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1 Abstract

The main aim of this work is to help the shipbuilder to effectively assess a ships’
structural design for its vibratory behaviour. For that purpose state of the art
structural modelling techniques are reviewed for the validity of their basic principles,
accuracy, practicality and required computation time when applied on typical marine
structures. Full finite element modelling has been applied on a part of the structure of
an LNG carrier on board which the author has taken vibration and noise
measurements. Also fixed interface (Craig-Bampton) and free interface (Rubin’s
method) component mode synthesis sub structuring techniques have been applied.
The aim of the analysis is to evaluate the effectiveness of finite element modelling
through evaluation with measurement results, evaluate the accuracy of the sub
structuring modelling techniques and to identify short comings of any of the tested

methods.

Two alternative component synthesis modelling sub structuring techniques are
proposed in order to reduce required computation time; Zoet’s method and the Rubin
Zoet method. The Zoet method is tested using a section of the LNG carrier’s
structural model. The method is evaluated for accuracy (comparing obtained results
with the results obtained through the full harmonic finite element analysis) and
required computation time through comparison with the required computation time

for:

- full harmonic analysis

- the classical modal reduction and mode superposition technique

- the classical Rubin free interface component mode synthesis

- and Rubin’s method with interface reduction according to the IRS method
(see section 6.5.3)

- the Rubin-Zoet technique



2 Aims and Objectives

The aim of this research work to develop an effective accurate methodology to asses
a ships structural design on its structural dynamic behaviour as early as possible in
the design stage in order to prevent noise and vibration problem occurring once the

ship has been built. The following objectives have been set:

- Understanding the general mechanism leading to ships’ vibrations and noise
through noise and vibration measurement results taken on board a bulk
carrier, gas carrier and fishery research vessel which are used together with
available information on the structural geometry.

- ldentifying gaps with most commonly used state of the art structural
modelling techniques considering the mechanisms that have been identified
as typically occurring on board ships.

- Proposing a practical modelling technique and approach that makes assessing

the structural design of ships for noise and vibrations easier.



3 Introduction

In this section an introduction is given explaining both the background (context) of

the thesis and the structure of the thesis.

3.1 Background

In this section the context of the thesis is described set against the background of the
current global developments in the marine industry, through which the increasing
need for reliable and practical tools for evaluation of marine structure’s dynamic
response is demonstrated. With the global developments in mind, the modelling
needs are described on which the approaches to structural modelling in this work are

based.

3.1.1 Noise and Vibrations and Global Developments

Many problems occur in the shipping industry related to noise and vibrations. The
biggest nightmare of ship operators concerning vibrations is failure of structures and
machinery due to material fatigue. Failure of machinery and structures poses a huge
threat to the ships’ safety and usually also leads to huge loss of revenue due to
unplanned downtime. In addition, high vibration levels, just like high noise levels,
also affect crew and passengers’ health and wellbeing. Particularly for passenger
ships and ferries the impact of noise and vibrations on human comfort compromises
the earning capability of the ship as people may chose not to travel with that ship in

the future again.

Although above concerns have already lead to numerous rules, regulations and
guidelines issued by class societies and other regulatory bodies, recent research on
ship noise and vibrations carried out for the European Union is likely to result in
even more (stringent) requirements in the near future. This resent research has
focused on the impact of noise and vibrations on crew comfort and performance as
well as the impact on people living close to harbours and seaways and the effect on

the underwater environment (marine mammals).



Unfortunately, there any many powerful vibration sources on board a ship. The most
dominant sources are the propeller and the (diesel) engines, which produce the high
amplitude fluctuating forces to which the ship’s structure is subjected. In addition,
the dynamic structural behaviour of ships (particularly structural parts above water)
is strongly characterised by the low damping properties of the material (typically
steel) the structure is built of. These low damping values combined with typically
high amplitudes of harmonic components found in propeller and (diesel) engines
forces, may result in destructively high vibration levels when excitation frequencies

are close, or coincide with resonance frequencies.

Adding to the likelihood of structural fatigue damage occurring is the increasingly

hostile environment under which offshore equipment has to operate. Raising oil and
gas prices for instance mean that winning oil and gas from increasingly difficult and
dynamically challenging locations becomes economically viable, which means that

equipment is pushed to their limits.

Raising fuel prices and current global economic circumstances also push the need for
efficiency of operation, flexibility of operation (option for slow steaming) which
sparks the development of new design concepts, new ship geometries, the application
of new materials (sandwich panels, visco-elastic materials, piezo-electric materials),
increase of scale, and increasing propeller and engine loads. This means that under
the present global circumstances the shipbuilding industry design concepts become
more revolutionary as opposed to evolutionary, which has always been the best

fitting term through to characterise the nature of progress in the industry.

As ships and equipment are designed further outside the traditional design envelop
than ever, relying on tradition and history for selecting machinery components and
developing structural geometry becomes very questionable, as different dynamic
mechanisms may start playing a role and extrapolation curves outside the design
envelop may not linear. In addition, economy also forces designers to decrease the

design margins, which leaves less space for errors.

All above considered, a full understanding of the characteristics of the forces acting

on ship’s structure and machinery, together which a full understanding of the



corresponding structural and machinery dynamic response mechanisms is required
when designing a ship and minimising impact of vibrations and noise. Modelling
tests, full scale measurements in combination with (practical) deterministic
modelling techniques are needed more than ever. On top of that, the validly of
traditional modelling approaches need to be questioned based on a thorough
understanding of the modelling principles and the nature of the excitation
characteristics and natural response behaviour. Particularly statistical approaches
need to be questioned, as the outcome is based on a population of the state of the art
design concepts at best, and may not be representative for new design concepts
which go beyond the state of the art.

3.1.2 Modelling Challenges

As described above, theoretically estimating structural and machinery dynamic
behaviour on ships has become very important considering the development of many
new innovative design concepts in a quest for saving fuel, or being able to deploy
equipment that stays operative under the increasingly dynamically hostile
environment under which the offshore industry operates. Modelling structural
response, even with state of the art modelling techniques, is already a challenge, and

will become even more challenging in the future.

Problems with modelling structural vibrations typically experienced in the marine

sector are:

- Labour intensity of generating the mathematical model. Describing the
typically complex ship’s structural geometry for structural modelling
purposes is often very time consuming and labour intensive (as experienced
in this work). Although the ship geometry may be imported into a structural
modelling software package from drawings generated through CAD
designing software packages, many problems still arise with generating a
suitable mesh (in case of finite element modelling) or with connection
between different parts of the geometry, or with the describing complex

curves.



Require memory time and computation time. Due to the size and
complexity of ship structures, problems are experienced with the related
required computer memory and computation time for running the structural
model. Required memory and computation time increases further with the
excitation frequency order number. As mode shapes involved in the
corresponding structural response become more complex, a higher number of
degrees of freedom is required in order to be able to accurately enough
describe these mode shapes.

Uncertainty about correctness of the applied boundary conditions.
Although analysis at the higher order frequencies requires more detailed
models, not the entire structure needs to be modelled at that level of detail, if
one would be focussing on only a particular part of the structure. A far more
practical and feasible approach adopted is to model only local parts of a
ship’s structure. However, the main challenge with that approach is finding
the appropriate boundary conditions. Global, courser models may be required
for modelling the rest of the ship structure in order to evaluate the
transmission behaviour of vibrations through the ship structures.
Uncertainty of modal parameters (damping and added mass) and
excitation characteristics. Particularly with the analysis at increasing
excitation frequency order numbers, a correct estimation of material

properties, (hydrodynamic) damping and added mass properties is important.

Considering new design concepts are developed, new materials are applied,

flexibility in operation is required (for slow steaming) and amplitudes of alternating

(and impulse) forces acting on a structure increase, evaluating dynamic structural and

machinery response characteristics becomes even more difficult:

Predicting structural response over a range of operational conditions, and not
just at nominal speed. Not only is this required for estimating the sensitivity
of the model, but also for estimating the vibration response when machinery
is running off design in case of slow steaming (a trend in the shipping
industry in order to save fuel) and manoeuvring. This increases computation

time and required computer memory for the output files.



- Predicting the response to impulse loads, which is particularly required for
evaluation of robustness of offshore structures and the evaluation of structural
response to (propeller) cavity implosions in case of violent cavitation. Time
domain simulation is required which requires much more computation time
than the traditional harmonic analysis considering that numerical integration
requires solving the equations of motion for a great number of time steps.

- Considering modelling local vibration behaviour, bigger parts of the ship
structure may have to be modelled as uncertainty may arise about how to
define boundary conditions with new (revolutionary) structural design
concepts or application of new types of material. This means that generating

the structural model becomes even more labour intensive.

The aim of this work is to help the shipbuilding industry to build ships for low noise
and vibration levels by proposing an approach to modelling that will help overcome
above described problems.

3.2 Structure of the Thesis

Figure 1 shows the outline of the thesis. The thesis starts with section 4

Critical Review”, where a review of the state of the most commonly adopted
approaches to theoretically estimating excitation characteristics and structural
response is presented.

In section 5 “Measurement Results” vibrations and noise measurement results taken
on board different ships are analysed. Together with the critical review and the
analysis of the measurement results, the most promising modelling techniques are
selected for modelling the structural dynamic behaviour of the aft ship of a gas
tanker, one of the ships on board which the author has performed vibration
measurements. In section 6, “Theory of Structural response Simulation”, the theory

behind the selected structural modelling techniques is presented more in depth.

Following the conclusion of section 4



Critical Review”, section 5 “Measurement Results” and deeper analysis of the
modelling techniques in section 6, Finite element modelling and component mode
synthesis modelling techniques are evaluated in section 7 “Modelling Vibrations of
the Aft-ship of an LNG” through a case study. In this case study, vibration levels are
simulated over a range of frequencies for a number of locations on the steering gear
deck and mooring deck of an LNG carrier, on board which the author has performed
the vibration measurements presented in section 5. The following is covered in
section 7 “Modelling Vibrations of the Aft-ship of an LNG”

- Vibration simulation through a full finite element harmonic analysis.
- Evaluation of full harmonic analysis through measurement results.
- Evaluation of changing boundary conditions on simulation results
- Evaluating results obtained through free interface and fixed interface
component mode modelling techniques. Results are evaluated through
comparison with the results obtained through the full analysis.
- Estimating and comparing required computation time for:
- Full harmonic analysis
- Mode Superposition
- Free Interface Component Mode Synthesis (Rubin’s Method)

- Fixed Interface Component Mode Synthesis (Craig-Bampton)

Following the findings from section 7 “Modelling Vibrations of the Aft-ship of an
LNG”, an alternative approach to the classical component mode synthesis technique
is proposed in section 8 “Methodology of an Alternative Approach to Classical
CMS”. This approach is evaluated through a case study presented in section 9 “Case
Study: Evaluating Zoet’s Method”, using a part of the structural model studied in
section 7. Comparison of simulation time required for all above listed techniques is
again carried out. As interface modes and corresponding natural frequencies have
been calculated for the test case model, the achieved reduction of computation time
using an already existing interface reduction technique according to the IRS method
is also calculated and compared to the reduction in computation time achieved
through the newly proposed reduction techniques. The thesis ends with a discussion,

summary, conclusions and recommendations for future work.
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4 Critical Review

Many problems occur in the shipping industry resulting from the dynamic behaviour
of structures and drivelines acting as mass spring systems. One of the most
dangerous aspects of mass spring behaviour is that shock, impulse and harmonic
excitation may case large alternating deformation of that structure. This alternating
deformation may be perceived as vibrations by those touching the structure or
standing on it and may have a profound impact on human wellbeing and health.
These alternating deformation also result in alternating stresses in the structure,

which may lead to fatigue damage.

In addition, vibrations may also cause the air surrounding a structure to vibrate which
results in audible air borne noise. Transmission of noise to the underwater
environment also takes place through that mechanism. Through that route, propeller
and onboard machinery noise not only cause health and wellbeing problems for

people on board, but also affect the heath of the underwater life.

The important question that needs to be asked is what determines the level of these
structural vibrations that result in alternating stresses in the ship’s structure, onboard
noise and underwater noise. In that discussion it is very important to realise that the
level of vibration is the result of a combination between the nature of the excitation
and the natural response characteristics of the structure that is subjected to that
excitation. Considering the low damping factors of steel, the main concern is not the
amplitude of the excitation, although it naturally does have an impact. More
important parameters are the frequencies of alteration that are within the excitation
force characteristics and more precisely, the relation between these frequencies and
the structures’ natural dynamic behaviour. This natural dynamic behaviour is
strongly characterised by a structure’s resonance (natural) frequencies. A relatively
low amplitude excitation force with a frequency close to any of the structure’s
resonance frequencies may already result in destructively high vibration levels. This
is particularly the case with lightly damped structures, what ship structures typically

are.
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In order to prevent problems related to noise and vibrations it is important to have
access to tools to estimate/simulate ship’s structural dynamic behaviour in relation to
the excitation characteristic that may be expected from the main excitation sources
such as the propellers and on board machinery. This work focuses on the challenges
of modelling ship’s structural dynamic response. However, as it is the relation
between the excitation characteristic and the response characteristic of a structure
that determines the resulting noise and vibration levels, knowing the excitation
characteristic is just as important. This section, the critical review, therefore starts
with a brief review of the characteristics of the main ship excitation sources
(propellers and diesel engines) and methods generally used to estimate these
characteristics. This will provide the context for the critical review of the most

commonly used methods for modelling structural response.

4 Critical Review
4.1 Controlling the Excitation Characteristics
4.1.1 Propeller Excitation
4.1.2 Diesel Engine Excitation

4.2 Controlling Structural Response
4.2.1 Hull Girder Approach
4.2.2 Finite Element Modelling
4.2.3 Maode Superposition
4.2.4 Spectral Element Modelling
4.2.5 Statistical Energy Analysis
4.2.6 Component Mode Synthesis Techniques
4.3 Conclusion and Summary Critical Review
4.3.1 summary and Conclusions Review Excitation Forces
4.3.2 Summary and Conclusions Review Response Modelling Technigues

Paragraph structure chapter 4 ‘Critical Review’

4.1 Controlling the Excitation Characteristics

With the inventory of different sources for vibrations first a definition of the word
‘vibrations’ as used in this work should be given. With the definition of vibrations it
has to be kept in mind that the focus of this work is on dynamic structural behaviour
where both inertia forces (kinetic energy) and structural deformation forces (potential
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energy) play an important role. This is the type of structural dynamic behaviour
where dangerous resonance phenomena may occur. Resonance, or near resonance,
may result in a situation that very low excitation forces may already result in high
vibration levels that not only cause problems with health and well being for people
working with or on that structure, but may also lead to structural fatigue damage
resulting from high alternating material stresses.

On board ships there are many sources of alternating load, with many different
frequencies of alteration. Forces induced on the ship’s structure by sea going
behaviour, ship loading condition and alternating power demands are low frequency
alternating forces with periodicities ranging from a couple of times per minutes to a
couple of times per month. Propellers and engines produce alternating forces with

frequencies ranging from a couple of Hz to a couple of kHz.

Considering the main concern in this work is the consequences of structural
resonance occurring, alternating stresses induced by harmonic seagoing behaviour,
changing ship loading conditions and alternating power demand (manoeuvring for
instance) are less relevant as the frequencies of these load alterations are outside the
range of typical ships’ structural resonance frequencies. For that reason, the review
of excitation sources and modelling techniques has been narrowed down to propeller

excitation and main and auxiliary machinery (diesel engines) excitation.

4.1.1 Propeller Excitation

One of the most powerful excitation sources resulting in ship vibrations and structure
borne noise is the propeller. Through different hydrodynamic mechanisms the
propeller generates alternating forces and couples on the shafting systems and
transmits an underwater fluctuating pressure field which results in onboard noise and

vibrations and underwater radiated noise [1, 2].

In order to control these propeller generated alternating loads, propeller excitation
simulation tools are required so that aft ship and propeller geometry design choices
can evaluated based on the resulting propeller excitation characteristic. Different

tools and methods are available and much research is still carried out particularly in
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understanding the inception of tip vortex cavitation through which broadband
propeller excitation is generated. [3, 4].

4.1.1.1 Types of Propeller Excitation

Propeller excitation is a result of the following hydrodynamic phenomena [2]

- Unsteady blade lift
- Blade thickness effect (mainly local vibrations).
- Cavitation (sheet, bubble and tip vortex cavitation).

Unsteady lift

Thrust of a propeller is generated through the lift that is generated by the propeller
blades. The lift generated by a propeller blade is determined a combination of two

water velocity components. These components are [2]:

- Relative velocity component tangential to the rotation of the propeller. This
velocity component is a result of the rotation of the propeller.
- Water inflow speed axial to the propeller disc. This speed is related to the

speed of the ship through the water.

The combination of both velocity components determine the angle of incidence of
the water flow relatively to the propeller blade profile which determines the lift

generated by the propeller.

The wake is however is not constant over the propeller disc. The wake factor at the
upper segment of the propeller disc is generally higher than at the lower segment as
the water flow closer to the hull is generally more retarded than the flow further
away from the hull. This means that the axial water velocity component to the
propeller disc is not equally distributed over the propeller over the propeller disc area

either.

As the axial velocity component, together with the rotation speed of the propeller,

determines the incident angle to the propeller, the lift force generated by a propeller
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blade, and all other related forces and couples, is not constant over time and varies
with the position of the blade in the wake field.

Main concern in relation to the irregularity of these couples and forces is the
excitation of torsional and lateral propeller shaft vibrations. Ship structural vibrations
are only excited indirectly through transmission of shaft bending vibrations through
the propeller shaft bearings. This is why these forces and couples related to the
unsteady lift are referred to in the literature as the bearing (excitation) forces.

The unsteady lift excitation spectrum consist of distinct tonal peaks that are typically
multiples of the blade passing frequency where the amplitudes of the frequency

components rapidly decrease with the order number [1, 2].

Blade Thickness Effect

A more effective (local) hull vibration excitation source is through the hull pressure
pulses generated through the displacement effect of passing propeller blade tips. This
effect is further amplified when sheet cavitation occurs, through which the effective
blade thickness (displacement) is increased and the resulting hull pressure pulses are
amplified.

Because this type of excitation can best be described as a passing by of an area of
low pressure right next to a high area of pressure, this type of excitation has the
characteristics of a dipole source [5]. Dipole sources generate hull fluctuating
pressure fields that are characterised by a large phase variation over the hull surface
area[1]. Because of this phase variation, this type of excitation is mainly known for
exciting local vibrations (appendices, smaller plate areas of the hull etc). Similar to
the unsteady lift force generated excitations, the blade thickness induced excitation
pressures are strongly characterised by frequency components that are multiples of
the propeller blade passing frequency where the first blade passing frequency is the
strongest and amplitudes decrease with the order number.
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Sheet Cavity Volume Variations

A far more effective mechanism for global (hull) vibrations excitation is through the
hull pressure fluctuations induced by fluctuating and collapsing sheet cavitaties.
Change of volume of the cavities is related to changing pressure on the propeller
blades whilst rotating through the wake field. The alternating propeller blade
pressure is both related to the unequal distribution of wake at the propeller disc and
the differences in hydrostatic pressure with the blade rotated to the upper segment of

the propeller disc and the blade rotated to the lower segment of the propeller disc.

This type of cavitation is characterised as a monopole fluctuating pressure source
resulting in an alternating hull pressure field that is largely in phase over the hull
surface area [1]. Even though the actual pressure pulse amplitudes from blade
thickness effects are higher, this source of excitation is still far more effective in
exciting global hull vibrations because of above described phase characteristic of the

generated pressure field [5].

The fluctuating cavity volume variation induced excitation spectrum consist of
distinct tonal peaks that are typically multiples of the blade passing frequency where

the amplitudes of the frequency components rapidly decrease with the order number.
Tip Vortex and Bubble Cavitation

Through cavitation of tip vortices and bubble cavitation propellers also generate a
broad band excitation. Collapse of both sheet, bubble and tip vortex cavities is
considered to behave as a broadband excitation source at frequency ranges typically
from 50 Hz to 100 kHz [6]. Although it is up to now mainly addressed in navy
applications where the resulting underwater radiated noise is of great concern, there
IS a growing concern for these phenomena in the merchant shipping as well both
from a cavitation erosion damage point of view and from the underwater and on

board radiated noise point of view [3, 4].
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4.1.1.2 Developments in Evaluating Propeller and Aft-ship Design

The amplitude of excitation generated by a propeller resulting in onboard noise and
vibrations and underwater radiated noise, can be controlled through carful design of
propeller and aft ship geometry. For the evaluation of propeller generated excitation,
first the wake distribution at the aft ship of a given geometrical design needs to be
estimated. Both model test and CFD calculations techniques are used for that purpose
[7] . From there, the greatest part of the tonal excitation components from the
propeller can be theoretically calculated through following the very well established
lifting line or lifting surface theories [8].

Estimating the effect of broadband cavitation induced by tip vortices and bubble
cavitation is far more complex. Particularly the inception of tip vortex cavitation is
considered one of the most complex phenomena occurring on a ship propeller [9].
Although it is up to now mainly addressed in navy applications where the resulting
underwater radiated noise is of great concern, there is a growing concern for these
phenomena in the merchant shipping as well both from a cavitation erosion damage
point of view and from the underwater and on board radiated noise point of view [3,
4].

4.1.1.3 Propeller Excitation Control

Main issues that are addressed when trying to control the propeller excitation are:

- Wakefield at the aft ship
- Pressure distribution on the propeller blades (tip unloading)

- Increasing Tip Clearance
Wake distribution at the aft ship

A very important factor affecting the nature of propeller induced alternating bearing
forces and hull pressure fields is the wake distribution at the aft ship. With an evenly
distributed wake, no distinct tonal excitation would have come from the propeller

except from the highly localised pressure pulses due to the blade thickness effect [2].

Unfortunately, for a maximum cargo capacity, particularly bulk carriers, tankers and
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trailing suction hopper dredgers have a typically full aft ship geometry characterised
by rapidly converging curves and steeply rising lines of the underwater part of the aft
ship, where the propeller is. This geometry leads to a rapidly diverging water flow
round the aft ship, resulting in unevenly distributed axial water velocities with

strongly retarded velocities particularly close to the aft ship’s hull.

For low propeller pressure pulses it is important to design the aft ship geometry that
will induce a wake distribution at the propeller that is as evenly distributed as
possible. Gradually rising and converging curves in the aft ship geometry will result
in a smoother inflow of water and a far more equal distribution of axial water speed
into the propeller compared to an aft ship that is characterised by steeply rising and

rapidly converging curves and ends abruptly.
Propeller Blade Tip Loading

An important factor determining the amplitude of the propeller induced pressure
pulse is the load distribution of the propeller tip. High propeller tip loads are
beneficial for the propeller efficiency. However, a high tip load also leads to a deeper
contrast between the high and low pressure area side of the propeller blade increasing
cavitation volumes and increases changes of shedding effects and violent bubble

implosions occurring [1, 2].
Tip-Hull Clearance

Another strategy for reducing propeller tip loads is by increasing the tip-hull
clearance. VVorus argues [2] that it is a common misconception that increasing tip-
hull clearance is most effective because of the resulting reduction in the refraction
effect. The most important factor increasing propeller excitation with small tip
clearance according to [2] is that the wake gradient increases strongly with a
decreasing distance from the hull. This means that not only the propeller tip load will
be higher closer to the hull, but also the fluctuations of cavity volumes will be

stronger resulting in higher amplitudes of alteration of the induced hull pressure field

[3].
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4.1.2 Diesel Engine Excitation

The main and auxiliary engines on board a ship are also major sources of excitation
playing an important role in structure borne noise and vibrations propagating
throughout the ship’s structure. Two types of excitation are generated by the engine.
Alternating forces and couples are generated through the irregularity of the cylinder
gas pressure (gas forces) and through the acceleration and deceleration of the
translating and rotating masses such as cranks, pistons and connecting rods (inertia
and rotary forces)[10-12].

Both gas force and rotary and inertia forces excitation are mainly of a tonal nature.
Inertia forces generated excitation spectra exhibit tonal frequency components that
are multiples of the crankshaft rotation frequency. The first and second order
crankshaft rotation frequencies are the two most dominant excitation frequencies
resulting from inertia and rotary dynamic phenomena. Higher order frequencies also

occur, but their amplitudes rapidly decrease with an increasing order number.

4.1.2.1 Characteristics of Gas Forces Induced Excitation

The first type is the excitation generated by the unsteady cylinder gas pressures. The
irregularity of the cylinder pressure, which is related to the different stages of the

combustion process, results in an unsteady, irregular vertical gas force [13].

The vertical gas force, through the geometry of the crankshaft and connecting rod,
results in an irregular driving torque and, as a reaction to the irregular torque, in
irregular transversal piston or guide forces. The irregularity of the driving torque is
of concern for the torsional vibratory behaviour of the driveline. The irregular
transversal piston or guide reaction forces try to force the engine into a rolling
motion (H-couple) through which engine vibrations are transmitted to the ship’s
structure. Gas forces also force the engine’s A-frame to periodically deform through
the resulting so called X-couple. This is mainly of concern for slow running 2-stroke
engines of which the A frame is relatively flexible. The vertical gas force irregularity
also induces high alternating loads in the engine’s components, but do not directly

transmit engine vibrations to the ship’s structure. Vibrations induced by vertical gas
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forces are only indirectly transmitted through the projection of the connecting rod
forces in transversal direction (guide forces) which result in the above mentioned H-
couple and X-couple [14].

Gas forces excitation spectra exhibit harmonic tonal components that are multiples of
halve order or first order crankshaft rotation frequency, depending whether it is a
four stroke or two stroke engine respectively. Distinctive dominant peaks in the
excitation spectrum occur at multiples of the firing frequency, with the amplitude

rapidly decreasing with order number.

4.1.2.2 Characteristics of Inertia Forces Induced Excitation

Force characteristics generated through the acceleration and deceleration of
translating and rotating masses exhibit distinct tonal frequency components that are
multiples of the (crank)shaft rotation frequency [12]. The first and second order
crankshaft rotation frequency are the two most dominant excitation frequencies
resulting from inertia and rotary dynamic phenomena. Higher order frequencies also
occur, but their amplitudes rapidly decrease with the order number [12, 15]. Both X
and H couples are generated in the same way as explained for the gas forces induced
X and H couples. In addition to the X and H couple, inertia and rotary forces also

induce a couple that tries to force the engine into a pitching couple [15].

4.1.2.3 Estimating Engine Excitation Characteristics

Theoretically estimating the excitation characteristics from a particular engine
depends on the quality of data provided by the engine manufacturer. From gas force
induced tangential effort harmonic components the gas forces induced transversal
cylinder or guide reaction forces can be calculated. From these transversal forces the
X and H couples can be deduced. These tangential effort curves are available from
engine manufacturers as they serve as excitation input for the class compulsory drive

line torsional vibration analysis [11, 16-18].

Excitation couples and forces are also available from engine manufacturers. They

can also be deduced from information of the reciprocating and rotating weights and
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the properties of the rotary masses used for the first and second moment
compensation [15].

4.1.2.4 Controlling Engine Excitation

Direct reduction of excitation is done through applying rotating balancing weights.
Through installing rotating balancing weights at the forward and aft end of the
engine first and second moment inertia induced excitation moments are partially, and

sometimes even fully compensated [10, 15].

Reducing engine induced vibrations is indirectly done trough applying flexible
mounting systems through which dynamic isolation between the engine and ship
foundation is achieved [18]. Recent development has also been focussing on

applying active mounting systems [19].

4.2 Controlling Structural Response

A very important factor determining the level of vibrations and the related
consequences is the structural response to the excitation characteristics. Particularly
for steel structures which typically contain very little damping, high vibration levels
may already occur at relatively low excitation amplitudes with excitation frequencies
close to structural resonance frequencies. Being able to evaluate the impact of design
choices of the response characteristic of a structure or drive line is very important
when designing a ship, which has also been demonstrated through simulation tests
carried out for the fp7 EU project SILENV [18, 20]. In these publications it has been
demonstrated that in case of (near) resonance, reducing the response to acceptable
levels through reduction of excitation (through optimising propeller design) is very
difficult. The simulation results have also demonstrated the benefits of estimating the
structural response of a ship’s over a frequency range, rather than for just a few
harmonic components. Simulating results over a frequency range will not also show
where the sensitive response frequencies are, but also at what frequencies the
mobility of the structure is the lowest. This way structural response and excitation

frequencies can be deliberately tuned for an as low as possible vibratory response.
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In this section the available state of the art structural response simulation tools are
critically reviewed for their practicality and validity as tools for simulating ship

vibrations. The following methods are discussed:

- Application of the beam theory (hull girder vibrations)

- Finite element modelling (FEM)

- Spectral element method (SEM)

- Statistical energy analysis (SEA)

- Mode Superposition and Component Mode Synthesis Techniques (CMS)

4.2.1 Hull Girder Approach

A much used well validated method used for calculating ship vibrations is through
modelling the ship hull as a uniform continuous beam [2, 21]. The beam is supported
by a uniformly distributed spring stiffness K representing the buoyancy effect of the
water (see Figure 2). This uniformly distributed spring has a uniformly distributed
damping coefficient C representing the hydrodynamic damping of the water
surrounding the hull girder. The uniform beam-mass per unit length p represents the
mass of the ship (plus cargo) plus the hydrodynamic added mass. The uniform
stiffness of the beam itself is according to Hooks law equal to EI where E is the
elasticity modulus of the hull material and I is the average cross sectional moment of
inertia of the vessel. The engine and propeller excitation loads on the hull are

modelled as concentrated loads (couples or forces, M) or F ).

Distributed spring/damper
K=stiffness in N/m?

C= Hydrodynamic

damping Ns/m? T——
deflection v

K and C (distributed B ST ST ST ST N N N 2
ingd
Spring demeen) T T

Figure 2 Representation of a ship hull as a beam. The beam is supported through a distributed
springs with stiffness properties K representing the buoyancy effect of the water and
damping C representing hydrodynamic damping.
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Since for normal ships the shear centre for horizontal and torsional vibrations and the
centroid for longitudinal and vertical vibrations are roughly located at the centre of
gravity, no coupling is assumed between horizontal and torsional (hull twisting)
modes. Therefore these modes are all treated separately [21]. The ship’s response
acting as a hull girder is calculated by modelling vibrations as set of interacting

travelling waves, following the Euler-Bernoulli beam theory.
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Figure 3 The first four modes shapes as they will look like modelling the ship as an Euler beam

Although Figure 2 shows stiffness and damping effect due to hydrodynamic
interaction with the hull girder vibrations, these contributions to the mass elastic
behaviour is considered very small and is normally omitted, which simplifies the

model further. The effect of added mass to the natural frequencies corresponding
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with the hull girder modes is however considerable. Different methods have been
developed for estimating the hydrodynamic mass as presented in [2].

4.2.1.1 Limitations and Latest Developments in the Hull Girder Approach

With the calculation of the natural frequency and mode shapes of a ship hull the
Euler beam approach is used, which is a very practical approach. However, to be able

to use the Euler beam approach the following assumptions are made:

- The cross section of the beam remains normal to the deflection line, i.e. no
shear deformation takes place.

- No rotary inertia effect of the cross-sectional area is taken into account
assuming it to be negligible relatively to the vertical inertia effect.

- No coupling between bending and hull girder torsion is assumed as the
location of the centre of gravity, centroid for longitudinal and vertical

vibrations and the shear centre are assumed to coincide [21].
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Figure 4 Perfect bending where the tangent of the neutral bending line is perpendicular to the cross-
sectional area, i.e. no shear deformation of the cross-sectional area takes place (Euler beam
theory)

This means that there are limitations to the wavelength related to the mode shape for
which the natural frequency can safely calculated using the Euler beam theory. In the
literature a minimum wavelength of 10 times the height of the beam (in this case the
depth = freeboard plus draft) is recommended [22]. The shorter the wavelength, the
less valid the approach will be. Considering the wavelength involved with the mode
shape decreases with the mode number, errors in estimating natural frequencies
increase with mode number as well. Considering the minimum requirement of the

wavelength to be at least 10 times the depth of the vessel, the wavelengths for mode
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numbers higher than 2 (see Figure 3) will for most vessels not fulfil these
requirements. Although this can still be overcome by adding the inertia and shear
deformation effect to the Euler beam (through which the beam becomes a
Timoshenko beam), the fact that the ship’s mass-stiffness distribution has been
simplified to a continuous model will still decrease the validity of the model with

increasing mode number.

Another shortcoming of this approach is that no coupling between horizontal and
torsional mode-shapes is assumed as the location of the centre of gravity, centroid for
longitudinal and vertical vibrations and the shear centre are assumed to coincide [21],
so that all mode shapes can be analysed separately. However, with ships with large
hatch openings (such as large container vessel), the shear centre is typically located
outside the cross section (below the keel) which implies that there will be a coupling

between the hull torsional vibration mode and bending modes [21].

Mode | Mode I

Mode IV

Figure 5

First five calculated mode shapes for an open top
container vessel. For these mode shapes and
natural frequencies the calculation results
obtained through an advanced beam model show
satisfactory correlation with results obtained
from a detailed finite element model, as
published by Senjanovié and others [21]
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As a result, warping will also be constrained, resulting in added shear force which

affects the mode shapes and corresponding natural frequencies.

Senjanovi¢ and others [21] propose a generalised and improved solution to the
classical thin walled hull girder theory and suggest using a beam finite element
modelling techniques (1D FEM) for calculating hull girder vibration modes. In the
beam elements used, all effects of the location of the centroid, shear centre and
centre of gravity are taken into account. Tests with an open container carrier has
showed good correlation up to the 5™ mode between the 1D FEM model and a 33072
node/84076 element 3D finite element model (see Figure 5).

4.2.1.2 The Relevance of the Hull Girder Approach

Estimating hull girder natural frequencies is particular of importance for ships for
which propeller and machinery excitation frequencies are expected to be in the same
range as the hull girder natural frequencies. Empirical data originally presented by
Johannessen and Skaar have been presented in [2] and are shown in Figure 6. Also
empirical formulas are available such as the Kumai’s Formula presented in [2] for

estimating the 2 node vibration natural frequency (mode I in Figure 3):
(4.1)

v
Noy = 3.07€6 |75

Where:

A—(12+1B)A
AT T3

m

A;= ship’s displacement including virtual added mass of water
A = ship’s displacement

I, = cross-sectional moment of inertia

B = midship breath

T, = mean draft
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Figure 6 Empirical data originally presented by Johannessen and Skaar for vertical hull bending
vibrations

Figure 7 Excitation of hull bending vibrations through the pitching engine couple

Considering the empirically obtained data presented in Figure 6 it can be

demonstrated that excitation frequencies from slow running four stroke engines may
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be in the range of hull girder natural frequencies corresponding with the first 5
modes. Figure 7 shows that the pitching couple generated by the engine’s inertia

couple fits very well onto the first mode hull bending vibration.

In addition, considering a 100 rpm diesel engine, alternating pitching couples of the
1% and 2" order crankshaft rotation frequency occur at 1.7 and 3.3 Hz, which are
frequencies that are right into the range of natural frequencies corresponding with the
first 5 hull girder modes, as can be seen in Figure 6. If any of these hull girder natural
frequencies should be close the engine pitching moment frequencies, special

attention may has to be given to the balancing arrangement on these types of engines.

However, there will be many vessels for which the first couple of hull girder bending
frequencies are well below the dominant excitation frequencies, which may be
particularly the case for vessels with medium to high speed engines. Even though
hull girder vibrations are not directly excited at their natural frequencies, they may
still play an important role in the transmission of vibration energy from propellers
and machinery to area’s where local resonance may occur. This local resonance may
involve vibration modes of the superstructure, decks or bulkheads. As propeller
cavity volume fluctuation results in a very effective in-phase fluctuating pressure
field at the aft ship through which hull bending, even though not at resonance, is
excited very effectively. As hull bending vibrations are global vibrations, they are
felt throughout the vessel and are therefore capable of inducing indirectly local
resonance phenomena. In order to be able to estimate the relevant higher order
natural frequencies and corresponding more complicated mode shapes, much more
detailed models are required in order to overcome the difficulties with the fact that a
hull does not behave as a slender beam with an evenly distributed mass and stiffness.

4.2.2 Finite Element Modelling
Although in theory the natural frequencies and mode shapes of any structure can be
calculated considering vibrations the result of interaction between waves travelling

through the structure, this approach is not practical for more complex structures [12].
As demonstrated above, there is a practical value to this approach as long as a ship is
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considered a continuous homogeneous beam. However, the penalty paid for this
simplification of the ship’s structural properties becomes larger with increasing mode
number. A more precise description of the complex ship’s structure is required. This
means that the ship’s structure needs to be subdivided in many sections with different
(homogeneous) properties. Mathematically describing the interface condition for
each section according to the wave approach becomes very complex in this case and
makes the beam theory approach a highly unpractical choice for analysing higher

frequency vibrations.

4.2.2.1 Principles of Finite Element Modelling

For complex structures discrete finite element models are used. These models are
based on a modal approach. The value of this approach for modelling hull girder
vibrations has already been demonstrated in [21], where beam elements were used to
model the ship hull and calculate the hull girder mode shapes and natural

frequencies.

With a finite element model a (complex) structure’s mass spring distribution is
described through a collection of discrete points (nodes) connected to each other by
elements. These elements represent a mathematic description of the relation between
the lateral and angular displacement of the nodes (translation and rotation), the
deformation of the element, and the resulting reaction load in the nodes. Through the
formulation of the equilibrium requirements for all nodes at each degree of freedom,
a set of coupled equations is obtained equal to the number of degrees of freedom of
the model. Displacement of the nodes due to (harmonic) external forces is calculated,
through which deformation of the elements and related element stresses are obtained

as well.

As mentioned above, the properties of a element are described through the relation
between displacement and reaction loads on the nodes. This requires a description of
the relation between the displacement of the nodes and the deformation of the
element. The deformation of the element is described as a polynomial with a degree
equal to the number of degrees of freedom of the element, i.e., the elements

deformation is described through a superposition of a finite number of modes of
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deformation, equal to the number of degrees of freedom of the element. As the
equations of motions are composed based on a finite number of assumed deformation
modes, the approach to vibrations adopted by the finite element modelling technique
is referred to as the so called modal approach to vibrations. The equations of motion
are obtained through substituting the mathematical description of these modes (shape
functions) into the energy relation based on d” Alembert, Hamilton and Lagrange
equations [12, 22, 23]. The connection of many simple elements forms the

description of the complex structure.

As this approach quickly leads to a large number of equations that needs to be solved
(one for each degree of freedom, i.e. the number of equations required is at least
equal to the number of nodes), the principle only become interesting for application
on larger scale with the development of computer technology in the 1960ties. With
the sharp increase of computer capacity over the last decades, the finite element
modelling technique has also become accessible for analysis of the structural

response of complex marine structures, and has become a widely used method.

4.2.2.2 Ship Structures and Gaps in Finite Element Modelling

For complex structures, a minimum number of elements is required in order to
accurately enough describe the elastic behaviour of the structure. In the past, the
degree of complexity of ship structures quickly lead to models requiring long
computation times and required too much computer memory to run, which made the

simulations either too expensive or highly unpractical.

Although developments in the computer technology has made it possible and
affordable to run FEM models representing considerable parts of a (complex) ship
structure, problems still occur with size and running time of simulation, particularly
when trying to simulate the propagation of structure borne noise. At higher
frequencies mode shapes corresponding with the high mode numbers of concern
become increasingly complex. In order to be able to accurately enough describe these
mode shapes (deformation shapes), an increasing number of elements is required. In
the literature, the number of elements required is often related to the wave length of

the structural vibrations. Guidelines for selecting element size vary in the literature
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where it is recommended that the distance covered by 6 to 12 times the element
length should not exceed the wave length [24] [22]

Different modelling techniques have been developed to overcome problems
experienced with Finite Element Modelling related to required computer memory

and computation time. The techniques reviewed in this section are:

- Mode Super position Techniques
- Spectral Elements Method [25]
- Statistical Energy Analysis

- Component mode synthesis techniques

4.2.3 Mode Superposition

In order to speed up calculation time, mode superposition is used through which the
number of equations that need to be solved, is decreased.

4.2.3.1 Principles of Mode Superposition

This technique is based on calculating the response as a superposition of the
contributions of a reduced number of vibration modes. These contributions are
expressed through modal coordinates. These modal coordinates are calculated
through reduced stiffness and mass matrices obtained through so called modal
reduction. With modal reduction the full stiffness and mass matrices are reduced by
projecting those onto the subspace spanned a truncated set of eigenvectors, i.e. mode
shapes. These number of eigenvectors chosen to serve as a reduction basis is based
on the relation between their corresponding natural frequencies and the response
(excitation) frequencies of interest. Usually the cut-out frequency, i.e. the upper limit
of the frequency range within all modes are selected that are to be retained, is 1.5
times the frequency of interest (according to Rubin’s criterion [26] ).

4.2.3.2 Ship Structures and Gaps in the Mode Superposition Approach

Through applying the mode superposition technique, the total set of equations of
motion has been reduced considerably and with that, the computation time required

to find the response modal amplitudes. However, the time required to calculate the
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natural frequencies and mode shapes for the retained mode numbers has to be added
to the time required to solve the reduced set of equations of motion. Unfortunately,
the time required to calculate the mode shapes and natural frequencies increases
exponentially with an increasing number of required modes [22]. The impact of
computation time required for calculating mode shapes and natural frequencies may,
particularly with the analysis at higher frequencies, be the most dominant factor in
the total required computation time. The calculation time required to produce the
forced vibration solution may even exceed the computation time required for
generating the forced vibration solution through full harmonic analysis. This is also
demonstrated later in this work.

4.2.4 Spectral Element Modelling

A different approach to overcome problems with model size and computation time is
the application of the Spectral Element method. With spectral element analysis a
similar approach is chosen with compiling the stiffness and mass matrices as with
Finite Element Modelling, but using much bigger elements representing

homogeneous parts of a structure, and using a travelling wave approach to vibrations.

4.2.4.1 Principles of Spectral Element Modelling

This method uses elements of which the dynamic behaviour is described following a
wave approach as also adopted for the hull girder calculations as explained in section
4.2.1. Where the finite element method uses a frequency independent polynomial
shape function for describing the deformation of an element, with spectral elements
the shape function is frequency dependant and is based on the wave equations. As the
wave equation approach gives the exact mathematical description of the form
relations of a continuous structural element, the thus obtained total dynamic stiffness
matrix of an entire structure is also referred to as the exact stiffness matrix [24, 27,
28].

Advantage of this modelling technique is that a huge reduction of elements is
obtained. Elements may now represent an entire part of a structure that may be

considered homogeneous of nature, such as a beam or a plate section, as the
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frequency dependant deformed shape obtained through the wave approach is the
exact shape of deformation of the element. As a result, the number of elements does
not need to be increased with a decreasing wavelength (increasing frequency). This is
unlike the Finite Element Modelling technique, as described in section 4.2.2, where
the number of elements needs to be increased with decreasing wave length
(increasing frequency) as a consequence of the frequency independent non-exact

polynomial approximation of the shape function.

4.2.4.2 Ship Structures and Gaps in the Spectral Element Modelling
Approach

As described above, spectral elements are elements covering parts of a structure that
are considered homogeneous of nature so that the wave approach to vibrations can be
safely adopted. Unfortunately, a ship structure does not contain many large portions
that could be safely considered homogeneous. Research has been carried out into
developing spectral elements representing stiffened plate fields by Ajith [27], but
still, all beams, brackets and plate sections should be modelled as separate spectral
elements. This problem has been described by Lee [28] as ‘not knowing the exact
wave solution for most complex multidimensional problems’. This is certainly the

case when considering a double bottom of a ship as a homogeneous structure.

Another problem is the relation between the size of structural elements and wave
length of the vibration. Adopting a wave approach implies that vibrations are
modelled as waves transmitted from one element to another element through
bending, axial shear or torsional deformation. Considering the size of homogeneous
elements in a ship structure, combined with typically relatively low excitation
frequencies, transmission of vibration energy between elements does not take place
just through flexural deformation of the elements, but mainly through rigid body
movement of these elements. As is demonstrated later in this work, dominant (tonal)
vibrations excited by propeller and engine induce typical alternating structural
deformations involving wave lengths largely exceeding the maximum possible size
of a homogeneous spectral element. As vibration propagation takes place through

vibration deformation patterns involving larger parts of the structure, the rigid
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movement of the relatively small element play a major role, but is not taken into

account as a consequence of the adopted wave approach.

4.2.5 Statistical Energy Analysis

An approach adopted in order to overcome problems occurring with finite element
modelling when analysing higher frequency response is the Statistical Energy
Analysis approach (SEA). With statistical energy analysis a structure is divided in
subsystems. These subsystems have the same function as the elements used in finite
element modelling. The big difference is that subsystems are much larger than the
elements used in FE modelling. As the number of elements for statistical energy
analysis models is much smaller than for finite element models the number of

equations that need to be solved is a lot lower as well, which is a huge advantage.

4.2.5.1 Principles of Statistical Energy Analysis

The main properties of Statistical Energy approach [29-32]:

- It is an energy approach: vibrations and noise are represented as quantities of

energy travelling between subsystems

- It is a broad band approach. Quantities of energy are given as the total
quantity of energy content over a broad frequency bandwidth. Octave and 1/3
octave bandwidths are typically used. No narrowband tonal information can

be extracted from the calculation results.

- The necessary dynamic properties of subsystems are estimated for the
subsystems in resonance. Dynamic subsystem interaction factors (coupling
loss factors) and energy loss factors (internal loss factors) are expressed as
energy exchange factors between the resonance modes of neighbouring

subsystems.

- It is a frequency and modal average approach. The dynamic properties of a
subsystem are frequency average properties for the bandwidth of concern.

The properties of subsystems necessary to calculate the energy flows and
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energy contents of subsystems are the coupling and internal loss factors and
are taken to be the same for each resonance mode (modal equipartition
condition). Each resonance mode within a substructure is also assumed to
contribute the same amount of vibration energy to the total stored vibration

energy of a subsystem.

It is a modal average approach. All resonance modes in a particular
subsystem contain the same amount of energy. The total energy of a
subsystem for a particular bandwidth is equal to the number of natural
frequencies in that subsystem in that particular bandwidth times the modal

energy of any individual mode.

It is a spatial average approach i.e. no information is available of how the
energy is distributed within the subsystem. Excitation is also assumed to be
spatially equally distributed so that each mode shape receives the same

amount of energy.

The effect of global mode shapes (for instance mode shapes of which the

wavelength exceeds the length of a subsystem) are not taken into account.

The following conditions need to be met in order for the statistical energy approach

to work:

Preferably a broadband excitation over the analysed frequency bandwidth.
This way all natural mode shapes within the frequency band are fully excited,
the condition for which the coupling loss and internal loss factors are
estimated for a substructure.

The higher the number of resonance frequencies within an analysed
frequency bandwidth, the more reliable the results become. This is where the
term ‘statistical’ refers to. With a high number of resonance frequencies
within a bandwidth, the total energy content of the subsystem is calculated as
a sum of the average energy contributions from all these resonance mode

shapes. The higher the number of resonance mode shapes involved (the
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bigger the population) the better the deviations from the average values are
averaged out.
- Auniformly spatially divided excitation source is ideally required to ensure

equipartition of modes.

4.2.5.2 Ship Structures and Gaps in the Statistical Energy Analysis
Approach

The following remarks can be made about typical marine structures and excitation

characteristics in relation to the requirements for statistical energy analysis:

- Ship structures are highly complex. Subsystems will therefore show little
uniformity in structural behaviour corresponding with the different resonance
frequencies. This decreases the chance that there is actual mode equipartition
[33].

- Excitation sources are of a highly tonal nature. This also decreases the chance
that there is actual mode equipartition.

- Some excitation sources are spatially unequally distributed. This also

decreases the chance that there is actual mode equipartition.

Statistical energy analysis could however still be used as a tool for a qualitative
approach to propagation of structure borne noise for some types of ships. particularly
for high speed crafts with high turbulent flow excitation and light structures with
high modal densities. However, considering above, this technique is unsuitable for
simulation of propagation of vibrations induced by the tonal sources such as the
propeller blade passing harmonics and diesel engine crankshaft rotation and firing

frequency related harmonic components.

4.2.6 Component Mode Synthesis Techniques

One of the attractive aspects of statistical energy analysis is that the calculation of
dynamic behaviour is based on subdividing a structure in coupled substructures and

calculating assembled structural behaviour based on the individual dynamic

behaviour of the uncoupled substructures. As a ship’s structure consists of many
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repeating structural sections, the dynamic properties (mode shapes and natural
frequencies) of only one of a series of repeating substructures would be required for
the calculation of the total dynamic structural behaviour of the total assembled
system. This saves computation time and required computer storage space for the
model. Also symmetry of ship structures can be used to reduce the number of

calculations required.

In the 1960ties a modelling techniques called Component Mode Synthesis (CMS)
has been developed also allowing a sub-structural approach which, unlike SEA, can
be used for simulating narrowband vibration response of highly complex structures.
CMS is mostly used based on a finite element model. The model is reduced by
applying a mode superposition technique on the individual substructures. Modal

information of the substructures is usually obtained through finite element analysis.

As calculation time required for obtaining mode shapes and natural frequencies
decreases exponentially with the size of the model, the total required computation
time for obtaining all relevant modal information for each individual substructure
will be a lot less than the time required for obtaining modal information for the total
assembled structure, which is an advantage relatively to the classical mode

superposition method.

4.2.6.1 Principles of Component Mode Synthesis

The Component Mode Synthesis (CMS) approach has been proposed for the first
time by Craig and Bampton in 1968 [34] and has been used a lot since for large
structures such as airplane fuselages and civil engineering applications. Variations on
the method have been developed by, amongst others, MacNeal and more recently,
by Rixen [35, 36].

Some of the key advantages recognised in the literature and presented as the
motivation for developing the method are [37-39]:

- Reduction of required computer time. Computer time increases exponentially
(depending on the eigenvalue extraction method and nature of the structure)

with the number of degrees of freedom. As a result, analysing the complete
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assembled structure requires more time than the combined time required
doing the analysis of the individual substructures [35].

- Further reduction of the model is obtained through using a limited number of
eigenvectors (mode shapes) as a reduction basis.

- The computation method allows separate teams of engineers to work
independently on the design of parts of the structure. This saves time enabling
the engineering teams to work parallel setting up the dynamic stiffness
matrices of the individual substructures. These matrices will be compiled
together for the calculation of the dynamic behaviour of the complete
structure.

- Modification of the design of a structure does not require changing and re
analysing the complete model. Only the substructure containing the part that
is redesigned needs to be analysed for mode shapes and natural frequencies
again.

- Through component mode synthesis the dynamic behaviour of a structure can
be evaluated through measurements once the individual substructures (in the
shipping industry these could be ship sections) have been constructed, even
though these sections have been manufactured at different locations.

4.2.6.2 Fixed and Free Interface CMS

Two types of CMS techniques are distinguished:

- Fixed interface CMS
- Free interface CMS

With fixed interface CMS the dynamic behaviour of the substructures is described
through elastic modes and constraint modes. Elastic modes are calculated for the
substructures with the interface lines (lines connecting a substructure to adjacent
substructures) constrained. The alternating displacement of the interface nodes is
described through constraint modes, which are in fact static modes representing the
static deformation of the substructure as a result of the interface forces occurring due
to the interaction between sub structures. These constraint modes represent an

important contribution to the total dynamic behaviour of the ship’s structure.
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With free interface CMS the dynamic behaviour of the substructures is also

described through elastic modes and constraint modes. Elastic modes are calculated

for the substructures with the interface lines or points free.

Comparison between free and fixed CMS is presented in Table 1

Fixed interface CMS

Free interface CMS

Dynamic response

calculated through

Elastic modes and constraint

modes

Elastic modes and constraint

modes

Number of elastic modes
required for accurately
describing dynamic

displacement field

Requires less elastic modes than
the free interface CMS method for
accurately describing a

substructure’s elastic behaviour

More modes required as un-
constrained model contains more

degrees of freedom

Importance of Static

Important for describing

Not important for describing

modes displacement field. Need to be displacement field. Expanding
expanded for obtaining total only the elastic modes gives an
dynamic displacement field. accurately enough representation
of the dynamic displacement
field.
Table 1 Comparison fixed and free CMS methods

The difference between fixed and free interface CMS is that the displacement of the

interface modes and the internal modes is already sufficiently described by the elastic

modes. This means that unlike the fixed CMS method, the static modes don’t need to

be expanded for the sake of the accuracy of the calculated displacement field. For

typical ship structures, this will reduce the number of required floating point

operations required for generating the results. The reason for that is the high number

of interface nodes usually involved in CMS models of typical ship structures, as the

substructures are connected to each other through interface lines. The number of

static constraint modes involved is therefore high as well, as this number is equal to

the number of degrees of freedom on the interface lines. The number of elastic

modes required to describe the dynamic displacement field of a substructure
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accurately enough is however higher than for the fixed CMS model, as the increased
number of degrees of freedom also increases the modal density, particularly at lower

frequency ranges.

Although expanding static mode does not add a lot to the accuracy of the calculated
displacement field, they are however very important for the accuracy of the
description of the equilibrium relations, and therefore for the accuracy of the
calculated modal coordinates representing the structures assembled dynamic
response. Element stress and therefore the resulting reaction forces acting on the
interface nodes are extremely sensitive to errors in nodal displacement [22, 39]. See

also section 6.5.2 “Free Interface: the McNeal and Rubin’s Method”.

Another advantage of free interface CMS modelling is a more practical approach
when evaluation of substructures modal properties takes place through modal
measurements in the field. If these actual substructures are sections of ships that are
waiting to be assembled, these sections will in most case be supported by a number
of support points (blocks) which means that the interface boundaries of the section
will be free, i.e. unconstrained. This is an advantage also mentioned for application
in the aeronautical industry in [35].

4.2.6.3 Ship Structures and Gaps in CMS Approach

Although there are a lot of advantages of applying Component Mode Synthesis
(CMS) modelling for ships, problems may arise with required computation time
when applying CMS on typical ship structures. Although the CMS total set of
equations (matrix size) is a lot lower than the number of equations obtained
following the full harmonic analysis, the ratio between the number of non zeros
/number of zeros in the CMS matrix is a lot higher (denser matrix). As a result a
situation may arise that the number of non zeros in the CMS matrix is higher than the
number of non zeros in the full dynamic stiffness matrices used for full harmonic
analysis. Such a situation may easily occur when applying CMS on structures
containing many interface nodes, as is the case with typical ship structures. Ship
structures are continuous of nature and substructures are therefore coupled to each

other through coupling lines which have to contain a certain number of nodes, in
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order to accurately enough describe the deformation at these interface lines. Classic
CMS approaches are based on describing the interaction between substructures
through setting up equations of equilibrium and compatibility for each interface
node. With a high number of interface modes, the number of equations required for
describing compatibility and equilibrium may be higher than the number of normal
modes required for accurately enough expressing the displacement field. In that case,
the size of the CMS matrix is dominated by the number of interface degrees of

freedom.

Through the relatively high number of required CMS equations for typical ship
structures, combined with the high density, this situation may arise that a CMS
matrix contains more non zeros than the full matrix used for classical harmonic
analysis, which also means that more time is required for solving the CMS equations
of motion than the time required for solving the classical harmonic finite element

matrix equation.

Recent work has been carried out for a more efficient mathematical formulation of
the compatibility and equilibrium relations [35, 36]. Reference has been found
addressing problems with increased calculation times due to the density of the
reduced CMS matrices resulting from high number of coupling nodes. Reference
[40] addresses this problem typically occurring when coupling a structural domain to

a fluid domain.

Tran [41] has carried out test for evaluation of a interface reduction technique based
on the procedure developed by O’Calligan [42] called the improved reduced system
method (IRS method). This method is based on describing the static displacement of
a substructure due to interface displacement through superposition of Ritz vectors
(interface modes). These Ritz vectors are obtained through solving the eigenvalue
problem involving a reduced mass and stiffness matrix. These reduced matrices are
obtained through projecting the full stiffness and mass matrix of the subsystem onto
the Guyan reduction basis. This enables describing the interface displacements
through a number of mode shapes smaller than the number of interface degrees of

freedom. Reduction in computation time at around a factor 3.5 compared to the
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classical CMS approaches has been reported. The cut-out frequency used for
selecting the number of interface modes however had to be increased from 1.5f,,,,x
(according to Rubin’s criterion) [26]) to 3.5f,,4, in order to get an accurate enough

description of the interface displacement.

In this work he also referrers to Bourquin [43] and Craig and Chang [44] who also
present interface reduction techniques and suggest using Guyan Modes for

describing the reduced interface displacement vector.

4.3 Conclusion and Summary Critical Review

In this section the nature of dominant on board excitation characteristics have been
reviewed through literature study. The most dominant sources of alternating forces
leading to vibrations and structure borne noise are considered to be the propeller and
the engine. The excitation forces produced by engines and propellers contain very
dominant tonal components with frequencies ranging from a couple of Hz for low
speed engines, to multiples of 100 Hz for high speed engines and higher speed

propellers.

These findings formed a basis for the review of the most commonly used structural

response modelling techniques and the recent developments in these techniques.

4.3.1 Excitation Forces

In the section above a brief review of the major ship vibration excitation sources is
given. The excitation characteristic generated by the diesel engine can be easily be
estimated during the design stage in order to generate the input for the structural
response model for the simulation of the ship’s vibratory behaviour. The tangential
effort cylinder pressures are often available serving as excitation input values for the
driveline torsional vibration calculation. With the tangential effort harmonic

information the gas forces induced H and X-couple can be directly deduced.
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Nature of Excitation

Evaluation and control

Diesel engine
Excitation Tonal components at Control of diesel engine excitation
frequencies that are multiples of
0.5 or 1 order crankshaft Applying flexible or active mounting systems
rotation frequency for a two reduces transmission of vibrations from
stroke or four stroke engine engine to ship.
respectively.
Applying rotating balancing weights may
Most dominant frequencies are reduce or even completely eliminate inertia
the 1% and 2™ order crankshaft generated excitation forces
rotation frequencies (inertia . . o
] Theoretical Evaluation of Excitation
forces), and multiples of the .
B o Characteristic
firing frequencies (induced by
gas forces) o . .
Excitation characteristics are relatively easy
. ) to estimate or to obtain.
Amplitudes decrease with order
number
Propeller
excitation Tonal components at Control of propeller excitation takes place

frequencies that are multiples of
the propeller blade passing

frequency.

Amplitudes of excitation
decreases with order number.
Generally up to the third order
blade passing frequency is

considered relevant

Between 50 and 100 Hz broad
band cavitation induced

excitation occurs

through

Unloading of the blade tip through propeller
geometrical design

A high as possible blade tip-hull clearance
Introducing an a uniform as possible wake

field at the propeller through careful

geometrical aft ship design

Theoretical Evaluation of Excitation

Characteristic

CFD modelling techniques, lifting line theory
and towing tank test are used for estimating

propeller excitation characteristics
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Inertia forces induced H and X couples can also be easily estimated through
reciprocating masses together with information about the balancing arrangement and

engine connecting rod and crankshaft geometry given by the engine manufacturer.

Excitation properties from the propeller however are harder to estimate. Calculation
of excitation amplitudes requires an estimation of the wake field to start with, which
can be obtained through CFD modelling or through model towing tank testing.

With the estimated wake field, the propeller blade pressure distribution variations

can be calculated through well established lifting line or lifting surface theories.

Predicting broadband cavitation induced by collapsing of sheet, bubble and tip vortex
cavities is considered the most complex excitation form. Understanding and

predicting this behaviour is still subject of ongoing research.

For both the propeller and the diesel engine excitation characteristics it can be
concluded from the review that most of the excitation energy is concentrated in very
distinct tonal frequency components. For the propeller excitation the relevant
frequencies are generally assumed to be the first three blade passing harmonic.
Diesel engine excitation generally produces a tonal excitation characteristics induced
by the oscillation of the translating masses (inertia forces) (1% and second order
crankshaft rotation frequency) and the gas forces (multiples of the engine’s firing

frequency.

4.3.2 Response Modelling Techniques

An important aspect of ship noise and vibrations is the combination of the excitation
characteristics (source characteristics) and the natural response of the structure that is
subjected to this particular excitation. Through careful design of propeller blade and
aft ship geometry, and through applying flexible or active machinery supporting
system, excitation amplitudes can be very well controlled. However, no matter what
excitation mitigating technique is applied, resonance or near resonance of the ship’s
structure or machinery may still easily result in destructively high vibration levels,

even though the excitation amplitudes are perfectly acceptable.
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Consciously tuning the structural response and excitation frequencies is very
important when designing a ship for low noise and vibration levels. Therefore,
estimating the impact of structural design choices on the response characteristic of
the ship’s structure for a given excitation characteristics is very important, and is a

huge challenge.

With the critical review, finite element modelling has been recognised as the most
suitable modelling tool for evaluating ship’s structural design considering the nature
of ship’s structures and excitation characteristic from diesel engines and propellers.
However, particularly when taking large parts of the ship structure into account,

problems may still arise with require computer memory and computation time.

The principles of the Spectral Element Modelling approach have been reviewed as a
possible solution to reduce required computer memory and analysis time. Although
this method has great potential to reduce computation time at high frequencies, its
practical value is questioned for modelling the typically relatively low frequency
excitation forces typically encountered on ships. These low frequencies induce
vibrations involving global structural deformation. Considering the nature of ship
structures, the size of spectral elements has to be chosen relatively small.
Considering the nature of the structure, and considering the typical excitation
characteristics, the wavelength of mode shapes that play an important role in ship
vibrations largely exceeds the size of the spectral element. This means that rigid
body modes of the spectral elements play and important role in the propagation of
vibrations. These rigid body mode shapes are not taken into account with this
approach. In addition, considering the complex nature of the stiffened ship structures,

a lot of uncertainty arises about choosing the correct wave functions.

The principles of statistical energy analysis (SEA) have also been studied for
practicality and validity for simulating propagation of vibrations through ships. The
advantage of SEA is that the mathematical description of the structural dynamic
behaviour is much simpler than for the FE method. However, broadband excitation,
high modal density and statistically uniform modal behaviour are required for

reliable results. Statistical energy analysis could however still be used as a tool for a
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qualitative approach to propagation of structure borne noise for some types of ships,
particularly for high speed crafts with high turbulent flow excitation and light
structures with high modal densities. However, considering above, this technique is
unsuitable for simulation of propagation of vibrations induced by the tonal sources
such as the propeller blade passing harmonics and diesel engine crankshaft rotation

and firing frequency related harmonic components.

In order to reduce computation time and computer memory requirement whilst still
be able to apply a finite element approach, the principles of component mode
synthesis have been reviewed. With this method the ship’s structure is divided in
well manageable substructures. Reduction of the model takes place by applying
modal reduction onto the individual substructures. Calculation time required for
obtaining mode shapes and natural frequencies for all individual substructures is a lot
smaller than the calculation time required to obtain the mode shapes and natural
frequencies of the total assembled structure, as required for the classical mode

superposition technique.

Through component correlation of the theoretical model to the real structure can
already start very early in the design stage. Modal information of already finished
ship sections can be obtained through measurements. By modelling these sections as
substructures, these theoretical substructures can be correlated to the measured data

through which the confidence in the simulation results is increased.

However, due to high number of required interface nodes typically seen on ship
structures, a situation may arise, particularly when subdividing a ship structure into
many (repeating) ship structures, that solving the total assembles CMS matrix
requires more computation time than solving the matrix equations following classical

full harmonic finite element analysis.
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Modelling Technique

Pro

Con

Hull Girder Beam Approach

Simple hand calculation
approach. Particular valid for
estimating propagation of
vibrations forced by low speed
two stroke engines (and
sometimes also the first blade
passing frequency from the
propeller)

As assumptions and simplifications
of the model only allow analysis up
to the 5" mode shape, this approach
becomes invalid for estimating
vibration propagation induced by
medium and high speed engines and
propeller excitation.

Finite Element Modelling

Suitable for modelling
geometrically complex
structure that ships are.

Modelling large part of typical
complex ship structures results in
model requiring much computer
memory and computation time.

Number of required elements
increases further with increasing
required response frequencies

Mode Superposition

Reducing computation time
mainly at lower frequencies

At higher frequencies, calculation
time required for calculating the
relevant mode shapes and natural
frequencies increases exponentially.

Spectral Element Modelling

Reducing computation time
considerably at higher
frequencies.

Exact solution, works well for
high frequencies.

Still many elements are required for
typical ship structures, due to the non
homogeneous nature of typical ship
structures.

Global modes play an important role
in the vibrations of a ship
considering the frequency of
excitation and the nature of the
ship’s structure.

Due to the non homogeneous nature
of the global ship structure, it is not
possible to know the exact wave
solution
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Modelling Technique

Pro

Con

Statistical Energy
Analysis

Reducing computation time
considerably at higher
frequencies.

Requires high modal density.
This is a condition not met with
typical ship structures.

Requires broadband and spatially
evenly distributed excitation.
Propeller and diesel engine
excitation is of a tonal nature and
spatially concentrated

Global mode shapes are not taken
into consideration, but play an
important role in vibration
propagation on board ships.

Component Mode
Synthesis

Reduction of Required
Computer Memory and
possible reduction of
Computation time

Allows a Finite Element
Approach

Sub structural approach
allows correlation of modal
parameters to take place
through measurements
whilst the ship is being built

High number of coupling modes typically

encountered with continuous ship
structures may increase the total

computation time and undo the reduction

of computation time obtained through
modal reduction
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5 Measurement Results

In this section vibration and noise measurement results are reviewed. Through the

vibration measurement results the nature of propeller and diesel engine excitation

and the corresponding structural response is.

Measurement Results

5.1

Vibration and Noise Measurements on a Gas Carrier

511
5.1.2
5.1.3
5.1.4

Measurement Conditions, Locations and Procedure
Propeller induced Vibration and Noise

Evaluation of Measured Propeller Vibrations
Evaluation of measured Propeller Noise

5.2

Vibrations and Noise Measurements on Board a Fishery Research Vessel

5.21
5.2.2
5.2.3

Measurement Conditions, Locations and Procedure
Evaluation and Identification of Propeller Induced Vibrations
Identification and Evaluation of Diesel Engine Induced Vibrations

5.3

Vibrations on Board a ROPAX Vessel

5.3.1
5.3.2

Evaluation of Propeller Induced Vibrations
Evaluation of Diesel Engine Induced Vibrations

3.4

Summary of Measurement Result Evaluation

Measurement results from measurements campaigns carried out for the FP7 EU

research project SILENV have been used. For two vessel analysed in this work, these

measurements have

vessel and a LNG carrier). Also measurement results taken on board a ROPAX ferry,

Paragraph structure of chapter 5 ‘Measurement Results’

been performed by the author of this work (a fishery research

carried out by a Spanish consultancy company TSI, have been used. These

measurements have

The main aim of SILENV was the formulation of a green label for shipping. This

green label was to contain recommendations of noise and vibration limit values

based on:

also been carried out for the EU research project SILENV.

- Human response (work quality impairment and comfort)

- Response of
- Response of

marine mammals.

people working and living close to waterways and harbours

- Technical feasibility

The green label also was to contain guidelines for designing ships in order to achieve

the proposed more stringent recommended noise and vibrations limits.
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To serve the aims of the SILENV project, on board noise and vibration
measurements have been carried out as well as underwater noise measurements in
some cases. Also questionnaires have been distributed among passengers and crew
through which the impact of noise and vibrations on working performance and

perception of comfort is measured.

5.1 Vibration and Noise Measurements on a Gas Carrier

One of the ships the author of this work has performed Noise and Vibration
Measurements on was a 260 m long LNG carrier with a gross tonnage of 111459
tons and a displacement of 84491 tonne (see Figure 8). For the development of the
green label for the fp7 project SILENV as described above, onboard noise and
vibration measurements have been carried out by the author. At the same time,
underwater noise measurements have been carried out by project partner CETENA,
so that noise and vibration levels on board could be related to the resulting under

water noise radiation.

General Properties

Max. Length waterline 260 m

Max. Beam Waterline 45 m

Maximum Speed 19 kn

Draft During Trials 9.4 m aft, 9.4 m fwrd
Propeller

Power 21500 kw

Maximum Revolutions 80 pm

Nominal Revolutions 75 pm

Number of Blades 4

Pitch fixed

Main engines

1 low pressure steam turbine (LP) and 1 high pressure
steam turbine (HP)

Total Power 21550 [kw
Revolutions 5800 rpm (HP) and 3970
rpm (LP)
Figure 8 Properties of the gas carrier of which the vibration measurements have been shown in Figure

10 and some noise measurement results are presented in

As this ship is equipped with steam turbines, the most dominant vibration and noise

source was found to be the propeller.
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5.1.1 Measurement Conditions, Locations and Procedure

An important aspect of all the measurement results collected was the identification of
the noise and vibration sources and the mechanism behind the transmission of noise
and vibrations from theses sources through the ship itself, and to the underwater

environment.

In order to be able to identify the contributions of the main noise sources vibration
measurements and noise measurements had to be carried out in such a way that they
can be related to each other. With that in mind, vibration measurements were carried
out on parts of the ships structure as close to main sources of structure borne noise as

possible.
The most dominant sources are considered to be:

- Propeller (measurement positions plate fields deck steering gear room and aft
deck)

- Main steam turbines (measurement positions turbine feet and founds)

- Gearbox (measurement positions on foundations)

- Auxiliary sets (measurement positions on foundations)

- Feed water pumps (measurement positions on foundations)
Measurements took place at four different operational conditions:

- Ship at anchor

- Ship with propeller running at 31 rpm (7 knots)
- Ship with propeller running at 50 rpm (9 knots)
- Ship running at full speed (75 rpm) (19 knots)

As the ship is equipped with steam turbines, the main focus in this work is on the

vibrations above the propeller and on the steering gear deck.

Spectra of the vibration measurements are produced over a frequency range from
0.16 Hz up to 1 kHz. The spectrum bandwidth was 0.16 Hz. A hand held B&K 2250
vibration/noise meter has been used as further described in Appendix I. With this

meter both noise and vibrations were measured. The meter had logging options
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which enables logging of both spectra and raw signals, so that post processing could
be carried out afterwards. Being able to record spectra and time signals over a longer
period is convenient, particularly when measurement reading fluctuate over time.
Linear averaging of vibration and noise spectra also had to take place considering the
irregularity of the vibrations levels. Particularly at the steering gear deck sailing at
full speed cavitation occurred and the highly irregular noise and vibration levels
sometimes required averaging times longer than one minute, before the reading

become stable.

5.1.2 Propeller induced Vibration and Noise

Figure 10 and Figure 11 show some of the vibration measurement results taken on
the steering deck plating directly above the propeller on board a gas carrier [18, 20].
The measurements have been carried out using accelerometers and hand held
equipment (shown in Appendix I). The spectra show the FFT analysis results that
have been transformed from 0 to peak acceleration levels [mm/s?] to 0 to peak
velocity levels [mm/s] through dividing the acceleration spectrum through the

frequency in rad/s.

The spectra presented in Figure 11 and Figure 12 present the 0 to peak maximum
amplitudes of the frequency components measured over roughly one minute, with no
weighting function applied. In the legend of the graphs, also the total average and
total maximum RMS values measured during that minute are presented, applying a
weighting function according to EU directive 2002/44/EC.

