






, (3.183)

where we have also used the fact that FH
l Fl = IK , ∀l (see the definition of Fl in

(3.8)). We can take QHQ = INr
w.l.o.g. which results in

QHFH
l FlQ = INr

∀m 6= n. (3.184)

We have therefore shown that the semi-unitary matrix Q should satisfy the con-

ditions stated in (3.43)-(3.45) which completes the proof of Theorem 2.

3.8.3 Proof of MMSE Objective Function Upper Bound

In this section we show that the MMSE objective function is upper bounded as

in (3.65). The upper bound in (3.65) is the same upper bound as derived in [66].
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However, in the following, we provide a slightly different proof to that in [66]. To

prove the upper bound in (3.65) we shall require the following definition of matrix

convexity/concavity:

Definition 2: [39] Given a function q(X) : XN×M → R let us define f(t) ,

q(U + tV ), where U ∈ C
N×M , V ∈ C

N×M , and t are such that the matrix

X = U + tV ∈ X
N×M . The function q(X) is convex w.r.t. X if f(t) satisfies

∂f 2(t)

t2
≥ 0. (3.185)

Note that this implies f(t) is convex. Thus to prove the convexity of q(X) w.r.t.

X we simply require to prove the convexity of f(t) w.r.t. the scalar t. On the

other hand, if we have that

∂f 2(t)

∂t2
≤ 0, (3.186)

then the function q(X) is concave in X.

Based on Definition 2 we can now prove the following lemma:

Lemma 6: Given positive definite matrices X ∈ H
N×M
++ and A ∈ H

N×M
++ the

function q(X) = tr{(X−1 +A)−1} is concave in X.

Proof: Using the inverse identity (IN + P )−1 = IN − (IN + P )−1P we have

q (X) = tr
{(

X−1 +A
)−1

}

= tr
{
A−1

}
− tr

{
(AXA+A)−1} , (3.187)

from which we see that proving the concavity of q(X) = tr{(X−1 +A)−1} w.r.t.

X is equivalent to showing that f(X) , tr{(AXA +A)−1} is convex w.r.t. X.

From Definition 2 we therefore require to show that the function

f(t) , tr
{
(A (U + tV )A+A)−1} , (3.188)

is convex w.r.t. t, where U ∈ H
N×N
++ , V ∈ H

N×N
+ , and t are such that the matrix

U + tV ∈ H
N×N
++ . Through straightforward deductions we can write (3.188) as

f(t) = tr
{

B−1/2A−1B−1/2 (IN + tC)−1
}

(3.189)

where we define the matrices B ∈ H
N×N
++ and C ∈ H

N×N
++ as

B , A1/2UA1/2 + IN (3.190)

C , B−1/2A1/2V A1/2B−1/2. (3.191)
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Introducing the eigendecomposition

C = UcΛcU
H
c , (3.192)

where Uc ∈ C
N×N is unitary and Λc ∈ R

N×N
++ is diagonal with diagonal elements

given by {λc,i}Ni=1, we can further write (3.189) as

f(t) = tr






UH

c B−1/2A−1B−1/2Uc
︸ ︷︷ ︸

E

(IN + tΛc)
−1






(3.193)

=
N∑

i=1

eii
1 + tλc,i

, (3.194)

where eii ∈ R++ is the ith diagonal elements of the Hermitian positive definite

matrix E ∈ H
N×N
++ defined in (3.193). From (3.194) we can now evaluate

∂f 2(t)

∂t2
=

N∑

i=1

λc,ieii
(
1 + tλc,i

)4 ≥ 0, (3.195)

where the inequality results from the fact that λc,i ≥ 0 and eii ≥ 0 since both C

and E are Hermitian positive definite matrices. We have thus shown that f(t)

is convex w.r.t. t which, from Definition 2, proves that the function f(X) =

tr{(AXA + A)−1} is convex w.r.t. X. From (3.187) this immediately implies

that q(X) = tr
{(

X−1 +A
)}

is concave in X and completes the proof.

From Lemma 6 we can now establish that the function

tr







(

1

σ2
hr
[l]
Θ−1

r [l]⊗ Υ−1
r [l] +

1

σ2
vr

X̄HX̄ ⊗ INd

)−1





, (3.196)

is concave in σ2
hr
[l]Θr[l]⊗Υr[l]. Since (3.196) is concave in σ2

hr
[l]Θr[l]⊗Υr[l] then

from Jensens inequality [39] we obtain

1

L+ 1

L∑

l=0

tr







(

1

σ2
hr
[l]
Θ−1

r [l]⊗ Υ−1
r [l] +

1

σ2
vr

X̄HX̄ ⊗ INd

)−1






≤ tr







(

(L+ 1)

(
L∑

l=0

σ2
hr
[l]Θr[l]⊗ Υr[l]

)−1

+
1

σ2
vr

X̄HX̄ ⊗ INd

)−1





. (3.197)
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Since each Υr[l] are positive definite, then by defining a matrix Ῡr ∈ R
Nd×Nd
++ as

Ῡr ,








max
(

{υr,1[l]}Ll=0

)

0

. . .

0 max
(

{υr,Nd
[l]}Ll=0

)







, (3.198)

where υr,i[l] ∈ R++ is the ith largest eigenvalue of Υr[l], we clearly have Υr[l] � Ῡr,

∀l. With this observation we can straightforwardly show from (3.197) that

1

L+ 1

L∑

l=0

tr







(

1

σ2
hr
[l]
Θ−1

r [l]⊗ Υ−1
r [l] +

1

σ2
vr

X̄HX̄ ⊗ INd

)−1






≤ tr







(

(L+ 1)

(
L∑

l=0

σ2
hr
[l]Θr[l]

)−1

⊗ Ῡ−1
r +

1

σ2
vr

X̄HX̄ ⊗ INd

)−1





. (3.199)

Finally, by multiplying both sides of (3.199) by L + 1 we prove the upper bound

for the MMSE objective function as stated in (3.65).

3.8.4 Proof of Optimal Relay Precoder

In this section we prove the optimal structure of the relay precoding matrix G as

given in Theorem 3. In order to prove the optimal relay precoder structure we

require the following lemma:

Lemma 7: [78] For Hermitian positive semi-definite matrices A ∈ H
N×N
+ and

B ∈ H
N×N
+ with non-zero eigenvalues {λa,i}Ni=1 ∈ R+ and {λb,i}Ni=1 ∈ R+, respec-

tively, which are arranged in the same order, we have the inequality

tr{AB} ≥
N∑

i=1

λa,iλb,N−i+1, (3.200)

where equality holds when A is diagonal with elements arranged in descending

order and B is diagonal with elements arranged in ascending order.
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Before utilising Lemma 7 let us write the objective function in (3.151) as

tr{E2} = tr






Rhs

(

MH
s ⊗ INr

)
(

1

σ2
v̄r

TGHĤH
r ĤrGT + T

)−1
(

Ms ⊗ INr

)

Rhs







(3.201)

= tr

{

T−1/2
(

Ms ⊗ INr

)

Rhs
Rhs

(

MH
s ⊗ INr

)

T−1/2

×
(

1

σ2
v̄r

G̃HĤH
r ĤrG̃+ IKNr

)−1}

, (3.202)

where we define a new precoding matrix G̃ ∈ C
KNr×KNr as

G̃ , GT 1/2. (3.203)

With the newly defined precoder in (3.203), the relay power constraint in (3.152)

is equivalent to

tr
{

G̃G̃H
}

≤ P̄r. (3.204)

Finding the optimal relay precoder G as the solution to (3.151)-(3.152) is then

clearly equivalent to finding the optimal structure of G̃ that minimises the objec-

tive function in (3.202) whilst satisfying the power constraint in (3.204). Let us

now recall the SVD in (3.153) which is given by

T−1/2
(
Ms ⊗ INr

)
Rhs

= UtΛV H
t (3.205)

where Ut ∈ C
KNr×KNr and Vt ∈ C

NsNr(L+1)×NsNr(L+1) are unitary matrices, and

the diagonal matrix Λ ∈ R
KNr×NsNr(L+1)
+ contains the non-zero singular values

{λi}Rt

i=1 ∈ R++, with Rt , rank{Λ}, on its upper left main diagonal. The singular

values {λi}Rt

i=1 ∈ R++ are assumed w.l.o.g. to be arranged in descending order.

Furthermore, we introduce the SVD

ĤrG̃ = UyDV H
y , (3.206)

where Uy ∈ C
KNd×KNd and Vy ∈ C

KNr×KNr are unitary matrices, and the diagonal

matrix D ∈ R
KNd×KNr
+ contains the non-zero singular values {di}

Ry

i=1 ∈ R++,

with Ry , rank{ĤrG̃}, on its upper left main diagonal. The singular values are

assumed to be arranged in decreasing order. By substituting Ĥr = Ur∆V H
r from

(3.153) into (3.206), and solving the resulting equation for G̃, we can parameterise
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the set of matrices G̃ as

G̃ = Vr∆
†UH

r UyDV H
y . (3.207)

From the family of matrices given in (3.207) we wish to find the specific matrix that

minimises the objective function in (3.202) whilst satisfying the power constraint

in (3.204). To this end we note that by substituting (3.205) and (3.206) into

(3.202) we can write

tr{E2} = tr






UtΛ

TΛUH
t Vy

(

1

σ2
v̄r

DTD + IKNr

)−1

V H
y






(3.208)

≥
KNr∑

i=1

λ2
iσ

2
v̄r

d2i + σ2
v̄r

, (3.209)

where the lower bound is obtained by applying Lemma 7 to (3.208). Also, by

substituting (3.207) into the left hand side of the power constraint in (3.204), and

making use of Lemma 7, we have

tr
{

G̃G̃H
}

= tr

{

Ur

(

∆T
)†

∆†UH
r UyDDTUH

y

}

(3.210)

≥
KNd∑

i=1

d2i

δ2i
. (3.211)

We note that the lower bound in (3.209) is achieved with Vy = Ut. Since the relay

power constraint in (3.210) is invariant to Vy we can select Vy = Ut to minimise

the objective function without affecting the power constraint. We also note that

the objective function in (3.209) is invariant to the unitary matrix Uy. We will

therefore select Uy that results in the least power consumption without affecting

the objective function. From (3.210) and (3.211) we see that the relay power

consumption is minimised with Uy = Ur. By substituting Vy = Ut and Uy = Ur

into (3.207) we arrive at the optimal matrix structure

G̃ = Vr∆
†DUH

t . (3.212)

From (3.205) it is straightforward to see that Ut can be equivalently written as

Ut = T−1/2
(
Ms ⊗ INr

)
Rhs

VtΛ
†, (3.213)
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which upon substituting into (3.212) results in

G̃ = Vr∆
†D

(

ΛT
)†

V H
t Rhs

(

MH
s ⊗ INr

)

T−1/2. (3.214)

Finally, by substituting (3.214) into (3.203) we have the optimal relay precoder G

given by

G = Vr∆
†D

(

ΛT
)†

V H
t Rhs

(

MH
s ⊗ INr

)

T−1, (3.215)

which, after the definition Φ , ∆†D, is precisely the same structure as given in

(3.155) of Theorem 3 .

The remaining task to fully prove Theorem 3 is to show that rank{Φ} ≤ R

where R , min(Rt, Rr), with Rt = rank{Λ} and Rr = rank{∆}. To do so we

note that the optimal precoder structure in (3.215) results in (3.209) holding with

equality. Substituting Φ , ∆†D (or equivalently di = φiδi) into (3.209) we can

therefore write the objective function as

tr{E2} =

KNr∑

i=1

λ2
iσ

2
v̄r

φ2
i δ

2
i + σ2

v̄r

. (3.216)

Similarly, since the optimal precoder structure of (3.215) results in (3.211) holding

with equality, then by substituting di = φiδi into (3.211) we can write the power

consumed by the relay as

tr
{

G̃G̃H
}

=

KNd∑

i=1

φ2
i . (3.217)

Noting that Rt ≤ min(KNr, NsNr(L + 1)) and Rr ≤ min(KNd, KNr) then we

see from (3.216) that having any {φi > 0}KNr

i=R+1, where R , min(Rt, Rr), will

not affect the objective function but from (3.217) will increase the transmission

power. It is then obvious that we should have rank{Φ} ≤ R so as not to waste

any transmission power. This completes the proof of Theorem 3.



Chapter 4

Non-Linear Transceiver Designs

with Perfect CSI

4.1 Introduction

In this chapter we consider transceiver designs for the two-hop MIMO OFDM re-

laying system introduced in Section 2.1 of Chapter 2. Linear transceiver designs

for narrowband MIMO relaying have been studied extensively in [40, 47, 85] for

the specific design criteria of minimising the MSE, maximising the mutual infor-

mation, and minimising the signal-information noise ratio (SINR), respectively. In

these works it is assumed that the relay and destination devices can acquire perfect

CSI of the source-relay and relay-destination channels and that the source precoder

is a scaled identity matrix, which is in fact optimal for the case of no CSI at the

source. It is also shown that the optimal linear equaliser is the MMSE equaliser,

which is provided by the Wiener-Hopf solution. Interestingly, despite the fact that

[40, 47, 85] consider different design criteria, they all derive the same optimal re-

lay precoder structure. Specifically, the optimal relay precoder is composed of

the right singular vectors of the relay-destination channel, a real diagonal power

allocation matrix with non-negative diagonal elements, and the Hermitian trans-

pose of the source-relay channels left singular vectors. With the MMSE equaliser,

and the structure of the relay precoder, the overall transmission process is es-

sentially decomposed into parallel SISO transmissions, which take place over the

channel eigenmodes (albeit with a unitary transformation of the transmit symbols

as well as the noise signals). Interestingly, this greatly simplifies the transceiver

design procedure, since it results in the original matrix valued optimisation prob-

lem reducing to a power allocation problem with scalar variables. The solution

87
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to the power allocation problem is specific to the particular design criteria under

consideration.

Contrary to the designs in [40, 47, 85], which assume narrowband relaying with

no CSI at the source, the linear transceiver designs presented in [45] consider mul-

ticarrier transmission and also assume the availability of CSI at the source. A

unified framework based on majorisation theory is presented in [45] where the op-

timal processors are derived for any Schur convex and Schur concave objective

function, which are two classes of functions that cover most reasonable communi-

cations design criteria. The work in [45] is essentially an extension of the design

framework in [16] to the more complicated case of two-hop MIMO relaying. It is

shown in [45] that, with the utilisation of the MMSE equaliser at the destination,

the optimal linear source and relay precoders completely diagonalise the error co-

variance matrix for any Schur concave objective function. Such a structure results

in the MIMO relay link being simplified to parallel SISO transmissions over the

channel eigenmodes. On the other hand, for any Schur convex objective function,

a channel diagonalisation only occurs up to a specific unitary transformation of

the transmit data symbols. The work of [45] was further extended to the case

of MIMO relaying with an arbitrary number of hops in [50], where the optimal-

ity of the channel diagonalisation property was shown to hold for any number of

successive relayed links.

Besides the study of linear transceiver designs, non-linear transceivers have also

received attention in [52–54] under the assumption of narrowband channels and for

the case that all nodes can acquire perfect CSI. In [52] and [53] DFE transceiver

designs for two-hop MIMO relaying and multi-hop MIMO relaying are studied,

respectively. A THP transceiver design is studied in [54] that aims to minimise the

arithmetic MSE for two-hop narrowband MIMO relay networks. In this chapter

we extend our previous results on DFE and THP transceiver designs in [52] and

[54] to the case of transmission over frequency selective channels using OFDM.

We consider the optimisation of the DFE and THP processors to minimise the

arithmetic MSE subject to transmission power constraints at the source and relay

terminals under the assumption that perfect CSI can be acquired at all nodes in

the network. We present two different designs depending on whether ZF or MMSE

equalisation is used at the receiver.

The remainder of this chapter is organised as follows: The optimal ZF and

MMSE DFE/THP processors are derived in Sections 4.2 and 4.3, respectively, un-

der the assumption that all nodes can acquire perfect CSI. In these sections we

derive the optimal DFE and THP processors as the solution to the optimisation

problem in (2.78)-(2.80) discussed in Section 2.4 of Chapter 2. It is worthwhile
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mentioning here that the ZF and MMSE designs presented in sections 4.2 and 4.3

are similar in their problem formulations and indeed their solutions. Nevertheless,

the details differ substantially and it is therefore worthwhile treating them inde-

pendently. Simulation results are discussed in Section 4.4 and demonstrate the

advantages of the proposed non-linear techniques compared to linear benchmarks.

Finally, conclusions are drawn in Section 4.5.

4.2 ZF DFE/THP Transceiver Design

In this section we derive the processors Fk, Gk, Wk, and Uk as the solution to the

optimisation problem (2.78)-(2.80) when ZF equalisation is used at the destination

and under the assumption that the source, relay, and destination processors can

acquire perfect CSI of all the channels. For the case of ZF equalisation the problem

in (2.78)-(2.80) should also include the ZF constraint which shall be established

in the following section.

4.2.1 Optimal ZF Equaliser

In solving the optimisation problem in (2.78)-(2.80) we shall firstly derive the op-

timal equalisers Wk that satisfy the ZF criterion. For given OFDM subcarrier

channel matrices, the ZF criterion imposes the following constraint on the rela-

tionship between the processors

WkHr,kGkHs,kFk = Uk, (4.1)

and is such that, in the absence of noise, the symbols at the receiver can be

perfectly reconstructed. Under the assumption that the matrices Hs,k and Hr,k

are perfectly known at the destination, the optimal ZF equalisers can be obtained

by directly solving the constraints in (4.1) resulting in

Wk = Uk

(
Hr,kGkHs,kFk

)†
(4.2)

= Uk

(

FH
k HH

s,kG
H
k H

H
r,kHr,kGkHs,kFk

)−1

FH
k HH

s,kG
H
k H

H
r,k, (4.3)

where (4.3) is obtained from the fact that the Moore Penrose pseudo-inverse of a

matrix A ∈ C
M×N , with M ≥ N , is given by A† = (AHA)−1AH . We note that

in order for the inverse in (4.3) to exist, and subsequently for the ZF constraints
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in (4.1) to be satisfied, we require that the following conditions are met

rank
{

FH
k HH

s,kG
H
k H

H
r,kHr,kGkHs,kFk

}

= Nk. (4.4)

For arbitrary matrices A ∈ C
N×M and B ∈ C

M×N we know that rank{AB} ≤
min(rank{A}, rank{B}). Since we can always select processors that satisfy

Rf,k , rank{Fk} = Nk (4.5)

Rg,k , rank{Gk} ≥ Nk, (4.6)

it is straightforward to show that the conditions in (4.4) can only be met if the

channel matrices satisfy the rank constraints

Rs,k , rank{Hs,k} ≥ Nk (4.7)

Rr,k , rank{Hr,k} ≥ Nk, (4.8)

which in the following we shall assume to be true. Before proceeding it is worth-

while mentioning how these restrictions affect the ZF design. The constraints in

(4.7) and (4.8) place a strict limit on the maximum number of data streams Nk

which can be transmitted on each subcarrier. This occurs since the number of

transmit data streams must satisfy

Nk ≤ min(rank{Hs,k}, rank{Hr,k}). (4.9)

For rank deficient channel matrices this can become quite prohibitive. For exam-

ple in the extreme case where either of the subcarrier channels are rank 1, the

ZF design can only support the transmission of a single data stream on that sub-

carrier. Obviously this will drastically impact on spatial multiplexing gain and

consequently the achievable data throughput.

Substituting (4.1) and (4.3) into either (2.60) or (2.75), after some tedious

but straightforward deductions, the error covariance matrices for the case of ZF

equalisation can be written in a more compact form as

Re,k = Uk

(

FH
k HH

s,kG
H
k H

H
r,k

(

Hr,kGkG
H
k H

H
r,kσ

2
vs
+ σ2

vr
INd

)−1

×Hr,kGkHs,kFk

)−1

UH
k , (4.10)

where we note that the error covariance matrices are now no longer a function of

the equalisers Wk and only depend on the remaining processors Fk, Gk, and Uk.
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4.2.2 Optimal ZF Source, Relay, and Feedback Matrices

Having established the optimal ZF equalisers we now focus on deriving the optimal

source and relay precoders Fk and Gk, as well as the feedback matrices Uk as

the solution to (2.78)-(2.80). In order to do so we shall firstly reformulate the

optimisation problem. Such a reformulation is based on finding a lower bound to

the arithmetic MSE objective function in (2.78) and then showing that appropriate

matrices can be constructed to achieve this lower bound. We note that similar

approaches can be found in e.g. [24] and [25] for the case of ZF and MMSE

DFE transceiver designs in point-to-point MIMO scenarios. Obviously our work

differs from these due to the inclusion of the relay terminal and the corresponding

additional power constraint this brings.

