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Abstract

Composite materials are steadily replacing traditional materials in a wide range of in-

dustry sectors thanks to their remarkable properties. Damage in composite materials

exhibits complex failure modes which are difficult to identify by conventional tech-

niques. Composite materials demonstrate complex nonlinear vibration behaviour where

conventional vibration-based structural health monitoring (VSHM) methods might not

give adequate information for damage identification. This thesis investigates the capa-

bilities of singular spectrum analysis (SSA) as a technique for developing a completely

data-based VSHM methodology. The methodology decomposes the vibration responses

in a certain number of principal components having in consideration all rotational

patterns at any frequency including the nonlinear oscillations. This thesis develops

two approaches to use SSA in the time and frequency domain. The methodology has

been validated using a numerical system and an experiment with delaminated beams.

The results demonstrate the methodology capability for assessing damages at differ-

ent locations and with different sizes. The progression of damage can also be tracked.

Delamination was successfully assessed in composite laminated plates with different

delamination locations, in-plane and through different layers. Damage in wind turbine

blades was assessed by the damage assessment methodology with a statistical hypoth-

esis inspection phase based on probability distribution functions. Different damage

locations and sizes were assessed as well as damage progression. This thesis explores

the use of smart materials which enable self-sensing and self-diagnosing of its structural

integrity coupled with the data-based VSHM. The results demonstrate the substantial

potential of this approach. Overall, the data-based VSHM methodology presented in

this thesis is proven to give adequate information about the presence, location and

extent of delamination and other defects in different composite laminated structures.
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D. Garćıa, I. Trendafilova. Multivariate statistical analysis for damage and de-

lamination detection in composite structures. In Proceedings of 11th International

Conference on Vibrations Problems, Lisbon, Portugal, 9-12, September, 2013.

vii

http://www.symkom2014.p.lodz.pl
http://www.symkom2014.p.lodz.pl
http://www.isma-isaac.be/isma_conf/objectives.html
http://www.isma-isaac.be/isma_conf/objectives.html
http://www.isma-isaac.be/isma_conf/objectives.html
http://www.isma-isaac.be/isma_conf/objectives.html
http://www.isma-isaac.be/isma_conf/objectives.html
http://www.isma-isaac.be/isma_conf/objectives.html
http://http://www.ewshm2014.com/index.php#.UsxkRvRdVKY
http://http://www.ewshm2014.com/index.php#.UsxkRvRdVKY
http://www.icovp.com/
http://www.icovp.com/


Contents

Acknowledgements iii

Abstract v

Publications vi

Contents viii

List of figures xii

List of tables xix

Nomenclature xxvi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 An overview of Structural Health Monitoring . . . . . . . . . . . . . . . 3

1.2.1 Aim of SHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Challenges of SHM . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 A general vibration-based SHM procedure . . . . . . . . . . . . . 7

1.2.4 Literature overview of vibration-based SHM . . . . . . . . . . . . 9

1.3 Composites structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Fibre reinforced materials . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 Type of damages . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.3 SHM for composite materials . . . . . . . . . . . . . . . . . . . . 23

1.4 Scope, objectives and contributions of the thesis . . . . . . . . . . . . . 26

viii



CONTENTS ix

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Methodology, validation and considerations 29

2.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Damage assessment methodology . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Creation of the reference state . . . . . . . . . . . . . . . . . . . 31

2.2.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.4 Damage assessment . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Creation of the reference state in the time or frequency domain . . . . . 36

2.3.1 Reference state based on vibratory responses represented in the

time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Reference state based on vibratory responses represented in the

frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Demonstration and validation of the methodology . . . . . . . . . . . . 46

2.4.1 Case study I: 2-DOF nonlinear spring-mass-damper system . . . 46

2.4.2 Case study II: Composite laminated beams with one healthy and

four delaminated scenarios . . . . . . . . . . . . . . . . . . . . . . 58

2.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Study of the choice of the methodology parameters . . . . . . . . . . . . 66

2.5.1 Effect of the frequency resolution and acquisition time . . . . . . 67

2.5.2 Effect of the window sliding size . . . . . . . . . . . . . . . . . . 74

2.5.3 Effect of the selection of the number of the reconstructed com-

ponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3 Delamination assessment in composite laminated plates 92

3.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2 Finite element modelling of the composite laminated plates . . . . . . . 93

3.3 Experiment with composite laminated plates . . . . . . . . . . . . . . . 96



CONTENTS x

3.3.1 Manufacturing process of the experiment specimens . . . . . . . 97

3.3.2 Experiment set up . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.3 Delamination effect on the natural frequencies in the experiments

with manufactured composite plates . . . . . . . . . . . . . . . . 98

3.4 Numerical and experimental validation . . . . . . . . . . . . . . . . . . . 99

3.5 Delamination assessment technique for composite laminated plates . . . 101

3.5.1 Delamination assessment in the vibration responses of the nu-

merical model of the composite laminated plates . . . . . . . . . 102

3.5.2 Delamination assessment in the vibration responses of the exper-

iment with composite laminated plates . . . . . . . . . . . . . . . 105

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Damage assessment for wind turbine blades 111

4.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Practical SHM technique implementation for wind turbine blades . . . . 112

4.3 Integrated vibration-based structural health monitoring system . . . . . 113

4.3.1 Threshold setting for inspection phase . . . . . . . . . . . . . . . 113

4.4 Damage assessment for small lab-scale wind turbine blade . . . . . . . . 115

4.4.1 Experimental work . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.2 Damage detection and evaluation . . . . . . . . . . . . . . . . . . 119

4.5 Damage assessment for large SSP34m wind turbine blade . . . . . . . . 129

4.5.1 Description of the experiment set up . . . . . . . . . . . . . . . . 130

4.5.2 Damage assessment procedure . . . . . . . . . . . . . . . . . . . 134

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 A study on vibration-based self-sensing and self-diagnosis capabilities

of nano-enriched composite laminates 145

5.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Concept of a self-sensing structure . . . . . . . . . . . . . . . . . . . . . 146

5.3 Material and laminates specifications . . . . . . . . . . . . . . . . . . . . 146



CONTENTS xi

5.4 Electrical conductivity and piezoresistivity of a carbon nano-enriched

laminated beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.5 Experimental verification . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5.1 Experiment test rig . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5.2 Experiment procedure . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Self-sensing damage assessment . . . . . . . . . . . . . . . . . . . . . . . 153

5.6.1 Decomposition of the signal in reconstructed components . . . . 154

5.6.2 Damage assessment on the nano-enriched composite laminated

beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Conclusions and Future Work 162

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Recommendations and Future Work . . . . . . . . . . . . . . . . . . . . 169

Bibliography 172

A Histograms and Lognormal distribution for the training healthy data

of the lab-scale WTB 186

B Tables of percentage of correct classified observations (healthy vs

damage) in the lab-scale wind turbine blade 188

C Tables of percentage of correct classified observations (healthy vs

damage) in the SSP34m wind turbine blade 192



List of figures

1.1 Multi-scale level of fibre reinforced laminates . . . . . . . . . . . . . . . 21

1.2 Schematic representation of common damages in composite laminated

structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Vibratory response of the composite laminated beam B1. a) Free-decay

acceleration signal and b) Frequency spectrum of the free-decay acceler-

ation signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Partial variance percent of each eigenvalue for a) W = 7 and b) W = 50

when the reference space is based in the time domain . . . . . . . . . . . 39

2.3 Comparison between the original vibratory signal and the reconstructed

signal using 2-RCs. The graphs show the effect of the methodology

performed in the time domain. a) Comparison when W = 7 and b)

W = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Partial variance percent of each eigenvalue for a) W = 7 and b) W = 50

when the reference space is based in the frequency domain . . . . . . . . 43

2.5 Comparison between the original vibratory signal and the reconstructed

signal using 2-RCs. The graphs show the effect of the methodology

performed in the frequency domain. a) Comparison when W = 7 and b)

W = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Comparison of the eigenvalue spectra between time and frequency do-

main decomposition for a) W = 7 and b) W = 50 . . . . . . . . . . . . . 45

2.7 2-DoF spring-mass damper with nonlinear stiffness simulated system . . 47

2.8 Effect on the 2-Dimensional feature space when the stiffness is reduced

from 1% to 30% by increments of 1% in a) k1, b) k2 and c) kn. . . . . . 51

xii



LIST OF FIGURES xiii

2.9 Effect on the frequency spectrum plot of the vibration response when

the stiffness is reduced by 10%, 20% and 30% in a) k1, b) k2 and c) kn. 53

2.10 a) Scree diagram of the decomposition of the vibratory response of the

reference scenario (non-stiffness reduction, undamaged system). Only

20 eigenvalues are represented. b) Comparison of the original frequency

spectrum and the reconstructed frequency spectrum with two RCs (RC1

and RC2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.11 Cluster effect on the feature space when the stiffness parameter k1 is

reduced by 10%, 20% and 30%. a) Representation onto a 2-D space

defined by T1−T2, b) onto a 2-D space defined by T1−T3, c) onto a 2-D

space defined by T2 − T3 and d) onto a 3-D space defined by T1 − T2 − T3. 55

2.12 Damage detection index plots applied on the reduction of the stiffness

parameter k1 by 10%, 20% and 30%. a) Damage index using a two

dimension FV (T1 and T2) and b) Damage index using a three dimensions

FV (T1, T2 and T3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.13 Damage detection index plots applied on the reduction of the stiffness

parameter k2 by 10%, 20% and 30%. a) Cluster effect onto 2-D space

defined by T1 − T2 b) Damage index using a two dimension FV (T1 and

T2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.14 Damage detection index plots applied on the reduction of the stiffness

parameter kn by 10%, 20% and 30%. a) Cluster effect onto 2-D space

defined by T1 − T2 b) Damage index using a two dimension FV (T1 and

T2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.15 Delamination scenarios. a) Scheme of the beams scenarios and b) scheme

of the delamination location . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.16 Composite laminated beams manufactured. a) Different five beam sce-

narios and b) delamination introduction by a Teflon sheet . . . . . . . . 60

2.17 Experiment set up for measuring the vibratory responses of the compos-

ite laminated beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



LIST OF FIGURES xiv

2.18 Cluster and damage detection index plots for the five composite lami-

nated beams. a) Cluster effect onto 2-D space defined by T1 − T2 b)

Damage index using a two dimension FV (T1 and T2). . . . . . . . . . . 62

2.19 a) Reconstructed frequency spectrum with the first four RCs (RC1, RC2,

RC3 and RC4). b) Damage index using a four dimension FV (T1, T2, T3

and T4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.20 Scree diagrams of the simulated system for three different acquisition

times (Ts=1s, 2s and 2.56s). a) Partial variance contained in each eigen-

value. b) Normalised eigenvalue spectra. . . . . . . . . . . . . . . . . . . 68

2.21 Reconstruction and cluster plots for stiffness reductions on kn of the

simulated system at different acquisition times (Ts=1s, 2s and 2.56s). . 70

2.22 Scree diagrams of the five composite laminated beams experiment for

three different acquisition times (Ts=1s, 1.6s and 2s). a) Partial variance

contained in each eigenvalue b) Normalised eigenvalue spectra. . . . . . 72

2.23 Reconstruction and cluster plots of the five composite laminated beams

experiment for different acquisition times (Ts=1s, 1.6s and 2s). . . . . . 73

2.24 Scree diagrams of the simulated system for different sliding window sizes

(W=7, 8, 25 and 50). a) Partial variance contained in each eigenvalue.

b) Normalised eigenvalue spectra. . . . . . . . . . . . . . . . . . . . . . . 76

2.25 Reconstruction and cluster plots for stiffness reductions on kn of the

simulated system at different sliding window sizes (W=7, 8, 25 and 50). 78

2.26 Scree diagrams of the five composite laminated beams experiment for

different sliding window sizes (W=7, 25, 50, and 100). a) Partial variance

contained in each eigenvalue b) Normalised eigenvalue spectra. . . . . . 80

2.27 Reconstruction and cluster plots of the five composite laminated beams

experiment for different sliding window sizes (W=7, 25, 50 and 100). . . 81

2.28 Confusion Matrices of different stiffness reduction severities (0%, 10%,

20% and 30%) of kn in the simulated system at different acquisition

times. Vertical direction shows changes on Ts=1s, 2s and 2.56s and

horizontal direction shows the number of RC considered (First 2RCs,

3RCs and 4RCs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



LIST OF FIGURES xv

2.29 Confusion Matrices of the five composite laminated beams experiment

(B1, B2, B3, B4 and B5) for different acquisition times. Vertical direction

shows changes on Ts=1s, 1.6s and 2s and horizontal direction shows the

number of RC considered (First 2RCs, 3RCs and 4RCs). . . . . . . . . . 85

2.30 Confusion Matrices of different stiffness reduction severities (0%, 10%,

20% and 30%) of kn in the simulated system at different sliding window

sizes. Vertical direction shows changes on W=7, 8, 25 and 50 and hori-

zontal direction shows the number of RC considered (Firsts 2RCs, 3RCs

and 4RCs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.31 Confusion Matrices of the five composite laminated beams experiment

(B1, B2, B3, B4 and B5) for different sliding window sizes. Vertical

direction shows changes on W=7, 25, 50 and 100 and horizontal direction

shows the number of RC considered (Firsts 2RCs, 3RCs and 4RCs). . . 88

3.1 a) Delamination scenario D1. b) Delamination scenario D2. c) Delami-

nation scenario D3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2 Scheme of the four areas approach for modelling of the delamination

region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3 a) Teflon to induce delamination. b) Strain gauge location. c) Experi-

ment set up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4 Based on the undelaminated vibration response of the numerical model.

a) Comparison between the reconstructed frequency spectrum by the

first two RCs (RC1-RC2) and the original frequency spectrum. b) Com-

parison between the reconstructed frequency spectrum by the first four

RCs (RC1-RC4) and the original frequency spectrum. c) Scree diagram

of the first 20 eigenvalues. d) Clustering effect on the projection of the

FVs onto a 2-Dimensional space (T1-T2). . . . . . . . . . . . . . . . . . . 103

3.5 Damage index using a two dimension FV (T1 and T2) of the vibration

responses of the numerical model. . . . . . . . . . . . . . . . . . . . . . . 104



LIST OF FIGURES xvi

3.6 Based on the undelaminated vibration response of the experiment with

composite plates. a) Comparison between the reconstructed frequency

spectrum by the first two RCs (RC1-RC2) and the original frequency

spectrum in logarithm scale. b) Comparison between the reconstructed

frequency spectrum by the first four RCs (RC1-RC4) and the original

frequency spectrum in logarithm scale. c) Scree diagram of the first 20

eigenvalues. d) Clustering effect in the projection of the FVs onto a

2-Dimensional space (T1-T2). . . . . . . . . . . . . . . . . . . . . . . . . 107

3.7 Based on the vibration response of the experiment with composite lam-

inated plates. a) Damage index using a two dimension FV (T1 and T2)

and b) Damage index using a four dimension FV (T1, T2, T3 and T4).

The dashed line represents the threshold. . . . . . . . . . . . . . . . . . 108

4.1 Statistical hypothesis threshold based on lognormal distribution (one-

side only). a) Probability density distribution. b) Cumulative density

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Experiment set up of the lab-scale wind turbine blade. a) Experiment

scheme. b) Experiment set up . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 a) Electromagnetic Actuator b) Damages severity scenarios. . . . . . . . 117

4.4 Scree diagram and reconstructed spectrum by 2, 3 and 4 RCs for the

vibration responses measured on the healthy blade from the analysis of

damage location D1 by the accelerometer 1, from the analysis of damage

location D2 by the accelerometer 7 and from the analysis of damage

location D3 by the accelerometer 12 on the lab-scale wind turbine blade. 122

4.5 Clustering effect onto a 2-dimensional feature space (T1-T2) and Maha-

lanobis damage index for three damage locations D1, D2, D3 and three

level of severities D-Small, D-Medium and D-Large in a lab-scale wind

turbine blade. The dashed line defines the threshold calculated for a risk

of false alarm probability equal to α=0.05. . . . . . . . . . . . . . . . . . 125

4.6 Mean of the damage indices obtained for each damage location and sever-

ity obtained for each sensor separately. The highlighted area indicates

the sensors which are the closest to the damage scenario in consideration 127



LIST OF FIGURES xvii

4.7 Experiment set up of the SSP34 wind turbine blade. a) Experiment

scheme. b) Experiment set up. c) Electromechanical actuator. . . . . . . 131

4.8 Damage introduced in SSP34 wind turbine blade. a) Damage introduced

by chisel in the trailing edge. b) Damage bolted to control the damage

size and any additional anomalies introduced by the impact to generate

the damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.9 Actuator locations on the SSP34 wind turbine blade . . . . . . . . . . . 133

4.10 Mahalanobis damage index computed by measurements obtained in sen-

sor 4 (TE - LE) for the four different actuation positions in SSP34m-

WTB. The dimension of the FVs was considered p=4 (T1-T2-T3-T4). The

dashed line is the threshold calculated by a risk of false alarm probability

equal to α = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1 Cabot Black Pearls 2000 CB particles are impregnated in each glass

laminate by a hand roller. . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 Tunneling effect is modelled by electrical resistance between CB conduc-

tive clusters. Under deformation the CB clusters increase the distance

and hence the electrical resistance changes which alters the electrical

paths. (a) Shows an initial configuration of CB clusters without any de-

formation and (b) presents changes on the CB clusters under a certain

deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3 Differences on the voltage measurements between a beam without any

excitation (grey line) and the same beam harmonically excited at 30Hz

(black line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4 Test Rig. a) General picture of the test rig, b) how the beam is clamped

on the shaker and c) the location of the two electrodes on the beam. . . 152

5.5 Electrode and measurement system. a) Silver epoxy material and copper

tape were used to build the electrodes, b) final picture of an electrode

and c) schematic picture of the measurements test rig. . . . . . . . . . . 153

5.6 Description of the different damages introduced in the beam. a) Damage

introduced by adding an additional mass and b) damage introduced by

drilling a hole in the tip of the beam. . . . . . . . . . . . . . . . . . . . . 154



LIST OF FIGURES xviii

5.7 Comparison between the original raw voltage signal and the reconstructed

signal by one RC for healthy and artificially damaged beams. . . . . . . 156

5.8 Comparison of the frequency spectrum of the first reconstructed compo-

nent for a) the case of the beam with damage introduced by adding a

mass and b) the case of the beam with damage introduced by drilling a

hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.9 Comparison of the phase portraits of the time series using RC1 and RC2

for the case of a) the beam with damage introduced by adding a mass

and b) the beam with damage introduced by drilling a hole. . . . . . . . 157

5.10 For the case of beam with damage introduced by adding a mass a) clus-

ters obtained in a 2-dimensional feature space and b) Mahalanobis dis-

tances of the different damages scenarios to the healthy scenario. . . . . 159

5.11 For the case of beam with damage introduced by drilling a hole a) clusters

obtained in a 2-dimensional feature space and b) Mahalanobis distances

of the the different damages scenarios to the healthy scenario. . . . . . . 159

A.1 Histograms and Lognormal distribution for the training healthy data of

the Lab-scale WTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



List of tables

2.1 Initial parameters in the 2-DoF simulated system . . . . . . . . . . . . . 47

2.2 Initial conditions in the 2-DoF simulated system . . . . . . . . . . . . . 48

2.3 Composite laminated beams. Delamination scenarios . . . . . . . . . . . 59

3.1 Material properties of the composite laminates . . . . . . . . . . . . . . 93

3.2 Numerical results of the first five natural frequencies (Hz) of the unde-

laminated and delaminated composite plates. . . . . . . . . . . . . . . . 96

3.3 Experimental results of the first five natural frequencies (Hz) of the un-

delaminated and delaminated composite plate. . . . . . . . . . . . . . . 98

3.4 Experimental and numerical results of the first five natural frequencies

(Hz). µ: mean value of experimental ω(Hz) - σ: standard deviation . . . 100

4.1 Number of signals for each blade scenario in the lab-scale WTB test . . 119

4.2 Percentage of correctly classified (Healthy and Damaged) observations

when the damage is in location D1, D2 and D3 for all damage severities.

In bold and highlighted in grey the percentages greater than 90% for

Healthy and Damaged observations, respectively. Threshold was set

up at risk of false alarm probability equal to α = 0.05. The FVs di-

mension considered was p=4 (T1-T2-T3-T4). The number of observations

tested is detailed in Table 4.1. H: Healthy wind turbine blade (without

loose screws) D#S: Damage location D# - small D#M: Damage location

D# - medium D#L: Damage location D# - large #: 1, 2 or 3 . . . . . . 128

4.3 Number of signals measured on each experimental test for SSP34m blade 132

xix



LIST OF TABLES xx

4.4 Percentage of variance content in a reference state based on the first

4-RCs (RC1-RC2-RC3-RC4) . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.5 Percent of correct classification of Healthy and Damaged observations

for the SSP34m-WTB. In bold and highlighted in grey the percentages

greater than 90% for Healthy and Damaged observations respectively.

Threshold at risk of false alarm probability equal to α = 0.01. The FV

dimension is 4 (T1-T2-T3-T4). n.MH: Number of Healthy misclassified,

n.MD: Number of Damaged misclassified. Total Healthy observations =

42, Total Damaged observations = 39. . . . . . . . . . . . . . . . . . . . 140

B.1 Percentage of correctly classified observations when the damage is in the

location D1. In bold the percentages greater than 90%. Threshold was

set up at risk of false alarm probability equal to α = 0.05. The number

of observations tested is detailed in Table 4.1 Var: Total percentage of

variance contained in the dimension selected of T . H: Healthy wind

turbine blade (without loose screws). D1S: Damage location D1 - small

D1M: Damage location D1 - medium D1L: Damage location D1 - large 189

B.2 Percentage of correctly classified observations when the damage is in the

location D2. In bold the percentages greater than 90%. Threshold was

set up at risk of false alarm probability equal to α = 0.05. The number

of observations tested is detailed in Table 4.1 Var: Total percentage of

variance contained in the dimension selected of T . H: Healthy wind

turbine blade (without loose screws). D2S: Damage location D2 - small

D2M: Damage location D2 - medium D2L: Damage location D2 - large 190

B.3 Percentage of correctly classified observations when the damage is in the

location D3. In bold the percentages greater than 90%. Threshold was

set up at risk of false alarm probability equal to α = 0.05. The number

of observations tested is detailed in Table 4.1 Var: Total percentage of

variance contained in the dimension selected of T . H: Healthy wind

turbine blade (without loose screws). D3S: Damage location D3 - small

D3M: Damage location D3 - medium D3L: Damage location D3 - large 191



LIST OF TABLES xxi

C.1 Percent of correct classification of Healthy and Damaged observations

for the SSP34m-WTB by the actuation in the location A1. In bold and

highlighted in grey the percentages greater than 90% for Healthy and

Damaged observations respectively. Threshold at risk of false alarm

probability equal to α = 0.01 Var: Total percentage of variance con-

tained in the dimension selected of T H: Healthy WTB. Total number

of healthy observations: 42 D: Damaged WTB. Total number of dam-

aged observations: 39 n. MH: Number of observations from Healthy

WTB considered as Damaged WTB n. MD: Number of observations

from Damaged WTB considered as Healthy WTB Sensors TE: Sensors

located in the Trailing Edge . . . . . . . . . . . . . . . . . . . . . . . . 193

C.2 Percent of correct classification of Healthy and Damaged observations

for the SSP34m-WTB by the actuation in the location A2. In bold and

highlighted in grey the percentages greater than 90% for Healthy and

Damaged observations respectively. Threshold at risk of false alarm

probability equal to α = 0.01 Var: Total percentage of variance con-

tained in the dimension selected of T H: Healthy WTB. Total number

of healthy observations: 42 D: Damaged WTB. Total number of dam-

aged observations: 39 n. MH: Number of observations from Healthy

WTB considered as Damaged WTB n. MD: Number of observations

from Damaged WTB considered as Healthy WTB Sensors TE: Sensors

located in the Trailing Edge . . . . . . . . . . . . . . . . . . . . . . . . 194



LIST OF TABLES xxii

C.3 Percent of correct classification of Healthy and Damaged observations

for the SSP34m-WTB by the actuation in the location A3. In bold and

highlighted in grey the percentages greater than 90% for Healthy and

Damaged observations respectively. Threshold at risk of false alarm

probability equal to α = 0.01 Var: Total percentage of variance con-

tained in the dimension selected of T H: Healthy WTB. Total number

of healthy observations: 42 D: Damaged WTB. Total number of dam-

aged observations: 39 n. MH: Number of observations from Healthy

WTB considered as Damaged WTB n. MD: Number of observations

from Damaged WTB considered as Healthy WTB Sensors TE: Sensors

located in the Trailing Edge . . . . . . . . . . . . . . . . . . . . . . . . 195

C.4 Percent of correct classification of Healthy and Damaged observations

for the SSP34m-WTB by the actuation in the location A4. In bold and

highlighted in grey the percentages greater than 90% for Healthy and

Damaged observations respectively. Threshold at risk of false alarm

probability equal to α = 0.01 Var: Total percentage of variance con-

tained in the dimension selected of T H: Healthy WTB. Total number

of healthy observations: 42 D: Damaged WTB. Total number of dam-

aged observations: 39 n. MH: Number of observations from Healthy

WTB considered as Damaged WTB n. MD: Number of observations

from Damaged WTB considered as Healthy WTB Sensors TE: Sensors

located in the Trailing Edge . . . . . . . . . . . . . . . . . . . . . . . . 196



LIST OF TABLES xxiii

C.5 Percent of correct classification of Healthy and Damaged observations

for the SSP34m-WTB by the actuation in the location A1. In bold and

highlighted in grey the percentages greater than 90% for Healthy and

Damaged observations respectively. Threshold at risk of false alarm

probability equal to α = 0.01 Var: Total percentage of variance con-

tained in the dimension selected of T H: Healthy WTB. Total number

of healthy observations: 42 D: Damaged WTB. Total number of dam-

aged observations: 39 n. MH: Number of observations from Healthy

WTB considered as Damaged WTB n. MD: Number of observations

from Damaged WTB considered as Healthy WTB Sensors LE: Sensors

located in the Leading Edge . . . . . . . . . . . . . . . . . . . . . . . . 197

C.6 Percent of correct classification of Healthy and Damaged observations

for the SSP34m-WTB by the actuation in the location A2. In bold and

highlighted in grey the percentages greater than 90% for Healthy and

Damaged observations respectively. Threshold at risk of false alarm

probability equal to α = 0.01 Var: Total percentage of variance con-

tained in the dimension selected of T H: Healthy WTB. Total number

of healthy observations: 42 D: Damaged WTB. Total number of dam-

aged observations: 39 n. MH: Number of observations from Healthy

WTB considered as Damaged WTB n. MD: Number of observations

from Damaged WTB considered as Healthy WTB Sensors LE: Sensors

located in the Leading Edge . . . . . . . . . . . . . . . . . . . . . . . . 198



LIST OF TABLES xxiv

C.7 Percent of correct classification of Healthy and Damaged observations

for the SSP34m-WTB by the actuation in the location A3. In bold and

highlighted in grey the percentages greater than 90% for Healthy and

Damaged observations respectively. Threshold at risk of false alarm

probability equal to α = 0.01 Var: Total percentage of variance con-

tained in the dimension selected of T H: Healthy WTB. Total number

of healthy observations: 42 D: Damaged WTB. Total number of dam-

aged observations: 39 n. MH: Number of observations from Healthy

WTB considered as Damaged WTB n. MD: Number of observations

from Damaged WTB considered as Healthy WTB Sensors LE: Sensors

located in the Leading Edge . . . . . . . . . . . . . . . . . . . . . . . . 199

C.8 Percent of correct classification of Healthy and Damaged observations

for the SSP34m-WTB by the actuation in the location A4. In bold and

highlighted in grey the percentages greater than 90% for Healthy and

Damaged observations respectively. Threshold at risk of false alarm

probability equal to α = 0.01 Var: Total percentage of variance con-

tained in the dimension selected of T H: Healthy WTB. Total number

of healthy observations: 42 D: Damaged WTB. Total number of dam-

aged observations: 39 n. MH: Number of observations from Healthy

WTB considered as Damaged WTB n. MD: Number of observations

from Damaged WTB considered as Healthy WTB Sensors LE: Sensors

located in the Leading Edge . . . . . . . . . . . . . . . . . . . . . . . . 200



xxv



NOMENCLATURE xxvi

Nomenclature

Ak kth principal component of X̌

α risk level (probability)

CX covariance matrix of X̌

c category index

C number of categories

[C] damping matrix in the numerical system

c1, c2, c3 damping coefficients in the numerical system

Di damage index of an ith observation feature vector

Di(BC) distance of ith observation to category C

Di(BC) distances vector of an observation to all categories c

D Damage indices of the training data set

DT Statistical hypothesis threshold

∆t sampling rate

∆f frequency resolution

ρk, Ek kth eigenvector of CX

EX eigenvectors matrix of CX

Et
X transpose matrix of EX

erf error function
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Chapter 1

Introduction

1.1 Motivation

Composite materials are continuously gaining more importance and their applications

are constantly growing as a result of their advantageous properties, most notably their

large strength-to-weight ratio, corrosion resistance, high impact strength and their

magnificent design flexibility. They are steadily replacing traditional structures in a

wide range of industry sectors, including the aerospace, wind energy, marine, nuclear

engineering, oil and gas industries and even in every day structures [1]. The emergent

industries of aerospace, aircraft and especially wind energy [2] placed these materials

at the forefront of the contemporary research.

Damage in composite materials do not follow conventional patterns but they ex-

hibit complex failure modes such as transverse cracks and delamination. Damage, such

as delamination, is difficult to identify by visual or conventional techniques because it

usually occurs internally between the laminates. These damages are locally originated

and can grow without any notice until the entire structural member is severely affected.

The visual inspections and maintenance procedures can be dangerous, time consum-

ing, expensive and they might require a tedious planning, which can be different and

particular for each case. Also these maintenance procedures require ready accessibility

which in some occasions is very difficult due to the remote structure location. This is

an important factor for the dramatic growth of the off-shore wind turbines because of

their remote location which makes their inspection costly and difficult.

1
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This is why structural health monitoring (SHM) plays an important role in the in-

spection of the structural integrity of these materials. SHM methodologies can be fully

integrated and work as an on-line system. Most of these structures are subjected to

vibrations and therefore, vibration-based structural health monitoring (VSHM) meth-

ods present an attractive possibility since they are global and as such can be used to

inspect parts which are difficult or impossible to access. They are based on the fact

that any change in a structure, including damage, introduces a change in its vibra-

tory behaviour. By nature, these materials demonstrate complex nonlinear vibration

behaviour which makes difficult to inspect for flaws and repair. Conventional linear

structural dynamics like modal analysis cannot be applied to structures made of com-

posite materials because they demonstrate complex nonlinear dynamic behaviour and

such methods do not give sensible and informative results. The development of these

models can be difficult to reproduce accurately the damage mechanisms or the bound-

ary conditions which can introduce false indications of damage. Also, this process does

not take advantage of changes in the system response that are caused by nonlinear

effects such as delamination mechanism. The response of a nonlinearly vibrating struc-

ture is a nonlinear signal which has slight predictability in these conventional methods.

For this reason data-based methodologies are more appropriate for structures made of

composite materials. These methods are based on the measured vibration responses of

the structure and they take into account all the rotational patterns included in such

a vibration response which also include the nonlinear oscillations. The work covered

in this thesis uses a technique known as singular spectrum analysis (SSA) which is

able to decompose the vibration response in a certain number of components taking

into consideration all the rotational patterns. Thereby, a free vibration response of a

structure will contain information about the modal frequencies of the structure which

are contained in the decomposed components by SSA. Based on these components, a

reference state can be considered to obtain sensitive features for damage identification.

This is aimed to be used for the development of a data-based VSHM system, which on

the basis of the measured vibration response, will give information about the presence,

the location and the extent of delamination and/or other defects in structures made of

composite materials.
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Another aspect which motivates this research is the consideration of smart materials

which are able to dynamically self-sense and self-diagnose their structural integrity.

This is motivated by the use of conductive nano-composites [3] embedded within the

material to obtain a vibration response which is processed by the data-based vibration

health assessment methodology. The concept is based on a non-intervention principle,

coupled with new integrated sensing structure technology. This approach comprises

a new self-sensing and self-diagnosing paradigm coupled with a data-based VSHM

methodology for assessing damage in the structure.

1.2 An overview of Structural Health Monitoring

The aim of this Chapter is to provide a general overview of Structural Health Moni-

toring. This involves to define the aims of the SHM with the different damage states,

the challenges that SHM has to confront, how to define a monitoring procedure and a

selected literature overview of the advances in the recent years to frame the research

objectives considered in the work presented in this thesis.

1.2.1 Aim of SHM

Structural health monitoring is a multidisciplinary technology which aims to identify

and objectively quantify the information of any occurrence regarding to the structural

integrity. The data information is generally measured from a proper array of sensors

distributed on the structure in order to reduce the number of unnecessary maintenance

inspections. It is important to identify any occurrence of damage at an early stage

to avoid rapidly catastrophic failures. Alternative definitions and general information

about SHM methodologies can be found in Sohn et al. [4].

A SHM process is expected to be global in the sense of covering the entire structure

or significant part of it, automated or with minimum human interaction, cost-effective

and capable of assessing the damage ’levels’ defined by Rytter [5]. The main objectives

of a SHM method are very well defined and formalised by Rytter’s damage identification

levels. They are summarised as follows in terms of difficulty in increasing order:

- Level I - Damage detection: Detect the presence of the damage in the structure.
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- Level II - Damage localisation: Identification of the damage type and location in the

structure domain.

- Level III - Damage quantification: Estimation of the extent/severity of the damage.

- Level IV - Damage prognosis: Prediction of the remaining service-life of the struc-

ture.

In recent years, different damage identification levels have been developed , which

generally keep the same hierarchy as Rytters classification, but Level II is divided

in two; one for identifying the damage type and other for damage location. In these

distribution levels, the first three levels correspond to damage diagnosis and level IV

to damage prognosis. In the recent years, the development of SHM procedures and

more importantly the advances in smart materials have provided a natural combination

because many of the best algorithms require known or controlled excitation and sensing

rather than just sensing. This introduces the possibility of a self-sensing systems where

the structures can be self-diagnosed. Also, the advances of smart materials has the

potential to counteract damage when it is detected with the possibility of self-healing.

In this sense Park and Inman [6] introduced an extension to the damage identification

levels mentioned above. Two more levels are introduced as follows:

- Level V - Self-diagnosis: Detect, localise and quantify damage by the structure/system

itself.

- Level VI - Self-healing : Materials/structures capable to repair damage caused by

mechanical usage.

The idea of fulfilling the general objectives of SHM system presents an enormous

potential for the current development within a wide range of industries (e.g. aircraft,

automotive and wind energy). These industries are increasingly present in projects of

great responsibility where a failure could lead to huge losses. Periodic maintenance

inspections are often time consuming and expensive due to the required operational

down-time. Therefore, an ideally integrated SHM system reduces the maintenance

costs and may lead to a significant economic impact to boost industries within a com-

petitive market (e.g. off-shore wind turbines). The development of SHM systems can
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also help to exploit the use of new advanced materials such as nanocomposites which are

proving one of the most exciting advances within a wide range of industries. Nanocom-

posites predominantly introduce additional functionalities of existing materials such as

composite laminates. One of these functionalities is to use embedded nanocompos-

ites to build an integrated self-sensing and self-diagnosis material. As such, there is a

need of the development of SHM systems which are capable to process the measured

information through the new advanced materials.

SHM and the Non-Destructive Testing (NDT)

Historically, SHM may be thought to be an evolution of the Non-Destructive Testing

(NDT) procedures [7]. In fact, NDT techniques are different in the sense that they

work on demand, do not have permanent sensors located on the structure, generally

work locally, do not necessarily work as an automated system and they are typically

limited to the detection of damage/failure. Commonly, these techniques are based on

X-ray, eddy current, electron-microscopy, and thermal field principles. Other NDT

techniques which use structural dynamic properties to identify damage can be divided

in two groups. 1) The techniques that rely on travelling waves characteristics (e.g.

acoustic emission, guided waves and ultrasonic testing) which are considered to be

sensitive to small damage, good for damage localisation and work at high frequencies.

2) The techniques that rely on wave patterns characteristics (e.g. vibration analysis

and piezoelectric impedance) which are relatively easy to interpret, able to inspect

large areas, generally work at low frequencies and can have limitations to detect small

damage. On the other hand, SHM is closer to the philosophy of damage diagnosis and

prognosis which is expected to be continuous, global and not only limited to damage

detection but also provide information regarding the life-cycle of the structure [8].

Indeed SHM may use some of the NDT techniques for damage assessment.

1.2.2 Challenges of SHM

Structural health monitoring is one of the most appropriate procedures for damage

identification for structures such as civil, aircraft, automotive, structures made of com-

posite materials and structures with high complexity. However, there are many chal-
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lenges that must be overcome before a SHM system can be considered as a reliable

technique to be automatically installed. These challenges are that of what to measure,

where to measure, measurement periods (how often), which instrumentations and sen-

sor network must be implemented as well as how to overcome the sensor failure. Once

the measurements are recorded, now the decision is what to analyse or monitor (fea-

tures). Also which kind of damage identification levels can be addressed (see section

1.2.1 for damage identification levels). How to perform in complex structures to expect

the highest reliability. And how to implement the decision making to identify changes

caused by damage and not for changes in the environmental conditions, sensor failures

or other factors which may lead to false alarms. The most relevant challenges that have

to be considered before a SHM may be transfer from research to industrial implemen-

tation are summarised below. This section only attempts to introduce the importance

of these considerations and therefore for further information readers are referred to [4].

Significant research in the field of SHM is dedicated to the instrumentation and

sensor network because it requires a proper array of sensors and a transmission system.