Identification of propeller induced vibration took place by plotting lines of multiples
of the blade passing frequency into the spectrum. These blade passing harmonics
have been estimated through the estimated propeller rotation speed obtained from the

readout of the on-board revolution meter.
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Figure 9

representation of the aft ship cut open at frame 10

r/

Figure 10

Some of the measurement locations on the steering gear deck shown plotted in a 3D

conventional propeller reponse
0to peak [(mm/s]

Steering gear

Steering gear

eak values mit
pea deck 3 deck 5
1blade passin ,
p é 4 mmys 1mm/s 0.77 mmy/s
frequency ’
1 blade passing .
P = 4 mmys 15 mm/s 172 mmys
frequency
3 blade passin ’
P E 4 mmys 22 mmjfs 2.04 mm/s
frequency
4 blade passing , ,
P = 4 mmyfs L& mm/fs 183 mmys
frequency
5 blade passin ,
P ¢ 4 mmy/s 0 143 mm/s
frequency '
mit Steering gear | Steering gear
) deck 3 deck 5
total weighted
€ 4.4 mm/s 55 mm/s 4,75 mmys

RS [mm/'s]

Measurement locations and results for location 3 and 5, the location where the highest

vibration levels have been measured. The table shows the maximum 0 to peak velocity
amplitudes at each blade passing harmonic frequency component from the 1% to the 5"
order. The bottom line shows the maximum overall RMS value. Limits given in the table are
prelimenry limits formulated in the SILENV project for evaluation of vibration spectra.
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Oto peak velocity amplitude [mm/s]

Figure 11

0 to peak velocity amplitude
[mm/s]

Figure 12

Peak velocity spectra vibrations steering gear deck

4BPF

1BPF

—1 deck plating total weighted rms = 3.95 mm/s to 4.4 mm/s

~2 hull plating

-3, deck total weighted rms = 3.64 mm/s t0 5.5 mm/s

1% 20 T 30 40 50 60 70 80 90

2BPF SBPF Frequency [Hz]

Spectra of measurement results taken at location 1 to 3.Amplitudes are given in mm/s 0 to peak
values and are the maximum values measured. During the approximately one minute over
which the measurement results were averaged, total RMS values were within the bandwidth
indicated in the legend of the graph (from 3.95 mm/s to 4.4 mm/s for location 1 for instance).
Indicated in the figure are the multiples of the blade passing frequencies (BPF).

Peak velocity spectra vibrations steering gear deck

6 ] -3 deck total weighted rms = 3,64 mm/s to 5.5 mm/s
4BPF
5 IBPF -5, deck total weighted rms = 3.12 mm/s to 4.75 mm/s
4 9, deck total weighted rms = 1.35 mm/sto 2.11 mm/s
3BPF
3 —7. deck total weighted rms = 2.1 mm/s to 2.2 mm/s
v
2 6. deck total weighted rms = 1.88 mm/s to 2.82 mm/s
1 v ——8. deck total weighted rms = 1.37 mm/s to 2.11 mm/s
0 e — —— — N
0 20 30 40 50 60 70 80 90 100
2BPF SBPF Frequency [Hz]

Spectra of measurement results taken at various locations. Amplitudes plotted in the graph
are given in mm/s 0 to peak values and are the maximum values measured. During the
approximately one minute over which the measurement results were averaged, total RMS
values were within the bandwidth indicated in the legend of the graph (between 3.64 mm/s
and 5.5 mm/s for location 3 for instance). Indicated in the figure are the multiples of the
blade passing frequencies (BPF).

In the table of Figure 10 the maximum measured 0 to peak velocity amplitude values

are listed for the first 5 blade passing harmonic frequency components for locations 3

and 5. At these two locations the highest vibration levels have been measured. The
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limits given in the table are the preliminary vibration limits formulated at the start of
the SILENV project in order to be used for assessment of vibration measurement

results.

In Figure 13 the noise measurement results taken at two locations under different
operational conditions are plotted in one graph. These measurements have been

presented in this way in order to understand the propagation mechanism of structure

borne noise.
90.00 - Cadet B Cabin Deck 3
& 80.00
=
3 7000 = stopped
2 60.00
@ E50rpm
‘;o” 50.00 4
Z .00 m full speed
g 30.00 4
=)
£ 20,00
c
2 10.00 -
0.00 -
Dy e Dy p B Ry S Oy W D e v Op W T S G b 2 S O P e S
T e e % e e 0 e G G 0 B T B R N e e e
Chief Petty Officer Cabin (Deck 2)

90.00 - H 31 rpm cadet B stopped| 50 rpm |full speed
= 8000 - Total unweighted level [d8] | 6370 | 75.83 | ssa3
2 2000 4 ® full speed Total Awelghted level[d8) | 5030 | as71 | 4548
S o chief petty off 31rpm | 50rpm |full speed|
@ 3 t
r Total unweighted level [dB] | 68.77 82.57
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Figure 13 1/3 octave band spectra of noise measurement results with no weighting curve applied,

taken on board the gas tanker with properties shown in Figure 10. Noise at Cadet B
cabin has been measured with the ship stopped, propeller running at 50 rpm (9 knots)
and at full speed (19 knots). Noise in the Chief Petty Officer Cabin has been measured at
propeller speed 31rpm (7 knots) and at full speed (19 knots).

54



5.1.3 Evaluation of Measured Propeller Vibrations

The vibration measurement results shown in Figure 10 suggest a concentration of

propeller vibration energy below the 30 Hz. Frequencies up to the 5™ order blade

passing frequency have been clearly identified through the FFT analysis. It has also

been established that all the vibration energy under 100 Hz is mainly coming from

the propeller. Figure 14 shows measurement results taken close to machinery in the

engine room of the vessel. These vibration levels are considerably lower than the

levels measured on the steering gear deck (compare with Figure 12).

0topeak vibration level otopeak vibration level
[mm/s] [mm/s]

Vibration level 0 to peak
[mm/s]

Figure 14
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0.10
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0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

0.8 -
0.6 -
0.4 -

0.2 -

-0.2 -

] 23, 5B genset Aft support
7 =00, PS genset aft support
1 — 07, 5B genset fwrd support
1 = 21. PS genset fwrd support

. i P A
L 1 T 1 T
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Frequency [Hz]

15. fwrd feedpump (running)

16. aft feedpump

ML#—“L el
- T T u
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Cramancs [H=1

Gearbox foundation PS at full ship speed

Gearbox foundation 5B at full ship speed
In between steam turbines at full ship speed

)’

- H‘V%._ M__JJ—OT_-_.__'..__ N ]
0 20.00 40.00 60.00 80.00 100.00
Frequency [Hz]

Spectra of measurement results taken on close to auxiliary and main machinery (steam
turbines) in the engine room of the of the LNG carrier
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Also some broad band effect seems to be present round about the 20 Hz and round
about the 1% blade passing frequency.

The clear presence of blade harmonic components above the 3 order is mainly due

to the shape of the aft ship. As mentioned in section 4*

Critical Review” it is normally assumed in the literature that propeller blade passing
excitation amplitude decreases with order number and is assumed to be negligible
above the 3" order. However, the literature also mentions that with a full aft ship
such as the LNG carrier’s aft ship, characterised by rapidly converging lines, a high
degree of non uniformity of wake distribution at the propeller can be expected, which

may lead to blade passing harmonics above the 3™ order to be relevant as well.

Another important aspect when evaluating the relation between amplitudes at
different harmonics is the fact that through accelerometers not an excitation
amplitude is measured, but a response amplitude. This means that the structural
response characteristics may also result in certain harmonic components being more
dominant than others (for instance, when certain blade harmonics are close to a

natural frequency)

As mentioned before, a broad band response has been identified close to 20 Hz.
Although there may be the effect of smearing of higher harmonics due to time
variation of the wake distribution (as described by [3]), the broadband excitation is
suspected to have been mainly induced by cavity collapse on the hull considering the
observed impulse like nature of the vibrations at the aft ship that could best be
described with the metaphor of the aft ship being machine gunned with marbles.
These violent time varying cavitation phenomena also resulted in a huge fluctuation
in vibration levels as can be seen from the range between the maximum and
minimum measured (weighted) RMS velocity values quoted in the legends of the

graphs in Figure 11 and Figure 12.

5.1.4 Evaluation of measured Propeller Noise

The concentration of vibration energy below 30 Hz is further confirmed through the

un weighted noise spectra of noise measurement results at different propeller speeds
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shown in Figure 13. In Figure 13 the 1/3 octave band spectra at different propeller
revolutions at one location have been plotted in one figure. These graphs have been
produced for identification of the contribution of the propellers structure borne noise
to the total airborne noise in the cabin in question. From the spectra can be seen that
changing the propeller revolutions and load only affects the noise spectrum shape
below the 50 Hz. As according to the A-weighting curve the sensitivity of humans to
noise at these frequencies is very low, the differences in the total A-weighted noise
levels, measured at different ship speeds therefore are very small, particularly at the
higher decks being situated further away from the propeller. The main contributor to

cabin noise is general was found to be the air conditioning [20].

5.2 Vibrations and Noise Measurements on a Fishery Research Vessel

Following the same procedures as on the LNG carrier described above, Noise and
vibration measurements have been carried out on board a fishery research vessel by
the author of this work for the FP7 EU research project SILENV. Also underwater

noise measurements have been performed by one of the SILENV project partners.

The Fishery Research vessel is equipped with two main diesel engines driving one

controllable pitch propeller, as shown in Figure 15.
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| 4. Officer’s cabin E ) " Z 3, Captain’s cabin

| 5. Officer’s cabin

prou e

: "1 2. Crew cabin main deck

General Properties
Max. Length waterline 66.7 m
Max. Beam Waterline 15.5 m
Maximum Speed 11.5 kn
Draft During Trials 4.7 m aft, 5.0 m fwrd

Propeller
Power 2000 kw
Maximurm Revolutions 303 rpm
Number of Blades 4
Pitch controllable
Main engines
one 6L diesel engine and one 12V engine
Total Power 2000 kw
Revolutions 750 rpm
Figure 15 Properties of the Fishery Research vessel, the second vessel on which the author has
performed vibration and noise measurements supporting the FP 7 research project

SILENV

5.2.1 Measurement Conditions, Locations and Procedure

Vibration and noise measurements have been carried out under different operational

condition:

- Vessel stopped, propeller running with zero Pitch
- Propeller running at 50% Pitch
- Propeller running at 100% Pitch

Vibration and noise measurements have been taken close to the main sources, which
were considered to be the diesel engines and propellers. Vibration and noise
measurements have also been taken at cabins and various other locations away from

the sources, so that propagation mechanisms can be studied.

A hand held B&K 2250 vibration/noise meter has been used as further described in

Appendix | and has been used in a similar manner as described for the measurements

58



for the LNG carrier above where the amount of averaging time required for obtaining

a spectrum depended on how long it took before a reading was stable.

5.2.2 Evaluation and Identification of Propeller Induced Vibrations

Figure 16 shows the vibration measurement results at 50% pitch and show that most
of the vibration energy is concentrated below 150 Hz [33]. In Figure 16 and Figure
17 can be seen that most of the vibration energy is concentrated under 150 Hz. In the
vibration measurement spectra at the aft ship, closest to the propeller (Figure 16 ) the
first and second blade passing harmonic tonal components (1% BPF and 2" BPF) can
be clearly distinguished at 20 Hz and 40 Hz. In line with the findings presented in the
critical review of the excitation sources, no noticeable response at blade passing
frequencies with order numbers higher than 2 can be found in the spectra presented.
The 6™ blade passing harmonic can also be distinguished from the graph at about 120
Hz. The response around that frequency seems to suggest a broad band like

excitation characteristic, but response amplitudes are low.

A FFT spectrum vibrations aft deck

1 1 1 1
aft deck aft 50% pitch [mm/s]
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B g 0.20 - | i ! i .
= : — aft deck aft 50% pitch [mm/s]
-% 0.16 1 ! — — — - multiples of the blade passing frequency

. . .
8 ., 012 | ' : ' !
e i | !
B E opos | ' ! :
£ E & ! ' 1
=® ' i
g 0.04 ! 1
g I ! 1 |
a 0.00 L ; : s
E 0 ? 5 100 f 150 200
1% BPF 2" BPF 6" BPF
Frequency [Hz]
Figure 16 Vibration measurement results on the aft deck directly above the propeller. Graph B in a

zoomed in version of graph A. BPF = propeller blade passing frequency.
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FFT spectrum vibrations cabins
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Figure 17 Vibration measurement results in cabins. Graph B in a zoomed in version of graph A. BPF
= propeller blade passing frequency

In Figure 17 can be seen that only the first propeller blade passing frequency really
comes through to the cabins at the captain’s deck. Local resonance has been
established of the captain’s cabin’s deck which explains the amplification of the
blade passing frequency amplitude relatively to the amplitude measured at the aft

ship, the closest to the source.

5.2.3 Identification and Evaluation of Diesel Engine Induced Vibrations

Spectra of vibration measurement results taken on the engine foundation of the
fishery research vessel (Figure 15) are shown in Figure 18. Also plotted in the
spectrum of Figure 18 are dotted vertical lines representing multiples of 0.5
crankshaft rotation frequency (CRF), which is the ground harmonic of a 4 stroke
engine. As can be seen from Figure 15 the vessel is equipped with a 6L and a 12V

engine both running at a constant speed of 750 rpm.
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Vibration spectra engine feet
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Figure 18 Spectra of vertical vibration measurement results taken on a 12V engine running at 740

rpm. (Fishery research vessel). The 3™ and 6™ CRF (crankshaft rotation frequency) are the
firing frequency of the 6L and 12V engine respectively.

Specifically indicated in the graph in Figure 15 are the 3" and 6™ order CRF
components. They are usually dominant in a 12V engine as they represent the firing
frequency of one cylinder bank (behaving like a 6L engine) and the firing frequency
of all 12 cylinders [18] together respectively. In addition, a 6L engine was running
synchronously this 12V engine right next to it, both driving one propeller through a

common gearbox. That would further amplify the 3 order crankshaft rotation

Unbalanced gas excitation H-couple

H
a |
2
< [
|
b -] E L
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L
: ; 1 | l I. J F—— | i L i [
2
v g 1 2 3 4 5 & 7 8 9 10
order
Figure 19 Simulated total H-couple for the 12V engine of the fishery research vessel specified in
Figure 15.
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Figure 20 Spectra of vertical vibration measurement results taken at various locations on board. CRF=

crankshaft rotation frequency.

frequency. Although theoretically only these firing frequencies should be present in
the excitation spectrum, many more tonal components related to the engine’s ground
harmonic can be distinguished up to 200 Hz in Figure 18. The harmonic components
outside the multiples of the firing frequencies can be found as a result of unequal
distribution of thermodynamic cylinder load, and as a result of the unequal timing of
the firing of the cylinders relatively to (dynamic) top dead centre. With the
simulation of the gas force induced H-couple excitation characteristic simulated by
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the author of this work in reference [18], the on board measured exhaust gas
temperatures have been used to estimate the load distribution of the cylinders.

The resulting total H-couple characteristic is shown in Figure 19 and shows that the
unbalanced distributed load particularly results in frequency components under the

3" order (firing frequency one cylinder bank).

Figure 20 shows the vertical spectra measured at locations further away from the
engine. Apart from the first order crankshaft rotation frequency the engine crankshaft
rotation related frequencies can only be distinguished very faintly. The dominant 1
order crankshaft rotation frequency has been considered a result of mass unbalance

in the engine’s driveline in combination with local resonance phenomena.

5.3 Vibrations on Board a ROPAX Vessel

In this section measurement results taken on board a ROPAX ferry, carried out by
the Spanish noise and vibrations consultancy company TSI, are reviewed. Figure 23
and Figure 24 show the vibration measurement result spectra taken on board this
ROPAX vessel (Figure 22).

5.3.1 Evaluation of Propeller Induced Vibrations

Figure 23 shows the vertical vibration measurement results on deck plating closest to
the propeller. As can be seen, amplitudes of vibrations with frequencies that are a
multiple of the blade passing frequency rapidly decrease with the order number.

This is therefore also the case with the harmonics found in the vibration
measurement results taken further away from the propeller. Figure 24 shows the
vibration spectra measured on the bridge and at public spaces at the highest deck
right above the propeller. It can be seen that the effect of the 2" and 3™ blade passing
frequency is decreasing the further the receiver location is from the source. The first
blade passing frequency however is dominant throughout the vessel. This had been
contributed to resonance phenomena, which can be concluded from the amplification
of the amplitude at the first blade passing frequency relatively to the first blade

passing frequency measured close to the propeller (see Figure 23). The vibration
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measurement results do not suggest any broad band component in the excitation

characteristic.

Wheelhouse

MMM O Mmoo
OoDNO000lO0O0ENOO0O0O0O0OO0GOaO

Loc 27 and 28

Figure 21 Layout ROPAX vessel on which measurements were carried out for the FP7
project SOLENV

General Properties

Max. Length waterline 157 m

Max. Beam Waterline 26.2 m

Maximum Speed 235 kn

Displacement 16556 t

Propellers

Power 2 x 9100 kw

Maximum Revolutions 184 rpm

Number of Blades 4

Pitch controllable

Main engines
4 % L8 diesel engines

Total Power 2 x 4550 kw

Revolutions 500 rpm
Figure 22 General information ROPAX vessel
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Figure 23 Measurements on plating above the propellers of a RO-PAX vessel (location 27

and 28 as shown in Figure 21)
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Figure 24 Vertical Vibration measurement results ROPAX vessel (see also (see Figure 22

and Figure 23). Weighting curve according to EU directive 2002/44/EC has
been used for calculating the total weighted RMS values quoted in the legends.

5.3.2 Evaluation of Diesel Engine Induced Vibrations

Vibration measurements taken close to the engines on board the ROPAX vessel (see
Figure 22 and Figure 23) are shown in Figure 25. As for the fishery research vessel
in Figure 19 and Figure 20, the measurement results suggest a tonal engine excitation
characteristic. Again, as for the fishery research vessel, apart from the firing
frequency (= 33 Hz) many more other engine ground harmonic related frequencies
can be identified in the spectrum which is a result of the fact that cylinder gas loads
are never perfectly equally distributed and the crank angle of firing of the cylinders

relatively to their top dead centres is not exactly equal either.
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Figure 25 Measurement locations and results taken close to the engine feet

As can be seen from Figure 24 apart from the first order crankshaft rotation
frequency hardly any vibration energy from the engine is coming through to the
selected measurement positions of Figure 22, which is also down to the fact that the
engines are flexibly mounted. The amplification of the first order crankshaft rotation
frequency (compare engine room spectrum which accommodation spectrum) is an
indication of local resonance phenomena occurring, which has been confirmed by the
TSI team that carried out the measurements.

5.4 Summary of Measurement Result Evaluation

The mechanisms and characteristics of diesel engines and propeller excitation forces
identified from the measurement results above are in line with the findings of the
literature review of excitation source characteristics presented in section 4 “Critical
Review*. Above shown vibration measurement results suggest that from a vibration
point of view the propeller should indeed mainly be regarded as a very dominant
tonal excitation source. Frequency tonal response components up to the 3" blade

passing frequency were found in the measurement results taken on the ship
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structures. Higher order blade passing harmonic components were found to be
dominant as well in the vibration measurement results taken on board an LNG
carrier. This is also in line with the findings from the literature research presented in
section 4 “Critical Review*, were it has been mentioned that dominant higher order
blade harmonics typically occur with vessels such as the LNG carrier with a typical
“full’ aft ship geometry characterised by rapidly converging and rising lines. This
type of aft ship results in a highly irregular wake distribution at the propeller, through
which violent cavity volume fluctuations and cavity implosions occur, which is
exactly as experienced on board the LNG carrier during the measurement campaign.
All measurement results considered, the propeller induced vibration energy and
therefore the structure borne noise was mainly found to be concentrated below the

100 Hz in all cases.

From the measurement results taken from a ROPAX vessel and a Fishery Research
vessel can be seen that the excitation from diesel engines is of a tonal nature and
contains many tonal frequency components typically a multitude of the 0.5 order
crankshaft rotation frequency which is the ground harmonic of a four stroke engine.
Most of the vibration energy seems to be concentrated in the frequency band between
0 and 200 Hz.
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6 Theory of Structural response Simulation

In this work state of the art state of the structural modelling techniques are evaluated.
The first step of this evaluation is a critical review of the existing most commonly
used structural modelling techniques. In this critical review presented in section 4,
the validity and practicality of these modelling techniques are assessed considering
the nature of typical ship structures and most dominant ship vibration excitation
characteristics (propeller and diesel engines). Further assessment of the nature of
excitation and response characteristics is done through analysing measurement

results, presented in section 5.

Based on the findings from the literature study and the tonal structural response
measured on the ship’s structure close to engines and propellers, finite element based

modelling techniques are considered the most suitable modelling techniques for ship

vibrations.
6 Theory of Structural response Simulation

6.1 Introduction: Choosing the Maodelling Technigues

6.2 The wave and mode approach
6.2.1 The Wave Approach
6.2.2 The Mode Approach

6.3 The Principles of Finite Element Modelling

6.4 Solving the Equations of Motion
6.4.1 Full Analysis: Row Reduction.
6.4.2 Mode Superposition
6.4.3 Mode Superposition with Residual Compensation

6.5 Component Mode Synthesis (CMS)
6.5.1 Fixed Interface CMS: the Craig-Bampton Method
6.5.2 Free Interface: the McNeal and Rubin's Method
6.5.3 Reducing the Interface Degrees of Freedom

6.8 Summary and Discussion

Paragraph structure of chapter 6 ‘Theory of Structural response Simulation”’

The next step in evaluating structural modelling techniques is applying some of these
finite element modelling techniques on a structural model representing the aft ship of
the LNG carrier on board which the author has performed vibration measurements
(see section 5, Figure 8). Assessment of the modelling techniques will be based on
accuracy of results and required computation time (in measured CP time or

calculated number of floating point operations).

68



In this section the mathematical background of the selected modelling techniques is
presented before applying these techniques on the aft ship model of the LNG carrier,
which will be done in section 7. Understanding the different calculation steps
required to obtain the results is important in order to develop an expression through
which the number of floating point operations can be estimated for each step. The
number of floating points required for the analysis is a direct indication of the
number of computation time required for the analysis. Understanding how each
calculation step contributes to the computation time is important in order to develop

the alternative component mode synthesis approaches suggested in section 8.

6.1 Introduction: Choosing the Modelling Techniques

A very important aspect of controlling noise and vibrations is the ability to assess
structural geometry design choices on their impact on natural structural dynamic
behaviour related to the relevant excitation characteristics. Both structural response
modelling techniques and techniques to estimate the characteristics of the most

dominant ship vibration excitation sources are needed.

In the first part of section 4 “

Critical Review” the state of the art is reviewed of the methods available for
estimating the nature of these excitation characteristics. Measurement results taken
on board vessels by the author have been studied in section 5 “Measurement Results”
for evaluation of the nature of the excitation characteristic. From the literature study
of section 4 and the measurement results in section 5 the excitation characteristic
from both propellers and diesel engines was found to be predominately tonal of
nature and the vibration energy was in all cases found to be concentrated below 200
Hz.

In the second part of section 4

Critical Review” the state of the art in modelling structural response is reviewed. For
assessing the validity and practicality of the different approaches available the nature
of the excitation characteristic needs to be considered. Having established in the first

part of the critical review that propeller and diesel engine excitation characteristics
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are predominantly of a tonal nature, with vibration energy content rapidly decreasing
with blade passing or crankshaft rotation frequency related harmonics, statistical
energy analysis and spectral element methods have been considered unsuitable or
unpractical for modelling the structural response of ship structures such as the LNG
carrier. As the findings of the study of the measurement results presented in section 5
confirm the findings about the typical nature of propeller and diesel engine excitation
characteristics, presented in the critical review, finite element based modelling
techniques have been selected as the most suitable modelling techniques for

modelling vibrations on ships. The most suitable techniques considered are:

- Full Harmonic Finite Element Modelling Technique
- Mode Superposition Technique

- Component Mode Synthesis Techniques

Later in this work, some of these finite element based modelling techniques are
assessed by using them for the simulation of vibration spectra of the aft ship of the
LNG carrier on board which the author has performed noise and vibration
measurements (as presented in section 5, see Figure 8). The simulation results
presented in section 7 will focus on propeller generated vibrations alone, as the ship
is equipped with steam turbines for generation of both main and auxiliary power, and
only very little contribution from the steam turbines have been found in the

measurement results [20].

In preparation of the evaluation of these techniques, the mathematical background of

these techniques are presented in the following sections.

6.2 The wave and mode approach

When vibrations are modelled mathematically, two main approaches to vibrations
can be adopted:

- The wave approach
- The mode approach
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Through the wave approach the shape of deformation of an object is described as a
superposition of travelling waves. Vibrations are modelled as waves travelling from
the source and spreading through the structure and waves that are reflected at the
boundaries and are travelling back into the structure. The interference of these waves
result in a standing waves. These standing waves are most effectively formed at
certain frequencies, where the phase relation between incident and reflected waves is
such, that these waves amplify each other. In that case, little energy is required to
generate a vibratory response. These frequencies are the resonance frequencies and
the standing waves are the corresponding mode shapes. In this approach the
modelling of the wave reflecting from the boundaries (phase shift and amplitude) is
very important and is done through the mathematical formulation of the boundary

conditions.

When structures become geometrically more complicated, the wave approach
becomes unpractical. Particularly the mathematical definition of the boundary
conditions becomes complicated as these conditions are formed by a complex
combination of dynamic properties of the structures attached to all the boundaries. In
this case a modal approach is adopted which is based on approaching vibrations as a
superposition of a number of assumed mode shapes, which are substituted into the
energy equations through which the equations of motion are formulated. This
approach is adopted in finite element modelling techniques

6.2.1 The Wave Approach

With the wave approach a structure is modelled as an elastic continuum through

which different type of waves propagate:

- Compressional waves
- Flexural waves (transverse or bending)
- Shear waves

- Torsional waves

Of these types of waves the flexural wave is the only type of wave that produces

perceivable vibrations and noise for the reason that the particle velocity (structural
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displacement) is perpendicular to any object or person that is in contact with the
structure and is also perpendicular to the air or water that is surrounding the
structure, through which airwaves or underwater waves are generated which is

perceived as noise.
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Figure 26 Beam with a travelling wave

The wave approach, as already explained in section 4.2.1 “Hull Girder Approach”, is
successfully adopted for the estimation of the natural frequencies corresponding with
the first 4 or 5 bending modes of a ship’s hull. The hull is considered a slender
homogeneous beam. The principle of the approach to vibrations according to the

wave approach is therefore demonstrated with a slender beam as shown in Figure 26.

This beam is excited at half the length by a force F at a frequency w. As a result a
wave travels from the point of excitation both to the right and to the left (opposite
directions). Two types of velocity can be distinguished for both waves: the velocity
of propagation of the wave (disturbance) through the material (horizontally), and the

alternating velocity perpendicular to the propagation direction (vertically).

The vertical velocity of the particle (point) on the structure is expressed through the
frequency of alteration normally expressed through the radian frequency w = 2?" (T

Is the time required for a point on the structure to move from the equilibrium position
to the positive maximum amplitude, to the negative maximum amplitude and back to

equilibrium position again = 1 cycle).
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The propagation speed is expressed through the wave number and is also a function
of the radian frequency of the vertical wave motion of a point on the beam:

_v 6.1)
“T%
2T (6.2)
k=7
Where:

¢ = the speed in which the disturbance propagates through the structure (wave
velocity)

k = the wave number also expressed as a function of the wave length A

The particle displacement is expressed through the following complex

representation:

Vixt) = Aei(wt_kx) (6.3)

Where:
V(xp) IS the vertical displacement at point x on the beam at time t
A is a complex constant
w is the frequency of alteration of the excitation force (and therefore the
vertical motion of the particle) in rad/s
k = the wave number through which the phase difference between the wave
motion at x=0 and x=x is expressed.
The complex constant A is evaluated through the force balance equations. These
force balance equations are based on the formulation of the relation between
curvature of bending and the resistance against bending, and the vertical acceleration

of a particle due to the bending motion and the resulting inertia forces.
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Through the description of the relation between the curvature of bending and the
bending moment the shear force of an infinitively small beam can be described [23,
45].

oM (6.4)
D=5
=1 lY 69
T 02
Where:

D= the shear force in a beam alement of a length dx

M = bending moment

% = the curvature of the beam
Vx,p= Vertical deflection of the beam as a function of time ¢ and x =
coordinate in the direction of length of the beam
E= elasticity modulus (2.11e11 Pa for steel)
I = is the moment of inertia of the cross-sectional area of the beam = fAZZdA
Where:

dA= infinitively small crosssectional area

z= vertical distance neutral bending line of the beam and the infinitively

small cross sectional area dA

Inertia forces of a beam are expressed as the mass times vertical acceleration of beam

section dx

aZU(x‘t) (6-6)

ot?2

pAdx

Where

A = the cross-sectional area of the beam.

0% v(xt) _

.z - the vertical acceleration of the mass particle pAdx where t = time
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Combining Euler’s law with Newton’s law, the total equation of motion according

the equilibrium of forces becomes:

(6.7)

0%v 0*v
at(:'t) +EI 64(;’” dx =0

pAdx

(pAdX) 6217(“) + 641](36,1:) _
Eldx/ 0t? 9*x

(%) 0% V() + e —0
EI] 0ot? 0%x
(6.8)

pAw? 0* v
B <T> Ve T a0

Where equation (6.8) represents the wave equation according to Euler and is a
classical differential equation. This equation is however only valid for a slender

beam where:

- The normals remain normal to the x axis when the beam is bending due to the
wave motion.

- No effect of the rotary inertia is taken into account.

Considering a solution for the amplitude as a function of x and t in the form as shown
in (6.3):

Vi) = Aei(wt—kx)

, and substituting into (6.8) gives the homogeneous solution of the differential

equation (6.8). Four solutions for the wave number k are found:
4_ zﬁ) (iw-ikx) _ (6.9)
A (k w 7 e 0

For the non trivial solution:

4_ 2P ):
(k “E

4 pA

— 20

ky (w EI)
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- pA .
ky,=—i (wz E) = —ik,

This means that there are four wave types possible that propagate through the
structure simultaneously. The expression for the solution to the differential equation

(6.8) shows these four wave types all with their own participation factor A4,,:

D) = (A1 + Aze ™% + Aze™™ + A e~ Hkx)elvt (6.10)

The interpretation of the general solution is that there are two propagating wave
motions A;e@tk%) and 4, e(@t=k%) and two non propagating decaying wave
motions Ase@t+kX) and A4,e@t=%X) The two propagating wave motions are waves
travelling in each other’s opposite direction. The general solution is also expressed

as:

Dixy = Aqcos(kx) + Apsin(kx) + Azcosh(kx) + Ausinh(kx) (6.11)

Through substitution of this equation for the vertical beam displacement (6.11) into
the force equilibrium equation (6.8), and applying the boundary conditions at the end
of the beams, an expression for the natural frequencies and corresponding mode
shapes is obtained. In Appendix Il it is demonstrated how this is done for a free

floating beam, representing the hull girder properties of a vessel (see Figure 27)

+ z-axis,

deflection v

Kand C (distributed | o~ >~ = O~ w0 T T T O
spring damper) S S S S S S S S S S S

Figure 27 Representation of a ship hull as a beam. The beam is supported through a distributed
springs with stiffness properties K representing the buoyancy effect of the water and
damping C representing hydrodynamic damping.
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For the beam equation used for calculating the hull girder vibration response of ships
however, the wave number k is derived in a slightly different manner in order to be
able to accommodate for the distributed stiffness that is representing the buoyancy
effect of the water the ship is floating in and the hydrodynamic mass (Figure 27).

The wave equation (6.8) becomes:

v (6.12)
(xt) 2 28 _
a4x + <K — W (E)> 'U(x,t) =0

K = distributed stiffness representing buoyancy effect of the water
u = continuous distributed mass of the ship per unit length. This mass includes
hydrodynamic added mass of the water, mass of the cargo and mass of the

ship’s structure.

Expression (6.9) becomes:

H A (6.13)
4 2 X —

(k +<K—a) (E)))e =0

Through which the values for k are calculated:

1
kzj(‘““’z(%)>:(n+f)n

Although in above equations stiffness and damping effect due to hydrodynamic
interaction with the hull girder vibrations have been included, these contributions to
the mass elastic behaviour is considered very small and is normally omitted, which
simplifies the model further. The effect of added mass to the natural frequencies

corresponding
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6.2.2 The Mode Approach

In section 4.2.1, 6.2.1 and in Appendix Il approaching the ship’s structural dynamic
behaviour through a wave approach (Euler beam theory) is discussed. Through the
mathematical description of the boundary conditions natural frequencies and mode

shapes are formulated.

As described above, the beam approach to a ship is based on two major assumption
which implies that the approach would only be valid for estimating the first two
natural frequencies corresponding with the first two mode shapes. These assumptions

are:

- The equations are valid only for a slender beam which means that no shear
deformation and rotary inertia effect has been taken into account.
- The ship is considered a structure which a continuous mass stiffness

distribution,

Beam equations can still be formulated in such a way that shear deformation and
rotary inertia effects can be taken into account (Timoshenko beam), but that
complicates the mathematical description and has therefore not been demonstrated in
this work. The second assumption still remains a problem for analysing higher mode
shapes. In addition, local vibration modes start to play an important role when
considering excitation frequencies which are in the range of most of the engine
excitation characteristics and multiples of typical propeller blade passing

frequencies.

Theoretically the wave approach could still be adopted for models which are not
continuous. One could subdivide the ship’s structure into a limited number of
structures that could be regarded continuous and are couples to each other. However,
describing the boundary conditions of the individual continuous structures in coupled
condition becomes more complicated resulting in mathematically unpractical

formulations of the natural frequencies and corresponding mode shapes [12].
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A more practical way of describing the mass spring system is through the finite
element method. A finite element model consists of a finite number of elements
through which the mass stiffness distribution of a structure is described. One such
element represents the mathematical description between the deformation of such an
element and the resulting reaction loads at the boundaries of the elements. This
mathematical description (equation of motion) is obtained through substituting a
number of predefined deformation shapes (mode shapes) into a suitable formulation

of the equilibrium relations.

Important to note is that the equilibrium relations used in the finite element
description of an element are the same as those used for the beam theory where the
wave approach has been used. However, the difference is that the finite element
approach uses a finite number of predefined mode shapes relating the deformation of
the element to the translations and rotations of the elements boundaries. The form of

this relation is formulated as a polynomial:
v(x) = a; + azx + azx? + - a,x™ D (6.14)
Where v(x) is the displacement of the element at coordinate x

a,x™ 1 s the contribution to the element displacement distribution on the x-axis
from mode shape n where x™~1 s the mode shape and a,, the modal coordinate of
the "™ mode shape. The number of mode shapes through which the deformation of
the element can be described depends on the number of degrees of freedom of the
element. A beam for instance with two nodes (one at each end) has four degrees of
freedom (rotation and translation of end p and rotation and translation of end q ).
Therefore the displacement function can be described as a superposition of 4 mode

shapes.
6.3 The Principles of Finite Element Modelling
As described in 6.2.2 “The Mode Approach” the application of a wave approach to

ship structural vibration modelling is not practical. The beam theory is applied for

estimating the natural frequencies and response of low mode number bending mode
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shapes of the ship hull. However, the frequency range within which powerful tonal
excitation frequency components exist coming from propellers and diesel engines
exceed the frequency range where typically the first four hull bending mode shape’s
natural frequencies are to be found. Higher order mode shapes become important, for
which a more precise description of the ship’s structural geometry is required.
Although through a wave approach, theoretically, the response behaviour of any
structure could still be obtained, but due to the complex nature of the structure, this

approach is not very practical.

Therefore, finite element modelling is in this work considered the most practical
approach to modelling structural vibrations of a ship’s structure such as the aft ship
of the LNG carrier which is used as a study object in this work. As explained above
in section 6.2.2 “The Mode Approach”, with a finite element model the distribution
of stiffness and mass of a structure is described through a series of discreet masses
and spring, i.e., a finite number of elements. When considering describing a ship’s
structure with a finite element model, the two most commonly used element types

are beam elements (for stiffeners) and plate elements (for the hull plating).

The displacement of the nodes of the elements is calculated through the equations of
motion formulated for each degree of freedom for each node an element consists of.
A beam element, as used in the case study for this work, consists of two nodes (one
at each end) with each 6 degrees of freedom (along the x,y and z axis and rotation
about x, y and z axis). The square plate elements used in this this work’s case study
consist four nodes (one on each corner) with each 6 degrees of freedom (along the

X,y and z axis and rotation about X, y and z axis).

The equations of motion for each degree of freedom are based on the formulation of
the equilibrium between external forces and internal forces. The external forces are
the excitation forces acting on the nodes, and the internal forces are the reaction
forces on the nodes resulting from the deformation of the element (strain forces) and

the acceleration of the elements mass (inertia forces).

This equilibrium is described according to d’ Alembert’s principle in the form
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Mi+Cu+Ku=F (6.15)

where M, C, K are the mass, damping, and stiffness matrices and F is the excitation

force vector.

Defining the equation of motion lays in the formulating the mass, damping and
stiffness matrix (M, C, K) in such a way that they represent accurately enough the
physical relation between the alternating displacements (inducing element strain
forces on the nodes), acceleration (inducing inertia forces on the nodes) and velocity
(inducing damping forces on the nodes), and the resulting reaction forces in the

nodes.

Through applying the principle of virtual work, the Lagrange equation has been
formulated, which is in fact a convenient reformulation of Hamilton’s principle,
particularly useful for obtaining equations of motion for continuous structures
subjected to alternating dynamic loads. With the Lagrange equation the equation of

motion is expressed in quantities of energy:

d <6T) 4 ou 4 aD B (6.16)
dt\ou)  ou  ou
Where:

T = the Kkinetic energy

U= is potential energy (in our case strain energy)
D is the dissipation function = %cuz

u is the displacement
u is velocity

¢ = damping factor
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In order to obtain the mass matrix and stiffness matrix through the Lagrange
equation, an expression is required for the relation between nodal displacement of an
element, kinetic energy of the elements, and strain energy of the element. These

relations are expressed through the energy expressions of the element.

An important aspect of the formulation of the energy expression is the formulation of
the displacement function which needs to be substituted into the energy expression.
As described above, the formulation of the equations of motion which finite element
modelling is based on a modal approach, i.e. the displacement function is expressed
through a polynomial series (6.14) which is in fact a superposition of assumed shapes

of deformation or mode shapes.

The two most used types of elements for the simulation of the structural response of
a ship’s structure are the plate elements and the beam element. Appendix 111 and
Appendix IV show how the stiffness and mass matrices are composed for the two
node beam element and the four node plate element. These are both the types of
elements selected for modelling the aft ship of the LNG carrier presented in the case

study of this work.

6.4 Solving the Equations of Motion

From the stiffness mass and damping matrices of the elements, the stiffness K, mass
M and damping matrix C of the total structure is composed. Through these matrices

the equation of motion is formulated:
F, = Mii + Cu + Ku (6.17)
Where

u, 1, and i are the vectors representing the displacement, velocity and acceleration

of a nodal degree of freedom.

Solving the equations of motion can be done in time domain, or in frequency

domain. The calculation of the displacement vector in time domain relies on
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numerical integration techniques and requires solving the set of equations of motion

for every time step dt.

Vibration problems however are in most cases solved in frequency domain. The
excitation force is assumed to be of a harmonic nature and is described through a

superposition of harmonic components written in the form:

n (6.18)
F(t) = Z F,cos (wnt + @)
1

Where:

F,, = force amplitude of harmonic n

wy, = frequency of harmonic n in rad/s

®,, = phase angles for harmonic n in radians

n = the number of relevant tonal harmonic components through which the

excitation force F(t) is described

As most of the excitation sources are of a harmonic nature, the harmonic approach to
calculating the response is very appropriate. The focus of this work will therefore be

on harmonic analysis (steady state).

As the excitation is described as a superposition of harmonic components (equation
(6.18)), the response displacement of the structure is also described as a
superposition of responses calculated for each of these harmonic excitation

components:

n

u(t) = z U, cos (wut + Qun)

1

U, (t) = t,cos (wt + ¢,,) = response deflection to the nth harmonic (6.19)
Uy, (t) = —wil,sin (wt + @,,) = response velocity to the nth harmonic.

i, (t) = —w?l,cos (wt + @yy) = response acceleration to the nth harmonic.

Where
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U, the amplitude displacement vector for harmonic n.
®,,,, 1s response phase angle for harmonic n.

wy= frequency corresponding with harmonic n in rad/sec

Considering the calculation of the response to a single frequency n, the general

complex notation of the equations of motion is:

F = (—w?M + wCi + K)u (6.20)
Where (—w?M + wCi + K) is also referred to as the dynamic stiffness matrix

In this work, two methods of calculating the response of a structure are discussed:

- Full solution method by directly solving F = (—w?M + wCi + K)u
- Mode superposition method, only taking the response contribution of a

limited number of mode shapes into account.

6.4.1 Full Analysis: Row Reduction.

The most direct way of solving the set of equations of motion shown in equation
(6.20) is through solving the equations of motion directly. In the finite element
method used in this work (ANSYS), equation (6.20) is solved through the so called
sparse solver which applies the row reduction technique, as demonstrated in
Appendix VI. In this appendix also the number of required floating point operations

is estimated required for each step of the row reduction technique.

The first step in obtaining the solution of equation (6.20) is the factorisation of the
sparse dynamic stiffness matrix into a lower triangular matrix. This factorisation is
characterised by two distinct phases: the forward phase (or forward substitution) of
row reduction and the backward phase (backward substitution) of row reduction. The
forward phase is the stage in the factorisation where elementary row operations are
performed to transform the sparse dynamic matrix in a triangular matrix. The

backward phase is the stage where through row operations the above obtained
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triangular matrix is reduced. The pivots are first all transformed into 1. From there it
easy to transform all numbers above the pivots into zeros with reduces the size of the
matrix. From the thus obtained triangular reduced matrix the results are very easy to

obtain starting from the bottom row working upwards.

Appendix VI demonstrates how the system matrix is factorised considering a mass
spring system consisting of four masses and of 200 kg and four springs of 4e6 N/m
as shown in Figure 28. All masses have only one degree of freedom in horizontal
direction and no damping assumed to be present. Consider the following stiffness

matrix K, mass matrix M and the excitation load vector F:

4e6 —2e6 0 0
K = —2e6 4e6 —2e6 0
0 —2e6 4e6 —2eb
0 0 —2e6 4eb
200 O 0 0
_1 0 200 O 0
M= 0 0 200 O
0 0 0 200
60
_|0
F= 0
0
5\\\ \\\l }\\\i }\\\\ \\\\E
Zz= Tz oo
Figure 28 Mass spring system

Consider the excitation frequency to be 10 Hz:

rad

w = 62.8 [124] = (10Hz)

S

6.4.2 Mode Superposition

The response of a structure can be described as a superposition of a set of mode

shapes with their modal coordinates:
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a; (6.21)
% % 12 =T

Where:

a, to a, are the modal coordinates (participation factors) corresponding to

mode shapes ¢; to ¢,

[u] is the total displacement vector (the physical coordinates).

Calculating the response through mode superposition reduces the required analysis
time (CP time), as only the mode shapes with corresponding natural frequencies and
within a certain bandwidth of the excitation frequencies are calculated and used. This
approach is justifiable considering that contributions from mode shapes decrease the
further the corresponding natural frequency is from the excitation frequencies.
Usually the first set of modes are selected of which the natural frequencies are within
a bandwidth between 0 and 1.5 f (according to Rubin’s principle [26]), where f is

the frequency for which response calculations are required.

The first step in obtaining results through mode superposition is the calculation of
natural frequencies and mode shapes. These natural frequencies and mode shapes are
obtained, starting with the formulation of the natural behaviour of a structure, i.e., the

behaviour of the structure with no external loads acting on it.

As damping factors are usually low for steel structures, for simplification of the
calculation procedure, usually un-damped natural frequencies and mode shapes are
used. This means that the equation of motion (6.20) is written as follows:

(—w*M+K)u=0
[K — Mw?] =0 (6.22)
Through formulating the determinant of [k — M «?] and stating that the determinant

should be zero, the non trivial solutions for w? are found. Through the square root of

the thus obtained values for w?, the natural frequencies are found. A number of
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values for w? is found equal to the number of rows or the number of columns the
matrix [K — Mw?], consists of, i.e. equal to the number of degrees of freedom the

theoretical structure has been given through the finite element formulation.

Through calculation of the eigenvectors of [k — M w?] corresponding with the above
calculated values for w?, the theoretical mode shapes are found corresponding with

the calculated eigenvalues (natural frequencies) w?.
Through the mode shapes obtained, the matrix & is formulated:
o=[01 P2 = o]
This matrix is used as the basis for reducing the full stiffness, mass and damping
matrices, and excitation force vector (K, M, C and F) to the reduced stiffness, mass

and damping matrices, and excitation force vector (K, M, C and F). These reduced

matrices are calculated as follows:

M=®dTMd (6.23)
K=oTKd

C=oTCo

F=aTF

Through these reduced matrices a reduced set of equations of motion is formulated
based on the modal coordinates, instead of the physical coordinates (equation (6.42)
and (6.43)). Through this equation of motion the modal coordinates a are calculated

and expanded into the physical coordinates according to equation (6.21)

Substituting equation (6.23) into (6.20) and using the relation of equations (6.19) ,

we can write:

OPTMPG + OTCha + PTKda = dTF
(—w?d"TMP + dTCPwi + PTKDP)a = TF (6.24)

—w’Ma + Cwia+ Ka=F (6.25)
(—w?’M +Cwi+K)a=F
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In Appendix XV “Steps and Estimated Number of Matrix Operation Mode
Superposition” the number of floating point operations required for each step of the
modal reduction technique is presented. The number of steps required for solving
equation (6.25) in order to obtain the modal coordinate vector a are explained in

Appendix VI “Sparse Matrix Solver: Row Reduction Technique”.

Further simplification of the solution of equation (6.43) is obtained by normalising

the eigenvectors @ to the mass matrix. This means that

MO =M =1

And by using the relation

=A

= =

Where A is a diagonal matrix with the squared natural frequencies wy2 on the main
diagonal and the rest of the matrix is zero.
_ . C K _
(—w*M + Cwi+ K) = M| —w? +ﬁwi +ﬁ = (—w?+ Cwi+ A)

a=(—w?+Cwi+A)"F (6.26)

For an individual modal coordinate corresponding with mode number n we can
write:

(6.27)
o f
(—w? + @, TCopwi + wy)

an

6.4.3 Mode Superposition with Residual Compensation
Results obtained through modal reduction can be improved by including the static

contributions from the omitted modes. Calculating the static contribution from all

modes is simply done by solving the following relation [22, 39]
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Kuggric = F

Ustatic = K='F (6.28)

Where
K = the stiffness matrix of the analysed structure
Ustatic = the static displacement vector
F=the excitation force
G, = the flexibility matrix K1

Through subtracting the static contributions of the retained modes from the static
contribution from all modes (expressed through equation (6.28) the static

contribution of the omitted modes is obtained.

The static contribution of the retained modes is the response of these modes at 0 rad/s

frequency. Considering equation (6.26) and setting  to 0 gives:

(6.29)
ag; = A1F

Where
a, = modal coordinates expressing the static contribution from the retained
mode shapes

F=reduced force vector ®TF

Residual compensation is therefore formulated as:

(6.30)
Uresidual = Ustatic — Pas
(6.31)
Uresidual = Ustatic — A DTF
The displacement vector obtained through modal expansion including residual
flexibility is written as:
u=da+KF— oA 1dpTF (6.32)
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Reformulating equation (6.29) gives

u=da+[K 1= PAIPTIF = da + GosF (6.33)
Where:
T
[K_l — dA™ b | is the residual flexibility matrix G

The inverse of the stiffness matrix K~ is in fact the flexibility matrix G.. The

residual flexibility is written as:

Gres = G — q)A_l(bT (6.34)

Residual flexibility can also be calculated for free floating, unconstrained structures.
As the calculation of the residual compensation requires inverting the stiffness
matrix, the residual compensation for free floating structures cannot be obtained
directly through equation (6.38) as the stiffness matrix is singular. In Appendix V the

formulation of G, for free floating structures is given.

6.5 Component Mode Synthesis (CMS)

As mentioned in the critical review (section 4.2.6 “Component Mode Synthesis
Techniques™) dynamic sub structuring has some very attractive advantages for
modelling marine structures’ vibratory behaviour. Assembled dynamic behaviour is
described through the modal properties of individual uncoupled sections of the total
structure is subdivided in. Different mathematical methods have been developed to
describe the interaction between different structures. In this section the principles of
the original method presented by Craig an Bampton [34] are described together with
some variations of this method proposed by H. MacNeal and Rubin [26, 35].

6.5.1 Fixed Interface CMS: the Craig-Bampton Method

The earliest developed method of dynamic sub structuring is the Craig-Bampton
method which has been developed in the 1960ties [34, 37, 38]. The Craig-Bampton
method is based formulating the dynamic behaviour of a subsystem as a result of two

force vectors. One force vector is the force vector representing the external excitation
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force acting on the sub structure (propeller or machinery excitation). This represents
the dynamic behaviour of the uncoupled substructure. The other force vector
represents the forces on the nodes that are shared with other substructures and are a
result of the dynamic interaction between the sub structures. The latter force vector is
also very appropriately called the interface force vector. The equation of motion for

one coupled substructure is written as:
Mii+ Ku=F,+ F, (6.35)

Where
M = Mass matrix of the substructure
il = second derivative of the displacement vector (acceleration)
K = stiffness matrix of the subsystem
u = displacement vector
F, = external excitation force (propeller or machinery excitation)
F, = forces acting on the interface between substructures resulting from the

dynamic interaction.

By forcing the geometrical compatibility relations on the equations of motion, the
reduced mass and stiffness matrices of the total assembled system are found through
which total assembled natural frequencies and mode shapes are calculated and forced

vibration calculations can be performed.

6.5.1.1 The Formulation of the Reduction Basis

Reducing calculation time through CMS is based on the application of modal
reduction for the description of the mass and stiffness properties of the uncoupled
individual substructures. The reduction basis formulated for the Craig-Bampton

method consists of elastic modes and so called constraint modes.
Elastic and Rigid Body Modes

With fixed interface CMS the elastic modes are the normal modes of an uncoupled
individual substructure with the interface or boundary nodes (where the substructure

in connected to other substructures) constrained. Usually these elastic modes and
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natural frequencies are calculated through finite element models. Modes shapes and
natural frequencies are obtained through solving the eigenvalue problem formulated
through the equations of motion of the uncoupled individual substructures (with

fixed interfaces) with no external forces acting on it:

(K — w2M)¢p, =0 (6.36)

Where

K = Subsystem’s stiffness matrix with the interface boundaries constrained
M= Subsystem’s mass matrix with the interface boundaries constrained
wy? = the square of the natural frequency of mode number n [rad?]

¢, = normal mode shape corresponding with mode number n

The eigenvalues represent the natural frequencies and the corresponding eigenvectors

represent the corresponding mode shapes

Constraint Modes (Static Modes)

When two substructures are coupled to each other through their interface nodes,
these initially constrained interface nodes will perform an alternating displacement as
a result of the dynamic interaction between the two substructures. Through the so
called constraint modes or static modes, the alternating displacement at the interface
boundaries is described. Through the constraint modes the relation between a static
displacement distribution along the interfaces and the resulting static displacement of
the interior nodes of the substructure is expressed. This expression is obtained

through the so called Guyan reduction technique [42].

The first step in obtaining the constraint modes is rearranging the stiffness matrix in
such a way that the reaction force at the interface nodes of the substructure is
separated from the external force acting on the other nodes of the substructure

(excitation force).

Therefore the stiffness matrix of an individual substructure is partitioned as follows:
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[Fb] _ [kBB kB’] [ub] (6.37)
usi

Fe - KB Rl

Where

F,, = Reaction forces acting on the boundary of the substructure resulting from
the dynamic interaction between this substructure and the adjacent
substructures (also referred to as interface forces).

F, = External excitation force vector.

kBB, kB!, k!B k! = the four subsections of the substructure’s stiffness matrix
resulting from grouping the interface node forces.

u? physical displacement vector interface nodes (at the nodes coupling the
subsystem to the rest of the total structure). These interface nodes are also
referred to as master nodes.

ust physical static displacement vector of the interior nodes (displacement
vector representing the displacement of the rest of the substructure). The

interior nodes are also referred to as slave nodes.

In order obtain the constraint modes, F, is set to 0 as this force is related to the
normal mode response. An expression is obtained of the relation between the
displacement at the interface nodes and the resulting static displacement of the

interior nodes:

[usi] — _[kll]—l[kIB] [ub] (6.38)

') =[] = [ oy agaos | 11 = 10 (639

u

Where

[u’] = the complete static displacement vector containing both interface and internal

degrees of freedom displacements
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I

¢° = the constraint mode matrix = [—[k”]‘ (6.40)

1[kIB]]
Also,

6= e

Where ¢t are the internal degrees of freedom (slave nodes) of the constraint

modes

6.5.1.2 Reducing Stiffness and Mass Matrices

The reduction basis used for the Craig-Bampton technique is obtained through the

combination of elastic modes and constraint modes. The response of one substructure

IS written as:
(6.41)
)=l ol
0
R=| ¢ (6.42)
o5
Where:
ub are the physical coordinates (displacements) at the interface degrees of

freedom of subsystem A.
ul are the physical coordinates (displacements) at the internal degrees of
freedom of subsystem A.

<L is the constraint mode matrix of substructure A calculated according to
equation (6.40) ¢ = —[k]71[k'E].
¢, is the normal mode matrix of the uncoupled substructure calculated
according to equation (6.36).
a, are the modal coordinates of the normal modes of the uncoupled
substructure A.

R is the reduction basis
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For two systems together the equations of motion are written as:

[MA 0 ] [ﬁA] 4 K, 0 ] [uA] _ [FeA + FbA]
0 MB nxn Up nx1 0 KB nxn Up nx1i FeB + FbB nxi (6.43)
Where:

M, and My are the mass matrices of substructure A and B respectively

K, and Kj are the stiffness matrices of substructure A and B respectively

F,4 and F,p are the external excitation forces acting on substructure A and B
respectively.

F, , and F,y are the interface forces acting on substructure A and B
respectively as a result of the dynamic interaction between substructure A and
B.

i, and iip are physical coordinates presenting the accelerations of the degrees

of freedom of substructure A and B respectively.

The deflection vector u can be written according to equation (6.41) as:

Lo ol

S5

1_2___|
o~

Uy
]

Uy
[“g (6.44)

e e

: .

The reduction basis R of substructure A and B together has become:
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I 0 0 0
R—|?4 ®a O O (6.45)
0 0 I 0
0 0 ¢F ¢s
Substitution of (6.44) into (6.43) and noting that according to (6.37)
[kgB kB! 0 ] (6.46)
K, 0]_ KB Kl
0 Kg | 0 kg® kg |
| KIE gl
and therefore
(ma? mf! 1 ©47)
IB 11 0
[MA O]ZImA my |
0 Ml mp” mp
mIB mIIJ
B B

And pre-multiplying with RT gives the reduced equation of motion for the coupled
substructures A and B:

m m ..h
|r R 0 ]| [Ua]
RT ma my R ay
| mBB mBI| ub
B B B
| 0 miE ml lc’i |
B B B
BB BI
[kﬁ}B k" 0 ] [ug—l Fypa (6.48)
+RT ki®  ky RlaAl—RT F,,
BB BI |~ F
| 0 k™ kp | luBJ bB
kll?B klI?IJ ap FeB
Where
[me mj! 0 ] 619
IB 11
| MAa my o
R | BB BI |R =M
0 Mg~ Mg
l m]IE?B m}]g]
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Is the reduced mass matrix

kBB kB! ] (6.50)
kIB kII 0 _
RT|™ ™ R=K
kg® kg'
0
| KB gl

Is the reduced stiffness matrix

6.5.1.3 Describing the Interaction between Substructures

In the previous section (section 6.5.1) it has been demonstrated how the dynamic
behaviour is represented through the sum of limited number of retained modes and
the sum of a number of constraint modes that is always equal to the number of
interface degrees of freedom. However, the sets of equations of motions for
subsystem A and subsystem B are still independent from each other considering the
upper lower left and upper left parts of the matrices (6.49) and (6.50) are zero.
Therefore, no coupling has been described mathematically between the two
substructures. The mathematical dependency between the two matrices is obtained
by forcing the compatibility relations and the equilibrium relations on the set of

equations.

- The compatibility relations simply state that the displacement of the interface
of substructure A is equal to the interface displacement of the coinciding

interface nodes of substructure B.
b b

U, = up (6.51)

- The local equilibrium requirements state that the connection forces at the
interface nodes should be equal and in opposite direction so that at the

interface nodes equilibrium of forces is obtained:

Fyu= —Fpp (6.52)

Forcing compatibility and equilibrium can be done through the interface

displacement approach or through the interface force approach.
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The description of the interaction between the matrices of the uncoupled systems can
be either obtained though primal assembly or dual assembly.

Primal Assembly

In the matrix shown in equation (6.48) no coupling exists between the set of
equations related to the degrees of freedom of substructure A and substructure B. For
the classic Craig-Bampton formulation of the compatibility and equilibrium
relations, the primal assembly method is used. The primal assembly method is based
on describing the assembled dynamic behaviour of the substructures through
interface displacements through which the compatibility relations (see equation
(6.51) ) are satisfied a priory [37]

u}qj _ ug =0 (6.53)

Through this mathematical relation one of the set of interface nodes is made
redundant through which the set of equations of motions (6.48) will be reduced.

From equation (6.48) (6.53) can be rewritten as:

H o]
uf—ub=01 0 o0 0]|f;| [0 0 I o]|g|=0
B B
la, ) la, )
up
w—ub=01 0o -1 o]|™|=Bu=0
up (6.54)
ap

u? is in this case going to be made redundant by describing [uA] as a function of

i

ay ay
[Null=-[0 -1 o] [ugl il =—-[1""0 -1 0] [uz]

ap ap
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[uﬁ] a, (6.55)
[aq| _ [—[1]—1[0 —I O]] [ug]
71 IR

In the literature the [_[1 ]_1[01 -1 O]] matrix is referred to as the L matrix and is used

to further reduce the stiffness matrix making one set of interface nodes redundant.

The reduced matrix (6.48) is written as:

. FbA
a, au
M 0 K 0 T|F,
T A = b T | ™A b _ eA
ot Sl oty 2l
B FeB

For further description of the coupling between the two systems the equilibrium
condition needs to be satisfied which is also done through satisfying the following

relation:
Fypa+ Fpp =0
Fpa -
F,
F eA
[L]TRT FeA =|o0
bB F
FeB eB

This brings the total equation of motion to

w [ R, 05
[L]"M[L]|i5 | +[L]"K[L] u,’;]:[L]TRT rel=10

dp ap in Fep
Dual Assembly

The difference between the primal and dual assembly method is that the assembled
dynamic behaviour is described through interface forces instead of the interface
displacements. In other words, the full assembled equations of motion is obtained
through inserting the equilibrium condition into the uncoupled equations of motion

whereas with the primal assembly method the compatibility relation is added to the
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individual uncoupled equation of motion through which the coupling is
mathematically obtained. With the dual assembly method the compatibility relations
are added explicitly and with the primal assembly method the equilibrium conditions
are added explicitly [37]. In section 6.5.2 the dual assembly technique is
demonstrated as applied for the Rubin and MacNeal method.

6.5.2 Free Interface: the McNeal and Rubin’s Method

Calculating the assembly dynamic behaviour according to the Craig-Bampton
method described above uses the normal elastic modes of the substructures with
constrained interface boundaries combined with the static (constraint) modes for the
description of the vibratory displacement distribution of the substructure. Rubin and
McNeal have developed a sub structuring method using normal modes calculated for
the subsystem with free interface boundaries. Also residual attachment modes are
used. The advantages of this method are (see section 4.2.6.2 “Fixed and Free
Interface CMS”)

- Expansion of results requires less floating point operations as expansion of
only elastic modes gives an accurately enough representation of the dynamic
response of the structure.

- Substructures dynamic behaviour with free interface boundaries reflects the
actual ship sections’ structural behaviour a lot better, as interface boundaries
of a stored section are seldom fixed. This makes it easier to correlate modal
information of the mathematical substructure to the modal information of the

physical substructure obtained through modal measurements.

6.5.2.1 McNeal’s Method

The Rubin and McNeal Method start with a dual formulation of the coupled
substructures analogue to (6.35) [35-37]

Mii+Ku+ Cu=F, + F, (6.57)

Where:

F, = external excitation force
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F, = forces acting on the interface boundaries resulting from the dynamic
interaction (also referred to as interface forces)

M, K, and C are the mass, stiffness and damping matrices respectively

With both the Rubin and McNeal’s method three types of modes are considered for
the description of the displacement field:

- Normal modes (with free (unconstrained) interfaces)
- Residual flexibility attachment modes (static modes)

- Rigid body modes (if structure is not constrained, i.e. free floating)
The displacement field u of a substructure is therefore described as:

U= aePe + ar Py + Gresky (6.58)

Where:

a, and a, are the modal coordinates of the rigid body modes and the retained
elastic modes respectively. The retained normal modes are calculated with free

interface boundaries

G,sFp 1s the static residual response of the flexible system to the forces
occurring in the substructure resulting from the interaction with the other
substructure. These are also referred to as the residual flexibility attachment
modes. F;, is a force vector presenting the interface forces for the interface

degrees of freedom and O for the internal degrees of freedom.

G, 1S the residual flexibility matrix representing the boundary residual
flexibility modes. The residual flexibility matrix is expressed through the
inverse of the stiffness matrix corrected for the static contributions from the
retained flexible modes. The reason for this correction is that the static
response of the retained elastic modes is already included in the contribution

from the elastic modes.
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Following section 6.4.3 we write for the residual flexibility matrix:

Gros = K71 — pA 1T (6.59)

Where:
K1 is the inverse of the substructure’s stiffness matrix.
¢ is the retained elastic mode matrix

A is a diagonal matrix with the squared natural frequencies w,? on the main
diagonal.

Selecting the columns of the G,..; matrix related to the interface degrees of freedom

gives the G,z mMatrix.

Through equation (6.58) an expression for the interface displacements is obtained

and serves as the reduction basis:

Up = Aeep + ardyp + GresbFpoundary (6.60)

Where:
u,, = interface displacement vector
¢.p and ¢,,, are the elastic and rigid mode shape vectors containing only the
interface (boundary) degrees of freedom.

Fyounaary 1S the interface force vector containing only the interface degrees of

freedom forces.

Further rearranging equation (6.58) gives an expression of the interface forces:

-1
Gresb (ub_ae¢eb - ar¢rb) = Fboundary (6.61)

Consider ¢ = [¢, ¢.]and a = [ar ac]. Substituting (6.61) into (6.57) gives:
(6.62)
Mod + Kpa = F, + Gresy  (up—adyp)

Where ¢, is the set of retained normal modes (rigid and elastic modes) representing

only the boundary (interface) degrees of freedom.
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Multiplying (6.62) with ¢Tgives

¢"Mepii + dTKpa = ¢TF, + ¢ Gresy (Wp—ahy)

Enables the equation of motion to be further simplified to
li+ ¢TKpa — ¢ Gresy  (up—ag,) = ¢'F,

Considering ¢p"M¢ = I, i.e. the mode shapes are normalised to the mass matrix

[(1) 8”12,] +[¢DTGresb‘1¢b+¢TK¢ —¢bTGresb‘1][5b]=[¢TFe

-1 -1
—Gresp P Gresn Fy

(6.63)

6.5.2.2 Rubin’s Method

Rubin’s method has been developed to improve the Mac Neal method. With the Mac
Neal’s method the stiffness matrix and mass matrix are not reduced with the same
basis. The difference between the reduction basis of the stiffness matrix and the
mass matrix is that with the mass matrix, unlike with the stiffness matrix, no
coupling is formulated between the interface deformations and the internal
deformations and displacement due to the subsystem’s flexible and rigid body
modes. Rubin reformats the reduction basis used by Mac Neal for the stiffness
matrix, and uses this reformatted basis for the reduction of both the stiffness and the
mass matrix. This increases the accuracy of the calculation results, particularly at
higher frequencies [37]. The free interface CMS applied in ANSY'S is based on
Rubin’s method. In order to be able to compare different methods later on in this
work (section 8.7), the Rubin method is described through performing 5 steps as
listed in Appendix XVI.

The reduction basis formulated in (6.61) is transformed from a formulation based on
interface forces to a formulation based on interface displacements. The reduction
basis is a combination of normal modes and constraint modes. The first step

distinguished in this work (step 1) is the calculation of the constraint modes through
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which the relation between static interface displacement and the displacement and
the internal displacement of the nodes is described (see equations (6.40), (6.39) and
(6.38)):

[u'] =[], | 664

The total displacement field is described as:

[u'] = {[¢a] [up | — [¢Ci] [Peplac — [¢Ci] [d)rb]ar} + [@elac + [¢r]a, (6.65)

Where:

u! = vector representing the internal (slave) degrees of freedom displacements
¢°t = constraint modes internal degrees of freedom as shown in equation (6.40)
u,, physical displacement vector interface point (at the points coupling the
subsystem to the rest of the total structure).

¢.p = elastic mode shapes displacements for the interface degrees of freedom
¢, = rigid body mode shape displacements for the interface degrees of freedom

a. and a, are the elastic modal coordinates and the rigid modal coordinates

Where [¢°][dep]ae and [¢¢ ] [¢p,5]a, represent the contribution of the elastic and
rigid body modes to the static displacement of the internal (slave) nodes. The reason
why these two terms are subtracted from the equation of displacement is to
compensate for the fact that these factors are already included in [¢<|[w, 1, as [u,, ]
represents the displacement of the interface nodes as a result of all retained normal,
rigid and static modes. The static (internal) residual deformation induced by interface
line displacement, representing the compensation of the contributions from the

omitted normal modes, should be written as:

Ustatic = [Up | — [Peplae — [Prplar

Considering [¢<!] is expressed through —[k'']~1[k!E] (see equation (6.37), (6.38),
(6.39) and (6.40)), equation (6.65) can be written as:
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(W] = {= k"1 K" 1wy ] + (K717 KB [ Beplae + (K17 K Pl prplar} + [eila.

+ [¢ri]ar
(6.66)

Where

kBB kBl k'B k!l =the four sub sections of the substructure’s stiffness matrix
resulting from grouping the interface node forces as shown in equation (6.37).
u, physical displacement vector interface point (at the points coupling the
subsystem to the rest of the total structure).

a. and a, are the elastic modal coordinates and the rigid modal coordinates
respectively

u! physical displacement vector of the internal (slave) degrees of freedom.

¢.p and ¢,; are the normal elastic mode shapes displacements for the interface
degrees of freedom and for the internal (slave) degrees of freedom respectively
¢, and ¢,; are rigid body mode shape displacements for the interface degrees

of freedom and for the internal (slave) degrees of freedom respectively

The reduction matrix R can be deduced through:

o] =r

So R becomes:

ar

a, 0 . I
ZZ] =0+ ] 9+ BT ] ) [35 l

R—[ 0 0 I ] (6.67)
Tl + KTTHE ] (Prp] (@il + (K17 E P [Pep] =[] [KP]

The calculation of R forms the second step of the Rubin CMS method process as
described in Appendix XV. Calculating the reduced stiffness and mass matrices is

done in step 3 (see again Appendix XV):

(6.68)
K = RTKR

M = RTMR
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As demonstrated above, the displacement of the interface line is described taking
residual compensation into account through expressing the displacement at the
interface line as shown in equation (6.66). However, the static response of the

internal nodes to the interface displacement is expressed as the sum of:

- The static response of the constraint modes to the total interface
displacement:

{=[k" 17 [k lup 1 + ("1 K ] peplac + (K17 K [prplar}
- The response of the normal modes

[d)ei] Qe + [(;bri]ar

This means that in the response calculation the contribution from the retained normal
modes to the static deflection of all nodes of the substructures has been taken into
account twice: first through the calculation of the response of the constraint modes,
and the second time through the response of the normal modes. An improved version
of the Rubin’s method has been formulated correcting for that, which is the Rubin’s

method with residual compensation.

If residual compensation is taken into account, the displacement is expressed through
the normal modes, rigid modes and residual flexibility attachment modes. According
to equation (6.59) the residual flexibility attachment modes G,..; are expressed
according to:

Gres = K™ = GAT'¢7

Where ¢pA~1 T represents the contribution to the static deformation from the normal

modes, which are already accounted for through the expression [¢.;]a. + [¢,:]a.
Dividing G, is partitions:

ub] — [GresBB GresBl] [Fb] (6.69)
Ui GresIB Gres" 0

According to the upper line of the matrix (6.69) we can express the interface force F,

as a function of wu,:
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(6.70)
[Fb] = [GresBB]_l[ub]

Substituting (6.70) into the lower line of matrix (6.69) an alternative (better)

expression of u; as a function of interface displacements is obtained:
(6.71)
-1
[ui] = [GresIB][GresBB] [ub]

This expression is a more accurate expression of the residual flexibility modes, as
this expression includes correction for the fact that the static response from the

retained modes is already represented in the response of the normal flexibility modes.

Substituting [¢<] in equation (6.65) for the expression in (6.71) gives:

ul = {[GresIB] [GresBB]_l [ub] - [GresIB] [GresBB]_l [(pbeb]ae - [GTESIB] [GTesBB]—l [¢rb] aT}

+[¢e]ac +[9,]ar

Resulting in the reduction matrix written as:

0 0 I
R= [[¢rl] - [Gresm] [GresBB]_1[¢rb] [¢ei] - [GreslB] [GresBB]_1[¢eb] [GresIB][GresBB]_1

(6.72)

In Appendix XVI “Steps and Estimated Number of Matrix Operation Classic Rubin’s
Method” the expression and description of the matrix operations for each step of the
classic Rubin’s method (without residual flexibility modes) is listed together with an
expression of the number of floating point operations required for each step. (see also
Appendix XIV “Matrix-Vector Calculus and Number of Required Floating Point
Operations”). The Rubin’s method without residual compensation is the method used

in this work with the calculation of response according to the free interface CMS.

6.5.3 Reducing the Interface Degrees of Freedom

As discussed in the critical review (section 4) through the reduction process adopted

in all classical CMS modelling techniques discussed above, high density matrices are
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produced. With high numbers of connection nodes, which typically occurs with ship
structures, the numbers of non-zeros in the total assembled CMS matrices may
exceed the non-zero entries of the dynamic stiffness matrix generated following the
full harmonic analysis. Hence calculation time required for calculating the dynamic
structural behaviour according to classical CMS methods is higher as well, compared

to the traditional full harmonic analysis.

In an attempt to overcome this problem, techniques for reducing the interface have

been developed.

6.5.3.1 Introducing Interface Modes

As explained above, the problem with classical Component Mode Synthesis (CMS)
is that static contribution from the displacement of the interface lines is expressed
through the Guyan reduction technique (static condensation) through which the
internal nodal displacement is expressed through a number of static modes equal to
the number of degrees at the interfaces. In order to reduce the number of modes
through which internal static displacement can be described, a procedure for an

improved reduced system (IRS) is proposed in 1989 by o’ Callanhan [42].

The technique starts with producing a reduced mass and stiffness matrix of a
substructure, which is obtained through projecting the full stiffness and mass
matrices onto the Guyan reduction basis. The Guyan reduction basis is derived from
the description of the static displacement of all the degrees of freedom of a

substructure, obtained through static condensation:
I
(5] = | ] k) = L8510

I
RG =[ ci]
A

Where
u; = static displacement of all the degrees of freedom of substructure A

[¢4] = constraint modes representing all degrees of freedom of a substructure
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ji = internal degrees of freedom of the constraint modes according to equation
(6.37) to equation (6.42) = ¢§' = — [k~ 1[kB]

R;= Guyan reduction basis

Reduced stiffness and mass matrices K; and M; become:

KG = RGTKRG and MG = RGTMRG (6-73)
From these reduced matrices the eigenvalue problem is formulated according to:

K (Dinterface = Mg (Dinterfacew2 (6.74)

Where @pnterrace IS the matrix containing the interface modes.

From the eigenvalue problem shown in equation (6.74) eigenvectors are calculated
representing mode shapes through which the static deformation of the entire
substructure (interface modes), as a result of interface displacement, is expressed.
Corresponding natural frequencies are also calculated. The number of interface mode
retained, is based on the proximity of the natural frequencies corresponding with the
interface modes, to the excitation frequencies.