Before deriving the lower bound to the arithmetic MSE we shall find it conve-

nient in the following analysis to decompose the source precoders w.l.o.g as

Fk = F̄kΨk, (4.11)

where F̄k ∈ C
Ns×Nk , are arbitrary matrices and Ψk ∈ C

Nk×Nk are unitary. Substi-

tuting (4.11) into (4.10) it is straightforward to write

Re,k = UkΨ
H
k EkΨkU

H
k , (4.12)

where we have used the fact that Ψk are unitary and for notational convenience

we define the matrices

Ek ,

(

F̄H
k HH

s,kG
H
k H

H
r,k

(

Hr,kGkG
H
k H

H
r,kσ

2
vs
+ σ2

vr
INd

)−1

Hr,kGkHs,kF̄k

)−1

,

(4.13)

In the following we must assume that the matricesEk in (4.13) are positive definite

(otherwise they do not exist).

We are now ready to derive the lower bound to the arithmetic MSE objective

function in (2.78) which can be obtained based on the following lemma:

Lemma 8: For a positive semi-definite matrixA ∈ C
M×M we have the inequal-

ity |A|1/M ≤ tr{A} /M where equality is achieved if and only if A = αIM , for

some α ∈ R+. In otherwords equality is achieved whenA is a diagonal matrix with

equal non-negative diagonal entries. This is the well known arithmetic-geometric

mean inequality.
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Substituting (4.12) into (2.78) and applying Lemma 8 we can show that the

arithmetic MSE objective function in (2.78) is lower bounded as follows:

1

K

K∑

k=1

|Ek|1/Nk =
1

K

K∑

k=1

|Re,k|1/Nk (4.14)

≤ 1

K

K∑

k=1

tr
{
Re,k

}

Nk

, (4.15)

where to obtain the equality in (4.14) we have used the fact that, for matrices

A ∈ C
N×N and B ∈ C

N×N , |AB| = |BA| = |B||A|, as well as the facts that Uk

are unit diagonal triangular and Ψk are unitary. We note that the inequality in

(4.15) holds for any arbitrary matrices Re,k. Thus it is straightforward to deduce

that, in order for our transceiver design to minimise the objective function in

(2.78), the optimal processors should result in (4.15) holding with equality. From

Lemma 8 we know that this can only be achieved when Re,k are diagonal with

equal diagonal elements. Noting now that

|Ek|1/Nk =

Nk∏

i=1

ǫ
1/Nk

k,i , (4.16)

where {ǫk,i}Nk

i=1 ∈ R++ are the non-zero eigenvalues ofEk we can show from Lemma

8 and with the structure of the error covariance matrices in (4.12), that the optimal

solution to (2.78)-(2.80) should result in

Re,k = UkΨ
H
k EkΨkU

H
k =

Nk∏

i=1

ǫ
1/Nk

k,i INk
, (4.17)

Using the Cholesky factorisation we find that the calculation of Uk and Ψk that

satisfy (4.17) is equivalent to finding the matrices that satisfy

UkΨ
H
k E

1/2
k =

Nk∏

i=1

ǫ
1/2Nk

k,i SH
k , (4.18)

where Sk ∈ C
Nk×Nk are unitary matrices. Upon re-arranging (4.18) we arrive at

the matrix decompositions

Nk∏

i=1

ǫ
1/2Nk

k,i E
−1/2
k = SkUkΨ

H
k . (4.19)
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The decompositions in (4.19) are known as the equal diagonal QR decomposi-

tions [26] or the Geometric Mean Decompositions (GMD) [28, 86] and result in

the matrices Uk being unit diagonal upper right triangular and Ψk being unitary

as required. The decompositions in (4.19) can be computed using the algorithm

provided in [26]. With Uk and Ψk being computed according to (4.19) then by

construction (4.17) holds with equality. Furthermore, this results in the lower

bound in (4.15) holding with equality which, as previously mentioned, is required

for our solution to be optimal. With this observation we can simplify the optimi-

sation problem in (2.78)-(2.80). Using the fact that our previous calculation of Uk

and Ψk result in (4.15) holding with equality we can replace the objective function

in (2.78) with the lower bound in (4.15). With this observation, and also using

the source precoder decomposition in (4.11), we can reformulate the optimisation

problem in (2.78)-(2.80) as

min
F̄k,Gk

K∑

k=1

|Ek| (4.20)

s.t.
K∑

k=1

tr
{

F̄kF̄
H
k

}

≤ Ps (4.21)

K∑

k=1

tr
{

Gk

(

Hs,kF̄kF̄
H
k HH

s,k + σ2
vs
INr

)

GH
k

}

≤ Pr, (4.22)

Evidently, the remaining task is to find the matrices F̄k and Gk as the solution

to (4.20)-(4.22). Before finding the optimal F̄k and Gk let us firstly introduce the

singular value decompositions (SVDs)

Hs,k = Us,kΛkV
H
s,k (4.23)

Hr,k = Ur,k∆kV
H
r,k, (4.24)

where Us,k ∈ C
Nr×Nr and Vs,k ∈ C

Ns×Ns are unitary matrices that contain the

left and right singular vectors, respectively, of Hs,k, and similarly Ur,k ∈ C
Nd×Nd

and Vr,k ∈ C
Nr×Nr are the unitary matrices containing the left and right singular

vectors of Hr,k. The diagonal matrices Λk ∈ R
Nr×Ns
+ and ∆k ∈ R

Nd×Nr
+ contain

the non-zero singular values {λk,i}
Rs,k

i=1 ∈ R++ and {δk,i}
Rr,k

i=1 ∈ R++, respectively,

which are located on their upper left main diagonals and are assumed w.l.o.g.

to be in decreasing order. It is worth reiterating here that in order for the ZF

equaliser in (4.3) to exist we require, from (4.4), that Nk ≤ {Rs,k, Rr,k}. Using

the decompositions in (4.23) and (4.24) we establish the optimal source and relay

precoders as the solution to (4.20)-(4.22) in the following theorem:
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Theorem 4: The structure of the optimal processors that minimise the objec-

tive function in (4.20) and satisfy the source and relay power constraints in (4.21)

and (4.22) are

F̄k = Vs,kΓk (4.25)

Gk = Vr,kΦkU
H
s,k, (4.26)

where Γk ∈ R
Ns×Nk
+ and Φk ∈ R

Nr×Nr
+ are diagonal matrices satisfying rank{Γk} =

rank{Φk} = Nk and have elements {γk,i}Nk

i=1 ∈ R++ and {φk,i}Nk

i=1 ∈ R++, respec-

tively, on their upper left main diagonals, with all other elements being zero.

Proof: The detailed proof of the precoder structures given in (4.25) and (4.26)

can be found in Section 4.6.1 on page 110.

Substituting the optimal precoding matrices (4.25) and (4.26) into (4.20)-(4.22)

results in the matrix valued optimisation problem reducing to the simpler scalar

valued optimisation problem

min
γ,φ

K∑

k=1

Nk∏

i=1

(

γ2
k,iλ

2
k,iφ

2
k,iδ

2
k,i

φ2
k,iδ

2
k,iσ

2
vs
+ σ2

vr

)−1

(4.27)

s.t.
K∑

k=1

Nk∑

i=1

γ2
k,i ≤ Ps (4.28)

K∑

k=1

Nk∑

i=1

φ2
k,i

(
γ2
k,iλ

2
k,i + σ2

vs

)
≤ Pr (4.29)

γ2
k,i > 0, φ2

k,i > 0, 1 ≤ k ≤ K, 1 ≤ i ≤ Nk, (4.30)

where we define vectors γ , [γk,i]
K,Nk

k,i ∈ R
N̄
++ and φ , [φk,i]

K,Nk

k,i ∈ R
N̄
++. In the

following section we show that the optimisation problem in (4.27)-(4.30) can be

reformulated as a convex optimisation problem and thus the optimal solution can

be derived.

4.2.3 ZF Joint Source and Relay Power Allocation Algo-

rithm Using Geometric Programming

In order to simplify our following analysis let us firstly introduce the new variables

ϑk,i , γ2
k,i (4.31)

ϕk,i , φ2
k,i

(
γ2
k,iλ

2
k,i + σ2

vs

)
, (4.32)
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and restate the problem in (4.27)-(4.30) as

min
ϑ,ϕ

K∑

k=1

Nk∏

i=1

(

ϑk,iλ
2
k,iσ

2
vr
+ ϕk,iδ

2
k,iσ

2
vs
+ σ2

vs
σ2
vr

ϑk,iλ
2
k,iϕk,iδ

2
k,i

)

(4.33)

s.t.
K∑

k=1

Nk∑

i=1

ϑk,i ≤ Ps (4.34)

K∑

k=1

Nk∑

i=1

ϕk,i ≤ Pr (4.35)

ϑk,i > 0, ϕk,i > 0, 1 ≤ k ≤ K, 1 ≤ i ≤ Nk, (4.36)

where we define ϑ , [ϑk,i]
K,Nk

k,i ∈ R
N̄
++ and ϕ , [ϕk,i]

K,Nk

k,i ∈ R
N̄
++. We note that the

power constraints in (4.34) and (4.35) are now decoupled which will simplify our

following analysis. The optimal solution to the optimisation problem in (4.33)-

(4.36) can be found using geometric programming. To this end let us firstly

introduce auxiliary variables tk,i, with the associated vector t , [tk,i]
K,Nk

k,i ∈ R
N̄
++,

and equivalently state the optimisation problem in (4.33)-(4.36) as

min
ϑ,ϕ,t

K∑

k=1

Nk∏

i=1

tk,i (4.37)

s.t.
K∑

k=1

Nk∑

i=1

ϑk,i ≤ Ps (4.38)

K∑

k=1

Nk∑

i=1

ϕk,i ≤ Pr (4.39)

ϑk,iλ
2
k,iσ

2
vr
+ ϕk,iδ

2
k,iσ

2
vs
+ σ2

vs
σ2
vr

tk,iϑk,iλ
2
k,iϕk,iδ

2
k,i

≤ 1 (4.40)

ϑk,i > 0, ϕk,i > 0, 1 ≤ k ≤ K, 1 ≤ i ≤ Nk. (4.41)

We note firstly that the objective function in (4.37) is a posynomial function1 [39].

Secondly, since the numerator of the constraint in (4.40) is a posynomial and the

denominator is a monomial2 [39], the constraint in (4.40) is also a posynomial.

Finally, the constraints in (4.38), (4.39), and (4.41), are trivially posynomial func-

tions. Thus, the problem in (4.37)-(4.41) is a geometric programming problem

and the global optimal solution can be found [39]. Geometric programs are in,

general, not naturally convex optimisation problems but may be transformed to

geometric programs in convex form with a change of variables and a reformulation

1A posynomial function is one of the form f(x) =
∑K

k=1
ckx

a1k
1

x
a2k
2

...x
a
n
K

K .
2A monomial function is one of the form f(x) = cx

a1

1
x
a2

2
...xa

n

n .
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of the objective function and constraints [39]. In order to transform the problem

into convex form we introduce the new variables

t̃k,i , log
(
tk,i

)
(4.42)

ϑ̃k,i , log
(
ϑk,i

)
(4.43)

ϕ̃k,i , log
(
ϕk,i

)
, (4.44)

along with the vectors t̃ , [t̃k,i]
K,Nk

k,i ∈ R
N̄
++, ϑ̃ , [ϑ̃k,i]

K,Nk

k,i ∈ R
N̄
++ and ϕ̃ ,

[ϕ̃k,i]
K,Nk

k,i ∈ R
N̄
++. Substituting (4.42)-(4.44) into (4.37)-(4.41) allows us to restate

the optimisation problem as

min
ϑ̃,ϕ̃,t̃

K∑

k=1

exp

(
Nk∑

i=1

t̃k,i

)

(4.45)

s.t.
K∑

k=1

Nk∑

i=1

exp
(

ϑ̃k,i

)

≤ Ps (4.46)

K∑

k=1

Nk∑

i=1

exp
(
ϕ̃k,i

)
≤ Pr (4.47)

exp
(

ϑ̃k,i

)

λ2
k,iσ

2
vr
+ exp

(
ϕ̃k,i

)
δ2k,iσ

2
vs
+ σ2

vs
σ2
vr

exp
(

t̃k,i + ϑ̃k,i + ϕ̃k,i

)

λ2
k,iδ

2
k,i

≤ 1,

1 ≤ k ≤ K, 1 ≤ i ≤ Nk. (4.48)

Before proceeding we note that with (4.43) and (4.44), the inequality constraints

in (4.41) are equivalent to exp(ϑ̃k,i) > 0 and exp(ϕ̃k,i) > 0. Obviously such con-

straints are redundant since they do not affect the feasible sets for the new variables

ϑ̃ and ϕ̃, and have therefore been removed from the optimisation problem. We

now observe that the change of variable in (4.42) has resulted in the objective

function (4.37) being converted from a posynomial function into the logarithmi-

cally convex function in (4.45). Similarly, through the change of variables (4.43),

(4.44), and (4.42), the constraints in (4.46)-(4.48) are also logarithmically convex.

Taking the logarithm of (4.45)-(4.48) we can write the problem as a geometric
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problem in convex form as

min
ϑ̃,ϕ̃,t̃

log

(
K∑

k=1

exp

(
Nk∑

i=1

t̃k,i

))

(4.49)

s.t. log

(
K∑

k=1

Nk∑

i=1

exp
(

ϑ̃k,i

)
)

≤ log (Ps) (4.50)

log

(
K∑

k=1

Nk∑

i=1

exp
(
ϕ̃k,i

)

)

≤ log (Pr) (4.51)

log
(

exp
(

ϑ̃k,i

)

λ2
k,iσ

2
vr
+ exp

(
ϕ̃k,i

)
δ2k,iσ

2
vs
+ σ2

vs
σ2
vr

)

≤
(

t̃k,i + ϑ̃k,i + ϕ̃k,i

)

+ log
(
λ2
k,iδ

2
k,i

)
, 1 ≤ k ≤ K, 1 ≤ i ≤ Nk. (4.52)

Since the problem in (4.49)-(4.52) is a convex optimisation problem the optimal

solution can be found using interior point methods [39]. Once the optimal ϑ̃ and

ϕ̃ as the solution to (4.49)-(4.52) have been computed, the optimal γ and φ as

the solution to the original optimisation problem in (4.27)-(4.30) can be recovered

using (4.43), (4.44), (4.31) and (4.32).

4.3 MMSE DFE/THP Transceiver Design

In this section we derive the optimal DFE and THP processors as the solution to

the optimisation problem in (2.78)-(2.80) for the case when perfect CSI is available

to all nodes and the MMSE equaliser is used at the receiver. We begin the optimal

MMSE design by firstly deriving the optimal MMSE equalisers Wk.

4.3.1 Optimal MMSE Equaliser

Although the ZF solution derived in (4.3) has the often desirable property that

it can avoid crosstalk between the different data streams, it is well known to

suffer a penalty from noise amplification. The noise amplification phenomenon

may manifest itself in poor BER and MSE performance, particularly at low SNR

values. The optimal MMSE equaliser, which provides a tradeoff between complete

interference cancellation and the noise enhancement exhibited by the ZF receiver,

is obtained by setting the derivative of the objective function in (2.78) w.r.t. W ∗
k
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to zero, and then solving for Wk. This results in the optimal solution

Wk = UkF
H
k HH

s,kG
H
k H

H
r,k

(

Hr,kGkHs,kFkF
H
k HH

s,kG
H
k H

H
r,k

+Hr,kGkG
H
k H

H
r,kσ

2
vs
+ σ2

vr
INd

)−1

, (4.53)

which is the well known Wiener Hopf solution. Contrary to the ZF solution in

(4.3) we observe that the MMSE solution in (4.53) takes into account the noise co-

variance matrices σ2
vs
INr

and σ2
vr
INd

. Therefore in order to implement the MMSE

receiver it is required that the noise statistics be known at the destination device.

It is also worthwhile mentioning that the MMSE equaliser does not require any

strict assumptions on the rank of Hs,k and Hr,k, which were needed for the ZF

equaliser (see the rank constraint in (4.4)). This is due to the fact that the matrix

inverse in (4.53) is regularised by the positive definite matrix σ2
vr
INd

. Upon substi-

tuting (4.53) into (2.60) or (2.75) we can write the concentrated error covariance

matrix when the MMSE equaliser is used as

Re,k = Uk

(

INk
− FH

k HH
s,kG

H
k H

H
r,k

(

Hr,kGk

(

Hs,kFkF
H
k HH

s,k + σ2
vs
INr

)

×GH
k H

H
r,k + σ2

vr
INd

)

Hr,kGkHs,kFk

)

UH
k (4.54)

= Uk

(

INk
+ FH

k HH
s,kG

H
k H

H
r,k

(

Hr,kGkG
H
k H

H
r,kσ

2
vs
+ σ2

vr
INd

)−1

×Hr,kGkHs,kFk

)−1

UH
k , (4.55)

where in order to obtain (4.55) we have applied the Woodbury identity3 to (4.54).

We see that the error covariance matrix in (4.55) for the case of MMSE equal-

isation is always guaranteed to be positive definite irrespective of the specific

properties of Fk, Gk, Hs,k, and Hr,k. This is in contrast to the case of the ZF

solution (c.f. (4.13)), where for a given Nk the assumptions of rank{Hs,k} ≥ Nk

and rank{Hr,k} ≥ Nk were required for the ZF solution to exist. For the ZF de-

sign, the rank constraints placed a restrictive assumption on the number of data

streams that could be transmitted given by Nk ≤ min(rank{Hs,k}, rank{Hr,k}).
On the contrary, the MMSE equaliser allows Nk independent data streams to be

transmitted irrespective of the channel rank and thus the MMSE solution is ca-

pable of dealing with more general channel matrices than that of the ZF solution.

Furthermore, it was shown that the ZF precoders given in Theorem 4 satisfied

rank{Fk} = Nk and rank{Gk} = Nk (conditions which were also necessary for the

3For matrices A, B, C, and D, the Woodbury identity states that A
−1 − A

−1
B(C−1 +

DA
−1

B)−1
DA

−1 = (A+BCD)−1.
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existence of the ZF solution). As will be seen in the following sections, the pre-

coders for the MMSE solution do not necessarily have to satisfy these constraints.

This provides the MMSE solution more degrees of freedom in which it allocates

the available power budgets.

4.3.2 Optimal MMSE Source, Relay, and Feedback Matri-

ces

Similar to the ZF designs derived in the previous section, we shall derive a lower

bound to the arithmetic MSE and then find the appropriate matrices such that the

lower bound holds with equality. Substituting the source precoder decomposition

Fk = F̄kΨk from (4.11), where we recall that F̄k are arbitrary matrices and Ψk are

unitary, into (4.55) we can decompose the error covariance matrices as

Re,k = UkΨ
H
k EkΨkU

H
k , (4.56)

where we define the matrices Ek ∈ C
Nk×Nk as

Ek ,

(

INk
+ F̄H

k HH
s,kG

H
k H

H
r,k

(

Hr,kGkG
H
k H

H
r,kσ

2
vs
+ σ2

vr
INd

)−1

Hr,kGkHs,kF̄k

)−1

.

(4.57)

We note that, irrelevant of the structure of F̄k, Gk, Hs,k, and Hr,k, the matrices

Ek in (4.57) are always guaranteed to be positive definite. Comparing (4.56) and

(4.57) to the corresponding results for the ZF design in (4.12) and (4.13), it is

interesting to see that the only difference in the error covariance matrices is the

addition of the matrix INk
in (4.57).