The challenges range from what, where and how to measure in the structure, the

optimal sensor location, how to monitor the debonding of a sensor, how to handle the

data measured, how to transmit the data as well as the system requirements for power

supplier.

Another aspect is to select a sensitive feature which can be monitored for damage

identification. The raw data will not be able to show the information necessary to

identify the damage successfully. For this purpose, a larger number of damage features

and classifiers have been studied along the history of the SHM to overcome this issue [9].

However, nowadays, there is not a unique feature which solves the problem of damage

identification so that more research and advances must be done in this direction.

SHM procedures have been implemented for traditional structures such as bridges

and buildings as well as traditional materials such as concrete and steel. The recent

advances of new materials such as composite structures are more widely used every day

in different industries due to their remarkable properties. These materials are in nature

a ’structure’ with more than two (or more) components and therefore they require a

SHM. The SHM techniques have been applied on limited simple structures such as
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beams and plates with well defined artificial damage. However, the popular use of

these materials generates complex structures which make the study of their integrity

and damage identification more challenging. The development of SHM procedures

for complex and realistic composite structures must be considered. The difficulty of

modelling these structures makes the data-based techniques more suitable for this kind

of structures.

The damage identification levels presented in section 1.2.1 define a set of challenges

that have to be overcome in terms of damage identification. Damage detection (level

I) and damage localisation (level II) are often achieved with a large number of SHM

procedures. However, there are limited studies on the extent/severity (level III). As

important as detect and localise damage is the study of damage progression because

it can be used as a damage indicator to determine the remaining life of the structure

(level IV). Also the rapid advance of smart materials puts SHM at the forefront of con-

temporary research. The nanocomposite inclusions in composite laminated materials

provide additional properties to the material and the entire component/structure such

as self-diagnosis and self-healing (level V and VI). The combination of a SHM proce-

dure and these new materials must be investigated towards an autonomous monitoring

systems.

One of the most important issues in SHM is the dependency of damage features

on operational and environmental conditions variability (e.g. temperature, humidity,

wind effect variability, loads, boundary conditions...). The changes in the environmental

conditions adversely affect the damage features indicators, which could hide or magnify

its presence. There is a real need for methods which are able to compress and separate

the data information from damage features and environmental conditions. The study

of methods which take into account these aspects are very important to give reliability

and confidence to SHM methodologies. This is the reason why researches are moving

forward to this direction [10–12].

1.2.3 A general vibration-based SHM procedure

The idea of vibration-based SHM is quite popular, as vibration responses can be mea-

sured from a natural or artificial excitation in many available structures such as aircraft,
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railway vehicles, bridges, wind turbines and so on. The health/state of the structure

may be analysed by monitoring changes in its vibratory responses. The monitoring pro-

cess requires the observation of the system/structure over certain periods of time and

this is the reason why a monitoring procedure is required. Farrar et al. [13] present a

monitoring procedure by four steps based on a statistical pattern recognition paradigm

which is commonly used in the SHM community. In the following four steps a general

vibration-based SHM procedure is presented:

Operational evaluation consists of the evaluation of the implementation of the dam-

age identification system. This is to answer questions such as what to monitor and

how to monitor within the structure for defining the possible limitations. In this

sense, it consists of answering questions related to economic justification, how to

evaluate the damage, in what conditions the system normally works and what are

the limitations of collecting data for a specific operational environment. This also

involves a preliminary study to gain comprehensive information about the potential

damage as well as their potential location if any.

Data acquisition is to define the quantities to be measured, the type and quantity

of sensors to be used as well as their locations, also sensor resolution, bandwidth

and hardware used. This process depends on each specific application and it is

heavily affected by economic factors. The so-called data fusion, which consists of

integrating the data acquired from various sensors and measurement campaigns

within the methodology should be also considered. Also, it is important to clean

and select the relevant data from the measurements for the feature selection process.

Feature extraction receives most of the attention in the literature [14, 15]. The best

feature for damage identification depends on the case of study. One of the most

important aspects is to parameterise the damage by means of its physical charac-

teristics if this is possible in order to be sure that the damage in consideration can

be successfully detected. In this sense finite element modelling is an important tool

to reproduce numerically or analytically the fault mechanism and hence study the

effect of the fault on the feature selected within a controlled system. This may help

to understand better the possible fault mechanisms and further selection of sensitive
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damage features. Other aspect is the consideration of purely data-based methods

which do not require a model. These methods find their features in correlation

functions or estimated parameters from the measured vibration responses.

Decision making and classification is to use the selected features for making a deci-

sion whether the structure is healthy or not [16]. Depending on the level of damage

identification required, the classification algorithm must address the pertinent levels

of identification from damaged or not, damage extent and quantification. Based on

the measured data, a model is created to minimise the number of false alarms (e.g.

statistical), which are commonly divided into two groups: 1) False-positive; indica-

tion of damage when it is not present and 2) False-negative; indication of no damage

when it is present. Both must be reduced to make an efficient VSHM procedure. For

the first case, a large number of false positive will increase the financial cost because

of the loss of time and confidence due to unnecessary downtimes. The second is

more focused on the safety and risk overtaken when the presence of damage is not

detected.

1.2.4 Literature overview of vibration-based SHM

In this section, a short overview on the current status of vibration-based SHM ap-

proaches is presented. Vibration-based SHM methodologies are based on the concept

that the vibration response of a structure changes when damage occurs within the

boundaries of the structure itself. Damage alters the physical properties of the structure

like mass, stiffness and damping. These parameters define a function which describes

the dynamical behaviour of the structure and hence any change on these parameters

will change its dynamical response.

Since the last decade, vibration-based SHM has been widely developed in diverse

areas for damage identification methods. This can be observed by the immense number

of publications in the area. For an overview of general vibration-based SHM methods

see Doebling et al [8, 17], Salawu [18], Farrar et al. [19], DeRoeck et al. [20], Carden et

al. [21], Inman et al. [22], Fritzen [23, 24], Kolakowski [25] and Adams [26] and a review

with emphasis on nonlinear damage identification methods can be seen in Worden et

al. [27].
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This short review does not intend to compare the performance of the different meth-

ods. Each method has its own advantages and disadvantages regarding its application.

In first place, a classification based on the different domains where the vibration fea-

tures can be represented and therefore be used by the vibration-based SHM methods

are presented. Secondly, an alternative classification on model and non-model based

methods is also presented with a final emphasis to the purely data-based methods

(non-model based) that frames the objectives of this thesis.

Vibration-based SHM approaches in different domains

In this section a list of different approaches for vibration-based SHM methods based

on the different domains where the vibration response can be represented is presented.

The classification is divided in the following four groups: modal domain, frequency

domain, time domain and time domain within statistical context.

Modal domain. These methods are to extract the modal parameters by means of

classical modal techniques. The modal parameters can be extracted by input-output

or output-only measurements [28].

One of the most intuitive and classical methods is to monitor the natural frequencies

of the structure/system. When a damage occurs, a frequency shift appears, therefore

damage can be detected by relative changes in the natural frequencies. In [29] is pro-

posed the damage location assurance (DLAC) which is a correlation between vectors

of experimental natural frequencies. These methods present problems because changes

in natural frequencies are small and they are normally embedded by the environmen-

tal conditions. Modal shapes introduce additional information for damage detection.

With the co-ordinate MAC (COMAC) can be measured the correlation at each degree-

of-freedom [30]. It can be also observed in [31] that the effect on modal shapes are more

sensitive than the natural frequencies for the detection of delamination in composite

laminated plates. More analysis have been done using modal domain as a damage

feature, such as modal shape curvature [32] and modal damping [33]. A review of the

field of modal analysis for damage detection can be found in [34].
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Frequency domain. The concept of these methods is to use the frequency responses

directly as a feature for damage identification without subtracting the modal parame-

ters.

In [35] was introduced the frequency domain assurance criterion (FDAC) which

measures the changes in the receptacle matrix due to modifications in the stiffness

and mass matrices when damage occurs. Transmissibility ratios were used for dam-

age identification when two Fourier transformed output signal are compared [36]. An

overview regarding the impedance methods is presented in [37]. These methods rely

on the changes of the impedance of the structure when damage occurs. Basically,

the concept is to use different techniques to compare the impedance spectrum of the

electro-mechanical structure/system. Also the study of antiresonance has been used as

sensitive indicator. In [38] is observed that the distribution of antiresonances may be

significantly altered by small changes in the structural model.

Time domain. In these methods the time histories of the vibration response of the

structure were used to identify the presence of damage. These methods are normally

divided into two groups 1) Non-parametric methods, which are mainly based on corre-

lation functions of the vibration responses of the structure and 2) Parametric methods,

which create a model from parameters obtained by the vibration responses.

Stochastic subspace based fault detection methods are output-only techniques with

the assumption that the structure is excited by random Gaussian white noise. The

stochastic responses are used to create the covariance represented in a Hankel matrix

form with selected time shifts. The damage index is defined by a vector which com-

putes the residual error of an estimated residual covariance matrix by comparing the

past and future states of the structure [39]. A comparison between SSI and SSI-COV

has been done in [40] where the stochastic subspace identification algorithm has been

implemented on the Hankel matrix of the correlations and on the covariance of the es-

timated Hankel matrix, respectively. SSI is faster in computing than SSI-COV but the

second approach uses less output responses in the computation. Auto-regressive (AR)

and Auto-regressive with Exogenous (ARX) methods consists in identify a single-input

single-output reference data-model based on coefficients which represents the dynamic
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behaviour of the reference state (Healthy structure). The data-model is then tested

with a new data set to identify any deviation from the reference state. If deviations

from the reference occurs, then it is considered to have changes in the physical proper-

ties of the structure [41]. There have been numerous attemps to generalise the model

structure to the nonlinear case where the most versatile and enduring technique has

been the NARMAX [42].

Time domain within statistical context. This group of methods is increasing rapidly

in the context of vibration-based SHM because it does not require a model (e.g. ana-

lytical or numerical model) and it is only based on measured data from the structure

in consideration. These methods are based on three elements to address the damage

identification process: 1) vibration response signals, 2) statistical model and 3) statis-

tical decision making. Numerous publications discuss these methods as presented in

Basseville et al. [43], Sohn et al. [44], Carden et al. [45] and Fassois et al. [46].

In [47] a method is applied on the comparison between the power spectral densities

(PSD) of the healthy and damaged structure when the excitation response is unknown.

The data was normalised to differ between different level of excitation. The damage

is identified by comparing the current structure to the reference structure. A Null

hypothesis is created to be compared and eventually determine whether the structure

is damaged or not. A similar approach is applied on the magnitude of the frequency

responses (FRF) of the structure. This method can be applied when the excitation

response is available or not. For the inspection phase, a statistical hypothesis is also

constructed based on the probability distribution of the baseline [48, 49]. Statistical

methods are also applied for the estimated model parameters on the vibration responses.

These methods work in the characterisation of a defined parameter vector which param-

eterise the vibration responses of the reference state. The parameter vector of a new

observation is compared with the defined reference (or baseline). In [50] an AR model

with a statistical control was presented as a damage identification technique. Also in

[51] a damage-sensitive feature (DSF) based on the AR coefficients are presented. In

this study is found that there is a difference between the mean values of the DSF of

the signals obtained from the damaged and undamaged cases. A technique based on
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the Output Error (OE) parameters obtained from the vibration responses were used to

identify the damage in a six-story building with a statistical hypothesis testing proce-

dure for damage diagnosis [52].

This classification frames the vibration-based SHM methods by different domains of

representation. One can think that the features contained in a vibration response should

be present in all the domains. This is true in the sense that features are embedded in

the data-representation but perhaps they are not highlighted and hence they are not

sensitive for damage identification. In the work presented in this thesis, the analysis

was implemented in time and frequency domain. As explained in the following section

and chapters, the use of one domain or other depends on the study in consideration.

A frequency domain representation presents the oscillatory patterns contained in the

vibration response in a more interpretable and ordered manner. However, the time

domain requires correlation functions and parameter estimation to simplify and define

the vibratory response. As alluded above, in this thesis both domains were used to

find sensitive features for damage identification. The use of each domain and their

considerations within the methodology is explained in Chapter 2.

Model and non-model based VSHM approaches

Another classification for the vibration-based SHM methods which is commonly con-

sidered in SHM literature is the division on two different approaches, model based and

non-model based methods which are also known as a data-based methods. The two

approaches are briefly introduced below, including key references and an overview of

the advantages and disadvantages to each. Also a final emphasis on purely data-based

methods is presented to frame the objectives and scope of the work presented in this

thesis.

Model based methods are commonly associated with the development of analytical

or numerical model (e.g. finite elements modelling) which represents the structure in

consideration. Experimental vibration responses are compared with the corresponding

model in order to find similarities between the experimental case and the simulated
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one. Model based methods are generally used for model updating which use experi-

mental data to represent accurately the vibration behaviour of a real structure. The

dynamic parameters such as mass, stiffness and damping matrices of a model are com-

pared with the ones obtained from experimental data. One of the advantages of model

based methods is that the use of an inverse problem could well be extended to provide

information about damage detection, location and severity as well as damage prognosis,

which can be predicted through simulation and past experience of the remaining useful

life of the system. The work presented in [53] studies the free vibration of beams with

multiple enveloping delamination using an analytical model based on Bernoulli-Euler

beam theory. The influence of the delamination size and its location on the first two

natural frequencies and mode shapes is discussed. A more sophisticated crack model

is considered in [54] where contact effects are simulated between laminates at different

delamination locations. The changes in the damping dissipation energy due to delam-

ination was considered as a damage feature. On the other hand, complex structures

are rather difficult to be accurately modelled. In this case model updating methods

are susceptible to the effects of uncertainty which are caused by the variability of the

measurements and hence the discrepancies with the model [55]. Another aspect is the

modelling and simulation of the damage into the structure. Damage can be accurately

modelled and hence describes the vibration behaviour. However, the relation with the

real experiment is always a complicated task which generally uses damage parameter

errors and experimental errors as an updating parameter for approximating the model.

Non-model based methods rely purely on the data measured from the structure

under study. These methods somehow also involve the construction of a model, but

this model is based on the data (e.g. statistical model) rather than numerical or

analytical. The measurements in an early state, prior to the structure being in service,

are considered as the reference state, where the measurements from the structure in

service are compared. Any deviation of the new observations from the reference state

may be considered as an indication of a damage. Non-model based methods have

been shown to be capable of address levels 1-4 for damage identification [16]. These

methods require of data-based models created with the features obtained for damage
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identification as alluded above. There are two main categories for these methods. 1)

When there is data available from both the healthy and damaged structure, then the

category is recognised as supervised. 2) When there is only data available from the

healthy structure, the category is recognised as unsupervised. For an unsupervised

category, the outlier detection algorithm is generally implemented. This algorithm

consists of the creation of a reference state (generally healthy structure) where the

observations can be compared. Therefore, a measurement which presents a deviation

to the reference state is considered as a sign that an anomaly occurred within the

structure [56]. Into the non-model based methods is also included the statistical time

series methods [57, 58]. The main advantages of these methods are: there is no need of

numerical or analytical models but the models are directly created on the measured data

(training data), uncertainties are considered due to the statistical models, distributions

are considered for the decision making phase (determination of healthy or damaged

structure) and it is quite effective for low frequency range and random excitations.

Some of the limitations of these methods are the location of damage which is difficult

to be achieved and a model may be required. These methods rely heavily on the data

considered to create the reference state (training data).

It is important to mention that the consideration of a baseline (or reference state)

also involves to model based methods where the baseline data set can be obtained from

the model (e.g. finite element model). There are methods that do not considered a

baseline data set. In fact, this is a matter of terminology because they compare between

two states where the ’non-baseline’ is declared to be assumed as normal behaviour.

Then, the damage identification occurs when there is a deviation from the normal

behaviour [59].

Purely data-based methods for vibration-based SHM

An emphasis on the purely data-based methods is presented in this section to frame the

main objectives of the damage assessment methodology presented in this work.

In practice most purely data based methodologies make use of data analysis tech-

niques and utilise different statistical methods such as Bayesian methods [60] or prin-

cipal component analysis (PCA) [61]. Principal component analysis is one such possi-
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bility and there are a number of papers that consider PCA-based damage assessment

methods [62, 63]. In general, PCA is a technique used in data analysis to reduce the

dimensionality of the available data. Since vibration signals in the time and/or a fre-

quency domain have quite high dimension, it is obviously appropriate to apply such

technique to the measured vibration signals (see Jolliffe [64] for further information).

PCA also has other properties that are advantageous from the view point of VSHM

and distinguishing between different categories e.g. those measured on non-damaged

and damaged structures, or data measured on structures with different damage extents

and/or locations. PCA is useful for categorical data because it possesses a clustering

effect in the sense that it reduces the distance between vectors from the same category,

whilst at the same time, increases the distance between data vectors from different cat-

egories. This is why a number of studies consider the application of PCA for structural

damage assessment purposes [65, 66].

Some investigations suggest the selection of certain features from the time or fre-

quency domain of the vibration response signals which can be considered as independent

variables to subject them to PCA [67]. On most occasions, these are certain frequen-

cies, peaks at a certain frequency or time moments which are far enough from each

other to be considered independent. In the work presented in [68], only the higher

variance principal components are retained and used as a model to predict/reconstruct

the feature data which in this case are the first natural frequencies of a Z24-Bridge.

The method sounds promising but the effect of nonlinearities due to changes in the

environmental conditions affect on the performance of the methodology. This is why

the authors applied local PCA algorithm [69]. In this case the PCA algorithm was

applied two times. First, PCA was applied on the data-features obtained from the vi-

bration responses and once the clusters were created, PCA was applied again on these

clusters. Thereby, the principal directions accurately describe the data distribution and

successfully take into account the nonlinear effects due to environmental variability.

Other studies consider a PCA algorithm on parametric and nonparametric feature

vectors to reduce the dimension of the feature vectors for damage detection in lab-scale

wind turbine blade with the consideration of different environment conditions [70]. The

algorithm retains the least prominent elements (least amount of variance content) as
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they are expected to be affected by damage. In these studies, it can be observed the ca-

pability of PCA to compress and decompose the data in different principal components,

which can be used in different manners with the aim of damage identification.

The point is that PCA is generally developed for multiple and independent vari-

ables, while time series elements are usually non-independent [64, 71], in the sense that

they are related to each other and they should be considered as an entire measure-

ment signal vector. This is one of the reasons why the methodology presented in this

thesis uses singular spectrum analysis (SSA) technique, rather than PCA. This way it

takes care of the inter-correlation between the individual signal vectors obtained in the

measured vibration responses. In this sense, SSA considers all rotational patterns in-

cluded in each vibratory signal rather than at particular frequency, which also includes

the nonlinear oscillations. The aim of SSA is to decompose the original signal using a

small number of independent and more interpretable components which can be used for

trend identification, detection of oscillatory components, periodicity extraction, signal

smoothing, noise reduction, feature extraction and detection of structural changes in

time series. A general description of the method can be found in Golyandina et. al [72].

SSA has been applied for diverse applications ranging from weather forecasting [71],

financial mathematics [73], historical sciences [74] and economical time series where

the signals are highly non-stationary with no signs of periodicities [75], in this case the

methodology acts as a kind of moving average for signal smoothing.

There are a small number of publications related to the application of SSA for struc-

tural vibration analysis and for vibration-based SHM. Some studies have already used

SSA-based methods for SHM as shown in [76] where SSA was applied for structural

monitoring and damage diagnosis of bridges by using an eigenvalue ratio difference

between the first two eigenvalues. Therefore, when the difference between the first two

eigenvalues increases, it is an indication that an irregularity occurs. In the same study,

the residual errors were measured by comparing the reconstructed vibration responses

based on the SSA decomposition with the measured ones. In [77], the performance

of a SSA-based methodology was compared with SSI-COV method where the authors

claim that the SSA-based method has a better and faster computation. Recently, SSA

was used for the purpose of de-noising the vibration responses measured in a rota-
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tive machine before subjecting the signal to AR-modelling with application to fault

detection in roller bearings [78]. It is the opinion of the author that this technique

holds a lot of potential for the above applications because of its ability for trend es-

timation, decomposition, uncovering oscillation patterns and signal smoothing. Since

the data measured on a vibrating structure usually consists of acceleration, velocity

or displacement signals, SSA presents an attractive alternative for the development of

purely data-based VSHM methodologies.

A natural extension of SSA is multichannel singular spectrum analysis (MSSA)

where more than one signal was considered to build the embedding matrix. MSSA

is a combination of SSA and PCA but with different emphasis. As the covariance

matrix is calculated on the full embedding matrix, not only the auto-covariance of each

signal vector is considered but also the cross-covariance between each signal vector

realisation. In this sense MSSA combines the benefits of each method: 1) SSA with

the consideration of all rotational patterns in a single signal vector and 2) PCA with

the properties of data compression to find common structure between the number of

signal vectors considered [79].

One of the contributions of the work presented in this thesis is to develop a damage

assessment methodology which is based on MSSA technique [80, 81]. The methodology

uses the measured vibration responses on the structure under study, that are processed

by the MSSA-based methodology to extract sensitive features for damage identification.

It is important to mention that most studies that use SSA or MSSA apply it on

the time domain, while in this thesis, it is suggested to apply in the frequency domain

as well because frequency domain treatment generally offers easier computation and

more intuitive interpretation. Several studies demonstrate that frequency domain rep-

resentation can be used as input-data for damage identification as shown in [82]. The

authors of that investigation demonstrated that time-frequency plots show the gener-

ation of resonant frequency harmonics in the freely vibrating, cracked cantilever beam

as well as the change in stiffness state as the crack opens and closes. Therefore, the

study clearly shows that the presence of nonlinearity adds considerable complexity to

the frequency response characteristics of the system. The comparison of this increment

of complexity in relation to the undamaged system can be used to infer the presence of
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damage. Also the complexity is not located in a particular frequency but distributed

along the spectrum. Therefore, the consideration of all rotational patterns contained

in the entire spectrum can benefit the damage detection.

A way to apply PCA in a vector which has been first transformed to the frequency

domain by the Fourier transform was explained in [64] - page 329. It can be also ob-

served that PCA was applied on the electro-mechanical impedance frequency responses

to compress the data for the damage detection by using a different number of princi-

pal components [83]. In a different study [84], SSA has been applied on spectral lines

defined by the Hyperspectral Imaging (HSI) for effective feature extraction. By remov-

ing noisy components in extracting features, the discriminating ability of the features

improved considerably. Consequently, PCA was applied to the SSA reconstructed com-

ponents in order to reduce the number of features (reduction of the dimensionality).

As mentioned above, MSSA combine SSA and PCA for useful trend/feature extraction

and dimensionality reduction. In Chapter 2 of this thesis, the performance of MSSA

was discussed when it was applied on the time and frequency domain. When MSSA

was applied on the frequency domain, a smooth and global decomposition was obtained

where the first component contains the main trend of the spectral line, while the rest

of components are responsible for the fluctuations over the general spectral line. On

the other hand, when MSSA was applied on the time domain, it produces a local de-

composition with separate and interpretable oscillatory components. Both methods

are presented and considered in this thesis when the damage assessment is based on

frequency domain (see Chapter 3 and 4) and when the damage assessment is based on

time domain as shown in Chapter 5.

As alluded above, SSA is known to uncover the rotational patterns of the measured

time series. Thus, if one considers a time series from the free response of a structure,

it will contain information about the modal frequencies of the structure. From such

a perspective, it can be argued that SSA should also contain and uncover the modal

contents of a freely vibrating structure from its measured free response [85, 86]. But

differently from modal analysis, SSA will uncover rotational patterns at any frequency

rather than at specific frequencies only. Therefore, from the author view point SSA or

MSSA based methods are extremely appropriate for nonlinearly vibrating structures
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which exhibit double or very close modes [87]. For the above reasons the work presented

in this thesis suggests the application of MSSA-based methods for the purposes of

structural health monitoring.

1.3 Composites structures

1.3.1 Fibre reinforced materials

A composite material is a material made of two or more materials with different physical

or chemical properties which are combined to obtain a material with different properties

than each individual constituent. The constituents work together as a new material

and the properties of each individual constituent contribute in the performance of

the new material. The typical engineering composite materials nowadays are cement

and concrete, reinforced plastics (e.g. fibre-reinforced polymer), metal composites and

ceramic composites.

In mechanical engineering a composite material refers to a polymer matrix and fibre

reinforced materials such as carbon or glass. These materials are known as Fibre Rein-

forced Plastics (FRP) materials. Fibre reinforcement materials are generally made of

long fibres with high modulus and strength which are the ones to support the mechani-

cal loads in their direction, while the epoxy material (matrix) transfers the mechanical

transverse loads between the fibres, binds fibres together and acts as a protector of

the fibres against harsh environments. Composite materials can be tailored for each

specific application from material level to structure level (see Figure 1.1). At mate-

rial level, the composite materials can be designed at nano scale with the inclusions

of nanocomposites that are able to increase dramatically the properties at the macro

scale. By selecting a specific composition of nanocomposites, the material not only will

increase its mechanical characteristics but also introduce additional properties to the

material such as electro-mechanical, wear resistance, hydrophobia among many others.

In the SHM context, the use of nanocomposites can introduce self-sensing and self-

healing properties at the material level which eventually builds a structure capable to

self-diagnose (see section 1.3.3). The flexibility of these materials for combining matrix

and fibres is also an advantage. The different ways to design the lay-up provide the
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ability to adjust the manufacturing process for each specific application.

Structure
level

Macro Micro Nano

Material
level

Figure 1.1: Multi-scale level of fibre reinforced laminates

Composite materials are generally designed for applications of high performance due

to its fantastic properties in comparison with the traditional materials [88]. They have

high strength and stiffness with a very low density, high fatigue strength, high impact

properties and high corrosion resistance. They are able to be formed into complex

shapes, which allows the manufacturing of curved structures (e.g. wind turbine blades),

skin-stiffeners structures without any additional process such as welding or riveting.

By using proper design and manufacturing procedures, composite materials can be

tailored for specific applications with a low cost-effective ratio. These properties and

characteristics are why research in composite materials is constantly growing and why

their industrial implementation is present in a wide variety of sectors.

1.3.2 Type of damages

Due to their complex nature and structure, fibre reinforced materials suffer different

damages and mode of failure which are not present in conventional materials (e.g.

metals). One of the main reasons is that composite materials are by nature non-

homogeneous and non-isotropic. Therefore, the presence of different materials such as

fibres and matrix and their combination by layers with different orientations and con-

figurations lead to a different distribution of stress that can produce different failures

and damages. Damage is generally originated at material level but it also affects at
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structure level. Figure 1.2 presents the most common damage that occur in composite

materials. The weakest component in fibre reinforced materials is the matrix. One of

the failure mechanisms is known as transverse crack. It occurs when the matrix cracks

and hence a failure originates its way towards one of the edges of the material. This

failure normally starts on the surface of the material and travels parallel to the fibres

through the thickness direction. These failures can be produced during the manufactur-

ing process (e.g. difference in the thermal expansion coefficients of matrix and fibres)

or service load (e.g. impact). These failures are very small at the beginning and it is

difficult to be detected during the manufacturing process or by visual inspections. As

these failures can go through the thickness, if they are not detected on time, they can

be the origin of other failures such as delamination.

Delamination

Transverse
crack

load-carrying box 
debonding

Debonding
components

Transverse 
crack

Debonding
components

Figure 1.2: Schematic representation of common damages in composite laminated structures

Delamination is a damage that occurs between the interlaminar planes. The failure

runs in the plane parallel to the plies (fibres) between two layers. Delamination can be

originated by different factors such as interlaminar stress concentration at the edges,

transverse cracks, out-of-plane loading, impact, loss of connection during the manufac-

turing process, internal ply drops, gaps and discontinuousness among many others [89].

Delamination occurs internally between the layers and it is very difficult to detect. Is

is probably one of the most common failure modes in fibre reinforced materials and

also one of the most dangerous phenomena in these material. Micro-crack formations
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occur in the material matrix and can grow to delamination which in turn can reduce

the stiffness of the material section up to 60% without any significant visual change and

eventually this can lead to the collapse of the entire structural member. Delamination

rarely leads to complete fracture but it affects the thermal and mechanical properties

of the material and structure. Typically these failure modes can involve local buckling

of fibres, fibre breakage and fibre pull-out. A kind of delamination can also occur exter-

nally, but this time at structural level. The failure occurs between different structural

components (e.g. debonding between upper and lower shells in wind turbine blades,

debonding between stiffeners and plates). These failures are originated from transverse

cracks or over load limits (e.g. torsional buckling effects). Originally they are small

but can grow rapidly along the failure direction until the collapse of the entire struc-

ture. The debonding between structural components changes the original structural

mechanism, considered in the design, and it can cause other mechanism failures.

1.3.3 SHM for composite materials

As alluded in the motivation of this thesis, there is an increasing demand on composite

materials in a wide range of industries that require high reliability. These materials

offer outstanding properties for industry needs but, because of their nature, can lead to

complex failure modes that are difficult to detect before a catastrophe occurs. This is

one of the reasons why a SHM system is needed to monitor the health of the material

and/or structure from production until the maintenance stage.

Traditional NDT techniques have been used widely to detect damage. These tech-

niques are time consuming and costly, and on some occasions impractical because of

the difficult accessibility to the structure under inspection. These techniques typically

can only provide local inspection, which generally requires an idea before hand of where

the potential damaged regions are.

The aims, challenges and the experience gained during the last decades as explained

in section 1.2, allocate vibration-based SHM techniques at the forefront of the contem-

porary research for application to composite structures. It is the author’s opinion

that the data-based approaches should be developed to monitor the health of struc-

tures made of composite materials because of their complexity for damage modelling.
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Moreover, they are used in structures with a remote location and are known to have

nonlinear vibration responses, where conventional linear methods do not always offer

significant information for damage identification. Some studies have been done in this

direction but there is still a large number of challenges that should be investigated. For

a general overview of vibration-based SHM with emphasis in composite materials can

be seen Zou et al. [90] and Montalvão et al. [91].

A short overview of smart materials within the SHM techniques

Contemporary research is focused on embodying intelligence in structures and on the

development of integrated systems capable of monitoring the health and integrity of

the structure. The study of smart structures with self-sensing and self-diagnosis capa-

bilities oriented towards the structural integrity is in constant development. The idea

of embedding conductive nano-inclusions within the matrix of composite materials to

control their conductivity properties and as result their dynamic/vibratory characteris-

tics contain a lot of potential for the purposes of structural health monitoring. Previous

research has focused on monitoring and an analysis of the electrical resistance to detect

damage existence [92–96].

Nanocomposites are experiencing one of the most exciting developments in the cur-

rent research. They are at the forefront of contemporary research because of their

wide variety of additional functionalities, which show promise for applications in many

diverse sectors. The use of nanocomposites have aroused great interest to researches

because of their remarkable properties at nanoscale which improve dramatically micro

and macro properties such as electromechanical [97], piezorestivity [98, 99] and other

mechanical properties [100]. Carbon nanocomposites possess remarkable electrical con-

ductivity properties which can be related to their mechanical properties. Some studies

have demonstrated that changes on the strain of the material are transformed to an

increment of the resistance [101]. In such a way, monitoring the electrical resistance

can be related to changes in the mechanical properties of the structure [102]. Damage

introduces changes in the electrical conductivity and hence in the resistance. Monitor-

ing the electrical resistance and its changes can be used for the purposes of damage

detection and localisation within the boundaries of the specimen analysed [103]. Tall-
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man et al. use an imaging technique known as electrical impedance tomography (EIT)

to provide real time monitoring on glass/fibre enriched with CB nanoparticles. This

technique has also been applied for thin films made of carbon nanotubes (CNT) [104] or

in GFRP manufactued with nanocomposite coatings [105]. Most of the studies uses two

or four point probe measurements [106] to obtain the static loads changes. Moreover,

many studies are focused on the sensor behaviours under tensile strains and compres-

sive strains [107]. Pham et al. [108] evaluate the sensitivity of the nanocomposite film

sensors to show the relationship between CNT volume fraction and sensitivity. Loh

et al. [106] study a single-walled carbon nanotube (SWNT)-polyelectrolyte composite

thin film strain sensor fabricated with a layer-by-layer process and a commercial sensor

to compare their ability for energy harvesting and self-sensing. And Kang et al. [102]

compares the dynamic strain response measured by a laser vibrometer and by a CNT

strain sensor. The above overview clearly determines that carbon nano-inclusions can

be used as conductivity/resistance sensors. The material conductivity is related to a

number of other mechanical properties, which are in turn related to presence of dam-

age. The question is how to use these relations to develop self-sensing and self-diagnosis

monitoring methods.

One of the studies presented in this thesis has, as a main goal, the use of laminated

structures with carbon nano-inclusions to extract a vibration response from the nano-

enriched structure by measuring changes in voltage due to changes in the mechanical

properties of the structure. As explained above a great number of investigations have

studied the electrical changes in nano-enriched structures for damage detection but

these are mainly based on the loss of conductivity when the damage occurs. Jandro et

al. [101] identify delamination using a quasi-static loading test with a nanocomposite

sensor thread. Delamination is identified by the sudden decrease of the load in the

load-deflection curve, and by the jump to infinity of the resistance in the resistance-

deflection curve, which corresponds to breaking one of the sensor threads. However, a

few studies have explored the analysis of the vibration response of the structure from

measurement of the electrical properties. Kang et al. [102] analysed the piezoresistive

effect for carbon nanotube polymer strain sensor measuring the vibratory response in

a cantilever beam. Their study compares the vibratory responses from a healthy and
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damaged beam.

As presented in this short overview, the use of nanocomposite materials, as an

additional constituent in the composition of the material to provide self-sensing and self-

diagnosis capabilities within a structural element has potential. This is the reason that

encouraged the exploratory study presented in Chapter 5. The idea is to monitor the

health of the structure with no-interaction by coupling the integrated system based on

the nano-enriched materials and data-based VSHM algorithms. The vibration responses

measured through the conductive material are processed by the damage assessment

methodology proposed in this thesis to find significant and sensitive features for damage

identification.

1.4 Scope, objectives and contributions of the thesis

The main objective of the research presented in this thesis contributes to the develop-

ment of a data-based vibration structural health monitoring methodology for composite

structures through its mission, which is defined as:

Development of a data-based vibration structural health monitoring method-

ology for extracting features sensitive to damage using a SSA-based technique.

The methodology is used to develop a fully automatic system which on the

basis of the measured vibration response will give information about the pres-

ence, the location and the extent of delamination and/or other defects in

different composite structures.

This work also involves the following steps which have contributed in the develop-

ment of the principal objective of this research:

(i) An overview of the vibration-based structural health monitoring methodologies

with emphasis in purely data-based methods.

(ii) Frame of the SSA-based technique within a vibration response perspective for

delamination/damage assessment. Demonstration and validation in a numerical

system and an experiment with delaminated composite beams.
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(iii) Study the effect of the selection of the methodology principal parameters, 1) fre-

quency resolution and time acquisition, 2) sliding window size and 3) number of

reconstructed components considered to build the feature vectors. The perfor-

mance of the methodology is evaluated for the different cases of study mentioned

in (ii).

(iv) Delamination assessment in composite laminated plates. The delamination as-

sessment methodology is performed on the vibration responses measured on finite

element models and on manufactured composite laminated plates for different

spatial locations of the delamination (in-plane and through different layers).

(v) Development of a practical VSHM system for wind turbine blades with a statisti-

cal hypothesis threshold for the inspection phase based on probabilistic distribu-

tions. The integrated system is used to study 1) the different damage locations

and severities located in a small wind turbine blade and 2) the damage detection

performance for different points of actuation on a SSP34m wind turbine blade.

(vi) Study of the capabilities of conductive nano-inclusions for measuring vibration

responses due to changes on the dynamic strain by an harmonic excitation.

(vii) An investigation of the no-intervention principle, coupled with the new integrated

self-sensing technology.

(viii) Investigation of a dynamically self-sensing and self-diagnosis structure capable of

measuring its vibration responses to diagnose its structural integrity coupled with

the data-based VSHM methodology for detecting anomalies/damages.

(ix) Analysis of different damage included artificially in/on a nano-enriched laminated

beam by the suggested self-diagnosis approach.

1.5 Thesis outline

The thesis outline is structured as follows.

Chapter 2 introduces the damage assessment methodology developed in this inves-

tigation. Validation and demonstration of the methodology is also presented first
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in a two degree of freedom system and secondly in an experiment with delaminated

composite beams. A study on the selection of the methodology parameters is also

presented on the same two case of studies.

Chapter 3 introduces a delamination assessment procedure for composite laminated

plates. The analysis is developed in a finite element model and in an experimen-

tal study with delaminated composite plates. The effect of the delamination on

the natural frequencies of the vibration plates is first studied. And secondly, it is

compared with the capabilities of the damage assessment methodology for better

damage identification.

Chapter 4 introduces a damage assessment methodology based on the one introduced

in Chapter 2 with a statistical hypothesis threshold based on probability distribution

functions. The analysis is first implemented in a lab-scale wind turbine blade for

damage identification at different locations and with different damage severities.

Secondly, the damage assessment methodology is implemented in a real SSP34m

wind turbine blade for different locations of actuation.

Chapter 5 introduces an exploratory study of the vibration-based self-sensing capa-

bilities of nano-enriched composite laminates. First an introduction of the concept

of the self-sensing and self-diagnosis is presented. Secondly a demonstration in how

to measure the vibration responses based on the changes of voltage due to the dy-

namic strain is presented. And finally, a demonstration of the self-sensing procedure

is presented on a nano-enriched composite beam with different simulated damage

scenarios.

Chapter 6 presents the important conclusions and provides the recommendations

for further research.



