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1 Abstract    

  

The main aim of this work is to help the shipbuilder to effectively assess a ships‟ 

structural design for its vibratory behaviour. For that purpose state of the art 

structural modelling techniques are reviewed for the validity of their basic principles, 

accuracy, practicality and required computation time when applied on typical marine 

structures. Full finite element modelling has been applied on a part of the structure of 

an LNG carrier on board which the author has taken vibration and noise 

measurements. Also fixed interface (Craig-Bampton) and free interface (Rubin‟s 

method) component mode synthesis sub structuring techniques have been applied. 

The aim of the analysis is to evaluate the effectiveness of finite element modelling 

through evaluation with measurement results, evaluate the accuracy of the sub 

structuring modelling techniques and to identify short comings of any of the tested 

methods.   

Two alternative component synthesis modelling sub structuring techniques are 

proposed in order to reduce required computation time; Zoet‟s method and the Rubin 

Zoet method. The Zoet method is tested using a section of the LNG carrier‟s 

structural model. The method is evaluated for accuracy (comparing obtained results 

with the results obtained through the full harmonic finite element analysis) and 

required computation time through comparison with the required computation time 

for:  

- full harmonic analysis 

- the classical modal reduction and mode superposition technique 

- the classical Rubin free interface component mode synthesis  

- and Rubin‟s method with interface reduction according to the IRS method 

(see section 6.5.3) 

- the Rubin-Zoet technique 
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2 Aims and Objectives    

The aim of this research work to develop an effective accurate methodology to asses 

a ships structural design on its structural dynamic behaviour as early as possible in 

the design stage in order to prevent noise and vibration problem occurring once the 

ship has been built. The following objectives have been set:  

- Understanding the general mechanism leading to ships‟ vibrations and noise 

through noise and vibration measurement results taken on board a bulk 

carrier, gas carrier and fishery research vessel which are used together with 

available information on the structural geometry.  

- Identifying gaps with most commonly used state of the art structural 

modelling techniques considering the mechanisms that have been identified 

as typically occurring on board ships.  

- Proposing a practical modelling technique and approach that makes assessing 

the structural design of ships for noise and vibrations easier.  
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3   Introduction 

 

In this section an introduction is given explaining both the background (context) of 

the thesis and the structure of the thesis. 

3.1 Background 

In this section the context of the thesis is described set against the background of the 

current global developments in the marine industry, through which the increasing 

need for reliable and practical tools for evaluation of marine structure‟s dynamic 

response is demonstrated. With the global developments in mind, the modelling 

needs are described on which the approaches to structural modelling in this work are 

based. 

3.1.1 Noise and Vibrations and Global Developments  

Many problems occur in the shipping industry related to noise and vibrations. The 

biggest nightmare of ship operators concerning vibrations is failure of structures and 

machinery due to material fatigue. Failure of machinery and structures poses a huge 

threat to the ships‟ safety and usually also leads to huge loss of revenue due to 

unplanned downtime. In addition, high vibration levels, just like high noise levels, 

also affect crew and passengers‟ health and wellbeing. Particularly for passenger 

ships and ferries the impact of noise and vibrations on human comfort compromises 

the earning capability of the ship as people may chose not to travel with that ship in 

the future again.   

Although above concerns have already lead to numerous rules, regulations and 

guidelines issued by class societies and other regulatory bodies, recent research on 

ship noise and vibrations carried out for the European Union is likely to result in 

even more (stringent) requirements in the near future. This resent research has 

focused on the impact of noise and vibrations on crew comfort and performance as 

well as the impact on people living close to harbours and seaways and the effect on 

the underwater environment (marine mammals).  
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Unfortunately, there any many powerful vibration sources on board a ship. The most 

dominant sources are the propeller and the (diesel) engines, which produce the high 

amplitude fluctuating forces to which the ship‟s structure is subjected. In addition, 

the dynamic structural behaviour of ships (particularly structural parts above water) 

is strongly characterised by the low damping properties of the material (typically 

steel) the structure is built of. These low damping values combined with typically 

high amplitudes of harmonic components found in propeller and (diesel) engines 

forces, may result in destructively high vibration levels when excitation frequencies 

are close, or coincide with resonance frequencies.  

Adding to the likelihood of structural fatigue damage occurring is the increasingly 

hostile environment under which offshore equipment has to operate. Raising oil and 

gas prices for instance mean that winning oil and gas from increasingly difficult and 

dynamically challenging locations becomes economically viable, which means that 

equipment is pushed to their limits.  

Raising fuel prices and current global economic circumstances also push the need for 

efficiency of operation, flexibility of operation (option for slow steaming) which 

sparks the development of new design concepts, new ship geometries, the application 

of new materials (sandwich panels, visco-elastic materials, piezo-electric materials), 

increase of scale, and increasing propeller and engine loads. This means that under 

the present global circumstances the shipbuilding industry design concepts become 

more revolutionary as opposed to evolutionary, which has always been the best 

fitting term through to characterise the nature of progress in the industry.  

As ships and equipment are designed further outside the traditional design envelop 

than ever, relying on tradition and history for selecting machinery components and 

developing structural geometry becomes very questionable, as different dynamic 

mechanisms may start playing a role and extrapolation curves outside the design 

envelop may not linear. In addition, economy also forces designers to decrease the 

design margins, which leaves less space for errors. 

All above considered, a full understanding of the characteristics of the forces acting 

on ship‟s structure and machinery, together which a full understanding of the 
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corresponding structural and machinery dynamic response mechanisms is required 

when designing a ship and minimising impact of vibrations and noise. Modelling 

tests, full scale measurements in combination with (practical) deterministic 

modelling techniques are needed more than ever. On top of that, the validly of 

traditional modelling approaches need to be questioned based on a thorough 

understanding of the modelling principles and the nature of the excitation 

characteristics and natural response behaviour. Particularly statistical approaches 

need to be questioned, as the outcome is based on a population of the state of the art 

design concepts at best, and may not be representative for new design concepts 

which go beyond the state of the art.  

3.1.2 Modelling Challenges 

As described above, theoretically estimating structural and machinery dynamic 

behaviour on ships has become very important considering the development of many 

new innovative design concepts in a quest for saving fuel, or being able to deploy 

equipment that stays operative under the increasingly dynamically hostile 

environment under which the offshore industry operates. Modelling structural 

response, even with state of the art modelling techniques, is already a challenge, and 

will become even more challenging in the future.  

Problems with modelling structural vibrations typically experienced in the marine 

sector are:  

- Labour intensity of generating the mathematical model. Describing the 

typically complex ship‟s structural geometry for structural modelling 

purposes is often very time consuming and labour intensive (as experienced 

in this work). Although the ship geometry may be imported into a structural 

modelling software package from drawings generated through CAD 

designing software packages, many problems still arise with generating a 

suitable mesh (in case of finite element modelling) or with connection 

between different parts of the geometry, or with the describing complex 

curves.  
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- Require memory time and computation time. Due to the size and 

complexity of ship structures, problems are experienced with the related 

required computer memory and computation time for running the structural 

model. Required memory and computation time increases further with the 

excitation frequency order number. As mode shapes involved in the 

corresponding structural response become more complex, a higher number of 

degrees of freedom is required in order to be able to accurately enough 

describe these mode shapes.  

- Uncertainty about correctness of the applied boundary conditions. 

Although analysis at the higher order frequencies requires more detailed 

models, not the entire structure needs to be modelled at that level of detail, if 

one would be focussing on only a particular part of the structure. A far more 

practical and feasible approach adopted is to model only local parts of a 

ship‟s structure. However, the main challenge with that approach is finding 

the appropriate boundary conditions. Global, courser models may be required 

for modelling the rest of the ship structure in order to evaluate the 

transmission behaviour of vibrations through the ship structures.  

- Uncertainty of modal parameters (damping and added mass) and 

excitation characteristics. Particularly with the analysis at increasing 

excitation frequency order numbers, a correct estimation of material 

properties, (hydrodynamic) damping and added mass properties is important. 

Considering new design concepts are developed, new materials are applied, 

flexibility in operation is required (for slow steaming) and amplitudes of alternating 

(and impulse) forces acting on a structure increase, evaluating dynamic structural and 

machinery response characteristics becomes even more difficult:  

- Predicting structural response over a range of operational conditions, and not 

just at nominal speed. Not only is this required for estimating the sensitivity 

of the model, but also for estimating the vibration response when machinery 

is running off design in case of slow steaming (a trend in the shipping 

industry in order to save fuel) and manoeuvring. This increases computation 

time and required computer memory for the output files. 
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- Predicting the response to impulse loads, which is particularly required for 

evaluation of robustness of offshore structures and the evaluation of structural 

response to (propeller) cavity implosions in case of violent cavitation. Time 

domain simulation is required which requires much more computation time 

than the traditional harmonic analysis considering that numerical integration 

requires solving the equations of motion for a great number of time steps.  

- Considering modelling local vibration behaviour, bigger parts of the ship 

structure may have to be modelled as uncertainty may arise about how to 

define boundary conditions with new (revolutionary) structural design 

concepts or application of new types of material. This means that generating 

the structural model becomes even more labour intensive.    

The aim of this work is to help the shipbuilding industry to build ships for low noise 

and vibration levels by proposing an approach to modelling that will help overcome 

above described problems.  

3.2 Structure of the Thesis 

Figure 1 shows the outline of the thesis. The thesis starts with section 4 “ 

Critical Review”, where a review of the state of the most commonly adopted 

approaches to theoretically estimating excitation characteristics and structural 

response is presented.  

In section 5 “Measurement Results” vibrations and noise measurement results taken 

on board different ships are analysed. Together with the critical review and the 

analysis of the measurement results, the most promising modelling techniques are 

selected for modelling the structural dynamic behaviour of the aft ship of a gas 

tanker, one of the ships on board which the author has performed vibration 

measurements. In section 6, “Theory of Structural response Simulation”, the theory 

behind the selected structural modelling techniques is presented more in depth.  

Following the conclusion of section 4 “ 
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Critical Review”, section 5 “Measurement Results” and deeper analysis of the 

modelling techniques in section 6, Finite element modelling and component mode 

synthesis modelling techniques are evaluated in section 7 “Modelling Vibrations of 

the Aft-ship of an LNG” through a case study. In this case study, vibration levels are 

simulated over a range of frequencies for a number of locations on the steering gear 

deck and mooring deck of an LNG carrier, on board which the author has performed 

the vibration measurements presented in section 5. The following is covered in 

section 7  “Modelling Vibrations of the Aft-ship of an LNG” 

- Vibration simulation through a full finite element harmonic analysis. 

- Evaluation of full harmonic analysis through measurement results. 

- Evaluation of changing boundary conditions on simulation results  

- Evaluating results obtained through free interface and fixed interface 

component mode modelling techniques. Results are evaluated through 

comparison with the results obtained through the full analysis. 

- Estimating and comparing required computation time for:  

- Full harmonic analysis 

- Mode Superposition 

- Free Interface Component Mode Synthesis (Rubin‟s Method) 

- Fixed Interface Component Mode Synthesis (Craig-Bampton) 

Following the findings from section 7 “Modelling Vibrations of the Aft-ship of an 

LNG”, an alternative approach to the classical component mode synthesis technique 

is proposed in section 8 “Methodology of an Alternative Approach to Classical 

CMS”. This approach is evaluated through a case study presented in section 9 “Case 

Study: Evaluating Zoet‟s Method”, using a part of the structural model studied in 

section 7.  Comparison of simulation time required for all above listed techniques is 

again carried out. As interface modes and corresponding natural frequencies have 

been calculated for the test case model, the achieved reduction of computation time 

using an already existing interface reduction technique according to the IRS method 

is also calculated and compared to the reduction in computation time achieved 

through the newly proposed reduction techniques. The thesis ends with a discussion, 

summary, conclusions and recommendations for future work.  
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Figure 1 Structure of this thesis 
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4 Critical Review 

Many problems occur in the shipping industry resulting from the dynamic behaviour 

of structures and drivelines acting as mass spring systems. One of the most 

dangerous aspects of mass spring behaviour is that shock, impulse and harmonic 

excitation may case large alternating deformation of that structure. This alternating 

deformation may be perceived as vibrations by those touching the structure or 

standing on it and may have a profound impact on human wellbeing and health. 

These alternating deformation also result in alternating stresses in the structure, 

which may lead to fatigue damage. 

In addition, vibrations may also cause the air surrounding a structure to vibrate which 

results in audible air borne noise. Transmission of noise to the underwater 

environment also takes place through that mechanism. Through that route, propeller 

and onboard machinery noise not only cause health and wellbeing problems for 

people on board, but also affect the heath of the underwater life.   

The important question that needs to be asked is what determines the level of these 

structural vibrations that result in alternating stresses in the ship‟s structure, onboard 

noise and underwater noise. In that discussion it is very important to realise that the 

level of vibration is the result of a combination between the nature of the excitation 

and the natural response characteristics of the structure that is subjected to that 

excitation. Considering the low damping factors of steel, the main concern is not the 

amplitude of the excitation, although it naturally does have an impact. More 

important parameters are the frequencies of alteration that are within the excitation 

force characteristics and more precisely, the relation between these frequencies and 

the structures‟ natural dynamic behaviour. This natural dynamic behaviour is 

strongly characterised by a structure‟s resonance (natural) frequencies. A relatively 

low amplitude excitation force with a frequency close to any of the structure‟s 

resonance frequencies may already result in destructively high vibration levels. This 

is particularly the case with lightly damped structures, what ship structures typically 

are. 
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In order to prevent problems related to noise and vibrations it is important to have 

access to tools to estimate/simulate ship‟s structural dynamic behaviour in relation to 

the excitation characteristic that may be expected from the main excitation sources 

such as the propellers and on board machinery. This work focuses on the challenges 

of modelling ship‟s structural dynamic response. However, as it is the relation 

between the excitation characteristic and the response characteristic of a structure 

that determines the resulting noise and vibration levels, knowing the excitation 

characteristic is just as important. This section, the critical review, therefore starts 

with a brief review of the characteristics of the main ship excitation sources 

(propellers and diesel engines) and methods generally used to estimate these 

characteristics. This will provide the context for the critical review of the most 

commonly used methods for modelling structural response. 

 

 

Paragraph structure chapter 4 ‘Critical Review’ 

 

4.1 Controlling the Excitation Characteristics 

 

With the inventory of different sources for vibrations first a definition of the word 

„vibrations‟ as used in this work should be given. With the definition of vibrations it 

has to be kept in mind that the focus of this work is on dynamic structural behaviour 

where both inertia forces (kinetic energy) and structural deformation forces (potential 
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energy) play an important role. This is the type of structural dynamic behaviour 

where dangerous resonance phenomena may occur. Resonance, or near resonance, 

may result in a situation that very low excitation forces may already result in high 

vibration levels that not only cause problems with health and well being for people 

working with or on that structure, but may also lead to structural fatigue damage 

resulting from high alternating material stresses.  

On board ships there are many sources of alternating load, with many different 

frequencies of alteration. Forces induced on the ship‟s structure by sea going 

behaviour, ship loading condition and alternating power demands are low frequency 

alternating forces with periodicities ranging from a couple of times per minutes to a 

couple of times per month. Propellers and engines produce alternating forces with 

frequencies ranging from a couple of Hz to a couple of kHz.  

Considering the main concern in this work is the consequences of structural 

resonance occurring,  alternating stresses induced by harmonic seagoing behaviour, 

changing ship loading conditions and alternating power demand (manoeuvring for 

instance) are less relevant as the frequencies of these load alterations are outside the 

range of typical ships‟ structural resonance frequencies. For that reason, the review 

of excitation sources and modelling techniques has been narrowed down to propeller 

excitation and main and auxiliary machinery (diesel engines) excitation. 

4.1.1 Propeller Excitation 

One of the most powerful excitation sources resulting in ship vibrations and structure 

borne noise is the propeller. Through different hydrodynamic mechanisms the 

propeller generates alternating forces and couples on the shafting systems and 

transmits an underwater fluctuating pressure field which results in onboard noise and 

vibrations and underwater radiated noise [1, 2].  

In order to control these propeller generated alternating loads, propeller excitation 

simulation tools are required so that aft ship and propeller geometry design choices 

can evaluated based on the resulting propeller excitation characteristic. Different 

tools and methods are available and much research is still carried out particularly in 
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understanding the inception of tip vortex cavitation through which broadband 

propeller excitation is generated. [3, 4].  

4.1.1.1 Types of Propeller Excitation 

Propeller excitation is a result of the following hydrodynamic phenomena [2] 

- Unsteady blade lift 

- Blade thickness effect (mainly local vibrations). 

- Cavitation (sheet, bubble and tip vortex cavitation).  

 

Unsteady lift 

Thrust of a propeller is generated through the lift that is generated by the propeller 

blades. The lift generated by a propeller blade is determined a combination of two 

water velocity components. These components are [2]: 

- Relative velocity component tangential to the rotation of the propeller. This 

velocity component is a result of the rotation of the propeller. 

- Water inflow speed axial to the propeller disc. This speed is related to the 

speed of the ship through the water. 

The combination of both velocity components determine the angle of incidence of 

the water flow relatively to the propeller blade profile which determines the lift 

generated by the propeller.  

The wake is however is not constant over the propeller disc. The wake factor at the 

upper segment of the propeller disc is generally higher than at the lower segment as 

the water flow closer to the hull is generally more retarded than the flow further 

away from the hull. This means that the axial water velocity component to the 

propeller disc is not equally distributed over the propeller over the propeller disc area 

either.  

As the axial velocity component, together with the rotation speed of the propeller, 

determines the incident angle to the propeller, the lift force generated by a propeller 
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blade, and all other related forces and couples, is not constant over time and varies 

with the position of the blade in the wake field.  

Main concern in relation to the irregularity of these couples and forces is the 

excitation of torsional and lateral propeller shaft vibrations. Ship structural vibrations 

are only excited indirectly through transmission of shaft bending vibrations through 

the propeller shaft bearings. This is why these forces and couples related to the 

unsteady lift are referred to in the literature as the bearing (excitation) forces. 

The unsteady lift excitation spectrum consist of distinct tonal peaks that are typically 

multiples of the blade passing frequency where the amplitudes of the frequency 

components rapidly decrease with the order number [1, 2]. 

Blade Thickness Effect 

A more effective (local) hull vibration excitation source is through the hull pressure 

pulses generated through the displacement effect of passing propeller blade tips. This 

effect is further amplified when sheet cavitation occurs, through which the effective 

blade thickness (displacement) is increased and the resulting hull pressure pulses are 

amplified. 

Because this type of excitation can best be described as a passing by of an area of 

low pressure right next to a high area of pressure, this type of excitation has the 

characteristics of a dipole source [5]. Dipole sources generate hull fluctuating 

pressure fields that are characterised by a large phase variation over the hull surface 

area[1]. Because of this phase variation, this type of excitation is mainly known for 

exciting local vibrations (appendices, smaller plate areas of the hull etc). Similar to 

the unsteady lift force generated excitations, the blade thickness induced excitation 

pressures are strongly characterised by frequency components that are multiples of 

the propeller blade passing frequency where the first blade passing frequency is the 

strongest and amplitudes decrease with the order number. 
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Sheet Cavity Volume Variations 

A far more effective mechanism for global (hull) vibrations excitation is through the 

hull pressure fluctuations induced by fluctuating and collapsing sheet cavitaties. 

Change of volume of the cavities is related to changing pressure on the propeller 

blades whilst rotating through the wake field. The alternating propeller blade 

pressure is both related to the unequal distribution of wake at the propeller disc and 

the differences in hydrostatic pressure with the blade rotated to the upper segment of 

the propeller disc and the blade rotated to the lower segment of the propeller disc.  

This type of cavitation is characterised as a monopole fluctuating pressure source 

resulting in an alternating hull pressure field that is largely in phase over the hull 

surface area [1]. Even though the actual pressure pulse amplitudes from blade 

thickness effects are higher, this source of excitation is still far more effective in 

exciting global hull vibrations because of above described phase characteristic of the 

generated pressure field [5].  

The fluctuating cavity volume variation induced excitation spectrum consist of 

distinct tonal peaks that are typically multiples of the blade passing frequency where 

the amplitudes of the frequency components rapidly decrease with the order number. 

Tip Vortex and Bubble Cavitation 

Through cavitation of tip vortices and bubble cavitation propellers also generate a 

broad band excitation. Collapse of both sheet, bubble and tip vortex cavities is 

considered to behave as a broadband excitation source at frequency ranges typically 

from 50 Hz to 100 kHz [6]. Although it is up to now mainly addressed in navy 

applications where the resulting underwater radiated noise is of great concern, there 

is a growing concern for these phenomena in the merchant shipping as well both 

from a cavitation erosion damage point of view and from the underwater and on 

board radiated noise point of view [3, 4].  
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4.1.1.2 Developments in Evaluating Propeller and Aft-ship Design 

The amplitude of excitation generated by a propeller resulting in onboard noise and 

vibrations and underwater radiated noise, can be controlled through carful design of 

propeller and aft ship geometry.  For the evaluation of propeller generated excitation,   

first the wake distribution at the aft ship of a given geometrical design needs to be 

estimated. Both model test and CFD calculations techniques are used for that purpose 

[7] . From there, the greatest part of the tonal excitation components from the 

propeller can be theoretically calculated through following the very well established 

lifting line or lifting surface theories [8].   

Estimating the effect of broadband cavitation induced by tip vortices and bubble 

cavitation is far more complex. Particularly the inception of tip vortex cavitation is 

considered one of the most complex phenomena occurring on a ship propeller [9]. 

Although it is up to now mainly addressed in navy applications where the resulting 

underwater radiated noise is of great concern, there is a growing concern for these 

phenomena in the merchant shipping as well both from a cavitation erosion damage 

point of view and from the underwater and on board radiated noise point of view [3, 

4]. 

4.1.1.3 Propeller Excitation Control  

Main issues that are addressed when trying to control the propeller excitation are: 

- Wakefield at the aft ship  

- Pressure distribution on the propeller blades (tip unloading) 

- Increasing Tip Clearance 

Wake distribution at the aft ship 

A very important factor affecting the nature of propeller induced alternating bearing 

forces and hull pressure fields is the wake distribution at the aft ship. With an evenly 

distributed wake, no distinct tonal excitation would have come from the propeller 

except from the highly localised pressure pulses due to the blade thickness effect [2]. 

Unfortunately, for a maximum cargo capacity, particularly bulk carriers, tankers and 
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trailing suction hopper dredgers have a typically full aft ship geometry characterised 

by rapidly converging curves and steeply rising lines of the underwater part of the aft 

ship, where the propeller is. This geometry leads to a rapidly diverging water flow 

round the aft ship, resulting in unevenly distributed axial water velocities with 

strongly retarded velocities particularly close to the aft ship‟s hull.  

For low propeller pressure pulses it is important to design the aft ship geometry that 

will induce a wake distribution at the propeller that is as evenly distributed as 

possible. Gradually rising and converging curves in the aft ship geometry will result 

in a smoother inflow of water and a far more equal distribution of axial water speed 

into the propeller compared to an aft ship that is characterised by steeply rising and 

rapidly converging curves and ends abruptly. 

Propeller Blade Tip Loading 

An important factor determining the amplitude of the propeller induced pressure 

pulse is the load distribution of the propeller tip. High propeller tip loads are 

beneficial for the propeller efficiency. However, a high tip load also leads to a deeper 

contrast between the high and low pressure area side of the propeller blade increasing 

cavitation volumes and  increases changes of shedding effects and violent bubble 

implosions occurring [1, 2].  

Tip-Hull Clearance 

Another strategy for reducing propeller tip loads is by increasing the tip-hull 

clearance. Vorus argues [2] that it is a common misconception that increasing tip-

hull clearance is most effective because of the resulting reduction in the refraction 

effect. The most important factor increasing propeller excitation with small tip 

clearance according to [2] is that the wake gradient increases strongly with a 

decreasing distance from the hull. This means that not only the propeller tip load will 

be higher closer to the hull, but also the fluctuations of cavity volumes will be 

stronger resulting in higher amplitudes of alteration of the induced hull pressure field 

[3].  
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4.1.2 Diesel Engine Excitation 

 

The main and auxiliary engines on board a ship are also major sources of excitation 

playing an important role in structure borne noise and vibrations propagating 

throughout the ship‟s structure. Two types of excitation are generated by the engine. 

Alternating forces and couples are generated through the irregularity of the cylinder 

gas pressure (gas forces) and through the acceleration and deceleration of the 

translating and rotating masses such as cranks, pistons and connecting rods (inertia 

and rotary forces)[10-12]. 

Both gas force and rotary and inertia forces excitation are mainly of a tonal nature. 

Inertia forces generated excitation spectra exhibit tonal frequency components that 

are multiples of the crankshaft rotation frequency. The first and second order 

crankshaft rotation frequencies are the two most dominant excitation frequencies 

resulting from inertia and rotary dynamic phenomena. Higher order frequencies also 

occur, but their amplitudes rapidly decrease with an increasing order number.     

4.1.2.1 Characteristics of Gas Forces Induced Excitation 

The first type is the excitation generated by the unsteady cylinder gas pressures. The 

irregularity of the cylinder pressure, which is related to the different stages of the 

combustion process, results in an unsteady, irregular vertical gas force [13].  

The vertical gas force, through the geometry of the crankshaft and connecting rod, 

results in an irregular driving torque and, as a reaction to the irregular torque, in 

irregular transversal piston or guide forces. The irregularity of the driving torque is 

of concern for the torsional vibratory behaviour of the driveline. The irregular 

transversal piston or guide reaction forces try to force the engine into a rolling 

motion (H-couple) through which engine vibrations are transmitted to the ship‟s 

structure. Gas forces also force the engine‟s A-frame to periodically deform through 

the resulting so called X-couple. This is mainly of concern for slow running 2-stroke 

engines of which the A frame is relatively flexible. The vertical gas force irregularity 

also induces high alternating loads in the engine‟s components, but do not directly 

transmit engine vibrations to the ship‟s structure. Vibrations induced by vertical gas 
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forces are only indirectly transmitted through the projection of the connecting rod 

forces in transversal direction (guide forces) which result in the above mentioned H-

couple and X-couple [14]. 

Gas forces excitation spectra exhibit harmonic tonal components that are multiples of 

halve order or first order crankshaft rotation frequency, depending whether it is a 

four stroke or two stroke engine respectively. Distinctive dominant peaks in the 

excitation spectrum occur at multiples of the firing frequency, with the amplitude 

rapidly decreasing with order number. 

4.1.2.2 Characteristics of Inertia Forces Induced Excitation 

Force characteristics generated through the acceleration and deceleration of 

translating and rotating masses exhibit distinct tonal frequency components that are 

multiples of the (crank)shaft rotation frequency [12]. The first and second order 

crankshaft rotation frequency are the two most dominant excitation frequencies 

resulting from inertia and rotary dynamic phenomena. Higher order frequencies also 

occur, but their amplitudes rapidly decrease with the order number [12, 15]. Both X 

and H couples are generated in the same way as explained for the gas forces induced 

X and H couples. In addition to the X and H couple, inertia and rotary forces also 

induce a couple that tries to force the engine into a pitching couple [15]. 

4.1.2.3 Estimating Engine Excitation Characteristics 

Theoretically estimating the excitation characteristics from a particular engine 

depends on the quality of data provided by the engine manufacturer. From gas force 

induced tangential effort harmonic components the gas forces induced transversal 

cylinder or guide reaction forces can be calculated. From these transversal forces the 

X and H couples can be deduced. These tangential effort curves are available from 

engine manufacturers as they serve as excitation input for the class compulsory drive 

line torsional vibration analysis [11, 16-18].  

Excitation couples and forces are also available from engine manufacturers. They 

can also be deduced from information of the reciprocating and rotating weights and 
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the properties of the rotary masses used for the first and second moment 

compensation [15].  

4.1.2.4 Controlling Engine Excitation 

Direct reduction of excitation is done through applying rotating balancing weights. 

Through installing rotating balancing weights at the forward and aft end of the 

engine first and second moment inertia induced excitation moments are partially, and 

sometimes even fully compensated [10, 15].   

Reducing engine induced vibrations is indirectly done trough applying flexible 

mounting systems through which dynamic isolation between the engine and ship 

foundation is achieved [18]. Recent development has also been focussing on 

applying active mounting systems [19]. 

4.2 Controlling Structural Response 

A very important factor determining the level of vibrations and the related 

consequences is the structural response to the excitation characteristics. Particularly 

for steel structures which typically contain very little damping, high vibration levels 

may already occur at relatively low excitation amplitudes with excitation frequencies 

close to structural resonance frequencies. Being able to evaluate the impact of design 

choices of the response characteristic of a structure or drive line is very important 

when designing a ship, which has also been demonstrated through simulation tests 

carried out for the fp7 EU project SILENV [18, 20]. In these publications it has been 

demonstrated that in case of (near) resonance, reducing the response to acceptable 

levels through reduction of excitation (through optimising propeller design) is very 

difficult. The simulation results have also demonstrated the benefits of estimating the 

structural response of a ship‟s over a frequency range, rather than for just a few 

harmonic components. Simulating results over a frequency range will not also show 

where the sensitive response frequencies are, but also at what frequencies the 

mobility of the structure is the lowest. This way structural response and excitation 

frequencies can be deliberately tuned for an as low as possible vibratory response. 
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In this section the available state of the art structural response simulation tools are 

critically reviewed for their practicality and validity as tools for simulating ship 

vibrations. The following methods are discussed: 

- Application of the beam theory (hull girder vibrations) 

- Finite element modelling (FEM) 

- Spectral element method (SEM) 

- Statistical energy analysis (SEA) 

- Mode Superposition and Component Mode Synthesis Techniques (CMS) 

 

4.2.1 Hull Girder Approach 

A much used well validated method used for calculating ship vibrations is through 

modelling the ship hull as a uniform continuous beam [2, 21]. The beam is supported 

by a uniformly distributed spring stiffness K representing the buoyancy effect of the 

water (see Figure 2). This uniformly distributed spring has a uniformly distributed 

damping coefficient C representing the hydrodynamic damping of the water 

surrounding the hull girder. The uniform beam-mass per unit length μ represents the 

mass of the ship (plus cargo) plus the hydrodynamic added mass. The uniform 

stiffness of the beam itself is according to Hooks law equal to    where E is the 

elasticity modulus of the hull material and   is the average cross sectional moment of 

inertia of the vessel. The engine and propeller excitation loads on the hull are 

modelled as concentrated loads (couples or forces,      or       ). 

  

 

 

Figure 2 Representation of a ship hull as a beam. The beam is supported through a distributed 

springs with stiffness properties K representing the buoyancy effect of the water and 

damping C representing hydrodynamic damping. 

Distributed spring/damper 

K=stiffness in N/m2 

C= Hydrodynamic 

damping Ns/m2 

K and C (distributed 

spring damper) 
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Since for normal ships the shear centre for horizontal and torsional vibrations and the 

centroid for longitudinal and vertical vibrations are roughly located at the centre of 

gravity, no coupling is assumed between horizontal and torsional (hull twisting) 

modes. Therefore these modes are all treated separately [21]. The ship‟s response 

acting as a hull girder is calculated by modelling vibrations as set of interacting 

travelling waves, following the Euler-Bernoulli beam theory. 

 

 

 

 

Figure 3 The first four modes shapes as they will look like modelling the ship as an Euler beam 

Although Figure 2 shows stiffness and damping effect due to hydrodynamic 

interaction with the hull girder vibrations, these contributions to the mass elastic 

behaviour is considered very small and is normally omitted, which simplifies the 

model further. The effect of added mass to the natural frequencies corresponding 
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with the hull girder modes is however considerable. Different methods have been 

developed for estimating the hydrodynamic mass as presented in [2].    

4.2.1.1 Limitations and Latest Developments in the Hull Girder Approach    

With the calculation of the natural frequency and mode shapes of a ship hull the 

Euler beam approach is used, which is a very practical approach. However, to be able 

to use the Euler beam approach the following assumptions are made: 

- The cross section of the beam remains normal to the deflection line, i.e. no 

shear deformation takes place. 

- No rotary inertia effect of the cross-sectional area is taken into account 

assuming it to be negligible relatively to the vertical inertia effect. 

- No coupling between bending and hull girder torsion is assumed as the 

location of the centre of gravity, centroid for longitudinal and vertical 

vibrations and the shear centre are assumed to coincide [21].  

 

Figure 4 

 

Perfect bending where the tangent of the neutral bending line is perpendicular to the cross-

sectional area, i.e. no shear deformation of the cross-sectional area takes place (Euler beam 

theory)  

This means that there are limitations to the wavelength related to the mode shape for 

which the natural frequency can safely calculated using the Euler beam theory. In the 

literature a minimum wavelength of 10 times the height of the beam (in this case the 

depth = freeboard plus draft) is recommended [22]. The shorter the wavelength, the 

less valid the approach will be. Considering the wavelength involved with the mode 

shape decreases with the mode number, errors in estimating natural frequencies 

increase with mode number as well. Considering the minimum requirement of the 

wavelength to be at least 10 times the depth of the vessel, the wavelengths for mode 
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numbers higher than 2 (see Figure 3) will for most vessels not fulfil these 

requirements. Although this can still be overcome by adding the inertia and shear 

deformation effect to the Euler beam (through which the beam becomes a 

Timoshenko beam), the fact that the ship‟s mass-stiffness distribution has been 

simplified to a continuous model will still decrease the validity of the model with 

increasing mode number.  

Another shortcoming of this approach is that no coupling between horizontal and 

torsional mode-shapes is assumed as the location of the centre of gravity, centroid for 

longitudinal and vertical vibrations and the shear centre are assumed to coincide [21], 

so that all mode shapes can be analysed separately. However, with ships with large 

hatch openings (such as large container vessel), the shear centre is typically located 

outside the cross section (below the keel) which implies that there will be a coupling 

between the hull torsional vibration mode and bending modes [21].  

  
 

  

 

 

 

Figure 5 

 

First five calculated mode shapes for an open top 

container vessel. For these mode shapes and 

natural frequencies the calculation results 

obtained through an advanced beam model show 

satisfactory correlation with results obtained 

from a detailed finite element model, as 

published by Senjanović and others [21]  

Mode IV Mode III 

Mode I Mode II 

Mode V 
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As a result, warping will also be constrained, resulting in added shear force which 

affects the mode shapes and corresponding natural frequencies. 

Senjanović and others [21] propose a generalised and improved solution to the 

classical thin walled hull girder theory and suggest using a beam finite element 

modelling techniques (1D FEM) for calculating hull girder vibration modes. In the 

beam elements used, all effects of the location of the centroid, shear centre and 

centre of gravity are taken into account. Tests with an open container carrier has 

showed good correlation up to the 5
th

 mode between the 1D FEM model and a 33072 

node/84076 element 3D finite element model (see Figure 5). 

4.2.1.2 The Relevance of the Hull Girder Approach  

Estimating hull girder natural frequencies is particular of importance for ships for 

which propeller and machinery excitation frequencies are expected to be in the same 

range as the hull girder natural frequencies. Empirical data originally presented by 

Johannessen and Skaar have been presented in [2] and are shown in Figure 6. Also 

empirical formulas are available such as the Kumai‟s Formula presented in [2] for 

estimating the 2 node vibration natural frequency (mode I in Figure 3): 

           
  
   

 
 

 

(4.1) 

 

Where: 

        
 

 

 

  
   

  = ship‟s displacement including virtual added mass of water 

  = ship‟s displacement 

   = cross-sectional moment of inertia 

  = midship breath 

   = mean draft  
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Figure 6 Empirical data originally presented by Johannessen and Skaar for vertical hull bending 

vibrations 

 

Figure 7 Excitation of hull bending vibrations through the pitching engine couple  

Considering the empirically obtained data presented in Figure 6 it can be 

demonstrated that excitation frequencies from slow running four stroke engines may 
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be in the range of hull girder natural frequencies corresponding with the first 5 

modes. Figure 7 shows that the pitching couple generated by the engine‟s inertia 

couple fits very well onto the first mode hull bending vibration. 

In addition, considering a 100 rpm diesel engine, alternating pitching couples of the 

1
st
 and 2

nd
 order crankshaft rotation frequency occur at 1.7 and 3.3 Hz, which are 

frequencies that are right into the range of natural frequencies corresponding with the 

first 5 hull girder modes, as can be seen in Figure 6. If any of these hull girder natural 

frequencies should be close the engine pitching moment frequencies, special 

attention may has to be given to the balancing arrangement on these types of engines. 

However, there will be many vessels for which the first couple of hull girder bending 

frequencies are well below the dominant excitation frequencies, which may be 

particularly the case for vessels with medium to high speed engines. Even though 

hull girder vibrations are not directly excited at their natural frequencies, they may 

still play an important role in the transmission of vibration energy from propellers 

and machinery to area‟s where local resonance may occur. This local resonance may 

involve vibration modes of the superstructure, decks or bulkheads. As propeller 

cavity volume fluctuation results in a very effective in-phase fluctuating pressure 

field at the aft ship through which hull bending, even though not at resonance, is 

excited very effectively. As hull bending vibrations are global vibrations, they are 

felt throughout the vessel and are therefore capable of inducing indirectly local 

resonance phenomena. In order to be able to estimate the relevant higher order 

natural frequencies and corresponding more complicated mode shapes, much more 

detailed models are required in order to overcome the difficulties with the fact that a 

hull does not behave as a slender beam with an evenly distributed mass and stiffness. 

4.2.2 Finite Element Modelling 

 

Although in theory the natural frequencies and mode shapes of any structure can be 

calculated considering vibrations the result of interaction between waves travelling 

through the structure, this approach is not practical for more complex structures [12]. 

As demonstrated above, there is a practical value to this approach as long as a ship is 
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considered a continuous homogeneous beam. However, the penalty paid for this 

simplification of the ship‟s structural properties becomes larger with increasing mode 

number. A more precise description of the complex ship‟s structure is required. This 

means that the ship‟s structure needs to be subdivided in many sections with different 

(homogeneous) properties. Mathematically describing the interface condition for 

each section according to the wave approach becomes very complex in this case and 

makes the beam theory approach a highly unpractical choice for analysing higher 

frequency vibrations.  

4.2.2.1 Principles of Finite Element Modelling 

For complex structures discrete finite element models are used. These models are 

based on a modal approach. The value of this approach for modelling hull girder 

vibrations has already been demonstrated in [21], where beam elements were used to 

model the ship hull and calculate the hull girder mode shapes and natural 

frequencies.  

With a finite element model a (complex) structure‟s mass spring distribution is 

described through a collection of discrete points (nodes) connected to each other by 

elements. These elements represent a mathematic description of the relation between 

the lateral and angular displacement of the nodes (translation and rotation), the 

deformation of the element, and the resulting reaction load in the nodes. Through the 

formulation of the equilibrium requirements for all nodes at each degree of freedom, 

a set of coupled equations is obtained equal to the number of degrees of freedom of 

the model. Displacement of the nodes due to (harmonic) external forces is calculated, 

through which deformation of the elements and related element stresses are obtained 

as well. 

As mentioned above, the properties of a element are described through the relation 

between displacement and reaction loads on the nodes. This requires a description of 

the relation between the displacement of the nodes and the deformation of the 

element. The deformation of the element is described as a polynomial with a degree 

equal to the number of degrees of freedom of the element, i.e., the elements 

deformation is described through a superposition of a finite number of modes of 
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deformation, equal to the number of degrees of freedom of the element. As the 

equations of motions are composed based on a finite number of assumed deformation 

modes, the approach to vibrations adopted by the finite element modelling technique 

is referred to as the so called modal approach to vibrations. The equations of motion 

are obtained through substituting the mathematical description of these modes (shape 

functions) into the energy relation based on d‟ Alembert, Hamilton and Lagrange 

equations [12, 22, 23]. The connection of many simple elements forms the 

description of the complex structure.  

As this approach quickly leads to a large number of equations that needs to be solved 

(one for each degree of freedom, i.e. the number of equations required is at least 

equal to the number of nodes), the principle only become interesting for application 

on larger scale with the development of computer technology in the 1960ties. With 

the sharp increase of computer capacity over the last decades, the finite element 

modelling technique has also become accessible for analysis of the structural 

response of complex marine structures, and has become a widely used method. 

4.2.2.2 Ship Structures and Gaps in Finite Element Modelling 

For complex structures, a minimum number of elements is required in order to 

accurately enough describe the elastic behaviour of the structure. In the past, the 

degree of complexity of ship structures quickly lead to models requiring long 

computation times and required too much computer memory to run, which made the 

simulations either too expensive or highly unpractical.  

Although developments in the computer technology has made it possible and 

affordable to run FEM models representing considerable parts of a (complex) ship 

structure, problems still occur with size and running time of simulation, particularly 

when trying to simulate the propagation of structure borne noise. At higher 

frequencies mode shapes corresponding with the high mode numbers of concern 

become increasingly complex. In order to be able to accurately enough describe these 

mode shapes (deformation shapes), an increasing number of elements is required. In 

the literature, the number of elements required is often related to the wave length of 

the structural vibrations. Guidelines for selecting element size vary in the literature 
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where it is recommended that the distance covered by 6 to 12 times the element 

length should not exceed the wave length [24] [22]    

Different modelling techniques have been developed to overcome problems 

experienced with Finite Element Modelling related to required computer memory 

and computation time. The techniques reviewed in this section are: 

- Mode Super position Techniques 

- Spectral Elements Method  [25] 

- Statistical Energy Analysis 

- Component mode synthesis techniques 

4.2.3 Mode Superposition  

In order to speed up calculation time, mode superposition is used through which the 

number of equations that need to be solved, is decreased.  

4.2.3.1 Principles of Mode Superposition 

This technique is based on calculating the response as a superposition of the 

contributions of a reduced number of vibration modes. These contributions are 

expressed through modal coordinates. These modal coordinates are calculated 

through reduced stiffness and mass matrices obtained through so called modal 

reduction. With modal reduction the full stiffness and mass matrices are reduced by 

projecting those onto the subspace spanned a truncated set of eigenvectors, i.e. mode 

shapes. These number of eigenvectors chosen to serve as a reduction basis is based 

on the relation between their corresponding natural frequencies and the response 

(excitation) frequencies of interest. Usually the cut-out frequency, i.e. the upper limit 

of the frequency range within all modes are selected that are to be retained, is 1.5 

times the frequency of interest (according to Rubin‟s criterion [26] ).  

4.2.3.2 Ship Structures and Gaps in the Mode Superposition Approach 

Through applying the mode superposition technique, the total set of equations of 

motion has been reduced considerably and with that, the computation time required 

to find the response modal amplitudes. However, the time required to calculate the 
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natural frequencies and mode shapes for the retained mode numbers has to be added 

to the time required to solve the reduced set of equations of motion. Unfortunately,  

the time required to calculate the mode shapes and natural frequencies increases 

exponentially with an increasing number of required modes [22]. The impact of 

computation time required for calculating mode shapes and natural frequencies may, 

particularly with the analysis at higher frequencies, be the most dominant factor in 

the total required computation time. The calculation time required to produce the 

forced vibration solution may even exceed the computation time required for 

generating the forced vibration solution through full harmonic analysis.  This is also 

demonstrated later in this work. 

4.2.4 Spectral Element Modelling 

A different approach to overcome problems with model size and computation time is 

the application of the Spectral Element method. With spectral element analysis a 

similar approach is chosen with compiling the stiffness and mass matrices as with 

Finite Element Modelling, but using much bigger elements representing 

homogeneous parts of a structure, and using a travelling wave approach to vibrations. 

4.2.4.1 Principles of Spectral Element Modelling 

This method uses elements of which the dynamic behaviour is described following a 

wave approach as also adopted for the hull girder calculations as explained in section 

4.2.1. Where the finite element method uses a frequency independent polynomial 

shape function for describing the deformation of an element, with spectral elements 

the shape function is frequency dependant and is based on the wave equations. As the 

wave equation approach gives the exact mathematical description of the form 

relations of a continuous structural element, the thus obtained total dynamic stiffness 

matrix of an entire structure is also referred to as the exact stiffness matrix [24, 27, 

28]. 

Advantage of this modelling technique is that a huge reduction of elements is 

obtained. Elements may now represent an entire part of a structure that may be 

considered homogeneous of nature, such as a beam or a plate section, as the 
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frequency dependant deformed shape obtained through the wave approach is the 

exact shape of deformation of the element. As a result, the number of elements does 

not need to be increased with a decreasing wavelength (increasing frequency). This is 

unlike the Finite Element Modelling technique, as described in section 4.2.2, where 

the number of elements needs to be increased with decreasing wave length 

(increasing frequency) as a consequence of the frequency independent non-exact 

polynomial approximation of the shape function. 

4.2.4.2 Ship Structures and Gaps in the Spectral Element Modelling 

Approach  

As described above, spectral elements are elements covering parts of a structure that 

are considered homogeneous of nature so that the wave approach to vibrations can be 

safely adopted. Unfortunately, a ship structure does not contain many large portions 

that could be safely considered homogeneous. Research has been carried out into 

developing spectral elements representing stiffened plate fields by Ajith [27], but 

still, all beams, brackets and plate sections should be modelled as separate spectral 

elements. This problem has been described by Lee [28] as „not knowing the exact 

wave solution for most complex multidimensional problems‟. This is certainly the 

case when considering a double bottom of a ship as a homogeneous structure. 

Another problem is the relation between the size of structural elements and wave 

length of the vibration. Adopting a wave approach implies that vibrations are 

modelled as waves transmitted from one element to another element through 

bending, axial shear or torsional deformation. Considering the size of homogeneous 

elements in a ship structure, combined with typically relatively low excitation 

frequencies, transmission of vibration energy between elements does not take place 

just through flexural deformation of the elements, but mainly through rigid body 

movement of these elements. As is demonstrated later in this work, dominant (tonal) 

vibrations excited by propeller and engine induce typical alternating structural 

deformations involving wave lengths largely exceeding the maximum possible size 

of a homogeneous spectral element. As vibration propagation takes place through 

vibration deformation patterns involving larger parts of the structure, the rigid 
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movement of the relatively small element play a major role, but is not taken into 

account as a consequence of the adopted wave approach. 

4.2.5 Statistical Energy Analysis 

 

An approach adopted in order to overcome problems occurring with finite element 

modelling when analysing higher frequency response is the Statistical Energy 

Analysis approach (SEA). With statistical energy analysis a structure is divided in 

subsystems. These subsystems have the same function as the elements used in finite 

element modelling. The big difference is that subsystems are much larger than the 

elements used in FE modelling.  As the number of elements for statistical energy 

analysis models is much smaller than for finite element models the number of 

equations that need to be solved is a lot lower as well, which is a huge advantage.  

4.2.5.1 Principles of Statistical Energy Analysis 

The main properties of Statistical Energy approach [29-32]: 

- It is an energy approach: vibrations and noise are represented as quantities of 

energy travelling between subsystems 

- It is a broad band approach. Quantities of energy are given as the total 

quantity of energy content over a broad frequency bandwidth. Octave and 1/3 

octave bandwidths are typically used. No narrowband tonal information can 

be extracted from the calculation results. 

- The necessary dynamic properties of subsystems are estimated for the 

subsystems in resonance. Dynamic subsystem interaction factors (coupling 

loss factors) and energy loss factors (internal loss factors) are expressed as 

energy exchange factors between the resonance modes of neighbouring 

subsystems.   

- It is a frequency and modal average approach. The dynamic properties of a 

subsystem are frequency average properties for the bandwidth of concern. 

The properties of subsystems necessary to calculate the energy flows and 
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energy contents of subsystems are the coupling and internal loss factors and 

are taken to be the same for each resonance mode (modal equipartition 

condition). Each resonance mode within a substructure is also assumed to 

contribute the same amount of vibration energy to the total stored vibration 

energy of a subsystem.   

- It is a modal average approach. All resonance modes in a particular 

subsystem contain the same amount of energy. The total energy of a 

subsystem for a particular bandwidth is equal to the number of natural 

frequencies in that subsystem in that particular bandwidth times the modal 

energy of any individual mode. 

- It is a spatial average approach i.e. no information is available of how the 

energy is distributed within the subsystem. Excitation is also assumed to be 

spatially equally distributed so that each mode shape receives the same 

amount of energy. 

- The effect of global mode shapes (for instance mode shapes of which the 

wavelength exceeds the length of a subsystem) are not taken into account. 

The following conditions need to be met in order for the statistical energy approach 

to work: 

- Preferably a broadband excitation over the analysed frequency bandwidth. 

This way all natural mode shapes within the frequency band are fully excited, 

the condition for which the coupling loss and internal loss factors are 

estimated for a substructure. 

- The higher the number of resonance frequencies within an analysed 

frequency bandwidth, the more reliable the results become. This is where the 

term „statistical‟ refers to. With a high number of resonance frequencies 

within a bandwidth, the total energy content of the subsystem is calculated as 

a sum of the average energy contributions from all these resonance mode 

shapes. The higher the number of resonance mode shapes involved (the 
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bigger the population) the better the deviations from the average values are 

averaged out. 

- A uniformly spatially divided excitation source is ideally required to ensure 

equipartition of modes. 

4.2.5.2 Ship Structures and Gaps in the Statistical Energy Analysis 

Approach 

The following remarks can be made about typical marine structures and excitation 

characteristics in relation to the requirements for statistical energy analysis: 

- Ship structures are highly complex. Subsystems will therefore show little 

uniformity in structural behaviour corresponding with the different resonance 

frequencies. This decreases the chance that there is actual mode equipartition 

[33]. 

- Excitation sources are of a highly tonal nature. This also decreases the chance 

that there is actual mode equipartition. 

- Some excitation sources are spatially unequally distributed. This also 

decreases the chance that there is actual mode equipartition. 

Statistical energy analysis could however still be used as a tool for a qualitative 

approach to propagation of structure borne noise for some types of ships. particularly 

for high speed crafts with high turbulent flow excitation and light structures with 

high modal densities. However, considering above, this technique is unsuitable for 

simulation of propagation of vibrations induced by the tonal sources such as the 

propeller blade passing harmonics and diesel engine crankshaft rotation and firing 

frequency related harmonic components. 

4.2.6 Component Mode Synthesis Techniques 

 

One of the attractive aspects of statistical energy analysis is that the calculation of 

dynamic behaviour is based on subdividing a structure in coupled substructures and 

calculating assembled structural behaviour based on the individual dynamic 

behaviour of the uncoupled substructures. As a ship‟s structure consists of many 
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repeating structural sections, the dynamic properties (mode shapes and natural 

frequencies) of only one of a series of repeating substructures would be required for 

the calculation of the total dynamic structural behaviour of the total assembled 

system. This saves computation time and required computer storage space for the 

model. Also symmetry of ship structures can be used to reduce the number of 

calculations required. 

In the 1960ties a modelling techniques called Component Mode Synthesis (CMS) 

has been developed also allowing a sub-structural approach which, unlike SEA, can 

be used for simulating narrowband vibration response of highly complex structures. 

CMS is mostly used based on a finite element model. The model is reduced by 

applying a mode superposition technique on the individual substructures. Modal 

information of the substructures is usually obtained through finite element analysis.  

As calculation time required for obtaining mode shapes and natural frequencies 

decreases exponentially with the size of the model, the total required computation 

time for obtaining all relevant modal information for each individual substructure 

will be a lot less than the time required for obtaining modal information for the total 

assembled structure, which is an advantage relatively to the classical mode 

superposition method.   

4.2.6.1 Principles of Component Mode Synthesis 

The Component Mode Synthesis (CMS) approach has been proposed for the first 

time by Craig and Bampton in 1968 [34] and has been used a lot since for large 

structures such as airplane fuselages and civil engineering applications. Variations on 

the method have been developed by, amongst others,  MacNeal and more recently, 

by Rixen [35, 36].   

Some of the key advantages recognised in the literature and presented as the 

motivation for developing the method are [37-39]: 

- Reduction of required computer time. Computer time increases exponentially 

(depending on the eigenvalue extraction method and nature of the structure) 

with the number of degrees of freedom. As a result, analysing the complete 
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assembled structure requires more time than the combined time required 

doing the analysis of the individual substructures [35]. 

- Further reduction of the model is obtained through using a limited number of 

eigenvectors (mode shapes) as a reduction basis. 

- The computation method allows separate teams of engineers to work 

independently on the design of parts of the structure. This saves time enabling 

the engineering teams to work parallel setting up the dynamic stiffness 

matrices of the individual substructures. These matrices will be compiled 

together for the calculation of the dynamic behaviour of the complete 

structure.  

-  Modification of the design of a structure does not require changing and re 

analysing the complete model. Only the substructure containing the part that 

is redesigned needs to be analysed for mode shapes and natural frequencies 

again. 