We recall that by applying Lemma 8 to the objective function in (2.78) the

lower bound to the arithmetic MSE is given by

1

K

K∑

k=1

|Ek|1/Nk =
1

K

K∑

k=1

|Re,k|1/Nk (4.58)

≤ 1

K

K∑

k=1

tr
{
Re,k

}

Nk

, (4.59)

We also recall from Lemma 8 that our optimal solution should result in (4.59)

holding with equality which holds provided that Re,k is diagonal with equal diag-

onal elements given by
∏Nk

i=1 ǫ
1/Nk

k,i , where {ǫk,i}Nk

i=1 ∈ R+ are the eigenvalues of Ek

in (4.57). Following the same procedure that was used for the ZF design we find
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that this results when the matrices Uk and Ψk are selected from the GMD

Nk∏

i=1

ǫ
1/2Nk

k,i E
−1/2
k = SkUkΨ

H
k . (4.60)

Using the fact that the matrices Uk and Ψk from (4.60) result in (4.59) holding

with equality we can reformulate the optimisation problem in (2.78)-(2.80) as

min
F̄k,Gk

K∑

k=1

|Ek| (4.61)

s.t.
K∑

k=1

tr
{

F̄kF̄
H
k

}

≤ Ps (4.62)

K∑

k=1

tr
{

Gk

(

Hs,kF̄kF̄
H
k HH

s,k + σ2
vs
INr

)

GH
k

}

≤ Pr, (4.63)

Theorem 5: The optimal MMSE precoding matrices F̄k andGk as the solution

to the optimisation problem in (4.61)-(4.63) are given by

F̄k = Vs,kΓk (4.64)

Gk = Vr,kΦkU
H
s,k, (4.65)

where Γk ∈ R
Ns×Nk
+ and Φk ∈ R

Nr×Nr
+ are at most rank N̄k diagonal matrices with

elements {γk,i}N̄k

i=1 ∈ R+ and {φk,i}N̄k

i=1 ∈ R+ on their upper left main diagonals.

Here we define the variable N̄k , min(Nk, Rs,k, Rr,k). The matrices Vs,k, Vr,k, and

Us,k are given from the channel decompositions in (4.23) and (4.24).

Proof: The proof of the precoder structures in (4.64) and (4.65) are given in

Section 4.6.2 on page 114.

The structure of the source and relay precoders given in (4.64) and (4.65) result

in the original matrix valued optimisation problem in (4.61)-(4.63) reducing to the
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scalar valued problem

min
γ,φ

K∑

k=1

N̄k∏

i=1

(

1 +
γ2
k,iλ

2
k,iφ

2
k,iδ

2
k,i

φ2
k,iδ

2
k,iσ

2
vs
+ σ2

vr

)−1

(4.66)

s.t.
K∑

k=1

N̄k∑

i=1

γ2
k,i ≤ Ps (4.67)

K∑

k=1

N̄k∑

i=1

φ2
k,i

(
γ2
k,iλ

2
k,i + σ2

vs

)
≤ Pr (4.68)

γ2
k,i ≥ 0, φ2

k,i ≥ 0, 1 ≤ k ≤ K, 1 ≤ i ≤ N̄k. (4.69)

Unfortunately, unlike the power allocation problem for the ZF transceiver design,

(4.66)-(4.69) cannot be formulated as a convex optimisation problem. However we

note that for high received SNR we have the inequality

K∑

k=1

N̄k∏

i=1

(

1 +
γ2
k,iλ

2
k,iφ

2
k,iδ

2
k,i

φ2
k,iδ

2
k,iσ

2
vs
+ σ2

vr

)−1

≤
K∑

k=1

N̄k∏

i=1

(

γ2
k,iλ

2
k,iφ

2
k,iδ

2
k,i

φ2
k,iδ

2
k,iσ

2
vs
+ σ2

vr

)−1

. (4.70)

By replacing the objective function in (4.66) with the upper bound in (4.70),

the resulting optimisation problem is precisely the same as that given in (4.27)-

(4.30). Thus we can derive γ and φ by using the geometric programming approach

discussed in section 4.2.3. However, such an approach is obviously only asymp-

totically optimal with increasing received SNR. As suggested in e.g. [45, 48, 54]

an alternating power allocation algorithm can be used to find at least a locally

optimal solution to (4.66)-(4.69) and is discussed in the following section.

4.3.3 MMSE Alternating Power Allocation Algorithm

In order to derive the alternating algorithm we firstly decouple the source and relay

power constraints using an appropriate change of variable, and then reformulate

the optimisation problem. To this end let us define the new variables

ϑk,i , γ2
k,i, (4.71)

ϕk,i , φ2
k,i(γ

2
k,iλ

2
k,i + σ2

vs
), (4.72)
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and rewrite the optimisation problem in (4.66)-(4.69) as

min
ϑ,ϕ

K∑

k=1

N̄k∑

i=1

log

(

ϑk,iλ
2
k,iσ

2
vr
+ ϕk,iδ

2
k,iσ

2
vs
+ σ2

vs
σ2
vr

(
ϑk,iλ

2
k,i + σ2

vs

) (
ϕk,iδ

2
k,i + σ2

vr

)

)

(4.73)

s.t.
K∑

k=1

N̄k∑

i=1

ϑk,i ≤ Ps (4.74)

K∑

k=1

N̄k∑

i=1

ϕk,i ≤ Pr (4.75)

ϑk,i ≥ 0, ϕk,i ≥ 0, k = 1, ..., K, i = 1, ..., Nk, (4.76)

We observe now that, with the definitions in (4.71) and (4.72), the power con-

straints stated in (4.74) and (4.75) are now decoupled making the problem easier

to handle. Furthermore, for a given ϕ it can be shown that the problem in (4.73)-

(4.76) is a standard convex optimisation problem w.r.t. ϑ. Thus the optimal

solution can be derived from the KKT conditions [39] resulting in

ϑk,i =
σ2
vs

2λ2
k,i

[√

δ4k,iϕ
2
k,i

σ4
vr

+
4µsλ

2
k,iϕk,iδ

2
k,i

σ2
vs
σ2
vr

− δ2k,iϕk,i

σ2
vr

− 2

]+

, (4.77)

where µs must be calculated to satisfy the power constraint in (4.74) and can be

calculated from the non linear equation

K∑

k=1

N̄k∑

i=1

σ2
vs

2λ2
k,i

[√

δ4k,iϕ
2
k,i

σ4
vr

+
4µsλ

2
k,iϕk,iδ

2
k,i

σ2
vs
σ2
vr

− δ2k,iϕk,i

σ2
vr

− 2

]+

≤ Ps. (4.78)

We observe that (4.78) is a monotonically increasing function w.r.t. µs and there-

fore µs can be computed using the method of bisection with upper and lower

bounds on µs given by

0 ≤ µs ≤










Ps +
K∑

k=1

N̄k∑

i=1

σ2
vs

2λ2
k,i

(

δ2k,iϕk,i

σ2
vr

+ 2

)

K∑

k=1

N̄k∑

i=1

σ2
vs

2λ2
k,i

(√

4λ2
k,iϕk,iδ

2
k,i

σ2
vs
σ2
vr

)










2

. (4.79)

Detailed derivations of the solutions for ϑk,i are given in (4.77) and the upper and

lower limits for µs in (4.79) are given in Section 4.6.3 on page 119.

For a given ϑ the problem in (4.73)-(4.76) is also a standard convex optimisation

problem w.r.t. ϕ and the optimal solution can therefore be calculated from the
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KKT conditions resulting in

ϕk,i =
σ2
vr

2δ2k,i

[√

λ4
k,iϑ

2
k,i

σ4
vs

+
4µrδ

2
k,iϑk,iλ

2
k,i

σ2
vs
σ2
vr

− λ2
k,iϑk,i

σ2
vs

− 2

]+

, (4.80)

with the Lagrangian multiplier µr required to be computed to satisfy

K∑

k=1

N̄k∑

i=1

σ2
vr

2δ2k,i

[√

λ4
k,iϑ

2
k,i

σ4
vs

+
4µrδ

2
k,iϑk,iλ

2
k,i

σ2
vs
σ2
vr

− λ2
k,iϑk,i

σ2
vs

− 2

]+

≤ Pr, (4.81)

and is such that the power constraint in (4.75) is satisfied with equality. The value

of µr can be calculated using the method of bisection with µr being bounded by

0 ≤ µr ≤










Pr +
K∑

k=1

N̄k∑

i=1

σ2
vr

2δ2k,i

(

λ2
k,iϑk,i

σ2
vs

+ 2

)

K∑

k=1

N̄k∑

i=1

σ2
vr

2δ2k,i

(√

4δ2k,iϑk,iλ
2
k,i

σ2
vr
σ2
vs

)










2

. (4.82)

Since the problem in (4.73)-(4.76) is symmetric in the variables ϑ and ϕ, the

solutions in (4.80) and (4.82) can be derived in exactly the same manner as those

in (4.77) and (4.79), the details of which are provided in Section 4.6.3 on page 119.

The alternating power algorithm now proceeds as follows: The variables ϑ and

ϕ are initialised to satisfy the constraints in (4.74) and (4.75), respectively. Ap-

propriate initialisations are uniform power allocations i.e. ϑk,i = Ps/KNk, and

ϕk,i = Pr/KNk. The source power allocation variable ϑ is then updated with ele-

ments given in (4.77) and µs being computed from the method of bisection using

the bounds in (4.79). With the given ϑ, the elements of ϕ can then be updated us-

ing (4.80) with µr being calculated from the method of bisection using the bounds

in (4.82). This procedure is repeatedly carried out until an appropriate termina-

tion criterion is met. Since ϑ and ϕ are calculated from solving standard convex

optimisation problems, the updating of these variables can only decrease or pre-

serve the objective function in (4.73) and therefore convergence of the alternating

algorithm is guaranteed [45, 48, 54]. Finally, with ϑ and ϕ, the elements of γ and

φ can be calculated from (4.71) and (4.72), respectively.

4.4 Simulation Results

In this section we evaluate the performance of the proposed DFE and THP

transceiver designs through numerical simulations. In all simulations we consider a
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system utilising Ns = Nr = Nd = 3 antennas at each node in the network, with the

frequency selective MIMO channel impulse responses being modelled according to

(2.8) and (2.9) of Section 2.1.3. In all simulations we set L+1 = 5 and the spatial

correlation matrices are set to identity matrices i.e. we assume no spatial corre-

lation. The elements of Hsw[l] and Hrw[l] in (2.8) and (2.9) are drawn from zero

mean Gaussian random distributions with variances σ2
hs
[l] = σ2

hr
[l] = 1/(L + 1),

0 ≤ l ≤ L. OFDM is employed withK = 32 subcarriers with each subcarrier being

used to transmit Nk = 3 16-QAM data symbols. We define the SNR of the source-

relay and relay-destination channels as SNRs = Ps/Kσ2
vs

and SNRr = Pr/Kσ2
vr

respectively. All simulation results are obtained from averageing over 500 channel

realisations.

4.4.1 Comparison of ZF Transceivers

We firstly compare the performance of the proposed ZF DFE and ZF THP transceiver

designs to linear transceivers utilising ZF equalisation. We compare the perfor-

mance of the proposed solutions to the naive amplify forward (NAF), maximum

mutual information (MMI), maximum geometric signal-interference noise ratio

(GSINR), minimum arithmetic MSE (AMSE), and minimax-MSE (MM-MSE),

designs which are all derived in4 [45]. Figures 4.1 and 4.2 compare the BER and

MSE performances, respectively, of the proposed and benchmark designs. The re-

sults are shown against varying SNRs(dB) with SNRr = 25dB. The dashed curves

show the performance of the DFE transceivers in the absence of error propagation

(referred to as ”genie” DFE algorithms). It is evident from Figures 4.1 and 4.2

that the proposed non-linear DFE and THP transceivers with optimal power allo-

cation (OPA) provide a substantial improvement in performance in terms of both

BER and MSE when compared to the linear transceiver designs. For complete-

ness we also provide simulation results showing the BER and MSE performance

of the proposed and benchmark ZF algorithms against varying SNRr(dB) with

SNRs = 25dB. Figures 4.3 and 4.4 show the BER and MSE results, respectively,

for this scenario. We again observe that the proposed ZF DFE and ZF THP

algorithms provided substantially improved performance compared to the linear

benchmarks.

4The transceivers in [45] are all derived with a linear MMSE receiver at the destination. These
algorithms have been appropriately modified for the case of ZF equalisation at the destination
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4.4.2 Comparison of MMSE Transceivers

We now compare the performance of the proposed MMSE DFE and MMSE THP

transceivers derived in Section 4.3 against the transceivers in [45] when the linear

MMSE receiver is used at the destination. We also compare the performance of

the proposed MMSE DFE and THP transceivers that utilise the alternating power

allocation (APA) algorithm discussed in Section 4.3.3 with suboptimal MMSE

DFE and THP solutions. The suboptimal solutions are similar to the ones derived

in Section 4.3 but utilise an equal power allocation (EPA) as opposed to the APA

algorithm provided in Section 4.3.3. For the EPA algorithm, the source and relay

power allocation matrices are selected to allocate power uniformly across all data

streams. Figures 4.5 and 4.6 show the performance of the proposed and benchmark

designs against varying SNRs(dB) with SNRr = 25dB. The dashed curves again

show the performance of the DFE transceivers in the absence of error propagation

(referred to as ”genie” DFE algorithms). From Figures 4.5 and 4.6 we see that

the non-linear transceivers provide improved performance compared to the linear

benchmark designs. Furthermore, the non-linear algorithms that utilise the APA

algorithm provide better performance in terms of BER and MSE compared to the

non-linear techniques that use the suboptimal EPA algorithm. Figures 4.7 and 4.8

show the corresponding results for varying SNRr(dB) with SNRs = 25dB. Similar

trends to the ones demonstrated in Figures 4.5-4.6 can be observed in Figures 4.7

and 4.8 with the proposed algorithms offering improved performance to the linear

benchmarks.
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Figure 4.1: BER against SNRs(dB) of ZF linear and non-linear transceivers for
a system with uncorrelated delay paths, Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
[l] =

σ2
hr
[l] = 1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, and SNRr = 25dB.
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Figure 4.2: MSE against SNRs(dB) of ZF linear and non-linear transceivers for
a system with uncorrelated delay paths, Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
[l] =

σ2
hr
[l] = 1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, and SNRr = 25dB.
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Figure 4.3: BER against SNRr(dB) of ZF linear and non-linear transceivers for
a system with uncorrelated delay paths, Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
[l] =

σ2
hr
[l] = 1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, and SNRs = 25dB.
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Figure 4.4: MSE against SNRr(dB) of ZF linear and non-linear transceivers for
a system with uncorrelated delay paths, Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
[l] =

σ2
hr
[l] = 1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, and SNRs = 25dB.
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Figure 4.5: BER against SNRs(dB) of MMSE linear and non-linear transceivers
for a system with uncorrelated delay paths, Ns = Nr = Nd = 3, L + 1 = 5,
σ2
hs
[l] = σ2

hr
[l] = 1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, and SNRr = 25dB.
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Figure 4.6: MSE against SNRs(dB) of MMSE linear and non-linear transceivers
for a system with uncorrelated delay paths, Ns = Nr = Nd = 3, L + 1 = 5,
σ2
hs
[l] = σ2

hr
[l] = 1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, and SNRr = 25dB.
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Figure 4.7: BER against SNRr(dB) of MMSE linear and non-linear transceivers
for a system with uncorrelated delay paths, Ns = Nr = Nd = 3, L + 1 = 5,
σ2
hs
[l] = σ2

hr
[l] = 1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, and SNRs = 25dB.
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Figure 4.8: MSE against SNRr(dB) of MMSE linear and non-linear transceivers
for a system with uncorrelated delay paths, Ns = Nr = Nd = 3, L + 1 = 5,
σ2
hs
[l] = σ2

hr
[l] = 1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, and SNRs = 25dB.
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4.5 Chapter Summary and Conclusions

In this chapter we considered the derivation of the optimal processing matrices for

MIMO OFDM relaying systems with DFE or THP. The optimal processors were

derived under the assumption that perfect CSI was available to the source, relay-

ing, and destination devices. Such an assumption is reasonable when the SNR

during the training/channel estimation phase is high enough to obtain accurate

channel estimates. We considered two seperate transceiver designs depending on

whether ZF or MMSE equalisation was employed at the destination. For both

cases we considered the optimisation of the remaining processors to minimise the

arithmetic MSE subject to transmission constraints at the source and relay ter-

minals. The optimal processors were shown to convert the original matrix valued

optimisation problem into simpler scalar valued power allocation problems. For

the case of ZF equalisation the optimal source and relay power allocation matrices

were derived using GP. For the case of MMSE equalisation an alternating power

allocation algorithm must be used to optimise the source and relay power allo-

cation matrices. Simulation results demonstrated that the proposed ZF/MMSE

DFE and THP algorithms provide improved performance in terms of BER and

MSE compared to linear benchmark designs. Although perfect CSI of all chan-

nels may be a reasonable assumption in some cases, if the channels are estimated

imperfectly then the algorithms proposed in this chapter will suffer a loss in per-

formance. In the next chapter we therefore consider statistically robust DFE and

THP transceiver designs that account for imperfect CSI.

4.6 Chapter Derivations and Proofs

This section provides some proofs and derivations which have been omitted from

the main text.

4.6.1 Proof of Optimal ZF Source and Relay Precoders

In this section we provide the detailed derivation of the optimal ZF precoders

given in (4.25) and (4.26). In order to prove F̄k and Gk in (4.25) and (4.26) we

shall require the following tools from majorisation theory [78]:

Definition 3: For a vector a ∈ R
M with elements {ai}Mi=1 ∈ R then let {a[i]}Mi=1

denote the elements of a arranged in descending order i.e.

a[1] ≥ a[2], ...,≥ a[M ]. (4.83)
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Definition 4: A vector a ∈ R
M
+ is said to be weakly multiplicatively subma-

jorised by b, denoted as a �×
w b, if the following conditions are met

m∏

i=1

a[i] ≤
m∏

i=1

b[i], 1 ≤ m ≤ M. (4.84)

Lemma 9: For a Hermitian positive semi-definite matrix B that is given by

B , (
⊗N

n=1 An)
H(

⊗N
n=1 An) we have the multiplicative majorisation

[
λB,1, ..., λB,M

]T �×
w

[
N∏

n=1

σ2
An,1

, ...,

N∏

n=1

σ2
An,M

]T

(4.85)

where {λB,i}Mi=1 ∈ R++ are the M largest eigenvalues of B (assumed w.l.o.g. to be

in decreasing order), {σAn,i
}Mi=1 ∈ R++ are the M largest singular values of An (as-

sumed to be in decreasing order), and we defineM , min(rank{A1}, ..., rank{AN}).
In otherwords we have

m∏

i=1

λB,i ≤
m∏

i=1

N∏

n=1

σ2
An,i

, 1 ≤ m ≤ M (4.86)

⇔
m∏

i=1

λ−1
B,i ≥

(
m∏

i=1

N∏

n=1

σ2
An,i

)−1

, 1 ≤ m ≤ M, (4.87)

where the equivalence in (4.87) comes simply by inverting both sides of (4.86).

Lemma 10: For positive semi-definite matrices A ∈ C
N×N and B ∈ C

N×N ,

with eigenvalues {λA,i}Ni=1 ∈ R+ and {λB,i}Ni=1 ∈ R+ arranged in descending order,

we have the inequality

tr{AB} ≥
N∑

i=1

λA,iλB,N+1−i. (4.88)

Note that since {λB,i}Ni=1 are arranged in descending order then {λB,N+1−i}Ni=1

corresponds to the eigenvalues of B arranged in ascending order.

We are now ready to prove the optimal structure of F̄k andGk given in Theorem

4. We firstly focus on deriving the structure of F̄k and Gk that minimise |Ek|,
and therefore minimise the objective function in (4.20). For convenience we recall

that |Ek| is given by

|Ek| =
∣
∣
∣F̄

H
k HH

s,kG
H
k H

H
r,k

(

Hr,kGkG
H
k H

H
r,kσ

2
vs
+ σ2

vr
INd

)−1

Hr,kGkHs,kF̄k

∣
∣
∣

−1

,

(4.89)
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where we have used the matricesEk in (4.13) as well as the fact that |A−1| = |A|−1.