Chapter 2

Methodology, validation and

considerations

2.1 Chapter overview

This chapter introduces the damage assessment methodology for composite laminated

structures developed for this investigation. The chapter presents first the basics of the

methodology and a study of the interpretations when the methodology was implemented

in the time or frequency domain. Secondly, the methodology was validated to perform

an initial proof-of-concept using a numerical analysis and in an experimental test with

real composite laminated beams. Finally, a study of the preliminary considerations

for choosing the principal parameters in the methodology as well as their effect in the

damage assessment was developed.

2.2 Damage assessment methodology

The methodology is considered as a simple, nonparametric method for data compression

and information extraction, which finds combinations of variables that describe major

trends and oscillations in the vibratory signals measured on the structure/system in

consideration. The procedure is divided in four steps: data collection, creation of the

reference state, feature extraction and damage assessment.

29
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2.2.1 Data collection

The first step is to collect the data from the structure/system in consideration. A phys-

ical variable (e.g. acceleration, velocity, displacement, strain, voltage...) is measured

at each instant of time to obtain a signal for each realisation. Each signal is discretised

into a vector with N data points equally spaced at ∆t as shown in Equation 2.1.

xm = (x1,m, x2,m, ..., xN,m) (2.1)

where m=1,...,M is the number of signal vector realisations measured from each

structure/system.

Since the measured physical variables have different magnitudes, the signal vectors

are standardised before applying any analysis. Here, the so-called autoscaling method

is applied. It consists in standardizing the signal vectors to have zero mean and unity

variance [109]. This is performed for each xm signal vector as follows:

µm =
1

N

N∑
n=1

xnm (2.2)

σ2m =
1

N − 1

N∑
n=1

(xnm − µnm)2 (2.3)

x̄nm =
xnm − µm

σm
(2.4)

where µm and σ2m are the mean and variance of each xm signal vector realisation.

In order to simplify the nomenclature in the following sections of the methodology, it

is considered that each xm is already standardized, therefore x̄m = xm.

The signal vectors for each realisation are arranged in columns into the matrix X

with a dimension NxM.

X = (x1,x2, ...,xM ) (2.5)
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2.2.2 Creation of the reference state

The aim of this section is to create a reference state where the observation signal

vectors can be compared. The steps to create the reference state are: embedding,

decomposition and reconstruction. These steps are explained as follows.

Embedding

This step creates an embedding matrix of the signal vectors. Dynamic systems cannot

be fully unfolded in the two dimensional space of their measured signals because of

their highly complex behaviour. By creating an embedding space, more dimensions are

introduced and thus more features of the signal vector are uncovered. In this sense, each

vector signal xm is embedded into a matrix X̌m by W-lagged copies of itself as shown

in Equation 2.6 where m=1,...,M and W are the number of signal vector realisations

and the sliding window size, respectively. The dimension of the matrix X̌m is N x W.

X̌m =



x1,m x2,m x3,m · · · xW,m

x2,m x3,m x4,m · · · x(W+1),m

x3,m x4,m x5,m · · ·
...

x4,m x5,m
... · · ·

...

x5,m
...

... · · · xN,m
...

... x(N−1),m · · · 0
... x(N−1),m xN,m · · · 0

x(N−1),m xN,m 0 · · · 0

xN,m 0 0 · · · 0



(2.6)

The embedding process defined in Equation 2.6 is applied for each vector signal

realisation. Then, all matrices X̌m are used to create the full embedded matrix X̌.

The dimension of the full embedded matrix X̌ detailed in Equation 2.7 is N x (MW).

The number of M-signal vector realisations considered in the full embedded matrix X̌

is normally selected by M≤W.

X̌ = (X̌1, X̌2, ..., X̌M ) (2.7)
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Decomposition in Principal Components

This section explains the procedure to decompose the full embedding matrix X̌ (see

Equation 2.7) into a number of vector components based on their variance content.

First, the covariance matrix of X̌ is calculated as detailed in Equation 2.8.

CX =
X̌tX̌

N
(2.8)

The matrix CX defines the covariance between the different signal vector realisations

and has a dimension (MW) x (MW). In the Equation 2.8, X̌ is the full embedding

matrix, X̌t is the transpose matrix of X̌ and N is the signal vector dimension. As

the covariance matrix is calculated on the full embedding matrix, not only the auto-

covariance of each signal vector realisation is considered but also the cross-covariance

between the signal vector realisations is also taken in to account.

The eigen-decomposition of CX yields the eigenvalues λk and the eigenvectors ρk

obtained by solving the following expression where the index k represents each eigen-

vector and eigenvalue.

CXρk = λkρk (2.9)

The eigenvalues λk are stored in the diagonal matrix Λk in decreasing order and

the eigenvectors ρk are stored in columns into the matrix EX in the same order than

their corresponding eigenvalues. Each eigenvalue defines the partial variance in the

direction of its corresponding eigenvector, therefore the sum of all eigenvalues gives the

total variance of X.

Et
XCXEX = ΛX (2.10)

The matrix EX contains all eigenvectors Ek with dimension {Ek : 1 < k ≤ MW}.

Each eigenvector Ek is composed by M consecutive segments with a longitude W.

Therefore each element of an eigenvector is denoted as Ekm,w. The Principal Component

(PC) Ak associated with each Ek, is calculated by projecting the X̌ onto the EX as

shown in Equation 2.11.
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Akn =
W∑
w=1

M∑
m=1

Xm,n+wE
k
m,w (2.11)

Each element of a PC Akn is a linear combination of the W-values of each M-segment

weighted by their corresponding Ek. Therefore, each PC contains characteristics from

all the M signal vector realisations.

Reconstruction of the reference state

This section explains how to obtain the Reconstructed Components (RCs) which are lin-

ear combinations of the PCs and the eigenvectors. The RCs are calculated by convolving

the PCs with the associated Ek, thus the kth RC at n-value for each m-realisation is

given by the Equation 2.12.

Rkm,n =
1

Wn

W∑
w=1

Akn−wE
k
m,w (2.12)

Each Rkm,n value is normalised by the normalization factor Wn which is described

by the Equation 2.13.

Wn =


n 1 ≤ n ≤W − 1

W W ≤ n ≤ N

(2.13)

The RCs are then arranged as columns into the matrix R with a dimension N x

MW. The matrix R includes all RCs for all M-signal vectors and are distributed in

sub-matrices as shown in Equation 2.14.

R = (R1,R2, ...,RM ) (2.14)

Each of M-signal vector realisation is decomposed into W-reconstructed components

arranged into the matrix Rm with a dimension N x W as shown in Equation 2.15.
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Rm =


Rm1,1 · · · Rm1,W

...
. . .

...

RmN,1 · · · RmN,W

 (2.15)

Then, Rm can be used as the reference state of the structure/system where the

observation signal vectors are compared.

2.2.3 Feature extraction

In this section the procedure to obtain the feature vectors (FVs) is explained. A FV is

obtained for each observation signal vector by comparing its similarity to the reference

state calculated in Equation 2.15. Therefore, a FV is calculated by multiplying an

observation signal vector x with each of W-columns of Rm as shown is Equation 2.16.

Tj =

N∑
n=1

xnR
m
n,j (2.16)

where j=1,..,W. Each Tj value represents the inner product between an observa-

tion signal vector and each reconstructed component contained into Rm. All Tj are

arranged into a vector T with dimension W. The feature vector T characterises the

observation signal vector onto a feature space with a dimension W.

Therefore, when two feature vectors are compared onto the feature space, it is

expected that if the two FVs are similar, the distance between them will decrease,

however if they are different, the distance between them will increase.

2.2.4 Damage assessment

This section presents how damage is evaluated from the feature vectors defined in

section 2.2.3. First, a baseline feature space TB is created by a certain number of

feature vectors Ts = (T1,s, T2,s, ..., Tp,s) defined by signal vectors measured on the

reference state as shown in Equation 2.17.
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TB =


T1,1 T2,1 · · · Tp,1

T1,2 T2,2 · · · Tp,2
...

... · · ·
...

T1,s T2,s · · · Tp,s

 (2.17)

In the above Equation 2.17, TB is the baseline FV matrix with a dimension p x s

where p is the dimension selected from the FV {p ≤W} and s is the number of signal

vectors utilised to define the baseline. Once the baseline is defined, an observation FV

is then compared with the baseline TB . Each observation FV has to have the same

dimension p as the baseline and is defined by Ti = (T1,i, T2,i, ..., Tp,i) where i is the

number of observation FVs.

The next step is to measure the similarity of an observation feature vector Ti

to the set of baseline feature vectors TB. To demonstrate this, an outlier analysis

using the Mahalanobis distance is carried out on the observation FVs. Outlier analysis

calculates a measure of how similar or dissimilar an observation FV is to the baseline.

The measured discordance is calculated as shown in Equation 2.18.

Di =
√

(Ti − µB)tΣ−1(Ti − µB) (2.18)

In the above Equation 2.18, Ti is the observation FV, µB is the mean row of the

baseline feature matrix TB and Σ is the corresponding covariance matrix. In order

to label an observation as an outlier or inlier there is a need to set a threshold value

ϑ against a new distance can be evaluated. The threshold is calculated based on the

distances measured by baseline feature vectors Ts to the baseline matrix TB. Therefore,

the classification of a new FV is based on the comparison of any damage index Di to

the defined threshold.

Two hypotheses are defined for FV classification as shown in Equation 2.19. H1

when the Di is equal or less than the threshold and H2 when the Di is greater than

the threshold. In case of H1, the FV Ti is assigned to the baseline category (inlier)

while in case of H2, the FV Ti is assigned as a non-baseline category (outlier).
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H1 : Di ≤ ϑ

H2 : Di > ϑ
(2.19)

Then, as the baseline is based on the healthy scenario, any damage index Di greater

than the threshold is considered as an anomaly of the baseline and hence as a damaged

scenario. On the other hand, any damage index Di smaller than the threshold is

considered as a damaged scenario.

2.3 Creation of the reference state in the time or fre-

quency domain

The methodology introduced in section 2.2 is divided in four steps as described above:

data collection, creation of the reference state, feature extraction and damage assess-

ment. The data used to create the reference state determines how the information is

contained in the reference state and therefore how meaningful and informative are the

feature vectors for the damage assessment.

This section presents the effects on the creation of the reference state when the data

used is represented in the time or frequency domain. Although the idea is similar and

the creation of the reference state follows the same steps (see section 2.2.2), the results

obtained are different and therefore a different interpretation should be addressed when

the reference state is created based on vibratory signals represented in the time or

frequency domain. In order to compare the effects on the creation of the reference state

based on the time and frequency domain the same vibratory responses were considered

in both analysis. The vibration signals utilised as input-data were obtained from the

case of study introduced in section 2.4.2. The reference state was built on the vibration

responses measured on the non-delaminated beam B1 (see Table 2.3) recorded at 1.6 s

length and sampling rate of 1280 Hz.

Figure 2.1(a) represents a free-decay vibration responses obtained in the experiment

and Figure 2.1(b) is its frequency spectrum representation.
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Figure 2.1: Vibratory response of the composite laminated beam B1. a) Free-decay acceleration
signal and b) Frequency spectrum of the free-decay acceleration signal

2.3.1 Reference state based on vibratory responses represented in the

time domain

This section studies the effect on the creation of the reference state based on the

vibratory responses in the time domain representation. Seven signal realisations were

considered (M = 7) for this analysis. Each signal realisation was discretised into a

vector xm with a dimension of N = 2048 where the index m labels each realisation.

The seven signal vectors were arranged in columns into the matrix X to define the

data set considered for the construction of the reference state. The data set X is then

processed by the steps described in the section 2.2.2.

Two sliding window sizes were considered in the creation of the embedding matrix.

One case uses a W = 7 and other case W = 50 to create the embedding matrix shown in

Equation 2.6. The eigendecomposition of the covariance matrix of the full embedding

matrix X yields to a (M · W ) total number of eigenvalues with their corresponding

eigenvectors, which more specifically are 49 for the case of W = 7 and 350 for the

case of W = 50. As explained in section 2.2.2, the eigenvalues and eigenvectors are

ordered in decreasing order by means of their variance content in the vibratory signal.

Each eigenvalue defines the percentage of variance contained in the direction of its

corresponding eigenvector. The percent of the partial variance of each eigenvalue in

the total decomposition is calculated by Equation 2.20 where λk are the eigenvalues
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and k is the eigenvalue index which varies from k = 1, ...,K being K the total number

of eigenvalues equal to (M ·W ).

% variance = 100
λk∑K
k=1 λk

(2.20)

Figure 2.2(a) and 2.2(b) represent the partial variance percent contained in each

eigenvalue for the decomposition by using W = 7 and W = 50, respectively. These

graphs represent the percentage variance only for 20 eigenvalues since the information

contained in the rest of the eigenvalues is lower than zero percent. Comparing the two

graphs can be observed that for the decomposition with W = 50 the variance infor-

mation contained in the first eigenvalues is smaller than for W = 7. This behaviour

stands in the fact that the information is distributed along the eigenvectors. As ob-

served, for the case of W = 50 the number of eigenvalues increases and hence the

variance percent contained in the first eigenvalues is reduced and distributed over all

the components. However, for the case of W = 7 it can be observed that the variance

percentage contained in the first eigenvalue is considerably larger than the rest of the

eigenvalues.

As alluded to above, the decomposition of the covariance matrix of the data set

in eigenvalues and eigenvectors is to distribute the oscillatory components contained

in the original signal vectors by means of their variance content. In this case, when

the value of W is small, the variance contained in the first eigenvalues is large because

the eigenvector corresponding to the first eigenvalue contains more than one oscillatory

component and hence more variance of the total vibratory signal. On the other hand,

when W is relatively large, the variance in the first eigenvalue reduces and hence less

oscillatory components are contained in its corresponding eigenvector. In this case, it

can be stated that large values of W will give well separable components in comparison

with small values of W [72].

As explained in section 2.2.2, the information contained in the eigenvectors is used

to obtain the PCs. The PCs contains the information of the vibratory response pro-

jected onto the directions of the eigenvectors. Therefore, the data contained in the

signal vectors are then transformed to the new space based on the directions of the

eigenvectors. In order to compare the oscillatory components contained in each PC, it
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Figure 2.2: Partial variance percent of each eigenvalue for a) W = 7 and b) W = 50 when the
reference space is based in the time domain

is necessary to obtain the RCs by convolving the PCs onto the eigenvectors as explained

in section 2.2.2.

Each RC is obtained based on the information contained in its corresponding PC

weighted by its corresponding eigenvector. Each RC contains oscillatory components

with the same content of variance in the vibratory response. The oscillatory components

are less or more separated depending on the complexity of the vibratory system and

also on the number of PCs obtained in the decomposition. In order to observe the

oscillatory components contained in the RCs, the Fourier transform was applied to

each RC of the matrix Rm. Then, the matrix Rm is now transformed to F{Rm}

which is a new matrix with the frequency spectrum of each RC arranged in columns.

Figure 2.3(a) and Figure 2.3(b) represent the reconstructed signal using only the first

two RCs (RC1 and RC2) for the case of W = 7 and W = 50, respectively. Figures

show the comparison of the reconstructed signal with the original signal to identify

what oscillatory components are present in the reconstruction. In Figure 2.3(a) can be

observed that the two first RCs contain the oscillatory components for low frequencies

up to 200 Hz. It can be observed that the oscillatory components belonging to higher

frequencies are not contained in these RCs. In a similar way, Figure 2.3(b) shows the

frequency spectrum of the reconstructed signal using the first two RCs for a W = 50. It

can be observed that only the oscillatory components belonging to the low frequencies
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upto 35 Hz are contained in the reconstructed signal. Also it can be observed that for

the decomposition of the vibratory signal by using W = 50, the oscillatory components

contained in the first RCs are very well depicted in comparison with the decomposition

by W = 7 where more oscillatory components are contained in the reconstructed signal.

As explained above, when the decomposition is done by large values of W the oscillatory

components are better separated. Therefore, the RCs have interpretable oscillatory

components which can be used to identify particular modes. This can be beneficial

when the interest is to extract particular modes of vibration.
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Figure 2.3: Comparison between the original vibratory signal and the reconstructed signal us-
ing 2-RCs. The graphs show the effect of the methodology performed in the time domain. a)
Comparison when W = 7 and b) W = 50

In Chapter 5 is presented the self-sensing capabilities of a carbon nano-enriched

laminated beam under vibration excitation for its auto-assessment. In this study the

methodology was implemented in the time domain because the interest was to extract

the predominant frequency of vibration. The results and findings of this study are

detailed in Chapter 5. Other case of study where the methodology was implemented

in the time domain can be found in [110]. In this study, the unsteady phenomena in

a centrifugal blower was studied. The decomposition of the original signal onto RCs

allow to draw the phase trajectory that clearly separated non-stable blower working

conditions from its regular operation.
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2.3.2 Reference state based on vibratory responses represented in the

frequency domain

This section studies the effect on the creation of the reference state based on the

vibratory responses in the frequency domain representation. The reference state is

built on the vibratory signals measured on the non-delaminated beam B1 (see Table

2.3) recorded at 1.6 s length and sampling rate of 1280 Hz as shown in Figure 2.1(a).

Seven signal realisations were considered (M = 7) for this analysis like in the previous

section 2.3.1. Each signal realisation was discretised into a vector xm with a dimension

of N = 2048 where the index m labels each realisation. Each signal vector realisation

was transformed to the frequency domain (see Figure 2.1(b)) by the Fourier transform

as shown in Equation 2.21.

Ym(k) =
1

N

N−1∑
n=0

xn,me
−j2πkn (2.21)

where k ∈ [0, N − 1], m is each signal vector realisation and N is the vector length.

Therefore, the frequency domain signal vectors are now considered to create the

reference state. Each |Ym(k)| is arranged in columns into the matrix X with a dimen-

sion NxM where N is the signal vector dimension which for the case of the frequency

domain representation is N = N ′ = N/2 = 1024.

X = (|Y1(k)|, |Y2(k)|, ..., |YM (k)|) (2.22)

The data set X is then processed by the steps described in the section 2.2.2. Two

sliding window sizes were considered in the creation of the embedding matrix. One

case uses a W = 7, the other case W = 50 to create the embedding matrix shown in

Equation 2.6. The same sliding window sizes that in section 2.3.1 were considered in

this analysis. The eigendecomposition of the covariance matrix of the full embedding

matrix X yields to 49 eigenvalues and eigenvectors for the case of W = 7 and 350 for

the case of W = 50. In this way, the number of RCs obtained in the signal vectors

decomposition will be the same that in section 2.3.1. The partial variance percent of

each eigenvalue over the total eigenvalues was calculated by Equation 2.20.

Figure 2.4(a) and 2.4(b) represent the partial variance percent contained in each
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eigenvalue for the decomposition by using W = 7 and W = 50, respectively. These

graphs represent the percentage variance only for 20 eigenvalues since the information

contained in the rest of the eigenvalues is lower than zero percent. Comparing the

two Figures, it can be observed that for the decomposition with W = 50, the variance

information contained in the first eigenvalue is smaller than for W = 7. This behaviour

stands in the fact that the information is distributed along the eigenvectors and when

large values of W are considered the number of eigenvectors increases, and hence the

information is then distributed over all of them. As observed, for the case of W = 50

the number of eigenvalues increases with respect to the case of W = 7 and hence

the variance percent contained in the first eigenvalues is reduced and distributed over

all the rest of the eigenvalues. However, the variance percent contained in the first

eigenvalue is the largest in both cases (W = 7 and W = 50) with a significant difference

in comparison with the other eigenvalues. Therefore, the first eigenvector contains

the majority of the variance and it will have much more global contribution in the

reconstruction of the signal vector. However, the rest of the eigenvectors have less

variance content and their contribution in the reconstruction will be more local. Figures

2.5(a) and 2.5(b) represent the reconstruction of the original signal vector by using only

the first two RCs (RC1 and RC2) for the case of W = 7 and W = 50, respectively.

In both graphs can be observed that the reconstructed signal describes approxi-

mately the general trend of the original frequency spectrum. The estimated recon-

structed signal contains information along the entire spectrum but it is more significant

in the frequencies where the higher peaks are presented, in other words, at frequencies

where the maximum of energy contained in the spectrum is concentrated. For the case

of W = 7 (see Figure 2.5(a)), the reconstructed signal is very good approximated and

it contains well depicted peaks at low frequencies. However, for the case of W = 50

the reconstructed signal is smoother than in Figure 2.5(a), although the reconstruc-

tion still has a contribution to the entire spectrum (see Figure 2.5(b)). As mentioned

above, the first eigenvectors contain the majority of the variability in terms of variance

content and this is clearly represented in the reconstructed spectrum as observed in

Figure 2.5(a) and 2.5(b) where a smooth trend is achieved by using only two RCs in

the reconstruction. The selection of the sliding window size W is very important in the
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dimension of the decomposition and it depends on the goal of the study. Depending

on what analysis is going to be addressed the selection of W will help to obtain more

understandable information. A study in the sliding window size selection is explained

in section 2.5.2.
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Figure 2.4: Partial variance percent of each eigenvalue for a) W = 7 and b) W = 50 when the
reference space is based in the frequency domain
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Figure 2.5: Comparison between the original vibratory signal and the reconstructed signal using
2-RCs. The graphs show the effect of the methodology performed in the frequency domain. a)
Comparison when W = 7 and b) W = 50

In Chapter 3 and 4, the methodology was implemented by using vibration responses

in the frequency domain representation. In Chapter 3, the delamination assessment

was studied in composite laminated plates. In Chapter 4, the disbond between the
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upper and lower shell of a wind turbine blade was first studied in a small blade from a

residential wind turbine and secondly in a large scale wind turbine blade of 34m.

2.3.3 Discussion

The analysis in sections 2.3.1 and 2.3.2 was to explain the effects when the reference

state is constructed in the time or frequency domain. The comparison in the eigende-

composition and in the reconstruction was analysed. For both cases, it was observed

that the first eigenvalues contain the majority of the variance and it decreases for the

rest of the eigenvalues. In order to compare the eigendecomposition for both, time

and frequency domain, the eigenvalue spectra was calculated where the normalised

eigenvalue and the normalised index [111] are defined in Equation 2.23, respectively

log

(
λk∑K

k = λk

)
, k =

k

K
(2.23)

λk is the eigenvalue. The results are represented in Figures 2.6(a) and 2.6(b) when

the decomposition, based on the time and frequency domain, is compared for the case

of W = 7 and W = 50, respectively. For both sliding window size cases, it is observed

that the first eigenvalues are smaller for the time domain case in comparison with

the frequency domain case. The magnitude of eigenvalues decreases for both cases

even though in the time domain case, the eigenvalues are larger than in frequency

domain. This can explain that for the time domain case the difference in variance

content between the first and the rest of the eigenvalues is less than for the frequency

domain case. It is observed that the variance content is constantly distributed as shown

in Figure 2.6(a) for the time domain case, while a big jump can be observed between the

first and the second eigenvalue for the case of the frequency domain. After this jump,

the magnitude of the eigenvalues goes constantly down. In Figure 2.6(b), it is observed

that groups of eigenvalues are created in the time domain decomposition which means

that they have similar amount of variance content. This proves that large values of W

leads to more separable oscillatory components in the time domain decomposition. For

the case of the frequency domain, the separation is clearly achieved between the first

and the rest of the eigenvalues. In this case the effect on the selection of W will change

the variance content in the first eigenvalue.
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Figure 2.6: Comparison of the eigenvalue spectra between time and frequency domain decom-
position for a) W = 7 and b) W = 50

This means that when the frequency domain is used, the first eigenvector will con-

tain the general information in the spectrum which leads to a smooth trend in the

reconstruction as shown in Figure 2.5. Then, all frequency modes captured in the

original frequency domain are also included in the reconstructed spectrum. The rest

of the eigenvectors will add the fluctuations on the spectrum trend described by the

first RC. It is true that the reconstructed spectrum does not have the same amplitude

as the original signal vector but it still conserves the general weight of distribution in

the entire spectrum. It can be observed that the reconstructed spectrum gives more

importance at frequency bands where the maximum energy is concentrated.

In the case of the time domain, the behaviour observed in the reconstruction has

a different interpretation to that in the case of the frequency domain. The decompo-

sition in the time domain leads to a number of oscillatory components which can be

interpreted separately. As shown in Figure 2.3 only a few frequency bands are included

in the reconstruction signal. The separability of these oscillatory components depends

on the value of sliding window size. As a general rule, large values of W will give

more separated oscillatory components. The benefit of obtaining separated oscillatory

components is to identify the particular modes which can contain relevant information.

With the comparison of the creation of the reference state based on time or frequency

domain developed in the above sections, it can be concluded that the selection of one of



CHAPTER 2 METHODOLOGY, VALIDATION AND CONSIDERATIONS 46

these analysis depends on the case to study. When a time domain representation is used

in the methodology, separated oscillatory components are obtained. The information

contained in the reconstructed signal will depend on which oscillatory components

are considered in the reconstruction. The separability of these oscillatory components

will depend on the complexity of the vibratory system and also on the dimension of

decomposition defined by W . This analysis can be beneficial when a predominant mode

of vibration is to be analysed and therefore the methodology can be useful for mode

extraction or identification. However, when the frequency domain representation is

used, it can be observed that a smoother version of the original spectrum is obtained

by the reconstructed spectrum. The reconstructed spectrum is more approximated to

the original one, when more RCs are considered in the reconstruction. This analysis

can be beneficial when more than one vibration mode is considered in the analysis.

As the reconstruction describes the general trend of the spectral line, all rotational

patterns are considered in the reconstructed spectrum.

2.4 Demonstration and validation of the methodology

In this section, the methodology presented and described in section 2.2 is validated and

studied on two case of studies. First, the methodology is processed in a two degree

of freedom with non-linear spring-mass-damper simulated system and secondly in an

experimental test with five composite laminated beams.

2.4.1 Case study I: 2-DOF nonlinear spring-mass-damper system

In order to demonstrate the described damage assessment methodology introduced in

section 2.2, here is considered a two degree-of-freedom (DOF) system described by the

second order, nonlinear, ordinary differential Equation 2.24. The system is illustrated

in Figure 2.7. The use of the simulated system is a controlled manner to study the

effect of any alteration in the system and to evaluate the sensitivity for detection and

further diagnosis obtained by the methodology.

[M]ẍ + [C]ẋ + [K]x + f(ẋ,x) = 0 (2.24)
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Figure 2.7: 2-DoF spring-mass damper with nonlinear stiffness simulated system

In the above Equation 2.24, [M], [C] and [K] are the mass, damping and stiffness

matrices respectively defined in Equation (2.25). The function f(ẋ,x) provides a non-

linear quadratic coupling between the two masses (m1 and m2) as defined in Equation

(2.26).

[M] =

 m1 0

0 m2

 [C] =

 c1 + c2 −c2

−c2 c2 + c3

 [K] =

 k1 + k2 −k2

−k2 k2 + k3

 (2.25)

f(ẋ,x) =

 −kn(x2 − x1)2

kn(x2 − x1)2

 (2.26)

In Equation 2.25, m1 and m2 are the masses parameters of each block, mass re-

spectively. k1, k2 and k3 are the linear stiffness coefficients for each simulated spring

and c1, c2 and c3 the damping coefficients for each simulated damper, respectively. In

Equation 2.26, kn is the nonlinear stiffness coefficient. The parameters and coefficients

values used in generating the response signal are defined and detailed in the Table 2.1.

Parameter Value Units

m1 = m2 5 kg
c1 = c2 = c3 6 Ns/m
k1 = k2 = k3 2000 N/m

kn 10000 N/m2

Table 2.1: Initial parameters in the 2-DoF simulated system

The acceleration free-decay response was obtained by numerically integrating Equa-

tion 2.24 with a time step ∆t = 0.00125 s for N = 2480 data points so that discrete and
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continuous time are related via t = n∆t. Therefore, the vibratory signal was measured

for 3.1 s long and sampled at 800 Hz. The initial conditions were set to the values

detailed in Table 2.2.

Parameter Value Units

x
(1)
0 = x

(2)
0 0 m

ẋ
(1)
0 0 m/s

ẋ
(2)
0 1 m/s

Table 2.2: Initial conditions in the 2-DoF simulated system

The system is excited by applying an initial velocity of 1 m/s in the m2. The

acceleration free-decay response is then measued in the m1. The vibration responses

measured, when the system is defined by the initial parameters detailed in Table 2.1,

are considered as the vibration responses from the reference system which simulates

the undamaged system.

In order to introduce some changes in the initial parameters and therefore simulate

an alteration in the system, the stiffness parameters were reduced. More than one sys-

tem alteration is considered by reducing k1, k2 and kn stiffness parameters. Each time

when a certain stiffness parameter was modified the rest of the parameters remained

constant in order to control where the alteration was introduced. In this way, four sys-

tem scenarios were generated: one for the system with the initial parameters detailed in

Table 2.1 and three system alterations by reducing the initial parameters of k1, k2 and

kn. Each stiffness parameter was reduced from 1% to 30% by increments of 1%. These

reductions were applied for each stiffness parameter separately to see the effect on the

progression of the alteration, caused by the stiffness reduction, on the behaviour of the

system. Therefore, one vibratory response was measured for each stiffness reduction,

in this case 30 signals for each stiffness scenario k1, k2 and kn and additionally one for

the system with the initial parameters detailed in Table 2.1.

Consequently, the methodology presented in section 2.2 is applied on this simulated

system. The vibratory response measured from the system defined with the initial

parameters is used to create the reference state as defined in section 2.2.2. The number

of vibration signals used for this analysis was M = 1 and the sliding window size



CHAPTER 2 METHODOLOGY, VALIDATION AND CONSIDERATIONS 49

W = 7. In this way the vibratory response is discretised into a vector x with a

dimension N = 2480. The vibratory responses measured on the system describe a free-

decay response due to the procedure of the excitation, where an initial velocity was

applied and the system was released to vibrate freely without the interaction of any

external force (free vibration). In this way all the modes of vibration were excited and

then presented as resonant peaks in the frequency domain representation. As explained

in section 2.3 when more than one mode wants to be considered, it is better to create

the reference state in the frequency domain. When a stiffness reduction is introduced,

it can modify some modes of vibration but it is difficult to predict which ones are

the most sensitive to damage [112]. For this reason considering the frequency domain

analysis will help to consider all vibration modes in the analysis.

The signal vector x is then transformed to the frequency domain by the Equation

2.21 and arranged into X = |Y(k)| with a new dimension N = 1240. The vector X is

then copied and lagged W = 7 times to create the embedding matrix X̌ as explained in

Equation 2.6. Posteriorly, the eigendecomposition is applied on the embedding matrix

to obtain the eigenvalues and eigenvectors, PCs and finally the RCs which define the

reference state R with a dimension 1240 x 7. The reference state has 7-RCs which are

based on the variance content in the direction of their corresponding PC. Therefore,

the reference state is then used to obtain the FVs for each observation signal vector (see

section 2.2.3). Multiplying each observation signal vector by each RC of the reference

state yields to the FVs T, as shown in Equation 2.16, with a dimension equal to

W which is equal to 7 for this study. Therefore, each observation signal vector is

compressed and converted in a multi-dimensional FV by means of the similarity to

each reconstructed component contained in the reference state.

The FVs are compared onto the feature space. As the values of the FV are in the

same order as the RCs, it is clear that the value in the first place was calculated by

the first RC, the second value by the second RC and so on. As mentioned before, the

contribution of the first RC in the reconstruction of the original spectrum is larger than

the other ones because it contains most of the variance. For this reason the first values

of the FV contain also an equivalent information regarding to their first RCs. In this

case the most relevant information (global) is then concentrated in the first values of
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the FVs. Then, this information can be used to find the similarity between different

FVs. The dimension of the FVs used in this analysis was p = 2. The FVs for each

scenario were projected onto the feature space as shown in Figure 2.8.

Figure 2.8(a) shows how the evolution of the stiffness reduction on k1 behaves onto

a 2-dimensional space defined by the FVs obtained through the methodology. The

stiffness reduction is very well detected not only when a certain reduction occurs but

also when the reduction increases. It can be observed that for reductions smaller than

15%, T1 has more influence in comparison with T2. However, T2 plays an important role

for reductions between 15% and 20%. For reductions larger than 20% the contribution

of T1 and T2 are similar and hence both contribute in the detection of the stiffness

reduction. It is then important to mention that the influence of T1 and T2 is not

linear and it depends on how much the stiffness was reduced. Figure 2.8(b) shows the

behaviour of the stiffness reduction of k2. It can be observed that the influence of T1 and

T2 is similar for all stiffness reductions apart from small and large stiffness reductions

where T2 has more contribution. All stiffness reductions are very well depicted except

for smaller reductions than 8% and larger than 26% where the distances between points

does not increase significantly. Finally, Figure 2.8(c) represents the effect on the stiffness

reduction of kn. In a similar way that in the case of the reduction of k2 the influence

of T1 and T2 is similar. It can be observed that for small reductions the detection is

much smaller than for the case of larger reductions. When the reductions increase,

the distance does not only increase from the case of no-reduction but also between

increments of reduction and hence this will help to track the evolution of the stiffness

reduction.

Analysis in three stiffness reduction cases

Three examples were selected for further analysis. The examples were selected when

the stiffness has been reduced by 10%, 20% and 30%. These three stiffness reduction

cases has been applied on k1, k2 and kn. Figure 2.9 represents the effect on the spectra

lines of the frequency spectrum when the stiffness reduction occurs. Figure 2.9(a) shows

the effect of the stiffness reduction of k1, which affects to all the peaks. Figure 2.9(b)

represents the effect of the reduction severity of k2, which shows a clear systematic
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Figure 2.8: Effect on the 2-Dimensional feature space when the stiffness is reduced from 1% to
30% by increments of 1% in a) k1, b) k2 and c) kn.
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variation in the second and third peak. While, Figure 2.9(c) represents the effect of

the stiffness reduction of kn. Here, it is shown that changes occur mainly in the third

peak and very little in the second peak by changes on the amplitude.

In order to accomplish the novelty detection explained in section 2.2.4, ten signal

realisations were obtained for each scenario: no stiffness reduction and 10%, 20% and

30% respectively for each k# case. In total, a set of 40 vibration signals were obtained by

adding random white Gaussian noise defined by signal-to-noise ratio SNR=Psignal/Pnoise

in dB where Psignal and Pnoise are the signal and the noise power, respectively. For this

study the additive noise was set at 20 dB (e.g. the power of the signal was 20 times

greater than the power of the noise).

The reference state was created with the following parameters M = 7 and W = 7.

In this case the reference state is constructed based on 7 signal vector which yields to

49 eigenvalues and their respective eigenvectors. Each signal vector was divided in 7

PCs and hence 7 RCs, which were used as the reference state R with dimension 1240

x 7. Figure 2.10(a) represents the scree diagram of the eigen-decomposition where can

be observed the partial variance percentage contained in each eigenvalue. The value

of the partial variance was calculated by the Equation 2.20. It can be observed that

the percentage of variance contained in the first eigenvalue is the largest. The first

eigenvalue and its corresponding eigenvector contributes to the construction of the first

RC, which describes the general trend of the spectral line. Figure 2.10(b) shows the

reconstructed spectrum by using only the 80% contained in the first two RCs. The

reconstructed spectrum approximates relatively well the trend of the original spectrum

and depicts very well the three peaks represented.

Based on the reference state created by the 7 signal vectors from the case when the

system was defined by the initial parameters, the FVs for each observation signal vector

were calculated. Each set of FVs, corresponding to each stiffness reduction scenario,

were compared and projected onto the feature space separately. The projection onto

the feature space will reduce the distances between FVs from the same stiffness reduc-

tion severity but also will increase the distances between FVs from different stiffness

reduction severities. This effect can be observed in Figures 2.11, 2.13(a) and 2.14(a)

that represent the cluster effect onto the feature space when the stiffness reduction was
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Figure 2.9: Effect on the frequency spectrum plot of the vibration response when the stiffness
is reduced by 10%, 20% and 30% in a) k1, b) k2 and c) kn.
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Figure 2.10: a) Scree diagram of the decomposition of the vibratory response of the reference
scenario (non-stiffness reduction, undamaged system). Only 20 eigenvalues are represented. b)
Comparison of the original frequency spectrum and the reconstructed frequency spectrum with
two RCs (RC1 and RC2).

applied on k1, k2 and kn, respectively.

The effect of these clusters is successfully achieved and enable to distinguish between

different stiffness reduction severities. The stiffness reduction severity is then evaluated

by the procedure described in section 2.2.4. A baseline FV matrix was created by the 10

FV corresponding to the observation signal vectors from the reference system defined

by the initial parameters. Therefore, the distances between the FV matrix, TB and the

observation signal vectors were measured for further evaluation of the stiffness severity

as defined in the Equation 2.18. Based on this procedure the effect on the stiffness

reduction is analysed and commented separately for each k1, k2 and kn scenario.

Figure 2.11 represents the clustering of different stiffness reductions in k1. It is

observed that clusters were successfully obtained by the projection of the FVs onto the

feature space defined on T1 and T2 (see Figure 2.11(a)), T1 and T3 (see Figure 2.11(b))

and T2 and T3 (see Figure 2.11(c)). As previously alluded, when the FVs are projected

onto the space defined on T1 and T2 the contribution of T1 is insignificant for the separa-

tion between stiffness reduction interval 10% and 20%. For this reason the importance

of more variables can be determinant for the correct detection. The same effect is ob-

served when the FVs are projected onto the 2 dimensional space defined on T1 and T3.