- Through component mode synthesis the dynamic behaviour of a structure can 

be evaluated through measurements once the individual substructures (in the 

shipping industry these could be ship sections) have been constructed, even 

though these sections have been manufactured at different locations.  

4.2.6.2 Fixed and Free Interface CMS 

Two types of CMS techniques are distinguished: 

- Fixed interface CMS 

- Free interface CMS 

With fixed interface CMS the dynamic behaviour of the substructures is described 

through elastic modes and constraint modes. Elastic modes are calculated for the 

substructures with the interface lines (lines connecting a substructure to adjacent 

substructures) constrained. The alternating displacement of the interface nodes is 

described through constraint modes, which are in fact static modes representing the 

static deformation of the substructure as a result of the interface forces occurring due 

to the interaction between sub structures. These constraint modes represent an 

important contribution to the total dynamic behaviour of the ship‟s structure.  
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 With free interface CMS the dynamic behaviour of the substructures is also 

described through elastic modes and constraint modes. Elastic modes are calculated 

for the substructures with the interface lines or points free.  

Comparison between free and fixed CMS is presented in Table 1 

 
Fixed interface CMS Free interface CMS 

Dynamic response 

calculated through 

Elastic modes and constraint 

modes 

Elastic modes and constraint 

modes 

Number of elastic modes 

required for accurately 

describing dynamic 

displacement field 

Requires less elastic modes than 

the free interface CMS method for 

accurately describing a 

substructure‟s elastic behaviour 

More modes required as un-

constrained model contains more 

degrees of freedom 

Importance of Static 

modes 

Important for describing 

displacement field. Need to be 

expanded for obtaining total 

dynamic displacement field. 

Not important for describing 

displacement field. Expanding 

only the elastic modes gives an 

accurately enough representation 

of the dynamic displacement 

field. 

Table 1 

 

Comparison fixed and free CMS methods 

The difference between fixed and free interface CMS is that the displacement of the 

interface modes and the internal modes is already sufficiently described by the elastic 

modes. This means that unlike the fixed CMS method, the static modes don‟t need to 

be expanded for the sake of the accuracy of the calculated displacement field. For 

typical ship structures, this will reduce the number of required floating point 

operations required for generating the results. The reason for that is the high number 

of interface nodes usually involved in CMS models of typical ship structures, as the 

substructures are connected to each other through interface lines. The number of 

static constraint modes involved is therefore high as well, as this number is equal to 

the number of degrees of freedom on the interface lines. The number of elastic 

modes required to describe the dynamic displacement field of a substructure 
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accurately enough is however higher than for the fixed CMS model, as the increased 

number of degrees of freedom also increases the modal density, particularly at lower 

frequency ranges.  

Although expanding static mode does not add a lot to the accuracy of the calculated 

displacement field, they are however very important for the accuracy of the 

description of the equilibrium relations, and therefore for the accuracy of the 

calculated modal coordinates representing the structures assembled dynamic 

response. Element stress and therefore the resulting reaction forces acting on the 

interface nodes are extremely sensitive to errors in nodal displacement [22, 39]. See 

also section 6.5.2 “Free Interface: the McNeal and Rubin‟s Method”. 

Another advantage of free interface CMS modelling is a more practical approach 

when evaluation of substructures modal properties takes place through modal 

measurements in the field. If these actual substructures are sections of ships that are 

waiting to be assembled, these sections will in most case be supported by a number 

of support points (blocks) which means that the interface boundaries of the section 

will be free, i.e. unconstrained. This is an advantage also mentioned for application 

in the aeronautical industry in [35]. 

4.2.6.3 Ship Structures and Gaps in CMS Approach 

Although there are a lot of advantages of applying Component Mode Synthesis 

(CMS) modelling for ships, problems may arise with required computation time 

when applying CMS on typical ship structures. Although the CMS total set of 

equations (matrix size) is a lot lower than the number of equations obtained 

following the full harmonic analysis, the ratio between the number of non zeros 

/number of zeros in the CMS matrix is a lot higher (denser matrix). As a result a 

situation may arise that the number of non zeros in the CMS matrix is higher than the 

number of non zeros in the full dynamic stiffness matrices used for full harmonic 

analysis. Such a situation may easily occur when applying CMS on structures 

containing many interface nodes, as is the case with typical ship structures. Ship 

structures are continuous of nature and substructures are therefore coupled to each 

other through coupling lines which have to contain a certain number of nodes, in 
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order to accurately enough describe the deformation at these interface lines.  Classic 

CMS approaches are based on describing the interaction between substructures 

through setting up equations of equilibrium and compatibility for each interface 

node. With a high number of interface modes, the number of equations required for 

describing compatibility and equilibrium may be higher than the number of normal 

modes required for accurately enough expressing the displacement field. In that case, 

the size of the CMS matrix is dominated by the number of interface degrees of 

freedom.  

Through the relatively high number of required CMS equations for typical ship 

structures, combined with the high density, this situation may arise that a CMS 

matrix contains more non zeros than the full matrix used for classical harmonic 

analysis, which also means that more time is required for solving the CMS equations 

of motion than the time required for solving the classical harmonic finite element 

matrix equation.  

Recent work has been carried out for a more efficient mathematical formulation of 

the compatibility and equilibrium relations  [35, 36]. Reference has been found 

addressing problems with increased calculation times due to the density of the 

reduced CMS matrices resulting from high number of coupling nodes. Reference 

[40] addresses this problem typically occurring when coupling a structural domain to 

a fluid domain.  

Tran [41] has carried out test for evaluation of a interface reduction technique based 

on the procedure developed by O‟Calligan [42] called the improved reduced system 

method (IRS method). This method is based on describing the static displacement of 

a substructure due to interface displacement through superposition of Ritz vectors 

(interface modes). These Ritz vectors are obtained through solving the eigenvalue 

problem involving a reduced mass and stiffness matrix. These reduced matrices are 

obtained through projecting the full stiffness and mass matrix of the subsystem onto 

the Guyan reduction basis. This enables describing the interface displacements 

through a number of mode shapes smaller than the number of interface degrees of 

freedom. Reduction in computation time at around a factor 3.5 compared to the 
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classical CMS approaches has been reported. The cut-out frequency used for 

selecting the number of interface modes however had to be increased from         

(according to Rubin‟s criterion) [26]) to         in order to get an accurate enough 

description of the interface displacement.  

In this work he also referrers to Bourquin [43] and Craig and Chang [44] who also 

present interface reduction techniques and suggest using Guyan Modes for 

describing the reduced interface displacement vector. 

4.3 Conclusion and Summary Critical Review 

 

In this section the nature of dominant on board excitation characteristics have been 

reviewed through literature study. The most dominant sources of alternating forces 

leading to vibrations and structure borne noise are considered to be the propeller and 

the engine. The excitation forces produced by engines and propellers contain very 

dominant tonal components with frequencies ranging from a couple of Hz for low 

speed engines, to multiples of 100 Hz for high speed engines and higher speed 

propellers. 

These findings formed a basis for the review of the most commonly used structural 

response modelling techniques and the recent developments in these techniques. 

4.3.1 Excitation Forces 

In the section above a brief review of the major ship vibration excitation sources is 

given. The excitation characteristic generated by the diesel engine can be easily be 

estimated during the design stage in order to generate the input for the structural 

response model for the simulation of the ship‟s vibratory behaviour. The tangential 

effort cylinder pressures are often available serving as excitation input values for the 

driveline torsional vibration calculation. With the tangential effort harmonic 

information the gas forces induced H and X-couple can be directly deduced. 
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Nature of Excitation Evaluation and control 

Diesel engine 

Excitation 
Tonal components at 

frequencies that are multiples of 

0.5 or 1
st
 order crankshaft 

rotation frequency for a two 

stroke or four stroke engine 

respectively.  

 

Most dominant frequencies are 

the 1
st
 and 2

nd
 order crankshaft 

rotation frequencies (inertia 

forces), and multiples of the 

firing frequencies (induced by 

gas forces) 

 

Amplitudes decrease with order 

number   

Control of diesel engine excitation 

Applying flexible or active mounting systems 

reduces transmission of vibrations from 

engine to ship. 

 

Applying rotating balancing weights may 

reduce or even completely eliminate inertia 

generated excitation forces  

Theoretical Evaluation of Excitation 

Characteristic 

 

Excitation characteristics are relatively easy 

to estimate or to obtain. 

 

Propeller 

excitation 
Tonal components at 

frequencies that are multiples of 

the propeller blade passing 

frequency. 

 

Amplitudes of excitation 

decreases with order number. 

Generally up to the third order 

blade passing frequency is 

considered relevant 

 

Between 50 and 100 Hz broad 

band cavitation induced 

excitation occurs   

Control of propeller excitation takes place 

through 

 

Unloading of the blade tip through propeller 

geometrical design 

 

A high as possible blade tip-hull clearance 

 

Introducing an a uniform as possible wake 

field at the propeller through careful 

geometrical aft ship design  

Theoretical Evaluation of Excitation 

Characteristic 

 

CFD modelling techniques, lifting line theory 

and towing tank test are used for estimating 

propeller excitation characteristics 
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Inertia forces induced H and X couples can also be easily estimated through 

reciprocating masses together with information about the balancing arrangement and 

engine connecting rod and crankshaft geometry given by the engine manufacturer. 

Excitation properties from the propeller however are harder to estimate. Calculation 

of excitation amplitudes requires an estimation of the wake field to start with, which 

can be obtained through CFD modelling or through model towing tank testing.  

With the estimated wake field, the propeller blade pressure distribution variations 

can be calculated through well established lifting line or lifting surface theories.  

Predicting broadband cavitation induced by collapsing of sheet, bubble and tip vortex 

cavities is considered the most complex excitation form. Understanding and 

predicting this behaviour is still subject of ongoing research.  

For both the propeller and the diesel engine excitation characteristics it can be 

concluded from the review that most of the excitation energy is concentrated in very 

distinct tonal frequency components. For the propeller excitation the relevant 

frequencies are generally assumed to be the first three blade passing harmonic. 

Diesel engine excitation generally produces a tonal excitation characteristics induced 

by the oscillation of the translating masses (inertia forces) (1
st
 and second order 

crankshaft rotation frequency) and the gas forces (multiples of the engine‟s firing 

frequency.  

4.3.2 Response Modelling Techniques 

An important aspect of ship noise and vibrations is the combination of the excitation 

characteristics (source characteristics) and the natural response of the structure that is 

subjected to this particular excitation. Through careful design of propeller blade and 

aft ship geometry, and through applying flexible or active machinery supporting 

system, excitation amplitudes can be very well controlled. However, no matter what 

excitation mitigating technique is applied, resonance or near resonance of the ship‟s 

structure or machinery may still easily result in destructively high vibration levels, 

even though the excitation amplitudes are perfectly acceptable.   
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Consciously tuning the structural response and excitation frequencies is very 

important when designing a ship for low noise and vibration levels. Therefore, 

estimating the impact of structural design choices on the response characteristic of 

the ship‟s structure for a given excitation characteristics is very important, and is a 

huge challenge. 

With the critical review, finite element modelling has been recognised as the most 

suitable modelling tool for evaluating ship‟s structural design considering the nature 

of ship‟s structures and excitation characteristic from diesel engines and propellers. 

However, particularly when taking large parts of the ship structure into account, 

problems may still arise with require computer memory and computation time. 

The principles of the Spectral Element Modelling approach have been reviewed as a 

possible solution to reduce required computer memory and analysis time. Although 

this method has great potential to reduce computation time at high frequencies, its 

practical value is questioned for modelling the typically relatively low frequency 

excitation forces typically encountered on ships. These low frequencies induce 

vibrations involving global structural deformation. Considering the nature of ship 

structures,  the size of spectral elements has to be chosen relatively small. 

Considering the nature of the structure, and considering the typical excitation 

characteristics, the wavelength of mode shapes that play an important role in ship 

vibrations largely exceeds the size of the spectral element. This means that rigid 

body modes of the spectral elements play and important role in the propagation of 

vibrations. These rigid body mode shapes are not taken into account with this 

approach. In addition, considering the complex nature of the stiffened ship structures, 

a lot of uncertainty arises about choosing the correct wave functions. 

The principles of statistical energy analysis (SEA) have also been studied for 

practicality and validity for simulating propagation of vibrations through ships. The 

advantage of SEA is that the mathematical description of the structural dynamic 

behaviour is much simpler than for the FE method. However, broadband excitation, 

high modal density and statistically uniform modal behaviour are required for 

reliable results. Statistical energy analysis could however still be used as a tool for a 
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qualitative approach to propagation of structure borne noise for some types of ships, 

particularly for high speed crafts with high turbulent flow excitation and light 

structures with high modal densities. However, considering above, this technique is 

unsuitable for simulation of propagation of vibrations induced by the tonal sources 

such as the propeller blade passing harmonics and diesel engine crankshaft rotation 

and firing frequency related harmonic components. 

In order to reduce computation time and computer memory requirement whilst still 

be able to apply a finite element approach, the principles of component mode 

synthesis have been reviewed.   With this method the ship‟s structure is divided in 

well manageable substructures. Reduction of the model takes place by applying 

modal reduction onto the individual substructures. Calculation time required for 

obtaining mode shapes and natural frequencies for all individual substructures is a lot 

smaller than the calculation time required to obtain the mode shapes and natural 

frequencies of the total assembled structure, as required for the classical mode 

superposition technique.  

Through component correlation of the theoretical model to the real structure can 

already start very early in the design stage. Modal information of already finished 

ship sections can be obtained through measurements. By modelling these sections as 

substructures, these theoretical substructures can be correlated to the measured data 

through which the confidence in the simulation results is increased. 

However, due to high number of required interface nodes typically seen on ship 

structures, a situation may arise, particularly when subdividing a ship structure into 

many (repeating) ship structures, that solving the total assembles CMS matrix 

requires more computation time than solving the matrix equations following classical 

full harmonic finite element analysis. 
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Modelling Technique 

 

Pro Con 

Hull Girder Beam Approach Simple hand calculation 

approach. Particular valid for 

estimating propagation of 

vibrations forced by low speed 

two stroke engines (and 

sometimes also the first blade 

passing frequency from the 

propeller) 

As assumptions and simplifications 

of the model only allow analysis up 

to the 5
th

 mode shape, this approach 

becomes invalid for estimating 

vibration propagation induced by 

medium and high speed engines and 

propeller excitation. 

 

Finite Element Modelling Suitable for modelling 

geometrically complex 

structure that ships are. 

Modelling large part of typical 

complex ship structures results in 

model requiring much computer 

memory and computation time. 

Number of required elements 

increases further with increasing 

required response frequencies 

 

Mode Superposition Reducing computation time 

mainly at lower frequencies 

At higher frequencies, calculation 

time required for calculating the 

relevant mode shapes and natural 

frequencies increases exponentially.  

 

Spectral Element Modelling Reducing computation time 

considerably at higher 

frequencies. 

Exact solution, works well for 

high frequencies. 

Still many elements are required for 

typical ship structures, due to the non 

homogeneous nature of typical ship 

structures. 

Global modes play an important role 

in the vibrations of a ship 

considering the frequency of 

excitation and the nature of the 

ship‟s structure.  

Due to the non homogeneous nature 

of the global ship structure, it is not 

possible to know the exact wave 

solution  
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Modelling Technique 

 

Pro Con 

Statistical Energy 

Analysis 

Reducing computation time 

considerably at higher 

frequencies. 

 

- Requires high modal density. 

This is a condition not met with 

typical ship structures. 

- Requires broadband and spatially 

evenly distributed excitation. 

Propeller and diesel engine 

excitation is of a tonal nature and 

spatially concentrated 

- Global mode shapes are not taken 

into consideration, but play an 

important role in vibration 

propagation on board ships.  

  

Component Mode 

Synthesis 

Reduction of Required 

Computer Memory and 

possible reduction of 

Computation time 

Allows a Finite Element 

Approach 

Sub structural approach 

allows correlation of modal 

parameters to take place 

through measurements 

whilst the ship is being built 

 

High number of coupling modes typically 

encountered with continuous ship 

structures may increase the total 

computation time and undo the reduction 

of computation time obtained through 

modal reduction 
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5 Measurement Results 

In this section vibration and noise measurement results are reviewed. Through the 

vibration measurement results the nature of propeller and diesel engine excitation 

and the corresponding structural response is.  

 

Paragraph structure of chapter 5 ‘Measurement Results’ 

Measurement results from measurements campaigns carried out for the FP7 EU 

research project SILENV have been used. For two vessel analysed in this work, these 

measurements have been performed by the author of this work (a fishery research 

vessel and a LNG carrier). Also measurement results taken on board a ROPAX ferry, 

carried out by a Spanish consultancy company TSI, have been used. These 

measurements have also been carried out for the EU research project SILENV.   

The main aim of SILENV was the formulation of a green label for shipping. This 

green label was to contain recommendations of noise and vibration limit values 

based on: 

- Human response (work quality impairment and comfort) 

- Response of marine mammals. 

- Response of people working and living close to waterways and harbours 

- Technical feasibility 

The green label also was to contain guidelines for designing ships in order to achieve 

the proposed more stringent recommended noise and vibrations limits. 
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To serve the aims of the SILENV project, on board noise and vibration 

measurements have been carried out as well as underwater noise measurements in 

some cases. Also questionnaires have been distributed among passengers and crew 

through which the impact of noise and vibrations on working performance and 

perception of comfort is measured. 

5.1 Vibration and Noise Measurements on a Gas Carrier 

One of the ships the author of this work has performed Noise and Vibration 

Measurements on was a 260 m long LNG carrier with a gross tonnage of 111459 

tons and a displacement of 84491 tonne (see Figure 8). For the development of the 

green label for the fp7 project SILENV as described above, onboard noise and 

vibration measurements have been carried out by the author. At the same time, 

underwater noise measurements have been carried out by project partner CETENA, 

so that noise and vibration levels on board could be related to the resulting under 

water noise radiation.     

 

 

Figure 8 Properties of the gas carrier of which the vibration measurements have been shown in Figure 

10 and some noise measurement results are presented in  

As this ship is equipped with steam turbines, the most dominant vibration and noise 

source was found to be the propeller. 
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5.1.1 Measurement Conditions, Locations and Procedure 

An important aspect of all the measurement results collected was the identification of 

the noise and vibration sources and the mechanism behind the transmission of noise 

and vibrations from theses sources through the ship itself, and to the underwater 

environment. 

In order to be able to identify the contributions of the main noise sources vibration 

measurements and noise measurements had to be carried out in such a way that they 

can be related to each other.  With that in mind, vibration measurements were carried 

out on parts of the ships structure as close to main sources of structure borne noise as 

possible.  

The most dominant sources are considered to be: 

- Propeller (measurement positions plate fields deck steering gear room and aft 

deck) 

- Main steam turbines (measurement positions turbine feet and founds) 

- Gearbox (measurement positions on foundations) 

- Auxiliary sets (measurement positions on foundations) 

- Feed water pumps (measurement positions on foundations) 

Measurements took place at four different operational conditions: 

- Ship at anchor 

- Ship with propeller running at 31 rpm (7 knots) 

- Ship with propeller running at 50 rpm (9 knots) 

- Ship running at full speed (75 rpm) (19 knots) 

As the ship is equipped with steam turbines, the main focus in this work is on the 

vibrations above the propeller and on the steering gear deck.  

Spectra of the vibration measurements are produced over a frequency range from 

0.16 Hz up to 1 kHz. The spectrum bandwidth was 0.16 Hz. A hand held B&K 2250 

vibration/noise meter has been used as further described in Appendix I. With this 

meter both noise and vibrations were measured. The meter had logging options 
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which enables logging of both spectra and raw signals, so that post processing could 

be carried out afterwards. Being able to record spectra and time signals over a longer 

period is convenient, particularly when measurement reading fluctuate over time. 

Linear averaging of vibration and noise spectra also had to take place considering the 

irregularity of the vibrations levels. Particularly at the steering gear deck sailing at 

full speed cavitation occurred and the highly irregular noise and vibration levels 

sometimes required averaging times longer than one minute, before the reading 

become stable. 

5.1.2 Propeller induced Vibration and Noise 

Figure 10 and Figure 11 show some of the vibration measurement results taken on 

the steering deck plating directly above the propeller on board a gas carrier [18, 20]. 

The measurements have been carried out using accelerometers and hand held 

equipment (shown in Appendix I). The spectra show the FFT analysis results that 

have been transformed from 0 to peak acceleration levels [mm/s
2
] to 0 to peak 

velocity levels [mm/s] through dividing the acceleration spectrum through the 

frequency in rad/s.  

The spectra presented in Figure 11 and Figure 12 present the 0 to peak maximum 

amplitudes of the frequency components measured over roughly one minute, with no 

weighting function applied. In the legend of the graphs, also the total average and 

total maximum RMS values measured during that minute are presented, applying a 

weighting function according to EU directive 2002/44/EC.   

Identification of propeller induced vibration took place by plotting lines of multiples 

of the blade passing frequency into the spectrum. These blade passing harmonics 

have been estimated through the estimated propeller rotation speed obtained from the 

readout of the on-board revolution meter. 
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Figure 9 
 

Some of the measurement locations on the steering gear deck shown plotted in a 3D 

representation of the aft ship cut open at frame 10 

 
Figure 10 

 
Measurement locations and results for location 3 and 5, the location where the highest 

vibration levels have been measured. The table shows the maximum 0 to peak velocity 

amplitudes at each blade passing harmonic frequency component from the 1st  to the 5th 

order. The bottom line shows the maximum overall RMS value. Limits given in the table are 

prelimenry limits formulated in the SILENV project for evaluation of vibration spectra. 
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Figure 11 

 

Spectra of measurement results taken at location 1 to 3.Amplitudes are given in mm/s 0 to peak 

values and are the maximum values measured. During the approximately one minute over 

which the measurement results were averaged, total RMS values were within the bandwidth 

indicated in the legend of the graph (from 3.95 mm/s to 4.4 mm/s for location 1 for instance). 

Indicated in the figure are the multiples of the blade passing frequencies (BPF).   

 

Figure 12 

 

Spectra of measurement results taken at various locations. Amplitudes plotted in the graph 

are given in mm/s 0 to peak values and are the maximum values measured. During the 

approximately one minute over which the measurement results were averaged, total RMS 

values were within the bandwidth indicated in the legend of the graph (between 3.64 mm/s 

and 5.5 mm/s for location 3 for instance). Indicated in the figure are the multiples of the 

blade passing frequencies (BPF).   

 

In the table of Figure 10  the maximum measured 0 to peak velocity amplitude values 

are listed for the first 5 blade passing harmonic frequency components for locations 3 

and 5. At these two locations the highest vibration levels have been measured. The 
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limits given in the table are the preliminary vibration limits formulated at the start of 

the SILENV project in order to be used for assessment of vibration measurement 

results. 

In Figure 13 the noise measurement results taken at two locations under different 

operational conditions are plotted in one graph. These measurements have been 

presented in this way in order to understand the propagation mechanism of structure 

borne noise.  

 

 

 

 

Figure 13 1/3 octave band spectra of noise measurement results with no weighting curve applied, 

taken on board the gas tanker with properties shown in Figure 10. Noise at Cadet B 

cabin has been measured with the ship stopped, propeller running at 50 rpm (9 knots)  

and at full speed (19 knots). Noise in the Chief Petty Officer Cabin has been measured at 

propeller speed 31rpm (7 knots) and at full speed (19 knots).   
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5.1.3 Evaluation of Measured Propeller Vibrations 

The vibration measurement results shown in Figure 10 suggest a concentration of 

propeller vibration energy below the 30 Hz. Frequencies up to the 5
th

 order blade 

passing frequency have been clearly identified through the FFT analysis. It has also 

been established that all the vibration energy under 100 Hz is mainly coming from 

the propeller. Figure 14 shows measurement results taken close to machinery in the 

engine room of the vessel. These vibration levels are considerably lower than the 

levels measured on the steering gear deck (compare with Figure 12).  

 

Figure 14 

 
Spectra of measurement results taken on close to auxiliary and main machinery (steam 

turbines) in the engine room of the of the LNG carrier 
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Also some broad band effect seems to be present round about the 20 Hz and round 

about the 1
st
 blade passing frequency. 

The clear presence of blade harmonic components above the 3
rd

 order is mainly due 

to the shape of the aft ship. As mentioned in section 4“ 

Critical Review” it is normally assumed in the literature that propeller blade passing 

excitation amplitude decreases with order number and is assumed to be negligible 

above the 3
rd

 order. However, the literature also mentions that with a full aft ship 

such as the LNG carrier‟s aft ship, characterised by rapidly converging lines, a high 

degree of non uniformity of wake distribution at the propeller can be expected, which 

may lead to blade passing harmonics above the 3
rd

 order to be relevant as well. 

Another important aspect when evaluating the relation between amplitudes at 

different harmonics is the fact that through accelerometers not an excitation 

amplitude is measured, but a response amplitude. This means that the structural 

response characteristics may also result in certain harmonic components being more 

dominant than others (for instance, when certain blade harmonics are close to a 

natural frequency)   

As mentioned before, a broad band response has been identified close to 20 Hz.  

Although there may be the effect of smearing of higher harmonics due to time 

variation of the wake distribution (as described by [3]), the broadband excitation is 

suspected to have been mainly induced by cavity collapse on the hull considering the 

observed impulse like nature of the vibrations at the aft ship that could best be 

described with the metaphor of the aft ship being machine gunned with marbles. 

These violent time varying cavitation phenomena also resulted in a huge fluctuation 

in vibration levels as can be seen from the range between the maximum and 

minimum measured (weighted) RMS velocity values quoted in the legends of the 

graphs in Figure 11 and Figure 12. 

5.1.4 Evaluation of measured Propeller Noise 

The concentration of vibration energy below 30 Hz is further confirmed through the 

un weighted noise spectra of noise measurement results at different propeller speeds 
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shown in Figure 13. In Figure 13 the 1/3 octave band spectra at different propeller 

revolutions at one location have been plotted in one figure. These graphs have been 

produced for identification of the contribution of the propellers structure borne noise 

to the total airborne noise in the cabin in question. From the spectra can be seen that 

changing the propeller revolutions and load only affects the noise spectrum shape 

below the 50 Hz. As according to the A-weighting curve the sensitivity of humans to 

noise at these frequencies is very low, the differences in the total A-weighted noise 

levels, measured at different ship speeds therefore are very small, particularly at the 

higher decks being situated further away from the propeller. The main contributor to 

cabin noise is general was found to be the air conditioning [20]. 

5.2 Vibrations and Noise Measurements on a Fishery Research Vessel 

Following the same procedures as on the LNG carrier described above, Noise and 

vibration measurements have been carried out on board a fishery research vessel by 

the author of this work for the FP7 EU research project SILENV. Also underwater 

noise measurements have been performed by one of the SILENV project partners.  

The Fishery Research vessel is equipped with two main diesel engines driving one 

controllable pitch propeller, as shown in Figure 15. 
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Figure 15 Properties of the Fishery Research vessel, the second vessel on which the author has 

performed vibration and noise measurements supporting the FP 7 research project 

SILENV 

 

5.2.1 Measurement Conditions, Locations and Procedure 

Vibration and noise measurements have been carried out under different operational 

condition: 

- Vessel stopped, propeller running with zero Pitch 

- Propeller running at 50% Pitch 

- Propeller running at 100% Pitch 

Vibration and noise measurements have been taken close to the main sources, which 

were considered to be the diesel engines and propellers. Vibration and noise 

measurements have also been taken at cabins and various other locations away from 

the sources, so that propagation mechanisms can be studied. 

A hand held B&K 2250 vibration/noise meter has been used as further described in 

Appendix I and has been used in a similar manner as described for the measurements 

2. Crew cabin main deck 

3, Captain‟s cabin 4. Officer‟s cabin 

1. Aft deck 
5. Officer‟s cabin 
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for the LNG carrier above where the amount of averaging time required for obtaining 

a spectrum depended on how long it took before a reading was stable. 

5.2.2 Evaluation and Identification of Propeller Induced Vibrations 

Figure 16 shows the vibration measurement results at 50% pitch and show that most 

of the vibration energy is concentrated below 150 Hz [33]. In Figure 16 and Figure 

17 can be seen that most of the vibration energy is concentrated under 150 Hz. In the 

vibration measurement spectra at the aft ship, closest to the propeller (Figure 16 ) the 

first and second blade passing harmonic tonal components (1
st
 BPF and 2

nd
 BPF) can 

be clearly distinguished at 20 Hz and 40 Hz. In line with the findings presented in the 

critical review of the excitation sources, no noticeable response at blade passing 

frequencies with order numbers higher than 2 can be found in the spectra presented. 

The 6
th

 blade passing harmonic can also be distinguished from the graph at about 120 

Hz. The response around that frequency seems to suggest a broad band like 

excitation characteristic, but response amplitudes are low. 

 

 
 

 
 

Figure 16 Vibration measurement results on the aft deck directly above the propeller. Graph B in a 

zoomed in version of graph A. BPF = propeller blade passing frequency.   

A 

1st BPF 2nd BPF 6th BPF 

B 

1st BPF 2nd BPF 6th BPF 
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Figure 17 Vibration measurement results in cabins. Graph B in a zoomed in version of graph A. BPF 

= propeller blade passing frequency   

In Figure 17 can be seen that only the first propeller blade passing frequency really 

comes through to the cabins at the captain‟s deck. Local resonance has been 

established of the captain‟s cabin‟s deck which explains the amplification of the 

blade passing frequency amplitude relatively to the amplitude measured at the aft 

ship, the closest to the source. 

5.2.3 Identification and Evaluation of Diesel Engine Induced Vibrations 

Spectra of vibration measurement results taken on the engine foundation of the 

fishery research vessel (Figure 15) are shown in Figure 18. Also plotted in the 

spectrum of Figure 18 are dotted vertical lines representing multiples of 0.5
th

 

crankshaft rotation frequency (CRF), which is the ground harmonic of a 4 stroke 

engine. As can be seen from Figure 15 the vessel is equipped with a 6L and a 12V 

engine both running at a constant speed of 750 rpm. 

 

A 

1st BPF 2nd BPF 

B 

1st BPF 2nd BPF 
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Figure 18 Spectra of vertical vibration measurement results taken on a 12V engine running at 740 

rpm. (Fishery research vessel). The 3rd and 6th CRF (crankshaft rotation frequency) are the 

firing frequency of the 6L and 12V engine respectively.    

 

Specifically indicated in the graph in Figure 15 are the 3
rd

 and 6
th

 order CRF 

components. They are usually dominant in a 12V engine as they represent the firing 

frequency of one cylinder bank (behaving like a 6L engine) and the firing frequency 

of all 12 cylinders [18] together respectively. In addition, a 6L engine was running 

synchronously this 12V engine right next to it, both driving one propeller through a 

common gearbox.  That would further amplify the 3
rd

 order crankshaft rotation  

 

Figure 19 Simulated total H-couple for the 12V engine of the fishery research vessel specified in 

Figure 15. 

 

1st CRF 3rd CRF 
6th CRF  
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Figure 20 Spectra of vertical vibration measurement results taken at various locations on board. CRF= 

crankshaft rotation frequency. 

frequency. Although theoretically only these firing frequencies should be present in 

the excitation spectrum, many more tonal components related to the engine‟s ground 

harmonic can be distinguished up to 200 Hz in Figure 18. The harmonic components 

outside the multiples of the firing frequencies can be found as a result of unequal 

distribution of thermodynamic cylinder load, and as a result of the unequal timing of 

the firing of the cylinders relatively to (dynamic) top dead centre. With the 

simulation of the gas force induced H-couple excitation characteristic simulated by 

1st CRF 3rd CRF 6th CRF  

1st CRF 3rd CRF 6th CRF  
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the author of this work in  reference [18], the on board measured exhaust gas 

temperatures have been used to estimate the load distribution of the cylinders. 

The resulting total H-couple characteristic is shown in Figure 19 and shows that the 

unbalanced distributed load particularly results in frequency components under the 

3
rd

 order (firing frequency one cylinder bank).  

Figure 20 shows the vertical spectra measured at locations further away from the 

engine. Apart from the first order crankshaft rotation frequency the engine crankshaft 

rotation related frequencies can only be distinguished very faintly. The dominant 1
st
 

order crankshaft rotation frequency has been considered a result of mass unbalance 

in the engine‟s driveline in combination with local resonance phenomena. 

5.3 Vibrations on Board a ROPAX Vessel 

In this section measurement results taken on board a ROPAX ferry, carried out by 

the Spanish noise and vibrations consultancy company TSI, are reviewed. Figure 23 

and Figure 24 show the vibration measurement result spectra taken on board this 

ROPAX vessel (Figure 22).  

5.3.1 Evaluation of Propeller Induced Vibrations 

Figure 23 shows the vertical vibration measurement results on deck plating closest to 

the propeller. As can be seen, amplitudes of vibrations with frequencies that are a 

multiple of the blade passing frequency rapidly decrease with the order number. 

This is therefore also the case with the harmonics found in the vibration 

measurement results taken further away from the propeller. Figure 24 shows the 

vibration spectra measured on the bridge and at public spaces at the highest deck 

right above the propeller. It can be seen that the effect of the 2
nd

 and 3
rd

 blade passing 

frequency is decreasing the further the receiver location is from the source. The first 

blade passing frequency however is dominant throughout the vessel. This had been 

contributed to resonance phenomena, which can be concluded from the amplification 

of the amplitude at the first blade passing frequency relatively to the first blade 

passing frequency measured close to the propeller (see Figure 23). The vibration 
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measurement results do not suggest any broad band component in the excitation 

characteristic. 

 

Figure 21 

 
Layout ROPAX vessel on which measurements were carried out for the FP7 

project SOLENV 

   

 

 

Figure 22 General information ROPAX vessel 

 

Figure 23 

 
Measurements on plating above the propellers of a RO-PAX vessel (location 27 

and 28 as shown in Figure 21 )  

Loc 27 and 28 

Wheelhouse 

44 and public spaces 
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Figure 24 

 

Vertical Vibration measurement results ROPAX vessel (see also (see Figure 22 

and Figure 23). Weighting curve according to EU directive 2002/44/EC has 

been used for calculating the total weighted RMS values quoted in the legends. 

 

5.3.2 Evaluation of Diesel Engine Induced Vibrations 

Vibration measurements taken close to the engines on board the ROPAX vessel (see 

Figure 22 and Figure 23) are shown in Figure 25. As for the fishery research vessel 

in Figure 19 and Figure 20, the measurement results suggest a tonal engine excitation 

characteristic. Again, as for the fishery research vessel, apart from the firing 

frequency (± 33 Hz) many more other engine ground harmonic related frequencies 

can be identified in the spectrum which is a result of the fact that cylinder gas loads 

are never perfectly equally distributed and the crank angle of firing of the cylinders 

relatively to their top dead centres is not exactly equal either.  
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Figure 25 Measurement locations and results taken close to the engine feet 

 

As can be seen from Figure 24 apart from the first order crankshaft rotation 

frequency hardly any vibration energy from the engine is coming through to the 

selected measurement positions of Figure 22, which is also down to the fact that the 

engines are flexibly mounted. The amplification of the first order crankshaft rotation 

frequency (compare engine room spectrum which accommodation spectrum) is an 

indication of local resonance phenomena occurring, which has been confirmed by the 

TSI team that carried out the measurements.   

5.4 Summary of Measurement Result Evaluation 

The mechanisms and characteristics of diesel engines and propeller excitation forces 

identified from the measurement results above are in line with the findings of the 

literature review of excitation source characteristics presented in section 4 “Critical 

Review“. Above shown vibration measurement results suggest that from a vibration 

point of view the propeller should indeed mainly be regarded as a very dominant 

tonal excitation source. Frequency tonal response components up to the 3
rd

 blade 

passing frequency were found in the measurement results taken on the ship 

Firing frequency 
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structures. Higher order blade passing harmonic components were found to be 

dominant as well in the vibration measurement results taken on board an LNG 

carrier. This is also in line with the findings from the literature research presented in 

section 4 “Critical Review“, were it has been mentioned that dominant higher order 

blade harmonics typically occur with vessels such as the LNG carrier with a typical 

„full‟ aft ship geometry characterised by rapidly converging and rising lines. This 

type of aft ship results in a highly irregular wake distribution at the propeller, through 

which violent cavity volume fluctuations and cavity implosions occur, which is 

exactly as experienced on board the LNG carrier during the measurement campaign. 

All measurement results considered, the propeller induced vibration energy and 

therefore the structure borne noise was mainly found to be concentrated below the 

100 Hz in all cases.  

From the measurement results taken from a ROPAX vessel and a Fishery Research 

vessel can be seen that the excitation from diesel engines is of a tonal nature and 

contains many tonal frequency components typically a multitude of the 0.5 order 

crankshaft rotation frequency which is the ground harmonic of a four stroke engine. 

Most of the vibration energy seems to be concentrated in the frequency band between 

0 and 200 Hz. 
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6 Theory of Structural response Simulation 

 

In this work state of the art state of the structural modelling techniques are evaluated. 

The first step of this evaluation is a critical review of the existing most commonly 

used structural modelling techniques. In this critical review presented in section 4, 

the validity and practicality of these modelling techniques are assessed considering 

the nature of typical ship structures and most dominant ship vibration excitation 

characteristics (propeller and diesel engines). Further assessment of the nature of 

excitation and response characteristics is done through analysing measurement 

results, presented in section 5.  

Based on the findings from the literature study and the tonal structural response 

measured on the ship‟s structure close to engines and propellers, finite element based 

modelling techniques are considered the most suitable modelling techniques for ship 

vibrations. 

 

Paragraph structure of chapter 6 ‘Theory of Structural response Simulation’ 

The next step in evaluating structural modelling techniques is applying some of these 

finite element modelling techniques on a structural model representing the aft ship of 

the LNG carrier on board which the author has performed vibration measurements 

(see section 5, Figure 8). Assessment of the modelling techniques will be based on 

accuracy of results and required computation time (in measured CP time or 

calculated number of floating point operations). 
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In this section the mathematical background of the selected modelling techniques is 

presented before applying these techniques on the aft ship model of the LNG carrier, 

which will be done in section 7. Understanding the different calculation steps 

required to obtain the results is important in order to develop an expression through 

which the number of floating point operations can be estimated for each step. The 

number of floating points required for the analysis is a direct indication of the 

number of computation time required for the analysis. Understanding how each 

calculation step contributes to the computation time is important in order to develop 

the alternative component mode synthesis approaches suggested in section 8. 

6.1 Introduction: Choosing the Modelling Techniques 

A very important aspect of controlling noise and vibrations is the ability to assess 

structural geometry design choices on their impact on natural structural dynamic 

behaviour related to the relevant excitation characteristics. Both structural response 

modelling techniques and techniques to estimate the characteristics of the most 

dominant ship vibration excitation sources are needed.  

In the first part of section 4 “ 

Critical Review” the state of the art is reviewed of the methods available for 

estimating the nature of these excitation characteristics. Measurement results taken 

on board vessels by the author have been studied in section 5 “Measurement Results” 

for evaluation of the nature of the excitation characteristic. From the literature study 

of  section 4 and the measurement results in section 5 the excitation characteristic 

from both propellers and diesel engines was found to be predominately tonal of 

nature and the vibration energy was in all cases found to be concentrated below 200 

Hz. 

In the second part of section 4 “ 

Critical Review” the state of the art in modelling structural response is reviewed. For 

assessing the validity and practicality of the different approaches available the nature 

of the excitation characteristic needs to be considered. Having established in the first 

part of the critical review that propeller and diesel engine excitation characteristics 
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are predominantly of a tonal nature, with vibration energy content rapidly decreasing 

with blade passing or crankshaft rotation frequency related harmonics, statistical 

energy analysis and spectral element methods have been considered unsuitable or 

unpractical for modelling the structural response of ship structures such as the LNG 

carrier. As the findings of the study of the measurement results presented in section 5 

confirm the findings about the typical nature of propeller and diesel engine excitation 

characteristics, presented in the critical review, finite element based modelling 

techniques have been selected as the most suitable modelling techniques for 

modelling vibrations on ships. The most suitable techniques considered are: 

- Full Harmonic Finite Element Modelling Technique 

- Mode Superposition Technique 

- Component Mode Synthesis Techniques 

Later in this work, some of these finite element based modelling techniques are 

assessed by using them for the simulation of vibration spectra of the aft ship of the 

LNG carrier on board which the author has performed noise and vibration 

measurements (as presented in section 5, see Figure 8). The simulation results 

presented in section 7 will focus on propeller generated vibrations alone, as the ship 

is equipped with steam turbines for generation of both main and auxiliary power, and 

only very little contribution from the steam turbines have been found in the 

measurement results [20].  

In preparation of the evaluation of these techniques, the mathematical background of 

these techniques are presented in the following sections.  

6.2 The wave and mode approach   

 

When vibrations are modelled mathematically, two main approaches to vibrations 

can be adopted: 

- The wave approach 

- The mode approach 
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Through the wave approach the shape of deformation of an object is described as a 

superposition of travelling waves. Vibrations are modelled as waves travelling from 

the source and spreading through the structure and waves that are reflected at the 

boundaries and are travelling back into the structure. The interference of these waves 

result in a standing waves. These standing waves are most effectively formed at 

certain frequencies, where the phase relation between incident and reflected waves is 

such, that these waves amplify each other. In that case, little energy is required to 

generate a vibratory response. These frequencies are the resonance frequencies and 

the standing waves are the corresponding mode shapes. In this approach the 

modelling of the wave reflecting from the boundaries (phase shift and amplitude) is 

very important and is done through the mathematical formulation of the boundary 

conditions. 

When structures become geometrically more complicated, the wave approach 

becomes unpractical. Particularly the mathematical definition of the boundary 

conditions becomes complicated as these conditions are formed by a complex 

combination of dynamic properties of the structures attached to all the boundaries. In 

this case a modal approach is adopted which is based on approaching vibrations as a 

superposition of a number of assumed mode shapes, which are substituted into the 

energy equations through which the equations of motion are formulated. This 

approach is adopted in finite element modelling techniques 

6.2.1 The Wave Approach   

 

With the wave approach a structure is modelled as an elastic continuum through 

which different type of waves propagate: 

- Compressional waves 

- Flexural waves (transverse or bending) 

- Shear waves 

- Torsional waves 

Of these types of waves the flexural wave is the only type of wave that produces 

perceivable vibrations and noise for the reason that the particle velocity (structural 
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displacement) is perpendicular to any object or person that is in contact with the 

structure and is also perpendicular to the air or water that is surrounding the 

structure, through which airwaves or underwater waves are generated which is 

perceived as noise.   

 

 

Figure 26 Beam with a travelling wave 

 

The wave approach, as already explained in section 4.2.1 “Hull Girder Approach”, is 

successfully adopted for the estimation of the natural frequencies corresponding with 

the first 4 or 5 bending modes of a ship‟s hull. The hull is considered a slender 

homogeneous beam. The principle of the approach to vibrations according to the 

wave approach is therefore demonstrated with a slender beam as shown in Figure 26.  

This beam is excited at half the length by a force F at a frequency ω. As a result a 

wave travels from the point of excitation both to the right and to the left (opposite 

directions). Two types of velocity can be distinguished for both waves: the velocity 

of propagation of the wave (disturbance) through the material (horizontally), and the 

alternating velocity perpendicular to the propagation direction (vertically).  

The vertical velocity of the particle (point) on the structure is expressed through the 

frequency of alteration normally expressed through the radian frequency    
  

 
 (T 

is the time required for a point on the structure to move from the equilibrium position 

to the positive maximum amplitude, to the negative maximum amplitude and back to 

equilibrium position again = 1 cycle).  
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The propagation speed is expressed through the wave number and is also a function 

of the radian frequency of the vertical wave motion of a point on the beam: 

  
 

 
 

(6.1) 

 

  
  

 
 

(6.2) 

 

Where: 

  = the speed in which the disturbance propagates through the structure (wave 

velocity) 

  = the wave number also expressed as a function of the wave length   

 

The particle displacement is expressed through the following complex 

representation: 

                  
 

(6.3) 

 

 Where:  

       is the vertical displacement at point x on the beam at time t 

  is a complex constant 

  is the frequency of alteration of the excitation force (and therefore the 

vertical motion of the particle) in rad/s 

  = the wave number through which the phase difference between the wave 

motion at x=0 and x=x is expressed. 

The complex constant   is evaluated through the force balance equations. These 

force balance equations are based on the formulation of the relation between 

curvature of bending and the resistance against bending, and the vertical acceleration 

of a particle due to the bending motion and the resulting inertia forces. 
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Through the description of the relation between the curvature of bending and the 

bending moment the shear force of an infinitively small beam can be described [23, 

45]. 

  
  

  
 

(6.4) 

 

    
   

   
 

(6.5) 

 

Where: 

 = the shear force in a beam alement of a length    

  = bending moment 

        

   
 = the curvature of the beam 

      = vertical deflection of the beam as a function of time   and   = 

coordinate in the direction of length of the beam 

 = elasticity modulus (2.11e11 Pa for steel) 

  = is the moment of inertia of the cross-sectional area of the beam =      
 

 

Where:  

  = infinitively small crosssectional area 

 = vertical distance neutral bending line of the beam and the infinitively 

small cross sectional area    

Inertia forces of a beam are expressed as the mass times vertical acceleration of beam 

section    

    
        

   
 

(6.6) 

 

Where 

  = the cross-sectional area of the beam. 

        

   
 = the vertical acceleration of the mass particle      where   = time  
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Combining Euler‟s law with Newton‟s law, the total equation of motion according 

the equilibrium of forces becomes: 

    
        

   
   

        

   
     

 
    

    
 
        

   
 
        

   
   

 
  

  
 
        

   
 
        

   
   

(6.7) 

 

  
    

  
        

        

   
   

 

(6.8) 

 

Where equation (6.8)  represents the wave equation according to Euler and is a 

classical differential equation. This equation is however only valid for a slender 

beam where: 

- The normals remain normal to the x axis when the beam is bending due to the 

wave motion. 

- No effect of the rotary inertia is taken into account.  

Considering a solution for the amplitude as a function of x and t in the form as shown 

in  (6.3): 

                  

, and substituting into (6.8) gives the homogeneous solution of the differential 

equation (6.8). Four solutions for the wave number k are found: 

       
  

  
             

For the non trivial solution: 

      
  

  
    

(6.9) 
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This means that there are four wave types possible that propagate through the 

structure simultaneously. The expression for the solution to the differential equation 

(6.8) shows these four wave types all with their own participation factor   : 

            
      

       
       

          

 

(6.10) 

 

The interpretation of the general solution is that there are two propagating wave 

motions    
        and    

        and two non propagating decaying wave 

motions    
         and    

        . The two propagating wave motions are waves 

travelling in each other‟s opposite direction. The general solution is also expressed 

as: 

                                                (6.11) 

 

Through substitution of this equation for the vertical beam displacement (6.11) into 

the force equilibrium equation (6.8), and applying the boundary conditions at the end 

of the beams, an expression for the natural frequencies and corresponding mode 

shapes is obtained. In Appendix II it is demonstrated how this is done for a free 

floating beam, representing the hull girder properties of a vessel (see Figure 27)  

 

 

Figure 27 Representation of a ship hull as a beam. The beam is supported through a distributed 

springs with stiffness properties K representing the buoyancy effect of the water and 

damping C representing hydrodynamic damping. 

K and C (distributed 

spring damper) 
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For the beam equation used for calculating the hull girder vibration response of ships 

however, the wave number k is derived in a slightly different manner in order to be 

able to accommodate for the distributed stiffness that is representing the buoyancy 

effect of the water the ship is floating in and the hydrodynamic mass (Figure 27). 

The wave equation (6.8) becomes: 

        

   
       

 

  
           

(6.12) 

 

  = distributed stiffness representing buoyancy effect of the water 

μ = continuous distributed mass of the ship per unit length. This mass includes 

hydrodynamic added mass of the water, mass of the cargo and mass of the 

ship‟s structure. 

Expression (6.9) becomes: 

          
 

  
         

(6.13) 

 

 

Through which the values for k are calculated: 

          
 

  
  

 

 
   

 
   

 
 

 

 

Although in above equations stiffness and damping effect due to hydrodynamic 

interaction with the hull girder vibrations have been included, these contributions to 

the mass elastic behaviour is considered very small and is normally omitted, which 

simplifies the model further. The effect of added mass to the natural frequencies 

corresponding 
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6.2.2 The Mode Approach 

 

In section 4.2.1, 6.2.1 and in Appendix II approaching the ship‟s structural dynamic 

behaviour through a wave approach (Euler beam theory) is discussed. Through the 

mathematical description of the boundary conditions natural frequencies and mode 

shapes are formulated. 

As described above, the beam approach to a ship is based on two major assumption 

which implies that the approach would only be valid for estimating the first two 

natural frequencies corresponding with the first two mode shapes. These assumptions 

are: 

- The equations are valid only for a slender beam which means that no shear 

deformation and rotary inertia effect has been taken into account. 

- The ship is considered a structure which a continuous mass stiffness 

distribution, 

Beam equations can still be formulated in such a way that shear deformation and 

rotary inertia effects can be taken into account (Timoshenko beam), but that 

complicates the mathematical description and has therefore not been demonstrated in 

this work. The second assumption still remains a problem for analysing higher mode 

shapes. In addition, local vibration modes start to play an important role when 

considering excitation frequencies which are in the range of most of the engine 

excitation characteristics and multiples of typical propeller blade passing 

frequencies. 

Theoretically the wave approach could still be adopted for models which are not 

continuous. One could subdivide the ship‟s structure into a limited number of 

structures that could be regarded continuous and are couples to each other. However, 

describing the boundary conditions of the individual continuous structures in coupled 

condition becomes more complicated resulting in mathematically unpractical 

formulations of the natural frequencies and corresponding mode shapes [12]. 
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A more practical way of describing the mass spring system is through the finite 

element method.  A finite element model consists of a finite number of elements 

through which the mass stiffness distribution of a structure is described. One such 

element represents the mathematical description between the deformation of such an 

element and the resulting reaction loads at the boundaries of the elements. This 

mathematical description (equation of motion) is obtained through substituting a 

number of predefined deformation shapes (mode shapes) into a suitable formulation 

of the equilibrium relations.  

Important to note is that the equilibrium relations used in the finite element 

description of an element are the same as those used for the beam theory where the 

wave approach has been used. However, the difference is that the finite element 

approach uses a finite number of predefined mode shapes relating the deformation of 

the element to the translations and rotations of the elements boundaries. The form of 

this relation is formulated as a polynomial: 

               
      

      (6.14) 

 

Where      is the displacement of the element at coordinate x 

   
      is the contribution to the element displacement distribution on the x-axis  

from mode shape n where        is the mode shape and    the modal coordinate of 

the n
th

  mode shape. The number of mode shapes through which the deformation of 

the element can be described depends on the number of degrees of freedom of the 

element. A beam for instance with two nodes (one at each end) has four degrees of 

freedom (rotation and translation of end p and rotation and translation of end q ). 

Therefore the displacement function can be described as a superposition of 4 mode 

shapes.   

6.3 The Principles of Finite Element Modelling 

 

As described in 6.2.2 “The Mode Approach” the application of a wave approach to 

ship structural vibration modelling is not practical. The beam theory is applied for 

estimating the natural frequencies and response of low mode number bending mode 
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shapes of the ship hull. However, the frequency range within which powerful tonal 

excitation frequency components exist coming from propellers and diesel engines 

exceed the frequency range where typically the first four hull bending mode shape‟s 

natural frequencies are to be found. Higher order mode shapes become important, for 

which a more precise description of the ship‟s structural geometry is required. 

Although through a wave approach, theoretically, the response behaviour of any 

structure could still be obtained, but due to the complex nature of the structure, this 

approach is not very practical. 

Therefore, finite element modelling is in this work considered the most practical 

approach to modelling structural vibrations of a ship‟s structure such as the aft ship 

of the LNG carrier which is used as a study object in this work. As explained above 

in section 6.2.2 “The Mode Approach”, with a finite element model the distribution 

of stiffness and mass of a structure is described through a series of discreet masses 

and spring, i.e., a finite number of elements. When considering describing a ship‟s 

structure with a finite element model, the two most commonly used element types 

are beam elements (for stiffeners) and plate elements (for the hull plating).  

The displacement of the nodes of the elements is calculated through the equations of 

motion formulated for each degree of freedom for each node an element consists of. 

A beam element, as used in the case study for this work, consists of two nodes (one 

at each end) with each 6 degrees of freedom (along the x,y and z axis and rotation 

about x, y and z axis). The square plate elements used in this this work‟s case study 

consist four nodes (one on each corner) with each 6 degrees of freedom (along the 

x,y and z axis and rotation about x, y and z axis).  