Tran [41] suggests than selecting the number of eigenvectors required for an
accurately enough representation of the interface degrees of freedom should be based
on applying a cut-out frequency of 3.5 times the maximum frequency analysed.
These findings are based on simulation result produced for a 12 bladed disc where
each bladed was modelled as a substructure. For the selection of the normal modes of
the substructures, he applied a cut-out frequency of 1.5 times the maximum

frequency of interest, according to Rubin’s criterion.

The retained eigenvectors are represented through the @;,¢errqce Matrix. The

interface displacement is expressed through (see (6.39):
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om0 = [ 1 = [ | = O

(6.75)

Where:
Dinterface 1S the matrix containing the set of retained eigenvectors representing
the interface displacement
a,, 1s the vector containing the interface modal participation factors.

us is the internal static displacement due to displacement at the interface line

Considering (6.67), the reduction basis for Rubin’s method is written as:

[Zib ] - [[qbl-] + [k”]o-l[k“*][%] —[k”]{l[k“*]] [ui |

Which forms the reduction basis for the Rubin’s method. Alternatively written as:

1= 16— 1101 10 o
Where
¢ ¢t = constraint modes at internal degrees of freedom = —[k!']~1[k!B]
¢; is the normal modes presenting only the internal (slave) degrees of freedom
¢, is the normal modes presenting only the interface degrees of freedom
a is the modal participation factors vector (modal coordinates) of the normal

modes (rigid and elastic modes of the substructure

The skyline of the reduction matrix [[(l)'] _ [?l)“][fﬁb] [¢Ia-]] is as follows:

Number of retained normal modes

]

]

v |
“—S—> .

1
1
1
! I‘ = = Number of interface degrees of freedom
1

0 . I . —
[[¢l] — [¢Cl] [$p] [¢Cl]] = Number of internal degrees of freedom

Figure 29 Skyline of the reduction matrix used for the classic Rubin method
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Substituting equation (6.75) into equation (6.76) gives:

(6.77)

[ub] — [ 0 [Qinterface b] a ]
U; [(;bl] - [d)d] [d)b] [Q)interface i] b
Gives a new reduction basis:

0 [Qinterface bT|

Rirs = .
’ l[qbi] — 161 B6]  [Piersace ]

Where:
Bincerrace » = the interface degrees of freedom of the retained number of interface
modes
Dincerrace: = the internal degrees of freedom of the retained number of interface
modes
a = vector of normal modal participation factors (modal coordinates)
ayp, is the modal participation factors (modal coordinates) of the interface

modes

. . . 0 @; .

The skyline of the reduced reduction basis R,s = u [@incersace ] is as

[‘l’z] - [d) ][(bb] [Qinterface i]
follows

Number of retained normal modesl , Number of retained interface modes
| |
O
I‘ ~ = Number of interface degrees of freedom
0 [Q)interface b]] _
[¢1] - [¢Cl] [¢b] [Q)interface i] .

Number of internal degrees of freedom

Figure 30 Skyline of reduced reduction matrix applying interface modes for the formulation of the

reduction basis following Rubin’s method
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Through which, parallel to equation (6.68), the reduced stiffness and mass matrices
K and M are calculated:

K= RIRSTKRIRS (6.78)

6.5.3.2 Describing the Compatibility Relations

Similar to the method described in 6.5.1.3 the compatibility relation can be written
as:
[a] [ad]
ug - ug = [jSnterface bA 0 0 0] [a2| - [0 0 Q)interface bB 0] laﬁ} =0
ag ap
aB aB
(6.79)
Where:
u® and u} are the physical displacement coordinates at the shared interface
degrees of freedom of sub structure A and B respectively
a? and ab are the interface modal participation factors (modal coordinates) of
sub structure A and B respectively
Binterrace s AN Bincerrace »” are the retained interface modes for substructure A
and B respectively representing only the interface degrees of freedom.
a, and ag are the normal modal coordinates of sub structure A and B

respectively

ug - ug’ = [Qinterface bA 0 _Q)interface bB 0][ b“ =Bu=0 (680)

L,
a4 can now be made redundant by describing [4}] as a function of [a}]

Considering the upper line in the matrix of equation (6.80):
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ay
[mi"fé”‘facebA] [az] = _[O _Qinterface bB O] [agl

ap

Multiplying with [g " gives

‘]
interface b

ay
[Q)interfacebA]T[(Dinterface bA][aZ] = _[Q)L'nterface bA]T[O _Q)interfacebg 0] Iag]
ap

[ag] = — [[jSnter[’ace bA]T[Q)interface bA]] {[Q)L'nterface bA]T[O _winterface bB 0]} [agl

ap
[ag—l -1 ay
a?; = [[Qinterface bA]T [QinteTfaC“’ bA]] {[Qinterface bA]T [0 _Q)i”terface bB 0]} ag
ap I ag
ap

(6.81)

Where is the L matrix used to connect the substructures together in a similar way as

described in equation (6.56):

B 6.82
L = [_ [[Qinterface bA]T[Qinterface bA]] {[Q)int@?‘face bA]T[O _winterfacg bB 0] }] ( )
I
dA aA ibA FeA
(L7 1] | + LI R ] — e [P | < |G
dp ag FbB P
eB

Where K and M are the reduced mass and stiffness matrices obtained according to

equation (6.73) to (6.78), using R,zs as the reduction basis.

In Appendix XVII “Steps and Estimated Number of Matrix Operations Rubin’s
Method using Interface Modes” the different steps are presented required for running
an analysis according to the Rubin’s method using interface modes. For each step an
expression is given through which the number of real floating point operations can be
estimated.(see also Appendix XIV “Matrix-Vector Calculus and Number of Required

Floating Point Operations”).
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6.6 Summary and Discussion

In section 4 the different available, most used, state of the art structural modelling
techniques are reviewed for their validity and practicality considering a typical diesel
engine and propeller excitation characteristics and the nature of the geometry of
marine structures. Through the critical review and considering the analysis results of
measurement results, finite element based modelling approach has been recognised
as the most suitable modelling technique. In order to reduce computation time and
required computer memory, mode superposition and component mode synthesis have
been considered as reduction techniques. In this section, the mathematics behind the
simulation techniques have been presented. Through understanding each calculation
step for each modelling technique, an expression can be formulated for the
estimation of the required number of real floating point operations, which is a direct
indication of the require computation time. These expressions are listed for the
different modelling techniques in the appendices Appendix XV to Appendix XVII.
Through understanding the mathematical steps required for solving a matrix
according to the row reduction technique, a table of required number of floating
point operations for each step is presented in Appendix VI.

In the next section, a finite element model of a part of the aft ship on which
measurements have been carried out by the author is used in order to test the
different modelling techniques. The assessment of these techniques is based on
accuracy, and the number of floating point operations required for generating the
results. With the given properties of the finite element model, the number of number
of floating points operations required for generating the solution will be calculated

according to the findings from this section listed in Appendix XV to Appendix XVII.

(see also Appendix XIV “Matrix-Vector Calculus and Number of Required Floating

Point Operations”™)
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7 Modelling Vibrations of the Aft-ship of an LNG Carrier

From the critical review and the deeper study of the mathematical principles behind
the different structural modelling techniques, finite element modelling has been
identified as the most appropriate modelling technique for simulating ship’s
structural vibrations. Study of the excitation mechanisms and measurement results
from the field presented above suggest that the most dominant sources of excitation
are predominately of a tonal nature, concentrated at relatively low frequencies. This
further confirms the findings from the critical review and supports the choice of
finite element based models as the most suitable vibration simulation technique for

ships.

In this section simulation results are presented performed with a finite element model
that represents of a part of the aft ship of the LNG carrier on board which the author
has carried out vibration and noise measurements (see section 5, Figure 8 and Figure

31). The aims of carrying out the different simulations are:

- Evaluating finite element modelling as a tool for simulating structural
vibrations for a typical aft-ship of LNG and bulk carrier. The analysis results
are evaluated through measurement results taken on board this particular
vessel by the author (see section 5, “Measurement Results™).

- Identify the effect of chosen boundary conditions, damping and added mass
assumptions on the calculated vibration levels at the steering gear deck and
mooring deck.

- Evaluate the accuracy of the free and fixed boundary CMS techniques using
the full FEM results as reference.

- Compare the required computation time of the different analysis techniques.

In Table 2 the structure of this section is presented.
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7.1 Vessel Properties, Measurements and Simulation Locations

7.2 Properties of the Structural Models

In this section the properties of the model
are presented

7.2.1The full finite element model

Type and number of elements used and the
boundary conditions of the model are discussed

7.2.2The CMS Model

In this section the way in which the structure
has been subdivided in substructures for the
Component mode synthesis analysis is
discussed

7.3 Excitation Characteristic and
Response Calculation Method

The simulation results of the propeller
excitation characteristics are discussed. Also the
method used in this work for obtaining the
forced vibration response is presented.

7.4 Comparison of Simulation Results with Measurement Results

7.5 Sensitivity of the Model

7.5.1Effect of the Boundary Conditions,
Added Mass and Damping

In this subsection the effect of the boundary
conditions and assumption on added mass and
damping on the modelling results is discussed

7.5.2 Excitation characteristic

7.5.3 Number and Type of Elements

Number and type of elements used for this
simulation are evaluated

7.6 The Contribution from Hull Girder Modes

7.7 Correlation of Simulation Results

7.8. Evaluation of FE and CMS

7.8.1. Accuracy of CMS results

Performance

7.8.2. Required CP Time for CMS
Calculations

7.9 Summary and Conclusion

Table 2 Structure of presentation of results
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7.1 Vessel Properties, Measurements and Simulation Locations

In Figure 31 the properties of the vessel are shown for which the structural response
simulations are carried out. The finite element model represents the part of the ship’s
structure indicated with the red dotted line in Figure 32. The aft ship has been
modelled up to frame 25, which is 4 frames forward from the engine room bulkhead.
Figure 33 shows a cut-out of the model showing the locations where measurements
were taken. For these locations the finite element harmonic analysis results are
presented and evaluated. Simulation results of the vibrations on the mooring deck

(locations presented in Figure 34) are also presented.

7 2 2 T

General Properties

Max. Length waterline 260 m

Max. Beam Waterline 45 m

Maximum Speed 19 kn

Draft During Trials 9.4 m aft, 9.4 m fwrd
Propeller

Power 21500 kw

Maximum Revolutions 80 rpm

Mominal Revolutions 75 rpm

Number of Blades 4

Pitch fixed

Main engines

1 low pressure steam turbine (LP) and 1 high pressure
steam turbine (HP)

Total Power 21550 [kw
Revolutions 5800 rpm (HP) and 3970
rpm (LP)

Figure 31 Properties of the gas carrier
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Locations on the steering gear deck for which simulation results are presented in this work

Figure 33
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Figure 34 Locations on the mooring deck for which simulation results are presented in this work

7.2 Properties of the Structural Models

FEM software by ANSYS 13.1 has been used to generate the geometry, generate the
mesh and calculate the structural response. Due to the size of the result files
generated through solving the full set of equations of motion, problems occurred with
generating a representation of the deflection shapes. A visual presentation of this
deflection shape is important for understanding the structural mechanism s. Free
boundary and fixed boundary component mode synthesis modelling techniques
(CMS) have been used. Deflection shapes of the complete model are obtained by
pasting the deflection shapes of the individual substructures together as shown in
Appendix XI and Appendix XII. As the ship is equipped with steam turbines, only
excitation from the propeller has been taken into account. The fluctuating pressure
field distribution used for this simulation has been calculated for the first three blade
passing frequencies for the FP 7 project SILENV.

7.2.1 The full finite element model

Figure 35 shows the full finite element model together with a part of the model

showing in more detail the nature of the mesh used.
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7.2.1.1 Types of elements used and size of the model

Two types of elements have been used, shell181 elements for modelling hull and

deck plating and BEAM188 elements for modelling stiffeners and girders.

The shell181 is a four node plate element as described in Appendix IV and is
therefore suitable for thin to moderately thick plates. Rotary inertia effect is taken

into account.

The BEAM188 element has been selected for representing the effect of the stiffeners,
as it is recommended by ANSY'S for slender to moderately stubby beams. The
element is based on the Timoshenko beam theory and takes into account rotary
inertia and shear deformation effects as described in Appendix Ill. The element also
provides an option for restraining warping, through which a 7" degree of freedom is
added to the beams nodes. This option has not been used for this model as torsion of
girders is not expected to play a big role in the propagation of vibrations through the
ship. In addition, adding a 7" degree of freedom for each node attached to a beam
would increase the size of the model considerably.

The validity of application of the beam element has been tested by calculating the
slenderness ratio of the beam, which should be higher than 30, as recommended by
ANSYS.

GAL?
El

Slenderness ratio =

Where:
G = the shear modulus
A is beam’s cross-sectional area
L is the length of the beam
E = the elasticity modulus

I = second moment of inertia

As can be seen from Figure 35, the longitudinal girders (stiffeners) are approximately
twice as high as the veridical stiffeners. For calculating the slenderness ratio for the
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vertical beams, the length considered is the distance between two longitudinal
girders. For calculating the slenderness ratio for the longitudinal beams, the length
considered is the distance between two main frames. (see Table 1 for the calculated

slenderness ratio’s)

Vertical girders (beam
elements)

Longitudinal

Main frames girders
(beam
elements)
Figure 35 Complete finite element model (A) and a part of the finite element model (B)
Longitudinal Girders Vertical Girders
L 3 m L 0.8 m
G 7.89E+10 |Pa G 7.89E+10 |Pa
A 0.010232 |m~2 A 0.0023 |m~2
E 2.10E+11 |Pa E 2.10E+11 |Pa
| 2.57E-04 |m~4 1 1.23E-05 |m~4
Slenderness ratio 135 |Slendemess ratio 57
Table 1 Calculated slenderness ratio’s for the longitudinal girders and vertical girders
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The propeller mass has been added as two point masses attached to the stern tube.
Each of these masses is 23 tons adding up to the total mass of the propeller of 46
tons. The mass of the rudder has been modelled as two separate concentrated masses

as well. The model consists of

- 7171 key points
- 12252 lines

- 5132 areas

- 69345 nodes

- 84100 elements

7.2.1.2 Damping and Added Mass

A relative damping coefficient (loss number €) of 2% has been used, a value
typically adopted for steel structures. No extra hydro dynamic damping due to the
water surrounding the hull has been taken into account. Nor has the effect of added
mass of the water been taken into account. The model represents the ship’s bare steel

structure.

7.2.1.3 Boundary Conditions

Three different boundary conditions have been tested:
- Constrained at frame 25: all degrees of freedom of the nodes on the lines
bordering to the rest of the ship’s structures have been constrained.
- Constrained at frame 21: all degrees of freedom of the nodes on the lines

bordering to the rest of the ship’s structures have been constrained.

- No boundary conditions: ship is free floating in space.
For indication of the location of the different frames see Figure 36.

For all boundary condition scenarios no stiffness effect of the buoyancy has been

taken into account.
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Frame 25

.............. Frame 21

Figure 36 Frames in the model where constraints have been applied

7.2.2 The CMS Model

In Appendix IX and Table 3 the substructures are presented of which the CMS
models used of the LNG carrier consists (see also Table 6). With the fixed CMS
method in ANSYS the classical Craig-Bampton’s method (See section 6.5.1) is used
and results using free boundary CMS are obtained according to Rubin’s method (see
section 4.2.6.2) without residual compensation taken into account. Table 3 the
number of mode shapes retained for each substructure for calculating the assembled
response is listed. This number is obtained applying a cut-out frequency of 1.5 x
fmax following Rubin’s Priciple [26]. This means that all modes have been retained
of which the corresponding natural frequency are within the frequency range
between 0 and 1.5 X fi,,00, Where frqx 1S the maximum to frequency for which
results are generated. As most of the vibration energy at the aft ship was found to be
between 0 and 40 Hz according to the measurement results, the frequency range of
the solutions is chosen to be between 0 and 40 Hz. This means that f,,,, is 60 Hz
and all the normal modes with natural frequencies between 0 and 60 Hz have been
retained for both the free and fixed boundary CMS models.
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LNG vessel FE model  |Number of Number of  |Number of Number of Reguired CP for |Required
nodes boundary boundary modes calcuating time
nodes degrees of required* eigenvectors generation
freedom and pass

PartHfixedcms 5819 348 2088 181 185 228
PartHfreecms 257 245 525
PartGfixedcms BETS 250 1500 373 298 a0

PartGfreecms 41% 39 00.8
PartFfixedcms G675 250 1500 373 29.8 40

PartFfreecms 415 39 100.8
PartEfixedcms 10728 1198 71BB 213 30 456
PartEfreecms 323 61 174
PartDfixedcms 11118 1140 6840 162 29.14 53.6
PartDfreecms 336 95 328
PartCfixedcms 14383 E54 5124 135 3811 68.13
Partlfreecms 335 75 225.7
PartBfixedcms 11705 633 3798 138 294 477
PartBfreecms 231 53 138.3
Part&fixedcms 7168 263 1578 a1 188 25.4
PartAfreecms 154 246 53.3

Table 3 Table of properties of the substructures shown in Appendix IX. The number of retained

mode shapes are also presented for each substructure together with the CP time required
to calculate these mode shapes

7.3 Excitation Characteristic and Response Calculation Method

As this vessel is equipped with steam turbines, only propeller excitation has been
taken into consideration with the calculation of the response of the ship’s structure.
Steam turbines generate very little vibration excitation forces and through the study

of the vibration measurement results in section 5.1.1 (see

Figure 9, Figure 10 and Figure 13) it has been established that the propeller is by far

the most dominant vibration excitation source.

Frequency Original Modified Factor of change
1x blade freq. (kPa) =5 Hz 3.3138 2.7591 -17 %
2x blade freq. (kPa) = 10 Hz 1.8093 1.046 -42%
3x blade freq. (kPa) = 15 Hz 0.3831 0.56357 +47%
Table 4 Maximum predicted pressure amplitude at full propeller speed and full power(75 rpm)

In Table 4 the pressure fluctuation calculation results are presented which have been
calculated for the propeller as installed on the LNG carrier, and as calculated for a

propeller optimised for low vibration levels. The calculations have been carried out
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by SSPA for the EU project SILENV as a part of research into mitigation of
propeller induced vibrations [18, 20, 46].

The wake distribution at the propeller disk has been estimated through CFD
calculations. With the calculated wake distribution, blade pressure distribution has
been calculated following the vortex lattice method. Through this method also the
sheet cavitation volume fluctuation is calculated. The resulting effects on the
pressure field on the hull is calculated through HULLFPP (Hull Field Point
Potential), a postprocessor to MPUF3a that calculates the pressure field by
calculating the field point potential induced by a propeller and solving the diffraction
potentials on the hull [18, 46].

The first results (original) are for the propeller as it was mounted on the LNG carrier
during the measurements. The second set of results is for a similar propeller designed
for low pressure pulses. Through this alternative propeller geometry design, the

pressure pulse reduction has been achieved through reduction of propeller tip load.

Figure 37 Visualisation of the effect of propeller blade tip unloading on the sheet cavitation area
according to calculation results [46]

Through that route the extend of sheet cavitation has been reduced (see Figure 37)

leading to lower 1st and 2nd order blade passing frequency excitation amplitudes.

For the simulation in this work, the excitation characteristic simulated for the original
propeller has been used. The distributed alternating (complex) pressure over a grid of
points on the aft ship hull plating has been produced by SSPA through their

simulation software. These pressures have been recalculated into node forces and
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have been adapted for the mesh of the FE model (see Figure 38) and have been

introduces to the structural model as harmonic forces.

Figure 38 Red vectors show the downwards pointing excitation force amplitude
distribution as applied for the harmonic analysis of the LNG carrier.

Considering the measurement results presented in section 5.1, most of the vibration
energy was found to be concentrated between 0 to 40 Hz. Over a range between 1to
40 Hz, harmonic analysis results have been produced with a step size of 0.5 Hz.

Considering that the propeller has 4 blades, 0.5 Hz represents a step of 6 rpm.

The run-up simulation has been carried out using the first blade passing frequency
fluctuating pressure distribution calculated by SSPA. By using the same excitation
load for each frequency step, the relevant sensitive (resonance) frequencies are
identified.

From a design point of view the advantage of a frequency range simulation is that
excitation frequencies or response behaviour may be tuned in such a way that

minimum vibration levels occur [20].

Of particular interest for this work, simulation results over a frequency range also
helps understanding why the modelling results may deviate from the measurement

results, as it shows the sensitivity of the model.

For the evaluation of the simulation results, measurement results taken at full speed
(75 rpm propeller speed) and full power are used. Also for obtaining the simulation
results at full power and full speed, above mentioned simulation results over the

range from 1 to 40 Hz have been used. As the fluctuating pressure field simulation

126



results calculated for the (first) blade passing frequency have been used for these
simulations, the thus obtained response amplitudes at the multiples of the blade rate
frequency higher than 1, need to be corrected. As vibrations amplitudes are assumed
to be low enough that the structure behaves linearly (i.e, the relation between
excitation and response is linear), the response is corrected by multiplication with the

ration between the ratio:

maximum presdicted pressure amplitude at blade raten

maximum presdicted pressure amplitude at the first blade rate

These maximum predicted pressure amplitudes are presented in Table 4. This means
that the following ratios are obtained for the original propeller (as was mounted

during the trials):

Ratio for the 2" order blade passing frequency:

Important to note is that through this approach the higher blade passing order
pressure fields are obtained by only adjusting the pressure amplitudes, and not the

relative spatial distribution of pressure fluctuation over the aft ship.

As can be seen from Table 4, no alternating pressure field harmonic components
higher than 3 times the blade passing frequency are presented. This is because (as
can also been seen from Table 4) the amplitudes of blade passing frequency related
pressure pulses decreases rapidly with increasing order number. Producing harmonic
amplitudes at order higher than three did not seem relevant. However, measurement
results show that the 4™ and 5™ order blade passing harmonic frequencies are very
dominant in the response. In order to estimate the response amplitudes obtained

through simulation, the excitation amplitude at the 4™ and 5™ order are assumed to be
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equal to the amplitudes given for the 3" blade passing harmonic. Figure 39 visually

explains how the response amplitudes at the different blade passing frequency

harmonics have been obtained.

3. Steering Gear Deck (21577z) Simulated with Frame 25 Constrained
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Figure 39 Example of how response amplitudes at blade passing frequencies have been obtained.

Graph B is a zoomed in version of graph A.
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7.4 Comparison of Simulation Results with Measurement Results

Referring to Figure 36 simulation results have been produced applying the following

boundary conditions:

- Constrained at frame 25: all degrees of freedom of the nodes on the lines
bordering to the rest of the ship’s structures have been constrained.

- Constrained at frame 21: all degrees of freedom of the nodes on the lines
bordering to the rest of the ship’s structures have been constrained.

- No boundary conditions: ship is free floating in space.

Response amplitudes have been calculated for 80 frequencies covering a frequency
range from O to 40 Hz, at locations where also measurement results have been
obtained from the field. In Appendix VII these results obtained at all frequencies
applying different boundary conditions have been plotted in graphs. As can be seen
from Figure 40 and Figure 41 the choice of how to define boundary conditions has a

huge impact on the simulations results.

From the curves presented in Appendix VII and Figure 41 and Figure 40 below, the
response amplitudes are calculated following the method described in section7.3. In
Appendix VIII and Figure 42 to Figure 44 simulation results are compared with
measured results taken with the vessel operating at full speed (nominal propeller
revolutions = 75 rpm). With these results can be seen that the choice of boundary
also affects the calculated response amplitudes at the blade passing frequencies. The

general trends observed are:

- The measured response amplitude at the first blade passing harmonic roughly
coincides with the average of all amplitudes obtained at the first blade
passing frequency for all different boundary conditions.

- The response amplitude at the second blade passing frequency is extremely
sensitive to the choice of boundary condition. There is a high risk of hugely
over predicting the vibration levels at any location at the 2" blade passing

frequency.
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- The finite element model hugely under-predicts the amplitudes at blade

passing harmonic 3 and higher.

3. Steering Gear Deck (21577z) for Different Boundary Conditions
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Figure 40 Simulation results for the vertical vibration levels on the steering gear deck, extreme aft
PS corner (at measurement location 1 in Figure 33). Results obtained applying different
boundary conditions have been plotted in one graph ( see also Figure 36 for the location
of the constrained frames)

3. Mooring Deck (33783z) for Different Boundary Conditions
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Figure 41 Simulation results for the vertical vibration levels on the mooring deck, extreme aft PS

corner and at the middle of the deck (at measurement location 3and 4 in Figure 33). Results
obtained applying different boundary conditions have been plotted in one graph ( see also
Figure 36 for the location of the constrained frames)(see also Appendix V1)
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Figure 42 Comparison of simulation results at 75 rpm (full speed and power) with

different boundary conditions and the measurement results at full speed and
power (0 to peak average spectrum [mm/s])
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Figure 43 Comparison of simulation results at 75 rpm (full speed and power) with different
boundary conditions and the measurement results at full speed and power (0 to peak
average spectrum [mm/s])
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Figure 44  Comparison of simulation results at 75 rpm (full speed and power) with different
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7.5 Sensitivity of the Model

In Appendix VI1II the simulation results of the response spectra at the measurement
points are presented and compared with the measurement results. The general
observation from the results However, in order to understand the outcome of the
simulation results at the blade passing frequencies, and in order to explain any
deviation between these outcomes and the measurement results, the frequency-
response curve is a very useful tool. The most important aspect determining
structural response amplitudes is the proximity of the excitation to the natural
frequencies of the structure. Through the frequency-response curve simulation results
a number of frequencies are identified with an increased sensitivity to excitation.
Mode shapes at these sensitive frequencies have been obtained through Component
Mode Synthesis Modelling and are presented in Appendix XI (for frame 25
constrained) and Appendix XII (for frame 21 constrained)

7.5.1 Effect of the Boundary Conditions, Added Mass and Damping

A number of frequencies have been selected for which the deflection shapes are
presented in Appendix XI and Appendix XII (for the vessel constrained at frame 25
and 21 respectively). The choice of these frequencies is based on selecting peak
response frequencies from the frequency range simulation results presented in
Appendix VII.

Studying these deflection shapes is very important because they may explain why
measurement results deviate from simulation results. Mode shapes are studied for the
model with frame 25 constrained, as this is the model that is likely to be the most

realistic. The frequencies selected for closer examination are:

- 8.8 Hz (dominant at both mooring deck and steering gear deck)
- 15.6 Hz (dominant at mooring deck)
- 18.1Hz

- 27.3 Hz (dominant at mooring deck)
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8.8 Hz

From the deflection shapes at 8.8 Hz shown in Appendix XI and Figure 45, it can be
seen that the mode shape is dominated by a hull girder bending mode. The aft ship is
behaving as a cantilevered beam clamped in at frame 25. Moving the constraints
from frame 25 to 21 increases the bending stiffness of the section of the ship
modelled, through which the response peak corresponding with this mode shape
shifts from 8.8 Hz to 10 Hz (see also Appendix XII). Concerning the effect of
damping and added mass the following is likely to be the case:

- In the model no effect of added mass due to the presence of water
surrounding the hull has been taken into account. As the mode shape
corresponding with 8.8 Hz peak response frequency is a global mode shape
involving a heaving motion of the aft ship in the water, added mass is
expected to play a role. The peak response is expected to be at a frequency
under the 8.8 Hz as a result.

- Hydrodynamic damping from the water surrounding the hull has also not
been taken into account into the model. For the same reason that added water
mass is likely shift the peak occurring at 8.8 to a lower frequency, added
hydrodynamic damping is expected to decrease the response amplitude

compared to the response amplitude simulated at 8.8 Hz.

The shift of the peak response from 8.8 Hz to a lower frequency will result in
simulation results at both the 1! and 2" blade passing frequency to approach the

measured response amplitudes even closer:

- With the original model the simulated response amplitudes at the 1% blade
passing frequency are all under predicted (considering fixed constraints at
frame 25). The simulated response amplitude at the 1 order blade passing
frequency is however expected to increase if added hydrodynamic mass
would be taken into account., as it will cause the resonance frequency
previously at 8.8 to be at a lower frequency, closer to the 1% blade passing
frequency (1% blade passing frequency = 5 Hz).
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Deflection Shape at 8.8 Hz (frame 25 constrained)
displacement scaling 8e3

Substructure B Substructure A

Figure 45 Mode shape at 8.8 Hz compiled from the component mode synthesis results (see section 7.2.2)

In section A the un deformed shape has been plotted into the figure as a white see-through
contour. This shows that, particularly for the aft section, rigid body modes play an important
role, through which the ship sections perform a heaving motion in the water.

With the original model the simulated response amplitudes at the 2nd blade
passing frequency are all over predicted (considering fixed constraints at
frame 25). However, the simulated response amplitude at the 2" blade

passing frequency will be lower, if hydrodynamic added mass is taken into
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account, as added mass will shift the resonance frequency previously at 8.8
Hz to a lower frequency, further away from the 2" blade passing frequency
(which is at 10Hz)

Although it has been mentioned that hydrodynamic damping is expected to decrease
the amplitude amount the resonance frequency found at 8.8 Hz, the effect of the peak
response moving to a lower frequency is expected to be much stronger than the effect
of increased damping. In Appendix XIII can be seen that response simulation results
for the first two blade passing orders coincide much better with measurement results

after having shifted the peak response initially found at 8.8Hz, to 7.8 Hz.

15.6 Hz

From the deflection shapes at 15.6 Hz shown in Appendix X1 and Figure 46 can be
seen that the response at 15.6 Hz is related to a local natural frequency involving a
first bending natural frequency of the aft part of the mooring deck. This is a more
local mode shape which is further confirmed through the study of the mode shapes of
the model constrained at frame 21 instead of frame 25 (see Appendix XII). These
results show that changing the boundary conditions does not change the natural
frequency and the corresponding mode shape. No hydrodynamic added mass has
been taken into account. However, as this vibration mode concentrates on the
mooring deck section, added mass is not expected to affect the natural frequency
corresponding with this mode shape. Mass of winches and equipment however may

slightly increase the natural frequency.

The simulated response however at the 3 blade passing frequency is hugely under
predicting the response at the 3" blade passing frequency measured on board. In
Appendix XIII simulation spectra are presented where the peak response, originally
theoretically located at 15.8 Hz, has been shifted to 15 Hz, right on top of the 3"
blade passing frequency. Still, simulated response amplitudes for the 3 blade

passing frequency are much lower than the measured response amplitudes.
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Deflection Shape at 15.6 Hz (frame 25 constrained)
displacement scaling 8e3
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Figure 46 Mode shape at15.6 Hz compiled from the component mode synthesis results (see section
7.2.2)
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18.1 Hz

From the deflection shapes at 18.1 Hz shown in Figure 47 and Appendix XI can be
seen that the response at 18.1 Hz is related to a more global mode shape where the
mooring deck bending natural behaviour is coupled to elastic deformation of frame
21, the transom, and also, the steering gear deck double bottom (see Figure 48 and
Figure 49). As this mode shape is in fact a coupling of deformations of every part of
the structure, this frequency is found to be dominant in all simulation results of the
model constrained at frame 25.

Constraining the model at frame 21 raises the peak response related to this mode
shape from 18.1 Hz to 22 Hz, as can be seen from the simulation results in Appendix
XII. This means that the stiffness of the model forward from frame 21 affects the

natural frequency corresponding with 18.1 Hz, profoundly.

However, the structure forward from frame 21 (covering Substructures F, G and G in
the component mode synthesis (CMS) model) has not been modelled at the same
level of detail as the sections aft from frame 21. Some stiffening details had been
omitted for modelling simplification purposes. From this analysis however, it
appears that these stiffening details may shift the simulated peak response at 18.1 Hz
towards 20 Hz. This means that the response amplitude simulated at 20 Hz (4™ blade
passing frequency) will in fact be more dominant than initially simulated and will

come closer to the measured response amplitude at the 4™ blade passing harmonic.

The more dominant role of the 18.1 mode shape in the response at the 4™ blade
passing harmonic is further suggested through observing the relation between
measured amplitudes measured at the edge of the steering gear deck, and measured
towards the middle of the steering gear deck. Higher amplitudes have been measured
towards the middle of the steering gear deck compared to the edge of the steering
gear deck. This is in line with the simulated mode shape as demonstrated in Figure
49,
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Deflection Shape 18.1 Hz (frame 25 constrained)
displacement scaling 4e3
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Figure 47 Mode shape at 18.1 Hz compiled from the component mode synthesis results (see section
7.2.2)
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Figure 48 Periodic deformation at 18.1 Hz at the transom. Note that for presentation purposes the
displacement field is presented at a phase shift of 180 degrees relative to the displacement
field presented in Appendix XI

Figure 49 Through the deformation of the double bottom coupled to the deformation of the transom and
mooring deck, 18.1 Hz is found to be dominant in the simulation results of the locations on
the steering gear deck. For locations 8 and 9 (outside the area of the part of the model shown
here) 18.1Hz becomes more dominant, as these locations are more in the middle of the deck,
where the deflection is found to be higher than at the edges of the steering gear deck. Please
note that the results presented in Figure 48 have been given a phase shift of 180 degrees
relatively to the results presented in this figure. In this figure also a much higher
amplification factor has been applied than in Figure 48.

As discussed above for the 15.6 Hz peak, response amplitude results are presented in
Appendix XIII where the resonance previously simulated at 18.1 Hz has been shifted
to 20Hz, coinciding with the 4™ blade passing harmonic component. Although that
causes the simulated response amplitudes at the 4" order blade passing frequency to
increase, the simulated response amplitudes are still considerably lower than the

amplitude actually measured amplitudes for the location considered in this work.
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Deflection Shape 27.3 Hz (frame 25 constrained)
displacement scaling 4e3
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Figure 50 Mode shape at 27.3 Hz compiled from the component mode synthesis results (see
section 7.2.2)
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27.3 Hz

In Appendix X1 and Figure 50 can be seen that the simulated peak response at 27.3
Hz is related to a higher mode bending natural frequency of the aft deck. Boundary
conditions have little effect on the natural frequency corresponding with this mode
shape. This frequency was found to be dominant in the response calculation results
carried out for the model constrained at frame 21 as well. The corresponding mode
shape was found to be same as the mode shape found for the model with constraints
at frame 25.

No mass of equipment mounted on the aft deck has been taken into account (winches
and boulders). Added mass decreases the natural frequency. In Figure 51 the
simulation results are compared with results obtained with masses added on the aft
deck, which represent two winches each weighing 3 tons. As a result of the added
mass, the frequency is seen dropping from 27.3 Hz to 26.3 Hz. Considering there are
more items on the aft deck that add mass, but have not been modelled, it seems likely
that this natural frequency moves even closer to towards 25 Hz, which is the
frequency coinciding with the 5™ order blade passing frequency. As a result,
simulation amplitudes at the 5™ blade passing frequency increases (25 Hz) getting
closer to the amplitudes measured at 25 Hz. In Appendix XIII, simulation results are
presented where the natural frequency at 27.3 Hz is assumed to have shifted to 25
Hz, corresponding exactly with the 5™ order blade passing frequency. As can be

seen, simulated amplitudes are still lower than the measured amplitudes.

No hydrodynamic added mass has been taken into account. However, as this
vibration mode concentrates on the mooring deck section, added hydrodynamic mass
from the water surrounding the hull is not expected to affect the natural frequency

corresponding with this mode shape.

simulation amplitudes at the 1% and 2" blade passing frequencies will converge to
the amplitudes measured at these frequency components. The effect can be seen in
Appendix XI1I where simulation results are shown which have been obtained after
having shifted the peak response initially found at 8.8Hz, to 7.8 Hz, in order to

correct for the effect of hydrodynamic added mass.
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Aft ship model with masses representing the masses of two winches. Each winch is modelled through two
masses each 1.5 tons
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Figure 51, comparison simulation results without mass of aft deck winches modelled (blue line) and with aft
deck winches modelled (red line). Simulations have both been performed with frame 25 constrained.

7.5.2 Excitation characteristic

In the section above (section 7.5.1) it has been established that the simulated
response amplitudes at the first two blade passing harmonics are close to the
measured amplitudes. Especially when considering that due to hydrodynamic added

mass the simulated resonance frequency at 8.8 Hz will shift to a lower frequency,
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Measured response amplitudes at order numbers higher than 2 are however a lot
higher than the simulated response amplitudes. There is reason to believe that
resonance plays an important role in that, but even when shifting natural frequencies
right onto the 3", 4™ and 5" order excitation frequencies, simulated response
amplitudes are still a lot lower than the measured amplitudes (see Appendix XIII).
On board machinery vibration measurements showed very low vibration levels at
these frequencies (considerably lower than measured at the steering gear deck,
compare Figure 12 with Figure 14). This further confirms that the explanation of the
higher order vibration should be found in the hydrodynamic behaviour of the
propeller, or the structural dynamic behaviour of the aft ship. Analysing response
amplitudes at these higher order frequencies however, it is important to realise that
there is a lot of uncertainty about amplitudes of excitation, particularly with aft ship
geometries such as the geometry of the LNG carrier, for which this whole analysis
has been carried out. Even though fluctuating hull pressure field simulations have
been performed for only up to the 3™ order blade passing frequency, the 4™ and 5™
order play a very important role. It had been assumed that excitation at these orders
is the same as the excitation calculated for the 3 order. A realistic possibility is that
the propeller excitation is in fact at these higher frequencies much higher that
simulated. In addition, there was uncertainty about the exact geometry of the

propeller which has been used as the input for the simulation of excitation.

Also through collapsing cavities higher order excitation amplitudes are likely to be
amplified [3, 47]. Being in the steering gear deck with the ship sailing at full speed,
violent cavitation noise and impulses could be heard/felt. Through the impulse like
nature of the excitation it is likely that response amplitudes at natural frequencies are

amplifies (see section 4.1.1.3).

7.5.3 Number and Type of Elements

As a rule of thumb it is recommended to choose the element size of the model in
such a way that the expected wave length is no smaller than the length of six
elements (considering the type of plate and beam elements applied in this model

[22]) . In other words, it is assumed that six elements can accurately enough describe
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one sinusoidal wave shape. From the simulated deflection shapes can be seen that the
relevant wave lengths of the vibrations exceed by far the length of three elements.
Bigger elements may therefore be applied which will reduce the size of the model.
However, wave length in this case is not the only critical factor in element size
choice. The geometry may also require a minimum number of elements (consider the
size and distance between stiffening elements). As the structure consists of many
stiffening elements, still a high number of elements will be required. The effect of
using bigger elements will need to be verified and has not been done in this work.

Also the necessity of using thick plate and beam elements need to be investigated.

7.6 The Contribution from Hull Girder Modes

As only a part of the ship structure has been modelled, no contributions from hull
girder modes are correctly taken into account in the simulation results. Johannessen
and Skaar have collected measurement date of hull girder natural frequencies of the
first 5 modes and have plotted them in the graph shown in Figure 52 (see also section
4.2.1 ‘Hull Girder Approach’.). This graph is considered very useful for estimating
the hull girder natural frequencies for the LNG carrier modelled in this work, as the

hull geometry has a great resemblance with a typical hull geometry of bulk carriers.
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Figure 52 Empirical data originally presented by Johannessen and Skaar for vertical hull bending
vibrations natural frequencies plotted against tonnes displacement.
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From the graph above the LNG carrier (84491 ton displacement) is estimated to have

the following hull girder natural frequencies:

1* mode 0.8 Hz
2" mode 1.5 Hz
3 mode 2.5 Hz
4™ mode 3.4 Hz
5™ mode 3.8 Hz
Table 5 The estimated natural frequencies corresponding with the first 5 hull girder modes

of the LNG carrier

7.7 Correlation of Simulation Results

Following the study of the simulated response amplitudes plotted against frequency,
the simulated impact of boundary conditions and the study of mode shapes
corresponding with the simulated peak repose amplitudes the following changes have
been made in order to make the simulation results correspond better with the
measurement results. The model constrained at frame 25 has been used as a basis for

the generating the correlated simulation results (see Figure 53 and Appendix XIII).

- 1%and 2" blade passing frequency: Measurement results and study of the
mode shape at the initially simulated peak response at 8.8 Hz (constrained at
frame 25) suggest that hydrodynamic added mass (omitted in this mode) is
very likely to shift the peak response to a lower frequency. Concerning the
1% and 2" blade passing frequency response amplitude, the best correlation
between simulated results and measured response amplitude was obtained by
assuming a frequency shift of 1 Hz (to the left) of the entire response curve
section between 0 and 11 Hz. (see results in Figure 53). Given that this model
only covers a small part of the hull, and given the choice of the boundary
conditions, the contributions from hull girder modes are not been taken into
account in this model. Considering the relatively low sensitivity of the 8.8 Hz
to the nature of the boundary conditions chosen close to the engine room
bulkhead, it is considered not likely that this natural frequency is related to
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one of the first 5 hull girder modes listed in Table 5 and will drop to the
region where the hull girder natural frequencies were estimated, if the whole
hull would have been modelled (i.e. 8.8 Hz is a local natural frequency, or is
coupled to a hull girder mode higher than 5). Adding considering of the first 5
hull girder modes to the simulation results, the correlated simulated
amplitudes of vibration at the 1% and 2" order should probably be slightly
higher than plotted in Figure 53.

3" blade passing frequency: as simulated amplitudes at the 3" blade passing
frequency are much lower than the measured amplitudes, the peak response
amplitude found at 15.6 Hz has been shifted to 15 Hz, so it coincides exactly
with the 3" blade passing frequency.

4™ plade passing frequency: as simulated amplitudes at the 4™ blade passing
frequency are much lower than the measured amplitudes, the peak response
found at 18.1 Hz has been shifted to 20 Hz, so it coincides with the 4™ blade
passing frequency. The increase of peak response frequency also corrects for
the fact that past frame 21, not all stiffening elements have been modelled in
order to simplify the model. Further justification of this decision can be taken
from the observed impact of changing boundary conditions, on the peak
response frequency for the mode shape in question.

5™ blade passing frequency: as simulated amplitudes at the 5" blade passing
frequency are much lower than the measured amplitudes, the peak response
found at 27.3 Hz has been shifted to 25 Hz, so it coincides with the 5™ blade
passing frequency. A decrease of the natural frequency corresponding with
the mode shape previously found at 27.3 Hz is likely, as added mass of deck

equipment has not been taken into account, and is likely to have that impact.
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Figure 53 Correlated simulation results (blue colour) plotted together with the measured

response amplitudes (orange)see also Appendix X111

7.8 Evaluation of FE and CMS Performance

With the simulation of the vibration structural behaviour, harmonic analysis results
as presented in, Appendix VII and Appendix VIII have first been obtained through
solving the full set of equations of motion in ANSY'S using a so called sparse matrix
solver. A sparse matrix solver solve a matrix based on the row reduction technique
shown in Appendix VI [48].

Although nodal displacement results could be obtained from individual degrees of
freedom (through which the results in section Appendix VI1I and Appendix VIII have

149



been obtained), no complete set of results (for all degrees of freedom at once) could
the read at once due to the size of the result file. This meant that no visual
presentation of deflection shapes could be obtained. Studying the displacement field,
i.e. the way in which the structure periodically deforms, is very important to generate
an understanding of the mechanisms behind vibrations propagation, as demonstrated

in section 7.5.

In order to be able to study the mode shapes, component mode synthesis techniques
have been used. Results are obtained through expansion of the mode shapes of the
individual substructures. As the result output files for each substructure is much
smaller than the out file of the entire structure, mode shapes can easily be generated.
Through pasting together the mode shapes of all individual substructures, mode
shapes of the total structure are obtained and can be studied (as presented in section
7.5.1))

7.8.1 Accuracy of CMS results

In Appendix X results obtained through the CMS techniques are compared with the
results obtained from the full set of equations of the full assembled structure. In
Table 6 some of the properties of the substructures are presented. One of these
properties is the number of mode shapes retained for generating the displacement
field. Also the required CP time to calculate these mode shapes and natural
frequencies is presented. This number of retained substructure normal modes has
been determined through selecting all mode shapes with natural frequencies within
the frequency range between 0 and 1.5 X f,,4x, (according to Rubin’s principle)
where fa. 1S the maximum frequency for which results are generated. As the
frequency range of the solutions is chosen to be between 0 and 40 Hz, the mode
shapes with natural frequencies between 0 and 60 Hz had been retained for both the

free and fixed interface CMS models.

The evaluation of CMS modelling technique is based on frequencies at which peak
responses are found according to the CMS modelling results. Sufficient accuracy of
the simulation results is considered to have been obtained when the frequencies at

which peak responses coincide with the frequencies at which peak responses have
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been found according the full harmonic analysis results. This basically means that,

considering frequency steps of 0.5 Hz are used (80 results for 80 frequencies over a 0

to 40 Hz frequency range), natural frequencies found through CMS, should be within

a bandwidth between -0.25Hz and +0.25Hz from the natural frequencies found

through the full harmonic analysis.

LMG vessel FE model  |Mumber of Mumber of Number of Number of Required Required
nodes boundary boundary modes CP time for CP time for
nodes degrees of required* calcuating generation
freedom gigenvectors pass

PartHfixedcms 5819 348 2088 181 185 228
PartHfreecms 257 245 52.5
PartGfixedcms G675 250 1500 373 29.8 40

PartGfreecms 419 39 00.8
PartFfixedcms 6675 250 1500 373 20,8 40

PartFfreecms 419 39 00.8
PartEfixedcms 10728 1188 71E8 213 30 A6.6
PartEfreecms 323 bl 174
PartDfixedcms 11118 1140 6240 162 29.14 536
PartDfreecms 336 85 328
PartCfixedoms 14383 B54 5124 1395 38.11 &B8.13
PartCfreecms 335 75 225.7
PartBfixedcms 11705 B33 3798 138 29.4 477
PartBfreecms 231 53 138.3
PartAfixedcms 7168 263 1578 91 128 254
PartAfreecms 154 246 53.3

Table 6 Table of properties of the substructures shown in Appendix IX . The number of retained

mode shapes are also presented for each substructure together with the CP time required
to calculate these mode shapes (eigenvectors). Fixed CMS is CMS based on fixed
interface approach as applied with Craig-Bampton’s method. Free CMS is CMS based on
the free interface approach as applied with Rubin’s Method

In Appendix X can be seen that results obtained through free interface CMS were
found to be almost identical to the results generated through the full harmonic
analysis. Not only do the peak response frequencies coincide with the peak response
frequencies found through the full harmonic analysis, also response amplitudes
match the response amplitudes found through full harmonic analysis. The free
interface CMS is based on Rubin’s method with no residual interface flexibility

modes taken into account.

Results obtained through fixed interface CMS deviate from the results obtained from
the full assembled set of equations of motion.
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7.8.2 Required CP Time for CMS Calculations

In Table 7 the registered required CP time for obtaining dynamic response results is
presented for the full harmonic method, fixed interface and free interface CMS. In
Figure 54 computation time required for each step are presented calculated according
to Appendix VI, Appendix XVI and Appendix XXI.

Although CMS has solved the problem with handing large output files, Table 7 and
Figure 54 show that CMS increases the required computation time by approximately
53%., compared to the time required for full harmonic analysis. It is easy to
understand that calculating the mode shapes off course adds extra CP time onto the
total CP time required to obtain the results. This effect has been taken into account
into the calculation of the grand total CP time in Table 7. This effect becomes of
course less noticeable when calculating the response for a higher number of
frequencies, as the modal information only needs to be calculated once. However,
Table 7 and Figure 54 also show that more CP time (+50%) is required for solving
the CMS matrices, compared to solving the full set of equations of motion. This
increase of CP time is a result of the fact that, although the total assembled CMS
dynamic stiffness matrices are smaller than the matrices generated through the full
solution, the CMS matrices are much denser and contain in fact a much higher
number of non-zeros than the full dynamic stiffness matrix of the non-reduced full

FE model (as also shown in Table 7.)

Total structure Number of Number of Total CP in |CP required for |Calculating Estimated CP
equations non zeros use pass matrix Elemental and |for solving
total formulation in |Nodal Solutions | matrix in use
assembled use pass in use pass pass

full selution 366973 1.4%E+07 134 20 15 95

fixed interface CMS 15370 1.25E+08 180 18 na 162

free interface CMS 16118 1.2BE+08 160 18 na 142

*number of modes required is
grandtotal cpu Full solution Fixed Free based on covering the
boundary boundary frequency range from 0 to 1.5
CMS CMS times the maximum to be
analysis frequency. In this case
1 frequency step 115 524 1333 the frequency range is from 0 to
80 frequency steps 9170 14744 13973 L5times 40 =010 60 Hz

Table 7 Size of matrices and required computation times for different analysis techniques. Fixed
interface CMS has been carried out according to Craig-Bampton, and free interface CMS has

been carried out according to Rubin’s method (both with a cut-out frequency of 1.5 f = 60 Hz)
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Figure 54 Required computation time for the different stages of the different analysis techniques

performed on the LNG carrier model of section 7. Computation times have been
calculated for the analysis of 80 frequency steps. Added to the graph is the estimated
required number of floating point operations for obtaining results through the full
harmonic analysis technique.

7.9 Summary and Conclusion

In this section finite element modelling results of the aft ship of an LNG carrier have
been studied and compared with measurement results taken on board. Fixed and free
interface component mode synthesis has been applied and evaluated by comparing
the results with the results obtained from the full finite element model.

7.9.1 Comparison with Measurement Results

Good coincidence has been found between the simulated response amplitudes and
measured response amplitudes at the first two blade passing frequency components.
Results in Appendix X111 show that after correction of the response curve for the
effect of hydrodynamic added mass from the water surrounding the hull, simulation
results will come even closer to the measured amplitudes (peak response at 8.8 Hz
shifts to 7.8 Hz).

For blade passing frequencies above the 2" order however, simulated response

amplitudes were found to be a lot lower than the amplitudes measured on board.
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7.9.2 Evaluation of Simulated Excitation Characteristics

At the 3", 4™ and 5" order, dominant response amplitudes have been measured on
the steering gear deck on board the LNG carrier sailing at full speed. Measured
amplitudes at these orders are a lot higher than the simulated amplitudes. Although
there is reason to believe that resonance plays an important role, Collapse of cavity
volumes are assumed to play an even more important role, as violent cavitation has
been experienced on board. These phenomena have not been taken into account
through the vortex lattice method used for the simulation of the excitation
characteristics of the propeller and are likely amplify the higher order excitation
amplitudes [47]. There was also uncertainty about the geometry of the propeller used

for the alternating pressure field simulation, as no digital geometry was available.

7.9.3 Choice of Boundary Conditions

Analysis has shown that choosing the right boundary conditions close to the engine
room bulkhead is very important for simulating vibration levels on the steering gear
deck and mooring deck. Particularly for the vibration amplitudes simulated at the 1%
and 2" mode questions arise about the relation between a peak response found at 8.8
Hz and a possible relation with any lower order hull girder modes. The contributions
from these lower order hull girder modes are not included in the simulation results
given that the model only covers a small part of the hull structure, and given the
nature of the boundary conditions tested in this section. It is therefore recommended
that simulation are carried out coupling the present model to a hull girder model
(Deep Beam Elements) representing the rest of the vessel’s hull from frame 25

forwards on.

The simulation results also suggest that more detail needs to be added to the model
from frame 21 to 25. In order to simplify the model, not all stiffening details had
been incorporated in this section, but appeared to play an important role for a

particular natural frequency calculated at 18.1 Hz.

All considered, it can be concluded that frame 25 is a good choice of location for

applying constraints, or from where the model is simplified forward on.
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7.9.4 Element Size

Based on analysis of the wavelengths of the relevant mode shapes for this particular
vessel, applying a coarser mesh is not expected to affect the results over the

frequency range of interest.

7.9.5 Evaluation of Component Mode Synthesis (CMS) Techniques

Free and fixed boundary component mode synthesis techniques have been applied
and were found very useful. Results obtained through free interface CMS coincided
with the results obtained through the full FEM analysis. As the fixed interface CMS
results deviated noticeably from the results obtained through the full finite element
analysis, free interface CMS has been chosen as the most suitable method for

modelling the vibrations of the aft ship of the LNG carrier.

Component mode synthesis was found very useful for obtaining information on the
modes of vibrations. Through the reduced substructures the size of result files are
hugely decreased and become very well manageable. As a results, no problems with
obtaining a visual presentation of the mode shapes have been encountered, as was the
case with the analysis of the results obtained through full harmonic analysis.

Although the total assembled matrices obtained through CMS are much smaller than
the matrices obtained through the full harmonic analysis, these matrices were found
to be a lot denser (contain much more non-zero entries). As a result, more CP time is
required to solve the reduced matrix compared to the sparse full dynamic matrices.
Particularly when obtaining the response for many frequency steps, this leads to a

large increase of required computation time.
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8 Methodology of an Alternative Approach to Classical CMS

As demonstrated in section 7 and as already discussed in the critical review (section
0), component mode synthesis offers various advantaged for modelling marine
structures. However, through section 7 it has been demonstrated that component
mode synthesis may increase the required computation time. This increase of
computation time relatively to full finite element harmonic analysis is a result of the
high number of interface degrees of freedom found in typical marine structures in
combination with the fullness of the matrices that have to be solved in order to obtain
the modal coordinates. In this section two alternative approaches to the Component
mode synthesis method are suggested in order to reduce the size of the assembled
CMS matrices: the Zoet method and the Rubin-Zoet method.

8 Methodology of an Alternative Approach to Classical CMS
8.1 Introduction
8.2 Interface stiffness and mass matrix
8.3 Proposed Reduction Technigue
8.4 The Zoet Method with Boundary Residual Flexibility: a Reformulation of the Equations of Motion
8.5 Eliminating Residual Flexibility Modes from the Zoet Method
8.5.1 Compiling the Total Boundary Mobility Matrix
8.5.2 Eliminating Boundary Displacement Degrees of Freedom
8.5.3 Over Compensation of Residual Flexibility
3.6 The Rubin—Zoet Method
8.7 Comparing Required Number of Matrix Operations for the Different CMS Methods
8.7.1 Estimating Calculation Time: Floating Point Operations
8.7.2 Required Number of FLOPS for Zoet's Method
8.7.3 Required Number of FLOPS for the Rubin-Zoet Method
3.8 Discussion of Performance of the Proposed CMS Technigues
8.8.1 Formulating Matrices
8.8.2 The Zoet Method
8.8.3 The Zoet Method with Residual Flexibility Modes
2.8.4 Zoet Method versus Rubin-Zoet Method
8.8.5 Comparing CMS with Mode Superposition
8.9 Conclusions

Paragraph structure of chapter 8 ‘Methodology of an Alternative Approach to Classical CMS’
8.1 Introduction

As demonstrated in the case study above, CMS has proved to be beneficial for
modelling the structural response of complex large parts of ship structures. CMS
proved a solution for the problems with the presentation of the mode shapes
experienced with the full harmonic analysis. Due to the size of the output file the

mode shapes of the full solution could not be read and plotted as a 3d picture.
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Not only did CMS modelling techniques make it possible to study mode shapes,
CMS offers the advantage of synchronising the correlation of the model with the
progress of the building process. The FE model will be subdivided in such a way that
the CMS substructures coincide with the sections of the ship as it will be built. Every
time a section is delivered, the modal information can be measured and used as an
input of a part of the full model. Adjustments to the structure can still be

implemented if the correlated model shows unfavourable response results.

CMS also offers the advantages of being able to reuse modal information for
repeating substructures. Particularly mid ship sections and accommodation deck
consist of repeating structural parts. Also symmetry of the ship’s structure can be

used to further reduce the required number of calculations of mode shapes.

However, Table 7, Figure 55 and Figure 56 show that in total, for both CMS methods
(free and fixed), more calculation time is required, compared to the calculation time
required for the full harmonic analysis. Table 7 shows the measured computation
time for each sub-step following the full harmonic analysis, fixed and free interface
CMS techniques. In Figure 55 and Figure 56 the required number of matrix
operations are presented as calculated for each step according to Section 8.7
elaborates on how these values have been obtained) and serve as a good indication of

the required amount of computation time.

It can be seen from these figures that, besides the extra calculation time for
calculating normal modes, natural frequencies, constraint modes, and forming the
reduced matrixes, most of the time is required for solving the reduced set of CMS
equations of motion. Section 7.8 points out that, Although the number of equations
used for CMS is a lot lower than the number of equations used for the full harmonic
analysis, the compiled CMS matrices are much denser than the matrices compiled for
the full harmonic analysis. As a result, the number of non-zeros in the CMS matrices
is much higher, which leads to the observed (and calculated) higher required
computation times. As can be seen when comparing Figure 55 and Figure 56, the
effect of higher computation time becomes even stronger when calculating response

for multiple frequencies. Calculating response for multiple frequencies is not only
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very important for identifying the relevant critical frequencies of a structure, but also

very important for identifying the frequencies where the lowest response is obtained,

so that the excitation frequencies and response behaviour can be optimally tuned for

the lowest noise and vibration levels.

1.4E+14

1.2E+14

1E+14

8E+13

6E+13

4E+13

2E+132

Number of Floating Point Operations

0

Figure 55

B full solution

m Fixed Interface CMS (Craig-Bampton)
cut-out freque 1.5:=f max =60 Hz,

Free Interface CMS (Rubin's Method)
cut-out freque 1.5=f max =60 Hz,

Generating Generating Generating Composing Eliminating  Solving  Estimated
Mormal Constraint  Residual  Reduced Boundary Equations FLOPS for
Modes Modes  Boundary Massand Degrees of of Motion total

Flexibility = Stiffness  Freedom analysis
Modes Matrices

Required computation time for the different stages of the different analysis techniques
performed on the LNG carrier model of section 7.Computation times have been calculated
for the analysis of only one frequency step
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Figure 56 Required computation time for the different stages of the different analysis techniques

performed on the LNG carrier model of section 7.Computation times have been calculated
for the analysis of 80 frequency steps.

As pointed out above, CMS offers the benefit of recycling modal information in case
of repeating sub-structural elements and symmetry of the geometry. However, the
higher required analysis time due to the need for multiple frequency calculations
counteracts these benefits and result in a net increase of calculation time. The method
in this section therefore focuses on reducing calculation times through reducing the

size of the full CMS matrices

A very dominant factor in determining the size of the full assembled matrix is the
number of connection nodes. For the description of a substructure according to the
classical CMS methods the number of equations that are at least required is equal to
the number of coupling degrees of freedom. In the case of the LNG model, this
number is equal to the number of nodes shared with other substructures times the
number of degrees of freedom of one node (which is 6, along x, y and z axis and
rotation about X, y, and z axis). This is a result of the fact that the interaction between
two substructures is described through setting up equilibrium and compatibility
relations for each interface degree of freedom. Problems with high matrix densities
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are typical for ship structures. Two substructures are coupled to each other through
coupling lines on which many interface nodes are located. Compared to structures
coupled to each other by a number of girders for instance (coupling points), ship

structures will contain a much higher number of coupling points.

In this section two methods are suggested aiming at eliminating the interface degrees
of freedom from the total set of equations of motion. The first method (the Zoet
method) formulates the interaction between substructures solely through the modal
coordinates rather than through the actual nodal displacements of the interface
boundaries. The number of equations required becomes independent of the number
of interface degrees of freedom and can be chosen equal to the number of mode
shapes actually required for accurately enough describing the displacement field of
the substructures. As can be seen in Table 6, the number of mode shapes required for
describing the dynamic behaviour of the LNG carrier’s sub-structure is a lot lower
than the number of coupling degrees of freedom. Improving the results through
incorporating the effect of residual flexibility is also presented and a reducing the
number of equations of the full assembled matrix with residual compensation taken

into account is presented.

Also a method is presented that is a hybrid of the classical Rubin method and the

Zoet method and is referred to in this work as the Rubin-Zoet method.

The performance of the alternative methods are compared with the performance of

the free interface CMS methods according to Rubin. The Rubin method is used as a
benchmark as the best results have been obtained through this method according to

the simulation results in section 7. The comparison is based on estimating the

number of matrix operations (flops) required for each step for each different method.

8.2 Interface stiffness and mass matrix

The first step in exploring the possibilities of reducing the total equations of motion
is formulating a description of substructures’ interaction solely through the
substructures’ modal coordinates. This means, the number of equations required for

solving the assembled structural dynamic behaviour is related only to the number of
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mode shapes required and is independent from the number of interface degrees of

freedom.

In Figure 57 two subsystems are shown, subsystem A (purple) and subsystem B
(green). The red elements are the coupling elements forming an interface between
subsystem A and subsystem B. Any dynamic deformation of the structures A and B
results in deformation of the interface elements. Through the deformation of these
interface elements reaction forces are generated on the interface nodes of
substructure A and substructure B. These reaction forces are treated as excitation
forces. The response of both substructures due to the interface reaction forces
represents the effect of the interaction between the two separate structures. This
interaction response is added to the dynamic response of the free uncoupled

structures through which the coupled response is calculated.

Interface elements

M

Figure 57 Example of two structures coupled to each other through interface elements

This concept is demonstrated through the mass spring system shown in Figure 58
Considering the stiffness of the springs is 4e6 N /m and each mass is 200 kg and has
only one (horizontal) degree of freedom and an excitation force of 60 N is acting on

mass 1, the total systems stiffness matrix is written as:

(8.1)
4e6 —2e6 0 0
K = —2e6 4e6 —2e6 0
0 —2e6 4e6 —2e6
0 0 —2e6  4eb
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8.2)
The mass matrix is written as:

200 0 0 0
o 20 o o
M=10o 0 200 o
0 0 0 200

The total un damped equation of motion becomes:

(8.3)
4e6 —2e6 0 0 Uy 200 O 0 0 1[us 60
—2e6 4eb6 —2e6 0 U 2 0 200 O 0 [|u2l _ |0
0 —2e6 4e6 —2e6]||Us3 0 0 200 O |Jus| |oO
0 0 —2e6  4e6 |lUs 0 0 0 200]Lug 0
3 4 5
\\\|] 3 \\\\| 4 \\\
oo T P P

Figure 58 Mass spring system

Consider the total system to be spit up in two parts so two separate subsystems A and

B are generated:

A | T B

i R t\\\E

e e
Figure 59 Mass spring system subdivided in two subsystems A and B

The stiffness matrix of the uncoupled subsystems A and B is written as:

4e6 —2e6 0 0
—2e6 2e6 0 0 _[KA 0
0 0 26 —2e6| [0 K
0 0 —2e6 4eb6

Where K, and K are the individual uncoupled stiffness matrices of substructure A

and B respectively

The stiffness matrix of the coupling element is K,.,,,,, =
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2e6
—2eb

—2eb6
2e6

The internal forces induced in spring 3 by the dynamic interaction between the two

subsystems is equal to the elements stiffness matrix times the displacement vector:

0 0 0 O[] [O (8.4)
0 2e6 -2¢6 Of|uz|_|fua]_ U

0 —2e6 2e6 Of|us| ™ |rs|” 8 chnn 8 [y

o o o ollul Lo

Where f., and f.p are the interaction forces that are treated as excitation forces
representing the effect of the two substructures coupled together and v, and uy are
the displacement vectors of subsystem A and B respectively. The equation of motion

according to above suggested concept is then written as:

K, 0 MA (85)
I [ e P [ A [
0

Where M, and My are the uncoupled mass matrices of subsystem A and B
respectively.
Applying this concept to the particular system shown in Figure 58 and Figure 59

4e6 —2e6 0 0 [ 200 0 0 0 J[wm] [60 0

—2e6  2e6 0 0 |[42|_,2] 0 200 0 0 |fu2] _|O|_|fea

0 0 2e6 —2e6||us 0 0 200 O [|us 0 fen

0 0 —2e6 4e6 llus 0 0 0 200]lus 0 0

(8.6)

Substituting (8.4) into (8.6) gives:

4e6 —2e6 0 0 [ 200 0 0 0 ][

—2e6  2e6 0 0 |[42|_,2| 0 200 0 0 |fu

0 0 2e6 —2e6||us 0 0 200 O [|us

0 0 —2e6 4e6 llus 0 0 0 200]lus

60] [0 O 0 0][w
_|0|_[0 2e6 —2e6 0]|%

0 0 —2e6 2e6 O0f|us

0 0 0 0 0llus
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0
Shifting the g
0

of (8.7) gives back the original full assembled equation of motion as the full

0

2e6
—2e6

0

0 01U
—2e6 0f|Uz
2e6  0f|us
0 01 Lug

stiffness matrix is obtained again:

[ 4e6 —2e6
—2e6 2eb6
0 0
L 0 0
4e6 —2e6
—2e6 4eb6
0 —2eb
[ 0 0
So
0
K, O
0 KB]+g

Where K, is the full stiffness matrix of subsystem A coupled to subsystem B.

0
0
2e6

—2eb6
0

—2e6
4e6
—2e6

Kconn

0 ] 0 0 0
0 n 0 2e6 —2eb
—2e6 0 —2e6 2eb6
4e6 | 0 0 0
0
0
—2e6
4e6 |
0
0 =Kyp
0

8.3 Proposed Reduction Technique

Through the example in section 8.2 it has been demonstrated that the dynamic
behaviour of two coupled substructures can be considered a superposition of the

substructures’ individual uncoupled response to the excitation forces and the

matrix back to the left hand side

o O OO

(8.7)

(8.8)

(8.9)

substructures uncoupled response to the coupling forces generated in the coupling

elements as a result of dynamic interaction between two adjacent substructures.

Through this principle the interaction between two individual subsystems is

described through which a smaller reduction basis can be formulated compared to the

classical CMS methods. An important aspect in obtaining this much smaller

reduction basis is that a modal approach is adopted. Through the description of the

coupling outlined above, no additional nodal displacement of the coupling points
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need to be included in the reduction basis, as the coupling can be fully described
through the modal coordinates that are also used to describe the internal
displacement field of the substructures. The reduction basis used for this CMS
method will therefore be a set of retained mode shapes for the substructures involved
as will be demonstrated below for an un-damped mass spring system. For two
individual uncoupled sub systems the following equations can be written:

(—w2Mupa + Kpda)ay = fa (8.10)
(—w?Mp¢p + Kzpplag = fp (8.11)
Where:

¢4 and ¢ are the set of eigenvectors representing the retained (free interface)
mode shapes for all degrees of freedom of subsystem A and B respectively.

M, and My are the uncoupled free floating mass matrices of substructure A and
B respectively and w is the frequency of excitation in rad/sec.

K, and Ky are the uncoupled free floating stiffness matrices of substructure A
and B respectively

fa and fz are the excitation forces acting on substructure A and B respectively
a4 and ag are the modal coordinates of the retained mode shapes of

substructure A and B respectively

Composing the equation of motion of the coupled system is done according to
equation (8.5). Expressed through a limited set of retained mode shapes and the
corresponding modal coordinates:

o a2l 2 Ae- o
0 0 0
?Z]—g Keomn 8] [%A ¢?B] o]
Where:

K, onn = the stiffness matrix of the coupling elements between substructure A
and B
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Reduction of the stiffness and mass matrix is obtained by pre multiplying with ¢7,

as also applied with the mode superposition method, which gives:

‘“’2[¢3T ¢ZT“IZA LI[0 glla) + [¢A bs7 ]KA )¢ ollan)

_[ea" 0 ][f: ) 0o1l® 9 g, 077a
o Y | | i

(8.13)

. [ 0 $a 0717 . L
and movmg[ . ¢BT]KC°””[0 ¢B] [aB] to the left side of the equation gives the

reduced mass and stiffness matrices M and K of the total assembled system:

o o,/ 0 [MA 0 ] [¢A 0] (8.14)
0 ¢,/ |L0 Mpl[0O ¢

- 6, 0 [KA 0 ] [¢A 0 ] N ¢, 0 8 KO [¢A 0 ] (8.15)
0 ¢BT 0 KB 0 ¢B 0 ¢B conn

As pointed out in section 8.2 equation (8.7) and (8.8) through equation

0 0 0
+(0 Keonn O
0 0 0

substructures, (8.15) can also be written as :

_ [e,s" 0 ¢, 0 (8.16)
_[ 0 ¢ T]KAB[O ¢B]

B

Ky O ] = K, Which is equal to the full matrix of the assembled

0 K

If a consistent mass matrix is used and the coupling elements have a mass, the effect
of the extra mass on the interface lines is also modelled as an external excitation

force. The equation of motion becomes:

w%@%&lhaﬁﬁ

o AR i | P R L e [

(8.17)
The reduced mass matrix becomes:
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(e, 0 a0, [8 O
M=H8 ¢3T][1V(I)A A/([)B][OA ¢B]+[8 ¢BT]M

In the same way as for the reduced stiffness matrix the reduced mass matrix can also

LY

(8.18)

be written as

_ [¢,) 0 ¢, O (8.19)
=’y rfrsls 4

Where M,; which is the full matrix of the assembled substructures

8.4 The Zoet Method with Boundary Residual Flexibility

An alternative reduction technique is proposed in section 8.3 in order to eliminate the
need to set up equations for each coupling degree of freedom. Coupling is only
described through the response normal modal coordinates (rigid body and elastic
modes) of the free interface substructures. This line of research has been chosen
because the number of mode shapes required to describe the dynamic behaviour of a
structure accurately enough, is for ship structures expected to be much lower than the
number of coupling degrees of freedom, as was found the case for the CMS
simulations for the LNG carrier presented in section 7 (see Table 3).

In this section a mathematical reformulation of the principles described in 8.3 is
suggested. Through this formulation the reduced set of equations of motion is
obtained by only using the interface degrees of freedom’s mode shape vector values
whereas the reduction basis presented in section 8.3 consist of the mode shapes with
all the degrees of freedom of the substructures retained. Through this method, the

formulation of the reduced equations of motion requires less matrix operations.

In addition, also the possibility of including interface (boundary) residual flexibility
is included in this alternative formulation. The reason for adding residual boundary
flexibility is because calculated alternating element stresses are very sensitive to
errors in calculation of the displacement field. This means that a small deviation of

calculated displacement may result in a much bigger deviation of the related element
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stresses, and the related nodal stiffness forces. (also been described in [39]). Accurate
calculation of reaction forces in nodes resulting from element deformation is very
important for describing the interface forces between two substructures, resulting
from dynamic interaction. Through including boundary (interface) residual flexibility

a more accurate description of the boundary response is obtained.

In Appendix XVIII the process of generating the equations of motion and obtaining
the dynamic response of two coupled structures is described in different steps. Step 1
in this analysis consists of obtaining the modes shapes. Appendix XVII1 describes in
step 1 how the boundary residual flexibility modes are calculated, together with an
expression for the number of required real matrix operations (FLOPS) required for
each step. The equations formulated in step 2 are derived from a reformulation of

equation (8.20) (see equation (8.5)):

o )bl s Ll =[7]-

0 Kwnn ] [ (8.20)

0

The equations have been formulated in such a way that they very explicitly express
the response of the assembled structure as a superposition of the individual
uncoupled response (a, and uy,.s) (excited by external forces £, and f; only) and the
response of the individual substructures due to the interface forces (azr and uy; s pr):
These interface forces are indicated with forces f., and £, (connection or interface

forces) and represent the effect of interaction between two adjacent substructures

Where

a, are the normal modal participation factors (modal coordinates) of a
substructure representing the modal response of the individual uncoupled

substructure that is only subjected by the external excitation force.

Ugres 1S the residual displacement vector representing the residual response of
the individual uncoupled substructure that is only subjected by the external

excitation force.
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agr are the normal modal participation factors (modal coordinates) of a
substructure representing the modal response of the individual uncoupled
substructure subjected to the interface forces occurring due to interaction with

another substructure.

Upres,pr 1S the residual displacement vector representing the residual response
of a individual uncoupled substructure subjected only to the interface forces

occurring due to interaction with another substructure.