We now introduce the decompositions

Yk , Hs,kF̄k = Uy,kDkV
H
y,k (4.90)

Zk , Hr,kGk = Uz,kΣkV
H
z,k, (4.91)

where Uy,k ∈ C
Nr×Nr , Vy,k ∈ C

Nk×Nk , Uz,k ∈ C
Nd×Nd , and Vz,k ∈ C

Nr×Nr

are unitary and the diagonal matrices Dk ∈ R
Nr×Nk and Σk ∈ R

Nd×Nr con-

tain the singular values {dk,i}Nk

i=1 and {σk,i}
R̄r,k

i=1 of Yk and Zk respectively, which

are assumed to be arranged in decreasing order. Here we define the variables5

R̄r,k , min(Rr,k, Rg,k). Substituting (4.90) and (4.91) into (4.89) we have the

lower bounds

|Ek| =
∣
∣
∣
∣
DT

k U
H
y,kVz,kΣ

T
k

(

ΣkΣ
T
k σ

2
vs
+ σ2

vr
INd

)−1

ΣkV
H
z,kUy,kDk

∣
∣
∣
∣

−1

(4.92)

≥
Nk∏

i=1

(

d2k,iσ
2
k,i

σ2
k,iσ

2
vs
+ σ2

vr

)−1

, (4.93)

where Lemma 14 is applied to to (4.92) to obtain the lower bounds in (4.93). We

note here that |Ek| in (4.92) is independent of the unitary matrices Vy,k and Uz,k

and that the lower bounds of (4.93) are achieved for any Uy,k = Vz,k. Substituting

(4.23) and (4.24) into (4.90) and (4.91), respectively, and solving for F̄k and Gk

we find the precoders that achieve the lower bound in (4.93) are given by

F̄k = Vs,kΛ
†
kU

H
s,kUy,kDkV

H
y,k (4.94)

Gk = Vr,k∆
†
kU

H
r,kUz,kΣkV

H
z,k. (4.95)

Any precoders that have the structures given in (4.94) and (4.95) achieve the lower

bound in (4.93) provided that Uy,k = Vz,k. We shall select a specific choice of F̄k

and Gk from the family of precoders given by (4.94) and (4.95) that also minimise

the source and relay transmission power. Substituting (4.94) into tr{F̄kF̄
H
k } the

power consumed by the source for the kth subcarrier is lower bounded by

tr
{

F̄kF̄
H
k

}

= tr
{

Uy,kU
H
s,k(Λ

†
k)

TΛ
†
kU

H
s,kUy,kDkD

T
k

}

(4.96)

≥
Nk∑

i=1

λ−2
k,id

2
k,i, (4.97)

5Since we assume that Rs,k , rank{Hs,k} ≥ Nk and Rf,k , rank{F̄k} = Nk then we

have that rank{Hs,kF̄k} = rank{Dk} ≤ Nk. Similarly, since Rr,k , rank{Hr,k} and Rg,k ,

rank{Gk} then rank{Hr,kGk} = rank{Σk} ≤ min(Rr,k, Rg,k) , R̄r,k.
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where (4.97) is obtained by applying Lemma 10 to (4.96). We see from (4.96)

that the source transmit power is independent of Vy,k. Since (4.92) and (4.93)

are also independent of Vy,k we can assume w.l.o.g. that Vy,k = INk
. We also see

that the source transmission power is minimised when Uy,k = Us,k. Substituting

Vy,k = INk
and Uy,k = Us,k into (4.94) we have the source precoder structure

F̄k = Vs,kΓk, (4.98)

where we define Γk , Λ
†
kDk. It shall later be shown that Γk (and therefore F̄k)

should be rank Nk.

We now consider the relay transmission power. Using (4.90) and (4.95) we can

show from Lemma 10 that the power consumed by the relay is lower bounded by

tr
{

Gk

(

Hs,kF̄kF̄
H
k HH

s,k + σ2
vs
INr

)

GH
k

}

= tr
{

UH
z,kUr,k(∆

†
k)

T∆
†
kU

H
r,kUz,kΣk

(

DkD
T
k + σ2

vs
INr

)

ΣT
k

}

(4.99)

≥
Nr∑

i=1

δ−2
k,iσ

2
k,i

(
d2k,i + σ2

vs

)
. (4.100)

To obtain (4.99) we have used Vz,k = Uy,k = Us,k and we see from (4.100) that the

relay power consumption is minimised with Ur,k = Uz,k. Substituting Vz,k = Us,k

and Ur,k = Uz,k, into (4.95) and defining Φk , ∆
†
kΣk, we have

Gk = Vr,kΦkU
H
s,k, (4.101)

which is exactly the precoder structure given in (4.25) of Theorem 4.

The last remaining tasks to fully prove Theorem 4 are to show that rank{Γk} =

Nk and rank{Φk} = Nk. To do so we firstly note that due to the fact that Γk

are Ns × Nk dimensional matrices they must immediately satisfy rank{Γk} ≤
min(Ns, Nk) ≤ Nk. However in order for the ZF equaliser in (4.3) to exist (see the

rank constraint in (4.4)) we must have rank{F̄k} = rank{Γk} = Nk.

We now consider the matrices Φk and note that since they are of dimensions

Nr × Nr they instantly satisfy rank{Φk} ≤ Nr. Noting now that the source and

relay structures in (4.98) and (4.101) result in (4.93) holding with equality then

by substituting Γk = Λ
†
kDk and Φk , ∆

†
kΣk into (4.92) we obtain

|Ek| =
Nk∏

i=1

(

γ2
k,iλ

2
k,iφ

2
k,iδ

2
k,i

φ2
k,iδ

2
k,iσ

2
vs
+ σ2

vr

)−1

. (4.102)
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We observe from (4.102) that |Ek| only depends on {φk,i}Nk

i=1 and therefore Φk

should be at most rank Nk. This is due to the fact that if we have any {φk,i >

0}Nr

i=Nk+1 then we can find a new relay precoder that achieves the same value

of the objective function but with reduced transmission power simply by setting

{φk,i = 0}Nr

i=Nk+1. If rank{Gk} = rank{Φk} < Nk then the equaliser in (4.3) does

not exist and we therefore must have rank{Gk} = rank{Φk} = Nk.

4.6.2 Proof of Optimal MMSE Source and Relay Precoders

In this section we provide the derivation of the optimal MMSE precoders given in

(4.64) and (4.65) of Theorem 5. In order to prove F̄k and Gk in (4.64) and (4.65)

we shall require the following tools from majorisation theory [78] (we note that

some of the following tools were introduced in Section 4.6.1 but are repeated here

for convenience):

Definition 5: For a vector a ∈ R
M with elements {ai}Mi=1 ∈ R, then let {a[i]}Mi=1

denote the elements of a arranged in descending order i.e.

a[1] ≥ a[2], ...,≥ a[M ]. (4.103)

Definition 6: A vector a ∈ R
M is said to be weakly additively submajorised

by b ∈ R
M , denoted as a �+

w b, if

m∑

i=1

a[i] ≤
m∑

i=1

b[i], 1 ≤ m ≤ M. (4.104)

Definition 7: A vector a ∈ R
M
+ is said to weakly multiplicatively submajorised

by b, denoted as a �×
w b, if the following conditions are met

m∏

i=1

a[i] ≤
m∏

i=1

b[i], 1 ≤ m ≤ M. (4.105)

Lemma 11: For any convex increasing function g(.) then given any vectors

satisfying a �+
w b we have [g(a1), ..., g(aM)]T �+

w [g(b1), ..., g(bM)]T i.e.

m∑

i=1

g
(
a[i]

)
≤

m∑

i=1

g
(
b[i]

)
, 1 ≤ m ≤ M. (4.106)
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Lemma 12: For vectors a ∈ R
M
++ and b ∈ R

M
++ then a �×

w b is equivalent to

[log(a1), ..., log(aM)]T �+
w [log(b1), ..., log(bM)]T i.e. a and b satisfy

m∑

i=1

log
(
a[i]

)
≤

m∑

i=1

log
(
b[i]

)
, 1 ≤ m ≤ M. (4.107)

Lemma 13: For a Hermitian positive semi-definite matrix B that is given by

B , (
⊗N

n=1 An)
H(

⊗N
n=1 An) we have the multiplicative majorisation

[
λB,1, ..., λB,M

]T �×
w

[
N∏

n=1

σ2
An,1

, ...,
N∏

n=1

σ2
An,M

]T

(4.108)

where {λB,i}Mi=1 ∈ R+ are the M largest eigenvalue of B, {σAn,i
}Mi=1 ∈ R++ are the

M largest singular value of An, and we define M , min(rank{A1}, ..., rank{AN}).
In other words we have

m∏

i=1

λB,i ≤
m∏

i=1

N∏

n=1

σ2
An,i

, 1 ≤ m ≤ M. (4.109)

Lemma 14: For B , (
⊗N

n=1 An)
H(

⊗N
n=1 An) we have the inequality

|I +B|−1 ≥
M∏

i=1

(

1 +
N∏

n=1

σ2
An,i

)−1

. (4.110)

Proof: To prove the inequality in Lemma 14 we firstly note that B is Hermitian

and at most rank M . It can then be straightforwardly shown that proving (4.110)

is equivalent to proving that

M∏

i=1

(
1 + λB,i

)
≤

M∏

i=1

(

1 +
N∏

n=1

σ2
An,i

)

. (4.111)

Furthermore, since f(x) = log(x) is a strictly increasing function for x ∈ R++ then

proving (4.111) is equivalent to showing that

M∑

i=1

log
(

1 + ebi
)

≤
M∑

i=1

log (1 + eai) , (4.112)

where we define ai , log(
∏N

n=1 σ
2
An,i

) and bi , log(λB,i). Thus proving (4.110) is

equivalent to proving (4.112). Since f(x) = log(1 + ex) is an increasing convex

function, then from Lemma 11 we know the inequality in (4.112) holds provided
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that

[
log

(
λB,1

)
, ..., log

(
λB,M

)]T �+
w

[

log

(
N∏

n=1

σ2
An,1

)

, ..., log

(
N∏

n=1

σ2
An,M

)]T

,

(4.113)

which from Lemma 12 is equivalent to

[
λB,1, ..., λB,M

]T �×
w

[
N∏

n=1

σ2
An,1

, ...,

N∏

n=1

σ2
An,M

]T

. (4.114)

We know that the previous weak multiplicative majorisation is true from Lemma

13 and we have therefore proven the inequality in (4.112), which as previously

mentioned, is equivalent to proving (4.110)6.

Lemma 15: For positive semi-definite matrices A ∈ C
N×N and B ∈ C

N×N ,

with eigenvalues {λA,i}Ni=1 ∈ R+ and {λB,i}Ni=1 ∈ R+ arranged in descending order,

we have the inequality

tr{AB} ≥
N∑

i=1

λA,iλB,N+1−i. (4.115)

We now prove the optimal structure of the source and relay precoding matrices

F̄k and Gk given in Theorem 5. We firstly focus on deriving the structure of F̄k

and Gk that minimise |Ek|, with Ek given in (4.57), and therefore minimise the

objective function in (4.61). For convenience we recall that

|Ek| ,
∣
∣
∣INk

+ F̄H
k HH

s,kG
H
k H

H
r,k

(

Hr,kGkG
H
k H

H
r,kσ

2
vs
+ σ2

vr
INd

)−1

Hr,kGkHs,kF̄k

∣
∣
∣

−1

.

(4.116)

Let us now introduce the decompositions

Yk , Hs,kF̄k = Uy,kDkV
H
y,k (4.117)

Zk , Hr,kGk = Uz,kΣkV
H
z,k, (4.118)

where Uy,k ∈ C
Nr×Nr , Vy,k ∈ C

Nk×Nk , Uz,k ∈ C
Nd×Nd , and Vz,k ∈ C

Nr×Nr are

unitary and the upper left portions of the diagonal matrices Dk ∈ R
Nr×Nk and

Σk ∈ R
Nd×Nr contain the singular values {dk,i}R̄s

i=1 and {σk,i}Rr

i=1, respectively,

6In actual fact we have proven that
∏m

i=1

(
1 + λB,i

)
≤ ∏m

i=1

(

1 +
∏N

n=1
σ2

A
n
,i

)

, 1 ≤ m ≤ M.

However for our purposes we need only consider the case m = M
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which are assumed to be in decreasing order. Here we define the variable7 R̄s,k ,

min(Nk, Rs,k). Substituting (4.117) and (4.118) into (4.116) we have

|Ek| =
∣
∣
∣
∣
INk

+ Y H
k ZH

k

(

ZkZ
H
k σ2

vs
+ σ2

vr
INr

)−1

ZkYk

∣
∣
∣
∣

−1

=

∣
∣
∣
∣
INk

+DT
k U

H
y,kVz,kΣ

T
k

(

ΣkΣ
T
k σ

2
vs
+ σ2

vr
INr

)−1

ΣkV
H
z,kUy,kDk

∣
∣
∣
∣

−1

,

(4.119)

We note here that |Ek| in (4.119) is independent of the unitary matrices Vy,k and

Uz,k. It is also easily verified that

rank

{

ΣT
k

(

ΣkΣ
T
k σ

2
vs
+ σ2

vr
INr

)−1

Σk

}

≤ min(Nk, Rs,k, Rr,k) , N̄k. (4.120)

With these observations then applying Lemma 14 to (4.119) we obtain

|Ek| ≥
N̄k∏

i=1

(

1 +
d2k,iσ

2
k,i

σ2
k,iσ

2
vs
+ σ2

vr

)−1

. (4.121)

The lower bound of (4.121) is achieved for any Uy,k = Vz,k. Substituting (4.23)

and (4.24) into (4.117) and (4.118), respectively, and solving for F̄k and Gk, we

find the precoders that achieve the lower bound in (4.121) are given by

F̄k = Vs,kΛ
†
kU

H
s,kUy,kDkV

H
y,k (4.122)

Gk = Vr,k∆
†
kU

H
r,kUz,kΣkV

H
z,k, (4.123)

Any precoders that have the structures given in (4.122) and (4.123) achieve the

lower bound in (4.121) provided that Uy,k = Vz,k. We shall select a specific choice

of F̄k and Gk from the family of precoders given by (4.122) and (4.123) that

also minimise the source and relay transmission power. Substituting (4.122) into

tr{F̄kF̄
H
k }, the power consumed by the source is lower bounded by

tr
{

F̄kF̄
H
k

}

= tr
{

UH
y,kUs,k(Λ

†
k)

TΛ
†
kU

H
s,kUy,kDkD

T
k

}

(4.124)

≥
R̄s∑

i=1

λ−2
k,id

2
k,i, (4.125)

7Since rank{Hs,k} = Rs,k ≤ min(Ns, Nr) and rank{F̄k} ≤ min(Nk, Ns) then we have that

rank{Hs,kF̄k} = rank{Dk} ≤ min(Nk, Rs,k) , R̄s,k. Similarly, since rank{Hr,k} = Rr,k ≤
min(Nd, Nr) and rank{Gk} ≤ Nr then rank{Hr,kGk} = rank{Σk} ≤ Rr,k.
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where (4.125) is obtained by applying Lemma 15 to (4.124). We see from (4.124)

that the source transmit power is independent of Vy,k. Since (4.119) is also in-

dependent of Vy,k we can assume w.l.o.g. that Vy,k = INk
. We also see that the

source transmission power is minimised when Us,k = Uy,k. Substituting Vy,k = INk

and Us,k = Uy,k into (4.122) we have the source precoder structures

F̄k = Vs,kΓk, (4.126)

where we define Γk , Λ
†
kDk. This is exactly the precoder structures given in

(4.64) of Theorem 5. It shall be shown later that Γk should be at most rank N̄k.

We now consider the relay transmission power. Using (4.117) and (4.123) it can

be shown from Lemma 15 that the power consumed by the relay is lower bounded

by

tr
{

Gk

(

Hs,kF̄kF̄
H
k HH

s,k + σ2
vs
INr

)

GH
k

}

= tr
{

UH
z,kUr,k(∆

†
k)

T∆
†
kU

H
r,kUz,kΣk

(

DkD
T
k + σ2

vs
INr

)

ΣT
k

}

(4.127)

≥
Nr∑

i=1

δ−2
k,iσ

2
k,i

(
d2k,i + σ2

vs

)
. (4.128)

To obtain (4.127) we have used Vz,k = Uy,k = Us,k and we see from (4.128) that the

relay power consumption is minimised with Uz,k = Ur,k. Substituting Vz,k = Us,k

and Uz,k = Ur,k into (4.123) and defining Φk , ∆
†
kΣk we have

Gk = Vr,kΦkU
H
s,k, (4.129)

as given in (4.64) of Theorem 5. The last remaining tasks to fully prove Theorem

5 are to show that Γk and Φk are at most rank N̄k. By substituting Γk = Λ
†
kD

and Φk , ∆
†
kΣk into (4.121) we can obtain

|Ek| =
N̄k∏

i=1

(

1 +
γ2
k,iλ

2
k,iφ

2
k,iδ

2
k,i

φ2
k,iδ

2
k,iσ

2
vs
+ σ2

vr

)−1

. (4.130)

To find the source and relay precoders that minimise (4.130) whilst utilising the

minimum transmit power we can assume that {γk,i = 0}Nk

i=N̄k+1
and {φk,i =

0}Nr

i=N̄k+1
since from (4.130) it is easily seen that these values do not affect the

objective function. This shows that rank{Γk} = N̄k and rank{Φk} = N̄k and

concludes the proof of Theorem 5.
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4.6.3 Proof of MMSE Power Allocation

In this section we prove the MMSE power allocation matrices given in (4.77) and

(4.77) before showing the upper and lower limits for µs and µr given in (4.79) and

(4.82). We firstly note that the problem in (4.73)-(4.76) is symmetric in ϑ and ϕ,

as indeed are the solutions. Therefore, for brevity, we only provide the proofs of

(4.77) and (4.79) as an example. The following analysis can be straightforwardly

modified to prove (4.80) and (4.82).

For set ϕ we consider the Lagrangian function associated with (4.73)-(4.76)

which is given by

L =
K∑

k=1

N̄k∑

i=1

log

(

ϑk,iλ
2
k,iσ

2
vr
+ ϕk,iδ

2
k,iσ

2
vs
+ σ2

vs
σ2
vr

(
ϑk,iλ

2
k,i + σ2

vs

) (
ϕk,iδ

2
k,i + σ2

vr

)

)

+ µs





K∑

k=1

N̄k∑

i=1

ϑk,i − Ps



−
K∑

k=1

N̄k∑

i=1

υk,iϑk,i, (4.131)

The following KKT conditions are sufficient and necessary for optimality

−ϕk,iδ
2
k,iλ

2
k,iσ

2
vs
(ϕk,iδ

2
k,i + σ2

vr
)

αk,iβk,i

+ µs − υk,i = 0, (4.132)

K∑

k=1

N̄k∑

i=1

ϑk,i − Ps ≤ 0 (4.133)

ϑk,i ≥ 0, µs ≥ 0, υk,i ≥ 0, (4.134)

µs





K∑

k=1

N̄k∑

i=1

ϑk,i − Ps



 = 0 (4.135)

υk,iϑk,i = 0, (4.136)

where for notational convenience we define

αk,i , ϕk,iδ
2
k,iϑk,iλ

2
k,i + ϕk,iδ

2
k,iσ

2
vs
+ ϑk,iλ

2
k,iσ

2
vr
+ σ2

vs
σ2
vr
, (4.137)

βk,i , ϕk,iδ
2
k,iσ

2
vs
+ ϑk,iλ

2
k,iσ

2
vr
+ σ2

vs
σ2
vr
. (4.138)
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Solving (4.132) for υk,i, and substituting the resulting expressions into (4.136) and

υk,i ≥ 0, from (4.134) we have the conditions

(

−ϕk,iδ
2
k,iλ

2
k,iσ

2
vs
(ϕk,iδ

2
k,i + σ2

vr
)

αk,iβk,i

+ µs

)

ϑk,i = 0, (4.139)

µs ≥
ϕk,iδ

2
k,iλ

2
k,iσ

2
vs
(ϕk,iδ

2
k,i + σ2

vr
)

αk,iβk,i

. (4.140)

The solutions for ϕk,i can be found based on the conditions in (4.139) and (4.140)

and can be partitioned into two cases. We firstly notice that if

µs ≥
ϕk,iδ

2
k,iλ

2
k,i

σ2
vs
(ϕk,iδ

2
i + σ2

vr
)

(4.141)

then we find that (4.139) only holds when we have ϑk,i = 0 and we can write

ϑk,i = 0, ∀k, ∀i | µs ≥
ϕk,iδ

2
k,iλ

2
k,i

σ2
vs
(ϕk,iδ

2
k,i + σ2

vr
)

(4.142)

If on the other hand

µs <
ϑk,iδ

2
k,iλ

2
k,i

σ2
vs
(ϕk,iδ

2
k,i + σ2

vr
)

(4.143)

then we find that (4.140) only holds when ϑk,i > 0. In this case, in order for

(4.139) to hold, the bracketed term must be zero. Setting the bracketed term in

(4.139) to zero and solving for ϑk,i results in

ϑk,i =
σ2
vs

2λ2
k,i

(√

δ4k,iϕ
2
k,i

σ4
vr

+
4µsλ

2
k,iϕk,iδ

2
k,i

σ2
vs
σ2
vr

− δ2k,iϕk,i

σ2
vr

− 2

)

,

∀k, ∀i | µs <
ϑk,iδ

2
k,iλ

2
k,i

σ2
vs
(ϕk,iδ

2
k,i + σ2

vr
)
. (4.144)

The two cases specified in (4.142) and (4.144) can be written more compactly as

in the solution in (4.77).