The equations of motion for each degree of freedom are based on the formulation of 

the equilibrium between external forces and internal forces. The external forces are 

the excitation forces acting on the nodes, and the internal forces are the reaction 

forces on the nodes resulting from the deformation of the element (strain forces) and 

the acceleration of the elements mass (inertia forces).  

This equilibrium is described according to d‟ Alembert‟s principle in the form 
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             (6.15) 

 

where       are the mass, damping, and stiffness matrices and F is the excitation 

force vector. 

Defining the equation of motion lays in the formulating the mass, damping and 

stiffness matrix (     ) in such a way that they represent accurately enough the 

physical relation between the alternating displacements (inducing element strain 

forces on the nodes), acceleration (inducing inertia forces on the nodes) and velocity 

(inducing damping forces on the nodes), and the resulting reaction forces in the 

nodes. 

Through applying the principle of virtual work, the Lagrange equation has been 

formulated, which is in fact a convenient reformulation of Hamilton‟s principle, 

particularly useful for obtaining equations of motion for continuous structures 

subjected to alternating dynamic loads.  With the Lagrange equation the equation of 

motion is expressed in quantities of energy: 

 

 

  
 
  

   
  

  

  
 
  

   
   

 

(6.16) 

 

 

Where: 

 

  = the kinetic energy  

 =  is potential energy (in our case strain energy) 

D is the dissipation function =  
 

 
     

  is the displacement 

   is velocity  

  = damping factor 
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In order to obtain the mass matrix and stiffness matrix through the Lagrange 

equation, an expression is required for the relation between nodal displacement of an 

element, kinetic energy of the elements, and strain energy of the element. These 

relations are expressed through the energy expressions of the element.  

An important aspect of the formulation of the energy expression is the formulation of 

the displacement function which needs to be substituted into the energy expression. 

As described above, the formulation of the equations of motion which finite element 

modelling is based on a modal approach, i.e. the displacement function is expressed 

through a polynomial series (6.14) which is in fact a superposition of assumed shapes 

of deformation or mode shapes.   

The two most used types of elements for the simulation of the structural response of 

a ship‟s structure are the plate elements and the beam element. Appendix III and 

Appendix IV show how the stiffness and mass matrices are composed for the two 

node beam element and the four node plate element. These are both the types of 

elements selected for modelling the aft ship of the LNG carrier presented in the case 

study of this work. 

6.4 Solving the Equations of Motion 

 

From the stiffness mass and damping matrices of the elements, the stiffness  , mass 

  and damping matrix   of the total structure is composed. Through these matrices 

the equation of motion is formulated: 

              (6.17) 

 

Where 

 ,   , and    are the vectors representing the displacement, velocity and acceleration 

of a nodal degree of freedom. 

Solving the equations of motion can be done in time domain, or in frequency 

domain. The calculation of the displacement vector in time domain relies on 
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numerical integration techniques and requires solving the set of equations of motion 

for every time step dt.  

Vibration problems however are in most cases solved in frequency domain. The 

excitation force is assumed to be of a harmonic nature and is described through a 

superposition of harmonic components written in the form: 

                    

 

 

 

(6.18) 

 

Where: 

   = force amplitude of harmonic n 

   = frequency of harmonic n in rad/s 

   = phase angles for harmonic n in radians 

  = the number of relevant tonal harmonic components through which the 

excitation force      is described 

  

As most of the excitation sources are of a harmonic nature, the harmonic approach to 

calculating the response is very appropriate. The focus of this work will therefore be 

on harmonic analysis (steady state).      

As the excitation is described as a superposition of harmonic components (equation 

(6.18)), the response displacement of the structure is also described as a 

superposition of responses calculated for each of these harmonic excitation 

components: 

                      

 

 

 

                      = response deflection to the nth harmonic 

                         = response velocity to the nth harmonic. 

                          = response acceleration to the nth harmonic. 

 

 

(6.19) 

 

Where 
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    the amplitude displacement vector for harmonic n.   

    is response phase angle for harmonic n.  

  = frequency corresponding with harmonic n in rad/sec 

 

Considering the calculation of the response to a single frequency n, the general 

complex notation of the equations of motion is: 

                (6.20) 

 

Where              is also referred to as the dynamic stiffness matrix 

In this work, two methods of calculating the response of a structure are discussed:  

- Full solution method by directly solving                  

- Mode superposition method, only taking the response contribution of a 

limited number of mode shapes into account. 

   

6.4.1 Full Analysis: Row Reduction. 

 

The most direct way of solving the set of equations of motion shown in equation 

(6.20) is through solving the equations of motion directly. In the finite element 

method used in this work (ANSYS), equation (6.20) is solved through the so called 

sparse solver which applies the row reduction technique, as demonstrated in 

Appendix VI. In this appendix also the number of required floating point operations 

is estimated required for each step of the row reduction technique.   

The first step in obtaining the solution of equation (6.20)  is the factorisation of the 

sparse dynamic stiffness matrix into a lower triangular matrix. This factorisation is 

characterised by two distinct phases: the forward phase (or forward substitution) of 

row reduction and the backward phase (backward substitution) of row reduction. The 

forward phase is the stage in the factorisation where elementary row operations are 

performed to transform the sparse dynamic matrix in a triangular matrix. The 

backward phase is the stage where through row operations the above obtained 
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triangular matrix is reduced. The pivots are first all transformed into 1. From there it 

easy to transform all numbers above the pivots into zeros with reduces the size of the 

matrix. From the thus obtained triangular reduced matrix the results are very easy to 

obtain starting from the bottom row working upwards. 

Appendix VI demonstrates how the system matrix is factorised considering a mass 

spring system consisting of four masses and of 200 kg and four springs of 4e6 N/m 

as shown in Figure 28. All masses have only one degree of freedom in horizontal 

direction and no damping assumed to be present. Consider the following stiffness 

matrix   , mass matrix   and the excitation load vector   :  

   

         
            
            
         

  

   

      
      
      
      

  

   

  
 
 
 

  

  

Figure 28 

 

Mass spring system 

Consider the excitation frequency to be 10 Hz: 

        
   

 
  = (10Hz) 

6.4.2 Mode Superposition 

 

The response of a structure can be described as a superposition of a set of mode 

shapes with their modal coordinates: 
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(6.21) 

 

Where: 

   to    are the modal coordinates (participation factors) corresponding to 

mode shapes    to    

 
 
 
  is the total displacement vector (the physical coordinates). 

Calculating the response through mode superposition reduces the required analysis 

time (CP time), as only the mode shapes with corresponding natural frequencies and 

within a certain bandwidth of the excitation frequencies are calculated and used. This 

approach is justifiable considering that contributions from mode shapes decrease the 

further the corresponding natural frequency is from the excitation frequencies. 

Usually the first set of modes are selected of which the natural frequencies are within 

a bandwidth between 0 and       (according to Rubin‟s principle [26]), where    is 

the frequency for which response calculations are required.  

The first step in obtaining results through mode superposition is the calculation of 

natural frequencies and mode shapes. These natural frequencies and mode shapes are 

obtained, starting with the formulation of the natural behaviour of a structure, i.e., the 

behaviour of the structure with no external loads acting on it.  

As damping factors are usually low for steel structures, for simplification of the 

calculation procedure, usually un-damped natural frequencies and mode shapes are 

used. This means that the equation of motion (6.20) is written as follows: 

             

          

 

(6.22) 

 

Through formulating the determinant of         and stating that the determinant 

should be zero, the non trivial solutions for    are found. Through the square root of 

the thus obtained values for   , the natural frequencies are found.  A number of 
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values for    is found equal to the number of rows or the number of columns the 

matrix        , consists of, i.e. equal to the number of degrees of freedom the 

theoretical structure has been given through the finite element formulation.  

Through calculation of the eigenvectors of         corresponding with the above 

calculated values for   , the theoretical mode shapes are found corresponding with 

the calculated eigenvalues (natural frequencies)   . 

Through the mode shapes obtained, the matrix   is formulated:  

   
       
    

  

This matrix is used as the basis for reducing the full stiffness, mass and damping 

matrices, and excitation force vector ( ,  ,   and  ) to the reduced stiffness, mass 

and damping matrices, and excitation force vector (  ,   ,    and   ). These reduced 

matrices are calculated as follows: 

        (6.23) 

         

         

        

Through these reduced matrices a reduced set of equations of motion is formulated 

based on the modal coordinates, instead of the physical coordinates (equation (6.42) 

and (6.43)). Through this equation of motion the modal coordinates   are calculated 

and expanded into the physical coordinates according to equation (6.21) 

Substituting  equation (6.23)  into (6.20) and using the relation of equations (6.19) , 

we can write: 

                        

                           (6.24) 

 

                    

                    

(6.25) 
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In Appendix XV “Steps and Estimated Number of Matrix Operation Mode 

Superposition” the number of floating point operations required for each step of the 

modal reduction technique is presented. The number of steps required for solving 

equation (6.25) in order to obtain the modal coordinate vector   are explained in 

Appendix VI “Sparse Matrix Solver: Row Reduction Technique”. 

Further simplification of the solution of equation (6.43) is obtained by normalising 

the eigenvectors    to the mass matrix. This means that 

            

And by using the relation  

  

  
   

Where   is a diagonal matrix with the squared natural frequencies   
  on the main 

diagonal and the rest of the matrix is zero. 

                       
  

  
   

  

  
               

 

                   (6.26) 

 

For an individual modal coordinate corresponding with mode number n we can 

write: 

   
  

  

       
          

 

(6.27) 

 

 

6.4.3 Mode Superposition with Residual Compensation 

 

Results obtained through modal reduction can be improved by including the static 

contributions from the omitted modes. Calculating the static contribution from all 

modes is simply done by solving the following relation [22, 39] 



89 

 

            

             (6.28) 

 

Where 

  = the stiffness matrix of the analysed structure 

        = the static displacement vector 

 = the excitation force 

   = the flexibility matrix     

Through subtracting the static contributions of the retained modes from the static 

contribution from all modes (expressed through equation (6.28) the static 

contribution of the omitted modes is obtained.  

The static contribution of the retained modes is the response of these modes at 0 rad/s 

frequency. Considering equation (6.26) and setting ω to 0 gives:  

         

(6.29) 

 

Where 

   = modal coordinates expressing the static contribution from the retained 

mode shapes 

  = reduced force vector     

Residual compensation is therefore formulated as: 

                      

(6.30) 

 

                          

(6.31) 

 

 

The displacement vector obtained through modal expansion including residual 

flexibility is written as: 

 

                  (6.32) 
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Reformulating equation (6.29) gives 

                            (6.33) 

Where: 

           
 
  is the residual flexibility matrix      

The inverse of the stiffness matrix     is in fact the flexibility matrix   . The 

residual flexibility is written as: 

 

               (6.34) 

Residual flexibility can also be calculated for free floating, unconstrained structures. 

As the calculation of the residual compensation requires inverting the stiffness 

matrix, the residual compensation for free floating structures cannot be obtained 

directly through equation (6.38) as the stiffness matrix is singular. In Appendix V the 

formulation of      for free floating structures is given. 

6.5 Component Mode Synthesis (CMS) 

As mentioned in the critical review (section 4.2.6 “Component Mode Synthesis 

Techniques”) dynamic sub structuring has some very attractive advantages for 

modelling marine structures‟ vibratory behaviour. Assembled dynamic behaviour is 

described through the modal properties of individual uncoupled sections of the total 

structure is subdivided in.  Different mathematical methods have been developed to 

describe the interaction between different structures. In this section the principles of 

the original method presented by Craig an Bampton [34] are described together with 

some variations of this method proposed by H. MacNeal and Rubin [26, 35].  

6.5.1 Fixed Interface CMS: the Craig-Bampton Method 

The earliest developed method of dynamic sub structuring is the Craig-Bampton 

method which has been developed in the 1960ties [34, 37, 38]. The Craig-Bampton 

method is based formulating the dynamic behaviour of a subsystem as a result of two 

force vectors. One force vector is the force vector representing the external excitation 
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force acting on the sub structure (propeller or machinery excitation). This represents 

the dynamic behaviour of the uncoupled substructure. The other force vector 

represents the forces on the nodes that are shared with other substructures and are a 

result of the dynamic interaction between the sub structures. The latter force vector is 

also very appropriately called the interface force vector. The equation of motion for 

one coupled substructure is written as: 

              (6.35) 

 

Where 

  = Mass matrix of the substructure 

   = second derivative of the displacement vector (acceleration) 

  = stiffness matrix of the subsystem 

  = displacement vector 

   = external excitation force (propeller or machinery excitation) 

   = forces acting on the interface between substructures resulting from the 

dynamic interaction. 

 

By forcing the geometrical compatibility relations on the equations of motion, the 

reduced mass and stiffness matrices of the total assembled system are found through 

which total assembled natural frequencies and mode shapes are calculated and forced 

vibration calculations can be performed. 

6.5.1.1 The Formulation of the Reduction Basis 

Reducing calculation time through CMS is based on the application of modal 

reduction for the description of the mass and stiffness properties of the uncoupled 

individual substructures. The reduction basis formulated for the Craig-Bampton 

method consists of elastic modes and so called constraint modes. 

Elastic and Rigid Body Modes 

With fixed interface CMS the elastic modes are the normal modes of an uncoupled 

individual substructure with the interface or boundary nodes (where the substructure 

in connected to other substructures) constrained. Usually these elastic modes and 
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natural frequencies are calculated through finite element models. Modes shapes and 

natural frequencies are obtained through solving the eigenvalue problem formulated 

through the equations of motion of the uncoupled individual substructures (with 

fixed interfaces) with no external forces acting on it:  

     
        

 

(6.36) 

 

Where 

  = Subsystem‟s stiffness matrix with the interface boundaries constrained 

 = Subsystem‟s mass matrix with the interface boundaries constrained 

  
  = the square of the natural frequency of mode number    [    ] 

   = normal mode shape corresponding with mode number     

 

The eigenvalues represent the natural frequencies and the corresponding eigenvectors 

represent the corresponding mode shapes 

Constraint Modes (Static Modes) 

When two substructures are coupled to each other through their interface nodes, 

these initially constrained interface nodes will perform an alternating displacement as 

a result of the dynamic interaction between the two substructures. Through the so 

called constraint modes or static modes, the alternating displacement at the interface 

boundaries is described. Through the constraint modes the relation between a static 

displacement distribution along the interfaces and the resulting static displacement of 

the interior nodes of the substructure is expressed. This expression is obtained 

through the so called Guyan reduction technique [42]. 

 The first step in obtaining the constraint modes is rearranging the stiffness matrix in 

such a way that the reaction force at the interface nodes of the substructure is 

separated from the external force acting on the other nodes of the substructure 

(excitation force).   

Therefore the stiffness matrix of an individual substructure is partitioned as follows: 
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(6.37) 

 

Where 

   = Reaction forces acting on the boundary of the substructure resulting from 

the dynamic interaction between this substructure and the adjacent 

substructures (also referred to as interface forces). 

   = External excitation force vector. 

    ,        ,     = the four subsections of the substructure‟s stiffness matrix 

resulting from grouping the interface node forces. 

   physical displacement vector interface nodes (at the nodes coupling the 

subsystem to the rest of the total structure). These interface nodes are also 

referred to as master nodes. 

    physical static displacement vector of the interior nodes (displacement 

vector representing the displacement of the rest of the substructure). The 

interior nodes are also referred to as slave nodes. 

 

In order obtain the constraint modes,     is set to 0 as this force is related to the 

normal mode response. An expression is obtained of the relation between the 

displacement at the interface nodes and the resulting static displacement of the 

interior nodes: 

 

                        

 

(6.38) 

 

       
 

   
   

 
             

               

 

(6.39) 

 

Where 

     = the complete static displacement vector containing both interface and internal 

degrees of freedom displacements 
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   = the constraint mode matrix =  
 

             
  

Also, 

    
 
     

 

Where     are the internal degrees of freedom (slave nodes) of the constraint 

modes 

(6.40) 

 

6.5.1.2 Reducing Stiffness and Mass Matrices 

The reduction basis used for the Craig-Bampton technique is obtained through the 

combination of elastic modes and constraint modes. The response of one substructure 

is written as:  

 
  
 

  
    

  
  
    

  
  
 

  
  (6.41) 

 

   
  
  
    

  (6.42) 

 

 

Where:  

  
   are the physical coordinates (displacements) at the interface degrees of 

freedom of subsystem A. 

  
   are the physical coordinates (displacements) at the internal degrees of 

freedom of subsystem A. 

  
   is the constraint mode matrix of substructure A calculated according to 

equation (6.40)                   . 

   is the normal mode matrix of the uncoupled substructure calculated 

according to equation (6.36). 

   are the modal coordinates of the normal modes of the uncoupled 

substructure A.  

  is the reduction basis 
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For two systems together the equations of motion are written as: 

 
   
   

 
   

 
   
   
 
   

  
   
   

 
   

 
  
  
 
   

  
       
       

 
   

 

Where: 

(6.43) 

 

   and    are the mass matrices of substructure A and B respectively 

   and    are the stiffness matrices of substructure A and B respectively 

    and     are the external excitation forces acting on substructure A and B 

respectively. 

    and     are the interface forces acting on substructure A and B 

respectively as a result of the dynamic interaction between substructure A and 

B. 

    and     are physical coordinates presenting the accelerations of the degrees 

of freedom of substructure A and B respectively. 

 

 

 

The deflection vector   can be written according to equation (6.41) as: 

 

      
  
 

  
    

  
  
    

  
  
 

  
   

 

For the total deflection vector for substructure A and B: 

 

 
  
  
  

 
 
 
 
 
  
 

  
 

  
 

  
  
 
 
 
 

  

    
  
      
    
    

    

 

 
 
 
 
  
 

  
  
 

   
 
 
 

 

 

(6.44) 

 

The reduction basis R of substructure A and B together has become: 
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(6.45) 

 

 

 

Substitution of (6.44) into (6.43) and noting that according to (6.37) 

 
   
   

  

 
 
 
 
 
  
    

  

  
    

   

 
  
    

  

  
    

   
 
 
 
 

 

 

(6.46) 

 

and therefore 

 
   
   

  

 
 
 
 
 
  
    

  

  
    

   

 
  
    

  

  
    

   
 
 
 
 

 

 

(6.47) 

 

 

And pre-multiplying with    gives the reduced equation of motion for the coupled 

substructures A and B: 

 

  

 
 
 
 
 
  
    

  

  
    

   

 
  
    

  

  
    

   
 
 
 
 

 

 
 
 
 
   
 

   
   
 

    
 
 
 

  

   

 
 
 
 
 
  
    

  

  
    

   

 
  
    

  

  
    

   
 
 
 
 

 

 
 
 
 
  
 

  
  
 

   
 
 
 

    

   
   
   
   

  

 

(6.48) 

 

Where  

  

 
 
 
 
 
  
    

  

  
    

   

 
  
    

  

  
    

   
 
 
 
 

     

(6.49) 
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Is the reduced mass matrix 

  

 
 
 
 
 
  
    

  

  
    

   

 
  
    

  

  
    

   
 
 
 
 

     

(6.50) 

 

Is the reduced stiffness matrix 

6.5.1.3 Describing the Interaction between Substructures 

In the previous section (section 6.5.1) it has been demonstrated how the dynamic 

behaviour is represented through the sum of limited number of retained modes and 

the sum of a number of constraint modes that is always equal to the number of 

interface degrees of freedom. However, the sets of equations of motions for 

subsystem A and subsystem B are still independent from each other considering the 

upper lower left and upper left parts of the matrices (6.49) and (6.50) are zero. 

Therefore, no coupling has been described mathematically between the two 

substructures. The mathematical dependency between the two matrices is obtained 

by forcing the compatibility relations and the equilibrium relations on the set of 

equations. 

- The compatibility relations simply state that the displacement of the interface 

of substructure A is equal to the interface displacement of the coinciding 

interface nodes of substructure B.  

  
     

  (6.51) 

 

- The local equilibrium requirements state that the connection forces at the 

interface nodes should be equal and in opposite direction so that at the 

interface nodes equilibrium of forces is obtained:  

          (6.52) 

Forcing compatibility and equilibrium can be done through the interface 

displacement approach or through the interface force approach. 
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The description of the interaction between the matrices of the uncoupled systems can 

be either obtained though primal assembly or dual assembly. 

Primal Assembly 

In the matrix shown in equation (6.48) no coupling exists between the set of 

equations related to the degrees of freedom of substructure A and substructure B. For 

the classic Craig-Bampton formulation of the compatibility and equilibrium 

relations, the primal assembly method is used. The primal assembly method is based 

on describing the assembled dynamic behaviour of the substructures through 

interface displacements through which the compatibility relations (see equation 

(6.51) ) are satisfied a priory [37] 

  
     

    (6.53) 

 

Through this mathematical relation one of the set of interface nodes is made 

redundant through which the set of equations of motions (6.48) will be reduced. 

From equation (6.48) (6.53) can be rewritten as:   

  
     

        

 
 
 
 
  
 

  
  
 

   
 
 
 

       

 
 
 
 
  
 

  
  
 

   
 
 
 

   

  
     

         

 
 
 
 
  
 

  
  
 

   
 
 
 

      

 

(6.54) 

 

  
  is in this case going to be made redundant by describing    

   as a function of  
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(6.55) 

 

In the literature the      
        

 
  matrix is referred to as the   matrix and is used 

to further reduce the stiffness matrix making one set of interface nodes redundant.  

The reduced matrix (6.48) is written as: 

   
   
   

     

   
   
 

   

       
   
   

     

  
  
 

  

      

   
   
   
   

  

For further description of the coupling between the two systems the equilibrium 

condition needs to be satisfied which is also done through satisfying the following 

relation: 

           

       

   
   
   
   

   
    
 
    

  

This brings the total equation of motion to  

          

   
   
 

   

             

  
  
 

  

         

   
   
   
   

   
    
 
    

  

(6.56) 

 

Dual Assembly 

The difference between the primal and dual assembly method is that the assembled 

dynamic behaviour is described through interface forces instead of the interface 

displacements. In other words, the full assembled equations of motion is obtained 

through inserting the equilibrium condition into the uncoupled equations of motion 

whereas with the primal assembly method the compatibility relation is added to the 
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individual  uncoupled equation of motion through which the coupling is 

mathematically obtained. With the dual assembly method the compatibility relations 

are added explicitly and with the primal assembly method the equilibrium conditions 

are added explicitly [37]. In section 6.5.2 the dual assembly technique is 

demonstrated as applied for the Rubin and MacNeal method.  

6.5.2 Free Interface: the McNeal and Rubin’s Method 

 

Calculating the assembly dynamic behaviour according to the Craig-Bampton 

method described above uses the normal elastic modes of the substructures with 

constrained interface boundaries combined with the static (constraint) modes for the 

description of the vibratory displacement distribution of the substructure. Rubin and 

McNeal have developed a sub structuring method using normal modes calculated for 

the subsystem with free interface boundaries. Also residual attachment modes are 

used. The advantages of this method are (see section 4.2.6.2 “Fixed and Free 

Interface CMS”)  

- Expansion of results requires less floating point operations as expansion of 

only elastic modes gives an accurately enough representation of the dynamic 

response of the structure. 

- Substructures dynamic behaviour with free interface boundaries reflects the 

actual ship sections‟ structural behaviour a lot better, as interface boundaries 

of a stored section are seldom fixed. This makes it easier to correlate modal 

information of the mathematical substructure to the modal information of the 

physical substructure obtained through modal measurements.  

6.5.2.1 McNeal’s Method 

The Rubin and McNeal Method  start with a dual formulation of the coupled 

substructures analogue to (6.35)  [35-37] 

                (6.57) 

 

Where: 

    = external excitation force  
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   = forces acting on the interface boundaries resulting from the dynamic 

interaction (also referred to as interface forces) 

 ,  , and   are the mass, stiffness and damping matrices respectively 

 

With both the Rubin and McNeal‟s method three types of modes are considered for 

the description of the displacement field: 

- Normal modes (with free (unconstrained) interfaces) 

- Residual flexibility attachment modes (static modes) 

- Rigid body modes (if structure is not constrained, i.e. free floating) 

The displacement field   of a substructure is therefore described as: 

                   (6.58) 

 

Where: 

   and    are the modal coordinates of the rigid body modes and the retained 

elastic modes  respectively. The retained normal modes are calculated with free 

interface boundaries  

       is the static residual response of the flexible system to the forces 

occurring in the substructure resulting from the interaction with the other 

substructure. These are also referred to as the residual flexibility attachment 

modes.    is a force vector presenting the interface forces for the interface 

degrees of freedom and 0 for the internal degrees of freedom. 

     is the residual flexibility matrix representing the boundary residual 

flexibility modes. The residual flexibility matrix is expressed through the 

inverse of the stiffness matrix corrected for the static contributions from the 

retained flexible modes. The reason for this correction is that the static 

response of the retained elastic modes is already included in the contribution 

from the elastic modes. 
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Following section  6.4.3 we write for the residual flexibility matrix: 

                (6.59) 

 

Where: 

    is the inverse of the substructure‟s stiffness matrix.  

  is the retained elastic mode matrix  

  is a diagonal matrix with the squared natural frequencies   
  on the main 

diagonal. 

Selecting the columns of the      matrix related to the interface degrees of freedom 

gives the       matrix. 

 

Through equation (6.58) an expression for the interface displacements is obtained 

and serves as the reduction basis: 

                              (6.60) 

 

Where: 

   = interface displacement vector 

    and     are the elastic and rigid mode shape vectors containing only the 

interface (boundary) degrees of freedom. 

          is the interface force vector containing only the interface degrees of 

freedom forces.  

Further rearranging equation (6.58) gives an expression of the interface forces: 

     
                             (6.61) 

 

Consider          and         . Substituting (6.61)  into (6.57) gives: 

                 
           

(6.62) 

 

Where    is the set of retained normal modes (rigid and elastic modes) representing 

only the boundary (interface) degrees of freedom. 
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Multiplying (6.62) with   gives 

                         
           

Enables the equation of motion to be further simplified to 

                 
                

Considering       , i.e. the mode shapes are normalised to the mass matrix 

 

 
  
  

  
  
   
   

  
      

            
      

  

      
         

    
 
  
   

    
  

  

 

(6.63) 

 

6.5.2.2 Rubin’s Method 

Rubin‟s method has been developed to improve the Mac Neal method. With the Mac 

Neal‟s method the stiffness matrix and mass matrix are not reduced with the same 

basis.  The difference between the reduction basis of the stiffness matrix and the 

mass matrix is that with the mass matrix, unlike with the stiffness matrix, no 

coupling is formulated between the interface deformations and the internal 

deformations and displacement due to the subsystem‟s flexible and rigid body 

modes. Rubin reformats the reduction basis used by Mac Neal for the stiffness 

matrix, and uses this reformatted basis for the reduction of both the stiffness and the 

mass matrix. This increases the accuracy of the calculation results, particularly at 

higher frequencies [37]. The free interface CMS applied in ANSYS is based on 

Rubin‟s method. In order to be able to compare different methods later on in this 

work (section 8.7), the Rubin method is described through performing 5 steps as 

listed in Appendix XVI.  

The reduction basis formulated in (6.61) is transformed from a formulation based on 

interface forces to a formulation based on interface displacements. The reduction 

basis is a combination of normal modes and constraint modes. The first step 

distinguished in this work (step 1) is the calculation of the constraint modes through 
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which the relation between static interface displacement and the displacement and 

the internal displacement of the nodes is described (see equations (6.40), (6.39) and 

(6.38)): 

                (6.64) 

 

The total displacement field is described as: 

                                                          (6.65) 

 

Where: 

   = vector representing the internal (slave) degrees of freedom displacements 

    = constraint modes internal degrees of freedom as shown in equation (6.40)  

    physical displacement vector interface point (at the points coupling the 

subsystem to the rest of the total structure). 

    = elastic mode shapes displacements for the interface degrees of freedom 

    = rigid body mode shape displacements for the interface degrees of freedom 

   and     are the elastic modal coordinates and the rigid modal coordinates 

 

Where              and              represent the contribution of the elastic and 

rigid body modes to the static displacement of the internal (slave) nodes. The reason 

why these two terms are subtracted from the equation of displacement is to 

compensate for the fact that these factors are already included in             , as       

represents the displacement of the interface nodes as a result of all retained normal, 

rigid and static modes. The static (internal) residual deformation induced by interface 

line displacement, representing the compensation of the contributions from the 

omitted normal modes, should be written as: 

                                   

Considering       is expressed through               (see equation (6.37), (6.38), 

(6.39) and (6.40)), equation (6.65) can be written as: 
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(6.66) 

 

Where 

   ,        ,     = the four sub sections of the substructure‟s stiffness matrix 

resulting from grouping the interface node forces as shown in equation (6.37). 

    physical displacement vector interface point (at the points coupling the 

subsystem to the rest of the total structure). 

   and     are the elastic modal coordinates and the rigid modal coordinates 

respectively 

   physical displacement vector of the internal (slave) degrees of freedom.  

    and     are the normal elastic mode shapes displacements for the interface 

degrees of freedom and for the internal (slave) degrees of freedom respectively 

    and     are rigid body mode shape displacements for the interface degrees 

of freedom and for the internal (slave) degrees of freedom respectively 

The reduction matrix   can be deduced through: 

 
  

   
    

  
  
  
   

   
                                                           

  

  
  
   

  

So   becomes: 

   
   

                                                           
  

 

(6.67) 

 

The calculation of   forms the second step of the Rubin CMS method process as 

described in Appendix XV. Calculating the reduced stiffness and mass matrices is 

done in step 3 (see again Appendix XV): 

        

        

(6.68) 
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As demonstrated above, the displacement of the interface line is described taking 

residual compensation into account through expressing the displacement at the 

interface line as shown in equation (6.66). However, the static response of the 

internal nodes to the interface displacement is expressed as the sum of: 

- The static response of the constraint modes to the total interface 

displacement: 

                                                             

- The response of the normal modes  

                

This means that in the response calculation the contribution from the retained normal 

modes to the static deflection of all nodes of the substructures has been taken into 

account twice: first through the calculation of the response of the constraint modes, 

and the second time through the response of the normal modes. An improved version 

of the Rubin‟s method has been formulated correcting for that, which is the Rubin‟s 

method with residual compensation.    

If residual compensation is taken into account, the displacement is expressed through 

the normal modes, rigid modes and residual flexibility attachment modes. According 

to equation (6.59) the residual flexibility attachment modes      are expressed 

according to: 

                

Where        represents the contribution to the static deformation from the normal 

modes, which are already accounted for through the expression                 

 

Dividing      is partitions: 

 

 
  
  
   

    
      

  

    
      

    
  
 
  

(6.69) 

 

According to the upper line of the matrix (6.69) we can express the interface force    

as a function of     : 
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(6.70) 

 

Substituting (6.70) into the lower line of matrix (6.69) an alternative (better) 

expression of    as a function of interface displacements is obtained: 

          
        

   
  
     

(6.71) 

 

 This expression is a more accurate expression of the residual flexibility modes, as 

this expression includes correction for the fact that the static response from the 

retained modes is already represented in the response of the normal flexibility modes. 

Substituting       in equation (6.65) for the expression in (6.71) gives: 

         
        

               
        

       
  
         

        
       

  
    

   
 
      

 
    

Resulting in the reduction matrix written as: 

   
   

           
        

   
  
                

        
   

  
          

        
   

    

(6.72) 

In Appendix XVI “Steps and Estimated Number of Matrix Operation Classic Rubin‟s 

Method” the expression and description of the matrix operations for each step of the 

classic Rubin‟s method (without residual flexibility modes) is listed together with an 

expression of the number of floating point operations required for each step. (see also 

Appendix XIV “Matrix-Vector Calculus and Number of Required Floating Point 

Operations”). The Rubin‟s method without residual compensation is the method used 

in this work with the calculation of response according to the free interface CMS. 

6.5.3 Reducing the Interface Degrees of Freedom 

As discussed in the critical review (section 4) through the reduction process adopted 

in all classical CMS modelling techniques discussed above, high density matrices are 
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produced. With high numbers of connection nodes, which typically occurs with ship 

structures, the numbers of non-zeros in the total assembled CMS matrices may 

exceed the non-zero entries of the dynamic stiffness matrix generated following the 

full harmonic analysis. Hence calculation time required for calculating the dynamic 

structural behaviour according to classical CMS methods is higher as well, compared 

to the traditional full harmonic analysis. 

In an attempt to overcome this problem, techniques for reducing the interface have 

been developed.  

6.5.3.1 Introducing Interface Modes 

As explained above, the problem with classical Component Mode Synthesis (CMS) 

is that static contribution from the displacement of the interface lines is expressed 

through the Guyan reduction technique (static condensation) through which the 

internal nodal displacement is expressed through a number of static modes equal to 

the number of degrees at the interfaces. In order to reduce the number of modes 

through which internal static displacement can be described, a procedure for an 

improved reduced system (IRS) is proposed in 1989 by o‟ Callanhan [42].  

The technique starts with producing a reduced mass and stiffness matrix of a 

substructure, which is obtained through projecting the full stiffness and mass 

matrices onto the Guyan reduction basis. The Guyan reduction basis is derived from 

the description of the static displacement of all the degrees of freedom of a 

substructure, obtained through static condensation:  

   
    

 
  
      

      
     

   

    
 
  
    

Where 

  
  = static displacement of all the degrees of freedom of substructure A 

   
   = constraint modes representing all degrees of freedom of a substructure 
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   = internal degrees of freedom of the constraint modes according to equation 

(6.37) to equation (6.42) =   
                 

  = Guyan reduction basis 

 

 

Reduced stiffness and mass matrices    and    become: 

     
 
    and      

 
    (6.73) 

 

From these reduced matrices the eigenvalue problem is formulated according to: 

                          
  (6.74) 

 

Where            is the matrix containing the interface modes. 

From the eigenvalue problem shown in equation (6.74) eigenvectors are calculated 

representing mode shapes through which the static deformation of the entire 

substructure (interface modes), as a result of interface displacement, is expressed. 

Corresponding natural frequencies are also calculated. The number of interface mode 

retained, is based on the proximity of the natural frequencies corresponding with the 

interface modes, to the excitation frequencies.       

Tran [41] suggests than selecting the number of eigenvectors required for an 

accurately enough representation of the interface degrees of freedom should be based 

on applying a cut-out frequency of 3.5 times the maximum frequency analysed. 

These findings are based on simulation result produced for a 12 bladed disc where 

each bladed was modelled as a substructure. For the selection of the normal modes of 

the substructures, he applied a cut-out frequency of 1.5 times the maximum 

frequency of interest, according to Rubin‟s criterion.  

The retained eigenvectors are represented through the            matrix. The 

interface displacement is expressed through (see (6.39): 
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(6.75) 

 

Where: 

           is the matrix containing the set of retained eigenvectors representing 

the interface displacement 

   is the vector containing the interface modal participation factors. 

    is the internal static displacement due to displacement at the interface line 

 

Considering  (6.67), the reduction basis for Rubin‟s method is written as: 

 
  

   
   

  
                                  

  
 
   

  

Which forms the reduction basis for the Rubin‟s method. Alternatively written as: 

 
  

   
   

  
                     

 
   

  
(6.76) 

 

Where 

    = constraint modes at internal degrees of freedom =               

   is the normal modes presenting only the internal (slave) degrees of freedom 

   is the normal modes presenting only the interface degrees of freedom 

  is the modal participation factors vector (modal coordinates) of the normal 

modes (rigid and elastic modes of the substructure 

The skyline of the reduction matrix  
  

                    
 is as follows: 

 

 

 

 

 
  

                    
  

 

Figure 29 Skyline of the reduction matrix used for the classic Rubin method 

 

Number of interface degrees of freedom 

Number of internal degrees of freedom 

Number of retained normal modes 
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Substituting equation (6.75) into equation (6.76) gives: 

 

 
  

   
   

               

                            
  

 
   

  
(6.77) 

 

 

Gives a new reduction basis: 

      
               

                            
  

 

Where: 

             = the interface degrees of freedom of the retained number of interface 

modes 

             = the internal degrees of freedom of the retained number of interface 

modes 

  = vector of normal modal participation factors (modal coordinates) 

   is the modal participation factors (modal coordinates) of the interface 

modes 

 

The skyline of the reduced reduction basis       
               

                            
  is as 

follows 

 

 

 

 

 

 
               

                            
   

 

Figure 30 

 

Skyline of reduced reduction matrix applying interface modes for the formulation of the 

reduction basis following Rubin’s method 

Number of interface degrees of freedom 

Number of internal degrees of freedom 

Number of retained normal modes Number of retained interface modes 
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Through which, parallel to equation (6.68), the reduced stiffness and mass matrices 

   and    are calculated: 

 

       
       

       
       

(6.78) 

 

  

6.5.3.2 Describing the Compatibility Relations 

Similar to the method described in 6.5.1.3 the compatibility relation can be written 

as: 

  
     

               
     

 
 
 
 
  
 

  
  
 

   
 
 
 

                
   

 
 
 
 
  
 

  
  
 

   
 
 
 

   

(6.79) 

Where: 

  
  and   

  are the physical displacement coordinates at the shared interface 

degrees of freedom of sub structure A and B respectively 

  
  and    

  are the interface modal participation factors (modal coordinates) of 

sub structure A and B respectively 

            
  and             

  are the retained interface modes for substructure A 

and B respectively representing only the interface degrees of freedom. 

   and     are the normal modal coordinates of sub structure A and B 

respectively 

 

  
     

               
               

   

 
 
 
 
  
 

  

  
 

   
 
 
 
      (6.80) 

 

  
  can now be made redundant by describing    

   as a function of       

Considering the upper line in the matrix of equation (6.80): 
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Multiplying with              
  

 
 gives 

             
  

 
             

     
                 

  
 
               

    

  

  
 

  

   

   
                  

  
 
             

   
  

              
  

 
               

     

  

  
 

  

   

 
 
 
 
  
 

  
  
 

   
 
 
 

                 
  

 
             

   
  

              
  

 
               

    

 

  

  
  
 

  

  

 

 (6.81) 

 

Where  is the   matrix used to connect the substructures together in a similar way as 

described in equation (6.56): 

                  
  

 
             

   
  

              
  

 
               

    

 
  

(6.82) 

 

           

   
   
 

   

             

  
  
 

  

         

   
   
   
   

   
    
 
    

  

Where    and    are the reduced mass and stiffness matrices obtained according to 

equation (6.73) to (6.78), using      as the reduction basis. 

In Appendix XVII “Steps and Estimated Number of Matrix Operations Rubin‟s 

Method using Interface Modes” the different steps are presented required for running 

an analysis according to the Rubin‟s method using interface modes. For each step an 

expression is given through which the number of real floating point operations can be 

estimated.(see also Appendix XIV “Matrix-Vector Calculus and Number of Required 

Floating Point Operations”). 
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6.6 Summary and Discussion 

In section 4 the different available, most used, state of the art structural modelling 

techniques are reviewed for their validity and practicality considering a typical diesel 

engine and propeller excitation characteristics and the nature of the geometry of 

marine structures. Through the critical review and considering the analysis results of 

measurement results, finite element based modelling approach has been recognised 

as the most suitable modelling technique. In order to reduce computation time and 

required computer memory, mode superposition and component mode synthesis have 

been considered as reduction techniques. In this section, the mathematics behind the 

simulation techniques have been presented. Through understanding each calculation 

step for each modelling technique, an expression can be formulated for the 

estimation of the required number of real floating point operations, which is a direct 

indication of the require computation time. These expressions are listed for the 

different modelling techniques in the appendices Appendix XV to Appendix XVII. 

Through understanding the mathematical steps required for solving a matrix 

according to the row reduction technique, a table of required number of floating 

point operations for each step is presented in Appendix VI. 

In the next section, a finite element model of a part of the aft ship on which 

measurements have been carried out by the author is used in order to test the 

different modelling techniques. The assessment of these techniques is based on 

accuracy, and the number of floating point operations required for generating the 

results. With the given properties of the finite element model, the number of number 

of floating points operations required for generating the solution will be calculated 

according to the findings from this section listed in Appendix XV to Appendix XVII. 

(see also Appendix XIV “Matrix-Vector Calculus and Number of Required Floating 

Point Operations”)   
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7 Modelling Vibrations of the Aft-ship of an LNG Carrier 

From the critical review and the deeper study of the mathematical principles behind 

the different structural modelling techniques, finite element modelling has been 

identified as the most appropriate modelling technique for simulating ship‟s 

structural vibrations. Study of the excitation mechanisms and measurement results 

from the field presented above suggest that the most dominant sources of excitation 

are predominately of a tonal nature, concentrated at relatively low frequencies. This 

further confirms the findings from the critical review and supports the choice of 

finite element based models as the most suitable vibration simulation technique for 

ships. 

In this section simulation results are presented performed with a finite element model 

that represents of a part of the aft ship of the LNG carrier on board which the author 

has carried out vibration and noise measurements (see section 5, Figure 8 and Figure 

31). The aims of carrying out the different simulations are: 

- Evaluating finite element modelling as a tool for simulating structural 

vibrations for a typical aft-ship of LNG and bulk carrier. The analysis results 

are evaluated through measurement results taken on board this particular 

vessel by the author (see section 5, “Measurement Results”). 

- Identify the effect of chosen boundary conditions, damping and added mass 

assumptions on the calculated vibration levels at the steering gear deck and 

mooring deck.  

- Evaluate the accuracy of the free and fixed boundary CMS techniques using 

the full FEM results as reference. 

- Compare the required computation time of the different analysis techniques. 

  In Table 2 the structure of this section is presented. 
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7.1 Vessel Properties, Measurements and Simulation Locations 

7.2 Properties of the Structural Models 

 

In this section the properties of the model 

are presented 

7.2.1The full finite element model 

Type and number of elements used and the 

boundary conditions of the model are discussed 

7.2.2The CMS Model 

In this section the way in which the structure 

has been subdivided in substructures for the 

Component mode synthesis analysis is 

discussed 

7.3 Excitation Characteristic and 

Response Calculation Method The simulation results of the propeller 

excitation characteristics are discussed. Also the 

method used in this work for obtaining the 

forced vibration response is presented. 

7.4 Comparison of Simulation Results with Measurement Results 

7.5 Sensitivity of the Model 

 

7.5.1Effect of the Boundary Conditions, 

Added Mass and Damping 

In this subsection the effect of the boundary 

conditions and assumption on added mass and 

damping on the modelling results is discussed 

7.5.2 Excitation characteristic 

7.5.3 Number and Type of Elements 

Number and type of elements used for this 

simulation are evaluated 

7.6 The Contribution from Hull Girder Modes 

7.7 Correlation of Simulation Results 

7.8. Evaluation of FE and CMS 

Performance 

7.8.1.  Accuracy of CMS results 

7.8.2.  Required CP Time for CMS 

Calculations 

7.9 Summary and Conclusion 

Table 2 

 

Structure of presentation of results 
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7.1 Vessel Properties, Measurements and Simulation Locations 

In Figure 31 the properties of the vessel are shown for which the structural response 

simulations are carried out. The finite element model represents the part of the ship‟s 

structure indicated with the red dotted line in Figure 32. The aft ship has been 

modelled up to frame 25, which is 4 frames forward from the engine room bulkhead. 

Figure 33 shows a cut-out of the model showing the locations where measurements 

were taken. For these locations the finite element harmonic analysis results are 

presented and evaluated. Simulation results of the vibrations on the mooring deck 

(locations presented in Figure 34) are also presented. 

 

 

Figure 31 Properties of the gas carrier  
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Figure 32 Part of the ship’s structure modelled. 

 

Figure 33 Locations on the steering gear deck for which simulation results are presented in this work 
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Figure 34 Locations on the mooring deck for which simulation results are presented in this work 

 

7.2 Properties of the Structural Models 

FEM software by ANSYS 13.1 has been used to generate the geometry, generate the 

mesh and calculate the structural response. Due to the size of the result files 

generated through solving the full set of equations of motion, problems occurred with 

generating a representation of the deflection shapes. A visual presentation of this 

deflection shape is important for understanding the structural mechanism s. Free 

boundary and fixed boundary component mode synthesis modelling techniques 

(CMS) have been used. Deflection shapes of the complete model are obtained by 

pasting the deflection shapes of the individual substructures together as shown in 

Appendix XI and Appendix XII. As the ship is equipped with steam turbines, only 

excitation from the propeller has been taken into account. The fluctuating pressure 

field distribution used for this simulation has been calculated for the first three blade 

passing frequencies for the FP 7 project SILENV.  

7.2.1 The full finite element model 

Figure 35 shows the full finite element model together with a part of the model 

showing in more detail the nature of the mesh used.  
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7.2.1.1 Types of elements used and size of the model 

Two types of elements have been used, shell181 elements for modelling hull and 

deck plating and BEAM188 elements for modelling stiffeners and girders.  

The shell181 is a four node plate element as described in Appendix IV and is 

therefore suitable for thin to moderately thick plates. Rotary inertia effect is taken 

into account.  

The BEAM188 element has been selected for representing the effect of the stiffeners, 

as it is recommended by ANSYS for slender to moderately stubby beams. The 

element is based on the Timoshenko beam theory and takes into account rotary 

inertia and shear deformation effects as described in Appendix III. The element also 

provides an option for restraining warping, through which a 7
th

 degree of freedom is 

added to the beams nodes. This option has not been used for this model as torsion of 

girders is not expected to play a big role in the propagation of vibrations through the 

ship. In addition, adding a 7
th

 degree of freedom for each node attached to a beam 

would increase the size of the model considerably. 

The validity of application of the beam element has been tested by calculating the 

slenderness ratio of the beam, which should be higher than 30, as recommended by 

ANSYS. 

                  
    

  
 

Where: 

   = the shear modulus 

  is beam‟s cross-sectional area 

  is the length of the beam 

  = the elasticity modulus 

  = second moment of inertia  

 

As can be seen from Figure 35, the longitudinal girders (stiffeners) are approximately 

twice as high as the veridical stiffeners. For calculating the slenderness ratio for the 
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vertical beams, the length considered is the distance between two longitudinal 

girders. For calculating the slenderness ratio for the longitudinal beams, the length 

considered is the distance between two main frames. (see Table 1 for the calculated 

slenderness ratio‟s) 

 

 

Figure 35 Complete finite element model (A) and a part of the finite element model (B) 

 

Table 1 Calculated slenderness ratio’s for the longitudinal girders and vertical girders 

 

 

 

Main frames 

B 

Longitudinal 

girders 

(beam 

elements) 

Vertical girders (beam 

elements) 
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The propeller mass has been added as two point masses attached to the stern tube.  

Each of these masses is 23 tons adding up to the total mass of the propeller of 46 

tons. The mass of the rudder has been modelled as two separate concentrated masses 

as well. The model consists of 

- 7171 key points 

- 12252 lines 

- 5132 areas  

- 69345 nodes 

- 84100 elements 

7.2.1.2 Damping and Added Mass 

A relative damping coefficient (loss number  ) of 2% has been used, a value 

typically adopted for steel structures. No extra hydro dynamic damping due to the 

water surrounding the hull has been taken into account. Nor has the effect of added 

mass of the water been taken into account. The model represents the ship‟s bare steel 

structure. 

7.2.1.3 Boundary Conditions 

Three different boundary conditions have been tested: 

- Constrained at frame 25: all degrees of freedom of the nodes on the lines 

bordering to the rest of the ship‟s structures have been constrained. 

- Constrained at frame 21: all degrees of freedom of the nodes on the lines 

bordering to the rest of the ship‟s structures have been constrained. 

- No boundary conditions: ship is free floating in space. 

For indication of the location of the different frames see Figure 36. 

For all boundary condition scenarios no stiffness effect of the buoyancy has been 

taken into account.    
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Figure 36 Frames in the model where constraints have been applied 

 

7.2.2 The CMS Model 

In Appendix IX and Table 3 the substructures are presented of which the CMS 

models used of the LNG carrier consists (see also Table 6). With the fixed CMS 

method in ANSYS the classical Craig-Bampton‟s method (see section 6.5.1) is used 

and results using free boundary CMS are obtained according to Rubin‟s method (see 

section 4.2.6.2) without residual compensation taken into account.  Table 3 the 

number of mode shapes retained for each substructure for calculating the assembled 

response is listed. This number is obtained applying a cut-out frequency of     

     following Rubin‟s Priciple [26]. This means that all modes have been retained 

of which the corresponding natural frequency are within the frequency range 

between 0 and         , where         is the maximum to frequency for which 

results are generated. As most of the vibration energy at the aft ship was found to be 

between 0 and 40 Hz according to the measurement results, the frequency range of 

the solutions is chosen to be between 0 and 40 Hz. This means that       is 60 Hz 

and all the normal modes with natural frequencies between 0 and 60 Hz have been 

retained for both the free and fixed boundary CMS models. 
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Table 3 

 

Table of properties of the substructures shown in Appendix IX. The number of retained 

mode shapes are also presented for each substructure together with the CP time required 

to calculate these mode shapes  

 

7.3 Excitation Characteristic and Response Calculation Method 

As this vessel is equipped with steam turbines, only propeller excitation has been 

taken into consideration with the calculation of the response of the ship‟s structure. 

Steam turbines generate very little vibration excitation forces and through the study 

of the vibration measurement results in section 5.1.1 (see 

Figure 9, Figure 10 and Figure 13) it has been established that the propeller is by far 

the most dominant vibration excitation source.  

Frequency Original Modified Factor of change 

1x blade freq. (kPa) = 5 Hz 3.3138 2.7591 -17 % 

2x blade freq. (kPa) = 10 Hz 1.8093 1.046 -42% 

3x blade freq. (kPa) = 15 Hz 0.3831 0.56357 +47% 
 

Table 4 

 
Maximum predicted pressure amplitude at full propeller speed and full power(75 rpm) 

In Table 4 the pressure fluctuation calculation results are presented which have been 

calculated for the propeller as installed on the LNG carrier, and as calculated for a 

propeller optimised for low vibration levels. The calculations have been carried out 
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by SSPA for the EU project SILENV as a part of research into mitigation of 

propeller induced vibrations [18, 20, 46].    

The wake distribution at the propeller disk has been estimated through CFD 

calculations. With the calculated wake distribution, blade pressure distribution has 

been calculated following the vortex lattice method. Through this method also the 

sheet cavitation volume fluctuation is calculated. The resulting effects on the 

pressure field on the hull is calculated through HULLFPP (Hull Field Point 

Potential), a postprocessor to MPUF3a that calculates the pressure field by 

calculating the field point potential induced by a propeller and solving the diffraction 

potentials on the hull [18, 46]. 

The first results (original) are for the propeller as it was mounted on the LNG carrier 

during the measurements. The second set of results is for a similar propeller designed 

for low pressure pulses. Through this alternative propeller geometry design, the 

pressure pulse reduction has been achieved through reduction of propeller tip load.  

 

 

Figure 37 

 
Visualisation of the effect of propeller blade tip unloading on the sheet cavitation area 

according to calculation results [46] 

 

Through that route the extend of sheet cavitation has been reduced (see Figure 37)  

leading to lower 1st and 2nd order blade passing frequency excitation amplitudes.  

For the simulation in this work, the excitation characteristic simulated for the original 

propeller has been used. The distributed alternating (complex) pressure over a grid of 

points on the aft ship hull plating has been produced by SSPA through their 

simulation software. These pressures have been recalculated into node forces and 
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have been adapted for the mesh of the FE model (see Figure 38) and have been 

introduces to the structural model as harmonic forces. 

 
 

Figure 38 Red vectors show the downwards pointing excitation force amplitude 

distribution as applied for the harmonic analysis of the LNG carrier. 

  

Considering the measurement results presented in section 5.1, most of the vibration 

energy was found to be concentrated between 0 to 40 Hz. Over a range between 1to 

40 Hz, harmonic analysis results have been produced with a step size of 0.5 Hz. 

Considering that the propeller has 4 blades, 0.5 Hz represents a step of 6 rpm.  

The run-up simulation has been carried out using the first blade passing frequency 

fluctuating pressure distribution calculated by SSPA. By using the same excitation 

load for each frequency step, the relevant sensitive (resonance) frequencies are 

identified.  

From a design point of view the advantage of a frequency range simulation is that 

excitation frequencies or response behaviour may be tuned in such a way that 

minimum vibration levels occur [20].  

Of particular interest for this work, simulation results over a frequency range also 

helps understanding why the modelling results may deviate from the measurement 

results, as it shows the sensitivity of the model.  