The contribution of T3 describes a similar trend than T2. However, when the FVs are
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Figure 2.11: Cluster effect on the feature space when the stiffness parameter k1 is reduced by
10%, 20% and 30%. a) Representation onto a 2-D space defined by T1 − T2, b) onto a 2-D space
defined by T1 − T3, c) onto a 2-D space defined by T2 − T3 and d) onto a 3-D space defined by
T1 − T2 − T3.

observed onto a 2 dimensional space defined on T2 and T3, the stiffness reductions are

clearly detected not only by the comparison between healthy (no-stiffness reduction)

and the stiffness reductions in general, but also between different stiffness reduction

severities. This effect is also observed by computing the distances between the baseline

defined on the reference signal vectors and the different observation signals. Figure

2.12(a) shows the distances of the observations to the baseline when a 2-dimensional

signal vector (T1 and T2) was used. It was observed that the observations of all stiff-

ness reductions were detected in comparison with the baseline (no stiffness reduction)

and an increment of the distance was also observed when the stiffness reduction was
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incremented. However, when the stiffness was reduced at 10% and 20%, the increment

of the stiffness reduction could not be detected with a 2-dimensional FV (T1 and T2).

However, with this two dimensional FV (T1 and T2), the differences between stiffness

reductions at 10% and 20% cannot be detected.

On the other hand by increasing the dimension of the FV to 3 (T1, T2 and T3), the

difference between the two scenarios is then successfully detected (see Figure 2.12(b)).

Also, it is observed that the distance of the other scenarios increases and hence the

damage index becomes larger which is beneficial for cases when the detection between

altered and non-altered system cannot be achieved with low dimension FVs.
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Figure 2.12: Damage detection index plots applied on the reduction of the stiffness parameter k1
by 10%, 20% and 30%. a) Damage index using a two dimension FV (T1 and T2) and b) Damage
index using a three dimensions FV (T1, T2 and T3).

Similarly, the stiffness reduction severity is detected for the case of any alterations

in k2. Here, the detection was achieved with a 2-dimensional FV (T1 and T2). Figure

2.13(a) represents the clustering effect of the FVs onto the feature space and Figure

2.13(b) shows the damage index based on the same 2-dimensional FVs. The contribu-

tion of T1 and T2 is similar in this case, and then any of the three stiffness alterations

on k2 is perfectly detected. The damage index is larger when the stiffness reduction

severity increases so that each stiffness alteration in k2 is successfully detected and

distinguished in comparison with the others. The alterations in the stiffness parameter

kn are also analysed. Figure 2.14(a) shows that different clusters are obtained for each
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Figure 2.13: Damage detection index plots applied on the reduction of the stiffness parameter
k2 by 10%, 20% and 30%. a) Cluster effect onto 2-D space defined by T1 − T2 b) Damage index
using a two dimension FV (T1 and T2).
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Figure 2.14: Damage detection index plots applied on the reduction of the stiffness parameter
kn by 10%, 20% and 30%. a) Cluster effect onto 2-D space defined by T1 − T2 b) Damage index
using a two dimension FV (T1 and T2).
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stiffness reduction severity. The alterations on kn affect slightly the system and for this

reason the clusters are a bit more dispersed in comparison with the reduction on the

linear stiffness k1 and k2. However, as the contribution in T1 and T2 is similar, it is

observed that the cluster points corresponding to larger alterations in kn moves away

form the cluster points corresponding to the unaltered system (healthy). This effect

can be measured when the damage index is computed by the same 2-dimensional FVs

as shown in Figure 2.14(b). The value of the damage index increases as the stiffness

alteration increases. This helps in the differentiation between system alterations. The

study in the alterations of kn demonstrates that changes on the simulated system be-

cause non-linearities can also be detected. This is beneficial because damage introduces

non-linearities in the vibratory response which can be used for damage detection [54].

2.4.2 Case study II: Composite laminated beams with one healthy

and four delaminated scenarios

The methodology demonstrated and validated in the simulated system in section 2.4.1 is

now performed and validated in this case of study with five composite laminated beams.

In this section it is presented, first the material characteristics and manufacturing

process of the composite laminated beams, secondly the experimental setup for data

collection and finally the delamination assessment through the methodology.

Material and manufacturing process of the composite laminated beams

Five carbon fibre/epoxy laminated beams were manufactured by hand lay-up and re-

inforced using woven laminated multiprepeg E-722 with 1.21 g/m3 resin density at

23oC. A total of 10 layers were used to produce 2.5 mm thickness of the beam. The

beams were moulded to obtain the right dimensions and placed into a vacuum bag for

the process of curing inside the autoclave. The parameters of the curing recipe were

selected as follows: The air temperature was incremented at 3oC/min and posterior

hold at 120oC for one hour. The pressure in the vacuum bag was at 1.4 bar and then

the pressure of the autoclave was incremented up to 5 bar. After an hour at 120oC the

temperature slowly decreased to cool down to 50oC before removal of pressure. The

final dimensions of the beams were 980 x 42 x 2.5 mm.
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Four of the five beams were designed to have different delamination configurations

as detailed in table 2.3, see also Figure 2.15. The delamination was introduced during

the manufacturing process. A Teflon sheet was introduced, with the dimensions and

locations detailed in Table 2.3, before the manufacturing process to obtain four delami-

nated beams as shown in Figure 2.16(a). The non-adherent property of the Teflon sheet

defines a region where the connection between the laminates, in both upper and lower

sides, does not bond and hence an adhesive or cohesive failure is simulated. Figure

2.16(b) shows the introduction of the Teflon sheet. One of the five beams does not

contain any delamination. This beam is considered as a baseline to characterise the

healthy beam scenario.

Delamination (mm)

Beam Location Size

Lengthwise (L) Layers Width (w) Length (d)

B1 Non-Delamination
B2 465 5th − 6th 42 50
B3 450 5th − 6th 42 80
B4 220 5th − 6th 42 50
B5 220 2nd − 3rd 42 50

Table 2.3: Composite laminated beams. Delamination scenarios

(a) (b)

Figure 2.15: Delamination scenarios. a) Scheme of the beams scenarios and b) scheme of the
delamination location
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(a) (b)

Figure 2.16: Composite laminated beams manufactured. a) Different five beam scenarios and
b) delamination introduction by a Teflon sheet

Experiment set up for data collection

With the possession of the five composite laminated beams, the next step was to ac-

tually measure the vibratory response of the beams. The beams were clamped in both

sides of their shorted edges as shown in Figure 2.17. The clamp region was 40 mm in

each side and the free spam of the beam was 900mm. An accelerometer was allocated

at 1/3 from the left support and mounted on the top surface of the beam by bee wax.

The beam was excited by a sharp impact introduced with a hammer in the middle of

the span. The free-decay acceleration response of each beam was recorded by an SKF

RT-440 portable analyser. The procedure was repeated to obtain a certain number

of realisations for each beam scenario. Each beam was precisely allocated in the test

rig to have the same free span. The force applied on each clamp was controlled by a

torque wrench to guarantee that the same boundary conditions were applied to each

beam scenario. The position of the accelerometer was strictly located in the same posi-

tion. During the experiment’s procedure, all beams were clamped in the supports with
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care and precision to guarantee that they were placed in the same location. The only

interest was to detect changes due to the internal delamination introduced during the

manufacturing process.

Impact excitation

Analyser

Fixed Support Fixed Support
DelaminationComposite 

laminated beam

Accelerometer

Figure 2.17: Experiment set up for measuring the vibratory responses of the composite laminated
beams

Delamination assessment in composite laminated beams

The data collected was made up of acceleration responses measured on the vibrating

beams under an impact excitation as described in section 2.4.2. Multiple realisations of

the acceleration response were measured. Each vibration response (see Figure 2.1(a))

was discretised into a vector with length N=2048. A Fourier transform was applied to

each signal vector to obtain the frequency spectrum for each signal vector (see Figure

2.1(b)) with now a dimension of N=N’=1024 by Equation 2.21. Seven signal vectors

were recorded from each beam scenario with a total of 70 signal vectors. The reference

state was constructed with M = 7 signal vectors recorded on the Healthy beam B1

(no-delamination). The sliding window size was selected as W=7 which yields to a

reference state with a dimension 1024 x 7 (for more detailed information regarding to

the calculation of the reference state see section 2.2.2). An approximated reconstruction

of the original frequency spectrum by two RCs (RC1 and RC2) can be observed in Figure

2.5(a) in section 2.3.2. The reconstruction approximates relatively well the peaks that

store more energy. It can be observed that the first RCs are based on the eigenvectors-

directions with larger variance content. For this reason the reconstruction with the

first two RCs approximates better the frequencies that concentrate more energy. It can

be also observed that the general trend of the frequency spectrum is described with a
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smooth spectral line.

The FVs were calculated by the multiplication of each observation signal vector

with the reference state as defined in Equation 2.16. The dimension of each FV is

7 corresponding to the number of RCs contained in the reference state. In order to

visualise the performance of the FVs onto the features space, all FVs were projected

onto a two dimensional space built by T1 and T2. It can be observed that different

clusters are formed by FVs corresponding to the same beam scenario. By using only

a two-dimensional FVs, the clusters obtained are able to distinguish between different

beam scenarios as shown in Figure 2.18(a). This means that the methodology is not

only able to detect delamination but also able to distinguish between the different

delamination scenarios which involve different delamination sizes and locations.

1 1.2 1.4 1.6 1.8
−0.04

−0.02

0

0.02

0.04

0.06

0.08

T1

T
2

 

 

B1
B2
B3
B4
B5

(a)

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250
D
a
m
a
g
e
I
n
d
e
x

Number of test

 

 
B1
B2
B3
B4
B5

(b)

Figure 2.18: Cluster and damage detection index plots for the five composite laminated beams.
a) Cluster effect onto 2-D space defined by T1 − T2 b) Damage index using a two dimension FV
(T1 and T2).

In order to evaluate the effect of these clusters a damage assessment is performed as

shown in section 2.2.4. The FVs which characterise the healthy beam were used to con-

struct a baseline matrix where the observation FVs can be compared. The Mahalanobis

distance was measured from each observation FV to the baseline matrix. In this case

FVs corresponding to the healthy beam should give the minimum distance (relatively

close to zero, for an ideal case) because they belong to the same beam scenario that the

FVs used to construct the baseline matrix. On the other hand, FVs corresponding to

any other beam scenario should increment its distance to the baseline matrix. In this
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way, any anomaly caused by the delamination should be detected and highlighted with

an increment of the distance. Similarly to the clusters obtained in Figure 2.18(a), FVs

corresponding to the same beam scenario should have a similar distance magnitude.

The results obtained are presented in Figure 2.18(b). This figure represents the damage

index for each observation FV. The dimension considered to build the FVs was 2 which

means that only the contribution of the first two RCs was considered. It could be ob-

served that all the FVs corresponding to the delaminated beams have a damage index

larger than zero which means that delamination introduces an anomaly in the vibration

response, which could be detected by the methodology. This plot contains the damage

index for all beam scenarios where all sizes and localizations are considered. Beam B2

and beam B3 are both delaminated beams with a delamination in the same location

but with different size. The extension of the delamination of B3 is only 30mm more

than the delamination in B2 (delamination extended 15mm to each size). However, it

can be observed an increment of the damage index for FVs corresponding to B3 in com-

parison with B2. This effect was represented with an increment of the damage index,

which can be associated to an increment of the damage as demonstrated in the previ-

ous section 2.4.1 when the severity of the stiffness reduction was incremented. Looking

at beam B4 and beam B5 which are also delaminated beams with a delamination in

different locations compared to each other and to B2 and B3. In this case,the damage

indices do not provide any information in relation with the location of the delamination

since they have similar magnitudes for different delamination scenarios, hence can be

confused among each other.

As alluded in the analysis of the simulated system, when the dimension of the FVs

was incremented the damage index was more significant in some aspects not only for

detection but also for severity assessment. With this intention the dimension of the FVs

was increased to 4 because as shown in the scree diagram in Figure 2.4(a), the partial

variance decreases until the eigenvalue 4 and after there is a change of slope which

remains constant and almost horizontal. This is a subjective procedure of selecting the

number of components based on the slope of the scree diagram as discussed in [113].

Figure 2.19(a) represents the comparison between the original frequency spectrum

and the reconstructed frequency spectrum by the first four RCs (RC1, RC2, RC3 and
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Figure 2.19: a) Reconstructed frequency spectrum with the first four RCs (RC1, RC2, RC3 and
RC4). b) Damage index using a four dimension FV (T1, T2, T3 and T4).

RC4). It can be observed that the effect of the two additional RCs (RC3 and RC4)

has more contribution in the reconstruction of the higher frequencies in the interval

300-400Hz (compare with Figure 2.5(a), reconstruction with 2RCs). The contribution

to the smaller frequencies is also presented but it is not so characteristic as it is in

the higher frequencies. Then, the damage index was calculated with FVs of dimen-

sion 4 as shown in Figure 2.19(b) and there are some changes in comparison with the

damage index represented in Figure 2.18(b). The damage index increases for all obser-

vation FVs corresponding to the delaminated beams whilst remaining similar for the

non-delaminated beam. The damage indexes of B4 are compressed and the difference

between beams with other delamination location differs with respect to them. The

damage index for beam B5 still can be confused with other beam scenarios so it is still

difficult to find any relation with this damage index and localisation of the delamina-

tion. However, it can be observed that by considering more RCs in the reconstruction

and hence higher dimension in the FVs, the damage index improves and it is able to

better distinguish between different beam scenarios. As mentioned in [114] damage

detection and especially delamination could be more pronounced at higher frequencies.

This depends on the size and localisation of the delamination where higher modes of

vibrations should be excited for delamination detection. The delamination in beam B4

and B5 is at 220 mm from one edge and for this reason is more prone to be excited by
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modes of vibration at higher frequencies because it is located in a region of high shear

stress. The reconstruction with four RCs better approximates the higher frequencies

and as a consequence this improves the damage index for all the beams but especially

for B4 and B5.

2.4.3 Discussion

This section presents the performance of the methodology introduced in section 2.2 in a

two degree-of-freedom (DOF) system described by a second order, nonlinear, ordinary

differential equation and in the experiment of five composite laminated beams.

In the simulated system, the effect of the reduction of the stiffness parameters of

linear and nonlinear coupling was studied. The same reduction ratios were separately

applied on the different stiffness parameters to compare the detection performance for

each stiffness parameter. It is observed that the detection on the stiffness parame-

ter reductions which contribute to the linear coupling is clearly detected and presents

very well defined clusters for each stiffness reduction scenario. Changes in the stiffness

parameter of nonlinear coupling slightly affects the system behaviour, and hence less-

defined clusters were obtained. However, there was an increment to the damage index,

when the stiffness reduction was increased. These results demonstrate that when non-

linear effects occur in the system, the methodology is able to take them into account

for the detection of any alteration in the system. It is also important to mention that

the detection does not always track the progression of the stiffness reduction severity.

This effect is observed when alterations are introduced in k1. It is observed that the

severity of the stiffness reduction does not affect systematically in the spectral lines of

the frequency spectrum. This can be explained because the feature selected is not sen-

sitive for this effect and additional features must be selected. Also, it was observed that

reductions in k1, introduce changes in the system that do not follow a linear behaviour.

As a consequence of this behaviour, the detection in the severity of the stiffness reduc-

tion does not follow a monotonic function and it can be difficult to track the severity

of the stiffness reduction [87]. Nevertheless, the methodology is able to decompose

the vibratory signal in multivariate FVs which have the benefit of distributing the in-

formation over more than one variable. In this case, it was observed that when the
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dimension of the FVs was increased the detection between different stiffness reduction

severities were clearly detected as shown in Figure 2.12(b). In this way, an increment

of the dimension of the FVs provides changes in the damage index, which improves the

detection of the system alterations.

Similarly, the performance of the methodology was studied and validated in the

vibratory responses of five composite laminated beams with different delamination sce-

narios. The results demonstrate the creation of clusters which are able to distinguish

between different beam scenarios. This means that the methodology is not only able to

detect delamination but also able to distinguish among the different delamination sce-

narios which involve different delamination sizes and locations. The damage assessment

procedure allows to choose the dimension of the FVs which can be determinant in the

improvement of the damage index for further analysis of the delamination progression

and localisation.

The effect on the behaviour of the damage index can be associated, to some extent,

to the vibration response of the beam because of the contribution in the frequency spec-

trum reconstruction by using more or less RCs. The fact that the damage index and

the reconstruction of the spectrum can be related, gives a better understanding of the

structural analysis of the beams. One of the best characteristics of this methodology is

the capability to decompose a vibratory response in a number of RCs which yields to

a multivariate FVs. The selection of the dimension of the FVs depends on the require-

ments of the analysis and gives an additional flexibility for the damage assessment.

2.5 Study of the choice of the methodology parameters

In the previous sections, the outline of the methodology for damage/delamination

detection as well as the validation of the methodology in a 2-DoF system and in

an experiment with five composite laminated beams has been presented. As ob-

served, the methodology has four sections which are interconnected for the best dam-

age/delamination assessment. These sections are data collection, creation of reference

state, feature extraction and damage assessment. The first two steps (data collection

and creation of the reference state) are crucial for the good performance of the following

feature extraction and damage assessment sections. The last two steps depend on how
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the reference state has been defined in order to obtain well defined clusters, which are

used for damage/delamination assessment. Nevertheless, of utmost consideration is the

categorization or clustering which can be achieved in terms of the new variable FVs.

But this ability to recognize among different classes depends on a number of factors

including the signal length and frequency resolution for the discretisation of the signal

vector and the sliding window size for the RCs decomposition. The following section

is to investigate the influence of the parameters of acquisition time, frequency resolu-

tion and sliding window size on the performance of the methodology. The study will

analyse the effect on the reconstruction of the original frequency spectrum, the effect

on the categorisation or clustering and the effect on the damage/delamination assess-

ment based on the number of RCs considered. The effect of these parameters has been

studied in both of the cases introduced above. First in the simulated system presented

in section 2.4.1 for different severities in the reduction of the stiffness parameter kn,

and secondly in the delamination assessment of the five composite laminated beams

presented in section 2.4.2.

2.5.1 Effect of the frequency resolution and acquisition time

This section investigates the influence of the frequency resolution (∆f ) and therefore

the acquisition time on the performance of the methodology. To see the influence of

these parameters on the methodology, the sliding window length and the sampling

frequency have been fixed for the entire analysis.

Generally small values of ∆f provide a finer resolution in the vibration signal

recorded and hence the discretised signal vectors will better depict all vibration modes

contained in the frequency spectrum. This is present in the decomposition of the orig-

inal frequency spectrum where the information contained in the first RCs is based on

the directions with most of the variance. Therefore, the reconstruction will be better

detailed and the method will be able to detect better the variations in the embedded

signals within the sliding window size chosen [115]. However, a finer resolution in the

frequency spectrum does not always provide a better categorisation. This do not vary

significantly the results of the clustering effect, which can be even adversely affected.
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Study on the simulated system

As alluded above the sliding window size has been fixed at W = 7 and the sampling

frequency at 800 Hz. The number of signal vector realisations considered in the creation

of the reference state was M = 7. The analysis was only applied for the reduction in

the stiffness parameter of the nonlinear spring kn. The change of this stiffness produces

smaller changes on the system response compared to the linear stiffness k1 and k2 due

to its quadratic coupling as shown in section 2.4.1. Changes in this parameter produces

less distinguishable clusters (see Figure 2.14(a)) by the performance of the methodology

and hence the right selection of the frequency resolution can be more significant for the

damage assessment. Therefore, changes in the frequency resolution (∆f ) has been

introduced by the modification of the acquisition time in T = 1, 2 and 2.56s for the

measurement of the vibratory response.
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Figure 2.20: Scree diagrams of the simulated system for three different acquisition times (Ts=1s,
2s and 2.56s). a) Partial variance contained in each eigenvalue. b) Normalised eigenvalue spectra.

Figure 2.20 represents the scree diagram of the decomposition of the discretised

signal vectors measured on the simulated system for three different acquisition times.

Figure 2.20(a) represents the partial variance contained in each eigenvalue calculated

by Equation 2.20 and Figure 2.20(b) represents the normalised eigenvalue spectra cal-

culated by Equation 2.23. It can be observed that the percent of variance contained

in the first eigenvalue is different for each acquisition time but the largest variance
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content is for the case of Ts=2s. The variance content in the following eigenvalues de-

creases drastically in comparison with the first eigenvalue for all the different acquisition

times. the first eigenvalue clearly contains most of the variance in the decomposition

and therefore the RC constructed in the direction of its corresponding eigenvector will

describe the general trend of the original frequency spectrum. It can be also observed

in Figure 2.20(b) that for higher acquisition times (or higher frequency resolutions) the

variance content is distributed over more eigenvalues. The variance contained in the

6th and 7th eigenvalues is still visible for Ts=2 and 2.56s as shown in Figure 2.20(a).

This means that for high frequency resolutions, the signal vectors contain more precise

information of the global behaviour of the vibratory signal that not only introduces

useful information but also noise in the RCs decomposition.

Figure 2.21 represents the reconstruction of the frequency spectrum by using 2-RCs

and 4-RCs, and the clustering of the FVs from healthy and different kn reductions onto

a two dimensional feature space for different acquisition times. It can be observed that

the reconstruction of the frequency spectrum by 2-RCs is very smooth for all vibra-

tion signals recorded with different acquisition times. However, not all reconstructions

are able to draw an approximate spectral line which uncover all the vibration modes

described in the spectrum. The reconstruction of the frequency spectrum by 4-RCs

provides a better reconstruction for all vibration signals recorded at different acquisi-

tion times. The reconstruction by 4-RCs is able to depict all the peaks of the frequency

spectrum in comparison with the reconstruction by 2-RCs. It is observed that when

the frequency resolution increases the reconstruction by 2-RCs is better approximated.

In Figure 2.21(a) the peaks are not very well depicted and therefore the behaviour of

the vibratory response is not very well characterised by the reconstruction with 2-RCs

for an acquisition time of 1s. This effect can be observed in Figure 2.21(a) were the

projection of the FVs onto the two dimensional space built by T1 and T2 does not create

any cluster between the different stiffness reduction scenarios. In Figure 2.21(d) can be

seen an improvement in the results and successful clustering for the different stiffness

reduction scenarios for an acquisition time of 2s. The eigen-decomposition is slightly

different than for Ts=1s. The percentage of variance contained by the first component

increases by 3 percent only while the percentage of variance contained in the second
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Figure 2.21: Reconstruction and cluster plots for stiffness reductions on kn of the simulated
system at different acquisition times (Ts=1s, 2s and 2.56s).
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component falls by 4 percent (see Figure 2.20(a)). However, this small redistribution

results in a better signal reconstruction as shown in Figure 2.21(c). The effect on a

better reconstruction by 2-RCs is clearly beneficial for the formation of clusters between

different stiffness reduction scenarios as shown in Figure 2.21(d). Finally, the method-

ology was applied on signal vectors discretised by vibratory signals recorded at 2.56s.

Figure 2.21(e) represents very good reconstruction of the original frequency spectrum

where all the peaks were very good depicted by using only 2-RCs. Figure 2.21(f) shows

the clustering effect and it can be observed that a rather fine frequency resolution can

adversely affect the capabilities of the methodology towards clustering effect. A better

reconstruction of the frequency spectrum does not always provides the best clustering.

It can be observed that a finer resolution compress the clusters in both directions T1

and T2 and this effect can introduce some misclassification as seen between stiffness

reduction scenarios at 10% and 20%. However, it should be kept in mind that this

misclassification was developed using only 2-RCs for visualization purposes. As men-

tioned in the previous sections the consideration of more RCs might introduce more

relevant information which could be used for damage/delamination assessment. The

consideration of more RCs and their effect in the damage/delamination assessment is

studied in section 2.5.3.

Study on the five composite laminated beams

This section presents the same analysis as that in the previous section 2.5.1 but this

time applied to the experiment of five composite laminated beams.

To study the effect on the frequency resolution and the acquisition time, some

parameters have been fixed. The sliding window size W = 7 and the sampling frequency

was set at 1280 Hz. The number of signal vector realisations considered in the creation

of the reference state was M = 7. In the same way that in section 2.5.1, the analysis

was done using the scree diagrams (see Figure 2.22), the reconstructed spectrum and

the clustering plots (see Figure 2.23).

Figure 2.22 represents the scree diagrams of the decomposition of the discretised

signal vectors measured on the beam B1 at three different acquisition times (Ts=1, 1.6

and 2s). Figure 2.22(a) represents the partial variance contained in each eigenvalue
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Figure 2.22: Scree diagrams of the five composite laminated beams experiment for three differ-
ent acquisition times (Ts=1s, 1.6s and 2s). a) Partial variance contained in each eigenvalue b)
Normalised eigenvalue spectra.

calculated by Equation 2.20 and Figure 2.22(b) represents the normalised eigenvalue

spectra calculated by Equation 2.23. It can be observed that the percent of variance

contained in the first eigenvalue is different for each acquisition time but the largest

variance content is for the case of Ts=2s where the frequency resolution is the highest.

The variance content in the following eigenvalues decreases drastically in comparison

with the first eigenvalue. Similarly to the simulated system case, the first eigenvalue

contains most of the variance in the decomposition and therefore the RC constructed

in the direction of its corresponding eigenvector will describe the general trend of the

original frequency spectrum. It can be also observed that when the frequency resolution

increases, the variance content in the first eigenvalue also increases.

Figure 2.23(a) represents the reconstructed frequency spectrum by 2 and 4 RCs

when the signal vectors were discretised by an acquisition time at Ts=1s. The first

and second RCs were obtained by the eigenvectors corresponding to the first and the

second eigenvalue with a variance content of 80 and 7 percent respectively as shown

in Figure 2.22(a). The reconstructed spectrum, by the first two RCs, describes the

general trend of the original frequency spectrum fairly accurately except at higher fre-

quencies. However, the reconstructed spectrum improves when 4-RCs are considered

in the reconstruction. It can be seen that the reconstruction approximates much bet-
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Figure 2.23: Reconstruction and cluster plots of the five composite laminated beams experiment
for different acquisition times (Ts=1s, 1.6s and 2s).



CHAPTER 2 METHODOLOGY, VALIDATION AND CONSIDERATIONS 74

ter at higher frequencies by increasing the variance content in only a 6 percent. It is

important to mention that when the frequency resolution increases (Ts=1.6s and 2s),

the reconstructed frequency spectrum by 2-RCs improves not only at low frequencies

but also at high frequencies (see Figures 2.23(c) and 2.23(e)). As explained above,

the increment of the frequency resolution concentrates more variance in the first eigen-

values and this produces a better reconstructed frequency spectrum with only 2-RCs.

Similar to the example with an acquisition time of Ts=1s, the consideration of 4-RCs

in the reconstruction provides a better reconstructed frequency spectrum for both cases

Ts=1.6 and 2s.

Figure 2.23(b) represents the clustering effect of the FVs obtained from vibration

responses measured at Ts=1s. The FVs of each beam scenarios (B2, B3, B4, B5)

were projected onto a 2-dimensional feature space defined by T1 and T2. It can be

appreciated that the clustering effect is not well achieved. The methodology is able

to recognise between the healthy (B1) and the delaminated (B2, B3, B4, B5) beams,

however it cannot distinguish between the different delaminated scenarios. By increas-

ing the acquisition time to 1.6s, it results in an increment of variance content for the

first eigenvalue up to 83 percent while the variance of the second component decreases

by 2 percent (to 5 percent) as observed in Figure 2.22(a). This small redistribution

gives a better clustering representation where the FVs of the healthy and the differ-

ent delaminated beams are perfectly distinguished as shown in Figure 2.23(d). In this

case not only the detection between healthy and delaminated beams is observed but

also between different delaminated scenarios. However, when the acquisition time is

increased to 2s, the clustering effect does not improve but introduces some misclassi-

fication between the FVs of different delaminated beams scenarios as shown in Figure

2.23(f). Therefore, an excessive frequency resolution can adversely affect the clustering

effect. The same effect was also observed in the simulated system studied above, where

an increment in the frequency resolution gave worse results for the clustering effect.

2.5.2 Effect of the window sliding size

This section discusses the principal considerations for selecting the sliding window size

(W ) for successful damage and/or delamination detection and its posterior assessment.
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The sliding window size W has a particular importance on the form of the recon-

structed signal [115]. The selection of a proper sliding window size depends on the

problem at hand and on the preliminarily information in the vibratory signal. The

main principle for selecting a proper sliding window size is to find the value which pro-

duces separable and independent principal components but at the same time contains

the relevant information of the vibration signal. This is important for the creation of

the reference state that directly affects the performance of the methodology. It is more

beneficial to use the minimum possible number of RCs for the reconstruction because

the use of large number of RCs can introduce noise into the reconstructed spectrum.

Generally, large values of W will increase the number of components in the decom-

position. Then, the variance contained in the first PCs will be reduced and distributed

over the other PCs. Consequently, the information which is not contained in the first

RCs is distributed over the other RCs. Therefore, in order to obtain a reasonably good

reconstructed signal, more RCs have to be considered. The consideration of more RCs

can introduce irrelevant information such as noise.

As discussed in section 2.3.1, when the reference state is created by signal vectors

in the time domain representation, large values of W generate very well separated RCs

unless the complexity of the vibration response is significant and the separation of oscil-

latory components will be more difficult. This can be beneficial for extracting singular

oscillatory components of the vibration response which can describe a particular mode

of vibration. For small values of W , the variance contained in the first eigenvalues in-

creases which means that more than one oscillatory component is included in the first

RCs. However, they are not necessarily the most representative ones of the vibratory

response. In order to obtain a good reconstructed signal, more than one RC has to be

considered with the inconvenience that irrelevant oscillatory components (e.g. noise...)

will be included in the reconstruction. For more information of the influence of W in

the time domain see [72].

Differently, as discussed in the previous section 2.3.2 when the reference state is

created by signal vectors in the frequency domain representation, the decomposition

concentrates the larger amount of variance in the first eigenvalue. This means that the

first RC will contain the general trend of the original frequency spectrum and the rest of
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the RCs will contain the fluctuations on the main spectral line. Therefore, large values

of W create smooth reconstructions of the frequency spectrum by the consideration of

the RCs obtained in the directions of larger amount of variance. On the other hand,

small values of W concentrate the variance in the first eigenvalues and therefore the

reconstruction by their corresponding RCs will be much more detailed.

In general no universal rules and unambiguous recommendations can be given for

the selection of the sliding window size. The main difficulty here is caused by the

fact that variations in the sliding window size may influence both weak and strong

separability features which can have different performance in the methodology. To see

the influence of this parameter in the methodology, the frequency resolution and the

sampling frequency have been fixed for the entire analysis.

Study on the simulated system

This section represents the study of the sliding window size W in the simulated system

described in section 2.4.1. To study the effect of the changes in W , the acquisition time

at 2.56s and the sampling rate at 800 Hz have been fixed. The number of signal vector

realisations used to build the reference state were M = 7. The effect of the sliding

window size has been studied for four different values of W=7, 8, 25 and 50.
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Figure 2.24: Scree diagrams of the simulated system for different sliding window sizes (W=7, 8,
25 and 50). a) Partial variance contained in each eigenvalue. b) Normalised eigenvalue spectra.

Figure 2.24 represents the scree diagrams for the four different values of W when
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the decomposition has been applied on the vibratory responses from the simulated

system. It can be observed that the amount of variance contained in the first eigenvalue

decreases when the value ofW increase. The amount of variance contained in the second

eigenvalue increases for large values of W , while the amount of variance in the rest of

the eigenvalues decreases as shown in Figure 2.24(a).

This demonstrates that most of the variance is allocated in the first eigenvalues,

so that the global information of the vibration response is contained in the directions

of their corresponding eigenvectors. Also it can be observed that for large values of

W , the number of components needed for the decomposition increases. For values of

W = 7 and 8, there is a sharp decay after the 7th−8th eigenvalue while the distribution

of variance decreases slower for large values of W as shown in Figure 2.24(b).

Figure 2.25 represents the effect of the values of W on the reconstruction of the

frequency spectrum, by 2-RCs and 4-RCs as well as the effect on the clustering be-

tween different FVs projected onto a two dimensional space defined by T1 and T2. It

is observed that the reconstruction by the first 2-RCs improves for small values of W .

For all different values of W , the reconstructed spectral line describes the main trend of

the original frequency spectrum. The reconstructed spectral line for W = 7 is able to

depict all three peaks even though the amplitudes are not the same than in the original

frequency spectrum as shown in Figure 2.25(a). For the case of W = 8, the two main

peaks join in one but with a bit larger overall amplitude as shown in Figure 2.25(c). For

the other two cases W = 25 and 50 the reconstructed spectral line is less approximated

in terms of peak and amplitude approximation (see Figures 2.25(e) and 2.25(g)). How-

ever, the general trend of the spectral line is still well described by only 2-RCs. The

frequency bands that have large peaks/amplitude are depicted by the reconstruction,

therefore the vibration behaviour is well represented. It is also important to mention

that as expected, the reconstructed spectral line improves considerably for all different

W cases of study when 4RCs were used in the reconstruction. This behaviour occurs

for all different values of W .

The effect of the variance content in the first 2-RCs is also appreciated in the

clustering effect of the FVs onto the two dimensional space. It can be observed that for

small values of W = 7 and 8, the clustering is successfully achieved not only between
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Figure 2.25: Reconstruction and cluster plots for stiffness reductions on kn of the simulated
system at different sliding window sizes (W=7, 8, 25 and 50).
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observations with and without stiffness alteration but also between observations with

different stiffness reduction scenarios (see Figure 2.25(b) and 2.25(d)). A tracking

of the severity in the stiffness reduction was also detected, where the observations

with the largest stiffness reduction moves away from the healthy case. For the case

of W = 8, the clusters are more compressed and this is beneficial for differencing

between stiffness reduction severities. However, for large values of W = 25 and 50, the

clustering is not very well achieved (see Figure 2.25(f) and 2.25(h)). For the case of

large stiffness reductions, it can be observed that points corresponding to stiffness with

high reductions are well away from the ones corresponding to the healthy state. Thus,

high stiffness reductions can still be recognized from the healthy state. But the points

corresponding to 10 percent reduction are mixed with the ones corresponding to the

healthy state. Therefore, high stiffness reductions can be recognized and distinguished

when high values of W are considered but small stiffness reductions are not able to be

distinguished from the healthy state. This demonstrates that large values of W still

keep the general trend of the frequency spectrum and it provides useful results for large

changes in the system, so that large or global changes can be detected.

Study on the five composite laminated beams

Similarly to the case of the simulated system, the effect on the values of W was stud-

ied in the experiment of five composite laminated beams with different delamination

scenarios as described in section 2.4.2. As alluded above, the acquisition time and the

sampling rate have been fixed at 1.6s and 1280 Hz respectively in order to study the

effect of W = 7, 25, 50 and 100 in the performance of the methodology. The number of

signal vector realisations used to create the reference state was fixed at M = 7.

The amount of variance contained in the first eigenvalue decreases when the value

of W increases as shown in Figure 2.26(a). As expected, the number of eigenvalues

increases when the values of W also increases and therefore the information contained

in the vibratory response must be distributed over all eigenvalues. Nevertheless, most

of the variance content is still in the first two eigenvalues for all different values of W .

In Figure 2.26(b) is observed that for small values of W = 7, the amount of variance is

concentrated in the first eigenvalue by means of variance content. However, the amount
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Figure 2.26: Scree diagrams of the five composite laminated beams experiment for different
sliding window sizes (W=7, 25, 50, and 100). a) Partial variance contained in each eigenvalue b)
Normalised eigenvalue spectra.

of variance decreases rapidly in comparison when large values of W were considered in

the methodology.

Figure 2.27 represents the reconstructed spectral lines by 2-RCs and 4-RCs as well

as the clustering effect on the projection of the observation FVs onto a two dimensional

feature space defined by T1 and T2. A similar behaviour to that the simulated system

studied in the previous section was observed. The reconstructed frequency spectrum

is more detailed when small values of the sliding window size are used. For W = 7

the peaks are better approximated and described as shown in Figure 2.27(a). However,

the consideration of large values of W reduce the amount of variance contained in

the first eigenvalues. Therefore the RCs obtained by their corresponding eigenvectors

contain less information of the vibratory response. For this reason the reconstruction

is smoother than when small values of W were considered as can be seen in Figures

2.27(c), 2.27(e) and 2.27(g). Nevertheless, all the reconstructions of the spectral line

with 2-RCs describe very well the general behaviour of the original frequency spectrum.

The region, where the amplitudes are larger due to an accumulation of energy, is still

represented in the reconstructed spectral lines. Although large values of W (see Figure

2.27(g)) provide RCs which reconstruct the frequency spectrum very smooth, the mimic

of large and small amplitudes is still distributed in the same location than in the original
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(b) Clustering T1-T2. W = 7
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(c) Reconstruction. W = 25
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(d) Clustering T1-T2. W = 25
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(e) Reconstruction. W = 50
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(f) Clustering T1-T2. W = 50
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(g) Reconstruction. W = 100
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(h) Clustering T1-T2. W = 100

Figure 2.27: Reconstruction and cluster plots of the five composite laminated beams experiment
for different sliding window sizes (W=7, 25, 50 and 100).
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frequency spectrum.

The clustering effect is also affected when different values of W are used in the

methodology. When the reconstruction components provide a smooth reconstruction,

the FVs obtained by these RCs do not contain a precise information of the vibratory

response. This can be observed in Figure 2.27(h), where FVs of the different delam-

inated beam scenarios are mixed. The cluster do not distinguish between different

beam scenarios. For W = 100, 50 and 25, it can be observed that the FVs of the

delaminated beams B2, B3 and B5 are clustering together but away from B1, which

is the undelaminated beam. However, the delaminated beam B4 cannot be identified

as a delaminated beam (see Figures 2.27(h), 2.27(f) and 2.27(d)). On the other hand,

for W = 7 very well detailed clusters are observed not only between beams with and

without demalination but also between different delaminated beam scenarios as shown

in Figure 2.18(a).