The total response vector u of a coupled substructure is written as:

U= 1uUy + Uppr (821)

Where u, is the displacement vector of a uncoupled substructure subjected by
the external excitation force only and u, g is the response of a substructure to

the interface forces resulting from interaction with adjacent sub structures.

au
a

a= uAB = modal response vector of assembled substructure
res

Upres

A Br
a . .
Qgp = uA,,B'BFBF = modal response vector due to interface forces resulting from
res,

UBbres,BF

interaction with adjacent sub-structures

2
Qop
Upares
UoBres

structures due to excitation forces. Modal participation vector representing the

a, = = modal response vector of the individual uncoupled sub

dynamic behaviour of the total assembled structure writes as:

ay QuBF QAoa (8.22)
_ _| @ | _| 9ssF Qop
@ = aprt o= Ugres |~ |Uabres,BF Upares
Upres UBbres,BF UoBres

Where:
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a, and a are the complex rigid body and flexible modal coordinates of
substructure A and B respectively representing the response of the assembled
structure.

Usres AN g, are the complex residual displacements of substructure A and B
respectively representing the residual response of the assembled structure.
ay4 and a, 5 are the complex rigid body and flexible modal coordinates of
substructure A and B representing the structural dynamic behaviour of the
individual structures in uncoupled condition

Uoares AN ugp,s are the complex residual interface node displacements of
substructure A and B representing the structural dynamic behaviour of the
individual structures in uncoupled condition

a, gr aNd ag 5 are the complex rigid body and flexible modal coordinates of
substructure A and B respectively representing the response resulting from
forces on the interfaces with adjacent substructures resulting from dynamic
interaction..

Uapres.sr AN ugp,es 5 are the complex residual interface node displacements of
substructure A and B respectively representing the residual (static) response
resulting from forces on the interfaces with adjacent substructures resulting

from dynamic interaction..

The important part of this formulation is the formulation of the interface forces.

These interface forces are a function of the interface displacement and the stiffness

and mass matrix of the connecting interface elements. Through the displacement of

the interface nodes the coupling elements deformation is represented resulting in the

reaction forces at the coupling nodes.

As explained above, the displacement field of the substructures is described by the

modal coordinates of the individual uncoupled structures. Three types of modal

coordinates are distinguished:

flexible (free interface) modal coordinates

rigid body modal coordinates (if applicable)
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- residual compensation attachment modal coordinates (expressed through the

nodal interface displacements u;)

The interface displacement w,, is described as a superposition of normal, rigid and

residual flexibility modes and is written as (see also equation (8.22)) :

8.23
¢Abnormal 0 ( )

0 Psbnormal uATESb
Upresb

U, =

Where:

- Gabnormar ANA Dppnormar= Matrix containing the retained rigid body and
elastic modes of substructure A and B respectively representing only the
interface degrees of freedom between substructure A and B.

- Usresy AN ug,.s, are the residual nodal displacements representing the residual
response of the assembled structure representing only the interface degrees of

freedom between substructure A and B.

I . . )
. [Papnormar 0 - R is the reduction matrix.

0 ¢anormal 0 I

- a4 and ag are the normal nodal coordinates representing the modal response

of substructure A and B coupled together

Therefore (8.23) can be written as (see also equations (8.21)):

u, = Ra (8.24)

IuAresb‘
Upresb

, representing the normal modal coordinates and the residual displacement

Where « is

coordinates of the interface degrees of freedom. For the boundary (interface) element

forces we can write, according to equation (8.4):
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fal = = —(Kconn + @Ceonni — @*Mconn) (629
fB — fconn — conn w COTlTll w conn u’b
C.
Fconn = _Kdyn connUb
Where

- Kionn and M,,,,,, are the stiffness and mass matrix respectively of the
connecting elements

- Cconn 1S the dampings factor of the connecting elements

- i isindication for the fact that wC,,,, IS an imaginary component (90 degrees
phase shift relatively to strain and inertia forces)

- wIs the excitation frequency [rad/s]

- Kayn conn = Keonn + ©0Cconni — 0*Mcony) = the dynamic interface elements
stiffness matrix.

- E.,nn is the vector representing all the forces from the connection element
deformation (forces on both substructure A interface nodes £., and
substructure B interface nodes f,;.

Substituting equation (8.23) into equation (8.25) we get the expression for the
connection node forces as a function of the modal coordinates representing the

dynamic behaviour of the assembled structure:

s

F =K G abnormai 0 I 0 agp
conn dyn conn 0 ¢anormal 0 I]||Yress
UBresb

(8.26)

For the modal response coordinates resulting from the interface forces we can write,

as a function of excitation force (see equation (8.22) and (6.27)):

T
a _ b abnormal ch (8.27)
ABE ™ (w2 + EWoai+ woy?)
T
a _ ¢anormal ch
BBF ™ (—w? + Ewop?i + wop?)
Upresb = GAresbch (8.28)
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Ugresh = Gprespfcp

In a matrix notation the modal displacement due to interface node interaction forces

agp IS Written as:

Apr =

Where:

_ [diag(—w? + ewp?i+ we>)™t 0 [¢Abwmal 0 1 o (8.29)

F,
0 Gresb 0 ¢anormal 0 I conn

diag(—w? + swp?i + wy?) ™ =

I:dlag(_(l)z + SG)OAZi + G)OAZ)_l 0
0 dlag(_(l)z + SQ)OBZi + wOBZ)_l
G — GAresb 0
resb 0 GBresb

Garesp ANA Gy,os,= the residual flexibility matrix for the interface degrees of
freedom of substructure A and B respectively

wo, and w,y are the natural frequencies of the retained elastic and rigid modes
for substructure A and B respectively [rad/s]

w is the excitation frequency [rad/s]

¢ = damping expressed as a percentage of the strain energy (loss number)

¢Abnormal 0 I 0
0 ¢anormal 0 I

this method.

T
= RT is the transposed reduction matrix used in

f.4 1S the interface reaction forces at the interface degrees of freedom of
substructure A
f.5 1S the interface reaction forces at the interface degrees of freedom of
substructure B

F.onn = total interface degrees of freedom reaction force vector [f CA]

ch

Substituting equation (8.26) into equation (8.27) and (8.28) gives the following

expression is obtained:
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a4BF (8.30)

o diag(—w? + cwp?i+ we®)™ 0 [RI"E. = appr
BF 0 Gresb conn uAresb,BF
uBresb,BF

Considering expression (8.26) for the connection forces:

a (8.31)

a
Fconn =- [Kdyn conn] [R] i =- [Kdyn conn] [R] a

Ugresb
UBresb

Substituting (8.31) into (8.30) gives the expression for the contribution of the

interface force response as a function of the assembled total response:

ay QaaBF
_ [diag(—w?* + ewo?i+ we?)™! 0 T ag | _| aspr
Oer = 0 Gresb [R] [Kdyn conn] [R] UAresh B Uresh,BF
UBresh UBresb,BF
Q4,BF
aB,BF
Apr = A = uAresb,BF
uBresb,BF
diag(—w? + ewp?i+ we?)™t 0 T
A=— 0 G [R ][Kdyn conn] [R] (8.32)
resb
a
. . a . .
The total equation for solving a = |, B lis written as:
Aresb
UBresh

@y + Aa = «a and therefore:
[A—T]la = —a,

(8.33)

Ay
B

Substituting « = u:; into (8.23) gives the total deflection vector:

UBbres
ay
c
_ D anormai 0 (»bA 0 ag
= c|lu
0 ¢Bnormal 0 (»bB Aresb
UBresb
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Where:

D anormar ANd Ppnormar re matrices containing the retained normal modes

representing all degrees of freedom of substructure A and B respectively.

¢4 and ¢§ are the constraint modes of substructure A and B respectively (see
equation (6.37) to (6.42)

[A] is the boundary mobility matrix as this matrix expresses the sensitivity of the

interface to the deformation of the interface elements (interface forces).

A reduction of matrix operations for composing the boundary mobility matrix is
obtained through neglecting the inertia force term in the dynamic mass matrix of the
interface elements. This term will be very small anyway, particularly at low
frequencies. The dynamic interface stiffness will become (K pnn + @Ceonnl) =
Kayn conn - If relative damping ¢ is used, as is the case in this work, the expression
for the dynamic stiffness of the interface elements becomes independent of frequency

and becomes (K:onn + €Kconni)

This means that step 2A to 2C in Appendix XVIII only need to be performed once,
and not for every frequency step. As a consequence, in step 2C, the mobility matrix
A does not need to be recalculated completely for each frequency step. As the

response of boundary flexibility modes to a specific force is frequency independent,

diag(—w? + ewp?i+ we>)™ 0

matrix is
0 resb

only the left upper n,, X n,, part of the [

frequency dependent. This means that only the first n,, rows of the mobility matrix
need to be recalculated for each frequency step (where n,is the number of normal
modes retained for substructure A plus the number of normal modes retained for

substructure B).

8.5 Eliminating Residual Flexibility Modes from the Zoet Method

As discussed in the critical review, one of the problems with component mode
synthesis is the density of the reduced matrices representing the modal equation of

motion. Ship sections are connected to each other through many lines which means
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that the final element model of these sections as substructures, contain a high number
of coupling nodes. As the classic CMS techniques are based on describing the
interaction between two substructures through formulating compatibility and
equilibrium relations for each coupling degree of freedom, a relatively high number

of equations may still be required.

An alternative reduction technique is proposed in section 8.3 in order to eliminate the
need to set up equations for each coupling degree of freedom. Coupling is only
described through the response modal coordinates. This line of research has been
chosen because the number of mode shapes required to describe the dynamic
behaviour of a structure accurately enough, is for ship structures expected to be much
lower than the number of coupling degrees of freedom, as was found the case for the

CMS simulations for the LNG carrier presented in section 7 (see Table 3).

However, if including interface residual flexibility should be required, again the need
arises to include all the degrees of freedom of all coupling nodes into the total set of
equations of motion, as demonstrated in section. As an accurate description of the
coupling forces is related to an accurate description of stain forces, the results of the
total assembled dynamic behaviour calculations are very sensitive to errors in the
description of the coupling node displacements (also been described in [39]). A
description of the dynamic behaviour of two coupled substructures is given in section

8.4 that accommodates for interface residual flexibility to be taken into account.

However, by including boundary flexibility modes, a formulation of interaction
between substructures has been obtained again that requires a number of equations

that has to exceed the number of interface degrees of freedom.

In this section a technique is proposed for eliminating the boundary flexibility
modes, and reducing the required number of equation back to the number of required
normal mode shapes. The interaction between two substructures is again, as in
section 8.3, described only through the modal coordinates of the normal modes. In
the method suggested in this section, the effect of residual compensation has been
incorporated into the description of interaction between modal coordinates i.e., into

the boundary mobility matrix [A].
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8.5.1 Compiling the Total Boundary Mobility Matrix

The first step in obtaining reduction in the number of total assembled equation of
motion is by formulating boundary mobility matrices [A] for individual coupled pairs

of substructures. Each coupled pair of substructures form a super element.

Ayp ay + %4
Qg ap
ac
ap
N J
Y
Atot
Where:

A, is the mobility matrix for substructure A and B coupled together
Agc is the mobility matrix for substructure B and C coupled together
Acp is the mobility matrix for substructure C and D coupled together

A,,: 18 the mobility matrix for all substructures added together

Figure 60 Demonstration of formulation of the total boundary mobility matrix
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The boundary mobility matrix, reflecting the behaviour of interface boundaries when
all substructures are coupled, is obtained through adding all the boundary mobility

matrices of all the pairs of substructures (super elements) into one matrix. Adding the
super elements to from the total boundary mobility matrix is done in a similar way as
done with the formulation of a total assembled stiffness or mass matrices through the

stiffness matrices of individual elements with classical finite element modelling.

Figure 60 shows an example of a structure sub divided in four substructures A, B, C
and D. The figure shows how boundary mobility matrices of pairs of substructures
(i.e. interaction matrices between pairs of substructures) are used to form the total
boundary mobility matrix reflecting the interaction between the substructures all

coupled together.

The strategy of the approach is to eliminate the interface displacement degrees of
freedom related to the residual flexibility modes of the boundary mobility matrices of
the individual pairs of substructures (A4 Agc Acp ) by using a similar technique
used with the static condensation according to Guyan (see equation (6.37) to (6.42)).
With these reduced matrices the total assembled boundary mobility matrix A, is
formulated as demonstrated in Figure 60. The total equation of motion is then
formulated according to equation (8.33):

[Aror — Ila = —ay

Where « has become a vector representing only the modal coordinates of all the

individual substructures.

8.5.2 Eliminating Interface Displacement Degrees of Freedom

Consider the boundary mobility matrix A,z of two substructures, substructure A and
substructure B. According to (8.33), the modal coordinates and interface

displacements vector «a is solved from the following equation:

[Agp — Ila = —aq
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Where

au Qoa
ap Aop
a= and ay =
Upresh UpAresb
Upresb UpBresb

[A45 — I], is divided in sections in such a way that the modal amplitudes are grouped
and separated from the nodal interface node displacements which represent the

residual compensation:

ay oy (8.34)
Aga Agu [ ap ] [ %op ]
I . ==
Aua Auu {uAresbJ {uOATESbj
UBresh UoBresb

A description of the equation of the interaction between two structures is now
formulated based on only the modal coordinates, eliminating the degrees of freedom
of equation (8.34) related to the residual interface displacement at the interface
degrees of freedom. In Appendix XVII1I the process used to achieve this is listed as a

sequence of different steps (see step 4A to 4G).

Through the lower line in equation (8.34) the relation between the residual
compensation deflections (uy,.sp, and ug,.sp) and the normal modal coordinates of

the normal modal coordinates (a, and ag containing both rigid body and elastic) is

obtained:
[y Upresh Uparesb
[Aua] .aB] + [Auu] [uBresb] - [uOBresb]
Upresh] _ -1(_ UoAresh _ ay (8.35)
[uBresb- = [Aul { [uOBresb] [Aual [ag]}
Usresb] _ _q1 [Uoaresb] 1 ay
[uBresb- N [Auu] [uOBresb] [Auu] [Aua] [aB]

The new matrix only containing the modal amplitudes as a variable is formulated by
substituting (8.35) into the first line of (8.34):

(e + [y 2] = =[] 69
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Substituting (8.35) into (8.36) gives:

'aA' . -1 uOAres aOA
[Agal g [Aqu] [[Auu] [uOBres] Aua [ ]] aOB
7% . -1 Upares _ -1 Qoa
o) 3] ~ e[ A1ad] [uoms] Al (] M Aual [ 2] = =[]
ray Apa -1 Upares (8.37)
[Agal lagl — [Aau]lA Aua [ ] [aOB] Aqu][Auu] [uOBres]
The new matrix equation is written as:
- as1  [doa (8.38)
[AAB B 1] [as] B [aOB]

(8.39)
AAB -1 = [Aaa] - [Aau] [Auu]_l[Aua]

Where:
A, is the boundary modal mobility matrix expressing the response of the
interface between two coupled structures as a function of modal coordinates
of normal modes only.

AAB = [Aaa] - [Aau] [Auu]_l [Aua] +1 (8.40)

AAB = [Aaa] + [Ares] +1

Where:
A, 1 the residual boundary modal mobility matrix, written as:

Apes = _[Aau] [Auu]_l [Aua] (8.41)
Furthermore:
(8.42)

Aoal _ _ [%oa _1 [Yoaresb
[dOB] B [aOB] + [Aau] [Auu] [uOBresb]
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Considering the example of Figure 60, the same analysis is repeated to obtain Ag,
Acp. Ao is then compiled with A,g, Agc, and Acp, the number of rows and columns
equal to the number of retained normal mode shapes of all individual structures
together (see Figure 61).

[t e s et
P - - | a,
A}lB aA + ABC }as + ACD l‘IC _ AAB - } 4
s }ac ®p Apc }a’s
Aep |77
p
Antoi
Figure 61 Composing the mobility matrix of the total substructure from the mobility

matrices formulated from the individual pairs of substructures AB, BC and
CD. The mobility matrices reflect the response of the substructure as a function
of the normal modal coordinates only, but also include the effect of residual
interface flexibility according to equation (8.35) to (8.40). See also Figure 60

In Appendix XVIII the different steps are distinguished in the formulation of 4,..¢
and correction on —a,. As already discussed in section 8.4, the response of the
residual boundary flexibility modes to the interface node loads is independent of the
frequency of alternation of these loads. When neglecting the contribution of the
interface inertia to the interface node loads, as also suggested in section 8.4, the
degrees of freedom of the boundary mobility matrix that are related to the residual
flexibility displacements are also frequency independent. This means that step 4A to
4C in Appendix XVIII only needs to be performed once as the resulting matrices

remain the same for each frequency step.

8.5.3 Overcompensation of Residual Flexibility

In section 8.5.2 a method is proposed for eliminating the residual interface nodal
deflection degrees of freedom from the set of dynamic equations obtained according
to Zoet’s method. This elimination is based on describing a relation between the

residual compensation of the interface degrees of freedom and the normal modal
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coordinates and bares resemblance with the formulation of a reduction basis
developed by Guyan [49]. The residual compensation thus obtained can be expressed
through the modal coordinates only and can be written as described in equation
(8.38) to (8.40).

The equations of the total assembled structure involving n substructures is generated
through adding the equations of the individual substructures, as demonstrated in
Figure 61. A total structure consisting of n substructures is written as:

< oA
> an-1(2- Z @)
Axy is the boundary modal mobility matrix with residual compensation for

substructure x coupled to substructure y.

As A,y = [Agq] + [Ares] + 1 according to equation (8.40), this relation is also

expressed as:

E([[Aaa] +lAre] +1]) - 1] [ap] = —Z o]

From this relation it can be seen that the approach developed above (section 8.5.2)

will lead to an overcompensation of residual interface flexibility.

Prove of this is obtained as follows. According to this method, the total residual

boundary mobility matrix becomes:

-1

S

[Ares]

-]

According to equation (8.41) the thus obtained sum of residual boundary modal

motilities of all substructures together is written as:

(8.43)

S
|
[

HM

n—
res Z au] uu -1 [A ua]
1
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The correct residual boundary modal mobility matrix for the full assembled matrix
however can be deduced following exactly the same steps as in section 8.5.2, but this
time considering the total assembled boundary mobility matrix with all degrees of

freedom related to residual interface displacement retained:

n-1 n-1 -1 -1

> A Auul > g
1 1

1
The error is generated through the difference in approach to the inverse of the A,

(8.44)

matrix, as
n-—1

n-1 -1
D] # D Al
1 1

In which case [X7714,, ]~ generates a lower number than Y% 1[4,,]7*

Results obtained from (8.43) are therefore expected to be over compensated. The
remedy for that is that more normal modes need to be applied.

8.6 The Rubin-Zoet Method

The method described in 8.5.2 can also be applied on the reduced dynamic stiffness
matrix of the full assembled system matrix obtained through Rubin’s Method. The
skyline of the matrices formulating the reduced equations of motion of two coupled
systems A and B according to Rubin looks as follows: (see section 6.5.2.2 for

explanation of symbols)
ajl_|[F
Ax [ub] B [0]
For A representing two coupled systems A and B we write:

AT R, 0 [KA+CAw—MA 0 HRA O]L
0 RBT 0 KB+CBw_MB 0 RB

In the same way as done in section 8.5.2, an expression for the reduced dynamic

mass matrix is obtained:
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[Aaa + Ares] [a =

aA] _ EA] _F
B Fg

This expression is obtained in similar way as expressed in section 8.5.2. Consider

lower line section of the matrix equation shown in Figure 62:

[Auala + [AyyJup =0

Up = [Auu]_l{_[Aua]a} Up = _[Auu]_l[Aua]a (8.45)

e ! [ 11 - T

i : } y Fog =¢4 Fou

______ Haa ] Ay | « F
i “z Fop = ¢5TF5A
Aua Auu r Us

Figure 62  Skyline of matrices expressing the equations of motion for two coupled systems according to the
Rubin’s method

The new matrix only containing the modal amplitudes as a variable is formulated by

substituting (8.45) into the first line of the matrix equation shown in Figure 62:

[Aaa]a + [Aau]ub =F (8.46)

[Agala — [Agy] [Auu]_l[Aua]a =F

The new reduced matrix (6.58) is written as:

[A]a =F (8.47)

Where [4] is the reduced dynamic stiffness matrix

(8.48)
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(8.49)
- [Aau] [Auu] -1 [Aua] = Ares

Where the A, is the residual boundary stiffness matrix

[Agq + Aresla =F (8.50)

A is a full matrix expressing the interaction between substructure A and B as a
function of normal modal coordinates of substructure A and B only. The advantage
of obtaining A for the Rubin’s method instead of for the Zoet method (section 8.4
and section 8.5) is that less matrix operations are required as the operations are
performed on matrices containing all retained modal coordinates, but only halve the

number of interface degrees of freedom than the Zoet method.

8.7 Comparing Required Calculation Time

In 8.2 to 8.6 new approaches to CMS modelling have been suggested. In this work,
many advantages of using CMS methods for ships have been recognised. However,
due to the high density of CMS matrices, more computation time is sometimes

required for analysing a structure according to the classical CMS equations than for
the analysis according to the full harmonic method. The new approaches to CMS in
this work have therefore been suggested with the aim of reducing the total required

computation times.

In this section the number of matrix operations required for obtaining calculation
results for the LNG carrier analysed in section 7 is discussed. The number of matrix
operations is a direct indication of the required computation time. The following

methods are reviewed and compared for their required number of matrix operations:

- Mode Superposition

- Fixed Interface CMS

- Free Interface CMS

- Zoet method (with and without residual flexibility)

- Rubin-Zoet method (with and without residual flexibility)
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8.7.1 Estimating Calculation Time: Floating Point Operations

In Appendix XV to Appendix XIX expression for the number of required floating
point operations for each step for the different simulation methods are presented. In
Appendix XX to Appendix XXIII the number of matrix operations is presented
required, calculated when applying the analysis technique on the LNG carrier, for
which simulation results have been presented in section 7 and Appendix VII to
Appendix XIII.

Not for each step has the number of required matrix operations been obtained
through direct calculation. The number of matrix operations required for solving the
eigenvalue problem for obtaining mode shapes and natural frequencies has been
obtained through measuring CP times the computer requires for generating the mode

shapes and natural frequencies.

Appendix XIV gives an overview of some basic matrix operations and the equations
used to estimate the corresponding required number of floating point operations. In
Appendix XX to Appendix XXIII the number of real floating point operations
(FLOPS) required for each step for the ana;ysis of the LNG carrier is presented,
where each arithmetic operation (+,-,*,/) counts as one matrix operation ( [48], see
also Appendix XIV).

Similar to what has been done in section 7, the number of mode shapes and natural
frequencies retained for all the different CMS analysis is based on selecting all mode
shapes with corresponding natural frequencies within the frequency range between 0
and 1.5* f,,. Hz, where f,,., is the upper limit of the frequency range for which
simulation results are generated. The calculated number of floating point operations
is, again as in section 7, is based an analysis carried out for 80 frequency steps over a

frequency range between 1 and 40 Hz.

In the presentation of the number of the performance of the different methods, the
steps in the process are, similar to how ANSY'S does it, grouped in two stages: the

generation pass and the use pass. The generation pass is the stage in which the
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reduced matrices are generated which form the super elements. These super elements
are compiled into the total assembled matrix in the Use Pass. In the Use pass the

equations are also solved.

8.7.2 Required Number of FLOPS for Zoet’s Method

In this section the required number of FLOPS calculated for the Zoet method with
and without residual flexibility is presented and compared with the required number
of FLOPS for carrying out the same analysis according to the classical Rubin’s
method, mode superposition and according to the full harmonic analysis. With each
method, the estimated required time for producing 80 sets of results for 80

frequencies equally divided between 1 and 40 Hz is presented.

The number of FLOPS for the classic free interface Rubin method (without residual
interface flexibility) has been estimated according to Appendix XVI. For a more
detailed presentation of calculated number of floating points see Appendix XVI and
Appendix XXI.

The number of flops for the full harmonic analysis, and the number of FLOPS
required for calculating the normal modes and natural frequencies have been
estimated through the measured CP times when carrying out the analysis with
ANSYS, as presented in Table 8 (see also section 7).

In Table 8 the properties of the subsystems are presented together with the measured
CP time for calculating normal modes with ANSY'S according to the Block Lanczos
method. Also the measured CP time for the complete generation pass is registered in
Table 8.

In Table 9 the calculated number of floating point operations for each sub step is

presented applying the classical free interface CMS technique according to Rubin.

In Table 10 and Table 11 the calculated number of floating point operations for each
sub step is presented applying Zoet’s method without interface residual flexibility
and with residual interface flexibility taken into account respectively.
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In Figure 63 the number of floating point operations for each step for each method

discussed in this sub-section is presented in a column graph.

LNG vessel FE Number of |Number of Method Number of Required CP  |Required time
model nodes boundary modes for calcuating |generation
degrees of required® eigenvectors |pass
freedom and
eigenvalues
PartH 4391 2088 |CMs fixed 181 18.5 22.8
CMS free 257 24.5 52.5
DartG 5680 1536 CMS fixed 373 29.8 ap
CMS free 419 39 100.8
PartF 5680 1536 CMS fixed 373 29.8 ap
CMS free 419 39 100.8
partE 8933 7188 |CMS fixed 213 30 6.6
CMS free 323 61 174
PartD 9833 6198 CMS fixed 162 29.14 53.6
CMS free 336 95 328
PartC 11965 5124 CMS fixed 195 38.11 68.13
CMS free 335 75 225.7
PartB 10044 3798 CMS fixed 138 29.4 a7.7
CMS free 231 53 138.3
PartA 6612 1578 CMS fixed 51 18.8 25.4
CMS free ] 154 24.6 53.3

Table 8 Properties of substructure. Number of modes required is based on applying a cut-out frequency of
1.5 f max, which is in this case 60 Hz. CMS fixed refers to fixed interface CMS, CMS free refers
to free interface CMS.

Rubin's Method

number of frequencies [ 80
Generation Pass
Step number l Action Estimated FLOPS
Calcuating natural frequencies and mode shapes 151E+13
1 Generating constraint modes 1.02€+12
2 Generating reduction basis 8.96E+11
3 Generating Reduced mass and stiffness 3.35€+13
Total Flops Generation Pass 5.45E+13
Use Pass
Step number Action Estimated FLOPS
- Compiling reduced dynamic stiffness 9.68E+08
5 Formulating compatibility and 6.84E+10
- Sparse matrix
6 Solving the matrix equations
appreach
3.|Row reduction forward phase 5.32E+14
b.|Row reduction backward phase 6.24E+10
¢.|Solving trianguiar matrix 4.16€+10
Total FLOPS Use Pass 5.32E+14
[Grand total |  ssmEas |
Table 9 Calculated number of floating point operations for Rubin’s method (no residual

compensation) analysis for 80 frequency steps
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| Zoet's Method, No Residual Boundary Flexibility |

|nu-nher of frequencies | Bd |
Generation Pass
SEp AUMbeEr Action Estimated FLOPS
Calcuating natural frequencies and made shapes 1.51E+13
! Generating residual flexibliiy modes f.a.
. Farmulating boundary mability matrix 3.62E+10
2 Eliminating boundary degrees of n.a.
Total Flops Generaticn Pass 151E+13
Use Pass
Step number Agtion Estimated FLOFS
5 Composing Total Assembled System B.32Es08
[ Salving the matrix equations
B.|Row reduction forward phase 157E+11
b{Row reduction backward phase 117E-08
.| Sakving triangular matrix 5.79€+08
Total FLOFS Use Pass 1.60€-11
[Grana el | isseas |
Table 10 Calculated number of floating point operations for Zoet’s method analysis for 80 frequency

steps with no residual interface flexibility. Assumed cut-out frequency = 1.5 fmax = 60 Hz

I Zoet's Method With Residual Boundary Flexibility I

|nu mber of frequencies | BD |
Generation Pass
Step number | Action Estimated FLOFS
Calouating natural frequencies and mode shapes 1.91E+13
2 Generating residual flexibility modes 197E+14
2z Formulating boundany mobility manrix 3.95E+12
= Eliminating boundary degraes of 1.87E+13
Total Flops Generation Pass 2 38E+14
Use Pass
Step number Action Estimated FLOPS
5 Composing Total Assembled System 6.32E+08
] Solving the matrix equations
8.|Row reduction forward phase 1.259E+12
b.|Row reduction backward phase T.17E+08
.| Solving triamgular marix 8,79E+08
Total FLOPS Use Pass 1.28E+12
[Grand tetal | 2a0ee24 |
Table 11 Calculated number of floating point operations for Zoet’s method analysis for 80 frequency
steps with residual interface flexibility taken into account. Assumed cut out frequency = 1.5
fmax = 60 Hz

189



TEF14 W Full Solution
GE+14 - Mode Superpaosition
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Figure 63 Comparing required FLOPS for Zoet’s method (with and without interface residual

flexibility) with the classical CMS methods (no residual compensation) analysis for 80
frequency steps between 0 and 40 Hz.

8.7.3 Required Number of FLOPS for the Rubin-Zoet Method

In Table 12 the calculated number of floating point operations for each sub step is
presented applying the CMS technique according to Rubin-Zoet, as described in
section 8.6 (see also Appendix XIX and Appendix XXIII). In Figure 64 the
computation times for the different stages of the different analysis techniques are

presented in the form of a column graph.
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Table 12

FE+14

6E+14

SE+14

4E+14

3E+14

2E+14

1E+14

Number of Floating Point Operations

Figure 64

Rubin-Zoet Method

|number of frequencies

B0

Generation Pass

Step number I

Action

Estimated FLOPS

Calcuating natural frequencies and mode shapes 1.91E+13
1 Generating constraint modes 2.4TE+12
2 Generating reduction basis 1.04E+12
3 Generating Reduced Mass, Stiffness 213E=13
4 Generating Reduced Equations of 2.BBE+10
5 Forcing equilibrium and compatibility at 6.926410
the boundary degrees of freedom:
5 Eliminating boundary degrees of 5.13E-12
Total Flops Generation Pass 4.92E+13
Use Pass
S1ep number Action Estimated FLOPS
7 Formulating compatibility and 5.32E+08
2 Solving the matrix equations
a.| Row reduction forward phase 7.57E+11
b.| Row reduction backward phase T1TE«08
c.|5olving wriangular matrix 530609
Total FLOPS Use Pass 7.E64E=11
|Grand totan 459E+13 |

Calculated number of floating point operations for the Rubin-Zoet method analysis for

80 frequency steps
W Full Solution
Mode Superposition
M Fixed Interface CMS (Craig-Bampton) cut-out freque 1.5=f max = 60 Hz
M Free Interface CMS (Rubin's Method) cut-out freque 1.5=f max = 60 Hz
B Zoet method, cut-out freque 1.5:x=f max =60 Hz, no residual boundary
flex
W Zoet method, cut-out freque 1.5x=f max =60 Hz, with residual
boundary flex
M Rubin-Zoet method, cut-out freque 1.5xfmax = 60Hz
| T |
Generating Generating Generating Composing  Eliminating
Normal Constraint  Residual Reduced Boundary Eqg
Modes Modes Boundary  Massand  Degreesof
Flexibility Stiffness Freedom
Modes Matrices

Solving Estimated
uationsof  FLOPSfor
Motion  totalanalysis

Calculated number of FLOPS for analysing 80 frequency steps for the LNG
carrier’s aft ship analysis. Rubin’s method has been carried out without residual
compensation.
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8.8 Discussion of Performance of the Proposed CMS Techniques

Two new CMS techniques have been presented in this section aiming at reducing
computation time for obtaining structural harmonic simulation results of typical

marine structures. These technique are Zoet’s method and the Rubin Zoet method.

In section 8.7 and Appendix XX to Appendix XXII1I the calculated number of
required matrix operations are presented required for getting calculation results for
the LNG carrier, on which classical CMS and full harmonic analysis techniques have
been tested (see section 7). Also the number of matrix operation required for the
LNG carrier following the Zoet, Rubin Zoet and mode superposition method are
presented. The required number of matrix operations is presented for producing 80
sets of results for 80 different frequencies equally divided over a range between 0
and 40 Hz.

Figure 64 and Figure 65 the computation times for the different stages of the
different analysis techniques show that the highest reduction in computation time is
achieved through applying Zoet’s Method with no boundary residual compensation
taken into account. Compared to Rubin’s CMS method the total analysis time is
reduced by 97%. Compared to the full harmonic method the computation time is
reduced by 94% (see Table 13)

Reduction Factor Reduction Factor
Computation Computation Time
TimeRelatively to Relatively to the Full
Rubin's Method Harmonic Analysis
Full Solution -39.21% 0.00%
Mode Superposition 77.66% -63.20%
Fixed Interface CMS (Craig-Bampton) cut-out freque 1.5xf max = 60 Hz -1.48% 52.22%
Free Interface CMS (Rubin's Method) cut-out freque 1.5xf max = 60 Hz 0.00% 64.77%
Zoet method, cut-out freque 1.5xf max = 60 Hz, no residual boundary flex -96.61% -94.41%
Zoet method, cut-out freque 1.5xf max = 60 Hz, with residual boundary flex -59.04% -32.52%
Rubin-Zoet method, cut-out freque 1.5xf max = 60 Hz -91.49% -85.98%
Table 13 Difference in percentage between calculation time required and the calculation time

required for the classic Rubin’s method and full harmonic analysis. Comparison is made
for the calculation of 80 sets of results for 80 different frequencies equally divided over a
range between 0 and 40 Hz. (Rubin’s method carried out without residual compensation)
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8.8.1 Formulating Matrices

As can be seen from Figure 64 and Figure 65 the total computation time required for
generating the results according to the classic CMS method is dominated by the
required time to solve the matrices. This is, as discussed in previous sections, due to
the high number of interface degrees of freedom for which the compatibility relations
are all individually described according to the classic Craig-Bampton and Rubin’s
method. This leads to relatively large and, even more importantly, dense matrices for

which a high number of matrix operations is required for solving.

Different matrix compilation techniques have been presented in this work which are
based on adding extra steps in the formulation of the matrices (the so called
generation pass) through which the number of the dynamic equations that need to be
solved in the end, is reduced. Evaluation of the required computation time for each
CMS method is in fact a comparison between the extra calculation time required in
the generation pass for the reduction of calculation time in the use pass, and the
reduction of calculation time gained in the uses pass for solving the equation of

motion.

3E+14 4
Mode Superposition

2.5E+14

M Fixed Interface CMS (Craig-Bampton) cut-
out freque 1.5=<f max = 60 Hz

2E+14 -

Free Interface CMS (Rubin's Method) cut-

out freque 1.5x=f max = 60 Hz

1.5E+14 -

M Zoet method, cut-out freque 1.5:=f max =60
Hz, no residual boundary flex

1E+14

M Zoet method, cut-out freque 1.5xf max =60

SE+13 Hz, with residual boundary flex

Number of Floating Point Operations

Rubin-Zoet method, cut-out freque 1.5:=f
max = 60 Hz

Generating Generating Generating Composing  Eliminating total
Mormal Constraint  Residual Reduced Boundary generation
Modes Modes Boundary Massand Degreesof pass

Flexibility Stiffness Freedom
Modes Matrices

Figure 65 Comparison computation time required for the generation pass for different methods The
required number of matrix operations is presented for producing 80 sets of results for 80
different frequencies equally divided over a range between 0 and 40 Hz.
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8.8.2 The Zoet Method without Residual Boundary Modes

With the Zoet technique, the reduction of the total assembled matrix representing the
CMS equations of motion is based on formulating compatibility and equilibrium
relations through the modal coordinates of the retained normal modes of the coupled

substructures.

As described above, the compatibility relations between two substructures for the
classical CMS method is done for each interface degree of freedom separately. As
the number of interface degrees of freedom is much higher than the number of
retained normal modes (see Table 8), the formulation of the compatibility relations
requires much more time for the classic CMS method, as can be very distinctly seen
in Figure 65. So, not only the total amount of calculation time for solving the
equations of motion is reduced in the use pass (which was the aim of the
development of the alternative approach) also the total amount of computation time
in the generation pass for the formulation of the dynamic relation between the

substructures has been decreased.

8.8.3 The Zoet Method with Boundary Residual Flexibility Modes

If residual boundary flexibility has to be taken into account, a situation has arisen
that the description of dynamic interaction between two structures is again, like the
classical CMS methods, based on involving all the interface physical degrees of
freedom. In order reduce the set of equations again, two extra steps are required in

the use pass, compared to the classic CMS method:

- The formulation of residual flexibility modes
- The elimination of interface degrees of freedom according to the method
described in 8.5.2.

These two extra steps largely increase the calculation time in the generation pass,
compared to the classical CMS method, as can be seen from Figure 65. It largely
decreases the computation time in the use pass, due to a reduction of the number of

steps required for solving the set of equations of motion. Particularly when many sets
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of solutions need to be generated, the increase of computation time in the generation

pass is paid off in the use pass.

All considered, computation time using Zoet’s method with interface residual
flexibility relatively to the Rubin’s CMS method is estimated to decrease by 59%.
Compared to the full harmonic method the computation time is reduced by a factor
32% (see Table 13).

8.8.4 Zoet Method versus Rubin-Zoet Method

From the CMS simulation results presented in section 7, it can be concluded that the
compatibility relations and equilibrium requirements at the interface nodes are
sufficiently described according to the Rubin method. From a theoretical point of
view, it is expected that the equilibrium and compatibility relations are better
described through the relation formulated by Rubin, compared to the relations
formulated by the Zoet method without boundary residual flexibility taken into
account. This is because the reduction basis applied for the Rubin method also
contains, apart from the retained number of normal modes, static constraint modes,

through which already a part of the omitted flexible modes is represented.

If residual boundary flexibility would be required for the Zoet method, it can be seen
from Figure 64 and Figure 65 that the Rubin-Zoet method would be a much more
efficient method, resulting in 92% reduction in calculation time compared to the
Rubin’s method, and 86% reduction in computation time compared to the full
harmonic finite element method approach (see Table 13). The following reasons are
listed for that:

- Rubin Zoet method does not require the calculation of boundary residual
flexibility modes, but uses interface or boundary constraint modes instead.
Especially when individual uncoupled substructures are not fully constrained,
the calculation of residual boundary flexibility modes takes much more time,
as steps 1B to 1F (see Appendix XXII) need to be added for applying

pseudo constraints and eliminating rigid body degrees of freedom.
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- With fully constrained uncoupled substructures, calculating residual
flexibility modes requires roughly the same number of matrix operations as
generating constraint modes. This is demonstrated in Figure 66 where the
estimated number of matrix operations for the use pass are presented,
applying the Zoet method, with residual boundary flexibility modes, with
constrained substructures. However, reducing the number of equations by
eliminating the flexibility modes the method described in described section
8.5.2. requires more time for the Zoet method, even when the rigid body
degrees of freedom of the individual substructures are constrained. This is
because the Zoet method has roughly double the number of interface degrees
of freedom that need to be eliminated. This higher number of interface nodes

is a consequence of working with interface elements instead of interface

nodes.
1.4E+14
Mode Superposition
w
.E 1.2E+14 -
pe]
i MFixed Interface CMS (Craig-Bampton) cut-
'!’._ 1E+14 - out freque 1.5xf max = 60 Hz
]
-E 8E+13 - Free Interface CMS (Rubin's Method) cut-
o out freque 1.5xf max = 60 Hz
o
£
H BE+13 - B Zoet method, cut-out freque 1 5=f max = 60
ED Hz, no residual boundary flex
6 4E+13
5 W Zoetmethod, cut-out freque 1.5=f max =60
- Hz, with residual boundary flex
E 26413 -
= Rubin-Zoet method, cut-out freque 1.5x=f
0 - max =60 Hz
Generating Generating Generating Composing  Eliminating total
Mormal Constraint  Residual Reduced Boundary generation
Modes Modes Boundary Massand Degreesof pass
Flexibility Stiffness Freedom
Modes Matrices

Figure 66 Comparison computation time required for the generation pass for different methods,

with rigid body degrees of freedom constrained for the uncoupled sub structures. The
required number of matrix operations is presented for producing 80 sets of results for
80 different frequencies equally divided over a range between 0 and 40 Hz.
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8.8.5 Comparing CMS with Mode Superposition

In Figure 65 an advantage of CMS can be seen relatively to the technique of applying
modal reduction to the full structure. Results have not been produced through mode
superposition, but it is assumed that retaining a number of mode shapes based on a
cut out frequency of 1.5 X f,,., Will give results at least just as accurate as the
results obtained through Rubin’s method. For measuring calculation time, all mode
shapes based on this selection criterion have been calculated, through which the total

calculation time required for mode superposition has been estimated.

Looking closer at Figure 64, it can be seen that much more CP time is required for
generating modes shapes and natural frequencies of the entire structures, than the CP
time required for calculating the mode shapes and natural frequencies of all the
individual substructures put together. This particularly has an impact on the required

CP time on for generating a smaller number of output sets (see Figure 67 A).

From Figure 67 A, it can be seen that producing one output set at around 40 Hz,
through classical mode superposition, requires in fact much more computation time
than the full methods, and the classical CMS methods.

However, as the calculation time required for solving the modal equations of motion
is a lot lower, Figure 67 B shows that with an increasing number of output sets, the
classical mode superposition technique becomes more beneficial in reduction
computation time relatively to the full harmonic analysis and the classical CMS
methods. This is because the calculation of modes shapes and natural frequencies
only has to be done once, no matter how many output sets between 0 and 40 Hz are

required.

Although the mode superposition method beats the classical methods in reducing
computation time in the case of calculating 80 output sets, mode superposition
technigque does not solve problem encountered in the post processing phase when
deformed shapes need to be plotted. The amount of output information still remains
the same as for the full solution, as the number of degrees of freedom that need to be

stored and plotted is still the same as well.
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Figure 67 A: comparison calculation time required for generating one outset at around 40 Hz.

B: comparison calculation time required for generating 80 output sets at frequencies
equally distributed between 1 and 40 Hz. (Rubin’s method carried out without
residual compensation)
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8.9 Conclusions

Two new CMS reduction techniques have been proposed based on eliminating
interface residual flexibility modes from the total CMS matrix. The two methods are
the Zoet method (with and without residual flexibility) and the Rubin- Zoet method.
These two methods, together with the classical fixed CMS method (Craig-Bampton)
and free interface CMS (Rubin’s method without boundary residual flexibility
modes) have been reviewed in this section based on required computation time. The
best computation time efficiency has been calculated for the Zoet method with no
boundary residual flexibility modes taken into account.

However, if interface flexibility has to be taken into account for the sake of the
accuracy of the results, the Rubin Zoet method is expected to be a better choice,

based on computation time economics.

More computation time is needed for the Zoet method with residual interface

flexibility for the following reasons:

- Formulation of compatibility at the interface lines is primarily based on
formulating equilibrium of modal forces occurring in the interface elements.
The number of residual boundary flexibility modes that need to be eliminated
for the reduction of the total CMS dynamic stiffness matrix is equal to the
total number of degrees of freedom of all nodes of all interface elements.
Compatibility according to the Rubin’s method is formulated for interface
lines. The number of residual boundary flexibility modes that need to be
eliminated is equal to the total number of degrees of freedom of all nodes on
a line, which is roughly half of the number of degrees of freedom compared
to the number that need to be eliminated for the Zoet method.

- When rigid body degrees of freedom of the uncoupled substructures are not
fully constrained, required computation time for the Zoet method is further
increased, compared to the Rubin-Zoet method. The reason for that is that the
Zoet method relies on residual flexibility modes for compensating the effect

of omitted normal modes whereas the Rubin Zoet method relies on constraint
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modes for the description of the compensation for omitted normal modes. As
the residual flexibility modes for substructures with unconstrained rigid body
degrees of freedom require computation time expensive rigid body dof

elimination procedures are required, procedures that are not necessary for the

calculation of constraint modes.

Because the elimination of the residual flexibility degrees of freedom for the Zoet
and Rubin-Zoet method is carried out according to the same procedure, the accuracy
of the results is initially assumed to be the same, as the effect of overcompensation of
interface flexibility, (as a penalty to the reduction technique), is assumed to be the
same as well. However, the difference between the two techniques lays in the
description of the interface compatibility and equilibrium relations. It cannot be
estimated at this stage if there is a beneficial effect of either of the formulations on

the effect of overcompensation of residual interface flexibility.
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9 Case Study: Evaluating Zoet’s Method

In section 8 two new approaches to CMS have been presented: Zoet’s method (with
and without boundary residual flexibility modes) and a method where compatibility
and equilibrium of interfaces between substructures are described according to
Rubin’s method, and reduction of the total assembled CMS matrices is obtained in
the same way as for the Zoet method (Rubin-Zoet method). These new approaches to
CMS have been suggested with the aim of reducing the total required computation
times compared to the classic Rubin’s CMS method. Calculation results of the
number of matrix operations for each analysis technique presented in section 8.7 and
section 8.8 show that the biggest reduction in computation time can be achieved by
applying Zoet’s method without residual interface flexibility compensation taken into

account.

9 Case Study: Evaluating Zoet's Method
9.1 Properties of the Test Model
9.1.1 |Size types of Elements, and Properties of the Substructures
9.1.2 Excitation Characteristic
9.1.3 Damping and Added Mass
9.1.4 |Boundary Conditions
9.2 Software Used
9.3 Evaluation of the Zoet Method
9.3.1 Relevance of Residual Boundary Flexibility Modes

9.3.2 Results for Individual Pairs of Substructures

9.3.3 Results with Multiple Coupled Structures

9.3.4 |Evaluation of Required Computation Time

9.3.5 Estimated Consequences of Overcompensation on the Calculation Time for the LNG Carrier

9.4 Residual Boundary Flexibility and Overcompensation: a Discussion
9.4.1 |The Effect of the Need for Residual Boundary Flexibility Modes
9.4.2 Over Compensation of Residual Flexibility

9.5 Conclusion
9.5.1 |Evaluation Rubin-Zoet Method
9.5.2 |Evaluation Zoet Method with Residual Compensation
9.5.3 Evaluation Rubin Method with Interface Modes
9.5.4 |Evaluation Mode Superposition Method

9.5.5 Using CMS for Time-Domain Analysis

Paragraph structure of chapter 9 ‘Case Study: Evaluating Zoet’s Method’

In this section a special test case model is presented together with simulation results
obtained through the Zoet method without residual interface flexibility compensation
and with residual boundary flexibility compensation taken into account. The aim of
the model is to investigate the need for residual interface flexibility compensation for
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the Zoet method, to investigate the effect of overcompensation of residual flexibility,
when residual flexibility modes have to be included for the Zoet method.

9.1 Properties of the Test Model

Figure 68 shows the structure used for this case study. As the size of the entire LNG
model analysed in section 7 made it unpractical for testing the newly proposed
methods, only a part of the LNG structure has been used. The structure is divided in
four substructures (see Figure 69 and Table 14). Dynamic simulations have been

carried out for the following configurations:

- Substructure A and B coupled (see Appendix XXVI and Appendix XXVII)
- Substructure B and C coupled (see Appendix XXVI and Appendix XXVII)
- Substructure C and D coupled (see Appendix XXVI and Appendix XXVII)
- Substructure A, B and C coupled (see Appendix XXIX)

- Substructure A, B, C and D coupled (see Appendix XXVIII)

Figure 68 Structure used for testing Zoet’s method. Measurement location are indicated
through the yellow numbers

For all configurations results are compared applying the following simulation

techniques:

- The full harmonic analysis
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- Free and fixed interface CMS

- Zoet’s method with and without residual flexibility.

9.1.1 Size types of Elements, and Properties of the Substructures

As described in 7.2, two types of elements have been used, shell181 elements for
modelling hull and deck plating and BEAM188 elements for modelling stiffeners and

girders.

The shell181 is a four node thick plate element as described in Appendix IV.

The BEAM188 element has been selected as it represents a thick beam element
where the effect of the rotary inertia and shear deformation has been taken into

account as described in Appendix I11.
The total coupled model consists of:

- 6924 nodes
- 7641 elements

Evaluation of the results in carried out through for a selected number of nodes shown
in Figure 68. These number of nodes have been selected following the study of the
mode shapes at the frequencies where the highest response was found according to
the full harmonic analysis of the full structure (sub A, B, C and D coupled, see
Appendix XXVIII).

Sub structural division is according to Figure 69 and Table 14 lists the properties of

the substructures A to D.
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Connection BC
Connection AB

Figure 69 Structure used for evaluation of Zoet’s method. The model is constrained on the
yellow lines on the right hand side of substructure A.

9.1.2 Excitation Characteristic

An arbitrary number of nodes at the lower section of the entire model has been
selected to be subjected to a nodal load in vertical direction of 127 N. This will result
in roughly 3.8 kPa alternating hull pressure, which roughly coincides with the
amplitude of pressure fluctuation calculated for the 1* blade passing frequency (see
section 7.5.2). 80 simulation results are produced applying this alternating pressure
distribution for 80 different frequencies equally distributed over a frequency range
between 1 and 40 Hz.
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Method Number of] MNumber of boundary |Number of Number of Required CP for |Required CP
nodes nodes boundary modes required |calcuating generation
degrees of retained eigenvectors pass
freedomnodes and
eigenvalues
Part A PartAfixedcms 1903 Bounary A-B 140 240 25 9.3 11.8
PartAfreecms Bounary 4-B 140 240 31 11 148
Part B PartBfixedcms 1685 Boundary B-A 140 240 21 95 118
Boundary B-C 120 720
PartBfreecms Boundary B-A 140 240 75 11 16.5
Boundary B-C 120 720
Part C PartCfixedcms 1342 Boundary C-B 120 720 16 g1 g4
Boundary C-D 96 576
PartCfreecms Boundary C-B 120 720 59 95 13.42
Boundary C-D 36 576
part D PartDfixedcms 1160 Boundary D-C 96 576 15 8.84 9.1
PartDfreecms Boundary B-C 36 576 41 87 10.7
PartD Zoet Boundary O-C 95 570 105 10 13.8
Total structure Mumber of Number of Total measured CP Calculating measured CP for
equations total non zZeros measured CP  |required for Elemental and |sclving matrix in
assembled matrix in use pass matrix Modal Selutions |use pass for 80
formulation in |in Use Pass frequency steps
Use pass
full salution 33564 1318574 145 B.7 22 288
fixed boundary cms 2213 3707241 1.6 4 na 288
free boundary cms 2342 4092804 16 4 na 288

Table 14 Properties of the models used for the different methods. Free interface CMS has been carried

according to the Rubin’s method (without residual compensation) and the fixed interface
CMS has been carried out according to the Craig-Bampton method.

9.1.3 Damping and Added Mass

A loss number of 2% has been applied, a typical value used for representing the
structural damping of steel structures. No hydrodynamic damping or added mass has

been applied.

9.1.4 Boundary Conditions

The model is constrained at the nodes on the far right end side on the yellow lines
shown in Figure 69. This means that, when applying free CMS, the substructures B

to D are free floating and all rigid boundary modes need to be retained.
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9.2 Software Used

Free and fixed interface CMS has been tested using ANSY'S. The fixed interface
CMS results obtained through ANSY'S have been calculated according to the Craig-
Bampton method. The free interface CMS results have been obtained through
ANSYS13 according to the Rubin’s method. No residual compensation has been
applied in the free interface CMS technique used through ANSYS. However,
contribution from omitted normal modes is for a great part compensated at the
interface nodes with the classic Rubin’s method through the inclusion of constraint

modes into the reduction basis.

The Zoet method has been tested using a combination between ANSYS, MATLAB
and excel. Stiffness and mass matrices, mode shapes, natural frequencies modal
coordinates a, have obtained through ANSYS and have been written away in text
files (using Harwell-Boeing format for the matrices) or have been exported to excel.
Input data for further calculations in MATLAB are read from the text files and excel

files and the results are calculated according to the method described in section 8.

Also performance applying the different methods is compared through estimating the

number of matrix operations required for the different steps of the analysis.

9.3 Evaluation of the Zoet Method

Evaluation of the new modelling techniques is based on studying a set of 80 output
sets representing simulation results for 80 different frequencies over a range between
0 and 40 Hz. For each substructure simulation results for 4 locations are evaluated.
These locations are selected based study of simulation results performed through the
full harmonic analysis (see Figure 68 and Appendix XXIV). The results obtained

through the full harmonic analysis are the benchmark for this study.

Evaluation of the modelling results will be based on the computation time required
for obtaining results that are ‘accurate enough’. Sufficient accuracy of the simulation
results is considered to have been obtained when the frequencies at which peak

responses are found, coincide with the frequencies on which peak responses have
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been found according the full harmonic analysis results. This basically means that,
considering frequency steps of 0.5 Hz are used (80 frequencies over a 40 Hz
frequency range), natural frequencies found through any of the evaluated method,
should be within a bandwidth between -0.25Hz and +0.25Hz from the natural

frequencies found through the full harmonic analysis.

9.3.1 Relevance of Residual Boundary Flexibility Modes

A comparison has been made between results obtained through Zoet’s method
without taking interface residual flexibility into account and with the interface
residual flexibility taken into account. As explained in section 8, CMS technique
proposed has been developed in such a way that it is not necessary to include the
displacement of each interface degree of freedom in the set of equations, in order to
be able to describe the interaction between the substructures. This way the size of the
matrix that needs to be solved does not depend on the number of coupling degrees of
freedom, but may be defined by the number of mode required for accurately enough
describing the dynamic displacement of the substructures.

In Appendix XXVII simulation results from different models are presented taking a
great number of modes into account applying a cut-out frequency of 120 Hz, equal to
three times the maximum frequency that is analysed producing results over a

frequency range between 1 and 40 Hz taking steps of approximately 0.5 Hz.

As can be seen in Appendix XXVII and Figure 70, taking into account residual
interface flexibility (residual compensation) at the interface nodes is very important
for getting accurate enough results. The results according to Zoet’s method plotted in
these graphs have been obtained by expanding only the normal mode shapes for
either the analysis with residual interface flexibility taken into account or the analysis

with no residual interface flexibility taken into account.

Taking residual interface flexibility into account gives results for the Zoet method,

which are comparable with the results obtained through the classic Rubin’s method.
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9.3.2 Results for Individual Pairs of Substructures

Simulation results according to Zoet’s method with residual interface flexibility
compensation have been produced for each pair of substructures and are presented in
Appendix XXVI (see also Figure 71). The simulation results are presented either for
the y direction or the z direction for the location number shown in the legend. The
subscript ‘c’ to the direction letter y or z, means that the results have been obtained
(iny or z direction) not by just expanding the normal modes, but also expanding the
contribution from the boundary residual flexibility modes. Simulation results have

been produced retaining different number of modes:
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Figure 71 Some results from the simulation of substructure AB and substructure CD. The subscription

‘c’ indicates that the results have been obtained by expanding the residual contribution from
the residual flexibility modes in addition to the expansion of the normal modes. See Appendix
XXV1 for more results)

Substructure A;
retaining 31 modes: cut-out frequency = 60 Hz (1.5%f,,4,)
retaining 142 modes: cut-out frequency = 120 Hz (3% fy,4x)
retaining 205 modes: cut-out frequency = 145 Hz (3.5%f,4x)
Substructure B;
retaining 79 modes: cut-out frequency = 60 Hz (1.5%f,,4)
retaining 142 modes: cut-out frequency = 80 Hz (2% f,,4)
retaining 179 modes: cut-out frequency = 120 Hz (3% f,,4x)
Substructure C;
retaining 59 modes: cut-out frequency = 60 Hz (1.5%f;,4,)
retaining 111 modes: cut-out frequency = 80 Hz (2xf;,4x)

retaining 148 modes: cut-out frequency = 120 Hz (3% f;,,4x)

209



Substructure D;
retaining 41 modes: cut-out frequency = 60 Hz (1.5%f,,4)
retaining 82 modes: cut-out frequency = 80 Hz (2% f;,,4x)

retaining 105 modes: cut-out frequency = 120 Hz (3% f,,,4x)

As can also been seen in Figure 71 and Appendix XXV, good results are generally

obtained for each number of modes taken into account.

The exception is the model pairing substructure A with substructure B. As also can
be seen from Figure 70, residual static modes play an important role in the response
of the structure. This is mainly related to the response of substructure A depending
largely the contributions of higher mode numbers, as demonstrated in Figure 72. In
Figure 72 the calculation results for the response of just substructure A (not coupled

to other substructures) are presented.

0.03 - s ] uncoupled full harmonic analysis 003 - 1 uncoupled full harmonic analysis
003 4 =mode superposition 31 modes 0.03 - _mDSEE‘:ZTp“itiD” 59 modes
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m u
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Figure 72 Calculated response at location 1 in z direction on substructure A. Response is obtained

through mode superposition (red curve) and full harmonic analysis (blue curve). Mode
superposition results are obtained applying a cut-out frequency of 60 Hz ( 1.5%f ,,4,), 80 Hz
(2% f max), 120 Hz ( 3% finax) @nd 140 Hz ( 3.5%f,qx) in graph A, B, C and D respectively
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As can be seen from in Figure 72, accurately describing the vibration amplitudes at
location 1 (at one of the interface nodes between substructure A and B), requires the
superposition of far more modal contributions than the number of modes obtained
through applying a cut-out frequency of 1.5xf,,... Even when applying a cut-out
frequency of 3.5x f,,,., Still differences in calculated response amplitudes can be seen
between the results obtained through full harmonic analysis and the response

obtained through mode superposition.

In Figure 73 can be seen that the response of the uncoupled substructures B to D can
be accurately enough described through mode superposition applying a cut-out
frequency of 1.5xf,,, ... This is why a higher number of normal modes has been

retained for substructure A than for substructure B to D.
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— 140 1aztull selution €0 results obtained from mode superposition applying a
E -7 cut out frequency of 60 Hz (1.5%
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9.3.3 Results with Multiple Coupled Structures

In Appendix XXV results obtained from free interface (Rubin method with no
residual compensation) and fixed interface (Craig Bampton) CMS are plotted
together with results obtained from the full harmonic analysis (obtained through
analysis with ANSYS). These graphs show that free interface CMS is very accurate
whereas the results produced through the fixed interface CMS deviate from the full
analysis results. The number of mode shapes retained for the free and fixed interface
CMS is based on selecting all modes with natural frequencies within the range
between 0 and 1.5xf,,,,,, which in this case is between 0 and 60 Hz, considering our

maximum analysed frequency is 40 Hz.

Location 3

— 3 full solutic
3 full soluticn 3 full solution 0
0 a 0.50 o
0.50 —2 142/75/59/41 —2142/142/111/82
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< <

g o % 0.20

o "4

E o010 E 010

g <
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Figure 74
3 full solution
Ty
Result obtained through Zoet’s method 050 c
—z 205/179/148/105

for substructure A, B, C and D coupled. 0.40

a. Results obtained retaining modes
with natural frequencies between 0
and 1.5xf ., (cut-out frequency
substructure A = 3%Xf .4x)

b.  Results obtained retaining modes 0.0
with natural frequencies between 0 0.00 .
and 2xf ... (cut-out frequency 0 10 0 30 an
substructure A = 3Xf 4x) Frequency [Hz]

c.  Results obtained retaining modes
with natural frequencies between 0
and 3xf,,..(cut-out frequency
substructure A = 3.5%f .0x)

0.30

0.20

Amplitude | mm]
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In Appendix XXVIII results are presented from the simulation run through the Zoet’s
method compared with simulation results obtained through free interface CMS. The
comparison with the free interface CMS (Rubin’s method with no residual
compensation) has been made as the results from the free interface CMS coincide

with the full analysis results.

In the results obtained through Zoet’s Method, the effect of over-compensation of the
residual flexibility can clearly be seen (see also Figure 74), as described section
8.5.3. The results in a too flexible behaviour of the structure’s interface boundaries,
which results in peak responses (natural frequencies) to be located at lower
frequencies than the peak response frequencies found through the full harmonic
analysis and the classic Rubin’s free interface CMS analysis. As a result, the number
of retained normal modes needed to be increased. The upper limit of the frequency
range over which the modes have been selected had to be increased from 1.5%f,,,,, t0
3% frax Which meant that a range of 0 to 120 Hz needed to be adopted instead of a
range between 0 and 60 Hz, as was found to be sufficient for the classic Rubin’s
method (with no residual compensation). By increasing the number of retained
elastic modes, the contribution from the boundary flexibility modes decreases. As it
is through the elimination of the contribution from these boundary flexibility modes
that boundaries flexibility is over compensated, this overcompensation effect is

decreased as well.

In Appendix XXI1X simulation results have been presented of the mode containing
only substructure A, B and C coupled together. In Appendix XXIX and Figure 75
can be seen that the effect of overcompensation has become less strong. Adopting a

cut-out frequency of 2xf,, ., already give accurate enough results.
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Result obtained for location 3 (see Figure 68 and
Appendix XXIX) through Zoet’s method for
substructure A, B and C coupled.
a. Results obtained retaining modes with
natural frequencies between 0 and
2% fmax (cut-out frequency
substructure A = 3xf,.4x)
b. Results obtained retaining modes with
natural frequencies between 0 and
3% f max(Cut-out frequency substructure
A =3.5%f max)

9.3.4 Evaluation of Required Computation Time

To evaluate the effectiveness of the Zoet method in reducing computation time, the

required number of floating point operations for a number simulation methods have

been calculated, as described in Appendix XV to Appendix XIX (see Figure 76).

These numbers have been combined with measured CP times required for obtaining

modal information (see Table 15). The number of FLOPS have been calculated

taking into consideration that the response at 80 frequency steps has been calculated

over a frequency range between 1 and 40 Hz.

The number of FLOPS has been calculated for the following methods:

- Modal reduction on the full model. The number of retained normal modes is

based on applying a cut-out frequency of 1.5xf,,,,, = 60 Hz (where f,,,4x IS
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the upper limit of the analysed frequency range = 40 Hz).Hz), following the
instruction in Appendix XV.

Free interface CMS according to the Rubin method without residual
compensation (calculated with ANSYS). The number of retained normal
modes for the individual substructures is based on applying a cut-out
frequency of 1.5xf,,,,, = 60 Hz (where £, 1S the upper limit of the analysed
frequency range = 40 Hz). The steps listed in Appendix XV1 are followed.
Free interface CMS according to the Rubin method with interface reduction
using interface modes, according to Appendix XVII . The number of retained
normal modes for the individual substructures is based on applying a cut-out
frequency of 1.5xf,,,,, = 60 Hz (where £, IS the upper limit of the analysed
frequency range = 40 Hz). Selection of number of interface modes is based
on applying a cut-out frequency of x3.5f,,.according to Tran [41].
Appendix XXX shows how the number of FLOPS are obtained for the PHD
test model (see also Appendix XXXI)

Zoet Method with residual compensation according to Appendix XVIII. A
higher number of mode shapes needs to be selected in order to reduce the
effect of residual interface flexibility overcompensation. The number of
retained normal modes for the individual substructures is based on applying a
cut-out frequency of 3% f,,,,, = 120 Hz (where f,,,4 IS the upper limit of the
analysed frequency range = 40 Hz).. (see also Appendix XXXI)

Rubin-Zoet method according to Appendix XIX. The same number of mode

shapes has been selected as for the Zoet method (see also Appendix XXXI)
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Method Mumber of| Mumber of boundary |Number of Number of Required CP for |Required CP
nodes nodes boundary modes reguired |calcuating generation
degrees of retained eigenvectors pass
freedomnodes and
eigenvalues
Part & PartAfixedcms 1903 Bounary &-B 140 B40 25 93 118
PartAfreecms Bounary A-B 140 B4D 31 11 148
PartA Zoet and Bounary A-B 140 B4D 205 16.3 189
Rubin-Zoet method
Part B PartBfixedcms 1695 Boundary B-A 140 B40 21 95 118
Boundary B-C 120 720
PartBfreecms Boundary B-A 140 840 75 11 16.5
Boundary B-C 120 720
PartB Zoet and Boundary B-A 141 245 179 13.3 18.3
Rubin-Zoet method Boundary B-C 120 720
PartC PartCfixedcms 1342 Boundary C-B 120 720 16 g1 4
Boundary C-D 96 576
PartCfreecms Boundary C-B 120 720 59 95 13.42
Boundary C-D 96 576
PartC Zoet and Boundary C-B 124 744 148 12 17.6
Rubin-Zoet method Boundary C-D 96 576
part D |PartDfixedcms 1160 Boundary O-C 96 576 15 2.84 9.1
PartDfreecms Boundary O-C 96 576 41 8.7 107
PartD Zoet and Boundary O-C 85 570 105 10 138
Rubin-Zoet method

Table 15 PHD test case model: Comparing size and density of matrices generated through the different
methods. Free interface CMS has been carried according to the Rubin’s method and the fixed
interface CMS has been carried out according to the Craig-Bampton method.

3.00E+12

2.50E+12

2.00E+12

1.50E+12

Operations

1.00E+12

5.00E+11

Calculated Number of Floating Point

0.00E+00

Figure 76

W full solution

M Craig-Bampton CMS (cut-out frequency 1.5=fmax = G0Hz )
MW Rubin's Method CMS [cut-out frequency 1.5x=fmax = 60Hz )

mZoetmethod with residual boundary flex [cut-out frequency 3xfmax = 120Hz )

Rubin-Zoet method (cut-out frequency 3xfmax = 120Hz |

M Rubin method with interface modes
[cut-out frequency 1.5=fmax = 60Hz )

Mode Superposition (cut-out frequency 1.5=fmax = 60Hz )

Calculating Calculating Calculating Composing Eliminating Solving Estimated
Mormal Modes  Canstraint Residual Reduced Mass  Boundary Equations of FLOPSfor total
and Matural Modes Boundary and Stiffness  Degreesof Motion analysis
Frequencies Flexibility Matrices Freedom
Modes

PHD test case model: Calculated number of FLOPS for analysing 80 frequency steps. Free
interface CMS has been carried according to the Rubin’s method (without residual
compensation). The fixed interface CMS method has been carried out according to the
classic Craig-Bampton method.
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Computation Time |Computation Time Computation Time
Difference with Difference with Full Difference with Rubin's
Rubin's Method Harmonic Analysis Method with Interface
Modes
full solution -27.5% 0.0% 37.9%
Mode Superposition -85.4% -79.8% -72.2%
Craig-Bampton CMS (cut-out frequency 1.5xfmax = 60Hz ) -1.7% 35.6% 87.1%
Rubin's Method CMS (cut-out frequency 1.5xfmax = 60Hz ) 0.0% 38.0% 90.4%
Rubin method with interface modes -47.5% -27.5% 0.0%
Zoet method with residual boundary flex (cut-out
frequency 3xfmax = 120Hz ) “22.9% 8.4% 46.8%
Rubin-Zoet method (cut-out frequency 3xfmax = 120Hz ) -63.3% -49.4% -30.2%
Table 16 PHD test case model: Differences in total computation time between simulation

techniques expressed in percentages restively to: Classical Rubin’s method (N0
residual compensation), full harmonic analysis, Rubin’s method with interface
reduction. Comparison has been made based on producing 80output sets for 80
frequencies equally distributed between 1 and 40 Hz.

In Table 16 and Figure 76 can be seen that analysis times are reduced by 23% and by
63% relatively to the classic Rubin’s CMS method when applying the Zoet Method
or Rubin-Zoet method respectively. With the Rubin-Zoet method also a reduction of
calculation time is achieved relatively to the already existing interface reduction

method according to the IRS method (see section 6.5.3.)

9.3.5 Consequences of Overcompensation on LNG Carrier

In section 8.7 the required computation times for analysing the LNG carrier’s
structure’s dynamic response through the newly developed CMS methods are
compared with the computation times required for analysis of the structure through
classic CMS approaches and the full harmonic analysis. With the calculation of the
time required for the analysis according to the CMS methods, the choice of the
number of normal modes retained in the reduction basis was based on selecting all
mode shapes with natural frequencies between 0 and number of 1.5% .. (fmax 1S
the upper limit of the analysed frequency range = 40 Hz, which results in a cut-out

frequency of 60 Hz).

In Figure 77 A the estimated required calculation time for each step for different
simulation technique is presented through bar graphs, based on applying the above
mentioned cut out frequency of 60 Hz. However, from the analysis results of the case

study’s structure it has been concluded that a higher number of normal modes is
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required for the Zoet and Rubin-Zoet method. Simulation results on the PHD test
structure suggest that the cut-out frequency for the Zoet and Rubin-Zoet method has
been increased to 3xf,,,, in order to minimise the effect of overcompensation of
residual interface flexibility, which was to be expected from the matrix compilation
method (as described in section 8.5.3). By increasing the number of retained elastic
modes, the contribution from the boundary flexibility modes decreases. As it is
through the elimination of the contribution from these boundary flexibility modes
that boundaries flexibility is over compensated, this overcompensation effect is
decreased as well. Figure 77 B compares the calculation times required for the Zoet
and Rubin-Zoet method applying the increased cut-out frequency of 3xf,,,, =120 Hz
with the classical methods for which the calculation times are still based on applying

a a cut-out frequency of 1.5%f,,,,, = 60 Hz.

No comparison is made with the reduction that could have been obtained by reducing
the interface degrees of freedom by applying interface modes. ANSYS did not offer
the option of interface reduction through interface modes, and the substructures of
the LNG carrier were too big to calculate the interface modes with the MATLAB

code (see also Appendix XXXII for more extended presentation of results).

As can be seen from Figure 77, despite of the increase of calculation time for the
Zoet and Rubin-Zoet method due to the need for increasing the number of normal
modes, huge reductions of calculation times are still achieve, both relatively to the
time required for the full harmonic analysis and the time required for the classical
CMS (reduction of 67% and 80% respectively)
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Figure 77 Comparing the reduction in simulation time for the different methods applied for the structural

dynamic analysis for 80 frequency steps for the LNG carrier. Graph A compares simulation
times applying a cut-out frequency of 1.5xf,,,,= 60 Hz for all methods. In graph B the cut-out
frequency for the Rubin and Rubin Zoet method has been increased to 3xf ,4x, = 120 Hz.
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Cut out frequency 1.5 fmax = 60 Hz Cut out frequency 3 fmax =120 Hz
Reduction Factor |Reduction Factor Reduction Factor |Reduction Factor
Computation Computation Time Computation Computation Time
TimeRelatively to |Relatively to the Full |TimeRelatively to |Relatively to the Full
Rubin's Method Harmonic Analysis Rubin's Method Harmanic Analysis
Full Solution -39.3% 0.0% -39.3% 0.0%
Mode Superposition -77.7% -63.2% -77.T7% -63.2%
Craig-Bampton CMS -1.5% 62.3% -1.5% 62.3%
Rubin's Method CMS 0.0% 64.8% 0.0% 64.8%
Zoet Method -59.0% -32.5% -44.4% -8.4%
Rubin Zoet method -91.5% -86.0% -80.1% -67.1%
Table 17 Differences in total computation time between simulation techniques expressed in

percentages restively to: Classical Rubin’s method (no residual compensation), full
harmonic analysis. Comparison has been made based on producing 80output sets for 80
frequencies equally distributed between 1 and 40 Hz.

9.4 Residual Interface Flexibility and Overcompensation: a Discussion

In this section the Zoet method with and without residual interface flexibility

compensation has been tested by using the method on a part of the structure of the
LNG carrier. This test structure has been subdivided in four substructures and the
Zoet method has been tested using different numbers of normal mode shapes that

were retained in the reduction basis.

It has been concluded from the simulation results, that including residual interface
flexibility compensation in the Zoet method is crucial for the simulation results. This
has consequences for the effectiveness of the Zoet method, and puts the Rubin-Zoet
method in front, even compared to the applying the existing interface reduction

technique according to the IRS method (see section 6.5.3).

The need for residual boundary flexibility modes means that the interface degree of
freedom elimination technigque presented in paragraph 8.5.2. had to be applied, in
order to achieve reduction of computation time. However, the related final matrix
compilation procedure results in overcompensation of the residual flexibility, which

made it necessary in increase the number of normal modes in the reduction basis.

In the following section a discussion takes place about the consequences of the need
to include residual interface flexibility (as mentioned above) and the consequences of
interface flexibility overcompensation, and how its impact may be reduced.
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9.4.1 The Effect of the Need for Residual Boundary Flexibility Modes

In Figure 78 the required computation time for the different modelling techniques is
presented through a bar graph. Simulation results of sets of two coupled structures
(as presented in Appendix XXVI) clearly showed that including the residual
boundary flexibility modes for the Zoet Method is crucial for the accuracy of the
outcome of the simulation results. This is why the required computation time for the
Zoet method without residual interface flexibility compensation has not been

included in Figure 78.