For the evaluation of the simulation results, measurement results taken at full speed 

(75 rpm propeller speed) and full power are used. Also for obtaining the simulation 

results at full power and full speed, above mentioned simulation results over the 

range from 1 to 40 Hz have been used. As the fluctuating pressure field simulation 
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results calculated for the (first) blade passing frequency have been used for these 

simulations, the thus obtained response amplitudes at the multiples of the blade rate 

frequency higher than 1, need to be corrected. As vibrations amplitudes are assumed 

to be low enough that the structure behaves linearly (i.e, the relation between 

excitation and response is linear), the response is corrected by multiplication with the 

ration between the ratio: 

                                                     

                                                             
   

These maximum predicted pressure amplitudes are presented in Table 4. This means 

that the following ratios are obtained for the original propeller (as was mounted 

during the trials): 

Ratio for the 2
nd

 order blade passing frequency: 

      

      
      

Ratio for the 3
rd

 order blade passing frequency: 

      

      
      

Important to note is that through this approach the higher blade passing order 

pressure fields are obtained by only adjusting the pressure amplitudes, and not the 

relative spatial distribution of pressure fluctuation over the aft ship.  

As can be seen from Table 4, no alternating pressure field harmonic components 

higher than 3 times the blade passing frequency are presented. This is because (as 

can also been seen from Table 4) the amplitudes of blade passing frequency related 

pressure pulses decreases rapidly with increasing order number. Producing harmonic 

amplitudes at order higher than three did not seem relevant. However, measurement 

results show that the 4
th

 and 5
th

 order blade passing harmonic frequencies are very 

dominant in the response. In order to estimate the response amplitudes obtained 

through simulation, the excitation amplitude at the 4
th

 and 5
th

 order are assumed to be 
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equal to the amplitudes given for the 3
rd

 blade passing harmonic. Figure 39 visually 

explains how the response amplitudes at the different blade passing frequency 

harmonics have been obtained. 

 

Figure 39 Example of how response amplitudes at blade passing frequencies have been obtained. 

Graph B is a zoomed in version of graph A. 

A 

B C 
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7.4 Comparison of Simulation Results with Measurement Results 

 

Referring to Figure 36 simulation results have been produced applying the following 

boundary conditions: 

- Constrained at frame 25: all degrees of freedom of the nodes on the lines 

bordering to the rest of the ship‟s structures have been constrained. 

- Constrained at frame 21: all degrees of freedom of the nodes on the lines 

bordering to the rest of the ship‟s structures have been constrained. 

- No boundary conditions: ship is free floating in space. 

Response amplitudes have been calculated for 80 frequencies covering a frequency 

range from 0 to 40 Hz, at locations where also measurement results have been 

obtained from the field. In Appendix VII these results obtained at all frequencies 

applying different boundary conditions have been plotted in graphs. As can be seen 

from Figure 40 and Figure 41 the choice of how to define boundary conditions has a 

huge impact on the simulations results.  

From the curves presented in Appendix VII and Figure 41 and Figure 40 below, the 

response amplitudes are calculated following the method described in section7.3. In 

Appendix VIII and Figure 42 to Figure 44 simulation results are compared with 

measured results taken with the vessel operating at full speed (nominal propeller 

revolutions = 75 rpm). With these results can be seen that the choice of boundary 

also affects the calculated response amplitudes at the blade passing frequencies. The 

general trends observed are: 

- The measured response amplitude at the first blade passing harmonic roughly 

coincides with the average of all amplitudes obtained at the first blade 

passing frequency for all different boundary conditions. 

- The response amplitude at the second blade passing frequency is extremely 

sensitive to the choice of boundary condition. There is a high risk of hugely 

over predicting the vibration levels at any location at the 2
nd

 blade passing 

frequency. 
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- The finite element model hugely under-predicts the amplitudes at blade 

passing harmonic 3 and higher.  

 
 

Figure 40 Simulation results for the vertical vibration levels on the steering gear deck, extreme aft 

PS corner (at measurement location 1 in Figure 33). Results obtained applying different 

boundary conditions have been plotted in one graph ( see also Figure 36 for the location 

of the constrained frames) 

 

 
 

 
Figure 41 Simulation results for the vertical vibration levels on the mooring deck, extreme aft PS 

corner and at the middle of the deck (at measurement location 3and 4 in Figure 33). Results 

obtained applying different boundary conditions have been plotted in one graph ( see also 

Figure 36 for the location of the constrained frames)(see also Appendix VII) 
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Figure 42 Comparison of simulation results at 75 rpm (full speed and power) with 

different boundary conditions and the measurement results at full speed and 

power (0 to peak average spectrum  [mm/s]) 
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Figure 43 Comparison of simulation results at 75 rpm (full speed and power) with different 

boundary conditions and the measurement results at full speed and power (0 to peak 

average spectrum [mm/s]) 
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Figure 44 Comparison of simulation results at 75 rpm (full speed and power) with different 

boundary conditions and the measurement results at full speed and power (0 to peak 

average spectrum  [mm/s]) 
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7.5 Sensitivity of the Model 

In Appendix VIII the simulation results of the response spectra at the measurement 

points are presented and compared with the measurement results. The general 

observation from the results However, in order to understand the outcome of the 

simulation results at the blade passing frequencies, and in order to explain any 

deviation between these outcomes and the measurement results, the frequency-

response curve is a very useful tool. The most important aspect determining 

structural response amplitudes is the proximity of the excitation to the natural 

frequencies of the structure. Through the frequency-response curve simulation results 

a number of frequencies are identified with an increased sensitivity to excitation. 

Mode shapes at these sensitive frequencies have been obtained through Component 

Mode Synthesis Modelling and are presented in Appendix XI (for frame 25 

constrained) and  Appendix XII (for frame 21 constrained) 

7.5.1 Effect of the Boundary Conditions, Added Mass and Damping 

A number of frequencies have been selected for which the deflection shapes are 

presented in Appendix XI and Appendix XII (for the vessel constrained at frame 25 

and 21 respectively). The choice of these frequencies is based on selecting peak 

response frequencies from the frequency range simulation results presented in 

Appendix VII. 

Studying these deflection shapes is very important because they may explain why 

measurement results deviate from simulation results. Mode shapes are studied for the 

model with frame 25 constrained, as this is the model that is likely to be the most 

realistic. The frequencies selected for closer examination are: 

- 8.8 Hz (dominant at both mooring deck and steering gear deck) 

- 15.6 Hz (dominant at mooring deck) 

- 18.1 Hz 

- 27.3 Hz (dominant at mooring deck) 
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8.8 Hz 

From the deflection shapes at 8.8 Hz shown in Appendix XI and Figure 45, it can be 

seen that the mode shape is dominated by a hull girder bending mode. The aft ship is 

behaving as a cantilevered beam clamped in at frame 25. Moving the constraints 

from frame 25 to 21 increases the bending stiffness of the section of the ship 

modelled,  through which the response peak corresponding with this mode shape 

shifts from 8.8 Hz to 10 Hz (see also Appendix XII). Concerning the effect of 

damping and added mass the following is likely to be the case: 

- In the model no effect of added mass due to the presence of water 

surrounding the hull has been taken into account. As the mode shape 

corresponding with 8.8 Hz peak response frequency is a global mode shape 

involving a heaving motion of the aft ship in the water, added mass is 

expected to play a role. The peak response is expected to be at a frequency 

under the 8.8 Hz as a result. 

- Hydrodynamic damping from the water surrounding the hull has also not 

been taken into account into the model. For the same reason that added water 

mass is likely shift the peak occurring at 8.8 to a lower frequency, added 

hydrodynamic damping is expected to decrease the response amplitude 

compared to the response amplitude simulated at 8.8 Hz.   

The shift of the peak response from 8.8 Hz to a lower frequency will result in 

simulation results at both the 1
st
 and 2

nd
 blade passing frequency to approach the 

measured response amplitudes even closer:  

- With the original model the simulated response amplitudes at the 1
st
 blade 

passing frequency are all under predicted (considering fixed constraints at 

frame 25). The simulated response amplitude  at the 1
st
 order blade passing 

frequency is however expected to increase if added hydrodynamic mass 

would be taken into account., as it will cause the resonance frequency 

previously at 8.8 to be at a lower frequency, closer to the 1
st
 blade passing 

frequency (1
st
 blade passing frequency = 5 Hz).  



136 

 

 
Figure 45 

 
Mode shape at 8.8 Hz compiled from the component mode synthesis results (see section 7.2.2) 

In section A the un deformed shape has been plotted into the figure as a white see-through 

contour. This shows that, particularly for the aft section, rigid body modes play an important 

role, through which the ship sections perform a heaving motion in the water.  

 

- With the original model the simulated response amplitudes at the 2nd blade 

passing frequency are all over predicted (considering fixed constraints at 

frame 25). However, the simulated response amplitude at the 2
nd

 blade 

passing frequency will be lower, if hydrodynamic added mass is taken into 

A 
Substructure A 

Substructure B 

Substructure C 

Substructure D 

Substructure E 

Substructure E 

Substructure A Substructure B 
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account, as added mass will shift the resonance frequency previously at 8.8 

Hz to a lower frequency, further away from the 2
nd

 blade passing frequency 

(which is at 10Hz) 

Although it has been mentioned that hydrodynamic damping is expected to decrease 

the amplitude amount the resonance frequency found at 8.8 Hz, the effect of the peak 

response moving to a lower frequency is expected to be much stronger than the effect 

of increased damping. In Appendix XIII can be seen that response simulation results 

for the first two blade passing orders coincide much better with measurement results 

after having shifted the peak response initially found at 8.8Hz, to 7.8 Hz. 

15.6 Hz 

From the deflection shapes at 15.6 Hz shown in Appendix XI and Figure 46 can be 

seen that the response at 15.6 Hz is related to a local natural frequency involving a 

first bending natural frequency of the aft part of the mooring deck.  This is a more 

local mode shape which is further confirmed through the study of the mode shapes of 

the model constrained at frame 21 instead of frame 25 (see Appendix XII). These 

results show that changing the boundary conditions does not change the natural 

frequency and the corresponding mode shape. No hydrodynamic added mass has 

been taken into account. However, as this vibration mode concentrates on the 

mooring deck section, added mass is not expected to affect the natural frequency 

corresponding with this mode shape. Mass of winches and equipment however may 

slightly increase the natural frequency. 

The simulated response however at the 3
rd

 blade passing frequency is hugely under 

predicting the response at the 3
rd

 blade passing frequency measured on board. In 

Appendix XIII simulation spectra are presented where the peak response, originally 

theoretically located at 15.8 Hz, has been shifted to 15 Hz, right on top of the 3
rd

 

blade passing frequency. Still, simulated response amplitudes for the 3
rd

 blade 

passing frequency are much lower than the measured response amplitudes.  
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Figure 46 

 

Mode shape at15.6 Hz  compiled from the component mode synthesis results (see section 

7.2.2) 
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18.1 Hz 

From the deflection shapes at 18.1 Hz shown in Figure 47 and Appendix XI can be 

seen that the response at 18.1 Hz is related to a more global mode shape where the 

mooring deck bending natural behaviour is coupled to elastic deformation of frame 

21, the transom, and also, the steering gear deck double bottom (see Figure 48 and 

Figure 49). As this mode shape is in fact a coupling of deformations of every part of 

the structure, this frequency is found to be dominant in all simulation results of the 

model constrained at frame 25. 

Constraining the model at frame 21 raises the peak response related to this mode 

shape from 18.1 Hz to 22 Hz, as can be seen from the simulation results in Appendix 

XII. This means that the stiffness of the model forward from frame 21 affects the 

natural frequency corresponding with 18.1 Hz, profoundly. 

However, the structure forward from frame 21 (covering Substructures F, G and G in 

the component mode synthesis (CMS) model) has not been modelled at the same 

level of detail as the sections aft from frame 21. Some stiffening details had been 

omitted for modelling simplification purposes. From this analysis however, it 

appears that these stiffening details may shift the simulated peak response at 18.1 Hz 

towards 20 Hz. This means that the response amplitude simulated at 20 Hz (4
th

 blade 

passing frequency) will in fact be more dominant than initially simulated and will 

come closer to the measured response amplitude at the 4
th

 blade passing harmonic. 

The more dominant role of the 18.1 mode shape in the response at the 4
th

 blade 

passing harmonic is further suggested through observing the relation between 

measured amplitudes measured at the edge of the steering gear deck, and measured 

towards the middle of the steering gear deck. Higher amplitudes have been measured 

towards the middle of the steering gear deck compared to the edge of the steering 

gear deck. This is in line with the simulated mode shape as demonstrated in Figure 

49.  

  



140 

 

 
Figure 47 

 
Mode shape at 18.1 Hz  compiled from the component mode synthesis results (see section 

7.2.2) 
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Figure 48 Periodic deformation at 18.1 Hz at the transom. Note that for presentation purposes the 

displacement field is presented at a phase shift of 180 degrees relative to the displacement 

field presented in Appendix XI 

 
Figure 49 Through the deformation of the double bottom coupled to the deformation of the transom and 

mooring deck, 18.1 Hz is found to be dominant in the simulation results of the locations on 

the steering gear deck. For locations 8 and 9 (outside the area of the part of the model shown 

here) 18.1Hz becomes more dominant, as these locations are more in the middle of the deck, 

where the deflection is found to be higher than at the edges of the steering gear deck. Please 

note that the results presented in Figure 48 have been given a phase shift of 180 degrees 

relatively to the results presented in this figure. In this figure also a much higher 

amplification factor has been applied than in Figure 48. 

 

As discussed above for the 15.6 Hz peak, response amplitude results are presented in 

Appendix XIII where the resonance previously simulated at 18.1 Hz has been shifted 

to 20Hz, coinciding with the 4
th

 blade passing harmonic component. Although that 

causes the simulated response amplitudes at the 4
th

 order blade passing frequency to 

increase, the simulated response amplitudes are still considerably lower than the 

amplitude actually measured amplitudes for the location considered in this work. 
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Figure 50 

 
Mode shape at 27.3 Hz  compiled from the component mode synthesis results (see 

section 7.2.2) 
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27.3 Hz 

In Appendix XI and Figure 50 can be seen that the simulated peak response at 27.3 

Hz is related to a higher mode bending natural frequency of the aft deck. Boundary 

conditions have little effect on the natural frequency corresponding with this mode 

shape. This frequency was found to be dominant in the response calculation results 

carried out for the model constrained at frame 21 as well. The corresponding mode 

shape was found to be same as the mode shape found for the model with constraints 

at frame 25.  

No mass of equipment mounted on the aft deck has been taken into account (winches 

and boulders). Added mass decreases the natural frequency. In Figure 51 the 

simulation results are compared with results obtained with masses added on the aft 

deck, which represent two winches each weighing 3 tons. As a result of the added 

mass, the frequency is seen dropping from 27.3 Hz to 26.3 Hz. Considering there are 

more items on the aft deck that add mass, but have not been modelled, it seems likely 

that this natural frequency moves even closer to towards 25 Hz, which is the 

frequency coinciding with the 5
th

 order blade passing frequency. As a result, 

simulation amplitudes at the 5
th

 blade passing frequency increases (25 Hz) getting 

closer to the amplitudes measured at 25 Hz. In Appendix XIII, simulation results are 

presented where the natural frequency at 27.3 Hz is assumed to have shifted to 25 

Hz, corresponding exactly with the 5
th

 order blade passing frequency. As can be 

seen, simulated amplitudes are still lower than the measured amplitudes.     

No hydrodynamic added mass has been taken into account. However, as this 

vibration mode concentrates on the mooring deck section, added hydrodynamic mass 

from the water surrounding the hull is not expected to affect the natural frequency 

corresponding with this mode shape.   

simulation amplitudes at the 1
st
 and 2

nd
 blade passing frequencies will converge to 

the amplitudes measured at these frequency components. The effect can be seen in 

Appendix XIII where simulation results are shown which have been obtained after 

having  shifted the peak response initially found at 8.8Hz, to 7.8 Hz, in order to 

correct for the effect of hydrodynamic added mass. 
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Aft ship model with masses representing the masses of two winches. Each winch is modelled through two 

masses each 1.5 tons   

 

 
Figure 51, comparison simulation results without mass of aft deck winches modelled (blue line) and with aft 

deck winches modelled (red line). Simulations have both been performed with frame 25 constrained. 

 

 

7.5.2 Excitation characteristic 

 

In the section above (section 7.5.1) it has been established that the simulated 

response amplitudes at the first two blade passing harmonics are close to the 

measured amplitudes. Especially when considering that due to hydrodynamic added 

mass the simulated resonance frequency at 8.8 Hz will shift to a lower frequency,   
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Measured response amplitudes at order numbers higher than 2 are however a lot 

higher than the simulated response amplitudes. There is reason to believe that 

resonance plays an important role in that, but even when shifting natural frequencies 

right onto the 3
rd

, 4
th

 and 5
th

 order excitation frequencies, simulated response 

amplitudes are still a lot lower than the measured amplitudes (see Appendix XIII). 

On board machinery vibration measurements showed very low vibration levels at 

these frequencies (considerably lower than measured at the steering gear deck, 

compare Figure 12 with Figure 14). This further confirms that the explanation of the 

higher order vibration should be found in the hydrodynamic behaviour of the 

propeller, or the structural dynamic behaviour of the aft ship.  Analysing response 

amplitudes at these higher order frequencies however, it is important to realise that 

there is a lot of uncertainty about amplitudes of excitation, particularly with aft ship 

geometries such as the geometry of the LNG carrier, for which this whole analysis 

has been carried out. Even though fluctuating hull pressure field simulations have 

been performed for only up to the 3
rd

 order blade passing frequency, the 4
th

 and 5
th

 

order play a very important role. It had been assumed that excitation at these orders 

is the same as the excitation calculated for the 3
rd

 order. A realistic possibility is that 

the propeller excitation is in fact at these higher frequencies much higher that 

simulated. In addition, there was uncertainty about the exact geometry of the 

propeller which has been used as the input for the simulation of excitation.   

Also through collapsing cavities higher order excitation amplitudes are likely to be 

amplified [3, 47]. Being in the steering gear deck with the ship sailing at full speed, 

violent cavitation noise and impulses could be heard/felt. Through the impulse like 

nature of the excitation it is likely that response amplitudes at natural frequencies are 

amplifies (see section 4.1.1.3). 

7.5.3 Number and Type of Elements 

As a rule of thumb it is recommended to choose the element size of the model in 

such a way that the expected wave length is no smaller than the length of six 

elements (considering the type of plate and beam elements applied in this model 

[22]) . In other words, it is assumed that six elements can accurately enough describe 
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one sinusoidal wave shape. From the simulated deflection shapes can be seen that the 

relevant wave lengths of the vibrations exceed by far the length of three elements. 

Bigger elements may therefore be applied which will reduce the size of the model. 

However, wave length in this case is not the only critical factor in element size 

choice. The geometry may also require a minimum number of elements (consider the 

size and distance between stiffening elements). As the structure consists of many 

stiffening elements, still a high number of elements will be required. The effect of 

using bigger elements will need to be verified and has not been done in this work. 

Also the necessity of using thick plate and beam elements need to be investigated. 

7.6 The Contribution from Hull Girder Modes 

As only a part of the ship structure has been modelled, no contributions from hull 

girder modes are correctly taken into account in the simulation results. Johannessen 

and Skaar have collected measurement date of hull girder natural frequencies of the 

first 5 modes and have plotted them in the graph shown in Figure 52 (see also section 

4.2.1 „Hull Girder Approach‟.).  This graph is considered very useful for estimating 

the hull girder natural frequencies for the LNG carrier modelled in this work, as the 

hull geometry has a great resemblance with a typical hull geometry of bulk carriers.  

 

Figure 52 Empirical data originally presented by Johannessen and Skaar for vertical hull bending 

vibrations natural frequencies plotted against tonnes displacement. 
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From the graph above the LNG carrier (84491 ton displacement) is estimated to have 

the following hull girder natural frequencies: 

 1
st
 mode 0.8 Hz  

 2
nd

 mode 1.5 Hz  

 3
rd

 mode 2.5 Hz  

 4
th
 mode 3.4 Hz  

 5
th
 mode 3.8 Hz  

Table 5 

 

The estimated natural frequencies corresponding with the first 5 hull girder modes 

of the LNG carrier 

 

7.7 Correlation of Simulation Results 

Following the study of the simulated response amplitudes plotted against frequency, 

the simulated impact of boundary conditions and the study of mode shapes 

corresponding with the simulated peak repose amplitudes the following changes have 

been made in order to make the simulation results correspond better with the 

measurement results. The model constrained at frame 25 has been used as a basis for 

the generating the correlated simulation results (see Figure 53 and Appendix XIII). 

- 1
st
 and 2

nd
 blade passing frequency: Measurement results and study of the 

mode shape at the initially simulated peak response at 8.8 Hz (constrained at 

frame 25) suggest that hydrodynamic added mass (omitted in this mode) is 

very likely to shift the peak response to a lower frequency.  Concerning the 

1
st
 and 2

nd
 blade passing frequency response amplitude, the best correlation 

between simulated results and measured response amplitude was obtained by 

assuming a frequency shift of 1 Hz (to the left) of the entire response curve 

section between 0 and 11 Hz. (see results in Figure 53). Given that this model 

only covers a small part of the hull, and given the choice of the boundary 

conditions, the contributions from hull girder modes are not been taken into 

account in this model. Considering the relatively low sensitivity of the 8.8 Hz 

to the nature of the boundary conditions chosen close to the engine room 

bulkhead, it is considered not likely that this natural frequency is related to 
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one of the first 5 hull girder modes listed in Table 5 and will drop to the 

region where the hull girder natural frequencies were estimated, if the whole 

hull would have been modelled (i.e. 8.8 Hz is a local natural frequency, or is 

coupled to a hull girder mode higher than 5). Adding considering of the first 5 

hull girder modes to the simulation results, the correlated simulated 

amplitudes of vibration at the 1
st
 and 2

nd
 order should probably be slightly 

higher than plotted in Figure 53.  

- 3
rd

 blade passing frequency: as simulated amplitudes at the 3
rd

 blade passing 

frequency are much lower than the measured amplitudes, the peak response 

amplitude found at 15.6 Hz has been shifted to 15 Hz, so it coincides exactly 

with the 3
rd

 blade passing frequency.  

- 4
th

 blade passing frequency: as simulated amplitudes at the 4
th

 blade passing 

frequency are much lower than the measured amplitudes, the peak response 

found at 18.1 Hz has been shifted to 20 Hz, so it coincides with the 4
th

 blade 

passing frequency. The increase of peak response frequency also corrects for 

the fact that past frame 21, not all stiffening elements have been modelled in 

order to simplify the model. Further justification of this decision can be taken 

from the observed impact of changing boundary conditions, on the peak 

response frequency for the mode shape in question.   

- 5
th

 blade passing frequency: as simulated amplitudes at the 5
th

  blade passing 

frequency are much lower than the measured amplitudes, the peak response 

found at 27.3 Hz has been shifted to 25 Hz, so it coincides with the 5
th

 blade 

passing frequency. A decrease of the natural frequency corresponding with 

the mode shape previously found at 27.3 Hz is likely, as added mass of deck 

equipment has not been taken into account, and is likely to have that impact.   
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Figure 53 Correlated simulation results (blue colour) plotted together with the measured 

response amplitudes (orange)see also Appendix XIII 

7.8 Evaluation of FE and CMS Performance 

With the simulation of the vibration structural behaviour, harmonic analysis results 

as presented in, Appendix VII and Appendix VIII have first been obtained through 

solving the full set of equations of motion in ANSYS using a so called sparse matrix 

solver. A sparse matrix solver solve a matrix based on the row reduction technique 

shown in Appendix VI [48].  

Although nodal displacement results could be obtained from individual degrees of 

freedom (through which the results in section Appendix VII and Appendix VIII have 
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been obtained), no complete set of results (for all degrees of freedom at once) could 

the read at once due to the size of the result file. This meant that no visual 

presentation of deflection shapes could be obtained. Studying the displacement field, 

i.e. the way in which the structure periodically deforms, is very important to generate 

an understanding of the mechanisms behind vibrations propagation, as demonstrated 

in section 7.5.   

In order to be able to study the mode shapes, component mode synthesis techniques 

have been used. Results are obtained through expansion of the mode shapes of the 

individual substructures. As the result output files for each substructure is much 

smaller than the out file of the entire structure, mode shapes can easily be generated. 

Through pasting together the mode shapes of all individual substructures, mode 

shapes of the total structure are obtained and can be studied (as presented in section 

7.5.1.) 

7.8.1 Accuracy of CMS results  

In Appendix X results obtained through the CMS techniques are compared with the 

results obtained from the full set of equations of the full assembled structure. In 

Table 6 some of the properties of the substructures are presented. One of these 

properties is the number of mode shapes retained for generating the displacement 

field. Also the required CP time to calculate these mode shapes and natural 

frequencies is presented. This number of retained substructure normal modes has 

been determined through selecting all mode shapes with natural frequencies within 

the frequency range between 0 and         , (according to Rubin‟s principle) 

where         is the maximum frequency for which results are generated. As the 

frequency range of the solutions is chosen to be between 0 and 40 Hz, the mode 

shapes with natural frequencies between 0 and 60 Hz had been retained for both the 

free and fixed interface CMS models. 

The evaluation of CMS modelling technique is based on frequencies at which peak 

responses are found according to the CMS modelling results. Sufficient accuracy of 

the simulation results is considered to have been obtained when the frequencies at 

which peak responses coincide with the frequencies at which peak responses have 
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been found according the full harmonic analysis results. This basically means that, 

considering frequency steps of 0.5 Hz are used (80 results for 80 frequencies over a 0 

to 40 Hz frequency range), natural frequencies found through CMS, should be within 

a bandwidth between -0.25Hz and  +0.25Hz from the natural frequencies found 

through the full harmonic analysis. 

 

Table 6 

 

Table of properties of the substructures shown in Appendix IX . The number of retained 

mode shapes are also presented for each substructure together with the CP time required 

to calculate these mode shapes (eigenvectors). Fixed CMS is CMS based on fixed 

interface approach as applied with Craig-Bampton’s method. Free CMS is CMS based on 

the free interface approach as applied with Rubin’s Method  

In Appendix X can be seen that results obtained through free interface CMS were 

found to be almost identical to the results generated through the full harmonic 

analysis. Not only do the peak response frequencies coincide with the peak response 

frequencies found through the full harmonic analysis, also response amplitudes 

match the response amplitudes found through full harmonic analysis. The free 

interface CMS is based on Rubin‟s method with no residual interface flexibility 

modes taken into account. 

 Results obtained through fixed interface CMS deviate from the results obtained from 

the full assembled set of equations of motion. 
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7.8.2 Required CP Time for CMS Calculations  

In Table 7 the registered required CP time for obtaining dynamic response results is 

presented for the full harmonic method, fixed interface and free interface CMS. In 

Figure 54 computation time required for each step are presented calculated according 

to Appendix VI, Appendix XVI and Appendix XXI.  

Although CMS has solved the problem with handing large output files, Table 7 and 

Figure 54 show that CMS increases the required computation time by approximately 

53%., compared to the time required for full harmonic analysis. It is easy to 

understand that calculating the mode shapes off course adds extra CP time onto the 

total CP time required to obtain the results. This effect has been taken into account 

into the calculation of the grand total CP time in Table 7. This effect becomes of 

course less noticeable when calculating the response for a higher number of 

frequencies, as the modal information only needs to be calculated once.   However, 

Table 7 and Figure 54 also show that more CP time (+50%) is required for solving 

the CMS matrices, compared to solving the full set of equations of motion. This 

increase of CP time is a result of the fact that, although the total assembled CMS 

dynamic stiffness matrices are smaller than the matrices generated through the full 

solution, the CMS matrices are much denser and contain in fact a much higher 

number of non-zeros than the full dynamic stiffness matrix of the non-reduced full 

FE model (as also shown in Table 7.)    

 

Table 7 

 

Size of matrices and required computation times for different analysis techniques. Fixed 

interface CMS has been carried out according to Craig-Bampton, and free interface CMS has 

been carried out according to Rubin’s method (both with a cut-out frequency of 1.5 f = 60 Hz) 
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Figure 54 
 

Required computation time for the different stages of the different analysis techniques 

performed on the LNG carrier model of section 7. Computation times have been 

calculated for the analysis of 80 frequency steps. Added to the graph is the estimated 

required number of floating point operations for obtaining results through the full 

harmonic analysis technique. 

7.9 Summary and Conclusion 

In this section finite element modelling results of the aft ship of an LNG carrier have 

been studied and compared with measurement results taken on board. Fixed and free 

interface component mode synthesis has been applied and evaluated by comparing 

the results with the results obtained from the full finite element model.   

7.9.1 Comparison with Measurement Results 

Good coincidence has been found between the simulated response amplitudes and 

measured response amplitudes at the first two blade passing frequency components. 

Results in Appendix XIII show that after correction of the response curve for the 

effect of hydrodynamic added mass from the water surrounding the hull, simulation 

results will come even closer to the measured amplitudes (peak response at 8.8 Hz 

shifts to 7.8 Hz).     

For blade passing frequencies above the 2
nd

 order however, simulated response 

amplitudes were found to be a lot lower than the amplitudes measured on board.  
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7.9.2 Evaluation of Simulated Excitation Characteristics 

At the 3
rd

, 4
th

 and 5
th

 order, dominant response amplitudes have been measured on 

the steering gear deck on board the LNG carrier sailing at full speed. Measured 

amplitudes at these orders are a lot higher than the simulated amplitudes. Although 

there is reason to believe that resonance plays an important role, Collapse of cavity 

volumes are assumed to play an even more important role, as violent cavitation has 

been experienced on board. These phenomena have not been taken into account 

through the vortex lattice method used for the simulation of the excitation 

characteristics of the propeller and are likely amplify the higher order excitation 

amplitudes [47]. There was also uncertainty about the geometry of the propeller used 

for the alternating pressure field simulation, as no digital geometry was available.  

7.9.3 Choice of Boundary Conditions 

Analysis has shown that choosing the right boundary conditions close to the engine 

room bulkhead is very important for simulating vibration levels on the steering gear 

deck and mooring deck. Particularly for the vibration amplitudes simulated at the 1
st
 

and 2
nd

 mode questions arise about the relation between a peak response found at 8.8 

Hz and a possible relation with any lower order hull girder modes. The contributions 

from these lower order hull girder modes are not included in the simulation results 

given that the model only covers a small part of the hull structure, and given the 

nature of the boundary conditions tested in this section. It is therefore recommended 

that simulation are carried out coupling the present model to a hull girder model 

(Deep Beam Elements) representing the rest of the vessel‟s hull from frame 25 

forwards on.  

The simulation results also suggest that more detail needs to be added to the model 

from frame 21 to 25. In order to simplify the model, not all stiffening details had 

been incorporated in this section, but appeared to play an important role for a 

particular natural frequency calculated at 18.1 Hz. 

All considered, it can be concluded that frame 25 is a good choice of location for 

applying constraints, or from where the model is simplified forward on.  
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7.9.4 Element Size 

Based on analysis of the wavelengths of the relevant mode shapes for this particular 

vessel, applying a coarser mesh is not expected to affect the results over the 

frequency range of interest.  

7.9.5 Evaluation of Component Mode Synthesis (CMS) Techniques 

Free and fixed boundary component mode synthesis techniques have been applied 

and were found very useful. Results obtained through free interface CMS coincided 

with the results obtained through the full FEM analysis. As the fixed interface CMS 

results deviated noticeably from the results obtained through the full finite element 

analysis, free interface CMS has been chosen as the most suitable method for 

modelling the vibrations of the aft ship of the LNG carrier.  

Component mode synthesis was found very useful for obtaining information on the 

modes of vibrations. Through the reduced substructures the size of result files are 

hugely decreased and become very well manageable. As a results, no problems with 

obtaining a visual presentation of the mode shapes have been encountered, as was the 

case with the analysis of the results obtained through full harmonic analysis. 

Although the total assembled matrices obtained through CMS are much smaller than 

the matrices obtained through the full harmonic analysis, these matrices were found 

to be a lot denser (contain much more non-zero entries). As a result, more CP time is 

required to solve the reduced matrix compared to the sparse full dynamic matrices. 

Particularly when obtaining the response for many frequency steps, this leads to a 

large increase of required computation time.   
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8 Methodology of an Alternative Approach to Classical CMS  

 

As demonstrated in section 7 and as already discussed in the critical review (section 

0), component mode synthesis offers various advantaged for modelling marine 

structures. However, through section 7 it has been demonstrated that component 

mode synthesis may increase the required computation time. This increase of 

computation time relatively to full finite element harmonic analysis is a result of the 

high number of interface degrees of freedom found in typical marine structures in 

combination with the fullness of the matrices that have to be solved in order to obtain 

the modal coordinates. In this section two alternative approaches to the Component 

mode synthesis method are suggested in order to reduce the size of the assembled 

CMS matrices: the Zoet method and the Rubin-Zoet method.  

 

Paragraph structure of chapter 8 ‘Methodology of an Alternative Approach to Classical CMS’ 

8.1 Introduction 

As demonstrated in the case study above, CMS has proved to be beneficial for 

modelling the structural response of complex large parts of ship structures. CMS 

proved a solution for the problems with the presentation of the mode shapes 

experienced with the full harmonic analysis. Due to the size of the output file the 

mode shapes of the full solution could not be read and plotted as a 3d picture.  
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Not only did CMS modelling techniques make it possible to study mode shapes, 

CMS offers the advantage of synchronising the correlation of the model with the 

progress of the building process. The FE model will be subdivided in such a way that 

the CMS substructures coincide with the sections of the ship as it will be built. Every 

time a section is delivered, the modal information can be measured and used as an 

input of a part of the full model. Adjustments to the structure can still be 

implemented if the correlated model shows unfavourable response results. 

CMS also offers the advantages of being able to reuse modal information for 

repeating substructures. Particularly mid ship sections and accommodation deck 

consist of repeating structural parts. Also symmetry of the ship‟s structure can be 

used to further reduce the required number of calculations of mode shapes.  

However, Table 7, Figure 55 and Figure 56 show that in total, for both CMS methods 

(free and fixed), more calculation time is required, compared to the calculation time 

required for the full harmonic analysis. Table 7 shows the measured computation 

time for each sub-step following the full harmonic analysis, fixed and free interface 

CMS techniques. In Figure 55 and Figure 56 the required number of matrix 

operations are presented as calculated for each step according to Section 8.7 

elaborates on how these values have been obtained) and serve as a good indication of 

the required amount of computation time.   

It can be seen from these figures that, besides the extra calculation time for 

calculating normal modes, natural frequencies, constraint modes, and forming the 

reduced matrixes, most of the time is required for solving the reduced set of CMS 

equations of motion. Section 7.8  points out that, Although the number of equations 

used for CMS is a lot lower than the number of equations used for the full harmonic 

analysis, the compiled CMS matrices are much denser than the matrices compiled for 

the full harmonic analysis. As a result, the number of non-zeros in the CMS matrices 

is much higher, which leads to the observed (and calculated) higher required 

computation times. As can be seen when comparing Figure 55 and Figure 56, the 

effect of higher computation time becomes even stronger when calculating response 

for multiple frequencies. Calculating response for multiple frequencies is not only 
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very important for identifying the relevant critical frequencies of a structure, but also 

very important for identifying the frequencies where the lowest response is obtained, 

so that the excitation frequencies and response behaviour can be optimally tuned for 

the lowest noise and vibration levels. 

 

 

Figure 55 

 

Required computation time for the different stages of the different analysis techniques 

performed on the LNG carrier model of section 7.Computation times have been calculated 

for the analysis of only one frequency step  
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Figure 56 

 

Required computation time for the different stages of the different analysis techniques 

performed on the LNG carrier model of section 7.Computation times have been calculated 

for the analysis of 80 frequency steps.  

As pointed out above, CMS offers the benefit of recycling modal information in case 

of repeating sub-structural elements and symmetry of the geometry. However, the 

higher required analysis time due to the need for multiple frequency calculations 

counteracts these benefits and result in a net increase of calculation time. The method 

in this section therefore focuses on reducing calculation times through reducing the 

size of the full CMS matrices  

A very dominant factor in determining the size of the full assembled matrix is the 

number of connection nodes. For the description of a substructure according to the 

classical CMS methods the number of equations that are at least required is equal to 

the number of coupling degrees of freedom. In the case of the LNG model, this 

number is equal to the number of nodes shared with other substructures times the 

number of degrees of freedom of one node (which is 6, along x, y and z axis and 

rotation about x, y, and z axis). This is a result of the fact that the interaction between 

two substructures is described through setting up equilibrium and compatibility 

relations for each interface degree of freedom. Problems with high matrix densities 



160 

 

are typical for ship structures. Two substructures are coupled to each other through 

coupling lines on which many interface nodes are located. Compared to structures 

coupled to each other by a number of girders for instance (coupling points), ship 

structures will contain a much higher number of coupling points. 

In this section two methods are suggested aiming at eliminating the interface degrees 

of freedom from the total set of equations of motion. The first method (the Zoet 

method) formulates the interaction between substructures solely through the modal 

coordinates rather than through the actual nodal displacements of the interface 

boundaries.  The number of equations required becomes independent of the number 

of interface degrees of freedom and can be chosen equal to the number of mode 

shapes actually required for accurately enough describing the displacement field of 

the substructures. As can be seen in Table 6, the number of mode shapes required for 

describing the dynamic behaviour of the LNG carrier‟s sub-structure is a lot lower 

than the number of coupling degrees of freedom. Improving the results through 

incorporating the effect of residual flexibility is also presented and a reducing the 

number of equations of the full assembled matrix with residual compensation taken 

into account is presented.  

Also a method is presented that is a hybrid of the classical Rubin method and the 

Zoet method and is referred to in this work as the Rubin-Zoet method.  

The performance of the alternative methods are compared with the performance of 

the free interface CMS methods according to Rubin. The Rubin method is used as a 

benchmark as the best results have been obtained through this method according to 

the simulation results in section 7. The comparison is based on estimating the 

number of matrix operations (flops) required for each step for each different method.  

8.2 Interface stiffness and mass matrix 

The first step in exploring the possibilities of reducing the total equations of motion 

is formulating a description of substructures‟ interaction solely through the 

substructures‟ modal coordinates. This means, the number of equations required for 

solving the assembled structural dynamic behaviour is related only to the number of 
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mode shapes required and is independent from the number of interface degrees of 

freedom.  

In Figure 57 two subsystems are shown, subsystem A (purple) and subsystem B 

(green). The red elements are the coupling elements forming an interface between 

subsystem A and subsystem B. Any dynamic deformation of the structures A and B 

results in deformation of the interface elements. Through the deformation of these 

interface elements reaction forces are generated on the interface nodes of 

substructure A and substructure B. These reaction forces are treated as excitation 

forces. The response of both substructures due to the interface reaction forces 

represents the effect of the interaction between the two separate structures. This 

interaction response is added to the dynamic response of the free uncoupled 

structures through which the coupled response is calculated. 

 

Figure 57 Example of two structures coupled to each other through interface elements 

This concept is demonstrated through the mass spring system shown in Figure 58 

Considering the stiffness of the springs is         and each mass is 200 kg and has 

only one (horizontal) degree of freedom and an excitation force of 60 N is acting on 

mass 1, the total systems stiffness matrix is written as:  

   

         
            
            
         

  

(8.1) 

 

Interface elements 
B 

A 
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The mass matrix is written as: 

   

      
      
      
      

  

(8.2) 

 

The total un damped equation of motion becomes: 

(8.3) 

 

         
            
            
         

  

  
  
  
  

     

      
      
      
      

  

  
  
  
  

   

  
 
 
 

  

 

 

Figure 58 Mass spring system  

Consider the total system to be spit up in two parts so two separate subsystems A and 

B are generated: 

 

 

Figure 59 Mass spring system subdivided in two subsystems A and B 

The stiffness matrix of the uncoupled subsystems A and B is written as: 

 

         
         
         
         

   
   
   

  

Where    and    are the individual uncoupled stiffness matrices of substructure A 

and B respectively 

The stiffness matrix of the coupling element is       = 

A B 

1 3 4 5 2 

1 3 4 2 

1 3 4 2 
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The internal forces induced in spring 3 by the dynamic interaction between the two 

subsystems is equal to the elements stiffness matrix times the displacement vector:  

 

    
         
         
    

  

  
  
  
  

   

 
   
   
 

   
   
       
   

  
  
  
  

(8.4) 

 

 

Where     and     are the interaction forces that are treated as excitation forces 

representing the effect of the two substructures coupled together and    and    are 

the displacement vectors of subsystem A and B respectively. The equation of motion 

according to above suggested concept is then written as:  

 
   
   

  
  
  
     

   
   

  
  
  
   

  
  
   

   
       
   

  
  
  
  

(8.5) 

 

Where    and    are the uncoupled mass matrices of subsystem A and B 

respectively.  

Applying this concept to the particular system shown in Figure 58 and Figure 59 

 

         
         
         
         

  

  
  
  
  

     

      
      
      
      

  

  
  
  
  

   

  
 
 
 

   

 
   
   
 

  

 
(8.6) 

Substituting (8.4) into (8.6) gives: 
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(8.7) 

 

 

Shifting the  

    
         
         
    

  

  
  
  
  

  matrix back to the left hand side  

 

of  (8.7) gives back the original full assembled equation of motion as the full 

stiffness matrix is obtained again: 

 

         
         
         
         

   

    
         
         
    

  

 

         
            
            
         

   

(8.8) 

 

So  

 
   
   

   
   
       
   

      
(8.9) 

 

Where     is the full stiffness matrix of subsystem A coupled to subsystem B. 

8.3 Proposed Reduction Technique 

Through the example in section 8.2 it has been demonstrated that the dynamic 

behaviour of two coupled substructures can be considered a superposition of the 

substructures‟ individual uncoupled response to the excitation forces and the 

substructures uncoupled response to the coupling forces generated in the coupling 

elements as a result of dynamic interaction between two adjacent substructures.   

Through this principle the interaction between two individual subsystems is 

described through which a smaller reduction basis can be formulated compared to the 

classical CMS methods. An important aspect in obtaining this much smaller 

reduction basis is that a modal approach is adopted. Through the description of the 

coupling outlined above, no additional nodal displacement of the coupling points 
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need to be included in the reduction basis, as the coupling can be fully described 

through the modal coordinates that are also used to describe the internal 

displacement field of the substructures. The reduction basis used for this CMS 

method will therefore be a set of retained mode shapes for the substructures involved 

as will be demonstrated below for an un-damped mass spring system. For two 

individual uncoupled sub systems the following equations can be written: 

                    (8.10) 

 

                    (8.11) 

 

Where: 

   and    are the set of eigenvectors representing the retained (free interface) 

mode shapes for all degrees of freedom of subsystem A and B respectively. 

   and    are the uncoupled free floating mass matrices of substructure A and 

B respectively and    is the frequency of excitation in rad/sec. 

    and    are the uncoupled free floating stiffness matrices of substructure A 

and B respectively 

   and    are the excitation forces acting on substructure A and B respectively 

   and    are the modal coordinates of the retained mode shapes of 

substructure A and B respectively  

Composing the equation of motion of the coupled system is done according to 

equation (8.5). Expressed through a limited set of retained mode shapes and the 

corresponding modal coordinates: 

    
   
   

  
   
   

  
  
  
   

   
   

  
   
   

  
  
  
  

 
  
  
   

   
       
   

  
   
   

  
  
  
   

(8.12) 

 

Where: 

      = the stiffness matrix of the coupling elements between substructure A 

and B  
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 Reduction of the stiffness and mass matrix is obtained by pre multiplying with   , 

as also applied with the mode superposition method, which gives:   

 

    
  

  

   
   

   
   

  
   
   

  
  
  
   

  
  

   
   

   
   

  
   
   

  
  
  
 

  
  

  

   
   

  
  
   

  
  

   
   

   
       
   

  
   
   

  
  
  
  

(8.13) 

and moving  
  

  

   
        

   
   

  
  
  
  to the left side of the equation gives the 

reduced mass and stiffness matrices    and     of the total assembled system: 

    
 
 
  

  
 
   

   

   
  
 
 

 

  
 

  
(8.14) 

 

     
 
 
  

  
 
   

   

   
  
 
 

 

  
 

   
 
 
  

  
 
   

   

       

   

  
 
 

 

  
 

   
(8.15) 

 

As pointed out in section 8.2 equation (8.7) and (8.8) through equation    

 
   
   

   
   
       
   

      which is equal to the full matrix of the assembled 

substructures, (8.15) can also be written as : 

    
 
 
  

  
 
      

 
 

 

  
 

  
(8.16) 

 

If a consistent mass matrix is used and the coupling elements have a mass, the effect 

of the extra mass on the interface lines is also modelled as an external excitation 

force. The equation of motion becomes:  

    
   
   

  
   
   

  
  
  
   

   
   

  
   
   

  
  
  
 

  
  
  
        

   
   

  
  
  
          

   
   

  
  
  
  

(8.17) 

The reduced mass matrix becomes: 
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(8.18) 

In the same way as for the reduced stiffness matrix the reduced mass matrix can also 

be written as  

    
 
 
  

  
 
      

 
 

 

  
 

  
(8.19) 

 

Where     which is the full matrix of the assembled substructures 

8.4 The Zoet Method with Boundary Residual Flexibility 

An alternative reduction technique is proposed in section 8.3 in order to eliminate the 

need to set up equations for each coupling degree of freedom. Coupling is only 

described through the response normal modal coordinates (rigid body and elastic 

modes) of the free interface substructures. This line of research has been chosen 

because the number of mode shapes required to describe the dynamic behaviour of a 

structure accurately enough, is for ship structures expected to be much lower than the 

number of coupling degrees of freedom, as was found the case for the CMS 

simulations for the LNG carrier presented in section 7 (see Table 3). 

In this section a mathematical reformulation of the principles described in 8.3 is 

suggested. Through this formulation the reduced set of equations of motion is 

obtained by only using the interface degrees of freedom‟s mode shape vector values 

whereas the reduction basis presented in section 8.3 consist of the mode shapes with 

all the degrees of freedom of the substructures retained. Through this method, the 

formulation of the reduced equations of motion requires less matrix operations. 

In addition, also the possibility of including interface (boundary) residual flexibility 

is included in this alternative formulation. The reason for adding residual boundary 

flexibility is because calculated alternating element stresses are very sensitive to 

errors in calculation of the displacement field. This means that a small deviation of 

calculated displacement may result in a much bigger deviation of the related element 
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stresses, and the related nodal stiffness forces. (also been described in [39]). Accurate 

calculation of reaction forces in nodes resulting from element deformation is very 

important for describing the interface forces between two substructures, resulting 

from dynamic interaction. Through including boundary (interface) residual flexibility 

a more accurate description of the boundary response is obtained. 

In Appendix XVIII the process of generating the equations of motion and obtaining 

the dynamic response of two coupled structures is described in different steps. Step 1 

in this analysis consists of obtaining the modes shapes. Appendix XVIII describes in 

step 1 how the boundary residual flexibility modes are calculated, together with an 

expression for the number of required real matrix operations (FLOPS) required for 

each step. The equations formulated in step 2 are derived from a reformulation of 

equation (8.20)  (see equation (8.5)): 

 
   
   

  
  
  
     

   
   

  
  
  
   

  
  
   

   
       
   

  
  
  
  

(8.20) 

 

The equations have been formulated in such a way that they very explicitly express 

the response of the assembled structure as a superposition of the individual 

uncoupled response (   and      ) (excited by external forces    and    only) and the 

response of the individual substructures due to the interface forces (    and         ): 

These interface forces are indicated with forces     and     (connection or interface 

forces) and represent the effect of interaction between two adjacent substructures 

Where  

   are the normal modal participation factors (modal coordinates) of a 

substructure representing the modal response of the individual uncoupled 

substructure that is only subjected by the external excitation force. 

      is the residual displacement vector representing the residual response of 

the individual uncoupled substructure that is only subjected by the external 

excitation force. 
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    are the normal modal participation factors (modal coordinates) of a 

substructure representing the modal response of the individual uncoupled 

substructure subjected to the interface forces occurring due to interaction with 

another substructure. 

         is the residual displacement vector representing the residual response 

of a individual uncoupled substructure subjected only to the interface forces 

occurring due to interaction with another substructure. 

The total response vector   of a coupled substructure is written as: 

          

 

Where    is the displacement vector of a uncoupled substructure subjected by 

the external excitation force only and      is the response of a substructure to 

the interface forces resulting from interaction with adjacent sub structures.   

   

  
  
     
     

  = modal response vector of assembled substructure 

     

     
     

         
         

  = modal response vector due to interface forces resulting from 

interaction with adjacent sub-structures  

 

    

   
   
      
      

  = modal response vector of the individual uncoupled sub 

structures due to excitation forces. Modal participation vector representing the 

dynamic behaviour of the total assembled structure writes as: 

(8.21) 

 

          

  
  
     
     

   

     
     

         
         

   

   
   
      
      

  

(8.22) 

 

Where: 
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-    and    are the complex rigid body and flexible modal coordinates of 

substructure A and B respectively representing the response of the assembled 

structure. 

-       and       are the complex residual displacements of substructure A and B 

respectively representing the residual response of the assembled structure. 

-     and     are the complex rigid body and flexible modal coordinates of 

substructure A and B representing the structural dynamic behaviour of the 

individual structures in uncoupled condition 

-        and        are the complex residual interface node displacements of 

substructure A and B representing the structural dynamic behaviour of the 

individual structures in uncoupled condition 

-       and       are the complex rigid body and flexible modal coordinates of 

substructure A and B respectively representing the response resulting from 

forces on the interfaces with adjacent substructures resulting from dynamic 

interaction.. 

-           and           are the complex residual interface node displacements of 

substructure A and B respectively representing the residual (static) response 

resulting from forces on the interfaces with adjacent substructures resulting 

from dynamic interaction.. 

The important part of this formulation is the formulation of the interface forces. 

These interface forces are a function of the interface displacement and the stiffness 

and mass matrix of the connecting interface elements. Through the displacement of 

the interface nodes the coupling elements deformation is represented resulting in the 

reaction forces at the coupling nodes. 

As explained above, the displacement field of the substructures is described by the 

modal coordinates of the individual uncoupled structures. Three types of modal 

coordinates are distinguished: 

- flexible (free interface) modal coordinates 

- rigid body modal coordinates (if applicable) 
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- residual compensation attachment modal coordinates (expressed through the 

nodal interface displacements    ) 

The interface displacement    is described as a superposition of normal, rigid and 

residual flexibility modes and is written as (see also equation (8.22)) : 

 

    
            

            
  

  
  

      
      

  

(8.23) 

 

Where: 

-           and           = matrix containing the retained rigid body and 

elastic modes of substructure A and B respectively representing only the 

interface degrees of freedom between substructure A and B. 

-        and        are the residual nodal displacements representing the residual 

response of the assembled structure representing only the interface degrees of 

freedom between substructure A and B. 

-  
            

            
    is the reduction matrix. 

-    and    are the normal nodal coordinates representing the modal response 

of substructure A and B coupled together  

Therefore (8.23) can be written as (see also equations (8.21)): 

      (8.24) 

Where   is  

 

  
  

      
      

  

, representing the normal modal coordinates and the residual displacement 

coordinates of the interface degrees of freedom. For the boundary (interface) element 

forces we can write, according to equation (8.4): 
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(8.25) 

Where 

-       and       are the stiffness and mass matrix respectively of the 

connecting elements 

-       is the dampings factor of the connecting elements 

-   is indication for the fact that        is an imaginary component (90 degrees 

phase shift relatively to strain and inertia forces) 

-    is the excitation frequency [rad/s] 

-                                    the dynamic interface elements 

stiffness matrix. 

-       is the vector representing all the forces from the connection element 

deformation (forces on both substructure A interface nodes     and 

substructure B interface nodes    . 

Substituting equation (8.23) into equation (8.25) we get the expression for the 

connection node forces as a function of the modal coordinates representing the 

dynamic behaviour of the assembled structure: 

                 
            

            
  

  
  

      
      

  

 (8.26) 

 

For the modal response coordinates resulting from the interface forces we can write, 

as a function of excitation force (see equation (8.22) and (6.27)): 

        
         

 
 
  
 

          
       

  
 

 

(8.27) 
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In a matrix notation the modal displacement due to interface node interaction forces 

    is written as: 

     
             

      
     

      
  
            

            
 
 

      
(8.29) 

Where: 

-              
      

     

 
              

       
     

               
       

    
  

-        
       
       

  

-        and       = the residual flexibility matrix for the interface degrees of 

freedom of substructure A and B respectively 

-     and     are the natural frequencies of the retained elastic and rigid modes 

for substructure A and B respectively [rad/s] 

-   is the excitation frequency [rad/s] 

-   = damping expressed as a percentage of the strain energy (loss number) 

-  
            

            
 
 

 =    is the transposed reduction matrix used in 

this method. 