2.5.3 Effect of the selection of the number of the reconstructed com-

ponents

As introduced in section 2.4.1 and 2.4.2, an increment of the dimension of the FVs

or in order words the consideration of more RCs in the reconstruction can improve

the damage/delamination assessment. In this manner, the FVs will be represented

onto a feature space with a p-dimension, where the observations are more observable

and distinguishable. As explained in section 2.2.3, each observation signal vector is

characterised in a FV with the dimension of the number of components contained in

the reference state. Therefore, the dimension of each FV is defined by the value of

the sliding window size considered in the decomposition (p ≤ W ). Then, each value

contained in the FVs is related to the information contained in its corresponding RC.

This section studies the effect of the selection of the number of RCs for dam-

age/delamination assessment. As alluded above, an increment of the dimension of the

FVs not only increases the distance between different clusters but also compresses the

clusters themselves. This is the concept of clusterability [116] which is a measure of

how well a given set of instances can be clustered. Intuitively, this is a measure of how

’tight’ the results of clustering are. Having tight clustering means that intra cluster
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distances tend to be much larger than inter cluster distances. The consideration of a

large dimensional FVs (or more RCs in the reconstruction) affects on the clusterability

and this is the aim of the analysis presented in this section. To evaluate this effect,

a supervised classification is performed in the clusters obtained in the projection of

the FVs onto a 2, 3 and 4-dimensional feature space, respectively. This is equivalent

to use 2, 3 or 4-RCs in the reconstruction or 2, 3 or 4-dimensions in the FVs. The

classification criterion is based on the minimum distance classifier and it is explained

in the following steps.

(1) Obtain the clusters by the projection of the FVs onto the p-dimensional feature

space. Each observation is labelled corresponding to the category from where it was

obtained. Then, it is possible to control if one observation belongs to one category or

to other.

(2) Based on the clusters obtained in the step 1, now the distance of each instance

observation is measured to each cluster/category by the Equation 2.18. This requires

to calculate the baseline matrix TB based on the p-dimensional FVs corresponding to

the category considered as baseline each time.

Di(B1) ≡ distance of an ith − observation to category 1

Di(B2) ≡ distance of an ith − observation to category 2

...

Di(BC) ≡ distance of an ith − observation to category C

(2.27)

Di(BC) = (Di(B1), Di(B2), ..., Di(BC)) (2.28)

The distances of an ith-observation to each category are arranged into a vector Di(BC)

with a dimension C-number of categories.

(3) The criteria of classification is considered as minimum distance classifier and it

follows the following rule.
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An ith − observation ∈ Bc = arg min{Di(BC)} where c = 1...C (2.29)

(4) The visualisation of the results obtained in the classification are represented in a

confusion matrix. Therefore, all the observation FVs which have previously generated

the clusters, are now tested by this classification procedure. This test is applied for

different dimensions of FVs.

To understand the classification procedure, an example which focus on the first con-

fusion matrix in the Figure 2.29 is commented. This confusion matrix represents the

results of the classification when the methodology was implemented in signal vectors

with an acquisition time Ts=1s and the FVs were projected onto a 2-dimensional fea-

ture space. Each row of the confusion matrix represents the category to test and each

column represents to which category, each observation of the category to test, was clas-

sified. Then, if we look at the 1st-row of this confusion matrix, it can be observed that

100% of the observations belonging to the category B1 have their minimum distance

to its own category. This means that the cluster of the observations of B1 is very well

defined because there is not any misclassification with other category. However, if we

look at now to the 3rd-row of the same confusion matrix, it is observed that 20% of the

observations belonging to the category B3 are misclassified to the category B2. In this

case only 80% of the observations belonging to the category B3 have their minimum

distance to its own category. This means that the cluster of the observations of B3 is

not perfectly defined and it mixes with the category B2.

The effect on the selection of the number of RCs has been studied first when the

signal vectors were measured for different frequency resolution (or different acquisi-

tion times) as explained in section 2.5.1 and secondly when the signal vectors were

decomposed by different values of sliding window size as explained in section 2.5.2.

Study of the number of RCs for variations in the frequency resolution

In section 2.5.1 was studied the effect of the frequency resolution in the measured

vibration responses within the methodology. As demonstrated, the frequency resolution
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Figure 2.28: Confusion Matrices of different stiffness reduction severities (0%, 10%, 20% and
30%) of kn in the simulated system at different acquisition times. Vertical direction shows changes
on Ts=1s, 2s and 2.56s and horizontal direction shows the number of RC considered (First 2RCs,
3RCs and 4RCs).

Figure 2.29: Confusion Matrices of the five composite laminated beams experiment (B1, B2, B3,
B4 and B5) for different acquisition times. Vertical direction shows changes on Ts=1s, 1.6s and
2s and horizontal direction shows the number of RC considered (First 2RCs, 3RCs and 4RCs).
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has a direct influence in the quality of the clusters generated for each category. In

order to visualise this effect only a two-dimensional feature space was considered in the

analysis. In this section, the consideration of more RCs or in other words an increment

of the dimension of the FVs is studied. First, when the first two RCs were considered

(RC1 and RC2), when the first three RCs were considered (RC1, RC2 and RC3) and

finally when the first four RCs were considerd (RC1, RC2, RC3 and RC4). The effect

of the selection of the number of RCs was studied for different frequency resolutions

(or acquisition times). Also the study was implemented first in the simulated system

(see section 2.4.1) and secondly in the experiment of five composite laminated beams

(see section 2.4.2).

To visualise the effect of the selection of the number of RCs, the procedure explained

above was implemented in this study. The confusion matrices represented in Figure 2.28

and 2.29 were calculated for the case of the simulated system and the five composite

laminated beams, respectively.

In Figure 2.28 can be observed the effect of the number of RCs for the case of the

simulated system. When the frequency resolution is low (Ts=1s), the consideration of

more RCs (or higher dimension of the FVs) is required to obtain a very well defined

clusters. By increasing the dimension of the FVs to 3, the clusters were very well

defined where the 100% of the observations of all the categories have their minimum

distance to its own category. Similarly, when the frequency resolution is high (for an

acquisition time Ts=2.56s), it is necessary to increase the dimension of the FVs upto

4 in order to obtain a 100% classification for all the categories.

The same analysis was implemented for the case of the five composite laminated

beams. The results of the classification is presented in Figure 2.29. The same behaviour

than for the simulated system was observed. For low frequency resolutions (Ts=1s) and

for high frequency resolutions (Ts=2s), it is necessary to increase the dimension of the

FVs to obtain a 100% correct classification for all the categories. However, it is also

observed that the increment of the dimension of FVs, it is not always beneficial. It is

observed that for the case of 4-dimensional FVs at Ts=1s, there is some misclassification

in the observations of the category B5 to the category B4. Therefore, the consideration

of more RCs in the reconstruction approximate better the reconstructed spectral line to
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the original one and this introduces additional information but also more noise which

adversely affects on the clusters.

Study of the number of RCs for variations in the sliding window size

In section 2.5.2 was studied the effect of the sliding window size within the methodology.

As observed, the sliding window size has a direct influence in the quality of the clusters

generated for each category onto a 2-dimensional feature space. In this section, the

consideration of more RCs or in other words an increment of the dimension of the

FVs is studied. First, when the first two RCs were considered (RC1 and RC2), when

the first three RCs were considered (RC1, RC2 and RC3) and finally when the first

four RCs were considerd (RC1, RC2, RC3 and RC4). The effect of the selection of

the number of RCs was studied for different sliding window sizes. Also here the study

was implemented first in the simulated system (see section 2.4.1) and secondly in the

experiment of five composite laminated beams (see section 2.4.2). The classification

procedure which was explained previously was implemented in this study.

Figure 2.30 represents the confusion matrices when the study was implemented in

the simulated system. As a general conclusion, it can be observed that for small values

of W = 7 and 8, the quality of the classification is better than for higher values of

W = 25 and 50. Also, it can be observed that for small values of W (7 and 8), the

consideration of more RCs or an increment of the dimension of the FVs, improves the

quality of the clusters. In these cases the consideration of 4-dimensional FVs gives

clusters very well defined where the 100% of the observations of all categories have

their minimum distance to its own category. However, when the values of W are large

(25 and 50), it is not enough the consideration of 4-RCs in the reconstruction to obtain

good classifications. This can be explained because the amount of variance contained

in the first eigenvalues reduces and the information contained in the first RCs is not

enough to reconstruct the behaviour of the vibratory response. In this case, more than

4-RCs are needed to obtain better clusters and therefore better classifications.

A similar study was applied for the case of the five laminated beams and the results

are represented in Figure 2.31. Similarly to the analysis for the simulated system,

small values of W provide better classifications for all the categories than large values
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Figure 2.30: Confusion Matrices of different stiffness reduction severities (0%, 10%, 20% and
30%) of kn in the simulated system at different sliding window sizes. Vertical direction shows
changes on W=7, 8, 25 and 50 and horizontal direction shows the number of RC considered
(Firsts 2RCs, 3RCs and 4RCs).

Figure 2.31: Confusion Matrices of the five composite laminated beams experiment (B1, B2,
B3, B4 and B5) for different sliding window sizes. Vertical direction shows changes on W=7, 25,
50 and 100 and horizontal direction shows the number of RC considered (Firsts 2RCs, 3RCs and
4RCs).
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of W . This can be explained as before, when the values of W are small the amount of

variance contained in the first eigenvalues is higher. This means that the information

also concentrate in the first RCs, which eventually is contained in the first scalars of the

FVs. For this reason the classification is perfect for the value of W = 7, where 100%

of the observations have their minimum distance to its own category by using only a

2-dimensional FVs. Obviously, the classification onto 2-dimensional space gets worse

when the values of W increase because the amount of variance contained in the first

eigenvalues decreases and the information contained in the first RCs is not sufficient to

depict all the changes caused by the delamination. However, the classification improves

when more RCs are considered in the reconstruction.

2.5.4 Discussion

The analysis developed in this section explains the importance of the choice of some

parameters and their effect on the methodology such as the frequency resolution (or

acquisition time) in the vibration responses and the sliding window size. The analysis

studies the effect of these parameters on the reconstruction of the original frequency

spectrum, on the clusters obtained by projecting the FVs onto the feature space and

also the influence on the selection of the number of RCs for the quality of these clusters.

The effect of the frequency resolution in the methodology can be summarised in the

following lines. A low frequency resolution can miss relevant information for the dam-

age assessment. The loss of information affects on the reconstruction of the frequency

spectrum and in the clusterisation, which makes more difficult the differentiation be-

tween categories. Generally, finer frequency resolution will improve the reconstruction

and hence the clustering. However, an excessive fine frequency resolution could intro-

duce additional information, such as background noise which can adversely affect on

the clusterisation.

The selection of the sliding window size depends on the problem at hand and on the

preliminarily information in the vibratory signal. As described in the literature review

and also in section 2.2, the sliding window size has to follow these limitations M ≤W

and W ≤ N/2. However, the main principle for selecting a proper sliding window size

is to find the value which produces separable and independent principal components
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but at the same time contains the relevant information of the vibration signal. The

study of the effect of the sliding window size (see section 2.5.2) demonstrates that

small values of W concentrate the information in the first RCs, while large values of

W reduce the information in the first RCs. Small values of W generate well defined

clusters, while large values of W generate less descriptive clusters. In order to obtain

good distinguishable clusters by using a reduced number of components, it is better to

choose small values for sliding window size. The results show that values of W close to

the number of signal vectors M , for the creation of the reference state, give well defined

clusters.

Finally, an increment of the dimension of the FVs (or the consideration of more RCs

in the reconstruction) generally improves the damage assessment. When the clusters

are not well defined by the parameter selected of frequency resolution or sliding window

size, an increment of the dimension of the FVs could give an additional information for

better interpretation of the results. The consideration of FVs with larger dimension

does not only increase the damage index, in terms of an increment of the Mahalanobis

distance to the baseline set, but also compress the damage indices of observations from

the same category. However, the consideration of more dimensions within the FVs

should be considered with care because it could adversely affect on the clusterisation or

categorisation. The consideration of more dimensions within the FVs is equivalent to

consider more RCs in the reconstruction. Therefore, the reconstructed signal is much

better approximate to the original one with the consideration of the noise removed in

the decomposition. This noise could affect negatively in the clusterisation and hence

in the damage identification.

2.6 Chapter summary

This chapter introduces the basics of the proposed damage assessment methodology for

composite laminated structures, as well as its validation and the study of the principal

parameters. The interpretation of the methodology in the time and frequency domain

was analysed. The construction of the reference state in the time domain provides sep-

arated and interpretable oscillatory components. Therefore, the information contained

in the reconstructed signal will depend on that oscillation components are included in
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the principal components. This can be beneficial when the identification and detection

of a predominant mode of vibration is the aim of the analysis. On the other hand,

when the methodology is performed in the frequency domain, the RCs used in the

reconstruction provide a smooth version of the original spectrum. This analysis gives

a general information of the vibration response since all the rotational patterns are

included in the reconstruction. The first RC describes the general trend of frequency

spectrum and the rest of RCs are the fluctuations over the spectral line.

The methodology was validated in a numerical system and in an experiment with

five delaminated composite laminated beams. For both cases, the methodology pro-

vides information about the detection and localisation of the stiffness alteration and

delamination, as well as the progression of the increment in the stiffness reduction

severity and the growth of the delamination. The analysis clearly demonstrated the

importance of multidimensional space, which is constructed by the FVs obtained within

the methodology. The use of a multidimensional space improves the capabilities of the

methodology to distinguish between different damage scenarios, that involves different

delamination sizes and locations.

Finally, the importance of the choice of some parameters and their effect on the

methodology such as the frequency resolution (or acquisition time) in the vibration

responses and the sliding window size were studied. A fine frequency resolution provides

better clusterisation and therefore better damage/delamination assessment. However,

an excessive frequency resolution could introduce additional information, which can

adversely affect the clusterisation. The selection of a proper sliding window size is to

find the value which produces separable and independent principal components but at

the same time contains the relevant information of the vibration signal. Small values

of W condense the information within the first RCs, while large values of W reduce the

information in the first RC. However, with large values of W , the global information

is still contained in the first RCs. Generally, an increment of the dimension of the

FVs improves the damage assessment. However, this should be considered with care,

because more dimensions could not contribute to the damage assessment and thus affect

adversely.



Chapter 3

Delamination assessment in

composite laminated plates

3.1 Chapter overview

The delamination assessment in composite laminated plates has been studied and pre-

sented in this chapter. To address this study, a finite element model has been used to

obtain controlled vibration responses from different composite plates with and without

delamination. The effect of the delamination on the natural frequencies has been con-

sidered and studied. Similarly, four composite plates were manufactured with the same

delamination scenarios to demonstrate and validate the numerical model in comparison

with the experiment. The vibration responses of both cases of study were processed

by the methodology introduced in Chapter 2 to assess the delamination in composite

plates. This analysis presents the capabilities of the methodology for the detection

and localisation of the delamination induced in the composite plates. The results by

the performance of the methodology have been compared and discussed between the

numerical and experimental case.

92
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3.2 Finite element modelling of the composite laminated

plates

The finite element model (FEM) used for analysing the vibration responses of the com-

posite laminated plates is a 20-nodes solid element that exhibits quadratic displacement

behaviour with three degrees of freedom (x,y,z). Solid186 was the element used from

the commercial software ANSYS, which is suitable for layered thick shells or solids (see

[117] for more information regarding the element selection). In this case 225 elements

were used per layer. The square laminated plates have the dimensions of 150 mm

and 10 layers with an approximate total thickness of 1.6 mm. Table 3.1 contains the

material characteristics used in the model.

Parameter Value Units

E1 = E2 59 GPa
E3 9 GPa

G12 = G13 = G23 7.17 GPa
ν12 = ν13 = ν23 0.3 -.-

ρ 1500 kg/m3

Table 3.1: Material properties of the composite laminates

Four plates were modelled and labelled as: undelaminated plate (H) and three

delaminated plates which were labelled as D1, D2 and D3. For all plate configurations,

the delamination size was 40 mm x 40 mm. Figure 3.1 shows the three delamination

configurations explained below:

- D1 configuration, delamination is placed in the middle of the plate, between the

5th and 6th layers;

- D2 configuration, delamination is again in the middle of the plate, placed between

the 8th and 9th layers;

- D3 configuration, delamination is moved closer to a corner, having its centre at

3/4 of each side, between the 5th and 6th layers.
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Figure 3.1: a) Delamination scenario D1. b) Delamination scenario D2. c) Delamination scenario
D3.

The plates were fully fixed in the left hand side edge, if the pictures in Figure

3.1 are taken as a reference, and they were free in the rest of the edges. In order

to obtain the first five natural frequencies of the undelaminated plate, modal analysis

was implemented by the software ANSYS (see [117] for more detail). The software

uses a Block Lanczos algorithm to extract the vibration modes, which is an eigenvalue

solver where the Lanczos recursion is performed with a block of vectors [118]. This

algorithm was useful for obtaining the natural frequencies of the undelaminated plate

but it cannot be used for delaminated plates because it does not consider any non-

linearities such as gaps. However, these results can be used as a reference point for

obtaining the natural frequencies of the delaminated plates.

To simulate the delaminated plates, the four regions approach was taken into ac-

count, as explained in [119, 120]. To illustrate the concept, a basic scheme is shown in

Figure 3.2. The delaminated specimen is divided in four regions where two belong to

the non-delaminated region (regions 1 and 4) and other two for the delaminated region

(regions 2 and 3). The delaminated region is composed of two separated blocks which

are joined at their ends to the non-delaminated regions. Basically, one of the regions

belongs to the laminates above the delamination (region 2) and the other belongs to

the laminates below the delamination (region 3). The constitutive equations in the

nodes that connect the regions must consider the continuity conditions of transverse
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displacements, slopes, bending moment and shear stress in the delaminated region and

also the continuity of axial displacements and forces in the entire specimen.

Figure 3.2: Scheme of the four areas approach for modelling of the delamination region.

The two surfaces identifying the delamination were modelled using targe170 (upper

surface) and conta174 (lower surface, the target) elements, which break the contact in

the delaminated region. The mesh was finer in the region where the delamination was

allocated.

The vibration response was obtained by applying a short/burst impulse on the

plate. The free-decay response was recorded after the application of the pulse load by

measuring the in-plane strain in one of the nodes with a similar location to the strain

gauge placed on the composite plates (see section 3.3.2). The vibration responses were

recorded for 1 s and sampling frequency 4098 Hz.

The natural frequencies of the delaminated plates were obtained by performing

a transient analysis in order to include the non-linear effects due to contact break-

age, delamination opening and closing (delamination breathing) and contact/impacts

between the delaminated layers during vibration. The frequency spectrum of the vi-

bratory response was calculated from the time-domain response via the Fast Fourier

transformation. Composite laminated structures have a small damping and then the

resonant frequencies are approximately equal to the natural frequencies of the system.

Therefore, the frequencies with larger amplitude can be considered to be the natu-

ral frequencies of vibration. In order to obtain the natural frequencies a peak-picking

technique on the frequency spectrum was applied [121, 122].
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Mode Undelaminated D1 D2 D3

ω(Hz) ω(Hz) κ(%) ω(Hz) κ(%) ω(Hz) κ(%)

1 74.06 74.02 0.05 74.03 0.04 74.13 0.09
2 442.00 442.01 0.002 441.83 0.03 439.81 0.49
3 521.98 522.26 0.05 521.95 0.005 517.10 0.93
4 853.25 853.93 0.07 852.08 0.13 850.54 0.31
5 1206.60 1175.40 2.58 1190.20 1.35 1203.70 0.24

Table 3.2: Numerical results of the first five natural frequencies (Hz) of the undelaminated and
delaminated composite plates.

Table 3.2 contains the first five natural frequencies obtained from the numerical

model of the composite laminated plates for undelaminated and delaminated scenarios.

It also contains the absolute percent value of the natural frequency change calculated

by Equation 3.1.

κ(%) =
|ωdelaminated − ωundelaminated|

ωundelaminated
100 (3.1)

It can be observed that the introduction of the delamination within the composite

plate decreases the natural frequency. However, it can be seen that the effect of delam-

ination on the natural frequencies is very small for the five modes of vibration where

the highest reduction is 2.58 percent in the fifth mode of the delaminated plate D1.

Higher modes are more sensitive than lower modes for all delamination scenarios. It is

also noticed that the decrease of natural frequencies is not the same for different modes

and does not follow any particular trend.

3.3 Experiment with composite laminated plates

Four specimens with the same configurations as those numerically simulated have been

manufactured and tested in order to first validate the FEM and second to obtain

vibration signals for performing the delamination assessment methodology introduced

in Chapter 2.
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3.3.1 Manufacturing process of the experiment specimens

Each composite laminated plate was manufactured by 10 layers of multi-prepreg woven

carbon fibre/epoxy laminates. The 10 laminates were laid upon one-by-one to produce

1.6mm total thickness. The laminates were cut with the required dimensions and

placed on a steel plate to guarantee an uniform flat shape for the entire specimen.

They were covered by a vacuum bag for the process of curing inside of the autoclave.

The parameters of the curing recipe were selected as follow: the air temperature was

incremented at 2oC/min and posterior hold at 120oC for one hour. A second increment

of temperature was introduced by 2oC/min upto 150oC and held for 2.5 hours. The

pressure into the vacuum bag was at 1 bar and then the pressure of the autoclave was

incremented upto 6 bar and remained constant for the entire process. After 2.5 hours

at 150oC the temperature was slowly decreased to cool down to 50oC before removal

of pressure. The plates were trimmed in all edges to remove the excess of resin and to

give the final dimensions. The specimens have been manufactured 20 mm longer on

the side of the clamping region to permit the constrains of the specimens themselves.

A Teflon sheet was introduced, with the dimension of 40mm x 40mm, at the lo-

cations detailed in Figure 3.1, during the manufacturing process to obtain the three

delaminated composite plates as shown in Figure 3.3(a). Finally, four composite plates

were manufactured: one undelaminated and three with different delamination scenar-

ios.

3.3.2 Experiment set up

The composite plates were clamped on the side where the plate was extended 20mm

to configure a 150mm free-span cantilever plate as shown in Figure 3.3(c). Two strain

gauges were placed on the upper surface of the plates corresponding to the same location

as in the modelled plates, as shown in Figure 3.3(b). The weight of the strain gauges

can be neglected and hence they do not affect on the vibration response. The plates

were excited by a sharp impact with a hard hammer to excite the maximum number of

vibration modes. The external in-plane strain was recorded by strain gauges powered

with a P-3550 Strain Indicator. An analogue-to-digital acquisition device digitalised

the signal which was then acquired on a personal computer by a Labview executable
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program. Each plate was precisely located in the test rig to have the same free span.

The force applied on each clamp was controlled and a thick steel plate was placed on

the clamp region to guarantee that the plate was fully fixed along the entire edge. The

plates were carefully placed in the same location because the only interest was to detect

changes due to the internal delamination introduced during the manufacturing process.

The vibration responses were recorded for 1.64 s and sampling frequency 1.25 kHz.

(a) (b) (c)

Figure 3.3: a) Teflon to induce delamination. b) Strain gauge location. c) Experiment set up.

3.3.3 Delamination effect on the natural frequencies in the experi-

ments with manufactured composite plates

The vibration responses obtained from the experiment described in section 3.3.2 were

used to obtain the natural frequencies of each composite plate. The responses recorded

in time domain were transformed to the frequency domain by the fast Fourier transform.

In this way the peak-picking technique was applied for selecting the frequencies corre-

sponding to the resonant peaks which can be associated with the natural frequencies

of the plates.

Mode Undelaminated D1 D2 D3

ω(Hz) ω(Hz) κ(%) ω(Hz) κ(%) ω(Hz) κ(%)

1 73.06 75.89 3.87 74.74 2.29 74.13 1.46
2 450.73 468.7 3.98 459.22 1.88 465.98 3.38
3 540.35 531.36 1.66 528.25 2.23 549.63 1.71
4 872.36 857.91 1.65 876.40 0.46 878.87 0.74
5 1307.7 1309.98 0.17 1314.39 0.51 1331.27 1.87

Table 3.3: Experimental results of the first five natural frequencies (Hz) of the undelaminated
and delaminated composite plate.
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For each plate scenario, 8 vibratory responses were measured. The natural frequen-

cies were measured for each vibration response and the mean value of each natural

frequency is represented in Table 3.3. It can be observed that the presence of the de-

lamination produces small changes in the natural frequencies which are very difficult

to track. In the first natural frequencies, the value of the natural frequency increases

rather than decrease. However, the values of the higher natural frequencies decreases

with the presence of the delamination. From this observation, it can be seen that the

higher natural frequencies are more sensitive to delamiantion than the small ones. How-

ever, the absolute percent value of the natural frequency change due to delamiantion

is very small and it is not a robust feature for delamination assessment.

3.4 Numerical and experimental validation

This section compares the natural frequencies obtained in the numerical model and

in the experiment. In Table 3.4, it can be observed that the experimental natural

frequencies are very close to the ones found by the numerical analysis. The standard

deviation and the mean ratio is for all the cases less than 10 percent. This means that

the values of the natural frequencies found in the experiments do not vary a lot from

the mean value and then the results are robust. Moreover, this ratio is very small for

the first natural frequencies and it tends to increase for higher natural frequencies. This

phenomenon demonstrates that higher natural frequencies were more difficult to catch

and the values were more dispersed because it was difficult to accurately depict the

value of high natural frequencies. On the other hand, it is also important to mention

that the percent ratio defined by the standard deviation and the mean value is larger

than the absolute change percent value observed in Table 3.3. In this way, the possible

error in obtaining the natural frequency varies more than the effect of the delamination

in the natural frequency. This conclusion was also observed in [31] where the effect

of the delamination on the natural frequencies was also analysed for a finite element

model of composite laminated plates. Additionally, composite laminated structures are

known to have double/very close modes of vibration [123, 124] which can also be an

inconvenience for detecting the natural frequencies [125]. This behaviour is observed

in the results where two natural frequencies are included in the frequency range of
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440 − 520 Hz. Having close modes can confuse the mode identification, that makes it

more difficult to catch the changes in the natural frequencies due to delamination.

Undelaminated Delamination 1

Mode Numerical Experiments Numerical Experiments

ω(Hz) µ σ/µ(%) ω(Hz) µ σ/µ(%)

1 74.06 73.59 0.32 74.02 75.89 0.16
2 442.00 450.73 4.04 442.01 468.70 2.26
3 521.98 540.35 5.97 522.26 531.36 2.19
4 853.25 872.36 2.11 853.93 857.91 4.04
5 1206.60 1307.70 6.10 1175.40 1309.98 4.99

Delamination 2 Delamination 3

Mode Numerical Experiments Numerical Experiments

ω(Hz) µ σ/µ(%) ω(Hz) µ σ/µ(%)

1 74.03 74.74 0.41 74.13 75.47 0.26
2 441.83 459.22 5.71 439.81 465.98 1.92
3 521.95 528.25 2.94 517.10 549.63 4.16
4 852.08 876.40 1.57 850.54 878.87 0.82
5 1190.20 1314.39 1.10 1203.70 1332.27 1.08

Table 3.4: Experimental and numerical results of the first five natural frequencies (Hz). µ: mean
value of experimental ω(Hz) - σ: standard deviation

Therefore, the numerical and experimental results show that changes in natural

frequencies due to delamination are slightly sensitive to delamination but not enough

to be a good delamination indicator. It seems that high frequencies are more prone to

be affected by delamination, although it is difficult to determine that natural frequency

is more sensitive to delamination. However, higher frequencies are difficult to catch.

In this way, methods which consider all the rotational patterns or somehow an energy

dissipation can be more beneficial because they can consider the effects on the contact

between delamination parts [126]. Therefore, when delamination happens somewhere

in a composite plate, there may be an interactive motion or impact within the delami-

nation region during the vibration of the plate. This effect is difficult to catch for this

reason the consideration of all the rotational patterns will include this effect as well.
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3.5 Delamination assessment technique for composite lam-

inated plates

As explained in the previous section, a technique which is able to uncover all the

rotational patterns of the measured response will be beneficial for the delamination

assessment. The methodology presented in Chapter 2 is a non-model based technique

which is simply based on the analysis of the measured vibration responses. Delamina-

tion is likely to introduce nonlinearities in the vibration response such as the friction

between layers or local bending of the layers and these effects are rather difficult to

detect. Such modes cannot be detected by using modal analysis and by using simple

spectral analysis, while this methodology is capable of contain such oscillation patterns

because they are included in the measured vibration response.

The methodology used in this study transforms the initial vibration responses into

new variables which retain most of its variance and the variance has been observed

to change as a result of delamination. These new variables are based on the unde-

laminated plate that creates a reference state, where the features obtained from the

vibration responses of different composite plates, with delamination are compared and

assessed. Additionally, the methodology reduces the dimension of the measured data.

Furthermore, it possesses clustering and categorization properties in the sense that

the new components tend to make clusters corresponding to the different categories of

data. Therefore, signals from intact structures and those from structures with different

locations of delamination can be divided in clusters. This is achieved by reducing the

distance between data vectors from the same category, while at the same time increas-

ing the distance between data vectors from different categories. It also preserves the

information contained in the original signals in terms of variability.

In this section, the novel methodology is applied on the vibration responses mea-

sured on the composite plates. First, the analysis is applied on the vibratory responses

obtained in the FEM and secondly on the vibratory responses obtained in the experi-

ment with different composite laminated plates.
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3.5.1 Delamination assessment in the vibration responses of the nu-

merical model of the composite laminated plates

This section presents the delamination assessment of the numerical model of the com-

posite laminated plates. The vibration responses measured on the composite laminated

plates described in section 3.2 are now processed by the methodology described in Chap-

ter 2.

The in-plane strain was measured in each plate as detailed before. In order to

generate more than one realisation white Gaussian noise was added by signal-to-noise

ratio (SNR) in dB. For this study the additive noise was set at 10 dB. This noise

contamination is used to introduce small alterations in the vibratory response and then

generate a set of 10 vibration responses for each plate with a total of 40 vibration

responses considering the sum of all the plates.

The reference state was created in the vibration responses of the undelaminated

plate with the following parameters M = 10 and W = 11. The selection of the sliding

window size parameter is based on the study developed in section 2.5.2. Generally the

selection of small values for W and relatively close to M gives well defined clusters.

The vibration responses were transformed to the frequency domain by Equation 2.21

and then the frequency spectrum of each realisation was considered in the analysis.

Therefore, the reference state was constructed by 10 signal vectors embedded in 11

lag-copies for each signal vector, which yields 110 eigenvalues and their corresponding

eigenvectors. Each signal vector was then divided in 11 PCs and reconstructed into

11 RCs which were used to define the reference state R with a dimension 11. Figure

3.4(c) represents the scree diagram of the eigen-decomposition of the signal vectors

used to create the reference state, where the partial variance percent contained in

each eigenvalue can be seen. The amount of variance contained in the first eigenvalue

is 72 percent and 15 percent in the second eigenvalue. The rest of the eigenvalues

have less than 10 percent of the total variance which decreases down to the seventh

eigenvalue and thereafter, it remains constant and very close to zero percent. It can

also be observed that the first two eigenvalues are well separated from the rest with

87 percent of the total variance. Figure 3.4(a) shows the comparison of the frequency

spectrum reconstructed by the first two RCs (RC1 and RC2) and the original frequency
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Figure 3.4: Based on the undelaminated vibration response of the numerical model. a) Com-
parison between the reconstructed frequency spectrum by the first two RCs (RC1-RC2) and the
original frequency spectrum. b) Comparison between the reconstructed frequency spectrum by
the first four RCs (RC1-RC4) and the original frequency spectrum. c) Scree diagram of the first 20
eigenvalues. d) Clustering effect on the projection of the FVs onto a 2-Dimensional space (T1-T2).

spectrum obtained by the vibratory response of the undelaminated plate. It can be

observed that the reconstructed spectrum approximates very well the principal modes

of vibration and removes the background noise. Therefore, the general trend of the

frequency spectrum is very well defined by using only two RCs in the reconstruction.

In Figure 3.4(b) the comparison of the reconstructed spectrum by the first four RCs

and the original frequency spectrum is represented and compared. It can be observed

that there is an intensification of the amplitudes in all the peaks but especially in the

peaks within the range 400 − 520 Hz which correspond to the region where there are

two modes of vibration very close. Based on the reference state created by the 10
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signal vectors, the FVs for each observation signal vector were calculated. Each set of

FVs, corresponding to each plate scenario (three with delamination and one without

delamination) were projected onto a two-dimensional feature space constructed by T1

and T2. Figure 3.4(d) represents the cluster effect of all observations onto the feature

space. It is clearly observed that the observation points corresponding to the same plate

scenario reduce their distances and increase their distances to the observation points

corresponding to other plate scenarios. In this case, all observation points from plates

with delamination are very well separated from the observations of undelaminated

plates. Besides, the clusters are also able to distinguish between observation points

from the different delaminated plates which involve different delamination locations.
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Figure 3.5: Damage index using a two dimension FV (T1 and T2) of the vibration responses of
the numerical model.

In order to evaluate the effect of these clusters, a damage assessment is performed

as shown in section 2.2.4. The FVs which characterises the undelaminated plate were

used to construct a baseline matrix where the observation FVs can be compared. The

Mahalanobis distance is then measured from each observation FV to the Baseline ma-

trix. Figure 3.5 represents the distances of each observation to the baseline set. The

dimension of the FVs used to compute the distance was p = 2. It can be clearly

observed that all distances of the observation points corresponding to the plates with

delamination are the greatest and the distances of the observation points corresponding

to the undelaminated plates are the smallest. In addition, the distances from obser-

vations corresponding to the same delaminated plate are compressed and represent
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values very similar which benefits the differentiation between different delaminated

plates. The differentiation between the different delaminated plates shows the poten-

tial of the methodology not to only detect delamination but also to distinguish among

different delamination locations.

3.5.2 Delamination assessment in the vibration responses of the ex-

periment with composite laminated plates

The collected data was made up of in-plane strain responses measured on the vibrating

composite plates under a sharp impact excitation. Eight realisations were measured on

each composite laminated plate which were transformed to the frequency domain and

discretised into a signal vector with dimension N equal to the length of the vibration

response. Therefore a total set of 32 signal vectors were considered in the analysis.

The reference state was constructed with M = 8 signal vectors from the undelaminated

composite plate and the sliding window size was selected as W = 11. The selection

of the sliding window size parameter is based on the study developed in section 2.5.2.

Generally the selection of small values for W and relatively close to M gives well

defined clusters. The eigendecomposition of the covariance matrix of the full embedding

matrix yields to 88 eigenvalues and eigenvectors. Figure 3.6(c) represents the scree

diagram of the decomposition and defines the partial variance percent contained in

each eigenvalue. Similarly as in the numerical case, the concentration of variance

in the first eigenvalues is the largest, with 72 percent in the first eigenvalue and 12

percent in the second eigenvalue. It can also be observed in this Figure 3.6(c) that

after the fifth eigenvalue, the amount of variance contained in the eigenvalues remains

constant and very close to zero. This means that the information contained in their

corresponding eigenvectors does not have significant variability in the original frequency

spectrum. Based on this decomposition each signal vector was then divided in 11 RCs

which are used to define the reference state with a dimension 11. In Figure 3.6(a)

can be observed the comparison between the reconstructed frequency spectrum by

the first two RCs and the original frequency spectrum. It can be observed that the

reconstructed spectrum describes the trend of the original frequency spectrum quite

well approximated with only 84 percent of the total variance. Similarly, Figure 3.6(b)
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compares the reconstructed spectrum by the first four RCs and the original frequency

spectrum. In this case the reconstructed spectrum does not only describes the general

trend of the original spectrum but also depicts very well all the peaks even in the two

close peaks between 400 − 500 Hz. The feature vectors were calculated by projecting

the observation signal vectors onto the reference state. In this case, 32 observation

FVs with a dimension of 11 were obtained. Figure 3.6(d) represents the clustering

effect when the observation FVs were projected onto a two-dimensional feature space

constructed by T1 and T2. Four different clusters were obtained, one for each composite

plate scenario.

In order to evaluate the delamination for each composite plate, the Mahalanobis

distance has been measured from the FVs of each composite plate to the baseline

matrix, created by the FVs of the undelaminated composite plate. A threshold was

found through the distances of the observation points of the undelaminated composite

plate to the baseline set. For this study, the threshold ϑ was set at the maximum value

obtained when the distance is measured to the FVs corresponding to the observations

of the undelaminated plate itself.

Figure 3.7(a) represents the Mahalanobis damage index when the dimension of the

FVs was considered as 2. It can be observed that all the distances calculated from

the observation FVs of the composite plates with delamination are greater than the

threshold. Therefore, the methodology was able to detect when a plate contains a

delamination for all observations studied. The distances represent a similar magnitude

for observations of the same composite plates. In this manner, it can be observed three

regions which allows to roughly distinguish between different composite delamination

scenarios. Although, these three regions can be roughly interpreted, it is also observed

that the observations from D2 and D3 can be confused as well as the observations from

D3 and D1. As shown in Chapter 2, if the dimension of the FVs is incremented, a clear

improvement of the delamination assessment could be obtained (see Figure 2.19(b)).

For this reason, the dimension of the FVs was incremented up to 4 because, after the

fourth eigenvalue, the scree diagram has a change in the slope and this can be used as

a technique for selecting the number of components considered in the analysis. Figure

3.7(b) represents the Mahalanobis distance of each observation to the baseline matrix
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Figure 3.6: Based on the undelaminated vibration response of the experiment with compos-
ite plates. a) Comparison between the reconstructed frequency spectrum by the first two RCs
(RC1-RC2) and the original frequency spectrum in logarithm scale. b) Comparison between the
reconstructed frequency spectrum by the first four RCs (RC1-RC4) and the original frequency
spectrum in logarithm scale. c) Scree diagram of the first 20 eigenvalues. d) Clustering effect in
the projection of the FVs onto a 2-Dimensional space (T1-T2).

when the dimension of the FVs is 4. Figure 3.7(b) shows the distances measured to the

observations of the delaminated plates increase and clearly improve the delamination

detection. Moreover, the distances computed in observations from the same plate

scenario, compress and give similar values. Because of the increment of the dimension

of the FVs, it can be distinguished between observations from different plates which

involves different delamination locations.