We now prove the bounds for µs in (4.79) that should be used for the method

of bisection. The lower bound in (4.79) comes directly from the KKT condition

in (4.134). To prove the upper bound in (4.79) it is straightforward to show from
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(4.78) that we have the following inequalities

Ps ≥
K∑

i=1

N̄k∑

i=1

σ2
vs

2λ2
k,i

[√

δ4k,iϕ
2
k,i

σ4
vr

+
4µsλ

2
k,iϕk,iδ

2
k,i

σ2
vs
σ2
vr

− δ2k,iϕk,i

σ2
vr

− 2

]+

(4.145)

≥
K∑

i=1

N̄k∑

i=1

σ2
vs

2λ2
k,i

(√

δ4k,iϕ
2
k,i

σ4
vr

+
4µsλ

2
k,iϕk,iδ

2
k,i

σ2
vs
σ2
vr

− δ2k,iϕk,i

σ2
vr

− 2

)

(4.146)

≥
K∑

i=1

N̄k∑

i=1

σ2
vs

2λ2
k,i

(√

4µsλ
2
k,iϕk,iδ

2
k,i

σ2
vs
σ2
vr

− δ2k,iϕk,i

σ2
vr

− 2

)

(4.147)

≥ √
µs

K∑

i=1

N̄k∑

i=1

σ2
vs

2λ2
k,i

(√

4λ2
k,iϕk,iδ

2
k,i

σ2
vs
σ2
vr

)

−
K∑

i=1

N̄k∑

i=1

σ2
vs

2λ2
k,i

(

δ2k,iϕk,i

σ2
vr

+ 2

)

(4.148)

Solving (4.148) for µs results in the upper bound given in (4.79).



Chapter 5

Robust Non-linear Transceiver

Designs with Imperfect CSI

5.1 Introduction

In the previous chapter we considered DFE and THP transceiver designs for two-

hop MIMO OFDM relaying systems under the assumption that perfect CSI of

the source-relay and relay-destination channels could be acquired at all nodes. In

practical systems perfect estimation of the communication channel is generally

very difficult to achieve and channel estimation errors inevitably occur. Sources of

channel estimation errors include, for example, limited length training sequences,

noisy pilot/training symbols used for channel estimation, or an insufficient num-

ber of training intervals in a time varying wireless environment. A simple yet

possibly naive approach in dealing with such imperfect CSI is to simply regard

the estimated channel as being the actual channel and design the precoding and

equalisation matrices according to algorithms that have been developed under the

assumption of perfect CSI. For example, the full CSI algorithms discussed in Chap-

ter 4 could be used to optimise the processors but with the actual channel matrices

being replaced with their estimated counterparts. If the channel estimation errors

are sufficiently small, i.e. the estimated channel is a good approximation of the

actual channel, then this approach may work well in practice. However, for larger

channel estimation errors such a naive approach can exhibit a serious degradation

in performance caused by the mismatch between the true and estimated channels.

In such a scenario it is more appropriate to consider robust transceiver designs

that take into account the channel estimation errors in the design of the transmit

and receive processors.

122
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In general there are two main philosophies to the approach of robust transceiver

designs that depend on the manner in which the channel estimation errors are

modelled. Generally speaking, robust transceivers can be classified as being either

worst-case designs which are also commonly referred to as maximin approaches

(see e.g.[87–89]), or stochastic designs which are otherwise known as Bayesian tech-

niques. In worst-case approaches the channel estimation errors are considered to

be bounded in some manner (usually according to some norm constraint on the es-

timation error) such that any specific channel realisation falls within a known and

bounded uncertainty region. The transceiver processors are then designed to guar-

antee a minimum level of system performance for any specific channel realisation

that falls within the considered uncertainty region. In other words the transceiver

is optimised for the worst-case channel realisation. Worst-case approaches are

useful for quality of service (QoS) constrained designs since for any channel condi-

tion a guaranteed QoS can always be achieved. However such approaches tend to

lead to rather pessimistic designs. On the other hand, Bayesian approaches con-

sider the optimisation of some objective function that is averaged over the channel

estimation error and therefore generally lead to improved performance.

The Bayesian philosophy has been extensively adopted for the design of ro-

bust transceivers in narrowband MIMO relaying systems in [61, 62, 81–83, 90–94].

The robust joint linear design of the destination equaliser and relay precoder is

considered in [81–83, 90] for minimising the arithmetic MSE subject to the trans-

mission power constraint at the relay terminal. As discussed in these works the

optimal solution is difficult to obtain for general channel estimation errors due to

the non-convexity of the optimisation problem. In [81–83] iterative algorithms are

derived to compute the equaliser and relay precoder for the case of general esti-

mation errors. It is shown that the subproblems for updating the equaliser and

the relay processor are convex and that the iterative algorithms are guaranteed

to converge to at least a locally optimal solution. Suboptimal solutions are dis-

cussed in [83, 90] where the destination equaliser and relay precoder are calculated

in closed form solution. It is also shown that, for the special case of uncorrelated

estimation errors, these solutions are in fact the optimal ones. In [91] an itera-

tive algorithm is derived to minimise the arithmetic MSE when a linear precoder

is also introduce at the source and is shown to offer improved performance com-

pared to the iterative algorithms in [81–83]. The study of robust transceivers for

maximising the mutual information and minimising the weighted MSE can also be

found in [92] and [93], respectively. Besides the study of robust linear designs, ro-

bust non-linear transceivers utilising THP have also been considered in [61, 62, 94]

for narrowband MIMO relaying.
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In this chapter we extend our previous results in [61], and consider the robust

design of DFE and THP transceivers for the MIMO OFDM relaying model intro-

duced in Section 2.2 of Chapter 2. To incorporate the effects of imperfect CSI

we discuss a general channel estimation error model and show that the estima-

tion errors arising from specific channel estimation algorithms fits into this general

model. Based on the imperfect CSI model we consider the design of the DFE and

THP processors that minimise the arithmetic MSE subject to transmission power

constraints. Unfortunately the optimal solution is difficult to obtain and we re-

lax the problem by minimising an upper bound to the objective function subject

to relaxed constraints. The source and relay precoder matrices can then be de-

rived as the solution to this relaxed optimisation problem. Simulation results are

presented demonstrating the advantages of the proposed algorithms compared to

benchmark designs proposed in the literature.

The rest of this chapter is organised as follows: In Section 5.2 we formulate the

robust optimisation problem and derive the DFE and THP processors in Section

5.3. Simulation results are presented in Section 5.4 and finally conclusions are

drawn in Section 5.5.

5.2 Problem Formulation

In this section we formulate the robust optimisation problem for minimising the

arithmetic MSE subject to transmission power constraints at the source and re-

lay terminals. For convenience we recall that the optimisation problem for the

considered DFE and THP transceivers is (see Section 2.4 of Chapter 2)

min
Fk,Gk,Wk,Uk

1

K

K∑

k=1

tr
{
Re,k

}

Nk

(5.1)

s.t.
K∑

k=1

tr
{

FkF
H
k

}

≤ Ps (5.2)

K∑

k=1

tr
{

Gk

(

Hs,kFkF
H
k HH

s,k + σ2
vs
INr

)

GH
k

}

≤ Pr. (5.3)

where Re,k is the error covariance matrix for the kth subcarrier given by

Re,k =
(
WkHr,kGkHs,kFk −Uk

) (
WkHr,kGkHs,kFk −Uk

)H

+Wk

(

Hr,kGkG
H
k H

H
r,kσ

2
vs
+ σ2

vr
INd

)

WH
k . (5.4)
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From (5.4) we see that the error covariance matrix for the kth subcarrier depends

directly on the subcarrier channel matrices Hs,k and Hr,k. Furthermore, the relay

power constraint in (5.3) also depends on the source-relay subcarrier matrix Hs,k.

When the subcarrier channel matrices are subject to channel estimation errors,

i.e. they are not completely known to all nodes, then the optimisation problem

in (5.1)-(5.3) is intractable and cannot be directly solved. In order to reformulate

the optimisation problem into a tractable form, and to derive robust transceiver

solutions, we must incorporate the effect of channel estimation errors. In the

following we firstly consider a general channel estimation error model and then

reformulate (5.1)-(5.3) as a statistically robust optimisation problem.

5.2.1 Channel Error Model

When the source-relay and relay-destination subcarrier channel matrices Hs,k and

Hr,k are subject to channel estimation errors then they can be written as

Hs,k = H̄s,k +Es,k (5.5)

Hr,k = H̄r,k +Er,k, (5.6)

where H̄s,k ∈ C
Nr×Ns and H̄r,k ∈ C

Nd×Nr are the estimated source-relay and

relay-destination subcarrier matrices, respectively, with Es,k ∈ C
Nr×Ns and Er,k ∈

C
Nd×Nr representing the corresponding channel estimation errors. The specific

structure of Es,k and Er,k depend largely on the source of channel estimation

error [62, 81–83, 90–95]. We assume that the error matrices can be modelled

according to the following definition for matrix variate Gaussian distributions:

Definition 8: [67] A random matrixA ∈ C
N×M is said to have a matrix variate

Gaussian distribution with mean Ā ∈ C
N×M and covariance matrix B⊗C, where

B ∈ C
M×M and C ∈ C

N×N , if it satisfies

vec [A] ∼ CN
(
vec[Ā],B ⊗C

)
, (5.7)

where

E{A} = Ā (5.8)

E

{(
vec [A]− vec

[
Ā
]) (

vec [A]− vec
[
Ā
])H

}

= B ⊗C. (5.9)

The matrix variate Gaussian distribution of the random matrix A is denoted by

A ∼ CN (Ā,B ⊗C).
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As a general model we shall assume that the channel estimation error matrices

have the following independent matrix variate Gaussian distributions [67]

Es,k ∼ CN
(
0Nr×Ns

, Ξs,k ⊗Ωs,k

)
(5.10)

Er,k ∼ CN
(
0Nd×Nr

, Ξr,k ⊗Ωr,k

)
, (5.11)

where Ξs,k ∈ C
Ns×Ns and Ωs,k ∈ C

Nr×Nr are positive definite matrices that rep-

resent the covariance of the source-relay subcarrier channel estimation error Es,k.

Similarly, Ξr,k ∈ C
Nr×Nr and Ωr,k ∈ C

Nd×Nd are positive definite and represent

the covariance of the relay-destination subcarrier channel estimation error Er,k.

Before formulating a robust optimisation problem based on the preceeding chan-

nel error model, it is worthwhile highlighting a specific case where the subcarrier

channel estimation error matrices can be modelled according to (5.10) and (5.11).

5.2.2 LS Channel Estimation Error

We consider the case that the source-relay and relay-destination frequency selective

channels are estimated independently, where the source-relay channel is estimated

at the relay and the relay-destination channel is estimated at the destination. We

show that if the frequency selective channels are estimated using the LS channel

estimation algorithm discussed in Section 3.2.2 of Chapter 3, then the resulting

subcarrier estimation matrices Es,k and Er,k can be modelled as a special case

of (5.10) and (5.11). Since we consider the case that the source-relay channel

is estimated at the relay and the relay-destination channel is estimated at the

destination, the channel estimation for both channels is similar. We therefore take

the estimation of the relay-destination channel as an example. We recall that the

LS channel estimation error is given by (see (3.17) and (3.84))

er , vec [Er[0], ...,Er[L]] (5.12)

=
(

MH
x Mx ⊗ INd

)−1 (

MH
x ⊗ INd

)

vr, (5.13)

where Er[l] is the channel estimation error matrix of Hr[l]. In (5.13) Mx is defined

as (see (3.10))

Mx , [F0X, ...,FLX] , (5.14)
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where X is the relay training matrix and

Fl ,







e−j2π0l/K 0
. . .

0 e−j2π(K−1)l/K






. (5.15)

It was shown in Theorem 1 of Chapter 3 that the optimal LS training matrix X

is given

X =

√

Pr

Nr

Q, (5.16)

where Q is a semi-unitary matrix that satisfies the properties

QHFH
m FnQ = 0Nr×Nr

∀m 6= n (5.17)

QHFH
l FlQ = INr

∀l (5.18)

QHQ = INr
. (5.19)

We now note that the subcarrier estimation error matrix Er,k is given by

Er,k = [Er[0], ...,Er[L]]







e−j2π(k−1)0/KINr

...

e−j2π(k−1)L/KINr







︸ ︷︷ ︸

Dk

. (5.20)

Using (5.13), and the fact that vr is a zero mean Gaussian random variable,

it is straightforward to show that E{Er,k} = 0Nd×Nr
. Furthermore, it is also

straightforwardly shown that

E

{

vec
[
Er,k

]
vecH

[
Er,k

]}

= σ2
vr

(

DT
k ⊗ INd

)(

MH
x Mx ⊗ INd

)−1 (
D∗

k ⊗ INd

)

(5.21)

=
σ2
vr
Nr(L+ 1)

Pr

INr
⊗ INd

, (5.22)

where we have used the fact that the optimal training matrix is given by (5.16)

with the matrix Q satisfying the conditions in (5.17)-(5.19). Using the definition

of matrix variate Gaussian distributions in Definition 8 we finally have that the
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kth relay-destination subcarrier has the matrix variate distribution

Er,k ∼ CN
(
0Nd×Nr

, σ2
er
INr

⊗ INd

)
, (5.23)

where for convenience we define σ2
er

, σ2
vr
Nr(L + 1)/Pr, which can be viewed as

the inverse SNR during the channel estimation phase. A similar analysis shows

that Es,k is distributed according to

Es,k ∼ CN
(
0Nr×Ns

, σ2
es
INs

⊗ INr

)
, (5.24)

where σ2
es

, σ2
vs
Ns(L + 1)/Ps. Clearly (5.23) and (5.24) are special cases of the

more general distributions in (5.11) and (5.10), respectively.

5.2.3 Robust Constrained Optimisation Problem

Having derived a general channel error model we now formulate the robust op-

timisation problem for deriving the DFE and THP processors Fk, Gk, Wk, and

Uk to minimise the arithmetic MSE subject to transmission power constraints at

both the source and relay terminals. As previously remarked the error covariance

matrix for each subcarrier in (5.4) depends on the subcarrier channel matrices

Hs,k and Hr,k, which are not completely known, and therefore an optimisation

problem using Re,k cannot be conducted. Rather than considering the instanta-

neous error covariance matrix Re,k we shall reformulate the optimisation problem

in (5.1)-(5.3) by considering an objective function based on E
{
Re,k

}
, where the

expectation is taken w.r.t. the random matrices Es,k and Er,k. Furthermore, since

the relay power constraint in (5.3) depends on the unknown source-relay subcar-

rier matrix Hs,k we shall consider constraining the expected transmission power

of the relay node, with the expectation being taken w.r.t. Es,k. In order to com-

pute the necessary expectations in our following analysis we firstly consider the

following lemma:

Lemma 16: [67] For a random matrix A ∈ C
M×N with mean Ā ∈ C

M×N and

covariance C ⊗ D, i.e. A has the matrix variate complex Gaussian distribution

A ∼ CN
(
Ā , C ⊗D

)
, we have for any Q ∈ C

N×N that

E

{

AQAH
}

= ĀQĀH + tr
{

QCT
}

D. (5.25)

With the use of Definition 8, Lemma 16, and the matrix variate Gaussian

distributions for Es,k and Er,k given in (5.10) and (5.11), respectively, we can
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establish the following results

E
{
Es,k

}
= 0Nr×Ns

(5.26)

E
{
Er,k

}
= 0Nd×Nr

(5.27)

E

{

Es,kYs,kE
H
s,k

}

= tr
{

Ys,kΞ
T
s,k

}

Ωs,k (5.28)

E

{

Er,kYr,kE
H
r,k

}

= tr
{

Yr,kΞ
T
r,k

}

Ωr,k, (5.29)

where Ys,k ∈ C
Ns×Ns and Yr,k ∈ C

Nr×Nr are arbitrary matrices.

We are now ready to reformulate (5.1)-(5.3) as a statistically robust optimi-

sation problem for deriving the DFE and THP processors Fk, Gk, Wk, and Uk.

Substituting (5.5) and (5.6) into (5.4) and taking the expectation w.r.t. the ran-

dom matrices Es,k and Er,k, we can compute that E
{
Re,k

}
is given by

E
{
Re,k

}
= Wk

(

H̄r,kGkX̄kG
H
k H̄

H
r,k + tr

{

GkX̄kG
H
k Ξ

T
r,k

}

Ωr,k + σ2
vr
INd

)

WH
k

−WkH̄r,kGkH̄s,kFkU
H
k −UkF

H
k H̄H

s,kG
H
k H̄

H
r,kW

H
k +UkU

H
k , (5.30)

where for notational convenience we define the matrix X̄k ∈ C
Nr×Nr as

X̄k , H̄s,kFkF
H
k H̄H

s,k + tr
{

FkF
H
k ΞT

s,k

}

Ωs,k + σ2
vs
INr

. (5.31)

A detailed derivation of (5.30) is provided in Section 5.6.1 on page 147. Since the

power consumed by the relay depends on Hs,k, we must also average the relay

transmission power w.r.t. Es,k. The power consumed by the relay on the kth

subcarrier is tr{Gk(Hs,kFkF
H
k HH

s,k + σ2
vs
INr

)GH
k }. Substituting (5.5) into this

expression and taking the expectation w.r.t Es,k we can compute

tr
{

GkE

{

Hs,kFkF
H
k HH

s,k + σ2
vs
INr

}

GH
k

}

= tr
{

Gk

(

H̄s,kFkF
H
k H̄H

s,k + H̄s,kFkF
H
k E

{

ĒH
s,k

}

+ E
{
Ēs,k

}
FkF

H
k H̄H

s,k + E

{

Ēs,kFkF
H
k ĒH

s,k

}

+ σ2
vs
INr

)

Gk

}

(5.32)

= tr
{

Gk

(

H̄s,kFkF
H
k H̄H

s,k + tr
{

FkF
H
k ΞT

s,k

}

Ωs,k + σ2
vs
INr

)}

(5.33)

= tr
{

GkX̄kG
H
k

}

, (5.34)

where X̄k is defined in (5.31). To obtain (5.33) from (5.32) we have used (5.26),

(5.27), as well as the result in (5.29). With the expected error covariance matrix

in (5.30) and the expected relay power constraint for the kth subcarrier given in
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(5.34), we can reformulate the optimisation problem in (5.1)-(5.3) as

min
Fk,Gk,Wk,Uk

1

K

K∑

k=1

tr
{
E
{
Re,k

}}

Nk

(5.35)

s.t.

Nc∑

k=1

tr
{

FkF
H
k

}

≤ Ps (5.36)

Nc∑

k=1

tr
{

GkX̄kG
H
k

}

≤ Pr. (5.37)

It is worthwhile noting here that for the case of perfect channel estimations, i.e.

when Es,k = 0Nr×Ns
and Er,k = 0Nd×Nr

, then the optimisation problem in (5.35)-

(5.37) reduces to that in (5.1)-(5.3). In other words (5.35)-(5.37) includes the

scenario of perfect channel estimation as a specific case and therefore represents a

more general optimisation problem.

5.3 Robust Transceiver Design

In this section we focus on deriving the processors Fk, Gk, Wk, and Uk, as the

solution to the problem in (5.35)-(5.37).