-     is the interface reaction forces at the interface degrees of freedom of 

substructure A 

-     is the interface reaction forces at the interface degrees of freedom of 

substructure B 

-       = total interface degrees of freedom reaction force vector  
   
   

  

   

Substituting equation (8.26) into equation (8.27) and (8.28) gives the following 

expression is obtained: 
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(8.30) 

Considering expression (8.26) for the connection forces: 

                      

  
  

      
      

                   

(8.31) 

Substituting (8.31) into (8.30) gives the expression for the contribution of the 

interface force response as a function of the assembled total response: 

      
             

      
     

      
                    

  
  

      
      

   

     
     

         
         

  

        

     
     

         
         

  

    
             

      
     

      
                    (8.32) 

 

The total equation for solving    

  
  

      
      

  is written as: 

        and therefore: 
(8.33) 

           

Substituting    

  
  

      
      

  into (8.23) gives the total deflection vector: 
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Where:  

         and          are matrices containing the retained normal modes 

representing all degrees of freedom of substructure A and B respectively. 

  
  and   

  are the constraint modes of substructure A and B respectively (see 

equation (6.37) to (6.42) 

    is the boundary mobility matrix as this matrix expresses the sensitivity of the 

interface to the deformation of the interface elements (interface forces). 

A reduction of matrix operations for composing the boundary mobility matrix is 

obtained through neglecting the inertia force term in the dynamic mass matrix of the 

interface elements. This term will be very small anyway, particularly at low 

frequencies.  The dynamic interface stiffness will become                 

          . If relative damping   is used, as is the case in this work, the expression 

for the dynamic stiffness of the interface elements becomes independent of frequency 

and becomes                  

This means that step 2A to 2C in Appendix XVIII only need to be performed once, 

and not for every frequency step. As a consequence, in step 2C, the mobility matrix 

  does not need to be recalculated completely for each frequency step. As the 

response of boundary flexibility modes to a specific force is frequency independent, 

only the left upper       part of the  
             

      
     

      
  matrix is 

frequency dependent. This means that only the first    rows of the mobility matrix 

need to be recalculated for each frequency step (where   is the number of normal 

modes retained for substructure A plus the number of normal modes retained for 

substructure B).   

8.5 Eliminating Residual Flexibility Modes from the Zoet Method 

As discussed in the critical review, one of the problems with component mode 

synthesis is the density of the reduced matrices representing the modal equation of 

motion. Ship sections are connected to each other through many lines which means 
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that the final element model of these sections as substructures, contain a high number 

of coupling nodes. As the classic CMS techniques are based on describing the 

interaction between two substructures through formulating compatibility and 

equilibrium relations for each coupling degree of freedom, a relatively high number 

of equations may still be required. 

An alternative reduction technique is proposed in section 8.3 in order to eliminate the 

need to set up equations for each coupling degree of freedom. Coupling is only 

described through the response modal coordinates. This line of research has been 

chosen because the number of mode shapes required to describe the dynamic 

behaviour of a structure accurately enough, is for ship structures expected to be much 

lower than the number of coupling degrees of freedom, as was found the case for the 

CMS simulations for the LNG carrier presented in section 7 (see Table 3). 

However, if including interface residual flexibility should be required, again the need 

arises to include all the degrees of freedom of all coupling nodes into the total set of 

equations of motion, as demonstrated in section. As an accurate description of the 

coupling forces is related to an accurate description of stain forces, the results of the 

total assembled dynamic behaviour calculations are very sensitive to errors in the 

description of the coupling node displacements (also been described in [39]). A 

description of the dynamic behaviour of two coupled substructures is given in section 

8.4 that accommodates for interface residual flexibility to be taken into account.  

However, by including boundary flexibility modes, a formulation of interaction 

between substructures has been obtained again that requires a number of equations 

that has to exceed the number of interface degrees of freedom.  

In this section a technique is proposed for eliminating the boundary flexibility 

modes, and reducing the required number of equation back to the number of required 

normal mode shapes. The interaction between two substructures is again, as in 

section 8.3, described only through the modal coordinates of the normal modes. In 

the method suggested in this section, the effect of residual compensation has been 

incorporated into the description of interaction between modal coordinates i.e., into 

the boundary mobility matrix    .  
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8.5.1 Compiling the Total Boundary Mobility Matrix 

The first step in obtaining reduction in the number of total assembled equation of 

motion is by formulating boundary mobility matrices     for individual coupled pairs 

of substructures. Each coupled pair of substructures form a super element.  

 

 

Figure 60 Demonstration of formulation of the total boundary mobility matrix 

 

    

    

    

    
      

   

   

       

   

       

   

   

   

   

   

            

     

Where: 

       is the mobility matrix for substructure A and B coupled together 

       is the mobility matrix for substructure B and C coupled together 

       is the mobility matrix for substructure C and D coupled together 

        is the mobility matrix for all substructures added together 

     ,   ,    and    = the number of retained normal modal coordinates of 

substructure A, B, C and D        respectively. 

 



178 

 

The boundary mobility matrix, reflecting the behaviour of interface boundaries when 

all substructures are coupled, is obtained through adding all the boundary mobility 

matrices of all the pairs of substructures (super elements) into one matrix. Adding the 

super elements to from the total boundary mobility matrix is done in a similar way as 

done with the formulation of a total assembled stiffness or mass matrices through the 

stiffness matrices of individual elements with classical finite element modelling.   

Figure 60 shows an example of a structure sub divided in four substructures A, B, C 

and D. The figure shows how boundary mobility matrices of pairs of substructures  

(i.e. interaction matrices between pairs of substructures) are used to form the total 

boundary mobility matrix reflecting the interaction between the substructures all 

coupled together. 

The strategy of the approach is to eliminate the interface displacement degrees of 

freedom related to the residual flexibility modes of the boundary mobility matrices of 

the individual pairs of substructures (              ) by using a similar technique 

used with the static condensation according to Guyan (see equation (6.37) to (6.42)). 

With these reduced matrices the total assembled boundary mobility matrix      is 

formulated as demonstrated in Figure 60. The total equation of motion is then 

formulated according to equation (8.33): 

              

Where    has become a vector representing only the modal coordinates of all the 

individual substructures. 

8.5.2 Eliminating Interface Displacement Degrees of Freedom 

Consider the boundary mobility matrix     of two substructures, substructure A and 

substructure B. According to (8.33), the modal coordinates and interface 

displacements vector   is solved from the following equation: 
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Where 

   

  
  

      
      

  and     

   
   

       
       

  

       , is divided in sections in such a way that the modal amplitudes are grouped 

and separated from the nodal interface node displacements which represent the 

residual compensation: 

 
       
   
       

 

 
 
 
 
 
  
  
 

      
       

 
 
 
 

  

 
 
 
 
 
   
   
 

       
        

 
 
 
 

 

 

(8.34) 

 

A description of the equation of the interaction between two structures is now 

formulated based on only the modal coordinates, eliminating the degrees of freedom 

of equation (8.34) related to the residual interface displacement at the interface 

degrees of freedom. In Appendix XVIII the process used to achieve this is listed as a 

sequence of different steps (see step 4A to 4G).  

Through the lower line in equation (8.34) the relation between the residual 

compensation deflections (       and        ) and the normal modal coordinates of 

the normal modal coordinates (   and    containing both rigid body and elastic) is 

obtained: 

      
  
  
        

      
      

    
       
       

  

 
      
      

       
     

       
       

        
  
  
   

 
      
      

        
   

       
       

       
        

  
  
  

 

(8.35) 

 

The new matrix only containing the modal amplitudes as a variable is formulated by 

substituting (8.35) into the first line of (8.34): 

      
  
  
        

      
      

    
   
   

  
(8.36) 
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Substituting (8.35) into (8.36) gives: 

      
  
  
             

   
      
      

       
        

  
  
     

   
   

  
 

      
  
  
            

   
      
      

            
        

  
  
    

   
   

  
 

      
  
  
            

        
  
  
    

   
   

            
   

      
      

  
(8.37) 

 

The new matrix equation is written as: 

         
  
  
   

    
    

  
(8.38) 

 

                       
        

  

(8.39) 

 

Where:  

     is the boundary modal mobility matrix expressing the response of the 

interface between two coupled structures as a function of modal coordinates 

of normal modes only. 

                     
          

                    

(8.40) 

 

 

Where:  

     is the residual boundary modal mobility matrix, written as: 

                
        (8.41) 

Furthermore: 

 
    
    

    
   
   

            
   

       
       

  

 

(8.42) 
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Considering the example of Figure 60, the same analysis is repeated to obtain     , 

    .       is then compiled with     ,     , and     , the number of rows and columns 

equal to the number of retained normal mode shapes of all individual structures 

together (see Figure 61). 

 
Figure 61 

 

Composing the mobility matrix of the total substructure from the mobility 

matrices formulated from the individual pairs of substructures AB, BC and 

CD. The mobility matrices reflect the response of the substructure as a function 

of the normal modal coordinates only, but also include the effect of residual 

interface flexibility according to equation (8.35) to (8.40).  See also Figure 60 
 

 

 

 

In Appendix XVIII the different steps are distinguished in the formulation of      

and correction on    . As already discussed in section 8.4, the response of the 

residual boundary flexibility modes to the interface node loads is independent of the 

frequency of alternation of these loads. When neglecting the contribution of the 

interface inertia to the interface node loads, as also suggested in section 8.4, the 

degrees of freedom of the boundary mobility matrix that are related to the residual 

flexibility displacements are also frequency independent. This means that step 4A to 

4C in Appendix XVIII only needs to be performed once as the resulting matrices 

remain the same for each frequency step. 

8.5.3 Overcompensation of Residual Flexibility 

In section 8.5.2 a method is proposed for eliminating the residual interface nodal 

deflection degrees of freedom from the set of dynamic equations obtained according 

to Zoet‟s method. This elimination is based on describing a relation between the 

residual compensation of the interface degrees of freedom and the normal modal 
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coordinates and bares resemblance with the formulation of a reduction basis 

developed by Guyan [49]. The residual compensation thus obtained can be expressed 

through the modal coordinates only and can be written as described in equation 

(8.38) to (8.40).  

The equations of the total assembled structure involving n substructures is generated 

through adding the equations of the individual substructures, as demonstrated in 

Figure 61. A total structure consisting of n substructures is written as: 

            

   

 

  
  
  
     

    
    

 

   

 

 

     is the boundary modal mobility matrix with residual compensation for 

substructure x coupled to substructure y.   

As                     according to equation (8.40), this relation is also 

expressed as: 

                      

   

 

  
  
  
     

    
    

 

   

 

 

From this relation it can be seen that the approach developed above (section 8.5.2) 

will lead to an overcompensation of residual interface flexibility.  

Prove of this is obtained as follows. According to this method, the total residual 

boundary mobility matrix becomes: 

       

   

 

 

According to equation (8.41) the thus obtained sum of residual boundary modal 

motilities of all substructures together is written as: 

  

       

   

 

             
       

   

 

 

 

(8.43) 

 



183 

 

The correct residual boundary modal mobility matrix for the full assembled matrix 

however can be deduced following exactly the same steps as in section 8.5.2, but this 

time considering the total assembled boundary mobility matrix with all degrees of 

freedom related to residual interface displacement retained: 

      

   

 

      

   

 

 

  

     

   

 

  

(8.44) 

 

The error is generated through the difference in approach to the inverse of the     

matrix, as  

     

   

 

 

  

       
  

   

 

 

In which case      
   
     generates a lower number than       

     
  

Results obtained from (8.43) are therefore expected to be over compensated. The 

remedy for that is that more normal modes need to be applied. 

8.6 The Rubin–Zoet Method 

The method described in 8.5.2 can also be applied on the reduced dynamic stiffness 

matrix of the full assembled system matrix obtained through Rubin‟s Method. The 

skyline of the matrices formulating the reduced equations of motion of two coupled 

systems A and B according to Rubin looks as follows: (see section 6.5.2.2 for 

explanation of symbols) 

   
 
  
    

 

 
  

For A representing two coupled systems A and B we write: 

     
  

  

   
   

          
          

  
   
   

   

 

In the same way as done in section 8.5.2, an expression for the reduced dynamic 

mass matrix is obtained:  
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This expression is obtained in similar way as expressed in section 8.5.2. Consider 

lower line section of the matrix equation shown in Figure 62: 

 

                 

        
                                             

         

 

(8.45) 

 

 

 

Figure 62 

 

Skyline of matrices expressing the equations of motion for two coupled systems according to the 

Rubin’s method 

The new matrix only containing the modal amplitudes as a variable is formulated by 

substituting (8.45)  into the first line of the matrix equation shown in Figure 62: 

                  

                 
            

(8.46) 

 

The new reduced matrix (6.58) is written as: 

         (8.47) 

 

Where      is the reduced dynamic stiffness matrix  

                   
        

(8.48) 
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(8.49) 

 

Where the      is the residual boundary stiffness matrix 

                (8.50) 

 

   is a full matrix expressing the interaction between substructure A and B as a 

function of normal modal coordinates of substructure A and B only. The advantage 

of obtaining     for the Rubin‟s method instead of for the Zoet method (section 8.4 

and section 8.5) is that less matrix operations are required as the operations are 

performed on matrices containing all retained modal coordinates, but only halve the 

number of interface degrees of freedom than the Zoet method.  

8.7 Comparing Required Calculation Time  

 

In 8.2 to 8.6 new approaches to CMS modelling have been suggested. In this work, 

many advantages of using CMS methods for ships have been recognised. However, 

due to the high density of CMS matrices, more computation time is sometimes 

required for analysing a structure according to the classical CMS equations than for 

the analysis according to the full harmonic method. The new approaches to CMS in 

this work have therefore been suggested with the aim of reducing the total required 

computation times. 

In this section the number of matrix operations required for obtaining calculation 

results for the LNG carrier analysed in section 7 is discussed. The number of matrix 

operations is a direct indication of the required computation time. The following 

methods are reviewed and compared for their required number of matrix operations:  

- Mode Superposition 

- Fixed Interface CMS 

- Free Interface CMS 

- Zoet method (with and without residual flexibility) 

- Rubin-Zoet method (with and without residual flexibility) 
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8.7.1 Estimating Calculation Time: Floating Point Operations 

 

In Appendix XV to Appendix XIX expression for the number of required floating 

point operations for each step for the different simulation methods are presented. In 

Appendix XX to Appendix XXIII the number of matrix operations is presented 

required, calculated when applying the analysis technique on the LNG carrier, for 

which simulation results have been presented in section  7 and Appendix VII to 

Appendix XIII. 

Not for each step has the number of required matrix operations been obtained 

through direct calculation. The number of matrix operations required for solving the 

eigenvalue problem for obtaining mode shapes and natural frequencies has been 

obtained through measuring CP times the computer requires for generating the mode 

shapes and natural frequencies. 

Appendix XIV gives an overview of some basic matrix operations and the equations 

used to estimate the corresponding required number of floating point operations. In 

Appendix XX to Appendix XXIII the number of real floating point operations 

(FLOPS) required for each step for the ana;ysis of the LNG carrier is presented, 

where each arithmetic operation (+,-,*,/) counts as one matrix operation ( [48], see 

also Appendix XIV).  

Similar to what has been done in section 7, the number of mode shapes and natural 

frequencies retained for all the different CMS analysis is based on selecting all mode 

shapes with corresponding natural frequencies within the frequency range between 0 

and 1.5*      Hz, where      is the upper limit of the frequency range for which 

simulation results are generated. The calculated number of floating point operations 

is, again as in section 7, is based an analysis carried out for 80 frequency steps over a 

frequency range between 1 and 40 Hz.  

In the presentation of the number of the performance of the different methods, the 

steps in the process are, similar to how ANSYS does it, grouped in two stages: the 

generation pass and the use pass. The generation pass is the stage in which the 
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reduced matrices are generated which form the super elements. These super elements 

are compiled into the total assembled matrix in the Use Pass. In the Use pass the 

equations are also solved. 

8.7.2 Required Number of FLOPS for Zoet’s Method 

 

In this section the required number of FLOPS calculated for the Zoet method with 

and without residual flexibility is presented and compared with the required number 

of FLOPS for carrying out the same analysis according to the classical Rubin‟s 

method, mode superposition and according to the full harmonic analysis. With each 

method, the estimated required time for producing 80 sets of results for 80 

frequencies equally divided between 1 and 40 Hz is presented. 

The number of FLOPS for the classic free interface Rubin method (without residual 

interface flexibility) has been estimated according to Appendix XVI. For a more 

detailed presentation of calculated number of floating points see Appendix XVI and 

Appendix XXI. 

The number of flops for the full harmonic analysis, and the number of FLOPS 

required for calculating the normal modes and natural frequencies have been 

estimated through the measured CP times when carrying out the analysis with 

ANSYS, as presented in Table 8 (see also section 7). 

In Table 8 the properties of the subsystems are presented together with the measured 

CP time for calculating normal modes with ANSYS according to the Block Lanczos 

method. Also the measured CP time for the complete generation pass is registered in 

Table 8.  

In Table 9 the calculated number of floating point operations for each sub step is 

presented applying the classical free interface CMS technique according to Rubin.  

In Table 10 and Table 11 the calculated number of floating point operations for each 

sub step is presented applying Zoet‟s method without interface residual flexibility 

and with residual interface flexibility taken into account respectively.  
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In Figure 63 the number of floating point operations for each step for each method 

discussed in this sub-section is presented in a column graph. 

 
 

Table 8 

 
Properties of substructure. Number of modes required is based on applying a cut-out frequency of 

1.5 f max, which is in this case 60 Hz. CMS fixed refers to fixed interface CMS, CMS free refers 

to free interface CMS. 

 

 

Table 9 Calculated number of floating point operations for Rubin’s method (no residual 

compensation) analysis for 80 frequency steps 
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Table 10 

 

 

Calculated number of floating point operations for Zoet’s method analysis for 80 frequency 

steps with no residual interface flexibility. Assumed cut-out frequency = 1.5 fmax = 60 Hz 

  

 
 

Table 11 

 
Calculated number of floating point operations for Zoet’s method analysis for 80 frequency 

steps with residual interface flexibility taken into account. Assumed cut out frequency = 1.5 

fmax = 60 Hz 
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Figure 63 

 
Comparing required FLOPS for Zoet’s method (with and without interface residual 

flexibility) with the classical CMS  methods (no residual compensation) analysis for 80 

frequency steps between 0 and 40 Hz.  

 

8.7.3 Required Number of FLOPS for the Rubin-Zoet Method 

 

In Table 12 the calculated number of floating point operations for each sub step is 

presented applying the CMS technique according to Rubin-Zoet, as described in 

section 8.6 (see also Appendix XIX and Appendix XXIII). In Figure 64 the 

computation times for the different stages of the different analysis techniques are 

presented in the form of a column graph.  
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Table 12 

 

Calculated number of floating point operations for the Rubin-Zoet method analysis for 

80 frequency steps  

 

 

Figure 64 Calculated number of FLOPS for analysing 80 frequency steps for the LNG 

carrier’s aft ship analysis. Rubin’s method has been carried out without residual 

compensation. 
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8.8 Discussion of Performance of the Proposed CMS Techniques 

 

Two new CMS techniques have been presented in this section aiming at reducing 

computation time for obtaining structural harmonic simulation results of typical 

marine structures. These technique are Zoet‟s method and the Rubin Zoet method. 

In section 8.7 and Appendix XX to Appendix XXIIII the calculated number of 

required matrix operations are presented required for getting calculation results for 

the LNG carrier, on which classical CMS and full harmonic analysis techniques have 

been tested (see section 7). Also the number of matrix operation required for the 

LNG carrier following the Zoet, Rubin Zoet and mode superposition method are 

presented.  The required number of matrix operations is presented for producing 80 

sets of results for 80 different frequencies equally divided over a range between 0 

and 40 Hz.  

Figure 64 and Figure 65 the computation times for the different stages of the 

different analysis techniques show that the highest reduction in computation time is 

achieved through applying Zoet‟s Method with no boundary residual compensation 

taken into account. Compared to Rubin‟s CMS method the total analysis time is 

reduced by 97%. Compared to the full harmonic method the computation time is 

reduced by 94%  (see Table 13) 

 

Table 13 

 

Difference in percentage between calculation time required and the calculation time 

required for the classic Rubin’s method and full harmonic analysis. Comparison is made 

for the calculation of 80 sets of results for 80 different frequencies equally divided over a 

range between 0 and 40 Hz. (Rubin’s method carried out without residual compensation) 
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8.8.1 Formulating Matrices  

As can be seen from Figure 64 and Figure 65 the total computation time required for 

generating the results according to the classic CMS method is dominated by the 

required time to solve the matrices. This is, as discussed in previous sections, due to 

the high number of interface degrees of freedom for which the compatibility relations 

are all individually described according to the classic Craig-Bampton and Rubin‟s 

method. This leads to relatively large and, even more importantly, dense matrices for 

which a high number of matrix operations is required for solving. 

Different matrix compilation techniques have been presented in this work which are 

based on adding extra steps in the formulation of the matrices (the so called 

generation pass) through which the number of the dynamic equations that need to be 

solved in the end, is reduced. Evaluation of the required computation time for each 

CMS method is in fact a comparison between the extra calculation time required in 

the generation pass for the reduction of calculation time in the use pass, and the 

reduction of calculation time gained in the uses pass for solving the equation of 

motion. 

 

 

Figure 65 Comparison computation time required for the generation pass for different methods The 

required number of matrix operations is presented for producing 80 sets of results for 80 

different frequencies equally divided over a range between 0 and 40 Hz. 
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8.8.2 The Zoet Method without Residual Boundary Modes 

With the Zoet technique, the reduction of the total assembled matrix representing the 

CMS equations of motion is based on formulating compatibility and equilibrium 

relations through the modal coordinates of the retained normal modes of the coupled 

substructures.  

As described above, the compatibility relations between two substructures for the 

classical CMS method is done for each interface degree of freedom separately. As 

the number of interface degrees of freedom is much higher than the number of 

retained normal modes (see Table 8), the formulation of the compatibility relations 

requires much more time for the classic CMS method, as can be very distinctly seen 

in Figure 65. So, not only the total amount of calculation time for solving the 

equations of motion is reduced in the use pass (which was the aim of the 

development of the alternative approach) also the total amount of computation time 

in the generation pass for the formulation of the dynamic relation between the 

substructures has been decreased. 

8.8.3 The Zoet Method with Boundary Residual Flexibility Modes 

If residual boundary flexibility has to be taken into account, a situation has arisen 

that the description of dynamic interaction between two structures is again, like the 

classical CMS methods, based on involving all the interface physical degrees of 

freedom. In order reduce the set of equations again, two extra steps are required in 

the use pass, compared to the classic CMS method:  

- The formulation of residual flexibility modes 

- The elimination of interface degrees of freedom according to the method 

described in 8.5.2. 

These two extra steps largely increase the calculation time in the generation pass, 

compared to the classical CMS method, as can be seen from Figure 65. It largely 

decreases the computation time in the use pass, due to a reduction of the number of 

steps required for solving the set of equations of motion. Particularly when many sets 
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of solutions need to be generated, the increase of computation time in the generation 

pass is paid off in the use pass. 

All considered, computation time using Zoet‟s method with interface residual 

flexibility relatively to the Rubin‟s CMS method is estimated to decrease by 59%. 

Compared to the full harmonic method the computation time is reduced by a factor 

32% (see Table 13). 

8.8.4 Zoet Method versus Rubin-Zoet Method 

From the CMS simulation results presented in section 7, it can be concluded that the 

compatibility relations and equilibrium requirements at the interface nodes are 

sufficiently described according to the Rubin method. From a theoretical point of 

view, it is expected that the equilibrium and compatibility relations are better 

described through the relation formulated by Rubin, compared to the relations 

formulated by the Zoet method without boundary residual flexibility taken into 

account. This is because the reduction basis applied for the Rubin method also 

contains, apart from the retained number of normal modes, static constraint modes, 

through which already a part of the omitted flexible modes is represented.   

If residual boundary flexibility would be required for the Zoet method, it can be seen 

from Figure 64 and Figure 65 that the Rubin-Zoet method would be a much more 

efficient method, resulting in 92% reduction in calculation time compared to the 

Rubin‟s method, and 86% reduction in computation time compared to the full 

harmonic finite element method approach (see Table 13). The following reasons are 

listed for that: 

- Rubin Zoet method does not require the calculation of boundary residual 

flexibility modes, but uses interface or boundary constraint modes instead. 

Especially when individual uncoupled substructures are not fully constrained, 

the calculation of residual boundary flexibility modes takes much more time, 

as  steps  1B to 1F (see Appendix XXII) need to be added for applying 

pseudo constraints and eliminating rigid body degrees of freedom. 
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- With fully constrained uncoupled substructures, calculating residual 

flexibility modes requires roughly the same number of matrix operations as 

generating constraint modes. This is demonstrated in Figure 66 where the 

estimated number of matrix operations for the use pass are presented, 

applying the Zoet method, with residual boundary flexibility modes, with 

constrained substructures.  However, reducing the number of equations by 

eliminating the flexibility modes the method described in described section  

8.5.2. requires more time for the Zoet method, even when the rigid body 

degrees of freedom of the individual substructures are constrained. This is 

because the Zoet method has roughly double the number of interface degrees 

of freedom that need to be eliminated. This higher number of interface nodes 

is a consequence of working with interface elements instead of interface 

nodes.  

 
Figure 66 

 
Comparison computation time required for the generation pass for different methods, 

with rigid body degrees of freedom constrained for the uncoupled sub structures. The 

required number of matrix operations is presented for producing 80 sets of results for 

80 different frequencies equally divided over a range between 0 and 40 Hz. 
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8.8.5 Comparing CMS with Mode Superposition 

 

In Figure 65 an advantage of CMS can be seen relatively to the technique of applying 

modal reduction to the full structure. Results have not been produced through mode 

superposition, but it is assumed that retaining a number of mode shapes based on a 

cut out frequency of           will give results at least just as accurate as the 

results obtained through Rubin‟s method. For measuring calculation time, all mode 

shapes based on this selection criterion have been calculated, through which the total 

calculation time required for mode superposition has been estimated. 

Looking closer at Figure 64, it can be seen that much more CP time is required for 

generating modes shapes and natural frequencies of the entire structures, than the CP 

time required for calculating the mode shapes and natural frequencies of all the 

individual substructures put together. This particularly has an impact on the required 

CP time on for generating a smaller number of output sets (see Figure 67 A).  

From Figure 67 A, it can be seen that producing one output set at around 40 Hz, 

through classical mode superposition, requires in fact much more computation time 

than the full methods, and the classical CMS methods. 

However, as the calculation time required for solving the modal equations of motion 

is a lot lower, Figure 67 B shows that with an increasing number of output sets, the 

classical mode superposition technique becomes more beneficial in reduction 

computation time relatively to the full harmonic analysis and the classical CMS 

methods. This is because the calculation of modes shapes and natural frequencies 

only has to be done once, no matter how many output sets between 0 and 40 Hz are 

required. 

Although the mode superposition method beats the classical methods in reducing 

computation time in the case of calculating 80 output sets, mode superposition 

technique does not solve problem encountered in the post processing phase when 

deformed shapes need to be plotted. The amount of output information still remains 

the same as for the full solution, as the number of degrees of freedom that need to be 

stored and plotted is still the same as well. 
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Figure 67 

 
A: comparison calculation time required for generating one outset at around 40 Hz. 

B: comparison calculation time required for generating 80 output sets at frequencies 

equally distributed between 1 and 40 Hz. (Rubin’s method carried out without 

residual compensation) 

 

  

  

A 

B 
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8.9 Conclusions 

 

Two new CMS reduction techniques have been proposed based on eliminating 

interface residual flexibility modes from the total CMS matrix. The two methods are 

the Zoet method (with and without residual flexibility) and the Rubin- Zoet method. 

These two methods, together with the classical fixed CMS method (Craig-Bampton) 

and free interface CMS (Rubin‟s method without boundary residual flexibility 

modes) have been reviewed in this section based on required computation time. The 

best computation time efficiency has been calculated for the Zoet method with no 

boundary residual flexibility modes taken into account.  

However, if interface flexibility has to be taken into account for the sake of the 

accuracy of the results, the Rubin Zoet method is expected to be a better choice, 

based on computation time economics. 

More computation time is needed for the Zoet method with residual interface 

flexibility for the following reasons: 

- Formulation of compatibility at the interface lines is primarily based on 

formulating equilibrium of modal forces occurring in the interface elements. 

The number of residual boundary flexibility modes that need to be eliminated 

for the reduction of the total CMS dynamic stiffness matrix is equal to the 

total number of degrees of freedom of all nodes of all interface elements. 

Compatibility according to the Rubin‟s method is formulated for interface 

lines. The number of residual boundary flexibility modes that need to be 

eliminated is equal to the total number of degrees of freedom of all nodes on 

a line, which is roughly half of the number of degrees of freedom compared 

to the number that need to be eliminated for the Zoet method.  

- When rigid body degrees of freedom of the uncoupled substructures are not 

fully constrained, required computation time for the Zoet method is further 

increased, compared to the Rubin-Zoet method. The reason for that is that the 

Zoet method relies on residual flexibility modes for compensating the effect 

of omitted normal modes whereas the Rubin Zoet method relies on constraint 
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modes for the description of the compensation for omitted normal modes. As 

the residual flexibility modes for substructures with unconstrained rigid body 

degrees of freedom require computation time expensive rigid body dof 

elimination procedures are required, procedures that are not necessary for the 

calculation of constraint modes. 

Because the elimination of the residual flexibility degrees of freedom for the Zoet 

and Rubin-Zoet method is carried out according to the same procedure, the accuracy 

of the results is initially assumed to be the same, as the effect of overcompensation of 

interface flexibility, (as a penalty to the reduction technique), is assumed to be the 

same as well. However, the difference between the two techniques lays in the 

description of the interface compatibility and equilibrium relations. It cannot be 

estimated at this stage if there is a beneficial effect of either of the formulations on 

the effect of overcompensation of residual interface flexibility.   
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9 Case Study: Evaluating Zoet’s Method 

In section 8 two new approaches to CMS have been presented: Zoet‟s method (with 

and without boundary residual flexibility modes) and a method where compatibility 

and equilibrium of interfaces between substructures are described  according to 

Rubin‟s method, and reduction of the total assembled CMS matrices is obtained in 

the same way as for the Zoet method (Rubin-Zoet method). These new approaches to 

CMS have been suggested with the aim of reducing the total required computation 

times compared to the classic Rubin‟s CMS method. Calculation results of the 

number of matrix operations for each analysis technique presented in section 8.7 and 

section 8.8 show that the biggest reduction in computation time can be achieved by 

applying Zoet‟s method without residual interface flexibility compensation taken into 

account.  

 

Paragraph structure of  chapter 9 ‘Case Study: Evaluating Zoet’s Method’ 

In this section a special test case model is presented together with simulation results 

obtained through the Zoet method without residual interface flexibility compensation 

and with residual boundary flexibility compensation taken into account. The aim of 

the model is to investigate the need for residual interface flexibility compensation for 
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the Zoet method, to investigate the effect of overcompensation of residual flexibility, 

when residual flexibility modes have to be included for the Zoet method.  

9.1 Properties of the Test Model 

Figure 68 shows the structure used for this case study. As the size of the entire LNG 

model analysed in section 7 made it unpractical for testing the newly proposed 

methods, only a part of the LNG structure has been used. The structure is divided in 

four substructures (see Figure 69 and Table 14). Dynamic simulations have been 

carried out for the following configurations: 

- Substructure A and B coupled (see Appendix XXVI and Appendix XXVII)  

- Substructure B and C coupled (see Appendix XXVI and Appendix XXVII) 

- Substructure C and D coupled (see Appendix XXVI and Appendix XXVII) 

- Substructure A, B and C coupled (see Appendix XXIX) 

- Substructure A, B, C and D coupled (see Appendix XXVIII) 

 
Figure 68 

 

Structure used for testing Zoet’s method. Measurement location are indicated 

through the yellow numbers 

For all configurations results are compared applying the following simulation 

techniques: 

- The full harmonic analysis 
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- Free and fixed interface CMS 

- Zoet‟s method with and without residual flexibility. 

9.1.1 Size types of Elements, and Properties of the Substructures 

As described in 7.2, two types of elements have been used, shell181 elements for 

modelling hull and deck plating and BEAM188 elements for modelling stiffeners and 

girders.  

The shell181 is a four node thick plate element as described in Appendix IV. 

The BEAM188 element has been selected as it represents a thick beam element 

where the effect of the rotary inertia and shear deformation has been taken into 

account as described in Appendix III. 

The total coupled  model consists of: 

- 6924 nodes 

- 7641 elements  

Evaluation of the results in carried out through for a selected number of nodes shown 

in Figure 68. These number of nodes have been selected following the study of the 

mode shapes at the frequencies where the highest response was found according to 

the full harmonic analysis of the full structure (sub A, B, C and D coupled, see 

Appendix XXVIII).  

Sub structural division is according to Figure 69 and Table 14 lists the properties of 

the substructures A to D. 
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Figure 69 

 

Structure used for evaluation of Zoet’s method. The model is constrained on the 

yellow lines on the right hand side of substructure A.    

9.1.2 Excitation Characteristic 

An arbitrary number of nodes at the lower section of the entire model has been 

selected to be subjected to a nodal load in vertical direction of 127 N. This will result 

in roughly 3.8 kPa alternating hull pressure, which roughly coincides with the 

amplitude of pressure fluctuation calculated for the 1
st
 blade passing frequency (see 

section 7.5.2). 80 simulation results are produced applying this alternating pressure 

distribution for 80 different frequencies equally distributed over a frequency range 

between 1 and 40 Hz.   
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Table 14 Properties of the models used for the different methods. Free interface CMS has been carried 

according to the Rubin’s method (without residual compensation) and the fixed interface 

CMS has been carried out according to the Craig-Bampton method. 

9.1.3 Damping and Added Mass 

A loss number of 2% has been applied, a typical value used for representing the 

structural damping of steel structures. No hydrodynamic damping or added mass has 

been applied. 

9.1.4 Boundary Conditions 

The model is constrained at the nodes on the far right end side on the yellow lines 

shown in Figure 69. This means that, when applying free CMS, the substructures B 

to D are free floating and all rigid boundary modes need to be retained. 
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9.2 Software Used 

Free and fixed interface CMS has been tested using ANSYS. The fixed interface 

CMS results obtained through ANSYS have been calculated according to the Craig-

Bampton  method. The free interface CMS results have been obtained through 

ANSYS13 according to the Rubin‟s method. No residual compensation has been 

applied in the free interface CMS technique used through ANSYS. However, 

contribution from omitted normal modes is for a great part compensated at the 

interface nodes with the classic Rubin‟s method through the inclusion of constraint 

modes into the reduction basis. 

The Zoet method has been tested using a combination between ANSYS, MATLAB 

and excel. Stiffness and mass matrices, mode shapes, natural frequencies modal 

coordinates    have obtained through ANSYS and have been written away in text 

files (using Harwell-Boeing format for the matrices) or have been exported to excel. 

Input data for further calculations in MATLAB are read from the text files and excel 

files and the results are calculated according to the method described in section 8.   

Also performance applying the different methods is compared through estimating the 

number of matrix operations required for the different steps of the analysis. 

9.3 Evaluation of the Zoet Method 

Evaluation of the new modelling techniques is based on studying a set of 80 output 

sets representing simulation results for 80 different frequencies over a range between 

0 and 40 Hz. For each substructure simulation results for 4 locations are evaluated. 

These locations are selected based study of simulation results performed through the 

full harmonic analysis (see Figure 68 and Appendix XXIV). The results obtained 

through the full harmonic analysis are the benchmark for this study.  

Evaluation of the modelling results will be based on the computation time required 

for obtaining results that are „accurate enough‟. Sufficient accuracy of the simulation 

results is considered to have been obtained when the frequencies at which peak 

responses are found, coincide with the frequencies on which peak responses have 
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been found according the full harmonic analysis results. This basically means that, 

considering frequency steps of 0.5 Hz are used (80 frequencies over a 40 Hz 

frequency range), natural frequencies found through any of the evaluated method, 

should be within a bandwidth between -0.25Hz and  +0.25Hz from the natural 

frequencies found through the full harmonic analysis. 

9.3.1 Relevance of Residual Boundary Flexibility Modes 

A comparison has been made between results obtained through Zoet‟s method 

without taking interface residual flexibility into account and with the interface 

residual flexibility taken into account. As explained in section 8, CMS technique 

proposed has been developed in such a way that it is not necessary to include the 

displacement of each interface degree of freedom in the set of equations, in order to 

be able to describe the interaction between the substructures. This way the size of the 

matrix that needs to be solved does not depend on the number of coupling degrees of 

freedom, but may be defined by the number of mode required for accurately enough 

describing the dynamic displacement of the substructures. 

In Appendix XXVII simulation results from different models are presented taking a 

great number of modes into account applying a cut-out frequency of 120 Hz, equal to 

three times the maximum frequency that is analysed producing results over a 

frequency range between 1 and 40 Hz taking steps of approximately 0.5 Hz. 

As can be seen in Appendix XXVII and Figure 70, taking into account residual 

interface flexibility (residual compensation) at the interface nodes is very important 

for getting accurate enough results. The results according to Zoet‟s method plotted in 

these graphs have been obtained by expanding only the normal mode shapes for 

either the analysis with residual interface flexibility taken into account or the analysis 

with no residual interface flexibility taken into account.  

Taking residual interface flexibility into account gives results for the Zoet method, 

which are comparable with the results obtained through the classic Rubin‟s method. 
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Figure 70 

 
From top left turning clockwise: 

results from substructure A and B 

coupled together, B and C coupled 

together and C and D coupled 

together.  

Results have been obtained from  

- Full analysis 

- Zoet analysis with residual 

interface flexibility taken 

into account 

- Zoet analysis without 

residual interface flexibility 

taken into account 

 

 

 

9.3.2 Results for Individual Pairs of Substructures 

Simulation results according to Zoet‟s method with residual interface flexibility 

compensation have been produced for each pair of substructures and are presented in 

Appendix XXVI (see also Figure 71). The simulation results are presented either for 

the y direction or the z direction for the location number shown in the legend. The 

subscript „c‟ to the direction letter y or z, means that the results have been obtained 

(in y or z direction) not by just expanding the normal modes, but also expanding the 

contribution from the boundary residual flexibility modes. Simulation results have 

been produced retaining different number of modes: 
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Figure 71 

 
Some results from the simulation of substructure AB and substructure CD. The subscription 

‘c’ indicates that the results have been obtained by expanding the residual contribution from 

the residual flexibility modes in addition to the expansion of the normal modes. See Appendix 

XXVI for more results) 

 

Substructure A; 

retaining 31 modes: cut-out frequency = 60 Hz (1.5×    ) 

retaining 142 modes: cut-out frequency = 120 Hz (3×    ) 

retaining 205 modes:  cut-out frequency = 145 Hz (3.5×    ) 

Substructure B; 

retaining 79 modes: cut-out frequency = 60 Hz (1.5×    ) 

retaining 142 modes: cut-out frequency = 80 Hz (2×    ) 

retaining 179 modes:  cut-out frequency = 120 Hz (3×    ) 

Substructure C; 

retaining 59 modes: cut-out frequency = 60 Hz (1.5×    ) 

retaining 111 modes: cut-out frequency = 80 Hz (2×    ) 

retaining 148 modes:  cut-out frequency = 120 Hz (3×    ) 
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Substructure D; 

retaining 41 modes: cut-out frequency = 60 Hz (1.5×    ) 

retaining 82 modes: cut-out frequency = 80 Hz (2×    ) 

retaining 105 modes:  cut-out frequency = 120 Hz (3×    ) 

As can also been seen in Figure 71 and Appendix XXVI, good results are generally 

obtained for each number of modes taken into account.   

The exception is the model pairing substructure A with substructure B. As also can 

be seen from Figure 70, residual static modes play an important role in the response 

of the structure. This is mainly related to the response of substructure A depending 

largely the contributions of higher mode numbers, as demonstrated in Figure 72. In 

Figure 72 the calculation results for the response of just substructure A (not coupled 

to other substructures) are presented. 

 

Figure 72 

 
Calculated response at location 1 in z direction on substructure A. Response is obtained 

through mode superposition (red curve) and full harmonic analysis (blue curve). Mode 

superposition results are obtained applying a cut-out frequency of 60 Hz ( 1.5×    ), 80 Hz 

(2×    ), 120 Hz ( 3×    ) and 140 Hz ( 3.5×    ) in graph A, B, C and D respectively 

 

A B 

C 
D 
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As can be seen from in Figure 72, accurately describing the vibration amplitudes at 

location 1 (at one of the interface nodes between substructure A and B), requires the 

superposition of far more modal contributions than the number of modes obtained 

through applying a cut-out frequency of 1.5×    . Even when applying a cut-out 

frequency of 3.5×     still differences in calculated response amplitudes can be seen 

between the results obtained through full harmonic analysis and the response 

obtained through mode superposition.  

In Figure 73 can be seen that the response of the uncoupled substructures B to D can 

be accurately enough described through mode superposition applying a cut-out 

frequency of 1.5×    . This is why a higher number of normal modes has been 

retained for substructure A than for substructure B to D.  

 

 

 

Figure 73: Calculated response for uncoupled 

substructures B to D comparing results obtained 

through full harmonic analysis (blue curve) and 

results obtained from mode superposition applying a 

cut out frequency of 60 Hz (1.5×    )  
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9.3.3 Results with Multiple Coupled Structures 

In Appendix XXIV results obtained from free interface (Rubin method with no 

residual compensation) and fixed interface (Craig Bampton) CMS are plotted 

together with results obtained from the full harmonic analysis (obtained through 

analysis with ANSYS). These graphs show that free interface CMS is very accurate 

whereas the results produced through the fixed interface CMS deviate from the full 

analysis results. The number of mode shapes retained for the free and fixed interface 

CMS is based on selecting all modes with natural frequencies within the range 

between 0 and 1.5×    , which in this case is between 0 and 60 Hz, considering our 

maximum analysed frequency is 40 Hz. 

 

 

Figure 74 

 
Result obtained through Zoet’s method 

for substructure A, B, C and D coupled. 

a. Results obtained retaining modes 

with natural frequencies between 0 

and 1.5×     (cut-out frequency 

substructure A = 3×    ) 

b. Results obtained retaining modes 

with natural frequencies between 0 

and 2×    (cut-out frequency 

substructure A = 3×    ) 

c. Results obtained retaining modes 

with natural frequencies between 0 

and 3×    (cut-out frequency 

substructure A = 3.5×    ) 

 

 

a b 

c 
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In Appendix XXVIII results are presented from the simulation run through the Zoet‟s 

method compared with simulation results obtained through free interface CMS. The 

comparison with the free interface CMS (Rubin‟s method with no residual 

compensation) has been made as the results from the free interface CMS coincide 

with the full analysis results. 

In the results obtained through Zoet‟s Method, the effect of over-compensation of the 

residual flexibility can clearly be seen (see also Figure 74), as described section 

8.5.3. The results in a too flexible behaviour of the structure‟s interface boundaries, 

which results in peak responses (natural frequencies) to be located at lower 

frequencies than the peak response frequencies found through the full harmonic 

analysis and the classic Rubin‟s free interface CMS analysis. As a result, the number 

of retained normal modes needed to be increased. The upper limit of the frequency 

range over which the modes have been selected had to be increased from 1.5×     to 

3×     which meant that a range of 0 to 120 Hz needed to be adopted instead of a 

range between 0 and 60 Hz, as was found to be sufficient for the classic Rubin‟s 

method (with no residual compensation). By increasing the number of retained 

elastic modes, the contribution from the boundary flexibility modes decreases. As it 

is through the elimination of the contribution from these boundary flexibility modes 

that boundaries flexibility is over compensated, this overcompensation effect is 

decreased as well. 

In Appendix XXIX simulation results have been presented of the mode containing 

only substructure A, B and C coupled together. In Appendix XXIX and Figure 75 

can be seen that the effect of overcompensation has become less strong. Adopting a 

cut-out frequency of 2×     already give accurate enough results. 
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Figure 75 

 

Result obtained for location 3 (see Figure 68 and 

Appendix XXIX) through Zoet’s method for 

substructure A, B and C coupled. 

a. Results obtained retaining modes with 

natural frequencies between 0 and 

2×     (cut-out frequency 

substructure A = 3×    ) 

b. Results obtained retaining modes with 

natural frequencies between 0 and 

3×    (cut-out frequency substructure 

A = 3.5×    ) 

 

 

 

9.3.4 Evaluation of Required Computation Time 

To evaluate the effectiveness of the Zoet method in reducing computation time, the 

required number of floating point operations for a number simulation methods have 

been calculated, as described in Appendix XV to Appendix XIX (see Figure 76). 

These numbers have been combined with measured CP times required for obtaining 

modal information (see Table 15). The number of FLOPS have been calculated 

taking into consideration that the response at 80 frequency steps has been calculated 

over a frequency range between 1 and 40 Hz.  

The number of FLOPS has been calculated for the following methods: 

- Modal reduction on the full model. The number of retained normal modes is 

based on applying a cut-out frequency of 1.5×     = 60 Hz (where      is 

a 

b 
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the upper limit of the analysed frequency range = 40 Hz).Hz), following the 

instruction in Appendix XV. 

- Free interface CMS according to the Rubin method without residual 

compensation (calculated with ANSYS). The number of retained normal 

modes for the individual substructures is based on applying a cut-out 

frequency of 1.5×     = 60 Hz (where      is the upper limit of the analysed 

frequency range = 40 Hz). The steps listed in Appendix XVI are followed. 

- Free interface CMS according to the Rubin method with interface reduction 

using interface modes, according to Appendix XVII . The number of retained 

normal modes for the individual substructures is based on applying a cut-out 

frequency of 1.5×     = 60 Hz (where      is the upper limit of the analysed 

frequency range = 40 Hz). Selection of number of interface modes is based 

on applying a cut-out frequency of ×       according to Tran [41]. 

Appendix XXX shows how the number of FLOPS are obtained for the PHD 

test model (see also Appendix XXXI) 

- Zoet Method with residual compensation according to Appendix XVIII. A 

higher number of mode shapes needs to be selected in order to reduce the 

effect of residual interface flexibility overcompensation. The number of 

retained normal modes for the individual substructures is based on applying a 

cut-out frequency of 3×     = 120 Hz (where      is the upper limit of the 

analysed frequency range = 40 Hz).. (see also Appendix XXXI) 

- Rubin-Zoet method according to Appendix XIX. The same number of mode 

shapes has been selected as for the Zoet method (see also Appendix XXXI)   
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Table 15 PHD test case model: Comparing size and density of matrices generated through the different 

methods. Free interface CMS has been carried according to the Rubin’s method and the fixed 

interface CMS has been carried out according to the Craig-Bampton method. 

 

 
Figure 76 

 
PHD test case model: Calculated number of FLOPS for analysing 80 frequency steps. Free 

interface CMS has been carried according to the Rubin’s method (without residual 

compensation). The fixed interface CMS method has been carried out according to the 

classic Craig-Bampton method.  
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Table 16 

 
PHD test case model: Differences in total computation time between simulation 

techniques expressed in percentages restively to: Classical Rubin’s method (no 

residual compensation), full harmonic analysis, Rubin’s method with interface 

reduction. Comparison has been made based on producing 80output sets for 80 

frequencies equally distributed between 1 and 40 Hz.   

  

In Table 16 and Figure 76 can be seen that analysis times are reduced by 23% and by 

63% relatively to the classic Rubin‟s CMS method when applying the Zoet Method 

or Rubin-Zoet method respectively. With the Rubin-Zoet method also a reduction of 

calculation time is achieved relatively to the already existing interface reduction 

method according to the IRS method (see section 6.5.3.)   

9.3.5 Consequences of Overcompensation on LNG Carrier 

In section 8.7 the required computation times for analysing the LNG carrier‟s 

structure‟s dynamic response through the newly developed CMS methods are 

compared with the computation times required for analysis of the structure through 

classic CMS approaches and the full harmonic analysis. With the calculation of the 

time required for the analysis according to the CMS methods, the choice of the 

number of normal modes retained in the reduction basis was based on selecting all 

mode shapes with natural frequencies between 0 and number of  1.5×     (     is 

the upper limit of the analysed frequency range = 40 Hz, which results in a cut-out 

frequency of 60 Hz).   

In Figure 77 A the estimated required calculation time for each step for different 

simulation technique is presented through bar graphs, based on applying the above 

mentioned cut out frequency of 60 Hz. However, from the analysis results of the case 

study‟s structure it has been concluded that a higher number of normal modes is 
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required for the Zoet and Rubin-Zoet method. Simulation results on the PHD test 

structure suggest that the cut-out frequency for the Zoet and Rubin-Zoet method has 

been increased to  3×     in order to minimise the effect of overcompensation of 

residual interface flexibility, which was to be expected from the matrix compilation 

method (as described in section 8.5.3). By increasing the number of retained elastic 

modes, the contribution from the boundary flexibility modes decreases. As it is 

through the elimination of the contribution from these boundary flexibility modes 

that boundaries flexibility is over compensated, this overcompensation effect is 

decreased as well. Figure 77 B compares the calculation times required for the Zoet 

and Rubin-Zoet method applying the increased cut-out frequency of 3×     =120 Hz 

with the classical methods for which the calculation times are still based on applying 

a a cut-out frequency of 1.5×     = 60 Hz.  

No comparison is made with the reduction that could have been obtained by reducing 

the interface degrees of freedom by applying interface modes. ANSYS did not offer 

the option of interface reduction through interface modes, and the substructures of 

the LNG carrier were too big to calculate the interface modes with the MATLAB 

code (see also Appendix XXXII for more extended presentation of results). 

As can be seen from Figure 77, despite of the increase of calculation time for the 

Zoet and Rubin-Zoet method due to the need for increasing the number of normal 

modes, huge reductions of calculation times are still achieve, both relatively to the 

time required for the full harmonic analysis and the time required for the classical 

CMS (reduction of 67% and 80% respectively)  
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Figure 77 Comparing the reduction in simulation time for the different methods applied for the structural 

dynamic analysis for 80 frequency steps for the LNG carrier. Graph A compares simulation 

times applying a cut-out frequency of 1.5×    = 60 Hz for all methods. In graph B the cut-out 

frequency for the Rubin and Rubin Zoet method has been increased to 3×    , = 120 Hz. 

  

  

A 

B 
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Table 17 

 
Differences in total computation time between simulation techniques expressed in 

percentages restively to: Classical Rubin’s method (no residual compensation), full 

harmonic analysis. Comparison has been made based on producing 80output sets for 80 

frequencies equally distributed between 1 and 40 Hz.   

9.4 Residual Interface Flexibility and Overcompensation: a Discussion 

In this section the Zoet method with and without residual interface flexibility 

compensation has been tested by using the method on a part of the structure of the 

LNG carrier. This test structure has been subdivided in four substructures and the 

Zoet method has been tested using different numbers of normal mode shapes that 

were retained in the reduction basis.  

It has been concluded from the simulation results, that including residual interface 

flexibility compensation in the Zoet method is crucial for the simulation results. This 

has consequences for the effectiveness of the Zoet method, and puts the Rubin-Zoet 

method in front, even compared to the applying the existing interface reduction 

technique according to the IRS method (see section 6.5.3).  

The need for residual boundary flexibility modes means that the interface degree of 

freedom elimination technique presented in paragraph 8.5.2. had to be applied, in 

order to achieve reduction of computation time. However, the related final matrix 

compilation procedure results in overcompensation of the residual flexibility, which 

made it necessary in increase the number of normal modes in the reduction basis. 

In the following section a discussion takes place about the consequences of the need 

to include residual interface flexibility (as mentioned above) and the consequences of 

interface flexibility overcompensation, and how its impact may be reduced. 
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9.4.1 The Effect of the Need for Residual Boundary Flexibility Modes 

In Figure 78 the required computation time for the different modelling techniques is 

presented through a bar graph. Simulation results of sets of two coupled structures 

(as presented in Appendix XXVI) clearly showed that including the residual 

boundary flexibility modes for the Zoet Method is crucial for the accuracy of the 

outcome of the simulation results. This is why the required computation time for the 

Zoet method without residual interface flexibility compensation has not been 

included in Figure 78.  

As can be seen from Figure 78, the Rubin Zoet method requires much less 

computation time than the Zoet method, now that residual flexibility modes are 

required. The higher amount of computation time for the Zoet method comes from 

the fact that the static contribution from the compensation of the omitted modes 

relies on the introduction of boundary flexibility modes whereas the Zoet-Rubin 

method relies on constraint modes for the compensation of the omitted modes.  