As can be seen from Figure 78, the Rubin Zoet method requires much less
computation time than the Zoet method, now that residual flexibility modes are
required. The higher amount of computation time for the Zoet method comes from
the fact that the static contribution from the compensation of the omitted modes
relies on the introduction of boundary flexibility modes whereas the Zoet-Rubin
method relies on constraint modes for the compensation of the omitted modes.

Unfortunately, the number of matrix operation required for generating flexibility
modes is much higher than the number of operation required for generating
constraint modes. This is because the calculation of flexibility modes requires
inverting the full stiffness matrix of a substructure whereas the calculation of the
constraint modes requires inverting the stiffness matrix with the interface degrees of

freedom eliminated.
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Figure 78 Comparing computation time for different simulation techniques for the

calculation of the harmonic dynamic behaviour of the PHD test structure.
Comparison has been made based on producing 80output sets for 80 frequencies
equally distributed between 1 and 40 Hz. Rubin’s method has been carried out
without residual compensation.

However, as the substructures B to D are not constrained, the residual boundary
flexibility modes have to be calculated for the Zoet method using pseudo constraints
according to section 8.4 and Appendix V. This makes the calculation of the residual
boundary flexibility modes even more expensive than the calculation of the
constraint modes. This is why the Zoet method requires much more calculation time
than the Rubin-Zoet method. Figure 78 demonstrates that this effect has a huge

impact on computation time for the PHD test model.
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Comparing required computation times considering the rigid body modes of substructure B to
D fixed.. This is to demonstrate that calculating boundary flexibility modes is more expensive
than calculating constraint modes even without the added cost of eliminating the effect of
rigid body modes in case substructures are not constrained. B is a zoomed in version of graph
A.
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In Figure 79 is demonstrated what the required calculation time for the test case
model would be if all rigid body degrees of freedom of the uncoupled substructures
would have been constrained. Calculating boundary flexibility modes cost roughly
twice as much computation time than the generation of constraint modes in this case,
which is a result of having to invert bigger matrices for generating boundary
flexibility modes compared to the computation of constraint modes.

9.4.2 Overcompensation of Residual Flexibility

In Figure 78 the required computation time for the different modelling techniques is
presented through a bar graph. Simulation results of sets of two coupled structures
(as presented in Appendix XXVI) clearly showed that including the residual
boundary flexibility modes for the Zoet Method is crucial for the accuracy of the

outcome of the simulation results.

However, in order achieve reduction in computation time relatively to the classical
CMS methods, the interface degree of freedom elimination technique according to
8.5 had to be applied. Through this technique of assembling the total reduced
stiffness and mass matrices, overcompensation of the residual interface flexibility
takes place when coupling more than two substructures together (as explained in
section 8.5.3). This effect can be clearly seen in the simulation results of the PHD
test case model. As a consequence of the overcompensation, resonance peaks in the
response curves obtained through the Zoet method occur at lower frequencies
compared to the results obtained through classical CMS and full harmonic analysis
(see Figure 74, and Appendix XXVIII). In order to reduce this effect, the cut-out
frequency used for selecting the number of normal modes for each substructure had
to be increased from 1.5 f,,,4x = 60 Hz 10 3 f;,4x = 120Hz . By increasing the
number of retained elastic modes, the contribution from the boundary flexibility
modes decreases. As it is through the elimination of the contribution from these
boundary flexibility modes that boundaries flexibility is over compensated, this

overcompensation effect is decreased as well.
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Figure 80 Effect of increasing the cut-out frequency for the test case model. Graph A represents the

calculation times applying cut-out frequencies of 1.5 * f,,,, = 60Hz for all methods. In
graph B the cut-out frequency has been increased to 3 * f ., = 120 Hz for the Zoet and
Rubin Zoet method, required for the accuracy of the results. Required calculation results
are presented for producing results for 80 frequency steps.
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In section 9 (case study) it has also been demonstrated that the effect of residual

flexibility overcompensation seems to become stronger with an increasing number of

coupled substructures. When coupling three substructures together, a cut-out

frequency of 2 f,,,. gave very accurate dynamic response calculation results. Adding

an extra substructure required an increase of the cut-out frequency to 3 f,,qx-

Rubin’s Method and the Effect of Overcompensation of Residual Flexibility

Although the Rubin-Zoet method has not been tested, it is assumed that the same

increase of cut-out frequency is required for the Rubin-Zoet method, as

overcompensation of residual flexibility is assumed to take place in the same manner.
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Simulation results using different simulation techniques for two coupled sub
structures A and B as described in Appendix XXV

However, it still remains to be investigated if the effect of overcompensation is

equally strong using the Zoet technique as for the Rubin- Zoet technique. In Figure

81 the simulation results are presented considering only two coupled substructures:

substructure A and Substructure B. The simulation results show that for this

particular configuration more mode shapes needed to be expanded using the Zoet

226



Method, compared to the Rubin Method in order to get roughly the same degree

accuracy.

Important to note for these two sets of substructures, is that static compensation plays
an important role. Many important global mode shapes of the substructures are above
the cut-out frequency of 60 Hz, as substructure A is constrained. The better quality of
results of the classic Rubin’s technique whilst retaining a much lower number of
normal modes suggest that through a better description of compatibility and
equilibrium relations, the static contribution is much better described through the
Rubin’s method. This may also mean that through the reduced number of equations,
obtained through the interface degree of freedom elimination technique suggested in
this work, the Rubin Zoet reduced set of equations may give a better formulation of

modal interaction between substructures as well.
The Effect of Choice of Substructures on Overcompensation of Residual flexibility

Also the choice of distribution of substructures may have an effect on the accuracy of
the results and the effect of overcompensation. Considering the results presented in
Figure 81, static compensation plays an important role in the outcome of the
simulation results, simulating dynamic interaction between substructure A and B of
the PHD test model presented in section 9.1. and Appendix XXV. Reason for that is
that the constraints at substructure A, this substructure has become a very stiff
substructure. Important natural frequencies with global dynamic mode shapes are, as
a consequence, way above the classically applied cut-out frequency of 1.5 fqx =
60Hz. This means that the dynamic behaviour of substructure A cannot be
accurately enough described through classic mode superposition, applying a cut-out
frequency of 1.5 f,,,., = 60Hz, and a disproportionate higher number of mode
shapes needs to be applied as a results. This results in a mathematical description of
the sub-structural interaction that depends largely on the presence of the residual
flexibility modes. It is very well possible, but have not been tested in this work, that
substructures and their boundary conditions should be chosen in such a way, that
natural frequencies involving global deformation mode shapes should be as low as

possible, preferably with in the frequency range between 0 and 1.5 f,,4,- This way,
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the mathematical description of the modal dynamic interaction becomes less
dependent on the residual modal compensation. As a consequence, the effect of
overcompensation of the residual flexibility is expected to be less as well, so that the

cut-out frequency can be lower than the here applied 3 fi,4x-

Figure A

Mode shape at 22.5 Hz according to full harmonic Mode shape at 30.25 Hz according to full harmonic
results (see Appendix XXIV) results (see Appendix XXIV)
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Figure 82 As can be seen from the graphs, the effect of overcompensation is less prominent at the

resonance peak associated with the mode shape shown in figure B. Graph A shows the
results obtained from the Zoet method with residual interface flexibility, applying a cut-out
frequency of 1.5f 4, for selecting normal modes of substructure Bto D (3 fax for
substructure A) and together with the results obtained from the full harmonic analysis.
Graph B shows the results obtained from the Zoet method with residual interface flexibility,
applying a cut-out frequency of 2f ., for selecting normal modes of substructure B to D,
(3fmax for substructure A) together with the results obtained from the full harmonic
analysis.

This effect can be further demonstrated with Figure 82. In Figure 82 the deformed
shape corresponding with two different frequencies of resonance calculated through
the full method of the full PHD model, are presented. Also the graph of the
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simulation results obtained through the Zoet method are presented for location 15,
plotted together with the results obtained through the full harmonic analysis.

As can be seen from Figure 82, the biggest effect of overcompensation can be seen
close to the peak frequency of 22.5 Hz. The effect of overcompensation becomes
smaller for the resonance occurring close to 30.25 Hz. This can be seen very clearly
from graph A in Figure 82, plotting the results from the Zoet method with residual
flexibility applying a cut-out frequency of 2 f,,,., together with the results obtained
through the full harmonic analysis. A likely reason for the decreasing effect of
overcompensation of residual flexibility is that the related mode shape at 30.25 Hz is
less dependent on the description of residual flexibility than the mode shape at 22.5
Hz. This is because the mode shape at 30.25 Hz seems to be the result of a coupling
between more localised (elastic) modes, of which most of them have their natural

frequencies lower than the cut-out frequency.

9.5 Conclusion

In this section different CMS techniques, the Zoet method with and without residual
interface flexibility compensation has been tested and evaluated based on accuracy
(compared to full harmonic analysis results) and required computation time. The
substructure on which the methods have been tested is subdivided in four
substructures and the modelling methods have been evaluated based on required
computation time for generating 80 sets of results for 80 frequencies equally
distributed between 1 and 40 Hz. It has been established that the boundary conditions
have not been described accurately enough through the Zoet method. Boundary
flexibility modes had to be incorporated to arrive at the same level of accuracy as the
classical CMS methods. Considering the need for incorporating interface flexibility
compensation, the computation time for the Zoet method increases drastically,
especially when rigid body degrees of freedom of uncoupled substructures are not
fully constrained.

From a computation time point of view, the Rubin Zoet method was found to be the
most time efficient CMS technique. Figure 83 shows graphs comparing computation
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times required for all methods, in order to get similar accuracies, i.e. that the results
coincide well enough with the results obtained from the full harmonic analysis.
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Figure 83 PHD Test case model: Differences in total computation time between simulation techniques

expressed in percentages restively to: Classical Rubin’s method (no residual compensation),
full harmonic analysis and Rubin’s method with interface reduction. Analysis times are based
on producing 80 result sets for 80 frequencies evenly distributed between 1 and 40 Hz.

9.5.1 Evaluation Rubin-Zoet Method

Considering the need for including residual boundary flexibility modes for the Zoet
method, the Rubin-Zoet method approach was found to be the most time economic
approach, based on the calculated number of floating point operations required for

each step in the analysis. Although the Rubin-Zoet method has not been tested, it is
assumed that the effect of overcompensation of residual flexibility (as described in

section 8.5.3) is the same as found for the Zoet method, as both methods use the

same procedure for the reduction of the final CMS matrices (as described in 8.5.2).

230



Estimated calculation times are therefore also based on the need to increase the
number of retained normal modes (by increasing the cut-out frequency from 1.5 f,, 4
t0 3 fiuax) IN Order to reduce the effect of overcompensation of interface flexibility.
By increasing the number of retained elastic modes, the contribution from the
boundary flexibility modes decreases. As it is through the elimination of the
contribution from these boundary flexibility modes that boundaries flexibility is over

compensated, this overcompensation effect is decreased as well.

Compared to the classic CMS methods, an increase of computation time in the
generation pass is required in order to reduce the CMS matrices and achieve
reduction of computation time required for solving these CMS matrices (see Figure
83):

- Applying the interface degree of freedom elimination technique suggested in
section 8.5 has to be applied as an extra step to the classic CMS generation
pass and adds extra calculation time (see Figure 83):

- A higher number of retained normal modes had to be applied compared to
classical CMS, in order to reduce the effect of overcompensation of residual
flexibility. This increases the computation time required for calculating mode

shapes and natural frequencies, as again can be seen in Figure 83

Figure 83 also clearly demonstrates that the decrease of computation time achieved
through the reduction of the CMS matrices is much larger than the increase of

computation time required in the generation pass described above.

Although it has been assumed that the impact of overcompensation of interface
flexibility of the Rubin-Zoet method is the same as for the Zoet method, the question
remains how this impact is affected by the differences in describing interface

compatibility and equilibrium between the Zoet and Rubin-Zoet method.
9.5.2 Evaluation Zoet Method with Residual Compensation

The Zoet Method with Residual flexibility modes requires more computation time

than the Rubin-Zoet method because:
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- The calculation of residual interface flexibility requires much more

computation time than the computation of constraint modes, through which

the classical Rubin’s method described residual compensation. This is

particularly because the rigid body modes of three of the four individual

uncoupled substructures are un-constrained. Expensive rigid body degrees of

freedom elimination techniques are required for the calculation of the residual

boundary flexibility modes.
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Figure 84 PHD Test case model assuming rigid body degrees of freedom of the uncoupled structures

restrained: Differences in total computation time between simulation techniques expressed in
percentages restively zo: Classical Rubin’s method (no residual compensation), full harmonic
analysis and Rubin’s method with interface reduction. Analysis times are based on producing
80 result sets for 80 frequencies evenly distributed between 1 and 40 Hz.
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- The application of the matrix reduction technique (eliminating interface
degrees of freedom) requires more calculation time as roughly double the
number of interface degrees of freedom is retained for the Zoet method, as a
consequence of defining compatibility and equilibrium through interface

elements instead of interface nodes.

Reduction of computation times similar to the Rubin-Zoet method may be achieved
when rigid degrees of freedom of the individual uncoupled substructures are
constrained, as shown in Figure 84. This will make the Zoet method 14% faster than

the boundary interface reduction method following the IRS method.

9.5.3 Evaluation Rubin Method with Interface Modes

Although the method has not been tested, calculation times that would have been
required for the Rubin’s method applying interface reduction through introducing
interface modes have also been estimated based on a cut-out frequency of 1.5 fi,4x-
Interface modes with their corresponding natural frequencies have been calculated.
The number of retained interface modes has been based on applying a cut-out

frequency of 3.5 f,,,, following the findings of Tran [41]

Although this reduction technique considerably reduces the size of the total
assembled set of equations of motion, the Rubin-Zoet method has been found

superior in reducing calculation time for the following reason:

- Generating the reduced stiffness and mass matrix according to the IRS
method (see section 6.5.3) results in an increase of required calculation time
in the generation pass, compared to the Rubin-Zoet method.

- The Rubin’s method with interface modes requires extra calculation time in
the generation time for the calculating of interface modes and natural
frequencies. The increase of calculation time has been estimated to supersede
the calculation time of the normal modes for the Rubin-Zoet method, even
though the Rubin-Zoet method is assumed to require an increased cut-out

frequency of 3 fi,4x, INStead of 1.5 fr,4x
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9.5.4 Evaluation Mode Superposition Method

Figure 83 the computation time required for obtaining modal coordinates through
performing classical modal reduction on the full model is presented. As can be seen,
mode superposition brings the highest efficiency in computation time. However,

disadvantages relatively to CMS techniques are:
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Figure 85 Number of floating point operations required for the different techniques considering the

analysis of the PHD test case model (graph A) and the analysis of the LNG structure (graph
B). Calculation times presented are based on running the free interface models retaining a
sufficient number of normal modes so that equal levels of accuracy is obtained comparing
output results with the results obtained through the full harmonic analysis.
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- Problems with plotting mode shapes as experienced with the full harmonic
annalysis remain, as memory requirements stay the same as the size of the
output files don’t change.

- Addisproportionately higher increase of computation time may be required for
calculating the natural frequencies and mode shapes for the total structure
compared to the total time required for calculating of the mode shapes and
natural frequencies of all uncoupled substructures. This effect is
demonstrated in Figure 85 and becomes stronger with:

o Increase of model size (as can be seen comparing the required
computation time for the LNG model and the PHD test model in
Figure 85)

o Increases with the number of substructures applied.

9.5.5 Using CMS for Time-Domain Analysis

Reducing time required to solve CMS matrices is also very beneficial for reducing
analysis times required to run a time domain, transient analysis. This type of analysis
could be useful to carry out for the aft ship of the LNG carrier as violent cavitation
(cavity implosion) was found to generate an impulsive irregular excitation
characteristic which could have been the reason for the dominant presence of the
higher order blade passing frequency components in the vibration measurement
results. Figure 86 shows the estimated number of floating point operations
(computation time) required for carrying out a time domain analysis running over 2
seconds and requiring 2400 time steps (see Figure 86 for more details on the

assumed conditions of the simulation).
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Figure 86 Simulation time for time domain analysis calculating the dynamic response over 2

seconds in 2400 time steps (PHD test model). Number of time steps is based on
subdividing the highest frequency of interest into 20 steps. This highest frequency of
interest is assumed to be 1.5 * f,,.q4, according to Rubin’s criteria. f 4, is 40 Hz, as
most of the vibration energy is concentrated over the first 5 blade passing frequency
orders. Calculation times presented are based on running the free interface models
retaining a sufficient number of normal modes so that equal levels of accuracy is
obtained comparing output results with the results obtained through the full harmonic
analysis.

As can be seen from Figure 86, reduced CMS methods are very effective in reducing
computation time for time domain analysis. However, as the interface reduction
technique according to the Zoet and Rubin Zoet needs to be carried out for each time
step, the computation time required in the generation stage increases with the number
of integration steps. This means that the interface reduction technique according to
IRS method (using interface modes) becomes more effective with an increasing
number of time steps, as the interface reduction only needs to be carried out once,
which means that the calculation time in the generation pass is independent of the
number of time steps or frequencies for which simulation results need to be

produced.
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10 Discussion

This chapter begins with a recap of the thesis, giving a summary of the background
and motivation and aims of the work and the steps taken in order to contribute to the
aim. In the section 10.2 “Contributions and Achievements” a summary is given of
what has been achieved in this work and how these achievements contribute to the

aims described section 2 and paragraph 10.1.

In section 10.3 “Shortcomings and Limitations of the Zoet and Rubin-Zoet Methods”
short comings of the developed reduction methods are identified. This leads to

paragraph 10.4 “Future Work” where future work is suggested

10 Discussion

10.1 Recap of the thesis
10.1.1 Aim of This Work
10.1.2 Critical Review and Selection of Modelling Techniques
10.1.3 Modelling of the Structural Response of an LNG Carrier
10.1.4 Problems Encountered with the Full Harmanic Analysis
10.1.5 Advantages of a Sub-Structural Approach
10.1.6 Identified Problems with Classical Sub-5tructural Approaches
10.1.7 Development of the Zoet Method
10.1.8 Zoet Method with Residual Boundary Flexibility
10.1.9 The Rubin-Zoet Method

10.2 Contributions and Achievements

10.3 Shortcomings and Limitations of the Zoet and Rubin-Zoet Methods
10.3.1 Increase of Required Cut-Out Frequency
10.3.2 Analysing a Lower Number of Frequencies
10.3.3 Analysing over a Smaller Frequency Range
10.3.4 Using Zoet and Rubin-Zoet for Time-Domain Analysis

10.4 Future Work

Paragraph structure of chapter 10 ‘Discussion’

10.1 Recap of the thesis

In the marine industry there is a lot of pressure on structural designers to design
marine structures that have to be capable of withstanding high alternating loads.
These alternating loads result in high vibration levels and high alternating stresses
through which crew performance and passenger comfort is affected and lifetime of

structures and machinery is reduced.
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The pressure for understanding the characteristics of irregular forces and
corresponding structural response mechanism is even increasing. In view of recent
research done for the FP7 EU project SILENV, addressing impact of noise and
vibrations on humans and underwater life, more stringent noise and vibration
requirements are expected in the near future. In addition, given the global economic
environment and raising fuel prices, equipment and structures are dynamically

further pushed to the limits.

Using (the right) theoretical deterministic structural response evaluation modelling
techniques is more important than ever. New radical design concepts are developed
in the marine industry, and relying on tradition or statistical modelling techniques

becomes impossible.

10.1.1 Aim of This Work

This work is focussing on the problems with classical structural modelling

techniques related to:

- Labour intensity of the process of generating structural models
- Problems with (large) computation times required for obtaining structural
dynamic response calculation results

- Problems with handing large result files

10.1.2 Critical Review and Selection of Modelling Techniques

The first step in finding solution to the modelling problems experienced in the
industry is a critical review of some state of the art modelling techniques used.

For selecting the most suitable modelling technique, also noise and vibration
measurement results have been studied which have been taken on board three

different types of vessels for the EU research project SILENV.

From the studies of the measurement results and literature review, propeller and
engine vibration excitation spectra were found to have most of the energy
concentrated in very distinct tonal harmonics rapidly decreasing in amplitude with

increasing order number. Combined with the complex nature of ship structures, and
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the related low modal density, Finite Element based modelling techniques have been
found the most suitable modelling technique for modelling the structural vibratory

response of marine structures.

10.1.3 Modelling of the Structural Response of a LNG Carrier

After selecting finite element based modelling techniques as the most suitable
technique for modelling ship structural response to propeller and engine excitation,
some of these techniques have been tested in this work. A finite element model has
been built of a LNG carrier on board which the author has carried out vibration
measurement. As the vessel is equipped with (very low vibration) steam turbines,
only the propeller excitation has been taken into account. The alternating hull

pressure field induced by the propeller calculated by SSPA has been used.

In order to study the response behaviour of the structure, simulations have not only
been carried out for the blade passing harmonic frequencies of interest, but for a
range of 80 frequencies equally distributed over a range between 0 to 40 Hz. 40 Hz
has been chosen as the maximum limit, as through the measurement results all
vibration energy was found to be concentrated between 0 and 35 Hz. Plotting
amplitude levels against frequency shows where the relevant resonance peaks are. As
the proximity of resonance frequencies to excitation frequency is the most important
factor in the sensitivity of the model, simulation results for such a number of
frequencies is very useful to understand the vibratory response of the model and to
be able to understand any discrepancies between the modelling results and the

measurement results.

Good correlation between the measurement results and simulation results was found
for the response at the first two blade passing frequencies. Simulated response to
higher order blade passing frequencies however were found to be much lower than
measured. The unsteady nature of some of the vibration measurement results and the
noise experienced at the aft ship during the measurement campaign strongly suggest
that violent cavitation took place at the aft ship. Predicted amplitudes of excitation at
orders higher than 2 become less reliable, as the amplifying effect of cavity

implosion is not taken into account with the simulation of the excitation. His problem
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is typical for the type of vessel at hand as the shape of the aft ship induces a highly

irregular distribution of wake at the propeller.

10.1.4 Problems Encountered with the Full Harmonic Analysis

With the generation of results for the LNG carrier through the classical full harmonic
analysis, problems have been experienced due to the size of the output files. As a
result, no mode shapes could be studied, which is crucial for fully understanding the

mechanisms of the simulated structural dynamic behaviour.

Component Mode Synthesis modelling (CMS) techniques brought the solution to the
problem. Component mode synthesis is a sub-structural modelling technique based
on subdividing the total to be analysed structure into a number of sub structures. Of
these substructures so called super elements are generated containing modal
information of these individual uncoupled substructures. Two groups of CMS
methods are distinguished: a method based on describing the sub-structural dynamic
properties with all interface nodes fully constrained (fixed interface CMS) and with
all interface nodes free (free interface CMS). The CMS methods tested on the LNG
carrier are the free interface CMS method according to Rubin (with no residual
interface flexibility taken into account) and the fixed interface method according to

Craig-Bampton.

The accuracy of these methods have been evaluated through comparison of the
simulation results with the results obtained through the classic full harmonic finite
element analysis. As the most important aspect of structural response is the proximity
of natural frequencies to the excitation frequencies, a CMS method was assumed to
be accurate enough if calculated peak response frequencies coincide with the peak
response frequencies found through the full harmonic analysis. As a frequency step
of 0.5Hz has been applied, this means that the calculated CMS peak response
frequency should be between -0.25 Hz and +0.25 Hz from the peak response

frequencies calculated through the full harmonic finite element method.

Based on retaining a number of normal modes applying a cut out frequency of

1.5 finax, free interface CMS based on Rubin’s method has been identified as the
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most suitable CMS modelling technique for modelling ship vibrations. Not only did
the peak response frequencies obtained from the Rubin’s method modelling
technique coincide with the peak response frequencies obtained from the full
harmonic finite element analysis, calculated amplitudes also coincided very well with

the amplitudes obtained from the full harmonic analysis.

10.1.5 Advantages of a Sub-Structural Approach

Free interface Component Mode Synthesis (CMS) was found to give the most
accurate results, using the full harmonic analysis results as reference. Not only does
the free CMS method give the best results, this technique also has other great
advantages. As a free interface approach is adopted, the modal properties can be
much easier correlated through modal information obtained through measurements
performed on substructures that already have been built. This means that the
structural properties of the complete structural model are already correlated to

measurement results, whilst the actual structure has not been completely built yet.

Another very important advantage of a sub structural approach is that marine
structures typically consist of many repeating structural elements (frame sections,
decks etc.) for which calculated natural frequencies and mode shapes can be reused.
Also CMS can be used for reduction using the symmetry of models. This not only
reduces calculation times, but also reduces the effort that has to be put in creating the
model (describing the geometry).

10.1.6 Identified Problems with Classical Sub-Structural Approaches

However, carrying out the simulations through the classical CMS techniques using
ANSYS, the total required commutation time had increased by roughly 53%,
compared to the time needed for the classical harmonic analysis (see Figure 87).

An inventory of the different steps in the analysis following Rubin’s free interface
CMS method (as used by ANSY'S) has been made. For each step expressions have
been formulated for the number of floating point operations required (FLOPS).
Using the number of floating point operations as an indication of the amount of
computation time, the conclusion has been drawn that the computation time required
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for solving the reduced set of equations of motion was the most dominant aspect in

the total analysis time required for getting dynamic response results through CMS.

The way of formulating compatibility and equilibrium on interfaces between
substructures was found to be an important aspect resulting in the higher calculation
times. Classical CMS formulates the interaction between substructures for each
interface degree of freedom separately. This means that with a high number of
coupling nodes, as was the case with the LNG structure, relatively large matrices are
formed according to the classical CMS method. Although these matrices are still a
lot smaller than the full matrix formed according to the classical full harmonic
analysis, the high density of the CMS matrices resulted in the increase of time

needed for solving the matrix equations of motion (50% increase for the LNG

carrier)
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Figure 87 Comparing calculation time required for calculating the structural response at 80

frequencies evenly distributed from 1 to 40 Hz for the LNG carrier. Free interface method is
carried out according the Rubin’s method and the fixed interface method is carried out
according to the Craig-Bampton method. A cut out frequency of 60 Hz (1.5 f,,4,) has been
applied for selecting the normal modes.
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10.1.7 Development of the Zoet Method

As the density of the reduced matrices could not be reduced, this work focussed on
decreasing the size of the matrices by introducing an alternative way of formulating
compatibility and equilibrium relations on the interfaces between substructures. The
description of compatibility and equilibrium was described through modal
coordinates instead of physical interface displacement coordinates, which created an
independency of the number of connecting nodes between substructures. This is the

method referred to in this work as the Zoet method.

10.1.8 Zoet Method with Residual Interface Flexibility

Simulation results using this method however demonstrated that including residual
boundary flexibility modes was crucial for an accurately enough definition of the
equilibrium relations. Introducing boundary flexibility modes however meant that the
size of the CMS matrix was again, as with the classical method, dictated by the

number of coupling nodes between substructures.

The next step in the development was the introduction of a interface residual
flexibility mode elimination technique through which a description of sub structural
interaction was formulated based on the modal coordinates of the retained
substructure normal modes alone. This CMS technique is referred to in this work as

the Zoet method with residual interface compensation.

However, with the development of the theory, it had already been recognised that the
method of compiling the total assembled CMS matrix, should result in an
overcompensation of residual flexibility. This has been confirmed by modelling
results running different analysis techniques on a test structure that has been
subdivided into four substructures. Increasing the number of retained normal modes
based on a cut-out frequency of 3 f,,4, (instead of the classically applied 1.5 f,4x)
the effect of overcompensation was reduced and good coincidence with the full
harmonic analysis results was achieved. By increasing the number of retained elastic
modes, the contribution from the boundary flexibility modes decreases. As it is
through the elimination of the contribution from these boundary flexibility modes
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that boundaries flexibility is over compensated, this overcompensation effect is
decreased as well.

Although reduction of calculation time has been achieved with the Zoet method with
residual interface flexibility, relatively to the classical CMS methods, the Zoet
method is not the most effective method when there are substructures involved that
have unconstrained rigid body degrees of freedom in uncoupled condition. For the
calculation of the residual flexibility modes, these rigid body degrees of freedom

need to be eliminated, which is a costly computation event.

10.1.9 The Rubin-Zoet Method

As rigid body degrees of freedom occurred with three of the four substructures of the
test structure, and occur with many typical ship substructures, a third CMS method is

suggested.

This method is based on applying the same matrix reduction technique as used for
the Zoet method (with residual interface flexibility), but is applied on the interface
compatibility and equilibrium formulations according to the classic Rubin’s
technique. This technique is referred to in this work as the Rubin- Zoet technique. A
huge advantage of this technique is that the omitted normal modes are compensated
through constraint modes, instead of residual flexibility modes, as was the case with
the Zoet method. This means that no expensive rigid body degrees of freedom
elimination techniques are required in case of unconstrained rigid body degrees of

freedom for individual substructures.

Considering the same total CMS matrix compilation technique is used as for the Zoet
technique, overcompensation of residual flexibility is however likely to occur in the
same manner, and an increase of cut-out frequency for selecting the number of

retained normal modes is required.

Also assuming a cut-out frequency of for 3 f,,,,, for selecting normal modes for the
Rubin-Zoet method was found the most time economic CMS method of all CMS
methods described.
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Using constraint modes instead of residual flexibility modes means that in case of
the PHD test structure, a reduction of computation time by 50% may be achieved
applying the Rubin-Zoet method instead of the Zoet method. Better economy may
also be achieved with the Rubin-Zoet method compared to the already existing
interface reduction method using interface modes according to the IRS method (see
section 6.5.3). In the case of the PHD test structure, required computation time
decreases by 31% applying the Rubin-Zoet method instead of the Rubin method

using the interface reduction technique according to the IRS method (see Figure 88).

10.2 Contributions and Achievements

Due to the increased pressure on the marine industry on reducing noise and vibration
levels, structural response modelling techniques are increasingly used as a tool for
evaluating design concepts on their impact on noise and vibrations. From literature
review, critical review of the principles of most used modelling techniques, and from
studies of measurement result, finite element modelling technique has been selected
as the most appropriate modelling technique for simulating structural response for
marine structures. However, many problems with the application of the finite
element technique for the simulation the response of marine structures are

experienced. The following problems are encountered:

- Due to the typically complex geometry of marine structures, building a finite
element model (describing the geometry and generating the mesh) is often
labour intensive.

- Uncertainty in material properties, added (hydrodynamic) mass and damping,
excitation characteristic and inaccuracies in the described geometry.

- Due to the complex geometry and scale of the structure, problems occur with
the size of the generated dynamic matrices (number of degrees of freedom)
and result in problems with:

o Required computer memory
o Problems with handling output files (plotting mode shapes, obtaining
results)

o Required computation time
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These problems have also been experienced with the modelling of the structural
response of the aft ship of an LNG carrier presented in this thesis.

Considering the nature of ship structures, a sub-structural approach as adopted with
component mode synthesis techniques has been further investigated. Two new
approaches to component mode synthesis methods have been suggested, in order to
overcome problems with computation time encountered with the application of the
classical component mode synthesis techniques. The following has been achieved

through these new methods:

10.2.1 Decreasing Effort Required for Building the Model

A sub-structural approach to marine structures may be very efficient in reducing
required effort that has to be put in building the model, making use of the fact that a
marine structure can be subdivided in many repeating similar substructures. Time
required to model large part of a ship structure and required computer storage
memory can be decreased as only one repeating substructure needs to be modelled.
In addition, symmetry can also be used to reduce the model size.

10.2.2 Building More Accurate Models

Uncertainty about material properties and accuracy of the described geometry can be
partly eliminated using sub structural modelling techniques. By choosing the
substructures in such a way that they coincide with the sections as they are built in
reality, modal properties can be correlated to modal measurements results taken on

the actual sections, once they have been built.

10.2.3 Reducing Required Computer Memory

A sub-structural approach to marine structures may be very efficient in reducing
required computer memory, making use of the fact a marine structure can be
subdivided in many repeating similar substructures. Modal information needs to be
obtained only once for such a substructure, through which the final matrix can be

compiled and the total assembled sub structural behaviour can be solved.

246



As results are produced per substructure, output files are much smaller. In this work,
problems have been experienced with presenting modeshapes obtained through full
harmonic finite element analysis. These problems were related to the size of the
output files and have been successfully circumnavigated by applying classical

component mode synthesis.

10.2.4 Reducing Required Computation Time

Although the size of stiffness and mass matrices is reduced considerable through the
CMS reduction technique, the high number of coupling degrees of freedom between
substructures, as typically seen for ship structures, largely increases the density of the
final CMS matrices. Although, as pointed out above, these matrices are still
considerably smaller than the matrices that need to be solved for the full harmonic
analysis, the high density of these matrices has resulted an increase of computation

time, even exceeding the computation time required for the full harmonic analysis.

In order to reduce the computation time required for solving the CMS matrices, two
new CMS matrix reduction techniques have been proposed:

- The Zoet Methods (with and with residual boundary flexibility modes)
- The Rubin-Zoet method

Tests have been run on a smaller scale structure with the application of the Zoet
Method. As a penalty to the applied interface reduction, an increase of the number of
retained normal modes was required in order to achieve the same accuracy as the
classic Rubin method. No tests have been carried out with the Rubin-Zoet method,
but as the same interface reduction technique has been used, the same increase of the
required number of retained normal modes as for the Zoet method is assumed, in

order to get the same accuracy.

Based on above, comparison of required computation times for different modelling
techniques has been done as presented in Figure 88 and Table 18. In these figures

and table also a comparison is done applying an existing interface reduction
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technique according to the IRS method, which is based on using interface modes (see
section 6.5.3).

M full solution
£ 3.00E+12 -
5 M Craig-Bampton CMS (cut-out frequency 1.5xfmax = 60Hz )
I'.; 3 50E+12 4 MRubin's Method CMS (cut-out frequency 1. 5=fmax = 60Hz | '
C
% W Zoetmethod with residual boundary flex (cut-out frequency 3xfmax =120Hz ) :
E\:l E 2.00E+12 Rubin-Zoet method (cut-out frequency 3=fmax = 120Hz )
el
o .—°_. mRubin methed with interface modes (cut out frequency
_g o 1.50E+12 1 normal modes = 60 Hz, cut out frequency interface modes = 140 Hz)
7]
E o " _
cut-out frequency 1.5=fmax = 60Hz
_2 O 100E+12 - W Mode Superposition | q ¥ )
-
]
® S.00E+11
_a I
I 0.00E+00 - . : _m : :
Calculating Calculating Calculating Compasing Eliminating Salving Estimated
Mormal Modes  Constraint Residual Reduced Mass  Boundary  Equations of FLOPSfortotal
and Matural Modes Boundary and stiffness  Degreesof Motion analysis
Frequencies Flexibility Matrices Freedom
Modes
W full solution B
£ 3.00E+12 4
5 M Craig-Bampton CMS (cut-out frequency 1.5=fmax = 60Hz )
o
s 2 5OE+12 - M Rubin's Method CMS [cut-out frequency 1 5=fmax = 60Hz )
[
'_5 mZoet method with residual boundary flex (cut-out frequency 3xfrmax =120Hz )
[=] -
o E 2.008+12 Rubin-Zoet method (cut-out frequency 3xfmax = 120Hz )
® '_f m Rubin method with interface modes (cuf out frequency
T -
- 1.508+12 normal modes = 60 Hz,
E o cut cut frequency interface modes = 140 Hz)
3
= O 1008+12 - W Mode Superpaosition [cut-out frequency 1.5=fmax = 60Hz )
]
L]
= 5.00E+11 -
_3 I
3 0.00E+00 T T - T ‘J T T T
Calculating Calculating Calculating Composing Eliminating Salving Estimated
Marmal Modes Constraint Residual Reduced Mass  Boundary  Equations of FLOPS for total
and Natural Modes Baundary and Stiffness  Degreesof Motion analysis
Fregquencies Flexibility Matrices Freedom
Modes
Figure 88 PHD test case model: Graph A: Comparing computation time for different simulation

techniques for the calculation of the harmonic dynamic behaviour of the PHD test
structure. Graph B shows the computation time required if rigid body modes of the
individual uncoupled substructures would have been fully constrained
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In Figure 88 calculation times are plotted in bar graphs for each step for the different

analysis types. As can be seen in graph B, the Zoet method brings a considerable

reduction of computation time compared to the existing CMS methods, as long as all

rigid body modes of the individual substructures are fully constrained (total

computation time reduced by 55%, see Table 18B).
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Table 18

PHD test case model: Differences in total computation time between simulation techniques

expressed in percentages restively to: Classical Rubin’s method, full harmonic analysis,
Rubin’s method with interface reduction. Table A gives the results for the case that
substructure B to D have unconstrained rigid body degrees of freedom. In table B the
results are presented considering all substructure’s rigid body degrees of freedom in
uncoupled condition fully constrained.
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Comparison of computation time is also made in the graphs with computation time
required for an interface reduction technique according to the IRS method, a
technique also designed to reduce the size of CMS matrices (see section 6.5.3). It can
be seen in Figure 88B that the Zoet method also reduces the analysis time relatively

to this existing reduction technique (reduction of 14%, see Table 18B).

However, in most cases, substructures rigid body degrees of freedom are not fully
constrained. This results in a sharp increase of calculation time required for the Zoet
method. A approach, although it has not been tested in this work, according to the
Rubin-Zoet method would be far more beneficial. As can be seen from Figure 88B
and Table 18B, the Rubin-Zoet method reduces computation time by 63.3%
compared to the classic CMS technique, and by 31 % compared with the Rubin’s

method, applying interface reduction according to the IRS method.

In Figure 88 and Table 18 can be seen that mode superposition based on modal
reduction of the full dynamic matrices is the most time efficient method of all (see
‘mode superposition’ in Figure 88 and Table 18). However, the following remarks

can be made in favour of the Zoet and Rubin-Zoet methods:

- Obtaining results through modal reduction of the full model does not solve
the problems encountered in this work with obtaining full sets of results and
plotting deformed shapes from these full sets of results. These problems were
related to the size of the result files, which is not reduced through the
application of modal reduction technique of the full model.

- One important advantage of a sub-structural approach is reduction of
computation time that could be achieved when a structure consist of repeating
similar sub structures. The number of times that steps in the generation pass
need to be repeated can be reduced, as the CMS matrix of only one set of two
interacting repeating substructures need to be generated and reduced. These
matrices are reused when the total CMS matrix is generated. The computation

time reducing effect of this has not been considered in these tests.
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10.3 Shortcomings and Limitations of the Zoet and Rubin-Zoet Methods

An important shortcoming of both the Zoet method and the Rubin Zoet method is
that the interface residual flexibility elimination technique, in combination with the
total CMS matrix compilation technique, results in an over-compensation of residual
flexibility. In order to reduce the effect of this over-compensation, an increase of the
number of retained normal modes per substructure is needed. This reduces the
efficiency of the proposed CMS techniques with increasing number of substructures,
and the IRS method interface reduction technique (using interface modes) may
become more effective in reducing computation time (see section 6.5.3).

The effectiveness of the Zoet and Rubin —Zoet method is not only limited through

the number of substructures used, but also through:

- The number of simulation results required

- The frequency range over which simulation results need to be produced

10.3.1 Increase of Required Cut-Out Frequency

Testing the Zoet method on a test case model, it was found that with the application
on a two-substructure model, retaining a number of normal modes based on a cut-out
frequency of 1.5 f,,., Was found to be sufficient. This coincides with the required

number of retained normal modes for the classic CMS method.

Coupling three substructure together however showed that the number of retained
normal modes per substructure had to be increased, and had to be based on applying
a the cut-out frequency of 2 f,,,4x, in order to get the same level of accuracy as
obtained with the classical CMS method.

Coupling 4 substructures together showed that the number of retained normal modes
had to be increased again, based on applying a the cut-out frequency of 3 f,,4x, IN

order to get the same level of accuracy as obtained with the classical CMS method.

The increased effect of overcompensation with an increasing number of

substructures is potentially a weak point considering the aim of developing the
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reduced CMS method. An important aspect of reducing the calculation time
envisaged in this work is the ability to reuse calculated dynamic matrices of (many)
repeating sub structural elements, a typical marine structure can be subdivided in. As
this required computation time for solving the final high density CMS matrices was
by far the most dominant factor determining the total time required for CMS
analysis, the first step to effectively reusing repeating substructures was to reduce the
size of the final CMS matrices. This has been achieved very effectively through the

proposed reduction techniques (Zoet and Rubin Zoet).

However, the penalty that has to be paid for that is an increase of time required in

the generation of the reduced CMS matrices.

Due to the effect of overcompensation of residual flexibility, the amount of time
required for the generation pass may disproportionately increase with the number of
substructures, as the number of required normal modes per substructure needs to be
increased as well. The number of required normal modes also increases the size of

the total assembled CMS matrix.

Theoretically that means that there is a maximum number of substructures at which
the Zoet and Rubin Zoet can still be beneficial compared to the Rubin’s method
using the IRS method for reducing the interface degrees of freedom.

10.3.2 Analysing a Lower Number of Frequencies

Important to note is that the benefit of the newly introduced technique relatively to
the classical full harmonic analysis only starts above a certain number of frequencies
for which output results are generated. This is because reduction of time required for
solving the final reduced CMS matrices needs to outweigh the extra computation
time that is invested in the generation pass. This extra computation time required in

order to reduce computation time is due to the need to calculate the following:

- Normal modes and natural frequencies
- Constraint modes or residual flexibility modes
- Reducing the stiffness and mass matrices

- Formulating compatibility relations
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- Calculating residual modal flexibility (eliminating residual interface

flexibility degrees of freedom)

This is however not just a weak point for the Zoet or Rubin-Zoet method, but this is
an even more dominant phenomenon compromising the economy of the already
existing interface reduction technique according to the IRS method (see section
6.5.3), as a bigger investment in computation time is required in the generation pass
due to the need for calculating the interface modes. In the case of the test structure
used for the case study in this work, Figure 89A shows that when choosing less than
35 frequency steps over a range from 1 to 40 Hz, classic harmonic analysis starts to
become more economical than the newly introduced Rubin-Zoet method (taking into
account an increased number of retained normal modes for matching the accuracy of

the results with the classical Rubin Method).
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Figure 89 Computation times required for the calculation of 35 frequency steps

10.3.3 Analysing over a Smaller Frequency Range

Considering the effect of overcompensation of residual interface flexibility

contribution, the Zoet and Rubin Zoet method do not only become less beneficial in
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reducing analysis time with a decreasing number of analysed frequencies, but also
with a decrease of maximum frequency analysed (frequency range of analysis).
Increase of the cut-out frequency was required in order to compensate the effect of
overcompensation of the residual interface flexibility effect. Applying the tradition
cut-out frequency of 1.5 fi,,4x, according to Rubin’s criteria (as effectively applied on
the traditional CMS methods) the effect of overcompensation manifested itself as a
shift of peak frequencies over the entire frequency range from 1 to 40 Hz to the

left, as can be seen from Figure 90. The effect was found to be even stronger at the

lower peak frequencies.

Considering carrying out an analysis decreasing the maximum frequency of interest
from 40 Hz to 25 Hz, the number of retained normal modes however can
unfortunately not be reduced. This means that the computation time required in the

generation pass does not decrease either.

This means that the interface reduction technique according to the IRS method could
become more competitive, as a reduction of the maximum simulation frequency
(fimax) should allow a decrease of the number of retained normal modes and interface
modes, following Rubins criteria for the section of the retained normal modes

(1.5 fnax) and applying a cut-out frequency of 3.5 f;,,4, for the section of the

number of retained interface modes according to Tran’s findings.
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0.80 A
0.60
0.40 A
0.20

——z1432/75/59/41

Amplitude [mm]

0.00 ¥ ; . —
1] 10 20 30 40
Frequency [Hz]

Figure 90 Effect of overcompensation on location 15. Applying a cut-out frequency of 1.5 f max,
overcompensation of residual interface flexibility applying the Zoet method (red line) shifts
the peak response frequencies to the left.
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10.3.4 Using Zoet and Rubin-Zoet for Time-Domain Analysis

Reducing time required to solve CMS matrices is also very beneficial for running a
time domain, transient analysis. This type of analysis could be useful to carry out for
the aft ship of the LNG carrier as violent cavitation (cavity implosion) was found to
generate an impulsive irregular excitation characteristic which could have been the
reason for the dominant presence of the higher order blade passing frequency
components in the vibration measurement results. Figure 91 shows the estimated
number of floating point operations (computation time) required for carrying out a
time domain analysis running over 2 seconds and requiring 2400 time steps (see

Figure 91 for more details on the assumed conditions of the simulation).

7.00E+13
m full solution

6.00E+13 -| MFixed Interface CMS (Craig-Bampton) cut-out freque 1.5:=f max =60 Hz
5.00E+13 - M Free Interface CMS (Rubin's Method) cut-out freque 1.5=f max = 60 Hz
mZoet method (cut out frequency = 3* fmax = 120 Hz)
4.00E+13
Rubin-Zoet metheod (cut out frequency = 3*fmax = 120 Hz)

3.00E+12 | mRubin method with interface modes (cut out frequency normal
modes =80 Hz, cut out frequency interface modes = 140 Hz)

Calculated Number of Floating Point Operations

2.00E+13 1 mode superposition (cut out frequency = 3*fmax= 120 Hz)
1.00E+13
0.00E+00 —— T - T T I
Calculating  Calculating  Calculating Composing  Eliminating Solving Estimated
MNormal Modes  Constraint Residual ReducedMass Boundary  Equations of FLOPSfor total
and Natural Modes Boundary  andStiffness  Degrees of Motion analysis
Freguencies Flexibility Matrices Freedom
Modes
Figure 91 Simulation time for time domain analysis calculating the dynamic response over 2 seconds in 2400 time

steps. Number of time steps is based on subdividing the highest frequency of interest into 20 steps. This
highest frequency of interest is assumed to be 1.5 * f,,. .. according to Rubin’s criteria. f ,q, is 40 Hz,
as most of the vibration energy is concentrated over the first 5 blade passing frequency orders.

As can be seen from Figure 91, reduced CMS methods are very effective in reducing
computation time for time domain analysis. However, as the interface reduction
technique according to the Zoet and Rubin Zoet needs to be carried out for each time
step, the computation time required in the generation stage increases with the number
of integration steps. This means that the interface reduction technique according to
the IRS method (using interface modes) becomes more effective with an increasing

number of time steps, as the interface reduction only needs to be carried out once,
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which means that the calculation time in the generation pass is independent of the
number of time steps or frequencies for which simulation results need to be

produced.

10.4 Future Work

With the identification of shortcomings and limitations of the proposed modelling
technique it has been established that the Zoet and, mainly the Rubin-Zoet method
could be the most effective methods within a certain bandwidth of minimum number

of simulation results and maximum number of simulation results required.

Considering the frequency range of interest identified for the LNG carrier and the
modal density of the generated structure representing the aft ship of this LNG carrier,
running 80 simulations for frequencies equally distributed between 0 and 40 Hz the
simulation results produced were found to be of a sufficiently high resolution. This
resolution of results is necessary in order to identify relevant peak response
frequencies. It is the proximity of these peak (resonance ) frequencies to the
excitation frequencies that determines for the greatest part the structural response
amplitude and therefore the vibration and alternating stress levels occurring. As the
proximity of these resonance peaks also determine the sensitivity of the modelling
results to the modelling assumptions (added mass, boundary conditions) being able
to plot amplitudes against frequency of excitation at a sufficiently high number of
steps (resolution) is crucial and form a very effective tool for designing ships keeping

vibration levels at a minimum.

Considering the importance of such simulation results, the Zoet and Rubin Zoet
method have been developed with the main aim of reducing the calculation time
using a sub structural approach, through which the method becomes competitive with
existing CMS methods and CMS matrix reduction techniques (according to the IRS
method). With the given frequency range of interest and the number of results
required (frequency steps), the Zoet, and mainly the Rubin-Zoet method were found
to be competitive with existing sub structural approaches to vibratory response

modelling.
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However, only tests with the Zoet method have been carried out. It had been
established that the effect of overcompensation of residual interface flexibility, a side
effect of the residual interface flexibility DOF elimination technique, increases with
the number of substructures used. It has also been established that the
overcompensation of residual interface flexibility limits the time reducing
capabilities of the modelling technique in relation to the selected frequency range of

interest.

Also, no actual calculation results have been produced applying the Rubin Method
using interface modes. Although a cut out frequency of 3.5 f,,,., has been applied for
selecting the retained interface modes (based on test carried out by Tran [41]), it is

not sure if this cut out frequency would be sufficiently high for ship structures.
All considered, the following future activities are suggested:

- Carry out test simulations with the Rubin-Zoet method in order to establish
the effect of overcompensation of residual interface flexibility in comparison
with the Zoet method

- Investigate the effect of boundary conditions and modal density of
substructures on the effects of interface residual over-compensation.

- Develop an algorithm for counter compensating the over over-compensation
of residual flexibility. This could certainly easily be done for a series of
repeating identical coupled substructures.

- Evaluate the accuracy of the Rubin method with interface reduction
according to the IRS method (see section 6.5.3).
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11 Final Concluding Remarks

Due to increasing pressure on the marine industry to reduce noise and vibration
levels, the aim of this work was to contribute to an understanding of the mechanism
behind structural vibrations typically occurring on board ships, and to contribute to
the development of a practical design tool helping the marine structural designer
design the structure so that vibration levels on the ship will be kept to a minimum.

For that purpose, the author has carried out vibration and noise measurements on
board various ships, which were used for evaluating the nature of excitation sources
and correlation of simulation results obtained from a finite element model of a part of
the aft ship of an LNG carrier. Results obtained through the full harmonic analysis

showed good correlation with the measurement results from the field.

Because problems occurred with the post processing of results obtained through full
harmonic analysis, component mode synthesis (CMS) sub-structural modelling

techniques had to be used in order to be able to study mode shapes.

Apart from providing a solution to the problems experienced with the post
processing, two other important advantages of using a sub-structural approach for

typical marine structures have been recognised:

- Decreasing the amount of effort required for building the model: Marine
structures can be subdivided in many repeating identical substructures. Only
one of these substructures have to be modelled, through which the process of
building the model is simplified. This also reduces the required computer
memory for storing the model.

- Decreasing computation time required in the generation pass: Time required
in the generation pass (the set up of the final matrices that need to be solved)
can be reduced as calculating modal information and applying the reduction
techniques for repeating identical substructures only need to be done once.
The calculated information is then reused with the compilation of the total

CMS matrix.
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- More accurate models: Sub dividing a model in substructures means that a
model can already be correlated to modal measurement results obtained from

the field once a part of the marine structure is already finished.

Although the CMS techniques used on the model of the aft ship of the LNG carrier
does offer these advantages, it has been established that classical CMS increases the
total required computation time compared to the computation required for full
analysis. This increase of computation time related to the number of nodes coupling
the substructures together, through which relatively large and dense CMS matrices

are formed that require a higher amount of computation time to solve.

Recognising the practical potential of sub structural modelling for ships, new
interface reduction techniques have been developed: the Zoet method, and the Rubin
Zoet method. An important aspect of the evaluation of the methods was the
estimation of the required number of floating point operations for each method.
Included in that comparison was also the Rubin’s method using an already existing

interface reduction technique according to The IRS method.

Based on simulation results obtained using the full harmonic analysis method, free
and fixed CMS method, together with the inventory of required computation time,
the Rubin-Zoet method was found to be the most time economical sub structural
analysis method. Estimation of computation time required for analysing a test
structure suggest that through the Zoet-Rubin method a decrease of total computation
time by 49.4% can be achieved relative to the full harmonic finite element analysis,
63.3% relative to the classic Rubin’s methods, and 30% relative to the Rubin’s
method using the already existing interface reduction technique according to the IRS

method (see section 6.5.3).

However, an important short coming of the Zoet and Rubin Zoet interface reduction
technique is that with an increasing number of substructures, an increasing number of
normal modes per substructure needs to be retained. This application of higher cut-
out frequencies is needed in order to reduce the increasing effect of residual interface
flexibility over-compensation, which is a consequence of the interface reduction

technique applied. This may not be a great problem with the application of a high
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number of identical coupled substructures, as modal information only has to be
carried out for one structure, but when considering many different substructures, the
need to increase the number of retained normal modes may considerably increase
computation time in the generation pass, and other CMS technique may become

more economical.

Considering the promising results obtained for the Zoet method, and the reduction in
computation time that may be obtained through the Rubin-Zoet method,
recommendations for future work focuses on finding a solution for the above
described problems occurring with over-compensation of residual interface

flexibility. Future research approaches suggested are:

- Carry out test simulations with the Rubin-Zoet method in order to establish
the effect of overcompensation of residual interface flexibility in comparison
with the Zoet method

- Investigate the effect of boundary conditions and modal density of
substructures on the effects of interface residual over-compensation.

- Develop an algorithm for counter compensating the over over-compensation
of residual flexibility. This could certainly easily be done for a series of
repeating identical coupled substructures.

- Evaluate the accuracy of the Rubin method with interface reduction

according to The IRS method.
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Appendix | Equipment Used for
Noise and Vibration
Measurements
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The B&K 2250 hand held meter/analyser is used as shown in figure 2. Important
features used are the high resolution spectra that can be produced, the signal
capturing facilities (which makes post processing possible) and the logging option.
The meter is used both as a vibration meter and a noise meter.

Hand held meter:

Make and type

Serial number
certificate)

Microphone

Make and type

Serial number
certificate)

Frequency range

Accelerometer

Make and type

Serial number

Frequency range:

Analysis software

Type
Microsoft excel
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B&K 2250

2644991 (see appendix | for calibration

B&K 4189

2638752 (see appendix | for calibration

0-20kHz

B&K 4366
0635619

0.2 Hz to 8 kHz

BZ 7230 FFT by B&K combined with



Frequency analysis based on the Fast Fourier Transform [FFT) algorithm isthetool of choice for
messuramentand dizgnastics of machinery noise and vibration. The frequency 'profile’ of 2 machineis
itsfingerprint, revezling its sources of noise and vibration and their paths to the mezsurament position.

The 2250 withthe BZ 7230 FFT software has many narrow band features -
+ Real time operstion [no loss of data] up to 20 kHz.

# 100 up to 6400 lines giving 2 resolution down ta 16 mHz

+ Linezrand exponentizsl averaging

+ Signal capture and recording

+ Engineering units, 5l metric and UKimperizl units

+ Accelerstion, velocity, displacement ...

Plus Mz hold, spectrum overlay, zoom, tachometer function, trigger, transient and continuous signals, RMS, PWR, P50,
EZD, Peak, P-P...... gtc., software also included for analysis, reporting and downlosdingto 2 PC.

Figure 1: Specification BE&K 2250 with BZ 7230 software as advertised on www.gracey.com, internet site for hiring
noise and vibration measuring equipment.
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CERTIFICATE OF CALIBRATION

ISSUED BY Gracey & Associates
DATE OF ISSUE 24 May 2010
DATE OF CALIBRATION 10 May 2010

BESI CERTIFICATE F3 25813
CERTIFICATE NUMBER  2010-0511

Gracey & Associates

CALIBRATION INTERVAL 12 months PAGE 1 OF 2
High Street, Chelveston
MND A5
TEST EMNGINEER APPROVING SIGMATORY Tel: 01933 624212
<amie Bishop Greg Fice Fax: 01933 624608
/@7 éi ) WWW.GIECEY,COm
Manufacturer  Bruel & Kjaer UK Limited Customer
Model B&K 4189 Gracey & Associates
Serial Mumber 2638752
Description Microphone - 1/2" free-field - O
WDC
Standards Conditions
BS EN 61672 Class 1 Atmospheric Pressure 102.2kPa
Temperature 281
Relative Humidity 40.8%
Calibration Data
Sensitivity -25.00 dB
Latroratory Equipment Used
Equipment /M Lagt Cal Equipm=nt EfN Last Cal
HE 34401 3146R1ET2E  OF-Jul-03 Druck DPI 141 475 2Z-Jul-08
E&E 4123 175308 27 -Apr-039 gtanford DE3S0 33213 15-Jul-0%
Morsonic 1253 20B48 2a-Apr-03

Hobes

‘We certify hat the abowe product was duly tesied and found b be within the specification at fha painis measured [excant where indicated). Measurements are
Faceatie o UKAS reerence sources fom the UK Nasonal Prysical Laboratory. Whene no national or imlemadional sandards exist, traceabiity is bo standands
manigined by e manufacurer. Our Quakty Management Sysiem has been assessed o comply with BS EN 150 9001:200& - BSI Certidcale number FS 25013,
Tests were @ried oul in emdrenmental conditions controlizd 10 Te exent appeopriale 1o the istrumenl's speciication. All reievant 1est cerificates are avaiable for
inspedion.

The uncerzinties are for 3 conddence probability of not less than 95%.

This pertificale & E5ued in acooedance with the conditions of accrediahion granked oy the British Standards InsTiution which has assessed the measurement
capability of T laboraiony and is fraceabiity b recognised national standards and 1o the units of measurement reaiised a1 fe comesponding natonal standards
Iaboranory. Copyright of Tis cerlficate is owned by Gracey & Associzies and may not be repeoduced ofier than in full except with their pror weitien approval.

Gracey & Associates is the trading name of W T Gracey Ltd. Registered in Chelveston England Mo 1178412
B35l approved for the hire and calibration of noise and wibration instrements. Established 1972
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-10

-15

Microphone Calibration Certificate

300 1k

3k [Hz]

10k

Bruel and Kjaer
Type : 4189

Senal no: 2638752

Sensitivity : 56.3 mV/Pa
-250dBre. 1ViPa

Date : 19052010

Signature :

Measurement conditions

Polanisation woltage : 0ov
Pressure : 10215 kPa
Temperature ; 28T
Relative humidity 40,8 %RH
Results are normalised to

the reference conditions.

Diffuse field response

Gracey & Associates

-10

-15

Microphone Calibration Certificate

300 1k

3k [Hz]

10k

Bruel and Kjaer
Type - 4189

Seral no: 2638752

Sensitivity © 56.3 mViPa
-25.0dB re. 1 ViPa

Diate : 19052010

Signature

Measurement conditions

Podarisation woltags : aov
Pressure : 102.15 kPa
Temperature © 28T
Relative humidity 40,8 %RH
Results are nomalised to

the reference conditions.

Diffuse field response

Gracey & Associates

Comment : 20100511
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Manufacturers' Specifications
Bruel & Kjaer 4366 - Accelerometer

Piezoelectric Charge Accelerometer

Charge sensitivity : 5 pC/ms2or 50 pC/g£2 % **
Voltage sensitivity : 4 mV/ms?or 40 mv/g+2 % **

Mounted resonance : 16 kHz
Frequency range - 5 % : 0.2 Hz to 5000 Hz
Frequency range - 10 % : 0.1 Hz to 8000 Hz

Capacitance - typical : 1100 pF excluding cable

Max transverse sensitivity : <2 %
Piezoelectric material : PZ23
Construction : Delta shear

Typical temperature transient sensitivity : 0.02 ms?/°
Typical magnetic sensitivity (50 Hz to 0.03T) : 1 ms%tesla
Typical acoustic sensitivity (154 dB SPL) : 0.001 ms™
Minimum leakage resistance at 20 °C : 20 GQ

Ambient temperature range : -74 to 250 °C

Maximum operational shock (Peak) : + 20 kms?;

Maximum continuous sinusoidal acceleration (Peak) : 20 kms
Maximum acceleration (Peak) with mounting magnet : 50 kms™
Electrical Connector : 10-32 UNF, side entry

Recommended cable : AO 0038

Mechanical

Mounting thread : 10-32 UNF, 3.2 mm deep
Mounting torque : 1 Nm, max =2 Nm, min = 0.5 Nm
Dimensions - body : 16 mm diameter

Dimensions - overall height : 19 mm

Dimension - across base flats : 16 mm - spanner size
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CERTIFICATE OF CALIBRATION
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laboranory. Copyright of Tis cerificate is owned by Gracey & Associates and may not be repeoduced ommer than in full except with their prior weitien approval.
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Appendix Il Full Girder
Approach
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In this section the wave approach is demonstrated for a beam that is not constrained
at the free edges and no damping occurs. These boundary conditions have been
chosen as it is a commonly accepted approach for the boundary conditions of a ship

hull bending properties represented by an Euler beam.

Because of the finite nature of the beam and the boundary conditions, there are
distinct frequencies where the beam has a very high response resulting in a situation
that little effort is needed to generate high vibration levels. Because of the finite
nature of the beam and the presence of the boundary conditions, different waves
occur in the beam travelling is different directions. At certain frequencies waves
travelling from the excitation source to the boundaries (incident waves) interact with
the waves reflected back from the boundaries in such a way a very distinct fixed
spatial distribution of amplitude over the length of the beam occurs (standing wave).
At what frequencies that occurs depends on the relation between the speed of
propagation of the wave, and the frequency of alteration of the vertical displacement
of the particles. Very importantly, it also depends on what phase shift the incident
wave undergoes when it bounces back at the boundaries and travels back towards the
excitation source. With the modelling of the ship’s hull as a beam it is very practical
to adopt a modal approach to vibrations, which is obtained from the wave equations
and the formulation of the boundary conditions as will be demonstrated in this
section. Starting from the general solution as described above:

Dixy = Aqcos(kx) + Apsin(kx) + Azcosh(kx) + Aysinh(kx)

Considering the ends of the beam to be unconstrained, no bending moment and shear
forces will occur at x = 0 and x = L. The boundary conditions are mathematically

described as follows:
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No shear forces implies:

0 62v(t x) 63v(tx)
D=—(EI—22)= 2 =
6x( 0%x > El 03x 0
x=0 639(0) 0 x=1L 631?@) 0 (11.1)
3x 3x
63ﬁ(x)
PEpa k3A;sin(kx) — k3A,cos(kx) + a®Azsinh(ax) + k3A,cosh(kx)
x=0 631’7\(0) 3 3
a3x :_kA2+kA4:0
Therefore: A, = A, (11.2)
x=1L 63ﬁ(L) 3 . 3 3 . 3
FEa k>A;sin(kL) — k®A,cos(kL) + k>Azsinh(kL) + k>Ascosh(kL)
(11.3)
No bending moments implies:
azv(t x)
M=El——==0
0%x
x=0 821'5(0) —0 x=1L 621?@) 0 (11-4)
92x 92x
aZa(x)
i = —k2A;cos(kx) — k?A,sin(kx) + k?Ascosh(kx) + k?A,sinh(kx)
x=0 %0
Srt =~k Ay + kP45 = 0
Therefore:  A; = A (11.5)
x=1L %0, 2 24 i 2 24 o
Fra —k*A;cos(kL) — k*A,sin(kL) + k“Ascosh(kL) + k“A,sinh(kL)
(11.6)
Substituting equation (11.2) and (11.5) into (11.3) and (11.6) gives:
azﬁ(L) (11.7)
2 —k?A;cos(kL) — k?A,sin(kL) + a?A;cosh(kL) + k?A,sinh(kL) = 0
a3ﬁ(L) 34 i 3 34 i 3
FEa k°A;sin(kL) — k>A,cos(kL) + k>Aysinh(kL) + k*A,cosh(kL) = 0
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In matrix notation the two equations (11.7) become:

(11.8)
(k?cosh(kL)—k?cos(kL)) (k?sinh(kL) — kzsin(kL))] Al 0
[(k3sin(kL)+k3sinh(kL)) (k3cosh(kL) — k3cos(kL)) [Az] -

In order to get the non trivial solution the determinant for matrix (11.8) should be
equal to zero:

(cosh(kL) — cos(kL)) (sinh(kL) — sin(kL)) B (11.9)
(sin(kL) + sinh(kL)) (cosh(kL) — cos(kL)) B

det = (cosh(kL) - cos(kL))(cosh(kL) - cos(kL))
— (sinh(kL) — sin(kL))(sin(kL) + sinh(kL)) = 0
Rewriting (11.9) the frequency equation becomes:

cos(kL)cosh(kL) =1 (11.10)

This is only true when kL = (n + %)n forn = {1,2,3 ... o}, where n is the mode

number, from which the natural frequencies w,, can be calculated according to

(11.11)

1
k:(n+7)n:4 (w 2%)
L " El

From the matrix equation (11.8) we can establish a description of the mode shape
corresponding with frequency n. The relation taken from equation (11.8) between A;
and 4, is:

B (sin(kL) — sinh(kL)) B (11.12)

4= 4, (cosh(kL) — cos(kL)) 24

Substituting equation (11.12) into the general solution (6.11) gives:
Dixty = Az|a(cos(kx) + cosh(kx)) + sin(kx) + sinh(kx)]cos (wt) (11.13)

Substitution of (11.11) into (11.13) gives:
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ﬁn(x) =

(n+ %)T[ (n+ %)T[ (n+ %)r[ (n+ %)n
Ay la,| cos I x |+ cosh I x| |+ sin I x | + sinh I x

where (11.14)
B (sin ((n + %)n) — sinh ((n + %)n’))

- (cosh ((n + %)Tt) — cos ((n + %)Tt))

The total response according to the mode superposition technique is equal to

Dy =

= (n+ %)n (n+ %)n (n+ %)n (n+ %)n
Z Aplan| cos I x |+ cosh I x| |+sin I x |+ sinh I x
n=1
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Appendix Il Formulation of
the Beam Element
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The equation of motion of a beam elements is determined through the following
steps:

- Obtaining the energy expression for all degrees of freedom:

- Formulating the displacement function is formulated and substituted into the
energy expression

- Substituting the energy expression in substituted into the Lagrange Equation
through which the mass matrix and stiffness matrix are obtained.

Energy Expression

The energy expressions are separately obtained for the axial deformation
(deformation in normal direction along the x axis of the beam), torsional deformation
about the x axis and bending deformations. The strain expression is based on
Hooke’s law which is the classical relation between stress (ultimately representing
force) and strain (representing deformation) [22, 45]

x=-0.5L x=0.5L

Figure 92 Axis and orientation on a two node beam element (node p and node q).
Displacement in x, y and z direction are indicated with u, w and v respectively.
Rotations about the x, y and z axis are indicated through 6,,6, and 8,
respectively.

The kinetic energy expression is based on Newton’s law through which initially a
relation between the continuous acceleration distribution over the element is given

and the resulting inertia forces.

Beam Axial Deformation

It is assumed that axial deformation (du) results in axial stresses only. According to

Hooke’s law (see Figure 92):
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o, =E¢,

F, = Ao, = AE¢,

The strain energy of a beam element with an infinitively small length dx:
1
du, = EAaxexdx

Where:

&, = strain in x direction = Z—Z
o, i stress in x direction (normal stress) [Pa]
E = elasticity modulus [Pa]

dU, = virtual stain energy

Integrating over the beam length gives the axial strain energy relation

1 0.5L
U, = —f EAe,*dx
2J o5

Substituting &, = strain in x direction = Z—Z into equation (11.18)

1 [05L ou\>
U= —f EA (—) dx
2)_osL ox

The kinetic energy of a infinitively small length dx:

1 .,
T, = EpAu

Integrating over the beam length gives the axial kinetic energy relation:

1 0.5L
T = 5 -f pAU? dx
~0.5L

Beam Torsional Deformation

(11.15)

(11.16)

(11.17)

(11.18)

(11.19)

(11.20)

(11.21)

Torsional deformation of a beam about the x axis is expresses through an angular
deformation 6,.. Considering Figure 92, this angular deformation results mainly in
shear stresses 7,,, and T, all occurring in the zy plane. When the shear centre of the
cross-section coincides with the axis about which the couple is acting, warping is
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assumed not to be restrained. As a result the torsional couple about the x-axis is
assumed not to result in a normal stress o,

However, when beam elements are attached to other elements outside their centre of
rotation, the presence of these other elements attached to the beam element restrain
warping through which normal stresses do occur due to torsional couples. This is
particularly the case with beams representing stiffeners on a plate field. Plate
elements should be modelled in many cases on top of the beam element with the
implication that the nodes of the beam should be placed outside the centre of rotation

of the beam element.

The effect of warping being restrained (warping distortion) is expressed through a

warping function ¥ (y, z). Without restrain of warping ¥ (y, z) = 0.

€y = €, =Vyz = 0 (11.22)
226, 11.23
& =22y (y,2) (1123
00, (0Y(y,2) (11.24)
=5 (Cay %)
00y (0Y(y,2) (11.25)
re =5 (C oY)
Where
T,y IS the shear stress [Pa]
Yxy IS Shear strain
Y is the warping function
The relevant relations between strain (deformation) and stress are according to
Hooke’s law in shear:
Txy = nyy Taz = GVxz Ox = E&y (11.26)

Where G is shear modulus according to Hooke’s law in shear:

E

HRETE)

279



And v is the Poisson ratio which is considered to be around 0.3 for steel

Work done by 7,,=
1 (11.27)
dw = ErxyyxydAdx
Work done by 7,,,=
1 (11.28)
dw = EszszdAdx
Work done by a,=
1 (11.29)
du, = Eaxsdidx
Integrating over the length of the elements gives:
1 O.SL (11.30)
U= Ef f (TayYay + TuzVuz + 0x&x) dAdx
—-0.5L7A
Substituting equation (11.23), (11.24) and (11.25) into (11.30) gives:
1 OSL 00, 2 1 (OSL 920, 2
v=3 0 G) acraf, P [ () w e
Where:
B P 2oy z (11.32)
] = L(<@_2) +(E+y) )dA

The kinetic energy expression for torsional deformation of the beam about the x axis

1 0.5L . 2
r=- j Pl 6y (11.33)
—0.5L
Where:

p = specific mass of the material
L, is the second moment of area about the y axis
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Beam Bending Deformation

The relation between beam bending strain and stresses is expressed through the

relation:

. 0v 0% (11.34)
u(x, Z) =—Z a Ex = —2Z W

For wavelengths greater than ten times the cross sectional dimensions of the element the
slender beam approach can be applied:

_Ou 0dv (11.35)

=t =0
Vez 62+6x

For deep beams:

_ ou N ov - o+ v (11.36)
Ve = 5, Tox T Y T ox

For the slender beam the strain energy stored in the element is assumed to be only

related to €, and is therefore expressed as:

1

1 (11.37)
U, = —faxsde = —fEexde
2y 2y

Substituting equation (11.34) into equation (11.37) gives the strain energy equation

for the slender beam:

0.5L 2.\ 2
v=- j EI, (6_17) dx (11:38)
2J) osL 0x?

For deep beams extra strain energy is generated from the fact that deformation of the
cross section area takes place (the cross-sectional area is not perpendicular to the
deflexion line). y,, follows the relation of equation (11.36). The shear stress is

expressed as:

Tyz = KGVyz (11.39)

1
du = > KGYyzVrzdxdydz
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Where k are general values that can be found in the literature for different types of

cross-sections. Substituting equation (11.36) into (11.39) gives the expression of the

strain energy as a result of shear stresses with the bending of a deep beam:
1 05L v z

= KAG (— -6 ) dx

2 f—O.SL ox 7

Total strain energy for the deep beam:

1 OSL 92y 2 1 OS5L v
U=—f El <—> dx+—f KAG(——G) dx
2) o5, Y \0x? 2) 51 ax 7

For the Kinetic energy equation we can write for a slender beam:

1 (0SL
T = 3 j pAv? dx
~0.5L

For a deep beam the kinetic energy from the rotary inertia effect of the cross

sectional area cannot be neglected anymore and is taken into account:

1 0.5L .2
—f ply, 6, dx
2 —0.5L

The total kinetic energy equation for a deep beam is:

0.5L osL
T = —f pAv? dx + —f ply,0," dx
2 —-0.5L 2 —-0.5L

Where:

p = specific mass of the material
1,, is the second moment of area about the y axis
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Displacement Functions

The second step is obtaining the displacement functions. The displacement function
is an expression of the element’s deformation between the nodes as a function of the
displacements at the nodes themselves. These displacements are expressed through a

polynomial in the form.
v(f) = al + azf + a3§-’2 + .- anf(n_l) (1145)

The displacement function is in fact a description of the displacement as a sum of n

number of assumed mode shapes (modal approach). In principle, the more constants
the polynomial consists of, the more precise the deformation shape of the element is
likely to be described. However, the maximum number of polynomial constants that
can be taken into account depends on the number of degrees of freedom the element
has. In this section the displacement functions of the beam and the plate element are

presented:
The displacement function of a beam is based on the beam as shown in Figure 92

&= 5o - anon dimensional coordinate

a,, = the polynomial constant

In case of a two node beam, considering the deflection in vertical direction (v
according to Figure 92 the total number of degrees of freedom is 4. Rotation about
the y-axis and translation along the z-axis of node p (2 degrees of freedom) and
rotation about the y-axis and translation along the z-axis of node g (2 degrees of
freedom) makes four degrees of freedom in total. Through the four degrees of
freedom four polynomial constants can be expressed as a function of the above

mentioned 4 displacement degrees of freedom:

For a slender beam :

v(§) = a; + azé + azé? +azé? (11.46)
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dv dv ) 3 5 (11.47)
d_f = OSLE = 05[’9}/ = [a1 + azg + a3f + a3€ ], = az + 2a3€ + 30,4@T

For a deep beam the rotation 6,, is expressed through a separate polynomial:

0,(§) = by + by§ + bs3g? (11.48)

Through the static equilibrium requirements a relation between coefficients b,, and
a,, is formulated through which the coefficients b,, are illuminated. The static

equilibrium requires the following relation (see also equation (11.37) and (11.39).