5.3.1 Optimal Equaliser

We begin by deriving the optimal MMSE equaliser. Since the power constraints

in (5.36) and (5.37) do not depend on Wk, the optimal equaliser is the solution

to the unconstrained problem of minimising (5.35). Since tr
{
E
{
Re,k

}}
is con-

vex quadratic [39] in Wk, the equaliser is obtained by setting the derivative of

tr
{
E
{
Re,k

}}
w.r.t. W ∗

k to zero and solving for Wk, resulting in

Wk = UkF
H
k H̄H

s,kG
H
k H̄

H
r,k

(

H̄r,kGkX̄kG
H
k H̄

H
r,k

+ tr
{

GkX̄kG
H
k Ξ

T
r,k

}

Ωr,k + σ2
vr
INd

)−1

. (5.38)
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Substituting (5.38) into (5.30) and using (5.31) we can write the expected error

covariance matrix in the more concentrated manner as

E
{
Re,k

}
= Uk

(

INk
+ FH

k H̄H
s,kG

H
k H̄

H
r,k

(

H̄r,kGk

(

tr
{

FkF
H
k ΞT

s,k

}

Ωs,k + σ2
vs
INr

)

×GH
k H̄

H
r,k + tr

{

GkX̄kG
H
k Ξ

T
r,k

}

Ωr,k + σ2
vr
INd

)−1

H̄r,kGkH̄s,kFk

)−1

UH
k ,

(5.39)

where we have also used the matrix inversion lemma.

5.3.2 Source, Relay, and Feedback Matrices

In a similar fashion to the derivation of the optimal source, relay, and feedback

matrices for the case of perfect channel estimation derived in Chapter 4, we proceed

by firstly obtaining a lower bound to the objective function in (5.35) and showing

that a specific choice of processors can achieve the lower bound. To obtain such a

lower bound we recall the following lemma:

Lemma 17: For a positive semi-definite matrix A ∈ C
M×M we have the in-

equality |A|1/M ≤ tr{A} /M where equality is achieved if and only ifA = αIM , for

some α ∈ R+. In otherwords equality is achieved whenA is a diagonal matrix with

equal non-negative diagonal entries. This is the well known arithmetic-geometric

mean inequality.

Based on Lemma 17 the objective function in (5.35) is lower bounded by

1

K

K∑

k=1

|E
{
Re,k

}
|1/Nk ≤ 1

K

K∑

k=1

tr
{
E
{
Re,k

}}

Nk

(5.40)

where equality holds if and only if E{Re,k} is diagonal with equal diagonal el-

ements. To simplify the lower bound in (5.40) we shall find it convenient to

parameterise the linear source precoding matrix as

Fk = F̃kΨk, (5.41)

where F̃k ∈ C
Ns×Nk is an arbitrary matrix and Ψk ∈ C

Nk×Nk is a unitary matrix.

To find the solution to (5.35)-(5.37) we shall firstly derive the matrices Wk, Uk,

and Ψk, before then calculating F̃k and Gk. Upon substituting (5.41) into (5.39)
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we can decompose the expected error covariance matrix as

E
{
Re,k

}
= UkΨ

H
k EkΨkU

H
k , (5.42)

where the positive definite matrix Ek ∈ C
Nk×Nk is defined as

Ek ,

(

INk
+ F̃H

k H̄H
s,kG

H
k H̄

H
r,k

(

H̄r,kGk

(

tr
{

F̃kF̃
H
k ΞT

s,k

}

Ωs,k + σ2
vs
INr

)

GH
k H̄

H
r,k

+ tr
{

GkX̄kG
H
k Ξ

T
r,k

}

Ωr,k + σ2
vr
INd

)−1

H̄r,kGkH̄s,kF̃k

)−1

. (5.43)

We also note that with the structure of the source precoder in (5.41) the matrix

X̄k in (5.31) is independent of Ψk i.e.

X̄k = H̄s,kF̃kF̃
H
k H̄H

s,k + tr
{

F̃kF̃
H
k ΞT

s,k

}

Ωs,k + σ2
vs
INr

. (5.44)

With the structure of the expected error covariance matrix in (5.42) we can write

the inequality in (5.40) equivalently as

1

K

K∑

k=1

|Ek|1/Nk ≤ 1

K

K∑

k=1

tr
{
E
{
Re,k

}}

Nk

, (5.45)

where to obtain the lower bound we have used the fact that Uk is unit diagonal

triangular and Ψk is unitary. In the following we shall see that, given any Ek, an

appropriate unit diagonal upper right triangular matrix Uk and unitary Ψk can

be found to ensure that (5.45) holds with equality. From the arithmetic-geometric

mean inequality we find that (5.45) holds with equality when

E
{
Re,k

}
= UkΨ

H
k EkΨkU

H
k =

Nk∏

i=1

ε
1/Nk

k,i INk
, (5.46)

where {εk,i}Nk

i=1 ∈ R++ are the non-zero eigenvalues of Ek. Since both sides of

(5.46) are Hermitian, solving (5.46) is equivalent to finding matrices that satisfy

the equality UkΨ
H
k E

1/2
k =

∏Nk

i=1 ε
1/2Nk

k,i SH
k , which upon rearranging leads to the

GMD [26]

Nk∏

i=1

ε
1/2Nk

k,i E
−1/2
k = SkUkΨ

H
k . (5.47)

When the matrices Uk and Ψk are computed according to (5.47) then (5.45) holds
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with equality. As such we can replace the objective function in (5.35) with the

lower bound in (5.45) and state the optimisation problem in (5.35)-(5.37) as

min
F̃k,Gk

K∑

k=1

|Ek| (5.48)

s.t.
K∑

k=1

tr
{

F̃kF̃
H
k

}

≤ Ps (5.49)

K∑

k=1

tr
{

GkX̄kG
H
k

}

≤ Pr. (5.50)

The remaining task is to compute the source precoding matrix F̃k and relay precod-

ing matrix Gk as the solution to (5.48)-(5.50). Unfortunately from the definition

of Ek in (5.43) we see that (5.48) is a complicated function of F̃k and Gk and the

optimisation problem is difficult to handle. In order to proceed, we relax the prob-

lem by minimising an upper bound of the objective function in (5.48) subject to

relaxed power constraints. To this end, it can be shown that (5.48) and (5.50) are

upper bounded by

K∑

k=1

|Ek| ≤
K∑

k=1

|Ẽk| (5.51)

K∑

k=1

tr
{

GkX̄kG
H
k

}

≤
K∑

k=1

tr
{

GkX̃kG
H
k

}

, (5.52)

where the matrices Ẽk and X̃k are defined as

Ẽk ,

(

INk
+ F̃H

k H̄H
s,kG

H
k H̄

H
r,k

(

H̄r,kGk

(

tr
{

F̃kF̃
H
k

}

ξs,kΩs,k + σ2
vs
INr

)

GH
k H̄

H
r,k

+ tr
{

GkX̃kG
H
k

}

ξr,kΩr,k + σ2
vr
INd

)−1

H̄r,kGkH̄s,kF̃k

)−1

(5.53)

X̃k , H̄s,kF̃kF̃
H
k H̄H

s,k + ξs,ktr
{

F̃kF̃
H
k

}

Ωs,k + σ2
vs
INr

. (5.54)

In (5.53) and (5.54) the scalars ξs,k and ξr,k are the largest eigenvalues of Ξs,k and

Ξr,k, respectively. The detailed derivations of the bounds in (5.51) and (5.52) are

given in Section 5.6.2 on page 148.

The optimisation problem in (5.48)-(5.50) can be relaxed by replacing the ob-

jective function and the relay power constraint with the upper bounds in (5.51)
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and (5.52), respectively, resulting in the relaxed problem

min
F̃k,Gk

K∑

k=1

|Ẽk| (5.55)

s.t.
K∑

k=1

tr
{

F̃kF̃
H
k

}

≤ Ps (5.56)

K∑

k=1

tr
{

GkX̃kG
H
k

}

≤ Pr. (5.57)

It is worth noting that the relaxed optimisation problem in (5.55)-(5.57) is equiva-

lent to the original problem in (5.48)-(5.50) whenΞs,k = ξs,kINs
andΞr,k = ξr,kINr

.

It is shown in Section 5.6.3 on page 150 that the optimal processors F̃k and Gk as

the solution to (5.55)-(5.57) should satisfy the following power constraint equalities

tr
{

F̃kF̃
H
k

}

= Ps,k (5.58)

K∑

k=1

Ps,k = Ps (5.59)

tr
{

GkX̃kG
H
k

}

= Pr,k (5.60)

K∑

k=1

Pr,k = Pr, (5.61)

where Ps,k ≥ 0 and Pr,k ≥ 0 are the maximum power budgets available to the

source and relay on the kth subcarrier. Incorporating the constraints (5.58)-(5.61)

into (5.55)-(5.57), the problem can be equivalently stated as

min
F̃k,Gk,Ps,k,Pr,k

K∑

k=1

|Ẽk| (5.62)

s.t. tr
{

F̃kF̃
H
k

}

= Ps,k (5.63)

K∑

k=1

Ps,k = Ps (5.64)

tr
{

GkX̃kG
H
k

}

= Pr,k (5.65)

K∑

k=1

Pr,k = Pr (5.66)

Ps,k ≥ 0, Pr,k ≥ 0, 1 ≤ k ≤ K. (5.67)

We emphasise that the objective function in (5.62) is now easier to handle since
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from (5.58) and (5.60) we can replace tr{F̃kF̃
H
k } and tr{GkX̃kG

H
k } in (5.53) with

Ps,k and Pr,k, respectively. Thus the matrix Ẽk for the objective function is

Ẽk ,

(

INk
+ F̃H

k H̄H
s,kG

H
k H̄

H
r,k

(

H̄r,kGk

(

Ps,kξs,kΩs,k + σ2
vs
INr

)

GH
k H̄

H
r,k

+ Pr,kξr,kΩr,k + σ2
vr
INd

)−1

H̄r,kGkH̄s,kF̃k

)−1

. (5.68)

Before deriving the optimal processors F̃k andGk let us now introduce the singular

value decompositions

(
Ps,kξs,kΩs,k + σ2

vs
INr

)−1/2
H̄s,k = Us,kΛkV

H
s,k, (5.69)

(
Pr,kξr,kΩr,k + σ2

vr
INd

)−1/2
H̄r,k = Ur,k∆kV

H
r,k, (5.70)

where Us,k ∈ C
Nr×Nr , Vs,k ∈ C

Ns×Ns , Ur,k ∈ C
Nd×Nd , and Vr,k ∈ C

Nr×Nr are uni-

tary matrices. The upper left submatrices of Λk ∈ R
Nr×Ns and ∆k ∈ R

Nd×Nr

contain the non-zero singular values {λk,i}
Rs,k

i=1 ∈ R+ and {δk,i}
Rr,k

i=1 ∈ R+ respec-

tively, which are assumed to be arranged in decreasing order. Here we define

Rs,k , rank{Λk} and Rr,k , rank{∆k}.
Theorem 6: The structure of the optimal processors F̃k andGk as the solution

to (5.62)-(5.67) are given by

F̃k = Vs,kΓk (5.71)

Gk = Vr,kΦkU
H
s,k

(
Ps,kξs,kΩs,k + σ2

vs
INr

)−1/2
, (5.72)

where the diagonal matrices Γk ∈ R
Ns×Nk and Φk ∈ R

Nr×Nr contain the elements

{γk,i}N̄k

i=1 ∈ R+ and {φk,i}N̄k

i=1 ∈ R+ on their upper left main diagonals, and we

define the variable N̄k , min(Nk, Rs,k, Rr,k).

Proof: See Section 5.6.4 on page 152.
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The structure of the precoders in (5.71) and (5.72) result in the problem (5.62)-

(5.67) reducing to

min
γk,i,φk,i,Ps,k,Pr,k

K∑

k=1

N̄k∑

i=1

log

(

1 +
γ2
k,iλ

2
k,iφ

2
k,iδ

2
k,i

φ2
k,iδ

2
k,i + 1

)−1

(5.73)

s.t.

N̄k∑

i=1

γ2
k,i = Ps,k (5.74)

K∑

k=1

Ps,k = Ps (5.75)

N̄k∑

i=1

φ2
k,i

(
γ2
k,iλ

2
k,i + 1

)
= Pr,k (5.76)

K∑

k=1

Pr,k = Pr (5.77)

γk,i ≥ 0, φk,i ≥ 0, Ps,k ≥ 0, Pr,k ≥ 0,

1 ≤ k ≤ K , 1 ≤ i ≤ N̄k. (5.78)

We see that the structure of F̃k and Gk in (5.71) and (5.72) results in (5.62)-

(5.67) being reduced to a scalar power allocation problem.

5.3.3 Power Allocation Algorithm

It is evident that the problem in (5.73)-(5.78) is intractable, since from the de-

compositions in (5.69) and (5.70) we see that λk,i and δk,i depend on the source

and relay subcarrier power allocation parameters Ps,k and Pr,k respectively, which

are currently unknown. In order to achieve a simple analytic solution we assume

that power is allocated uniformly among the subcarriers i.e. Ps,k = Ps/K and

Pr,k = Pr/K, ∀k. With the given Ps,k and Pr,k the decompositions in (5.69) and

(5.70) are now known and the constraints in (5.75) and (5.77) are both satisfied

with equality. The problem then reduces to K parallel optimisation problems
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given by

min
γk,i,φk,i

N̄k∑

i=1

log

(

1 +
γ2
k,iλ

2
k,iφ

2
k,iδ

2
k,i

φ2
k,iδ

2
k,i + 1

)−1

(5.79)

s.t.

N̄k∑

i=1

γ2
k,i = Ps/K (5.80)

N̄k∑

i=1

φ2
k,i

(
γ2
k,iλ

2
k,i + 1

)
= Pr/K (5.81)

γk,i ≥ 0, φk,i ≥ 0, 1 ≤ i ≤ N̄k, (5.82)

which have to be solved for each subcarrier k. The problem stated in (5.79)-

(5.82) can be solved using the iterative power allocation algorithms utilised in e.g.

[45, 50, 54, 96] to achieve a locally optimal solution. We firstly introduce the new

variables

ϑk,i = γ2
k,i (5.83)

ϕk,i = φ2
k,i

(
γ2
k,iλ

2
k,i + 1

)
, (5.84)

and rewrite the problem in (5.79)-(5.82) as

min
ϑk,i,ϕk,i

N̄k∑

i=1

log

((
ϑk,iλ

2
k,i + 1

) (
ϕk,iδ

2
k,i + 1

)

ϑk,iλ
2
k,i + ϕk,iδ

2
k,i + 1

)

(5.85)

s.t.

N̄k∑

i=1

ϑk,i = Ps/K (5.86)

N̄k∑

i=1

ϕk,i = Pr/K (5.87)

ϑk,i ≥ 0, ϕk,i ≥ 0, 1 ≤ i ≤ N̄k. (5.88)

It can be seen that the power constraints in (5.86) and (5.87) are now decoupled.

For a set ϕk,i satisfying (5.87), the problem for finding ϑk,i is given by minimising

(5.85) subject to (5.86). Similarly, for a given ϑk,i satisfying (5.86), ϕk,i can be

computed by minimising (5.85) subject to the constraint (5.87). Both problems

for finding ϑk,i and ϕk,i are standard convex optimisation problems which can be
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solved using the Karush Kuhn Tucker (KKT) conditions [39], resulting in

ϑk,i =
1

2λ2
k,i





√

ϕ2
k,iδ

4
k,i +

4ϕk,iδ
2
k,iλ

2
k,i

µs

− ϕk,iδ
2
k,i − 2





+

(5.89)

ϕk,i =
1

2δ2k,i





√

ϑ2
k,iλ

4
k,i +

4ϑk,iλ
2
k,iδ

2
k,i

µr

− ϑk,iλ
2
k,i − 2





+

, (5.90)

where µs and µr are the Lagrangian multipliers that are required to be calculated

to satisfy the constraints in (5.86) and (5.87) respectively. Starting with any

feasible ϑk,i, the algorithm updates ϕk,i and ϑk,i according to (5.90) and (5.89) in

an alternating fashion until a locally optimal solution is reached, which as noted

in [45, 50, 96] is guaranteed. Once the alternating algorithm has converged, the

variables γk,i and φk,i are computed from (5.83) and (5.84).

5.4 Simulation Results

This section provides simulation results to evaluate the performance of the pro-

posed robust DFE and THP transceiver solutions. In all simulations we consider a

system employing Ns = Nr = Nd = 3 antennas at the source, relay , and destina-

tion devices. The MIMO time domain channel responses are modelled according

to (2.8) and (2.9) and in all simulations we set L+ 1 = 5. The elements of Hsw[l]

and Hrw[l] in (2.8) and (2.9) are drawn from zero mean Gaussian random dis-

tributions with variances σ2
hs
[l] = σ2

hr
[l] = 1/(L + 1). The transmit and receive

spatial correlation matrices in (2.8) and (2.9) are generated from the exponential

correlation model (see e.g. [81–84]) and have elements given by

[Θs[l]]mn = ρs[l]
|m−n| (5.91)

[Θr[l]]mn = ρr[l]
|m−n| (5.92)

[Υs[l]]mn = ̺s[l]
|m−n| (5.93)

[Υr[l]]mn = ̺r[l]
|m−n|, (5.94)

where the correlation co-efficients ρs[l], ρr[l], ̺s[l], and ̺r[l] are selected from the

interval [0, 1] and define the level of spatial correlation. OFDM is employed with

K = 32 subcarriers with each subcarrier being used to transmit Nk = 3 16-

QAM data symbols. We define the SNR of the source-relay and relay-destination

channels as SNRs = Ps/Kσ2
vs

and SNRr = Pr/Kσ2
vr
, respectively. For channel
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estimation we consider that the source-relay and relay-destination channels are

estimated independently, with the source-relay channel being estimated at the

relay device whilst the relay-destination channel is estimated at the destination.

Furthermore, both channels are estimated using LS channel estimation as discussed

in Section 5.2.2 and thus the channel estimation error matrices Es,k and Er,k

in (5.5) and (5.6) have the matrix variate Gaussian distributions in (5.24) and

(5.23). All results are obtained from averaging measurements over 500 channel

realisations.

5.4.1 Comparison of Robust Transceiver Designs

In our first simulation example we compare the performance of the proposed ro-

bust DFE and THP transceivers with robust linear transceiver designs proposed

in the literature. In these simulations the spatial correlation coefficients are set

as ρs[l] = ρr[l] = ̺s[l] = ̺r[l] = 0.3, ∀l, and the channel estimation error vari-

ances in (5.24) and (5.23) are set as σ2
es
= σ2

er
= 0.0025. We compare the proposed

transceivers with the optimal relay precoded (ORP) and optimal source and relay

precoded (OSRP) algorithms in [83], as well as the linear naive amplify forward

(NAF) algorithm [45]. As a further benchmark we also include the performance

of the proposed algorithms when the alternating power allocation (APA) algo-

rithm discussed in Section 5.3.3 is replaced by an equal power allocation (EPA)

algorithm. Figures 5.1 and 5.2 show the BER and MSE1 performances of the

proposed and benchmark designs against varying SNRs(dB) with SNRr = 30dB,

whilst Figures 5.3 and 5.4 show the BER and MSE results for varying SNRr(dB)

with SNRs = 30dB. The dashed curves in Figures 5.1 and 5.3 represent the theo-

retical performances of the DFE transceivers in the absence of error propagation.

We observe that the proposed DFE and THP transceivers significantly outperform

the linear benchmark designs in terms of BER and MSE, with the THP design

providing the best BER performance. Although the DFE EPA and THP EPA

algorithms utilise a suboptimal power allocation they also provide improved per-

formance compared to the linear designs. We also observe that the linear ORP

algorithm is outperformed by the linear OSRP algorithm which results from the

fact that it does not utilise a source precoding matrix. It is worth mentioning

that, of all the algorithms, the OSRP in [83] is the most computationally expen-

sive since it is an iterative algorithm and in each iteration a matrix valued convex

optimisation problem must be solved to update the source precoder.