Unfortunately, the number of matrix operation required for generating flexibility 

modes is much higher than the number of operation required for generating 

constraint modes. This is because the calculation of flexibility modes requires 

inverting the full stiffness matrix of a substructure whereas the calculation of the 

constraint modes requires inverting the stiffness matrix with the interface degrees of 

freedom eliminated. 
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Figure 78 Comparing computation time for different simulation techniques for the 

calculation of the harmonic dynamic behaviour of the PHD test structure. 

Comparison has been made based on producing 80output sets for 80 frequencies 

equally distributed between 1 and 40 Hz.  Rubin’s method has been carried out 

without residual compensation.  

However, as the substructures B to D are not constrained, the residual boundary 

flexibility modes have to be calculated for the Zoet method using pseudo constraints 

according to section 8.4 and Appendix V. This makes the calculation of the residual 

boundary flexibility modes even more expensive than the calculation of the 

constraint modes. This is why the Zoet method requires much more calculation time 

than the Rubin-Zoet method. Figure 78 demonstrates that this effect has a huge 

impact on computation time for the PHD test model. 
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Figure 79 

 

Comparing required computation times considering the rigid body modes of substructure B to 

D fixed.. This is to demonstrate that calculating boundary flexibility modes is more expensive 

than calculating constraint modes even without the added cost of eliminating the effect of 

rigid body modes in case substructures are not constrained. B is a zoomed in version of graph 

A. 

 

  

A 

B 
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In Figure 79 is demonstrated what the required calculation time for the test case 

model would be if all rigid body degrees of freedom of the uncoupled substructures 

would have been constrained. Calculating boundary flexibility modes cost roughly 

twice as much computation time than the generation of constraint modes in this case, 

which is a result of having to invert bigger matrices for generating boundary 

flexibility modes compared to the computation of constraint modes.   

9.4.2 Overcompensation of Residual Flexibility 

In Figure 78 the required computation time for the different modelling techniques is 

presented through a bar graph. Simulation results of sets of two coupled structures 

(as presented in Appendix XXVI) clearly showed that including the residual 

boundary flexibility modes for the Zoet Method is crucial for the accuracy of the 

outcome of the simulation results. 

However, in order achieve reduction in computation time relatively to the classical 

CMS methods, the interface degree of freedom elimination technique according to 

8.5 had to be applied. Through this technique of assembling the total reduced 

stiffness and mass matrices, overcompensation of the residual interface flexibility 

takes place when coupling more than two substructures together (as explained in 

section 8.5.3). This effect can be clearly seen in the simulation results of the PHD 

test case model. As a consequence of the overcompensation, resonance peaks in the 

response curves obtained through the Zoet method occur at lower frequencies 

compared to the results obtained through classical CMS and full harmonic analysis 

(see Figure 74, and Appendix XXVIII). In order to reduce this effect, the cut-out 

frequency used for selecting the number of normal modes for each substructure had 

to be increased from                to              . By increasing the 

number of retained elastic modes, the contribution from the boundary flexibility 

modes decreases. As it is through the elimination of the contribution from these 

boundary flexibility modes that boundaries flexibility is over compensated, this 

overcompensation effect is decreased as well. 
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Figure 80 

 

Effect of increasing the cut-out frequency for the test case model. Graph A represents the 

calculation times applying cut-out frequencies of                for all methods. In 

graph B the cut-out frequency has been increased to               for the Zoet and 

Rubin Zoet method, required for the accuracy of the results. Required calculation results 

are presented for producing results for 80 frequency steps. 

 

A 

B 
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In section 9 (case study) it has also been demonstrated that the effect of residual 

flexibility overcompensation seems to become stronger with an increasing number of 

coupled substructures. When coupling three substructures together, a cut-out 

frequency of        gave very accurate dynamic response calculation results. Adding 

an extra substructure required an increase of the cut-out frequency to       .   

Rubin’s Method and the Effect of Overcompensation of Residual Flexibility 

Although the Rubin-Zoet method has not been tested, it is assumed that the same 

increase of cut-out frequency is required for the Rubin-Zoet method, as 

overcompensation of residual flexibility is assumed to take place in the same manner. 

 

Figure 81 

 

Simulation results using different simulation techniques for two coupled sub 

structures A and B as described in Appendix XXV 

However, it still remains to be investigated if the effect of overcompensation is 

equally strong using the Zoet technique as for the Rubin- Zoet technique. In Figure 

81 the simulation results are presented considering only two coupled substructures: 

substructure A and Substructure B. The simulation results show that for this 

particular configuration more mode shapes needed to be expanded using the Zoet 
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Method, compared to the Rubin Method in order to get roughly the same degree 

accuracy. 

Important to note for these two sets of substructures, is that static compensation plays 

an important role. Many important global mode shapes of the substructures are above 

the cut-out frequency of 60 Hz, as substructure A is constrained. The better quality of 

results of the classic Rubin‟s technique whilst retaining a much lower number of 

normal modes suggest that through a better description of compatibility and 

equilibrium relations, the static contribution is much better described through the 

Rubin‟s method. This may also mean that through the reduced number of equations, 

obtained through the interface degree of freedom elimination technique suggested in 

this work, the Rubin Zoet reduced set of equations may give a better formulation of 

modal interaction between substructures as well.  

The Effect of Choice of Substructures on Overcompensation of Residual flexibility  

Also the choice of distribution of substructures may have an effect on the accuracy of 

the results and the effect of overcompensation. Considering the results presented in 

Figure 81, static compensation plays an important role in the outcome of the 

simulation results, simulating dynamic interaction between substructure A and B of 

the PHD test model presented in section 9.1. and Appendix XXV. Reason for that is 

that the constraints at substructure A, this substructure has become a very stiff 

substructure. Important natural frequencies with global dynamic mode shapes are, as 

a consequence, way above the classically applied cut-out frequency of          

  Hz.  This means that the dynamic behaviour of substructure A cannot be 

accurately enough described through classic mode superposition, applying a cut-out 

frequency of            Hz, and a disproportionate higher number of mode 

shapes needs to be applied as a results. This results in a mathematical description of 

the sub-structural interaction that depends largely on the presence of the residual 

flexibility modes. It is very well possible, but have not been tested in this work, that 

substructures and their boundary conditions should be chosen in such a way, that 

natural frequencies involving global deformation mode shapes should be as low as 

possible, preferably with in the frequency range between 0 and         . This way, 
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the mathematical description of the modal dynamic interaction becomes less 

dependent on the residual modal compensation. As a consequence, the effect of 

overcompensation of the residual flexibility is expected to be less as well, so that the 

cut-out frequency can be lower than the here applied       . 

   

  

Mode shape at 22.5 Hz according to full harmonic 

results (see Appendix XXIV) 

Mode shape at 30.25 Hz according to full harmonic 

results (see Appendix XXIV) 

 
Figure 82 

 
As can be seen from the graphs, the effect of overcompensation is less prominent at the 

resonance peak associated with the mode shape shown in figure B. Graph A shows the 

results obtained from the Zoet method with residual interface flexibility, applying a cut-out 

frequency of           for selecting normal modes of substructure B to D  (       for 

substructure A) and  together with the results obtained from the full harmonic analysis. 

Graph B shows the results obtained from the Zoet method with residual interface flexibility, 

applying a cut-out frequency of        for selecting normal modes of substructure B to D, 

(       for substructure A)  together with the results obtained from the full harmonic 

analysis. 

This effect can be further demonstrated with Figure 82. In Figure 82 the deformed 

shape corresponding with two different frequencies of resonance calculated through 

the full method of the full PHD model, are presented. Also the graph of the 

15z 
15z 

Figure A Figure B 

Graph A Graph B 
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simulation results obtained through the Zoet method are presented for location 15, 

plotted together with the results obtained through the full harmonic analysis. 

As can be seen from Figure 82, the biggest effect of overcompensation can be seen 

close to the peak frequency of 22.5 Hz. The effect of overcompensation becomes 

smaller for the resonance occurring close to 30.25 Hz. This can be seen very clearly 

from graph A in Figure 82, plotting the results from the Zoet method with residual 

flexibility applying a cut-out frequency of        together with the results obtained 

through the full harmonic analysis. A likely reason for the decreasing effect of 

overcompensation of residual flexibility is that the related mode shape at 30.25 Hz is 

less dependent on the description of residual flexibility than the mode shape at 22.5 

Hz. This is because the mode shape at 30.25 Hz seems to be the result of a coupling 

between more localised (elastic) modes, of which most of them have their natural 

frequencies lower than the cut-out frequency. 

9.5 Conclusion 

 

In this section different CMS techniques, the Zoet method with and without residual 

interface flexibility compensation has been tested and evaluated based on accuracy 

(compared to full harmonic analysis results) and required computation time. The 

substructure on which the methods have been tested is subdivided in four 

substructures and the modelling methods have been evaluated based on required 

computation time for generating 80 sets of results for 80 frequencies equally 

distributed between 1 and 40 Hz. It has been established that the boundary conditions 

have not been described accurately enough through the Zoet method. Boundary 

flexibility modes had to be incorporated to arrive at the same level of accuracy as the 

classical CMS methods. Considering the need for incorporating interface flexibility 

compensation, the computation time for the Zoet method increases drastically, 

especially when rigid body degrees of freedom of uncoupled substructures are not 

fully constrained.  

From a computation time point of view, the Rubin Zoet method was found to be the 

most time efficient CMS technique. Figure 83 shows graphs comparing computation 
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times required for all methods, in order to get similar accuracies, i.e. that the results 

coincide well enough with the results obtained from the full harmonic analysis. 

 

 

 

Figure 83 

 

PHD Test case model: Differences in total computation time between simulation techniques 

expressed in percentages restively to: Classical Rubin’s method (no residual compensation), 

full harmonic analysis and Rubin’s method with interface reduction. Analysis times are based 

on producing 80 result sets for 80 frequencies evenly distributed between 1 and 40 Hz.  

9.5.1 Evaluation Rubin-Zoet Method 

Considering the need for including residual boundary flexibility modes for the Zoet 

method, the Rubin-Zoet method approach was found to be the most time economic 

approach, based on the calculated number of floating point operations required for 

each step in the analysis. Although the Rubin-Zoet method has not been tested, it is 

assumed that the effect of overcompensation of residual flexibility (as described in 

section 8.5.3) is the same as found for the Zoet method, as both methods use the 

same procedure for the reduction of the final CMS matrices (as described in 8.5.2).  
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Estimated calculation times are therefore also based on the need to increase the 

number of retained normal modes (by increasing the cut-out frequency from          

to       ) in order to reduce the effect of overcompensation of interface flexibility. 

By increasing the number of retained elastic modes, the contribution from the 

boundary flexibility modes decreases. As it is through the elimination of the 

contribution from these boundary flexibility modes that boundaries flexibility is over 

compensated, this overcompensation effect is decreased as well. 

Compared to the classic CMS methods, an increase of computation time in the 

generation pass is required in order to reduce the CMS matrices and achieve 

reduction of computation time required for solving these CMS matrices (see Figure 

83): 

- Applying the interface degree of freedom elimination technique suggested in 

section 8.5 has to be applied as an extra step to the classic CMS generation 

pass and adds extra calculation time (see Figure 83): 

- A higher number of retained normal modes had to be applied compared to 

classical CMS, in order to reduce the effect of overcompensation of residual 

flexibility. This increases the computation time required for calculating mode 

shapes and natural frequencies, as again can be seen in Figure 83 

Figure 83 also clearly demonstrates that the decrease of computation time achieved 

through the reduction of the CMS matrices is much larger than the increase of 

computation time required in the generation pass described above. 

Although it has been assumed that the impact of overcompensation of interface 

flexibility of the Rubin-Zoet method is the same as for the Zoet method, the question 

remains how this impact is affected by the differences in describing interface 

compatibility and equilibrium between the Zoet and Rubin-Zoet method. 

9.5.2 Evaluation Zoet Method with Residual Compensation 

The Zoet Method with Residual flexibility modes requires more computation time 

than the Rubin-Zoet method because: 
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- The calculation of residual interface flexibility requires much more 

computation time than the computation of constraint modes, through which 

the classical Rubin‟s method described residual compensation. This is 

particularly because the rigid body modes of three of the four individual 

uncoupled substructures are un-constrained. Expensive rigid body degrees of 

freedom elimination techniques are required for the calculation of the residual 

boundary flexibility modes. 

 

 

Figure 84 

 

PHD Test case model assuming rigid body degrees of freedom of the uncoupled structures 

restrained: Differences in total computation time between simulation techniques expressed in 

percentages restively to: Classical Rubin’s method (no residual compensation), full harmonic 

analysis and Rubin’s method with interface reduction. Analysis times are based on producing 

80 result sets for 80 frequencies evenly distributed between 1 and 40 Hz. 
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- The application of the matrix reduction technique (eliminating interface 

degrees of freedom) requires more calculation time as roughly double the 

number of interface degrees of freedom is retained for the Zoet method, as a 

consequence of defining compatibility and equilibrium through interface 

elements instead of interface nodes. 

Reduction of computation times similar to the Rubin-Zoet method may be achieved 

when rigid degrees of freedom of the individual uncoupled substructures are 

constrained, as shown in Figure 84. This will make the Zoet method 14% faster than 

the boundary interface reduction method following the IRS method. 

9.5.3 Evaluation Rubin Method with Interface Modes 

Although the method has not been tested, calculation times that would have been 

required for the Rubin‟s method applying interface reduction through introducing 

interface modes have also been estimated based on a cut-out frequency of         . 

Interface modes with their corresponding natural frequencies have been calculated. 

The number of retained interface modes has been based on applying a cut-out 

frequency of          following the findings of Tran [41] 

Although this reduction technique considerably reduces the size of the total 

assembled set of equations of motion, the Rubin-Zoet method has been found 

superior in reducing calculation time for the following reason: 

- Generating the reduced stiffness and mass matrix according to the IRS 

method (see section 6.5.3) results in an increase of required calculation time 

in the generation pass, compared to the Rubin-Zoet method. 

- The Rubin‟s method with interface modes requires extra calculation time in 

the generation time for the calculating of interface modes and natural 

frequencies. The increase of calculation time has been estimated to supersede 

the calculation time of the normal modes for the Rubin-Zoet method, even 

though the Rubin-Zoet method is assumed to require an increased cut-out 

frequency of        , instead of          
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9.5.4 Evaluation Mode Superposition Method 

Figure 83 the computation time required for obtaining modal coordinates through 

performing classical modal reduction on the full model is presented. As can be seen, 

mode superposition brings the highest efficiency in computation time. However, 

disadvantages relatively to CMS techniques are: 

 

 

Figure 85 Number of floating point operations required for the different techniques considering the 

analysis of the PHD  test case model (graph A) and the analysis of the LNG structure (graph 

B). Calculation times presented are based on running the free interface models retaining a 

sufficient number of normal modes so that equal levels of accuracy is obtained comparing 

output results with the results obtained through the full harmonic analysis. 

 

A 

B 



235 

 

- Problems with plotting mode shapes as experienced with the full harmonic 

annalysis remain, as memory requirements stay the same as the size of the 

output files don‟t change.   

- A disproportionately higher increase of computation time may be required for 

calculating the natural frequencies and mode shapes for the total structure 

compared to the total time required for calculating of the mode shapes and 

natural frequencies of all uncoupled substructures. This effect is 

demonstrated in Figure 85 and becomes stronger with: 

o Increase of model size (as can be seen comparing the required 

computation time for the LNG model and the PHD test model in 

Figure 85) 

o Increases with the number of substructures applied.   

 

9.5.5 Using CMS for Time-Domain Analysis 

Reducing time required to solve CMS matrices is also very beneficial for reducing 

analysis times required to run a time domain, transient analysis. This type of analysis 

could be useful to carry out for the aft ship of the LNG carrier as violent cavitation 

(cavity implosion) was found to generate an impulsive irregular excitation 

characteristic which could have been the reason for the dominant presence of the 

higher order blade passing frequency components in the vibration measurement 

results.  Figure 86 shows the estimated number of floating point operations 

(computation time) required for carrying out a time domain analysis running over 2 

seconds and requiring 2400 time steps (see Figure 86 for more details on the 

assumed conditions of the simulation). 
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Figure 86 Simulation time for time domain analysis calculating the dynamic response over 2 

seconds in 2400 time steps (PHD test model). Number of time steps is based on 

subdividing the highest frequency of interest into 20 steps. This highest frequency of 

interest is assumed to be          according to Rubin’s criteria.      is 40 Hz, as 

most of the vibration energy is concentrated over the first 5 blade passing frequency 

orders. Calculation times presented are based on running the free interface models 

retaining a sufficient number of normal modes so that equal levels of accuracy is 

obtained comparing output results with the results obtained through the full harmonic 

analysis. 

 

As can be seen from Figure 86, reduced CMS methods are very effective in reducing 

computation time for time domain analysis. However, as the interface reduction 

technique according to the Zoet and Rubin Zoet needs to be carried out for each time 

step, the computation time required in the generation stage increases with the number 

of integration steps. This means that the interface reduction technique according to 

IRS method (using interface modes) becomes more effective with an increasing 

number of time steps, as the interface reduction only needs to be carried out once, 

which means that the calculation time in the generation pass is independent of the 

number of time steps or frequencies for which simulation results need to be 

produced.   
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10 Discussion 

 

This chapter begins with a recap of the thesis, giving a summary of the background 

and motivation and aims of the work and the steps taken in order to contribute to the 

aim. In the section 10.2 “Contributions and Achievements” a summary is given of 

what has been achieved in this work and how these achievements contribute to the 

aims described section 2 and paragraph 10.1. 

In section 10.3 “Shortcomings and Limitations of the Zoet and Rubin-Zoet Methods” 

short comings of the developed reduction methods are identified. This leads to 

paragraph 10.4 “Future Work” where future work is suggested 

 

Paragraph structure of chapter 10 ‘Discussion’ 

10.1 Recap of the thesis 

In the marine industry there is a lot of pressure on structural designers to design 

marine structures that have to be capable of withstanding high alternating loads. 

These alternating loads result in high vibration levels and high alternating stresses 

through which crew performance and passenger comfort is affected and lifetime of 

structures and machinery is reduced. 
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The pressure for understanding the characteristics of irregular forces and 

corresponding structural response mechanism is even increasing. In view of recent 

research done for the FP7 EU project SILENV, addressing impact of noise and 

vibrations on humans and underwater life, more stringent noise and vibration 

requirements are expected in the near future. In addition, given the global economic 

environment and raising fuel prices, equipment and structures are dynamically 

further pushed to the limits. 

Using (the right) theoretical deterministic structural response evaluation modelling 

techniques is more important than ever. New radical design concepts are developed 

in the marine industry, and relying on tradition or statistical modelling techniques 

becomes impossible.    

10.1.1 Aim of This Work 

This work is focussing on the problems with classical structural modelling 

techniques related to: 

- Labour intensity of the process of generating structural models 

- Problems with (large) computation times required for obtaining structural 

dynamic response calculation results 

- Problems with handing large result files 

10.1.2 Critical Review and Selection of Modelling Techniques 

The first step in finding solution to the modelling problems experienced in the 

industry is a critical review of some state of the art modelling techniques used.  

For selecting the most suitable modelling technique, also noise and vibration 

measurement results have been studied which have been taken on board three 

different types of vessels for the EU research project SILENV.  

From the studies of the measurement results and literature review, propeller and 

engine vibration excitation spectra were found to have most of the energy 

concentrated in very distinct tonal harmonics rapidly decreasing in amplitude with 

increasing order number. Combined with the complex nature of ship structures, and 
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the related low modal density, Finite Element based modelling techniques have been 

found the most suitable modelling technique for modelling the structural vibratory 

response of marine structures.  

10.1.3 Modelling of the Structural Response of a LNG Carrier 

After selecting finite element based modelling techniques as the most suitable 

technique for modelling ship structural response to propeller and engine excitation, 

some of these techniques have been tested in this work. A finite element model has 

been built of a LNG carrier on board which the author has carried out vibration 

measurement.  As the vessel is equipped with (very low vibration) steam turbines, 

only the propeller excitation has been taken into account.  The alternating hull 

pressure field induced by the propeller calculated by SSPA has been used.  

In order to study the response behaviour of the structure, simulations have not only 

been carried out for the blade passing harmonic frequencies of interest, but for a 

range of 80 frequencies equally distributed over a range between 0 to 40 Hz. 40 Hz 

has been chosen as the maximum limit, as through the measurement results all 

vibration energy was found to be concentrated between 0 and 35 Hz. Plotting 

amplitude levels against frequency shows where the relevant resonance peaks are. As 

the proximity of resonance frequencies to excitation frequency is the most important 

factor in the sensitivity of the model, simulation results for such a number of 

frequencies is very useful to understand the vibratory response of the model and to 

be able to understand any discrepancies between the modelling results and the 

measurement results. 

Good correlation between the measurement results and simulation results was found 

for the response at the first two blade passing frequencies. Simulated response to 

higher order blade passing frequencies however were found to be much lower than 

measured. The unsteady nature of some of the vibration measurement results and the 

noise experienced at the aft ship during the measurement campaign strongly suggest 

that violent cavitation took place at the aft ship. Predicted amplitudes of excitation at 

orders higher than 2 become less reliable, as the amplifying effect of cavity 

implosion is not taken into account with the simulation of the excitation. His problem 
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is typical for the type of vessel at hand as the shape of the aft ship induces a highly 

irregular distribution of wake at the propeller. 

10.1.4  Problems Encountered with the Full Harmonic Analysis 

With the generation of results for the LNG carrier through the classical full harmonic 

analysis, problems have been experienced due to the size of the output files. As a 

result, no mode shapes could be studied, which is crucial for fully understanding the 

mechanisms of the simulated structural dynamic behaviour.   

Component Mode Synthesis modelling (CMS) techniques brought the solution to the 

problem. Component mode synthesis is a sub-structural modelling technique based 

on subdividing the total to be analysed structure into a number of sub structures. Of 

these substructures so called super elements are generated containing modal 

information of these individual uncoupled substructures. Two groups of CMS 

methods are distinguished: a method based on describing the sub-structural dynamic 

properties with all interface nodes fully constrained (fixed interface CMS) and with 

all interface nodes free (free interface CMS). The CMS methods tested on the LNG 

carrier are the free interface CMS method according to Rubin (with no residual 

interface flexibility taken into account) and the fixed interface method according to 

Craig-Bampton.  

The accuracy of these methods have been evaluated through comparison of the 

simulation results with the results obtained through the classic full harmonic finite 

element analysis. As the most important aspect of structural response is the proximity 

of natural frequencies to the excitation frequencies, a CMS method was assumed to 

be accurate enough if calculated peak response frequencies coincide with the peak 

response frequencies found through the full harmonic analysis. As a frequency step 

of 0.5Hz has been applied, this means that the calculated CMS peak response 

frequency should be between -0.25 Hz and +0.25 Hz from the peak response 

frequencies calculated through the full harmonic finite element method.   

Based on retaining a number of normal modes applying a cut out frequency of 

        , free interface CMS based on Rubin‟s method has been identified as the 



241 

 

most suitable CMS modelling technique for modelling ship vibrations. Not only did 

the peak response frequencies obtained from the Rubin‟s method modelling 

technique coincide with the peak response frequencies obtained from the full 

harmonic finite element analysis, calculated amplitudes also coincided very well with 

the amplitudes obtained from the full harmonic analysis.  

10.1.5  Advantages of a Sub-Structural Approach 

Free interface Component Mode Synthesis (CMS) was found to give the most 

accurate results, using the full harmonic analysis results as reference. Not only does 

the free CMS method give the best results, this technique also has other great 

advantages. As a free interface approach is adopted, the modal properties can be 

much easier correlated through modal information obtained through measurements 

performed on substructures that already have been built. This means that the 

structural properties of the complete structural model are already correlated to 

measurement results, whilst the actual structure has not been completely built yet. 

Another very important advantage of a sub structural approach is that marine 

structures typically consist of many repeating structural elements (frame sections, 

decks etc.) for which calculated natural frequencies and mode shapes can be reused. 

Also CMS can be used for reduction using the symmetry of models. This not only 

reduces calculation times, but also reduces the effort that has to be put in creating the 

model (describing the geometry). 

10.1.6 Identified Problems with Classical Sub-Structural Approaches  

However, carrying out the simulations through the classical CMS techniques using 

ANSYS, the total required commutation time had increased by roughly 53%, 

compared to the time needed for the classical harmonic analysis (see Figure 87).  

An inventory of the different steps in the analysis following Rubin‟s free interface 

CMS method (as used by ANSYS) has been made. For each step expressions have 

been formulated for the number of floating point operations required (FLOPS). 

Using the number of floating point operations as an indication of the amount of 

computation time, the conclusion has been drawn that the computation time required 
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for solving the reduced set of equations of motion was the most dominant aspect in 

the total analysis time required for getting dynamic response results through CMS.  

The way of formulating compatibility and equilibrium on interfaces between 

substructures was found to be an important aspect resulting in the higher calculation 

times. Classical CMS formulates the interaction between substructures for each 

interface degree of freedom separately. This means that with a high number of 

coupling nodes, as was the case with the LNG structure, relatively large matrices are 

formed according to the classical CMS method. Although these matrices are still a 

lot smaller than the full matrix formed according to the classical full harmonic 

analysis, the high density of the CMS matrices resulted in the increase of time 

needed for solving the matrix equations of motion (50% increase for the LNG 

carrier) 

 

Figure 87 

 
Comparing calculation time required for calculating the structural response at 80 

frequencies evenly distributed from 1 to 40 Hz for the LNG carrier. Free interface method is 

carried out according the Rubin’s method and the fixed interface method is carried out 

according to the Craig-Bampton method. A cut out frequency of 60 Hz (        ) has been 

applied for selecting the normal modes. 
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10.1.7 Development of the Zoet Method 

As the density of the reduced matrices could not be reduced, this work focussed on 

decreasing the size of the matrices by introducing an alternative way of formulating 

compatibility and equilibrium relations on the interfaces between substructures. The 

description of compatibility and equilibrium was described through modal 

coordinates instead of physical interface displacement coordinates, which created an 

independency of the number of connecting nodes between substructures. This is the 

method referred to in this work as the Zoet method. 

10.1.8   Zoet Method with Residual Interface Flexibility  

Simulation results using this method however demonstrated that including residual 

boundary flexibility modes was crucial for an accurately enough definition of the 

equilibrium relations. Introducing boundary flexibility modes however meant that the 

size of the CMS matrix was again, as with the classical method, dictated by the 

number of coupling nodes between substructures. 

The next step in the development was the introduction of a interface residual 

flexibility mode elimination technique through which a description of sub structural 

interaction was formulated based on the modal coordinates of the retained 

substructure normal modes alone. This CMS technique is referred to in this work as 

the Zoet method with residual interface compensation. 

However, with the development of the theory, it had already been recognised that the 

method of compiling the total assembled CMS matrix, should result in an 

overcompensation of residual flexibility. This has been confirmed by modelling 

results running different analysis techniques on a test structure that has been 

subdivided into four substructures. Increasing the number of retained normal modes 

based on a cut-out frequency of        (instead of the classically applied          ) 

the effect of overcompensation was reduced and good coincidence with the full 

harmonic analysis results was achieved. By increasing the number of retained elastic 

modes, the contribution from the boundary flexibility modes decreases. As it is 

through the elimination of the contribution from these boundary flexibility modes 
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that boundaries flexibility is over compensated, this overcompensation effect is 

decreased as well. 

Although reduction of calculation time has been achieved with the Zoet method with 

residual interface flexibility, relatively to the classical CMS methods, the Zoet 

method is not the most effective method when there are substructures involved that 

have unconstrained rigid body degrees of freedom in uncoupled condition. For the 

calculation of the residual flexibility modes, these rigid body degrees of freedom 

need to be eliminated, which is a costly computation event.  

10.1.9   The Rubin-Zoet Method  

As rigid body degrees of freedom occurred with three of the four substructures of the 

test structure, and occur with many typical ship substructures, a third CMS method is 

suggested. 

This method is based on applying the same matrix reduction technique as used for 

the Zoet method (with residual interface flexibility), but is applied on the interface 

compatibility and equilibrium formulations according to the classic Rubin‟s 

technique. This technique is referred to in this work as the Rubin- Zoet technique. A 

huge advantage of this technique is that the omitted normal modes are compensated 

through constraint modes, instead of residual flexibility modes, as was the case with 

the Zoet method. This means that no expensive rigid body degrees of freedom 

elimination techniques are required in case of unconstrained rigid body degrees of 

freedom for individual substructures.  

Considering the same total CMS matrix compilation technique is used as for the Zoet 

technique, overcompensation of residual flexibility is however likely to occur in the 

same manner, and an increase of cut-out frequency for selecting the number of 

retained normal modes is required.  

Also assuming a cut-out frequency of for        for selecting normal modes for the 

Rubin-Zoet method was found the most time economic CMS method of all CMS 

methods described. 
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 Using constraint modes instead of residual flexibility modes means that in case of 

the PHD test structure, a reduction of computation time by 50% may be achieved 

applying the Rubin-Zoet method instead of the Zoet method.  Better economy may 

also be achieved with the Rubin-Zoet method compared to the already existing 

interface reduction method using interface modes according to the IRS method (see 

section 6.5.3). In the case of the PHD test structure, required computation time 

decreases by 31% applying the Rubin-Zoet method instead of the Rubin method 

using the interface reduction technique according to the IRS method (see Figure 88).  

10.2 Contributions and Achievements 

Due to the increased pressure on the marine industry on reducing noise and vibration 

levels, structural response modelling techniques are increasingly used as a tool for 

evaluating design concepts on their impact on noise and vibrations. From literature 

review, critical review of the principles of most used modelling techniques, and from 

studies of measurement result, finite element modelling technique has been selected 

as the most appropriate modelling technique for simulating structural response for 

marine structures. However, many problems with the application of the finite 

element technique for the simulation the response of marine structures are 

experienced.  The following problems are encountered: 

- Due to the typically complex geometry of marine structures, building a finite 

element model (describing the geometry and generating the mesh) is often 

labour intensive.  

- Uncertainty in material properties, added (hydrodynamic) mass and damping, 

excitation characteristic and inaccuracies in the described geometry. 

- Due to the complex geometry and scale of the structure, problems occur with 

the size of the generated dynamic matrices (number of degrees of freedom) 

and result in problems with: 

o Required computer memory 

o Problems with handling output files (plotting mode shapes, obtaining 

results)    

o Required computation time 
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These problems have also been experienced with the modelling of the structural 

response of the aft ship of an LNG carrier presented in this thesis.  

Considering the nature of ship structures, a sub-structural approach as adopted with 

component mode synthesis techniques has been further investigated. Two new 

approaches to component mode synthesis methods have been suggested, in order to 

overcome problems with computation time encountered with the application of the 

classical component mode synthesis techniques. The following has been achieved 

through these new methods:  

10.2.1 Decreasing Effort Required for Building the Model 

A sub-structural approach to marine structures may be very efficient in reducing 

required effort that has to be put in building the model, making use of the fact that a 

marine structure can be subdivided in many repeating similar substructures. Time 

required to model large part of a ship structure and required computer storage 

memory can be decreased as only one repeating substructure needs to be modelled. 

In addition, symmetry can also be used to reduce the model size. 

10.2.2 Building More Accurate Models 

Uncertainty about material properties and accuracy of the described geometry can be 

partly eliminated using sub structural modelling techniques. By choosing the 

substructures in such a way that they coincide with the sections as they are built in 

reality, modal properties can be correlated to modal measurements results taken on 

the actual sections, once they have been built.    

10.2.3 Reducing Required Computer Memory 

A sub-structural approach to marine structures may be very efficient in reducing 

required computer memory, making use of the fact a marine structure can be 

subdivided in many repeating similar substructures. Modal information needs to be 

obtained only once for such a substructure, through which the final matrix can be 

compiled and the total assembled sub structural behaviour can be solved. 
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As results are produced per substructure, output files are much smaller. In this work, 

problems have been experienced with presenting modeshapes obtained through full 

harmonic finite element analysis. These problems were related to the size of the 

output files and have been successfully circumnavigated by applying classical 

component mode synthesis. 

10.2.4 Reducing Required Computation Time  

Although the size of stiffness and mass matrices is reduced considerable through the 

CMS reduction technique, the high number of coupling degrees of freedom between 

substructures, as typically seen for ship structures, largely increases the density of the 

final CMS matrices. Although, as pointed out above, these matrices are still 

considerably smaller than the matrices that need to be solved for the full harmonic 

analysis, the high density of these matrices has resulted an increase of computation 

time, even exceeding the computation time required for the full harmonic analysis. 

In order to reduce the computation time required for solving the CMS matrices, two 

new CMS matrix reduction techniques have been proposed:  

- The Zoet Methods (with and with residual boundary flexibility modes) 

- The Rubin-Zoet method 

Tests have been run on a smaller scale structure with the application of the Zoet 

Method. As a penalty to the applied interface reduction, an increase of the number of 

retained normal modes was required in order to achieve the same accuracy as the 

classic Rubin method. No tests have been carried out with the Rubin-Zoet method, 

but as the same interface reduction technique has been used, the same increase of the 

required number of retained normal modes as for the Zoet method is assumed, in 

order to get the same accuracy.  

Based on above, comparison of required computation times for different modelling 

techniques has been done as presented in Figure 88 and Table 18. In these figures 

and table also a comparison is done applying an existing interface reduction 
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technique according to the IRS method, which is based on using interface modes (see 

section 6.5.3). 

 

 

 

Figure 88 PHD test case model: Graph A: Comparing computation time for different simulation 

techniques for the calculation of the harmonic dynamic behaviour of the PHD test 

structure. Graph B shows the computation time required if rigid body modes of the 

individual uncoupled substructures would have been fully constrained   

 

  

A 

B 
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In Figure 88 calculation times are plotted in bar graphs for each step for the different 

analysis types. As can be seen in graph B, the Zoet method brings a considerable 

reduction of computation time compared to the existing CMS methods, as long as all 

rigid body modes of the individual substructures are fully constrained (total 

computation time reduced by 55%, see Table 18B).  

 

 

Table 18 

 

PHD test case model: Differences in total computation time between simulation techniques 

expressed in percentages restively to: Classical Rubin’s method, full harmonic analysis, 

Rubin’s method with interface reduction. Table A gives the results for the case that 

substructure B to D have unconstrained rigid body degrees of freedom. In table B the 

results are presented considering all substructure’s rigid body degrees of freedom in 

uncoupled condition fully constrained.  

 

  

A 

B 
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Comparison of computation time is also made in the graphs with computation time 

required for an interface reduction technique according to the IRS method, a 

technique also designed to reduce the size of CMS matrices (see section 6.5.3). It can 

be seen in Figure 88B that the Zoet method also reduces the analysis time relatively 

to this existing reduction technique (reduction of 14%, see Table 18B). 

However, in most cases, substructures rigid body degrees of freedom are not fully 

constrained. This results in a sharp increase of calculation time required for the Zoet 

method. A approach, although it has not been tested in this work, according to the 

Rubin-Zoet method would be far more beneficial. As can be seen from Figure 88B 

and Table 18B, the Rubin-Zoet method reduces computation time by 63.3% 

compared to the classic CMS technique, and by 31 % compared with the Rubin‟s 

method, applying interface reduction according to the IRS method. 

In Figure 88 and Table 18 can be seen that mode superposition based on modal 

reduction of the full dynamic matrices is the most time efficient method of all (see 

„mode superposition‟ in Figure 88 and Table 18). However, the following remarks 

can be made in favour of the Zoet and Rubin-Zoet methods: 

- Obtaining results through modal reduction of the full model does not solve 

the problems encountered in this work with obtaining full sets of results and 

plotting deformed shapes from these full sets of results. These problems were 

related to the size of the result files, which is not reduced through the 

application of modal reduction technique of the full model. 

- One important advantage of a sub-structural approach is reduction of 

computation time that could be achieved when a structure consist of repeating 

similar sub structures. The number of times that steps in the generation pass 

need to be repeated can be reduced, as the CMS matrix of only one set of two 

interacting repeating substructures need to be generated and reduced. These 

matrices are reused when the total CMS matrix is generated. The computation 

time reducing effect of this has not been considered in these tests. 
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10.3 Shortcomings and Limitations of the Zoet and Rubin-Zoet Methods 

 

An important shortcoming of both the Zoet method and the Rubin Zoet method is 

that the interface residual flexibility elimination technique, in combination with the 

total CMS matrix compilation technique, results in an over-compensation of residual 

flexibility. In order to reduce the effect of this over-compensation, an increase of the 

number of retained normal modes per substructure is needed. This reduces the 

efficiency of the proposed CMS techniques with increasing number of substructures, 

and the IRS method interface reduction technique (using interface modes) may 

become more effective in reducing computation time (see section 6.5.3). 

The effectiveness of the Zoet and Rubin –Zoet method is not only limited through 

the number of substructures used, but also through: 

- The number of simulation results required 

- The frequency range over which simulation results need to be produced 

10.3.1 Increase of Required Cut-Out Frequency 

Testing the Zoet method on a test case model, it was found that with the application 

on a two-substructure model, retaining a number of normal modes based on a cut-out 

frequency of          was found to be sufficient. This coincides with the required 

number of retained normal modes for the classic CMS method. 

Coupling three substructure together however showed that the number of retained 

normal modes per substructure had to be increased, and had to be based on applying 

a the cut-out frequency of         , in order to get the same level of accuracy as 

obtained with the classical CMS method. 

Coupling 4 substructures together showed that the number of retained normal modes 

had to be increased again, based on applying a the cut-out frequency of         , in 

order to get the same level of accuracy as obtained with the classical CMS method. 

The increased effect of overcompensation with an increasing number of 

substructures  is potentially a weak point considering the aim of developing the 
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reduced CMS method. An important aspect of reducing the calculation time 

envisaged in this work is the ability to reuse calculated dynamic matrices of (many) 

repeating sub structural elements, a typical marine structure can be subdivided in. As 

this required computation time for solving the final high density CMS matrices was 

by far the most dominant factor determining the total time required for CMS 

analysis, the first step to effectively reusing repeating substructures was to reduce the 

size of the final CMS matrices. This has been achieved very effectively through the 

proposed reduction techniques (Zoet and Rubin Zoet). 

 However, the penalty that has to be paid for that is an increase of time required in 

the generation of the reduced CMS matrices.  

Due to the effect of overcompensation of residual flexibility, the amount of time 

required for the generation pass may disproportionately increase with the number of 

substructures, as the number of required normal modes per substructure needs to be 

increased as well. The number of required normal modes also increases the size of 

the total assembled CMS matrix. 

Theoretically that means that there is a maximum number of substructures at which 

the Zoet and Rubin Zoet can still be beneficial compared to the Rubin‟s method 

using the IRS method for reducing the interface degrees of freedom.  

10.3.2 Analysing a Lower Number of Frequencies  

Important to note is that the benefit of the newly introduced technique relatively to 

the classical full harmonic analysis only starts above a certain number of frequencies 

for which output results are generated. This is because reduction of time required for 

solving the final reduced CMS matrices needs to outweigh the extra computation 

time that is invested in the generation pass. This extra computation time required in 

order to reduce computation time is due to the need to calculate the following: 

- Normal modes and natural frequencies 

- Constraint modes or residual flexibility modes 

- Reducing the stiffness and mass matrices 

- Formulating compatibility relations 
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- Calculating residual modal flexibility (eliminating residual interface 

flexibility degrees of freedom) 

This is however not just a weak point for the Zoet or Rubin-Zoet method, but this is 

an even more dominant phenomenon compromising the economy of the already 

existing interface reduction technique according to the IRS method (see section 

6.5.3), as a bigger investment in computation time is required in the generation pass 

due to the need for calculating the interface modes. In the case of the test structure 

used for the case study in this work, Figure 89A shows that when choosing less than 

35 frequency steps over a range from 1 to 40 Hz, classic harmonic analysis starts to 

become more economical than the newly introduced Rubin-Zoet method (taking into 

account an increased number of retained normal modes for matching the accuracy of 

the results with the classical Rubin Method). 

 

Figure 89 Computation times required for the calculation of 35 frequency steps 

 

10.3.3 Analysing over a Smaller Frequency Range  

Considering the effect of overcompensation of residual interface flexibility 

contribution, the Zoet and Rubin Zoet method do not only become less beneficial in 
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reducing analysis time with a decreasing number of analysed frequencies, but also 

with a decrease of maximum frequency analysed (frequency range of analysis). 

Increase of the cut-out frequency was required in order to compensate the effect of 

overcompensation of the residual interface flexibility effect. Applying the tradition 

cut-out frequency of         , according to Rubin‟s criteria (as effectively applied on 

the traditional CMS methods) the effect of overcompensation manifested itself as a 

shift of peak frequencies over the entire frequency range from 1 to 40 Hz to the 

left, as can be seen from Figure 90. The effect was found to be even stronger at the 

lower peak frequencies. 

Considering carrying out an analysis decreasing the maximum frequency of interest 

from 40 Hz to 25 Hz, the number of retained normal modes however can 

unfortunately not be reduced. This means that the computation time required in the 

generation pass does not decrease either. 

This means that the interface reduction technique according to the IRS method could 

become more competitive, as a reduction of the maximum simulation frequency 

(    ) should allow a decrease of the number of retained normal modes and interface 

modes, following Rubins criteria for the section of the retained normal modes   

(        ) and applying a cut-out frequency of           for the section of the 

number of retained interface modes according to Tran‟s findings.     

 
Figure 90 

 
Effect of overcompensation on location 15. Applying a cut-out frequency of 1.5 f max, 

overcompensation of residual interface flexibility applying the Zoet method (red line) shifts 

the peak response frequencies to the left. 
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10.3.4 Using Zoet and Rubin-Zoet for Time-Domain Analysis 

Reducing time required to solve CMS matrices is also very beneficial for running a 

time domain, transient analysis. This type of analysis could be useful to carry out for 

the aft ship of the LNG carrier as violent cavitation (cavity implosion) was found to 

generate an impulsive irregular excitation characteristic which could have been the 

reason for the dominant presence of the higher order blade passing frequency 

components in the vibration measurement results.  Figure 91 shows the estimated 

number of floating point operations (computation time) required for carrying out a 

time domain analysis running over 2 seconds and requiring 2400 time steps (see 

Figure 91 for more details on the assumed conditions of the simulation).  

 

Figure 91 Simulation time for time domain analysis calculating the dynamic response over 2 seconds in 2400 time 

steps. Number of time steps is based on subdividing the highest frequency of interest into 20 steps. This 

highest frequency of interest is assumed to be          according to Rubin’s criteria.      is 40 Hz, 

as most of the vibration energy is concentrated over the first 5 blade passing frequency orders. 

 

As can be seen from Figure 91, reduced CMS methods are very effective in reducing 

computation time for time domain analysis. However, as the interface reduction 

technique according to the Zoet and Rubin Zoet needs to be carried out for each time 

step, the computation time required in the generation stage increases with the number 

of integration steps. This means that the interface reduction technique according to 

the IRS method (using interface modes) becomes more effective with an increasing 

number of time steps, as the interface reduction only needs to be carried out once, 
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which means that the calculation time in the generation pass is independent of the 

number of time steps or frequencies for which simulation results need to be 

produced.   

10.4 Future Work 

 

With the identification of shortcomings and limitations of the proposed modelling 

technique it has been established that the Zoet and, mainly the Rubin-Zoet method 

could be the most effective methods within a certain bandwidth of minimum number 

of simulation results and maximum number of simulation results required.  

Considering the frequency range of interest identified for the LNG carrier and the 

modal density of the generated structure representing the aft ship of this LNG carrier, 

running 80 simulations for frequencies equally distributed between 0 and 40 Hz the 

simulation results produced were found to be of a sufficiently high resolution. This 

resolution of results is necessary in order to identify relevant peak response 

frequencies. It is the proximity of these peak (resonance ) frequencies to the 

excitation frequencies that determines for the greatest part the structural response 

amplitude and therefore the vibration and alternating stress levels occurring. As the 

proximity of these resonance peaks also determine the sensitivity of the modelling 

results to the modelling assumptions (added mass, boundary conditions) being able 

to plot amplitudes against frequency of excitation at a sufficiently high number of 

steps (resolution) is crucial and form a very effective tool for designing ships keeping 

vibration levels at a minimum. 

Considering the importance of such simulation results, the Zoet and Rubin Zoet 

method have been developed with the main aim of reducing the calculation time 

using a sub structural approach, through which the method becomes competitive with 

existing CMS methods and CMS matrix reduction techniques (according to the IRS 

method). With the given frequency range of interest and the number of results 

required (frequency steps), the Zoet, and mainly the Rubin-Zoet method were found 

to be competitive with existing sub structural approaches to vibratory response 

modelling.  
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However, only tests with the Zoet method have been carried out. It had been 

established that the effect of overcompensation of residual interface flexibility, a side 

effect of the residual interface flexibility DOF elimination technique, increases with 

the number of substructures used. It has also been established that the 

overcompensation of residual interface flexibility limits the time reducing 

capabilities of the modelling technique in relation to the selected frequency range of 

interest.  

Also, no actual calculation results have been produced applying the Rubin Method 

using interface modes. Although a cut out frequency of          has been applied for 

selecting the retained interface modes (based on test carried out by Tran [41]), it is 

not sure if this cut out frequency would be sufficiently high for ship structures.  

All considered, the following future activities are suggested: 

- Carry out test simulations with the Rubin-Zoet method in order to establish 

the effect of overcompensation of residual interface flexibility in comparison 

with the Zoet method 

- Investigate the effect of boundary conditions and modal density of 

substructures on the effects of interface residual over-compensation. 

- Develop an algorithm for counter compensating the over over-compensation 

of residual flexibility. This could certainly easily be done for a series of 

repeating identical coupled substructures. 

- Evaluate the accuracy of the Rubin method with interface reduction 

according to the IRS method (see section 6.5.3). 
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11 Final Concluding Remarks 

Due to increasing pressure on the marine industry to reduce noise and vibration 

levels, the aim of this work was to contribute to an understanding of the mechanism 

behind structural vibrations typically occurring on board ships, and to contribute to 

the development of a practical design tool helping the marine structural designer 

design the structure so that vibration levels on the ship will be kept to a minimum. 

For that purpose, the author has carried out vibration and noise measurements on 

board various ships, which were used for evaluating the nature of excitation sources 

and correlation of simulation results obtained from a finite element model of a part of 

the aft ship of an LNG carrier. Results obtained through the full harmonic analysis 

showed good correlation with the measurement results from the field. 

Because problems occurred with the post processing of results obtained through full 

harmonic analysis, component mode synthesis (CMS) sub-structural modelling 

techniques had to be used in order to be able to study mode shapes. 

Apart from providing a solution to the problems experienced with the post 

processing, two other important advantages of using a sub-structural approach for 

typical marine structures have been recognised: 

- Decreasing the amount of effort required for building the model: Marine 

structures can be subdivided in many repeating identical substructures. Only 

one of these substructures have to be modelled, through which the process of 

building the model is simplified. This also reduces the required computer 

memory for storing the model. 

- Decreasing computation time required in the generation pass: Time required 

in the generation pass (the set up of the final matrices that need to be solved) 

can be reduced as calculating modal information and applying the reduction 

techniques for repeating identical substructures only need to be done once. 

The calculated information is then reused with the compilation of the total 

CMS matrix. 
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- More accurate models: Sub dividing a model in substructures means that a 

model can already be correlated to modal measurement results obtained from 

the field once a part of the marine structure is already finished. 

Although the CMS techniques used on the model of the aft ship of the LNG carrier 

does offer these advantages, it has been established that classical CMS increases the 

total required computation time compared to the computation required for full 

analysis. This increase of computation time related to the number of nodes coupling 

the substructures together, through which relatively large and dense CMS matrices 

are formed that require a higher amount of computation time to solve. 

Recognising the practical potential of sub structural modelling for ships, new 

interface reduction techniques have been developed: the Zoet method, and the Rubin 

Zoet method. An important aspect of the evaluation of the methods was the 

estimation of the required number of floating point operations for each method. 

Included in that comparison was also the Rubin‟s method using an already existing 

interface reduction technique according to The IRS method.  

Based on simulation results obtained using the full harmonic analysis method, free 

and fixed CMS method, together with the inventory of required computation time, 

the Rubin-Zoet method was found to be the most time economical sub structural 

analysis method. Estimation of computation time required for analysing a test 

structure suggest that through the Zoet-Rubin method a decrease of total computation 

time by 49.4% can be achieved relative to the full harmonic finite element analysis, 

63.3% relative to the classic Rubin‟s methods, and 30% relative to the Rubin‟s 

method using the already existing interface reduction technique according to the IRS 

method (see section 6.5.3).  

However, an important short coming of the Zoet and Rubin Zoet interface reduction 

technique is that with an increasing number of substructures, an increasing number of 

normal modes per substructure needs to be retained. This application of higher cut-

out frequencies is needed in order to reduce the increasing effect of residual interface 

flexibility over-compensation, which is a consequence of the interface reduction 

technique applied. This may not be a great problem with the application of a high 
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number of identical coupled substructures, as modal information only has to be 

carried out for one structure, but when considering many different substructures, the 

need to increase the number of retained normal modes may considerably increase 

computation time in the generation pass, and other CMS technique may become 

more economical. 

Considering the promising results obtained for the Zoet method, and the reduction in 

computation time that may be obtained through the Rubin-Zoet method, 

recommendations for future work focuses on finding a solution for the above 

described problems occurring with over-compensation of residual interface 

flexibility. Future research approaches suggested are: 

- Carry out test simulations with the Rubin-Zoet method in order to establish 

the effect of overcompensation of residual interface flexibility in comparison 

with the Zoet method 

- Investigate the effect of boundary conditions and modal density of 

substructures on the effects of interface residual over-compensation. 

- Develop an algorithm for counter compensating the over over-compensation 

of residual flexibility. This could certainly easily be done for a series of 

repeating identical coupled substructures. 

- Evaluate the accuracy of the Rubin method with interface reduction 

according to The IRS method. 
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Appendix I  Equipment Used for 

Noise and Vibration 

Measurements 
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The B&K 2250 hand held meter/analyser is used as shown in figure 2. Important 

features used are the high resolution spectra that can be produced, the signal 

capturing facilities (which makes post processing possible) and the logging option. 

The meter is used both as a vibration meter and a noise meter. 

 

Hand held meter: 

 

Make and type    : B&K 2250 

Serial number    : 2644991 (see appendix I for calibration 

certificate) 

 

Microphone 

 

Make and type    : B&K 4189 

Serial number    : 2638752 (see appendix I for calibration 

certificate) 

Frequency range    : 0-20kHz 

Accelerometer 

 

Make and type    : B&K 4366 

Serial number    : 0635619  

Frequency range:   ; 0.2 Hz to 8 kHz 

 

Analysis software 

 

Type     : BZ 7230 FFT by B&K combined with 

Microsoft excel 
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Manufacturers' Specifications  

Bruel & Kjaer 4366 - Accelerometer 

 
 

Piezoelectric Charge Accelerometer  

 

Charge sensitivity : 5 pC/ms-2 or 50 pC/g ± 2 %   ** 

Voltage sensitivity : 4 mV/ms-2 or 40 mV/g ± 2 %   ** 

 

Mounted resonance : 16 kHz 

Frequency range - 5 % : 0.2 Hz to 5000 Hz 

Frequency range - 10 % : 0.1 Hz to 8000 Hz 

 

Capacitance - typical : 1100 pF excluding cable  

 

Max transverse sensitivity : < 2 % 

Piezoelectric material : PZ23 

Construction : Delta shear 

 

Typical temperature transient sensitivity : 0.02 ms-2/° 

Typical magnetic sensitivity (50 Hz to 0.03T) : 1 ms-2/tesla 

Typical acoustic sensitivity (154 dB SPL) : 0.001 ms-2 

Minimum leakage resistance at 20 °C : 20 GΩ 

Ambient temperature range : -74 to 250 °C 

 

Maximum operational shock (Peak) : ± 20 kms-2; 

Maximum continuous sinusoidal acceleration (Peak) : 20 kms-2  

Maximum acceleration (Peak) with mounting magnet : 50 kms-2  

 

Electrical Connector : 10-32 UNF, side entry 

Recommended cable : AO 0038 

 

Mechanical  

Mounting thread : 10-32 UNF, 3.2 mm deep 

Mounting torque : 1 Nm, max = 2 Nm, min = 0.5 Nm 

Dimensions - body : 16 mm diameter 

Dimensions - overall height : 19 mm 

Dimension - across base flats : 16 mm - spanner size 

 

 

 



270 

 

 



271 

 

Appendix II Full Girder 

Approach 
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In this section the wave approach is demonstrated for a beam that is not constrained 

at the free edges and no damping occurs. These boundary conditions have been 

chosen as it is a commonly accepted approach for the boundary conditions of a ship 

hull bending properties represented by an Euler beam.  