Static equilibrium requirements dictate:

920 o (11.49)
El, (52) + 146 (52— 8,) =0

9% 00 (11.50)
KAG (32 -=2) =0
Through which b,, is expressed in a,,

(11.51)
L1 68 N N _ El
170512 o5c ™ 2T o5 % =051 P = racosie

In order to find the factors of the polynomial expression a,, the displacements and

. 1 1
rotations are evaluated at x = —~ L (vp, Byp) and x =~ L (v, ,qu)

For a deep beam we can write:

(11.52)
x=——1 f:—l Up=a1+a2(—1)+a3(—1)2+a3(—1)3
f: _1 Hyp =b1+b2(_1)+b3(—1)2
x=1L ¢=1 Vg = a; + ay(1) + az(1)* + a3(1)3
2
&E=1 Hyp = by + b, (1) + b3(1)?

Substituting the relations between b,, and a,, according to equation (11.51) into

equations (11.52) gives in matrix notation:
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Vp
-1 1 -1 aq [1

1
0 1 -2 68+3||az| [2M0%
1 1 1 1 as| | Vq
0 1 2 68+3]la
d ! L6,
14
[Al{a} = {7,} (11.53)

Through the relations in equation (11.53) the vector {a}, which is the vector of
polynomial constants, is expressed as a function of the elements nodal displacement

vector{v, }:

{a} = [A]"H{7,} (11.54)

Through the formulation of the polynomial constants as a function of the nodal
displacement vector, a description is obtained of any displacement along the x-axis
of the beam as a function of the nodal displacements. Through substitution of these
relations into the energy equation, the energy expressions can be written as a

function of the nodal displacements as well.

v(§) = [E1[A] 7 {7} (11.55)

Where
[E1=01 & & ¢&°]
[€][A]~* is merged into a matrix N (&)
v(§) = N({ve} (11.56)

v(&) is a scalar and describes the vertical deflection of the beam as a function of ¢

and as a function of the rotational and vertical displacements at the beam’s ends.

(11.57)

1 _
N(f)zm[lvl(‘f) Ni(§) N (&) Ni(ONve}

VO =[O GLMO MmO (GL)Mmo]e
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p

Byp
%
0

q

Where {v,} = |
16,

e — |

N (§) = (2+6B—3(1+2B)§ +¢%)

4(1+3B)
No() = g (LT3 — ¢~ L+ 308 + %)
N3 (§) = 1130 (2+6B8+3(1+2B)—¢°)
Nu() = gagap (1 F3F —E+ (14308 + &%)
-[m© GUm© Mo (G1)mE) e
The expression for the angle of rotation 6(¢), becomes:
(11.59)
06 = 22 (7
0|52 40 ()20 20l
Ns($) = aNal—f(f)
() = T2
N;(§) = aNf)
No(§) = aN‘f)
(11.60)

N9=

1 \oN(E) ON () [ 1 \ON(§) IN4(S)
L] 0 0¢ %L 0¢ ¢

N =
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Substituting the displacement function into the energy expression

Through the strain and kinetic energy equations and the displacement functions the
equation of motion can be obtained through substitution into the Lagrange equation.
This chapter demonstrates how the equation of motion i.e. the mass matrix and

stiffness matrix are obtained for a deep beam from the above mentioned functions.

Through substitution of the displacement functions (11.57) and (11.59) into the
Kinetic energy equation (11.44) and substituting the kinetic energy function into the

Lagrange equation we get:

0.5L 0.5L . 2
T = —f pAv? dx + —j pl,0," dx
~0.5L ~0.5L

2 2
1.7t 1.7 :
. T . . T .
T =§ve pAf N, N, d¢v, +§ve plyf Ng' Ng dév,
-1 -1

Lagrange equation:

d(aT) ou aD_
dt\oz) 9z 9z

d (6T> =MD
dt\az) ~ "'

Kinetic energy equation:

f

1 (OsL osL
T = Ef pAv? dx + Ef pl,0," dx
~0.5L ~0.5L

Substitution of the displacement function into the kinetic energy relation and

the kinetic energy relation into the Lagrange equation:

1 1
M, = pA j N,"N, d&, + pl, f Ng" Ny déi,
-1 -1 (11.61)
1

1
M = pA f N,"N, d¢ + pl, f Ng" Ny dé
-1 1
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Substituting the displacement function into the strain energy equation for deep beams
gives:

1 OS5L 921\ 2 1 O5L v 2
U= E.f O_SLEIy <W> dx + E.f osi kKAG (a— Hy) dx

1 1 1 1
U = 5veEl, f N","N", dév, + > VelAG f (N',"N', —2N'," Ny + Ny"Ng)dév,
-1 -1

Substituting the strain energy equation into the ‘;—: term of the Lagrange equation

gives the stiffness matrix:

aU 1 T 1 T T
5, = Kve = Elyf N","N",d&v, + KAGf (N',"N', —2N'," Ng 4+ Ng" Ng)dév,
-1 -1
o, 1 r r (11.62)
K= Elyf N","N",d& + KAGf (N',"N', —2N', Ny + Ng" Ng)d&
-1

-1
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Appendix IV Formulation of
the Plate Element
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Energy Expressions for Plates

A plate element is considered to be storing two types of energy

- Energy as a result of in-plane loads

- Energy as a result of bending loads normal to the plate middle surface.

For the bending strain and inertia energies, a distinction is made between the
formulation of the energy expressions for thin plates and thick plates. For the thick
plates the strain energy as a result of the deformation of the cross-sectional area are
taken into account through an extra term, in same way as has been done for the beam

element. This extra strain energy is a result of the angle of deformation of the cross-

. . ou ow .
sectional area normal to the cross-section 5, o % is not equal to the angular

deformation of rotation about the y-axis or x-axis respectively (Z—z or Z—;). For the

thick plate an extra energy term is also added for the kinetic energy where the rotary
inertia about the x and y axis is assumed to have an appreciable contribution to the

total kinetic energy expression of the element.

Vy v
Wy w
dx / 3
F Al Uy
dy Al ,/I
Ul ’/’ vZ /I
A A %,
Zaxis * 1 SV 2
/
Yaxis p---foce——plpocc--------- M -------------- Uy
5 Xaxis {
Figure 93 Axis and orientation on a four node plate element (node 1, 2, 3 and 4). Displacement in X,

y and z direction are indicated with u, w and v respectively. Rotations about the x, y and
z axis are indicated through @,, 8, and 8, respectively.

Plate In-Plane Deformation:

In this section the energy expression for the in plane stresses is formulated. These are
stresses that are a result of forces acting parallel to the middle plane of the plate and

are uniformly distributed over through the thickness. There are no forces acting in
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the z direction and the only stresses occurring are in x and y direction. The strain

energy equation is written as:

(11.63)

1
U= Ef (Ox€x + 0y €y + TyyVyy)dV
14

In matrix form this can be expressed as :

(11.64)

-0y
[o] = Uy] = stress matrix
_Txy

&, ix

[e]l=|& | = Y | = strain matrix
Y. gu + w
XY dy = Ox

The relation between strain and stress is expressed through the matrix D so that we can

write:
o = [D][e] —
Where:
E Ev 0
1-v3) (1-v?
_ Ev E 0
PI=la=s a=m
0 0 E
2(1+v)

and therefore the strain energy can be written as:

U=; [ [ olte av
2 |4
Ultimately we can write for the in plane strain energy:

(11.66)
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Where h is the thickness (height) of the plate. For the plane kinetic energy we can

write:

1
T = —fph(u2 +Ww?)dA
2 A

Plate Bending Deformation:

The relation between plate bending strain and stresses is expressed through the

relation:
v B 0%v
u(x,z) = Zax &y = Zaxz
ov 0%v
u(y,z) = —Z@ &y = —Za—y2
_Ou 0w 0%v

Yy = @+§ =22 dxdy

For thin plates is written:

du OJv
sz=£+a=0

_Ou  Ow
yyz_a_Z+E_0
For thick plates:

du Jdv dv
szzg'i'a:gy'i'a

Ju oJw dv
yyz=a—z+a=—9x+@

The bending strain energy expression is written as:

1
U= 5_[ (o &, + ay€y + Txy)/xy)dV
1%
= [D][e]

1
U= Efv[s]T[D][s] av
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(11.69)

(11.70)

(11.71)

(11.72)



where for an orthotropic plate with material properties in all direction the same can
be written:
E Ev

|(1-v2) @1 -v?)
Ev E

(D]

|

=|(1—v2) 1-2)

| E
[ 0

SX
and [e] = | &
ny

Substituting equation (11.68) into (11.73) gives:

0%v
ox?
0%v
ay?
0%v

0x0y.

0
] (11.73)

(11.74)

E=—zx=-z

—Zz2

Substituting equation (11.74) into (11.72) and integrating over z (the thickness of the
plate) gives the strain energy equation for a slender bending plate:

h3
U=- kv x1"[D]x1dA (11.75)

For a thick plates extra shear stresses occur due to the deformation of the normals.
This extra shear deformation results in extra strain energy being stored in the plate

element in x and y direction:

_Ou N v 20 (11.76)
Yz = 5, T ox
_ Ju OJv

= —+—=%0
Yyz az+f)y¢

v
]/xz=9y+a:/:0

v
yy2=_9x+$:'t0
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(6, +27]

Y9
) =l X
—9x+@
Resulting extra strain energy due to thickness effect:
1
2 | e iav
|4
Where:
T
(71 = [7] = x[D<11y)
and
q_[G 01_ E 10
[D]_[o G _2(1+v)[0 1]

Where G is the shear modulus according to Hooke’s law in shear:

- E
2(1-v)

And v is the Poisson ratio which is considered to be around 0.33 for steel

The total strain energy equation for a thick plate is:
1 h3 1

U= [ DI +5 [ khDITID4]IdA )
2),12 2),

Bending inertia forces for a plate are expressed through the following relations:

T = 1 j phv? dA (11.78)
2 A

For the thick plate also the inertia effect of the rotation of the cross-sectional areas

are taken into account. The total kinetic energy becomes:

R .. K.,
T=—jp hb2+E9x + 170y |dA (11.79)
A
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Displacement Function

The displacement function of a plate is obtained in similar manor. Considering a four
node square [ X [ plate element in figure Figure 93 the displacement function can be

represented by a polynomial with twelve terms as there are 12 degrees of freedom (3
degrees of freedom for each node (rotation about y and x axis and vertical translation
v ) for each of the four nodes).The displacement function becomes:

v(§,n) =a; +aé§ +azn+ a462 + asné + a6U2+a753+a8527] + aqfnz + a10n3+a11§3n

+ a6n°
Where:
&= % = a non dimensional coordinate
n= % =a non dimensional coordinate

a,, = the polynomial constant

For a thin plate the relation between the rotation about the x or y axis is obtained

through differentiating the displacement function to y and x respectively

For a thick plate an extra set of displacement equations is formulated for the rotation

about x and y axis:

0(&,m) = by + by& + b3n + bs&? + bsné + ben®+b;8*n + bgén?
Relations between a,, and b,, coefficients are formulated in a similar way as for the

beam element through the relations but are not further elaborated on in this work

Through the strain and kinetic energy equations and the displacement functions the
equation of motion can be obtained through substitution into the Lagrange equation.
As this is done in a similar way as for the beam element, this is not further discussed

here.
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Appendix V  Residual
Compensation for Free
Floating Structures
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In order to include the contribution from residual flexibility to the response of a
structure applying mode superposition, the stiffness matrix needs to be inverted so
that the flexibility matrix is obtained. Inverting the stiffness matrix of a structure that
is not fully constrained is however impossible, as the stiffness matrix will be
singular. Obtaining the flexibility matrix is still possible through elimination of the
rigid body degrees of freedom. This is done through applying so called pseudo
constraint to the structure at arbitrary nodes, so that no rigid body motions are
prevented. A flexibility matrix G, is calculated for the substructure by inverting the

stiffness matrix with the pseudo constraints applied [37, 39]

In the next step the obtained flexibility matrix with the pseudo constraints involved is
corrected for the presence of these pseudo constraints through a projection matrix P.
This projection matrix is based on the formulation of a corrected excitation force that
is compensated for the reaction forces occurring in the pseudo constraints, resulting
from restraining the rigid body modes. These reaction forces F. are equal to the rigid

body inertia forces and are expressed through:

F. = M, i, (11.80)

Where
M = the mass marix
¢, = the matrix of rigid body modes
d, = the acceleration rigid body modal coordinate

The corrected or so called equilibrated excitation force F,, becomes:

Foq = F — M¢, i, (11.81)

Where F is the original excitation force.

An expression for the rigid modal acceleration coordinates d, is required. This is
obtained through projecting the full stiffness, mass and damping matrix and external
force matrix onto the subspace spanned by the rigid body modes and setting up the

equation of motion (¢,.”, being the transposed matrix of rigid body modes):
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¢ Mty + ' MPedy + ¢ Cete + ¢ Kpeae = ;' F (11.82)
As the rigid body modes ¢,., like the elastic modes ¢, are orthogonal to the damping,
mass and stiffness matrix, ¢,' M@, and ¢, C¢, and ¢,” K¢, become zero.

The equation of motion is rewritten as

¢rTM¢rdr = ¢rTF

Consider the mode shapes to be normalised to the mass matrix, ¢,." M ¢, becomes an

identity matrix |

li, = ¢, F (11.83)
a, = ¢rTF
Substituting (11.83) into (11.81) gives:

Foq =F — M, ¢, F (11.84)
The projection matrix P is formulated:

Foq =F—M¢.¢,"F = (1 - M, ¢," )F = PF (11.85)
P=(1-M¢p.p,") (11.86)
The corrected flexibility matrix is obtained through the following relations :

Ustatic = GcFeq = G PF (11.87)

Although rigid body motion has been eliminated, contribution of rigid body motion
to the elastic modes may still be present. In order to eliminate the interaction between
rigid body modes and elastic modes the w4+ representation in equation (11.87) is

orthogonolised with the rigid body modes. This means that:

T
or Muorthogonal static = 0 (11.88)

p— !
uorthogonal static — Ustatic + (»brar (11.89)
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Where a,.’ is a correction vector, such that ¢rTMuort,wgonal static = 0. Substituting

equation (11.89) into equation (11.88) gives an expression for a,.’
a,' = _(IbrTMustatic (11.90)

Substituting (11.88) into (11.89) gives the following expression:

uorthogonal static — Ustatic — (pr(prTMustatic (11.91)
Substituting (11.87) into (11.91) gives:
Uorthogonal static — 1- ¢r¢rTM)ustaticF = PTGCPF (11.92)

The newly corrected flexibility matrix G is calculated following equation (11.92):
GE = PTGCP (1193)

For calculating residual elasticity for an unconstrained free floating structure the

following equations can be formulated following equation (6.32):
u = pa+GgF — pA" ¢, F (11.94)

Where ¢ is the matrix containing all retained mode shapes including rigid body
modes. ¢, is the matrix containing all the retained elastic mode shapes, i.e. all

retained mode shapes excluding the rigid body modes.

Gres = Gg — ¢eA_1¢eT (11.95)
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Appendix VI  Sparse Matrix
Solver: Row Reduction
Technique
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K =4e6 N/m
v v v v v
\\\| 4 \\\ A\

PP P oz LT
Mass spring system

M = 200 kg

Consider the following stiffness matrix K, mass matrix M and the excitation load
vector F:

4e6 —2e6 0 0
K = —2e6 4e6 —2eb 0
0 —2e6 4e6 —2eb6
0 0 —2e6 4eb
200 0 0 0
0 200 0 0
M = 0 0 200 0
0 0 0 200
60
F =

Consider the excitation frequency to be 10 Hz:

rad

© = 62.8 [=7] = (10Hz)

Undamped dynamic stiffness matrix :

4e6 — 200 * 62.82 —2e6 0 0
(K — sz] — —2e6 4e6 — 200 * 62.82 —2e6 0
0 —2e6 4e6 — 200 * 62.82 —2e6
0 0 —2e6 4e6 — 200 = 62.82
3.210e6  —2e6 i, 60
—2e6  3.210e6 —Ze6 U, 0
K — w?M] = [F] = 2| =
[K = w™M] = [F] 0 —2e6 3.210e6 —Ze6 L,
0 0 —2¢6  3.210e6] lii,

Forward phase: generating zeros on the lower triangle below the main diagonal:
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3.210e6 —2e6 0 0 iy 60

. . . —2e6  3.210e6  —2eb6 0 u| _ 10
Starting with matrix: 0 “2e¢6  3210e6 —2¢6 ||as| = |0
0 0 —2e6  3.210e6l 11, 0

Steplrow2 = — (:1—1) row2 + rowl
21

3.210e6 —2e6 0 0 iy 60
0 3.15e6 —3.21e6 0 i, _ (60
0 —2e6 3.210e6 —2e6 || 0
0 0 —2e6  3.210e6] i, 0
Step 2 row3 = — (:2—2) row3 + row?2
32
3.210e6 —2e6 0 0 iy 60
0 3.15e6 —3.21e6 0 U | _ |60
0 0 1.85e6 —3.15e6||i; 60
0 0 —2e6  3.210e6/ L, 0
Step 3 row4d = — (:3—3) row4 + row3
43
3.210e6 —2e6 0 iy 60
0 3.15e6 —3.21e6 | _ |60
0 0 1.85e6 —3. 15e6 fls 60
0 0 0 —1.81e5] L1, 60

Backward phase: generating ones on the main diagonal and zeros above the pivots

3.210e6 —2e6 0 i, 60
i ) . 0 3.15e6 —3.21e6 i, |60
Starting with matrix 0 0 185¢6 —3. 15e6 o
0 0 0 —1.81e5] L1,

Step 1: generating ones on the main diagonal

|~

row4d = row4

~

4

|~

row3 = row3

Iy

)
)
)
)

1

|~

N

|~

rowl = rowl

(
(
row2 = rowa
(

=
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1 —0.623 0 0 iy 1.87¢e — 5
0 1 -1.018 0 i, 1.9e -5
0 0 1 —1.703]| |15 3.24e —5
0 0 0 1 1y —0.33¢e — 4
Step 2, generating zeros above pivots:
T-
row3 = row3 — (ﬁ) row4
44
1 —0.623 0 07 [i 1.87e — 5
0 1  -1018 Of|@z|_| 1.9e~-5
0 0 1 0|1 —0.53e — 4
0 0 0 1lla, —0.33¢ — 4
T‘
row2 = row2 — ( row3
133
1 —0.623 0 07 U1 1.87e —
0 1 —1.018 0] |tz| __|-0.52e —
0 0 1 0 ﬁ3 —0.53e —
0 0 0 1l la, —0.33e —
rowl = rowl — row2
7"22
1 0 0 0][th —031e—
01 0 O ﬁz —0.52¢e —
0 0 1 0 ﬁ3 —0.53e —
0 0 0 1lla, —0.33e —
The response therefore is
iy —031le — 4
i, _ —0.52¢e — 4
15 —0.53¢e — 4
U —0.33e — 4

K
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Part 1

Step Number of real matrix
operations
A | Calculating (M) 10+
M(1,1)
Multiplying row 1 with (%) (a+b+€) *6
1)
B Row(a+b) — row 1 (at+b +e)*2
(pivot position M(,+p),1) becomes 0
Total number of operations = 8x(a+b+e)+10
C Repeating step A and B for row (a+b-1) torow 2 | (a+bh-1) x (8x(a+b +€)+10)
Colum 1 becomes zero except for M, 1,
a b c d e
A A ik
. .
b S‘ni\ua{c
[« { \\Sqll;a\.re
d { \‘&p.lare
D | calculating (—M((a”)'z)) 10+
M(22)
Multiplying row 2 with (W) (a+h +e-1)*6
22)
E Row (a+b) — row 2 (at+b +e-1)*2
(pivot position M((,.p)2) becomes 0
Total number of operations = 8x(a+b +e-1)+10
F Repeating step D and E for row (a+b-1) to row 3 (a+b-2) x( 8x(a+b +e-

Colum 2 becomes zero except for M, 5y and M, 5

1)+10)

a b c d

Bt
a
b Sa:uare
c { \Squ\a.re
d { g

m

An expression for the total number of matrix operations n, required for part 1
(generating zeros under the main diagonal for column 1 to a) can be written as
follows:
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k=a-1
m= ) @x(@+btctdte—k)+10)@a+b—1-k)

=
o

This results in a matrix with a skyline as shown in the figure below:

a b c d c
a
b Sni‘ua‘re

c { ‘Squa_re
d { \‘Sq]{are

Part 2
In a similar way for part 2:
k=b-1
n, = BxXxMb+c+e—k)+10)(b+c—-1—-k)
k=0
a b c d e
A A J\;J;.i

e { “Squ‘a.re
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Part 3

And for part 3:
k=c+d-1
ny = Z @x(ctd+e—k) +10)(c+d—1—k)
k=0

a b c d e
A

{ N

The Backward phase is the next step in the row reduction procedure where ones are
generated on the main diagonal (so the matrix becomes a unit upper triangular
matrix). The number of operations required for the backward phase can be expressed
as follows (see also Appendix XIV)

For row 1 to a:

Number of real operations

Row 1 Calculating —— 10+

1,1

Multiplying the non zeros in row 1 by ML 6*(a+b)

1,1

Row 2 Calculating —— 10+

2,2

Multiplying the non zeros in row 2 by ML 6*(a+b-1)

2,2

Row k Calculating — 10+
My
Multiplying the non zeros in row a by Mikk 6*(a+b-k)

Total number of operations:

k=a-1

6+ (a+b—k)+10)

=
I
=]
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For row a+1 to row (a+b+c):

Number of real operations

Rowa+l | calculating— 10+

Ma+1,a+1

Multiplying the non zeros in row (a+1) 6*(b+c)

b
y Ma+ti1,a+1

10 +

Rowa+2 | calculating

a+2,a+2

Multiplying the non zeros in row (a+2) | gx(p+c-1)

b
y Mat2,a+2

Row Calculating ————— 10+
(a+b+k) M(a+b+k),(a+b+k)

Multiplying the non zeros in row (a+k) | g*(h+c-k)
1

M(a+b+k),(a+b+k)

Total number of operations:

6+ (b +c—k)+10)

For row (a+b+1) to row (a+b+c+d):

Number of operations

Ma+b+1,a+b+1
Multiplying thelnon Zeros in row 6*(c+d+1)
atb+1lb
y Matb+1,a+b+1
Row Calculating ! 10+
a+b+c+d M (a+b+c+d),(a+b+c+d)

o . 6*(c+d+1-c-d+1)
Multiplying the non zeros in row

atb+c+d by !

M (a+b+c+d),(a+b+c+d)

Total number of operations:

k=c+d-1
Z 6% (c+d+1—k)+10)
k=0

Solving a real unit triangular matrices requires about n? operations, where n is the
number of rows or columns of the matrix [48]. Solving an imaginary triangular
matrix requires twice the number of operation (2n?)
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Appendix VII Results FEM
for Different Boundary
Conditions
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0 to peak vel. ampl. [mm/{s]

0 to peak vel. ampl. [mm/s]

STEERINGENG—FLAT

10.0
9.0
8.0
7.0
6.0
3.0
4.0
3.0
2.0
1.0
0.0

14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0

Simulation results positions on steering gear deck

1. Steering Gear Deck (144564z) for Different Boundary Conditions

Model constrained at frame 25

Model constrained at ER bulkhead (frame 21)

No constraints

5 10 15 20 25 30 35 40 45
Frequency [Hz]

i —————— Multiples of the blade passing frequency

2. Steering Gear Deck (144564x) for Different Boundary Conditions

Model constrained at frame 25
Model constrained at ER bulkhead (frame 21)
No constraints

------ Multiples of the blade passing frequency

|

10 15 20
Fregquency [Hz]

L

(
[

Simulation results 0 to peak vibration velocity amplitudes at different boundary conditions
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3. Steering Gear Deck (21577z) for Different Boundary Conditions

50

50

10.0 - . Model constrained at frame 25

0] " 1
T 30 i Model constrained at ER bulkhead (frame 21)
£ 8.0 1
= 7.0 E No constraints

o 1

E :g . | oo Multiples of the blade passing frequency
T 4.0 :
5 30 I N A

3 20 ! ! : ! !
g 10 - 5&5 := f\ ' P -
= 0.0 T T T T T 1 1
15 20 25 30 35 40 45
Frequency [Hz]
5. Steering Gear Deck (21645z) at Different Boundary Conditions

—_ Model constrained at frame 25
010,00 ! ! | H

E 9.0 i ! i H Model constrained at ER bulkhead (frame 21)
= 80 i i E i No constraints

= 7.0 ! : I H

E 6.0 ! E ! E ------ Multiples of the blade passing frequency

= 5.0 ! | ; : . .

£ a0 i i | : |

¥ 3.0 : : i : ! !

g 20 ! : ! ' : |

8 1.0 i | " . i I

S 0.0 +— i

0 5 10 15 20 25 30 35 40 45
Frequency [Hz]
6. Steering Gear Deck (55511z) at Different Boundary Conditions

— Model constrained at frame 25

8.0 ; | . :

E 7.0 ! E ' E Model constrained at ER bulkhead (frame 21)
= 60 : i E i No constraints

= | ! ! :

E 5.0 i | ' [ bt Multiples of the blade passing frequency

— 40 . ! : ! 0 .

(1] - 1 1 I ! I

= 3.0 . ! i ! ' !

% | 1 : | 1 1

a 2.0 : ] i ! . '

Y : : : : :

s 1.0 \ A 1 :

= 0.0 — T T 1

0 3 10 15 20 25 30 35 40 45
Frequency [Hz]

Simulation results 0 to peak vibration velocity amplitudes at different boundary conditions
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7. Steering Gear Deck (56786z) at Different Boundary Condition

— 0.0 | B !
i) | ' ! s Model constrained at frame 25
E ! : |
E 3.0 i ! : —— Model constrained at ER bulkhead (frame 21}
E. 4.0 i i i No constraints
: 3.0 i A [ Multiples of the blade passing frequency
@ | 1
= I ! ! i i
E 20 ! ! | : |
@ | 1 . 1 1
o | ! . : i
8 10 : l : :
s ' = e S
0.0 T i } 1
3 10 15 20 25 30 35 40 45
Frequency [Hz]
8. Steering Gear Deck (56759z) at Different Boundary Conditions
‘-E- 6.0 i i 1 Model constrained at frame 25
E_- 2.0 i E i = Model constrained at ER bulkhead (frame 21)
= a.0 ' i H .
E : ' ! No constraints
= 3.0 i : . .
] i i ------ Multiples of the blade passing frequency
% 20 : ! : : : :
2 10 : ' ’, ! i i '
: A AR L s
5 10 15 20 25 30 35 40 45
Frequency [Hz]

1.0

9. Steering Gear Deck (54672z) at Different Boundary Conditions

Model constrained at frame 25

s 6.0 H : H I

= 1 1 | :

E 5.0 E ! | ' Noconstraints

2 4.0 i i ! ' ——— Model constrained at ER bulkhead (frame 21)
E : ! i

z 3.0 ' ! o 1 - Multiples of the blade passing frequency
-] ! | : :

2> 20 : :

[ 1 I 1

@ 1 1

o i .

=] 1 ;

Lo -

=

Frequency [Hz]

Simulation results 0 to peak vibration velocity amplitudes at different boundary conditions
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O0to peak vel. ampl. [mm/fs]

0to peak vel. ampl. [mm/s]

Frame 25
-------------- Frallle 21
Simulation results position on mooring deck

1. Mooring Deck (130196z) for Different Boundary Conditions

Results full model constrained at frame 25
Model constrained at ER bulkhead (frame 21)

Mo constraints

1
I
1
I
|
1
i
1
) Multiples of the blade passing frequency
I
|
1
I
1
I
|
\

_SA

'
]
]
]
]
]
1
I
I
I
I
I
I
I
1
1
1
|
1
k]

T T T 1

T
5 10 15 20 25 30 35 40

Frequency [Hz]

2. Mooring Deck (128461z) for Different Boundary Conditions

Full model clamped at frame 25

Model constrained at ER bulkhead (frame 21)
N constraints

————— Multiples of the blade passing frequency

;

3 10 13 20 23 30 33 40

Frequency [Hz]

Simulation results 0 to peak vibration velocity amplitudes at different boundary conditions
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3. Mooring Deck (33783z) for Different Boundary Conditions

- Full model clamped at frame 25
= 300 ' |
E Model constrained at ER bulkhead (frame 21) ! H
= 25.0 A !
— Mo constraints i '
= 200 - , : ! :
E ————— Multiples of the blade passing frequency | ! !
— - 1 1 1 ] 1
3 15.0 : i : i i
= 100 - : : ' : :
2 ! : ! - :
2 50 4 E J | i ; i

1 g 1
= |:||:| T T — T‘h-_ |f

a 5 10 15 20 25 30 35 40
Frequency [Hz]
4. Mooring Deck (33088z) for Different Boundary Conditions

- Full model clamped at frame 25
E‘ 300 i Model canstrained at ER bulkhead (frame 21)

1
E 750 4 ! Mo constraints
= | Multiples of the blade paszing frequency

200 A 1 ; T

£ | !
= 150 - : |
E | :
'i 100 ! i

1
5 50 ! i
- 1
° o0+ .

a 5 10 15 20 25 30 35 44
Frequency [Hz]

Simulation results 0 to peak vibration velocity amplitudes at different boundary conditions
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Appendix VIII Comparing
Simulation Results with
Measurement Results
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Location 1

STEERINGENG-FLAT

Peak velocity spectra vibrations steering gear deck location 1

v

- 1.8 -

o

E 1.6

g I

£ 12 —average

=] E 1 o

< E —maximum

> = 0.8 -

f‘ﬁ 0.6 -

o 0.4

2 0.2

o 0 i ; ; ; ; - -ﬂ-nl.h..—-ﬁ..lﬁll
o 3 10 15 20 25 30 33 40

Frequency [Hz]

FFT velocity spectrum from measurements taken location 1 (vertical) with ship sailing at 19
knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s]

Measurement location 1

v
2 3.5 4
£ 5 B Constrained at frame 25
(=N
E 25 | B Constrained at ER bulkhead
é"-E 7 - m Noconstraints
8
o E 154 m Measured
= 1 1
E. 0.5 -
B .:.
; D L T T T

] 10 15 20 23

Frequency [Hz]

Comparison of simulation results with different boundary conditions and the measurement
results(average spectrum)
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Location 2 hull plating

STEERINGENG-FLAT

1.2 4 —average

]
=

3

=

=

E

m

= "o g
.‘5 e —maximum
s E o3

s £

-

—

m

]

o

]

Fe]

=]

0.6
0.4
0.2
o
o 5 10 15 20 25 30 35 A0
Frequency [Hz]

FFT velocity spectrum from measurements taken location 2 (longitudinal) with ship sailing at 19
knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s]

Measurement location 2

a
E 2.5 4 B Constrained at frame 25
E‘ 2 E Constrained at ER bulkhead
m
= 15 - B Noconstraints
TE Messured
2 E 1 B Measure
=
=
8 05 - I I:u j
=1
;u D B T J T T T
5 10 15 20 25

Frequency [Hz]
Comparison of simulation results with different boundary conditions and the measurement
results(average spectrum)
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Location 3

STEERINGENG-—FLAT

-
T

3 —average

——maximuim

0 to peak velocity amplitude
[mm/s]
ra
o

Frequency [Hz]

FFT velocity spectrum from measurements taken location 3 (vertical) with ship sailing at 19
knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s]

Measurement location 3

= 4.5 - _ m Constrained at frame 25
=

a 4
E 35 - [ Constrained at ER bulkhead
E'-E 3 1 m Noconstraints
g 2.5 -
s E 2 - m Measured
= 1.5 -
B 1 -
-9
2 0.5 -
o 0 -

5 10 15 20 23

Frequency [Hz]

Comparison of simulation results with different boundary conditions and the measurement
results(average spectrum)
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Location 5

STEERINGENG—FLAT

Peak vel&city spectra vibrations steering gear deck location 5

L]
-
2 2.5
=
E 2 4 —average
= Ta q
8o~ — maximum
o g 15
s E
g —_
= 1+
m
a
e 0.5
= W

0 r ] T .

0 5 10 15 20 25 30 35 40 45 50

Frequency [Hz]
FFT velocity spectrum from measurements taken location 5 (vertical) with ship sailing at 19
knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s]

Measurement location 5

= 4.5 - W Constrained at frame 25
=1

4
E 3.5 4 M Constrained at ER bulkhead
E’*-E. 3 m Noconstraints
S 2.5 -
T .E. 2 4 m Measured
= 1.5
B 1
(=
g 0.5 -
=) 0 4

3 10 13 20 23

Frequency [Hz]

Comparison of simulation results with different boundary conditions and the measurement
results(average spectrum)
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Location 6

STEERINGENG—FLAT

Peak veloAcity spectra vibrations steering gear deck location 6
1.2

1 4

0.8 - - average

— maximum
0.6
0.4

0.2

0 to peak velocity amplitude
[mm/s]

Frequency [Hz]

FFT velocity spectrum from measurements taken location 6 (vertical) with ship sailing at 19
knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s]

Measurement location 6

a 4 W Constrained at frame 25
3.3 - M Constrained at ER bulkhead
W Noconstraints

2 1 m Measured

0 topeak velocity amplitude
[mm/s]
Pl
n

5 10 15 20 25

Frequency [Hz]

Comparison of simulation results with different boundary conditions and the measurement
results (average spectrum)
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Location 7

STEERINGENG—FLAT

Peak veiocity spectra vibrations steering gear deck location 7

v
E
& 0.8
e 0.7 -
£ —average
® 0.6 -
_..:‘5" ..,E_ 0.5 ——maximum
0
< E 04
=
= 0.3 A
5
g 0.2 |
3 0.1 -
o \

0 .

o 5 10 15 20 25 30 35 40 45 50

Frequency [Hz]

FFT velocity spectrum from measurements taken location 7 (vertical) with ship sailing at 19
knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s]

Measurement location 7

= A W Constrained at frame 25
o 2.5 -
E 5 W Constrained at ER bulkhead
@'*E m Noconstraints
2 15 -
< E m Measured
= 1 4
E
e T ' I . B
o
b 0 - . .
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Comparison of simulation results with different boundary conditions and the measurement
results (average spectrum)
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Location 8

STEERINGENG—FLAT

Peak velocity spectra vibrations steering gear deck location 8

v
2
2 1
o 0.9 -
E 0.8 - —average
= " 0.7 - )
B o —maximum
S E 0.6
Tg E 05
_,‘m 0.4
g- 0.3
o 0.2
; 0.1
o

Frequency [Hz]

FFT velocity spectrum from measurements taken location 8 (vertical) with ship sailing at 19
knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s]

Measurement location 8
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S E 15 -
< E m Measured
=
B
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o
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Comparison of simulation results with different boundary conditions and the measurement
results(average spectrum)
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Location 9

STEERINGENG—FLAT

Peak velocity spectra vibrations steering gear deck location 9
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g 1
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g E 06
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FFT velocity spectrum from measurements taken location 9 (vertical) with ship sailing at 19
knots (propeller speed 75 rpm). Levels are presented as 0 to peak velocity amplitudes [mm/s]

Measurement location 9

o
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Comparison of simulation results with different boundary conditions and the measurement
results(average spectrum)
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Appendix IX Substructures
LNG carrier CMS
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Substructure A

Number of nodes 7168
Number of master nodes (interface nodes) 263
Number of modes fixed interface CMS between | 91

0 and 60 Hz*

Number of modes free interface CMS 154

between 0 and 60 Hz*

*CMS analysis has been carried out in order to analyse the response over a frequency
range from 1 to 40 Hz. The number of modes taken into consideration with the
analysis is the number of modes that is within frequency range between 0 and 1.5
times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz)
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Substructure B

Number of nodes 11705
Number of master nodes (interface nodes) 633
Number of modes fixed interface CMS between 0 | 138
and 60 Hz*

Number of modes free interface CMS 231
between 0 and 60 Hz*

*CMS analysis has been carried out in order to analyse the response over a frequency
range from 1 to 40 Hz. The number of modes taken into consideration with the
analysis is the number of modes that is within frequency range between 0 and 1.5
times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz)
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Substructure C

Number of nodes 14393
Number of master nodes (interface nodes) 854
Number of modes fixed interface CMS between 0 | 195
and 60 Hz*

Number of modes free interface CMS 335
between 0 and 60 Hz*

*CMS analysis has been carried out in order to analyse the response over a frequency
range from 1 to 40 Hz. The number of modes taken into consideration with the
analysis is the number of modes that is within frequency range between 0 and 1.5
times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz)
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Substructure D

Number of nodes 11118
Number of master nodes (interface nodes) 1033
Number of modes fixed interface CMS between | 162

0 and 60 Hz*

Number of modes free interface CMS 336
between 0 and 60 Hz*

*CMS analysis has been carried out in order to analyse the response over a frequency
range from 1 to 40 Hz. The number of modes taken into consideration with the
analysis is the number of modes that is within frequency range between 0 and 1.5
times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz)
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Substructure E

Number of nodes 10728
Number of master nodes (interface nodes) 1198
Number of modes fixed interface CMS between 0 | 213
and 60 Hz*

Number of modes free interface CMS 323
between 0 and 60 Hz*

*CMS analysis has been carried out in order to analyse the response over a frequency
range from 1 to 40 Hz. The number of modes taken into consideration with the
analysis is the number of modes that is within frequency range between 0 and 1.5
times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz)
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Substructure F and G

Number of nodes F=G=6675
Number of master nodes (interface nodes) F=G=256
Number of modes fixed interface CMS between | F =G =373
0 and 60 Hz*

Number of modes free interface CMS F=G =419
between 0 and 60 Hz*

*CMS analysis has been carried out in order to analyse the response over a frequency
range from 1 to 40 Hz. The number of modes taken into consideration with the
analysis is the number of modes that is within frequency range between 0 and 1.5
times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz)
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Substructure H

Number of nodes 5819
Number of master nodes (interface nodes) 348
Number of modes fixed interface CMS between | 181
0 and 60 Hz*

Number of modes free interface CMS 257

between 0 and 60 Hz*

*CMS analysis has been carried out in order to analyse the response over a frequency
range from 1 to 40 Hz. The number of modes taken into consideration with the
analysis is the number of modes that is within frequency range between 0 and 1.5
times the maximum frequency (which is 1.5 times 40 Hz = 60 Hz)
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Appendix X Results Full
FEM, Fixed Interface CMS
and Free Interface CMS

333



0 to peak vel. ampl [mm/s]

0 to peak vel. ampl. [mm/s]
[5)]
(=]

10.0
9.0
8.0

6.0
5.0
4.0
3.0
2.0
1.0
0.0

Simulation results positions on steering gear deck

1. Steering Gear Deck (144564z) for Model Constrained at Frame 25

s full

CMS fixed boundaries

—————— Multiples of the blade passing frequency

1
i
i
E CMS free boundaries
1
i
i

i h\ = __—:-ji---.-—/":;’\-\\' Ji-—'_“—_L-;-.__:—

5

10 15 20 25 30 35 40 45
Frequency [Hz]

2. Steering Gear Room Hull Plating (144924x) Model Constrained at Frame 25

e

CMS fixed boundaries
CMS free boundaries
------ Multiples of the blade passing frequency

'
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
1
T

= T T T — ‘/___-_l
5 10 15 20 25 30 33 40 43
Frequency [Hz]

Simulation results 0 to peak vibration velocity amplitudes on the steering gear deck

334



0 to peak vel. ampl [mm/s]

0 to peak vel. ampl. [mm/s]

0 to peakvel. ampl. [mm{s]

10.0
9.0
3.0
7.0

5.0
4.0
3.0
2.0
1.0
0.0

3. Steering Gear Deck (21577z) Model Constrained at Frame 25

e ]

CMS fixed boundaries

CMS5 free boundaries

—————— Multiples of the blade passing frequency

/""\Lr- —
1 T T 1

20 25 30 35 40 45

Frequency [Hz]

5. Steering Gear Deck (21645z) Model Constrained at Frame 25

é
;

e B 0de| cOnstrained at frame 25
CMS fixed boudaries

CMS free boundaries

i ------ Multiples of the blade passing frequency

Ic'-—— -
T

20 25 30 35 40 45 a0

Frequency [Hz]

6. Steering Gear Deck (55511z) Constrained at Frame 25

- _—EA-/III"-'-‘. R T P E ———

= full

CMS fixed boundaries
CMS free boundaries

------ Multiples of the blade passing frequency

L o

20 25 30 35 40
Frequency [Hz]

Simulation results 0 to peak vibration velocity amplitudes on the steering gear deck

335



7. Steering Gear Deck (56786z) Constrained at Frame 25
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Simulated
Deflection Shapes for Model

Constrained at Frame 25

Appendix XI
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Deflection Shape at 8.8 Hz (frame 25 constrained)
displacement scaling 8e3

ubstructures added together. Pictures shows
the deformed shape plotted together with the
un-deformed shape which clearly shows the
presence of the effect of a first bending

global mode shape of the aft ship. The
deformed shape of sections A and B are
shown enlarged at the top of the figure.
Through these two pictures also the presence
of a bending mode at the aft part of the aft
deck can be identified. The deformed shapes
of sections C to H do not show any local
elastic deformation apart from section E.
That is why they have not been shown in
more detail here. Vibration levels at these
sections at 8.8 Hz are largely due to the
global first bending mode-shape of the aft
ship, which is shown through the summary
picture immediately left to this text.

Flexibility at section E has a great impact on the
natural frequency corresponding with the mode
shape illustrated above.
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Deflection Shape at 15.6 Hz (frame 25 constrained)

displacement scaling 8e3
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Deflection Shape 18.1 Hz (frame 25 constrained)

displacement scaling 4e3
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Deflection Shape 27.3 Hz (frame 235 constrained)

displacement scaling 4e3
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Simulated
Deflection Shapes for Model

Appendix XII

Constrained at Frame 21

Frame 25

Frame 21
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Deflection Shape at 10 Hz (engine room bulk head (frame 21) constrained)
displacement scaling 8e3

Substructures added together. Pictures
shows the deformed shape plotted
together with the un-deformed shape
which clearly shows the presence of the
effect of a first bending global mode
shape of the aft ship. The deformed shape
of sections A and B are shown enlarged at
the top of the figure. Through these two
pictures also the presence of a bending
mode at the aft part of the aft deck can be
identified. The deformed shapes of
sections C to H do not show any local
elastic deformation apart from section E.
That is why they have not been shown in
more detail here. Vibration levels at these
sections at 8.9 Hz are largely due to the
global first bending mode-shape of the aft
ship, which is shown through the
summary picture immediately left to this
text.

At section E the flexibility of the bulk head plays an
important role This explains why constraining frame
21 instead of frame 25 affects the resonance frequency
corresponding with this mode-shape.
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Deflection Shape at 15.6 Hz (engine room bulk head (frame 21)

constrained)
displacement scaling 8e3
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Deflection Shape at 19 Hz (engine room bulk head (frame 21) constrained.
displacement scaling 4e3
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Deflection Shape at 22 Hz (engine room bulk head (frame 21) constrained.
displacement scaling 4e3
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Appendix XII1 Comparing
Correlated Simulated Spectra
With Measurement Results
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Correlated modelling results are plotted together with the measurement results. The
amplitudes of the first two blade passing frequencies (at 5 and 10 Hz) have been
obtained from the simulation results produced for the model constrained at frame 25.
The adjustment done for the response at the first two blade passing frequencies
shifting the 8.8 Hz natural frequency to 7.8 Hz, as a correction for the absence of
absence of hydrodynamic added mass in the original model. For orders higher than 2,
peak response frequencies the closest to the orders in question have been shifted in
such a way that the peak response frequencies coincide with the blade passing order.
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Appendix XIV Matrix-Vector
Calculus and Number of
Required Floating Point

Operations
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An Important part of the evaluation of the different CMS techniques proposed in this
work is the estimation of the number of floating point operations required for each
step. Hereby a list is given of the required number of complex and real floating point
operations for matrix multiplication, adding and subtracting. A real floating point
operation (FLOP) is a +, -, /, or x operation on two real numbers. A complex floating
point operation is a +, -, /, or X operation on two real two complex numbers [48, 50,
51]:

One complex multiplication consists of 4 real multiplication and two real
summations. This means that 1 complex multiplication (1 complex floating point) is
equal to 6 real multiplications.

One complex summation consists of 2 real summations.

One complex division consist of 10 real operations considering:

l

a+bi (a+bi)(c—di) (ac+bd) (—ad + bc)
c+di c? + d2 "~ (c?2+d?) ((cz+d2)>

Which involves a complex multiplication (a + bi)(c — di) (= 6 real flops)

(ac+bad) d (—ad+bc)

e ) ) L
plus 2 real multiplications ( ¢ + d“ ) plus 2 real divisions rd?) rad

In this work the real floating point operations are calculated as a great number of
operations (mainly in the generation pass) do not require calculation with complex
numbers (such as reduction of mass and stiffness matrices). In addition also the fact
that a multiplication of two complex numbers is more expensive than adding two
complex numbers is reflected.
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Approximate Number of

Approximate

Complex FLOPS Number of Real
FLOPS
Multiplying AVMisa full N x M | 2*N*M*L 8*N*M*L
two full matrix
matrices: CMXLisafull M x L (N*M*L complex (6*N*M*L real

ANXM * CMXL

matrix

multiplications plus
N*M*L complex summations)

multiplications plus
2*N*M*L real
summations)

Multiplying a
full matrices
with a sparse
band matrix:

ANXM * CMXL

ANV M s a full N x M
matrix

CM*L s a sparse

M x L matrix with an
average bandwidth of
w

2*N*M*W

(N*M*W complex
multiplications plus
N*M*W complex
summations)

8*N*M*W

(6*N*M*W real
multiplications plus
2*N*M*W real
summations)

Multiplying a
sparse band
matrix with a
full matrix:

ANXM % CMXL

AN*M s a sparse

N X M matrix with an
average bandwidth of
w

CM*Lisafull M x L
matrix

2*W*M*L

(W*M*L complex
multiplications plus
W*M*L complex
summations)

8*W*M*L

(6*W*M*L real
multiplications plus
2*W*M*L real
summations)

Multiplyinga | AN*M isa N x M 2*N*M 8* N*M
matrix witha | matrix and
vector: fisa M x 1 vector (N*M complex (6*N*M real
multiplications plus multiplications plus
ANXM o £ N*M complex summations) 2*N*M real
summations)
Multiplyinga | AN*M jsafull N x M N*M 6*N*M
full matrices matrix
with a CM*Lisasparse M x L | (N*M*W complex (6*N*M*W real
diagonal band | matrix with a bandwidth | multiplications plus multiplications plus
matrix with of 1 no complex summations) 0 real summations)
bandwidth
W=1:
ANXM % CMXL
Inverse of a AN*Njsasparse N x N | 4 4
sparse matrix | matrix with an average | 3 (N(2k +1) — k(k 3*8* (N(2k +1)
through LU bandwidth of W +1)N | —k(k+1)N
factorisation
Where k = w1 Where k = U]
ANXN
Inverse of a AN>N is a full square 2N3 16N3
full matrix N X N matrix
ANXN
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Solving a N*N 4*N*N
N XN
triangular Approx 0.5* N*N Approx 6*0.5* N*N
matrix with complex multiplications | real multiplications
ones on the and and
main dagonal 0.5*N*N complex 2*0.5*N*N real
summations summations
Approximate
Number of Real
FLOPS
Multiplying ANVMisafull N x M | 4*N*M*L
one full complex matrix
complex CM*Lisafull M x L | (*N*M*L real
matrices with | real matrix multiplications plus
a full real 2*N*M*L real
matrix: summations)

ANXM % CMXL

Multiplying a
complex
sparse band
matrix with a
real full
matrix:

ANXM % CMXL

AN*M s a complex
sparse N X M matrix
with an average
bandwidth of W
CcM*L js a full real

M X L matrix

4*W*M*L

(2*W*M*L real
multiplications plus
2*W*M*L real
summations)
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Appendix XV Steps and
Estimated Number of Matrix
Operation Mode
Superposition
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Step 1: Calculating Reduced Matrices

OTf = dTMD + T (K — eKi)d

Where @ is the reduction basis consisting of a number of vectors representing the retained

mode shapes

K = the stiffness matrix of the total structure

M is the mass matrix of the total structure

e is the loss number representing the damping as a fixed percentage of the spring potential

energy

See section 6.4.2

Step Description of action Estimated number of real
FLOPS

1A Calculating ®T f 4xnxn,
Multiplying a real full n x n, matrix with a full
complex n X 1 matrix

1B CI)TM 2% Ny * Npandwidth
Multiplying a real n,, X n matrix with a real sparse
n X n matrix with bandwidth n, ., qwidtn

1C dTMO 2xnxn, *n,
Multiplying a full real n,, X n matrix with a full
real n x n, matrix

1D ®T(K — eKi) 4 % ¥ Ny * Npanawiarh
Multiplying a real n,, X n matrix with a complex
n X n matrix

1E 4xn*n, *n,

OT(K — eKi)®

Multiplying a complex n,, X n matrix with a real
n X n, matrix

n = the number of degrees of freedom of the total structure
n, = the number of mode shapes required
Npanawiach 19 the average bandwidth of the sparse diagonal symmetric stiffness and mass matrix
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Appendix XVI Steps and
Estimated Number of Matrix

Operation Classic Rubin’s
Method
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Step 1: Calculating constraint modes

Constraint modes = ¢ = —[k!']7[kB] (according to equation (6.40))

Step Description of action Estimated number of FLOPS

1A Calculating —[k!]~?1 4
32k + 1) = k(e + D) n,

Inverting a n; X n; matrix through LU

decomposition Where k = (nbandv;idth_l)
i 1H-1yy,1B
1B CaICUIatmg _[k ] [k ] 2% n; * Npoundary * Mbandwidth

Multiplying a full n; x n; matrix with a sparse
N X Npoundary Matrix

n; = the number of internal (slave) degrees of freedom of a substructure
Npounaary = the total number of interface degrees of freedom of the substructure.
Npanawiach 1S the average bandwidth of the sparse diagonal symmetric matrix k!

Step 2: Generating reduction basis

Reduction basis R = [ ] (according to equation (6.67))

0 1
(¢ — [ 1dp] [¢°

Step Description of action Estimated number of FLOPS

2A ) ] 2 x n; * nboundary * My
Calculating a = [¢¢ ][]

Multiplying a full n; X npoynaqery Matrix with a full
Npoundary X My Matrix

2B n; *ny
CaICUIating Gni — GcPnp = Py —a

Where a is obtained from step 2A

Subtracting a full n; x n,, matrix from a full n; x n,
matrix

n; = the number of internal (slave) degrees of freedom of a substructure
Npounaary = the total number of interface degrees of freedom of the substructure.
n, = the number of retained normal modes
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Step 3: Reducing Stiffness and Mass Matrices

Calculating the reduced stiffness and mass matrix according to K, = RTK,R and M, = RTM,R
according to section 6.5.2.2

Step 3A Estimated number of FLOPS:
Calculating a = K4R and M,R
2% 2% Ng * N * Npandwidth
Multiplying a sparse n X n matrix with a sparse
n X n, matrix. This action needs to be performed
twice: once for the mass matrix and once for the
stiffness matrix.

nxn | } Npoundary = |
Sparse X n

pars n; + 0.5N,4nawiath
matrix n;

—— \_Y_J Skyline of matrices:

white = zeros
K, or My X R = a

Step 3B Estimated number of FLOPs:
Calculating K, or M, = RTK,R or RTM,R = R"a
2x2%m;xng*ny,
Where a is obtained from step 3A +

2% 2% (ni + 1) * Mg * nboundary
Multiplying a sparse n, X n matrix with a full

n X n, matrix. This action needs to be performed
twice: once for the mass matrix and once for the
stiffness matrix

1
o N A
Tln{ l T X | * = } Ng
nboundary { | } n
\ ; " + 0.5Mpanawiatn ——
Ng

RT X a = kVA or MA

n is the number of degrees of freedom of a substructure

n, is the number of retained normal modes plus the number of constraint modes (interface degrees of
freedom)

Mpounaary = the total number of interface degrees of freedom of the substructure.

n,, = the number of retained normal modes

Npanawiatn 1S the average bandwidth of the sparse diagonal symmetric matrix K,or M,

n; = the number of internal (slave) degrees of freedom of a substructure.
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Step 3C Reducing external load vector: R” [?)A Estimated number of FLOPS:
eA
Multiplying a real sparse n, x n matrix with a full 4%, *n,

complex n x 1 vector +
4 * (ni + 1) * nboundary

1
1
n, ;
{[v] L x _ } n,
nboundary{ | a n
H—/ 1 Skyline of

n 1 matrices:
. Foa _ & o
R % F = F white = zeros
eA

n is the number of degrees of freedom of a substructure
n, is the number of retained normal modes plus the number of constraint modes (interface degrees of

freedom)

Npoundary = the total number of interface degrees of freedom of the substructure.

n,, = the number of retained normal modes

n; = the number of internal (slave) degrees of freedom of a substructure

Npanawiath 1S the average bandwidth of the sparse diagonal symmetric matrix K,or M,
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Step 4: Generating reduced equations of motion
(see equations (6.54) to (6.56) section 6.5.1.3)

Calculating

[K — eK — w?>M]Where K and M are the reduced stiffness and mass matrix of the total assembled
structure. The total reduced dynamic stiffness matrix [K — eK — w?M] is calculated from the reduced
dynamic stiffness matrices of the individual substructures obtained in step 3.

5 0 Ky—eKy O 0
K — K] = . N
[ | 0 0 0
M, 0 0 O
— 0 Mz 0 O
M| = B
L] 0 0 0
0 0 0 My
Step Description of action Estimated number of FLOPS
4A Calculating ky = Ky — €Ky, for all N substructures | ¥=V
the total structure consists of: Z (MNboundary + Myn)
N=A
Calculating eKy = multiplying an imaginary * (MNboundary
(anoundary + nNn) X (anoundary + nNn) matrix + nNn)
with the loss number &
N=N
kN = I?N - EI?N = Addmg real (anoundary + 2 Z (anoundary + nNn)
Nyn) X (Mnpoundaary + Mvn) Matrices to complex N=A
(anoundary + nNn) X (anoundary + nNn) * (anoundary
matrices. + nyn)
N=N
3% z (anoundary + nNn) * (anoundary + nNn)
N=A

nyn = the number of normal modes of substructure N

Nyboundary = NUMber of master (connecting) degrees of freedom of substructure N
f = number of frequencies analysed

N = Number of substructures involved
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Step Description of action Estimated number of FLOPS
4B k, 0 0 O
gooo= = [0 kzy 0O O N=N
Compiling [K — eK] = 0 0 - 0 2 % Z (wpoundary + Tvn)
0 0 0 k, N=A
* (anoundary
+ nNn)
Where kj, are the matrices obtained from step 4A
Adding complex (Mypoundaary + Mvn) X
(Myboundary + Myn) Matrices to complex
(anoundary + nNn) X (anoundary + nNn)
matrices.
M, 0 0 O n=n
[1\_/[] _ 0 ]\_/[B O 0 NZ;(anoundary + )
0 O =~ 0 =
0 0 0 I_VIN * (anoundary

Adding real (nypounaary + Mwn) X Mypoundary +
Ny,) Matrices to real (Mypoundaary + Nwn) X
(anoundary + nNn) matrices.

+ nNn)

N=N

3% z (anoundary + nNn) * (anoundary + nNn)

N=A

nyy = the number of normal modes of substructure N
Nyboundary = NUMber of master (connecting) degrees of freedom of substructure N
f = number of frequencies analysed

N = Number of substructures involved
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[L]

Step 5. Forcing equilibrium and compatibility at the interface degrees of freedom:
[L]"[K - eK][L]

T[M][L] (see equations (6.53) to (6.56))

5A

ak = [K —eK][L] am = [M][L] Number of FLOPS

Calculating ak : Multiplying a complex full 4+ ng * Mytorar + Mb toral)
(nBN_total_ + 2 Ny rorar) X (Mntotar + 2 * N totar)
matrix with a real sparse (Ngnorar + 2 * My rorar) X
(MNtotar + Mp torqr) Matrix with bandwidth of 1

Calculating am: Multiplying a real full (ngytorar + 2 *ng * Myrotar + Mp total)
2xnb totalxnBNtotal+2+nb tota/ matrix with a
real sparse (nBNtotal + 2% ny total) X (nBNtotal +
nb tota/matrix with bandwidth of 1

5B

Calculating bk = [L]"[ak] and bm = [L]" [am] Number of FLOPS

Multiplying a sparse real (ngntotar + M totar) X 4 xng * (Mytorar + M totat)
(Mpntotar T 2 * Np torqr) Matrix with bandwidth 1,
with a complex full (ngntorar + 2 * Ny rotar) X

(nBNtotal +ny total) matrix

Multiplying a sparse real (ngntotar + Mo torar) X 2 #ng * (Mytotar + Mp totar)
(MNtotal + 2 * Ny rorqr) Matrix with bandwidth 1,
with a real full (ngncotar + 2 * My torar) X

(nBNtotal +ny total) matrix

5C

Compiling B = [[L]T[K — eK][L] — [L]"[M][L]w?]
Number of FLOPS

¢ = [L]"[M][L]w? = Multiplying a real (n, torar +
Nntotar) X (M totar + Mtotar) With w2 f* (M cotar +
nNtotal)(nb total + nNtotal)

[[L]"[K — eK][L] — [L]"[M][L]w?] = bk + ¢ 2 f* (M totar

Adding complex (nb total + nNtotal) X (nb total + + nNtotal)(nb total + nNtotal)
nNtotal) matrices to real _(nb total + nNtotal) X
(b totar + Nutotar) MAtrices.

LTRT[F]

= eliminating redundant interface degrees of freedom and stating that the external force at

the

retained interface degrees of freedom are zero, so that an equilibrium of forces is

obtained

ng

= the number of rows or columns of the total assembled B matrix. (ngytotar + 2 * Mp total)

Ny rorar = the total number of master (connecting) degrees of freedom (interface node degrees of
freedom) of the total assembled structure.
Nyrorar 1S the total number of normal modes taken into account for all individual substructures added

tog

ether.
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Appendix XVII Steps and

Estimated Number of Matrix

Operations Rubin’s Method
using Interface Modes
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Step 1: Calculating constraint modes

Constraint modes = ¢ = —[k!']7[kB] (according to equation (6.40))

See also section 6.5.3

Step Description of action Estimated number of FLOPS

1A Calculating —[k!]~?1 4
32k + 1) = k(e + D) n,

Inverting a n; X n; matrix through LU

decomposition Where k = (nbandv;idth_l)
1B CaICUIating _[k”]_l[kIB] 2% n; * nboundary * Npandwidth

Multiplying a full n; x n; matrix with a sparse
N X Npoundary Matrix

n; = the number of internal (slave) degrees of freedom of a substructure
Npounaary = the total number of interface degrees of freedom of the substructure.
Npanawiach 1S the average bandwidth of the sparse diagonal symmetric matrix k!!

— 2
KL (Dinterface - ML (Dinterface w

Step 2: Reducing the Interface degrees of freedom

Generating reduced stiffness and mass matricesK; and M,
K, =TTk,Tand M, = T"M,T
1 .
Ro = |gg] 2 ReT =11 5]

See equation (6.73)

Step Description of action Estimated number of FLOPS
2A CaICUIating aK = KARG and aM = MARG 2 % n; * Ny * Nyandwideh
+

L o 2% My * Ny * Npgngwiden
Multiplying a sparse n; X n; matrix with a full
n; X n, matrix. This is done twice: once for the
reduction of the stiffness matrix and once for the
reduction of the mass matrix

2B Calculating K, = R;"ayx and M, = Rz ay 2% m; *m, *n,
+
Multiplying a full n; x n; matrix with a full 2%k, *n,

n; X n, matrix. This is done twice: once for the
reduction of the stiffness matrix and once for the
reduction of the mass matrix

n; = the number of internal (slave) degrees of freedom of a substructure
n,, = the total number of interface degrees of freedom of the substructure.
Nyanawiaen 1S the average bandwidth of the sparse diagonal symmetric matrix k!
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Step 3: Generating reduction basis

Reduction basis

R _ 0 [Q)interface b]
IRS = ci
[(Pl] - [¢ ][(pb] [Qinterfacei]
(according to equation (6.77))

Step Description of action Estimated number of FLOPS
3A ‘ 2%n;*n,*n,

Calculating a = [¢“][¢p]

Multiplying a full n; x n, matrix with a full n,, x n,,

matrix
3B ng * Ny

Calculating [¢;] — [¢“](¢p] = ¢ —a

Where a is obtained from step 3A

Subtracting a full n; x n,, matrix from a full n; x n,,
matrix

n; = the number of internal (slave) degrees of freedom of a substructure

n,, = the total number of physical interface degrees of freedom of the substructure.

n, = the number of retained normal modes

n,, = the number of retained interface modes (cut-off frequency 3.5 times maximum frequency)
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Step 4: Reducing Stiffness and Mass Matrices

Calculating the reduced stiffness and mass matrix according to K, = R;zs’ K4R;rs and M, =
Rrs” MR, s according to section 6.5.3.1

Step 4A Estimated number of FLOPS:

Calculating a = KRz and M,R;xs
2% 2% Ng * N * Npandwidth
Multiplying a sparse n x n matrix with a sparse
n X n, matrix. This action needs to be performed
twice: once for the mass matrix and once for the
stiffness matrix.

1
 EnEEEEE LR PR I RRREEEEE ! I:I =n,, X n, full matrix
1
n, ! Lo m e
[l 4 v
nxn }'ninterface modes |
Sparse X
n
. n; + 0.5Npqnawiden
matrix }ni ' anawt

—— \_Y_J Skyline of matrices:

__________________________________________

ng Ng
white = zeros
K, or My X Rirs = a
Step 4B Estimated number of FLOPs:
Calculating K, or M, = R;gs” K4R or Rigs” MyR =
Ryrs"a Where a is obtained from step 4A 2x2xmxng xny
+

Multiplying a sparse real n, x n matrix with a 2x2xmAng xmy
sparse real n x n, matrix. This action needs to be
performed twice: once for the mass matrix and once
for the stiffness matrix

_____________________________________________

\ , n; + 0.5N,qnawiacn ——
Ng

Na

Rirs” X a = K,or M,

n is the total number of degrees of freedom of a substructure

n, is the number of retained normal modes plus the number of interface modes

n,;, = number of retained interface modes (cut-off frequency 3.5 times maximum frequency)
n,, = the number of retained normal modes

n,, = the total number of physical interface degrees of freedom of the substructure.
Npanawiatk 1S the average bandwidth of the sparse diagonal symmetric matrix K,or M,

n,;, = number of retained interface modes (cut-off frequency 3.5 times maximum frequency)
n; = the number of internal (slave) degrees of freedom of a substructure.
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Step 4C Reducing external load vector: R, s" FbA] Estimated number of FLOPS:
' FeA

Multiplying a sparse n, X n matrix with a full n x 1 2% *n,
vector +
2xnx*n;

[} nl
I ——
AS
kyline of
H—/ 1 Skyline o
n

1 matrices:
R..T % F bA] = F white = zeros
IRS F,,

n is the total number of degrees of freedom of a substructure

n, is the number of retained normal modes plus the number of interface modes

n,, = number of retained interface modes (cut-off frequency 3.5 times maximum frequency)
n,, = the number of retained normal modes

n,, = the total number of physical interface degrees of freedom of the substructure.
Npanawiach 1S the average bandwidth of the sparse diagonal symmetric matrix K,or M,

n, = number of retained interface modes (cut-off frequency 3.5 times maximum frequency)
n; = the number of internal (slave) degrees of freedom of a substructure.
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Step 5: Generating reduced equations of motion

Calculating

[K — eK — w?M] Where K and M are the reduced stiffness and mass matrix of the total assembled
structure. The total reduced dynamic stiffness matrix [K — eK — w?M] is calculated from the reduced
dynamic stiffness matrices of the individual substructures obtained in step 3.

[I?A — &Ky 0 0 0 ]
= = 0 Ky—e¢Ky O 0
K—¢K] = B N
K—ekl=) 0 0 |
l o 0 0 Ky — eyl
M, 0 0 O
— 0 Mz 0 O
M] = 5
u 0 0o -~ 0
0 0 0 M,y
Step Description of action | Estimated number of FLOPS
5A Calculating ky = Ky — €K, for all N substructures the total structure consists of:
N=N
Calculating eKy = multiplying an imaginary Z (nyy + nyn) * My + nyp)
(nyy + nyp) X (nyy + nyy) Matrix with the loss N=4
number &
ky = Ky — €Ky = Adding complex (n,y + ny,) X N=N
(nuy + nyy) Matrices to (nyy + nyp) X (npy + 2% Z (nuy + nyp) * (N
Nyn) Matrices. N=4
+ nNn)
N=N
3 * z (Muy + ) * (M + Ny )
N=4

nyn = the number of retained normal modes of substructure N
n.y = number of retained interface modes for substructure N
f = number of frequencies analysed

N = Number of substructures involved
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Estimated number of FLOPS

Step Description of action
5B k, 0 0 O 1vz=1:v
s o= [0 kg 00 2% ) (ny +nyn) * (Ny
Compiling [K — ¢K] = 0 0 - 0 Where F
0 0 0 k, + Nyn)

ky are the matrices obtained from step 5A

Adding complex (nyy + nyn) X My + Nyn)
matrices to (n,y + ny,) X (nuy + ny,) Matrices.

M, 0 0 O
— 0 Mz 0 O
M) = 5
[M] 0 0o =~ 0
0 0 0 My
Adding real (n,y + ny,) X (n.y + ny,) Matrices
toreal (n,y + nyn) X (nLy + nyy,) Matrices.

N=N
Z My + nyn) * (Muy + Nyg)
N=4

N=N

3 * z My + nyg) * (Mpy + Nyy)

N=A

nyy = the number of retained normal modes of substructure N
n,y = number of retained interface modes for substructure N
f = number of frequencies analysed

N = Number of substructures involved
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Step 6. Forcing equilibrium and compatibility at the interface degrees of freedom:

Formulating L according to equation (6.82):
-1
L= [_[QLkeptTmLkept] {[mLkeptT] [0 _Q)Lred 0]}]

Where @, ., are the retained interface modes for all substructures involved that have not been made redundant

Where @;...4 are the retained interface modes made redundant through the formulation of the compatibility
relations

Step Action Estimated number of FLOPS

6A Calculating a = @, Drkept 2 % N Nygepe * Nikepe

Multiplying a full npep. X np, with a full
My X Ny geepe Matrix

68 Ca|Cu|atIng b = [QLTEtT] [0 _Q)Lred 0] 2 * nb*nLkept * nLred

Multiplying a full ny,.., X n;, matrix with a
sparse n, X (Mygepe + Npreq) Matrix

6C Calculating [@,,ec @rred] = a™? 4

§ nLkept3
Inverting a full nyepe X 1y gepe Matrix
6D CaICUIating 2% nLkept*nLkept *Niread
_[QLretT(DLret]_l{[@LretT] [0 _QLred 0]}
=a'h

Multiplying a full e, X 1pgepe Matrix with
a sparse Npgepr X (Mpgept + Npreq) Matrix

n, is the number of physical interface degrees of freedom

n.r.q= total number of retained interface modes made redundant for all substructures put together
Nykepe = total number of retained interface modes not made redundant for all substructures put
together
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Step 7.

Forcing equilibrium and compatibility at the interface degrees of freedom for
the reduced mass and stiffness matrices:

[L][K — eK][L]

[L]"[M][L
Step Action Estimated number of FLOPS
TA ak = [K — eK][L] and am = [M][L]
4 x ((nLkept + Nytotar)’
. i + (nLkept + nNtotal)
ak : Multiplying a complex sparse (n, + * Npreq * nmd)
Nutoral) X (M + Nyrorqr) Matrix with a real
Sparse (nNtotal + nL) X (nNtotal + nLret) +
matrix
2 * ((nLkept + an:otal)2
am : Multiplying a real sparse (n, + + (Mukept + Mvtotar)
Nutoral) X (M + Nyrorar) Matrix with a real * Mired * Mirea)
sparse (Myeorar + 1) X (Mntotar + Niret)
matrix
7B Calculating bk = [L]"[ak] and bm =

LT7am

Multiplying a real sparse (nyiorar +
Nyret) X (Mytorar + 1) Matrix with a full

complex (nL + nNtotal) X (nNtotal + nLret)
matrix

Multiplying a real sparse (Nytorar +
Nprer) X (Mytorar + 1) Matrix with a full

real (nL + Nyeotar) X Mutotar + Niret)
matrix

4 x ((nLkept + nNtotal)z
+ (Mpgepe + Nneotar)”
* nLred)

+
2% ((nLke +n )2
pt Ntotal
+ (Mpgepe + Nneotar)”
* nLred)

n, is the number of physical interface degrees of freedom

n,rq= total number of retained interface modes made redundant for all substructures put together
Nykepe = total number of retained interface modes not made redundant for all substructures put

together

Nyrotar= total number of retained normal modes (flexibility and elastic modes) of all substructures

together
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Step Action | Estimated number of FLOPS

7C Compiling B = [[L]"[K — eK][L] — [L]"[M][L]w?]

¢ = [L]"[M][L]w? f* (Mukepe + Mvtorar) Mikept + Nntotar)

Multiplying a real sparse (nysorar +
nlkeptxniNtotal+nlkept with w2

[[L]"[K — eK][L] = [L]"[M][L]w?] 2% f x (nLkept + nNtotal)(nLkept

. = bk +c + nNtotal)
Adding complex (nycorar + Nikept) X
(Nwtotar + Mikepr) Matrices to a real

(nNtotal + nLkept) X (nNtotal + nLkept)
matrices.