1The MSE performance is the theoretical MSE given by (1/K)
∑K

k=1
tr{Re,k}/Nk. We note

that since the error covariance matrices for DFE and THP transceivers is the same, they result
in the same theoretical MSE performance.
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5.4.2 Effect of Channel Estimation Error

In this simulation example we demonstrate the effect of channel estimation error

and compare the performance of the proposed robust DFE and THP algorithms to

non-robust DFE and THP solutions. The non-robust techniques assume that the

estimated channels are accurate and therefore do not take into account the channel

estimation errors. The non-robust designs can be obtained from the MMSE DFE

and THP algorithm provided in Section 4.3 of Chapter 4 simply by replacing the

actual subcarrier channels Hs,k and Hr,k with their estimates H̄s,k and H̄r,k. In

these simulations the spatial correlation coefficients are set as ρs[l] = ρr[l] = ̺s[l] =

̺r[l] = 0.5, ∀l, and we show results for σ2
es

= σ2
er

= {0.005, 0.0025, 0.001, 0.0005}.
Figure 5.5 compares the BER performance of the robust DFE and non-robust

DFE algorithms when varying SNRs(dB) with SNRr = 30dB. The corresponding

BER results for the robust and non-robust THP algorithms are shown in Figure

5.6. The MSE results for these algorithms in this situation are shown in Figure

5.7. From these results we see that the proposed robust algorithms of this chapter

outperform their non-robust counterparts for different levels of channel estimation

error. For completeness we also include the results for varying SNRr(dB) with

SNRs = 30dB, which are displayed in Figures 5.8-5.10.
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Figure 5.1: BER against varying SNRs(dB) of robust linear and non-linear
transceivers for a system with Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
[l] = σ2

hr
[l] =

1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, SNRr = 30dB, ρs[l] = ρr[l] = ̺s[l] =
̺r[l] = 0.3, and σ2

es
= σ2

er
= 0.0025.
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Figure 5.2: MSE against varying SNRs(dB) of robust linear and non-linear
transceivers for a system with Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
[l] = σ2

hr
[l] =

1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, SNRr = 30dB, ρs[l] = ρr[l] = ̺s[l] =
̺r[l] = 0.3, and σ2

es
= σ2

er
= 0.0025.
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Figure 5.3: BER against varying SNRr(dB) of robust linear and non-linear
transceivers for a system with Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
[l] = σ2

hr
[l] =

1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, SNRs = 30dB, ρs[l] = ρr[l] = ̺s[l] =
̺r[l] = 0.3, and σ2

es
= σ2

er
= 0.0025.
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Figure 5.4: MSE against varying SNRr(dB) of robust linear and non-linear
transceivers for a system with Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
[l] = σ2

hr
[l] =

1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, SNRs = 30dB, ρs[l] = ρr[l] = ̺s[l] =
̺r[l] = 0.3, and σ2

es
= σ2

er
= 0.0025.
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Figure 5.5: BER against varying SNRs(dB) of robust and non-robust DFE
transceivers for a system with Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
[l] = σ2

hr
[l] =

1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, SNRr = 30dB, ρs[l] = ρr[l] = ̺s[l] =
̺r[l] = 0.5, and σ2

es
= σ2

er
= {0.005, 0.0025, 0.001, 0.0005}.
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Figure 5.6: BER against varying SNRs(dB) of robust and non-robust THP
transceivers for a system with Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
[l] = σ2

hr
[l] =

1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, SNRr = 30dB, ρs[l] = ρr[l] = ̺s[l] =
̺r[l] = 0.5, and σ2

es
= σ2

er
= {0.005, 0.0025, 0.001, 0.0005}.
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Figure 5.7: MSE against varying SNRs(dB) of robust and non-robust DFE/THP
transceivers for a system with Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
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hr
[l] =

1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, SNRr = 30dB, ρs[l] = ρr[l] = ̺s[l] =
̺r[l] = 0.5, and σ2

es
= σ2

er
= {0.005, 0.0025, 0.001, 0.0005}.
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Figure 5.8: BER against varying SNRr(dB) of robust and non-robust DFE
transceivers for a system with Ns = Nr = Nd = 3, L + 1 = 5, σ2

hs
[l] = σ2

hr
[l] =

1/(L+ 1), K = 32, Nk = 3 16-QAM symbols, SNRs = 30dB, ρs[l] = ρr[l] = ̺s[l] =
̺r[l] = 0.5, and σ2

es
= σ2

er
= {0.005, 0.0025, 0.001, 0.0005}.
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Figure 5.9: BER against varying SNRr(dB) of robust and non-robust THP
transceivers for a system with Ns = Nr = Nd = 3, L + 1 = 5, σ2
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̺r[l] = 0.5, and σ2
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10 15 20 25 30 35

10
−2

10
−1

SNRr(dB)

M
S
E

DFE/THP non−robust

DFE/THP robust

σ
2

es

= σ
2

er

= 0.005

σ
2

es

= σ
2

er

= 0.0025

σ
2

es

= σ
2

er

= 0.001

σ
2

es

= σ
2

er

= 0.0005

Figure 5.10: MSE against varying SNRr(dB) of robust and non-robust DFE/THP
transceivers for a system with Ns = Nr = Nd = 3, L + 1 = 5, σ2
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[l] =
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̺r[l] = 0.5, and σ2
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= {0.005, 0.0025, 0.001, 0.0005}.
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5.5 Chapter Summary and Conclusions

In this chapter we considered the effects of CSI mismatch on the design of DFE

and THP transceivers for MIMO OFDM relaying systems. We introduced a gen-

eral error model where the actual source-relay and relay-destination subcarrier

channels were modelled as the summation of the estimated channels and error

matrices, with the additive error matrices assumed to have zero mean complex

Gaussian distributions with known covariances. It was shown that two specific

channel estimation algorithms resulted in the the channel estimation error matri-

ces having such a structure. For the general channel estimation error model we

derived the robust optimisation problem for minimising the arithmetic MSE sub-

ject to transmission power constraints. Unfortunately, for the general case, the

resulting optimisation problem was extremely difficult to solve. In order to find

an analytic solution we therefore considered a relaxation of the problem for which

the source and relay precoder matrices could be more easily derived. The relax-

ation of the original optimisation problem resulted from deriving an upper bound

to the original objective function and minimising the upper bound subject to the

source power constraint and a relaxed relay power constraint. The source and re-

lay precoding matrices were then derived for the relaxed optimisation problem. It

was shown that for special cases of channel estimation error the relaxed problem

was in fact equivalent to the original problem. Simulation results showed that the

proposed robust non-linear solutions offered improved performance compared to

robust linear techniques proposed in the literature. It was also demonstrated that

the proposed algorithms were more robust to CSI mismatch compared to non-

robust non-linear solutions that did not take into account the channel estimation

errors, and simply considered the estimated channel to be the actual channel.
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5.6 Chapter Derivations and Proofs

In this section we provide detailed derivations and proofs for this chapter that

have been omitted from the main text.

5.6.1 Derivation of Expected Error Covariance Matrix

Here we prove the expression for E
{
Re,k

}
given in (5.30). Let us firstly rewrite

the instantaneous error covariance matrix Re,k in (5.4) as

Re,k = Wk

(

Hr,kGkXkG
H
k H

H
r,k + σ2

vr
INd

)

WH
k −WkHr,kGkHs,kFkU

H
k

−UkF
H
k HH

s,kG
H
k H

H
r,kW

H
k +UkU

H
k , (5.95)

where for convenience we define the matrix Xk ∈ C
Nr×Nr as

Xk , Hs,kFkF
H
k HH

s,k + σ2
vs
INr

. (5.96)

Taking the expectation of (5.95) we require to compute

E
{
Re,k

}
= E

{

Wk

(

Hr,kGkXkG
H
k H

H
r,k + σ2

vr
INd

)

WH
k

}

− E

{

WkHr,kGkHs,kFkU
H
k

}

− E

{

UkF
H
k HH

s,kG
H
k H

H
r,kW

H
k

}

+UkU
H
k , (5.97)

where it should be understood that the expectations shall be taken w.r.t. the

random matrices Es,k and Er,k, which are related to the subcarrier channels Hs,k

and Hr,k through (5.5) and (5.6), respectively2. We focus firstly on calculating

the term E{WkHr,kGkHs,kFkU
H
k } in (5.97). Substituting (5.5) and (5.6) into

this expression it is straightforward to show that

E

{

WkHr,kGkHs,kFkU
H
k

}

= WkH̄r,kGkH̄s,kFkU
H
k +WkH̄r,kGkE

{
Es,k

}
FkU

H
k

+WkE
{
Er,k

}
GkH̄s,kFkU

H
k +WkE

{
Er,k

}
GkE

{
Es,k

}
FkU

H
k . (5.98)

= WkH̄r,kGkH̄s,kFkU
H
k (5.99)

where to obtain the right hand side of (5.98) we have used the fact that H̄s,k and

H̄r,k are deterministic quantities, and the fact that Es,k and Er,k are independent.

To obtain (5.99) from (5.98) we have used the results E{Es,k} = 0Nr×Ns
and

2Note that in the expression (5.97) an expectation is not taken w.r.t. the term UkU
H
k since,

as it is not a function of the random matrices Es,k and/or Er,k, it is considered a deterministic
quantity.
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E{Er,k} = 0Nd×Nr
from (5.26) and (5.27), respectively. Taking the Hermitian

transpose of the left hand side of (5.98) and (5.99) we also have

E

{

UkF
H
k HH

s,kG
H
k H

H
r,kW

H
k

}

= UkF
H
k H̄H

s,kG
H
k H̄

H
r,kW

H
k , (5.100)

which provides the third expectation term in (5.97). We lastly require to compute

the term E{Wk(Hr,kGkXkG
H
k H

H
r,k + σ2

vr
INd

)WH
k } in (5.97). Since only Xk and

Hr,k contain the random matrices Es,k and Er,k, this expectation is given by

E

{

Wk

(

Hr,kGkXkG
H
k H

H
r,k + σ2

vr
INd

)

WH
k

}

= WkE

{(

Hr,kGkE{Xk}GH
k H

H
r,k + σ2

vr
INd

)}

WH
k . (5.101)

With regards to the inner expectation E{Xk} in (5.101), by substituting (5.5) into

(5.96) and taking the expectation w.r.t. Es,k we have

E{Xk} = H̄s,kFkF
H
k H̄H

s,k + E

{

Es,kFkF
H
k EH

s,k

}

+ σ2
vs
INr

(5.102)

= H̄s,kFkF
H
k H̄H

s,k + tr
{

FkF
H
k ΞT

s,k

}

Ωs,k + σ2
vs
INr

, X̄k. (5.103)

To obtain (5.103) we have used the result in (5.28), which was obtained based

on the matrix variate Gaussian distribution of Es,k given in (5.10) as well as

Lemma 16. Substituting (5.103) into (5.101), the remaining task now is to compute

WkE{(Hr,kGkX̄kG
H
k H

H
r,k + σ2

vr
INd

)}WH
k . Using (5.6) as well as the result in

(5.29) we can expand this term as

WkE

{(

Hr,kGkX̄kG
H
k H

H
r,k + σ2

vr
INd

)}

WH
k

= Wk

(

H̄r,kGkX̄kG
H
k H̄

H
r,k + E

{

Ēr,kGkX̄kG
H
k Ē

H
r,k

}

+ σ2
vr
INd

)

WH
k (5.104)

= Wk

(

H̄r,kGkX̄kG
H
k H̄

H
r,k + tr

{

GkX̄kG
H
k Ξ

T
r,k

}

Ωr,k + σ2
vr
INd

)

WH
k . (5.105)

Finally, by substituting (5.99), (5.100), and (5.105) into (5.97) we prove E
{
Re,k

}

as given in (5.30).

5.6.2 Proof of Upper Bounds for Objective Function and

Relay Power Constraint

In this section we prove the upper bounds in (5.51) and (5.52). To do so we require

the following lemmas:
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Lemma 18: [82] For Hermitian positive semi-definite matrices A ∈ C
N×N

and B ∈ C
N×N , with eigenvalues {λa,i}Ni=1 ∈ R+ and {λb,i}Ni=1 ∈ R+ arranged in

descending order we have the inequality tr{AB} ≤ tr{A}λb,1.

Lemma 19: [97] For Hermitian positive semi-definite matrices A1 ∈ C
N×N

and A2 ∈ C
N×N , where A1 � A2, then given an arbitrary matrix B ∈ C

M×N the

following inequality holds BA1B
H � BA2B

H .

Lemma 20: [97] For Hermitian positive semi-definite matrices A1 ∈ C
N×N

and A2 ∈ C
N×N , if A1 � A2, then we also have A−1

1 � A−1
2 .

We now set out to prove (5.51). Using Lemma 18, and the fact that Ξs,k is a

Hermitian positive semi-definite matrix, we can state the following inequality

Jk , tr
{

F̃kF̃
H
k ΞT

s,k

}

Ωs,k + σ2
vs
INr

(5.106)

� tr
{

F̃kF̃
H
k

}

ξs,kΩs,k + σ2
vs
INr

, J̄k, (5.107)

where ξs,k is the largest eigenvalue of Ξs,k. Substituting (5.107) into (5.31) it is

straightforward to show that

X̄k = H̄s,kF̃kF̃
H
k H̄H

s,k + tr
{

F̃kF̃
H
k ΞT

s,k

}

Ωs,k + σ2
vs
INr

(5.108)

� H̄s,kF̃kF̃
H
k H̄H

s,k + tr
{

F̃kF̃
H
k

}

ξs,kΩs,k + σ2
vs
INr

, X̃k. (5.109)

Using (5.109), along with the properties of the trace operator and Lemma 19, it

can be shown that

Kk , tr
{

GkX̄kG
H
k Ξ

T
r,k

}

Ωr,k + σ2
vr
INd

(5.110)

� tr
{

GkX̃kG
H
k Ξ

T
r,k

}

Ωr,k + σ2
vr
INd

(5.111)

� tr
{

GkX̃kG
H
k

}

ξr,kΩr,k + σ2
vr
INd

, K̄k, (5.112)

where ξr,k is the largest eigenvalue ofΞr,k and we have applied Lemma 18 to (5.111)

to obtain (5.112). Using the definitions of the positive semi-definite Hermitian

matrices Jk, J̄k, Kk, and K̄k, in (5.106), (5.107), (5.110), and (5.112), we can

state that

H̄r,kGkJkG
H
k H̄

H
r,k +Kk � H̄r,kGkJ̄kG

H
k H̄

H
r,k + K̄k, (5.113)
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where we have made use of Lemma 19. Furthermore, inverting both sides of

(5.113), and applying Lemma 20 we have

Lk ,

(

H̄r,kGkJkG
H
k H̄

H
r,k +Kk

)−1

�
(

H̄r,kGkJ̄kG
H
k H̄

H
r,k + K̄k

)−1

, L̄k. (5.114)

Using (5.114) as well as Lemma 19 we have

F̃H
k H̄H

s,kG
H
k H̄

H
r,kLkH̄r,kGkH̄s,kF̃k � F̃H

k H̄H
s,kG

H
k H̄

H
r,kL̄kH̄r,kGkH̄s,kF̃k. (5.115)

Adding INk
to both sides of (5.115) and taking the inverse of both sides we finally

arrive at

(

INk
+ F̃H

k H̄H
s,kG

H
k H̄

H
r,kLkH̄r,kGkH̄s,kF̃k

)−1

�
(

INk
+ F̃H

k H̄H
s,kG

H
k H̄

H
r,kL̄kH̄r,kGkH̄s,kF̃k

)−1

, (5.116)

where again we have utilised Lemma 20. With Ek and Ẽk given in (5.43) and

(5.53) we see that (5.116) is equivalent to Ek � Ẽk. Since |A| ≤ |B|, for any

positive semi-definite Hermitian matrices satisfying A � B, we find that taking

the determinant of both sides of (5.116) we have |Ek| ≤ |Ẽk|. The inequality in

(5.51) then directly follows.

We now prove the inequality in (5.52). Using the relationship X̄k � X̃k from

(5.109) as well as Lemma 19 we have

GkX̄kG
H
k � GkX̃kG

H
k . (5.117)

Using the fact that tr{A} ≤ tr{B} for positive semi-definite matrices A � B we

have from (5.117) that

tr
{

GkX̄kG
H
k

}

≤ tr
{

GkX̃kG
H
k

}

. (5.118)

Finally by taking the summation of both sides of (5.118) over k = 1...K we prove

the inequality in (5.52).

5.6.3 Proof of Power Constraint Equalities

In this section we prove that the source and relay precoding processors F̃k and

Gk should satisfy the power constraint equalities in (5.58)-(5.61). Proving the

constraints in (5.58) and (5.59) relies on showing that |Ẽk| in (5.53) is a decreasing
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function of tr{F̃kF̃
H
k }. To this end let us write

F̃k =

√

tr{F̃kF̃
H
k }F̆k, (5.119)

where F̆k satisfies tr{F̆kF̆
H
k } = 1. Substituting (5.119) into (5.53) we can write

|Ẽk| =
∣
∣
∣
∣
INk

+ F̆H
k H̄H

s,kG
H
k H̄

H
r,k

(

H̄r,kGkMkG
H
k H̄

H
r,k +Nk

)−1

H̄r,kGkH̄s,kF̆k

∣
∣
∣
∣

−1

,

(5.120)

where we define the new variables

Mk , ξs,kΩs,k +
σ2
vs

tr
{

F̃kF̃
H
k

}INr
(5.121)

Nk , tr
{

GkX̆kG
H
k

}

ξr,kΩr,k +
σ2
vr

tr
{

F̃kF̃
H
k

}INd
(5.122)

X̆k , H̄s,kF̆kF̆
H
k H̄H

s,k +Mk. (5.123)

For a given F̆k it can now be seen that (5.120) is a decreasing function of tr{F̃kF̃
H
k }.

Thus, given a maximum available power budget Ps,k available to the kth subcarrier,

it is straightforward to deduce that the optimal F̃k that minimises (5.120) should

satisfy tr{F̃kF̃
H
k } = Ps,k. This proves the condition in (5.58). To prove the

condition in (5.59) we note that if the total power budget Ps 6= ∑Nc

k=1 Ps,k then

allocating the unused power from Ps to the subcarriers can only further minimise

(5.120). We should thus have
∑Nc

k=1 Ps,k = Ps as in (5.59).

In a similar fashion, to show (5.60) and (5.61) we write

Gk =

√

tr{GkX̃kG
H
k }Ğk, (5.124)

where Ğk satisfies tr{ĞkX̃kĞ
H
k } = 1. Substituting (5.124) into (5.53) we have

|Ẽk| =
∣
∣
∣INk

+ F̃H
k H̄H

s,kĞ
H
k H̄

H
r,k

(

H̄r,kĞkM̆kĞ
H
k H̄

H
r,k + N̆k

)−1

H̄r,kĞkH̄s,kF̃k

∣
∣
∣

−1

,

(5.125)
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where we have defined the new variables

M̆k , tr
{

F̃kF̃
H
k

}

ξs,kΩs,k + σ2
vs
INr

(5.126)

N̆k , ξr,kΩr,k +
σ2
vr

tr
{

GkX̃kG
H
k

}INd
. (5.127)

It can be seen that (5.125) is a decreasing function of tr{GkX̃kG
H
k }. Following

the same arguments made previously for F̃k, we can straightforwardly show that

Gk should satisfy the conditions in (5.60) and (5.61).