Because of the finite nature of the beam and the boundary conditions, there are 

distinct frequencies where the beam has a very high response resulting in a situation 

that little effort is needed to generate high vibration levels. Because of the finite 

nature of the beam and the presence of the boundary conditions, different waves 

occur in the beam travelling is different directions. At certain frequencies waves 

travelling from the excitation source to the boundaries (incident waves) interact with 

the waves reflected back from the boundaries in such a way a very distinct fixed 

spatial distribution of amplitude over the length of the beam occurs (standing wave). 

At what frequencies that occurs depends on the relation between the speed of 

propagation of the wave, and the frequency of alteration of the vertical displacement 

of the particles. Very importantly, it also depends on what phase shift the incident 

wave undergoes when it bounces back at the boundaries and travels back towards the 

excitation source. With the modelling of the ship‟s hull as a beam it is very practical 

to adopt a modal approach to vibrations, which is obtained from the wave equations 

and the formulation of the boundary conditions as will be demonstrated in this 

section. Starting from the general solution as described above: 

                                                

Considering the ends of the beam to be unconstrained, no bending moment and shear 

forces will occur at     and    . The boundary conditions are mathematically 

described as follows: 
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No shear forces implies: 

 
  

 

  
   

        

   
    

        

   
           

 

           

   
   

           

   
   

(11.1) 

 

 

        

   
                                                   

 

           

   
              

 

Therefore:       (11.2) 

 

    

 
       

   
                                                   

 (11.3) 

 

No bending moments implies:  

 
    

        

   
   

   

           

   
   

           

   
   

(11.4) 

 

 

        

   
                                                    

 

           

   
              

 

Therefore:       (11.5) 

 

    

 
       

   
                                                    

 (11.6) 

 

Substituting equation  (11.2) and (11.5) into (11.3) and (11.6) gives: 

 

       

   
                                                      

       

   
                                                     

(11.7) 
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In matrix notation the two equations (11.7) become:   

 
                                            

                                            
  
  
  
    

(11.8) 

 

In order to get the non trivial solution the determinant for matrix (11.8) should be 

equal to zero: 

 

    
                                    

                                    
    

 

                                        

                                        

(11.9) 

 

Rewriting (11.9) the frequency equation becomes: 

                  (11.10) 

This is only true when       
 

 
    for            , where n is the mode 

number, from which the natural frequencies    can be calculated according to  

  
   

 
 
  

 
     

    

  
  

 

 

(11.11) 

 

From the matrix equation (11.8) we can establish a description of the mode shape 

corresponding with frequency n. The relation taken from equation (11.8) between    

and    is: 

     
                  

                  
     

(11.12) 

 

Substituting  equation (11.12) into the general solution (6.11) gives: 

                                                         (11.13) 

Substitution of (11.11) into (11.13) gives: 
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where (11.14) 

    
        

 

 
            

 

 
    

         
 

 
           

 

 
    

 

 

 

The total response according to the mode superposition technique is equal to 
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Appendix III Formulation of 

the Beam Element 
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The equation of motion of a beam elements is determined through the following 

steps: 

- Obtaining the energy expression for all degrees of freedom: 

- Formulating the displacement function is formulated and substituted into the 

energy expression 

- Substituting the energy expression in substituted into the Lagrange Equation 

through which the mass matrix and stiffness matrix are obtained. 

Energy Expression 

The energy expressions are separately obtained for the axial deformation 

(deformation in normal direction along the x axis of the beam), torsional deformation 

about the x axis and bending deformations. The strain expression is based on 

Hooke‟s law which is the classical relation between stress (ultimately representing 

force) and strain (representing deformation) [22, 45] 

 

 

Figure 92 

 
Axis and orientation on a two node beam element (node p and node q). 

Displacement in x, y and z direction are indicated with     and   respectively. 

Rotations about the x, y and z axis are indicated through        and    

respectively. 

   

 

The kinetic energy expression is based on Newton‟s law through which initially a 

relation between the continuous acceleration distribution over the element is given 

and the resulting inertia forces.  

Beam Axial Deformation 

It is assumed that axial deformation (du) results in axial stresses only. According to 

Hooke‟s law (see Figure 92): 
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       (11.15) 

 

            (11.16) 

 

The strain energy of a beam element with an infinitively small length dx:  

    
 

 
        

(11.17) 

 

Where: 

   = strain in x direction = 
  

  
 

   is stress in x direction (normal stress) [Pa] 

  = elasticity modulus [Pa] 

    = virtual stain energy 

Integrating over the beam length gives the axial strain energy relation  

   
 

 
     

   
    

     

 

 

Substituting    = strain in x direction = 
  

  
  into equation (11.18) 

(11.18) 

 

  
 

 
    

  

  
 
     

     

   
(11.19) 

 

The kinetic energy of a infinitively small length dx: 

   
 

 
      

(11.20) 

 

Integrating over the beam length gives the axial kinetic energy relation: 

  
 

 
      
    

     

   
(11.21) 

 

Beam Torsional Deformation 

Torsional deformation of a beam about the x axis is expresses through an angular 

deformation   . Considering Figure 92, this angular deformation results mainly in 

shear stresses     and      all occurring in the zy plane. When the shear centre of the 

cross-section coincides with the axis about which the couple is acting, warping is 
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assumed not to be restrained. As a result the torsional couple about the x-axis is 

assumed not to result in a normal stress     

However, when beam elements are attached to other elements outside their centre of 

rotation, the presence of these other elements attached to the beam element restrain 

warping through which normal stresses do occur due to torsional couples. This is 

particularly the case with beams representing stiffeners on a plate field. Plate 

elements should be modelled in many cases on top of the beam element with the 

implication that the nodes of the beam should be placed outside the centre of rotation 

of the beam element. 

The effect of warping being restrained (warping distortion) is expressed through a 

warping function       . Without restrain of warping         .      

            (11.22) 

 

   
    

   
        

(11.23) 

 

    
   
  

 
        

  
    

(11.24) 

 

    
   
  

 
        

  
    

(11.25) 

 

Where 

    is the shear stress [Pa] 

    is shear strain 

  is the warping function 

The relevant relations between strain (deformation) and stress are according to 

Hooke‟s law in shear: 

                               (11.26) 

 

Where G is shear modulus according to Hooke‟s law in shear: 
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And   is the Poisson ratio which is considered to be around 0.3 for steel 

Work done by    = 

   
 

 
           

(11.27) 

 

Work done by    = 

   
 

 
           

(11.28) 

 

Work done by    = 

    
 

 
         

(11.29) 

 

Integrating over the length of the elements gives: 

  
 

 
                      

 

    

     

     
(11.30) 

 

Substituting equation (11.23), (11.24) and (11.25) into (11.30) gives: 

  
 

 
    

   
  

 
     

     

   
 

 
  
    

     

  
    
   

  

 

  
 

 (11.31) 

Where: 

 

     
  

  
   

 

  
  

  
   

 

   
 

 
(11.32) 

 

The kinetic energy expression for torsional deformation of the beam about the x axis 

is: 

  
 

 
       

 
    

     

 (11.33) 

Where:  

  = specific mass of the material 

   is the second moment of area about the y axis 
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Beam Bending Deformation 

The relation between beam bending strain and stresses is expressed through the 

relation: 

         
  

  
            

   

   
 

(11.34) 

 

For wavelengths greater than ten times the cross sectional dimensions of the element the 

slender beam approach can be applied: 

    
  

  
 
  

  
   

(11.35) 

 

For deep beams: 

    
  

  
 
  

  
     

  

  
 

(11.36) 

 

For the slender beam the strain energy stored in the element is assumed to be only 

related to    and is therefore expressed as: 

   
 

 
       
 

 
 

 
    

   
 

 
(11.37) 

 

Substituting equation (11.34) into equation (11.37) gives the strain energy equation 

for the slender beam: 

  
 

 
     

   

   
 

     

     

   (11.38) 

For deep beams extra strain energy is generated from the fact that deformation of the 

cross section area takes place (the cross-sectional area is not perpendicular to the 

deflexion line).      follows the relation of equation (11.36). The shear stress is 

expressed as: 

          

   
 

 
               

(11.39) 
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Where   are general values that can be found in the literature for different types of 

cross-sections. Substituting equation (11.36) into (11.39) gives the expression of the 

strain energy as a result of shear stresses with the bending of a deep beam: 

 

 
     

  

  
    

     

     

   
(11.40) 

 

 Total strain energy for the deep beam: 

  
 

 
     

   

   
 

     

     

   
 

 
     

  

  
    

     

     

   
(11.41) 

 

For the kinetic energy equation we can write for a slender beam: 

  
 

 
      
    

     

   (11.42) 

For a deep beam the kinetic energy from the rotary inertia effect of the cross 

sectional area cannot be neglected anymore and is taken into account: 

 

 
       

 
    

     

   
(11.43) 

 

 The total kinetic energy equation for a deep beam is:  

  
 

 
      
    

     

   
 

 
       

 
    

     

   (11.44) 

 Where:  

  = specific mass of the material 

   is the second moment of area about the y axis 
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Displacement Functions 

The second step is obtaining the displacement functions. The displacement function 

is an expression of the element‟s deformation between the nodes as a function of the 

displacements at the nodes themselves. These displacements are expressed through a 

polynomial in the form.  

               
      

      (11.45) 

 

The displacement function is in fact a description of the displacement as a sum of n 

number of assumed mode shapes (modal approach). In principle, the more constants 

the polynomial consists of, the more precise the deformation shape of the element is 

likely to be described. However, the maximum number of polynomial constants that 

can be taken into account depends on the number of degrees of freedom the element 

has. In this section the displacement functions of the beam and the plate element are 

presented: 

The displacement function of a beam is based on the beam as shown in Figure 92 

  
 

    
 = a non dimensional coordinate 

   = the polynomial constant 

 

In case of a two node beam, considering the deflection in vertical direction (v 

according to Figure 92 the total number of degrees of freedom is 4. Rotation about 

the y-axis and translation along the z-axis of node p (2 degrees of freedom) and 

rotation about the y-axis and translation along the z-axis of node q (2 degrees of 

freedom) makes four degrees of freedom in total. Through the four degrees of 

freedom four polynomial constants can be expressed as a function of the above 

mentioned 4 displacement degrees of freedom: 

For a slender beam : 

               
     

  (11.46) 
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(11.47) 

 

For a deep beam the rotation    is expressed through a separate polynomial: 

                
  (11.48) 

Through the static equilibrium requirements a relation between coefficients    and 

   is formulated through which the coefficients    are illuminated. The static 

equilibrium requires the following relation (see also equation (11.37) and (11.39). 

Static equilibrium requirements dictate: 

    
    

   
       

  

  
        

(11.49) 

 

    
   

   
 

   

  
     

(11.50) 

 

Through which    is expressed in    

   
 

    
   

  

    
      

 

    
      

 

    
     

   
          

 

(11.51) 

 

 

In order to find the factors of the polynomial expression    the displacements and 

rotations are evaluated at    
 

 
  (      ) and   

 

 
  (       ) 

For a deep beam we can write: 

  (11.52) 

   
 

 
  

                        
        

  

                          
  

  
 

 
  

                     
       

  

                       
  

Substituting the relations between    and    according to equation (11.51) into 

equations (11.52) gives in matrix notation: 
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             (11.53) 

Through the relations in equation (11.53) the vector    , which is the vector of 

polynomial constants, is expressed as a function of the elements nodal displacement 

vector    :  

               

 

(11.54) 

 

Through the formulation of the polynomial constants as a function of the nodal 

displacement vector, a description is obtained of any displacement along the x-axis 

of the beam as a function of the nodal displacements. Through substitution of these 

relations into the energy equation, the energy expressions can be written as a 

function of the nodal displacements as well. 

                   (11.55) 

 

 Where 

               

         is merged into a matrix      

                (11.56) 

 

     is a scalar and describes the vertical deflection of the beam as a function of    

and as a function of the rotational and vertical displacements at the beam‟s ends. 

     
 

       
                            

            
 

 
             

 

 
             

(11.57) 
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Where      

 
 
 
 
 
  
   
  
    

 
 
 
 

 

      
 

       
                   

 

      
 

       
                     

 

      
 

       
                   

 

      
 

       
                     

 

          
 

 
             

 

 
         

(11.58) 

 

The expression for the angle of rotation        becomes: 

       
     

  
      

        
 

 
  

 
      

  

      

  
 
 

 
  

 
      

  

      

  
      

 

(11.59) 

 

      
      

  
 

 

      
      

  
 

 

      
      

  
 

 

      
      

  
 

 

     
 

 
  

 
      

  

      

  
 
 

 
  

 
      

  

      

  
  

(11.60) 
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Substituting the displacement function into the energy expression  

Through the strain and kinetic energy equations and the displacement functions the 

equation of motion can be obtained through substitution into the Lagrange equation. 

This chapter demonstrates how the equation of motion i.e. the mass matrix and 

stiffness matrix are obtained for a deep beam from the above mentioned functions. 

Through substitution of the displacement functions (11.57) and (11.59) into the 

kinetic energy equation (11.44) and substituting the kinetic energy function into the 

Lagrange equation we get: 

  
 

 
      
    

     

   
 

 
       

 
    

     

   

  
 

 
   

 

     
   

 

  

      
 

 
   

 

      
   

 

  

      

Lagrange equation: 

 

  
 
  

   
  

  

  
 
  

   
   

 

  
 
  

   
       

Kinetic energy equation: 

  
 

 
      
    

     

   
 

 
       

 
    

     

   

Substitution of the displacement function into the kinetic energy relation and 

the kinetic energy relation into the Lagrange equation: 

          
   

 

  

            
   

 

  

      

(11.61) 
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Substituting the displacement function into the strain energy equation for deep beams 

gives: 

  
 

 
     

   

   
 

     

     

   
 

 
     

  

  
    

     

     

   

  
 

 
         

 
 
   

 

 

  

     
 

 
         

 
 
  

     
 
 
  

 

  

   
         

Substituting the strain energy equation into the 
  

  
 term of the Lagrange equation 

gives the stiffness matrix: 

  

  
            

 
 
   

 

 

  

            
 
 
  

     
 
 
  

 

  

   
         

         
 
 
   

 

 

  

          
 
 
  

     
 
 
  

 

  

   
       

(11.62) 
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Appendix IV Formulation of 

the Plate Element 
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Energy Expressions for Plates 

A plate element is considered to be storing two types of energy 

- Energy as a result of in-plane loads 

- Energy as a result of bending loads normal to the plate middle surface. 

For the bending strain and inertia energies, a distinction is made between the 

formulation of the energy expressions for thin plates and thick plates. For the thick 

plates the strain energy as a result of the deformation of the cross-sectional area are 

taken into account through an extra term, in same way as has been done for the beam 

element. This extra strain energy is a result of the angle of deformation of the cross-

sectional area normal to the cross-section 
  

  
 or 

  

  
 is not equal to the angular 

deformation of rotation about the y-axis or x-axis respectively   
  

  
  or  

  

  
 . For the 

thick plate an extra energy term is also added for the kinetic energy where the rotary 

inertia about the x and y axis is assumed to have an appreciable contribution to the 

total kinetic energy expression of the element.   

 

Figure 93 

 
Axis and orientation on a four node plate element (node 1, 2, 3 and 4). Displacement in x, 

y and z direction are indicated with     and   respectively. Rotations about the x, y and 

z axis are indicated through        and    respectively. 

Plate In-Plane Deformation: 

In this section the energy expression for the in plane stresses is formulated. These are 

stresses that are a result of forces acting parallel to the middle plane of the plate and 

are uniformly distributed over through the thickness. There are no forces acting in 
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the z direction and the only stresses occurring are in x and y direction. The strain 

energy equation is written as: 

  
 

 
                     
 

 
(11.63) 

 

In matrix form this can be expressed as : 

  
 

 
          
 

 
(11.64) 

 

Where: 

     

  
  
   

   = stress matrix 

     

  
  
   

   

  
  

  

  
 

  

  

  = strain matrix 

The relation between strain and stress is expressed through the matrix D so that we can 

write: 

          (11.65) 

Where:  

    

 
 
 
 
 
 
 

 

      

  

      
 

  

      

 

      
 

  
 

       
 
 
 
 
 
 

 

and therefore the strain energy can be written as: 

  
 

 
           
 

   

Ultimately we can write for the in plane strain energy: 

  
 

 
            
 

   
(11.66) 
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Where h is the thickness (height) of the plate. For the plane kinetic energy we can 

write: 

  
 

 
           

 

    
(11.67) 

 

Plate Bending Deformation: 

The relation between plate bending strain and stresses is expressed through the 

relation: 

         
  

  
            

   

   
 

(11.68) 

 

         
  

  
            

   

   
 

 

    
  

  
 
  

  
    

   

    
 

 

For thin plates is written: 

    
  

  
 
  

  
   

    
  

  
 
  

  
   

(11.69) 

 

For thick plates: 

    
  

  
 
  

  
    

  

  
 

    
  

  
 
  

  
     

  

  
 

(11.70) 

 

The bending strain energy expression is written as: 

  
 

 
                     
 

 

(11.71) 

 

          

  
 

 
           
 

   

 

(11.72) 
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where for an orthotropic plate with material properties in all direction the same can 

be written: 

 

    

 
 
 
 
 
 
 

 

      

  

      
 

  

      

 

      
 

  
 

       
 
 
 
 
 
 

 

 

and      

  
  
   

  
(11.73) 

 

Substituting equation (11.68) into (11.73) gives:  

        

 
 
 
 
 
 
 

   

   

   

   

   
   

     
 
 
 
 
 
 

 

(11.74) 

 

Substituting equation (11.74) into (11.72) and integrating over z (the thickness of the 

plate) gives the strain energy equation for a slender bending plate: 

  
 

 
 
  

  
            

 

 (11.75) 

 For a thick plates extra shear stresses occur due to the deformation of the normals. 

This extra shear deformation results in extra strain energy being stored in the plate 

element in x and y direction: 

    
  

  
 
  

  
   

    
  

  
 
  

  
   

(11.76) 
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Resulting extra strain energy due to thickness effect: 

 

 
          
 

 

Where: 

      
   
   

           

and 

      
  
  

  
 

      
 
  
  

  

 

Where G is the shear modulus according to Hooke‟s law in shear: 

  
 

      
 

And   is the Poisson ratio which is considered to be around 0.33 for steel 

The total strain energy equation for a thick plate is: 

  
 

 
 
  

  
            

 

 
 

 
                
 

 (11.77) 

Bending inertia forces for a plate are expressed through the following relations: 

  
 

 
      

 

   (11.78) 

For the thick plate also the inertia effect of the rotation of the cross-sectional areas 

are taken into account. The total kinetic energy becomes: 

  
 

 
        

  

  
   

 
 
  

  
   

 
   

 

 (11.79) 
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Displacement Function 

The displacement function of a plate is obtained in similar manor. Considering a four 

node square     plate element in figure Figure 93 the displacement function can be 

represented by a polynomial with twelve terms as there are 12 degrees of freedom (3 

degrees of freedom for each node (rotation about y and x axis and vertical translation 

v ) for each of the four nodes).The displacement function becomes: 

                     
           

     
     

       
      

      
  

      
  

Where: 

  
 

    
 = a non dimensional coordinate 

  
 

    
 = a non dimensional coordinate 

   = the polynomial constant 

For a thin plate the relation between the rotation about the x or y axis is obtained 

through differentiating the displacement function to y and x respectively 

For a thick plate an extra set of displacement equations is formulated for the rotation 

about x and y axis: 

                     
           

     
       

   

Relations between    and    coefficients are formulated in a similar way as for the 

beam element through the relations but are not further elaborated on in this work 

Through the strain and kinetic energy equations and the displacement functions the 

equation of motion can be obtained through substitution into the Lagrange equation. 

As this is done in a similar way as for the beam element, this is not further discussed 

here. 
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Appendix V Residual 

Compensation for Free 

Floating Structures 
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In order to include the contribution from residual flexibility to the response of a 

structure applying mode superposition, the stiffness matrix needs to be inverted so 

that the flexibility matrix is obtained.  Inverting the stiffness matrix of a structure that 

is not fully constrained is however impossible, as the stiffness matrix will be 

singular. Obtaining the flexibility matrix is still possible through elimination of the 

rigid body degrees of freedom. This is done through applying so called pseudo 

constraint to the structure at arbitrary nodes, so that no rigid body motions are 

prevented. A flexibility matrix    is calculated for the substructure by inverting the 

stiffness matrix with the pseudo constraints applied [37, 39] 

In the next step the obtained flexibility matrix with the pseudo constraints involved is 

corrected for the presence of these pseudo constraints through a projection matrix P. 

This projection matrix is based on the formulation of a corrected excitation force that 

is compensated for the reaction forces occurring in the pseudo constraints, resulting 

from restraining the rigid body modes. These reaction forces    are equal to the rigid 

body inertia forces and are expressed through: 

          (11.80) 

 

Where  

  = the mass marix 

   = the matrix of rigid body modes 

    = the acceleration rigid body modal coordinate 

The corrected or so called equilibrated excitation force     becomes: 

             (11.81) 

 

Where   is the original excitation force.  

An expression for the rigid modal acceleration coordinates     is required. This is 

obtained through projecting the full stiffness, mass and damping matrix and external 

force matrix onto the subspace spanned by the rigid body modes and setting up the 

equation of motion (  
 
, being the transposed matrix of rigid body modes): 
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(11.82) 

 

As the rigid body modes   , like the elastic modes    are orthogonal to the damping, 

mass and stiffness matrix,    
     and   

     and    
     become zero.  

The equation of motion is rewritten as  

  
          

   

Consider the mode shapes to be normalised to the mass matrix,   
     becomes an 

identity matrix I 

       
   

      
   

(11.83) 

 

Substituting (11.83) into (11.81) gives: 

           
   (11.84) 

 

The projection matrix P is formulated: 

           
           

       (11.85) 

 

          
   (11.86) 

 

The corrected flexibility matrix is obtained through the following relations : 

                   (11.87) 

 

Although rigid body motion has been eliminated, contribution of rigid body motion 

to the elastic modes may still be present. In order to eliminate the interaction between 

rigid body modes and elastic modes the           representation in equation (11.87) is 

orthogonolised with the rigid body modes. This means that: 

  
                       

 

(11.88) 

 

                               
  (11.89) 
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Where   
  is a correction vector, such that   

                      . Substituting  

equation (11.89)  into equation (11.88) gives an expression for   
  

  
     

          (11.90) 

 

Substituting (11.88) into (11.89) gives the following expression: 

                               
          (11.91) 

 

Substituting (11.87) into (11.91) gives: 

                          
                   (11.92) 

 

The newly corrected flexibility matrix    is calculated following equation (11.92): 

          (11.93) 

 

For calculating residual elasticity for an unconstrained free floating structure the 

following equations can be formulated following equation (6.32):  

            
    

 
  (11.94) 

Where    is the matrix containing all retained mode shapes including rigid body 

modes.     is the matrix containing all the retained elastic mode shapes, i.e. all 

retained mode shapes excluding the rigid body modes.  

 

           
    

 
 (11.95) 
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Appendix VI Sparse Matrix 

Solver: Row Reduction 

Technique 
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Mass spring system  

 

Consider the following stiffness matrix   , mass matrix   and the excitation load 

vector   :  

 

   

         
            
            
         

  

   

      
      
      
      

  

   

  
 
 
 

  

 

Consider the excitation frequency to be 10 Hz: 

        
   

 
  = (10Hz) 

Undamped dynamic stiffness matrix : 

 

         

                   
                      
                      
                   

  

             

             
                
                
             

  

   
   
   
   

   

  
 
 
 

  

Forward phase: generating zeros on the lower triangle below the main diagonal: 

K = 4e6 N/m 

M = 200 kg 
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Starting with matrix:  

             
                
                
             

  

   
   
   
   

   

  
 
 
 

  

 Step 1        
   

   
           

  

             
               
                
             

  

   
   
   
   

   

  
  
 
 

  

Step 2        
   

   
           

  

             
               
               
             

  

   
   
   
   

   

  
  
  
 

  

Step 3        
   

   
           

  

             
               
               
          

  

   
   
   
   

   

  
  
  
  

  

Backward phase: generating ones on the main diagonal and zeros above the pivots 

Starting with matrix  

             
               
               
          

  

   
   
   
   

   

  
  
  
  

  

Step 1: generating ones on the main diagonal 
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Step 2,  generating zeros above pivots: 

           
   
   

      

 

 

         
         
    
    

  

   
   
   
   

   

       
      

        
        

  

           
   
   

      

 

         
         
    
    

  

   
   
   
   

   

       
        
        
        

  

           
   
   

      

 

    
    
    
    

  

   
   
   
   

   

        
        
        
        

  

The response therefore is  
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Part 1 

Step  Number of real matrix 

operations 

A Calculating  
          

      
  

 

Multiplying row 1 with  
          

      
   

10 + 

 

 

(a+b+ e) *6 

B Row(a+b) – row 1 

(pivot position            becomes 0 

(a+b +e)*2 

 

 Total number of operations = 8×(a+b+e)+10 

C Repeating step A and B for row (a+b-1) to row 2 

Colum 1 becomes zero except for        

(a+b-1) × (8×(a+b +e)+10) 

 
D Calculating  

          

      
  

 

Multiplying row 2 with  
          

      
  

10+ 

 

 

(a+b +e-1)*6 

E Row (a+b) – row 2 

(pivot position            becomes 0 

(a+b +e-1)*2 

 Total number of operations = 8×(a+b +e-1)+10 

F Repeating step D and E for row (a+b-1) to row 3 

Colum 2 becomes zero except for        and        

(a+b-2) ×( 8×(a+b +e-

1)+10) 

 
 

An expression for the total number of matrix operations    required for part 1 

(generating zeros under the main diagonal for column 1 to a) can be written as 

follows: 
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This results in a matrix with a skyline as shown in the figure below: 

 

 
Part 2 

In a similar way for part 2: 
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Part 3 

And for part 3: 

                             

       

   

 

 

 
 

 

The Backward phase is the next step in the row reduction procedure where ones are 

generated on the main diagonal (so the matrix becomes a unit upper triangular 

matrix). The number of operations required for the backward phase can be expressed 

as follows (see also Appendix XIV) 

For row 1 to a: 

  Number of real operations 

Row 1 Calculating 
 

    
 

Multiplying the non zeros in row 1 by 
 

    
 

10 + 

 

6*(a+b) 

Row 2 Calculating 
 

    
 

 

Multiplying the non zeros in row 2 by 
 

    
 

10 + 

 

 

6*(a+b-1) 

Row k Calculating 
 

    
 

Multiplying the non zeros in row a by 
 

    
 

10 + 

 

6*(a+b-k) 

Total number of operations: 
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For row a+1 to row (a+b+c): 

  Number of real operations 

Row a+1 Calculating 
 

        
 

 

Multiplying the non zeros in row (a+1) 

by 
 

        
 

10 + 

 

 

6*(b+c) 

Row a+2 Calculating 
 

        
 

 

Multiplying the non zeros in row (a+2) 

by 
 

        
 

10 +  

 

 

6*(b+c-1) 

Row 

(a+b+k) 
Calculating 

 

                
 

 

 

Multiplying the non zeros in row (a+k) 

by
 

                
 

 

10+ 

 

 

 

6*(b+c-k) 

Total number of operations: 

          

     

   

      

 

For row (a+b+1) to row (a+b+c+d): 

  Number of operations 

Row a+b+1 Calculating 
 

            
 

 

Multiplying the non zeros in row 

a+b+1 by 
 

            
 

10+ 

 

 

6*(c+d+1) 

Row 

a+b+c+d 
Calculating 

 

                    
 

 

 

Multiplying the non zeros in row 

a+b+c+d by 
 

                    
 

 

10+ 

 

 

6*(c+d+1-c-d+1) 

Total number of operations: 

            

       

   

      

 

Solving a real unit triangular matrices requires about    operations, where   is the 

number of rows or columns of the matrix [48]. Solving an imaginary triangular 

matrix requires twice the number of operation (     



308 

 

 

 

 

Appendix VII      Results FEM 

for Different Boundary 

Conditions 
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Simulation results positions on steering gear deck 

 
Simulation results 0 to peak vibration velocity amplitudes at different boundary conditions 
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Simulation results 0 to peak vibration velocity amplitudes at different boundary conditions 
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Simulation results 0 to peak vibration velocity amplitudes at different boundary conditions 
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Simulation results position on mooring deck 

 

Simulation results 0 to peak vibration velocity amplitudes at different boundary conditions 
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Simulation results 0 to peak vibration velocity amplitudes at different boundary conditions 
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Appendix VIII Comparing 

Simulation Results with 

Measurement Results 
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Location 1 

 

 
 

FFT velocity spectrum from measurements taken location 1 (vertical) with ship sailing at 19 

knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s] 

 
Comparison of simulation results with different boundary conditions and the measurement 

results(average spectrum) 
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Location 2 hull plating 

 

 
 

FFT velocity spectrum from measurements taken location 2 (longitudinal) with ship sailing at 19 

knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s] 

 

 
Comparison of simulation results with different boundary conditions and the measurement 

results(average spectrum) 
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Location 3 

 

 
 

FFT velocity spectrum from measurements taken location 3 (vertical) with ship sailing at 19 

knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s] 

 

 

Comparison of simulation results with different boundary conditions and the measurement 

results(average spectrum) 
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Location 5 

 
FFT velocity spectrum from measurements taken location 5 (vertical) with ship sailing at 19 

knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s] 

 

 
Comparison of simulation results with different boundary conditions and the measurement 

results(average spectrum) 
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Location 6 

 
FFT velocity spectrum from measurements taken location 6 (vertical) with ship sailing at 19 

knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s] 

 
Comparison of simulation results with different boundary conditions and the measurement 

results (average spectrum) 
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Location 7 

 
FFT velocity spectrum from measurements taken location 7 (vertical) with ship sailing at 19 

knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s] 

 

 
Comparison of simulation results with different boundary conditions and the measurement 

results (average spectrum) 
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Location 8 

 
FFT velocity spectrum from measurements taken location 8 (vertical) with ship sailing at 19 

knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s] 

 
 

Comparison of simulation results with different boundary conditions and the measurement 

results(average spectrum) 
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Location 9 

 
FFT velocity spectrum from measurements taken location 9 (vertical) with ship sailing at 19 

knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s]  

 
Comparison of simulation results with different boundary conditions and the measurement 

results(average spectrum) 
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Appendix IX Substructures 

LNG carrier CMS  
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A 

B 

C 

D 

E 

F 

G 

H 
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Substructure A 

 
 

Number of nodes 7168 

Number of master nodes (interface nodes) 263 

Number of modes fixed interface CMS between 

0 and 60 Hz* 

91 

Number of modes free interface CMS 

between 0 and 60 Hz* 

154 

 

*CMS analysis has been carried out in order to analyse the response over a frequency 

range from 1 to 40 Hz. The number of modes taken into consideration with the 

analysis is the number of modes that is within frequency range between 0 and 1.5 

times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz) 
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Substructure B 

 

Number of nodes 11705 

Number of master nodes (interface nodes) 633 

Number of modes fixed interface CMS between 0 

and 60 Hz* 

138 

Number of modes free interface CMS 

between 0 and 60 Hz* 

231 

 

*CMS analysis has been carried out in order to analyse the response over a frequency 

range from 1 to 40 Hz. The number of modes taken into consideration with the 

analysis is the number of modes that is within frequency range between 0 and 1.5 

times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz) 
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Substructure C 

 

Number of nodes 14393 

Number of master nodes (interface nodes) 854 

Number of modes fixed interface CMS between 0 

and 60 Hz* 

195 

Number of modes free interface CMS 

between 0 and 60 Hz* 

335 

 

*CMS analysis has been carried out in order to analyse the response over a frequency 

range from 1 to 40 Hz. The number of modes taken into consideration with the 

analysis is the number of modes that is within frequency range between 0 and 1.5 

times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz) 
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Substructure D 

 
 

Number of nodes 11118 

Number of master nodes (interface nodes) 1033 

Number of modes fixed interface CMS between 

0 and 60 Hz* 

162 

Number of modes free interface CMS 

between 0 and 60 Hz* 

336 

 

*CMS analysis has been carried out in order to analyse the response over a frequency 

range from 1 to 40 Hz. The number of modes taken into consideration with the 

analysis is the number of modes that is within frequency range between 0 and 1.5 

times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz) 
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Substructure E 

 
Number of nodes 10728 

Number of master nodes (interface nodes) 1198 

Number of modes fixed interface CMS between 0 

and 60 Hz* 

213 

Number of modes free interface CMS 

between 0 and 60 Hz* 

323 

 

*CMS analysis has been carried out in order to analyse the response over a frequency 

range from 1 to 40 Hz. The number of modes taken into consideration with the 

analysis is the number of modes that is within frequency range between 0 and 1.5 

times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz) 
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Substructure F and G 

 

 

 

 
 

Number of nodes  F = G= 6675 

Number of master nodes (interface nodes) F = G = 256 

Number of modes fixed interface CMS between 

0 and 60 Hz* 

F = G = 373 

Number of modes free interface CMS 

between 0 and 60 Hz* 

F = G = 419 

*CMS analysis has been carried out in order to analyse the response over a frequency 

range from 1 to 40 Hz. The number of modes taken into consideration with the 

analysis is the number of modes that is within frequency range between 0 and 1.5 

times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz) 
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Substructure H 

 
 

Number of nodes 5819 

Number of master nodes (interface nodes) 348 

Number of modes fixed interface CMS between 

0 and 60 Hz* 

181 

Number of modes free interface CMS 

between 0 and 60 Hz* 

257 

*CMS analysis has been carried out in order to analyse the response over a frequency 

range from 1 to 40 Hz. The number of modes taken into consideration with the 

analysis is the number of modes that is within frequency range between 0 and 1.5 

times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz) 



333 

 

Appendix X  Results Full 

FEM, Fixed Interface CMS 

and Free Interface CMS 
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Simulation results positions on steering gear deck 

 

 
Simulation results 0 to peak vibration velocity amplitudes on the steering gear deck 
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Simulation results 0 to peak vibration velocity amplitudes on the steering gear deck 
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Simulation results 0 to peak vibration velocity amplitudes on the steering gear deck 
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simulation results positions on mooring deck 

 
Simulation results 0 to peak vibration velocity amplitudes on the mooring deck 
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Simulation results 0 to peak vibration velocity amplitudes on the mooring deck 
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Appendix XI Simulated 

Deflection Shapes for Model 

Constrained at Frame 25   
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Deflection Shape at 8.8 Hz  (frame 25 constrained) 
displacement scaling 8e3 

 

 
 

Substructures added together. Pictures shows 

the deformed shape plotted together with the 

un-deformed shape which clearly shows the 

presence of the effect of a first bending 

global mode shape of the aft ship. The 

deformed shape of sections A and B are 

shown enlarged at the top of the figure. 

Through these two pictures also the presence 

of a bending mode at the aft part of the aft 

deck can be identified. The deformed shapes 

of sections C to H do not show any local 

elastic deformation apart from section E. 

That is why they have not been shown in 

more detail here. Vibration levels at these 

sections at 8.8 Hz are largely due to the 

global first bending mode-shape of the aft 

ship, which is shown through the summary 

picture immediately left to this text. 

 

Flexibility at section E has a great impact on the 

natural frequency corresponding with the mode 

shape illustrated above.  
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Appendix XII Simulated 

Deflection Shapes for Model 

Constrained at Frame 21 

 
  



345 

 

Deflection Shape at 10 Hz  (engine room bulk head (frame 21) constrained) 
displacement scaling 8e3 

 

 
 

Substructures added together. Pictures 

shows the deformed shape plotted 

together with the un-deformed shape 

which clearly shows the presence of the 

effect of a first bending global mode 

shape of the aft ship. The deformed shape 

of sections A and B are shown enlarged at 

the top of the figure. Through these two 

pictures also the presence of a bending 

mode at the aft part of the aft deck can be 

identified. The deformed shapes of 

sections C to H do not show any local 

elastic deformation apart from section E. 

That is why they have not been shown in 

more detail here. Vibration levels at these 

sections at 8.9 Hz are largely due to the 

global first bending mode-shape of the aft 

ship, which is shown through the 

summary picture immediately left to this 

text. 

 

 At section E the flexibility of  the bulk head plays an 

important role This explains why  constraining frame 

21 instead of frame 25 affects the resonance frequency 

corresponding with this mode-shape. 
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Deflection Shape at 15.6 Hz (engine room bulk head (frame 21) 

constrained) 
displacement scaling 8e3 
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Deflection Shape at 19 Hz (engine room bulk head (frame 21) constrained. 

displacement scaling 4e3 
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Deflection Shape at 22 Hz (engine room bulk head (frame 21) constrained. 

displacement scaling 4e3 
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Appendix XIII Comparing 

Correlated Simulated Spectra 

With Measurement Results 
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Correlated modelling results are plotted together with the measurement results. The 

amplitudes of the first two blade passing frequencies (at 5 and 10 Hz) have been 

obtained from the simulation results produced for the model constrained at frame 25. 

The adjustment done for the response at the first two blade passing frequencies 

shifting the 8.8 Hz natural frequency to 7.8 Hz, as a correction for the absence of 

absence of hydrodynamic added mass in the original model. For orders higher than 2, 

peak response frequencies the closest to the orders in question have been shifted in 

such a way that the peak response frequencies coincide with the blade passing order.  
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Appendix XIV Matrix-Vector 

Calculus and Number of 

Required Floating Point 

Operations 
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An Important part of the evaluation of the different CMS techniques proposed in this 

work is the estimation of the number of floating point operations required for each 

step. Hereby a list is given of the required number of complex and real floating point 

operations for matrix multiplication, adding and subtracting. A real floating point 

operation (FLOP) is a +, -, /, or × operation on two real numbers. A complex floating 

point operation is a +, -, /, or × operation on two real two complex numbers [48, 50, 

51]:  

One complex multiplication consists of 4 real multiplication and two real 

summations. This means that 1 complex multiplication (1 complex floating point) is 

equal to 6 real multiplications. 

One complex summation consists of 2 real summations. 

One complex division consist of 10 real operations considering: 

    

    
 
            

     
 
       

       
  

        

       
   

Which involves a complex multiplication              (= 6 real flops)  

plus 2 real multiplications (       ) plus 2 real divisions 
       

       
 and 

        

       
 

 In this work the real floating point operations are calculated as a great number of 

operations (mainly in the generation pass) do not require calculation with complex 

numbers (such as reduction of mass and stiffness matrices). In addition also the fact 

that a multiplication of two complex numbers is more expensive than adding two 

complex numbers is reflected. 
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  Approximate Number of 

Complex FLOPS 

Approximate 

Number of Real 

FLOPS 

Multiplying 

two full 

matrices: 

 

          

     is a full     

matrix 

     is a full      

matrix 

2*N*M*L 

 
(N*M*L complex 

multiplications plus  

N*M*L complex summations) 

8*N*M*L  

 
(6*N*M*L real 

multiplications plus  

2*N*M*L real 

summations) 

Multiplying a 

full matrices 

with a sparse 

band matrix: 

 

          

     is a full     

matrix 

     is a sparse  

    matrix with an 

average bandwidth of 

  
 

2*N*M*W 

 
(N*M*W complex 

multiplications plus  

N*M*W complex 

summations) 

8*N*M*W  

 
(6*N*M*W real 

multiplications plus  

2*N*M*W real 

summations) 

Multiplying a 

sparse band 

matrix with a 

full matrix: 

 

          

     is a sparse 

    matrix with an 

average bandwidth of 

  

     is a full      

matrix  

 

2*W*M*L 

 
(W*M*L complex 

multiplications plus  

W*M*L complex 

summations) 

8*W*M*L  

 
(6*W*M*L real 

multiplications plus  

2*W*M*L real 

summations) 

Multiplying a 

matrix with a 

vector: 

 

       

     is a     

matrix and 

   is a      vector 

 

2*N*M 

 

(N*M complex 

multiplications plus  

N*M complex summations) 

8* N*M 

 

(6*N*M real 

multiplications plus  

2*N*M real 

summations) 

 

 

Multiplying a 

full matrices 

with a 

diagonal band 

matrix with 

bandwidth 

W=1: 

 

          

     is a full     

matrix 

     is a sparse      

matrix with a bandwidth 

of 1 

 

N*M 

 
(N*M*W complex 

multiplications plus  

no complex summations) 

6*N*M  

 
(6*N*M*W real 

multiplications plus  

0 real summations) 

Inverse of a 

sparse matrix 

through LU 

factorisation  

 

     

     is a sparse     

matrix with an average 

bandwidth of   

 

 

 
            

       

 

Where   
     

 
 

 

 
           

           

 

Where   
     

 
 

Inverse of a 

full matrix  

     

     is a full square 

    matrix  
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Solving a 

    
triangular 

matrix with 

ones on the 

main dagonal 

 N*N 

 

Approx 0.5* N*N 

complex multiplications 

and 

0.5*N*N complex 

summations  

4*N*N 

 

Approx 6*0.5* N*N 

real multiplications 

and 

 2*0.5*N*N real 

summations 

 

  Approximate 

Number of Real 

FLOPS 

Multiplying 

one full 

complex 

matrices with 

a full real 

matrix: 

 

          

     is a full     

complex matrix 

     is a full      

real matrix 

4*N*M*L  

 
(2*N*M*L real 

multiplications plus  

2*N*M*L real 

summations) 

Multiplying a 

complex 

sparse band 

matrix with a 

real full 

matrix: 

 

          

     is a complex 

sparse     matrix 

with an average 

bandwidth of   

     is a full real  

    matrix  

 

4*W*M*L  

 
(2*W*M*L real 

multiplications plus  

2*W*M*L real 

summations) 
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Appendix XV Steps and 

Estimated Number of Matrix 

Operation Mode 

Superposition 
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Step 1: Calculating Reduced Matrices 

                     

Where   is the reduction basis consisting of a number of vectors representing the retained 

mode shapes 

  = the stiffness matrix of the total structure 

  is the mass matrix of the total structure 

  is the loss number representing the damping as a fixed percentage of the spring potential 

energy 

 

See section 6.4.2 

 

Step Description of action Estimated number of real 

FLOPS 

1A Calculating     

 

Multiplying a  real full       matrix with a full 

complex     matrix 

       

1B      
 

Multiplying a  real      matrix with a real sparse 

    matrix with bandwidth            

                  

1C       
 
Multiplying a  full real      matrix with a full 

real      matrix 
 

          

1D           
 

Multiplying a  real      matrix with a complex 

    matrix 

                  

1E 

            
 

Multiplying a  complex      matrix with a real 

     matrix 
 

          

  = the number of degrees of freedom of the total structure 

   = the number of mode shapes required 

           is the average bandwidth of the sparse diagonal symmetric stiffness and mass matrix  
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Appendix XVI Steps and 

Estimated Number of Matrix 

Operation Classic Rubin’s 

Method 
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Step 1: Calculating constraint modes 

Constraint modes =     =               (according to equation (6.40)) 

 

Step Description of action Estimated number of FLOPS 

1A Calculating          

 

Inverting a       matrix through LU 

decomposition 

 

 

 
  

 
                

 
 

 

Where   
              

 
 

1B Calculating               
 

Multiplying a full       matrix with a sparse 

             matrix 

 

                          

   = the number of internal (slave) degrees of freedom of a substructure 

          = the total number of interface degrees of freedom of the substructure. 

           is the average bandwidth of the sparse diagonal symmetric matrix      
 

 

Step 2: Generating reduction basis 

Reduction basis    
  

                     
  (according to equation (6.67)) 

 

Step Description of action Estimated number of FLOPS 
2A 

Calculating               

Multiplying a full              matrix with a full 

             matrix 

 

                  

 

 

2B 

Calculating                 

 

Where   is obtained from step 2A 

 

Subtracting a full       matrix from a full       

matrix 

 

      
 

   = the number of internal (slave) degrees of freedom of a substructure 

          = the total number of interface degrees of freedom of the substructure. 

   = the number of retained normal modes 
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Step 3: Reducing Stiffness and Mass Matrices 

Calculating the reduced stiffness and mass matrix according to           and            

according to section  6.5.2.2 

Step 3A 

Calculating       and     

Multiplying a sparse     matrix with a sparse 

     matrix. This action needs to be performed 

twice: once for the mass matrix and once for the 

stiffness matrix. 

 

Estimated number of FLOPS: 
 

                    

 

 

 

 

 

 

 

Step 3B 

Calculating                      
          

Where   is obtained from step 3A  

Multiplying a sparse      matrix with a full 

     matrix. This action needs to be performed 

twice: once for the mass matrix and once for the 

stiffness matrix 

Estimated number of FLOPs: 

 

             

+ 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  is the number of degrees of freedom of a substructure 

   is the number of retained normal modes plus the number of constraint modes (interface degrees of 

freedom) 

          = the total number of interface degrees of freedom of the substructure. 

   = the number of retained normal modes 

            is the average bandwidth of the sparse diagonal symmetric matrix   or    

   = the number of internal (slave) degrees of freedom of a substructure. 

                 

Skyline of matrices: 

white = zeros 

grey = non- zeros 

                 

      

  

          

   

I 

   

  
  
  

           =                    Identity matrix 

 

I 
           =                    band matrix 

 

 

      

Sparse 

matrix  

   

   

   

    

                 

  

   
            I 

   

   

   

 

           =                    Identity matrix 

 

I 

  

           =                    band matrix 
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Step 3C 
Reducing external load vector:    

   
   

  

Multiplying a real sparse      matrix with a full 

complex      vector 

Estimated number of FLOPS: 
 

        

+ 

                   

 

 

  is the number of degrees of freedom of a substructure 

   is the number of retained normal modes plus the number of constraint modes (interface degrees of 

freedom) 

          = the total number of interface degrees of freedom of the substructure. 

   = the number of retained normal modes 

   = the number of internal (slave) degrees of freedom of a substructure 

            is the average bandwidth of the sparse diagonal symmetric matrix   or    

 

 

  

  

   

 

   

    

       

  

   
            I 

   

  

   

           =                    Identity matrix 

 

I 

Skyline of 

matrices: 

white = zeros 

grey = non- zeros 
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Step 4: Generating reduced equations of motion 

(see equations (6.54) to (6.56) section 6.5.1.3) 

Calculating  

             Where    and    are the reduced stiffness and mass matrix of the total assembled 

structure. The total reduced dynamic stiffness matrix                is calculated from the reduced 

dynamic stiffness matrices of the individual substructures obtained in step 3.   

 

         

 
 
 
 
           

           
    
            

 
 
 

 

      

      

      
    
      

  

 

Step Description of action Estimated number of FLOPS 

4A Calculating             for all N substructures 

the total structure consists of: 

 

Calculating      = multiplying an imaginary 

                                  matrix 

with the loss number   

                 

   

   

            
      

 

            = Adding real             

                      matrices to complex 

                                  

matrices. 

 

                  

   

   

            
      

                                    

   

   

 

    = the number of normal modes of substructure N 

           = number of master (connecting) degrees of freedom of substructure N 

  = number of frequencies analysed 

  = Number of substructures involved 
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Step Description of action Estimated number of FLOPS 

4B 

Compiling           

     
     
    
     

   

 

 

 

Where    are the matrices obtained from step 4A 

 

Adding complex                  

                 matrices to complex 

                                  

matrices. 

 

 

                   

   

   

            
      

 

 

      

      

      
    
      

  

 

 

 

Adding real                              

     matrices to real                  

                 matrices. 

 

                 

   

   

            
      

                                    

   

   

 

    = the number of normal modes of substructure N 

           = number of master (connecting) degrees of freedom of substructure N 

  = number of frequencies analysed 

  = Number of substructures involved 
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Step 5. Forcing equilibrium and compatibility at the interface degrees of freedom: 

                
 

            (see equations (6.53) to (6.56)) 

5A                                  Number of FLOPS 

Calculating    : Multiplying a complex full 

                                            
matrix with a real sparse                        
                    matrix with bandwidth of 1 

                        
 

Calculating   : Multiplying a real full           
          ×        +           matrix with a 

real sparse                                  
         matrix with bandwidth of 1 

 

                        

5B Calculating             and             
 

Number of FLOPS 

 

Multiplying a sparse real                      
                      matrix with bandwidth 1, 

with a complex full                        
                    matrix  

 

                        

Multiplying a sparse real                      
                      matrix with bandwidth 1, 

with a real full                        
                    matrix  

 

 

                        

5C Compiling                                     
 

 

Number of FLOPS 

                = Multiplying a real           

                            with    

 

 

            
                            

                                       

Adding complex                              
         matrices to real                    
                   matrices. 

 

             
                            

        
= eliminating redundant interface degrees of freedom and stating that the external force at 

the retained interface degrees of freedom are zero, so that an equilibrium of forces is 

obtained 

   = the number of rows or columns of the total assembled B matrix.                     ) 
         = the total number of master (connecting) degrees of freedom (interface node degrees of 

freedom) of the total assembled structure.  

        is the total number of normal modes taken into account for all individual substructures added 

together. 
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Appendix XVII Steps and 

Estimated Number of Matrix 

Operations Rubin’s Method 

using Interface Modes 
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Step 1: Calculating constraint modes 

Constraint modes =     =               (according to equation (6.40)) 

See also section 6.5.3 

Step Description of action Estimated number of FLOPS 

1A Calculating          

 

Inverting a       matrix through LU 

decomposition 

 

 

 
  

 
                

 
 

 

Where   
              

 
 

1B Calculating               
 

Multiplying a full       matrix with a sparse 

             matrix 

 

                          

   = the number of internal (slave) degrees of freedom of a substructure 

          = the total number of interface degrees of freedom of the substructure. 

           is the average bandwidth of the sparse diagonal symmetric matrix      
 

 

                          
  

Step 2: Reducing the Interface degrees of freedom 

Generating reduced stiffness and mass matrices   and    

         and          

    
 
  
    and   

      
     

See equation (6.73) 

Step Description of action Estimated number of FLOPS 

2A Calculating         and         

 

 

Multiplying a sparse        matrix with a full  

      matrix. This is done twice: once for the 

reduction of the stiffness matrix and once for the 

reduction of the mass matrix 

 

                   

+ 

                   

 

2B Calculating      
    and      

    

 

Multiplying a full        matrix with a full  

      matrix. This is done twice: once for the 

reduction of the stiffness matrix and once for the 

reduction of the mass matrix 

 

           

+ 

           

   = the number of internal (slave) degrees of freedom of a substructure 

   = the total number of interface degrees of freedom of the substructure. 

           is the average bandwidth of the sparse diagonal symmetric matrix      
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Step 3: Generating reduction basis 

Reduction basis  

      
               

  
 
         

 
               

  

 (according to equation (6.77)) 

 

Step Description of action Estimated number of FLOPS 
3A 

Calculating              

Multiplying a full       matrix with a full       

matrix 

 

           

 

 

3B 

Calculating                     

 

Where   is obtained from step 3A 

 

Subtracting a full       matrix from a full       

matrix 

 

      

 

   = the number of internal (slave) degrees of freedom of a substructure 

   = the total number of physical interface degrees of freedom of the substructure. 

   = the number of retained normal modes 

   = the number of retained interface modes (cut-off frequency 3.5 times maximum frequency) 
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Step 4: Reducing Stiffness and Mass Matrices 

Calculating the reduced stiffness and mass matrix according to         
        and      

    
        according to section  6.5.3.1 

Step 4A 

Calculating          and        

Multiplying a sparse     matrix with a sparse 

     matrix. This action needs to be performed 

twice: once for the mass matrix and once for the 

stiffness matrix. 

Estimated number of FLOPS: 
 

                    

 

 

 

 

 

 

 

Step 4B 

Calculating                
            

     

    
   Where   is obtained from step 4A  

Multiplying a sparse real      matrix with a 

sparse real      matrix. This action needs to be 

performed twice: once for the mass matrix and once 

for the stiffness matrix 

Estimated number of FLOPs: 

 

             

+ 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

  is the total number of degrees of freedom of a substructure 

   is the number of retained normal modes plus the number of interface modes 

   = number of retained interface modes (cut-off frequency 3.5 times maximum frequency) 

   = the number of retained normal modes 

   = the total number of physical interface degrees of freedom of the substructure. 

           is the average bandwidth of the sparse diagonal symmetric matrix   or    

   = number of retained interface modes (cut-off frequency 3.5 times maximum frequency) 

   = the number of internal (slave) degrees of freedom of a substructure. 