LTRT[F]
= eliminating redundant interface degrees of freedom and stating that the external force at
the retained interface degrees of freedom are zero, so that an equilibrium of forces is
obtained

Ny kepe total number of retained interface modes not made redundant through the compatibility
relations
Nyrotar = the total number of retained normal modes of all substructures.
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Appendix XVIII Steps and
Estimated Number of Matrix
Operations Zoet’s Method
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Step 1: Calculating G,.s = K™ — ¢eA‘1¢eT according to equation (6.59)

(see section 6.4.3 and 6.5.2.2) for each individual substructure

K 1= the inverse of a substructure’s full stiffness matrix

Where ¢, represents the set of retained elastic modes

A~1 is the inverse diagonal matrix containing the natural frequencies corresponding with the retained

elastic modes

Step Number of Flops Required
1A Calculating a = K1 4
Inverting a (n — ¢) X (n — ¢) matrix 3 ((n— )2k + 1) — k(k
. . L +1)(n-—c)
Where K is the stiffness matrix with the degrees of
freedom eliminated where constraints are applied. Where k = (Npanawideh—1)
2
1G Calculating b = A™1¢," ne * My
Multiplying a diagonal sparse n, X n, matrix with a
full ng X Npounaary Matrix
1H Calculating ¢ = ¢p,A1p," = ¢,b 2 % Ny * Npoyndary”
Where b has been obtained from step 1B
Multiplying a full n,,ynaary X 1. matrix with a full
Ne X Npoyndary Matrix
1l Calculating K™t — ¢eA_1¢eT =a-—c nboundaryz

Where a has been obtained from step 1A and ¢ has
been obtained from step 1C

SUbtraCting afull Npoundary X Nboundary from a full
Npoundary X Mboundary matrix

n is the total number of degrees of freedom of an individual substructure
¢ is the number of constraints on the individual substructure
Npoundary 1S the number of interface degrees of freedom of the individual substructure

n, is the number of retained elastic modes of the individual substructure

Npanawiaen 1S the average bandwidth of the sparse diagonal symmetric matrix k! of the individual
substructure
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In Case of Unconstrained Structure (see Appendix V)

Gres = G attacnment = Pl e (Step 1G-11)

Gg = PTG.P (Step 1E and 1F)

P=(1-Mp.¢.") (Step 1B to 1D)

G, =Kt (Step 1A)

Step Description of action Estimated number of FLOPS
1A Calculatinga = G, = K1

%* (n-6)2k + 1) — k(k
+1)(n—-6)

Inverting a sparse (n — ¢) X (n — ¢) matrix

Where K is the stiffness matrix with the

degrees of freedom eliminated where pseudo Where k = (Mpandwiden—1)

constraints are applied. 2

1B Calculating b = (¢, ¢,.") 2xn. 2k
Multiplying a full n, x k with a full k x n,
matrix

1C Calculating ¢ = (M¢,¢,") = Mb 2 * N Npanawiacn

Where b has been obtained in Step 1A

Multiplying a sparse n. X n, matrix with a
full n. X n, matrix

1D Calculating P = (I — M¢,¢,.")=1—c¢ ne

Where ¢ has been obtained from step 1C

n is the total number of degrees of freedom of an individual substructure
c is the number of pseudo constraints on an individual substructure

n. is the total number of degrees of freedom of the G, matrix

k is the number of rigid body modes (= 6)

Npanawiatn 1S the average bandwidth of the Sparse matrix M or
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Calculating Gg gerachment = PTG P for one substructure

Where G geracnment 1S the section of G representing the degrees of freedom of the interface nodes.

Step Description of action Estimated number of FLOPS

1E Calculating e = G_P = aP 2xn. *n,
Where a has been obtained from step 1A

Multiplying a full n, x n, with a full n, x n, matrix

1F Calculating f = G attachment = PTG.P = PTe 2% ng * N2
Where e has been obtained from step 1E

Multiplying a full n,, x n. with a full n, X n, matrix

Calculating Residual Attachment Modes: G,..s = GE attacnment — ¢eA‘1¢eT

Step Description of action Estimated number of FLOPS

1G Calculating g = A~1¢," Ne * Ny

Multiplying a diagonal sparse n, X n, matrix with a
full n, X n; matrix

1H Calculating h = ¢ A" p, = peg 2 % Mg * 12
Where g has been obtained in step 1G

Multiplying a full n,, X n, matrix with a full n, X n,,
matrix

. _ T
1 Calculating Gg qtracnment — ek 1¢e = M

GE attacnment ~—

Where h has been obtained from step 1H

Subtracting a full n;,, x n,, from a full n;, x n;, matrix

n. is the total number of degrees of freedom of the G, matrix
n, is the number of interface degrees of freedom
n, is the number of retained elastic modes
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Step 2: Formulating interface mobility [A] matrix for a pair of coupled substructures
(substructure A and B) (see section 8.4, equation (8.32))

_ [diag(—0® + ewp?i+ we>)™" 0

A= 0 G ] [RT][Kdyn conn][R] = Step 2C
resb
[RT1[Kayn conn][R] = Step 2A and 2B
H ¢Abnormal 0 1 0
Note that the matrix R = [ ]
0 ¢anormal 0 I
Step 2A Estimated number of FLOPS:

Calculating a = [Kayn conn|[R]
8 * Napoundary * Mbandwidth * MAn
Multiplying a complex sparse np,gynaary X +

Npoundary Matrix with a sparse complex 8 * Nppoundary * Nbanawiden * Nen
Npoundary X Mq Matrix +

2 * Npoundary * Mpanawidth

Npoundary Nan  Mpp Mboundary
TlAboundary{ identity
Npoundary X = a
anoundary Matrix-
H_/ N J
e Skyline of matrices:
[Kayn conn) X [R] white = zeros
T!’j?_l‘ Mgn Mboundary grey = non- zeros
Band
Matrix nAbouﬂda’r’y + 0-5nbaﬂdwidth
}nﬁ’bouﬂda’r’y + 0-5nbcmdwidth
- ~ A
na

Npoundary 1S the total number of degrees of freedom of all interface element nodes.

n, is the total number of retained normal modes and residual flexibility modes of subsystem A and B
together

Napounaary = the number of interface degrees of freedom of substructure A

Nppounaary = the number of interface degrees of freedom of substructure B

ny,, = the number of retained normal modes of substructure A

ngy, = the number of retained normal modes of substructure B

Tpanawiaen 1S the average bandwidth of the Sparse matrix Kqyp conn

f= the number of frequencies analysed. If [Kdyn Conn] is considered to consist of stiffness and
damping only and interface inertia forces are neglected, f is 1 as there is no frequency dependency
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Step 2B | Calculating Estimated number of FLOPS:
b =[R"] [Kdyn conn] [R] = R"a 5
8 * nAhoundary *Nyn +
8 * (0-5 * nbandwidth) * thoundarynAn +

a is the result from step 2A
8 * Npandwidth * nAboundarynAn +

o .
Multiplying a complex sparse n, X 8v (0.5 : .
nboundary matrix with a full Complex : 8nbandWldth nAbouéndaryan
Mpoundary X Ma matrix * Nppoundary * Men” +

8 * Npanawiath * NppoundaryMen +

+

2 * Npoundary * Mbanawiden

Nan Npn Mp oundary

nAboundary anoundary A ] A

n Band
nAn { v Matrix nAbouﬂda’r’y + 0-5nbcmdwidth -
Bny | | | I/ --- -
. }nﬁ’bouﬂda’r’y + 0-5nbandwidth
nboundary ntity
\ \ J
Matrix hd
na
[R"] X
Ng Skyline of matrices: white = zeros
3\ grey = non- zeros
>
J
N J
Y
b

Npoundary 1S the total number of degrees of freedom of all interface element nodes.

n, is the total number of retained normal modes and residual flexibility modes of subsystem A and B
together

ny is the total number of retained normal modes of subsystem A and B together

Napoundary = the number of interface degrees of freedom of substructure A

Nppounaary = the number of interface degrees of freedom of substructure B

na, = the number of retained normal modes of substructure A

ngy, = the number of retained normal modes of substructure B

Mpanawiaen 1S the average bandwidth of the Sparse matrix Kqyp conn

f=the number of frequencies analysed. If [Kdyn Conn] is considered to consist of stiffness and
damping only and interface inertia forces are neglected, f is 1 as there is no frequency dependency
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2C Calculating Estimated number of FLOPS

A= — [diag(—w2 + ewpli+ we®)™ 0 b 2 ]:_* Ma
0 Gresb 8 * nAboundary3
+
b is the result from step 2B (see equation (8.32)) 8 * Nppoundary”

Multiplying a sparse complex n, X n, matrix with a full
complex n, X n, matrix

e R e Skyline of matrices: white = zeros

it Bl e ;l grey = non- zeros
nn: nAboundary anoundary J\a
) e I
{ |V A
nyp
n GAresb
Aboundary X >
Ng
G
anoundary Bresb
J
N\ J k J
' Y
_[diag(—w® + ew’i+ wy®)™ 0 v [b]
0 Gresb
2D Calculating [A —I] Estimated number of FLOPS:

2% fxng,

Subtracting a complex n, x n, identity matrix from a
full n, X n, matrix

Npoundary 1S the total number of degrees of freedom of all interface element nodes.

n, is the total number of retained normal modes and residual flexibility modes of subsystem A and B
together

Napounaary = the number of interface degrees of freedom of substructure A

Nppoundary = the number of interface degrees of freedom of substructure B

ny,, = the number of retained normal modes of substructure A

ngy, = the number of retained normal modes of substructure B

n,= the total number of normal modes for substructure A and B together

f = number of frequencies analysed
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Step 3: Calculating a

Calculating a,, modal coordinates representing the response of the uncoupled substructures
due external alternating loads acting on the substructures. Only the modal coordinates
belonging to the normal modes are calculated and no residual compensation has been taken
into account for the uncoupled dynamic behaviour. Therefore (see equation (6.27)):

ay = [diag(—w? + swy?i + w?) " [RT]f,

Where R is the matrix containing the retained eigenvectors representing only the retained
normal mode shapes.

Step Description of action Estimated number of FLOPS
3A a = [RT]f, f*8xnpxny,
Multiplying a full complex n,, X n matrix with a
complex n x 1 vector
3B ay = [diag(—w? + ewy?i + wy?) ] [RT]F, f*6xn,

ay = [diag(—w? + ewy?i + wy?) a
Where a is the matrix obtained from step 3A

Multiplying a complex diagonal n,, X n,, matrix
with a complex sparse n,, X 1 vector

n is the total number of degrees of freedom of the substructure
n, is the number of retained normal modes
ngis the number of degrees of freedom subjected to external loads
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Step 4: Eliminating Interface Degrees of Freedom
See equation (8.35) to (8.39) in section 8.5

[A] = [Aaa] + [Aau] [Auu]_l[Aua] (Step 4F)
And
doA — QAoa -1 Upares
[24] = = [aa] + Maud 4] [orre] (step 4G)
Step Description of action Estimated number of
FLOPS
4A Calculating a = [A,, ]t

3
§ * 8 * nboundary

Inverting a full complex nppunaary X Mhoundary through
LU factorisation

4B Calculating b = [Auu]_l[Aua] = a*[Aya] 8 xny * nboundaryz
Where a is the matrix obtained from step 4A

Multiplying a full n,oyndary X Npoundary Matrix with a full
Npoundary X My Matrix

4C C : -1 Upares Upares 8xn 2
alculating c = [A =aq boundary
g [ uu] UpBres UpBres

Where a is the matrix obtained from step 4A

Multiplying a full complex npounaary X Mpoundary With a
complex nyoyunaary X 1 vector

4D d= [Aau][Auu]_l[Aua] = [Aau]b f * 8 * nboundary * nnz
Where b is the matrix obtained from step 4B

Multiplying a full complex n,, X n,qunaary With a full
Npoundary X NMn Complex matrix

4E e = [Agl [Auu]_l ZOAT@S] = [Agu]c f*8x Npoundary * Mn
O0Bres

Where c is the matrix obtained from step 4C

Multiplying a full complex n,, X n,oyngary Matrix with a
complex nyounaary X 1 vector

Npoundary 1S the total number of degrees of freedom of all interface element nodes.
n,= the total number of normal modes for substructure A and B together
f = number of frequencies analysed
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Step Description of action Estimated number of
FLOPS

4F Calculating A = [Aaa] + [Aau][Auu]_l[Aua] = [Aaa] +d f * 2% Ny * Ny
Where c is the matrix obtained from step 4C

Adding a full n,, X n,, matrix to a full n,, X n,, matrix

Aoa
Qop

4G

. a u * 2 %
Calculating [J’A] = —[ u"*‘m] = fr2xn,
QAop 0Bres
_ [aOA
Aop

|+ a4y

] +e
Where e is the matrix obtained from step 4E

Adding a n,, vector to an n,, vector

Npoundary 1S the total number of degrees of freedom of all interface element nodes.
n,= the total number of normal modes for substructure A and B together
f = number of frequencies analysed

Step 5: Compiling total matrix:

Adding Pairs of coupled substructures where A ,pis the boundary mobility matrix through which the
interaction between substructure A and B is expressed, and A, is the boundary mobility matrix
through which the interaction between substructure B and C is expressed. 4,5, the boundary mobility
matrix through which the assembled dynamic behaviour of substructure A, B and C coupled together
can be calculated.

5A Aupe = Aup + Apc 2% fxNgep *Ngen + 2% f * Nepp * Nep vee - +2
* f % Nyzn * Nyzn

Npoundary 1S the total number of degrees of freedom of all interface element nodes.
n,= the total number of normal modes for substructure A and B together
f = number of frequencies analysed
Ngcn = the number of retained normal modes of substructure B and C together
nepn = the number of retained normal modes of substructure C and D together
Nyz, = the number of retained normal modes of substructure Y and Z together
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Appendix XIX Steps and
Estimated Number of Matrix
Operations Rubin-Zoet
Method
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Step 1: Calculating constraint modes

Constraint modes = ¢ = —[k!']~1[k'B] (according to equation (6.40))

Step Description of action Estimated number of FLOPS

1A Calculating —[k!]~1 4
32k + 1) = k(e + D) n,

Inverting a n; X n; matrix through LU

decomposition Where k = (nbandv;idth_l)
1B CaICUIating _[k”]_l[kIB] 2% n; * nboundary * Npandwidth

Multiplying a full n; x n; matrix with a sparse
M X Npoungary Matrix

n; = the number of internal (slave) degrees of freedom of a substructure
Npoundary = the total number of interface degrees of freedom of the substructure.
Npanawiach 1S the average bandwidth of the sparse diagonal symmetric matrix k!

Step 2: Generating reduction basis

0 I
Reduction basis R = [[fl) — peig b] ¢a-] (according to equation (6.67))
ni n

Step Description of action Estimated number of FLOPS

2A . 2% n; * nboundary *ny
Calculating a = ¢“¢,,

Multiplying a full n; X npoynaqery Matrix with a full
Npoundary X My Matrix

2B n; *ny,
Calculating ¢,,; — ¢, = P — a

Where a is obtained from step 2A

Subtracting a full n; X n,, matrix from a full n; X n,,
matrix

n; = the number of internal (slave) degrees of freedom of a substructure
Mpounaary = the total number of interface degrees of freedom of the substructure.
n,, = the number of retained normal modes
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Step 3: Generating Reduced Mass, Stiffness and External Load Matrices

Calculating the reduced stiffness and mass matrix according to K, = RTK,R and M, = RTM,R
according to section 6.5.2.2

Step 3A Estimated number of FLOPS:
Calculating a = K4R and M,R
2% 2% Ng * N * Npandwidth
Multiplying a sparse n X n matrix with a sparse
n X n, matrix. This action needs to be performed
twice: once for the mass matrix and once for the
stiffness matrix.

L= _______ P .
v
nxn | | } Npoundary = |
Sparse X n
pars n; + 0.5N,4nawiath
matrix n;

—— \_Y_J Skyline of matrices:
Nng Ng
white = zeros
K, or My X R = a

Step 3B Estimated number of FLOPs:
Calculating K, or M, = RTK,R or RTM,R = R"a
2x2%m;xng*ny,
Where a is obtained from step 3A

+

Multiplying a sparse n, X n matrix with a full 2% 2% (n; + 1) * ng * Npounaary

n X n, matrix. This action needs to be performed

twice: once for the mass matrix and once for the

stiffness matrix
e
: |I| = Npoundary X nboundaryldentlty matrl_x_ -,
] [} . 1
Ittt Sy T_l ________________ : I:I = Npoundary X nboundaryband matrix '

i ! 1

1
|
|
o { [ V] , x ([LIY - } ne
nboundary{ | n

\ , n; + 0.5Npanawiacn (——
na

R” X a = K, or M,

n is the number of degrees of freedom of a substructure

n, is the number of retained normal modes plus the number of constraint modes (interface degrees of
freedom)

Mpounaary = the total number of interface degrees of freedom of the substructure.

n,, = the number of retained normal modes

Npanawiatn 1S the average bandwidth of the sparse diagonal symmetric matrix K,or M,

n; = the number of internal (slave) degrees of freedom of a substructure.
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Step 3C Reducing external load vector: R” [FbA Estimated number of FLOPS:
' FeA

Multiplying a sparse n, x n matrix with a full n x 1 2% m; %y,

vector +
2% (ni + 1) * nboundary

1
!
n, ,
L[] X _ }
nboundary{ | @ n
H—/ 1 Skyline of

n 1 matrices:
T Fya = F hite =
R x F = white = zeros
eA

n is the number of degrees of freedom of a substructure
n, is the number of retained normal modes plus the number of constraint modes (interface degrees of

freedom)

Npoundary = the total number of interface degrees of freedom of the substructure.

n,, = the number of retained normal modes

n; = the number of internal (slave) degrees of freedom of a substructure

Npanawiath 1S the average bandwidth of the sparse diagonal symmetric matrix K,or M,
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Step 4: Generating Reduced Equations of Motion of Coupled Sets of Substructures
(see equations (6.54) to (6.56) section 6.5.1.3)

Calculating K, and w?M,p

R, = [IBA Ig] and w?i,, = [
B

_(IJZMA 0
0 w?*Mp

Where K and M are the reduced stiffness and mass matrix of the total assembled structure obtained in
step 3. Subscript A and B refers to the fact that the stiffness or mass matrix belongs to substructure A
orB

Step Description of action Estimated number of FLOPS

4A Calculating w?M, and w? M [ * (Mpoundary + Nan) *

(nboundary + nAn)

MUItlplymg (nboundary + nAn) X (nboundary +
nAn) and a (nboundary + an) X (nboundary + an)
matrix with a scalar w? (excitation frequency

+
f * (nboundary + an) *
(nboundary + an)

squared)

4B Adding w21\71A to w21\7IB: f * (nboundary + nAn) *

i (nboundary + nAn)
Adding two real sparse (Npoundary + Man) X +

(nboundary + n,y,) matrices. f* (nboundary + ng,) *

(nboundary + an)

4C Adding K, to Kp: (nboundary + Ngn) *

i (nboundary + nAn)
Adding two real sparse (Npoundary + Man) X +

(Mpoundary + Nan) Matrices (Mpoundary + Nan) *

(nboundary + an)

Ny, and ng,= the number of normal modes of substructure A and of substructure B respectively
Npounaary = NUMber of master (connecting) degrees of freedom between substructure A and B
f = number of frequencies analysed

N = Number of substructures involved
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Step 5. Forcing equilibrium and compatibility at the interface degrees of freedom for
each pair of coupled substructures:

Calculating
[L]T[I?AB — Kape — wZMAB] [L]

5A Calculating K5 — Kype — w?Myp Number of Flops
K,z ¢ - Multiplying a complex sparse matrix 2 * (Napoundary + nAn)2
(2 * Npoundary + nNtotal) X (2 * + 2

Npoundary T Mneorar) With @ scalar & 2
oundary ora * (anoundary + an)

= —— - 3
w*M,5:Multiplying a real sparse matrix fx (nAboundary + nAn)
(2 * Npoundary + Nytotar) X (2 * + f

H 2
Npoundary T Mntotar) With a scalar w 2
ounaary ota * (anoundary + an)

Calculating K, — Kape — w?M,p £ * 2% (Napoundary + nAn)z +f
* 2

* (anoundary + an)z

2 2
TOtaI (2 + 3f) * (anoundary + nAn) + (2 + 3f) * (anoundary + an)

5B Calculating [K 45 — K 45 — w*M 45][L] 4% f * (Napoundary + nAn)2

2
Multiplying a sparse complex ng X ng + (Nsboundary + Men)”)

matrix with a real sparse ng X (Nyeorar +
Npoundary ) Matrix with bandwidth of 1

Calculating [L]T[K 4,5 — Kape — )
a}ZMAb’[g [ ] [ A A 4 f * (nNtotal + nboundary)
Multiplying a real sparse (nmoml +
Npoundary ) X g Matrix with a complex
Sparse Np X (nNtotal + nboundary) matrix
with bandwidth of 1

LTRT[F]
= eliminating redundant interface degrees of freedom and stating that the external force at
the retained interface degrees of freedom are zero, so that an equilibrium of forces is
obtained

Napounaary NUMber of interface degrees of freedom of substructure A

Npoundary = the total number of master (connecting) degrees of freedom (interface node degrees of
freedom) between two adjacent substructures (A and B in this case)

nyqand ny, are number of retained normal (elastic plus rigid body modes) for substructure A and B
respectively

Nyrorar 1S the total number of normal modes taken into account for all individual substructures A and
B added together.

f = number of frequencies analysed

ng= (2 * nboundary + nNtotal)
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Step 6: Eliminating the Interface Degrees of Freedom
According to ‘The Rubin—-Zoet Method’ section 8.6

[A] = [Aaa] + [Aau] [Auu]_l[Aua] (Step 4F)
And
doA — QAoa -1 Upares
[ﬁos] = [QOB] + [Agu][Ay.] uomes] (step 4G)
| } dy | E,= ¢ATFEA
AL Ay I a ] E
I } 25 Fs=0s TF;A
Aua Auu Uy
Step Description of action Estimated number of
FLOPS
6A Calculating a = [A,,]™* 4

3
g * 8 x Npoundary

Inverting a full complex nyounaary X Mpoundary Matrix
through LU factorisation

6B Calculating b = [Ay,] ' [Aual = a * [Ayq] Ny * 8 % Npoyndary
Where a is the matrix obtained from step 6A

Multiplying a full complex npounaary X Mpoundary Matrix
with a full complex np,oyngary X 1, Matrix

6D d= [Aau][Auu]_l[Aua] = [Aau]b f*8x Npoundary * nn2
Where b is the matrix obtained from step 6B

Multiplying a full complex n,, X n,qynaary With a full
complex nyoynaary X My Matrix

Npoundary NUMber of interface degrees of freedom

n,= the total number of normal modes for substructure A and B together

Ny, and ng,=the number of normal modes of substructure A and of substructure B respectively
f = number of frequencies analysed
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6F fx2xn,*n,
Calculating A = [Agq] + [Aqu][Auu] " [Aual = [Asal +d
Where c is the matrix obtained from step 4C

Adding a full complex n,, X n,, matrix to a full complex n,, X n,
matrix

Npoundary NUMber of interface degrees of freedom

n,= the total number of normal modes for substructure A and B together
f = number of frequencies analysed

Step 7: Compiling total matrix:

Adding Pairs of coupled substructures where A,zis the boundary stiffness matrix through which the
interaction between substructure A and B is expressed, and A, is the boundary stiffness matrix
through which the interaction between substructure B and C is expressed. 4,5 the boundary stiffness
matrix through which the assembled dynamic behaviour of substructure A, B and C coupled together
can be calculated.

7 Appe = App + Apc ..+ Ay f*2*ngep *Ngep + f * 2% Nepy
* nCDn +f * 2 * nYZn * TLYZn

Npoundary NUMber of interface degrees of freedom

n,= the total number of normal modes for substructure A and B together

f = number of frequencies analysed

Ngcn = the number of retained normal modes of substructure B and C together
nepn = the number of retained normal modes of substructure C and D together
Nyz, = the number of retained normal modes of substructure Y and Z together
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Appendix XX Calculation of
the Number of FLOPS for
Mode Superposition Method
on the LNG carrier
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Calculation of required floating point operations is based on retaining mode shapes
of the full model with natural frequencies that are within a range between 0 and 1.5*
fmax HZ, where f,.., is the upper limit of the frequency range for which simulation
results are generated. In this case f,,4, 1S 40 Hz, which means that the cut-out
frequency is 1.5*40=60 Hz. 1668 mode shapes where found to have natural
frequencies within that range and are retained. The number of floating point
operations has been calculated for 80 frequency steps in the range between 1 and 40

Hz.

Following the steps from Appendix XV:

Mode Superposition: Calcuating the Reduced Stiffness and Mass Matrices Mumber of FLOPS
Step 1A n 366973 2.45E+09
nn 1668
n bandwidth 40
Step 1B n 366973 4 50E+10
nn 1668
n bandwidth 40
Step 1C n 366973 2 04E+12
nn 1668
n bandwidth 40
Step 1D n 366973 9 79E+10
nn 1668
n bandwidth 40
Step 1E n 366973 4 0BE=12
nn 1668
n bandwidth 40
Total number of FLOPS 6.2BE+12

Summary of required number of floating point operations:

Takal structure Mumber of Mumber of | calzulating Maormal Modes Constraint!Residual Total Computation Time
equations total] non zeros and Matural Frequencies Attachment Modes and Generation Pass
aszembled Reducing Matrices
matrit CFU FLOFS CFU FLOFS CPU FLOFPS

Full solution JEEAT 149E.07 n.a. n.a. n.a. n.a. n.a. n.a.

Mode superposition, feu!- 1663 aTsazed 2655 124E14 125 gzsEz | zens.03 | raoE.as

out = 1.6 fmai = B0Hz

Taotal structure . Solving Full Total Computation Taotal Computation Time

Generating Full : i
. Azzembled Time Use Pazss Generation plus Use Pass
Azzembled Matris )
Mlatrices
CFU FLOPS CFU FLOPS CFU FLOPS CFU FLOPS

Full solution 20 FTE+D TEO0.0 | ZEEE«14] VE20.0 | 3EEE+14 TE20.0 2EEE+14

Mode superposition, f cut-

Petp na. na. 2 |aseEa| 21 | aseEan 23213 1HE4
out = 1.5 fmax = B0Hz

Brown numbers have been calculated through an estimated relation between measured computation time and

number of calculated floating point operation. CPU= CP time
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Appendix XXI Calculation of

the Number of FLOPS for

Rubin’s Method Applied on
the LNG Carrier
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In this appendix the calculated number of FLOPS for each sub step is presented
applying the free interface CMS method according to Rubin (see section 6.5.2.2).
The CMS model of the LNG carrier described in Appendix X is used. In Appendix
XVI1 the steps required for Rubin’s Method are explained.

LNG vessel FE Number of |Number of Method Mumber of Required CP |Required time
model nodes boundary modes for calcuating |generation
degrees of required® eigenvectors |pass
freedom and
eigenvalues
partH 4991 2088 CMS fixed 181 18.5 22.8
CMS free 257 24.5 52.5
PartG 5680 1536 CMS fixed 373 29.8 40
CMS free 419 39 100.8
PartF 5680 1536 CMS fixed 373 29.8 40
CMS free 419 39 100.8
PartE 8933 7188 [CMS fixed 213 30 46.6
CMS free 323 61 174
PartD 9833 6198 CMS fixed 162 29.14 53.6
CMS free 336 95 328
PartC 11965 5124 CMS fixed 195 38.11 68.13
CMS free 335 75 225.7
PartB 10044 3738 CMS fixed 138 29.4 a7r.7
CMS free 231 33 138.3
PartA 6612 1578 CMS fixed 91 18.8 25.4
CMS free 154 24.6 33.3

Fixed and free CMS is CMS based on the fixed interface approach (Craig-Bampton)
and the free interface approach (Rubin’s method without residual compensation)

respectively.

For all methods a cut-out frequency of 1.5* f,,,,, Hz (=60 Hz) has been applied for
the selection of the number of normal modes.

The number of floating point operations has been calculated producing 80 output sets
for frequencies evenly distributed range between 1 and 40 Hz.
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Step 1: Generating constraint modes Step 1A Step 1B

PartH i 27858 4. 14E+10 4 G5E+09
n boundary 2088

Parti i 32544 5.65E+10 4 00E+(9
n boundary i 1536

PartF il 32544 5.65E+10 4 00E+09
n boundary i 1536

PartE i 46410 1.15E+11 2.67E+10
n boundary i 7188

PartD i 52800 1.4%E+11 2.62E+10
n boundary i 6198

PartC i EEEGE 2.37E+11 2.73E+10
n boundary i 5124

PartB il 56467 1.70E+11 1.72E+10
n boundary i 3798

Parts, i 38097 7.74E+10 4 B1E+09
n boundary 1578

Total number of FLOPS for each step 9.02E+11 1.15E+11

Grand total for calcuating all required constraint modes (Step 1) 1.02E+12

Calculated required number of FLOPS for each sub step of step 1 (see Appendix
XVI for explanation of sub steps and symbols). The number of floating point
operations has been calculated producing 80 output sets for frequencies evenly
distributed range between 1 and 40 Hz.
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Step 2: Generating the reduction basis Step 2A Step 2B

PartH ni 27B58 299E+10 7.16E+06
n boundary 208E
ily 257

PartG i 32544 4 19E+10 1.36E+07
n boundary 1536
rn 415

PartF ni 32544 4 19E+10 1.36E+07
n boundary 1536
nn 415

PartE ni 45410 2.16E+11 1.50E+07
n boundary 718E
riri 323

PartD i 52800 2.20E+11 1.77E+07
n boundary 6198
ily 336

PartC i GEEEE 2.20E+11 2.23E+07
n boundary 5124
rn 335

PartB ni 56467 991E+10 1.50E+07
n boundary 3708
riri 231

Parth i 38007 1.85E+10 5.B7E+06
n boundary 1578
rn 154

Total number of FLOPS for each step B.9BE+11 1.0BE+0B

Grand total for calculating step 2 BO9G6E+11

Calculated required number of FLOPS for each sub step of step 2 (see Appendix
XVI for explanation of sub steps and symbols). The number of floating point
operations has been calculated producing 80 output sets for frequencies evenly
distributed range between 1 and 40 Hz.
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Step 3 Step 4
Step 3: Generating reduced mass and stiffness| Step 34 Step 38 |Step 3C Step 44 |Step 4B
PartH n 29945 1.28E+10 6.13E+11 1.31E+08 1.65E+07 1.65E+07
nn 257
nbandwidth 46
na 2345
n boundary 2088
ni 27858
PartG n 340800 1.23E+10 | 4.98E+11 1.27E+08 1.15E+07 1.15E+07
nn 415
nbkandwidth 45
na 1955
n boundary 1536
ni 32544
PartF n 34080] 1.23E+10 | 4.88E+11 1.27E+08 1.15E+07 1.15E+07
nn 418
nbandwidth 48
na 1955
n boundary 1536
ni 32544
PartE n 53588 7.41E+10 1.05E+13 6.97E+08 1.69E+08 1.65E+08
nn 323
nbandwidth 48
na 7511
n boundary 7188
ni 45410
PartD n 58998| 7.09E+10 9 02E+12 6.90E+08 1 2BE+08 1 2BE+D8
nn 336
nbandwidth 45
na 6534
n boundary 6198
ni 52800
FartC n 71790 7.21E+10 7.95E+12 7.28E+08 B.94E+07 B.94E+07
nn 335
nbandwidth 45
na 5458
n boundary 5124
ni GE666
PartB n B0265] 4.47E+10 3.67E+12 4 55E+08 4 BTE+07 4 BTE+D7
nn 231
nbkandwidth 45
na 4029
n boundary 3798
ni 56467
Farta n 39675| 1.26E+10 | 4.57E+11 1.32E+08 9 0DE+D6 9.00E+D6
nn 154
nbandwidth 48
na 1732
n boundary 1578
ni 38097
Total number of FLOPS for each step 3.12E+11 3.32E+13 | 3.09E+09 4 24E+02 | 4.24E+08
Grand total for generating reduced matrices 3.35E+13 9 6RE+D8
Forcing compatibility and equilibrium relations Step SA Step 5B Step 5C
ng 31520] 3.05E+09 | 3.05E+09 | 6.23E+10
n Nrotal+n by 16118
Grand total FLOPS for forcing compatibility and equilily 6.84E+10

Calculated required number of FLOPS for each step 3 to step 5
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Total structure Mumber of Mumber of | caleulating Rlormal Modes Constraint/Residual Taokal Computation Time

equations total] non zeros and Matural Frequencies Artachment Modes and Generation Fass

aszembled Reducing Matrices

miakri CF Time FLOFS CF Time FLOFS CF Time FLOFS
Full solution JBEATE 149E.07 n.a. n.a. n.a. n.a. n.a. n.a.
Mode superposition. f ou'- 1663 aTazze 2685 124E-14 126 G28EA2 | zsoE.os | 1a0Ea

out = 1.5 fmay = B0Hz
fized interface CMS
[Craig-Bampton], f cut-out = 15370 1.25E.08 223858 104E+13 121 BENE+Z 3442 1ENE+1Z
1.5 fmay = B0Hz

free interface CMS
[Rubin’s Method], f cut-out 16112 1.24E-08 1.1 191E«12 TE2 IE4E4Z 1734 B 4GE-13
= 1.5 fmay = B0Hz

Generation pass: Table of CP times and numbers of floating point operation. Black numbers have been directly
measured (CP time ) or calculated (FLOPS). Brown numbers have been calculated through an estimated relation
between measured computation time and number of calculated floating point operation.

Tatal structure § Soluing Full Total Computation
Generating Full . P

S sembled Matris .ﬁ.sser!'ubled Time Lse Paz=s
Matrices
CFP Time FLOFS CF Time| FLOPS |CF Time | FLOPS
Full solution 20 T.E+D TEOOO | 3EEE«14] TE20.0 | ZEEE+14
Mode superposition.fout- | - na. 2t | sszEn| = | sseEa

out = 1.5 Fmax = B0Hz
Fized interface CMS
[Craig-Bampton], f cut-out = 12 EA4E+10 129600 | BE2EA4] 133222 | 5EZE«4
15 fmak = 60Hz

Free interface CMS
[Rubin's Method], f cut-out 12 E.94E.1ID N3600 | 5.32E414] 125514 | 5.3ZE.14
= 1.5 fmat = B0Hz

Use pass: Table of CP times and numbers of floating point operation. Black numbers have been directly
measured (CP time) or calculated (FLOPS). Brown numbers have been calculated through an estimated relation
between measured computation time and number of calculated floating point operation.

Total structure Tatal Compatation Time
Generation plus Use Pass

CF Time FLOFS
Full solution TE20.0 JEEE«14
Mode superposition, f cut- 28313 121E-14

out = 1.5 Fmax = B0Hz
Fized interface CMS
[Craig-Bampton], f cut-out = 136EE.S A48E+14
1.5 fmax = BOHz

Free interface CMS
[Rubin’s Method], f cut-out 13724.8 BATE+14
= 1.5Fmax = B0Hz

Total number CP and FLOPS for total analysis. Black numbers have been directly measured (CP time) or
calculated (FLOPS). Brown numbers have been calculated through an estimated relation between measured
computation time and number of calculated floating point operation.
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Rubin's Method

number of frequencies I B0
Generation Pass
Step number I Action Estimated FLOPS
Calcuating natural frequencies and mode shapes 191E+13
1 Generating constraint modes 1.02E+12
2 Generating reduction basis B.96E+11
3 Generating Reduced mass and stiffness 3.35E+13
Total Flops Generation Pass 5.45E+13
Use Pass
Step number Action Estimated FLOPS
4 Campiling reduced dynamic stiffness 9 6BE+D8
5 Faormulating compatibility and 6.B4E+10
G Solving the matrix equations SParse matrix
approach
a.|Row reduction forward phase 5.32E+14
b JRow reduction backward phase 6. 24E+10
c.]Sclving triangular matrix 4. 16E+10
Total FLOPS Use Pass 5.32E+14
[6rand tota | sa7Es12

All modeshapes have been selected with the natural frequencies within the range between 0 and 1.5xfmax
The fmax is the highest frequency in the frequency range for which results have been obtained (=40 Hz in this case)
Fmax in this case = 40 Hz, modeshapes have been selected over a frequency range between 0 and &0 Hz

Summary of required number of FLOPS for each step for the Rubin Method. The
number of floating point operations has been calculated producing 80 output sets for
frequencies evenly distributed range between 1 and 40 Hz.
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Appendix XXII Required
Number of Flops for
Application of the Zoet
Method on the CMS Model of
the LNG Carrier

404



In this appendix the calculated number of FLOPS for each sub step is presented
applying the Zoet method according to section 8 for the CMS model of the LNG

carrier described in Appendix IX.

LNG vessel FE Mumber of Mumber of boundary  |Number of Method Mumberof  |Required CP  |Regquired time
model nodes nodes boundary modes for calcuating |generation
degrees of required® eigenvectors [pass
freedom and
eigenvalues
PartH 4331  |Boundary H-E 293 2088 CMS fixed 181 18.5 22.8
Boundary H-G 86 CMS free 257 24.5 52.5
Zoet (frequency
Boundary H-F 86 . 257 24.5 52.5
range to 1.5xf max)
PartG 5680  |Boundary G-H 86 1536  |CMS fixed 373 29.8 40
Boundary G-F 57 CMS free 419 39 100.8
Zoet (frequency
Boundary G-E 205 range to 1.5xF max) 419 33 100.8
PartF 5680  |Boundary F-G 57 1536  |CMS fixed 373 29.8 40
Boundary F-H 36 CMS free 419 39 100.8
Zoet (frequency
Boundary F-E 205 range to 1.5xf max) 419 33 100.8
e 8933  |BoundaryEH 298 7188 [CMS fixed 213 30 46.6
Boundary E-G 205 CMS free 323 61 174
Zoet (frequency
Boundary E-F 205 . 323 61 174
range to 1.5xf max)
PartD 9833 Boundary D-E 656 6198 CMS fixed 162 29.14 53.6
Boundary D-C 434 CMS free 336 95 328

Zoet (frequency

range to 1.5xf max) 336 35 328
PartC 11965 Boundary C-D 484 3124 CMS fixed 195 38.11 68.13
Boundary C-B 370 CMS free 335 75 225.7
Zoet (frequency
range to 1.5xf max) 335 75 257
PartB 10044 Boundary B-C 370 3798 CMS fixed 133 29.4 47.7
Boundary B-A 263 CMS free 231 53 138.3
Zoet (frequency
range to 1.5xf max) 21 = 128.3
PartA 6612 Boundary A-B 263 1578 CMS fixed 91 18.8 25.4
CMS free 154 24.6 53.3
Zoet (frequency
154 24.6 53.3

range to 1.5xf max)

Fixed and free CMS is CMS based on the fixed interface approach (Craig-Bampton)
and the free interface approach (Rubin’s method without residual compensation)

respectively.

For all methods a cut-out frequency of 1.5* f,,,,, Hz (=60 Hz) has been applied for

the selection of the number of normal modes.

The number of floating point operations has been calculated producing 80 output sets

for frequencies evenly distributed range between 1 and 40 Hz.
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Step 2: Formulating the boundary mobility matrix Step 24 Step 2B |Step 2C Step 2D
Part H-F nAboundary 516] 1.20E+08 1.16E+09 7.31E+07] 1.08E+05
nBboundary 516
nboundary 1032
nAn 257
nBn 419
na 1708
nn b76
Part H-G nAboundary 516] 1 20E+08 1.16E+09 7 31E+07] 1.08E+05
nBboundary 516
nixoundary 1032
nAn 257
nBn 419
na 1708
nn B76
Part H-E nAboundary 1788] 3.55E+08 2.94E+09 5.38E+07] 9.28E+04
nBboundary 1788
nboundary 3576
nAn 257
nBn 323
na 4156
nn 580
Part G-F nAboundary 3421 9. 74E+07 1. 10E+09 112E+08] 1.34E+05
nBboundary 342
nbkroundary BEB4
nAn 419
nBn 4158
na 1522
nn B3B
Part G-E nAboundary 1230| S.0BE+08 3.23E+09 B.B1E+07] 1.19E+05
nBboundary 1230
nbkoundary 2460
nAn 419
nBn 523
na 3202
nn 742

Part | of Step 2 for Zoet method with no residual interface flexibility taken into

account. The interface in this case is again the interface between two structures. The

number of floating point operations has been calculated producing 80 output sets for

frequencies evenly distributed range between 1 and 40 Hz.
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Step 2: Farmulating the boundary mobility matrix Step 2A Step 2B |Step 2C Step 2D
Part F-E nAboundary 1230| 3.08BE+0B 5.23E+09 B.B1E+07] 1.19E+05
nBboundary 1230
nboundary 2460
nan 415
nBn 323
na 3202
nn 742
Part E-D nAboundary 3936 B.B3E+0B B 13E+00 6.95E+07] 1.05E+05
nBboundary 3936
nboundary 7872
nAn 323
nBn 336
na B531
nn 659
Part D-C nAboundary 2904 6.62E+0B 6. 20E+00 7 20E+07] 1.07E+05
nBboundary 2904,
nboundary 5808
nan 536
nBn 535
na B479
nn B71
Part C-B nAboundary 2220 4.23E+08 3.60E+00 5.13E+07] 9.06E+04
nBboundary 2220
nlroundary 4440
nAn 335
nEn 231
na 5006
nn 566
Part B-A nAboundary 1578 2.04E+0B 1.29E+09 2.37E+07] 6.16E+04
nBboundary 1578
nboundary 3156
nAn 231
nBn 154
na 3541
nn 385
Total FLOPS for substeps 5. 4BE+09 53.20E+10] 7.05E+0B] 1.05E+D6
Grand total FLOPS for step 2 3.62E+10

Part Il of Step 2 for Zoet method with no residual boundary flexibility taken into

account. The boundary in this case is the interface between two structures. The

number of floating point operations has been calculated producing 80 output sets for

frequencies evenly distributed range between 1 and 40 Hz.
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Step 1: Generating residual compensation modes Step 1A Step 1B Step 1C Step 1D Step 1E Step 1F
PartH nc 29946 1.08E+11
k f
n boundary 2088
nbandwidth 40
PartG nc 34074 1.41E+11 1.35E+10 02882998080 34074] 3.56671E+12| 1.60781E+11
k f
1536
nbandwidth 40
PartF nc 34074 141E+11 1.35E+10 92882998080 34074] 3.56671E+12| 1.60781E+11
k &
1536
nbandwidth 40
FartE nc 53592 3.48E+11 3.45E+10 2.29768E+11 53592] 4.12883E+13| 5.53791E+12
k f
7188
nbandwidth 40
PartD nc 58992 4.22E+11 4 1BE+10 2. 7B40ME+11 58092] 4.3138BE+13| 453238E+12
k f
6188
nbandwidth 40
Partl nc 71784 6.25E+11 6.1BE+10 4.12235E+11 71784] 5.2B074E+13| 3.76943E+12
k f
5124
nbandwidth 40
Partg nc 60258 4.41E+11 4.36E+10 2.90482E+11 60258] 2.75813E+13| 1.73842E+12
k &
3798
nbandwidth 40
Farth nc 39669 1.81E+11 1.83E+10 1.2588E+11 39669] 4.96637E+12| 1.97558E+11
k f
1578
nbandwidth 40
Total number of FLOPS for each step 242E+12 2.2BE+11 152E+12] 3.52E+05 1.77E+14] 161E+13
Grand total for calcuating all required constraint 197E+14

Part | of Step 1 in case residual boundary flexibility is taken into account. The

boundary in this case is the interface between two structures. The number of floating

point operations has been calculated producing 80 output sets for frequencies evenly

distributed range between 1 and 40 Hz.
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Step 1: Generating residual compensation modes Step 16 |Step1H  |Stepl
Part H-F Boundary H-F  |ne 257 1.533E+05 1.57E+08 |2.66E+05
nboundary 516

Boundary F-H |ne 415 2. 16E+05 2.23E+08 |2.66E+05
nboundary 516

Part H-G Boundary H-G  |ne 257 1.33E+05 1.37E+08 |2.66E+05
nboundary 516

Boundary G-H |ne i 418 2.16E+05 2.23E+08 |2.66E+05
nboundary 516

Part H-E Boundary H-E  |ne 257 4 60E+05 164E+09 |3.20E+06
nboundary 1788

Boundary E-H |ne 323 5.7BE+05 207E+09 |3.20E+06
nboundary 17BE

Part G-F Boundary G-F  |ne 418 1.43E+05 9.80E+07 |1.17E+05
nboundary 34

Boundary F-G  |ne i 418 1.43E+05 9.80E+07 |1.17E+05
nboundary 342

Part G-E Boundary G-E  |ne 415 5.15E+05 127E+09 |1.51E+06
nboundary 1230

Boundary E-G  |ne 323 3.97E+05 977E+08 |1.51E+06
nboundary 1230

Part F-E Boundary F-E ne 415 5.15E+05 127E+09 |1.51E+06
nboundary 1230

ne 323 3.97E+05 9.77E+08 |1.51E+06
nboundary 1230

Part E-D Boundary E-0  |ne 323 1.27E+06 1.00E+10 |1.55E+07
nboundary 3936

Boundary B-E  |ne 356 1.532E+06 1.04E+10 |1.55E+07
nboundary 3936

Part O-C Boundary B-C  |ne 356 9 7BE+05 5.67E+09 |B.43E+06
nboundary 2004

Boundary -0 |ne 335 9 73E+05 5.65E+09 |B.43E+06
nboundary 2904

Part C-B Boundary C-B ne 335 7.44E+05 3.530E+09 |4.93E+06
nboundary 2220

ne 231 5.13E+05 2.2BE+09 |4.93E+06
nboundary 2220

Part B-& Boundary B-& |ne 231 3.65E+05 1.15E+0% |2.49E+06
nboundary 1578

ne 154 2.43E+05 7.67E+08 |2 49E+06
nboundary 1578

1.03E+07] 4.B3E+10] 7.64E+07

4 B4AE+10

Part Il of Step 1 in case residual boundary flexibility is taken into account. The
number of floating point operations has been calculated producing 80 output sets for
frequencies evenly distributed range between 1 and 40 Hz.
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Step 2; Formulating the boundary mobility matrix Step 2A Step 2B |Step 2C Step 2D
Part H-F naboundary 516 1.27E+08 | 1.17E+09 7 ABE+09] 2.73E+05
nBboundary 516
nboundary 1032
nAan 257
nBn 415
na 1708
nn 676
Part H-G naboundary 516 1.27E+08 | 1.17E+09 746E+09] 2.73E+05
nBboundary 516
nboundary 1032
nan 257
nBn 415
na 1708
iy 676
Part H-E naboundary 17BB] 4.32E+08 | 2.96E+09 2.13E+11] 6.65E+05
nBboundary 1788
nboundary 3576
nAan 257
nBn 323
na 4156
iy 580
Part G-F naboundary 3421 1.00E+08 | 1.10E+09 3.05E+09] 2.44E+05
nBboundary 342
nboundary BEB4
nAan 415
nBn 415
na 1522
iy 838
Part G-E naboundary 12300 3.44FE+08 | 3.20E+09 7.79E+10] 5.12E+05
nBboundary 1230
nboundary 2460
nAan 415
nBn 323
na 3202
iy 742

Part | of Step 2 for Zoet method with residual boundary flexibility taken into

account. The number of floating point operations has been calculated producing 80

output sets for frequencies evenly distributed range between 1 and 40 Hz.
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Step 2: Formulating the boundary mobility matrix Step 24 Step 2B |Step 2C Step 2D
Part F-E naboundary 12300 3.44E+08 | 3.20E+09 7.7T9E+10] 5.12E+05
nBboundary 1230
nboundary 2460
nAan 415
ngn 323
na 3202
lily 742
Part E-D naboundary 3936] 1.25E+09 | B.21E+09 212E+12] 1.36E+06
nBboundary 3936
nboundary TB72
nan 323
nBn 336
na 8531
uly! 659
Part D-C naboundary 2904] B65E+08 | 6.23E+09 8. 75E+11] 1.04E+D6
nBboundary 2504
nioundary 5808
nan 336
nBn 335
na 5475
nn 671
Part C-B naboundary 22200 541FE+08 | 3.5BE+09 3.85E+11] 8.01E+05
nBboundary 2220
nboundary 44470
ran 335
nBn 231
na 5006
nn 566
Part B-A naboundary 1578] 2.64E+08 | 1.2BE+09 141E+11] 5.67E+05
nBboundary 1578
nboundary 3156
nAan 231
nBn 154
na 3541
iy 385
Total substep 4 40E+08) 3.21E+10] 3.91E+12] 6.25E+06
Grand total step 2 3.95E+12

Part 11 of Step 2 for Zoet method with residual boundary flexibility taken into

account. The number of floating point operations has been calculated producing 80

output sets for frequencies evenly distributed range between 1 and 40 Hz.
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Step 5

Step 4: Eliminating Boundary Degrees of Freedom Step 44 Step 4B Step4C | Step 4D Step 4E Step 4F | Step 4G COTE:: ne

Part H-F n boundary 1032] 1.17E+10 5.76E+09 | 8.52E+06 | 3.02E+11 | 4.46E+08 | 7.31E+07 | 1.0BE+05
nn 676

Part H-G n boundary 1032] 1.17E+10 5.76E+09 B52E+06 | 3.02E+11 | 4.46E+08 | 7.31E+07 | 1.08E+05| 7.31E+07
rn 676

Part H-E n boundary 3576] 4.8BE+11 593E+10 | 1.02E+08 | 7.70E+11 | 1.33E+09 | 5.38E+07 | 9.28E+04| 5.3BE+07
nn 580

Part G-F n boundary gE4] 3.41E-0% 3.14E+09% | 3.74E+06 | 3.07E+11 | 3.67E+08 | 1.12E+08 | 1.34E+05| 1.12E+0B
rin 838

Part G-E n boundary 2460] 15%E+11 3.59E+10 | 4.B4E+07 | B.67E+11 | 1.17E+08 | B.81E=07 | 1.19E+05| B.B1E+07
rn 742

Part F-E n boundary 2460] 15%E+11 3.59E+10 | 4.B4E+07 | B.67E+11 | 1.17E+08 | B8.81E+07 | 1.19E+05| B.B1E+07
nn 742

Part E-D n boundary 7872] 5.20E+12 3.27E+11 | 4.96E+08 | 2.19E+12 | 3.32E+09 | 6.95E+07 | 1.0SE+05| 6.95E+07
rn 659

Part D-C n boundary 5B0B| 2.09E+12 181E+11 | 2.70E+08 | 167E+12 | 2.49E+09 | 7.20E+07 | 1L.O7E+05| 7.20E+07
nn 671

Part C-B n boundary 440 9.34E+11 893E+10 | 158E+08 | 9.10E+11 | 1.61E+08 | 5.13E+07 | 9.06E+04| 5.13E+07
rin 566

Part B-A n boundary 3156] 3.35E+11 3.07E+10 | 7.97E=07 | 2.99E+11 | 7.7BE+0B | 2.37E=07 | 6.16E+04| 2.37E+07
rn 385
Total FLOPS for sub steps 9.39E+12 7.74E+11 | 1.22E+0% | B.49E+12 | 1.31E+10 | 7.05E+08 | 1.05E+06] 6.32E+08
Grand Total FLOPS for Step 4 and 5 1.87E+13

Eliminating interface degrees of freedom from the super elements. (See section

8.5.2). The boundary is in this case the interface between two substructures. The

number of floating point operations has been calculated producing 80 output sets for

frequencies evenly distributed range between 1 and 40 Hz.

Total structure Mumber of Mumber of | calculating Mormal Maodes Conztraint!Residual Total Computation Time
equations total] non zeros and Matural Frequencies Attachment Modes and Generation Pas=s
assembled Feducing Matrices
miatris CP Time FLOPS CP Time FLOPS CP Time FLOPS

Full solution 2EEATR 143E.07 n.a. n.a. n.a. n.a. n.a. n.a.

Mode superposition, fout- 1658 2raz 2665 124E1 135 goeEaz | zmoEe0z | 120E.

out = 15 fmai = B0Hz

fized interface CMS5

[Craig-Bampton], f cut-out = 15370 1.25E-08 22188 104E+13 121 BENE+12 3442 1EOE+13

15 fmaz = B0Hz

free interface CMS

[Rubin’s Method], f cut-out 1118 1.34E+08 4111 1HE+3 TE2 ZH4EL3 1734 B4RE.13

= 1.5 fmai = B0Hz

Zoet method cut-out

frequency 1.55F max = 60 Hz 2474 2.98E-06 4111 191E-13 1 JB2E-10 4113 19E-12

Zoet method cut-out

frequency 1.5xF max =60 Hz, with 2474 298E.06 4111 191E-13 4. 7IE-02 220E+14 A146.8 239E-14

residual boundary ez

Generation pass: Table of CP times and numbers of floating point operation. Black numbers have been directly
measured (CP time) or calculated (FLOPS). Brown numbers have been calculated through an estimated relation
between measured computation time and number of calculated floating point operation.
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Tatal structure . Salving Full Total Computation
Generating Full )
. Azzembled Time Uze Pass
Azsembled Matriz .
Matrices

CF Time FLOPS CP Time | FLOPS |CF Time | FLOFPS
Full solution 20 7.7E+10 FE00.0 | 3EEE«14| VEZOO | ZEEE+14
Mode superposition, f cut-
Ut = 15 fmas = Oz n.a. n.a. 21 992E-11 21 9.92E+1
fized interface CMS
[Craig-Bampton], f cut-out = 1 EA4E+10 129600 | G32E«4| 133222 | DIZE+4
1.5 Fmak = B0Hz
free interface CMS
[Rubin’s Method], f cut-out 12 E.94E+10 2600 | 532E14| 125514 | G22E-14
= 15 Fmat = B0Hz
Zoet method cut-out
frequency 1.5:F may =60 Hz 0.1 E.3Z2E+08 6.2 THIEN| 4232 | 7EOE-N
Zoet method cut-out
frequency 1.5xf max =E0 Hz, withl 015 E32E.08 2rh 129E+12] &I73E | 129E+12
residual boundary flex

Use pass: Table of estimated CP time (CPU) and numbers of floating point operation. Black numbers have
been directly measured (CP time ) or calculated (FLOPS). Brown numbers have been calculated through an

estimated relation between measured computation time and number of calculated floating point operation.

Total structure Total Computation Time
Generation plus Use Pass
CP Time FLORPS

Full solution TE20.0 1.8EE+14

Mode superposition, f cut-

out = 15 imax = B0Hz 282l 1IIE T

Fized interface CMS

[Craig-Bampton], f cut-out = 136EE.S BAZE+14

1.5 fmay = B0Hz

Free interface CMS

[Rubin’s Method], f cut-out farz24.2 BATE+14

= 1.5 fmay = BOHz

Zoet method cut-out

frequency 1.5=f max =60 Hz s401 1.33E+12

Zoet method cut-out

frequency 1.5=F mat =0 Hz, with 0319.4 2 40E+14

residual boundary fles

Total number CP time and FLOPS for total analysis Black numbers have been directly measured (CP time) or
calculated (FLOPS). Brown numbers have been calculated through an estimated relation between measured
computation time and number of calculated floating point operation.

Mumber of rows

aH I ak I aF I ak I alh al I ab I ah
Number of Columns
257 | a1 | a1 ] 33 | 33 335 | 231 | 14
B6049 107683 107683 83011
107683 175561 175561 135337
107683 175561 175561 135337
83011 135337 135337 104329 108528
108528 112896 112560
112560 112225 77385
77385 53361 35574
35574 23716
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Skyline of the total assembled matrix. The skyline of the total assembled matrices for
both Zoet’s method with residual interface flexibility taken into account and Zoet’s
method without residual interface flexibility taken into account looks similar.
Numbers in the cells are the number of non zeros in the particular section of the
matrix. The grey section are all full matrix sections.

| Zoet's Method, No Residual Boundary Flexibility |

Inumher of frequencies I BO I
Generation Pass
Step number Action Estimated FLOFS
Calcuating natural frequencies and mode shapes 191E+13
1 Generating residual flexibility modes n.a.
2 Formulating boundary mobility matrix 5.62E+10
4 Eliminating boundary degrees of n.a.
Total Flops Generation Pass 1.91E+13
Use Pass
step number Action Estimated FLOPS
5 Composing Total Assembled System 5.32E+08
B Solving the matrix equations
a.|Row reduction forward phase T57E+11
b |Row reduction backward phase 7.17E+08
C.|Sclving triangular matrix 9. 79E+08
Total FLOFS Use Pass 7.60E+11
Grand tota 1.99E+13

All modeshapes have been selected with the natural frequencies within the range between 0 and 1.5xfmax
The fmax is the highest frequency in the frequency range for which results have been cbtained (= 40 Hz in this case)
Fmax in this case = 40 Hz, modeshapes have been selected over a frequency range between 0 and 60 Hz

Summary of required number of FLOPS for each step for the Zoet method with no
residual interface flexibility taken into account. The number of floating point
operations has been calculated producing 80 output sets for frequencies evenly
distributed range between 1 and 40 Hz.
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| Zoet's Method With Residual Boundary Flexibility |

Inuml:ner of frequencies I B0 I
Generation Pass
Step number I Action Estimated FLOPS
Calcuating natural frequencies and mode shapes 1.91E+13
1 Generating residual flexibility modes 187E+14
2 Formulating boundary mebility matrix 3.85E+12
4 Eliminating boundary degrees of 1.87E+13
Total Flops Generation Pass 2.39E+14
Use Pass
Step number Action Estimated FLOPS
5 Composing Total Assembled System 5.32E+08
& Solving the matrix equations
a.]Row reduction forward phase 1.29E+12
b.JRow reduction backward phase 7.17E+D8
c]Solving triangular matrix 5.79E+D8
Total FLOPS Use Pass 1.28E+12
Grand tota 2.40E+14

All modeshapes have been selected with the natural frequencies within the range between 0 and 1.5xfmax
The fmax is the highest frequency in the frequency range for which results have been obtained (= 40 Hz in this case)
Fmax in this case = 40 Hz, modeshapes have been selected over a frequency range between 0 and &0 Hz

Summary of required number of FLOPS for each step for the Zoet method with
residual interface flexibility taken into account. The number of floating point
operations has been calculated producing 80 output sets for frequencies evenly
distributed range between 1 and 40 Hz.
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Appendix XXIII Required
Number of Flops for
Application of the Rubin-
Zoet Method on the CMS
Model of the LNG Carrier
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In this appendix the calculated number of FLOPS for each sub step is presented
applying the Rubin-Zoet method according to section 8.6 for the CMS model of the
LNG carrier described in Appendix 1X.

In Appendix X1X a description of the sub steps and symbols used is given.

LNG vessel FE Number of Number of boundary  |Mumber of Method Number of Required CP  [Required time
model nodes nodes boundary modes for calcuating |generation
degrees of required® eigenvectors |pass
freedom and
eigenvalues
PartH 4991  |Boundary H-E 298 2088 CMs fixed 181 18.5 22.8
Boundary H-G 86 CMS free 257 24.5 52.5
Rubin-Zoet (frequency
Boundary H-F 86 . 257 24.5 52.5
range to 1.5xf max)
partG 5680  |Boundary G-H 86 1536 CMS fixed 373 29.8 a0
Boundary G-F 57 CMS free 419 39 100.8
Rubin-Zoet (frequency
Boundary G-E 205 range to 1.5xf max) 413 39 100.8
PartF 5680  |Boundary F-G 57 1536 CMS fixed 373 29.8 a0
Boundary F-H 86 CMS free 419 39 100.8
Boundary F-E 205 Rubin-Zoet tfrequ?ncy 419 39 100.8
range to 1.5xf max)
e 8933  |Boundary E-H 298 7188 |CMS fixed 213 30 6.6
Boundary E-G 205 CMS free 323 61 174
Rubin-Zoet (frequency
Boundary E-F 205 \ 323 61 174
range to 1.5xf max)
PartD 9833 Boundary D-E 656 6195 CMS fixed 162 29.14 53.6
Boundary D-C 434 CMS free 336 95 328
Rubin-Zoet (frequency
range to 1.5xf max) 336 95 328
PartC 11965 Boundary C-D 434 5124 CMS fixed 135 38.11 68.13
Boundary C-B 370 CMS free 335 75 225.7
Zoet (frequency range
to 1.5xf max) 335 75 25.7
PartB 10044 Boundary B-C 370 3798 CMS fixed 138 29.4 47.7
Boundary B-A 263 CMS free 231 53 138.3
Zoet (freguency range
to 1.5xF max) 231 53 138.3
PartA 6612 Boundary A-B 263 1578 CMS fixed 91 18.8 25.4
CMS free 154 24.6 53.3
Rubin-Zoet (frequency
range to 1.5xf max) 134 24.6 53.3

Fixed and free CMS is CMS based on the fixed interface approach (Craig-Bampton)

and the free interface approach (Rubin’s method without residual compensation)

respectively.

For all methods a cut-out frequency of 1.5* £, Hz (=60 Hz) has been applied for

the selection of the number of normal modes.

The number of floating point operations has been calculated for applying the Rubin-

Zoet method for 80 frequency steps in the range between 1 and 40 Hz.
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Step 1: Generating constraint modes Step 1A Step 1B
PartH Boundary H-E |ni 27858 4 14E+10 1.15E+09
n boundary 516
Boundary H-G |ni 28846 4 7RE+10 1.24E+09
n boundary 516
Boundary H-F | ni 28845 4 7BE+10 4 28E+09
n boundary 1788
Part G Boundary G-H [ni 33564 6.01E+10 1.39E+09
n boundary 516
Boundary G-F |ni 33738 6.07E+10 9 23E+08
n boundary 342
Boundary G-E |ni 32850 5.75E+10 3.23E+09
n boundary 1230
Part F Boundary F-G |ni 33738 6.07E+10 9 23E+08
n boundary 342
Boundary F-H [ni 33564 6.01E+10 1.39E+09
n boundary 516
Boundary F-E | ni 32850 5.75E+10 3.23E+09
n boundary 1230
part E Boundary E-H |ni 51810 1.43E+11 7.41E+09
n boundary 1788
Boundary E-G |ni 52368 1.46E+11 5.15E+09
n boundary 1230
Boundary E-F | ni 52368 1.46E+11 5.15E+09
n boundary 1230
Boundary E-D |ni 48662 1.532E+11 1.56E+10
n boundary 3956
PartD Boundary O-E |ni 55062 1.62E+11 173E+10
n boundary 3936
Boundary -C |ni 56094 1.68E+11 1.30E+10
n boundary 2504
PartC Boundary C-0 | ni 6EBE6 253E+11 1.60E+10
n boundary 2504
Boundary C-B  |ni 69570 2 58E+11 1.24E+10
n boundary 2220
PartB Boundary B-C [ni 58044 1.80E+11 1.03E+10
n boundary 2220
Boundary B-& |ni 58686 1.84E+11 7.41E+09
n boundary 1578
Parth Coupling B-&4 [ni 38057 7. 74E+10 4 B1E+09
n boundary 1578
Total number of FLOPS for each step 2.34E+12 1.32E+11
Grand total for calcuating all required constraint modes (Step 1) 247E+12

Number of FLOPS required for step 1 for analysing the LNG carrier in Appendix IX,
according to the Rubin-Zoet method, applying a cut-out frequency of 60 Hz
analysing 80 frequency steps between 1 and 40 Hz.
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Step 2: Generating the reduction basis
Step 28 Step 2B
FartH 0l ni 275 T.39E+09 TIEE-DE
n boundary 713
nn 2567
0l ni 29946 T.A4E+09 T.T0E«0E
n boundary A1k
nn 207
0l ni 29946 2.75E+10 7.70E+08
n boundary 1ras
fir 257
Fart G Boundary G-H | ni 23664 145E+10 141E-07)
n boundary 516
min 413
Boundary G-F | ni 33738 ETVE-04 141E+07)
n boundary 42
nn 415
Boundary G-E | ni 32850 338E+10 1.38E.07
n boundary 12330
nn 415
Fart F EcundaryF-G | ni 33T AETE«09 1HE-OT
n boundary 342
nn 413
BoundaryF-H | ni jexiat ] 145E+10 141E+07
n boundary 51E
fir 413
BoundaryF-E | ni 32860 339E+10 1.38E-07
n boundary 1230
min 413
FartE BoundaryE-H | ni 51210 5.48E-10 1ETE-O7
n boundary 1ra8
nn 323
Boundary E-G | ni B2368 4.1EE+10) 1.B3E.07
n boundary 12330
nn 323
0| Ecundary E-F | ni G236 4.16E+10 1.E3E-07
n boundary 1230
nn 323
Boundary E-O0 | ni 49662 1.2EE+11 1EOE+D7
n boundary 3936
fir a2
FartD BoundaryO-E | ni BROE2 14EE+11 1.86E+07
n boundary 3936
min e
Boundary0-C | ni AE094 1.09E+11 1.88E-07
n boundary 2904
nn 336

Number of FLOPS required for Part | of Step 2 for analysing the LNG carrier in
Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency of
60 Hz analysing 80 frequency steps between 1 and 40 Hz.
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Step 2: Generating the reduction basis
Step 28, Step 2B
Fartz Boundary C-0 | ni E388E 134E+1 2.31E-+0F
n bioundary 2904
nn 335
Boundary C-E | ni B350 103E+1 2.33E+07
n boundary 22zn
min 36
FartB Boundary B-C | ni So044 BAGE+0 1.34E+07
n bioundary 2220
nn 234
Boundary B-& | ni R3E2E 4 23E+10 1.3BE+07
n boundary 1678
min 23
Farta, Coupling B-2 | ni 38100 1.85E+10 HATE+06
n bioundary 1574
nn 154,
Total number of FLOFS for each step 104E+12 ZA0E+08
Grand total for calculating step 2 1.04E+12

Number of FLOPS required for Part Il of Step 2 for analysing the LNG carrier in
Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency of
60 Hz analysing 80 frequency steps between 1 and 40 Hz.
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Step 3: Generating reduced mass
and stiFfness matrices Step 38 Step 3B Step 3C
FartH n 28374 3.51E+03 BEEE-|  4.3E.07
na T3
n bandwidth "10
n 0462 3.77E-09 7aEE-0|  453E.07
na T3
r banduwidth 10
n 21724 1.04E+10 soE-n|  122E.02
na 2045
n bandwidth "10
Part G n 34020 EI0E-03 17E-1]  g28E.07
na 935
r banduwidth 10
n 24020 4 15E.+03 7.a2E-0|  6.13E.07
na TE1
n bandwidth 10
n 34020 8.99E-09 357E-1|  108E.08
na 1643
r banduwidth "1
PartF n 24020 4 15E.+03 7.a2E-0|  6.13E.07
na TE1
n bandwidth 10
n 34020 5 I0E-03 17E-1|  g28E.07
na a3h
r banduwidth "1
n 24020 8.99E+09 I567E-1]  1.08E-02
na 16449
r bandwidth 10
FartE n F3593 1Z1E10 9.24E.11]  219E.08
na 21
r banduwidth "1
n F2598 133E+10 5.O5E-1]  163E-02
na 1553
r bandwidth 10
o n F3593 133E+10 £05E-11|  153E.08
na 1663
n bandwidth "4
n Fa538 3 BE+10 260E-12|  4.23E.02
na 4254
r bandwidth 10
FanD n £5393 4.03E10 4.02E-12|  4.70E.02
na 4272
n bandwidth "4
n F2998 2 0BE+10 236E-12]  283E.02
na 3240
r bandwidth 10

Number of FLOPS required for Part | of Step 3 for analysing the LNG carrier in
Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency of
60 Hz analysing 80 frequency steps between 1 and 40 Hz.
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Step 3: Generating reduced mass
and stiffness matrices Step 34 Step 3B |Step
Fartc n Tiran 3.7ZE+10 2839E+12] 44BE.D3
na 3239
n bandwidth "0
n Tiran 2.A3E+10 182E+12] 3.5EE-03
na 2665
n bandwidth "0
FartE n EOZE4 2.36E+10 139E+12} 2.85E+08
na 24581
n bandwidth "0
n EOZE4 1. T4E+10 TESE-N| 212E+08
na 1209
n bandwidth "0
Farta, n 39678 1LI0E+10 457E-1| 132E+08
na 1732
n bandwidth 40
Tatal number of FLOPS for each step 3.26E+11 210E+12 3.89E-09
Grand total for caleulating step 3 213E+13

Number of FLOPS required for Part Il of Step 3 for analysing the LNG carrier in
Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency of
60 Hz analysing 80 frequency steps between 1 and 40 Hz.
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Formulating the boundary moability matris Step 44, StepdB | Stepd4C | Step 58 | Step BE
Part H-F nAboundary 28] 121E.08 2AZE+08 143E+08) 3.6EE.02 S 45E+08
nBEboundary h28
nbaundary 1056
nan 207
nEn 413
na 1732
nn EYE
Fart H-G naboundary 28] 121E.08 242E+08 143E+08] 3.EEE+03 A42E.08
nBEboundary 528
nbaundary 1056
nan 287
nEn 413
na 172
nn EYE
Fart H-E naboundary 122  319E.08 E.38E+08 3.34E+08] 9.ERE.03 2.20E+09
nBEboundary 122
nbaundary 2244
nan 287
nEn 323
na 2824
nn 530
Fart G-F naboundary 433] 135E.08 2.B9E+02 1.35E+08] 4.07E+08 1.11E+09
nBEboundary LEE
nbaundary 93
nfn 413
nEn 413
na 1234
nn B35
Fart G-E naboundary Taol  212E.08 4 ZBE+08 195E.08] 6.42E+03 159E+09
nEboundary a0
nbaundary 1560
nan 419
nEn 323
na 230z
nn T4z
Fart F-E naboundary vaol  212E.08 4 2BE+08 195E.08] 642E.08 159E+09
nBEboundary T80
nbaundary 15E0
nan 413
nEn a23
na 2302
nn T42

Number of FLOPS required for Part | of Step 4 and 5 for analysing the LNG carrier
in Appendix 1X, according to the Rubin-Zoet method, applying a cut-out frequency
of 60 Hz analysing 80 frequency steps between 1 and 40 Hz.
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Farmulating the boundary mobility matriz Step 48, Step 48 | Step 4C Step 58 | Step 5B
Fart E-O0 naboundary 3936]  2.9E-09 h.82E+09 2.92E+09] S.81E-09 1.84E+10
nEboundary 936
nboundary TETZ
nAan 323
nEn 336
na 251
nn ]
Fart O-C naboundary 2904] 1EZE-03 3.3EE+09 1EZE+09] 5.03E+09 1.03E+10
nBEboundary 2904
nbvaundary aa0a
nAn 336
nEn 335
na E473
nn E71
Fart C-B naboundary 22201 1.00E+09 2.01E+09 9.E1E-08] 3.03E+09 E.ROE-D9
nBEboundary 2220
nbvaundary 4440
nan 335
nEn |
na BO0E
nn AEE
Fart B-A naboundary 1578 5.02E-02 1.00E+09 4 20E-08] 152E+09 3.24E.09
nBEboundary 1578
nbvaundary AR
nan oy |
nEn 154
na 354
nn 385
Total Mumber of FLOPS for each substep T.22E+09 144E+10]  TIBE+D9]  212E+10 4. 73E+10
IErand Total Number of FLOPS For step 4 and 5 9.80E+10)

Number of FLOPS required for Part Il of Step 4 and 5 for analysing the LNG carrier
in Appendix 1X, according to the Rubin-Zoet method, applying a cut-out frequency
of 60 Hz analysing 80 frequency steps between 1 and 40 Hz.
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Step 7

Step 4: Calcuating reduced boundary Composing Tota

mobility matrix Step BA Step 6B Step 6D step 6F | arrix

Part H-F n boundary 528 1.57E+09 1.51E+09 1.54E+11] 7.31E+07
nr B76

Part H-G n boundary 528 1.57E+09 1.51E+09 1.54E+11] 7.31E=07 7.31E+07
nn B76

Part H-E n boundary 1122 1.51E+10 5.84E+08 242E+11| 5.38E+07 5.3BE+07
nr 580

Part G-F n boundary 458 1.32E+09 1.66E+09 2.24E+11] 1.12E+08 1.12F+08
nr B38

Part G-E n boundary 780 5.06E+09 3.61E+09 2.75E+11] B.B1E+07 B.B1E+07
nr 742

Part F-E n boundary 780 5.06E+09 3.61E+09 275E+11] B.B1E+07 8.B1E+07
nr 742

Part E-D n boundary 3936 B.50E+11 B.17E+10 1.09E+12] 6.95E+07 6.95E+07
nn 659

Part O-C n boundary 2504 2.61E+11 4 53E+10 B.37E+11] 7.20E+07 7.20E+07
nr 671

Part C-B n boundary 2220 1.17E+11 2.23E+10 455E+11] 5.13E+07 5.13E+07
nn 566

Part B-A n boundary 1578 4.19E+10 7.67E+09 150E+11] 2.37E+07 2.37E+07
nr 385

Number of FLOPS for each sub step 1.10E+12 1.75E+11 3.86E+12] 7.05E+0B 6.32E+08

Grand total of FLOPS for step 6 and 7 5.14E+12

Number of FLOPS required for Step 6 and 7 for analysing the LNG carrier in
Appendix IX, according to the Rubin-Zoet method, applying a cut-out frequency of
60 Hz analysing 80 frequency steps between 1 and 40 Hz.
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Total structure MWumber of Mumber of | zalzulating Mormal Modes Constraint/Residual Taotal Compuatation Time

equations total| non zeros and Matural Frequencies Attachment Modes and Generation Pazs
aszembled Fieducing Matrices
matriy CFTime FLOFS CFTime FLOFS CPTime FLOFS
Full solution 2JEEST 143E-07 n.a. n.a. n.a. n.a. n.a. n.a.
Mod ition, f cut-
et ST, P 1568 272224 2668 124E14 125 B20E-2 | 280E.03 | 130E.14

out = 15 fmat = E0Hz
fized interface CMS
[Craig-Bampton], f cut-out = 15370 1.25E-02 22385 1.04E+13 121 B.BOE+12 442 1.G0E+12
1.5 fmat = E0Hz

Free interface CMS
[Rubin™s Method], f cut-out 1112 1.34E-02 4111 1.91E+12 T2 3.54E+12 1734 BABE-13
= 1.5 fmat = E0Hz

Fubin-Zoet method cut-out
frequency 1.5xf max = 60 Hz

2474 2A28E.06 411 191E-132 E4T J0E2 0526 492E412

Generation pass: Table of CP times and numbers of floating point operation. Black numbers have been directly
measured (CP time) or calculated (FLOPS). Brown numbers have been calculated through an estimated relation
between measured computation time and number of calculated floating point operation.