As explained before, when 4-RCs were used in the reconstruction of the frequency

spectrum, the spectral line describes the original one much better (see Figure 3.6(b)).
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Figure 3.7: Based on the vibration response of the experiment with composite laminated plates.
a) Damage index using a two dimension FV (T1 and T2) and b) Damage index using a four
dimension FV (T1, T2, T3 and T4). The dashed line represents the threshold.

This reconstructed spectrum approximates better on the frequency range where there

are two modes of vibration very close (400−500 Hz). These two modes correspond to the

2nd and the 3rd natural frequencies which commands the 2nd and the 3rd modal shapes.

As shown in [31], there is information related to the delamination, which cannot be

appreciated in the natural frequencies, it can however be significant in the analysis of the

modal shape due to its relation with the energy dissipation. At the modal shapes which

act in the delamination region, the phenomenon of the interaction between laminates in

the delamination region, will somehow be included in the analysis. It can be observed in

Table 3.3 that the changes in the 2nd and the 3rd natural frequencies are more significant

because of the delamination and hence considering two additional dimensions in the

FVs, it can also be appreciate in the damage index as shown Figure 3.7(b). It can

be observed that the distances corresponding to each delaminated scenario are now

different and they can eventually be distinguished.

3.6 Discussion

The delamination assessment in composite laminated plates was studied first in a

numerical model and second in an experiment within the methodology presented in

Chapter 2. As alluded above, the effect of the delamination in the natural frequencies
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generates very small changes and they are not a good feature for the delamination

assessment. These changes are predominant in higher frequencies but they are still

smaller than the error caused in the experimental selection of the natural frequencies.

In this case one cannot guarantee that changes in the natural frequencies are due to

delamination [127]. Then, delamination is more a local problem and if the modes of vi-

bration, which excite the delamination region are not correctly selected, the established

mechanical model will not be effective for structural damage detection [128]. However,

when the delamination is excited locally by a particular mode of vibration, there will be

an interactive motion by the effects of opening and closing of the delamination region

that dissipate energy which is contained in the vibration response.

The methodology applied for the delamination assessment contains all the rota-

tional patterns of the vibration response. The rotational patterns are more or less

excited depending on the excitation. Therefore, they will be more or less significant in

the vibratory response. The vibratory responses are characterised in FVs, based on the

comparison with the reference state, which in this case was constructed in the undelam-

inated composite plate. As shown in the results for both numerical and experimental

analysis, it can be observed that the vibratory response is reduced to a two-dimensional

space which is able to differentiate between plates with and without delamination. Also

for the experimental case, where the delamination assessment between different delam-

ination scenarios was not very clear, an increment of the dimension of the FVs works

positively for better observability and distinction between delamination scenarios. The

results have a similar trend for the numerical model and the experimental case. It can

be observed that the distances for D2 in the FEM (see Figure 3.5) and in the exper-

imental case (see Figure 3.7(a) and 3.7(b)) have the smallest damage indices. Also,

the delamination scenarios of D1 and D3 describe a similar trend in both analysis,

numerical and experimental.

3.7 Chapter summary

The delamination problem has been analysed using a finite element model and an ex-

periment with composite laminated plates. First modal analysis was implemented in

the vibration responses measured on the composite plates. The effect of the delami-



CHAPTER 3 DELAMINATION ASSESSMENT IN COMPOSITE PLATES 110

nation produces slight changes on the natural frequencies of the composite laminated

plates, although the natural frequency variation increases with the order of the natu-

ral frequency. However, the error in obtaining the experimental natural frequencies is

greater than the changes produced by the effect of delamination. In this case, it can be

mentioned that the effect of the delamination in the natural frequencies is not sensitive

enough to be used as delamination assessment feature.

Therefore, the vibration responses has been processed through the methodology for

delamination assessment introduced in Chapter 2. In this manner, all the rotational

patterns included in the vibration response are considered in the analysis. The effect

of the delamination in the vibration response will be highlighted, if a particular mode

of vibration excites the delamination region. For this reason, the consideration of all

the vibration modes contained in the vibration response could benefit the delamination

identification. The methodology decomposes the vibratory response in FVs, which

contains information of the vibratory response by means of the variance content. The

FVs are directly related to the RCs, which gives an idea about the frequency range of

the spectrum that takes part, when different dimension of FVs are considered. The

results show that the data-based VSHM methodology successfully detects delamination

and also distinguishes between different delamination scenarios. This demonstrates the

potential of the methodology for delamination localisation due to the ability to cluster

different delaminated composite plate scenarios. The results encourage to use the data-

based VSHM methodology for the identification of the delamination location and extent

in future investigations.



Chapter 4

Damage assessment for wind

turbine blades

4.1 Chapter Overview

This chapter introduces a data-based vibration structural health monitoring technique

for wind turbine blades. The technique is based on the methodology introduced in

Chapter 2, where the vibration responses measured on the wind turbine blades (WTB)

were processed by the methodology for damage assessment. The vibration responses

are characterised in observations defined by multidimensional FVs. The study of these

observations is crucial for damage identification. For this purpose a practical inspection

phase was implemented to maximize the damage detection and minimize the healthy

false alarms. The nature of the threshold is based on the probability distribution of the

observations considered as a baseline. The damage assessment was first implemented in

a lab-scale WTB with an automatic electromagnetic actuator and accelerometers dis-

tributed along the WTB. This first study was focused on the detection and evaluation

of different damage locations as well as their progression. Secondly, the same method-

ology was implemented in a large SSP34m WTB for detection and evaluation of an

artificial damage introduced in the blade. In this case, the distributed accelerometers

recorded the free-decay acceleration responses for four different actuation locations.

The experiment studied the damage assessment performance by the influence of the

different sensor and actuator locations.

111
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4.2 Practical SHM technique implementation for wind

turbine blades

Nowadays, vibration-based structural health monitoring became a trend in the future

techniques for monitoring the health of modern civil engineering and aerospace en-

gineering among many other sectors. Indeed, the growth of off-shore wind turbines

place VSHM at the forefront of the contemporary research. Visual inspections of these

structures are dangerous, expensive and might require a tedious planning, which can be

particular and different for each case. The idea of developing an on-line remote system

to monitor the health of the structure is of great interest for these kind of structures.

There are many different approaches to VSHM which can be implemented for wind

turbine blades. In this chapter a technique is presented which is based on an active

system for VSHM of WTB. This means that the vibrations are introduced artificially

by an actuator to excite the WTB and monitor its vibration response, that is measured

by means of the distributed accelerometers along the WTB.

The recorded signals are then processed by the methodology algorithm to determine

the observation damage indices. The damage indices are compared to the defined

threshold to determine whether or not the WTB is damaged. The proposed VSHM

methodology uses a medium frequency range excitation which is a compromise between

the propagation range and detection resolution. As mentioned in [129], the range of

frequencies employed in damage location has a great influence on the resolution of the

results and also the physical range of application. The great advantage of using low

frequency vibration measurements is that the low frequency modes are generally global

and so the vibration sensors may be mounted remotely from the damage site. Equally

fewer sensors may be used. The problem with low frequency modes are that the spatial

wavelengths of the modes are large, and typically are far larger than the extent of

the damage [130]. Damage in wind turbine blades appear firstly locally which is more

difficult to be detected. However the analysis of damage growth, it might have more

global effects which contributes in its detection. The proposed methodology studies the

effect on the sensors distributed along the blade to roughly relate the sensor location

with the actual damage location. This may contribute to the damage detection and
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location.

4.3 Integrated vibration-based structural health monitor-

ing system

An online VSHM is introduced based on an unsupervised active system which means

that only data from the healthy blade was considered to create the reference state and

the blade was excited by an active actuator located on the blade. With the reference

state created on the vibration responses of the healthy blade, a baseline set was con-

structed to measure the distances of any observation to the baseline set and thus obtain

the damage index for each observation (see Chapter 2). The nature of the damage as-

sessment methodology heavily relies on statistics in order to improve the robustness

detection rate and minimize the number of false alarms. In order to perform an in-

spection phase of the damage indices obtained, an automatic threshold procedure was

considered. Each damage index can be evaluated to be the healthy or damaged blade

by comparing with the threshold.

4.3.1 Threshold setting for inspection phase

A probabilistic threshold is based on the probability density function (pdf) of the data

considered as a training set. As explained in section 2.2, each vibration response obser-

vation is characterised through the methodology, in a single value D, that defines the

damage index of each observation. These damage indices are expected to be different

when the observations belong to different structure categories or similar, if they are ob-

tained from the same structure category. These values were obtained by computing the

Mahalanobis distance as shown in section 2.2.4. The damage indices are always positive

(D > 0). Based on this assumption, a log-normal probability density function is used

to approximately fit the data considered as training set (observations from the healthy

structure), in order to set a threshold to distinguish between observations from healthy

and damaged structure. This kind of damage classification, using a probability test,

was also studied in [131] where different probability distributions were considered. (See

Appendix A to visualize an example of data distribution based on the example detailed



CHAPTER 4 DAMAGE ASSESSMENT FOR WIND TURBINE BLADES 114

in section 4.4). A lognormal probability density function is described by Equation 4.1.

f(D|µ, σ) =
1

Dσ
√

2π
exp

[
−(lnD − µ)2

2σ2

]
; D > 0 (4.1)

where:

D: Damage indices obtained by observations of the healthy blade considered as training

data set

ln D: is the natural logarithm of D

µ, σ: are mean and standard deviation of ln D, respectively

Then, the threshold DT is selected by a particular risk level which determinates the

false alarm probability equal to α in the lognormal density function as shown in Figure

4.1(a). The threshold is calculated by the inverse of the lognormal cumulative density

function1 which gives the value with a probability 1 − α in the cumulative density

function, described by the equation 4.2 (see Figure 4.1(b)).

DT = F−1(p|µ, σ) = {DT : F (D|µ, σ) = p} (4.2)

p = F (D|µ, σ) =
1

2

[
1 + erf

(
lnD − µ
σ
√

2

)]
(4.3)

where:

p: is the lognormal cumulative density function described by Equation 4.3

erf : is the error function2 defined as erf(D) = 2√
π

∫ D
0 e−t

2
dt (see [132] p.110)

DT : is the value of the sampling training data with probability 1−α selected to be the

threshold

Therefore, any observation damage index Di in the range [0, DT ] will be considered

as an observation from the healthy structure and anything else will be considered as a

damaged structure as described by the following decision rules.

H1: Di ≤ DT ⇒ Healthy structure

H2: Else ⇒ Damaged structure
(4.4)

1The inverse of the lognormal cumulative density function was implemented by the Matlab function
logninv.m

2The erf function was not calculated separate but as part of the Matlab function logninv.m
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Figure 4.1: Statistical hypothesis threshold based on lognormal distribution (one-side only). a)
Probability density distribution. b) Cumulative density function.

4.4 Damage assessment for small lab-scale wind turbine

blade

Wind turbine blades are manufactured by two half shells made by composite laminates

which are glued together to form the entire structural member. This connection must

be carefully controlled due to its high probability to disbond which might result in the

collapse of the entire structure. In this section, a lab-scale blade manufactured for the

Wind Car project at Wind Energy department of Technical University of Denmark was

analysed for damage detection and localisation. The similarity in the manufacturing

process of these blades to a real WTB serves as lab-scale test for the real WTB. The

objective of this analysis is to detect different damage locations introduced in the

blade. For each damage location three different damage sizes were also introduced to

see the effect on the damage progression by means of the methodology. The analysis

was implemented by the measurements of one accelerometer each time. The aim was to

evaluate the damage assessment methodology for each accelerometer location and study

the relation between the location of the sensors and the actual damage location. In this

section the experimental work is described first, and secondly the damage assessment

of a lab-scale WTB.
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4.4.1 Experimental work

Test rig

A dedicated test setup was created to evaluate the damage on a lab-scale wind blade

manufactured in the DTU Wind Energy department of Technical University of Den-

mark. The blade consists of two parts manufactured separately from composite lami-

nates (see [133] for details of blade design and implementation). The two parts, pressure

and suction sides, were joined together by means of a big number of small bolts (50

bolts), placed along the leading and the trailing edges a 25 mm distance from each

other. This connection was applied on the same area where the two blade parts are

generally glued. Once the blade was finalised, it was placed in a test rig where the root

end was clamped in a cantilever configuration as it is supposed to be mounted on the

rotor hub (see Figure 4.2(b)).

1 3 5 7 9 11 13

2 4 6 8 10 12 14

15 90 120 125 120 125 135
803

120

TE

LE

Actuator

Accelerometer

D1

D2

D3

DamagedLocation

Support

TE:dTrailingdEdge

LE:dLeadingdEdge
units:d[mm]

(a)

(b)

Figure 4.2: Experiment set up of the lab-scale wind turbine blade. a) Experiment scheme. b)
Experiment set up

A total of fourteen B&K Type 4507 B4 monoaxial accelerometers were mounted

along both edges. Seven along the Leading Edge (LE) and seven along the Trailing
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Edge (TE), separated from each other at the distances shown in Figure 4.2(a).

During the test, the blade was artificially excited by a small electro-mechanical actu-

ator mounted at 120mm from the root end, as shown in Figures 4.2(a) and 4.3(a). The

actuator was driven by a signal generator. This set up configuration enables periodic

highly repeatable force impulses to be introduced into the blade structure. Therefore,

the vibration responses were measured by the the array of accelerometers distributed

along the blade for each actuator impact. The data acquisition was conducted using

B&K Pulse LAN-Xi modules Type 3053-B-120 and 3160-A-042, the latter also includes

the signal generator. In total, 15 channels were recorded: 14 acceleration signals and

the driven signal from the signal generator, the latter to facilitate triggering during the

post-processing.

Damage simulation

As described above one of the most common form of damage in this kind of structures is

the loss of connection between the pressure and suction part. When the damage occurs,

it appears in one of the edges on the blade. Due to the stress concentration around

the damaged region, the small failure can grow to levels when the failure mechanism is

impossible to control and eventually results in the collapse of the entire structure.

(a)

D# - Small
D# - Medium
D# - Large

Bolts
Tightened

Bolts
Untightened

(b)

Figure 4.3: a) Electromagnetic Actuator b) Damages severity scenarios.

In the small WTB considered in this study, the two parts were connected to each

other by bolts along both edges. This solution greatly simplifies introducing damage
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into the blade. One shall simply undo some of the bolts which, in this way, it is easy

to control the damage location and size by untightening more than one bolt. For the

damage ’repair’, the loosened bolts need to be re-tightened. This approach allows

modelling of when the damage occurs by debonding of the leading and trailing edge.

However, there are other types of damages, which cannot be modelled with the current

setup.

With this experiment setup, three different damage locations were introduced as

shown in Figure 4.2(b). First Damage (D1) was placed close to the tip of the blade

in the trailing edge (between sensors 2 and 4). Secondly, Damage (D2) allocated more

or less in the middle of the blade in the leading edge (between sensors 5 and 7) and

finally, Damage (D3) which is very close to the root end along the trailing edge (between

sensors 12 and 14). For each damage location, a set of three damage severities was

considered. As shown in Figure 4.3(b), the three damage severities were named as

D-Small when only one bolt was untightened, D-Medium when two consecutive bolts

were untightened and D-Large when three consecutive bolts were untightened. For the

case when the blade was considered as a healthy structure, all the bolts were tightened.

In this case, not only a damage was introduced in the blade but also different damage

severities which enables the study of damage progression. It is important to note that

the loosened the bolts were not removed from the blade, thus the total mass of the

structure kept unchanged. The soft rubber washers keep the bolts fixed in the holes,

thus preventing the bolt rattling. The reason for this was to avoid any possible side

effects of loosening the bolts, which the algorithm can confuse with changes in local

structural stiffness.

Data collection procedure

The data considered for the damage assessment methodology was the acceleration sig-

nals measured by the sensors distributed along the blade. Each damage location was

separately studied and the consideration of multiple damages was not analysed. The

data collection procedure followed the steps: 1) A set of vibration signals were mea-

sured for a Healthy blade with all bolts tightened. 2) Damage was introduced at any

of the locations described in Figure 4.2(a) by untightened one bolt (D-small). Then,
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a set of vibration signals were measured for this damage location and severity. 3) The

first damage severity was incremented when the neighbouring bolt was untightened (D-

medium) and a set of vibration signals measured. 4) Finally the first damage location

were completed by measuring a set of vibration signals when a third consecutive bolt

was untightened for this damage location. In this case not only the damage location

was studied but also the damage progression. Before the start of the same procedure for

another damage location, all bolts where tightened to model again the healthy blade.

Because it was rather difficult to tight all bolts in the exact same manner as it was at

the original healthy blade, for the analysis of the next damage scenario a new healthy

reference blade was considered. Then, a new set of healthy vibration responses were

measured for the new tightened bolts configuration. The damage data collection was

repeated following the same steps described above. When a new damage location was

considered, the healthy reference blade was again reconsidered. Table 4.1 contains the

number of vibration signals considered for each blade scenario.

Number of signals

Location

Scenario D1 D2 D3

H 231 209 195
D-Small 40 44 59
D-Medium 44 43 55
D-Large 41 40 55

Table 4.1: Number of signals for each blade scenario in the lab-scale WTB test

4.4.2 Damage detection and evaluation

In this section the different damage locations and severities were assessed. The vi-

bratory responses measured by the accelerometers distributed along the blade were

performed by the methodology introduced in Chapter 2. It is important to mention

that the damage detection and evaluation was considered by the measurements from

one sensor each time. Therefore, the measurements from multiple sensors were not

considered in the analysis. However, the measurements in each sensor was separately

considered in order to see the effect of the sensor location in the methodology perfor-



CHAPTER 4 DAMAGE ASSESSMENT FOR WIND TURBINE BLADES 120

mance. The idea of this analysis was to considered the minimum number of sensors

and study the effect of its location on damage detection and evaluation. It should be

mentioned that a systematic approach for selecting the number of accelerometers and

their placement as well as the actuator location was not considered. The only reason

for this distribution of accelerometers was to cover both edges which was the region

where the damage was introduced.

Creation of the reference state of each accelerometer measurement

As the methodology was performed for the measurements by each accelerometer sep-

arately, the reference state was created for the vibration responses measured by each

accelerometer. Therefore, the vibration responses from the healthy blade measured

from one accelerometer were used to create the reference state of the blade based on

this accelerometer and similarly for all of the other accelerometers. Thereby, a total

of 14 different reference states were obtained. As mentioned before, when a damage

location was analysed, the blade was ’repaired’ by tightening again the untightened

bolts. Because it is difficult to obtain the same original blade state, the reference state

was created based on the new healthy blade.

With the considerations explained above the reference states (see section 2.2.2) were

created by the free-decay acceleration responses sampled at 32768 Hz. Every time when

the actuator introduced an impact on the blade, 14 vibration responses were measured

in the distributed accelerometers which were transmitted to the computer installed for

the data collection.

Each reference state was created with M = 10 signal vector realisations and with a

sliding window size W = 10. The selection of the sliding window size parameter is based

on the study developed in section 2.5.2. Generally the selection of small values for W

and relatively close to M gives well defined clusters. Each free-decay acceleration was

transformed to the frequency domain by the Fourier transform and discretised into a

vector of length N=1024. Then, the embedding matrix X̌ was created with a dimension

1024 x 100. The covariance matrix of X̌ was decomposed in a total of 100 eigenvalues

and their corresponding eigenvectors, which were used to create a reference state, R

with a dimension 1024 x 10.
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Figure 4.4 contains the scree diagrams and the reconstructed frequency spectrum

by 2, 3 and 4 RCs of the vibration responses measured on the healthy blade from the

analysis of damage location D1 by the accelerometer 1, for the vibration responses

measured on the healthy blade from the analysis of damage location D2 by the ac-

celerometer 7 and for the vibration responses measured on the healthy blade from the

analysis of damage location D3 by the accelerometer 12. It can be observed that in

the three scree diagrams, the largest amount of variance is contained in the first eigen-

value which drastically decreases for the other eigenvalues. It can also be observed that

until the 4th eigenvalue, the amount of variance constantly decreases, while after this

eigenvalue, the amount of variance decreases to insignificant values.

In Figures 4.4(a), 4.4(c) and 4.4(e) can be clearly observed that the vibration re-

sponses measured by each accelerometer give different decomposition scenarios and

hence a different reference state will be created corresponding to its own decomposi-

tion. It can be observed that the amount of variance contained in the first eigenvalue

for signal vectors obtained by sensor 1 (see Figure 4.4(a)) is 84%, that is larger than

the amount of variance contained by signal vectors obtained by sensor 7 and 12 which

are 78% and 74%, respectively (see Figures 4.4(c) and 4.4(e)). Then, it can be ob-

served that even though the decompositions are similar, they cannot be considered as

the same. Figures 4.4(b), 4.4(d) and 4.4(f) represent the comparison of the original fre-

quency spectrum and the reconstructed frequency spectrum by 2, 3 and 4 RCs for the

signal vectors obtained by sensor 1, 7 and 12, respectively. In all cases, it is observed

that the reconstruction by 2 RCs gives a smooth spectral line which follows the general

trend of the original one. The reconstruction by 2 RCs describes very well the general

spectral line, being more descriptive in regions where the energy concentrates by means

of large amplitudes at the frequencies where it occurs. Also it can be observed that the

consideration of more RCs in the reconstruction helps to improve the approximation to

the original frequency spectrum. These results can be observed in the three examples

(sensor 1, 7 and 12) and it will act similarly for each reference state obtained by the

14 sensors distributed on the blade.
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(a) Scree diagram by sensor 1
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(b) Reconstruction by sensor 1
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(c) Scree diagram by sensor 7
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(d) Reconstruction by sensor 7
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(e) Scree diagram by sensor 12
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(f) Reconstruction by sensor 12

Figure 4.4: Scree diagram and reconstructed spectrum by 2, 3 and 4 RCs for the vibration
responses measured on the healthy blade from the analysis of damage location D1 by the ac-
celerometer 1, from the analysis of damage location D2 by the accelerometer 7 and from the
analysis of damage location D3 by the accelerometer 12 on the lab-scale wind turbine blade.
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Damage assessment

The FVs for each observation signal vector were calculated by the reference state cre-

ated with the vibration responses measured by each accelerometer. The analysis was

implemented by each sensor separately and therefore the number of FVs calculated for

each accelerometer analysis was the same as the number of signals detailed in Table

4.1. The maximum dimension of each FV is 10 which is equal to all number of RCs

contained in the reference state. The clustering effect obtained by projecting the FVs

onto a two-dimensional feature space is represented in Figure 4.5. The clustering effect

is present for the three damage locations obtained by the analysis of accelerometer 1

for D1, accelerometer 7 for D2 and accelerometer 12 for D3 as shown in Figures 4.5(a),

4.5(c) and 4.5(e), respectively. In all Figures, it can be observed that different clusters

were formed corresponding to each damage severity. For the analysis of these three

accelerometers, it can be observed that by the projection of the observation FVs onto

a two dimensional space, the clusters obtained were able to distinguish between dif-

ferent damage severities when one, two or three bolts were untightened. This effect

was observed for all the three analysis of accelerometers 1, 7 and 12 which are located

relatively close to the location of the damage.

In order to study the progression of the damage for each damage location, the

damage assessment technique introduced in section 2.2.4 was performed. The FVs

that characterise the healthy blade were used to create a baseline matrix where the

observation FVs can be compared. Different baseline matrices were created for each

accelerometer analysis where the observation FVs were compared. The dimension of

the baseline matrices was p x s where p=2 (dimension of the FVs, in this case (T1-T2))

and s=150 (number of observation FVs considered to create each baseline matrix).

Figures 4.5(b), 4.5(d) and 4.5(f) represent the damage index of each observation

based on the Mahalanobis distance of two-dimensional observation FVs to the baseline

matrix. A threshold was found through the damage indices of the observation points

of the healthy blade considered as training set (s=150) to the baseline matrix. For

this case the threshold was selected to have a risk of false alarm probability equal

to α=0.05. As explained in section 4.3.1, the data of the healthy blade, considered

as training data, was considered to follow a log-normal probability distribution. As
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an example, the probability distribution function of the training data obtained for the

measured vibration responses by each accelerometer (1 to 14) can be observed in Figure

A.1 in Appendix A.

Consequently, it is expected that the observations that are obtained from the same

category used in the creation of the baseline set (healthy blade) will result in a distance

that will be smaller than the defined threshold. However, observations from a different

category that healthy blade will result in a distance larger than the defined threshold.

Figure 4.5(b) shows the damage index for damage location D1 when it was evaluated

by the accelerometer 1. It can be observed that the observation points characterised

from the damaged blade gave a distance larger than the threshold and hence they were

considered as observations from the damaged blade. Additionally, it can be observed

that when the damage severity was incremented by untightening one, two and three

bolts, the observations from these damage categories did not only result in distances

larger than the threshold but also a relative increment of the distance with respect

to the damage indices obtained from smaller damage scenarios. With these results

the damage severity/progression can be tracked with a clear tendency to increase the

distance when the damage increases. This effect can be also found in Figures 4.5(d)

and 4.5(f), where the damage was located in locations D2 and D3, respectively. For

both cases, the damage was detected and the damage progression/severity was also

tracked. It is important to mention that these sensors 1, 7 and 12 are relatively close

to the damage and their damage detection performance was perfectly achieved.

Figure 4.6 represents the mean of the Mahalanobis distances of the observations cor-

responding to each damage severity scenario when the damage was at location D1 (Fig-

ure 4.6(a)), at location D2 (Figure 4.6(b)) and at location D3 (Figure 4.6(c)) evaluated

separately for each accelerometer. The mean of Mahalanobis distances was calculated

for the damage indices obtained by each sensor separately and in this sense the perfor-

mance of the methodology for each sensor can be observed. In Figure 4.6(a) is analysed

the damage in the location D1, that is close to the accelerometers 1-4 as highlighted

with the coloured area. It can be observed that the accelerometers on the left-hand

side of the blade (closer to the tip) were the ones that gave the greatest damage indices

in comparison with the right-hand side accelerometers. For the damage location D2
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(b) D1: Damage Index by sensor 1
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(c) D2: Clustering by sensor 7
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(d) D2: Damage Index by sensor 7
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(e) D3: Clustering by sensor 12
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(f) D3: Damage Index by sensor 12

Figure 4.5: Clustering effect onto a 2-dimensional feature space (T1-T2) and Mahalanobis damage
index for three damage locations D1, D2, D3 and three level of severities D-Small, D-Medium and
D-Large in a lab-scale wind turbine blade. The dashed line defines the threshold calculated for a
risk of false alarm probability equal to α=0.05.
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as shown in Figure 4.6(b), the accelerometers on the left-hand side were also the ones

which give the greatest values of damage indices with a slight displacement towards the

accelerometers in the middle of the blade.

And for damage location D3, the accelerometer placed very close to the damage

(sensor 12) was the only one that gave a significantly large damage index in comparison

with the other accelerometers as shown in Figure 4.6(b). As mentioned in section

4.2, low/medium frequency range vibration measurements are generally global and

then sensors can be mounted remotely from the site of the damage for the purposes

of damage detection. Although, the location of the accelerometers can be remotely

located, it can be observed that the accelerometers which are closer to the damage

location provide a larger damage index. This phenomena is also observed in [134]

where the damage locations were related to the greatest magnitudes of the Mahalanobis

distances. Although, this is a sign that sensors closer to the damage’s region are more

sensitive to the damage effects, it is still insufficient to be an indicator for damage

location and further analysis has to be done in this direction. On the other hand, the

majority of the accelerometers which gave a significant magnitude of the damage index

were also able to monitor the damage progression by an increment of the damage index

as the damage severity increased.

The results obtained by the damage assessment methodology were evaluated for

the correct classification rate of observations from healthy and damaged blade. It

was applied for the three damage severities (D-Small, D-Medium and D-Large) and the

three damage locations (D1, D2 and D3). Each observation was compared to the defined

threshold (risk of false alarm probability equal to α=0.05) as explained in section 4.3.1.

Table 4.2 contains the results of the correct classified observations (Healthy - Damaged)

when the dimension of the FVs was considered as p=4 (T1-T2-T3-T4). The average of

variance content in the reference states created by four RCs on the 14 sensors was 90%,

91% and 90% when the reference state was created by the vibration responses measured

in the healthy blade for the analysis of damage locations D1, D2 and D3, respectively

(see Tables in Appendix B).

The percentage of correct classification for observations at damage location D1 was

100% for the majority of the sensors when the damage severity was D-Medium and
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(a) Damage location D1

(b) Damage location D2

(c) Damage location D3

Figure 4.6: Mean of the damage indices obtained for each damage location and severity obtained
for each sensor separately. The highlighted area indicates the sensors which are the closest to the
damage scenario in consideration
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Damage location

D1 D2 D3

Sensor H D1S D1M D1L H D2S D2M D2L H D3S D3M D3L

1 94 100 100 100 97 50 98 100 94 63 95 100
2 99 78 100 100 95 39 100 100 94 75 76 85
3 94 100 100 100 100 30 90 100 92 41 55 58
4 93 38 100 100 94 89 100 100 92 59 95 95
5 94 100 100 100 94 41 93 100 92 20 62 69
6 94 35 9 93 94 25 60 98 93 25 42 36
7 93 100 100 100 96 100 100 100 94 69 76 100
8 94 75 95 100 99 43 83 90 96 76 96 100
9 95 23 23 98 98 27 76 100 93 14 44 55
10 91 40 100 100 99 18 86 100 96 64 84 80
11 94 78 100 95 100 2 5 95 92 34 51 42
12 92 93 100 100 94 100 100 100 89 100 100 100
13 95 15 2 17 98 20 45 65 95 7 33 56
14 96 78 91 100 98 25 76 88 95 54 93 96

Table 4.2: Percentage of correctly classified (Healthy and Damaged) observations when the
damage is in location D1, D2 and D3 for all damage severities. In bold and highlighted in grey the
percentages greater than 90% for Healthy and Damaged observations, respectively. Threshold
was set up at risk of false alarm probability equal to α = 0.05. The FVs dimension considered
was p=4 (T1-T2-T3-T4). The number of observations tested is detailed in Table 4.1.
H: Healthy wind turbine blade (without loose screws)
D#S: Damage location D# - small
D#M: Damage location D# - medium
D#L: Damage location D# - large
#: 1, 2 or 3

D-Large. However, for the damage severity D-Small, the correct classification of the

damaged observations was lower than 90% for most of the cases. On the other hand, the

damage detection obtained for the accelerometers close to the damage (sensors located

in the left-hand side of the blade or close to the tip of the blade) gave high percentage

of correct classification. The percentage of correct classification for observations of the

healthy beam was always more than 90% for all the sensors.

For the case of damage location D2, the small damage severity was rather diffi-

cult to be detected and only accelerometers 7 and 12 were able to give 100% correct

classification. For D2-Medium, the accelerometers on the left-hand side of the damage

location (or close to tip of the blade) gave more than 90% correct classification. How-

ever, the largest damage was perfectly detected for the majority of the accelerometers
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with more than 95% correct classification rate. Finally, the evaluation of damage at the

location D3 was more difficult to be detected. Only some sensors were able to gave a

larger than 90% correct classification rate of the observations. Only the accelerometers

located very close to the damage (sensor 12 and 14) were able to classify correctly the

majority of the observations. It is important to mention that for all three damage

locations, the percentage of correct healthy classification was always greater than 90%.

Also the accelerometers placed close to the damage gave 100% classification rate for

all different damage severities. These sensors were perfectly able to track the damage

progression as shown in Figure 4.5. Appendix B contains tables of percentage of correct

classification for observation measured for all damage locations and severities when the

dimension of the FVs were 2, 3 and 4. It is generally observed that for higher dimension

of the FVs, the correct classification of damaged observations improves, however the

correct classification of healthy observations slightly decreases for all damage scenarios.

4.5 Damage assessment for large SSP34m wind turbine

blade

This section presents the damage assessment methodology, first validated in section 4.4

in a lab-scale wind turbine blade, which was now implemented in a large SSP34m wind

turbine blade. The SSP34m blade was mounted on a test rig at DTU Wind Energy

facilities in Roskilde, Denmark. In this study the main objective was to assess the

artificially introduced damage in the trailing edge of the blade. As mentioned above,

the VSHM technique is based on an active system and therefore the blade was excited

by an electromechanical actuator. The aim of the analysis was to detect the damage

when the blade was excited at different actuation locations. The performance of the

methodology was also evaluated by one sensor each time in order to relate the location of

the sensors and the damage location. In this section, the description of the experiment

is introduced and secondly the damage assessment evaluated by the damage detection

and by the inspection phase based on the defined threshold.
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4.5.1 Description of the experiment set up

Test rig

The SSP34m blade was mounted in a cantilever position in a test rig as shown in Figure

4.7(b). The blade was clamped at the root-end as it would be mounted on the rotor

hub of the wind turbine. As shown in Figure 4.7(a), the blade was instrumented with

20 B&K triaxial accelerometers Type 4524-B. The disposition of the accelerometers

was similar to the lab-scale blade presented in the previous section, 10 on the leading

edge (LE) and 10 on the trailing edge (TE). Although the accelerometers were triax-

ial, only the data that corresponds to the perpendicular direction of the blade surface

was utilised. A specially manufactured template was used to place the accelerometers

having the same coordinate directions. In this way, the accelerometers were mounted

with sufficiently high precision. Swivel bases B&K Type UA1473 were used to facilitate

accelerometer mounting with the required orientation. As described in the previous ex-

periment, the placement of the accelerometers did not follow any systematic approach

for selecting the optimum number of accelerometers and location. The accelerome-

ter cables length were reduced by a distributed data acquisition system. Every four

accelerometers were connected to a 12-channel data acquisition module B&K Type

3053-B located nearby the accelerometers. The data acquisition modules were con-

nected to a Cisco Ethernet switch (SG300-10MP), which solved module powering and

synchronization issues (see [130] for further information). The system also contained a

signal generator, which was set to generate an amplified rectangular pulse fed to the

actuator for each actuator hit.

The vibration-based structural health monitoring methodology conducted in this

study is based on an active excitation system. This means that the blade is artificially

excited by an electromechanical actuator. Figure 4.7(c) presents the electromechanical

actuator implemented in the test. It consists of three parts: a steel plunger with plastic

tip, the coil and the electronics box. When an electrical pulse is driven through the

coil, it applies an impulse to the plunger which impact the structure; after the hit, the

plunger returns to its initial position by a spring and it waits until another electrical

pulse is transferred by the coil. Although, it can be useful to know the force applied

on the structure, it was not measured due to the complication of mounting a practical
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Figure 4.7: Experiment set up of the SSP34 wind turbine blade. a) Experiment scheme. b)
Experiment set up. c) Electromechanical actuator.

sensor on the actuator.

Artificial damage simulation

The same damage topology as in section 4.4 was tested in the presented study. The

debonding of one of the edges (TE or LE) between the top and bottom shell is a common

damage which occurs in this kind of structures. The damage was introduced artificially

into the blade by drilling a series of holes through the glue between the shells of the

blade in the trailing edge (TE). Then, using a saw the holes were merged into a failure
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which was opened by a chisel and a hammer. The crack was gradually extended up to

120 cm (see Figure 4.8(a)). Because the opening of the crack was executed with a heavy

hammer and chisel, it could introduce some other unwanted changes into the blade (see

[62] for more details). In order to avoid this and ensure that the only anomaly was

introduced because of the damage, the experiment was performed with the following

artificial damage: the debonded parts were connected by bolts, placed at 10 cm from

each other. The glue removed between the shells was replaced by thin metal plates (see

Figure 4.8(b)). Thereby the healthy blade was considered to have all bolts tightened

and the damaged blade was considered when the bolts were untightened. The bolts

were not removed from the blade in order to consider only the change on the local

stiffness because of the crack but not because of the mass reduction.

Data collection procedure

The data considered for the damage assessment methodology was the acceleration sig-

nals measured by the sensors distributed along the blade. The nature of the algorithm

requires data from the healthy and damaged state of the blade. Table 4.3 details the

number of signals measured for each blade state.

As the damage was already introduced in the blade, the time between the successive

hits was selected one to five minutes. However, in a real life application, the time be-

tween measurements can be extended for one hour or more depending on the industrial

requirements.

Scenario Number of signals

Healthy blade 42
Damaged blade 39

Table 4.3: Number of signals measured on each experimental test for SSP34m blade

The data collection procedure was repeated four times, one time for each actuator

location. The actuator placements are detailed in Figure 4.7(a). Actuator A1 was

located very close to the accelerometer 5 in the trailing edge which is also the closest

actuator to the damage. It was placed on the bottom surface of the blade (see Figure

4.9(a)). Actuator A2 was placed close to the leading edge between accelerometers 6-
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(a) (b)

Figure 4.8: Damage introduced in SSP34 wind turbine blade. a) Damage introduced by chisel
in the trailing edge. b) Damage bolted to control the damage size and any additional anomalies
introduced by the impact to generate the damage

(a) Actuator in location A1 (b) Actuator in location A2

(c) Actuator in location A3 (d) Actuator in location A4

Figure 4.9: Actuator locations on the SSP34 wind turbine blade
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7. This actuator was mounted on the top surface of the blade (see Figure 4.9(b)).

Actuator A3 is the only one mounted inside the blade located on the bottom surface

of the blade. It was placed between accelerometers 8-9 approximately in the middle

between the trailing and leading edge (see Figure 4.9(c)). Finally, actuator A4 was

placed very close to the clamped end between accelerometers 9-10. In this region, the

blade is almost cylindrical but it was located from the farthest side to the damage (see

Figure 4.9(d)).