5.6.4 Proof of Source and Relay Precoder Structures

In this section we provide the proof of Theorem 6. We begin by showing that the

optimal source and relay processing matrices F̃k and Gk are given by (5.71) and

(5.72). In order to do so we shall require the following tools:

Definition 9: For a vector a ∈ R
M with elements {ai}Mi=1 ∈ R, let us denote

{a[i]}Mi=1 as being the elements of a arranged in descending order i.e.

a[i] ≥ a[i+1], 1 ≤ i ≤ M − 1. (5.128)

Definition 10: [39] For vectors a ∈ R
M and b ∈ R

M we say that a is weakly

additively submajorised by b, denoted as a �+
w b, if

m∑

i=1

a[i] ≤
m∑

i=1

b[i], 1 ≤ m ≤ M. (5.129)

Definition 11: [39] For vectors a ∈ R
M
+ and b ∈ R

M
+ we say that a is weakly

multiplicatively submajorised by b, denoted as a �×
w b, if

m∏

i=1

a[i] ≤
m∏

i=1

b[i], 1 ≤ m ≤ M. (5.130)

Lemma 21: [39] For a ∈ R
M and b ∈ R

M satisfying a �+
w b, then for any

convex increasing function g(.) we have [g(a1), ..., g(aM)]T �+
w [g(b1), ..., g(bM)]T

i.e.

m∑

i=1

g
(
a[i]

)
≤

m∑

i=1

g
(
b[i]

)
, 1 ≤ m ≤ M. (5.131)
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Lemma 22: [39] For a ∈ R
M
++ and b ∈ R

M
++ then a �×

w b is equivalent to saying

that [log(a1), ..., log(aM)]T �+
w [log(b1), ..., log(bM)]T and vice versa. In other words

a and b satisfy

m∑

i=1

log
(
a[i]

)
≤

m∑

i=1

log
(
b[i]

)
, 1 ≤ m ≤ M. (5.132)

Lemma 23: [39] For B , (
⊗N

n=1 An)
H(

⊗N
n=1 An), we have the weak multi-

plicative submajorisation [λb,1, ..., λb,M ]T �×
w [

∏N
n=1 σ

2
An,1

, ...,
∏N

n=1 σ
2
An,M

]T , where

{λb,i}Mi=1 ∈ R++ is the ith largest eigenvalue of B, {σAn,i
}Mi=1 ∈ R++ is the ith

largest singular value of An, and M , min(rank{A1}, ..., rank{AN}). This means

that

m∏

i=1

λb,i ≤
m∏

i=1

N∏

n=1

σ2
An,i

, 1 ≤ m ≤ M. (5.133)

Lemma 24: For B , (
⊗N

n=1 An)
H(

⊗N
n=1 An) we have that

|I +B|−1 ≥
M∏

i=1

(

1 +
N∏

n=1

σ2
An,i

)−1

, (5.134)

where again, {σAn,i
}Mi=1 ∈ R++ is the ith largest singular value of An, and we

define the scalar M , min(rank{A1}, ..., rank{AN}).
Lemma 25: [78] For positive semi-definite Hermitian matrices A ∈ C

N×N

and B ∈ C
N×N , with eigenvalues {λa,i}Ni=1 ∈ R+ and {λb,i}Ni=1 ∈ R+ arranged in

descending order, we have the inequality

tr{AB} ≥
N∑

i=0

λa,iλb,N+1−i. (5.135)

We now set out to prove the structure of F̃k and Gk given in Theorem 6. We

start by finding a family of processors that minimise the objective function in

(5.62). To this end it is sufficient to find F̃k and Gk that minimise |Ẽk|. From

the family of precoders that minimise |Ẽk| we select specific processors that also

minimise the source and relay power consumption.
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Substituting (5.58) into J̄k in (5.107) and substituting (5.60) into the definition

of K̄k in (5.112) we can write

J̄k = Ps,kξs,kΩs,k + σ2
vs
INr

, (5.136)

K̄k = Pr,kξr,kΩr,k + σ2
vr
INd

. (5.137)

By further substituting (5.136) and (5.137) into (5.68), after some straightforward

deductions, we can write |Ẽk| as

|Ẽk| =
∣
∣
∣
∣
INk

+ Y H
k ZH

k

(

ZkZ
H
k + INd

)−1

ZkYk

∣
∣
∣
∣

−1

, (5.138)

where Yk , J̄
−1/2
k H̄s,kF̃k and Zk , K̄

−1/2
k H̄r,kGkJ̄

1/2
k . We now consider the

decompositions

Yk = J̄
−1/2
k H̄s,kF̃k = Uy,kDkV

H
y,k (5.139)

Zk = K̄
−1/2
k H̄r,kGkJ̄

1/2
k = Uz,kΣkV

H
z,k, (5.140)

where Uy,k ∈ C
Nr×Nr , Vy,k ∈ C

Nk×Nk , Uz,k ∈ C
Nd×Nd , and Vz,k ∈ C

Nr×Nr , are

unitary. The matrices Dk ∈ C
Nr×Nk and Σk ∈ C

Nd×Nk are diagonal and contain

the singular values of Yk and Zk, respectively, which are assumed to be in de-

creasing order. Let us now define the variable Rs,k , rank{J̄−1/2
k H̄s,k}. Noting

that rank{F̃k} ≤ min(Ns, Nk) and Rs,k ≤ Ns, we can straightforwardly show from

(5.139) that rank{Yk} = rank{Dk} ≤ min(Rs,k, Nk) , Ry,k. Similarly, by defining

Rr,k , rank{K̄−1/2
k H̄r,k}, we see from (5.140) that rank{Zk} = rank{Σk} ≤ Rr,k.

With these observations and substituting (5.139) and (5.140) into (5.138) we can

state that

|Ẽk| =
∣
∣
∣INk

+DT
k U

H
y,kVz,kΣ

T
k

(

ΣkΣ
T
k + INd

)−1

ΣkV
H
z,kUy,kDk

∣
∣
∣

−1

(5.141)

≥
N̄k∏

i=1

(

1 +
d2k,iσ

2
k,i

σ2
k,i + 1

)−1

, (5.142)

where we have used Lemma 24 to obtain the lower bound in (5.142) where {dk,i}
Ry,k

i=1

and {σk,i}
Rr,k

i=1 are the singular values in Dk and Σk respectively. In (5.142) we

also define N̄k , min{Nk, Rs,k, Rr,k}. We see that (5.141) is invariant to the

unitary matrix Vy,k. It shall also be seen later that the source and relay power

consumptions are also independent of Vy,k and we can assume w.l.o.g. that Vy,k =

INk
. We also note that (5.142) holds with equality when Uy,k = Vz,k. Substituting

the decompositions of (5.69) and (5.70) into (5.139) and (5.140) (c.f. (5.136) and
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(5.137)) and solving the resulting equations for F̃k and Gk we have

F̃k = Vs,kΛ
†
kT1,kDkV

H
y,k (5.143)

Gk = Vr,k∆
†
kT2,kΣkV

H
z,kJ̄

−1/2
k , (5.144)

where T1,k , UH
s,kUy,k and T2,k , UH

r,kUz,k. The family of precoders given in

(5.143) and (5.144) achieve the lower bound of (5.142), and therefore minimise

|Ẽk|, provided that Uy,k = Vz,k. We note that the lower bound in (5.142) depends

only on the largest N̄k singular values of Dk and Σk and we can assume w.l.o.g.

that rank{Dk} ≤ N̄k and rank{Σk} ≤ N̄k. From (5.143) and (5.144) it is then

obvious that we should have rank{F̃k} ≤ N̄k and rank{Gk} ≤ N̄k. With this

observation and using (5.143), the power consumed by the source on the kth

subcarrier is

tr
{

F̃kF̃
H
k

}

= tr
{

TH
1,k(Λ

†
k)

TΛ
†
kT1,kDkD

T
k

}

(5.145)

≥
N̄k∑

i=1

λ−2
k,id

2
k,i, (5.146)

where the lower bound in (5.146) is obtained by applying Lemma 25 to (5.145).

From (5.146) and (5.145) we see that the power consumed by the source on the kth

subcarrier is minimised with T1,k = INr
, which holds for Us,k = Uy,k. Substituting

this result and Vy,k = INk
into (5.143) we arrive at the source precoder structure

F̃k = Vs,kΓk, (5.147)

where we define the diagonal matrix Γk , Λ
†
kDk. This proves the source precoder

given in Theorem 6.

We now turn our attention to tr{GkX̃kG
H
k }. Using J̄k in (5.136) and X̃k in

(5.54) we can show that

tr
{

GkX̃kG
H
k

}

= tr
{

GkJ̄
1/2
k

(

J̄
−1/2
k H̄s,kF̃kF̃

H
k H̄H

s,kJ̄
−H/2
k + INr

)

J̄
H/2
k GH

k

}

(5.148)

= tr
{

TH
2,k(∆

†
k)

T∆
†
kT2,kΣk

(

DkD
T
k + INr

)

ΣT
k

}

(5.149)

≥
N̄k∑

i=1

σ2
k,i(d

2
k,i + 1)

δ2k,i
. (5.150)

To obtain (5.148) we have used the decomposition in (5.139), the structure of Gk

in (5.144), and the result Uy,k = Vz,k. The lower bound in (5.149) follows from the
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application of Lemma 25 and holds with equality when T2,k = INd
. Substituting

T2,k = INd
and Vz,k = Us,k into (5.144) we have

Gk = Vr,kΦkU
H
s,kJ̄

−1/2
k , (5.151)

where Φk , ∆
†
kΣk. Finally by substituting (5.136) into (5.151) we prove the relay

precoder structure given in Theorem 6.

Having proved the particular structure of the source and relay precoder matrices

F̃k and Gk given in Theorem 6, we now show that the diagonal matrices Γk and

Φk in (5.71) and (5.72), respectively, should have at most N̄k positive diagonal

elements. We firstly recall the definitions Γk , Λ
†
kDk and Φk , ∆

†
kΣk made

previously. Consequently we have the relationships

dk,i = γk,iλk,i (5.152)

σk,i = φk,iδk,i, (5.153)

Noting that the optimal source and relay precoders result in (5.141) and (5.142)

holding with equality, then substituting (5.152) and (5.153) into (5.142) we can

write

|Ek| =
N̄k∏

i=1

(

1 +
γ2
k,iλ

2
k,iφ

2
k,iδ

2
k,i

φ2
k,iδ

2
k,i + 1

)−1

. (5.154)

From (5.154) we observe that only the first N̄k diagonal elements of Γk and Φk

affect the objective function. It is therefore straightforward to show that, in order

to conserve the source and relay transmission power, the remaining elements of Γk

and Φk should be zero.



Chapter 6

Conclusions and Future Work

In this concluding chapter we firstly summarise the main contributions of the

thesis before discussing some potential lines of future research based on the work

proposed in the previous chapters.

6.1 Thesis Summary

This thesis has been concerned with the topic of channel estimation and non-linear

transceiver designs for MIMO relaying networks. We introduced the signal model

for such a system in Chapter 2 considering the transmission between a single source

and destination device, with the communication process being aided by a single

relaying node. The source, relay, and destination devices were each equipped with

multiple antennas and we assumed the source-relay and relay-destination channels

to be frequency selective. To deal with the frequency selectivity of these channels

we considered the use of OFDM which allowed each transmission stage to be

decoupled into a number of parallel narrowband subcarriers. We then considered

non-linear transceivers for the MIMO OFDM relaying system. Specifically, we

considered two transceiver models which either utilised linear precoding at the

source and relay with a non-linear DFE at the destination, or non-linear THP at

the source with linear precoding and equalisation at the destination. It was shown

that for both transceivers the same optimisation problem could be formulated to

solve for source, relay, and destination processors.

In Chapter 3 we discussed channel estimation algorithms for the considered

MIMO OFDM relaying system. We considered the estimation of the frequency se-

lective time domain channels as opposed to the direct estimation of the frequency

domain subcarrier channels. The estimation process for the MIMO OFDM relay-

ing system was divided into two seperate phases. In the first phase the estimation

157
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of the relay-destination channel was conducted through transmitting known train-

ing symbols from the relay to the destination. This was equivalent to the channel

estimation problem in point-to-point MIMO systems for which known algorithms

have been studied in the literature. We reviewed well known LS and MMSE solu-

tions to this problem. In the second phase the source-relay channel was estimated.

Known pilot symbols were firstly transmitted from the source to the relay device.

It was noted that if the relay performed channel estimation then the previously dis-

cussed LS and MMSE point-to-point MIMO channel estimation algorithms could

be utilised to obtain the estimate of the source-relay channel at the relay.

We further considered the case that the destination was tasked with channel

estimation. In this scenario the relay precoded and forwarded the pilot symbols

to the destination device and we then suggested several channel estimation algo-

rithms for this problem. To estimate the source-relay channel the relay-destination

channel was required to be known. For simplicity it was assumed that the relay-

destination channel estimate was sufficiently accurate and channel estimation er-

rors could be neglected. In our first algorithm an iterative procedure was used

where we updated the MMSE channel estimate at the destination, the relay pre-

coding matrix, and the source pilot matrix in an alternating fashion. It was shown

that each subproblem was a standard convex optimisation problem and as such

the proposed iterative algorithm had guaranteed convergence. Due to the compu-

tational complexity of this algorithm we then suggested suboptimal but simplifed

solutions. It was shown that, under a high SNR approximation, the source-relay

channel estimation using destination measurements could be greatly simplified.

Simulation results showed that the suboptimal solutions had comparable perfor-

mance to the iterative algorithm whilst offering substantially reduced complexity

and furthermore all proposed algorithms offered better channel estimates com-

pared to orthogonal source and relay pilot matrix designs.

In Chapter 4 we considered the problem of deriving the processors for the

DFE and THP MIMO OFDM relay transceivers introduced in Chapter 2. We

assumed that the source-relay and relay-destination channels were perfectly known

to all nodes in the network. The assumption of perfect CSI was validated in

Chapter 3 when the SNR during the channel estimation phases was sufficiently

large. Two different design solutions were derived depending on whether ZF or

MMSE equalisation was performed at the receiver. For both cases of ZF and

MMSE equalisation we considered the problem of deriving the source and relay

precoding matrices to minimise the arithmetic MSE subject to transmission power

constraints at both the source and relay terminals. The optimal source and relay

precoder structures were derived independently firstly for the use of a ZF equaliser
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and secondly for the use of MMSE equalisation. It was shown that in both cases

the precoder structures resulted in the original matrix valued optimisation problem

reducing to simpler power allocation problems that involved only scalar variables.

When ZF equalisation was used, it was shown that the optimal source and power

allocation variables could be calculated in closed form with the source allocating

power uniformly across all data streams. The optimal relay power allocation was

derived using the KKT conditions. On the other hand, when MMSE equalisation

was employed the optimal power allocation could not be derived in closed form.

An iterative power allocation algorithm was utilised to derive the source and relay

power allocation matrices. Simulation results showed that the proposed ZF and

MMSE DFE/THP transceivers provided improved BER and MSE performance

compared to several linear transceiver designs proposed in the literature.

The algorithms proposed in 4 suffer a degradation in performance when the

channels are estimated imperfectly. In Chapter 5 we therefore considered the prob-

lem of designing the DFE and THP processors in a statistically robust manner to

derive transceivers that could deal with channel estimation errors. The subcarrier

channel estimation errors were modelled as being additive matrices having zero

mean Gaussian distributions with known covariance. The vailidity of this model

was verified by showing that some specific channel estimation algorithms resulted

in the channel estimation errors having such distributions. A Bayesian approach

was adopted to formulate a robust optimisation problem where the objective func-

tion was obtained by averaging the DFE and THP error covariance matrices over

the channel estimation errors using their statistical properties. It was shown that

for general channel estimation error covariance matrices the optimal solution to

the optimisation problem was difficult to obtain due to the objective function

being an extremely complicated non-convex function of the source and relay pre-

coders. We simplified the procedure by relaxing the optimisation problem and

derived the source and relay precoders as the solution to the relaxed problem.

Similar to the designs in Chapter 4, for the case of perfect CSI, the robust source

and relay precoders result in a scalar valued optimisation problem and an iterative

power allocation procedure was utilised to solve this problem. Simulation results

demonstrated that the proposed robust non-linear transceivers outperformed ro-

bust linear transceivers in both BER and MSE. Simulation results also showed

that the robust designs proposed in this chapter outperformed the non-robust al-

gorithms derived in Chapter 4.
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6.2 Future Work

Throughout this thesis we have discussed various algorithms for two-hop MIMO

OFDM relay systems. From this work a number of very interesting future lines of

research have arisen, some of which we shall now briefly discuss:

• Robust MIMO OFDM Relay Channel Estimation

In Chapter 3 we developed MIMO OFDM relay channel estimation algo-

rithms where the channel estimates could only be acquired using measure-

ments made at the destination. In the first phase of channel estimation the

relay-destination channel was estimated by transmitting known pilot sym-

bols from the relay to destination. In the second phase known pilot sym-

bols were transmitted from the source to relay, which were then forwarded

to the destination allowing for an estimation of the source-relay channel.

The source-relay channel estimate depended directly on the relay-destination

channel estimate obtained in the first phase. In our proposed algorithms,

for simplicity, we assumed that the relay-destination channel estimate was

sufficiently accurate that channel estimation errors could be ignored. How-

ever, simulation results demonstrated that an inaccurate relay-destination

channel estimate adversely impacted the accuracy of the source-relay esti-

mate. A possible approach to dealing with this problem is to develop robust

algorithms that take into account the error from the first phase of channel

estimation. Such an approach has been developed in [57] for narrowband

MIMO relaying and should be extended to MIMO OFDM relay channel es-

timation in future research work.

• Superimposed MIMO OFDM Relay Channel Estimation

The main drawback of conventional training based channel estimation al-

gorithms, where known pilot symbols are used for channel estimation, is

that dedicated training periods must be used. Since no information bear-

ing symbols are transmitted during training the overall system spectral ef-

ficiency is reduced. Another class of channel training algorithms known as

superimposed channel estimation have therefore been developed to circum-

vent this problem. Superimposed training for narrowband point-to-point

MIMO channel estimation has been studied in e.g. [98], and for point-to-

point MIMO OFDM systems in e.g. [99]. The advantage of superimposed

training compared to conventional training based algorithms is that it al-

lows data transmission and channel estimation to be carried out simultane-

ously, which makes it a very spectrally efficient technique. This is achieved
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through superimposing training symbols over data carrying symbols. The

idea of superimposed training has recently been extended to two-hop nar-

rowband MIMO relaying systems in [100]. In this algorithm the source node

sends a training signal to the relay, which then amplifies the received sig-

nal, superimposes another training signal, and forwards the resulting signal

to the destination. At the destination, the source training signal and the

superimposed relay training signal are used to simultaneously estimate the

source-relay and relay-destination channels. Superimposed channel training

for two-hop MIMO relaying is therefore a more spectrally efficient technique

compared to conventional training based algorithms since it does not require

the source-relay and relay-destination channels to be estimated in seperate

phases. Whilst superimposed training has been considered in [100] for nar-

rowband MIMO relaying, it does not appear to have been studied for MIMO

OFDM relaying and is an interesting future research topic.

• Vector Precoding for MIMO Relaying

In this thesis we investigated non-linear DFE and THP transceivers for

MIMO OFDM relay systems. Another non-linear technique which is very

similar to THP is vector precoding (VP) which is also commonly referred

to as vector perturbation. The main difference between THP and VP tech-

niques mainly lies in the choice of the perturbation vector. In fact, THP is

actually a particular case of the more general VP techniques. It is shown

in [101] for the case of point-point MIMO systems that VP can offer im-

proved performance when compared to various THP designs. VP has also

been studied in [102–104] for multi-user narrowband MIMO relaying systems

under the assumption of perfect CSI but appears to be largely unstudied for

single user MIMO OFDM relay communications. It is therefore of interest

to further study the use of VP for MIMO OFDM relaying networks and to

compare such algorithms to the proposed DFE and THP transceivers.

• Optimal Robust DFE and THP Transceivers

In Chapter 5 we studied robust DFE and THP transceiver designs for MIMO

OFDM relaying systems with imperfect CSI. The source and relay precoder

structures were derived by solving a relaxed optimisation problem. For a

specific class of channel estimation error covariance matrices it was shown

that the derived source and relay precoders were in fact optimal. However

for general channel estimation errors the proposed approach is suboptimal.

The optimal solution still remains an open problem and should be further
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investigated. For the case of robust linear transceiver designs for narrow-

band MIMO relay systems the optimal solution for general estimation errors

has been derived in e.g. [82] and relies on an iterative procedure. It is pos-

sible that a similar approach could be used to design robust DFE and THP

transceiver designs in MIMO OFDM relay systems.

• Optimal DFE and THP Transceivers with Direct Link

Throughout this thesis we have restricted our attention to MIMO relay sys-

tems in the absence of a direct link between the source and destination ter-

minals. In practice, the inclusion of this link can provide a valuable source of

spatial diversity that can be utilised to improve performance. Optimal linear

precoders with the inclusion of a direct link can be found in [43, 105] where

iterative algorithms are required in order to update the source and/or relay

precoder matrices. Suboptimal non-linear approaches can also be found in

[51, 55, 63, 106, 107]. Although the inclusion of the direct source-destination

link has been considered by some authors, the optimal DFE and THP source

and relay precoders when a direct link is included appears to still remain an

open problem and requires further investigation.
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