  
   

   

    
  

  

                 

  

   
      

   

   

   

 

           =       full matrix 

 

                 

           =        full matrix 

 

 

  

 

                 

 Skyline of matrices: 

white = zeros 

grey = non- zeros 

                    

      

  

  
  

  

           =       full matrix 

 

    

Sparse 

matrix  

                   

    

 

   

           =       full matrix 
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Step 4C 
Reducing external load vector:     

  
   
   

  

Multiplying a sparse      matrix with a full     

vector 

Estimated number of FLOPS: 
 

        

+ 

       

 

 

  is the total number of degrees of freedom of a substructure 

   is the number of retained normal modes plus the number of interface modes 

   = number of retained interface modes (cut-off frequency 3.5 times maximum frequency) 

   = the number of retained normal modes 

   = the total number of physical interface degrees of freedom of the substructure. 

           is the average bandwidth of the sparse diagonal symmetric matrix   or    

   = number of retained interface modes (cut-off frequency 3.5 times maximum frequency) 

   = the number of internal (slave) degrees of freedom of a substructure. 

 

  

Skyline of 

matrices: 

white = zeros 

grey = non- zeros 

 
   
   

  

  

   

 

    
  

    

       

  

   
      

   

  

   

           =       full matrix 
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Step 5: Generating reduced equations of motion 

 

Calculating  

              Where    and    are the reduced stiffness and mass matrix of the total assembled 

structure. The total reduced dynamic stiffness matrix                is calculated from the reduced 

dynamic stiffness matrices of the individual substructures obtained in step 3.   

 

         

 
 
 
 
           

           
    
            

 
 
 

 

      

      

      
    
      

  

 

Step Description of action Estimated number of FLOPS 

5A Calculating             for all N substructures the total structure consists of: 

 

 

Calculating      = multiplying an imaginary 

                    matrix with the loss 

number   

 

                    

   

   

 

            = Adding complex           
          matrices to                
     matrices. 

 

 

                 

   

   

      

                      

   

   

 

    = the number of retained normal modes of substructure N 

    = number of retained interface modes for substructure N 

  = number of frequencies analysed 

  = Number of substructures involved 
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Step Description of action Estimated number of FLOPS 

5B 

Compiling           

     
     
    
     

 Where 

   are the matrices obtained from step 5A 

 

Adding complex                     
matrices to                     matrices. 

                 

   

   

      

      

      

      
    
      

  

Adding real                     matrices 

to real                     matrices. 

 

                    

   

   

 

                      

   

   

 

    = the number of retained normal modes of substructure N 

    = number of retained interface modes for substructure N 

  = number of frequencies analysed 

  = Number of substructures involved 
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Step 6. Forcing equilibrium and compatibility at the interface degrees of freedom: 

 

Formulating   according to equation (6.82): 

           
        

  
        

             

 
  

Where        are the retained interface modes for all substructures involved that have not been made redundant 

Where       are the retained interface modes made redundant through the formulation of the compatibility 

relations 

Step Action Estimated number of FLOPS 

6A Calculating         
        

 

 Multiplying a full           with a full 

          matrix 

    *              

6B Calculating         
             

 

Multiplying a full          matrix with a 

sparse                    matrix 

    *             

6C Calculating       
       

  
 =     

 

Inverting a full               matrix 

 

 
      

  

 

6D Calculating 

       
       

  
       

              

=     

 

Multiplying a full               matrix with 

a sparse                        matrix 

        *             

   is the number of physical interface degrees of freedom 

     = total number of retained interface modes made redundant for all substructures put together 

       = total number of retained interface modes not made redundant for all substructures put 

together 
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Step 7. Forcing equilibrium and compatibility at the interface degrees of freedom for 

the reduced mass and stiffness matrices: 

                
 

            
Step Action Estimated number of FLOPS 

7A                and            
 
 

   : Multiplying a complex sparse     
                      matrix with a real 

sparse                               
matrix  

 
   : Multiplying a real sparse     
                      matrix with a real 

sparse                               
matrix  

 

 

 

                   
 

                 

              

 

+ 

                   
 

                 

              

 

7B Calculating             and    
     

 
Multiplying a real sparse           
                    matrix with a full 

complex                              
matrix 

 
Multiplying a real sparse           
                    matrix with a full 

real                              
matrix 

 

                   
 

                 
 

        

 

+ 

                   
 

                 
 

        

 

   is the number of physical interface degrees of freedom 

     = total number of retained interface modes made redundant for all substructures put together 

       = total number of retained interface modes not made redundant for all substructures put 

together 

       = total number of retained normal modes (flexibility and elastic modes) of all substructures 

together 
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Step Action Estimated number of FLOPS 

7C Compiling                                   
 

                 

 

Multiplying a real sparse           

      ×       +       with  2 

 

                                    

                               
      

Adding complex                  

                 matrices to a real 

                                  

matrices. 

 

                            
          

        
= eliminating redundant interface degrees of freedom and stating that the external force at 

the retained interface degrees of freedom are zero, so that an equilibrium of forces is 

obtained 

       total number of retained interface modes not made redundant through the compatibility 

relations 

        = the total number of retained normal modes of all substructures. 
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Appendix XVIII Steps and 

Estimated Number of Matrix 

Operations Zoet’s Method 
  



377 

 

Step 1: Calculating             
    

 
 according to equation (6.59) 

(see section 6.4.3 and 6.5.2.2) for each individual substructure 
 

   = the inverse of a substructure‟s full stiffness matrix 
 

Where    represents the set of retained elastic modes 

 

    is the inverse diagonal matrix containing the natural frequencies corresponding with the retained 

elastic modes 

 

Step  Number of Flops Required 
1A Calculating       

Inverting a           ) matrix 

 

Where   is the stiffness matrix with the degrees of 

freedom eliminated where constraints are applied. 

 

 

 
                

           
 

Where   
              

 
 

1G Calculating        
 
 

 

Multiplying a diagonal sparse       matrix with a 

full              matrix 

 

      

1H Calculating      
    

 
     

 

Where   has been obtained from step 1B 

 

Multiplying a full               matrix with a full 

             matrix 

 

              
  

1I Calculating        
    

 
     

 

Where   has been obtained from step 1A and   has 

been obtained from step 1C 

 

Subtracting a full                     from a full 

                    matrix 

 

         
  

  is the total number of degrees of freedom of an individual substructure 

  is the number of constraints on the individual substructure 

          is the number of interface degrees of freedom of the individual substructure 

   is the number of retained elastic modes of the individual substructure 

           is the average bandwidth of the sparse diagonal symmetric matrix     of the individual 

substructure 
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In Case of Unconstrained Structure (see Appendix V) 

                      
    

 
              (Step 1G-1I) 

                                                        (Step 1E and 1F) 

          
                                       (Step 1B to 1D) 

                                                           ( Step 1A) 

 

Step Description of action Estimated number of FLOPS 
1A Calculating          

Inverting a sparse           ) matrix 

 

Where   is the stiffness matrix with the 

degrees of freedom eliminated where pseudo 

constraints are applied. 

 

 

 

 
                 

           
 

Where   
              

 
 

1B Calculating         
   

 

Multiplying a full      with a full      

matrix 

 

    
   

1C Calculating         
      

 

Where   has been obtained in Step 1A 

 

Multiplying a sparse       matrix with a 

full       matrix 

 

    
            

 

 

1D Calculating            
       

 

Where   has been obtained from step 1C 

 

   

  is the total number of degrees of freedom of an individual substructure 

  is the number of pseudo constraints on an individual substructure 

   is the total number of degrees of freedom of the    matrix 

  is the number of rigid body modes (= 6) 

           is the average bandwidth of the Sparse matrix M or  
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Calculating                        for one substructure 

Where               is the section of    representing the degrees of freedom of the interface nodes. 

 

Step Description of action Estimated number of FLOPS 
1E Calculating          

 

Where   has been obtained from step 1A 

 

Multiplying a full       with a full       matrix 

 

    
     

1F Calculating                           

 

Where e has been obtained from step 1E 

 

Multiplying a full       with a full       matrix 

 

       
  

Calculating Residual Attachment Modes:                       
    

 
 

 

Step Description of action Estimated number of FLOPS 
1G Calculating        

 
 

 

Multiplying a diagonal sparse       matrix with a 

full       matrix 

 

      

1H Calculating      
    

 
     

 

Where g has been obtained in step 1G 

 

Multiplying a full       matrix with a full       

matrix 

 

       
  

1I Calculating                  
    

 
 

                
 

Where   has been obtained from step 1H 

 

Subtracting a full       from a full       matrix 

 

  
  

   is the total number of degrees of freedom of the    matrix 

   is the number of interface degrees of freedom 

   is the number of retained elastic modes 
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Step 2: Formulating interface mobility     matrix for a pair of coupled substructures 

(substructure A and B)  (see section 8.4, equation (8.32)) 

 

    
             

      
     

      
                    = Step 2C  

                   = Step 2A and 2B 

Note that the matrix    
            

            
  

Step 2A 

Calculating                  

 

Multiplying a complex sparse           

          matrix with a sparse complex 

             matrix 

 

 

Estimated number of FLOPS: 

 

                            

+ 

                            

+ 

                       

 

 

                                                                                    

    is the total number of retained normal modes and residual flexibility modes of subsystem A and B 

together 

           = the number of interface degrees of freedom of substructure A 

           = the number of interface degrees of freedom of substructure B  

     = the number of retained normal modes of substructure A 

    = the number of retained normal modes of substructure B 

           is the average bandwidth of the Sparse matrix            

 = the number of frequencies analysed. If             is considered to consist of stiffness and 

damping only and interface inertia forces are neglected,    is 1 as there is no frequency dependency 

          

          

            

    
  

    

          

 

Identity  

Matrix  I 

        

           

  

  

           

Skyline of matrices: 

white = zeros 

grey = non- zeros 
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Step 2B Calculating  

                         

  is the result from step 2A 

 

Multiplying a complex sparse    
          matrix with a full complex 

             matrix 

 

 

Estimated number of FLOPS: 

 

                
   

                                  

                            

+ 

                                  

                
   

                            

 

+ 

                       

 

 

 

                                                                                    

   is the total number of retained normal modes and residual flexibility modes of subsystem A and B 

together 

   is the total number of retained normal modes of subsystem A and B together 

           = the number of interface degrees of freedom of substructure A 

           = the number of interface degrees of freedom of substructure B  

     = the number of retained normal modes of substructure A 

    = the number of retained normal modes of substructure B 

           is the average bandwidth of the Sparse matrix           

 = the number of frequencies analysed. If             is considered to consist of stiffness and 

damping only and interface inertia forces are neglected,    is 1 as there is no frequency dependency  

Skyline of matrices: white = zeros 

grey = non- zeros 

   

 

  

   

          

 

 

     

 

Identity 

Matrix I 
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2C Calculating 

    
             

      
     

      
   

  is the result from step 2B (see equation (8.32)) 

Multiplying a sparse complex        matrix with a full 

complex        matrix 

 

Estimated number of FLOPS 

 

       

+ 

            
  

  

            
  

 

 

 

2D Calculating       

Subtracting a complex       identity matrix from a 

full       matrix 

 

Estimated number of FLOPS: 

       

                                                                                    

   is the total number of retained normal modes and residual flexibility modes of subsystem A and B 

together 

           = the number of interface degrees of freedom of substructure A 

           = the number of interface degrees of freedom of substructure B  

     = the number of retained normal modes of substructure A 

    = the number of retained normal modes of substructure B 

  = the total number of normal modes for substructure A and B together 

  = number of frequencies analysed 

 

 

  

      

  

   

 

   

   

 

       

 

       

    

                      

           

           

  
             

      
     

      
  

      diagonal matrix with bandwidth 1 

 

Skyline of matrices: white = zeros 

grey = non- zeros 
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Step 3: Calculating    

Calculating   , modal coordinates representing the response of the uncoupled substructures 

due external alternating loads acting on the substructures. Only the modal coordinates 

belonging to the normal modes are calculated and no residual compensation has been taken 

into account for the uncoupled dynamic behaviour. Therefore (see equation (6.27)): 

 

                 
      

            

Where   is the matrix containing the retained eigenvectors representing only the retained 

normal mode shapes. 

 

Step Description of action Estimated number of FLOPS 

3A          

 
Multiplying a full complex       matrix with a 

complex     vector  

 

          

 

3B                  
      

            

                 
      

       
 
Where   is the matrix obtained from step 3A 

 
Multiplying a complex diagonal        matrix 

with a complex sparse        vector 

 
 

       

  is the total number of degrees of freedom of the substructure 

   is the number of retained normal modes 

  is the number of degrees of freedom subjected to external loads 
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Step 4: Eliminating Interface Degrees of Freedom 

See equation (8.35) to (8.39) in section 8.5 

 

                     
                                                          (step 4F) 

And 

 
    
    

    
   
   

            
   

      
      

                                        (step 4G) 

 

Step Description of action Estimated number of 

FLOPS 

4A Calculating        
   

 

Inverting a full complex                     through 

LU factorisation 

 

 

 
            

  

 

4B Calculating        
                 

 

Where   is the matrix obtained from step 4A 

 

Multiplying a full                      matrix with a full  

              matrix 

 

 

              
  

4C Calculating        
   

      
      

    
      
      

  

 

Where   is the matrix obtained from step 4A 

 

Multiplying a full complex                     with a 

complex             vector 

 

           
  

4D             
               

 

Where   is the matrix obtained from step 4B 

 

Multiplying a full complex              with a full 

             complex matrix   

 

                
  

4E             
   

      
      

         

 

Where   is the matrix obtained from step 4C 

 

Multiplying a full complex              matrix with a 

complex             vector 

 

 

                 

                                                                                    

  = the total number of normal modes for substructure A and B together 

  = number of frequencies analysed 
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Step Description of action Estimated number of 

FLOPS 

4F Calculating                    
                

 

Where   is the matrix obtained from step 4C 

 

Adding a full       matrix to a full       matrix 

 

 

          

4G 
Calculating  

    
    

    
   
   

            
   

      
      

  

  
   
   

    

 

Where   is the matrix obtained from step 4E 

 

Adding a    vector to an    vector 

 

       

                                                                                    

  = the total number of normal modes for substructure A and B together 

  = number of frequencies analysed 

 

 

Step 5: Compiling total matrix: 
 

Adding Pairs of coupled substructures where     is the boundary mobility matrix through which the 

interaction between substructure A and B is expressed, and      is the boundary mobility matrix 

through which the interaction between substructure B and C is expressed.       the boundary mobility 

matrix through which the assembled dynamic behaviour of substructure A, B and C coupled together 

can be calculated. 

5A                 
 

 

                                
             

                                                                                    

  = the total number of normal modes for substructure A and B together 

  = number of frequencies analysed 

     = the number of retained normal modes of substructure B and C together 

     = the number of retained normal modes of substructure C and D together 

     = the number of retained normal modes of substructure Y and Z together 
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Appendix XIX Steps and 

Estimated Number of Matrix 

Operations Rubin-Zoet 

Method 
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Step 1: Calculating constraint modes 

Constraint modes =     =               (according to equation (6.40)) 

 

Step Description of action Estimated number of FLOPS 

1A Calculating          

 

Inverting a       matrix through LU 

decomposition 

 

 

 
  

 
                

 
 

 

Where   
              

 
 

1B Calculating               
 

Multiplying a full       matrix with a sparse 

             matrix 

 

                          

   = the number of internal (slave) degrees of freedom of a substructure 

          = the total number of interface degrees of freedom of the substructure. 

           is the average bandwidth of the sparse diagonal symmetric matrix      
 

 

Step 2: Generating reduction basis 

Reduction basis    
  

                 (according to equation (6.67)) 

 

Step Description of action Estimated number of FLOPS 
2A 

Calculating           

Multiplying a full              matrix with a full 

             matrix 

 

                  

 

 

2B 

Calculating                  

 

Where   is obtained from step 2A 

 

Subtracting a full       matrix from a full       

matrix 

 

      

 

   = the number of internal (slave) degrees of freedom of a substructure 

          = the total number of interface degrees of freedom of the substructure. 

   = the number of retained normal modes 
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Step 3: Generating Reduced Mass, Stiffness and External Load  Matrices 

Calculating the reduced stiffness and mass matrix according to           and            

according to section  6.5.2.2 

Step 3A 

Calculating       and     

Multiplying a sparse     matrix with a sparse 

     matrix. This action needs to be performed 

twice: once for the mass matrix and once for the 

stiffness matrix. 

 

Estimated number of FLOPS: 
 

                    

 

 

 

 

 

 

 

Step 3B 

Calculating                      
          

Where   is obtained from step 3A  

Multiplying a sparse      matrix with a full 

     matrix. This action needs to be performed 

twice: once for the mass matrix and once for the 

stiffness matrix 

Estimated number of FLOPs: 

 

             

 
+ 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  is the number of degrees of freedom of a substructure 

   is the number of retained normal modes plus the number of constraint modes (interface degrees of 

freedom) 

          = the total number of interface degrees of freedom of the substructure. 

   = the number of retained normal modes 

            is the average bandwidth of the sparse diagonal symmetric matrix   or    

   = the number of internal (slave) degrees of freedom of a substructure. 

                 

Skyline of matrices: 

white = zeros 

grey = non- zeros 

                 

      

  

          

   

I 

   

  
  
  

           =                    Identity matrix 

 

I 
           =                    band matrix 

 

 

      

Sparse 

matrix  

   

   

   

    

                  

  

   
            I 

   

   

   

 

           =                    Identity matrix 

 

I 

  

           =                    band matrix 

 

 

                 



389 

 

 

Step 3C 
Reducing external load vector:    

   
   

  

Multiplying a sparse      matrix with a full     

vector 

Estimated number of FLOPS: 
 

        

+ 

                   

 

 

  is the number of degrees of freedom of a substructure 

   is the number of retained normal modes plus the number of constraint modes (interface degrees of 

freedom) 

          = the total number of interface degrees of freedom of the substructure. 

   = the number of retained normal modes 

   = the number of internal (slave) degrees of freedom of a substructure 

            is the average bandwidth of the sparse diagonal symmetric matrix   or    

 

 

  

  

   

 

   

    

       

  

   
            I 

   

  

   

           =                    Identity matrix 

 

I 

Skyline of 

matrices: 

white = zeros 

grey = non- zeros 
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Step 4: Generating Reduced Equations of Motion of Coupled Sets of Substructures 

(see equations (6.54) to (6.56) section 6.5.1.3) 

Calculating      and        

 

      
    
    

  and         
       
      

  

 

Where    and    are the reduced stiffness and mass matrix of the total assembled structure obtained in 

step 3.  Subscript A and B refers to the fact that the stiffness or mass matrix belongs to substructure A 

or B 

 

Step Description of action Estimated number of FLOPS 

4A Calculating       and       

 

Multiplying                            

     and a                                 

matrix with a scalar    (excitation frequency 

squared)  

                  

                 

  

                  

                 

 

4B Adding        to      : 

 

Adding two real sparse                 

                matrices. 

 

 

                  

                 

  

                  

                 

 

 

4C Adding     to    : 

 

Adding two real sparse                 

                matrices 

                

                 

  

                

                 

 

    and    = the number of normal modes of substructure A and of substructure B respectively 

          = number of master (connecting) degrees of freedom between substructure A and B 

  = number of frequencies analysed 

  = Number of substructures involved 
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Step 5. Forcing equilibrium and compatibility at the interface degrees of freedom for 

each pair of coupled substructures: 

Calculating  
                           

 

5A Calculating                   Number of Flops 

 

      : Multiplying a complex sparse matrix 

                         

                     with a scalar   

 

                  
 

  

                 
 
 

 

      :Multiplying a real sparse matrix 

                         

                    with a scalar    

 

                  
 

  

                 
 
 

 

Calculating                   

 

 

                    
 
  

  

                 
 
 

 

Total                         
 
                        

 
 

 

5B Calculating                        
 

Multiplying a sparse complex        

matrix with a real sparse              

            matrix with bandwidth of 1 

 

Calculating                 
 2     
 

Multiplying a real sparse          

               matrix with a complex 

sparse                          matrix 

with bandwidth of 1 

                     
 

                 
 
  

 

+ 

 

 

                       
 
 

 

 

 

 

 

        
= eliminating redundant interface degrees of freedom and stating that the external force at 

the retained interface degrees of freedom are zero, so that an equilibrium of forces is 

obtained 

           number of interface degrees of freedom of substructure A 

          = the total number of master (connecting) degrees of freedom (interface node degrees of 

freedom) between two adjacent substructures (A and B in this case) 

           are number of retained normal (elastic plus rigid body modes) for substructure A and B 

respectively 

        is the total number of normal modes taken into account for all individual substructures A and 

B added together. 

  = number of frequencies analysed 

  =                        
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Step 6: Eliminating the Interface Degrees of Freedom 
According to ‘The Rubin–Zoet Method’ section 8.6 

 

 

                     
                                                          (step 4F) 

And 

 
    
    

    
   
   

            
   

      
      

                                        (step 4G) 

 

 

 
 

Step Description of action Estimated number of 

FLOPS 

6A Calculating        
   

 

Inverting a full complex                     matrix 

through LU factorisation 

 

 

 
            

  

 

6B Calculating        
                 

 

Where   is the matrix obtained from step 6A 

 

Multiplying a full complex                      matrix 

with a full complex                matrix 

 

 

              
  

 

6D             
               

 

Where   is the matrix obtained from step 6B 

 

Multiplying a full complex              with a full 

complex              matrix   

 

                
  

 

                                                 

  = the total number of normal modes for substructure A and B together 

    and    = the number of normal modes of substructure A and of substructure B respectively 

  = number of frequencies analysed 
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6F 
Calculating                    

                

 

Where   is the matrix obtained from step 4C 

 

Adding a full complex       matrix to a full complex       

matrix 

 

 

          

                                                 

  = the total number of normal modes for substructure A and B together 

  = number of frequencies analysed 

 

 

 

Step 7: Compiling total matrix: 
 

Adding Pairs of coupled substructures where     is the boundary stiffness matrix through which the 

interaction between substructure A and B is expressed, and      is the boundary stiffness matrix 

through which the interaction between substructure B and C is expressed.       the boundary stiffness 

matrix through which the assembled dynamic behaviour of substructure A, B and C coupled together 

can be calculated. 

7                       
 

 

                      
                       

                                                 

  = the total number of normal modes for substructure A and B together 

  = number of frequencies analysed 

     = the number of retained normal modes of substructure B and C together 

     = the number of retained normal modes of substructure C and D together 

     = the number of retained normal modes of substructure Y and Z together 
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Appendix XX Calculation of 

the Number of FLOPS for 

Mode Superposition Method 

on the LNG carrier 
  



395 

 

Calculation of required floating point operations is based on retaining mode shapes 

of the full model with natural frequencies that are within a range between 0 and 1.5* 

     Hz, where      is the upper limit of the frequency range for which simulation 

results are generated. In this case      is 40 Hz, which means that the cut-out 

frequency is 1.5*40=60 Hz. 1668 mode shapes where found to have natural 

frequencies within that range and are retained. The number of floating point 

operations has been calculated for 80 frequency steps in the range between 1 and 40 

Hz. 

Following the steps from Appendix XV:  

 

 

Summary of required number of floating point operations: 

 

 

Brown numbers have been calculated through an estimated relation between measured computation time and 

number of calculated floating point operation. CPU= CP time 
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Appendix XXI Calculation of 

the Number of FLOPS for 

Rubin’s Method Applied on 

the LNG Carrier 
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In this appendix the calculated number of FLOPS for each sub step is presented 

applying the free interface CMS method according to Rubin (see  section 6.5.2.2). 

The CMS model of the LNG carrier described in Appendix IX is used. In Appendix 

XVI the steps required for Rubin‟s Method are explained. 

 

Fixed and free CMS is CMS based on the fixed interface approach (Craig-Bampton) 

and the free interface approach (Rubin‟s method without residual compensation) 

respectively. 

For all methods a cut-out frequency of 1.5*      Hz (=60 Hz) has been applied for 

the selection of the number of normal modes. 

The number of floating point operations has been calculated producing 80 output sets 

for frequencies evenly distributed range between 1 and 40 Hz. 
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Calculated required number of FLOPS for each sub step of step 1 (see Appendix 

XVI for explanation of sub steps and symbols). The number of floating point 

operations has been calculated producing 80 output sets for frequencies evenly 

distributed range between 1 and 40 Hz. 
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Calculated required number of FLOPS for each sub step of step 2 (see Appendix 

XVI for explanation of sub steps and symbols). The number of floating point 

operations has been calculated producing 80 output sets for frequencies evenly 

distributed range between 1 and 40 Hz. 
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Calculated required number of FLOPS for each step 3 to step 5  
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Generation pass: Table of CP times and numbers of floating point operation. Black numbers have been directly 

measured (CP time ) or calculated (FLOPS). Brown numbers have been calculated through an estimated relation 

between measured computation time and number of calculated floating point operation. 

 

 

Use pass: Table of CP times and numbers of floating point operation. Black numbers have been directly 

measured (CP time) or calculated (FLOPS). Brown numbers have been calculated through an estimated relation 

between measured computation time and number of calculated floating point operation. 

 

Total number CP and FLOPS for total analysis. Black numbers have been directly measured (CP time) or 

calculated (FLOPS). Brown numbers have been calculated through an estimated relation between measured 

computation time and number of calculated floating point operation. 
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Skyline of matrix representing the dynamic stiffness of the total assembled structure 

composed according to Rubin‟s Method as applied in ANSYS. Coloured cells are 

full matrix sections. The numbers in the coloured cells show the number of non zeros 

in these sections. 
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Summary of required number of FLOPS for each step for the Rubin Method. The 

number of floating point operations has been calculated producing 80 output sets for 

frequencies evenly distributed range between 1 and 40 Hz. 
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Appendix XXII Required 

Number of Flops for 

Application of the Zoet 

Method on the CMS Model of 

the LNG Carrier   
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In this appendix the calculated number of FLOPS for each sub step is presented 

applying the Zoet method according to section 8 for the CMS model of the LNG 

carrier described in Appendix IX. 

 

Fixed and free CMS is CMS based on the fixed interface approach (Craig-Bampton) 

and the free interface approach (Rubin‟s method without residual compensation) 

respectively. 

For all methods a cut-out frequency of 1.5*      Hz (=60 Hz) has been applied for 

the selection of the number of normal modes. 

The number of floating point operations has been calculated producing 80 output sets 

for frequencies evenly distributed range between 1 and 40 Hz. 
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Part I of Step 2 for Zoet method with no residual interface flexibility taken into 

account. The interface in this case is again the interface between two structures. The 

number of floating point operations has been calculated producing 80 output sets for 

frequencies evenly distributed range between 1 and 40 Hz. 
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Part II of Step 2 for Zoet method with no residual boundary flexibility taken into 

account. The boundary in this case is the interface between two structures. The 

number of floating point operations has been calculated producing 80 output sets for 

frequencies evenly distributed range between 1 and 40 Hz. 
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Part I of Step 1 in case residual boundary flexibility is taken into account. The 

boundary in this case is the interface between two structures. The number of floating 

point operations has been calculated producing 80 output sets for frequencies evenly 

distributed range between 1 and 40 Hz. 
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Part II of Step 1 in case residual boundary flexibility is taken into account. The 

number of floating point operations has been calculated producing 80 output sets for 

frequencies evenly distributed range between 1 and 40 Hz. 
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Part I of Step 2 for Zoet method with residual boundary flexibility taken into 

account. The number of floating point operations has been calculated producing 80 

output sets for frequencies evenly distributed range between 1 and 40 Hz. 
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Part II of Step 2 for Zoet method with residual boundary flexibility taken into 

account. The number of floating point operations has been calculated producing 80 

output sets for frequencies evenly distributed range between 1 and 40 Hz. 
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Eliminating interface degrees of freedom from the super elements. (see section 

8.5.2). The boundary is in this case the interface between two substructures. The 

number of floating point operations has been calculated producing 80 output sets for 

frequencies evenly distributed range between 1 and 40 Hz. 

 

 

Generation pass: Table of CP times and numbers of floating point operation. Black numbers have been directly 

measured (CP time) or calculated (FLOPS). Brown numbers have been calculated through an estimated relation 

between measured computation time and number of calculated floating point operation. 
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Use pass: Table of estimated CP time (CPU) and numbers of floating point operation. Black numbers have 

been directly measured (CP time ) or calculated (FLOPS). Brown numbers have been calculated through an 

estimated relation between measured computation time and number of calculated floating point operation. 

 

Total number CP time and FLOPS for total analysis Black numbers have been directly measured (CP time) or 

calculated (FLOPS). Brown numbers have been calculated through an estimated relation between measured 

computation time and number of calculated floating point operation. 
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Skyline of the total assembled matrix. The skyline of the total assembled matrices for 

both Zoet‟s method with residual interface flexibility taken into account and Zoet‟s 

method without residual interface flexibility taken into account looks similar.  

Numbers in the cells are the number of non zeros in the particular section of the 

matrix. The grey section are all full matrix sections.  

 

 Summary of required number of FLOPS for each step for the Zoet method with no 

residual interface flexibility taken into account. The number of floating point 

operations has been calculated producing 80 output sets for frequencies evenly 

distributed range between 1 and 40 Hz. 
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Summary of required number of FLOPS for each step for the Zoet method with 

residual interface flexibility taken into account. The number of floating point 

operations has been calculated producing 80 output sets for frequencies evenly 

distributed range between 1 and 40 Hz. 

. 
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Appendix XXIII Required 

Number of Flops for 

Application of the Rubin- 

Zoet Method on the CMS 

Model of the LNG Carrier   
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In this appendix the calculated number of FLOPS for each sub step is presented 

applying the Rubin-Zoet method according to section 8.6 for the CMS model of the 

LNG carrier described in Appendix IX.  

In Appendix XIX a description of the sub steps and symbols used is given. 

 

Fixed and free CMS is CMS based on the fixed interface approach (Craig-Bampton) 

and the free interface approach (Rubin‟s method without residual compensation) 

respectively. 

For all methods a cut-out frequency of 1.5*      Hz (=60 Hz) has been applied for 

the selection of the number of normal modes. 

The number of floating point operations has been calculated for applying the Rubin-

Zoet method for 80 frequency steps in the range between 1 and 40 Hz. 
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Number of FLOPS required for step 1 for analysing the LNG carrier in Appendix IX, 

according to the Rubin-Zoet method, applying a cut-out frequency of 60 Hz 

analysing 80 frequency steps between 1 and 40 Hz. 
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Number of FLOPS required for Part I of Step 2 for analysing the LNG carrier in 

Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency of 

60 Hz analysing 80 frequency steps between 1 and 40 Hz.  
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Number of FLOPS required for Part II of Step 2 for analysing the LNG carrier in 

Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency of 

60 Hz analysing 80 frequency steps between 1 and 40 Hz. 
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Number of FLOPS required for Part I of Step 3 for analysing the LNG carrier in 

Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency of 

60 Hz analysing 80 frequency steps between 1 and 40 Hz. 
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Number of FLOPS required for Part II of Step 3 for analysing the LNG carrier in 

Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency of 

60 Hz analysing 80 frequency steps between 1 and 40 Hz.  
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Number of FLOPS required for Part I of Step 4 and 5 for analysing the LNG carrier 

in Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency 

of 60 Hz analysing 80 frequency steps between 1 and 40 Hz.  
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Number of FLOPS required for Part II of Step 4 and 5 for analysing the LNG carrier 

in Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency 

of 60 Hz analysing 80 frequency steps between 1 and 40 Hz. 
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Number of FLOPS required for Step 6 and 7 for analysing the LNG carrier in 

Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency of 

60 Hz analysing 80 frequency steps between 1 and 40 Hz.  
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Generation pass: Table of CP times and numbers of floating point operation. Black numbers have been directly 

measured (CP time) or calculated (FLOPS). Brown numbers have been calculated through an estimated relation 

between measured computation time and number of calculated floating point operation. 

 

Use pass: Table of CP times and numbers of floating point operation. Black numbers have been directly 

measured (CP time) or calculated (FLOPS). Brown numbers have been calculated through an estimated relation 

between measured computation time and number of calculated floating point operation. 

 

Total number CP time and FLOPS for total analysis. Black numbers have been directly measured (CP time) or 

calculated (FLOPS). Brown numbers have been calculated through an estimated relation between measured 

computation time and number of calculated floating point operation. 
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Skyline of the total assembled dynamic stiffness matrix obtained through the Rubin-

Zoet method.  

 

 

Summary of required number of FLOPS for each step for the Rubin-Zoet method. 

The required number of FLOPS for solving the matrix equation (step 6) is calculated 

according to Appendix VI. 
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Difference in percentage in computation time relatively to Rubin‟s free interface 

(interface) method or relatively to the full harmonic method. As can be seen, the 

Rubin‟s method free interface method requires 65 % more calculation time compared 

to the full method. The Zoet method reduces the calculation time by 96% relative to 

Rubin‟s method.  
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Appendix XXIV CMS 

Results of the Case Study 

Model According to ANSYS 
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22.45 Hz 

 
30.25 Hz 
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35.13 Hz 

 
39.5 Hz 
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Test model subdivided into four substructures (A, B, C and D). Dotted line show the interface 

boundaries of the substructures. Model is clamped at the nodes on the far right side of substructure 

A. 

Fixed CMS = fixed interface CMS according to Craig-Bampton 

Free CMS is free interface CMS according to Rubin’s method (without residual compensation) 

For selecting the number of retained normal modes, a cut-out frequency has been applied of 1.5 

fmax = 60 Hz for both methods 

  

A 
B 

C 
D 
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Full simulation results and simulation results for free (Rubin’s method without residual compensation)and 

fixed (Craig Bampton) interface CMS applying a cut-out frequency of 1.5 fmax = 60Hz. 

Number of modes taken for substructure A,B,C and D: 

31, 75, 59 and 41 respectively for free interface Rubin’s method          (31/75/59/41) 

25, 21, 16 and 15 respectively for fixed interface Craig-Bampton’s method       (25/21/16/15) 
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Full simulation results and simulation results for free (Rubin’s method without residual compensation)and 

fixed (Craig Bampton) interface CMS applying a cut-out frequency of 1.5 fmax = 60Hz. 

Number of modes taken for substructure A,B,C and D: 

31, 75, 59 and 41 respectively for free interface Rubin’s method          (31/75/59/41) 

25, 21, 16 and 15 respectively for fixed interface Craig-Bampton’s method       (25/21/16/15) 
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Full simulation results and simulation results for free (Rubin’s method without residual compensation)and 

fixed (Craig Bampton) interface CMS applying a cut-out frequency of 1.5 fmax = 60Hz. 

Number of modes taken for substructure A,B,C and D: 

31, 75, 59 and 41 respectively for free interface Rubin’s method          (31/75/59/41) 

25, 21, 16 and 15 respectively for fixed interface Craig-Bampton’s method       (25/21/16/15) 
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Full simulation results and simulation results for free (Rubin’s method without residual compensation)and 

fixed (Craig Bampton) interface CMS applying a cut-out frequency of 1.5 fmax = 60Hz. 

Number of modes taken for substructure A,B,C and D: 

31, 75, 59 and 41 respectively for free interface Rubin’s method          (31/75/59/41) 

25, 21, 16 and 15 respectively for fixed interface Craig-Bampton’s method       (25/21/16/15) 
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Appendix XXV Test Case 

Substructure Division for the 

Zoet Method 
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Free CMS is free interface CMS according to Rubin’s method (without residual compensation) 

For selecting the number of retained normal modes, a cut-out frequency has been applied of 1.5 fmax = 60 Hz 

for Rubin’s method, and 3 fmax = 120 Hz for Zoet’s method (see section 9.3) 
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Appendix XXVI  Test Case 

Results Zoet Method 

Individual pair of 

Substructures 
  



441 

 

Results Substructure A and B 

 

 
 

  

1 

2 

y and z are simulation results obtained in z and y direction respectively by only expanding 

the normal modes 

yc and zc are the simulation results obtained through expanding both normal and static 

modes in y and z direction respectively  
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Results Substructure A and B 

 

 
 

  

8 

6 

y and z are simulation results obtained in z and y direction respectively by only expanding 

the normal modes 

yc and zc are the simulation results obtained through expanding both normal and static 

modes in y and z direction respectively  
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Results Substructure B and C 

 

 

 

  

8 

6 

9 

12 

y and z are simulation results obtained in z and y direction respectively by only expanding 

the normal modes 

yc and zc are the simulation results obtained through expanding both normal and static 

modes in y and z direction respectively  
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Results Substructure C and D 

 

 

 

13 

14 

9 

12 

y and z are simulation results obtained in z and y direction respectively by only expanding 

the normal modes 

yc and zc are the simulation results obtained through expanding both normal and static 

modes in y and z direction respectively  
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Appendix XXVII Evaluation 

of the Effect of Residual 

Interface Flexibility on the 

Results of Zoet’s method 
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Results Substructure A and B 

 

 
 

  

1 

2 

8 

6 

y and z are simulation results obtained in z and y direction respectively by only expanding 

the normal modes 

yc and zc are the simulation results obtained through expanding both normal and static 

modes in y and z direction respectively  
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Results Substructure B and C 

 

 
 

  

8 

6 

9 

12 

y and z are simulation results obtained in z and y direction respectively by only expanding 

the normal modes 

yc and zc are the simulation results obtained through expanding both normal and static 

modes in y and z direction respectively  
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Results Substructure C and D 

 

 

13 

14 

9 

12 

y and z are simulation results obtained in z and y direction respectively by only expanding 

the normal modes 

yc and zc are the simulation results obtained through expanding both normal and static 

modes in y and z direction respectively  
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Appendix XXVIII Test Case 

Results Zoet Method Total 

Dynamic Behaviour A, B, C 

and D Coupled 
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Location 1 Location 2 

  
Location 1and 2 results calcuated according to Zoet 

compared to the full results. Number of modes taken 

for substructure A,B,C and D: 

142, 75, 59 and 41 respectively (142/75/59/41) 

 142, 142, 111 and 82 respectively      

(142/142/111/82) 

205, 179, 148 and 105 respectively      

(205/179/148/105) 

 
 

y and z are simulation results obtained in z and y direction respectively by only expanding the 

normal modes 

 

yc and zc are the simulation results obtained through expanding both normal and static modes in y 

and z direction respectively  
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Location 3 Location 4 

  
Location 3and 4 results calcuated according to Zoet 

compared to the full results. Number of modes taken 

for substructure A,B,C and D: 

142, 75, 59 and 41 respectively (142/75/59/41) 

 142, 142, 111 and 82 respectively      

(142/142/111/82) 

205, 179, 148 and 105 respectively      

(205/179/148/105) 

 
 

y and z are simulation results obtained in z and y direction respectively by only expanding the 

normal modes 

 

yc and zc are the simulation results obtained through expanding both normal and static modes in y 

and z direction respectively  
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Location 5 Location 6 

 
 

Location 5and 6 results calcuated according to Zoet compared to the full results. Number of modes taken for 

substructure A,B,C and D: 

 

142, 75, 59 and 41 respectively (142/75/59/41) 

 142, 142, 111 and 82 respectively      (142/142/111/82) 

205, 179, 148 and 105 respectively      (205/179/148/105) 

 

y and z are simulation results obtained in z and y direction respectively by only expanding the 

normal modes 

 

yc and zc are the simulation results obtained through expanding both normal and static modes in y 

and z direction respectively  
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Location 7 Location 8 

  
Location 7and 8 results calcuated according to Zoet compared to the full results. Number of modes taken for 

substructure A,B,C and D: 

 

142, 75, 59 and 41 respectively (142/75/59/41) 

 142, 142, 111 and 82 respectively      (142/142/111/82) 

205, 179, 148 and 105 respectively      (205/179/148/105) 

 

y and z are simulation results obtained in z and y direction respectively by only expanding the 

normal modes 

 

yc and zc are the simulation results obtained through expanding both normal and static modes in y 

and z direction respectively  
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Location 9 Location 10 

 
 

Location 9and10 results calcuated according to Zoet compared to the full results. Number of modes taken for 

substructure A,B,C and D: 

 

142, 75, 59 and 41 respectively (142/75/59/41) 

 142, 142, 111 and 82 respectively      (142/142/111/82) 

205, 179, 148 and 105 respectively      (205/179/148/105) 

 

y and z are simulation results obtained in z and y direction respectively by only expanding the 

normal modes 

 

yc and zc are the simulation results obtained through expanding both normal and static modes in y 

and z direction respectively  
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Location 11 Location 12 

  
Location 11and12 results calcuated according to Zoet compared to the full results. Number of modes taken for 

substructure A,B,C and D: 

 

142, 75, 59 and 41 respectively (142/75/59/41) 

 142, 142, 111 and 82 respectively      (142/142/111/82) 

205, 179, 148 and 105 respectively      (205/179/148/105) 

 

y and z are simulation results obtained in z and y direction respectively by only expanding the 

normal modes 

 

yc and zc are the simulation results obtained through expanding both normal and static modes in y 

and z direction respectively  
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Location 13 Location 14 

 
 

Location 13and14 results calcuated according to Zoet compared to the full results. Number of modes taken for 

substructure A,B,C and D: 

 

142, 75, 59 and 41 respectively (142/75/59/41) 

 142, 142, 111 and 82 respectively      (142/142/111/82) 

205, 179, 148 and 105 respectively      (205/179/148/105) 

 

y and z are simulation results obtained in z and y direction respectively by only expanding the 

normal modes 

 

yc and zc are the simulation results obtained through expanding both normal and static modes in y 

and z direction respectively  
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Location 15 

 
Location 15 results calcuated according to Zoet compared to the full results. Number of modes taken for 

substructure A,B,C and D: 

 

142, 75, 59 and 41 respectively (142/75/59/41) 

 142, 142, 111 and 82 respectively      (142/142/111/82) 

205, 179, 148 and 105 respectively      (205/179/148/105) 

 

y and z are simulation results obtained in z and y direction respectively by only expanding the 

normal modes 

 

yc and zc are the simulation results obtained through expanding both normal and static modes in y 

and z direction respectively  
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Appendix XXIX Reduced 

Test Case Results Zoet 

Method, Substructures A, B 

and C Coupled 
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Reduced test model subdivided into three substructures (A, B and C). Dotted lines show the 

interface boundaries of the substructures. Model is clamped at the nodes on the far right side of 

substructure  
Free CMS is free interface CMS according to Rubin’s method (without residual compensation) and fixed 

interface CMS is according to Craig-Bamton’s method. 

For selecting the number of retained normal modes, a cut-out frequency has been applied of 1.5 fmax = 60 Hz  

 

 

A 
B 

C 
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Free CMS is free interface CMS according to Rubin’s method (without residual compensation). For selecting 

the number of retained normal modes, a cut-out frequency has been applied of 1.5 fmax = 60 Hz for Rubin’s 

method, and 3 fmax = 120 Hz for Zoet’s method (see section 9.3) 

  

Connection AB Connection BC 
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Location 1 Location 2 

 

 
Location 3 Location 4 

  
y and z are simulation results obtained in z and y direction respectively by only expanding the 

normal modes 

yc and zc are the simulation results obtained through expanding both normal and static modes in y 

and z direction respectively  
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Location 5 Location 6 

  

Location 7 Location 8 

 
 

 

y and z are simulation results obtained in z and y direction respectively by only expanding the 

normal modes 

yc and zc are the simulation results obtained through expanding both normal and static modes in y 

and z direction respectively  
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Location 9 Location 10 

 
 

Location 11 Location 12 

 
 

y and z are simulation results obtained in z and y direction respectively by only expanding the 

normal modesyc and zc are the simulation results obtained through expanding both normal and 

static modes in y and z direction respectively 
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Appendix XXX Rubin’s Method 

With Interface Modes for 

PHD Test Case 
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Properties of the substructures used as a test case for the Zoet method (see Appendix XXIV 

and Appendix XXV). Fixed and free CMS is CMS based on the fixed interface approach 

(Craig-Bampton) and the free interface approach (Rubin‟s method without residual 

compensation) respectively. 

 

For all methods a cut-out frequency of 1.5*      Hz (=60 Hz) has been applied for the 

selection of the number of normal modes of the individual substructures. 

The number of floating point operations has been calculated for applying the Rubin-Zoet 

method for 80 frequency steps in the range between 1 and 40 Hz. 

 

 

Cut-out frequency used for the selection of the number of retained interface modes is  

3        = 140 Hz, based on the finding by Tran [41] 

 

Here follow the calculation results of the number of real floating point operations required 

for each step for obtaining results according to Rubin‟s method, using interface (boundary) 

reduction through application of interface modes. No floating point operations have been 

calculated required for the generation of the mode shapes and natural frequencies. The 

number of floating point operation required for are estimated through measured CP times 

and are presented in Appendix XXXI.  

 

See Appendix XVII „Steps and Estimated Number of Matrix Operations Rubin‟s Method 

using Interface Modes‟ for description of symbols used and equations for estimating floating 

point operations. 
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Required calculation time for each step 1 and 2 of the Rubin‟s method using interface reduction 

through application of interface modes following the IRS method. Calculation times are based on 

applying a cut-out frequency of 60 Hz for selecting normal modes of individual substructures, and 

applying a cut-out frequency of 3.5 fmax = 140 Hz for selecting the number of interface modes. 

Calculation times are based on analysing 80 frequency steps between 1 and 40 Hz.(see Appendix 

XVII for description calculation time and Appendix XXIV for description geometry test structure) 
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Required calculation time for step 3 and 4 of the Rubin‟s method using interface reduction through 

application of interface modes following the IRS method. Calculation times are based on applying a 

cut-out frequency of 60 Hz for selecting normal modes of individual substructures, and applying a cut-

out frequency of 3.5 fmax = 140 Hz for selecting the number of interface modes. Calculation times are 

based on analysing 80 frequency steps between 1 and 40 Hz.(see Appendix XVII for description 

calculation time and Appendix XXIV for description geometry test structure) 



469 

 

 

 

 

Required calculation time for step 5 to 6 of the Rubin‟s method using interface reduction through 

application of interface modes following the IRS method. Calculation times are based on applying a 

cut-out frequency of 60 Hz for selecting normal modes of individual substructures, and applying a cut-

out frequency of 3.5 fmax = 140 Hz for selecting the number of interface modes. Calculation times are 

based on analysing 80 frequency steps between 1 and 40 Hz.(see Appendix XVII for description 

calculation time and Appendix XXIV for description geometry test structure) 

 

 

 



470 

 

 
Summary of calculated required number of real floating point operations for the application 

of Rubin‟s method with the application of interface modes following the IRS reduction 

method. For the selection of the number of normal modes, a cut-out frequency of          

= 60Hz has been applied. The number of interface modes retained is based on a cut-out 

frequency of          following the findings published in [41] 
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Appendix XXXI Computati

on Time for Different 

Methods PHD Test Case 
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Properties of the substructures used as a test case for the Zoet method (see Appendix XXIV 

and Appendix XXV). Free interface CMS is carried out according to the classic Rubin‟s 

method with no residual compensation taken into account. The fixed interface CMS is 

carried out according to the classic Craig-Bampton method. 

 

For the classic Craig-Bampton and Rubin method (fixed interface, free interface CMS 

respectively) all normal modes with natural frequencies between 0 and 60 Hz (1 to     
    ) have been retained.      is the maximum analysed frequency, which is 40 Hz in this 

case study. 

 

For the Zoet method and Rubin-Zoet method a higher number of mode shapes has been 

selected in order to reduce the effect of overcompensation of residual flexibility (see section 

8.5.3).  Therefore all normal modes with natural frequencies between 0 and 120 Hz (1 to 

      ) have been retained.      is the maximum analysed frequency, which is 40 Hz in 

this case study. 
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Skyline of matrix representing the dynamic stiffness of the total assembled structure 

composed according to Rubin’s Method as applied in ANSYS. Coloured cells are full 

matrix sections. The numbers in the coloured cells show the number of non zeros in these 

sections. For the selection of the number of normal modes, a cut-out frequency of          

= 60Hz has been applied. 

 

 
 

Skyline of matrix representing the dynamic stiffness of the total assembled structure 

composed according to Rubin’s Method using interface reduction through introduction of 

interface modes. Coloured cells are full matrix sections. The numbers in the coloured cells 

show the number of non zeros in these sections. For the selection of the number of normal 

modes, a cut-out frequency of          = 60Hz has been applied. The number of interface 

modes retained is based on a cut-out frequency of          following the findings 

published in [41]. Ub AB, Ub BC and Ub CD are the number of retained normal mode that 

not have been made redundant in the procedure of coupling the substructures together. 

 

 
 

Skyline of matrix representing the boundary mobility matrix of the total assembled structure 

composed according to Zoet Method. Coloured cells are full matrix sections. The numbers 

in the coloured cells show the number of non zeros in these sections. All normal modes with 

natural frequencies between 0 and 120 Hz (1 to       ) have been retained. 
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Skyline of matrix representing the dynamic stiffness of the total assembled structure 

composed according to Rubin-Zoet Method. Coloured cells are full matrix sections. The 

numbers in the coloured cells show the number of non zeros in these sections. 

All normal modes with natural frequencies between 0 and 120 Hz (1 to       ) have been 

retained. 

 

 

 
Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz 
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Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz 
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Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz 
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Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz 
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Presentation of the Number of Flops and CP time calculated/measured for the test CMS model according to 

Appendix XXV. Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed 
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between 1 and 40 Hz. Black numbers have been directly measured (CP time) or calculated (FLOPS). Brown 

numbers have been calculated through an estimated relation between measured computation time and number of 

calculated floating point operation. 

 

 
FLOPS for all different stages of the different analysis methods. Calculation times are 

based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 

40 Hz 

 

 

 

 

Difference in percentage in computation time relatively to Rubin‟s free boundary 

(interface) method (first column),  relatively to the full harmonic method (second 

column) and relatively to the Rubin‟s method with interface reduction through 

interface modes according to IRS (third column). Calculation times are based on 

producing 80 output sets for 80 frequencies evenly distributed between 1 and 40 Hz. 
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Appendix XXXII Computati

on Time for Zoet and Rubin-

Zoet Method for the LNG 

Carrier with Increased 

Number of Normal Modes 
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Properties of the LNG carrier substructures (according to Appendix IX). Free interface CMS is carried 

out according to the classic Rubin‟s method. The fixed interface CMS is carried out according to the 

classic Craig-Bampton method 

 

For the classic Craig-Bampton and Rubin method (fixed interface, free interface CMS respectively) all 

normal modes with natural frequencies between 0 and 60 Hz (1 to         ) have been retained. 

     is the maximum analysed frequency, which is 40 Hz in this case study. 

 

For the Zoet method and Rubin-Zoet method a higher number of mode shapes has been selected in 

order to reduce the effect of overcompensation of residual flexibility (see section 8.5.3).  Therefore all 

normal modes with natural frequencies between 0 and 120 Hz (1 to       ) have been retained.      

is the maximum analysed frequency, which is 40 Hz in this case study. 
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Presentation of the Number of Flops and CPU calculated/measured for the LNG carrier 

model according to Appendix IX. Calculation times are based on producing 80 out sets for 

80 frequencies evenly distributed between 1 and 40 Hz. Black numbers have been directly 

measured (CP time units) or calculated (FLOPS). Brown numbers have been calculated 

through an estimated relation between measured computation time and number of calculated 

floating point operation. 
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Skyline of matrix representing the boundary mobility matrix of the total assembled structure 

composed according to Zoet Method. Coloured cells are full matrix sections. The numbers 

in the coloured cells show the number of non zeros in these sections. All normal modes with 

natural frequencies between 0 and 120 Hz (1 to       ) have been retained. 

 

 
Skyline of matrix representing the dynamic stiffness of the total assembled structure 

composed according to Rubin-Zoet Method. Coloured cells are full matrix sections. The 

numbers in the coloured cells show the number of non zeros in these sections. 

All normal modes with natural frequencies between 0 and 120 Hz (1 to       ) have been 

retained. 

 

 

FLOPS for all different stages of the different analysis methods. Calculation times are based 



484 

 

on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz. 

 
Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz. 

 
Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz. 
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Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz. 

 

Difference in percentage in computation time relative to Rubin’s free interface (interface) method (first column) 

and relative to the full harmonic method (second column). The first set of two columns represent calculation 

times applying a cut-out frequency of 1.5 fmax = 60 Hz for all methods for the selection of the number of normal 

modes.  The second set of two columns represent calculation times applying a cut-out frequency of 1.5 fmax = 60 

Hz for the Rubin and Craig-Bampton method, and applying a cut-out frequency of 3 fmax = 120 Hz for the Zoet 

and Rubin-Zoet method. Calculation times are based on producing 80 output sets for 80 frequencies evenly 

distributed between 1 and 40 Hz. 

 