Total structure . Saolving Full Total Computation
Generating Full .
. A=zembled Time Use Pass
A=zembled Matriz .
Mlatrices

CFTime FLOFS CPTime | FLOPS | CPTime | FLOPS

Full solution 20 T.TE+D YEOOO | ZEEE-14] VE20.0 | 2EEE+14
Mod ition, fcut-

e S S L na. na. 2t | saEn| @ | aseEe

out = 1.5 Fmai = G0Hz
fized interface CMS
[Craig-Bampton], f cut-out = 12 E.A4E+10 129600 | B32E«14 ] 133222 | B.32E+14
1.5 Fmai = G0Hz

free interface CMS
[Rubin"s Method], f cut-out 13 E.A4E+10 N3E0.0 | B.32E+14] 126614 | B32E+14
= 1.5 Fmax = BOHz

Rubin-Zoet method cut-out
frequency 1.5=F max = G0 Hz

0.1g E.32E+08 6.3 TEIEN 10750 | TE4E+1

Use pass: Table of CP times and numbers of floating point operation. Black numbers have been directly
measured (CP time) or calculated (FLOPS). Brown numbers have been calculated through an estimated relation
between measured computation time and number of calculated floating point operation.

Tatal structure Tatal Computation Time
Generation plus Use Pass

CPTime FLOFS
Full solution YE20.0 AEEE+14
Mode superposition, f cut-
out = 1.5 fmax = B0Hz

Fized interface CMS
[Craig-Bampton], f cut-out
15 fman = BOHz

Free interface CMS
[Rubin’s Method], f cut-out 137248 RATE+14
= 15 fmat = B0Hz

Rubin-Zoet method cut-out
frequency 1.5=f max = B0 Hz

28213 131E+14

13666.5 G43E+14

21335 4 H9E+13

Total number CP time and FLOPS for total analysis. Black numbers have been directly measured (CP time) or
calculated (FLOPS). Brown numbers have been calculated through an estimated relation between measured
computation time and number of calculated floating point operation.
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aH I ak I aF I ak I alb I al I ab I ah
Number of Columns

Number of rows 257 | a3 | a8 ] sz | s | 335 | 23 | 1sa
257 66049 107683 107683 83011 aH
419 107683 175561 175561 135337 aG
419 107683 175561 175561 135337 aF
323 83011 135337 135337 104323 108528 aE
336 108528 112896 112560 aD
335 112560 112225 77385 aC
231 77385 53361 35574 |aB
154 35574 23716 |3A

Skyline of the total assembled dynamic stiffness matrix obtained through the Rubin-
Zoet method.

| Rubin-Zoet Method |

Inumber of frequencies I BO I
Generation Pass
Step number Action Estimated FLOPS
Calcuating natural frequencies and mode shapes 1.91E+13
1 Generating constraint modes 2.47E+12
2 Generating reduction basis 1.04E+12
3 Generating Reduced Mass, Stiffness 2. 13E+13
4 Generating Reduced Equations of 2.BBE+10
5 Farcing equilibrium and compatibility at 6.02E+10
the boundary degrees of freedom:
& Eliminating boundary degrees of 5.13E+12
Total Flops Generation Pass 4 92E+13
Use Pass
Step number Action Estimated FLOPS
7 Farmulating compatibility and 6.32E+D8
B Salving the matrix equations
a.|Row reduction forward phase 757E+11
b.|Row reduction backward phase 7.17E+08
c.|Solving triangular matrix 5.30E+09
Total FLOPS Use Pass 7.64E+11
Grand tota 4 99E+13

All modeshapes have been selected with the natural frequencies within the range between 0 and 1.5=fmax
The fmax is the highest frequency in the frequency range for which results have been cbtained (= 40 Hz in this case)
Fmax in this case = 40 Hz, modeshapes have been selected over a frequency range between 0 and &0 Hz

Summary of required number of FLOPS for each step for the Rubin-Zoet method.
The required number of FLOPS for solving the matrix equation (step 6) is calculated
according to Appendix VI.
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Reduction Factor
Computation
TimeRelatively to
Rubin's Method

Reduction Factor
Computation Time
Relatively to the Full
Harmonic Analysis

Full Solution

Mode Superposition

Fixed Interface CMS (Craig-Bampton) cut-out freque 1.5xf max =60 Hz

Free Interface CMS (Rubin's Method) cut-out freque 1.5xf max = 60 Hz

Zoet method, cut-out freque 1.5xf max = 60 Hz, no residual boundary flex
Zoet method, cut-out freque 1.5xf max = 60 Hz, with residual boundary flex

Rubin-Zoet method, cut-out freque 1.5xf max = 60 Hz

-39.31%
-77.66%
-1.48%
0.00%
-96.61%
-59.04%
-91.45%

0.00%
-63.20%
62.32%
64.77%
-94.41%
-32.52%
-85.98%

Difference in percentage in computation time relatively to Rubin’s free interface
(interface) method or relatively to the full harmonic method. As can be seen, the
Rubin’s method free interface method requires 65 % more calculation time compared
to the full method. The Zoet method reduces the calculation time by 96% relative to

Rubin’s method.
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Appendix XXIV CMS
Results of the Case Study
Model According to ANSYS
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22.45 Hz

30.25 Hz
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35.13 Hz

39.5Hz
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C and D). Dotted line show the interface

B

Test model subdivided into four substructures (A,

boundaries of the substructures. Model is clamped at the nodes on the far right side of substructure

fixed interface CMS according to Craig-Bampton

Fixed CMS

Free CMS is free interface CMS according to Rubin’s method (without residual compensation)

For selecting the number of retained normal modes, a cut-out frequency has been applied of 1.5

fmax

60 Hz for both methods
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[ T o o T o B Y I TR T e T ]

[ww] apnyduwry

50

40

30

20

10

50

40

30

20

10

Frequency [Hz]

Frequency [Hz]

— 16 free cmis 31/75/53/41
16 fixed cms 25/21/16/15

w16 full solution

180 -

15 fixed cms 25/21/16/15

e | 5 free cmis 31/75/58/41
w15 full sOlUtion

160
140 4

160 4
140 +
120 4
1.00 +
080 +
0.60
040 +

[wuw] apndwy

0.20 +
0.00

120 1
100 4
080 4
060
040 +

[wuw] apndwy

0.20 4
0.0

0

50

40

30

20

10

50

40

30

20

10

Frequency [Hz]

Frequency [Hz]

Full simulation results and simulation results for free (Rubin’s method without residual compensation)and

=60Hz.

fixed (Craig Bampton) interface CMS applying a cut-out frequency of 1.5 fmax

,Cand D:

Number of modes taken for substructure A,B

31, 75, 59 and 41 respectively for free interface Rubin

25, 21, 16 and 15 respectively for fixed

(31/75/59/41)

’s method

(25/21/16/15)

interface Craig-Bampton’s method
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Appendix XXV Test Case
Substructure Division for the
Zoet Method
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Connection BC

Connection CD :

Connection AB

Test model flexible Mumber of Mumber of Number of Number of Required CP for |Required time
boundary CMS nodes modes boundary boundary calcuating generation
required nodes degrees of eigenvectors and |pass
freedomnodes |eigenvalues

PartAfreecms 1903 31 140 840 10.2 14.8
PartA Zoet 1903 205 140 840 16.3 18.9
PartBfreecms 1695 75 140 and 120 1560 11 16.5
PartB Zoet 1555 179 141 and 120 1566 13.2 18.2
PartCfreecms 1342 59 120 and 96 1296 9.5 13.4
PartC Zoet 1222 148 124 and 96 1320 12 17.6
PartDfreecms 1160 41 95 570 8.7 10.7
PartD Zoet 1064 105 a5 570 10 13.8

Free CMS is free interface CMS according to Rubin’s method (without residual compensation)
For selecting the number of retained normal modes, a cut-out frequency has been applied of 1.5 fmax = 60 Hz
for Rubin’s method, and 3 fmax = 120 Hz for Zoet’s method (see section 9.3)
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Appendix XXVI Test Case
Results Zoet Method
Individual pair of
Substructures
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Amplitude [mm]

Amplitude [mm]

0.80

0.70 4
0.60 4

0.50
0.40
0.30
0.20
0.10
0.00

0.80 o

0.70
0.60

0.50 4
0.40 4

0.30
0.20
0.10
0.00

Results Substructure A and B

=1 full solution AB

freecms A = 31 modes B =75 modes

fixedcms A = 25 modes B = 21 modes

10 20 30 a0
Frequency [Hz]

=1 full solution AB

z, A = 31 modes, B=75 modes
====7c, A =31 modes, B =75 modes
z, A =142 modes, B = 142 modes
= ===z A =205 modes, B =179 modes

10 20 30 40
Frequency [Hz]

1.80
1.60
1.40

1.00
0.80
0.60
0.40
0.20
0.00

Amplitude [mm]

1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

Amplitude [mm)]

1.20 4

| =2 full solution AB

= freecms A = 31 modes B = 75 modes

fixedcms A =25 modes B = 21 modes

10 20 30 40
Frequency [Hz]

2 full solution AB

z, A = 31 modes, B= 75 modes
====7c, A=31 modes, B =75 modes
z, A =142 modes, B = 142 modes
= ===z A =205 modes, B =179 modes

10 20 30 40
Frequency [Hz]

y and z are simulation results obtained in z and y direction respectively by only expanding
the normal modes

yc and zc are the simulation results obtained through expanding both normal and static
modes iny and z direction respectively
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Amplitude [mm)]

Amplitude [mm]

1.20

100

0.80

0.60

0.40

0.20

0.00

1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

Results Substructure A and B

= full solution AB

——{freecmsA = 31 modes B =75 modes

| =——fixedcms A = 25 modes B = 21 modes

10 20 30 40

Frequency [Hz]

s full solution AB

y, A =31 modes, B=75 modes
= = ==y, A = 31 modes, B =75 modes
y, A =142 modes, B =142 modes
= ===y A= 205 modes, B =179 modes

10 20 30 40
Frequency [Hz]

Amplitude [mm]

Amplitude [mm)]

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

| =8 full solution AB
| =—freecms A = 31 modes B =75 modes

| =——fixedcms A = 25 modes B = 21 modes

10 20 30 40
Frequency [Hz]

e 8 full solution AB

z, A = 31 modes, B =75 modes
== ==z, A =31 modes, B =75 modes
z, A =142 modes, B =142 modes
== ==7 A =205 modes, B =179 modes

10 20 30 40
Frequency [Hz]

y and z are simulation results obtained in z and y direction respectively by only expanding
the normal modes

yc and zc are the simulation results obtained through expanding both normal and static
modes in y and z direction respectively
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Amplitude [mm]

Amplitude [mm]

Results Substructure B and C

e 5 fuill solution BC

v, B =75 modes, C =59 modes

40 4 e B fulll solution BC
18 - v, B =142 modes, C =111 modes
: 35 A z, B = 75 modes, C = 59 modes
16 ===y B =179 modes, C =148 modes —
E 30 - === zc,B =75 modes, C =59 modes
14 4
E 1 w7, B = 142 modes, C=111 modes
13 4 L 25
. -3 2.0 === 7, B=17% modes, C =148 modes
10 g
0.8 £ 15
o
06 E 10
0.4 A < 05 -
02 1 00 -
0.0 4 ; 0 10 20 30 40
a 10 20 30 4
Frequency [Hz]
Frequency [Hz]
e 12 fulll solution BC
e § fulll solution BC 05 - v, B =75 modes, C=5% modes
2.0
18 | zc, B =75 modes, € =59 modes 05 = = = yc B =75 modes, C =59 modes
16 4 === z,B=75modes, C=59modes .E. 04 4 v, B =142 modes, C =111 modes
14 - 7 B =142 modes, C=111 modes £ 0.4 = = = y, B =179 modes, C = 148 modes
1.2 === 7, B =179 modes, C =148 modes T
=
10 4
0.8 - Li
06 + E
0.4 L
0.2 A
0.0 T T T |
o 10 20 30 4C
Frequency [Hz] Frequency [Hz]

y and z are simulation results obtained in z and y direction respectively by only expanding
the normal modes

yc and zc are the simulation results obtained through expanding both normal and static
modes in y and z direction respectively
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Amplitude [mm]

Amplitude [mm]

Results Substructure C and D

e §7 fuill solution CD

=== 12y full solution CD
zc, C=59 modes, D =41 modes

3.0 7 2.0 1 yc, C =59 modes, D = 41 modes
===-z,C=59 modes, D =41 modes 1.8
2.5 - == ==y C =59 modes, D =41 modes
- z,C =111 modes, D = 82 modes 1.6
= 14 4 y,C =111 modes, D = 82 modes
2.0 ====72,C =148 modes, D = 105 modes E *
E 1.2 - ====y,C =148 modes, D =105 modes
—_—
1.5 - @ 1.0 -
o
3 0.8 -
1.0 - 'T;_ 0.6
05 4 E 0.4 -
0.2 -
0.0 0.0 A
0 10 20 30 40 1] 10 20 30 40
Frequency [Hz] Frequency [Hz]
2.0 ) 14z full solution CD
e 137 full solution CD 2.0 -
1.8 zc, C =59 modes, D = 41 modes
16 zc, C=59 modes, D =41 modes 1.8
2 16 | == ==7,C =59 modes, D =41 modes
1.4 = ===z C=59 modes, D =41 modes —_
£ 14 - z,C =111 modes, D = 82 modes
1.2 z,C =111 modes, D = 82 modes £ i
il = 12 ====37 C=148 modes, D =105 modes
1.0 = = ==2,C =148 modes, D = 105 modes @ 10
4 ©°
0.8 2 0.8
0.6 2 06 -
0.4 - E 04 -
0.2 - <t 0.2
0.0 T 0.0 T T : —
0 10 20 30 40 0 10 20 30 40

Frequency [Hz] Frequency [Hz]

y and z are simulation results obtained in z and y direction respectively by only expanding
the normal modes

yc and zc are the simulation results obtained through expanding both normal and static
modes in y and z direction respectively

444



Appendix XXVII  Evaluation
of the Effect of Residual
Interface Flexibility on the
Results of Zoet’s method
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Results Substructure A and B

=1 full seluticn AB
= ===z A=205modes, B=17% modes

g, A = 205 modes, B = 179 modes, no residual compensatior

Amplitude [mm]
Lo s I T I Y Y B Y )
(= T R R |
coooooOO0O

20
Frequency [Hz]

40

= 6 full soluticn AB
= ===y A= 205 modes, B = 179 modes

=, A= 205 modes, B = 179 modes, no residual compensstion

Amplitude [mm]

40
Frequency [Hz]

=1 full solution AB
= ===z A= 205 modes, B = 179 modes

=z, A =205 modes, B = 179 modes, no residual compensation

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00 + T T T
20 30

Amplitude [mm]

40
Frequency [Hz]

& full solution AB
= ===z, A =205 modes, B =179 modes
z, A = 205 modes, B = 179 modes, no residual compensation

2.00

Amplitude [mm)

0.00 + T T T
20 30
Frequency [Hz]

40

the normal modes

modes in y and z direction respectively

y and z are simulation results obtained in z and y direction respectively by only expanding

yc and zc are the simulation results obtained through expanding both normal and static

446



Results Substructure B and C

e & fuIll s0lution BC

sy, B = 179 modes, C =148 modes, no residual compensation
= == y B =179 modes, C =148 modes

1.4 4
1.2
1.0
0.8

06 o

Amplitude [mm]

04 4

0.2 +

00 -
a 10 20 30 40

Frequency [Hz]

s G fuill solution BC
=== z B=179modes, C=148 modes

sy B =179 modes, C = 148 modes, no residual compensation

20 4
18 4
16 4
14 4
1.2 4
10 4
a8 4
06 4
04 4
0.2 4
a0 -

Amplitude [mm]

Frequency [Hz]

s § full solution BC
s 7 B = 179 modes, C =148 modes, no residual compensation

=== 7 B=179 modes, C=148 modes

40 A
3.3
30 4
235 4
20 4
15 4
10 4
05 4
00 -

Amplitude [mm]

Frequency [Hz]

e 1 2 fuill solution BC
= == y B =179 modes, C =148 modes
s— B =179 modes, C =148 modes, no residual compensation

05 4
05 4
04 4
04 4
03 4
0.3 4
0.z 4
0.z 4
01 4
01 4
00 -+ T T 1

Amplitude [mm]

Frequency [Hz]

the normal modes

modes in y and z direction respectively

y and z are simulation results obtained in z and y direction respectively by only expanding

yc and zc are the simulation results obtained through expanding both normal and static
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Results Substructure C and D

= Q7 fuill solution CD

== ==7 =148 modes, D = 105 modes

z,C =148 modes, D =105 modes, no residual compensation

3.0 4
£ 2.5
E 20 -
% 1.5

0 10 20 30 40

Frequency [Hz]

e 137 fuall solution CD

== ==7 C =148 modes, D =105 modes

z,C =148 modes, D =105 modes, no residual compensation

2.0
1.8
1.6 -
1.4 4
1.2 A
1.0 A
0.8
0.6 -
0.4 -
0.2
0.0 ~

0 10 20 a0 40

Amplitude [mm]

Frequency [Hz]

Amplitude [mm]

s 12y full solution CD
= ===y C=148 modes, D =105 modes

e\t C = 148 modes, D =105 modes, no residual compens:

4.0
3.3
3.0
2.5
2.0
1.5
1.0
0.5
0.0

0 10 20 30

Frequency [Hz]

14z full solution CD

=== =7 C =148 modes, D =105 modes

Amplitude [mm]

z,C =148 modes, D =105 modes, no residual compensatio

2.0
1.8 A
1.6 A
1.4 A
1.2 A
1.0 A
0.8 A
0.6 -
0.4 A
0.2 A
0.0 T T T

0 10 20 30

Frequency [Hz]

the normal modes

modes in y and z direction respectively

y and z are simulation results obtained in z and y direction respectively by only expanding

yc and zc are the simulation results obtained through expanding both normal and static
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Test Case

Appendix XXVIII

Results Zoet Method Total
Dynamic Behaviour A, B, C

and D Coupled

S
NN
AN
TR :.?.,n.....:: :
S
Wty ;
A
i ) 5 AN
IR
NN
ettt
NI A :w.ﬂi. 2

--

)
)
s# .é" 5
-~

449



Location 1

— 1 full solution
—1 142/75/55/41

0.60
0.50
0.40 +
0.30
0.20

0.10

Amplitude [mm]

0.00 T T T 1
0 10 20 20 40

Frequency [Hz]

—— 1full solution
0.60 - —12142/142/111/82
0.50
0.40
0.30

0.20 A

Amplitude [mm]

0.10

0.00 T T T 1
0 10 20 20 40

Frequency [Hz]

—— 1 full solution
0.60 - ——7 205/179/148/105
0.50 -
0.40
0.30
0.20 -

Amplitude [mm]

0.10 4

0.00 T T T |
i} 10 20 20 40

Frequency [Hz]

Location land 2 results calcuated according to Zoet
compared to the full results. Number of modes taken
for substructure A,B,C and D:

142, 75, 59 and 41 respectively (142/75/59/41)

142, 142, 111 and 82 respectively

(142/142/111/82)

205, 179, 148 and 105 respectively
(205/179/148/105)

Amplitude [mm] Amplitude [mm]

Amplitude [mm]

Amplitude [mm]

Location 2

— 2 full solution

——1142/75/53/41

0.50 -
0.40
0.30
0.20
0.10
0.00 T T T 1
o 10 20 20 40
Frequency [Hz]
——2full solution
050 - —z142/142/111/82
0.40 4
0.30
0.20 1
0.10
0.00 T T T 1
0 10 20 20 40
Frequency [Hz]
——2full sclution
0.60 -
—12 205/179/148/105
0.50
0.40
0.30
0.20
0.10 -
0.00 T T T 1
0 10 20 30 40
Frequency [Hz]
06D - —— 2 full solution
osp | ——ZC205/179/148/105
0.40
0.30 4
0.20 1
0.10 4
0.00 T T T 1
0 10 20 30 40
Frequency [Hz]

y and z are simulation results obtained in z and y direction respectively by only expanding the

normal modes

yc and zc are the simulation results obtained through expanding both normal and static modes in y

and z direction respectively
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Location 3 Location 4

=3 full solution 0.50 -
0.50 ——2142/75/59/41 _ 0.40 | — 4 full solution
T 0% E ——y 142/75/55/41
£ = 030
— 030 2
]
T 2 020 -
g 020 - =
E o1 g oo A
< 0.00 . £ ; "*"ﬁ
0.00 T T T 1 o 10 20 30 40
0 10 20 30 40
Frequency [Hz]
Frequency [Hz]
——3 full solution 050 -
0.50 -
——2142/142/111/82 _ pap | —%full solution
— 040 4 E
£ E  p3p 4 —y142/142/111/82
= 030 ]
g 3
E 0.20 £ 020 1
2 E 010 -
E 010 - <
< 0.00 i _M
0.00 : : : 1 : ' ' ' '
5 10 20 0 1 0 10 20 30 40
Frequency [Hz] Frequency [Hz]
——3full solution
0.50 - 050 -
_ ——2205/179/148/105 ——4full solution
E 040 4 —_ 0.40 -
£ E —y 205/178/148/105
o 030 - E i
3 3 0.30
% 020 4 E: 0.20 -
< 010 E 010 -
< _,_,.Q_Aé
0.00 : : ; . 0.00 4
0 10 20 30 4p o 10 20 =0 a0
Frequency [Hz] Frequency [Hz]
Location 3and 4 results calcuated according to Zoet 0.10 -
compared to the full results. Number of modes taken —— 1 full solution
for substructure A,B,C and D: o 0.08 7
142, 75, 59 and 41 respectively (142/75/59/41) Eooos | 205/179/148/105
142, 142, 111 and 82 respectively e
(142/142/111/82) Y
- =t
205, 179, 148 and 105 respectively 3
(205/179/148/105) E 0.02 -
0.00 T T T 1
0 10 20 30 40
Frequency [Hz]

y and z are simulation results obtained in z and y direction respectively by only expanding the
normal modes

yc and zc are the simulation results obtained through expanding both normal and static modes in y
and z direction respectively
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Location 5 Location 6

190 - — 5 full solution 0.30 ——& full solution
1o ——2142/75/58/41 = 0.25 | ——y 182/75/53/4
E 0.80 - R
— a 4
E 0.60 - ) 015
£ a0 - £ 010
g E
b 0.20 - g 005

0.00 : : \ , 0.00 - , ; ,

0 10 20 a0 0 0 10 20 30 a0
Frequency [Hz] Frequency [Hz]

1.00 - 5 full salution 0.30 - = full solution
080 | ey = 0.25 1 —y142/142/111/82
E e E 020 7
= 2z 0.15 -

2 040 - 3
3 =
£ £ 0.10 -
E o020 - 3
2 ° £ o005

0.00 0.00 . .

0 10 20 30 40 ) 10 20 30 40
Frequency [Hz] Frequency [Hz]
=5 full solution

100 1 _;205/179/148/105 0.30 - —— & full salution
= 0.0 A |
E T 0.25 ——y 205/173/148/1p5
= 080 E 0207
= 7]

R 3 0.15 -
3 0.20 g 00
< 7 ,E 0.05
0.00 ; . . . 0,00
0 10 0 30 40 ) ' X
0 10 20

Frequency [Hz] Frequency [Hz]

Location 5and 6 results calcuated according to Zoet compared to the full results. Number of modes taken for
substructure A,B,C and D:

142, 75, 59 and 41 respectively (142/75/59/41)

142,142,111 and 82 respectively ~ (142/142/111/82)

205, 179, 148 and 105 respectively  (205/179/148/105)

y and z are simulation results obtained in z and y direction respectively by only expanding the
normal modes

yc and zc are the simulation results obtained through expanding both normal and static modes in y
and z direction respectively
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Location 7 Location 8
—7 full solution 200 - =& full solution
1.00 - —2142/75/55/41 —7142/75/58/41
= 150 4
— (.ED - E
E £
E o0 g 100
a 5
3 040 - £
= :EL 0.50
=8
E 0.0 1 <
< 0.00 -+
.00 - 0 10 20 30 40
0 10 20 30 40
Frequency [Hz]
Frequency [Hz]
100 - 7 full solution 2.00 - = B full solution
—z142/142/111/82 —_ —z142/142/111/82
—  D.BO A E 1.50
E E
i L1
= 080 3 10
3 £
£ 0.40 A =
= E 0.50 -
E 020 - q
L
0.00 : : . . 0.00 -
o 10 20 a0 a0 ] 10 20 30 40
Frequency [Hz] Frequency [Hz]
1.00 T Full sClution 2.00 —B full solution
—_ —— 2 205/179/148/105 _ —2 205/178/148/105
E 080 e E 15
£ E
¥ 060 o
3 T 100 A
£
£ 40 =
FE'- o
< 0w g 0501
0.00 T T T ! 0.00 T T T 1
10 20 30 40 ] 10 20 30 40
Frequency [Hz] Frequency [Hz]

Location 7and 8 results calcuated according to Zoet compared to the full results. Number of modes taken for

substructure A,B,C and D:

142, 75, 59 and 41 respectively (142/75/59/41)
142,142,111 and 82 respectively ~ (142/142/111/82)
205, 179, 148 and 105 respectively ~ (205/179/148/105)

y and z are simulation results obtained in z and y direction respectively by only expanding the
normal modes

yc and zc are the simulation results obtained through expanding both normal and static modes in y
and z direction respectively
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Location 9

Location 10

Amplitude [mm]

9 full solution

—2142/75/509/41

3.00 4

2.50 4

2.00 4

Amplitude [mm]

10 20 20 40
Frequency [Hz]

=0 full solution

3.00 4

2.50 4

2.00 4

1.50 4

1.00 4

0.50 4

Amplitude [mm]

10 20 30 40
Frequency [Hz]

w1 full solution

2142/142/111/82

a 10 20 30

Frequency [Hz]

40

Amplitude [mm]

Amplitude [mm]

2205/179/148/105

Amplitude [mm]

1.80 4
1.60
1.40 4
1.20 4
1.00 4
0.60
0.40 -
0.20 -

0.00

1.60 4
1.40 4
1.20 4
1.00 4
0.80
0.60
0.40 4
0.20 A

0.00

1.60
1.40
1.20
1.00
0.50
0.60
0.40
0.20
0.00

=10 full solution
—z142,75/59/41
f"\j
L1} 10 20 20 40
Frequency [Hz]
— 10 full solution
z2142/142/111/82
a 10 20 30 40
Frequency [Hz]
7 =10 full solution
i ——2205/179/148/105
a 10 20 30 40
Frequency [Hz]

Location 9and10 results calcuated according to Zoet compared to the full results. Number of modes taken for

substructur

142,75, 59
142,142, 1

205, 179, 148 and 105 respectively

e A,B,C and D:

and 41 respectively (142/75/59/41)
11 and 82 respectively

(142/142/111/82)
(205/179/148/105)

y and z are simulation results obtained in z and y direction respectively by only expanding the
normal modes

yc and zc are the simulation results obtained through expanding both normal and static modes in y
and z direction respectively
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Location 11 |

Location 12

1.60 f
1.40 -
1.20 ~
1.00 ~
0.80 A
0.60
0.40
0.20 -
0.00

Amplitude [mm]

=11 full solution
—z14275/59 /41

1.60 -
1.40 A
1.20
1.00
0.60 -
0.40 -
0.20 -

Amplitude [mm]

10 20 30 40
Frequency [Hz]

=11 full solution

—z142/142/111/82

0.00

1.60 -
1.40 -
1.20 -
1.00 -
0.80 -
0.20 -

Amplitude [mm]

10 20 30
Frequency [Hz]

=11 full solution

——2z205/179,/148/105

0.00

Frequency [Hz]

Amplitude [mm] Amplitude [mm]

Amplitude [mm]

1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

=12 full solution

—z1432/75/53/41

——ﬁﬁ-—*j&—é

0 10 20 30 40

Frequency [Hz]

—12 full solution

—z142/142/111/82

_ 2N

0 10 20 30 40

Frequency [Hz]

=12 full solution

——z205/179/148/105

20 30 4

0 10

0
Frequency [Hz]

Location 11and12 results calcuated according to Zoet compared to the full results. Number of modes taken for
substructure A,B,C and D:

142, 75, 59 and 41 respectively (142/75/59/41)

142,142, 111 and 82 respectively
205, 179, 148 and 105 respectively

(142/142/111/82)
(205/179/148/105)

y and z are simulation results obtained in z and y direction respectively by only expanding the

normal modes

yc and zc are the simulation results obtained through expanding both normal and static modes in y
and z direction respectively
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Location 13 Location 14

m— 13 full solution

o 2.00 — 14 full solution
35g .,  ——2142/75/53/41 7
3.00 £ 1.50 - ——2142/75/59/41
= T
E :z50- -
E 2 1.00 -
— 200 q =
o =
- - £
-E 1.50 < 0.50 -
?E._ 1.00
sf 0.50 4 0.00 . T T ]
0.00 . : / . 0 10 20 30 40
a 10 20 30 40 Frequency [Hz]
Frequency [Hz]
= 14 full solution
—— 13 full solution 2.00 1 ——=zl42/142/111/82
3.50 7 —_— 142142111 /82 T
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Location 13and14 results calcuated according to Zoet compared to the full results. Number of modes taken for
substructure A,B,C and D:

142, 75, 59 and 41 respectively (142/75/59/41)
142,142,111 and 82 respectively  (142/142/111/82)
205, 179, 148 and 105 respectively ~ (205/179/148/105)

y and z are simulation results obtained in z and y direction respectively by only expanding the
normal modes

yc and zc are the simulation results obtained through expanding both normal and static modes iny
and z direction respectively
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Location 15
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Location 15 results calcuated according to Zoet compared to the full results. Number of modes taken for
substructure A,B,C and D:

142, 75, 59 and 41 respectively (142/75/59/41)
142,142,111 and 82 respectively ~ (142/142/111/82)
205, 179, 148 and 105 respectively  (205/179/148/105)

y and z are simulation results obtained in z and y direction respectively by only expanding the
normal modes

yc and zc are the simulation results obtained through expanding both normal and static modes in y
and z direction respectively
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Appendix XXIX Reduced
Test Case Results Zoet
Method, Substructures A, B
and C Coupled
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Reduced test model subdivided into three substructures (A, B and C). Dotted lines show the

interface boundaries of the substructures. Model is clamped at the nodes on the far right side of

substructure

Free CMS is free interface CMS according to Rubin’s method (without residual compensation) and fixed

interface CMS is according to Craig-Bamton’s method.

=60 Hz

For selecting the number of retained normal modes, a cut-out frequency has been applied of 1.5 fmax
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Connection AB

Test model flexible Number of Number of Number of Number of Required CP for |Required time
boundary CMS nodes modes boundary boundary calcuating generation
required nodes degrees of eigenvectors and |pass
freedomnodes |eigenvalues

PartAfreecms 1903 31 140 840 10.2 14.8
PartA Zoet 1903 205 140 840 16.3 18.9
PartBfreecms 1695 75 140 and 120 1560 11 16.5
PartB Zoet 1555 179 141 and 120 1566 13.3 18.3
PartCfreecms 1342 59 120 1296 9.5 13.4
PartC Zoet 1222 148 124 1320 12 17.6

Free CMS is free interface CMS according to Rubin’s method (without residual compensation). For selecting
the number of retained normal modes, a cut-out frequency has been applied of 1.5 fmax = 60 Hz for Rubin’s

method, and 3 fmax = 120 Hz for Zoet’s method (see section 9.3)
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y and z are simulation results obtained in z and y direction respectively by only expanding the
normal modes

yc and zc are the simulation results obtained through expanding both normal and static modes in y
and z direction respectively
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y and z are simulation results obtained in z and y direction respectively by only expanding the
normal modes

yc and zc are the simulation results obtained through expanding both normal and static modes in y
and z direction respectively
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y and z are simulation results obtained in z and y direction respectively by only expanding the
normal modesyc and zc are the simulation results obtained through expanding both normal and
static modes in y and z direction respectively
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Appendix XXX Rubin’s Method
With Interface Modes for
PHD Test Case
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Method Number of] Number of boundary |Number of MNumber of Required CP for | Required CP
nodes nodes boundary maodes required |calcuating generation
degrees of retained eigenvectors pass
freedomnodes and
eigenvalues
Part A |PartAfixedcms 19403 Bounary A-B 140 240 25 93 118
PartAfreecms Bounary A-B 140 240 31 11 148
PartA Zoet and Bounary A-B 140 240 205 16.3 1849
Rubin-Zoet method
PartB |PartBfixedcms 1685 Boundary B-A 140 240 21 85 118
Boundary B-C 120 720
PartBfreecms Boundary B-A 140 240 75 11 165
Boundary B-C 120 720
PartB Zoet and Boundary B-A 141 246 179 13.3 183
Rubin-Zoet methaod Boundary B-C 120 720
PartC |Parlfixedcms 1342 Boundary C-B 120 720 16 9.1 g4
Boundary C-D 96 576
PartCfreecms Boundary C-B 120 720 59 95 13.42
Boundary C-D 96 576
PartC Zoet and Boundary C-B 124 744 148 12 176
Rubin-Zoet method Boundary C-D 96 576
part D |PartDfixedcms 1160 Boundary D-C 86 576 15 B84 81
PartDfreecms Boundary D-C 96 576 41 B7 10.7
PartD Zoet and Boundary O-C 95 570 105 10 138
Rubin-Zoet method

Properties of the substructures used as a test case for the Zoet method (see Appendix XXIV
and Appendix XXV). Fixed and free CMS is CMS based on the fixed interface approach
(Craig-Bampton) and the free interface approach (Rubin’s method without residual
compensation) respectively.

For all methods a cut-out frequency of 1.5* £,,,,, Hz (=60 Hz) has been applied for the
selection of the number of normal modes of the individual substructures.

The number of floating point operations has been calculated for applying the Rubin-Zoet
method for 80 frequency steps in the range between 1 and 40 Hz.

Cut-out frequency used for the selection of the number of retained interface modes is
3.5 * finax = 140 Hz, based on the finding by Tran [41]

Here follow the calculation results of the number of real floating point operations required
for each step for obtaining results according to Rubin’s method, using interface (boundary)
reduction through application of interface modes. No floating point operations have been
calculated required for the generation of the mode shapes and natural frequencies. The
number of floating point operation required for are estimated through measured CP times
and are presented in Appendix XXXI.

See Appendix XVII “Steps and Estimated Number of Matrix Operations Rubin’s Method

using Interface Modes’ for description of symbols used and equations for estimating floating
point operations.
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Step 1: Generating constraint modes Step 14 Step 1B

Parth i 10578 5.96E+04 7.11E+08

boundary A-B |n boundary B4D

PartB i 9330 4 64E=09 6.27E+08

Boundary B-A|n boundary 840

Boundary B-C |ni 2450 4 7eE+09 5.44F=08
n boundary 720

PartC ni 7332 2 BRE+D9 4 22E+08

Boundary C-B |n boundary 720

Boundary C-0 | ni 7475 2.98E+09 3.44E+08
n boundary 576

PartD il B384 2.17E+09 2.94F=04
n boundary 576

Total number of FLOPS for each step 2.34E+10 2.94E+(09

Grand total for calcuating all required constraint modes (Step 1) 2.63E+10

n bandwidth =40

Required calculation time for each step 1 and 2 of the Rubin’s method using interface reduction

through application of interface modes following the IRS method. Calculation times are based on
applying a cut-out frequency of 60 Hz for selecting normal modes of individual substructures, and
applying a cut-out frequency of 3.5 fmax = 140 Hz for selecting the number of interface modes.
Calculation times are based on analysing 80 frequency steps between 1 and 40 Hz.(see Appendix
XVII for description calculation time and Appendix XXIV for description geometry test structure)

Step 2: Reducing the Interface Dgrees of Freedom Step 2A Step 2B
Farth ni 10578 142E+09 2 99E+10
boundary A-B | n boundary B0
n bandwidth 40
PartB mi 9330 1.25E+09 2.63E+10
Boundary B-4 ] n boundary B40
n bandwidth 40
Boundary B-C | ni 8450 1.09E+09 1.96E+10
n boundary 720
n bandwidth 40
Partl ni 7352 8.45E+08 1.52E+10
Boundary C-B | n boundary 720
n bandwidth 40
Boundary C-C | ni 7476 6.89E+08 9.92E+09
n boundary 576
n bandwidth 40
FarD ni 6384 5.8BE+08 B ATE+0S
Boundary D-C|n boundary 576
n bandwidth 40
Total number of FLOPS for each step 5. B9E+09 1.09E+11
Grand total for calcuating step? 1.15E+11
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Step 3: Generating the reduction basis Step 3A Step 3B
Farth i 10578 5.51E+08 3.2BE+05
n boundary B40
Tyl 31
nL 130
PartB i 8610 2.01E+09 6.46E+05
n boundary 1560
rn 75
nL 151
Part C ni 6756 1.03E+09 3.99E+05
n boundary 1296
rn 59
nlL 162
Part D i 6384 3.02E+08 2.62E+05
n boundary 576
rr 4
nL B2
Total number of FLOPS for each step 3.90E+09 1.63E+06
Grand total for calculating step 3 3.90E+09
Step 4: Generating reduced mass and stiffness matrice Step 4A Step 4B Step 4C
Parth n 11418 3.3BE+08 1.17E+08 3.62E+06
nn 31
nkandwidth 46
na 161
nL 130
il 10578
PartB n 10170 4 98E+08 2.75E+08 5.18E+06
nn 75
nkandwidth 46
na 266
nL 181
ni 8610
Part C n BO52 3.27E+08 151E+08 3. 41E+06
nn 59
nbandwidth 46
na 221
nL 162
il 6756
Part D n 6960 1.32E+08 2.86E+08 1.39E+06
nn 41
nkandwidth 46
na 103
nL 62
il 6384
Total number of FLOPS for each step 1.30E+0% 5. 71E+05 1.36E+07
Grand total for generating reduced matrices 7.02E+0%

Required calculation time for step 3 and 4 of the Rubin’s method using interface reduction through
application of interface modes following the IRS method. Calculation times are based on applying a
cut-out frequency of 60 Hz for selecting normal modes of individual substructures, and applying a cut-
out frequency of 3.5 fmax = 140 Hz for selecting the number of interface modes. Calculation times are
based on analysing 80 frequency steps between 1 and 40 Hz.(see Appendix XVII for description
calculation time and Appendix XXIV for description geometry test structure)
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Step 5A Step 5B
Fartd nn 31 7.7BE+04 7. TBE+D4
nL 130
PartB nn 75 2.12E+05 2.12E+05
nL 151
Part C nn 59 1.47E+05 1.47E+05
nL 162
Fart O nn 4 3. 1BE+04 3.1BE+04
nL 62
Total number of FLOPS for each step 4 6BE+05 4 BBE+05
Grand total for generating reduced matrices 9. 37E+05
Forcing compatibility and equilibrium relations Step BA Step 6B Step 6C Step 6D
nLkept 253 2 73E+08] 3.16E+08 2 16E+07 3.74E+07
nLred 292
nboundary 2136
Total number of FLOPS for each step 2. 73E+08 3.16E+D8 216E+07] 3.74E+07
Grand total FLOPS for forcing compatibility and equilibrium relations 6.4BE+08
Forcing compatibility and equilibrium relations Step 7A Step 7B Step 7C
nLred 292 236E+08] 3.70E+08 5.06E+07
nitota 206
nLkept 253
Total number of FLOPS for each step 2.36E+08 3.70E+08 5.06E+07
Grand total FLOPS for forcing compatibility and equilibrium relations 6.57E+DB

Required calculation time for step 5 to 6 of the Rubin’s method using interface reduction through
application of interface modes following the IRS method. Calculation times are based on applying a
cut-out frequency of 60 Hz for selecting normal modes of individual substructures, and applying a cut-
out frequency of 3.5 fmax = 140 Hz for selecting the number of interface modes. Calculation times are
based on analysing 80 frequency steps between 1 and 40 Hz.(see Appendix XVII for description
calculation time and Appendix XXIV for description geometry test structure)
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Rubin's Method With Interface Reduction

Inuml:uer of frequencies

Generation Pass

Step number I Action Estimated FLOPS
Calculating natural frequencies and modeshapes 1.31E+12
1 Generating constraint modes 2 63E+10
step 2 and 3 Generating reduction basis 1.19E+11
step 4 Generating Reduced mass and stiffness 7.02E+09

Total Flops Generation Pass 1.46E+12

equilibrium relations for boundary

lUse Pass
Step number Action Estimated FLOPS
step 5 Compiling reduced dynamic stiffness §.37E+05
Formulating compatibility and
step b and 7 1.25E+09

[2=]

Solving the matrix equations

Sparse matrix

a.|Row reduction forward phase 1.55E+10
b.|Row reduction backward phase 5. 10E+07
c.]Solving triangular matrix 3.37E+07
Total FLOPS UUse Pass 1.68E+10
|Grand tota 1 ATE+17 |

Summary of calculated required number of real floating point operations for the application
of Rubin’s method with the application of interface modes following the IRS reduction
method. For the selection of the number of normal modes, a cut-out frequency of 1.5 * fi, 4
= 60Hz has been applied. The number of interface modes retained is based on a cut-out
frequency of 3.5  f,,, 4, following the findings published in [41]
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on Time for Different
Methods PHD Test Case
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Method Number of] Number of boundary |Number of MNumber of Required CP for | Required CP
nodes nodes boundary maodes required |calcuating generation
degrees of retained eigenvectors pass
freedomnodes and
eigenvalues
Part A |PartAfixedcms 19403 Bounary A-B 140 240 25 93 118
PartAfreecms Bounary A-B 140 240 31 11 148
PartA Zoet and Bounary A-B 140 240 205 16.3 1849
Rubin-Zoet method
PartB |PartBfixedcms 1685 Boundary B-A 140 240 21 85 118
Boundary B-C 120 720
PartBfreecms Boundary B-A 140 240 75 11 165
Boundary B-C 120 720
PartB Zoet and Boundary B-A 141 246 179 13.3 183
Rubin-Zoet methaod Boundary B-C 120 720
PartC |Parlfixedcms 1342 Boundary C-B 120 720 16 9.1 g4
Boundary C-D 96 576
PartCfreecms Boundary C-B 120 720 59 95 13.42
Boundary C-D 96 576
PartC Zoet and Boundary C-B 124 744 148 12 176
Rubin-Zoet method Boundary C-D 96 576
part D |PartDfixedcms 1160 Boundary D-C 86 576 15 B84 81
PartDfreecms Boundary D-C 96 576 41 B7 10.7
PartD Zoet and Boundary O-C 95 570 105 10 138
Rubin-Zoet method

Properties of the substructures used as a test case for the Zoet method (see Appendix XXIV
and Appendix XXV). Free interface CMS is carried out according to the classic Rubin’s
method with no residual compensation taken into account. The fixed interface CMS is
carried out according to the classic Craig-Bampton method.

For the classic Craig-Bampton and Rubin method (fixed interface, free interface CMS
respectively) all normal modes with natural frequencies between 0 and 60 Hz (1 to 1.5 =
fmax) have been retained. f;,,,, 1S the maximum analysed frequency, which is 40 Hz in this
case study.

For the Zoet method and Rubin-Zoet method a higher number of mode shapes has been
selected in order to reduce the effect of overcompensation of residual flexibility (see section
8.5.3). Therefore all normal modes with natural frequencies between 0 and 120 Hz (1 to
3 * fmax) have been retained. £, is the maximum analysed frequency, which is 40 Hz in
this case study.
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Ub AB Ub BC Ub CD L) EL:] aC aD
I Number of Columns I
variable 576 31 75 59 41 number of rows
Ub AB B40
Ub BC 720
Ub CD 576
ah 31
aB 75
aC 59
al 41

Skyline of matrix representing the dynamic stiffness of the total assembled structure
composed according to Rubin’s Method as applied in ANSYS. Coloured cells are full
matrix sections. The numbers in the coloured cells show the number of non zeros in these
sections. For the selection of the number of normal modes, a cut-out frequency of 1.5 * f,, 1
= 60Hz has been applied.

Ul 4B Ub BC Uk CD EL) aB at aD
Mumber of Columns I
variable 80 62 31 75 59 41 number of rows
Ub AB

Skyline of matrix representing the dynamic stiffness of the total assembled structure
composed according to Rubin’s Method using interface reduction through introduction of
interface modes. Coloured cells are full matrix sections. The numbers in the coloured cells
show the number of non zeros in these sections. For the selection of the number of normal
modes, a cut-out frequency of 1.5 * f,,,, = 60Hz has been applied. The number of interface
modes retained is based on a cut-out frequency of 3.5 * f,,,,, following the findings
published in [41]. Ub AB, Ub BC and Ub CD are the humber of retained normal mode that
not have been made redundant in the procedure of coupling the substructures together.

ah I ab | al I al
Number of Columns
Variable 205 I 179 | 148 I 105  |Number of rows
aA 42025 36695 205
ab 366095 32041 26492 179
aC 26452 21904 15540 148
ab 15540 11025 105

Skyline of matrix representing the boundary mobility matrix of the total assembled structure
composed according to Zoet Method. Coloured cells are full matrix sections. The numbers
in the coloured cells show the number of non zeros in these sections. All normal modes with
natural frequencies between 0 and 120 Hz (1 to 3 * f,,4,) have been retained.
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ah I ab I alC I al
Mumber of Columns
Variable 205 | ave ] 128 | 105 |Numberofrows
ah 47025 36605 205
ab 36695 32041 26452 179
al 26452 21904 15540 148
al 15540 11025 105

Skyline of matrix representing the dynamic stiffness of the total assembled structure
composed according to Rubin-Zoet Method. Coloured cells are full matrix sections. The
numbers in the coloured cells show the number of non zeros in these sections.

All normal modes with natural frequencies between 0 and 120 Hz (1 to 3 * f,,,,,) have been

retained.

Rubin's Method

Inur“ul:uer of frequencies

Generation Pass

Step number

Action

Estimated FLOPS

Calculating natural frequencies and modeshapes

5.63E+11

1
2

3

Generating constraint modes

Generating reduction basis
Generating Reduced mass and
stiffness matrices

1.73E+10
3.90E+09

1.91E+11

Total Flops Generation Pass

7.75E+11

Use Pass

Step number

Action

Estimated FLOPS

a

Compiling reduced dynamic stiffness
matrix total assembled system

3.39E+07

Formulating compatibility and
equilibrium relations for boundary
degrees of freedom

1.52E+08

Salving the matrix equations

Sparse matrix
approach

|Row reduction forward phase
|Row reducticon backward phase

|Selving triangular matrix

2.02E+12
1.32E+08

B.7BE+{

[+=)

Total FLOPS Use Pass

2.03E+12

Grand tota

2.B0E+12

All modeshapes have been selected with the natural frequencies within the range between 0 and 1.5xfmax

The fmax is the highest frequency in the frequency range for which results have been obtained (=40 Hz in this case)
Fmax in this case = 40 Hz, modeshapes have been selected over a frequency range between 0 and 60 Hz
Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz
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Rubin's Method With Interface Reduction

|n-um ber of frequencies

80

Generation Pass

Step number

I Action

Estimated FLOPS

Calculating natural frequencies and modeshapes 131E+12
1 Generating constraint modes 2.62E+10
stepland 3 Generating reduction basis 1.19€+11
step 4 Generating Reduced mass and stiffness 7.02E+09
Total Flaps Generation Pass 128E+12
Use Pass
Step number Action Estimated FLOPS
step 5 Compiling reduced dynamic stiffness 9.37E+05
Foermulating compatibility and
stepGand? 1.256+09
equilibrium relations for boundary
8 Solving the matrix equations Sparse marrix
a.|Row reduction forward phase 1.55E+10
b.|Row reduction backward phase 5.10E+07
¢.]5olving triamgular matrix 3.37E+07
Total FLOPS Use Pass 1.68E+10
[Grand total | 1e712 |

Surmrmary of caleulated required number of real floating point operations for the application
of Fubin’s method with the application of interface modes following the [RS reduction
method. For the selection of the mzvber of nonmal modes, a cut-out frequency of 1.3 = 00
=60Hz has been applied. The mumber of mterface modes retained is based on a cut-out

frequency of 3.5 = f,, ;. following the findings published in [41]

Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz
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| Zoet's Method With Residual Compensation |

Inumher of frequencies

Generation Pass

Step number

Action

Estimated FLOPS

Calculating natural frequencies and modeshapes

7.22E+11

1

TN )

Generating residual flexibility modes
Farmulating boundary mobility matrix
Eliminating boundary degrees of

9.42E+11
4.87E+10

4 25E+11

Total Flops Generation Pass

2.14E+12

Use Pass
Step number Action Estimated FLOPS
5 Composing Total Assembled System 5.09E+07
B Solving the matrix equations
a.|Row reduction forward phase 2.11E+10
b |Row reduction backward phase b 38E+DY
C.)Solving triangular matrix b.49E+07
Total FLOPS Use Pass 2.12E+10
Grand tota 2.16E+12

All modeshapes have been selected with the natural frequencies within the range between 0 and 3xfmax

The fmax is the highest frequency in the frequency range for which results have been cbtained (=40 Hz in this case)

Fmax in this case = 40 Hz, modeshapes have been selected over a frequency range between 0 and 120 Hz
Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz
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Rubin-Zoet Method

number of frequencies I BD

Generation Pass

Step number Action Estimated FLOPS
Calculating natural frequencies and modeshapes 7.22E+11
1 ) ) 2.63E+10
Generating constraint modes
2 Generating reduction basis 1.25E+10
3 Generating Reduced Mass, Stiffness 7.08E+10

Generating Reduced Equations of
Motion of Coupled Sets of Substructures

1.4BE+05

5 Forcing equilibrium and compatibility 3 GEE+00
at the boundary degrees of freedom: T

Eliminating boundary degrees of

& 169E+11
freedom
Total Flops Generation Pass 1.01E+12
Use Pass
Step number Action Estimated FLOPS
Formulating compatibility and
5 5.09E+07

equilibrium relations for boundary

& Solving the matrix equations

a.| Row reduction forward phase
b.|Row reduction backward phase

c.|Solving triangular matrix 6.49E+07
Total FLOPS Use Pass 2.12E+10
Grand tota | vrose-12

All modeshapes have been selected with the natural frequencies within the range between 0 and 3xfmax
The fmax is the highest frequency in the frequency range for which results have been obtained (=40 Hz in this case)
Fmax in this case =40 Hz. modeshapes have been selected over a frequency range between 0 and 120 Hz

Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz
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Total structure Mumber of Mumber of Constraint!Residual . .
azzembled 9 Feducing Matrices
miakris
cF FLOFS cF FLOFS cP FLOPS
full solution 23664 132E.06 n.a. n.a. n.a. r.a. n.a. n.a.
mEEE S s (P ek iy rEmey)e 100 100E-04 29 4.0BE+11 02 2 BIE09 292 4 D9E 11
1.5 Fmak = B0 Hz)
Craig Bampt toutf 15
el SEEEm (e ioeie 2213 37E06 | 3674 | sMEn 54 745E0 421 5 B9E 11
fmat = B0 Hz)
IR ] (e e regney = e 22 4.09E+06 g0z | sE3E 5.2 212E411 55.4 7.75E11
fmaz = B0 Hz)
Fubin method with interface modes [cut
bRl rEres GDME R 453 1eE05 | szze | 1zEe 03 152E+11 104.2 14EE-12
out Frequency interface modes = 140 Hz)
e e (e ek irr=Re) = & (i 637 2 B4E05 55 | 7z 1014 142E412 1530 2MEAZ
= 120 Hz]
IR i-EE e e R euRfiE i) 637 2 B4E05 55 | 7z 203 2B3IE 719 LIEs12
3 fman = 120 Hz)

Tatal structure
Generating Full Solving Full Azsembled | Total Computation Time
Azzembled PMatriz Matrices Usze Pass
CF FLORPS CF FLOFS cP FLOFS
full solutian a7 E.03E-10 2220 203EL2 2967 209E+12
- r r

miode superposition [cut out frequency = A . o 5 24E0S o 2 PAEE
1.5 Fmay = B0 Hz)
Craig-Bampt 141114 =15

raig-Bamptan [out out frequency 4 1seEe0s | zsen | zosEaz | eseo | zosea:
fmak = 60 Hz)
Fiubin's Method [cut out £ =15

ubin's Methad (ut out frequency 4 1566.08 | 2se0 | 2o3Eaz | zaza | 2oEe
fmai = B0 Hz)
Rubin method with interface modes [cut
out frequency normal modes = B0 Hz, cut 3 1.26E+09 24 1E8E-10 24 120E10
out frequency interface modes = 140 Hz)
Zostmethad [cut out frequency = 3 fmax |, 4 5.09E.07 20 2iEa0 | 3 212E410
= 120 Hz)
Rubin-Zaet method [cut out F =

iubin-Zoet methad [sut out frequency 013 B 09EL07 30 21ZE40 1 212E10
AFmak = 120 Hz)

Total structure Takal Computation
Time

CP FLOFS
Full solution 296.7 2.09E+12
made superpasition [cut out frequency = 1.5 22 4 D9ET1
fmat = B0 Hz]
Craig-B 3 kot f = 15F

raig-Bamptan [cut out frequency mak 2381 5 B2ED
= Bl Hz)
Fubin's Method [cut out f = 15F
ubin's Method [cut out frequency mak 247 4 2 BOE12

= Bl Hz)
Fubin method with interface modes [cut ot
frequency normal modes = B0 Hz, cut outk 0.6 148E+12
frequency interface modes = 140 Hz)
Zoet method [cut out frequency = 37 Fmak =

156.1 2IBE+12
120 Hz)
Fubin-Zoet method [cut out frequency =

751 103E+12
Ffman = 120 Hz)

Presentation of the Number of Flops and CP time calculated/measured for the test CMS model according to
Appendix XXV. Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed
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between 1 and 40 Hz. Black numbers have been directly measured (CP time) or calculated (FLOPS). Brown
numbers have been calculated through an estimated relation between measured computation time and number of
calculated floating point operation.

Wfull solution

3.00E+12 -
M Craig-Bampton CMS (cut-out frequency 1.5:=fmax = 60Hz |

250E+17 4 MRubin'sMethod CMS (cut-out frequency 1.5%fmax = 60Hz ) !
W Zoetmethod with residual boundary flex (cut-out frequenicy 3xfmax = 120Hz ) i
2.00E+12 1 Rubin-Zoet method (cut-out frequency 3xfmax = 120Hz )
mRubinmethod with interface modes (cut out frequency
130B+12 1 normal modes = 60 Hz, cut out frequency interface modes = 140 Hz|
iti cut-out frequency 1.5xfmax = 60Hz
LOOE+12 - Maode Superposition | quency )
5.00E+11 A |
0.00E+00 - T T T h T I T T

Operations

Calculated Number of Floating Point

Calculating  Calculating  Calculsting  Composing  Eliminating Solving Estimated
Mormal Modes  Constraint Residual  ReducedMass  Boundary  Equations of FLOPSfortotal
and Matural Maodes Boundary  and5tiffness  Degreesof Mation analysis
Frequencies Flexibility Matrices Freedom
Modes

FLOPS for all different stages of the different analysis methods. Calculation times are
based on producing 80 out sets for 80 frequencies evenly distributed between 1 and

40 Hz
Computation Time]Computation Time Computation Time
Difference with Difference with Full Difference with Rubin's
Rubin's Method Harmonic Analysis Method with Interface
Modes
full selution -27.5% 0.0% 37.9%
Maode Superposition -85.4% -79.8% -72.2%
Craig-Bampton CMS [cut-out frequency 1.5=xfmax = 60Hz ) -1.7% 35.6% B7.1%
Rubin's Method CMS [cut-out frequency 1.5xfmax = 60Hz ) 0.0% 38.0% 90.4%
Rubin method with interface modes -47 5% -27.5% 0.0%
Zoet method with residual boundary flex (cut-out
frequency 3xfmax = 120Hz | 9% Bt 46.8%
Rubin-Zoet method [cut-out frequency 3xfmax = 120Hz ) -63.3% -48 4% -30.2%

Difference in percentage in computation time relatively to Rubin’s free boundary
(interface) method (first column), relatively to the full harmonic method (second
column) and relatively to the Rubin’s method with interface reduction through
interface modes according to IRS (third column). Calculation times are based on
producing 80 output sets for 80 frequencies evenly distributed between 1 and 40 Hz.
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Appendix XXXII  Computati
on Time for Zoet and Rubin-
Zoet Method for the LNG
Carrier with Increased
Number of Normal Modes
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LNG vessel FEmodel  |Numberof | MNumber of boundary |Number of Method Numberof  |Required CP |Regquired time

nodes nodes boundary modes for calcuating |generation
degrees of reguired® eigenvectors |pass
freedom and
eigenvalues
Partd 4391  |BoundaryH-E 298 2088 VS fixed 181 18.5 22.8
Boundary H-G 86 CMS free 257 24.5 52.5
Boundary H-F 86 Zoet and Rubin-Zoet
(frequency range to 586 44 100
3xf max)
PanG 5680  [BoundaryG-H 86 1536 CMS fixed 373 29.3 40
Boundary G-F 57 CMS free 419 39 100.3
Boundary G-E 205 Zoet and Rubin-Zoet
(frequency range to 877 85 244
3xf max)
PartF 5680  |BoundaryF-G = 57 1536 oM fixed 7 29.8 a0
Boundary F-H 26 CMS free 419 39 100.8
Boundary F-E 205 Zoet and Rubin-Zoet
(frequency range to 877 85 244
3xf max)
B— g933  [BoundaryE-H 28 gy | MSTec 213 20 46.6
Boundary E-G 205 CMS free 323 61 174
Boundary E-F 205 Zoet and Rubin-Zoet
Boundary E-D 656 ’ :frequer.wcy range to 879 122 419
3xf max)
PartD 9833 Boundary D-E 636 6198 CMS fixed 162 29,14 33.6
Boundary D-C 484 CMS free 336 95 328
Zoet and Rubin-Zoet
(frequency range to 913 202 566
3xf max)
PartC 11965 Boundary C-D 454 5124 CMS fixed 195 38.11 68.13
Boundary C-B 370 CMS free 335 75 225.7
Zoet and Rubin-Zoet
(frequency range to 1084 215 733
3xf max)
PartB 10044 Boundary B-C 370 3798 CMS fixed B_138 29.4 47.7
Boundary B-A 263 CMS free 231 53 138.3
Zoet and Rubin-Zoet
(frequency range to 752 131 407
3xf max)
PartA 6612 Boundary A-B 263 1578 CMS fixed 91 18.8 25.4
CMS free 154 24.6 53.3
Zoet and Rubin-Zoet
(frequency range to 502 67 138
3uf max)

Properties of the LNG carrier substructures (according to Appendix 1X). Free interface CMS is carried
out according to the classic Rubin’s method. The fixed interface CMS is carried out according to the
classic Craig-Bampton method

For the classic Craig-Bampton and Rubin method (fixed interface, free interface CMS respectively) all
normal modes with natural frequencies between 0 and 60 Hz (1 to 1.5 * f;,,,,) have been retained.
fmax 1 the maximum analysed frequency, which is 40 Hz in this case study.

For the Zoet method and Rubin-Zoet method a higher number of mode shapes has been selected in
order to reduce the effect of overcompensation of residual flexibility (see section 8.5.3). Therefore all
normal modes with natural frequencies between 0 and 120 Hz (1 to 3 * f;,,4,) have been retained. fr, .

is the maximum analysed frequency, which is 40 Hz in this case study.
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Tatal structure Fumber of Mumber of | calculating Mormal Modes Conztraint/Residual Taotal Computation Time

equations total] non zeros and Mlatural Frequencies Attachment Modes and Generation Pass

aszembled Feducing Matrices

makriz CF Time FLORS CF Time FLOFS CF Time FLOPS
Full solution JEESTE 143E-07 n.a. n.a. r.a. n.a. n.a. n.a.
Made superposition. fcut- 1863 27azez4 2685 124E14 135 G28E2 | 2a0E.03 | 130E.

out = 1.5 fmat = BIHz
Fized interface CM5
[Craig-Bampton], f cut-out = 15370 1.25E-08 22355 104E+13 121 BEOE+12 3442 1EOE«13
15 fmay = B0Hz

Free interface CM5S
[Rubin’s Method], F cut-out 16113 1.34E-08 4111 191E+13 TEZ SE4E+13 1n734 A45BE+13
= 1.6 fmat = B0Hz

Zoet method cut-out
frequency 3=f mazx =120 Hz, with B470 192E+07 729 2.85E413 5A5E.03 2.TEE+14 ETE0.4 ZIGE14
residual boundary flex

Rubin-Zoet method cut-out

frequency 3<F mas = 120 Hz E470 192E-07 28 JEBE13 450 E.73E+13 22741 1OEE«14
Tatal structure Bt L Saolving Full Tn:ut.al Computation
. Azzembled Time Use Pas=s
Azzembled Matriz .
Matrices
CF Time FLOFS CF Time | FLOFS | CF Time | FLOPS
Full solution 20 T.TE«D TEOO.0 | 3EEE«14] VE20.0 | 3EEE«14
Mode superposition. fout- | n.a. 21 | sseen| 2t | 2seEen

out = 1.5 fmax = B0Hz
Fized interface CMS
[Craig-Bampton], f cut-out = 12 EA4E+10 129600 | GE2E-14] 133222 | G.3E2E+4
1.5 fmak = B0Hz

Free interface CMS
[Rubin’s Method], f cut-out 12 E.54E+10 113600 | 532E+14] 125514 | B.32E+14
= 1.5 fmax = G0Hz

Zoet method cut-out
frequency 3=f mai =120 Hz, with | 107 4.11E+03 T4 1MEA3] 7oA | LNE.:
residual baundary fles

Rubin-Zoet method cut-out

Frequancy 2+ mas = 120 Hz 107 4 HE+03 2380 IMEAZ | 25182 | 11ZE+13

Total structure Total Computation Time
Generation plus Use Pass

CF Time FLORPS
Full solution TE20.0 2EEE+14
Mode superposition, f cut-
out = 15 fman = B0Hz

fized interface CMS
[Craig-Bampton], f cut-out = 13EEES B4ZE-14
1.5 Fmat = B0Hz

free interface CMS
[Bubin’s Method), f zut-out 137248 RATVE+14
= 1.5 fmai = B0Hz

Zoet method cut-out
frequency 3=f max =120 Hz, with 137993 A 2EEL14
rezidual boundary Flex

28213 1HE-14

Rubin-Zoet method cut-out

frequency 3=f max = 120 Hz +raTA L7E14

Presentation of the Number of Flops and CPU calculated/measured for the LNG carrier
model according to Appendix IX. Calculation times are based on producing 80 out sets for
80 frequencies evenly distributed between 1 and 40 Hz. Black numbers have been directly
measured (CP time units) or calculated (FLOPS). Brown numbers have been calculated
through an estimated relation between measured computation time and number of calculated
floating point operation.
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aH ai af ak al al aB al
Mumber of Columns
variable sg6 | &7 | &7 | e 913 1082 | 752 | 502
aH 343396 513922 513922 515094
aG 513922 769129 769129 770883
af 513922 769129 769129 770883
ak 515004 770883 770883 T72641 802527
ah 802527 833568 989692
aC 989692 1175056 815168
a8 815168 585504 377504
ak 377504 252004

number of rows
586
B77
B77
B79
913
1084
752
502

Skyline of matrix representing the boundary mobility matrix of the total assembled structure
composed according to Zoet Method. Coloured cells are full matrix sections. The numbers

in the coloured cells show the number of non zeros in these sections. All normal modes with
natural frequencies between 0 and 120 Hz (1 to 3 * f;,,,,) have been retained.

aH ak af ak al aC aB ak
Number of Columns
variable sgs | &7 | s | eme 313 1082 | 752 | 5oz
aH 343396 513022 513022 515094
a6 513022 769129 769129 770883
aF 513022 769129 769129 770883
sE 515004 770883 770883 772641 B02527
aD 802527 g33sE0 989692
at 989692 1175056 815168
a8 815168 565504 377504
at 377504 252004

number of rows
586
B77
B77
B79
913
1084
752
502

Skyline of matrix representing the dynamic stiffness of the total assembled structure
composed according to Rubin-Zoet Method. Coloured cells are full matrix sections. The
numbers in the coloured cells show the number of non zeros in these sections.

All normal modes with natural frequencies between 0 and 120 Hz (1 to 3 * f;,,,,) have been
retained.

7E+14 - ]
B full solution
" BE+14 - Mode Superposition
o
9 5E+14 - M Craig-Bampton CMS (cut-out frequency 1.5=fmax = 60Hz )
o
(¥
E M Rubin's Method CMS (cut-out frequency 1.5xfmax = 60Hz )
5 4E+14
-]
E M Zoetmethod with residual boundary flex (cut-out frequency 3xfmax =
Z:l 3E+14 120Hz)
-E M Rubin-Zoet method (cut-out frequency 3=fmax = 120Hz )
= ZE+14 -
]
3
=
m 1E+14 - I
[¥]
a __J : . : -J :
Generating Generating Generating Composing Eliminating Solving Estimated
MNarmal Constraint Residual Reduced Mass  Boundary Equations of FLOPS for
Modes Modes Boundary and Stiffness  Degreesof Motion total analysis
Flexibility Matrices Freedom
Modes

FLOPS for all different stages of the different analysis methods. Calculation times are based
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on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz.
| Rubin's Method

number of frequencies

Generation Pass

Step number Action Estimated FLOPS
Calcuating natural frequencies and mode shapes 1.91E+13

1 Generating constraint modes 1.02E+12

2 Generating reducticn basis B.OgE+11

3 Generating Reduced mass and stiffness 3.35E+13
Total Flops Generation Pass 5.45E+13

Use Pass
Step number Action Estimated FLOPS
4 Compiling reduced dynamic stiffness 5 68E+08
5 Farmulating compatibility and 6.B4E+10
G Solving the matrix equations Sparse matrix
approach
a.|Row reduction forward phase 5.32E+14
b.|Row reduction backward phase 6.24E+10
c.|5olving triangular matrix 4 16E+10
Total FLOPS Use Pass 5.32E+14
Grand tota 587E+18 |

All modeshapes have been selected with the natural frequencies within the range between 0 and 1.5xfmax
The fmax is the highest frequency in the frequency range for which results have been obtained (=40 Hz in this case)
Fmax in this case = 40 Hz, modeshapes have been selected over a frequency range between 0 and 60 Hz

Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz.

| Zoet's Method With Residual Boundary Flexibility I

I 80 |

Inur“ul:uer of frequencies

Generation Pass

Step number Action Estimated FLOPS
1 Generating residual flexibility modes 197E+14
2 Formulating boundary mobility matrix 4 BYE+12
4 Eliminating boundary degrees of freedom 742E+13
Total Flops Generation Pass 2.76E+14

lUse Pass
Step number Action Estimated FLOPS
5 Compasing Total Assembled System 4.11E+09
B zolving the matrix equations
a.|Row reduction forward phase 1.11E+13
b |Row reduction backward phase 4 6OE+D9
c.]Solving triangular matrix 6. 70E+09
Total FLOPS Use Pass 1.11E+13
Grand tota 287E+18 |

All modeshapes have been selected with the natural frequencies within the range between 0 and 3xfmax

The fmax is the highest frequency in the frequency range for which results have been obtained (= 40 Hz in this case)
Fmax in this case = 40 Hz, modeshapes have been selected over a frequency range between 0 and 120 Hz
Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz.
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| Rubin-Zoet Method |

Inumber of frequencies I BO I
Generation Pass
Step number Action Estimated FLOPS
Calcuating natural frequencies and mode shapes 3.85E+13
1 Generating constraint modes 2.47E+12
2 Generating reduction basis 2.93E+12
3 Generating Reduced Mass, Stiffness and 3.12E+13
4 Generating Reduced Equations of Motion of 432E+10
5 Forcing equilibrium and compatibility at the 1 12E+11
boundary degrees of freedom:
& Eliminating boundary degrees of freedom 3.05E+13
Total Flops Generation Pass 1.06E+14
UUse Pass
step number Action Estimated FLOPS
7 Formulating compatibility and equilibrium 4 11E+08
B Solving the matrix equations
a.|Row reduction forward phase 1.11E+13
b |Row reduction backward phase 4 60E+0%
c.|Solving triangular matrix 3.59E+10
Total FLOPS Use Pass 1.12E+13
Grand total 1.17E+14

All modeshapes have been selected with the natural frequencies within the range between 0 and 3xfmax

The fmax is the highest frequency in the frequency range for which results have been cbtained (= 40 Hz in this case)

Fmax in this case = 40 Hz, modeshapes have been selected over a frequency range between 0 and 120 Hz
Calculation times are based on producing 80 out sets for 80 frequencies evenly distributed between 1 and 40 Hz.

Cut out frequency 1.5 fmax = 60 Hz Cut out frequency 3 fmax =120 Hz
Reduction Factor |Reduction Factor Reduction Factor |Reduction Factor
Computation Computation Time Computation Computation Time
TimeRelatively to |Relatively to the Full |TimeRelatively to |Relatively to the Full
Rubin's Method Harmonic Analysis Rubin's Method Harmanic Analysis
Full Solution -39.3% 0.0% -39.3% 0.0%
Mode Superposition -77.7% -63.2% -77.7% -63.2%
Craig-Bampton CMS -1.5% 62.3% -1.5% 62.3%
Rubin's Method CMS 0.0% 64.8% 0.0% 64.8%
Zoet Method -59.0% -32.5% -44.4% -8.4%
Rubin Zoet method -91.5% -86.0% -80.1% -67.1%

Difference in percentage in computation time relative to Rubin’s free interface (interface) method (first column)
and relative to the full harmonic method (second column). The first set of two columns represent calculation
times applying a cut-out frequency of 1.5 fmax = 60 Hz for all methods for the selection of the number of normal
modes. The second set of two columns represent calculation times applying a cut-out frequency of 1.5 fmax = 60
Hz for the Rubin and Craig-Bampton method, and applying a cut-out frequency of 3 fmax = 120 Hz for the Zoet
and Rubin-Zoet method. Calculation times are based on producing 80 output sets for 80 frequencies evenly
distributed between 1 and 40 Hz.
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