The data collection procedure was implemented by the following steps: 1) The

vibration responses of the healthy blade were measured by a particular location of the

actuator. 2) Once the data collection of the healthy blade was finished, the damage

was introduced by untightening the bolts. With the damage introduced, the vibration

responses corresponding to the damaged blade were measured. Before, the start of the

next test with a different actuator location, the blade was ’repaired’ by tightening all

the bolts. Then, the measurements for the new healthy blade were measured. This

procedure was repeated for all tests with different actuator locations.

4.5.2 Damage assessment procedure

The 120 cm artificial damage introduced in the SPP34m blade was assessed by the

vibration-based structural health monitoring methodology introduced in Chapter 2.

The damage detection was evaluated at four different actuation locations. The method-

ology was separately performed by the measurements obtained for one sensor each time.

The aim of this analysis was to use only one sensor each time and observe its perfor-

mance based on the different sensor and actuator locations for the damage detection.

Damage detection analysis

As described above, the damage detection analysis was separately implemented for

one sensor each time. In this case 20 reference states were created for each actuator

location. The reference states were created by the free-decay acceleration responses

sampled at 16384 Hz. For each actuator hit, 20 vibration signals were measured by the

system instrumentation located on the blade.

Each reference state was created with M = 10 signal vector realisations from the
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healthy blade and a sliding window size W = 10. The selection of the sliding window

size parameter is based on the study developed in section 2.5.2. Generally the selection

of small values for W and relatively close to M gives well defined clusters. The vibration

responses were transformed to the frequency domain, and hence discretised into a vector

of length N=2048. With these signal vectors, the embedding matrix X̌ used for the

methodology algorithm had a dimension 2048 x 100. The eigen-decomposition of the

covariance matrix of the embedding matrix yielded a total of 100 eigenvalues and their

corresponding eigenvectors. Therefore, each reference state R created through the

methodology had a dimension 2048 x 10.

The FVs were obtained by projecting the observation FVs onto the reference state.

Based on the dimension of the reference state, the maximum dimension of each FV

was 10. The dimension of the FVs utilised in this analysis was reduced to p=4 (T1-

T2-T3-T4). Therefore, all observation FVs were projected onto a 4-dimensional feature

space where they were now represented by means of the reference state. The variance

contained in each reference state created with the first 4-RCs presented in Table 4.4.

The data measured on the healthy blade was divided into two groups of 21 signal vectors

for each one. One of these groups was considered as training data to create the baseline

matrix where the observation FVs could be compared. Therefore, the baseline matrix

TB was constructed by s=21 FVs with a dimension p=4. The Mahalanobis distance of

each observation to the baseline matrix was measured to determine the damage index

of each observation.

A threshold was found through the distances of the observation points of the healthy

blade considered as training (s=21) to the baseline matrix. The threshold was found

as explained in section 4.3.1 with a risk of false alarm probability equal to α = 0.01.

In this case the threshold was incremented because of the separation between healthy

and damaged observations it was very clear for the majority of the measurements

of accelerometers. An increment of the threshold gives a more robust classification

in terms of the reduction of positive false alarms. It is important to mention that

the threshold was different for each accelerometer analysis because the reference state

created for each accelerometer was different.

As a visualization of the methodology performance, the damage indices obtained
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(c) Sensor TE 4 - Actuator 3
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(d) Sensor TE 4 - Actuator 4
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Figure 4.10: Mahalanobis damage index computed by measurements obtained in sensor 4 (TE
- LE) for the four different actuation positions in SSP34m-WTB. The dimension of the FVs was
considered p=4 (T1-T2-T3-T4). The dashed line is the threshold calculated by a risk of false alarm
probability equal to α = 0.01.
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Variance content (%)

Trailing edge

Sensor # 1 2 3 4 5 6 7 8 9 10

A1 99 98 94 95 97 92 92 92 96 91
A2 91 88 94 90 93 93 95 92 90 89
A3 89 95 91 91 89 90 93 96 96 92
A4 80 85 84 81 81 81 82 85 87 87

Leading edge

Sensor # 1 2 3 4 5 6 7 8 9 10

A1 96 98 97 99 98 95 93 96 95 91
A2 98 98 97 96 94 97 98 94 94 92
A3 93 92 93 92 92 94 92 98 95 92
A4 93 94 91 91 93 93 91 94 96 88

Table 4.4: Percentage of variance content in a reference state based on the first 4-RCs (RC1-
RC2-RC3-RC4)

by the sensor 4 at the trailing edge and leading edge are presented in Figure 4.10 when

the blade was excited at the different actuator locations.

From Figure 4.10(a) to Figure 4.10(d), the performance of sensor 4 on the trailing

edge (TE) is represented for all different actuation locations. It can be observed that

for the four cases, the observations from the damaged blade were clearly detected. The

number of false alarms was low for all the cases except when the actuation was at the

location A3. It can be observed a peak in the last damage indices corresponding to the

healthy blade which significantly increases the number of false alarms at this actuation

location. When the actuation was implemented in location A3 and A4, the damage

indices of the observations from the damaged blade were very large in comparison with

the actuation in location A1 and A2.

The performance of sensor 4 in the leading edge is represented from Figure 4.10(e)

to Figure 4.10(h). It can be observed that the damage detection was clearly achieved

when the actuation was applied on location A1 and A4. In both cases, the number of

false alarms as well as the number of misclassification for damaged observations was

low. However, when the excitation of the blade was applied on location A2 and A3, the

detection was not very well achieved. Similarly as for the analysis of the sensor 4 (TE),

a peak in the last damage indices of the healthy blade was observed in the sensor 4 (LE)
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when the blade was excited on the actuation location A3. This effect was also observed

in other sensors for the same actuation location. As this effect was repeated in more

than one sensor, an irregularity perhaps happened during the test with actuation in

the location A3. The increment of the damage indices of observations from the healthy

blade may affect on the threshold setup. The threshold line increases because of the

outliers and adversely affects to the damage detection.

Inspection phase

The inspection phase was implemented for sensors located in the trailing edge and

leading edge separately as shown in Table 4.5. The reason for this presentation is to

easily visualise the damage detection performance for both sensor arrays. Table 4.5

represents the percentage of correct classification of healthy and damaged observations

based on the defined threshold with a risk α = 0.01 (one-side only).

The classification rate of observations from the damaged blade by sensors located

in the trailing edge (TE) was in its majority 100% correctly detected for all different

actuation locations although there are some of them with a classification rate lower than

90%. It can be observed that for the actuation location A1, sensors 5 and 6 that are the

closest to the damage did not give a good classification rate. For this actuation test, the

actuator was located very close to the trailing edge and also close to the sensor 5 that is

basically on top of the damage. This was perhaps the reason why these sensors did not

give a good classification rate. Probably an interaction between the actuator and the

sensors occurred because these sensors gave a good classification rate for other actuation

locations. However the classification rate of the rest of the sensors, for this localisation

of the actuator, was always greater than 95% for healthy and damaged observations.

For the actuation location A2, all sensors have a 100% classification rate for damaged

observations. The correct classification rate for healthy observations was not always

more than 95% but it was relatively high. Only sensor 3 had a classification rate

lower than 80%. For actuation location A3, the correct classification rate for damaged

observations was 100% for sensors between 1-7. However, the correct classification

rate for healthy observations was very low for all the sensors, less than 90%. As

mentioned before, when the actuation was applied on the location A3, a significant
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peak of false alarms occurs for the majority of sensors (see Figure 4.10(c) and 4.10(g)

as an example). In Table 4.5 this is also observed with a significant increment of false

alarms (more than 10) in the majority of sensors. Finally, for actuation location A4,

the correct classification of damaged observations was 100% for the majority of the

sensors. The correct classification rate for healthy observations varies between 100% to

79% depending on the sensor location but in their majority is more than 90%.

The results obtained by the sensors distributed in the leading edge (LE) of the

blade are also presented in Table 4.5. Generally, the correct classification for both

damaged and healthy observations was better achieved when the actuation was applied

on the location A1 and A2. However, the classification rate for the actuation A3 and

A4 was very low. For actuation location A1, the correct classification rate for damaged

observations is better achieved for sensors 5-10 with 100% rate for the majority of these

sensors. The correct classification rate of healthy observations was always more than

90% for all sensors. It seems that all sensors located after the damage in the direction

to the root-end are more sensitive to the damage when the actuation was applied on

this location. For actuation location A2, the correct classification rate was more than

90% for damaged and healthy observations in the majority of sensors. For this location

of the actuator was observed a good balance between correct classification for healthy

and damaged observations. For actuator location A3, the correct classification rate was

in its majority less than 90% for damaged and healthy observations. The low rate of

correct classification for healthy observations can be also explained by the phenomena

observed when the excitation was applied on the actuation location A3, as shown in

sensors along the trailing edge. However for actuator A4, the correct classification rate

for healthy observations was greater than 93% for all sensors. The classification rate

for damaged observations was only significantly achieved for sensors between 2-5 with

100% rate. In Appendix C can be observed the tables with the percentage of correct

classification when the analysis was implemented by two and three dimensional FVs. It

can be observed that as highest is the dimension, the classification for observations from

a damaged blade were better detected. However, the number of false alarms increases

with the consideration of higher dimension feature vectors.
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Sensors Trailing Edge (TE)

1 2 3 4 5 6 7 8 9 10
n. MH 0 1 2 2 0 0 0 0 2 2
n. MD 0 0 3 0 15 17 0 0 0 0
Correct H (%) 100 98 95 95 100 100 100 100 95 95

A1

Correct D (%) 100 100 92 100 62 56 100 100 100 100

n. MH 2 6 10 2 1 1 1 6 2 1
n. MD 0 0 0 0 0 0 0 0 0 0
Correct H (%) 95 86 76 95 98 98 98 86 95 98

A2

Correct D (%) 100 100 100 100 100 100 100 100 100 100

n. MH 13 11 1 7 7 10 8 7 12 15
n. MD 0 0 0 0 0 0 0 8 8 11
Correct H (%) 69 74 98 83 83 76 81 83 71 64

A3

Correct D (%) 100 100 100 100 100 100 100 79 79 72

n. MH 7 0 6 1 9 4 3 5 2 7
n. MD 0 3 0 0 0 0 0 0 0 12
Correct H (%) 83 100 86 98 79 90 93 88 95 83

A4

Correct D (%) 100 92 100 100 100 100 100 100 100 69

Sensors Leading Edge (LE)

1 2 3 4 5 6 7 8 9 10
n. MH 2 0 0 0 0 0 5 4 2 2
n. MD 0 10 31 5 0 5 0 0 0 0
Correct H (%) 95 100 100 100 100 100 88 90 95 95

A1

Correct D (%) 100 74 21 87 100 87 100 100 100 100

n. MH 0 6 2 2 3 3 2 3 8 0
n. MD 0 0 1 35 0 0 6 0 0 2
Correct H (%) 100 86 95 95 93 93 95 93 81 100

A2

Correct D (%) 100 100 97 10 100 100 85 100 100 95

n. MH 8 5 10 10 0 12 12 13 11 9
n. MD 1 8 13 4 29 11 4 7 4 12
Correct H (%) 81 88 76 76 100 71 71 69 74 79

A3

Correct D (%) 97 79 67 90 26 72 90 82 90 69

n. MH 2 1 0 3 0 1 0 0 0 0
n. MD 15 0 0 0 0 39 39 26 36 39
Correct H (%) 95 98 100 93 100 98 100 100 100 100

A4

Correct D (%) 62 100 100 100 100 0 0 33 8 0

Table 4.5: Percent of correct classification of Healthy and Damaged observations for the SSP34m-
WTB. In bold and highlighted in grey the percentages greater than 90% for Healthy and
Damaged observations respectively. Threshold at risk of false alarm probability equal to α = 0.01.

The FV dimension is 4 (T1-T2-T3-T4). n.MH: Number of Healthy misclassified, n.MD: Number of
Damaged misclassified. Total Healthy observations = 42, Total Damaged observations = 39.
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4.6 Discussion

In this Chapter the damage assessment of two wind turbine blades was presented. For

both blades, the only damage studied was the debonding between the suction and

pressure shells. This section discusses the main results and findings for both analysis.

The first analysis was implemented in a lab-scale blade where different damage

locations and severities were analysed. Generally damage location D1 and D2 were

reasonably well detected. D-Small severity was hardly detected for the majority of

the sensors and only the ones which were located close to the damage location were

actually able to detect the presence of damage. For the location D1, sensors on the

leading edge but close to the tip of the blade were also able to detect this damage

severity. These sensors were located opposite to the damage location (trailing edge)

but in the same area of the damage. The severity D-Medium was detected for almost

all sensors when the damage was located on the tip of the blade (D1). For damage

location D2, only sensors after the damage in the direction to the tip were able to

detect it. However, for damage severity D-Large, the majority of the sensors were

able to detect the damage for both location D1 and D2. The damage located in D3

was hardly detected by the majority of the sensors. The location of damage D3 affects

locally to the stiffness of the blade and hence only sensors very close to the damage were

able to detect all damage severities at this location. For all damage locations, sensors

close to the damage were able to successfully track the progression of the damage by an

increment of the damage indices when the damage was incremented. In this analysis can

be observed that the location of the sensors affects on the damage detection. This was

more significant for small damage sizes. As alluded above, low frequency excitations

give spatial wavelengths which are far larger than the extent of the damage and hence

they can miss the damage. It can be also observed that when sensors were close to

the damage, the damage index magnitudes corresponding to these sensors were larger

than the other sensors. This finding aligns with [134] where the damage location was

related to the magnitude of the damage index. Although, this effect could be used as a

damage location indicator, there is not enough evidence that this will occur for all the

cases. In the same way that this damage index is not always a good indication of the

damage progression because the features extracted do not follow a monotonic function
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(see section 2.4.1), it could also happen with this delamination location indicator.

The second analysis was implemented in a SSP34m wind turbine blade. For this

case, a 120 cm damage in the trailing edge was assessed for different actuation locations.

Also, the damage detection was separately evaluated for each sensor allocated along the

blade. The damage was detected for the majority of the sensors located in the trailing

edge with a relatively low level of false alarms. Only when the actuation was applied

on the location A3, the number of false alarms incremented. As explained above, for

this actuation location, the majority of the sensors described a similar phenomena for

some damage indices obtained on the healthy blade responses. It could be observed a

sharp peak of values that went up and down for the same observations. This maybe a

symbol of outliers because it was repeated in several sensors when the blade was excited

at this location (see Figures 4.10(c) and 4.10(g)). The correct detection of damage in

sensors located along the leading edge were hardly achieved for actuation locations A3

and A4. Similarly as in the actuation location A3, the same outliers phenomenon was

observed. For the actuation location A4 only the sensors located after the damage in

the direction to the tip were able to detect the damage. However, when the actuation

was applied on location A1 and A2, the damage detection was improved for most of

the sensors (for actuator A2) and for actuation location A1 was less significant. This

analysis demonstrates that the location of the sensors plays an important role in the

damage detection performance.

Sensors along the trailing edge detect better the damage for all actuation locations

than sensors located along the leading edge. The detection was better achieved when

the actuation was implemented in the location A1 and A2 for sensors in the leading

edge. Sensors in the leading edge are far away from the damage and it affects in the

detection. Also when the blade was excited by A3 and A4, the excitation on the blade

had less amplitude of vibration and then not all the blade was excited equally. It seems

that actuations closer to the tip of the blade excite better the entire structure, and

hence it eases the damage detection for the majority of the sensors in the trailing and

leading edge. However, for a practical industrialisation, the location of the actuator is

better to be located around at 1/3 of the root end. As observed for excitations at these

actuator location (A3 and A4), the sensors located in the same edge of the damage gave
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better detection performance. Also it is important to mention that when the actuator

was located very close to the damage, it may affect the damage detection. As shown

in Table 4.5, when the actuation was applied on the location A1, the sensors 5 and 6

that were very close to the damage, did not give a good classification rate. However,

these sensors detected the damage by 100% classification rate when the actuation was

applied on any other location.

4.7 Chapter summary

In this Chapter the damage assessment methodology was performed on wind turbine

blades with an artificial damage introduced locally along the leading and trailing edges.

The effect of different damage locations and sizes as well as its progression was evaluated

in a lab-scale blade. Similarly, the capabilities for damage detection was also applied

on a SSP34m wind turbine blade where damage was introduced in the trailing edge.

The proposed methodology was performed by an unsupervised active system, which

means that only data from the healthy blade was considered to create the reference

state and the wind turbine blade was excited by an active actuator located on the

blade. The methodology was applied on one sensor each time, and the percentage

of correct classification for healthy and damaged observations was evaluated. The

inspection phase relies on the statical distribution of the damage indices obtained by

the methodology from vibration responses measured on the healthy blade. Based on

this premise, a damage classifier was constructed using the probability distribution of

the considered training data set.

In the first part of the Chapter, the damage assessment methodology was applied

on a lab-scale wind turbine blade. The damage location and size was studied. As

observed, the location of the accelerometer plays an important role in the damage

detection. When the damage was small, only the sensors close to the damage were albe

to detect it. However, large damages affect more globally in the vibration response and

therefore, they were better detected for the majority of the sensors. On the other hand,

when the damage was located in a region that affects locally to the vibration response

of the whole blade, only sensors very close to the damage were sensitive to damage

(e.g. damage location D3). The progression of the damage was achieved on most of
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the sensors for damage locations D1 and D2 but the best performance was achieved

for sensors located close to the damage. Again, for damages with a high local effect,

only sensors close to damage were able to track the progression. A relation between

the magnitude of the damage indices and sensor locations was observed for damage

location. The results showed that sensors closer to the damage gave greater damage

indices.

The second part of the Chapter was to study the effect of the actuation locations in

relation with the damage detection on a large-scale wind turbine blade SSP34m. The

results showed that the actuation location affects on the damage detection performance

obtained by the distributed sensors. When the actuator was located closer to the blade

tip, the damage detection was generally achieved for all sensors. However, when the

actuator was located closer to the root end, only sensors located along the trailing

edge (where the damage was introduced) were sensitive to damage. For this actuation

location, the damage was not perfectly detected by sensors located on the leading edge

(opposite to damage location). An excessive closeness of the actuator to the sensors

located on the damage, it may affect on the damage detection. Therefore, the results

obtained in this analysis demonstrate that the location of sensors can affect on the

damage assessment. Sensors on the trailing edge detect better the damage than sensors

on the leading edge.



Chapter 5

A study on vibration-based

self-sensing and self-diagnosis

capabilities of nano-enriched

composite laminates

5.1 Chapter overview

This Chapter presents an exploratory study on the self-sensing capabilities of nano-

enriched glass/fibre laminates for damage detection purposes through changes in the

dynamic responses, which are estimated by measuring the changes in voltage due to

a dynamic strain. The data-based vibration methodology explained in Chapter 2 is

applied to the estimated vibratory signals using the conductivity properties of the

embedded nano-particles for damage detection. The structure considered in this study

is a glass/fibre laminated beam enriched with carbon black nanoparticles (CB). The

structure is subjected to a direct electric current and the voltage signal is measured.

Consequently, the damage index estimated from the vibratory signals measured on a

beam with simulated damage are compared to the healthy state for damage detection

procedure. The damage was simulated firstly by adding an additional mass on the

beam tip and secondly by drilling a hole on the beam tip.

145
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5.2 Concept of a self-sensing structure

The main goal of this study was to investigates a dynamically self-sensing and self-

diagnosing structure which is capable of measuring its vibrations and use them to

diagnose its structural integrity. This was achieved by using conductive nano-inclusions

and applying vibration-based monitoring and health assessment methods. The idea of

self-diagnosing structures opens the road towards autonomous structures capable to not

only self-diagnose their condition but eventually even to take some repair steps [135].

This is applicable for a wide variety of structures including aerospace, mechanical and

civil engineering ones like e.g. aircraft, turbine blades, buildings and bridges. In this

study the idea of using nano-inclusions as sensors is based on the piezoresistive property

of some materials. They relate the conductivity to the strain of the structure and

hence its vibration. This research suggests employing piezoresistive nano-inclusions for

measuring and assessment of the structural vibrations and using them to estimate the

structural health. The rationale for using vibration-based structural health monitoring

is two-fold: 1) there is a vast amount of research and more than 30 years experience

in VSHM and 2) most structures are naturally subjected to some kind of vibrations

which can come from the work of an engine or motor, or from traffic and wind.

The concept is based on a no-intervention principle, coupled with new, integrated

within the structure sensing technology. It proposes a unified approach comprising 1) a

new self-sensing and self-diagnosing paradigm, coupled with 2) a VSHM for detecting

anomalies over both short term (damage) and long term (fatigue or wear) scales. A

VSHM approach is suggested, which deals with the extraction and handling of appro-

priate information obtained from the measured voltage signals and with the derivation

of damage detection and assessment methods.

5.3 Material and laminates specifications

A glass fibre/epoxy laminated beam was manufactured by hand lay-up and reinforced

using stitched unidirectional E-glass with 225 g/m2 area weight (see [103] for further

information in the manufacturing process). Epon 8132 epoxy resin with bisphenol-

A-based epoxide diluted with alkyl glycidyl ether and JEFFAMINTE T-403 poly-
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etheramine curing agent compounds as the matrix material. The mix ratio of the

epoxide to curing agent was 100 : 40 by weight. Due to their high structure clusters

concentration, Cabot Black Pearls 2000 CB were chosen as nanofillers. The CB nano-

particles with high structure clusters have an elongated shape which facilitates the

formation of percolate electrical networks at low filler volume fractions [136]. The CB

nano-particles were uniformly dispersed in epoxide by a magnetic stirrer and a sonica-

tion bath. The CB mixture was firstly magnetically stirred in epoxide for 15 minutes at

250 rpm and secondly was mixed for 4 hours in an ultrasonic bath operating at 45 kHz

and 55 W average power. Finally the mixture was stirred for an additional 15 minutes

at 250 rpm. BYK A-501 air release and curing agent were subsequently added to the

mixture and stirred by hand during 5 minutes. Eventually the mixture was degassed

for another 30 minutes. The concentration of CB in epoxide/curing agent mixture was

0.5 wt%. A total of 26 layers were used to produce 4 mm thickness of the beam. Each

layer was impregnated with the CB-epoxide using a hand roller (see Figure 5.1). The

staking sequence of the laminates is [[0/90]6/0]s. For the curing process the lay-up lam-

inates were placed over aluminium foil electrodes (top and bottom) in order to apply

an alternating current (AC) field to the laminate while the matrix was uncured. This

field polarizes and links the highly conductive of CB nano-particles through the thick-

ness direction via dielectrophoresis [137]. As a results of the polarization the laminates

were nearly electrically isotropic in the three directions. Although within an individual

laminate layer, the conductivity can be several orders of magnitude higher along the

fiber direction than perpendicular to the fibers, the equal numbers of layers at 0◦ and

90◦ approximate an isotropic in-plane conductivity. The field parameters were defined

as 1000 V/cm and 1 kHz based on [137]. The AC electric field was applied during

the curing process. The parameters of the curing recipe were selected as follows: 30

minutes at 65◦C, 2 hours at 80◦C and 3 hours at 125◦C. Once the laminates were cured,

the edges were cut and sanded in order to guarantee the exposure of the CB mixture.

The final dimensions of the beams were 120 x 12 x 4 mm.
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Figure 5.1: Cabot Black Pearls 2000 CB particles are impregnated in each glass laminate by a
hand roller.

5.4 Electrical conductivity and piezoresistivity of a car-

bon nano-enriched laminated beam

High structure CB nano-particles embedded between the laminates generate elongated

clusters which facilitate the electrical conductivity [138]. Once the CB-nanoparticles

are connected, the electrical conductivity occurs due to the mechanical contact between

the conductive particles. However, when there is no mechanical contact the electrical

connection is realised by the tunneling effect. Tunneling effect theory explains that

electrical current can flow through a non-conductive material such as an insulator or

through an air gap when the conductive components are close enough [139, 140]. The

tunneling effect is generally modelled as a resistor connecting a pair of conductive

inclusions where the electrons can pass from one inclusion cluster structure to the

closest one as shown in Figure 5.2. The distance between the two inclusion clusters

plays an important role in the electrical conductivity. Some studies consider a tunneling

distance threshold which determines a limit for this effect to occur. In [139] can be seen

that the tunneling effect decreases drastically when the tunneling distance increases.

Another aspect that must be considered regarding the electrical conductivity is

the volume fraction of conductive particles. Nano-enriched materials can be divided

into three types depending on their electrical conductivity. The first type is when the

electrical conductivity is very low since the volume fraction of conductive particles is

small. However, when high structure clusters are formed, the electrical conductivity

increases thanks to the tunneling effect explained above but it does not have a fully

connected electrical path. The second type contains a higher volume fraction of con-

ductive particles and then a fully connected electrical path exists. And finally, the third

type contains a very high volume fraction of conductive particles which increases the
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number of electrical paths and eventually the material behaves as a conductor (metal)

[107].

Region A

(a)

Region A

(b)

Figure 5.2: Tunneling effect is modelled by electrical resistance between CB conductive clusters.
Under deformation the CB clusters increase the distance and hence the electrical resistance changes
which alters the electrical paths. (a) Shows an initial configuration of CB clusters without any
deformation and (b) presents changes on the CB clusters under a certain deformation.

The electrical conductivity can be explained and understood based on the percola-

tion phenomenon [141]. A material can be conductive due to the formation of percolate

electrical networks when it possesses isolated clusters of particles and the electric cur-

rent is due to the tunnelling effect. The piezoresistivity is defined as the change of

the electrical resistance caused by the change in the mechanical strain of the specimen.

Then, the piezoresitivity can be measured by the change in the electrical resistance.

The effect of the piezoresistivity has been studied under tensile strains [108], under

compressive strains [106] and under vibratory excitation [102]. The piezoresistive prop-

erties in the nanoparticles can be attributed to two kinds of mechanism which are able

to introduce changes in the electrical resistance: 1) the loss of contact between the

clusters of nanoparticles, which can introduce considerable variation in the electrical

conductivity and 2) the above mentioned tunneling effect which affects in the tunneling

resistance due to the changes in the distances between the conductive particle clusters

(see Figure 5.2). These two mechanisms affect the electrical conductivity, and hence it

alters the resistance which is measured in order to estimate the dynamic response.

Then, consider a constant direct current (DC) through the material which follows

an electrical path through the conductive particles along the specimen/beam. This

electrical current provides a certain value of voltage which is proportional to the resis-

tance defined by the electrical path chosen. Applying a mechanical load to the beam
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causes deformation and then because of the strain, the distances between the clusters

of the conductive particles increase and therefore this introduces changes in the tun-

neling resistance between the clusters. The increment of this distance increases the

tunneling resistance gradually. Therefore, the loss of contact or the changes of the

tunneling resistance breaks the conductivity paths and forces the electrical current to

choose an alternative path with smaller tunneling resistance. This phenomena occurs

under small strains [142]. Additionally, it is important to mention that to obtain good

piezoresistivity, it is better to include low fraction of conductive particles rather than

high fraction as the probability to obtain tunneling effects is higher and hence more

significant changes in the global resistance are measured [143].

Once a dynamic excitation is applied, it causes strain variations and the initial

distribution of the nanoparticles along the specimen is altered. This alters the tunneling

resistance and the electrical current path changes following the minimum resistance

path. This behaviour provides variations in the global voltage measured between both

ends of the beam (see section 5.3). The variations in the voltage are measured and

recorded during the time of the dynamic excitation to obtain an estimate of the dynamic

signal. In other words, the voltage measured through the conductivity of the CB-

nanoparticles is used to estimate the dynamic signal. To verify this behaviour the

following experiment was done. First, a constant DC was introduced through the

beam and the voltage was then measured without any dynamic excitation. Secondly,

the same beam was excited harmonically at 30Hz by a shaker. For both cases the

boundary conditions were kept constant by clamping one end of the beam in a cantilever

configuration. More information about the test rig is given in section 5.5. The two

recorded signals were represented in the same Figure 5.3 and it can be observed that

the 30Hz harmonic due to the dynamic excitation can be clearly detected by the sharp

peak at this frequency which did not appear for the case of no vibration.

As shown in Figure 5.3 the vibratory response can be measured through the volt-

age measurements of the CB filler. The voltage vibratory response characterises the

health/damage state of the beam and any alteration due to damage or additional

mass can be detected through it. Accordingly it can be concluded that the embedded

nanoparticles provide self-sensing capabilities to the structure.
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Figure 5.3: Differences on the voltage measurements between a beam without any excitation
(grey line) and the same beam harmonically excited at 30Hz (black line).

5.5 Experimental verification

The following experiment was designed to verify the self-assessment properties of the

considered nano-enriched laminates. The beam manufactured for this experiment,

which is explained in section 5.3, was subjected to simple harmonic vibration and to

constant direct electric current. The voltage was measured at both ends of the beam as

shown in Figure 5.4. The measured voltage signals were used as inputs to the damage

assessment procedure explained in section 2.2.1. Firstly for the study and comparison

of the effect of the damage in the reference state and secondly for the damage assess-

ment stage detailed in section 2.2.4. The results are presented and discussed in section

5.6.

5.5.1 Experiment test rig

The experiment rig to measure the voltage dynamic signals of the nano-enriched beam

is shown in Figure 5.4. A constant electrical Direct Current was generated by Keithley

2140 Source-Meter and the voltage was measured with National Instruments 90253-

Channel, 200 mV to ±10 V, 16-Bit Analog Input Module data acquisition (DAQ) card.

Because of the high resistivity of the beam, a voltage buffer was constructed from

OP-AMP TL07 to control the current leakage, and hence to protect the overload of

the DAQ. The vibration excitation was performed by a shaker and controlled by Laser

vibrometer Polytec OFV-5000 and PCB accelerometer in order to apply exactly the
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same vibration excitation for all measurements. The manufactured beam detailed in

section 5.3 was clamped in one end with a free span of 100 mm. The clamp-support was

perfectly connected to the excitation base of the shaker. This structure configuration

guarantees the transmission of the vibration excitation to the composite laminated

beam. Two electrodes were placed at both ends of the beam to guarantee a constant

current along the entire beam and to allow voltage measurements through the material.

Electrodes were prepared by first sanding the material in both edges. Secondly, a high

conductive silver epoxy was applied on the edge surface and a copper tape on the top

of the silver paint to design a permanent electrode as shown in Figure 5.5. Electrodes

were manufactured carefully to reduce the additional effects on the measurements.

(a)

Power supplier

Shaker

DAQ

Laser vibrometer

(b)

Shaker

Beam

(c)

Electrode 1
Electrode 2

Figure 5.4: Test Rig. a) General picture of the test rig, b) how the beam is clamped on the
shaker and c) the location of the two electrodes on the beam.

5.5.2 Experiment procedure

A constant DC current, lower than the limit imposed by the DAQ card, was applied

on the beam (see Figure 5.5). Once a constant voltage can be measured through the

beam, a simple harmonic excitation at 30 Hz by the shaker was applied. Vibration

signals were estimated by measuring the voltage through the two electrodes. The

amplitude/acceleration of the source excitation was controlled and configured to be
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constant for all the measurements in order to provide the same vibration excitation for

each beam scenario (healthy and damaged). Damage was introduced in two different

manners: 1) Damage introduced by adding an additional mass on the tip of the beam

and 2) Damage introduced by drilling a hole in the tip of the beam. For each damage

configuration two damage scenarios were introduced 1) by adding two different masses

(5% and 10% of the total mass of the beam, respectively) and 2) by introducing two

hole diameters (2 mm and 4 mm, respectively). Damage was introduced in the locations

shown on Figure 5.6. Damage was introduced without removing the beam from the test

rig and hence the boundary conditions remained constant during the whole experiment.

The idea was to avoid any influence of the support changes. For each beam scenario,

20 measurements were taken for 4s and sampled at 500 Hz. A 60 Hz bandstop filter

was applied on the recorded signals to remove the presence of the Hum frequency. All

the experiments were performed at room temperature.

(b)

(a)

(c)

Figure 5.5: Electrode and measurement system. a) Silver epoxy material and copper tape
were used to build the electrodes, b) final picture of an electrode and c) schematic picture of the
measurements test rig.

5.6 Self-sensing damage assessment

First, the estimated vibratory responses from all beam categories described in Figure 5.6

were processed separately to obtain a reference state for each beam category (healthy

and damaged beams) as described in section 2.2.2. The reference state of each beam
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(a) (b)

Figure 5.6: Description of the different damages introduced in the beam. a) Damage introduced
by adding an additional mass and b) damage introduced by drilling a hole in the tip of the beam.

scenario was compared to see the effect of damage in the voltages signals. Secondly,

the entire vibration-based damage assessment procedure detailed in section 2.2 was

applied on the estimated vibratory signals of the healthy beam to create a reference

state. Then, the observation damage indices were compared to the baseline space for

damage assessment as described in section 2.2.4.

5.6.1 Decomposition of the signal in reconstructed components

The vibratory responses estimated by measuring the voltage in the nano-enriched beam

were processed by the method detailed in section 2.2.2 in order to obtain a reference

state and discuss the effect of the damage by comparing all categories. For the purposes

of comparison, all signals recorded from different categories, healthy (no mass and no

hole introduced) and damaged beams (with one or two masses added and with a small

or a big hole), were processed by the same method. The parameters selected for this

analysis were M = 5 realisation signal vectors for each beam scenario and sliding

window size W = 10. The selection of the sliding window size parameter is based

on the study developed in section 2.5.2. Generally the selection of small values for

W and relatively close to M gives well defined clusters. Figure 5.7 represents the

reconstructed signals by using only the first RC compared with the raw signal for all

beam configurations, healthy and the two different damages scenarios. In both cases

the noise is significantly reduced and only the predominant frequencies of vibration are

contained in the first RC. The 30 Hz frequency of vibration introduced by the shaker

excitation is present in the signals for both damage scenarios (with an added mass and
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with a hole drilled). This finding is also coherent with the results obtained by Loh et

al., who observed the effect of constant sinusoidal frequency of 20 Hz by a shaker in

the vibration response obtained by a CNT based thin film strain sensors [144].

The frequency spectrum of the beam with added mass and the one with hole drilled

are compared in Figure 5.8. It can be observed that for the case of the beam damaged

by a hole, higher peaks appear at higher frequencies as compared to the peaks of the

beam with mass added. However, in both cases the 30 Hz frequency is present in

the reconstructed signals as shown in Figures 5.8(a) and 5.8(b). The peaks at higher

frequencies between 180 and 200 Hz are due to the electrical conductivity and peaks

appear because of the harmonics of the hum frequency. This is very well depicted in

the frequency spectrum of signals from the beam with a hole drilled (see Figure 5.8(b))

because in this case not only the beam is damaged but also the CB-nanocomposites

embedded through the laminates. The hole reduces the electrical conductivity paths

and as a result the correspondence/relation between the dynamic and the voltage signals

is also reduced. This finding is coherent with the results obtained in [103] where a hole-

drilled in a CB-nanoparticle enriched laminated was detected by changes in the voltage

measured in the edge electrodes within the specimen domain.

Figures 5.9(a) and 5.9(b) present the phase maps1 which can be estimated by plot-

ting the first two RCs from the voltage signal decomposition [115]. Each plot contains

three signals: one from the healthy beam and the other two corresponding to the

different damage scenarios. Time series were presented in the 2-dimensional space re-

constructed from the first two reconstructed components, RC1 and RC2. Figure 5.9

shows that the areas covered by the first two RCs for the different damage scenarios

are well distinguishable. The one for the healthy voltage signal is shifted with regards

to the damaged ones and the two damaged signals are also shifted with respect to each

other. As it is shown in [102], changes in amplitude were found in the vibration re-

sponse obtained by carbon nanotube strain sensor when the responses were measured

in cantilever beam with and without a crack induced. This is also coherent with the

1An example of the analysis of the phase maps constructed by the reconstructed components was
developed by Garcia et al. in [110] to study the dynamical system analysis of unstable flow phenomena
in a centrifugal blower. In this study, phase maps were constructed by the pressure signals gathered at
different points close to the surge onset. Projection of the original signal onto its PCs allowed to draw
the phase trajectory plots based on the reconstructed components that clearly separated non-stable
blower working conditions from its regular operation.
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(c) 0.5g mass added
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(d) 2mm hole drilled
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Figure 5.7: Comparison between the original raw voltage signal and the reconstructed signal by
one RC for healthy and artificially damaged beams.
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Figure 5.8: Comparison of the frequency spectrum of the first reconstructed component for a)
the case of the beam with damage introduced by adding a mass and b) the case of the beam with
damage introduced by drilling a hole.

results, where the voltage signal measurements can provide indication for the presence

of damage and they can be used to distinguish between the healthy and the two damage

scenarios. Changes in the areas corresponding to the beam with a hole are less observ-

able as compared to the changes for the added mass. This can be explained again by

the damaged conductivity paths which affect the relation between the dynamic and the

voltage signal (see Figure 5.9(b)).
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Figure 5.9: Comparison of the phase portraits of the time series using RC1 and RC2 for the
case of a) the beam with damage introduced by adding a mass and b) the beam with damage
introduced by drilling a hole.
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5.6.2 Damage assessment on the nano-enriched composite laminated

beams

As presented in section 5.6.1, the signals obtained from the voltage measurements

between the two electrodes on the beam can provide indication for the presence of

damage and hence be used for damage assessment. Therefore, the voltage signals were

processed by the entire methodology as described in section 2.2. The same procedure

has been applied for the case of the beam with mass added and the beam with a hole

drilled. The sliding window size was considered at W = 10 and the number of vector

signal realisations to build the reference state was M = 5 from the healthy beam.

For visualisation purposes, the projection of the observation FVs onto a two di-

mensional feature space generates different clusters based on the similarity between

the observation FVs. The FVs obtained from the same category reduce their distances

between themselves when are projected onto the feature space while they increase their

distances to FVs from other categories. These clusters can be observed in Figures

5.10(a) and 5.11(a) for the beam with damage introduced by adding a mass on the tip

and for the beam with a damage introduced by drilling a hole in the tip, respectively.

Then, a baseline space was built based on the FVs of the healthy beam (without any

mass or hole introduced) where each observation FV can be compared with dimen-

sion s = 10 and p = 2. The distance of each observation FV to the baseline set was

measured as shown in Equation 2.18. For this analysis a simple threshold line was

calculated based on the distances of FVs utilised to build the baseline respect to the

baseline itself. For this case, the damage indices obtained on the observations from the

healthy beam were assumed normally distributed. The threshold was set up to be the

mean value plus one standard deviation of the observations considered as a baseline

(s = 10). Therefore, the distances from new observation FVs were compared to this

threshold for damage assessment. A damage index below the threshold was considered

as a FV obtained from the healthy beam while a damage index over the threshold

was considered as a FV obtained from a damaged beam. Figures 5.10(b) and 5.11(b)

show clearly that the damage indices obtained from damaged beams increased their

distances with respect to the baseline threshold and hence the points were placed over

the threshold dashed line. On the other hand, FVs from healthy beam observations
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Figure 5.10: For the case of beam with damage introduced by adding a mass a) clusters obtained
in a 2-dimensional feature space and b) Mahalanobis distances of the different damages scenarios
to the healthy scenario.
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Figure 5.11: For the case of beam with damage introduced by drilling a hole a) clusters ob-
tained in a 2-dimensional feature space and b) Mahalanobis distances of the the different damages
scenarios to the healthy scenario.
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had distances that were smaller than the threshold and hence they were considered as

observations from the healthy beam. It is also important to mention, that the severity

of the damage cannot be monitored because the damage indices did not increase when

the severity of the damage was incremented. This behaviour occurred for both dam-

age scenarios having the same trend for the beam with mass added and for the beam

with a hole drilled. However, damage was successfully detected for the both damage

scenarios because all the distances measured from observation FVs of damaged beams

were greater than the threshold. Then, the damage was successfully detected for both

cases but the damage index used cannot be used to infer severity from the measured

features.

As mentioned above in section 5.6.1 the sensitivity for damage detection in the case

of the beam with a hole drilled was smaller than for the case of mass added. This

was observed because the distances were smaller in comparison with the case of mass

added. However, for both damage sizes the detection was successfully achieved.

5.7 Chapter summary

This study explores the self-sensing capabilities of a beam manufactured with CB

nano-particles embedded between the glass/fibre laminates. The voltage was mea-

sured through the beam due to the electrical conductivity capabilities of the CB nano-

particles. The dynamic strain introduced in the beam changes the CB nano-particles

clusters and hence changes in the electrical resistance were introduced. Voltage signals

were measured to construct estimated vibratory responses.

A data-based VSHM methodology was utilised for features extraction by the de-

composition of the measured voltage signals of the healthy beam into a number of

reconstructed components. The new reconstructed signal vectors were used to create

a reference state where new observation vectors were compared for the purposes of

self-damage assessment. This analysis has been performed for two different beam cat-

egories. Firstly, the damage has been introduced by adding one and two masses (5%

and 10% of the total mass of the beam) and secondly by drilling two different hole sizes

(2 mm and 4 mm respectively) near the tip of the beam. The damage detection was

successfully achieved for both cases.
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Therefore in this analysis it can be observed that 1) vibratory signals can be esti-

mated by measuring changes in voltage due to the electromechanical properties of the

CB nano-particles embedded in a glass/fibre laminated beam. 2) The voltage signal

measurements can provide indication for the presence of damage and they can be used

to distinguish between the two damage scenarios. 3) The voltage signal responses were

processed by the data-based VSHM methodology which was able to extract features

qualifying the state/health of the beam, which eventually results in the self-damage

assessment.

Based on the results, one can say that conductive nano-enriched composite lami-

nates have substantial potential for self-sensing capabilities. The results open a new

path of investigation towards vibration self-sensing structural health monitoring with

nanocomposite inclusions. Further work must be done in the configuration and distri-

bution of the nanocomposites for reducing the high resistivity of the material, as well

as the development of novel methodologies to obtain the most from the measurements.



Chapter 6

Conclusions and Future Work

This thesis has focused on the development of a data-based vibration structural health

monitoring methodology for extracting sensitive features to delamination/damage in

structures made of composite materials. The methodology is based on singular spec-

trum analysis which is an extension of principal component analysis for non-independent

variables such as the vibration response of a structure. This methodology takes into

consideration the inter-correlations between the variables contained in an individual

signal vector. This is beneficial because it uncovers all the rotational patterns at any

frequency of a measured vibration response which is appropriate for nonlinearly vi-

brating structures that exhibit double or very close modes of vibration. Based on the

reconstructed components obtained by the methodology, sensitive feature vectors were

obtained to develop an VSHM system which gives information about the presence,

the location and the extent of the delamination and/or other defects in composite

structures. The methodology has been initially implemented in composite materials

but also in other research collaborations for condition monitoring of turbocompressors

[110]. In this sense, the proposed approach is applicable in a wider context for damage

assessment and condition monitoring systems.

6.1 Conclusions

The major conclusions of this work with respect to the objective of this thesis are

presented below.

162
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Chapter 2 introduces the basics, the demonstration, validation, and principal con-

siderations of the methodology parameters. The main conclusions are detailed below:

– The damage assessment methodology is based on the constructed reference state

to determine how meaningful and informative are the feature vectors for the dam-

age assessment. Although the construction of the reference state in the time and

frequency domain follows the same steps within the methodology, their inter-

pretation was slightly different. The construction of the reference state in the

time domain representation provides separate and interpretable oscillatory com-

ponents. Therefore, the information contained in the FVs will depend on the

oscillatory components contained in the RCs considered in the reconstruction.

On the other hand, when the reference state was created based on the frequency

domain representation, the first RC contains most of the variance in the decom-

position. The first RC describes the general trend of the original spectral line of

the frequency spectrum. The reconstructed spectrum with only the first RC gives

more importance at the frequencies bands where the maximum energy is concen-

trated by means of the amplitude/peaks at each frequency. This can be considered

as kind of an envelope of the spectral line. The rest of the RCs represents the

fluctuations along the spectral line and they will contribute to the approximation

to the original spectral line. As the reconstructed response describes the general

trend of the spectral line, all the rotational patterns are considered with only the

first RCs. In both cases, the decomposition of the vibration responses in RCs will

depend on the complexity of the vibration response and on the dimension of the

sliding window size.

– The performance of the methodology1 was demonstrated and validated in two

cases of study 1) in a 2-DOF system with nonlinear coupling and 2) in an ex-

periment with delaminated composite beams. The first case demonstrates the

performance when damage was simulated by reducing the different stiffness pa-

rameters of the system. The methodology was able to detect variations in linear

and nonlinear stiffness parameters within the range of study 1 − 30% stiffness

1The introduction and performance of the data-based vibration structural health monitoring
methodology was presented in Garcia et al. [80].
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parameter reduction. The damage was not only detected but the increment of

the stiffness reduction was also monitored. The methodology was able to create

well-defined clusters for each stiffness reduction, even when the effect of the non-

linearities was highly presented. The severity of the stiffness reduction does not

always affect systematically in the spectral lines of the frequency spectrum and

it can have an effect on the damage index for detecting the progression of the

stiffness reduction. This can be explained because the feature vector selected is

not sensitive to this effect and additional features must be considered. In conse-

quence of this behaviour, the damage index to monitor the severity of the stiffness

reduction does not always follow a monotonic function and it can hardly track

the severity of the stiffness reduction. However, the consideration of a higher

dimension in the feature vector can help to detect this behaviour and hence a

monitoring of the increment of the stiffness variations. The same analysis was

implemented in an experiment with five delaminated beams. For all cases, the

effect of the delamination introduced anomalies in the vibration response which

were able to be present in the feature vectors. The size of the delamination was

also monitored by an increment of damage index when a delamination, in the

same location, incremented its size. In a similar way as in the simulated system

the increment of the dimension in the FVs helped to distinguish between different

delamination sizes and locations. Therefore, in both cases was clear the impor-

tance of the multidimensional space which was constructed by the FVs obtained

by the methodology. The relation between the damage index and the estimated

reconstruction of the frequency spectrum can give a better understanding in the

structural analysis of the composite beams.

– The choice of the principal parameters2 of the methodology, frequency resolution,

sliding window size and the number of reconstructed components was studied.

The effect of these parameters on the performance of the methodology is sum-

marized as follows. Low frequency resolution in the measured vibration response

can miss relevant information that is not present in the reconstruction of the

2An introduction to the effect of the preliminary parameters on the methodology was presented in
Garcia et al. [145].
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frequency spectrum, and hence it does not produce very well-defined clusters

which makes difficult the differentiation between categories. A fine frequency res-

olution provides better clusterisation between different categories which will help

the damage/delamination assessment. However, an excessive frequency resolution

could introduce additional information which adversely affects the clusterisation.

A proper selection of the sliding window size is to choose a value which gives

separable and independent principal components but at the same time contains

significant information of the vibration response. The sliding window size has to

respect the following limits M ≤ W and W ≤ N/2. Small values of W condense

the principal components with large amount of variance in the first RCs. These

RCs give informative FVs for a good clusterisation using only two dimensional

FVs. On the other hand, large values of W result in very well separated prin-

cipal components with reduced information in the first RCs, which makes more

difficult the clusterisation with a reduce dimension of the FVs. The selection of a

proper sliding window size depends on the problem at hand and on the prelimi-

nary information in the vibratory response as well as the aim of the analysis to be

considered. Generally, a consideration of more RCs in the reconstruction3 (or a

consideration of more variables within the FVs for the damage assessment proce-

dure) improves the clusterisation. The consideration of a higher dimension of the

FVs could give an additional information for better interpretation of the results.

On the other hand, this should be analysed with care because the consideration

of more dimensions within the FVs does not always contribute in the damage

assessment and thus adversely affects the categorisation. As shown in the results,

there is not a clear and concise solution for the selection of the parameters of the

methodology. Their selection requires a preliminary study that depends on the

objective of the analysis.

The problem of delamination has been analysed in composite laminated plates4 as

shown in Chapter 3. The study was implemented in a finite element model and in

3A preliminary study in the consideration of more RCs in the reconstruction and hence more di-
mension in the FVs was presented in Garcia et al. [146].

4The investigation of the substantial potential of the delamination assessment methodology for
composite laminated plates was presented in Garcia et al. [81].
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an experiment with different delaminated composite plates. The effect of the delam-

ination produces slight changes on the natural frequencies of the composite laminate

plates although the extent of the natural frequency variation increases with the order

of the natural frequency. However, the error in obtaining the experimental natural

frequencies is greater than the changes produced by the effect of delamination. The

results demonstrate that the detection of the delamination based on changes of natural

frequencies does not provide a significant information to be used as a damage feature.

The effect of the delamination in the vibration response will be highlighted if a particu-

lar mode of vibration excites the delamination region, so it demonstrates the local effect

of the delamination [31]. The damage assessment methodology introduced in Chapter

2 was implemented in the vibration responses measured on the composite plates. In

the methodology all rotational patterns contained in the vibration response are con-

sidered. Then, all the vibration modes are considered and when the delamination is

excited by any mode, its effect will be present within the spectrum. The results show

that the data-based vibration methodology successfully detects delamination and also

distinguishes between different delamination scenarios. An increment of the dimension

of the FVs improves the results that not only detects delamination but also distinguish

between observations from different delaminated composite plate scenarios.

A practical VSHM system with a statistical hypothesis threshold for the inspection

phase based on probabilistic distributions was used to identify damage in wind turbine

blades5 as shown in Chapter 4. The methodology performs with the vibration responses

measured by one sensor each time, and the percentage of correct classification for

healthy and damaged observations was evaluated. The first analysis was to detect

different damage locations and sizes in a lab-scale wind turbine blade. For small damage

sizes, only sensors relatively close to the damage were able to detect successfully the

damage. However large damages affect more globally to the vibration response of the

methodology and therefore they were better detected for the majority of the sensors.

However, when damage was located close to the root-end, damage was only detected

by sensors very close to that region (e.g. damage location D3). This can be explained

5An introduction of the capability of the data-based methodology for detecting the debonding in
the edges of a lab-scale WTB was presented in Garcia et al. [147].



CHAPTER 6 CONCLUSIONS AND FUTURE WORK 167

because this region has a local effect in the vibration response of the entire blade.

The tracking of the progression of the damage severity was achieved for most of the

sensor locations when damage was located in D1 and D2 but the best performance was

achieved for sensor located close to the corresponding damage. For the case of damage

location D3, only the sensors close to the damage were able to track its progression.

A relation of the magnitude of the damage indices and sensor locations was observed.

Sensors which were close to the region of damage present higher magnitude of the

damage index. Although, this effect could be used as a damage location indicator,

there is not enough evidence that this will occur for all the cases. In the same way

that this damage index is not always a good indicator of the damage progression as

explained in Chapter 2.

A study of the location of the actuation (excitation point) and its influence in

the damage detection was implemented in a SSP34m wind turbine blade. The results

showed that the actuation location affects on the damage detection performance ob-

tained by the distributed sensors. When the actuator was located closer to the blade

tip, the damage detection was generally achieved for all sensors. However, when the

actuator was located closer to the root end, only sensors located along the trailing edge

(where the damage was introduced) were sensitive to damage. For these actuation lo-

cation, the damage was not perfectly detected by sensors located on the leading edge

(opposite to damage location). An excessive closeness of the actuator to the sensors

located on the damage region, it may affect on the damage detection. Also, sensors

along the trailing edge (where the damage was introduced) detect better the damage

for all actuation locations than sensors located along the leading edge.

In both studies can be observed that the location of the sensor plays an important

role in the damage detection. Generally, sensors located at the proximities of the dam-

age region are more sensitive to damage. However further work should be done in this

direction in order to relate the location of the sensors to the damage index towards not

only detection of the damage but also its spatial localisation.

A study which explores the self-sensing and self-diagnosis capabilities6 of a beam

6The exploratory study of the self-sensing and self-diagnosis capabilities of a carbon nano-enriched
composite laminated beam was presented in Garcia et al. [148].
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manufactured with CB nano-particles embedded between the glass/fibre laminates was

developed in Chapter 5. The analysis proposes an unified approach which compromises

the self-diagnosis paradigm for obtaining vibration responses of the beam coupled with

the VSHM methodology for damage assessment. The main conclusions of this analysis

are summarised with the following points:

– Vibratory signals can be estimated by measuring changes in voltage due to the

electromechanical properties of the CB nano-particles embedded in a glass/fibre

laminated beam. The forced vibration excitation is successfully measured by

changes in voltage measured through the beam due to variations in its dynamical

strain. The results show a sharp peak at the frequency of excitation within the

frequency spectrum, which does not appear in the case of non-excitation.

– The voltage signal measurements can provide indication for the presence of dam-

age and they can be used to distinguish between the two damage scenarios. The

SSA-based methodology clearly decomposed the vibration response in RCs that

contained the different oscillatory patterns within the vibration response. The

frequency of excitation was contained in the first RC which has the information of

the general trend of the vibration behaviour. For this analysis, the methodology

was applied in the time domain to extract a particular mode of vibration.

– The voltage signal responses were processed by the damage assessment methodol-

ogy to extract features qualifying the state/health of the beam, which eventually

results in the self-damage assessment. The different damage scenarios were de-

tected for both cases adding mass and drilling a hole. However, an increment of

the damage severity was not successfully tracked. For the case of a damage simu-

lated by drilling a hole in the beam was observed that the sensitivity, in terms of

the magnitude of the damage index, was lower than for the case of adding mass.

This can be explained because when a hole is drilled in the beam not only a dam-

age was included but also the sensor (in this case the embedded nanocomposites)

was damaged.
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6.2 Recommendations and Future Work

This is one of the few works which considers singular spectrum analysis technique to

address a data-based damage assessment methodology. For this reason, some important

aspects should be considered for future research.

– The use of SSA as a technique for vibration modes identification can lead to an

alternative technique for this kind of analysis. When the decomposition was im-

plemented in the time domain it was observed that the reconstructed components

contain separate and interpretable oscillatory components. The combination of

some reconstructed components can describe the global characteristics of the vi-

bration responses and therefore they can be associated with the natural modes

of vibration [86]. Further research should be conducted in this direction for the

development of SSA as a damage identification technique but also as a vibration

modes identification technique.

– As discussed in Chapter 2, there are some parameters that affect on the methodol-

ogy performance depending on their value. One of the most important parameters

is the window sliding size which determines the number of PCs and hence the

maximum dimension of the reference state within the methodology. The selec-

tion of this value depends on the problem at hand. This involves what to analyse

(nature of the problem), how is the complexity of the vibration response and

the need of separability in the PCs. An analysis in this direction is required to

find common directions in the performance of the methodology with the aim of

understanding better the behaviour of SSA as a damage identification technique.

– In the present work a statistical hypothesis was used to set a threshold for the

inspection phase in order to make the decision whether the structure is healthy or

damaged. Several options of these statistical classifiers exist and the comparison

of the different approaches should be considered as further work. The growth of

the outlier classifier techniques will need robust approaches for decision making

and these statistical approaches can contribute to this direction.

– Other aspect that concerns to the data-based methods is their limitation to lo-
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calise damage within the spatial boundaries of the structure/specimen to anal-

ysis. In this work, the detection of damage/delamination at different locations

was achieved. This demonstrates the sensitivity of the methodology not only

to detect damage but also to distinguish between damage at different locations.

However, the location of the damage was known and the relation with the dam-

age/delamination location was associated with this known location. One possible

direction to address this issue is to find features that can relate sensor location

and the damage index values. Also the use of simple numerical models could

help in this direction but with the consideration of a proper treatment of the

uncertainties between model and experiment towards damage identification.

– Delamination was the main damage studied in this thesis because it is one of the

most common damage in composite structures and it introduces nonlinear effects

in the vibration response of the structure. Other damage, but similar in nature,

that was studied in this work was the debonding between suction and pressure

shells in wind turbine blades. This damage is also one of the most common

forms of damage in wind turbine blades but they are not the only ones. The

consideration of other potential damages such as the effect of ice on wind turbine

blades, surface erosion, fibre breakage, material discontinuity that may act in

different manner and therefore additional considerations may be required.

– The experiments developed in this work were conducted in a laboratory where

the variability of the environmental conditions does not significantly affect the

experiment performance. Composite materials are generally used in structures

that are exposed to considerable variability of the operational and environmental

conditions. Although, SSA is a well-known technique to deal with the nonlin-

earities due to environmental changes, work should be done in this direction to

identify the uncertainty of these effects in the methodology performance. The

study of the performance of the methodology under the operational and envi-

ronmental conditions will be implemented in the study of an operating Vestas

V27 wind turbine with the collaboration of Brüel & Kjær Sound & Vibration

Measurements [149].
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– An exploratory study was presented in this work based on the concept of self-

sensing and self-diagnosis of nano-enriched composite materials. This study open

a new line of research for the combination of the measurable signals through the

nano-enriched material and the damage identification by a VSHM methodology.

These studies are still in an embryo stage but they have an enormous projection

in a wide range of industries such as aircraft, automotive, train and different in-

dustries within the energy sector. This is one of the reasons why further work

must be done in different directions such as the configuration and distribution of

the nanocomposites for reducing the high resistivity of the material and hence

improve the sensitivity. Other important aspect is the development and combi-

nation of novel methodologies to obtain the most from the measurements towards

an integrated system for self-monitoring the structural health.
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based measures for damage assessment in structures. Structural Health Monitoring, 10(5):

539–553, 2011.

[66] M. Johnson. Waveform based clustering and classification of ae transients in composite

laminates using principal component analysis. NDT & E International, 35(6): 367–376,

2002.

[67] I. Lopez and N. Sarigul-Klijn. Effects of dimensional reduction techniques on struc-

tural damage assessment under uncertainty. Journal of Vibration and Acoustics, 133(6):

061008, 2011.

[68] A.-M. Yan, G. Kerschen, P. De Boe and J.-C. Golinval. Structural damage diagnosis

under varying environmental conditionspart i: a linear analysis. Mechanical Systems and

Signal Processing, 19(4): 847–864, 2005.

[69] A.-M. Yan, G. Kerschen, P. De Boe and J.-C. Golinval. Structural damage diagnosis

under varying environmental conditionspart ii: local pca for non-linear cases. Mechanical

Systems and Signal Processing, 19(4): 865–880, 2005.



BIBLIOGRAPHY 178
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[96] L. Böger, M. H. Wichmann, L. O. Meyer and K. Schulte. Load and health monitoring

in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy

matrix. Composites Science and Technology, 68(7): 1886–1894, 2008.

[97] I. Brook, G. Mechrez, R. Y. Suckeveriene, R. Tchoudakov, S. Lupo and M. Narkis. The

structure and electro-mechanical properties of novel hybrid cnt/pani nanocomposites.

Polymer Composites, 35(4): 788–794, 2014.

[98] P. Dharap, Z. Li, S. Nagarajaiah and E. Barrera. Nanotube film based on single-wall

carbon nanotubes for strain sensing. Nanotechnology, 15(3): 379, 2004.

[99] A. Todoroki and J. Yoshida. Electrical resistance change of unidirectional cfrp due to

applied load. JSME International Journal Series A, 47(3): 357–364, 2004.

[100] H. Saghafi, A. Zucchelli, R. Palazzetti and G. Minak. The effect of interleaved composite

nanofibrous mats on delamination behavior of polymeric composite materials. Composite

Structures, 109: 41–47, 2014.

[101] J. L. Abot, Y. Song, M. S. Vatsavaya, S. Medikonda, Z. Kier, C. Jayasinghe, N. Rooy,

V. N. Shanov and M. J. Schulz. Delamination detection with carbon nanotube thread in

self-sensing composite materials. Composites Science and Technology, 70(7): 1113–1119,

2010.



BIBLIOGRAPHY 181

[102] I. Kang, M. J. Schulz, J. H. Kim, V. Shanov and D. Shi. A carbon nanotube strain sensor

for structural health monitoring. Smart materials and structures, 15(3): 737, 2006.

[103] T. N. Tallman, S. Gungor, K. Wang and C. E. Bakis. Damage detection via electrical

impedance tomography in glass fiber/epoxy laminates with carbon black filler. Structural

Health Monitoring, 14(1): 100–109, 2015.

[104] T.-C. Hou, K. J. Loh and J. P. Lynch. Spatial conductivity mapping of carbon nan-

otube composite thin films by electrical impedance tomography for sensing applications.

Nanotechnology, 18(31): 315501, 2007.

[105] B. R. Loyola, T. M. Briggs, L. Arronche, K. J. Loh, V. La Saponara, G. OBryan and J. L.

Skinner. Detection of spatially distributed damage in fiber-reinforced polymer composites.

Structural Health Monitoring, 12(3): 225–239, 2013.

[106] K. J. Loh, J. P. Lynch, B. Shim and N. Kotov. Tailoring piezoresistive sensitivity of

multilayer carbon nanotube composite strain sensors. Journal of Intelligent Material

Systems and Structures, 19(7): 747–764, 2008.

[107] N. Hu, Y. Karube, C. Yan, Z. Masuda and H. Fukunaga. Tunneling effect in a poly-

mer/carbon nanotube nanocomposite strain sensor. Acta Materialia, 56(13): 2929–2936,

2008.

[108] G. T. Pham, Y.-B. Park, Z. Liang, C. Zhang and B. Wang. Processing and modeling of

conductive thermoplastic/carbon nanotube films for strain sensing. Composites Part B:

Engineering, 39(1): 209–216, 2008.

[109] J. A. Westerhuis, T. Kourti and J. F. MacGregor. Comparing alternative approaches for

multivariate statistical analysis of batch process data. Journal of Chemometrics, 13(3-4):

397–413, 1999.
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Figure A.1: Histograms and Lognormal distribution for the training healthy data of the Lab-scale
WTB
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Tables of percentage of correct

classified observations (healthy vs

damage) in the SSP34m wind

turbine blade
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Actuator 1

Sensors TE # 1 2 3 4 5 6 7 8 9 10
Dimension 2

Var (%) 96 94 91 92 95 89 88 87 93 85
n. MH 0 1 0 0 0 0 0 2 0 2
n. MD 2 0 33 30 23 24 0 0 1 0
Correct H (%) 100 98 100 100 100 100 100 95 100 95
Correct D (%) 95 100 15 23 41 38 100 100 97 100

Dimension 3

Var (%) 98 96 93 94 96 91 90 90 95 88
n. MH 2 2 2 1 0 0 0 1 0 0
n. MD 0 0 1 4 21 21 0 0 0 0
Correct H (%) 95 95 95 98 100 100 100 98 100 100
Correct D (%) 100 100 97 90 46 46 100 100 100 100

Dimension 4

Var (%) 99 98 94 95 97 92 92 92 96 91
n. MH 0 1 2 2 0 0 0 0 2 2
n. MD 0 0 3 0 15 17 0 0 0 0
Correct H (%) 100 98 95 95 100 100 100 100 95 95
Correct D (%) 100 100 92 100 62 56 100 100 100 100

Table C.1: Percent of correct classification of Healthy and Damaged observations for the SSP34m-
WTB by the actuation in the location A1. In bold and highlighted in grey the percentages greater
than 90% for Healthy and Damaged observations respectively. Threshold at risk of false alarm
probability equal to α = 0.01
Var: Total percentage of variance contained in the dimension selected of T
H: Healthy WTB. Total number of healthy observations: 42
D: Damaged WTB. Total number of damaged observations: 39
n. MH: Number of observations from Healthy WTB considered as Damaged WTB
n. MD: Number of observations from Damaged WTB considered as Healthy WTB
Sensors TE: Sensors located in the Trailing Edge
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Actuator 2

Sensor TE # 1 2 3 4 5 6 7 8 9 10
Dimension 2

Var (%) 87 84 88 85 87 90 89 87 85 84
n. MH 2 0 11 1 0 0 0 0 0 0
n. MD 0 0 0 0 11 0 25 0 0 0
Correct H (%) 95 100 74 98 100 100 100 100 100 100
Correct D (%) 100 100 100 100 72 100 36 100 100 100

Dimension 3

Var (%) 89 86 92 88 91 92 93 90 88 87
n. MH 2 7 11 0 2 1 0 4 0 0
n. MD 0 0 0 0 8 0 2 0 0 0
Correct H (%) 95 83 74 100 95 98 100 90 100 100
Correct D (%) 100 100 100 100 79 100 95 100 100 100

Dimension 4

Var (%) 91 88 94 90 93 93 95 92 90 89
n. MH 2 6 10 2 1 1 1 6 2 1
n. MD 0 0 0 0 0 0 0 0 0 0
Correct H (%) 95 86 76 95 98 98 98 86 95 98
Correct D (%) 100 100 100 100 100 100 100 100 100 100

Table C.2: Percent of correct classification of Healthy and Damaged observations for the SSP34m-
WTB by the actuation in the location A2. In bold and highlighted in grey the percentages greater
than 90% for Healthy and Damaged observations respectively. Threshold at risk of false alarm
probability equal to α = 0.01
Var: Total percentage of variance contained in the dimension selected of T
H: Healthy WTB. Total number of healthy observations: 42
D: Damaged WTB. Total number of damaged observations: 39
n. MH: Number of observations from Healthy WTB considered as Damaged WTB
n. MD: Number of observations from Damaged WTB considered as Healthy WTB
Sensors TE: Sensors located in the Trailing Edge
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Actuator 3

Sensor TE # 1 2 3 4 5 6 7 8 9 10
Dimension 2

Var (%) 85 92 85 85 83 86 90 92 92 87
n. MH 12 9 0 6 3 7 7 4 11 9
n. MD 0 0 0 0 0 12 11 33 10 13
Correct H (%) 71 79 100 86 93 83 83 90 74 79
Correct D (%) 100 100 100 100 100 69 72 15 74 67

Dimension 3

Var (%) 87 94 88 88 86 88 92 95 94 90
n. MH 12 10 0 7 6 10 7 7 14 11
n. MD 0 0 0 0 0 0 6 29 8 12
Correct H (%) 71 76 100 83 86 76 83 83 67 74
Correct D (%) 100 100 100 100 100 100 85 26 79 69

Dimension 4

Var (%) 89 95 91 91 89 90 93 96 96 92
n. MH 13 11 1 7 7 10 8 7 12 15
n. MD 0 0 0 0 0 0 0 8 8 11
Correct H (%) 69 74 98 83 83 76 81 83 71 64
Correct D (%) 100 100 100 100 100 100 100 79 79 72

Table C.3: Percent of correct classification of Healthy and Damaged observations for the SSP34m-
WTB by the actuation in the location A3. In bold and highlighted in grey the percentages greater
than 90% for Healthy and Damaged observations respectively. Threshold at risk of false alarm
probability equal to α = 0.01
Var: Total percentage of variance contained in the dimension selected of T
H: Healthy WTB. Total number of healthy observations: 42
D: Damaged WTB. Total number of damaged observations: 39
n. MH: Number of observations from Healthy WTB considered as Damaged WTB
n. MD: Number of observations from Damaged WTB considered as Healthy WTB
Sensors TE: Sensors located in the Trailing Edge
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Actuator 4

Sensor TE # 1 2 3 4 5 6 7 8 9 10
Dimension 2

Var (%) 80 85 84 81 81 81 82 85 87 87
n. MH 0 0 0 1 9 1 2 5 0 2
n. MD 0 13 0 0 0 34 0 0 33 38
Correct H (%) 100 100 100 98 79 98 95 88 100 95
Correct D (%) 100 67 100 100 100 13 100 100 15 3

Dimension 3

Var (%) 84 88 88 86 85 85 86 89 90 90
n. MH 3 0 2 2 9 2 0 5 2 2
n. MD 0 10 0 0 0 0 0 0 25 15
Correct H (%) 93 100 95 95 79 95 100 88 95 95
Correct D (%) 100 74 100 100 100 100 100 100 36 62

Dimension 4

Var (%) 88 91 91 90 88 87 89 91 92 92
n. MH 7 0 6 1 9 4 3 5 2 7
n. MD 0 3 0 0 0 0 0 0 0 12
Correct H (%) 83 100 86 98 79 90 93 88 95 83
Correct D (%) 100 92 100 100 100 100 100 100 100 69

Table C.4: Percent of correct classification of Healthy and Damaged observations for the SSP34m-
WTB by the actuation in the location A4. In bold and highlighted in grey the percentages greater
than 90% for Healthy and Damaged observations respectively. Threshold at risk of false alarm
probability equal to α = 0.01
Var: Total percentage of variance contained in the dimension selected of T
H: Healthy WTB. Total number of healthy observations: 42
D: Damaged WTB. Total number of damaged observations: 39
n. MH: Number of observations from Healthy WTB considered as Damaged WTB
n. MD: Number of observations from Damaged WTB considered as Healthy WTB
Sensors TE: Sensors located in the Trailing Edge
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Actuator 1

Sensor LE # 1 2 3 4 5 6 7 8 9 10
Dimension 2

Var (%) 93 95 92 97 97 92 89 92 89 86
n. MH 0 0 0 0 0 0 0 0 2 0
n. MD 22 26 38 25 21 5 32 26 0 37
Correct H (%) 100 100 100 100 100 100 100 100 95 100
Correct D (%) 44 33 3 36 46 87 18 33 100 5

Dimension 3

Var (%) 95 97 95 98 98 94 91 95 93 89
n. MH 1 0 0 0 0 0 1 2 2 1
n. MD 1 26 37 9 0 8 1 0 0 0
Correct H (%) 98 100 100 100 100 100 98 95 95 98
Correct D (%) 97 33 5 77 100 79 97 100 100 100

Dimension 4

Var (%) 96 98 97 99 98 95 93 96 95 91
n. MH 2 0 0 0 0 0 5 4 2 2
n. MD 0 10 31 5 0 5 0 0 0 0
Correct H (%) 95 100 100 100 100 100 88 90 95 95
Correct D (%) 100 74 21 87 100 87 100 100 100 100

Table C.5: Percent of correct classification of Healthy and Damaged observations for the SSP34m-
WTB by the actuation in the location A1. In bold and highlighted in grey the percentages greater
than 90% for Healthy and Damaged observations respectively. Threshold at risk of false alarm
probability equal to α = 0.01
Var: Total percentage of variance contained in the dimension selected of T
H: Healthy WTB. Total number of healthy observations: 42
D: Damaged WTB. Total number of damaged observations: 39
n. MH: Number of observations from Healthy WTB considered as Damaged WTB
n. MD: Number of observations from Damaged WTB considered as Healthy WTB
Sensors LE: Sensors located in the Leading Edge
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Actuator 2

Sensor LE # 1 2 3 4 5 6 7 8 9 10
Dimension 2

Var (%) 97 96 94 92 90 94 94 90 90 87
n. MH 0 6 0 0 3 0 0 3 4 0
n. MD 0 11 2 39 0 11 8 3 1 3
Correct H (%) 100 86 100 100 93 100 100 93 90 100
Correct D (%) 100 72 95 0 100 72 79 92 97 92

Dimension 3

Var (%) 98 97 96 95 93 96 97 92 92 90
n. MH 0 4 1 2 2 2 1 3 8 0
n. MD 0 1 4 35 0 0 6 4 0 6
Correct H (%) 100 90 98 95 95 95 98 93 81 100
Correct D (%) 100 97 90 10 100 100 85 90 100 85

Dimension 4

Var (%) 98 98 97 96 94 97 98 94 94 92
n. MH 0 6 2 2 3 3 2 3 8 0
n. MD 0 0 1 35 0 0 6 0 0 2
Correct H (%) 100 86 95 95 93 93 95 93 81 100
Correct D (%) 100 100 97 10 100 100 85 100 100 95

Table C.6: Percent of correct classification of Healthy and Damaged observations for the SSP34m-
WTB by the actuation in the location A2. In bold and highlighted in grey the percentages greater
than 90% for Healthy and Damaged observations respectively. Threshold at risk of false alarm
probability equal to α = 0.01
Var: Total percentage of variance contained in the dimension selected of T
H: Healthy WTB. Total number of healthy observations: 42
D: Damaged WTB. Total number of damaged observations: 39
n. MH: Number of observations from Healthy WTB considered as Damaged WTB
n. MD: Number of observations from Damaged WTB considered as Healthy WTB
Sensors LE: Sensors located in the Leading Edge
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Actuator 3

Sensor LE # 1 2 3 4 5 6 7 8 9 10
Dimension 2

Var (%) 88 88 88 87 88 91 89 95 92 88
n. MH 8 7 9 9 0 13 10 12 11 7
n. MD 20 9 14 13 36 13 14 20 9 13
Correct H (%) 81 83 79 79 100 69 76 71 74 83
Correct D (%) 49 77 64 67 8 67 64 49 77 67

Dimension 3

Var (%) 91 91 91 90 90 93 91 97 94 90
n. MH 6 6 9 9 1 13 8 13 11 9
n. MD 11 9 15 14 28 10 15 10 8 12
Correct H (%) 86 86 79 79 98 69 81 69 74 79
Correct D (%) 72 77 62 64 28 74 62 74 79 69

Dimension 4

Var (%) 93 92 93 92 92 94 92 98 95 92
n. MH 8 5 10 10 0 12 12 13 11 9
n. MD 1 8 13 4 29 11 4 7 4 12
Correct H (%) 81 88 76 76 100 71 71 69 74 79
Correct D (%) 97 79 67 90 26 72 90 82 90 69

Table C.7: Percent of correct classification of Healthy and Damaged observations for the SSP34m-
WTB by the actuation in the location A3. In bold and highlighted in grey the percentages greater
than 90% for Healthy and Damaged observations respectively. Threshold at risk of false alarm
probability equal to α = 0.01
Var: Total percentage of variance contained in the dimension selected of T
H: Healthy WTB. Total number of healthy observations: 42
D: Damaged WTB. Total number of damaged observations: 39
n. MH: Number of observations from Healthy WTB considered as Damaged WTB
n. MD: Number of observations from Damaged WTB considered as Healthy WTB
Sensors LE: Sensors located in the Leading Edge
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Actuator 4

Sensor LE # 1 2 3 4 5 6 7 8 9 10
Dimension 2

Var (%) 89 90 84 86 86 90 88 90 92 84
n. MH 0 0 0 0 0 0 0 0 0 0
n. MD 34 0 39 37 38 39 39 35 38 39
Correct H (%) 100 100 100 100 100 100 100 100 100 100
Correct D (%) 13 100 0 5 3 0 0 10 3 0

Dimension 3

Var (%) 91 93 88 89 90 92 90 93 95 86
n. MH 1 0 0 0 0 1 0 0 0 0
n. MD 13 0 0 0 11 39 39 25 37 39
Correct H (%) 98 100 100 100 100 98 100 100 100 100
Correct D (%) 67 100 100 100 72 0 0 36 5 0

Dimension 4

Var (%) 93 94 91 91 93 93 91 94 96 88
n. MH 2 1 0 3 0 1 0 0 0 0
n. MD 15 0 0 0 0 39 39 26 36 39
Correct H (%) 95 98 100 93 100 98 100 100 100 100
Correct D (%) 62 100 100 100 100 0 0 33 8 0

Table C.8: Percent of correct classification of Healthy and Damaged observations for the SSP34m-
WTB by the actuation in the location A4. In bold and highlighted in grey the percentages greater
than 90% for Healthy and Damaged observations respectively. Threshold at risk of false alarm
probability equal to α = 0.01
Var: Total percentage of variance contained in the dimension selected of T
H: Healthy WTB. Total number of healthy observations: 42
D: Damaged WTB. Total number of damaged observations: 39
n. MH: Number of observations from Healthy WTB considered as Damaged WTB
n. MD: Number of observations from Damaged WTB considered as Healthy WTB
Sensors LE: Sensors located in the Leading Edge
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